
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Sicherheit in der Informationstechnik
an der Fakultät für Elektrotechnik und Informationstechnik

Algorithmic and Protocol Level Countermeasures to Protect
Cryptographic Devices

Fabrizio De Santis

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informations-
technik der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: apl. Prof. Dr.-Ing. Helmut Gräb

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Sigl

2. Prof. Dr.techn. Stefan Mangard

Die Dissertation wurde am 02.10.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 22.01.2018 angenommen.

Abstract

Nowadays the security of embedded devices does not only depend on the security
of cryptographic algorithms, but also, and mainly, on the physical security of their
implementations.

In fact, while the majority of cryptographic algorithms used today are founded on
solid principles and underwent years of cryptanalysis, their implementations can often
be broken by powerful physical attacks, such as side-channel and fault attacks.

The main challenge in the field of embedded cryptographic devices is to develop
cryptographic implementations which are resistant against both side-channel and
fault attacks, while retaining acceptable security levels within budget and physical
constraints, e.g., silicon area, execution time, power consumption, and energy.

Although many side-channel and fault countermeasures have been proposed over
the last two decades, no conclusive nor satisfactory “costs vs. performance vs. se-
curity” trade-off has been found yet, e.g., countermeasures are inefficient in terms
of speed/area, they rarely meet market requirements, and are typically mutually
contradictory.

This thesis provides a step forward towards designing and evaluating the security
of state-of-the-art algorithmic-level and protocol-level countermeasures, which offer
combined resistance against both side-channel and fault attacks.

As a first main contribution, we propose design principles, namely the selection of
implementation-efficient addition chains, and methods, namely tower fields, to reduce
the area size of Polynomial Masking Schemes (PMSs), e.g., we reduce the area size of a
polynomially masked Advanced Encryption Standard (AES) S-box to about that of a
polynomially masked lightweight block-cipher like PRESENT.

In addition, we propose a shuffling scheme which inherently applies to polynomial
masking schemes and increases both their side-channel and fault security.

iii

We show that both our 1st-order implementation with shuffling and 2nd-order imple-
mentation are secure in a worst-case scenario analysis using Electro-Magnetic (EM)
field measurements.

As a second main contribution, we show that the super-exponential security of Leakage-
Resilient Pseudo-Random Functions (LRPRFs) can be reduced down to critical levels
with the aid of EM micro-probes and multivariate template-based attacks.

In order to cope with such advanced high-resolution EM attacks, we propose a coun-
termeasure based on spatial randomization and permutation networks to randomize
the execution order of S-boxes along many instances.

Keywords: Polynomial Masking, Multi-Party Computation, Addition Chains, AES,
Tower Fields, Shuffling, Leakage-Resilient PRF, Re-keying, Localized EM Attacks,
Spatial Randomization, Permutation Networks.

iv

Kurzfassung

Heutzutage hängt die Sicherheit von kryptographischen Geräten nicht nur von der
Stärke der kryptographischen Algorithmen ab, sondern auch von der physischen
Sicherheit ihrer Implementierungen.

Während die meisten kryptographischen Algorithmen, die heute verwendet werden,
auf soliden mathematischen Konstruktionsprinzipien beruhen und jahrelanger Kryp-
toanalyse unterzogen wurden, können ihre Implementierungen mächtigen Angriffen,
wie Seitenkanal- und Fehlerangriffen, oft nicht standhalten.

Die größte Herausforderung auf dem Gebiet der eingebetteten kryptographischen
Geräte besteht darin, kryptographische Implementierungen zu entwickeln, die sowohl
gegen Seitenkanal- als auch Fehlerangriffe resistent sind. Gleichzeitig soll ein akzepta-
bles Sicherheitsniveau innerhalb eines Budgets und der technischen Einschränkungen
ermöglicht werden.

Obwohl in den letzten zwei Jahrzehnten viele Seitenkanal- und Fehlergegenmaßnah-
men in der Literatur vorgeschlagen wurden, ist für viele Anwendungen noch kein
zufriedenstellender Kompromiss zwischen Wirtschaftlichkeit und Sicherheit gefunden
worden. Die Gegenmaßnahmen sind oft ineffizient bezüglich Geschwindigkeit oder
Fläche, sie erfüllen selten Marktanforderungen und verfolgen in der Regel wider-
sprüchliche Ziele.

Diese Doktorarbeit ist ein Fortschritt zur Gestaltung und Bewertung der Sicherheit
von hochmodernen algorithmischen und protokollorientierten Gegenmaßnahmen, die
eine kombinierte Resistenz gegen Seitenkanal- und Fehlerangriffe bieten.

Als ersten Beitrag schlagen wir Designprinzipien vor, die auf der Auswahl von effizient
zu implementierenden Additionsketten beruhen und Methoden, wie Tower-Fields,
um die Fläche von Polynomial Masking Schemes (PMSs) zu reduzieren. Wir können
dadurch die Fläche einer polynomiel maskierten Advanced Encryption Standard
(AES) S-Box auf die Fläche von circa einer polynomisch maskierten leichtgewichtigen
Block-Chiffre wie PRESENT reduzieren.

v

Darüber hinaus schlagen wir ein Verschachtelungsschema vor, das in die polynomi-
elle Maskierung integriert werden kann und sowohl die Seitenkanal- als auch die
Fehlersicherheit erhöht.

Wir zeigen, dass sowohl unsere Implementierung erster Ordnung mit Shuffling als
auch unsere Implementierung zweiter Ordnung in einer Worst-Case-Szenarioanalyse
mit Electro-Magnetic (EM) Messungen sicher sind.

Als zweiten Beitrag zeigen wir erstmals, dass die super-exponentielle Sicherheit von
Leakage-Resilient Pseudo-Random Functions (LRPRFs) durch hochauflösende elektro-
magnetische (EM) Angriffe, mit dem Einsatz von Mikro-Sonden und multivariaten
Template-basierten Angriffen, auf kritische Werte reduziert werden kann.

Um solche hochauflösenden EM-Angriffen zu bewältigen, schlagen wir als Gegenmaß-
nahme die räumliche Randomisierung über viele S-box Instanzen vor.

Schlüsselworte: Polynomial Masking, Multi-Party Computation, Addition Chains,
AES, Tower Fields, Shuffling, Leakage-Resilient PRF, Re-keying, Localized EM Attacks,
Spatial Randomization, Permutation Networks.

vi

Acknowledgements

I thank Univ.-Prof. Dr.-Ing. Georg Sigl for giving me the chance to pursue a Ph.D.
degree at the Technische Universität München (TUM), Univ.-Prof. Dipl.-Ing. Dr.techn.
Stefan Mangard for providing scientific guidance and highly valuable advices, and the
Chipcard&Security Division of Infineon AG for partially financing my research.

I thank Prof. François-Xavier Standaert for introducing me to the topic of Leakage-
Resilient Pseudo-Random Functions (LRPRFs) and supervising my first steps in this
field. Further, I am thankful to Dr.-Ing. Johann Heyszl and Dr. Lubos Gaspar for the
close collaborations and profitable discussions.

I thank Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard, Dr. Berndt Gammel, and Dr.
Wieland Fischer for the opportunity to organize the laboratory course of the lecture
“Secure Implementation of Cryptographic Devices” at TUM.

I thank my colleagues at TUM and Fraunhofer AISEC, Prof. Jens-Peter Kaps, Dr.
Stefan Rass, and Dr. Marc Stöttinger for all the good times we shared together and
the productive collaborations: Johanna Baehr, Mathieu Gross, Oscar Guillen, Matthias
Hiller, Nisha Jakub, Philipp Koppermann, Hermann Seuscheck, Robert Specht, Lars
Tabelmann, Michael Tempelmeier, Florian Unterstein, Markus Wamser, and Florian
Wilde.

I express my gratitude to Marion Zillner, Harry Olm, Dr.-Ing. Martin Strasser, and
Dr.-Ing. Michael Pehl for providing daily support in all kind of organizational and
technical issues.

I am thankful to some very talented and hard-working students who supported
my research and teaching activities in various ways: Tobias Bauer, Matthias Fischer,
Omar Grati, Michael Gruber, Matthias Kneidel, Patrick Kresmer, Ermin Sakic, Arun
Sattanathan, Andreas Schauer, Silvan Streit, Stefan Theil, and Thomas Zeschg.

Finally, a special thank goes to my family and friends for their love, patience, and
encouragement over these years.

vii

Contents

1 Introduction 1
1.1 Secret-Key Cryptography . 2

1.1.1 Adversary Models . 3
1.1.2 Security Definitions . 5

1.2 Motivation of This Work . 6
1.3 Main Contributions and Open Issues . 7

1.3.1 Polynomial Masking Schemes . 8
1.3.2 Fresh Re-Keying with Leakage-Resilient PRFs 9

1.4 Thesis Outline . 10

2 Background 13
2.1 Power Consumption in CMOS Devices 14

2.1.1 Power Measurements of ICs . 17
2.2 Electro-Magnetic Fields . 20

2.2.1 EM Measurements of ICs . 21
2.2.2 EM Probes . 22
2.2.3 IC Decapsulation . 23
2.2.4 EM Micro-probes . 25

2.3 Implementation Attacks . 25
2.3.1 Side-Channel Attacks . 27
2.3.2 Fault Attacks . 31

2.4 Implementation Countermeasures . 33
2.4.1 Masking Schemes . 34
2.4.2 Hiding Schemes . 38
2.4.3 Re-Keying Schemes . 39

3 Design of a Higher-Order and Shuffled Polynomially Masked AES S-box 43
3.1 Polynomial Masking . 45
3.2 AES . 46

3.2.1 The SubBytes Operation . 47

ix

Contents

3.3 Addition Chains . 48
3.3.1 Star Chains . 48

3.4 New Selection Principles . 49
3.4.1 Previous Work . 50
3.4.2 New Addition Chains . 51

3.5 Hardware Design . 53
3.5.1 Adding Shuffling . 57
3.5.2 Performance Evaluation . 59

3.6 Summary . 60

4 Squeezing Polynomial Masking into Tower Fields 63
4.1 Arithmetic in Tower Fields . 64
4.2 Proposed Polynomially Masked AES S-box in GF((24)2) 65
4.3 Hardware Design . 66

4.3.1 Performance Comparison . 71
4.4 Summary . 73

5 Electro-Magnetic Field Analysis of Polynomial Masking Schemes 75
5.1 Evaluation Methodology . 76

5.1.1 Measurement Setup . 76
5.1.2 Side-Channel Collision Attacks . 77

5.2 Experimental Results on FPGA . 78
5.2.1 GF(28) AES S-box Implementation 78
5.2.2 GF((24)2) AES S-box Implementation 83

5.3 Summary . 86

6 Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks 89
6.1 Leakage-Resilient Cryptography . 90

6.1.1 Pseudo-Random Functions . 91
6.1.2 The GGM Construction . 92
6.1.3 Leakage-Resilient Pseudo-Random Functions 94
6.1.4 Fresh Re-Keying with Pseudo-Random Functions (PRFs) 95

6.2 Evaluation Methodology . 96
6.2.1 FPGA Prototype Design . 96
6.2.2 Measurement Setup . 98

6.3 Univariate Localized EM Attacks . 99
6.3.1 Worst-case profiling in open mode 99
6.3.2 Attacks exploiting worst-case profiles in fixed mode 100

x

Contents

6.4 Multivariate Localized EM Attacks . 104
6.5 Summary . 105

7 Spatial Randomized Leakage-Resilient PRFs 107
7.1 Evaluation of Permutation Networks . 108

7.1.1 Butterfly Networks . 110
7.1.2 Omega and Flip Networks . 110
7.1.3 Beneš Networks . 112
7.1.4 Comparison Overview . 113

7.2 Spatial Randomized Leakage-Resilient PRFs 114
7.2.1 The Simple Way: Two Stage Rotations 114

7.3 Hardware Design . 115
7.3.1 Implementation Results . 117

7.4 Summary . 118

8 Conclusion 119
8.1 Summary . 119
8.2 Further Directions . 120

Bibliography 123

List of Publications 141

xi

List of Figures

2.1 Cross-section of a pMOS transistor. 15
2.2 Model of power consumption in a CMOS inverter cell 17
2.3 Power measurements using a shunt resistor 19

3.1 Inversion in GF(28) using the addition chain C254
orig. 50

3.2 Inversion in GF(24) using the addition chain C14
orig 51

3.3 Inversion in GF(28) using the addition chain C254
new 52

3.4 Inversion in GF(24) using the addition chain C14
new 52

3.5 Polynomially masked AES S-box using the addition chain C254
new 53

3.6 2nd-Order remask Module . 54
3.7 2nd-Order recon Module . 55
3.8 2nd-Order shamul Module . 56
3.9 ith Share of the shamac Module . 57
3.10 1st-Order and 2nd-Order shuffle Module 59

4.1 Multiplication and shared addition module in GF((24)2) 68
4.2 Polynomially masked inversion in GF((24)2) 69
4.3 Polynomially masked affine transformation in GF((24)2) 70
4.4 Polynomially masked squaring operation in GF((24)2) 71
4.5 Performance comparison of polynomially masked AES S-boxes 72

5.1 SCA on 1st-order GF(28) with PRNG OFF 79
5.2 SCA on 1st-order GF(28) with PRNG ON and shuffling OFF (Part 1) . . 80
5.3 SCA on 1st-order GF(28) with PRNG ON and shuffling OFF (Part 2) . . 80
5.4 SCA on 1st-order GF(28) with PRNG ON and shuffling ON (Part 1) . . 81
5.5 SCA on 1st-order GF(28) with PRNG ON and shuffling ON (Part 2) . . 82
5.6 SCA on 2nd-order GF(28) with PRNG ON and shuffling OFF (Part 1) . . 82
5.7 SCA on 2nd-order GF(28) with PRNG ON and shuffling OFF (Part 2) . . 83
5.8 SCA on 1st-order GF((24)2) with PRNG OFF 84
5.9 SCA on 1st-order GF((24)2) with PRNG ON and shuffling OFF (Part 1) 84
5.10 SCA on 1st-order GF((24)2) with PRNG ON and shuffling OFF (Part 2) 85
5.11 SCA on 1st-order GF((24)2) with PRNG ON and shuffling ON (Part 1) . 85

xiii

List of Figures

5.12 SCA on 1st-order GF((24)2) with PRNG ON and shuffling ON (Part 2) . 86
5.13 SCA on 2nd-order GF((24)2) with PRNG ON and shuffling OFF (Part 1) 86
5.14 SCA on 2nd-order GF((24)2) with PRNG ON and shuffling OFF (Part 2) 88

6.1 Definition of a PRF using an indistinguishability game 93
6.2 Single-Pattern permutation layer . 97
6.3 Prototype architecture for worst-case EM profiling. 97
6.4 Setup for high-resolution EM Measurements 98
6.5 Placement of our LRPRF implementation on the FPGA floorplan 101
6.6 SNR maps for the key nibbles 0-15. 102
6.7 SNR maps for the key nibbles 16-31 . 103

7.1 Switch element . 109
7.2 Butterfly network with n = 8 inputs . 111
7.3 Shuffling and unshuffling permutation stages 112
7.4 Omega permutation stage with n = 8 inputs 112
7.5 Flip permutation stage with n = 8 inputs 113
7.6 Spatial-randomized hardware architecture 116
7.7 Simplified spatial-randomized hardware architecture 116

xiv

List of Tables

2.1 Power consumption in a CMOS inverter cell 18
2.2 Classification of implementation attacks 27

3.1 Performance comparison of polynomially masked AES S-boxes 60

4.1 Isomorphic mappings . 66
4.2 Performance comparison of polynomially masked AES S-boxes 71

6.1 Ranking of all 32 key-nibbles: univariate attacks 101
6.2 Ranking of all 16 key-bytes: univariate attacks 102
6.3 Ranking of all 32 key-nibbles: multivariate attacks 105

7.1 Permutation networks: generic parameters 113
7.2 Permutation networks: concrete parameters 113
7.3 LRPRF synthesis results . 117

8.1 Overview on the contributions . 120

xv

List of Abbreviations

ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
ASIC Application-Specific Integrated Circuit
BGA Ball Grid Array
CBC-MAC Cipher Block Chaining Message Authentication

Code
CFB Cipher FeedBack
CHES Cryptographic Hardware and Embedded Systems
CMOS Complementary Metal Oxide Semiconductor
CMS Consolidated Masking Scheme
CPA Correlation Power Analysis
DC Direct Current
DES Data Encryption Standard
DFA Differential Fault Analysis
DFF D-type Flip-Flop
DOM Domain Oriented Masking
DPA Differential Power Analysis
DRM Digital Rights Management
EM Electro-Magnetic
FA Fault Attack
FCOFA Faulty Ciphertext-Only Fault Attack
FIB Focused Ion Beam
FIPS Federal Information Processing Standard
FPGA Field Programmable Gate Array
FYD Fisher-Yates-Durstenfeld
GE Gate Equivalent
GGM Goldreich-Goldwasser-Micali
HOTI Higher-Order Threshold Implementation
IC Integrated Circuit
LDO Low-Dropout Regulator
LFSR Linear Feedback Shift Register

xvii

List of Abbreviations

LRPRF Leakage-Resilient Pseudo-Random Function
LUT Look-Up Table
MIA Mutual Information Analysis
MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
MPC Multi-Party Computation
NIST National Institute of Standards and Technology
NSA National Security Agency
NVM Non-Volatile Memory
OFB Output FeedBack
PCA Principal Component Analysis
PCATA PCA-based Template Attack
PCB Printed Circuit Board
PMS Polynomial Masking Scheme
POI Points of Interest
PRF Pseudo-Random Function
PRG Pseudo-Random Generator
PRNG Pseudo Random Number Generator
PRP Pseudo-Random Permutation
RDI Random Delay Insertion
RFID Radio-Frequency IDentification
RP Random Permutation
RPI Random Process Interrupt
RSI Random Start Index
SABL Sense Amplifier Based Logic
SCA Side-Channel Attack
SHA-3 Secure Hash Algorithm 3
SNR Signal-to-Noise Ratio
SPA Simple Power Analysis
SPN Substitution-Permutation Network
SR Success Rate
SSSS Shamir’s Secret Sharing Scheme
SVD Singular Value Decomposition
TA Template Attack
TI Threshold Implementation
TOR The Onion Router
TTP Trusted Third Party
USB Universal Serial Bus
WDDL Wave Dynamic Differential Logic

xviii

1 Introduction

Contents

1.1 Secret-Key Cryptography . 2

1.1.1 Adversary Models . 3

1.1.2 Security Definitions . 5

1.2 Motivation of This Work . 6

1.3 Main Contributions and Open Issues 7

1.3.1 Polynomial Masking Schemes 8

1.3.2 Fresh Re-Keying with Leakage-Resilient PRFs 9

1.4 Thesis Outline . 10

Since ancient times cryptographic methods were used to hide information and prevent
secret disclosures. However, they mostly remained confined within military, diplo-
matic, and intelligence circles until the beginning of the twentieth century. Only with
the advent of computers and advances in computer science and engineering, they
finally stepped into the industry and scientific community, finding many industrial
and civil applications, e.g., to protect banking transactions, to secure online payments,
to provide support for digital identification like passports and identification cards, to
track commercial products using Radio-Frequency IDentification (RFID) systems, to
maintain safe operation of medical and automotive products, and to provide online
privacy mechanisms such as The Onion Router (TOR).

In our present society, cryptography is ubiquitous and transparently used by millions
of users, e.g., when opening electronic car doors, when performing payments with
credit cards, or when using messaging applications on mobile phones. Indeed, the
number of interconnected embedded devices, which rely on secure elements to provide
cryptographic services like confidentiality, integrity, and authentication, is steeply
increasing: according to [46], “the number of secure elements shipped in 2017 is to exceed
10 billion”.

1

Chapter 1: Introduction

In order to prevent large-scale disasters, it is desirable to build cryptographic system
that can resist any known attacks, but also prevent possible future threats, e.g., the
U.S. National Institute of Standards and Technology (NIST) recently reported “that
within the next 20 or so years, sufficiently large quantum computers will be built to break
essentially all public key schemes currently in use ... [while] for symmetric key systems, one
simple heuristic is to double the key lengths to compensate for the quadratic speedup achieved by
Grover’s algorithms ... [despite] this recommendation, does not take into account the possibility
of more sophisticated quantum attacks” [27].

Today, one of the most serious threats to the security of embedded cryptographic
systems is given by implementation attacks, such as side-channel and fault attacks.

Outline

• Section 1.1 provides an introduction to secret-key cryptography and defines the
adversary models which are most relevant today.

• Section 1.2 presents the motivations which are behind this work.

• Section 1.3 highlights the main contributions provided by this thesis.

• Section 1.4 provides an outline about the remainder of this thesis and concludes
the chapter.

1.1 Secret-Key Cryptography

Cryptography aims at providing a set of algorithms to achieve different security
goals [77, Sec. 1.2].

The most fundamental security goals are confidentiality, authentication, and integrity.
Confidentiality means that information is kept secret to all unintended recipients, in-
tegrity means that all transmitted data can not be altered maliciously, and authentication
means that the communication entities are really those who they claim to be.

Cryptographic algorithms can be broadly classified into two categories: secret-key and
public-key algorithms.

Secret-key algorithms take a message and a secret key as input to produce an output
which looks random to any polynomially bounded adversary. When a group of entities
wants to communicate using secret-key cryptography, they have to share a secret key

2

1.1 Secret-Key Cryptography

beforehand using a secure channel. This type of algorithms are also commonly referred
to as symmetric algorithms.

Public-key algorithms use an additional key as input, which is public. In this case,
when a group of entities wants to communicate using public-key cryptography, then
each entity can transmit its own public key over an insecure channel and keep its own
secret key undisclosed. This type of algorithms are also commonly referred to as
asymmetric algorithms. Differently from secret-key algorithms, public-key algorithms
do not require a pre-shared secret key, but they require a Trusted Third Party (TTP) to
guarantee for the identities of the communicating parties.

In this work, only secret-key encryption algorithms based on block-ciphers are considered,
and the term “key” will be often used as a synonym for “secret key”.

A block-cipher can be seen as a family P of pseudo-random permutations BCk indexed
by a secret key k←$ {0, 1}κ chosen at random from the set Uκ = {0, 1}κ of all binary
strings of length κ, where κ is the security parameter and n is the block size:

P = {BCk : {0, 1}n → {0, 1}n}.

In practice, the majority of block-ciphers are product ciphers which iterate a round
function. The round function applies different transformations of the input according
to the properties of confusion and diffusion [112]. Confusion means that each output bit
depends on several bits of the key and structured relationships between the input and
output bits are avoided. Diffusion means that if a single bit of the input changes, then
about half of the bits in the output change, and vice versa.

Note that block-cipher encryption algorithms are typically sufficient to achieve the
fundamental security goals of confidentiality, integrity, and authentication. For in-
stance, confidentiality can be achieved using either one between Cipher FeedBack
(CFB) and Output FeedBack (OFB) mode of operations, integrity can be obtained using
the Davies-Meyer construction, and authentication can be realized using Cipher Block
Chaining Message Authentication Code (CBC-MAC).

More information on block-cipher mode of operations can be found in [87, Sec. 5].

1.1.1 Adversary Models

In order to specify the security guarantees of a cryptographic system, a definition of
the capabilities of the adversary and what constitutes a successful attack should be
defined.

3

Chapter 1: Introduction

An adversary model describes “which kind” and “what amount” of information is
made accessible to the adversary when analyzing the security of a cryptographic
system.

A cryptosystem is typically considered as “broken” when the adversary can either
(generically) distinguish the output of a cryptographic algorithm from a truly random
string or (more concretely) recover the secret key by exploiting the information which
is available from the model.

Today, the most relevant adversary models are the black-box model, the gray-box
model, and the white-box model.

Black-box Model In this model, cryptographic implementations are considered as
black-boxes, which the adversary can (adaptively) query by providing a certain limited
number of inputs, e.g., the adversary can feed a block-cipher with plaintexts and obtain
the corresponding ciphertexts generated using a certain secret key.

The adversary does not have access to either the implementation or its execution
environment, but all details about the internal machinery of the underlying algorithm
are considered as known. This model is realistic only if the adversary has no access
(either physical or remote) to the platform implementing the cryptographic algorithm,
i.e., the adversary can only query the algorithm itself, but obtains no additional
information from its physical realization.

Two of the most prominent types of attacks in the black-box model are differential
cryptanalysis attacks [13] and linear cryptanalysis attacks [73].

Gray-box Model The gray-box model is an extension of the black-box model, where
the adversary has additional access to the physical implementation of a cryptographic
system and can observe its physical properties, like the power consumption or Electro-
Magnetic (EM) field variations, or may even tamper with it, e.g., the adversary can
inject faults into the device in order to obtain information about the secret key.

Today’s embedded cryptographic devices, such as RFID or smart cards, should provide
security guarantees in the gray-box model (at least). In fact, while the security margins
of modern cryptographic primitives are currently considered adequate in the black-
box model (for most applications), the security of the corresponding cryptographic
implementations in the gray-box model is still a vivid area of research.

The most prominent types of attacks in the gray-box model are Differential Power
Analysis (DPA) attacks [71, Ch. 6] and Differential Fault Analysis (DFA) attacks [14].

4

1.1 Secret-Key Cryptography

White-box Model In this model, the adversary has full control over a cryptographic
system and its environment, i.e., the adversary can observe and modify intermediate
data of computations as well as manipulate the execution of cryptographic code
with the aid of debuggers and breakpoints, or even search the memory for secret
keys [29].

This model finds its main application in the field of Digital Rights Management (DRM)
and mainly affects software implementations. Today, the white-box model represents
the worst-case scenario and can be seen as an extension of the gray-box model towards
yet more powerful adversaries.

Several practical attacks have been already developed against implementations of
Data Encryption Standard (DES) and Advanced Encryption Standard (AES) in the
white-box model [18, 127]. Very recently, also implementation attacks such as DPA
attacks were successfully performed against white-box implementations [104, 20].

1.1.2 Security Definitions

The security of cryptographic systems is typically expressed in terms of time and
space complexities required to perform a successful attack as a function of a security
parameter, e.g., the key length κ.

The security level of a cryptographic system is always upper bounded by the size
of the key space 2κ, i.e., the key space has to be large enough in order to prevent
exhaustive key enumerations. The lower bound is represented by the best known
attack. In general, it holds that the security level of any cryptographic systems is a
monotone decreasing function of time.

According to the Kerckhoffs’ principle [64], the security of a cryptographic algorithm
should only depend on the secrecy of its key. In other words, a cryptographic system
should remain secure, even if its algorithmic operations are known to the adversary.

In light of this principle, several modern cryptographic standards, like the Advanced
Encryption Standard (AES) [85] and Secure Hash Algorithm 3 (SHA-3) [86], underwent
a public scrutiny and received an extensive analysis from a large number of researchers
and experts.

If an adversary can distinguish the output of a block-cipher from a random string with
a significant advantage and less effort than exhaustive key search, then the cipher is
considered as broken, even if such a break does not immediately lead to any security
failure in practice.

5

Chapter 1: Introduction

A block-cipher is perfectly secure in the black-box model, if the knowledge of the
ciphertext c does not lead to any information about the plaintext p:

Pr [P = p | C = c] = Pr [P = p] .

A block-cipher is perfectly secure in the gray-box model, if the knowledge of the
ciphertext c and the side-channel information ` do not lead to any information about
the plaintext p:

Pr [P = p | C = c, L = `] = Pr [P = p] .

In practice, the security of cryptographic implementations in the gray-box model is
typically assessed using heuristic security metrics such as the Guessing Entropy (GE)
or Success Rate (SR) [116].

The GE is defined as the average number of key candidates that have to be tested after
a side-channel attack in order to recover the secret key, while the SR is defined as the
number of measurements which are required to achieve a certain success probability
of recovering the secret key after side-channel attacks.

