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Good metrics of the performance of a statistical or computational model are essential

for model comparison and selection. Here, we address the design of performance

metrics for models that aim to predict neural responses to sensory inputs. This is

particularly difficult because the responses of sensory neurons are inherently variable,

even in response to repeated presentations of identical stimuli. In this situation, standard

metrics (such as the correlation coefficient) fail because they do not distinguish between

explainable variance (the part of the neural response that is systematically dependent

on the stimulus) and response variability (the part of the neural response that is

not systematically dependent on the stimulus, and cannot be explained by modeling

the stimulus-response relationship). As a result, models which perfectly describe the

systematic stimulus-response relationship may appear to perform poorly. Two metrics

have previously been proposed which account for this inherent variability: Signal Power

Explained (SPE, Sahani and Linden, 2003), and the normalized correlation coefficient

(CCnorm, Hsu et al., 2004). Here, we analyze these metrics, and show that they are

intimately related. However, SPE has no lower bound, and we show that, even for good

models, SPE can yield negative values that are difficult to interpret. CCnorm is better

behaved in that it is effectively bounded between −1 and 1, and values below zero

are very rare in practice and easy to interpret. However, it was hitherto not possible

to calculate CCnorm directly; instead, it was estimated using imprecise and laborious

resampling techniques. Here, we identify a new approach that can calculate CCnorm

quickly and accurately. As a result, we argue that it is now a better choice of metric than

SPE to accurately evaluate the performance of neural models.

Keywords: sensory neuron, receptive field, signal power, model selection, statistical modeling, neural coding

1. INTRODUCTION

Evaluating the performance of quantitative models of neural information processing is an essential
part of their development. Appropriate metrics enable us to compare different models and select
those which best describe the data. Here, we are interested in developing improvedmetrics to assess
models of the stimulus-response relationships of sensory neurons, in the challenging (but common)
situation where the stimulus-response relationship is complex, and neuronal responses are highly
variable. In this case, the development of appropriate performance metrics is not trivial, and so
there is a lack of consensus about which metrics are to be used.
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The classical way to record and model neural responses has
been to repeatedly present an animal with a small, well-defined
set of stimuli (such as sinusoidal gratings of different orientations,
or sounds of different frequencies). The neural responses to
repeated presentations of each stimulus are then averaged. Using
a small stimulus set, it may be possible to present the same
stimulus enough times that this averaging succeeds in reducing
the effect of neuronal response variability (Döerrscheidt, 1981).
It may then be possible to produce models which accurately
describe the relationship between the stimulus and the averaged
responses. These models can then be accurately evaluated by
comparing the modeled and actual neuronal responses using
standard metrics such as correlation coefficient. Under these
circumstances, the correlation coefficient may be appropriate and
can easily be interpreted—a poor model will have a correlation
coefficient close to 0, a perfect model will have a correlation
coefficient close to 1, and the square of the value of the correlation
coefficient equals the proportion of the variance in the neural
responses that the model is able to account for.

However, recent work in sensory neuroscience has
increasingly focused on the responses of neurons to complex
stimuli (Atencio and Schreiner, 2013; David and Shamma,
2013), and even natural stimuli (Prenger et al., 2004; Asari and
Zador, 2009; Laudanski et al., 2012). For such stimuli, even
very sparse sampling of the stimulus space may require the
presentation of very large numbers of different stimuli (at least
of order 2d for d stimulus dimensions; also see Shimazaki and
Shinomoto, 2007). This makes it difficult to repeatedly present
stimuli enough times for response variability to simply average
out. Estimating mean responses for a particular stimulus is thus
subject to sampling noise, and in addition to that, the neuron
under study may also be “intrinsically noisy” in the sense that
only a small proportion of the response variability may be
attributable to variability of the stimulus. Such situations are very
common in sensory neuroscience, and they can render the use
of correlation coefficients to evaluate the performance of models
that map stimuli to responses very misleading. If only a fraction
of the neural response variability is stimulus linked, then even a
perfect model of that stimulus linkage will only ever be able to
account for some fraction of the variance in the observed neural
response data. This places a limit on the maximum correlation
coefficient that can be achieved, and the interpretation of the
raw correlation coefficients becomes ambiguous: for example, a
relatively low correlation coefficient of 0.5 might be due to an
excellent model of a noisy dataset, or of a rather poor model of a
dataset with very low intrinsic and sampling noise, or something
in between.

Different approaches for taking neural variability into account
when measuring model performance have been developed. To
get an unbiased estimate of mutual information, Panzeri and
Treves (1996) suggested a method to extrapolate information
content to an infinite number of trials (also see Atencio et al.,
2012). Roddey et al. (2000) compared the coherence of pairs of
neural responses to independent stimulus repetitions to derive a
minimum mean square error (MMSE) estimator for an optimal
model. The difference between the model prediction error and
the MMSE of an optimal model allows the quantification of the

model performance relative to the best possible performance
given the neural variability.

Based not only on pairs, but even larger sets of neural
responses to independent stimulus repetitions, Sahani and
Linden developed the very insightful decomposition of the
recorded signal into signal power and noise power (Sahani and
Linden, 2003). This has lead to the signal power explained
(SPE), a measure based on variance explained which discounts
“unexplainable” neural variability. While the work of Roddey
et al. (2000) was already based on the differentiation between
explainable and unexplainable neural response components,
Sahani and Linden (2003) provided explicit estimations for those
components. The SPE measure has been widely adopted, albeit
under various names such as predictive power, predicted response
power, and relative prediction success (Sahani and Linden, 2003;
Machens et al., 2004; Ahrens et al., 2008; Asari and Zador, 2009;
Rabinowitz et al., 2012). Also, it has been used as a basis for
specific variants of measures for model performance (Haefner
and Cumming, 2009).

Focusing on coherence and the correlation coefficient, Hsu
and colleagues developed a method to normalize those measures
by their upper bound (CCmax), which is given by the inter-
trial variability (Hsu et al., 2004). This yields the normalized
correlation coefficient (CCnorm). Following their suggestion, the
upper bound can be approximated by looking at the similarity
between one half of the trials and the other half of the trials
(CChalf ). This measure has also been used by Gill et al. (2006)
and Touryan et al. (2005). Others used the absolute correlation
coefficient and controlled for inter-trial variability by comparing
the absolute values with CChalf (Laudanski et al., 2012).