Yet another and more effective method to evaluate the security of cryptographic imple-
mentations after side-channel attacks is given by key rank estimation algorithms [121,
93]. Key rank estimation algorithms enable designers to approximate the security level
of cryptographic implementations by approximating the position of the secret key in
the list of all possible key candidates after side-channel attacks.

In remaining of this thesis, the term “security level” should be intended as “security
level left after side-channel attacks”.

1.2 Motivation of This Work

With the increasing adoption of embedded devices which can easily fall into ad-
versarial hands, like identification, banking, or transportation cards, the security of
cryptographic devices does not only depend on the strengths of cryptographic al-
gorithms (black-box model), but also, and mainly, on the physical security of their
implementations (gray-box model).

The typical scenario where cryptographic embedded devices are employed is the
following: two entities like an RFID tag and an RFID terminal want to securely
communicate over an insecure channel relying on secret-key cryptography, i.e., each
entity stores the same secret key.

6

1.3 Main Contributions and Open Issues

The RFID terminal is typically sealed, not easy accessible for the adversary, and has
more computational power than the RFID tag. In contrast, the RFID tag is typically
resource-constrained and can be easily obtained from the adversary, i.e., the adversary
can own a Pay-TV card for the time necessary to mount a physical attack on it, recover
its secret key, and finally clone it.

In the last two decades, several side-channel analysis techniques have been developed
to recover the secret keys stored into cryptographic devices. In parallel, a large body
of countermeasures has been proposed to thwart side-channel attacks at different
levels of abstraction, e.g., at the physical level [96, 6], at the logic level [91, 79], at the
algorithmic level [24, 82, 95], and at the protocol level [75, 10, 41].

Common to any such practices is the attempt to either hide, randomize, or bound the
side-channel information leaked by cryptographic devices.

Typical countermeasures to thwart side-channel and fault attacks include secure logic
styles, shielding techniques, noise generators to reduce the Signal-to-Noise Ratio
(SNR), secret sharing schemes to conceal intermediate cryptographic computation
steps, and re-keying schemes to bound the information leakage.

However, no conclusive “costs vs. performance vs. security” trade-off has been
identified yet, e.g., countermeasures lead to high performance degradation, they rarely
meet time-to-market constraints, and are typically opposite to each other. In fact, while
countermeasures against fault attacks usually require some type of redundancy, this
latter typically amplifies the side-channel information leakage.

This thesis represents a step forward in the field of algorithmic and protocol level coun-
termeasures with improved resistance against both side-channel and fault attacks.

1.3 Main Contributions and Open Issues

This thesis work describes advancements in the design and analysis of algorithmic-
level masking and re-keying schemes aimed at providing higher side-channel and
fault security along with improved performance and area-size.

In particular, the field of Polynomial Masking Scheme (PMS) and fresh re-keying
schemes with Leakage-Resilient Pseudo-Random Functions (LRPRFs) are advanced.

7

Chapter 1: Introduction

1.3.1 Polynomial Masking Schemes

Masking schemes aim at making the leakage information of key-dependent intermedi-
ate computation steps look random to the adversary.

Polynomial masking was introduced at the workshop on Cryptographic Hardware
and Embedded Systems (CHES) in 2011 and represents the first attempt to conceive
both a glitch-resistant and higher-order masking scheme in literature. It is based upon
Shamir’s Secret Sharing Scheme (SSSS) and secure Multi-Party Computation (MPC)
protocols [95].

A first implementation of the Advanced Encryption Standard (AES) on Field Pro-
grammable Gate Array (FPGA) was presented at CHES in 2013 [80], while a 1st-order
and a 2nd-order polynomially masked implementation of the PRESENT S-box on
FPGA were published in 2015 [36].

Polynomial masking offers some very appealing and unique features like:

1. it is glitch-resistant and higher-order by design;

2. it can be implemented with very regular design patterns, i.e., it allows for an
easy integration with secure logic styles;

3. it can be easily scaled to any order, e.g., simple loops can be used in software
or “VHDL Generics” can be used in hardware to specify the desired masking
order: this feature allows to quickly adjust the masking order to pass a required
security certification level;

4. it can be implemented once and re-used for different cryptographic algorithms
after the principle “secure it once, re-use it for all”;

5. it is “intrinsically immune against fault attacks when less than one-third of the shares
are corrupted” [95, Sec. 6];

6. it can be inherently shuffled without performance loss, as it will be shown in
Chapter 3.

However, PMSs suffer from two main drawbacks: they have poor performance figures
in terms of speed, size, and randomness requirements when compared to other
masking schemes such as Threshold Implementations (TIs) and 2nd-order univariate
leakages have been shown to occur in the 1st-order scheme.

In this thesis work, the following contributions to improve the state of the art on PMSs
are provided:

8

1.3 Main Contributions and Open Issues

1. We introduce new principles for the selection of more efficient addition chains
that lead to both faster and more compact implementations of cryptographic
S-boxes. When applied to the AES S-box, our 1st-order implementation is 24%
smaller, need 21% less clock cycles, and 6% less randomness than the state-of-
the-art implementation presented at CHES in 2013 [80].

2. We show how tower fields perfectly adapt to PMSs due to their algebraic structure
and can be used to significantly reduce the area and randomness requirements
of higher-order polynomially masked implementation of S-boxes. Our proposed
1st-order tower-field AES S-box requires only ≈ 4 kGE in Application-Specific
Integrated Circuit (ASIC), which is approximately the size of a 1st-order polyno-
mially masked PRESENT S-box [36].

3. We propose a simple and effective shuffling-based countermeasure with the
goal of hiding the univariate leakage of the 1st-order scheme at almost no area
expenses and no time penalties. To the best of our knowledge, this is the first time
that a masking scheme itself is shuffled during non-linear operations, i.e., the
shuffling scheme operates on the shares themselves leading to a shuffled masking
scheme. Our scheme can be possibly combined with further shuffling techniques
operating at higher levels of abstraction, e.g., the order of the S-box look-ups can
be additionally shuffled. Note our proposed countermeasure inherently increases
also the resistance against fault attacks, since the fault injection probability is
decreased by the timing disarrangements introduced by the shuffling module.

4. We provide a description of the hardware design for any masking order, synthesis
results in ASIC up to the 6th-order, and perform a higher-order side-channel
analysis showing that univariate security up to 10 million measurements can be
achieved by both a 2nd-order implementation and a 1st-order implementation
with shuffling.

1.3.2 Fresh Re-Keying with Leakage-Resilient PRFs

Leakage-resilient cryptography aims at developing cryptographic algorithms for which
the physical security against side-channel attacks can be formally analyzed. Following
the seminal work of [45], several symmetric cryptographic primitives have been formal-
ized in this setting. Most of them, like leakage-resilient Pseudo-Random Generators
(PRGs) and Pseudo-Random Functions (PRFs), can be instantiated with a block-cipher
as underlying component.

The work of Medwed et al. at CHES 2012 proposed a Leakage-Resilient Pseudo-

9

Chapter 1: Introduction

Random Function (LRPRF) based on AES and showed that AES may not be the best
block-cipher for integration in a LRPRF. Also, it left a number of open questions
regarding the security of the new proposal and which block-ciphers are better suited
for LRPRFs [76].

These questions were later on addressed in [10], where the security of a block-cipher
based LRPRF was studied at different abstraction levels. In particular, the work
of [10] analyzes possible block-cipher designs and attacks exploiting specific features
of the algorithmic description, hardware architecture, and physical implementation of
LRPRFs.

In this thesis work, the following contributions to improve the state of the art on
LRPRFs are provided:

1. We study the impact of high-resolution EM analysis on the security of a LR-
PRF implementation on FPGA by showing that the resulting (key-dependent)
algorithmic noise remains difficult to exploit in the univariate setting when
considering both time-based and location-based leakage information.

2. We extend the previous analysis to the multivariate setting by showing for the
first time that the super-exponential security of LRPRFs can indeed be reduced
down to critical levels using multivariate high-resolution EM analysis.

3. We propose a spatial randomization countermeasure based on permutation
networks aimed at disarranging the execution of parallel S-boxes over different
circuitries to thwart high-resolution EM analysis. This contribution is not specific
and limited to LRPRFs only, but it can be straightforwardly applied to any
SPN-based block-ciphers with a bit-permutation layer.

1.4 Thesis Outline

Chapter 2 provides background information on power and EM measurements, im-
plementation attacks, and countermeasures. The remaining chapters of the thesis are
conceptually divided into two parts.

The first part is dedicated to polynomial masking schemes and consists of the following
chapters:

• Chapter 3 introduces polynomial masking, provides new principles for the
selection of hardware-efficient addition chains, describes the hardware design
of a higher-order polynomially masked AES S-box using the addition chains

10

1.4 Thesis Outline

selected according to the previous principles, and details on how to embed
shuffling into polynomial masking schemes.

• Chapter 4 shows how tower field arithmetic can be used in combination with
polynomial masking to drastically reduce the area size of a polynomially masked
AES S-box.

• Chapter 5 presents side-channel analysis results of the previously described
implementations in the EM domain showing that univariate security can be
achieved by both a 2nd-order implementation and a 1st-order implementation
with shuffling.

The second part is dedicated to Leakage-Resilient Pseudo-Random Functions (LRPRFs)
and consists of the following chapters:

• Chapter 6 introduces leakage-resilient PRFs and shows how high-resolution EM
template-based attacks can be used to defeat the super-exponential security of
LRPRF implementations on FPGAs.

• Chapter 7 proposes a shuffling countermeasure to spatially randomize leakage-
resilient PRFs based on permutation networks.

Chapter 8 concludes the thesis with a brief summary of the main contributions and
an outlook on future challenges.

11

2 Background

Contents

2.1 Power Consumption in CMOS Devices 14

2.1.1 Power Measurements of ICs 17

2.2 Electro-Magnetic Fields . 20

2.2.1 EM Measurements of ICs 21

2.2.2 EM Probes . 22

2.2.3 IC Decapsulation . 23

2.2.4 EM Micro-probes . 25

2.3 Implementation Attacks . 25

2.3.1 Side-Channel Attacks . 27

2.3.2 Fault Attacks . 31

2.4 Implementation Countermeasures 33

2.4.1 Masking Schemes . 34

2.4.2 Hiding Schemes . 38

2.4.3 Re-Keying Schemes . 39

Nowadays, state-of-the-art cryptographic standards for secret-key cryptography, like
the Advanced Encryption Standard (AES) and Secure Hash Algorithm 3 (SHA-3), are
widely believed to have sufficient security margins in the black-box model.

Indeed, only a breakthrough in current cryptanalytic techniques may affect the security
of current secret-key algorithms in this model. Nevertheless, it is already advisable to
double the key size of symmetric algorithms in order to ensure long-term security and
prevent secrets to be revealed in the future, when large quantum computers could be
built [5].

The major threat to the security of today’s cryptographic systems are implementation
attacks in the gray-box model, such as side-channel and fault attacks. This type of

13

Chapter 2: Background

attacks allows to recover the secret key material from the information leaked by the
physical characteristics of a cryptographic implementation, such as execution time and
power consumption.

Implementation attacks are amongst the strongest types of attacks against embedded
cryptographic devices for costs and effectiveness. They can be applied in all such
cases where the adversary can measure or manipulate physical characteristics of a
cryptographic implementation, like in the case of smart cards, Universal Serial Bus
(USB) tokens, Radio-Frequency IDentification (RFID) tags, and similar devices.

While no specific knowledge about the internals of cryptographic implementations
is typically required, the adversary usually needs to own the device for the time
necessary to setup a successful attack.

Outline

• Section 2.1 provides an overview on power consumption in Complementary
Metal Oxide Semiconductor (CMOS) devices and power measurements of Inte-
grated Circuits (ICs).

• Section 2.2 provides an overview on EM fields, EM measurements on ICs, IC
package decapsulation, and EM probes.

• Section 2.3 provides a classification of implementation attacks with a focus on
side-channel and fault attacks.

• Section 2.4 provides an overview on implementation countermeasures like
masking, hiding, and re-keying schemes.

2.1 Power Consumption in CMOS Devices

The building blocks of ICs are logic cells which realize elementary logic functions,
such as AND, OR, and XOR functions.

Nowadays, logic cells are typically fabricated in CMOS technology, which uses com-
plementary pairs of P-type and N-type Metal-Oxide-Semiconductor Field Effect Tran-
sistors (MOSFETs) - abbreviated as pMOS and nMOS, respectively.

Transistors can be used as simple switches that can be turned either “ON” or “OFF”.
MOSFET transistors are fabricated using either negatively doped or positively doped

14

2.1 Power Consumption in CMOS Devices

p+ p+
Oxide
Poly

Gate G

Source S Drain D

n

(a) If VGD ≥ VT, then the two regions p+
are isolated and the pMOS is turned
“OFF”.SOME SPACE SPACE

p+ p+
Oxide
Poly

Gate G

Source S Drain D

n

(b) If VGD < VT, then a channel is created
between the two regions p+ and the pMOS
is turned “ON”.

Figure 2.1: Cross-section of a pMOS Transistor consisting of a substrate of negatively
doped silicon (n) separating two areas of positively doped silicon (p+),
capped with an insulator material (Oxide) and conducting material (Poly).

silicon. Negatively doped silicon is rich in electrons, while positively doped silicon is
rich in holes.

Figure 2.1 shows the cross-section of a pMOS transistor consisting of a substrate of
negatively doped silicon (n) which separates two areas of positively doped silicon
(p+). The area separating the two p+ regions is capped with an insulator material
(Oxide) and conducting material (Poly).

MOSFET transistors have three contacts: a gate G, a source S, and a drain D. The
voltage drop VGD between the gate and drain controls the “ON/OFF” switching
operation of transistors. In nMOS transistors current flows from S to D (“ON” State),
if VGD is greater than a certain threshold voltage VT. In contrast, pMOS transistors are
conducting (“ON” State) if VGD < VT.

Currents flowing in transistors dissipate energy as heat. Power is the energy dissipated
by transistors per unit of time. The total power consumption P of a circuit C is the
sum of the power dissipated by each logic cell c composing the circuit:

P = ∑
c∈C

Pc (2.1)

The power Pc dissipated by a logic cell c consists of two components: static power Ps
c ,

which is the power dissipated when the cell is holding its logic state, and dynamic
power Pd

c , which is the power dissipated when the cell output (or any of its internal
parts) is switching from one logic state to another, e.g., during an output transition
from 0→ 1:

Pc = Ps
c + Pd

c (2.2)

15

Chapter 2: Background

Static power consumption Ps
c is state, temperature, and voltage dependent, and is

mainly due to reduced threshold voltages that prevent gates from completely turning
off.

Dynamic power consumption is given by the sum of the switching power Psw
c and the

internal switching power Pintsw
c , which are the powers dissipated due to the charging

and discharging of the output and internal load capacitances, respectively, and the
short-circuit power Psc

c , which is the power dissipated due to paths that are temporarily
established between VDD and ground during logic transitions:

Pd
c = Psw

c + Pintsw
c + Psc

c (2.3)

For a long time, dynamic power consumption has represented the major contribute
to the total power consumption dissipated by CMOS integrated circuits, being static
power consumption orders of magnitude smaller than dynamic power consumption,
i.e., the more cells changed their state, the more power was dissipated.

However, with the scaling of CMOS technology under 100 nm, static power consump-
tion has started being a non negligible source of power dissipation which is expected
to take over dynamic power consumption in the near future as technology size further
scales down.

In order to get a deeper understanding about the root causes of power consumption in
CMOS devices, a simple model of a CMOS inverter cell is considered (cf. Figure 2.2).
The power consumption for more complex gates can be similarly derived.

Power Consumption in a CMOS Inverter Cell The static power consumption in a
CMOS inverter cell inv is given by the product of the leakage current I` = I`(p) + I`(n)
and the supply voltage VDD:

Ps
inv = VDD · [I`(p) + I`(n)] = VDD · I` (2.4)

The switching power is mainly due to the charging and discharging of the load
capacitances at the output of the inverter cell Cld, i.e., the net and gate capacitances on
the driving output:

Psw
inv = α · fclk · Cld ·V2

DD, (2.5)

where fclk is the clock frequency and α is the activity factor of the cell, i.e., the average
number of transitions that occur at the inverter output in one clock cycle [71].

16

2.1 Power Consumption in CMOS Devices

VDD

Vin
Isc

nMOS

pMOS
I`(p)

I`(n)

Cint Cld

Vout

IswIintsw

Figure 2.2: Model of power consumption in a CMOS inverter cell: it depends on
currents flowing inside the cell (Isc, I`, and Iintsw) and the current flowing
to output load (Isw).

Similarly, the internal switching power Pintsw
inv is dissipated due to charging and dis-

charging of the internal load capacitance Cint:

Pintsw
inv = α · fclk · Cint ·V2

DD (2.6)

Short-circuit power Psc
inv is dissipated when both pMOS and nMOS transistors are

temporary conducting during state transitions of the inverter cell:

Psc
inv = α · fclk · Isc · τsc ·VDD = α · fclk · Csc ·V2

DD, (2.7)

where τsc is the time when the short-circuit current Isc is flowing, and Csc = Isc ·
τsc/VDD. The total power consumption of a CMOS inverter cell is summarized in
Table 2.1.

2.1.1 Power Measurements of ICs

Power measurements of digital integrated circuits can be taken with the aid of a digital
oscilloscope coupled to either a current probe or a voltage probe. Voltage probes are
more widely employed in the context of side-channel analysis due to their typically
wider bandwidths (25 MHz - 500 MHz) and lower input capacitances (< 10 pF).

The most convenient way to take power measurements of an IC is to insert a shunt
resistor in the path between either a ground pin of the IC and the ground plate or the
power supply VDD and a power pin of the IC.

17

Chapter 2: Background

Table 2.1: Power consumption in a CMOS inverter cell consists of two parts: static
power consumption Ps

c = VDD · I` and dynamic power consumption Pd
c =

α · fclk · [(Cint + Cld + Csc) · V2
DD]. This latter contribution is present only if

there is an input transition.

Input Transition Output Transition Power Consumption

0→ 0 0→ 0 VDD · I`

0→ 1 1→ 0 VDD · I` + α · fclk · [(Cint + Cld + Csc) ·V2
DD]

1→ 0 0→ 1 VDD · I` + α · fclk · [(Cint + Cld + Csc) ·V2
DD]

1→ 1 1→ 1 VDD · I`

These two possible configurations are illustrated in Figure 2.3 using a simplified ideal
model which does not consider either multiple ground/power pins nor the presence
of other circuital components.

The first configuration has the advantage that single-ended passive voltage probes
can be used to measure the voltage drop over the resistor VR (cf. Figure 2.3a). This
type of probes is typically very cheap. As a drawback, the I/O pins of the IC could
provide alternate ground paths in this configuration causing variable bias in the
measurements.

The second configuration does not have the drawbacks of the first one, i.e., the current
delivered by the voltage power supply VDD to the chip can be directly measured and it
does not present issues with multiple ground paths or loops (cf. Figure 2.3b).

However, differential active probes are needed to handle the common-mode voltage.
As a drawback, this type of probes is typically more expensive, have lower bandwidths,
and suffer from higher measurement noise due to the presence of active components.

In both cases, the average power PIC dissipated by the IC is related to the voltage drop
over the resistor VR as follows:

PIC = VIC IIC = (VDD −VR)
VR

R
,

where IIC = IR = VR
R is the average current absorbed by the IC and R is the electrical

resistance of the shunt resistor. In the context of side-channel analysis, the instant
power consumption PIC(t) depends on the amount of current IIC(t) that is instan-
taneously drawn from the IC during cryptographic computations. In practice the
electrical resistance R of the shunt resistor should be chosen in respect to the IC under

18

2.1 Power Consumption in CMOS Devices

IC

VIC

IIC

RVR

IR

VDD

(a) Shunt resistor between the IC and ground: measurements can be performed with passive
single-ended voltage probes.

R

VR

IR

ICVIC

IIC

VDD

(b) Shunt resistor between the power supply and the IC: measurements can be performed
with active differential voltage probes.

Figure 2.3: Power measurements using a shunt resistor: a shunt resistor is inserted in
the circuit to measure the flow of electric currents in a IC by sensing the
variable voltage drop across it.

test, e.g., it should be “small enough” in order to do not affect the normal operation of
the circuit, but also “large enough” in order to provide a good Signal-to-Noise Ratio
(SNR). Typical values of R vary between 0.5 Ω and 50 Ω for conventional embedded
devices.

In the context of side-channel analysis, power measurements have practically two
main limitations, namely:

1. The available bandwidth is typically limited by different parasitics laying on
the path between the measurement point and the Analog-to-Digital Converter
(ADC) of the oscilloscope, e.g., due to the bonding wires in the die’s package
and decoupling capacitors on the Printed Circuit Board (PCB) board. In other
words, power measurements are always low-passed to some extent, due to the
RLC circuit that is established on the path to the ADC, thus making impractical
to exploit the information contained in the higher-frequency components of the
leakage spectrum.

2. Power measurements require to modify the PCB board in order to insert a shunt
resistor in the circuit. This is not always an easy task, e.g., when multi-layers PCB
boards with multi-ground planes and several Low-Dropout Regulators (LDOs)
in the power supply paths are used.

19

Chapter 2: Background

Due to these limitations, EM measurements are often employed for side-channel
analysis in place of power measurements, being EM field variations directly related
to the electrical activity of ICs. This latter ultimately depends on the cryptographic
operations which are performed on the device.

2.2 Electro-Magnetic Fields

EM fields are composite vector fields which consist of electric fields and magnetic
fields. While electric fields are produced by particles provided with electric charge,
magnetic fields are produced by moving charges, i.e., current flows.

The electric field E and magnetic field B are defined by the Lorentz Force Law, which
describes the way a force F acts on a particle with electric charge q and instantaneous
velocity v in presence of an electric field E and a magnetic field B as:

F = q(E + v× B),

where × is the vector cross product operator.

The way how stationary and moving charges give rise to electric and magnetic fields
is described by Maxwell’s equations:

1. Gauss’s law states that the electric flux through a closed surface is proportional
to the enclosed charge:

∇ · E =
ρ

ε0
,

where ∇ · E is the divergence of the electric field, ε0 is the electric constant, and
ρ is the total electric charge density.

2. Gauss’s law for magnetism states that the total magnetic flux through a closed
surface is zero, i.e., there are no isolated magnetic monopoles:

∇ · B = 0,

where ∇ · B is the divergence of the magnetic field.

3. Maxwell-Faraday equation is a generalization of Faraday’s law of induction
which describes how time-varying magnetic fields generate electric fields:

∇× E = −∂B
∂t

20

2.2 Electro-Magnetic Fields

4. Ampère’s law relates the magnetic field back to its origin stating that the magnetic
field induced around a closed loop is proportional to the sum of the electric
current and displacement current it encloses:

∇× B = µ0

(
J + ε0

∂E
∂t

)
,

where J is the current density and µ0 is the magnetic constant.

In addition to B, there is another quantity denoted by H, which further accounts
for how strong a region itself is magnetized. The two quantities are related by the
following formula:

H =
B
µo
−M,

where M is the magnetization field, and represents how strongly a region of material
is magnetized. In vacuum, M = 0, thus B = µoH. Note that all fields are functions of
the position in the three dimensional space r and time t, e.g., B ≡ B(r, t).

In general, it holds that the higher is the charge, the stronger is the electric field at a
given distance, and the higher is the current flow, the stronger is the magnetic field at
a given distance.

Near and Far Fields Electromagnetic fields can be broadly divided into two types:
near fields and far fields.

Let λ = c
f be the wavelength of an EM field, where c ≈ 3× 108 m/s is the speed of

light in vacuum and f is the frequency of its emissions. Then, the region located
at a distance d � λ from the source is typically referred to as the near-field. In this
region, the electric and magnetic fields are directly generated by charges and currents,
respectively.

The region located at a distance d� 2λ from the source is typically referred to as the
far-field. In this region, the electric and magnetic fields are caused by the respective
other field propagating into space. In the region between λ and 2λ, both near-field
and far-field effects are present.

2.2.1 EM Measurements of ICs

Today’s ICs consist of millions of transistors and wires, where electric currents flow
from nodes at higher potential to nodes at lower potential following various paths
through logic gates and metal layers.

21

Chapter 2: Background

These currents together with stationary charges generate EM fields in the three-
dimensional space surrounding the chip. The superposition of such fields results in a
very complex EM field which is difficult to model in practice, i.e., the modeling of the
EM field surrounding a chip is typically not feasible with currently available software
tools, as there are too many EM sources which either amplify or cancel the effect of
each other out.

At a first approximation, an integrated circuit can be viewed as a loop antenna radiating
a magnetic field through its surface. In fact, while most materials shield electric fields to
some extent, magnetic fields are typically not attenuated by most materials. This makes
magnetic field measurements typically more suitable for side-channel analysis.

In general, EM measurements offer some advantages over power measurements
like reduced invasiveness, improved ranges of bandwidth, and improved spatial
localization. In fact, they do not require the insertion of a resistor in series to the
chip, are not low-passed by RLC circuits on the PCB board, and allow for a higher
spatial resolution that permits to isolate the activity of small parts of the circuit under
consideration.

2.2.2 EM Probes

The magnetic field variations in the EM field surrounding the chip can be measured
using magnetic inductive probes. They are small electrically balanced loop antennas
built with an electric field shield and a small break in the loop to prevent shield
currents from flowing around the loop.

The probe’s output voltage, i.e., the induced electromotive force E , is proportional to
the negative variation of the magnetic flux φB sensed by the probe through Faraday’s
law of induction:

E = −N
dφB

dt
= −N

d
dt

(∫∫
Σ(t)

B · dA
)

,

where N is the number of loops in the coil, B is the magnetic field, dA is an infinitesimal
area of the concatenated surface Σ(t) comprised within the coil. Note that the coil can
be moved over time t, i.e., the area Σ(t) that is concatenated by the probe may change
over time and thus the magnetic flux through it. Further note that the negative sign of
E is determined by Lenz’s law, i.e., any current generated by a varying magnetic field
in a coil produces a magnetic field that opposes the change in the magnetic field that
has induced it.

When performing EM measurements the following probe’s parameters can be consid-
ered:

22

2.2 Electro-Magnetic Fields

• Orientation:
The probe orientation should match the direction of the EM field produced
by the interested source. The three components of the magnetic field can be
measured by rotating the probe with an angle of 90 ◦C around the (x, y, z)-axes.

• Resolution:
The probe resolution should match the area source involved in the EM emissions
of interest. Typical values ranges from 25 mm to 1 mm. If the probe has high
resolution, then only parts of the emissions are captured. In contrast, if the probe
has low resolution, then it might include emissions from other components.

• Sensitivity:
The probe sensitivity should be sufficiently high to fully exploit the input range
of the oscilloscope. Sensitivity and resolution are typically related parameters,
as increasing the loop size typically increases the sensitivity, but also reduces
the resolution. Note that amplifiers can be used to increase SNR of small-sized
probes.

• Bandwidth:
The probe bandwidth is typically defined as the range of frequencies at which a
sinusoidal input signal is attenuated up to 70.7% of its original amplitude, also
known as the −3 dB point. Typical bandwidth ranges for commercially available
probes are, e.g., 100 kHz− 50 MHz or 3 MHz− 3 GHz.

Note that, since the strength of EM fields rapidly decreases with the distance from the
originating source, i.e., the amplitude decreases in proportion to the inverse cube of the
distance 1

d3 in the near-field, ICs can be decapsulated in order to position EM probes
as close as possible to the die’s surface and improve the SNR of EM measurements.

2.2.3 IC Decapsulation

The operation of opening the plastic package of an IC is called decapsulation. A
relatively cheap way to decapsulate an IC is by chemical etching. This can be done
either manually or with the aid of professional equipment, which is typically more
costly, but also more precise.

Decapsulation usually consists of the following steps1:

1Etching should be performed in laboratory with the necessary equipment and according to the safety norms

regulating the usage of chemicals.

23

Chapter 2: Background

1. Mill a small cavity on the top surface of the packaged chip using a drill bit,
e.g., use Dremel rotary tools to create a sort of sink container for acid in order to
avoid spreading it all over the package during the etching process.

2. Place the chip on a hotplate heated up to around 100 ◦C. This temperature
point might vary depending on the particular chemicals and package materials
involved.

3. Dispense a few drops of acid on the top surface of the package in order to
corrode the plastic covering the die, e.g., using fuming nitric acid (HNO3).

4. When the package has been exposed adequately to the corrosive action of acid
and the die is visible, then it can be cleaned with some acetone and dried out at
room temperature.

5. Finally, the die can be inspected with the aid of a microscope to verify if there
are no package’ residuals on the die and the bonding wires are intact. A picture
of the die can be taken to identify those parts of the IC that are more relevant for
side-channel analysis.

Note that, while it is possible to remove the bonding wires and re-wire the I/O to
a convenient board for further analysis, this is typically a costly operation which
requires a bonding machine. Hence, particular care has to be taken when dispensing
the drops of acid and when cleaning the chip in order to avoid tearing off the bonding
wires. Note that if the bonding wires are made of copper, then a mixture of nitric acid
and Oleum should be preferably used in order to avoid corroding the wires with the
acid.

Decapsulation is particular advantageous in case of EM measurements since it allows
to:

1. Lower down the probe’s coil until touching the passivation layer, thus decreasing
the distance between the EM source and the probe, while ultimately increasing
the SNR.

2. Isolate the activity of individual parts of the circuit which are more relevant for
the analysis, e.g., memories or cryptographic accelerators.

In order to take full advantage of decapsulated chips, high-resolution EM micro-probes
can be employed.

24

2.3 Implementation Attacks

2.2.4 EM Micro-probes

EM micro-probes allow to measure EM fields directly on the die surface at extremely
high spatial resolutions, e.g., with diameters between 100 µm and 150 µm. These probes
allow to accurately pinpoint parts of the circuitry once the chip has been decapsulated
and the die is visible. The relevant areas of the die, e.g., memories and hardware
accelerators, can be located and inspected with the aid of a microscope.

EM measurements involving EM micro-probes are typically performed using high-
precision motorized positioning systems to automatically scan the die’s surface. In
order to isolate the EM field sources as much as possible, small measurement steps
should be performed. However, note that reducing the measurement’s step size
increases the measurement’s time for the same inspected area. Hence, a good trade-off
between the size of the probe, its sensitivity, and the number of scanning steps must be
typically found. One way to increase the SNR of EM measurements when employing
high-resolution EM micro-probes is to use probes’ pre-amplifiers.

2.3 Implementation Attacks

Implementation attacks are typically classified according to two main criteria that are
orthogonal to each other [71].

The first criterion is related to the type of interaction that the adversary has with the
cryptographic device under attack. This can be either active or passive.

• Passive Attacks:
The adversary passively collects information about the secret key by observing
some physical properties of the cryptographic device operating within its nomi-
nal levels of operation, e.g., the adversary monitors the power consumption or
EM field variations of an IC.

• Active Attacks:
The adversary actively manipulates one or more parameters of a cryptographic
device or its environment, like the power supply or temperature, in order to
exceed the nominal levels of operation and obtain information about the secret
key from its malfunctioning.

The second criterion classifies attacks depending on the degree of invasiveness that
the adversary has in respect to the cryptographic devices under attack, i.e., to which
extent the adversary physically tampers with the target device.

25

Chapter 2: Background

These types of attacks can be either non-invasive, semi-invasive, or invasive.

• Non-Invasive Attacks:
The adversary does not apply any manipulations (neither chemical or mechanical)
to the cryptographic device, but only plays with the external logical interfaces of
the chip. This type of attacks is typically very cheap to perform, and therefore
they pose a serious threat to the security of cryptographic devices. Also, they
typically leave behind no trace of the performed attack.

• Semi-Invasive Attacks:
The adversary modifies the outer layers of the device, e.g., by removing the
chip’s package, in order to gain access to the die’s surface, but does not establish
any electrical contacts with the chip, i.e., the chip’s passivation layer is neither
removed or altered.

• Invasive Attacks:
In this type of attacks, the adversary gains access to the metal layers or the die’s
substrate to either establish a direct contact with the circuit or to modify its
functionality. Invasive attacks are the strongest type of attacks, but typically
require industrial equipment, like probing stations, which are very expensive
and hardly affordable.

The most common types of implementation attacks are Side-Channel Attacks (SCAs)
and Fault Attacks (FAs). Prominent examples of SCAs are timing analysis attacks,
power analysis attacks, and electro-magnetic analysis attacks. These types of attacks
extract information about the secret key by observing either the time duration, power
consumption, or electromagnetic radiation, respectively.

Timing attacks were introduced in 1996 by Paul C. Kocher [66], while power analysis
attacks were subsequently introduced in 1999 by Paul C. Kocher, Joshua M. Jaffe, and
Benjamin C. Jun [68]2. Finally, electromagnetic attacks were introduced in 2001 by
Quisquater and Samyde [96].

Side-channel attacks belong to the class of passive attacks and can be either non-
invasive or semi-invasive, e.g., when the chip’s package is removed to access the chip’s
die with an EM probe.

Fault attacks try to recover the secret key by taking advantage of the erroneous
behavior of a device during cryptographic computations. Fault attacks are active
attacks which can be either non-invasive, semi-invasive, or invasive. The higher is the
level of invasiveness, the higher are the costs to perform the attacks.

2Note that power analysis attacks were already described in a technical report by the same authors in 1998.

26

2.3 Implementation Attacks

Table 2.2: Classification of implementation attacks according to the degree of invasive-
ness of the adversary, its type of interaction with the device, and the costs
associated to mount successful attacks: side-channel attacks are highlighted
in blue, while fault attacks are highlighted in green.

Active Passive Costs

Non-invasive
Glitches Timing attacks

Low-MediumSpikes Power attacks
EM Attacks (Far-field)

Semi-invasive
Laser beam

EM attacks (Near-field) Medium
EM pulses

Invasive
Laser

Probing High
FIB

One method to inject faults is to insert spikes into the clock supply to corrupt data
transfers between registers and memories. This type of attacks is called glitch fault
injection attacks and they are non-invasive. By removing the package, semi-invasive
attacks are possible, e.g., using light sources or EM fields to produce faults [59, 62].
Using a laser cutter or a Focused Ion Beam (FIB) is possible to perform invasive attacks
which permanently change the behavior of the chip.

Table 2.2 provides an overview on the classification of implementation attacks.

2.3.1 Side-Channel Attacks

Since the seminal work of Paul C. Kocher [66], side-channel attacks represent one of
the major threats to the security of cryptographic devices due to their limited costs
and high effectiveness. Side-channel attacks are typically based on a divide-and-
conquer strategy in which small parts of a secret key, called sub-keys, are recovered
iteratively.

Side-channel attacks can be classified according to different parameters. The most
relevant ones are briefly surveyed here.

Source of Side-Channel Information Cryptographic implementations may leak in-
formation about secret computations over different side-channels. The most prominent

27

Chapter 2: Background

sources of side-channel information are execution time, power consumption, and EM
fields.

Timing attacks exploit key-dependent variations in the execution time of cryptographic
algorithms, e.g., during the computation of RSA-based digital signatures. This type
of attacks can be avoided by executing all key-dependent computations in constant-
time independently of the inputs. However, another source of side-channel time
information might be due to the processors’ cache mechanisms [120]. One possible
way to get rid of such side-channels is to disable caches or to clear/fill them out before
any cryptographic computations happen. However, this is not always possible for
performance reasons.

Another source of side-channel information is associated to the power consumption
of cryptographic devices. Power analysis attacks exploit key-dependent variations
in the power consumption of a cryptographic device. In this case, making power
consumption constant has been shown to be too costly and difficult to achieve in
practice. Hence, other techniques operating at higher abstraction levels are typically
preferred to counteract side-channel attacks based on power analysis.

Electric currents flowing into digital cells generate magnetic fields, hence EM fields
represent yet another source of side-channel information that should be considered in
practice. EM analysis attacks exploit key-dependent variations in the EM field (either
far-field or near-field) of a cryptographic device.

Other side-channels exploited in literature are sound emissions, e.g., generated by
the vibration of capacitors and coils in voltage regulation circuits [52], and photon
emissions, e.g., photons emitted by CMOS devices [49, 107].

Side-channel information coming from multiple sources can be aggregated to increase
the effectiveness and efficiency of attacks [3].

Simple and Differential Attacks Side-channel attacks are typically referred to as
either simple, e.g., Simple Power Analysis (SPA), or differential, Differential Power
Analysis (DPA).

SPA attacks exploit the information from either a single or a few observations using
the same input and try to “derive the key more or less directly from a given trace” [71, p.
101], e.g., by visual inspection. SPA attacks are well known in the context of public-key
cryptography, e.g., the implementation of modular exponentiations using the Square-
and-Multiply (S&M) algorithm can be attacked by SPA attacks: if the adversary is
able to distinguish between a square and a multiplication step in a power trace, then

28

2.3 Implementation Attacks

the secret key can be recovered straightforwardly [68]. In practice, SPA attacks are
typically limited by the fact that they require a high SNR in order to perform visual
inspection and also the details of the implementation should be typically known to
the adversary.

On the contrary, DPA attacks exploit the information from multiple traces using several
inputs and statistical methods. In this case, the adversary uses the knowledge about
the algorithm and the input (resp. output) to recover the secret key. The target of DPA
attacks are key-dependent intermediate values of computation, which depend on a
known input (resp. output) and a small part of the secret key. Based on different key
guesses, the adversary can compute the hypothetical intermediate value for each key
guess and observation.

Profiled and Unprofiled Attacks Side-channel attacks can be further classified as
either profiled or unprofiled.

In profiled attacks, the adversary can characterize the leakage distribution of the target
device using known inputs and keys. Profiled attacks take place in two phases:

1. Profiling phase:
The leakage distribution of the device is estimated for a known key and saved
into templates. This phase requires full control of a device similar to the one
under attack.

2. Matching phase:
The leakage of the device under test with an unknown key is compared the
previously profiled distribution in order to retrieve the secret key material.

Template attacks [26, 3] as well as the stochastic approach by Schindler et al. [106] are
well known examples of profiled attacks.

On the contrary, unprofiled attacks do not have a profiling phase and try to identify the
correct key on-the-fly using a statistical distinguisher and a hypothetical model of the
leakage information. DPA as originally proposed in [68] uses the difference of means
as a statistical distinguisher. Correlation Power Analysis (CPA) [22] uses the Pearson’s
correlation coefficient to find out linear dependencies between the measurements and
a hypothetical model of power consumption. Mutual Information Analysis (MIA) [53,
9] uses mutual information as a generic non-parametric distinguisher. Robust SCA
[43] uses the least square method to approximate the leakage information.

For unprofiled attacks, the leakages are typically modeled using the Hamming weight
of a secret intermediate value or the Hamming distance of two secret intermediate

29

Chapter 2: Background

values. Other models include the single-bit model, the zero-value model, and the
identity model [71, Sec. 3.3].

Assumptions about the Leakage Distribution The leakage is typically assumed to
be drawn from a normal Gaussian distribution N (µ, σ2) with mean µ and standard
deviation σ. Other more generic models, such as Gaussian mixture models [70], and
unparametrized models, such histogram or kernel density estimation methods, have
been used to estimate the leakage distribution [125]. In general, the more the model is
generic, the less the attack is efficient and the more computational power is required
to perform the attack.

Dimensionality of the Leakage Distribution Side-channel information can be either
single-valued (e.g., time measurements in timing attacks) or multi-valued (e.g., power
or EM measurements consist of many values recorded over time).

According to how many dimensions of the side-channel leakage are exploited, side-
channel attacks are classified as either univariate or multivariate.

In general, multivariate attacks are more powerful because they exploit more informa-
tion from the side-channel leakages, but also require more computational power than
univariate attacks.

Data Complexity and Number of Measurements The data complexity defines the
number of inputs that are under control of the adversary. In some cases, the data
complexity is limited by design, e.g., due to a cryptographic protocol or due to a
deployed countermeasure. The data complexity has not to be confused with the
number of measurements that an adversary can record.

The number of measurements corresponds to the number of acquisitions that an
adversary is able to record, e.g., with the aid of an oscilloscope. In general, multiple
acquisitions of the same input can help averaging out the measurement’s noise and
improve the SNR.

Spatial Resolution The resolution of a side-channel attack can be either global or
local: the adversary has access to the side-channel of a device in its entirety, e.g., the
adversary can only measure the global power consumption of an IC including all
active peripherals, or is allowed to measure the activity of single components on the
chip, e.g., measure the activity of a memory component using near-field EM probes.

30

2.3 Implementation Attacks

2.3.2 Fault Attacks

Fault attacks are well-known implementation attacks introduced in the mid-nineties
by Boneh et al. to defeat the security of cryptographic systems [19]. Since their intro-
duction, several fault attacks against both symmetric [14, 90, 83] and asymmetric [12,
19] cryptographic algorithms were proposed in literature.

The main idea behind fault attacks is to disrupt the normal operation of cryptographic
devices in order to induce errors during cryptographic computations and exploit the
faulty output to gain information about the secret key.

Faults can be injected into cryptographic devices using different injection techniques
such as:

• Sudden transient changes in the power supply lines [7, 8];

• Glitches in the signal line, e.g., clock or reset line [6];

• Strong EM radiations [108] as well as light sources such as ultraviolet lamps [108],
camera flashes [59] and lasers [114];

• Bringing the device temperature outside the working ranges [63].

Fault attacks are active attacks which can be performed with different levels of
invasiveness and spatial resolution (either global or local).

Non-invasive techniques include over- and under-voltage variations on the power
supply (spike attacks), overheating or freezing the chip, and inserting glitches on the
clock lines. The variation of these parameters, causes the transistors within the ICs to
switch at a faster, resp. slower, rate than allowed, hence producing errors. These can
be attributed to, e.g., setup time violations.

Invasive techniques employ the use of expensive tools, that range from micro-probing
stations to FIB machines. A more interesting class of attacks are semi-invasive attacks,
like those using light sources or EM fields. This type of attacks typically produces
more useful faults than those produced using non-invasive attacks, while keeping the
equipment costs lower than those needed for invasive attacks.

A fault model describes the conditions for which fault attacks can successfully extract
the key from faulty computations:

• Spatial Location:
The spatial location specifies where the fault should be injected in order to be
effective, e.g., memory elements or data flow.

31

Chapter 2: Background

• Temporal Location and Duration:
The temporal location specifies when the fault should be injected during the
cryptographic computations, e.g., in the penultimate round of AES, while the
temporal duration specifies for how long the faults should be injected, e.g., per-
manent or transient faults.

• Fault Type and Width:
The fault type specifies how computations can be affected by the injections,
e.g., bit set/reset, bit flip, random fault, while the width specifies how many bits
can be affected from the faults. In some cases, it might also be useful to specify
whether any specific or arbitrary bits are affected by the faults.

• Multiplicity:
The multiplicity specifies how many faults should be injected during one single
cryptographic computation in order to mount a successful attack, e.g., two or
more fault injections can be needed if countermeasures against fault attacks are
deployed.

The easier a certain fault model can be realized in practice, the more powerful is
considered the fault attack. Fault attacks can be roughly classified into DFAs and
Faulty Ciphertext-Only Fault Attacks (FCOFAs).

DFAs are chosen-plaintext attacks which have been introduced by Biham and Shamir
in 1997 [14]. They exploit the differences between correct and faulty ciphertexts in
order to retrieve information about the secret key by verifying invariant conditions
during cryptographic operations. Note that, although the plaintexts can be chosen at
random from the adversary, yet the adversary must be able to feed the same plaintext
two times into the device in order to obtain a correct and a faulty ciphertext on the
same input. One of the most powerful DFA against AES is that from Saha et al. [103].

FCOFAs were introduced in [51] and further investigated in [39]. This class of fault
attacks is the most generic one, as it only assumes that a collection of (faulty) cipher-
texts obtained under the same secret key is known to the adversary. In this case, the
adversary injects a bias in the distribution of the intermediate values and extracts
the secret key under the assumption that the bias can be identified from the faulty
ciphertexts when the correct key is guessed.

32

2.4 Implementation Countermeasures

2.4 Implementation Countermeasures

The implementation of cryptographic algorithms may leak information about the
secret key over multiple side-channels and can also be subjected to fault attacks. In
order to thwart side-channel and fault attacks, implementation countermeasures are
typically deployed on cryptographic devices.

They can be classified according to two main criteria, which are orthogonal to each
other.

The first criterion is the level of abstraction on which the countermeasure applies:

• Physical Level:
This type of countermeasures acts at the physical level by adding either mechan-
ical or electrical components on the cryptographic device, e.g., fault injections
can be detected by sensing changes in the gradient of light [6], while side-
channel attacks can be made harder by using EM shields to limit the emissions
of cryptographic chips [96].

• Logic Level:
This type of countermeasures acts at the hardware level by changing the logic
design style of CMOS gates, e.g., custom logic styles such as Sense Amplifier
Based Logic (SABL) [118] or standard logic styles such as Wave Dynamic Dif-
ferential Logic (WDDL) [119] can be used to make the power consumption look
independent to the adversary.

• Algorithmic Level:
This type of countermeasures acts at the algorithmic level by modifying the
implementation of cryptographic algorithms without changing the input/output
characteristic, e.g., random delays can be inserted to make attacks more difficult
or the algorithm is randomized using secret sharing techniques in order to
protect the secret keys.

• Protocol Level:
This type of countermeasures wraps cryptographic primitives into protocols
from which the security is derived, e.g., frequent key updates can be used to
prevent the adversary from obtaining information about the secret key.

The second criterion is the type of action that is performed by the countermeasure,
e.g., side-channel countermeasures aim at either hide, mask, or bound the leakage
to a certain extent, while fault countermeasures aim at either detect or bound fault
injections.

33

Chapter 2: Background

Side-channel countermeasures can be classified as follows:

• Masking:
Masking schemes aim at making side-channel observations independent of the
processed secret data at the adversary’s eyes.

• Hiding:
Hiding countermeasures aim at reducing the SNR of exploitable information
along either the time or the amplitude dimension.

• Re-Keying:
Re-keying schemes aim at performing frequent key updates in order to limit the
information that can be leaked under a certain key.

Typically the costs associated to the design, testing, and deployment of counter-
measures is higher at lower levels of abstractions. Also, at the lower levels the
countermeasures are based on assumptions which are harder to meet in practice,
e.g., perfect symmetries and propagation delay times in protected logic styles can be
hardly achieved due to physical processing variations.

2.4.1 Masking Schemes

Masking schemes were introduced independently in 1999 by Suresh Chari, Charanjit
S. Jutla, Josyula R. Rao, and Pankaj Rohatgi at CRYPTO [24] and by Louis Goubin and
Jacques Patarin at CHES [57] as a countermeasure against side-channel attacks.

A masking scheme describes a way to share input data, a procedure to perform
computations on shared data, and a way to reconstruct output data from shared
output data. A masking scheme must ensure that all masks are uniformly distributed
and independent of the secret, each masked intermediate value is uniformly distributed
independently of the secret intermediate state, and that each secret is shared during
the full duration of a cryptographic operation, i.e., no partial reconstructions should
occur before the shared output is computed.

A dth-order masking scheme, which is correctly designed and implemented, allows to
withstand up to dth-order attacks, i.e., :

• Higher-order statistical moments of the leakage distribution have to be estimated
in order to successfully reveal the secret, i.e., the (d + 1)th statistical moment
should be estimated at least;

• The dimension of the leakage distribution increases with the masking order,

34

2.4 Implementation Countermeasures

i.e., (d + 1) Points of Interests (POIs) have to be selected in order to successfully
retrieve the secret key.

The work of [24] showed that the number of measurements required to mount a
successful DPA increases exponentially with the number of shares in presence of
Gaussian noise N (µ, σ2), i.e., the number of measurements N required to distinguish

a bit value is lower bounded by N ≥ σ
d+4 log p

log σ , when the leakage of (d + 1) shares
associated to a single bit with Bernoulli distribution B(p) is given.

The main difficulty when designing masking schemes is how to perform shared
computations on non-linear functions efficiently, e.g., S-boxes. In fact, while the shared
computation of linear functions is typically straightforward, as the original linear
function can be applied to each share individually, most of the issues arise with
non-linear functions, as they typically require interactions among the shares. For this
reason Chapter 3 and Chapter 4 will focus on protecting the S-box operation, which is
the only non-linear operation in AES.

Boolean Masking Boolean masking uses the bitwise XOR operation ⊕ over the
binary field GF(2) such that:

x = xm ⊕mx,1 ⊕ . . .⊕mx,s−1,

where (mx,i)1≤i≤s−1 are randomly generated masks and xm is the masked value of the
secret intermediate value x. A 1st-order Boolean masking scheme for AES is illustrated
in [71, p. 230].

Arithmetic Masking Arithmetic masking uses either addition or multiplication in
the modular ring Zn, as follows:

x =

(
xm +

s−1

∑
i=1

mx,i

)
mod n or x =

(
xm ·

s−1

∏
i=1

mx,i

)
mod n

Some cryptographic algorithms like SHA-2 use both arithmetic and Boolean operations,
thus requiring to switch between arithmetic and Boolean masking schemes [31, 56].

The Issue of Glitches In practice, many implementations of masking schemes are
vulnerable due to the glitches arising in digital circuits. Glitches are temporary
transitions that often occur at the output of logic cells due to different propagation
times in digital circuits, i.e., the output of logic gates can change several times before

35

Chapter 2: Background

they get to a final stable value. There are many reasons behind the insurgence of
glitches, e.g., the input wires of a cell might have different capacitances or they might
traverse different paths, hence arriving at different points in time.

Glitches pose a serious threat to the security of masking schemes as exemplary shown
in [72]. The first effort to counteract glitches is due to [50]. Today, glitches can
be avoided by employing either glitch-free logic styles or glitch-resistant masking
schemes.

There are basically four approaches to glitch-resistant masking schemes: Threshold
Implementations (TIs), Polynomial Masking Schemes (PMSs), Consolidated Masking
Schemes (CMSs), and Domain Oriented Maskings (DOMs).

Threshold Implementations TIs were introduced in 2006 by Svetla Nikova, Christian
Rechberger, and Vincent Rijmen [84]. TIs are based on secret sharing techniques and
are provably secure in presence of glitches.

Let f be a vector function (z1, . . . , zq) = f (x1, . . . , xp) and xj = (xj
i)1≤i≤s denote the

vector of shares associated to the input xj. Then, a 1st-order TI of f is obtained
by splitting the function f into s functions (fi)1≤i≤s such that the following three
properties hold:

1. Correctness:
Both input and output shares provide the same input and output values of the
original function f once recombined:

(z1, . . . , zq) = f (x1, . . . , xp) =
s

∑
i=1

fi(x1, . . . , xp),

where xj = ∑s
i=1 xj

i for all 1 ≤ j ≤ p.

2. Non-completeness:
Every fi is independent of at least one share of each input variable. Let xj

i denote
the reduced vector of shares (xj

1, . . . , xj
i−1, xj

i+1, . . . , xj
s). Then, without loss of

generality, the property is satisfied by requiring that zi is independent of xj
i for

all j : 1 ≤ j ≤ p:
zi = fi(x1

i , . . . , xp
i), ∀i : 1 ≤ i ≤ s.

A realization of this property is easy to find in case f is a linear function, but it
is typically more difficult in case f is a non-linear function. In fact, the minimum
number of shares to implement a product of D variables satisfying correctness
and non-completeness requires that s ≥ D + 1. Hence, the minimum number of
shares to realize a 1st-order TI of a non-linear function is 3 [84, Th. 3].

36

2.4 Implementation Countermeasures

3. Uniformity:
The output shares must have full entropy, provided that the input shares are
uniform. In case the output shares are not uniform, then either fresh masks can
be added to the output or a new sharing with a uniform output must be found
in order to guarantee 1st-order security. This latter option requires to use an
increased number of shares. Uniformity has the advantage that functions can be
securely composed without introducing further randomness if the property is
preserved through the operations.

There are several works which present 1st-order TIs, e.g., area-optimized TIs of AES
are illustrated in [82, 15], while [69] shows how to enable TIs for all 4-bit S-boxes with
3 shares. TIs of 5-bit and 6-bit S-boxes are further considered in [17].

Higher-Order Threshold Implementations (HOTIs) were introduced by Begül Bilgin,
Benedikt Gierlichs, Svetla Nikova, Ventzisalv Nikov, and Vincent Rijmen in 2014 [16].
The core idea is to extend the property of “non-completeness” to the dth-order, i.e., any
combination of up to d functions fi must be independent of at least one input share.
However, it was shown in [97] that the composition of uniform sharings without
refreshing is not necessarily higher-order secure. This means that fresh masks can be
necessary to achieve higher-order security when composing HOTI functions.

Consolidated Masking Schemes The work of [97] introduced Consolidated Masking
Schemes (CMSs) as an extension of TIs. CMSs inherit all properties of TIs and further
guarantee provable higher-order security with d + 1 shares, independently of the
algebraic degree t. In fact, it was longly believed that higher-order security for a
function having algebraic degree t could only be achieved using s ≥ td + 1 shares. A
2nd-order TI of AES in the form of CMS using d + 1 input shares is provided in [35].
As a drawback, CMSs can not be easily scaled to any protection order.

Polynomial Masking Polynomial masking represents the first attempt to conceive
both a glitch-resistant and higher-order masking scheme in literature. It is based
upon Shamir’s Secret Sharing Scheme (SSSS) and Multi-Party Computation (MPC)
protocols [95]. Polynomial masking was introduced at CHES 2011, while a first
prototype of AES on FPGA was presented at CHES 2013. Subsequently, a 1st-order and
a 2nd-order polynomially masked implementation of the PRESENT S-box on FPGA
were published in [36].

While TIs and CMSs are faster, smaller, and have considerably lower randomness
requirements than PMSs, these latter still have interesting advantages over TIs, e.g., they

37

Chapter 2: Background

can be straightforwardly adapted to any block-cipher and inherently scaled to any
masking order using regular hardware structures, i.e., they can be implemented in
full-custom secure logic and synthesized for different masking orders, hence making
it possible to quickly adapt their side-channel resistance according to a required
certification level. Additionally, they provide some basic resistance against fault
attacks if less than 1/3 of the shares are faulted [95].

PMSs will be the subject of Chapter 3 and Chapter 4.

Domain-Oriented Masking DOM is a new approach to masking introduced by
Hannes Gross, Stefan Mangard, and Thomas Korak [58] which improves over TIs,
by requiring less area and randomness as well as enabling inherent scaling to any
protection orders.

The basic idea is to assign each share to a different “domain” and secure domain cross-
ings, which is necessary in case of non-linear functions, by adding fresh randomness
and registers to block the propagation of glitches.

There are mainly three differences between TIs and DOM: (1) DOM is a domain
oriented approach, while TIs follow a function oriented approach, (2) the minimum
number of shares d + 1 is always used by DOM, hence leading to reduced area and
randomness requirements when compared to TIs, (3) DOM protected designs can be
scaled to any protection orders like in the case of PMSs.

2.4.2 Hiding Schemes

Hiding countermeasures aim at reducing the SNR of exploitable side-channel in-
formation. There are several techniques which can be deployed along either the
time or amplitude dimension. While those techniques which consider the amplitude
dimension are typically applied at the physical level, e.g., by changing the power
characteristic of the performed operations, those which consider the time dimension
are typically applied at the algorithmic level, e.g., by introducing time disarrangements
during cryptographic operations.

Hiding countermeasures are typically more lightweight as compared to masking
schemes, but also less effective in terms of security gain, i.e., the security gain of hiding
countermeasure is typically linear or quadratic. For this reason, hiding countermea-
sures are usually implemented in addition to masking schemes, and not alternatively
to them [100]. Note that introducing timing disarrangements represents also a quite

38

2.4 Implementation Countermeasures

effective countermeasure against fault attacks, as they decrease the probability that a
fault affects the same operation at a given point in time.