The two metrics SPE and CCnorm have been developed
independently, but they both attempt—in different ways—to
provide a method for assessing model performance independent
of neuronal response variability. Here, we here analyze these
metrics, show for the first time that they are closely related, and
discuss the shortcomings of each. We provide a new, efficient
way to directly calculate CCnorm and show how it can be used
to accurately assess model performance, overcoming previous
shortcomings.

2. CRITERIA OF MODEL EVALUATION

Neural responses are often measured as the membrane potential
(Machens et al., 2004; Asari and Zador, 2009) or as the time-
varying firing rate (Sahani and Linden, 2003; Gill et al., 2006;
Ahrens et al., 2008; Rabinowitz et al., 2011; Laudanski et al.,
2012; Rabinowitz et al., 2012) (which we will use without loss
of generality). Thus, a measure of performance for such models
should quantify the similarity of the predicted firing rate ŷ and
the recorded firing rate y (also known as the peri-stimulus time
histogram, PSTH):

y(t) = 1

N

N
∑

n=1

Rn(t) (1)

where Rn is the recorded response of the nth stimulus
presentation and N is the total number of stimulus presentations
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(trials). Both Rn(t) and y(t) are a function of the time bin t, but
the argument t will not be shown for rest of the manuscript.
Each value of the vector Rn contains the number of spikes that
were recorded in the corresponding time bin. Note that, given
the trial-to-trial variability of sensory responses, the recorded
firing rate y is only an approximation of the true (but unknown)
underlying firing rate function that is evoked by the presentation
of a stimulus (also see Kass et al., 2003). It is a sample mean which
one would expect to asymptote to the true mean as the number
of trials increases (N → ∞). As will be discussed in detail at a
later point, the difference between the recorded firing rate y and
the true underlying firing rate is considered to be noise under the
assumption of rate coding. This is the unexplainable variance that
reflects the variability of the neuronal response. As the number of
trials increases, the difference between y and the true underlying
firing rate decreases and so does the non-deterministic and thus
unexplainable variance in the signal.

With the recorded firing rate y being the target variable for the
prediction ŷ, a measure of model performance needs to quantify
the similarity between both signals, i.e., the prediction accuracy.
Note that model performance is not necessarily the same as
prediction accuracy (see next section).

3. SIGNAL POWER EXPLAINED

Two somewhat related metrics which are widely applied in
statistics are the “coefficient of determination” (CD) and the
“proportion of variance explained” (VE). Both these metrics
essentially incorporate the assumption that the quantitative
observations under study—in our case the responses of a
sensory neuron or neural system—are the sum of an essentially
deterministic process which maps sensory stimulus parameters
onto neural excitation, plus an additive, stochastic noise process
which is independent of the recent stimulus history (Sahani and
Linden, 2003). Consequently, if a model is highly successful
at predicting the deterministic part, subtracting the predictions
from the observations should leave only the noise part, but
if its predictions are poor, the residuals left after subtracting
predictions from observations will contain both noise and
prediction error. Thus, smaller residuals are taken as a sign of
better prediction. The CD is an index that quantifies the size of
the residuals relative to the size of the original observation in
a quite direct manner as a sum of squares, and subtracts that
unaccounted for proportion from 100% to give an estimate of the
proportion of the signal that is accounted for by the model. Thus

CD = 1−
∑

t(y(t)− ŷ(t))2
∑

t y(t)
2

(2)

The VE quantifies prediction accuracy in a largely analogous
manner, but instead of using the “raw” sum of squares of the
observations and the residuals, it instead uses the respective
sample variances, measured around their respective sample
means:

VE = 1− Var(y− ŷ)

Var(y)
(3)

This makes the VE insensitive to whether the mean of the
predicted responses closely corresponds to the mean of the
observed responses over all t, which can sometimes be an
advantage. Even small errors (biases) in the mean of the
prediction can be penalized quite heavily by the CD measure as
these will accumulate over every sample. The VEmeasure can be
thought of as deeming such biases as unimportant, and focusing
solely on how well the model predicts the trends in the responses
as a function of t.

CD and VE have a long established history in statistics, but
neither provide an unambiguous measure of model performance
because large amounts of residual variance, and therefore low
VE or CD values, could arise either if the model provides a
poor approximation to underlying deterministic and predictable
aspects of the process under study, or if the model captures the
deterministic part of the process perfectly well, but large amounts
of fundamentally unpredictable noise in the system nevertheless
cause the amount of residual variance to be large. In other words,
even a perfect model cannot make perfect predictions, because
the neuronal response has a non-deterministic component. Even
if the model was completely identical to the neuron in every
aspect, it would nevertheless be unable to explain 100% of the
variance in the neuronal responses because the PSTHs collected
over two separate sets of stimulus presentations cannot be
expected to be identical and the first set does not perfectly predict
the second. Furthermore, since the number of trials N used to
determine any one PSTH is often rather low for practical reasons,
observed PSTHs are often somewhat rough, noisy estimators of
the underlying neural response function (also see Döerrscheidt,
1981; Kass et al., 2003; Shimazaki and Shinomoto, 2007). A
good measure of model performance for sensory neural systems
should take these considerations into account and judge model
performance relative to achievable, rather than total, prediction
accuracy. Such considerations led Sahani and Linden (2003) to
introduce metrics which split the variance in an observed PSTH,
the total power (TP), into the signal power (SP), which depends
deterministically on recent stimulus history, and the stochastic
noise power (NP). Only the SP is explainable in principle by a
model, and the signal power explained (SPE) thus aims to quantify
model performance relative to the best achievable performance.
SPE is defined as:

SPE = Var(y)− Var(y− ŷ)

SP
(4)

SP = 1

N − 1

(

N × Var(y)− TP
)

TP = (N − 1)×
N
∑

n=1

Var(Rn) (5)

SPE is quantified as the ratio of the explained signal power relative
to the explainable signal power1. The explained signal power is

1Please note that we do not use the notation of Sahani and Linden (2003). However,

all definitions are identical. Sahani and Linden define the power P of a signal r as

the “average squared deviation from the mean: P(r) = 〈(rt − 〈rt〉)2〉” where 〈.〉
denotes the mean over time. This is identical to the variance of the signal, which

we use.
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calculated by subtracting the variance of the residual (the error)
from the total variance in the observed firing rate. The explainable
signal power SP is calculated according to formulas developed
in Sahani and Linden (2003) and reproduced below (Equation
13). Good models will yield small error variance and thus a large
SPE - and vice versa. However, this measure lacks an important
characteristic: it is not bounded. While a perfect model would
yield an SPE of 100%, the measure has no lower bound and can
go deeply into negative values when the variance of the error is
bigger than the variance of the neural signal. This shortcoming
of the SPE metric can be exposed by reformulating parts of the
equation. First, observe that for two random variables X and Y
the variance of their difference can be expressed as :