Two of the most prominent techniques along the time dimension are Random Delay
Insertions (RDIs) and shuffling schemes. These latter have the advantage that they
typically do not affect the performance figures of the original implementation.

Random Delay Insertion This technique involves inserting random delays during
cryptographic computations such that measurements become misaligned and appear
more noisy to the adversary, hence increasing the attack complexity. The insertion
of random delays can be done either in hardware using Random Process Interrupts
(RPIs) or in software by randomly inserting “dummy” operations during the execution
of cryptographic computations, e.g., NOP instructions [32]. The authors of [30] showed
that the number of measurements, which are required for a successful attack against
the RPI countermeasure, grows quadratically with the standard deviation of the
introduced delays.

Shuffling Schemes Shuffling schemes aim at introducing noise in the measurements
by randomly permuting the execution order of a set of independent secret operations
such that the final output of the algorithm does not change, e.g., the execution order
of the S-box within AES can be permuted without affecting the final result. The
permutation is typically obtained using either a Random Start Index (RSI) or a Random
Permutation (RP). The RSI approach offers higher performance but also less security
than the RP approach, hence this latter is typically preferred. For a more detailed
treatment on shuffling schemes the interested reader is referred to [124].

2.4.3 Re-Keying Schemes

The success probability of most cryptanalytic attacks, like linear or differential crypt-
analysis attacks, and implementation attacks, like side-channel and fault attacks,
depends on the number of cryptographic operations q which can be observed by the
adversary under the same secret key.

While for cryptanalytic attacks, q is typically a quite large value, in the case of
implementation attacks this number is rather small, e.g., a successful fault attack
on AES can require only q = 2 encryptions under the same key (only one faulty
pair) [103].

39

Chapter 2: Background

The seminal idea of using re-keying schemes as a countermeasure against side-channel
and fault attacks dates back to the U.S. Patent from Paul Kocher in 2003 [67]: it
consists of generating a new session key every (q− 1) cryptographic operations in
order to bound the number of cryptographic operations which can be observed by
the adversary under the same key. In this way, the adversary does not have enough
information to mount a successful attack.

A re-keying scheme provides inherent security against multiple observation attacks
(cryptanalytic and implementations attacks that require q > 1 observations) as long as
the same key is generated only with negligible probability.

However, single-observation attacks like SPA-based template attacks (for which q = 1)
can not be inherently prevented by re-keying schemes. Note that, although the success
probability of single-observation attacks heavily depends on the amount of noise
which is present in the measurements, the security of re-keying schemes might anyway
be affected by single-observation attacks even in presence of noise, e.g., using key
ranking and enumeration algorithms [121].

According to [75], a re-keying function should satisfy the following properties:

Property 1. Each bit of the session key should depend on many bits of the master key.

Property 2. No additional key material should be used, other than the master key.

Property 3. Protecting the re-keying function against SPA and DPA attacks should be
easy and more convenient than protecting the re-keyed cipher in terms of speed
and size.

The work of [41] additionally introduced the following property:

Property 4. The re-keying function should be non-invertible such that forward security
can be guaranteed.

Re-keying schemes can be classified in two categories depending on whether the
re-keying function is stateful or stateless.

A stateful re-keying scheme generates a fresh key from previously stored secret
information like a previous key or a secret index, while a stateless re-keying scheme
generates a fresh key from a secret key and public nonce.

Stateful Re-keying A stateful re-keying scheme generates a fresh key from a previ-
ously stored secret key or secret index using a re-keying function. The new fresh-key
is stored permanently, possibly overwriting the previous key.

40

2.4 Implementation Countermeasures

Each party has to store the same initial key and an index counting how many keys
have been derived already. Then, if the two parties want to communicate, they have to
synchronize the keys by deriving new keys until the indexes of the two parties match
and a common key is obtained.

There are mainly two approaches to match the indexes of the two parties: either one
of the two parties synchronizes its key to match the other party’s key or both parties
try to “meet in the middle”.

This latter approach typically requires an inverse re-keying function to roll back to
previous keys. The state-of-the-art approach to key-derivation is based on a skip-list
structure so that a session key can be efficiently derived in logarithmic time [67, 1].

The stateful approach does not suffer from the secure initialization problem [88], as
fresh keys are permanently overwritten after (q− 1) operations. However, the stateful
approach is typically very expensive, as it requires Non-Volatile Memory (NVM), and
it is not practicable for many applications, as it requires long times for synchronizing
the keys between the parties and re-programming the NVM after a new key has been
derived.

Stateless Re-keying A stateless re-keying scheme or fresh re-keying scheme gen-
erates a fresh key from a secret master key and public random nonce using a fresh
re-keying function.

Definition 1 (Fresh Re-keying Function) A fresh re-keying function is a function
g : {0, 1}κ × {0, 1}n → {0, 1}κ which takes a secret randomly chosen (but fixed) key
k ∈ {0, 1}κ and a public randomly chosen nonce r $← {0, 1}n to generate a private ses-
sion key k∗ ∈ {0, 1}κ satisfying the previously stated properties.

The stateless approach does not require an NVM, but it requires a secure initializa-
tion [88], i.e., a mechanism to retain the key entropy when the device is repetitively
reset to its initial state, and a Pseudo Random Number Generator (PRNG) to generate
nonce values.

Note that the security of fresh re-keying schemes depends on the quality of the nonce
values, e.g., if the random source is biased, then the same session keys can be generated
with higher probability, and on the mathematical properties of the re-keying function,
e.g., the same key should be generated only with low probability.

In this work, stateless re-keying will be considered in Chapter 6 and Chapter 7.

41

3 Design of a Higher-Order and Shuffled
Polynomially Masked AES S-box

Contents

3.1 Polynomial Masking . 45

3.2 AES . 46

3.2.1 The SubBytes Operation . 47

3.3 Addition Chains . 48

3.3.1 Star Chains . 48

3.4 New Selection Principles . 49

3.4.1 Previous Work . 50

3.4.2 New Addition Chains . 51

3.5 Hardware Design . 53

3.5.1 Adding Shuffling . 57

3.5.2 Performance Evaluation . 59

3.6 Summary . 60

One of the most effective ways of protecting block-cipher implementations against
side-channel analysis is to employ higher-order masking schemes.

The basic idea of higher-order masking schemes is to split the computation of secret-
dependent intermediate values into multiple random shares, so to increase the adver-
sary’s data complexity exponentially with the number of shares [25, 94].

In the last years, a number of higher-order masking schemes have been proposed in
literature along with statements of provable security. Nevertheless, they mostly turned
out to be flawed or susceptible to side-channel attacks, e.g., due to oversimplified
modeling assumptions like in the case of glitches [72].

43

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

Polynomial masking [95, 101] is a dth-order masking scheme based upon Shamir’s
Secret Sharing Scheme (SSSS) [111] and secure Multi-Party Computation (MPC) proto-
cols [11].

Polynomial masking is particularly suitable for protecting implementations of crypto-
graphic algorithms which are defined over finite fields, e.g., the binary extension field
GF(2n).

In particular, any n-bit bijective S-box can be represented as a polynomial ∑2n−1
i=0 aixi

over GF(2n) using Lagrange’s interpolation formula. This representation allows to
define any such S-box in terms of GF(2n) operations only, for which polynomial
masking can be applied straightforwardly.

In case of AES, the S-box can be computed as an inversion, followed by successive
squarings, multiplications, and additions in GF(28). The inversion can be computed ef-
ficiently using addition chains, i.e., by applying successive multiplications and squarings
in GF(28).

This chapter introduces principles for the selection of addition chains, which lead
to faster and more compact hardware implementations of S-boxes based on power
functions in GF(2n), e.g., the AES S-box.

Based on these findings, we present the hardware design of a more efficient higher-
order polynomially masked AES S-box which also includes a new shuffling coun-
termeasure. Our shuffling countermeasure operates directly on the shares of the
scheme during non-linear operations. It is lightweight and its effectiveness to hide
higher-order univariate leakages will be shown in Chapter 5.

Parts of this chapter have been published at the “Theory of Implementation Security
Workshop (TIs)” in 2016 [37].

Outline

• Section 3.1 provides a formal description of polynomial masking.

• Section 3.2 introduces the AES block-cipher and details on the AES S-box.

• Section 3.3 introduces addition chains with a particular focus on star chains.

• Section 3.4 provides new principles for the selection of implementation-efficient
addition chains.

• Section 3.5 describes the hardware design of a higher-order polynomially
masked AES S-box based on our improved addition chains and presents our

44

3.1 Polynomial Masking

proposed shuffling countermeasure.

• Section 3.6 provides a summary of the chapter with a recapitulation of the main
findings.

3.1 Polynomial Masking

Let GF(2n) denote a binary extension field. A dth-order masking scheme splits each
secret intermediate value x ∈ GF(2n) into a set of m = 2d + 1 random shares, such
that no subset of cardinality d < m reveals any information about the secret x.

A dth-order masking scheme can be defeated by (d + 1)th-order side-channel attacks
which exploit either the combined leakage of (d + 1) shares or the (d + 1)th statistical
moment of the leakage distribution.

The main operations of polynomial masking for any order d > 0 and secret intermedi-
ate value x ∈ GF(2n) are summarized.

Initialization The scheme is initialized as follows: m field elements (αi)1≤i≤m
$←

GF(2n)∗ are chosen at random, such that ∀i 6= j ∈ [1, m], αi 6= αj. Then, the m field
elements (λi)1≤i≤m on the first row of the inverse of Vandermonde (m×m)-matrix
(α

j
i)1≤i,j≤m are computed, as follows:

λi =
m

∏
k=1,k 6=i

−αk(αi − αk)
−1.

The initialization elements (αi, λi)1≤i≤m are made public.

Sharing Let Px(Y) = x + ∑d
j=1 rjY j be a random polynomial instantiated using d

random coefficients (rj
$← GF(2n))1≤j≤d and representing the secret intermediate value

x ∈ GF(2n). Then, the m random shares (xi)1≤i≤m are obtained by evaluating Px at the
public points (αi)1≤i≤m, as follows:

xi = x +
d

∑
j=1

rjα
j
i , i ∈ [1, m].

Shared Addition The addition of two secrets z = x + y can be performed indepen-
dently on the shares (xi, yi)1≤i≤m in a straightforward manner, as follows:

zi = (xi + yi) +
d

∑
j=1

(rj + r′j)α
j
i , i ∈ [1, m], (3.1)

45

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

where Px(Y) = x + ∑d
j=1 rjY j, Py(Z) = y + ∑d

j=1 r′jZ
j, and no fresh randomness is

required.

Shared Multiplication by a Constant Similarly to addition, the multiplication of a
secret intermediate value x by a constant value c 6= 0 can be performed independently
on each share, as follows:

zi = (cxi) +
d

∑
j=1

(crj)α
j
i , i ∈ [1, m], (3.2)

where Px(Y) = x + ∑d
j=1 rjY j and no fresh randomness is required.

Shared Multiplication The multiplication of two secrets z = xy can be performed
in three steps using the method described by Michael Ben-Or, Shafi Goldwasser, and
Avi Wigderson in 1988 [11]:

Step 1.) ti = xiyi

Step 2.) qi,k = ti + ∑d
j=1 sjα

j
k

Step 3.) zi = ∑m
w=1 qw,iλw

, i, k ∈ [1, m]. (3.3)

First, the shares are pairwise multiplied in a straightforward way (Step 1). Then,
the result is re-shared using d freshly generated masks (sj)1≤j≤d for each share (Step
2). Finally, the resulting polynomial is reduced to the original degree d by Lagrange
interpolation using the public values (λi)1≤i≤m (Step 3).

Reconstruction A secret intermediate value x can be reconstructed back from its
shares using Lagrange’s interpolation formula and the previously computed public
values (λi)1≤i≤m, as follows:

x =
m

∑
i=1

xiλi.

3.2 AES

Rijndael is a block-cipher developed by Joan Daemen and Vincent Rijmen, and sub-
mitted to the public selection process of the Advanced Encryption Standard (AES)
announced by the U.S. National Institute of Standards and Technology (NIST) in
1997.

46

3.2 AES

In 2001, the U.S. NIST publicly announced the Federal Information Processing Standard
(FIPS) 197 document [85], which specifies AES as a replacement for the Data Encryption
Standard (DES).

The FIPS 197 specifies three instances of the Rijndael block-cipher [33] named AES-128,
AES-192, and AES-256. The block-size of all three instances is fixed at 128-bit, while
the key size is either 128-bit, 192-bit, or 256-bit, respectively.

Since 2002, AES is officially a standard of the U.S. federal government. According
to [54], “Rijndael was selected because it had the best combination of security, performance,
efficiency, and flexibility”.

While AES was originally intended for use by non-military U.S. government agen-
cies to protect sensitive but not classified information, AES is currently included in
international standards like ISO/IEC 18033-3 standard and approved by the National
Security Agency (NSA) to protect top secret information.

The AES block-cipher is a Substitution-Permutation Network (SPN), which iterates a
round function over a 128-bit state for either 10, 12, or 14 times, depending on the key
size (128-bit, 192-bit, or 256-bit, respectively).

The round function consists of three layers that perform one or more transformations
of the input: the byte substitution layer performs the SubBytes transformation, the
diffusion layer performs the ShiftRows and MixColumns transformations, and the key
addition layer performs the AddRoundKey transformation.

The SubBytes operation mainly introduces confusion by a non-linear transformation of
the state and is also commonly referred to as the “AES S-box”. It is the only non-linear
operation in the block-cipher and also the most resource consuming operation to be
masked in AES. For this reason, this chapter is focused on the AES S-box. In the
remainder of this thesis, the term “AES algorithm” is used to specifically refer to the
AES-128 encryption algorithm, if not otherwise specified.

3.2.1 The SubBytes Operation

The AES S-box is defined as the composition of two operations: a multiplicative
inversion in the binary extension field GF(28) ' F2[x]/(x8 + x4 + x3 + x + 1) followed
by an affine transformation in the binary field GF(2).

Using Lagrange interpolation, the AES S-box S : {0, 1}8 → {0, 1}8 can be conveniently

47

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

expressed as the composition of GF(28) operations only (cf. [34, Sec. 10.4]):

γ = S(ν) = δ0 +
8

∑
k=1

δkν255−2k
= δ0 +

8

∑
k=1

δk(ν
−1)2k

, (3.4)

where ν−1 = ν254 and the coefficients δ = (δk)0≤k≤8 are specified by the following
vector:

δ = (0x63,0x05,0x09,0xF9,0x25,0xF4,0x01,0xB5,0x8F).

It follows that the computation of S(ν) can be performed as an exponentiation ν254 in
GF(28), followed by successive squarings, multiplications (by constants), and additions
in GF(28). This representation of the AES S-box allows for a straightforward application
of polynomial masking as described in Section 3.1.

3.3 Addition Chains

The complexity of exponentiation in finite fields represents an important problem in
cryptography. Addition chains provide an efficient way to compute exponentiations
in finite fields. In particular, the inversion ν−1 = ν254 in GF(28) can be computed
efficiently using addition chains.

Definition 2 (Addition Chain) An addition chain C for a positive integer q is a sequence
of positive integers C = (a0 = 1, . . . , a` = q), such that for every 1 ≤ i ≤ `, there exist
0 ≤ j, k < i and ai = aj + ak, where ` is the length of the chain.

The length of the chain ` corresponds to the number of multiplication steps required
to compute xq. Note that every addition ai = aj + ak actually corresponds to a multi-
plication and every doubling ai = 2aj actually corresponds to a squaring operation in
the field.

3.3.1 Star Chains

Addition chains in the form ai = ai−1 + ak are called star chains [21]. This type of
addition chains is particularly suitable for compact hardware implementations, as the
operand ai−1 is directly available from the previous multiplication step, hence it does
not require any extra storage.

In general, finding the shortest addition chain for q in an efficient way is not an easy
task. Over the years, different algorithms have been proposed to find short addition
chains for a given integer q.

48

3.4 New Selection Principles

Algorithm 1 provides a naïve exhaustive search algorithm to find all addition chains
for q in the form ai = ai−1 + ak up to a given length `. The algorithm runs in O(`!)
steps and proceeds recursively by constructing a tree of all possible star chains of
length `.

Algorithm 1 Exhaustive Search Algorithm for Star Chains.

Require: r, q ∈N+, ` ∈N, C = (a0 = 1, . . . , ar−1).
Ensure: S = {(a0 = 1, . . . , ar−1 = q) : ∀ 0 < r ≤ `}.

1: procedure FindChain(q, `, C)
2: r = |C| . Find length of C
3: if ar−1 = q then
4: Save(C) . Store C = (a0 = 1, . . . , ar−1≤` = q) in S
5: else if r ≤ ` then
6: for k = 0 to r− 1 do
7: C ← (a0, . . . , ar−1, ar = ar−1 + ak) . Add a new element ar to C
8: FindChain(q, `, C)
9: end for

10: end if
11: end procedure

3.4 New Selection Principles

Given a positive integer q, the addition chain with the smallest number of additions
is selected among the set of all possible addition chains for q, in order to enable fast
computations.

One additional selection principle, which is typically used in the context of cryp-
tographic implementations, is to select those addition chains which maximize the
number of doubling operations. In fact, squaring operations perform typically faster
than multiplications on the same input values. However, increased area costs must
be accounted for a dedicated squaring routine. Yet, there are typically many addition
chains that satisfy these conditions for a given q.

Hence, we introduce two additional principles to improve the selection of addition
chains geared towards performance:

Principle 1 Select those addition chains which generate intermediate values that can be useful
for subsequent operations within the considered cryptographic algorithm.

49

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

Principle 2 Select those addition chains which minimize the number of intermediate values
that must be stored for exponentiation.

Clearly, those addition chains fulfilling Principle 1 and Principle 2 provide two addi-
tional benefits, which are advantageous for efficient implementations: they allow for
an overall speed-up of cryptographic implementations, by computing values which
are needed in successive operations (Principle 1), and for a minimization of the storage
required to save intermediate values during exponentiations (Principle 2).

Note that, while Principle 1 is algorithm specific (its applicability depends on the
specific considered algorithm), Principle 2 is generally valid for any addition chains
and of independent interest.

3.4.1 Previous Work

In recent works [99, 65, 80], the inversion x−1 = x254 ∈ GF(28) was implemented using
the addition chain C254

orig = (1, 2, 3, 6, 12, 15, 30, 60, 120, 240, 252, 254).

This addition chain is graphically illustrated in Figure 3.1: each circle contains the
results of the addition of two previous values. Since these values represent exponents,
adding two values is equivalent to multiplying two powers with the same base.

It requires a total of 11 operations, of which 7 are squaring operations and 4 are
multiplications, and to store the intermediate values x, x2, x3, and x12 in order to
compute x−1 = x254.

1 2 3 6 12 15 30 60 120 240 252 254

Figure 3.1: Inversion in GF(28) using C254
orig. It requires 7 multiplication and 4 squaring

steps, namely: S → M → S → S → M → S → S → S → S → M → M.
The intermediate values x, x2, x3, and x12 must be stored to compute
x−1 = x254. Multiplication steps are highlighted in green.

50

3.4 New Selection Principles

1 2 3 6 12 14

Figure 3.2: Inversion in GF(24) using C14
orig. It requires 2 multiplication and 3 squaring

steps, namely: S→M→ S→ S→M. The intermediate values x and x2

must be stored to compute x−1 = x14. Multiplication steps are highlighted
in green.

Similarly, the addition chain C14
orig = (1, 2, 3, 6, 12, 14) was used in [65] to perform the

inversion in GF(24), as required by tower field implementations of AES. The addition
chain C14

orig is graphically illustrated in Figure 3.2. It requires 5 operations consisting
of 3 squarings and 2 multiplications and to store the intermediate values x and x2 to
compute x−1 = x14.

Note that the initial value x must always be stored at least once in order to be able to
compute x2, therefore it is neglected in the remainder of this chapter.

3.4.2 New Addition Chains

The addition chain C254
orig requires the storage of 3 intermediate values, namely x2,

x3, and x12, and does not generate any intermediate value that can be useful for
subsequent computations of AES, e.g., it does not generate any of the values x127, x191,
x223, x239, x247, x251, or x253 which are used for the affine transformation of the AES
S-box, cf. Equation (3.4).

By running Algorithm 1, we found |S| = 6966 addition chains for (q = 254, ` = 11), of
which 754 were using 7 squaring and 4 multiplications, of which 106 required storage
of only one single intermediate value (other than x), of which 55 also generated the
value 127, that can be used during the AES affine transformation. Out of this last
subset, we choose the addition chain C254

new = (1, 2, 4, 8, 9, 18, 36, 54, 108, 126, 127, 254)
arbitrarily without considering any further constraints. The addition chain C254

new is
shown in Figure 3.3 and has the following properties:

1. it consists of 11 multiplication steps, of which 7 are squaring operations and 4
are multiplications;

2. it produces the value x127, which can be used by the AES affine transformation;

3. additionally to x, only one intermediate value has to be stored, namely x18.

51

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

1 2 4 8 9 18 36 54 108 126 127 254

Figure 3.3: Inversion in GF(28) using C254
new. It requires 7 multiplication and 4 squaring

steps, namely: S → S → S → M → S → S → M → S → M → M → S.
Only the intermediate values x and x18 must be stored to compute x−1 =

x254. Multiplication steps are highlighted in green.

Hence, using the addition C254
new in place of C254

orig leads to faster and more compact AES
S-box implementations:

1. the affine transformation is 1/7 faster, as one squaring operation can be skipped;

2. the inversion is 1/3 smaller, as only one intermediate value has to be stored
instead of three values.

Note that, despite this seemingly small improvement, the area saving of hardware
implementations might be significant when addition chains are masked, i.e., when the
intermediate values are shared and stored multiple times.

Similarly, we searched for star chains for (q = 14, ` = 5), which can be useful for
efficient implementations of AES in tower fields, where the inversion x−1 = x14 ∈
GF(24) is used. By running Algorithm 1, we found 14 star chains for (q = 14, ` = 5),
of which 8 were using 3 squaring and 2 multiplications, of which only 1 addition chain
did not require the storage of any intermediate value, namely C14

new = (1, 2, 3, 6, 7, 14),
as illustrated in Figure 3.4.

1 2 3 6 7 14

Figure 3.4: Inversion in GF(24) using C14
new. It requires 2 multiplication and 3 squaring

steps, namely: S→M→ S→M→ S. No additional intermediate value
must be stored. Multiplication steps are highlighted in green.

52

3.5 Hardware Design

.

Figure 3.5: Evaluation of a polynomially masked AES S-box according to Equation (3.4)
and using the addition chain C254

new for inversion: The shared multiplication
is highlighted in light blue, the shared multiplication by a constant is
highlighted in orange, the shared addition is highlighted in dark blue. The
upper gray box includes the steps for performing the inversion x−1 = x254,
while the lower gray box performs the affine transformation in GF(28).

3.5 Hardware Design

This section details the hardware design of a polynomially masked AES S-box for any
order d = (m− 1)/2. The design has an 8-bit interface, implements a single S-box
instance, and consists essentially of three modules:

1. the “shared multiplication” module (shamul), which performs the multiplication
of two shared secrets according to Equation (3.3);

2. the “shared multiplication by a constant and addition” module (shamac), which
performs the multiplication of a secret by a constant value followed by a secret
addition according to Equation (3.2) and Equation (3.1), respectively;

3. the “shuffling” module (shuffle), which generates random permutations from
the symmetric group Sm to shuffle the activation order of the m secret shares
within every other shared module.

The processing of a shared AES S-box using the addition chain C254
new is illustrated in

Figure 3.5.

53

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

Figure 3.6: 2nd-Order remask Module for the ith Share according to Step 2. of
Equation (3.3). This module must be instantiated m = 5 times for d = 2.

The shamul Module The shared multiplication module (shamul) is used to perform
the inversion defined by C254

new and to iterate the squaring operations as needed by the
affine transformation in GF(28), cf. Equation (3.4) and Figure 3.8 for the case d = 2.

It basically implements the multiplication of two shared secrets according to Equa-
tion (3.3) using three submodules: the re-masking module (remask), as illustrated in
Figure 3.6 for the case (d, m) = (2, 5), the reconstruction module (recon) and a GF(28)

multiplier, as illustrated in Figure 3.7 for the case (d, m) = (2, 5). These modules are
implemented m times within the shamul module, one for each share 1 ≤ i ≤ m.

The first step of the shared multiplication is performed by the m× GF(28) multipliers
instantiated in the shamul module. The second step is implemented by the m remask

modules, each one instantiating m× d GF(28) multipliers and m× d GF(28) adders.
This step requires d × 8-bit of freshly generated random masks (sj)1≤j≤d for each
share. Finally, the third step is implemented by the m× recon modules, each one
instantiating m× GF(28) multipliers and (m− 1)× GF(28) adders.

Note that each one of the recon modules is additionally equipped with m× 8-bit D-
type Flip-Flop (DFF) registers to block the glitches, arising from the different remask
modules, joining together in the combinational paths, as well as 2× 8-bit DFF registers
for storing the intermediate results of the inversion.

Due to the usage of our selected addition chain C254
new, the total number of DFFs in the

circuit is reduced from m× 40 to m× 16, when compared to [80].

54

3.5 Hardware Design

Figure 3.7: Upper part: 2nd-Order recon Module for the ith Share according to Step

3. of Equation (3.3). This module must be instantiated m = 5 times
for d = 2. Lower part: GF(28) multiplier according to Step 1. of
Equation (3.3).

For the same reason, also the size of the multiplexers (MUXes) selecting the input
shares (xi, yi) to the GF(28) multipliers is significantly reduced in practice. Finally,
note that the switching activity of all MUXes in the design is clocked using “DFFs
with Enable” as to avoid glitches on the select lines [80].

The shamul takes a total of 2×m clock cycles to perform the multiplication of two
secrets and works as follows: in the first m clock cycles, the signals selmi for i ∈ [1, m]

select the proper inputs (where νi represents the ith input share of the S-box) to the
GF(28) multipliers performing ti = xiyi and the enable signals emi for i ∈ [1, m] are
asserted to perform the first two steps of the shared multiplication.

The results are stored in the registers qj,i for i, j ∈ [1, m]. Then, during the next m clock
cycles, the enable signals emm+i are asserted to finalize the shared multiplication.

Note that the enable signals es18i are activated only in the step in which the shared
x18 value is computed. The output of the shamul are the shares wi for i ∈ [1, m] which
are sent to the shamac module.

The shamac Module The shamac module performs the shared multiplication by a
constant followed by a shared addition according to Equation (3.2) and Equation (3.1),
respectively. These operations do not require fresh randomness and can be performed
independently on the individual shares, thus requiring only m clock cycles to be
performed.

55

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

Figure 3.8: Shared GF(28) Multiplication Module for (d, m) = (2, 5).

56

3.5 Hardware Design

The shamac is used during the affine transformation, but it can be extended straight-
forwardly to support, e.g., the initial sharing of the plaintext and key bytes, the initial
AddRoundkey, and the MixColumns+AddRoundkey operations. One share of the
shamac module is illustrated in Figure 3.9. Each share deploys 1× GF(28) multi-
plier, 1× GF(28) adder and 2× 8-bit DFF registers. The affine transformation uses
the shamac module as follows: at the beginning the seli selects the constant 0x63
from the MUX2i, while the signal selconst selects the constant 0x8F from the MUX1
(common to all shares). Hence, the enable signal eai is asserted and the result is
stored in the register right below the adder. Finally, the MUX2i chooses the loop back
input to continue the affine transformation using the constants (0x05, 0x09, 0xF9,
0x25, 0xF4, 0x01, 0xB5) selected by the signal selconst on the MUX1. Note that,
in contrast to [80], we allow both the shamul and the shamac to be active at the same
time during the affine transformation. This allows to save 7×m clock cycles per S-box
computation, while not having any apparent impacts on the side-channel security of
the implementation (cf. Chapter 5).

Figure 3.9: Multiplication and Shared Addition Module in GF(28) for the ith Share:
This module must be instantiated m times.

3.5.1 Adding Shuffling

Polynomial masking works by activating the secret shares individually, one after the
other, such that only one secret share is active per clock cycle. For instance, the ith

share of the shamac module is activated when the m-bit enable signal eai is set to
logic ‘1’. This value is generated, e.g., by a dlog2 me-bit counter, which is incremented
every clock cycle and set to zero every m clock cycles.

However, since there are no strict requirements on the activation order of the secret
shares, they can be activated in a random order at each secret computation, e.g., gener-

57

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

ating a random permutation from the symmetric group Sm every m clock cycles. This
acts as a shuffling countermeasure (within the masking scheme), which can be used
to enhance the side-channel security of polynomial masking without penalties on the
running time.

Algorithm 2 Modified FYD in Forward Direction.

Require: Input Permutation P = (p1, ..., pm)

Ensure: Output Permutation R = (r1, ..., rm)

1: for ω = 1 to m do
2: aω ← pω

3: end for
4: for ω = 1 to m− 1 do
5: selω

$← [0, 2dlog2(m+1−ω)e − 1]
6: j← selω mod m + 1−ω

7: t← aω

8: aω ← aj+ω

9: aj+ω ← t
10: end for
11: for ω = 1 to m do
12: rω ← aω

13: end for

The shuffle Module One simple way to create random permutations is to use the
Fisher-Yates-Durstenfeld (FYD) algorithm, e.g., in forward direction [44]. However,
as the number of shares m = 2d + 1 is not a power of two, random permutations
can be approximated using a slightly modified version of the FYD algorithm, as
shown in Algorithm 2. This variant basically generates only the values [0, m−ω] for
ω ∈ {1, . . . , m− 1} using a modulo operation.

The shuffle module implements Algorithm 2 cascading a bunch of multiplexers, as
illustrated in Figure 3.10.

The shuffle module requires m− 1 stages, in which (m + 1−ω) multiplexers with
2dlog2(m+1−ω)e inputs are deployed. In order to generate a random permutation, the
select signals selω takes a uniform random value generated by a PRNG, which
permutes the current input (pi)1≤i≤m into a new permutation (ri)1≤i≤m that gets
stored into a register array consisting of m× dlog2(m)e-bit registers.

The shuffle module generates a new permutation (from the previous one) every m

58

3.5 Hardware Design

clock cycles. Hence, two permutations are actually taking place during a polynomially
masked multiplication. The new permutation is then used to shuffle the activation
order of the shares within any other shared module during the next shared operation.

Note that the shuffle module can be used “as it is” to shuffle also the activation
order of the shared key and state arrays within the AES.

Figure 3.10: 1st-Order (blue box) and 2nd-Order (gray box) shuffle Module: These
modules implement Algorithm 2 for d = 1 and d = 2, respectively.
An output permutation (r1, ..., r5) is generated from the input (p1, ..., p5)

according to the random values of the select signals (sel1, ...,sel4).

3.5.2 Performance Evaluation

We synthesized the design using Synopsys Design Compiler J-2014.09-SP3 targeting a
TSMC 45 nm standard technology library (tcbn45gsbwptc) at 1 MHz.

Our Gate Equivalent (GE) estimations were obtained using the smallest 2-to-1 NAND
gate available in the library (ND2D0BWP), whose area accounts for 0.705 600 µm2. We
used the compile command without the -ultra parameter to allow for a fair com-
parison of the results with the literature. In this library, the GF(28) multiplier and
adder cost 280 GE and 20 GE, respectively.

59

Chapter 3: Design of a Higher-Order and Shuffled Polynomially Masked AES S-box

Table 3.1 summarizes the synthesis and performance results of our shuffled polyno-
mially masked AES S-box implementation for d ∈ [1, 6]. The number of clock cycles
and random bytes have been obtained from the formulas 35× m and 17× m × d,
respectively.

Note that, while the number of clock cycles grows linearly in the masking order d, the
number of random bytes as well as the area are O(d2), being the size of the AES S-box
dominated by the shamul module, whose area and randomness requirements grow
quadratically in the masking order d. Also note that the maximum achievable clock
frequency is expected to diminish with the masking order d, as the combinational
paths get longer when increasing d.

Table 3.1: Performance Comparison of a Polynomially Masked AES S-box in GF(28)

for Different Masking Orders.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Speed [Clock Cycles] 105 175 245 315 385 455

Random [Bytes] 51 170 357 612 935 1326

Area [kGE] 10.2 33.4 79.7 157.8 276 442.7

3.6 Summary

In this chapter, we provided new principles for the selection of implementation-efficient
addition chains, which lead to faster and more compact S-box implementations. These
new principles were applied to the AES S-box, but they can be generally applied to
any other S-box or power function.

Additionally, we proposed a lightweight shuffling countermeasure which randomly
permutes the activation order of the shares within polynomial masking schemes, and
that effectively increases their univariate security in practice as it will be shown in
Chapter 5.

Note that this countermeasure applies to the masking modules themselves, and
therefore it is agnostic of the underlying block-cipher. Furthermore note that, although
the countermeasure was implemented in hardware, it can be analogously implemented
in software too. Also, our shuffling scheme can be combined with further shuffling
at higher algorithmic levels, e.g., the execution order of the masked S-boxes can be
further shuffled.

60

3.6 Summary

Based on our findings, we provided the design and synthesis results of a more efficient,
shuffled and higher-order polynomial masked AES S-box, which randomly permutes
the activation order of the shares within polynomial masking schemes.

In comparison to the previously known implementation of CHES 2013 [80], our 1st-
order implementation requires 24% less DFFs, 21% less clock cycles, and 6% less
randomness.

In particular, our 1st-order implementation requires 105 clock cycles and costs 10.2 kGE,
while our 2nd-order implementation requires 175 clock cycles and costs 33.4 kGE when
synthesized in ASIC.

Finally note that, although our implementation still requires quite some randomness,
only 8-bit of randomness are needed per clock cycle and only every m clock cycles.
This is fully within the capabilities of modern PRNGs.

61

4 Squeezing Polynomial Masking into
Tower Fields

Contents

4.1 Arithmetic in Tower Fields . 64

4.2 Proposed Polynomially Masked AES S-box in GF((24)2) 65

4.3 Hardware Design . 66

4.3.1 Performance Comparison 71

4.4 Summary . 73

It is a very well known fact that subfield arithmetic can be used to reduce the size
of cryptographic implementations defined over finite fields, being subfield elements
smaller than the original field elements.

For the case of AES, this approach was presented by Vincent Rijmen in 2000 [98]. This
seminal work showed how to compute the AES S-box, originally defined over the field
GF(28), in the tower field GF((24)2) through isomorphic transformations.

Since then, tower fields were employed many times in literature to reduce the area
requirements of both unprotected and side-channel resistant hardware implementa-
tions of AES [102, 126, 82, 15], i.e., small GF(24) arithmetic circuits were implemented
in place of GF(28) circuits.

In this chapter, we take the tower field approach and present the design of a higher-
order polynomially masked AES S-box in the tower field GF((24)2), built around a
small shared GF(24) multiplier.

Parts of this chapter have been published in the proceedings of the “Smart Card
Research and Advanced Application Conference (CARDIS)” in 2016 [38].

63

Chapter 4: Squeezing Polynomial Masking into Tower Fields

Outline

• Section 4.1 introduces tower fields arithmetic.

• Section 4.2 provides a description of a polynomially masked tower field AES
S-box.

• Section 4.3 describes the hardware design of a polynomially masked tower field
AES S-box and provides a comparison of the performance with state-of-the-art
implementations.

• Section 4.4 provides a summary of the chapter with a recapitulation of the main
findings.

4.1 Arithmetic in Tower Fields

In this section, the basic arithmetic operations in the tower field GF((24)2) are summa-
rized. More details about AES implementations in tower fields can be found in [98,
126, 102].

Let GF((24)2) ' F24 [y]/(y2 + y + γ) denote the field of linear polynomials with
coefficients in GF(24) ' F2[z]/(z4 + z + 1). Let Φ : GF(28) → GF((24)2) denote the
isomorphic mapping, which bijectively maps the elements from GF(28) to GF((24)2),
and Φ−1 : GF((24)2)→ GF(28) its inverse.

Inversion The inversion b = a−1 of an element a ∈ GF(28) can be computed in the
tower field GF((24)2) as:{

bH = aH [a2
Hγ + aHaL + a2

L]
−1

bL = (aL + aH)[a2
Hγ + aHaL + a2

L]
−1 , (4.1)

where a 7→Φ (aH, aL), (bH, bL) 7→Φ−1 b, and all operations are defined in GF(24).

Multiplication The multiplication c = ab of two elements a, b ∈ GF(28) can be
computed in GF((24)2) as:{

cH = (bH + bL)(aH + aL) + bLaL

cL = bHaHγ + bLaL
, (4.2)

where a 7→Φ (aH, aL), b 7→Φ (bH, bL), (cH, cL) 7→Φ−1 c, and all operations are defined
in GF(24).

64

4.2 Proposed Polynomially Masked AES S-box in GF((24)2)

Squaring The squaring b = a2 of an element a ∈ GF(28) follows immediately from
Equation (4.2): {

bH = a2
H

bL = a2
Hγ + a2

L
, (4.3)

where a 7→Φ (aH, aL), (bH, bL) 7→Φ−1 b, and all operations are defined in GF(24).

4.2 Proposed Polynomially Masked AES S-box in GF((24)2)

The AES S-box y = S(x) in the tower field GF((24)2) ' F24 [y]/(y2 + y + 0xE) can be
written as follows: {

yH = δH,0 + ∑8
k=1 δH,kz2k−1

H

yL = δL,0 + ∑8
k=1 δL,kz2k−1

L
, (4.4)

where δH = (δH,k)0≤k≤8 are the coefficients defined by the vector

δH = (0xC,0x4,0x4,0x7,0x9,0x7,0x0,0x4,0xC),

and δL = (δL,k)0≤k≤8 are the coefficients defined by the vector

δL = (0x7,0xB,0x1,0xC,0xA,0x7,0x1,0x7,0x9),

(zH, zL) = Φ(x−1) is the result of inversion in GF((24)2), the isomorphic mapping
(a7, ..., a0) 7→Φ (aH3 , ..., aH0 , aL3 , ..., aL0) is defined as

aH3 = a5 + a7

aH2 = a2 + a3 + a5 + a7

aH1 = a1 + a4 + a6 + a7

aH0 = a4 + a5 + a6

aL3 = a2 + a4

aL2 = a1 + a7

aL1 = a1 + a2

aL0 = a0 + a4 + a5 + a6

, (4.5)

and the inverse mapping (aH,3, ..., aH,0, aL,3, ..., aL,0) 7→Φ−1 (a7, ..., a0) is defined as
a7 = aH0 + aH1 + aL2 + aH3

a6 = aL1 + aH3 + aL2 + aL3 + aH0

a5 = aH0 + aH1 + aL2

a4 = aL1 + aH3 + aH0 + aH1 + aL3

a3 = aH0 + aH1 + aL1 + aH2

a2 = aH0 + aH1 + aL1 + aH3

a1 = aH0 + aH1 + aH3

a0 = aL0 + aH0

. (4.6)

The isomorphic mapping of the coefficients used in the AES S-box are summarized in
Table 4.1.

65

Chapter 4: Squeezing Polynomial Masking into Tower Fields

Table 4.1: Isomorphic mapping Φ : GF(28)→ GF((24)2) of the constants used in the
AES S-box.

k 0 1 2 3 4 5 6 7 8

δk 0x63 0x05 0x09 0xF9 0x25 0xF4 0x01 0xB5 0x8F

Φ(δk) 0xC7 0x4B 0x41 0x7C 0x9A 0x77 0x01 0x47 0xC9

A Note on the Isomorphic Mappings All input values should be transformed using
an isomorphic mapping Φ : GF(28)→ GF((24)2) and, similarly, all the output values
should be transformed back using the inverse isomorphic mapping Φ−1 : GF((24)2)→
GF(28). As these transformations are defined over GF(2), they might be in principle
problematic for polynomial masking schemes.

However, we suggest to apply them directly on the input/output values, e.g., plaintexts,
keys and ciphertexts, before/after each encryption, i.e., before sharing and after
reconstructing secrets. In this way, no special consideration for these mappings is
required in the masking scheme.

4.3 Hardware Design

In this section, we present the design of a polynomially masked AES S-box in the
tower field GF((24)2) for any masking order d = (m− 1)/2.

We denote GF(24) ' F2[z]/(z4 + z + 1) polynomial basis multipliers by ⊗, while
GF(24) adders are denoted by ⊕. The respective shared operations are denoted using
the original symbols surrounded with boxes, e.g., the shared GF(24) multiplier is
denoted by ⊗ .

The design basically consists of two hardware modules: a GF(24) shared multiplier
(shamul) and a GF(24) shared multiplier by a constant equipped with a GF(24) shared
adder (shamac).

We proceed as follows: first, we describe the design of the shamul and shamac

modules for any masking order. Then, we describe how to use such modules to
perform a shared inversion and a shared affine transformation in GF((24)2) to securely
compute the AES S-box at any order.

Finally, we present ASIC synthesis results up the 6th masking order.

66

4.3 Hardware Design

The shamul Module The shamul module implements the multiplication of two
shared secrets in GF(24), according to Equation (3.3). In order to minimize the area
requirements, it is used to perform both shared GF(24) multiplications and GF(24)

squaring operations, as needed by the inversion and the affine transformation in
GF((24)2).

Similar to the shared multiplication module presented in Section 3.5, this shamul
module instantiates m2× (d + 1) + 2×m GF(24)-multipliers, m2× (d + 1) + m GF(24)-
adders, m2 + m× d + 3×m 4-bit DFFs and a few multiplexers (MUXes). Note that all
MUXes in the design are clocked using DFFs with enable in order to prevent glitches
on the select lines [80].

Each shared multiplication requires a total of 4×m× d-bit randomness, whereas only
4× d-bit are needed per clock cycle. To securely multiply two secrets it takes 2×m
clock cycles in total. In the first m clock cycles, the input values are multiplied and
re-masked according to (Step 1) and (Step 2) of Equation (3.3). In each clock cycle,
only the ith share is activated using the signals (emi)1≤i≤m and (eouti)1≤i≤m.

This helps providing a sufficient separation of the leakages of each share over time.
The signals (selmi)1≤i≤m and (selouti)1≤i≤m are used to select the inputs to the
multiplication. In the subsequent m clock cycles, the result is reconstructed according
to (Step 3) of Equation (3.3) activating one share at the time using the enable signals
(emi)m+1≤i≤2m.

Finally, the results are stored in the appropriate registers using the (eli)1≤i≤m and
(ehi)1≤i≤m signals for the low and high part, respectively. The low part is stored
in (eli)1≤i≤m and the high part is moved from (emi)1≤i≤m to (ehi)1≤i≤m at the
clock cycles 11× m + 1 (1st share is active) to 11× m + m (mth share is active) (cf.
Figure 4.2).

Note that the shamul module is additionally equipped with m GF(24)-multipliers,
2×m GF(24)-adders, and m 2-to-1 MUXes to perform also shared additions and shared
multiplications by the constant 0xE. This allows to compute shared multiplications
and shared additions in parallel and save m clock cycles in the first step of the inversion
and in the last step of the shared GF((24)2) squaring.

The shamac Module The shamac module implements the shared multiplication by
a constant and the shared addition of two shared secrets in GF((24)2), as required by
the affine transformation. Hence, the shamac module instantiates m circuits (shares),
each one consisting of 3 GF(24)-multipliers, 5 GF(24)-adders, 5 4-bit DFFs, and a few
MUXes, as illustrated in Figure 4.1.

67

Chapter 4: Squeezing Polynomial Masking into Tower Fields

Figure 4.1: Multiplication and shared addition module in GF((24)2) for the ith Share:
This module must be instantiated m times and it is used as illustrated
in Figure 4.3. The multiplication in GF((24)2) is performed according to
Equation (4.2).

The shamac module takes m clock cycles and does not require fresh random-
ness: in the ith clock cycle, only the ith share is activated using the (eai)1≤i≤m

signals, where the inputs are selected using the signals (selai)1≤i≤m and
(selconstleft,selconstmiddle,selconstright).

The constant values, which are selected by the selconst∗ signals, are precomputed
according to Equation (4.5) (cf. Table 4.1). The multiplication by a constant is per-
formed according to Equation (4.2), where (bH, bL) = Φ(δi).

More specifically, the signal (selconstleft) selects the constants obtained from the
addition Φ(δi)H + Φ(δi)L, while the signal (selconstright) selects the constants
obtained from the multiplication γΦ(δi)H . The values selected by (selconstmiddle)

correspond to the values Φ(δi)L. These pre-computations allow to save the area of 1

68

4.3 Hardware Design

Figure 4.2: Evaluation of a polynomially masked inversion in GF((24)2) using the
addition chain C14

new inversion according to Equation (4.1).

GF(24)-multiplier and 1 GF(24)-adder per each share.

Finally, the (eoi)1≤i≤m signals are activated in the 54×m + 2 clock cycle (1st share) to
55×m + 1 clock cycle (mth share) to output the result.

Note that the shamac module can be easily adapted to perform also the initial sharing,
the round key additions, and the AES MixColumns operation.

All these operations require the shared multiplication by a constant and the shared
addition of two shared secrets.

Shared Inversion The shared inversion in GF((24)2) is computed according to Equa-
tion (4.1), where the inversion in GF(24) is computed using the addition chain C14

new of
Figure 3.4.

The shared inversion is illustrated in Figure 4.2 ([Step I1] to [Step I10]) and
consists of 9 shared multiplications, 1 shared addition, and 1 shared multiplication by
a constant and addition.

In [Step I1], a shared addition is performed in parallel to a shared multiplication,
where the addition is performed during the first m clock cycles.

The output of the first shared multiplication is stored in the corresponding registers
using the emi signals. The result of the shared addition must be selected for [Step
I2] and [Step I10] using the selmi signal. The output of shared multiplication
in [Step I2] is then stored in the emi registers and the values of [Step I1] are
moved to the ehi registers.

This means that in each clock cycle 1 ≤ i ≤ m of [Step I3], [Step I5] and [Step

I10] the signal ehi is enabled, in order to move the content of the registers emi from
the previous steps into the ehi registers. For [Step I3], the output of the shared

69

Chapter 4: Squeezing Polynomial Masking into Tower Fields

Figure 4.3: Evaluation of a polynomially masked affine transformation in GF((24)2)

using the addition chain C14
new inversion according to Equation (4.4).

multiplication with the constant 0xE is selected using the selouti signal, which is
enabled over the signal eouti. Therefore only m clocks cycles are needed and the
results are stored into the emi registers.

After [Step I3], the shared addition chain C14 is calculated in [Step I4] to [Step
I8] and stored in the emi registers. Therefore, the outputs of [Step I3] are stored
in the ehi registers, for [Step I7]. In the [Step I9] and [Step I10], the last
two shared multiplications are calculated and the output values are stored in the ehi
and eli register to perform the affine transformation.

Overall the shared inversion takes 19× m = 38× d + 19 clock cycles and requires
36×m× d = 72× d2 + 36× d-bit of randomness to compute the inverse in the tower
field GF((24)2).

Shared Affine Transformation The affine transformation consists of 7 squaring
operations and 8 multiplications by a constant (cf. Figure 4.3). The 7 squarings and
the first 7 multiplications with the constants run in parallel.

Each squaring operation consists of 2 shared GF(24) multiplications (squarings), 1
shared GF(24) multiplication by a constant and a final GF(24) addition (cf. Equa-
tion (4.3)). The operations needed for one shared squaring operation in GF((24)2) are
illustrated in Figure 4.4 and consist of three steps ([Step A1] to [Step A3]).

The shared multiplication in [Step A1] uses the eli register output after [Step
I10] for the first squaring in GF((24)2) and the eli register output after [Step

A3] for the following ones. The computation of [Step A2] and [Step A3] are
performed in the same way as in [Step I2] and [Step I3]. Hence, the multipliers
and addition modules from shamul can be reused.

In total, the shared affine transformation requires 36×m = 72× d + 36 clock cycles
and 56× m × d = 112× d2 + 56× d-bit of randomness, where one squaring costs
5×m = 10× d + 5 clock cycles and uses 8×m× d = 16× d2 + 8-bit of randomness.

70

4.3 Hardware Design

Figure 4.4: Evaluation of a polynomially masked squaring operation in GF((24)2)

according to Equation (4.3).

4.3.1 Performance Comparison

We synthesized our design using Synopsys Design Compiler J-2014.09-SP3 and target-
ing a TSMC 45 nm standard technology library (tcbn45gsbwptc) at 1 MHz.

As done in Section 3.5.2, our Gate Equivalent (GE) estimations were obtained using
the smallest 2-to-1 NAND gate available in the library (ND2D0BWP), whose area
accounts for 0.7056 µm2, and the compile command to enable a fair comparison of
the results.

The GF(24) multiplier costs only 53 GE, while the GF(24) adder costs 10 GE in our
library. In total, the computation of a shared AES S-box requires 110× d + 55 clock
cycles and 184× d2 + 92× d-bit of fresh randomness.

Table 4.2 provides an overview on the performance of our design in GF((24)2). In
Figure 4.5, these results are further compared to the improved GF(28) design described
in Chapter 3.

Table 4.2: Performance Comparison of a Polynomially Masked AES S-box in GF((24)2)

for Different Masking Orders.

GF((24)2) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Area [kGE] 4.0 9.8 20.4 37.1 61.6 95.5

Speed [Clock Cycles] 165 275 385 495 605 715

Random [Bit] 276 920 1, 932 3, 312 5, 060 7, 176

71

Chapter 4: Squeezing Polynomial Masking into Tower Fields

1 2 3 4 5 6
0

200

400

Masking Order d

A
re

a
[k

G
E]

GF((24)2)

GF(28)

(a) Performance comparison for area size in kGE.

1 2 3 4 5 6
0

0.5

1

·104

Masking Order d

#R
an

do
m

[B
it

] GF((24)2)

GF(28)

(b) Performance comparison for randomness in number of bits.

1 2 3 4 5 6

200

400

600

Masking Order d

[C
lo

ck
C

yc
le

s]

GF((24)2)

GF(28)

(c) Performance comparison for speed in number of clock cycles.

Figure 4.5: Performance Comparison of a Polynomially Masked AES S-box in GF(28)

vs. GF((24)2) for Different Masking Orders d ∈ {1, 2, 3, 4, 5, 6}.

72

4.4 Summary

4.4 Summary

In this section, we showed how to reduce the area and randomness requirements of
higher-order polynomial masking hardware implementations using tower fields. This
approach was applied to the AES S-box, but it can be similarly applied to any other
S-box which can be defined over tower fields.

Our 1st-order and 2nd-order masked implementations of the AES S-box in GF((24)2)

cost 4.0 kGE and 9.8 kGE, respectively. These results highlight that our 1st-order
implementation over tower fields requires 60% less area the corresponding 1st-order
implementation in the original AES field and the 2nd-order implementation over tower
fields is as big as the 1st-order implementation in the original AES field.

The area size of the 1st-order implementation over tower fields is also comparable to
those obtained by initial TI implementations of the AES S-box [82, 15] and to the size
of a polynomially masked PRESENT S-box [36].

Finally, the number of random bits results also drastically reduced and the randomness
requirements per clock cycle have been further reduced down to only 4-bit per clock
cycle (every m clock cycles).

73

5 Electro-Magnetic Field Analysis of
Polynomial Masking Schemes

Contents

5.1 Evaluation Methodology . 76

5.1.1 Measurement Setup . 76

5.1.2 Side-Channel Collision Attacks 77

5.2 Experimental Results on FPGA 78

5.2.1 GF(28) AES S-box Implementation 78

5.2.2 GF((24)2) AES S-box Implementation 83

5.3 Summary . 86

EM field side-channel analysis is particularly relevant in those cases where modifying
the target device to insert a shunt resistor might permanently damage it, or it would
require too long time and expertise, e.g., due to inaccessible contacts in multi-layers
PCB boards or ICs with multiple power and ground pins connected with other
components on the board.

In this chapter, we provide a side-channel analysis evaluation of previously presented
polynomially masked implementations using EM analysis and side-channel correlation-
collision attacks [81].

Side-channel correlation-collision attacks have been shown to be practically effective
against polynomially masked FPGA implementations in previous works (cf. [80]).
This kind of attacks has the advantage that they not require either the knowledge of a
precise power model nor to own a known-key device for profiling.

Parts of this chapter have been published at the “Theory of Implementation Security
Workshop (TIs)” in 2016 [37] and in the proceedings of the “Smart Card Research and
Advanced Application Conference (CARDIS)” in 2016 [38].

75

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

Outline

• Section 5.1 introduces our evaluation methodology including a description of
the used measurement setup and attacks performed.

• Section 5.2 presents the results of our side-channel analysis investigations.

• Section 5.3 provides a summary of the chapter with a recapitulation of the main
findings.

5.1 Evaluation Methodology

5.1.1 Measurement Setup

We synthesized the design using Xilinx ISE Webpack version 14.7 targeting
a Xilinx Spartan-6 LX9 FPGA in FTG256 Ball Grid Array (BGA) package
(xc6slx9-2-ftg256). The device is implemented in a 45 nm process technology and
uses a 1.2 V power supply for the internal core logic.

We used an Agilent DSO9254A 2.5 GHz digital oscilloscope with a 10 mm diameter
magnetic field probe (RF-R 50-1 from Langer EMV-Technik1) connected to a 30 dB
pre-amplifier (PA303 from Langer EMV-Technik) to fully exploit the vertical resolution
of the oscilloscope.

Differently from [80], we did not employ any Direct Current (DC) blocker, as our EM
probe is active in the frequency range 30 MHz−3 GHz.

The oscilloscope sampled at 100 MSa/s and we clocked our design at 4 MHz, resulting
in 25 Sa/cycle for all our experiments (where not otherwise specified). Note that we
did not observe any further leakages when sampling at higher sampling rates.

We focused our analysis on the first two S-box operations and applied 1st- and 2nd-
order side-channel correlation-collision attacks [81], while fixing the security level at
10, 000, 000 measurements (where not otherwise specified).

For the sake of evaluation, we fixed the public points. Note that, this is a worst-case
assumption, as the public points are not required to be fixed in practice, hence reducing
the effectiveness of our attacks in a real scenario.

Assuming that the points are uniformly and independently drawn at random, the
probability that the adversary can observe the same public points is ∏m−1

i=0
1

(2n−1−i) ,

1https://www.langer-emv.de

76

https://www.langer-emv.de

5.1 Evaluation Methodology

where n specify the size of the extension field GF(2n).

This means that it would be much harder to mount successful attacks in practice,
especially for d > 1, as the probability decreases quickly with the masking order d.

5.1.2 Side-Channel Collision Attacks

A function f has collisions if it has the same output for different inputs.

In the context of side-channel analysis, the input is typically the output of a function g
of some public data m and some secret data k, e.g., f (g(m, k)). Hence, f can produce
collisions even if it is bijective by a careful choice of the inputs m and k.

Since collisions are key-dependent, then they can be exploited to distinguish intermedi-
ate values during cryptographic computations. Note that side-channel collision attacks
require no previous knowledge on the distribution of the leakage information.

Side-channel collision attacks were originally introduced in [110, 109] and further
improved in [81] under the name of correlation-enhanced collision attacks. We use
this latter variant for our investigations.

Attack description By the way of an example, let consider the leakages associated
to the look-up of two bijective b-bit S-boxes S after an initial key addition, like in the
case of AES. Then, S produces collisions if:

S(m1 ⊕ k1) = S(m2 ⊕ k2) ⇐⇒ m1⊕m2 = k1 ⊕ k2 = ∆k,

where mi and ki correspond to the ith byte of the plaintext and key, respectively.

Since S is a bijective function, then there is a collision for every input given two fixed
keys (k1, k2):

∀m1 ∃!m2 : S(m1 ⊕ k1) = S(m2 ⊕ k2)

The main idea of the attack is to classify leakages for different key hypothesis ∆k such
that the classification made for the correct key difference is distinguishable from the
classifications made for wrong key hypotheses.