Var(Y − X) = Var(Y)+ Var(X)− 2× Cov(X,Y) (6)

Applying this reformulation to Equation 5 reveals that:

SPE = Var(y)− Var(y− ŷ)

SP
= 2× Cov(y, ŷ)− Var(ŷ)

SP
(7)

Consider a particularly bad model, which produces predictions
that are no better than the output of a random number
generator. The covariance between the predictions and the
neural responses will then be close to zero, but the variance
(i.e., the power of the predicted signal) of the predicted
signal may nevertheless be large. The SPE for such a model
would be a negative number equal to −Var(ŷ)/SP. This is a
counterintuitive property of the SPE metric: the “proportion
of the signal power that is explained” by a list of random
numbers should be zero, not negative. Also, two bad models
that are equally unable to capture the trends of the signal
they are trying to predict and thus have near zero covariance
may nevertheless have widely different negative SPE values, but
how negative their SPE values are may have little systematic
relationship to how large their prediction errors are on average,
which makes small or negative SPE values very difficult to
interpret.

This can be illustrated with a simple hypothetical example.
Imagine a visual cortex simple cell responding to a sinusoidal
contrast grating stimulus with a sinusoidal modulation of its
firing rate, so its observed response is a sine wave, let’s say, of
an amplitude of ±1 spikes/s around a mean firing rate of 10
spikes/s at a modulation rate of 1 Hz. Let us further assume
that model A predicts sinusoidal firing at a 2 Hz modulation
rate with an amplitude of ±2 spikes/s around a mean of 10
spikes/s, and model B predicts a sinusoidal firing at 2 Hz with
an amplitude of ±1 spikes/s around a mean of 100 spikes/s.
Since neither model A nor B correctly predicted the rate of
the sinusoidal firing rate modulations, and because sine waves
of different frequencies are orthogonal, both models will have
covariance of zero with the observed data. Thus, they have a
negative SPE, as the signal variance is greater than zero. And
because model A predicted larger amplitude fluctuations than
model B, and thus has greater variance, the SPE ofmodel Awill be
more negative than that of model B, which one might be tempted
to interpret tomean thatmodel A performedworse. However, the

discrepancy or prediction error between observed and predicted
rates for model A will never be more than 3 spikes/s, while that
of model B will never be less than 88 spikes/s, and the more
negative SPE of model A contrasts sharply with the fact that
model A produces a much smaller mean squared prediction
error than model B. Furthermore SPE can yield negative values
even when there is a reasonable amount of covariance between
model and prediction, if the variance in the predicted signal is
also sizable. This is illustrated in Figure 1. Not only is such a
measure rather hard to interpret, but it can be misleading. Due
to the missing lower bound the values can not only become
negative, but the exact value also depends on the variance of
the prediction. Consider the prediction with 60% noise in the
lower right panel of Figure 1. While this prediction is surely not
a good one, the fact that data and model prediction co-vary to
a fair degree is nevertheless readily apparent, and it would be
hard to argue that a model predicting a flat, arbitrary, constant
firing rate (say 800 spikes/s) would be a better alternative. Yet
the variance of any predicted constant firing rate would be
zero and so would be their SPE, which may seem indicative
of a “better explanatory power” of the constant rate model
compared to the “60% noise” added model of Figure 1 with its
SPE = −39%, but the noisy model clearly captures some of
the major peaks in the data while constant rate models don’t
even try.

These examples illustrate that models can be thought of as
being wrong in different ways. They can be “biased,” predicting
an incorrect overall mean response rate, they can be “scaled
wrong,” predicting fluctuations that are too small or too large,
or they can fail to predict the trends and dynamics of the
data, leading to near zero covariance between observation and
prediction. Different metrics of model performance will differ
in how sensitive they are to these different types of error.
SPE is sensitive both to poor scaling and poor covariance,
but not to bias. Some might argue, quite reasonably, that
this combined sensitivity to two types of error is a virtue:
When SPE values are large then we can be confident that
the model achieves both good covariance and good scaling.
However, the downside of this joint sensitivity is that small or
negative SPE values have limited diagnostic value because they
could be due to small covariance or to overestimated (but not
underestimated) predicted variance, or some combination of the
two. Consequently, as we will illustrate further in section 6, SPE
values below about 0.4 become very difficult to interpret, andmay
be much at odds with other commonly used measures of model
performance.

Negative values of the SPE have been previously reported
(Machens et al., 2004; Ahrens et al., 2008) and have been
interpreted as a sign of overfitting of the model. Overfitting
usually manifests itself as a decline in covariance between data
and predictions in cross-validation tests, and as such would result
in small or negative SPEs, but because SPE will become negative
for any prediction which has a residual variance that is larger than
the variance of the target signal, negative SPE is not a specific
diagnostic of overfitting. Also negative SPEs do not necessarily
imply that a model performs worse than a “null model” which
predicts constant responses equal to the mean firing rate. In fact,
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FIGURE 1 | Illustration of the missing lower bound of SPE. Left panel: The simulation was created by adding increasing white noise (w) to an actual prediction ŷ

generated by an artificial neural network: ŷα = αw+ (1− α)ŷ with 0% ≤ α ≤ 100%, negative values of the deteriorated ŷα set to 0. Top right panel: The original

prediction ŷ of the neural network (red) and the actual neural response (black). Lower right panel: The deteriorated prediction at a noise level of 60% (SPE = −39%).

any model predicting any arbitrary constant value (even a “dead
neuron model” predicting a constant firing rate of 0 spikes/s) will
have an SPE of zero and might on that basis be judged to perform
better than other models generating noisy but fairly reasonable
predictions (see Figure 1).

Of the three different types of error just discussed, large
bias, poor scaling, small covariance, SPE is sensitive to two,
covariance and scaling, although it is particularly excessively
large, but not excessively small, scaling, that will drive SPE
values down. Perhaps it is inevitable that single performance
measures which are sensitive to multiple different types of
error become very difficult to interpret as soon as performance
becomes suboptimal. To an extent, whether one deems it
preferable to have an error metric that is sensitive to bias,
scaling and low covariance all at once, or whether one chooses
a metric that is more specific in its sensitivity to only one
of type of error is a matter of personal preference as well
as of what one is hoping to achieve, but joint sensitivity to
multiple different types of error is certainly problematic when
the measure is to be used for model comparison, given that the
relative weighting of the different types of error in the metric
may not be readily apparent and it is unlikely to reflect how
problematic the different types of error are in modeling. A
constant bias, which would, for example, be heavily penalized
by the CD metric discussed at the beginning of this section,
can be easily fixed by adding or subtracting a constant value
from the predictions. Similarly, scaling errors can be easily
fixed by multiplication by a scalar. These two types of error
pertain only to the relatively uninteresting stationary statistical
properties of the data. They are in some sense trivial, and easily
remedied through a simple linear adjustment. Low covariance, in
contrast, is indicative of a much more profound inability of the
model to capture the nature or dynamics of the neural stimulus-
response relationships. In our opinion, the assessment of model
performance should therefore rely first and foremost measures
which are highly sensitive to poor covariance and insensitive
to bias or scaling, and we discuss measures which have these
properties in the next section. If needed, these could then be

supplemented with additional metrics that can diagnose biases
or scaling errors.

4. ABSOLUTE AND NORMALIZED
CORRELATION COEFFICIENT

Another measure widely used in statistics, Pearson’s product-
moment correlation coefficient can also be used to assess the
similarity of two time-varying signals. The correlation coefficient
quantifies the linear correlation and maps it to a value between
−1 and +1. To distinguish it from a normalized variant that will
be used later in this section, the (absolute) correlation coefficient
will from now on be abbreviated as CCabs. It is defined as:

CCabs =
Cov(X,Y)√
Var(X)Var(Y)

(8)

CCabs satisfies many of the criteria that one might desire in a
good measure of model performance. It quantifies the similarity
between observation and prediction, it is bounded between −1
and +1, and it can be interpreted easily and unambiguously.
The normalization by the square root of the variances makes
CCabs insensitive to scaling errors, and the formulae for Var()
and Cov() have subtractions of means built in that make CCabs

insensitive to bias, so that only the ability of Y to follow trends
X is being quantified. However, like VE, it does not isolate
model performance from prediction accuracy, which is inevitably
limited by neural variability. In other words CCabs might be small
either because the model predictions Y are poor, or because
the measured neural responses X are fundamentally so noisy
that even an excellent model cannot be expected to achieve a
large CCabs. This was also noted by Hsu and colleagues who
went on to develop an approach to quantify and account for the
inherent noise in neural data (Hsu et al., 2004). Specifically, they
introduced a method for normalizing coherence and correlation
to the neural variability, which has later been applied as a
performance measure (Touryan et al., 2005; Gill et al., 2006). Hsu

Frontiers in Computational Neuroscience | www.frontiersin.org 5 February 2016 | Volume 10 | Article 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Schoppe et al. How Good is My Model?

and colleagues define the normalized correlation coefficient as
follows (Hsu et al., 2004)2:

CCnorm = CCabs

CCmax
with

CCmax =
√

√

√

√

√

2

1+
√

1
CC2

half

CChalf >0
=

√

√

√

√

2

1+ 1
CChalf

(9)

Where CCmax is the maximum correlation coefficient between
the recorded firing rate y and the best prediction ŷ that a perfect
model could theoretically achieve. More specifically, CCmax is the
correlation coefficient between the recorded firing rate y (which
is based on N trials) and the true (but unknown) underlying
firing rate function, which could only be determined precisely
if the system was completely stationary and an infinite number
of trials could be conducted (N → ∞). Even though the
true underlying firing rate function can therefore usually not
be determined with high accuracy through experiments, useful
estimates of CCmax can nevertheless be calculated using the
formulae in Equation 9. Following the methods of Hsu et al.
(2004), CChalf is determined by splitting the data set into halves,
and calculating the correlation coefficient between the PSTH
constructed from the first half and the PSTH constructed from
the second half of the trials. This approach determines CCmax by
effectively extrapolating from N trials to the value that would be
expected for N → ∞.

Note that there are 1
2

( N
N/2

)

different ways to choose N/2 out

of N trials, and each such split of the data will yield a slightly
different value for CChalf . Thus, in theory, the best estimate
would average over all possible values of CChalf calculated for
each possible split. In practice, this resampling technique can be
computationally expensive, given the fact that there are already
92, 378 combinations for N = 20 trials. Averaging over a smaller
number of randomly chosen splits may often be sufficient, but
this yields an imprecise estimation of CCmax.

In summary, CCnorm provides a feasible method for capturing
model performance independently of noise in the neural
responses. It gives values bounded between -1 and +1 (in practice,
they are bounded between 0 and +1, as model predictions
are either correlated or not correlated, but typically not anti-
correlated to the firing rate). Furthermore, the measure lends
itself to unambiguous interpretation, and its limitations are well-
known. Finally, it is normalized so that its value does not depend
on the variability of a particular data set. Thus, the normalized
correlation coefficient CCnorm fulfills the criteria for a useful
measure of model performance, but its current definition is based
in a laborious and potentially imprecise resampling technique.

2The expression for CCmax can be derived from the work of Hsu et al. (2004) in

two steps. First, Equations 6 and 8 from Hsu et al. (2004) are combined and solved

for γARM . Second, the analogy of the coherence γ 2 and the squared correlation

coefficient CC2 allows to replace γARM with CCmax and γR1,M/2R2,M/2
with CChalf .

In the notation of Hsu and colleagues γ 2
ARM

denotes the coherence of the mean

response over M trials with the true (but unknown) underlying firing rate A, i.e.,

the maximum achievable coherence of a perfect model.

5. A CONSOLIDATED APPROACH TO
QUANTIFYING NEURAL VARIABILITY

As will have become clear in the previous sections, the two
measures SPE and CCnorm follow the same logic in that
both measure prediction accuracy and normalize it by a
quantification of the inherent reproducibility of the neural
responses that are to be modeled (SP or CCmax, respectively).
In this section we will show that these two approaches
of normalization not only follow the same logic, but are
mathematically largely equivalent. This provides a deeper
insight into the underlying concept and gives rise to a more
elegant and efficient technique to normalize the correlation
coefficient.