Since there is a collision for every input given a fixed key difference, then it is sufficient
to test all possible key distances for every input to find out the correct key.

In particular, for every key hypothesis ∆k a pair of sets (S1, S2) is created for every
possible input m ∈ {0, ..., 2b − 1} and the leakages of the two S-boxes are classified
into the two sets S1 and S2, respectively.

77

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

The correlation-based distinguisher calculates the sample mean of each pair set (Sm
1 , Sm

2)

and then computes the correlation coefficient ρ∆k for every key hypothesis ∆k as
follows:

ρ∆k

(
[S0

1, . . . , S(2b−1)
1], [S0⊕∆k

2 , . . . , S(2b−1)⊕∆k
2]

)

5.2 Experimental Results on FPGA

For our side-channel investigations, we considered the implementations presented in
Chapter 3 and Chapter 4 and proceeded as follows:

1. we considered a 1st-order implementation and verified the existence of 1st-order
univariate leakage, when the masks were off;

2. we activated the PRNG to generate the masks and confirmed the existence of
2nd-order univariate leakage in the EM domain;

3. we activated the shuffling countermeasure to verify its effectiveness to hide the
2nd-order univariate leakage in 1st-order implementations;

4. we verified the univariate higher-order security of a 2nd-order implementation
without shuffling.

We conclude that our 1st-order implementation with shuffling and our 2nd-order
implementation achieve univariate 1st- and 2nd-order security up to 10, 000, 000 traces
in a worst-case scenario analysis.

5.2.1 GF(28) AES S-box Implementation

In this section, the design presented in Section 3.5 is considered.

The public points (αi)1≤i≤m and (λi)1≤i≤m are fixed to (0x02, 0x03, 0x04) and (0x02,
0xD2, 0xD1) for d = 1 and to (0x04, 0x05, 0x06, 0x0A, 0x0B) and (0x64, 0x94,
0xAE, 0x9F, 0xC0) for d = 2, respectively.

1st-Order Masking and PRNG Off As a sanity check, we verified the existence of
1st-order univariate leakage in our 1st-order implementation, when all masks were set
to zero.

78

5.2 Experimental Results on FPGA

The results are reported in Figure 5.1, which clearly shows how the EM activity of two
S-box evaluations perfectly correlates over time, when the masks are off.

This analysis was conducted with only 1, 000, 000 measurements.

Figure 5.1: 1st-Order GF(28) Masked Implementation, PRNG Off, Shuffling Off, 1st-
Order Side-Channel Correlation Collision Univariate Attacks, 1, 000, 000
Traces, fclk = 4 MHz. The correlation coefficient for the correct key is
marked in black, while gray is used to depict wrong key hypotheses.

1st-Order Masking, PRNG On and Shuffling Off The results of the analysis of the
1st- and 2nd-order univariate leakage, when the shuffling countermeasure is deactivated,
is reported in Figure 5.2.

Even though the shamul and shamac module are active at the same time, no leakage
can be observed in the 1st-order moment.

However, a significant leakage can be observed in the 2nd-order moment during both
the inversion and the affine transformation.

We repeated the same attacks by clocking the target device with increasing clock
frequencies.

The results are illustrated in Figure 5.3 and show that the efficiency of 2nd-order attacks
increases with the clock frequency, confirming the results obtained in [80] also in the
EM domain.

79

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

(a) 1st-Order Side-Channel Correlation Collision Univariate Attacks: No leakage can be
observed over the S-box computation.

(b) 2nd-Order Side-Channel Correlation Collision Univariate Attacks: leakage can be observed
during both inversion and the affine transformation.

Figure 5.2: 1st-Order GF(28) Masked Implementation, PRNG On, Shuffling Off, 1st-
Order (top) and 2nd-Order Side-Channel Correlation Collision Univariate
Attacks (bottom), 10, 000, 000 Traces, fclk = 4 MHz. The correlation coeffi-
cient for the correct key is marked in black, while gray is used to depict
wrong key hypotheses.

Figure 5.3: 1st-Order GF(28) Masked Implementation, PRNG On, Shuffling Off, 2nd-
Order Side-Channel Correlation Collision Univariate Attacks: Success rate
for increasing clock frequencies showing that the efficiency of 2nd-order
attacks increases with the clock frequency.

80

5.2 Experimental Results on FPGA

1st-Order Masking, PRNG On, and Shuffling On The results of the analysis of the
1st- and 2nd-order univariate leakage, when the shuffling countermeasure is on, are
reported in Figure 5.4 and Figure 5.5. Interestingly, no univariate leakage can be
observed in any of the first two moments at the considered security level. Also, MIA
does not reveal any other leakage sources in the traces.

(a) 1st-Order Side-Channel Correlation Collision Univariate Attacks.

(b) 2nd-Order Side-Channel Correlation Collision Univariate Attacks.

Figure 5.4: 1st-Order GF(28) Masked Implementation, PRNG On, Shuffling On, 1st-
Order (top) and 2nd-Order Side-Channel Correlation Collision Univariate
Attacks (bottom), 10, 000, 000 Traces, fclk = 4 MHz. The correlation coeffi-
cient for the correct key is marked in black, while gray is used to depict
wrong key hypotheses.

2nd-Order Masking, PRNG On and Shuffling Off Finally, the results of the analysis
of the 1st- and 2nd-order univariate leakage, when the shuffling countermeasure is off,
for a 2nd-order implementation are reported in Figure 5.6 and Figure 5.7. As for the
previous case, it is not possible to observe any leakages in the 1st and 2nd order, but
also no other leakages are detected by either higher-moments (up to the third) nor
using mutual information, for the considered security level.

81

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

Figure 5.5: 1st-Order GF(28) Masked Implementation, PRNG On, Shuffling On, Mutual
Information estimated using Histograms, 10, 000, 000 Traces, fclk = 4 MHz.

(a) 1st-Order Side-Channel Correlation Collision Univariate Attacks.

(b) 2nd-Order Side-Channel Correlation Collision Univariate Attacks.

Figure 5.6: 2nd-Order GF(28) Masked Implementation, PRNG On, Shuffling Off, 1st-
Order (top) and 2nd-Order Side-Channel Correlation Collision Univariate
Attacks (bottom), 10, 000, 000 Traces, fclk = 4 MHz. The correlation coeffi-
cient for the correct key is marked in black, while gray is used to depict
wrong key hypotheses.

82

5.2 Experimental Results on FPGA

(a) 3rd-Order Side-Channel Correlation Collision Univariate Attacks. The correlation coef-
ficient for the correct key is marked in black, while gray is used to depict wrong key
hypotheses.

(b) Mutual Information estimated using Histograms.

Figure 5.7: 2nd-Order GF(28) Masked Implementation, PRNG On, Shuffling Off, 3rd-
Order Side-Channel Correlation Collision Univariate Attacks (top) and
Mutual Information (bottom), 10, 000, 000 Traces, fclk = 4 MHz.

5.2.2 GF((24)2) AES S-box Implementation

The results of the side-channel analysis of the design introduced in Sec-
tion 4.3 are presented. The public points (αi)1≤i≤m and (λi)1≤i≤m are fixed to
(0x2,0x3,0x4) and (0x2,0x5,0x6) for d = 1 and to (0x4,0x5,0x6,0x0A,0x0B)
and (0x6,0xE,0x4,0x5,0x8) for d = 2, respectively.

1st-Order Masking and Masks Off We verified the existence of 1st-order univariate
leakages, when the masks are off, using only 100, 000 measurements. The results are
reported in Figure 5.8, clearly showing the existence of leakages during the whole
S-box computations.

83

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

Figure 5.8: 1st-Order GF((24)2) Masked Implementation, Masks Off, 1st-Order Side-
Channel Correlation Collision Univariate Attacks, 100, 000 Traces, fclk =

4 MHz. The correlation coefficient for the correct key is marked in black,
while gray is used to depict wrong key hypotheses.

1st-Order Masking, Masks On and Shuffling Off The results of 1st-order and 2nd-
order univariate attacks are shown in Figure 5.9 and Figure 5.10. Even though the
shamul and shamac modules are active at the same time, no leakage can be observed
in the 1st-order. However, similarly to the previous analysis, leakage information is
present in the 2nd-order during the affine transformation.

Figure 5.9: 1st-Order GF((24)2) Masked Implementation, Masks On, Shuffling Off, 1st-
Order Side-Channel Correlation Collision Univariate Attacks, 10, 000, 000
Traces, fclk = 4 MHz. The correlation coefficient for the correct key is
marked in black, while gray is used to depict wrong key hypotheses.

1st-Order Masking, Masks On and Shuffling On The results of the analysis is
reported in Figure 5.11, when the activation order of the secret shares is shuffled using
the countermeasure described in Section 3.5.1. Interestingly, also mutual information
analysis does not reveal the presence of any leakages (cf. Figure 5.12).

84

5.2 Experimental Results on FPGA

Figure 5.10: 1st-Order GF((24)2) Masked Implementation, Masks On, Shuffling
Off, 2nd-Order Side-Channel Correlation Collision Univariate Attacks,
10, 000, 000 Traces, fclk = 4 MHz. The correlation coefficient for the cor-
rect key is marked in black, while gray is used to depict wrong key
hypotheses.

(a) 1st-Order Side-Channel Correlation Collision Univariate Attacks.

(b) 2nd-Order Side-Channel Correlation Collision Univariate Attacks.

Figure 5.11: 1st-Order GF((24)2) Masked Implementation, Masks On, Shuffling On,
1st-Order (top) and 2nd-Order Side-Channel Correlation Collision Univari-
ate Attacks (bottom), 10, 000, 000 Traces, fclk = 4 MHz. The correlation
coefficient for the correct key is marked in black, while gray is used to
depict wrong key hypotheses.

85

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

Figure 5.12: 1st-Order GF((24)2) Masked Implementation, Masks On, Shuffling On,
Mutual Information estimated using Histograms, 10, 000, 000 Traces, fclk =

4 MHz.

2nd-Order Masking, Masks On and Shuffling Off The results of 1st-order and 2nd-
order univariate side-channel attacks against a 2nd-order implementation without
shuffling are reported in Figure 5.13 and Figure 5.14. Also in this case, no univariate
leakages can be observed either in any of the first third moments nor using mutual
information analysis.

Figure 5.13: 2nd-Order GF((24)2) Masked Implementation, Masks On, Shuffling Off,
Mutual Information estimated using Histograms, 10, 000, 000 Traces, fclk =

4 MHz.

5.3 Summary

In this chapter, we provided the results of a side-channel analysis evaluation of the
polynomially masked implementations presented in Chapter 3 and Chapter 4 using
EM analysis and side-channel correlation-collision attacks.

86

5.3 Summary

In particular, we showed the effectiveness of our proposed lightweight shuffling
countermeasure, which randomly permutes the activation order of the shares within
polynomial masking schemes, against higher-order univariate side-channel collision
attacks.

Our experiments showed that higher-order univariate security is guaranteed up to
10, 000, 000 traces in a worst-case scenario analysis using fixed public points, thus
providing a significant security improvement at negligible area costs.

It is worth noting that shuffling the activation order of the shares seems to be par-
ticularly effective against side-channel collision attacks, as each operation within the
scheme is independently shuffled, thus making collisions harder to detect in practice.

However, it can also be noted that the leakages are only hidden by the shuffling
countermeasures, thus some leakage is expected to emerge either by increasing the
number of measurements or by using more sophisticated multivariate attacks.

87

Chapter 5: Electro-Magnetic Field Analysis of Polynomial Masking Schemes

(a) 1st-Order Side-Channel Correlation Collision Univariate Attacks.

(b) 2nd-Order Side-Channel Correlation Collision Univariate Attacks.

(c) 3rd-Order Side-Channel Correlation Collision Univariate Attacks.

Figure 5.14: 2nd-Order GF((24)2) Masked Implementation, Masks On, Shuffling Off,
1st-Order (top), 2nd-Order Side-Channel Correlation Collision Univariate
Attacks (middle), 3rd-Order Side-Channel Correlation Collision Univari-
ate Attacks (bottom), 10, 000, 000 Traces, fclk = 4 MHz. The correlation
coefficient for the correct key is marked in black, while gray is used to
depict wrong key hypotheses.

88

6 Defeating the Super-Exponential
Security of LRPRFs with Localized EM
Attacks

Contents

6.1 Leakage-Resilient Cryptography 90

6.1.1 Pseudo-Random Functions 91

6.1.2 The GGM Construction . 92

6.1.3 Leakage-Resilient Pseudo-Random Functions 94

6.1.4 Fresh Re-Keying with PRFs 95

6.2 Evaluation Methodology . 96

6.2.1 FPGA Prototype Design . 96

6.2.2 Measurement Setup . 98

6.3 Univariate Localized EM Attacks 99

6.3.1 Worst-case profiling in open mode 99

6.3.2 Attacks exploiting worst-case profiles in fixed mode 100

6.4 Multivariate Localized EM Attacks 104

6.5 Summary . 105

While masking schemes allow to increase the security of cryptographic implemen-
tations to a certain extent, they still come with some major drawbacks: they can be
broken by higher-order attacks, they typically have significant performance penalties,
and require a good source of randomness to be effective against side-channel attacks.
These issues represent a real problem on all those platforms which are resource-
constrained, lack a good source of randomness, or can only generate random numbers
with low throughput.

A new line of research, called leakage resilient cryptography, has been initiated by Stefan
Dziembowski and Krzysztof Pietrzak in 2008 [45] to devise cryptographic primitives

89

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

which can be proven secure even in presence of side-channel information leakage.
These new constructions naturally raise interesting questions regarding the practical
relevance of these formal models to secure actual physical implementations.

Subsequent works like [117, 74, 76] have tried to answer these questions by analyz-
ing implementations of leakage resilient constructions against concrete side-channel
attacks. In particular, Marcel Medwed and François-Xavier Standaert and Antoine
Joux [76] showed that LRPRFs have super-exponential security in respect to classical
CPA attacks.

In this chapter, we study the impact of localized EM attacks [105, 60] taking advantage
of high-resolution EM micro-probes for attacking LRPRF constructions. We use an
FPGA case study to highlight that, while the leakage of LRPRFs remains difficult to
exploit by actual univariate side-channel attacks, yet the security of the construction
can be reduced down to critical levels, when multivariate attacks are used.

Parts of this chapter have been published in the proceedings of the “Third International
Conference on Cryptology and Information Security in Latin America, Latincrypt
2014” [40] and in the “Journal of Cryptographic Engineering (JCEN)” in 2014 [10].

Outline

• Section 6.1 introduces leakage-resilient cryptography with a particular focus on
LRPRFs with application to fresh re-keying schemes.

• Section 6.2 presents the methodology used to evaluate the security of such
constructions on FPGAs in face of high-resolution EM attacks.

• Section 6.3 presents high-resolution EM attack results for the univariate case
showing that the actual leakage still remains hard to exploit.

• Section 6.4 presents high-resolution EM attack results for the multivariate case
showing that the security can be lowered down to critical levels.

• Section 6.5 provides a summary of the chapter.

6.1 Leakage-Resilient Cryptography

Leakage resilient cryptography exploits the formalism of modern cryptography to
realize cryptographic primitives which are provably secure even in presence of leakages.
The main idea is to formally model side-channel leakages in order to design primitives

90

6.1 Leakage-Resilient Cryptography

which are secure in these models, hence addressing the side-channel issue at design
stage.

More concretely, the approach of leakage resilient cryptography is the following: (1) a
security model which includes a class of leakage functions is defined. These functions
are typically either bounded or noisy to some extent and the model is typically referred
to as the “leakage model”. (2) A formal definition of security is provided, e.g., in a
game-based indistinguishability fashion, to precisely quantify when a primitive is
secure. (3) A cryptosystem is designed and proven secure in the previously defined
leakage model according to the previously stated definition of security. Dziembowski
and Pietrzak’s leakage-resilient cryptography [45] is one of the most investigated
models for this purpose, and several proposals of Pseudo-Random Generators (PRGs),
stream ciphers, PRFs and Pseudo-Random Permutations (PRPs) have been considered
in this setting [42, 47, 89, 117, 128, 129].

In practice, leakage-resilient cryptography suffers from three major drawbacks when
it comes to implementations: (1) most of the primitives have significant performance
overheads, (2) it is not clear how to bridge the gap between the formalism and the
practice, e.g., it is not clear how to exactly bound the leakage information in practice,
and (3) compatibility with existing cryptographic standards like AES or PRESENT is
typically lost.

Yet, they are all based on some kind of re-keying strategies which are reminiscent
of Kocher’s early patent [67]. Indeed, it might very well be that small variations of
the ideas proposed in such theoretical works actually provide significantly security
enhancements against a large class of “practical attacks”. This naturally suggested
an intermediate line of research, where leakage-resilient primitives are used for
re-keying schemes and their security is analyzed in front of actual side-channel
adversaries, in order to mitigate these overheads and guarantee compatibility with
existing cryptographic standards.

In the next sections the following topics are introduced: PRFs, PRGs, a construction
of PRFs from PRGs, LRPRFs, and how to use LRPRFs for fresh re-keying schemes in
order to ensure backward compatibility with existing cryptographic standards.

6.1.1 Pseudo-Random Functions

PRFs represent one of the most important primitives in symmetric cryptography.
Informally speaking, a PRF is a function that is computationally indistinguishable
from a random function in the sense that no efficient adversary can distinguish a

91

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

PRF from a truly random function.

Let a PRF family be denoted as F , where k $← Uκ is an integer key that selects a random
member from F , being a function Fk : {0, 1}m → {0, 1}n, where m, n are fixed input
and output sizes. Then, the security of PRFs can be defined in a game-based fashion,
where an adversary A is asked to distinguish between the output of a pseudorandom
function Fk and a truly random value.

The adversary A is composed of two algorithms (A1, A2) and take its decision by
running two formal experiments ExpPRF-IND-0

A and ExpPRF-IND-1
A . The two experiments

consist of a profiling phase, where the algorithm A1 adaptively generates the input values
for which PRF evaluations are collected, and a decision phase, where the algorithm A1

outputs yet another fresh input to Fk and the algorithm A2 is requested to distinguish
between the evaluation of the PRF on this last input value and a truly random value.
This is formalized in Definition 3 and illustrated in Figure 6.1.

Definition 3 (Pseudorandom function (PRF)) A function family F is (q, τ, ε)-secure if
an adversary A = (A1, A2) that runs in time τ, given an oracle for a function Fk and allowed
to make at most q queries to Fk has advantage at most ε in distinguishing the output of Fk

from random:

Adv(ExpPRF-IND
A) :=

∣∣∣Pr(ExpPRF-IND-0
A = 1)− Pr(ExpPRF-IND-1

A = 1)
∣∣∣ < ε (6.1)

6.1.2 The GGM Construction

Back in 1986, Oded Goldreich, Shafi Goldwasser, and Silvio Micali showed how to
construct PRFs from PRGs [55].

Informally speaking, a PRG is an efficient deterministic function that expands a short
and truly random seed into a polynomially long pseudorandom sequence, which cannot
be efficiently distinguished from a truly random one. A formal definition is given in
Definition 4.

Definition 4 (Pseudorandom Generator (PRG)) Let an integer κ ∈N be given, and take
ε, τ > 0. A function G : {0, 1}κ → {0, 1}s(κ) is an (s, τ, ε)-secure PRG if:

1. G is computable in deterministic polynomial time in the input length κ. [Efficiency]

2. There exists a polynomial s, called the stretch, such that: [Regular stretch]

• s(κ) > κ

• |G(x)| = s(κ) for all strings x ∈ {0, 1}κ.

92

6.1 Leakage-Resilient Cryptography

ExpPRF-IND-0
A : ExpPRF-IND-1

A :

k $← {0, 1}κ k $← {0, 1}κ [Initialization]

S, I ← ∅ S, I ← ∅

for i = 1, 2, . . . , q for i = 1, 2, . . . , q [Perform q queries]

xi ← A1(S, I) xi ← A1(S, I) [Generate inputs]

S← S ∪ {xi} S← S ∪ {xi} [Collect inputs in S]

I ← I ∪ {(xi, Fk(xi))} I ← I ∪ {(xi, Fk(xi))} [Collect outputs in I]

endfor endfor

xq+1 /∈ S← A1(S, I) xq+1 /∈ S← A1(S, I) [Generate challenge]

z← Fk(xq+1) z $← U κ [Generate response]

b← A2(xq+1, z, I) b← A2(xq+1, z, I) [Take a decision]

return b return b

Figure 6.1: Definition of a PRF using an Indistinguishability Game: Note that the two
experiments differ only in the way the response z is generated. This is
generated using either a PRF (left) or a random draw from the uniform
distribution (right).

3. The distribution {x $← Uκ : G(x)} is computationally indistinguishable from the uniform
distribution Us(κ) on s(κ)-bit strings to any efficient adversary A(x) running in time at
most τ: [Pseudorandomness]

|Pr[x $← Uκ : A(G(x)) = 1]− Pr[x $← Us(κ) : A(x) = 1]| ≤ ε (6.2)

In the remainder of this chapter, this PRF construction will be referred to as the
Goldreich-Goldwasser-Micali (GGM) construction after the surnames of its authors.

The GGM construction is essentially a tree traversal through several PRG calls as
formalized in Definition 5 for the case 2b with b ≥ 1. Using b > 1 allows to traverse
the tree from the root to the leaves in logarithmic time, hence providing a significant
speed-up when it comes to consider the performance of GGM-tree implementations.

Note that the original construction of [55] was described for b = 1 only.

93

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

Definition 5 (GGM Construction) Let κ be a security parameter and G : {0, 1}κ →
{0, 1}2bκ be a (2bκ, τ, ε)-secure PRG. Let gj(x) denote the (j + 1)th κ-bit output block of
G(x) for j = 0, . . . , 2b − 1, and fix a positive constant m ∈ N. Let x ∈ {0, 1}m be an
input message, which can be partitioned into n blocks of b-bit, i.e., x = x1||x2||...||xn, and
k ∈ {0, 1}κ a secret value. Then, a PRF F : {0, 1}κ × {0, 1}m → {0, 1}κ is constructed as
follows, using the efficient GGM:

y0 = k [Initialization]
yi = gxi(yi−1) for i = 1, . . . , n [Iteration]

Fk(x) := yn [Output]

(6.3)

6.1.3 Leakage-Resilient Pseudo-Random Functions

LRPRFs can be implemented using block-ciphers: essentially it consists of a block-
cipher in a mode of operation defined by the traversal of 2b-ary tree according to
Definition 6.

Definition 6 (Block-cipher based GGM-tree PRF) Let κ be a security parameter and BC :
{0, 1}κ × {0, 1}κ → {0, 1}κ be a SPN-based block-cipher with b-bit S-boxes. Let x ∈ {0, 1}m

be an input message, which can be partitioned into n blocks of b-bit, i.e., x = x1||x2||...||xn,
and k ∈ {0, 1}κ a secret value. Then, a PRF F : {0, 1}κ × {0, 1}m → {0, 1}κ is constructed
as follows, using the efficient GGM-tree construction:

y0 = k [Initialization]
yi = BCyi−1(xi||xi||...||xi︸ ︷︷ ︸

κ/b times

) for i = 1, . . . , n [Iteration]

Fk(x) := yn [Output]

(6.4)

At CHES 2012, Marcel Medwed and François-Xavier Standaert and Antoine Joux [76]
showed that if all S-boxes run perfectly in parallel, i.e., there are no time shifts and
the leakages are perfectly aligned in time, they all leak information through the same
leakage function, and both measurements and attacks lead to perfect results (all key
words are ranked first after side-channel attacks), yet it remains a search complexity of
Ns! for finding the correct subkeys ordering within the master key, hence leading to
search problem with super-exponential complexity in the number of parallel S-boxes
Ns. In fact, any divide-and-conquer DPA trying to exploit the leakage of such a
construction will be affected by key-dependent algorithmic noise, i.e., the leakage will

94

6.1 Leakage-Resilient Cryptography

only provide information about the master key up to a permutation of its words
(cf. [76] for a detailed analysis of this claim).

In practice, this means that using AES as a building block of a LRPRF would lead to a
search complexity of 16! ≈ 244 in the best case. Since this complexity is still doable
with modern technology, this fact suggests that AES may not be the best block-cipher
for integration in a leakage-resilient PRF. For this reason, an alternative lightweight
design based on the PRESENT block-cipher is considered in this work. In particular,
the “identical leakage" assumption is validated in practice in face of high-resolution
EM attacks.

6.1.4 Fresh Re-Keying with PRFs

Fresh re-keying schemes have been firstly analyzed in [2] and subsequently im-
plemented in [75, 10]. A fresh re-keying scheme consists of a re-keying function
g : {0, 1}κ × {0, 1}n → {0, 1}κ, which takes a secret key k ∈ {0, 1}κ and a public
random nonce r ∈ {0, 1}n as input to generate a session key k∗ ∈ {0, 1}κ as output,
and a cryptographic function f(k∗, ·) which uses the freshly generated key k∗ for a
certain number of cryptographic operations. For instance, a fresh key can be computed
as k? = gk(r), and then used to generate the ciphertext c = BCk?(p) from a plaintext
p using a block-cipher BC. This allows to protect standard cryptographic functions
such as AES or PRESENT without breaking backward compatibility with existing
standards.

The solution proposed in [75] was to use a modular multiplication for g, which benefits
from the feature of being easy to mask and shuffle.

Using a leakage resilient PRF for re-keying (and not directly as a primitive) allows
to relax its cryptographic properties (and therefore reduce the implementation’s
requirements) as only minimal diffusion properties might be sufficient for re-keying
functions (cf. Section 2.4.3). In this case, it would be more appropriate to refer to such
a construction as a leakage resilient PRF-like construction.

More formally, a re-keying schema using a block-cipher BC : {0, 1}κ×{0, 1}κ → {0, 1}κ

as a LRPRF is defined in Equation (6.5), i.e., the tree traversal process begins from the
master key k and proceeds as follows: for any given public nonce r ∈ {0, 1}nb and key
k ∈ {0, 1}κ, the block-cipher is iterated n times using the previous block-cipher output
as a key and the nth word (of size b) of the nonce replicated to cover the full input size
κ of the block as input, e.g., r0|||r0||...||r0.

95

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

y0 = k [Initialization]
yi+1 = BCyi(ri||ri||...||ri︸ ︷︷ ︸

κ/b times

) ∀i = 0, . . . , n− 1 [Iteration]

PRF(k, r) := yn [Output]
c = BCPRF(k,r)(p) [Encrypt]

(6.5)

6.2 Evaluation Methodology

In this section, the actual LRPRF design used for the side-channel evaluation is
presented together with the used measurement setup and a description of the side-
channel attacks which were performed.

6.2.1 FPGA Prototype Design

For the purpose of attacks, we considered a prototype leakage resilient PRF implemen-
tation on FPGA based on the PRESENT block-cipher.

It implements the S-box layer using n = 32 parallel PRESENT S-boxes and the
Single-Pattern bit-permutation layer which was proposed in [10] for b = 4:

P(i) = ((i mod b) · (n + 1) + (bi/bc mod b) · n + bi/b2c · b) mod (b · n). (6.6)

This permutation connects the first bit of each S-box output to the first bit of a word
after the permutation, the second bit of each S-box output to the second bit of a word
after the permutation, . . . Hence, side-channel attacks using the Hamming distance
as described in [10] yields no extra information about the location of the key words
(cf. [10] for a detailed analysis of this claim).

For the sake of visualization, the Single-Pattern permutation layer for (b, n) =
(4, 16) is illustrated in Figure 6.2.

In order to allow for a worst-case analysis of our re-keying function, the architecture
provides two operational modes.