Following the methods of Sahani and Linden (2003)3, the
signal power SP (i.e., the deterministic part of the recorded firing
rate y) can be expressed as:

SP = 1

N − 1

(

N × Var(y)− TP
)

(10)

= 1

N − 1

(

N × Var

(

1

N

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(11)

= 1

N − 1

(

N × 1

N2
Var

(

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(12)

= 1

N − 1

(

1

N
× Var

(

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(13)

Where TP is the total power (i.e., the average variance of a single
trial) and Rn is the recorded neural response of the nth trial. Since
the normalization factor of SPE is the inverse of SP it will be
convenient to express it as:

1

SP
= N(N − 1)

Var

(

N
∑

n= 1
Rn

)

−
N
∑

n= 1
Var(Rn)

(14)

Furthermore, using Equation 14 the ratio of the noise power NP
over SP can be expressed as:

NP

SP
= TP − SP

SP
= TP

SP
− 1 =

(N − 1)×
N
∑

n= 1
Var(Rn)

Var

(

N
∑

n= 1
Rn

)

−
N
∑

n= 1
Var(Rn)

− 1

(15)

For CCnorm the normalization factor is the inverse of CCmax

and, following the methods of Hsu et al. (2004), it is currently
determined with an indirect resampling method using Equation

3Again, please note that Sahani and Linden (2003) use r(n) to denote the average

over trials. In order to facilitate the reformulation of the equation we do not use

this abbreviated notation. Despite this difference in notation, this definition of SP is

identical to the definition provided by Sahani and Linden (Equations 1 on Page 3).
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9. We will now show how CCmax can be computed directly by
exploiting the relation between SPE and CCnorm.

The coherence γ 2
AB between a source signal A and a noisy

recording B of this signal can be related to the signal-to-
noise ratio, i.e., the coherence is just a function of the noise
process itself (see Marmarelis, 1978 for details). In the context
of neural recordings, Hsu et al. (2004) used this relation to
express the coherence of the true (but unknown) underlying
firing rate function (the source A) to the observed PSTH
(the noisy recording B) as a function of the signal-to-noise
ratio of the recording. They quantified this in terms of
signal power of the frequency domain signals, but since the
power of corresponding time and frequency domain signals
is identical, we can rewrite their expression (see formulas 5
and 6 of Hsu et al., 2004) directly in terms of NP and SP
to get:

γ 2
AB = SP

SP + 1
NNP

(16)

The derivation of the coherence function between the true
underlying firing rate function and the observed neural response
is analogous for the squared correlation coefficient between both
signals (also see Hsu et al., 2004 for details on this analogy). Thus,
we can apply the same principle to express the the inverse of
CCmax as:

1

CCmax
=
√

1+ 1

N
× NP

SP
(17)

Combining Equation 17 with Equation 15 now allows us to
express the inverse of CCmax as:

1

CCmax
=

√

√

√

√

√

√

√

√

1+ 1

N











(N − 1)×
N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

− 1











(18)

=

√

√

√

√

√

√

√

√

1− 1

N
+

(1− 1
N )×

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(19)

Based on Equation 8 and 9 the normalized correlation coefficient
CCnorm between the recorded firing rate y and the model
prediction ŷ can now be expressed as:

CCnorm = CCabs

CCmax
= Cov(y, ŷ)
√

Var(y)Var(ŷ)

1

CCmax
(20)

= Cov(y, ŷ)
√

Var(y)Var(ŷ)

√

√
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(21)

= Cov(y, ŷ)
√

Var(y)Var(ŷ)
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= Cov(y, ŷ)
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= Cov(y, ŷ)
√

Var(ŷ)

√

1

SP
(27)

In other words, we can now express CCnorm as a simple
function of SP. The previous derivation also shows that both
methods, SPE and CCnorm, use the covariance to quantify the
prediction accuracy and take the neural variability into account
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by normalizing with the signal power SP. This has several
implications. First, SPE will not reveal more about the prediction
accuracy than CCnorm, because SPE and CCnorm quantify the
similarity of the prediction and the neural response solely based
on the covariance of both signals. It is well known that the
(normalized) correlation coefficient is based on covariance, but
it has hitherto not been made explicit that this is also the
case for SPE. Note that SPE uses only the covariance to assess
prediction accuracy and thus, cannot reveal more information
about the similarity of both signals than CCnorm. Second, how
both measures quantify neural variability is not only related, but
mathematically equivalent. Third, in order to calculate CCnorm

it is not necessary to laboriously compute an approximation
to CCmax from repeated subsampling of the data to generate
computationally inefficient and potentially imprecise estimates
of CChalf . Instead, the normalization factor can be explicitly
calculated with Equation 27, using Equation 13 for SP as
suggested by Sahani and Linden (2003). The close relationship
between bothmeasures can also be visualized by squaringCCnorm

(left panel of Figure 2).
In summary, CCnorm as defined in Equation 27 provides

an insightful measure of model performance. It quantifies the
prediction accuracy using the covariance and isolates model
performance by taking the amount of intrinsic variability in the
observed neural responses into account. It is in theory bounded
between -1 and 1, and in practice values below zero are very rarely
observed. If they do occur, their interpretation is unambiguous:
negative CCnorm implies anticorrelation between prediction and
data. CCnorm thus behaves uniformly well whether called upon to
quantify the performance of good and of poor models, in contrast
to SPEwhich behaves well, and very similarly to CCnorm, for good
models, but becomes increasingly harder to interpret as model
performance declines.

6. EXPERIMENTAL VALIDATION

The previous sections show the problems caused by the missing
lower bound of SPE from a theoretical point of view and illustrate
them with a simulation (Figure 1). This section demonstrates
the implications from a practical point of view by comparing
the predictive performance of models for the activity of single
neurons in the auditory system in three different experimental
settings.

6.1. Neural Recordings
All animal procedures were approved by the local ethical review
committee and performed under license from the UK Home
Office. Ten adult pigmented ferrets (seven female, three male;
all >6 months of age) underwent electrophysiological recordings
under anesthesia. Full details are as in the study by Bizley
et al. (2010). Briefly, we induced general anesthesia with a
single intramuscular dose of medetomidine (0.022 mg/kg/h)
and ketamine (5 mg/kg/h), which was maintained with a
continuous intravenous infusion of medetomidine and ketamine
in saline. Oxygen was supplemented with a ventilator, and
we monitored vital signs (body temperature, end-tidal CO2,
and the electrocardiogram) throughout the experiment. The

temporal muscles were retracted, a head holder was secured
to the skull surface, and a craniotomy and a durotomy
were made over the auditory cortex. We made extracellular
recordings from neurons in primary auditory cortex (A1)
and the anterior auditory field (AAF) using silicon probe
electrodes (Neuronexus Technologies) with 16 or 32 sites
(spaced at 50 or 150 µm) on probes with one, two, or four
shanks (spaced at 200 µm). We clustered spikes off-line using
klustakwik (Kadir et al., 2014); for subsequent manual sorting,
we used either spikemonger (an in-house package) or klustaviewa
(Kadir et al., 2014). The time-discrete neuronal firing rate
was approximated by binning spikes in 5 ms windows and
averaging the spike count in each bin over all trials (compare to
Equation 1).