96

6.2 Evaluation Methodology

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

0

0

1

1

2

2

3

3

4

0

5

1

6

2

7

3

8

0

9

1

10

2

11

3

12

0

13

1

14

2

15

3

16

0

17

1

18

2

19

3

20

0

21

1

22

2

23

3

24

0

25

1

26

2

27

3

28

0

29

1

30

2

31

3

32

0

33

1

34

2

35

3

36

0

37

1

38

2

39

3

40

0

41

1

42

2

43

3

44

0

45

1

46

2

47

3

48

0

49

1

50

2

51

3

52

0

53

1

54

2

55

3

56

0

57

1

58

2

59

3

60

0

61

1

62

2

63

3

Figure 6.2: Single-Pattern permutation layer for (b, n) = (4, 16) keeping the bit-
ordering within the input and output nibbles: the four input bits of an
input nibble are connected to four different output nibbles, where the first
bit of the input nibble is connected to the first bit of an output nibble, the
second bit of the input nibble is connected to the second bit of an output
nibble, the third bit of the input nibble is connected to the third bit of an
output nibble, and the fourth bit of the input nibble is connected to the
fourth bit of an output nibble. This pattern is marked with red for the first
nibble.

Figure 6.3: Prototype architecture for worst-case EM profiling.

In the first (open) mode, it is possible to change each single word of both the master
key k and the nonce r, while keeping all the other words constant. Although this is
exactly what is prevented by the construction, i.e., only carefully selected plaintexts

97

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

should be observable by the adversary, this mode was investigated in order to allow
for a profiling phase without the impediment of the key-dependent algorithmic noise.
This mode corresponds to the typical block-cipher in a standard side-channel attack
scenario.

In the second (fixed) mode, the master key is fixed and each word ri of the nonce
in the ith step is replicated 32 times to cover the length of the nonce register. This
corresponds to the actual circumstances that an adversary would face when attacking
a leakage-resilient PRF. The prototype architecture is shown in Figure 6.3.

6.2.2 Measurement Setup

Our target device is a Xilinx Spartan-3A (XC3S200A) FPGA manufactured in a 90 nm
process technology. The VQ100 package was opened as described in Section 2.2.3 to
allow for front-side high-resolution EM field measurements over the surface of the
chip die. The setup is shown in Figure 6.4.

We used an inductive near-field EM probe (ICR HH 150-6 from Langer EMV-Technik1)
with a 150 µm shielded horizontal coil, 6 windings, and 2.5 MHz− 6 GHz frequency
span. This probe contains an horizontal magnetic loop which can measure the vertical
components of the superposed magnetic field generated by the target chip die.

(a) EM micro-probe and target decapsulated
FPGA device.

(b) FPGA Die.

Figure 6.4: Measurement Setup used for high-resolution EM analysis of our LRPRF:
EM micro-probe on the target device (left) and a photo of the FPGA die
obtained using microscope USB camera (right).

1https://www.langer-emv.de

98

https://www.langer-emv.de

6.3 Univariate Localized EM Attacks

We connected the probe to an external 30 dB amplifier (PA 303 BNC Set Pre-amplifier
from Langer EMV-Technik) and step with a resolution of 100 µm all over the 2700 µm×
2700 µm die surface of the FPGA.

A LeCroy WavePro 725Zi oscilloscope with 2.5 GHz bandwidth and a sampling rate
of 5 GSa/s was used to record the measurements. The FPGA is externally clocked at
20 MHz and synchronized with the PLL of the oscilloscope.

The unconstrained placement of our circuit on the floorplan is shown in Figure 6.5b.
We performed 27× 27 measurements covering the surface area confined by the con-
junctions of the bonding wires using a motorized X-Y stepper.

6.3 Univariate Localized EM Attacks

In this section, we describe the worst-case profiling together with the selection of POIs
in the EM maps. Also, we present the results of the attacks against the implementation
operating in fixed mode and taking advantage of these worst-case profiles.

6.3.1 Worst-case profiling in open mode

In open mode, the adversary is able to independently observe the EM leakage charac-
teristic of each subkey at different locations over the chip surface, without the influence
of the key-dependent algorithmic noise (since the untargeted nibbles can be set to
random values).

Hence, the attacker can directly profile a leakage model of each subkey, just as
in any other parallel implementation. In order to identify the univariate leakage
of individual subkeys, we recorded 216 measurements and computed the SNR for
each nibble j ∈ [0, 31], at each location (x, y) and for each time instant t. That is,
SNRj(x, y, t) = σ̂(µ̂0→0,µ̂0→1,...,µ̂F→F)

µ̂(σ̂0→0,σ̂0→1,...,σ̂F→F)
, where µ̂u→w and σ̂u→w are the maximum likelihood

estimators of the mean value and standard deviation of the leakages at time instant t
conditioned on the transition from the value u to the value w of the target S-box.

The 4-bit inputs to the key and nonce registers were carefully chosen from a 16-
bit Linear Feedback Shift Register (LFSR), in order to produce all the possible 256
transitions of a nibble in the state register exactly 256 times each. As a result, we
obtained 32 SNR maps which are shown Figure 6.6 and Figure 6.7.

It can be observed that the leakage of individual key nibbles are clearly bounded to
some confined regions on the chip surface. However, if we consider the leakage of each

99

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

subkey as occurring simultaneously during an actual attack, then all SNRs overlap
significantly, as shown in the upper part of Figure 6.5.

This result can be easily explained by looking at the placement of our design on the
floorplan, which is shown in Figure 6.5b. In fact, contrary to [61] where constraints on
the placement were set, in our case the logic cells on the floorplan of the FPGA are
located only in one large fuzzy region due to an unconstrained placement. This region
overlaps with the region of high SNR.

Given these preliminary results, the next question is to determine how to select the
POIs that will be used in our attacks. Quite naturally, the previous SNRs considered
individually are not optimal in this respect, since they are based on the implicit
assumption of independent (algorithmic) noise.

Therefore, we considered two additional criteria in order to better reflect the activity of
individual key nibbles considering the presence of key-dependent algorithmic noise,
namely:

C2 = arg max
(x,y,t)

SNRj(x,y,t)
∑i 6=j SNRi(x,y,t) , C3 = arg max

(x,y,t)

SNRj(x,y,t)
maxi 6=j SNRi(x,y,t) . (6.7)

The intuition behind these criteria is that the best POIs should isolate one target S-box
from either all the other S-boxes (on average) or from the “closest" S-box.

6.3.2 Attacks exploiting worst-case profiles in fixed mode

For the different selections of POIs presented in the previous subsection (including
the basic SNR), we built leakage models and then performed 32 CPA attacks in fixed
mode, using a fresh set of measurements. In this context, the data complexity for each
attack is bounded to 16. Yet, nothing prevents an adversary to repeatedly measure
each of its allowed input queries in order to get rid of physical noise. Hence, we
performed attacks exploiting increasing number of traces (from 28 to 216) and first
observed that the results were stable from 212 traces on. Next, we looked at the subkey
ranks, i.e., the position of the correct subkeys in the 32 vectors of 16 candidates as
provided by the attacks. For illustration, we list the ones obtained for the worst criteria
(SNR) and the best one, i.e., C2 or C3 depending on the S-boxes:

100

6.3 Univariate Localized EM Attacks

5 10 15 20 25

5

10

15

20

25

x ⋅ 10
2
 µ m

y
 ⋅
 1

0
2
 µ

 m

0.2

0.4

0.6

0.8

1

1.2

(a) Superimposition of the SNR for all the S-boxes over the 27× 27 chip surface. The SNR is
located in the same region of the placed circuit (lower right corner).

(b) Placement of our implementation on the FPGA floorplan obtained without enforcing
placement constraints in the synthesis: Flip-Flops of the working register are marked in
red.

Figure 6.5: Superposition of the SNR for all the S-boxes over the 27× 27 chip surface
(top). Placement of our implementation on the FPGA floorplan (bottom).

Table 6.1: Ranking of all 32 key-nibbles obtained for the worst criteria (SNR) and the
best one, i.e., C2 or C3 depending on the S-boxes.

SNR 1 5 14 7 6 8 3 1 2 1 1 14 14 1 7 1
6 9 6 15 6 1 1 3 6 16 7 14 8 2 11 1

Best 1 1 14 2 3 4 1 1 2 1 1 7 14 1 7 1
6 6 6 12 1 1 1 3 3 6 2 12 8 1 7 1

One can directly observe that for a number of S-boxes (namely, 9 for the worst and
13 for the best cases), the correct subkey is ranked first - hence suggesting that the
high-resolution EM profiling indeed allows for a separation of the S-box leakages, thus
leading to improved attacks.

101

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðî

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðí

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ðòë

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðê

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðé

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïð

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïï

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïì

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ðòë

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïë

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðð

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðï

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðì

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðë

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðè

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ðç

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïî

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïí

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ï

Figure 6.6: SNR Maps for the Key Nibbles 0-15: each key nibble has a different (almost
unique) SNR pattern.

Yet, looking at the CPA results more precisely, we also observed that firstly ranked
subkeys were usually slightly better correlated than other candidates. By contrast
for badly ranked subkeys, some of them showed very poor correlation results. The
main consequence of this observation is that enumerating the master key remains
a computationally intensive task, even in the context where worst-case profiling is
possible. To illustrate this claim, first observe that an underestimated time complexity
for the enumeration can be obtained by computing the product of the subkey ranks.
From the two previous lists, we obtain 264 and 246, respectively. Improving this lower
bound can be done by merging the lists, e.g., the 16 subkey ranks for 8-bit values
corresponding to the same two attacks (aggregated) are given by:

Table 6.2: Ranking of all 16 key-bytes obtained for the worst criteria (SNR) and the
best one, i.e., C2 or C3 depending on the S-boxes.

SNR 9 202 59 9 7 68 78 26 90 159 6 11 142 112 80 78

Best 1 76 19 1 7 27 78 26 50 107 1 11 35 50 43 36

102

6.3 Univariate Localized EM Attacks

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïè

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ðòë

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïç

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îî

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îí

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ðòë

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îê

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îé

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ðòë

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» íð

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ï

ïòî

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» íï

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïê

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» ïé

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îð

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îï

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îì

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îë

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ðòè

ï

ïòî

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îè

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòî

ðòì

ðòê

ë ïð ïë îð îë

ë

ïð

ïë

îð

îë

Õ»§ ²·¾¾´» îç

¨ I ïðî
³ ³

§
I
ïð

î
³

³

ðòï

ðòî

ðòí

ðòì

Figure 6.7: SNR Maps for the Key Nibbles 16-31: each key nibble has a different
(almost unique) SNR pattern.

leading to refined bounds of 286 and 266, respectively.

Intuitively, the better bounds derive from the fact that when merging dimensions (as
an optimal key enumeration algorithm does [122]), the time complexity significantly
increases every time both subkeys are not highly ranked.

Using the rank estimation algorithm in [123], we finally obtained tight bounds for the
master key rank as [2115 − 2118] and [299 − 2102]. Quite naturally, one could further
consider that the knowledge of which subkeys are “easy to recover" is an additional
outcome of the worst-case profiling2. In this conservative scenario, the adversary could
reduce the dimension of the enumeration problem (down to 23 and 19, respectively),
but our experiments still lead to security bounds of [289 − 290] and [269 − 270].

2This is realistic as this information mainly depends on the placement of the S-boxes in the implementation. By

contrast, the information of the correct subkey ranking depends on the key-dependent algorithmic noise and

cannot be considered as constant for all attacks.

103

Chapter 6: Defeating the Super-Exponential Security of LRPRFs with Localized EM
Attacks

6.4 Multivariate Localized EM Attacks

Side-channel attacks generally rely on the hypothesis that the leakage information is
located in some certain points of the measurements which are initially unknown to
the adversary (POIs). In case of high-resolution EM measurements, such points can be
located either in time or in space, i.e., at a certain position over the die surface. There
are basically two approaches to select POIs: either some heuristic method is used,
like SNRs, or some linear combination of the leakages is used, e.g., based on either
Principal Component Analysis (PCA) or the Fisher’s linear discriminant [4, 28].

For the purpose of attacks, we performed Template Attacks (TAs) using the heuristics
of Equation (6.7) and then used PCA to transform the concatenated measurements
into the principal subspace and perform PCA-based Template Attacks (PCATAs) as
described in [115].

Following [28], we built templates using PCA pre-processing as follows:

1. We computed the sample between groups matrix B:

B = np ∑
τ∈S

(µx
τ − µx)

T(µx
τ − µx),

where np is the number of leakage traces per template τ in the set of all templates
S , µx = 1

S ∑τ∈S µx
τ, µx

τ = 1
np

∑
np
n=1 xτ

n and xτ
n is the nth leakage trace for the

template τ ∈ S .

2. We obtained the Singular Value Decomposition (SVD) B = UDUT, where each
column of U is an eigenvector uj of B and D contains the corresponding eigen-
values on its diagonal.

3. The PCA projection matrix was obtained as Uc = [u1, . . . , uc], where only the
first c components of U are retained using the elbow rule [28].

4. Finally, the projected leakage matrix in the principal components Xτ,c = XτUc

and templates were built.

We used the rank estimation algorithm [123] to estimate tight security bounds after
TAs and PCATAs for our considered prototype FPGA implementation. The rankings
for the correct subkeys obtained from these attacks are reported in Table 6.3.

Using TAs and PCATAs more subkeys were ranked first with an overall improvement
in the ranking for all subkeys, hence leading to refined security bounds of [2107 − 2110]

and [283 − 286], respectively.

104

6.5 Summary

Table 6.3: Ranking of all 32 key-nibbles using TA and PCATA.

TA 1 3 14 7 6 7 3 1 1 1 1 12 14 1 7 1
6 9 5 14 6 1 1 2 6 15 7 12 8 1 10 1

PCATA 1 1 14 1 1 4 1 1 1 1 1 7 14 1 6 1
4 6 5 12 1 1 1 1 3 5 1 10 7 1 7 1

Assuming the conservative scenario, where the knowledge of which subkeys are “easy
to recover" is assumed, the adversary could reduce the dimension of enumeration
further down to [283 − 284] and [255 − 256], respectively. These security bounds can not
to be considered satisfying anymore in light of modern computing capabilities.

6.5 Summary

Fresh re-keying using leakage-resilient PRFs provides an interesting approach to secure
embedded systems against global side-channel attacks. One of the main advantages
is that the side-channel security of the LRPRFs does not depend on any sources of
randomness, but it relies on sound construction principles.

The security of LRPRFs was firstly evaluated in [76]. In their work, the authors
showed that the security of AES-128 based leakage-resilient PRFs is limited to 244,
while Rijndael-192 and Rijndael-256 based constructions have a security of 279 and
2117, respectively. Since these latter have prohibitive area and power requirements
for resource-constrained embedded devices, we considered a more lightweight block-
cipher, which uses a 4-bit PRESENT S-box and a PRESENT-like permutation layer
with a security of 32! ≈ 2117.

Using the key rank estimation algorithm, we showed that the remaining security after
univariate high-resolution EM attacks on an FPGA implementation is within [299 −
2102], where the POI were selected using different SNR-based criteria. Furthermore we
showed that, when the worst-case (though, realistic) scenario was considered, where
the previous knowledge about the subkeys which are easier to recover is assumed,
then the security bounds were reduced to [269 − 270].

Finally, when multivariate attacks based on PCA pre-processed measurements were
considered, the obtained security bounds were further reduced down to critical levels,
namely [283 − 286] and [255 − 256], which represent the standard and worst case for the
considered FPGA implementation, respectively.

105

7 Spatial Randomized Leakage-Resilient
PRFs

Contents

7.1 Evaluation of Permutation Networks 108

7.1.1 Butterfly Networks . 110

7.1.2 Omega and Flip Networks 110

7.1.3 Beneš Networks . 112

7.1.4 Comparison Overview . 113

7.2 Spatial Randomized Leakage-Resilient PRFs 114

7.2.1 The Simple Way: Two Stage Rotations 114

7.3 Hardware Design . 115

7.3.1 Implementation Results . 117

7.4 Summary . 118

Leakage-Resilient PRFs represent a very appealing alternative to more common coun-
termeasures like masking or shuffling schemes, due to their super-exponential security
against global DPA attacks and their unique feature of not relying on additional
randomness to achieve side-channel resistance.

Although the understanding and security evaluation of this type of constructions
is still far from the ones of common side-channel protections, such as masking and
shuffling, the previous chapter already showed that their security can be lowered
down to critical levels when subjected to advanced high-resolution attacks using EM
micro-probes over the die surface of a depackaged FPGA.

In this chapter, we propose a countermeasure to thwart high-resolution EM attacks
based on spatial randomization and permutation networks. The idea of spatial ran-
domization has been initially proposed in [78] to exploit the dynamic reconfiguration
capabilities of FPGAs.

107

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

In the context of ASIC design, spatial randomization has been applied to DES in [92].
Their approach is based on simple cyclic shifts and allows for 23 permutations only. In
contrast, our approach is based on permutation networks and allows for a much larger
number of permutations so to significantly increase the measurement effort which is
necessary to mount successful side-channel attacks.

Outline

• Section 7.1 introduces the necessary background information on permutation
networks by evaluating various alternatives for spatial randomization, namely:
Butterfly, Omega, Flip, and Beneš networks.

• Section 7.2 proposes a generic countermeasure based on spatial randomization
and discusses the performance of different implementations based on permuta-
tion networks when applied to leakage-resilient PRFs.

• Section 7.3 describes the hardware design of LRPRFs with spatial randomization
and discusses implementation results.

• Section 7.4 provides a summary of the chapter.

7.1 Evaluation of Permutation Networks

Let Um = {0, 1}m be the set of strings of length m. A (n, m)-random permutation is a
permutation σr ∈ Sn associated to a uniformly drawn random index value r:

r $← Um : σr ∈ Sn,

where Sn is the symmetric group of all permutations. Permutation networks can be
used in order to approximate (n, m)-random permutations [48].

Permutation networks are based on the observation that transpositions can generate
the symmetric group Sn of all permutations. Indeed, the building block of permu-
tation networks is the switch element which conditionally swaps two inputs a and b
depending on a common control signal c, as depicted in Figure 7.1.

In the context of cryptography, permutation networks have been used to scramble
on-chip data [23] and for implementing arithmetic operations in permutation groups
in hardware [113].

Permutation networks are formally defined in Definition 7.

108

7.1 Evaluation of Permutation Networks

Figure 7.1: Two multiplexers controlled by a single control line c realizing a switch
element.

Definition 7 ((n, m, d, s)-Permutation Networks) A (n, m, d, s)-permutation network
is a circuit which permutes n inputs using s switches organized into d layers controlled by a
random input value r $← {0, 1}m which defines a random configuration of the switches.

Permutation networks mainly differ in the number of stages d and in the way inputs
are connected to switches in each stage. These topological parameters ultimately
define the distribution of the generated permutations.

For our intended application, we consider only permutation networks with n = 2k

inputs for k ∈N and n/2 switches per stage (s = nd/2 switches in total). The goal is
to implement (n, m)-random permutations with the following properties:

Property 1. The number of permutations S = 2m should be large, e.g., S ≥ 280.

Property 2. The distribution of permutations should be uniform:

Pr[σr] = 1/S

Property 3. The distribution of permuted elements should be uniform:

Pr[σr(i) = j] = 1/n

Property 4. The implementation should be efficient, e.g., the circuit should have loga-
rithmic depth.

Property 1. and Property 2. together ensure that the effort of side-channel attacks
is significantly increased, while Property 3. ensures that every permuted element is
not occurring more than others so to ensure the same (theoretical) resistance against
high-resolution EM field attacks. Finally, Property 4. allows to implement the circuit in

109

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

combinational logic so to avoid intermediate permutation stages which typically lead
to undesired leakages (Hamming distances).

In the following Butterfly, Omega, Flip, and Beneš networks are introduced. A
summary of their parameters and costs is provided in Table 7.1 and Table 7.2.

7.1.1 Butterfly Networks

Definition 8 (Butterfly Networks) Let n = 2k, k ∈N. A butterfly network is a
(n, n log2 n

2 , log2 n, n log2 n
2)-permutation network where the switches connections in each stage

1 ≤ i ≤ d are given by Si = {(j, j + 2k−i mod 2k−i+1 + 2k−i+1bj/2k−i+1c)} for j =

0, . . . , n− 1. The inverse of a butterfly network is obtained by reversing the order of the stages.

Butterfly networks have depth log2 n and generate S = nn/2 permutations with
Pr [σ] = 1/S and Pr [σ(i) = j] = 2−k, therefore satisfying Property 4., Property 1.,
Property 2., and Property 3., respectively. For the sake of an example, a butterfly
network with n = 8 inputs is illustrated in Figure 7.2.

The set of permutations generated by butterfly networks does not form a group under
function composition, but it contains the Sylow-2 subgroup Hk of Sn (|Hk| = 2n−1).
The subgroup Hk can be obtained from butterfly networks by a careful choice of the
control bits. Unfortunately, this Group Theoretic (GT) construction [23] leads to a
(n, n− 1, log2 n, n log2 n

2)-permutation network which does not fulfill Property 1. for our
intended application (S = 231).

Butterfly networks typically have two drawbacks: first, the inputs of each stage
are connected to switches in a different way, therefore making it not possible in
hardware to fold different stages into a single one. Secondly, butterfly networks are
not able to generate all the permutations of Sn, therefore being not suitable for certain
applications.

7.1.2 Omega and Flip Networks

A shuffling stage interleaves the two halves of the input bits, while an unshuffling
stage performs the inverse operation, as illustrated in Figure 7.3 by the way of an
example.

Definition 9 (Omega and Flip Networks) Let n = 2k, k ∈ N. An Omega network is
a (n, n log2 n

2 , log2 n, n log2 n
2)-permutation network obtained by iterating log2 n times over

an Omega permutation stage. An Omega permutation stage is obtained by concatenating

110

7.1 Evaluation of Permutation Networks

Figure 7.2: Butterfly network with n = 8 inputs: this network has d = 3 stages and is
capable of generating S = 4096 permutations.

a shuffling stage with a butterfly stage. The Flip network is a (n, n log2 n
2 , log2 n, n log2 n

2)-
permutation network obtained by iterating log2 n times over a Flip permutation stage. A Flip
permutation stage is obtained by concatenating an unshuffling stage with a butterfly stage.
The Flip network is the inverse of the Omega network.

Omega networks are equivalent to butterfly networks with the advantage that inputs
are always connected to switches in the same way across multiple stages. This
typically allows for more area-efficient hardware implementations obtained by folding
permutation stages into one stage and iterating over it multiple times. However,
for our intended application, there is no substantial difference (disregarded from
possible synthesis optimizations), as we want to implement permutations networks
in combinational logic (fully unrolled). An Omega permutation stage is illustrated in
Figure 7.4, while a Flip permutation stage is illustrated in Figure 7.5.

111

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

(a) Shuffling Stage.

(b) Unshuffling Stage.

Figure 7.3: Shuffling and Unshuffling Permutation Stages for n = 8.

Figure 7.4: Omega Permutation Stage with n = 8 inputs: concatenating d = 3 Omega
permutation stages, an Omega network capable of generating S = 4096
permutations is obtained.

7.1.3 Beneš Networks

Definition 10 (Beneš Networks) Let n = 2k, k ∈N. A Beneš network is a (n, n log2 n−
n/2, 2 log2 n− 1, n log2 n− n/2)-permutation network obtained by concatenating a butterfly
network back-to-back to its inverse. Analogously, the concatenation of an Omega and a Flip
network is isomorphic to a Beneš network.

Beneš networks are advantageous over butterfly networks because they can generate
nn/2n/2 > n! permutations. As a drawback, the number of switches is almost doubled
as well as the number of stages and, most importantly, the distribution of permutations
generated from Beneš networks is typically not uniform. Therefore they are not suitable
for our intended application, since this feature is violating Property 2..

112

7.1 Evaluation of Permutation Networks

Figure 7.5: Flip Permutation Stage with n = 8 inputs: concatenating d = 3 Flip permu-
tation stages, a Flip network capable of generating S = 4096 permutations
is obtained.

7.1.4 Comparison Overview

Table 7.1 and Table 7.2 provide a comparison of the parameters of different permutation
networks.

Table 7.1: Permutation Networks: Generic Parameters Comparison for n Inputs.

Permutation Network # Random bits # Layers # Perms

Butterfly (Definition 8)
n log2(n)

2
log2(n) nn/2

Butterfly GT (Section 7.1.1) n− 1 log2(n) 2n−1

Omega/Flip (Definition 9)
n log2(n)

2
log2(n) nn/2

Beneš (Definition 10) n log2(n)− n/2 2 log2(n)− 1
nn

2n/2

Table 7.2: Permutation Networks: Comparison of Concrete Parameters Instantiation
for n = 32.

Permutation Network # Random bits # Layers # Perms

Butterfly (Definition 8) 80 5 280

Butterfly GT (Section 7.1.1) 31 5 231

Omega/Flip (Definition 9) 80 5 280

Beneš (Definition 10) 144 9 2144

To sum up, Butterfly, Omega and Flip networks satisfy all the properties for n = 32
and therefore are suitable for our intended application to spatially randomize the
execution order of S-boxes.

113

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

7.2 Spatial Randomized Leakage-Resilient PRFs

Spatial randomization is used to physically permute the usage of the logic and wires
implementing a cryptographic circuit in order to thwart high-resolution EM field
attacks. In principle, one would aim at permuting data before and after every block-
cipher operation (key addition, S-box, permutation layer).

However, the task becomes quite challenging if the operations involved operate on
different input sizes, as in our considered leakage-resilient PRF (namely, the key
addition and the S-box operate nibble-wise, while the permutation layer operates
bit-wise). In fact, in order to restore a consistent (nibble-wise) permuted state after the
bit-permutation layer, it is necessary to know the (nibble-wise) permutations occurring
before entering the bit-permutation layer in order to consistently proceed with next
(nibble-wise permuted) key addition after it.

In this situation, two possible alternative approaches exist: either (nibble-wise) per-
mutations are tracked in a way that it is always possible to restore the original state
consistently or the original state is simply restored back before the bit-permutation
layer and re-permuted nibble-wise right after it.

The first approach allows to persistently keep the state permuted across all the block-
cipher operations, but it requires additional and quite complex circuitry for keeping
track of (nibble-wise) permutations and it must to be designed ad-hoc depending on
the specific properties of the mixing layer and generated permutations. The effort
required to keep track of permutations in terms of control circuitry depends on the
type and the number of permutations which are allowed.

The second approach requires no additional control circuitry and works independently
from the type and number of (nibble-wise) permutations and chosen bit-permutation
layer, but it requires to permute the data back to their original (not permuted) state
before going through the bit-permutation layer and permute them again right after
it.

7.2.1 The Simple Way: Two Stage Rotations

A simple and ad-hoc solution to perform random permutations would be to take
advantage of the structure of the bit-permutation layer. The permutation layer of
Equation (6.6) groups the n input words of size b into b groups, each one containing
n/b words. In other words, it groups the 32 nibbles into 4 groups of 8 nibbles, for
n = 32 and b = 4 as in our case. Therefore, assuming the first stage (left) rotates the

114

7.3 Hardware Design

state according to a random value q $← {0, 1}3 and the second stage (left) rotates the

state according to a random value t $← {0, 1}2 (say, considering the case where the
nibbles of all 4 groups gets rotated by the same value), the permutation layer can
be changed as follows in order to produce a (nibble-wise) permuted state after the
original linear mixing layer:

P(i) = b

b
[(⌊

i
b2

⌋
+ q
)

mod
n
b

]
︸ ︷︷ ︸

Global index

+

[(⌊
i
b

⌋
+ t
)

mod b
]

︸ ︷︷ ︸
Local index

+ i mod b

However, the number of permutation S = 25 is quite limited and therefore not suitable
for our application, due to violation of Property 1. (allowing independent permutation
in the second stage would lead to 211 with additional control logic). This approach
actually turns out to be very similar to the approach used in [92] with the same
limitations.

7.3 Hardware Design

In order to generate a larger number of permutations, a permutation network can be
used. Unfortunately, due to the large number of possible permutations, no efficient
way of tracking generated permutations in order to correctly restore a consistent
(nibble-wise) permuted state after the bit-permutation layer is known yet.