6.2. Acoustic Stimuli
Natural sounds were presented via Panasonic RPHV27
earphones, which were coupled to otoscope specula that were
inserted into each ear canal, and driven by Tucker-Davis
Technologies System III hardware (48 kHz sample rate). The
sounds had root mean square intensities in the range of 75–
82 dB SPL. For Experiment 1, we presented 20 sound clips
of 5 s duration each, separated by 0.25 s of silence. Sound
clips consisted of animal vocalizations (ferrets and birds),
environmental sounds (water and wind) and speech. The
presentation of these stimuli was repeated in 20 trials. For
Experiments 2 and 3, we presented 45 sound clips of 1 s duration,
again separated by gaps of silence. The sound clips consisted of
animal vocalizations (sheep and birds), environmental sounds
(water and wind) and speech. The presentation of these stimuli
was repeated in 10 trials. The silent gaps and the first 0.25 s
thereafter have been removed from the data set.

6.3. Neuronal Modeling
For Experiment 1, the responses of 119 single neurons were
predicted with an LN model, a widely used class of models
comprising a linear and a nonlinear stage (Chichilnisky, 2001;
Simoncelli et al., 2004). The linear stage fits a spectro-temporal
receptive field (STRF), which is a linear filter that links the
neuronal response to the stimulus intensities of 31 log-spaced
frequency channels (with center frequencies ranging from 1 to
32 kHz) along the preceding 20 time bins (covering a total
of 100 ms stimulus history). The linear stage was fitted using
GLMnet for Matlab (Qian et al.; see http://web.stanford.edu/~
hastie/glmnet_matlab/). The nonlinear stage fits a sigmoidal
nonlinearity to further maximize the goodness of fit to the
neural response using minFunc by Mark Schmidt (University
of British Columbia, British Columbia, Canada; http://www.di.
ens.fr/~mschmidt/Software/minFunc.html). For Experiment 2,
the same model class was used to predict the response of 77
single neurons. For Experiment 3, the responses of 43 single
neurons were model with a standard neural network comprising
620 units in the input layer (31 frequency channels times 20
time bins of stimulus history), 20 hidden units and a single
output unit. Hidden units and the output unit comprised a
fixed sigmoidal nonlinearity. The connection weights of the
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FIGURE 2 | Left panel: Same figure as the left panel of Figure 1, but including CCnorm and its squared values for reference. Note that, for good

predictions (values above ca 50%), CC2
norm and SPE are almost identical, both yielding very similar estimates of the proportion of “explainable variance explained.”

This is as might be expected given the equality of Equation 7 and 28 when ŷ → y. However, as the prediction performance declines below 50%, CC2
normand SPE

increasingly and sharply diverge. Right panel: Scatter plot of performance scores for predictions of neuronal responses from three different experiments. Each marker

reflects the performance score of the prediction of the response of a single neuron. The black dashed line visualizes where SPE equals CC2
norm. The values of CCnorm

have been multiplied with their absolute value to demonstrate that negative values only occur for SPE, but not for CCnorm. The solid red line shows the values for the

simulation of Figure 1, the dotted red line and the red cross mark the performance scores of the 60% noise simulation of the lower right panel in Figure 1.

Corresponding to the overlap of SPE and CCnorm for good predictions, the red line approaches the dashed black line.

network were fitted with backpropagation using the Sum-
of-Functions Optimizer (Sohl-Dickstein et al., 2013). Both,
the STRF weights of the LN models and the connection
weights of the neural networks were regularized with a penalty
term on the L2-norm in order to avoid overfitting. In all
cases, models were trained and tested using a cross-validation
procedure. All free model parameters were fitted on a training
set comprising 90% of all data. The predictive performance of
a model for a given neuron was assessed by measuring SPE
and CCnorm for the model predictions of the neural response
to the remaining 10% of the data set. This procedure was
repeated 10 times, each time with a distinct 10% of data. The
model performance was computed as the mean across all 10
performance measurements.

6.4. Results
We predicted neuronal responses to acoustic stimuli with
different model classes in order to address the question how the
choice of a performance measure affects the interpretability of
the results in a practical setting. To this end, we measured the
predictive performance of models with two different methods,
SPE and CCnorm. The right panel of Figure 2 shows a scatter
plot in which each marker indicates the performance scores
that the respective measures assign to a given prediction for
a given neuron. Instead of raw CCnorm values, here we chose
to plot the signed square of CCnorm as a percentage on the
x-axis. This choice is motivated by the fact that the square
of the correlation coefficient, also known as the coefficient of
determination, quantifies the “proportion of variance explained”
by a statistical regression model, and CC2

norm × 100 should thus
be interpretable directly as a measure of “percent explainable
variance explained” by the model. We plot the signed square

to ensure that there are no artificial constraints keeping the x-
values positive: the fact that there x-range of the data is entirely
positive while the y-range extends well into negative territory
veridically reflects the way the respective underlying metrics,
CCnorm and SPE, behave in practice. For those cases in which the
model predicts the actual neuronal response quite well, one can
observe a very tight relation between the SPE value and the signed
squared value of CCnorm, i.e., both provide very similar, sensible
measures of “percent explainable variance explained.” However,
as expected from the theoretical analysis of both measures in
the previous sections, this relation diminishes for cases in which
the models poorly predicted the neuronal response. For those
cases where there is little or no correspondence between the
prediction and the response, the value of CCnorm approaches
zero (by definition), and for some of those cases, the value of
SPE also approaches zero, but for many others the SPE value
becomes a large negative number. Substantially negative SPEs
are seen even for some cases for which the |CCnorm| × CCnorm

indicates that the model was able to capture as much as 20–
30% of the explainable, stimulus driven variability in the neural
firing rate. Thirty percent variance explained may not be a stellar
performance for amodel, but it certainly does not seem deserving
of a negative test score. Indeed, the experimental results are
generally in accordance with the simulation in general, shown
as a red line in the right panel of Figure 2. The simulation is
identical to the one in Figure 1. To simulate SPE and CCnorm for
a wide range of good and bad predictions, a good prediction was
deteriorated by adding an increasing amount of white noise. Just
as for the data from the three experiments, SPE values match the
square of CCnorm for good predictions, but go deep into negative
values for noisy predictions. For comparison, the SPE andCCnorm

values of the example in the bottom right panel of Figure 1 (60%
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noise added) are marked with dotted lines in the right panel of
Figure 2. In summary, the analysis of the experimental data from
three experiments validate the theoretical analysis of the previous
sections.

Figure 2 also visualizes the practical implications of the
missing lower bound of SPE. SPE was from its inception
described to be a “quantitative estimate of the fraction of
stimulus-related response power captured by a given class of
models” (Sahani and Linden, 2003). This interpretation is in
conflict with values below zero because a fraction of a signal
power cannot be negative. Furthermore, as was discussed in the
previous sections, it is even difficult to assign an unambiguous
interpretation to small or negative SPE values because a variety
of poor models which vary widely in the size of their residual
error can have similar small or negative SPEs, and may have
SPEs below those of constant mean firing rate models of
arbitrary value with an SPE of zero (including the “dead neuron
model”), even if their residual error is smaller than that of
these null models. If researchers are trying to quantify how
well a particular class of models can describe the response
properties of a sizeable sample population of neurons, a small
number of somewhat spurious very negative values can heavily
affect the overall population mean. For instance, the mean SPE
value across the population of 77 neurons in Experiment 2 is
just 15%, because a few very negative values drag down the
average. But, as we have discussed in section 6, much of the
negativity in those SPE values simply reflects a large variance
in the predictions, which on its own is not very relevant,
and constraining the SPE to values of zero or above would
raise the mean performance by more than a quarter to over
19%.

7. CONCLUSION

Inter-trial variability of neural responses to repeated
presentations of stimuli poses a problem for measuring the
performance of predictive models. The neural variability
inherently limits how similar one can expect the prediction of
even a perfect model to be to the observed responses. Thus,
when using prediction accuracy as a measure of performance,
inherent response variability is a confound, and the need to
control for this has been widely acknowledged (e.g., Panzeri and
Treves, 1996; Sahani and Linden, 2003; Hsu et al., 2004; David
and Gallant, 2005; Laudanski et al., 2012).

Different approaches for taking neural variability into account
when measuring model performance have been developed.
To get an unbiased estimate of mutual information, Panzeri
and Treves (1996) have suggested a method to extrapolate
information content to an infinite number of trials (also see
Atencio et al., 2012). Sahani and Linden have developed the
very insightful decomposition of the recorded signal into signal
power and noise power (Sahani and Linden, 2003). This has
lead to the signal power explained (SPE), a measure based
on variance explained which discounts “unexplainable” neural
variability. This measure has been widely adopted, albeit under
various names such as predictive power, predicted response
power, and relative prediction success (Sahani and Linden, 2003;

Machens et al., 2004; Ahrens et al., 2008; Asari and Zador,
2009; Rabinowitz et al., 2012). Also, it has been used as a
basis for specific variants of measures for model performance
(Haefner and Cumming, 2009). Focusing on coherence and the
correlation, Hsu and colleagues have developed a method to
normalize those measures by their upper bound (CCmax), which
is given by the inter-trial variability (Hsu et al., 2004). This yields
the normalized correlation coefficient (CCnorm). Following their
suggestion, the upper bound can be approximated by looking at
the similarity between one half of the trials and the other half of
the trials (CChalf ). This measure has also been used by Gill et al.
(2006) and Touryan et al. (2005). Others have used the absolute
correlation coefficient and controlled for inter-trial variability
by comparing the absolute values with CChalf (Laudanski et al.,
2012).

In this study we have analyzed in detail two measures of
model quality that account for neural response variability, SPE
and CCnorm. We have revealed the shortcomings of SPE, which
has no lower bound and can yield undesirable negative values
even for fairly reasonable model predictions. Furthermore, we
have uncovered the close mathematical relationship between
SPE and CCnorm, consolidated both approaches and arrived
at several insights. First, both measures quantify prediction
accuracy using the covariance (and only using covariance).
Second, bothmeasures quantify neural variability using the signal
power (SP) (and only using SP). Third, when the variance of
the prediction error approaches zero, SPE becomes identical
to the square of CCnorm. And finally, it is not necessary to
approximateCCmax using computationally expensive and inexact
resampling methods because CCnorm can be calculated directly
via SP:

CCabs =
Cov(y, ŷ)

√

Var(ŷ)Var(y)
CCnorm = Cov(y, ŷ)

√

Var(ŷ)SP
(28)

SP =
Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

N(N − 1)
(29)

This consolidated definition of CCnorm is not only more
elegant, precise, and efficient, but it also sheds light on how
CCnorm can be interpreted. It is almost identical to the well-
known Pearson’s correlation coefficient CCabs, but the variance
(power) of the recorded signal is replaced with the signal
power SP, i.e., the deterministic and thus predictable part
of the signal. As demonstrated, using SPE as a measure of
model performance can yield misleading results and will limit
interpretability of the results. However, CCnorm has been shown
to fulfill the criteria of Section 2 for insightful measures: it
is bounded, interpretable, and comparable across data sets.
Thus, CCnorm is a well-defined and helpful tool to assess model
performance4.

4Matlab code for all measures can be found on GitHub: https://github.com/

OSchoppe/CCnorm.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 February 2016 | Volume 10 | Article 10

https://github.com/OSchoppe/CCnorm
https://github.com/OSchoppe/CCnorm
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Schoppe et al. How Good is My Model?

Note, however, that CCnorm cannot be estimated accurately
if the data are excessively noisy. Equation 28 requires SP
to be large enough to estimate with reasonable accuracy.
For very noisy data or too few trials, observed SP values
can become dominated by sampling noise, and may then
behave as near zero random numbers. This would render
CCnorm estimates unstable, allowing them to become spuriously
large (if SP is small and underestimates the true value) or
even imaginary (if the SP underestimate is severe enough to
become negative). Thus, if SP or CCmax are small or have a
very wide confidence interval, CCnorm values must be treated
with caution.

8. AUTHOR CONTRIBUTIONS
OS: initiated the project; developed methodology; wrote
and tested code implementing methods; analyzed method
performance both analytically and through experiment; lead
author on paper. NH, BW, AK, JS: guided research, co-wrote
manuscript.

ACKNOWLEDGMENTS

This work was supported by a Wellcome Trust grant
(WT076508AIA) and a BBSRC grant (BB/H008608/1). OS
was supported by the German National Academic Foundation.

REFERENCES

Ahrens, M. B., Linden, J. F., and Sahani, M. (2008). Nonlinearities and

contextual influences in auditory cortical responses modeled with

multilinear spectrotemporal methods. J. Neurosci. 28, 1929–1942. doi:

10.1523/JNEUROSCI.3377-07.2008

Asari, H., and Zador, A. M. (2009). Long-lasting context dependence constrains

neural encoding models in rodent auditory cortex. J. Neurophysiol. 102, 2638–

2656. doi: 10.1152/jn.00577.2009

Atencio, C. A., and Schreiner, C. E. (2013). Stimulus Choices for Spike-Triggered

Receptive Field Analysis, Chapter 3. New York, NY: Nova Biomedical.

Atencio, C. A., Sharpee, T. O., and Schreiner, C. E. (2012). Receptive field

dimensionality increases from the auditory midbrain to cortex. J. Neurophysiol.

107, 2594–2603. doi: 10.1152/jn.01025.2011

Bizley, J. K.,Walker, K.M., King, A. J., and Schnupp, J.W. (2010). Neural ensemble

codes for stimulus periodicity in auditory cortex. J. Neurosci. 30, 5078–5091.

doi: 10.1523/JNEUROSCI.5475-09.2010

Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses.

Network 12, 199–213. doi: 10.1080/713663221

David, S. V., and Gallant, J. L. (2005). Predicting neuronal responses

during natural vision. Network 16, 239–260. doi: 10.1080/095489805004

64030

David, S. V., and Shamma, S. A. (2013). Integration over multiple

timescales in primary auditory cortex. J. Neurosci. 33, 19154–19166. doi:

10.1523/JNEUROSCI.2270-13.2013

Döerrscheidt, G. H. (1981). The statistical significance of the peristimulus time

histogram (PSTH). Brain Res. 220, 397–401. doi: 10.1016/0006-8993(81)

91232-4

Gill, P., Zhang, J., Woolley, S. M. N., Fremouw, T., and Theunissen,

F. E. (2006). Sound representation methods for spectro-temporal receptive

field estimation. J. Comput. Neurosci. 21, 5–20. doi: 10.1007/s10827-006-

7059-4

Haefner, R. M., and Cumming, B. G. (2009). “An improved estimator of variance

explained in the presence of noise,” in Advances in Neural Information

Processing Systems 21, eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou

(Red Hook, NY: Curran Associates, Inc.), 585–592.

Hsu, A., Borst, A., and Theunissen, F. (2004). Quantifying variability in neural

responses and its application for the validation of model predictions. Network

15, 91–109. doi: 10.1088/0954-898X-15-2-002

Kadir, S. N., Goodman, D. F., and Harris, K. D. (2014). High-dimensional cluster

analysis with the masked em algorithm. Neural Comput. 26, 2379–2394. doi:

10.1162/NECO-a-00661

Kass, R. E., Ventura, V., and Cai, C. (2003). Statistical smoothing of neuronal data.

Network 14, 5–16. doi: 10.1088/0954-898X/14/1/301

Laudanski, J., Edeline, J.-M., and Huetz, C. (2012). Differences between

spectro-temporal receptive fields derived from artificial and natural stimuli

in the auditory cortex. PLoS ONE 7:e50539. doi: 10.1371/journal.pone.00

50539

Machens, C. K., Wehr, M. S., and Zador, A. M. (2004). Linearity of cortical

receptive fields measured with natural sounds. J. Neurosci. 24, 1089–1100. doi:

10.1523/JNEUROSCI.4445-03.2004

Marmarelis, P. (1978).Analysis of Physiological Systems: theWhite-Noise Approach.

New York, NY: Plenum Press. doi: 10.1007/978-1-4613-3970-0

Panzeri, S., and Treves, A. (1996). Analytical estimates of limited sampling biases

in different and information measures. Network 7, 87–107. doi: 10.1088/0954-

898X/7/1/006

Prenger, R., Wu, M. C.-K., David, S. V., and Gallant, J. L. (2004). Nonlinear V1

responses to natural scenes revealed by neural network analysis. Neural Netw.

17, 663–679. doi: 10.1016/j.neunet.2004.03.008

Rabinowitz, N. C., Willmore, B. D. B., Schnupp, J. W. H., and King, A. J.

(2011). Contrast gain control in auditory cortex. Neuron 70, 1178–1191. doi:

10.1016/j.neuron.2011.04.030

Rabinowitz, N. C., Willmore, B. D. B., Schnupp, J. W. H., and King, A. J. (2012).

Spectrotemporal contrast kernels for neurons in primary auditory cortex. J.

Neurosci. 32, 11271–11284. doi: 10.1523/JNEUROSCI.1715-12.2012

Roddey, J. C., Girish, B., and Miller, J. P. (2000). Assessing the performance

of neural encoding models in the presence of noise. J. Comput. Neurosci. 8,

95–112. doi: 10.1023/A:1008921114108

Sahani, M., and Linden, J. F. (2003). “How linear are auditory cortical responses?,”

in Advances in Neural Information Processing Systems 15, Vol. 15, eds S. Becker,

S. Thrun, and K. Obermayer (MIT Press), 109–116.

Shimazaki, H., and Shinomoto, S. (2007). A method for selecting the

bin size of a time histogram. Neural Comput. 19, 1503–1527. doi:

10.1162/neco.2007.19.6.1503

Simoncelli, E. P., Paninski, L., Pillow, J., and Schwartz, O. (2004). “Characterization

of neural responses with stochastic stimuli,” in The Cognitive Neurosciences, 3rd

Edn., ed M. Gazzaniga (Cambridge, MA: MIT Press), 327–338.

Sohl-Dickstein, J., Poole, B., and Ganguli, S. (2013). “Fast large-scale optimization

by unifying stochastic gradient and quasi-newton methods,” in Proceedings of

the 31st International Conference onMachine Learning (ICML-14), eds T. Jebara

and E. P. Xing (Beijing), 604–612.

Touryan, J., Felsen, G., and Dan, Y. (2005). Spatial structure of complex cell

receptive fields measured with natural images. Neuron 45, 781–791. doi:

10.1016/j.neuron.2005.01.029

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Schoppe, Harper, Willmore, King and Schnupp. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 February 2016 | Volume 10 | Article 10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Measuring the Performance of Neural Models
	1. Introduction
	2. Criteria of Model Evaluation
	3. Signal Power Explained
	4. Absolute and Normalized Correlation Coefficient
	5. A Consolidated Approach to Quantifying Neural Variability
	6. Experimental Validation
	6.1. Neural Recordings
	6.2. Acoustic Stimuli
	6.3. Neuronal Modeling
	6.4. Results

	7. Conclusion
	8. Author Contributions
	Acknowledgments
	References