In this case, the (nibble-wise) permuted state must be restored to its original (not
permuted) state before going though the bit permutation layer and subsequently
(nibble-wise) permuted again. Figure 7.6 and Figure 7.7 show two possible archi-
tectures to implement spatial-randomized leakage-resilient PRFs using permutation
networks. The main difference between the two alternative architectures is that the
simplified architecture (see Figure 7.7) basically only randomizes the register usage,
while the other architecture (see Figure 7.6) also protects the key addition and the
S-box operations. Considering the architecture depicted in Figure 7.6, the n nibbles of
the state are permuted in every round execution using three random permutations,
namely σq, σ−1

q and σt. More precisely, the key nibbles are permuted before the key
addition by the random permutation σq, while no permutation takes place on the
initial state, as it contains replicated words initially. Then, the state gets permuted
back after the S-box operation, goes through the bit-permutation layer and gets nibble-

wise permuted again by σt. In the first round, q $← {0, 1}m and t $← {0, 1}m are two
uniformly chosen random values. From the second round on, q takes the value of t in

115

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

Figure 7.6: Spatial-Randomized Hardware Architecture using Permutation Networks:
both the data and key paths are spatially randomized.

Figure 7.7: Simplified Spatial-Randomized Hardware Architecture using Permutation
Networks: only the data path is spatially randomized.

the previous round, while t gets re-freshed by yet another random draw. This means
that our countermeasure requires m(Nr Ns + 1) additional bits of randomness, where
Nr is the number of rounds in the block-cipher and Ns is the number of block-cipher
invocations in the PRF construction. The simplified architecture works similarly, but it
requires slightly less random bits, namely mNr Ns.

116

7.3 Hardware Design

7.3.1 Implementation Results

The designs were synthesized with Synopsys DesignCompiler version G-2012.06-SP3
using standard cell libraries in 0.18µ CMOS process (csm18os120) and with Xilinx ISE
14.2 targeting a Xilinx Spartan-3A (XC3S200A).

Table 7.3: Synthesis Results in ASIC and Xilinx Spartan-3A FPGA. The following nam-
ing conventions are adopted: the LRPRF implementation without random-
ization is denoted simply as LRPRF, the LRPRF using two-stage rotations is
denoted as LRPRF+2ROT, the LRPRF using a butterfly network for random-
ization is denoted as LRPRF+BFLY, the LRPRF using an Omega network
is denoted as LRPRF+OMEGA, and the LRPRF using the group-theoretic
butterfly network is denotes as LRPRF+BFLY-GT.

FPGA ASIC
Slices FFs LUTs fc (MHz) Area [kGE] fc (MHz)

LRPRF 496 397 966 156 4.47 272

LRPRF+2ROT 1645 488 3174 48 10.66 141

LRPRF+BFLY 1392 490 2724 49 7.76 190
LRPRF+OMEGA 1431 490 2806 48 7.76 190

LRPRF+BFLY-GT 1410 435 2748 50 8.47 130

Synthesis results show that the spatial-randomization almost doubles the area re-
quirements in ASIC (while the number of slices and Look-Up Tables (LUTs) is almost
triplicated on FPGA), while the maximum clock frequency results affected by almost
1/3 in ASIC and by 2/3 on FPGA.

Interestingly, the requirements of the two-stage rotation based approach are larger than
the more generic approach based on permutation networks. This can be explained
by the presence of a more complex mixing layer and complex permutation tracking
throughout the design in case of the two-stage rotation approach.

Moreover, synthesis results show that LRPRF with the group-theoretic butterfly ap-
proach occupies slightly more LUTs than the presumably more complex LRPRF with
butterfly one. This is caused by the fact, that LRPRF with the group-theoretic butterfly
requires (although fewer) control signals with higher fan-out. This way, extra inverters
and buffers are included in the control logic by the synthesis tools.

117

Chapter 7: Spatial Randomized Leakage-Resilient PRFs

7.4 Summary

The previous chapter showed that the security of LRPRFs can be lowered down to
critical levels when attacked using multivariate attacks employing high-resolution EM
micro-probes over the die surface of a depackaged FPGA chip.

In this chapter, we proposed a countermeasure to thwart such high-resolution EM
attacks based on spatial randomization and permutation networks to shuffle the
circuitry’s usage within a PRESENT-like block-cipher. Our countermeasure almost
doubles the area requirements of our LRPRF and belongs to the realm of classical
side-channel countermeasures which rely on additional randomness bits.

Finally, note that while we applied the spatial randomization countermeasure to
protect implementations of leakage resilient PRFs against high-resolution EM attacks,
the same countermeasure can also be used to protect parallel implementations of the
PRESENT block-cipher or of any other similar SPN-based block-cipher.

118

8 Conclusion

Nowadays, the security of cryptographic implementations on constrained devices such
as RFID tags and smartcards is threatened by side-channel and fault attacks. Two of
the most common and effective ways to counteract such attacks are masking and fresh
re-keying schemes.

While masking schemes aim at making the side-channel information look random to
the adversary, fresh re-keying schemes aim at bounding the side-channel information
under a certain threshold which prevents mounting successful attacks.

This thesis aimed at improving state-of-the-art masking and fresh re-keying schemes by
providing advancements in the field of side-channel attacks (on the side of adversaries)
and side-channel countermeasures (on the side of designers).

Section 8.1 briefly wraps up the major contributions of this work, while Section 8.2
provides some idea sketches for future work.

8.1 Summary

This thesis contains contributions both in the field of secure implementations and
side-channel analysis as illustrated in Table 8.1.

Chapter 3 introduced polynomial masking, provided new principles for the selection
of implementation-efficient addition chains, described the hardware design of a higher-
order polynomially masked AES S-box based on our improved addition chains, and
finally proposed a shuffling countermeasure which can be easily embedded into
polynomial masking schemes at almost no costs.

Chapter 4 showed how tower field arithmetic can be used in combination with
polynomial masking to drastically reduce the area size of a polynomially masked AES
S-box.

Chapter 5 provided side-channel results using EM measurements of the previously
proposed implementations, showing that univariate side-channel security against 10

119

Chapter 8: Conclusion

million traces can be achieved either by a 1st-order polynomially masked implementa-
tion using shuffling or by a 2nd-order implementation.

Chapter 6 showed how high-resolution EM measurements can be used to defeat
the super-exponential security of leakage-resilient PRFs when using multivariate
template-based attacks.

Chapter 7 proposed a shuffling countermeasure to spatially randomize leakage-
resilient PRFs using permutation networks as a countermeasure against high-resolution
EM attacks.

Table 8.1: Overview on the Contributions of this Thesis.

Countermeasures Side-Channel Attacks

Chapter 3 Higher-order Polynomially
Masked AES S-box with Shuf-
fling

Chapter 4 Tower-field Polynomially
Masked AES S-box

Chapter 5 Higher-Order EM Analysis of
Polynomial Masking with Shuf-
fling

Chapter 6 Localized EM Analysis of a LR-
PRF

Chapter 7 Spatial Randomization with Per-
mutation Networks

8.2 Further Directions

This section provides some idea sketches which can serve as a basis for further
research.

Concerning PMSs, the optimality of the methods proposed in Chapter 3 and Chapter 4
could be investigated. Furthermore, the side-channel analysis presented in Chapter 5
could be extended to consider multivariate attacks as well pre-processing functions
and windowing methods. Yet another idea would be to investigate the practicability
of high-resolution EM attacks in the context of masking schemes.

120

8.2 Further Directions

Concerning LRPRFs, the efficiency of alternative methods for the selection of POIs on
the chip’s surface, such as Fisher’s linear discriminant analysis, could be evaluated.
Furthermore, it might be interesting to evaluate the efficiency of high-resolution EM
attacks using tight placements constraints as well as evaluating the security of LRPRFs
implementations on smaller FPGA or ASIC technologies. Finally, a security evaluation
of the spatial randomization countermeasure based on permutation networks could
be performed using high-resolution EM attacks.

121

Bibliography

[1] Michel Abdalla, Sonia Belaïd, and Pierre-Alain Fouque. “Leakage-Resilient
Symmetric Encryption via Re-keying”. In: Cryptographic Hardware and Embedded
Systems - CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA,
August 20-23, 2013. Proceedings. Ed. by Guido Bertoni and Jean-Sébastien Coron.
Vol. 8086. Lecture Notes in Computer Science. Springer, 2013, pp. 471–488.

[2] Michel Abdalla and Mihir Bellare. “Increasing the Lifetime of a Key: A Com-
parative Analysis of the Security of Re-keying Techniques”. In: Advances in
Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings. Ed. by Tatsuaki Okamoto. Vol. 1976. Lecture Notes in Computer
Science. Springer, 2000, pp. 546–559.

[3] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. “Multi-channel Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings. Ed. by Colin
D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779. Lecture Notes in
Computer Science. Springer, 2003, pp. 2–16.

[4] Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-Jacques
Quisquater. “Template Attacks in Principal Subspaces”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings. Ed. by Louis Goubin and Mitsuru Matsui.
Vol. 4249. Lecture Notes in Computer Science. Springer, 2006, pp. 1–14.

[5] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Wouter Castryck
Johannes Buchmann, Orr Dunkelman, Tim Güneysu, Shay Gueron, Tanja Lange
Andreas Hülsing, Mohamed Saied Emam Mohamed, Christian Rechberger,
Nicolas Sendrier Peter Schwabe, Frederik Vercauteren, and Bo-Yin Yang. Initial
recommendations of long-term secure post-quantum system. http://pqcrypto.
eu.org/docs/initial-recommendations.pdf. 2015.

[6] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceedings of
the IEEE 94.2 (2006), pp. 370–382.

123

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://pqcrypto.eu.org/docs/initial-recommendations.pdf

Bibliography

[7] Alessandro Barenghi, Guido Bertoni, Luca Breveglieri, Mauro Pellicioli, and
Gerardo Pelosi. “Low Voltage Fault Attacks to AES”. In: HOST 2010, Proceedings
of the 2010 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 13-14 June 2010, Anaheim Convention Center, California, USA. Ed. by
Jim Plusquellic and Ken Mai. IEEE Computer Society, 2010, pp. 7–12.

[8] Alessandro Barenghi, Cédric Hocquet, David Bol, François-Xavier Standaert,
Francesco Regazzoni, and Israel Koren. “Exploring the Feasibility of Low Cost
Fault Injection Attacks on Sub-threshold Devices through an Example of a
65nm AES Implementation”. In: RFID. Security and Privacy - 7th International
Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised Selected Papers.
Ed. by Ari Juels and Christof Paar. Vol. 7055. Lecture Notes in Computer
Science. Springer, 2011, pp. 48–60.

[9] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. “Mutual Information Analysis:
a Comprehensive Study”. In: J. Cryptology 24.2 (2011), pp. 269–291.

[10] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
“Towards fresh re-keying with leakage-resilient PRFs: cipher design principles
and analysis”. In: J. Cryptographic Engineering 4.3 (2014), pp. 157–171.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-
tended Abstract)”. In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA. Ed. by Janos Simon. ACM,
1988, pp. 1–10.

[12] Ingrid Biehl, Bernd Meyer, and Volker Müller. “Differential Fault Attacks on
Elliptic Curve Cryptosystems”. In: Advances in Cryptology - CRYPTO 2000,
20th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2000, Proceedings. Ed. by Mihir Bellare. Vol. 1880. Lecture Notes
in Computer Science. Springer, 2000, pp. 131–146.

[13] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: J. Cryptology 4.1 (1991), pp. 3–72.

[14] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryp-
tosystems”. In: Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings. Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science.
Springer, 1997, pp. 513–525.

[15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. “A More Efficient AES Threshold Implementation”. In: Progress in Cryp-

124

Bibliography

tology - AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa,
Marrakesh, Morocco, May 28-30, 2014. Proceedings. Ed. by David Pointcheval and
Damien Vergnaud. Vol. 8469. Lecture Notes in Computer Science. Springer,
2014, pp. 267–284.

[16] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. “Higher-Order Threshold Implementations”. In: Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014, Proceedings, Part II. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8874.
Lecture Notes in Computer Science. Springer, 2014, pp. 326–343.

[17] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. “Threshold implementations of small S-boxes”.
In: Cryptography and Communications 7.1 (2015), pp. 3–33.

[18] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. “Cryptanalysis of a White
Box AES Implementation”. In: Selected Areas in Cryptography: 11th International
Workshop, SAC 2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers.
Ed. by Helena Handschuh and M. Anwar Hasan. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 227–240.

[19] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. Ed. by Walter Fumy. Vol. 1233. Lecture Notes in Computer Science.
Springer, 1997, pp. 37–51.

[20] Joppe W. Bos, Charles Hubain, Wil Michiels, Cristofaro Mune, Eloi Sanfelix
Gonzalez, and Philippe Teuwen. “White-Box Cryptography: Don’t Forget
About Grey Box Attacks”. In: IACR Cryptology ePrint Archive (2017).

[21] Alfred Brauer. “On addition chains”. In: Bull. Amer. Math. Soc. 45.10 (Oct. 1939),
pp. 736–739.

[22] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis
with a Leakage Model”. In: Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004.
Proceedings. Ed. by Marc Joye and Jean-Jacques Quisquater. Vol. 3156. Lecture
Notes in Computer Science. Springer, 2004, pp. 16–29.

[23] Eric Brier, Helena Handschuh, and Christophe Tymen. “Fast Primitives for
Internal Data Scrambling in Tamper Resistant Hardware”. In: Cryptographic
Hardware and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings. Ed. by Çetin Kaya Koç, David Naccache,

125

Bibliography

and Christof Paar. Vol. 2162. Lecture Notes in Computer Science. Springer,
2001, pp. 16–27.

[24] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. “Towards
Sound Approaches to Counteract Power-Analysis Attacks”. In: Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by Michael J.
Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 398–
412.

[25] Suresh Chari, Charanjit Jutla, Josyula R. Rao, and Pankaj Rohatgi. “A Caution-
ary Note Regarding Evaluation of AES Candidates on Smart-Cards”. In: In 2nd

Advanced Encryption Standard (AES) Candidate Conference. 1999.
[26] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In:

Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523. Lecture
Notes in Computer Science. Springer, 2002, pp. 13–28.

[27] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. NISTIR 8105: Report on Post-Quantum Cryptography.
Tech. rep. NIST, Apr. 2016.

[28] Omar Choudary and Markus G. Kuhn. “Efficient Template Attacks”. In: Smart
Card Research and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers. Ed. by
Aurélien Francillon and Pankaj Rohatgi. Vol. 8419. Lecture Notes in Computer
Science. Springer, 2013, pp. 253–270.

[29] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. “A White-
Box DES Implementation for DRM Applications”. In: Digital Rights Management:
ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18, 2002.
Revised Papers. Ed. by Joan Feigenbaum. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 1–15.

[30] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. “Differential
Power Analysis in the Presence of Hardware Countermeasures”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2000, Second International
Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings. Ed. by Çetin
Kaya Koç and Christof Paar. Vol. 1965. Lecture Notes in Computer Science.
Springer, 2000, pp. 252–263.

[31] Jean-Sébastien Coron and Louis Goubin. “On Boolean and Arithmetic Masking
against Differential Power Analysis”. In: Cryptographic Hardware and Embedded
Systems - CHES 2000, Second International Workshop, Worcester, MA, USA, August

126

Bibliography

17-18, 2000, Proceedings. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1965.
Lecture Notes in Computer Science. Springer, 2000, pp. 231–237.

[32] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Random
Delay Generation in Embedded Software”. In: Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzer-
land, September 6-9, 2009, Proceedings. Ed. by Christophe Clavier and Kris Gaj.
Vol. 5747. Lecture Notes in Computer Science. Springer, 2009, pp. 156–170.

[33] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. 1999.
[34] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced

Encryption Standard. Information Security and Cryptography. Springer, 2002.
[35] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla

Nikova. “Higher-Order Threshold Implementation of the AES S-Box”. In: Smart
Card Research and Advanced Applications - 14th International Conference, CARDIS
2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers. Ed. by
Naofumi Homma and Marcel Medwed. Vol. 9514. Lecture Notes in Computer
Science. Springer, 2015, pp. 259–272.

[36] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, and Svetla Nikova. “Higher-
Order Glitch Resistant Implementation of the PRESENT S-Box”. In: Cryp-
tography and Information Security in the Balkans - First International Conference,
BalkanCryptSec 2014, Istanbul, Turkey, October 16-17, 2014, Revised Selected Papers.
Ed. by Berna Ors and Bart Preneel. Vol. 9024. Lecture Notes in Computer
Science. Springer, 2014, pp. 75–93.

[37] Fabrizio De Santis, Tobias Bauer, and Georg Sigl. “Hiding Higher-Order Uni-
variate Leakages by Shuffling Polynomial Masking Schemes: A More Efficient,
Shuffled, and Higher-Order Masked AES S-box”. In: Proceedings of the ACM
Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Austria,
October, 2016. Ed. by Begül Bilgin, Svetla Nikova, and Vincent Rijmen. ACM,
2016, pp. 17–26.

[38] Fabrizio De Santis, Tobias Bauer, and Georg Sigl. “Squeezing Polynomial
Masking in Tower Fields - A Higher-Order Masked AES S-Box”. In: Smart Card
Research and Advanced Applications - 15th International Conference, CARDIS 2016,
Cannes, France, November 7-9, 2016, Revised Selected Papers. Ed. by Kerstin Lemke-
Rust and Michael Tunstall. Vol. 10146. Lecture Notes in Computer Science.
Springer, 2016, pp. 192–208.

[39] Fabrizio De Santis, Oscar M. Guillen, Ermin Sakic, and Georg Sigl. “Ciphertext-
Only Fault Attacks on PRESENT”. In: Lightweight Cryptography for Security and
Privacy - Third International Workshop, LightSec 2014, Istanbul, Turkey, September

127

Bibliography

1-2, 2014, Revised Selected Papers. Ed. by Thomas Eisenbarth and Erdinç Öztürk.
Vol. 8898. Lecture Notes in Computer Science. Springer, 2014, pp. 85–108.

[40] Fabrizio De Santis and Stefan Rass. “On Efficient Leakage-Resilient Pseudo-
random Functions with Hard-to-Invert Leakages”. In: Progress in Cryptology -
LATINCRYPT 2014 - Third International Conference on Cryptology and Information
Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised
Selected Papers. Ed. by Diego F. Aranha and Alfred Menezes. Vol. 8895. Lecture
Notes in Computer Science. Springer, 2014, pp. 127–145.

[41] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. “Towards Fresh and Hybrid Re-Keying Schemes
with Beyond Birthday Security”. In: Smart Card Research and Advanced Applica-
tions - 14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers. Ed. by Naofumi Homma and Marcel Medwed.
Vol. 9514. Lecture Notes in Computer Science. Springer, 2015, pp. 225–241.

[42] Yevgeniy Dodis and Krzysztof Pietrzak. “Leakage-Resilient Pseudorandom
Functions and Side-Channel Attacks on Feistel Networks”. In: Advances in
Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 15-19, 2010. Proceedings. Ed. by Tal Rabin. Vol. 6223. Lecture Notes
in Computer Science. Springer, 2010, pp. 21–40.

[43] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. “Univariate side channel attacks and leakage modeling”. In: J. Crypto-
graphic Engineering 1.2 (2011), pp. 123–144.

[44] Richard Durstenfeld. “Algorithm 235: Random Permutation”. In: ACM, 1964,
p. 420.

[45] Stefan Dziembowski and Krzysztof Pietrzak. “Leakage-Resilient Cryptogra-
phy”. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA. IEEE Computer Society, 2008,
pp. 293–302.

[46] Eurosmart. Eurosmart Confirms Overall Growth Trend For The Smart Security
Industry Steady upward trajectory for worldwide secure element shipments in 2016
and 2017. 2016.

[47] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. “Practical Leakage-
Resilient Symmetric Cryptography”. In: Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-
12, 2012. Proceedings. Ed. by Emmanuel Prouff and Patrick Schaumont. Vol. 7428.
Lecture Notes in Computer Science. Springer, 2012, pp. 213–232.

[48] Tse-Yun Feng. “A Survey of Interconnection Networks”. In: Computer 14.12
(Dec. 1981), pp. 12–27.

128

Bibliography

[49] Julie Ferrigno and Martin Hlavác. “When AES blinks: introducing optical side
channel”. In: IET Information Security 2.3 (2008), pp. 94–98.

[50] Wieland Fischer and Berndt M. Gammel. “Masking at Gate Level in the Pres-
ence of Glitches”. In: Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings. Ed. by Josyula R. Rao and Berk Sunar. Vol. 3659. Lecture Notes in
Computer Science. Springer, 2005, pp. 187–200.

[51] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. “Fault
Attacks on AES with Faulty Ciphertexts Only”. In: 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013.
Ed. by Wieland Fischer and Jörn-Marc Schmidt. IEEE Computer Society, 2013,
pp. 108–118.

[52] Daniel Genkin, Adi Shamir, and Eran Tromer. “Acoustic Cryptanalysis”. In: J.
Cryptology 30.2 (2017), pp. 392–443.

[53] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. “Mutual Infor-
mation Analysis”. In: Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008.
Proceedings. Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture
Notes in Computer Science. Springer, 2008, pp. 426–442.

[54] Commerce Secretary Announces New Standard for Global Information Security.
2001.

[55] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct ran-
dom functions”. In: J. ACM 33.4 (1986), pp. 792–807.

[56] Louis Goubin. “A Sound Method for Switching between Boolean and Arith-
metic Masking”. In: Cryptographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16, 2001, Proceedings. Ed. by
Çetin Kaya Koç, David Naccache, and Christof Paar. Vol. 2162. Lecture Notes
in Computer Science. Springer, 2001, pp. 3–15.

[57] Louis Goubin and Jacques Patarin. “DES and Differential Power Analysis
(The "Duplication" Method)”. In: Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1717. Lecture Notes
in Computer Science. Springer, 1999, pp. 158–172.

[58] Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protec-
tion Order”. In: Proceedings of the ACM Workshop on Theory of Implementation
Security, TIS@CCS 2016 Vienna, Austria, October, 2016. Ed. by Begül Bilgin, Svetla
Nikova, and Vincent Rijmen. ACM, 2016, p. 3.

129

Bibliography

[59] Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. “Low-Cost Setup
for Localized Semi-invasive Optical Fault Injection Attacks - How Low Can We
Go?” In: Constructive Side-Channel Analysis and Secure Design - 8th International
Workshop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers.
Ed. by Sylvain Guilley. Vol. 10348. Lecture Notes in Computer Science. Springer,
2017, pp. 207–222.

[60] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg
Sigl. “Localized Electromagnetic Analysis of Cryptographic Implementations”.
In: Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings.
Ed. by Orr Dunkelman. Vol. 7178. Lecture Notes in Computer Science. Springer,
2012, pp. 231–244.

[61] Johann Heyszl, Dominik Merli, Benedikt Heinz, Fabrizio De Santis, and Georg
Sigl. “Strengths and Limitations of High-Resolution Electromagnetic Field
Measurements for Side-Channel Analysis”. In: Smart Card Research and Advanced
Applications - 11th International Conference, CARDIS 2012, Graz, Austria, November
28-30, 2012, Revised Selected Papers. Ed. by Stefan Mangard. Vol. 7771. Lecture
Notes in Computer Science. Springer, 2012, pp. 248–262.

[62] Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura, Daisuke Fujimoto, Daichi
Tanaka, Makoto Nagata, and Takafumi Aoki. “EM Attack Is Non-invasive?
- Design Methodology and Validity Verification of EM Attack Sensor”. In:
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings. Ed. by Lejla
Batina and Matthew Robshaw. Vol. 8731. Lecture Notes in Computer Science.
Springer, 2014, pp. 1–16.

[63] Michael Hutter and Jörn-Marc Schmidt. “The Temperature Side Channel and
Heating Fault Attacks”. In: IACR Cryptology ePrint Archive (2014).

[64] Auguste Kerckhoffs. “La cryptographie militaire”. In: Journal des sciences mili-
taires IX (Jan. 1883), pp. 5–83.

[65] HeeSeok Kim, Seokhie Hong, and Jongin Lim. “A Fast and Provably Secure
Higher-Order Masking of AES S-Box”. In: Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings. Ed. by Bart Preneel and Tsuyoshi Takagi. Vol. 6917.
Lecture Notes in Computer Science. Springer, 2011, pp. 95–107.

[66] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,

130

Bibliography

1996, Proceedings. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in Computer
Science. Springer, 1996, pp. 104–113.

[67] Paul C. Kocher. Leak-resistant cryptographic indexed key update. Patent. US 6539092.
Mar. 2003.

[68] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
In: Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by
Michael J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer,
1999, pp. 388–397.

[69] Sebastian Kutzner, Phuong Ha Nguyen, and Axel Poschmann. “Enabling 3-
Share Threshold Implementations for all 4-Bit S-Boxes”. In: Information Security
and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November
27-29, 2013, Revised Selected Papers. Ed. by Hyang-Sook Lee and Dong-Guk Han.
Vol. 8565. Lecture Notes in Computer Science. Springer, 2013, pp. 91–108.

[70] Kerstin Lemke-Rust and Christof Paar. “Gaussian Mixture Models for Higher-
Order Side Channel Analysis”. In: Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings. Ed. by Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. Lecture
Notes in Computer Science. Springer, 2007, pp. 14–27.

[71] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

[72] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. “Side-Channel Leak-
age of Masked CMOS Gates”. In: Topics in Cryptology - CT-RSA 2005, The
Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, Febru-
ary 14-18, 2005, Proceedings. Ed. by Alfred Menezes. Vol. 3376. Lecture Notes in
Computer Science. Springer, 2005, pp. 351–365.

[73] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings. Ed. by
Tor Helleseth. Vol. 765. Lecture Notes in Computer Science. Springer, 1993,
pp. 386–397.

[74] Marcel Medwed and François-Xavier Standaert. “Extractors against side-
channel attacks: weak or strong?” In: J. Cryptographic Engineering 1.3 (2011),
pp. 231–241.

[75] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. “Fresh Re-keying: Security against Side-Channel and Fault Attacks
for Low-Cost Devices”. In: Progress in Cryptology - AFRICACRYPT 2010, Third
International Conference on Cryptology in Africa, Stellenbosch, South Africa, May

131

Bibliography

3-6, 2010. Proceedings. Ed. by Daniel J. Bernstein and Tanja Lange. Vol. 6055.
Lecture Notes in Computer Science. Springer, 2010, pp. 279–296.

[76] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. “Towards Super-
Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs”. In:
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings. Ed. by Emmanuel
Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes in Computer Science.
Springer, 2012, pp. 193–212.

[77] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[78] Nele Mentens, Benedikt Gierlichs, and Ingrid Verbauwhede. “Power and Fault
Analysis Resistance in Hardware through Dynamic Reconfiguration”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2008, 10th International Work-
shop, Washington, D.C., USA, August 10-13, 2008. Proceedings. Ed. by Elisabeth
Oswald and Pankaj Rohatgi. Vol. 5154. Lecture Notes in Computer Science.
Springer, 2008, pp. 346–362.

[79] Amir Moradi, Mario Kirschbaum, Thomas Eisenbarth, and Christof Paar.
“Masked Dual-Rail Precharge Logic Encounters State-of-the-Art Power Analysis
Methods”. In: IEEE Trans. VLSI Syst. 20.9 (2012), pp. 1578–1589.

[80] Amir Moradi and Oliver Mischke. “On the Simplicity of Converting Leakages
from Multivariate to Univariate - (Case Study of a Glitch-Resistant Masking
Scheme)”. In: Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings.
Ed. by Guido Bertoni and Jean-Sébastien Coron. Vol. 8086. Lecture Notes in
Computer Science. Springer, 2013, pp. 1–20.

[81] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. “Correlation-Enhanced
Power Analysis Collision Attack”. In: Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings. Ed. by Stefan Mangard and François-Xavier Standaert.
Vol. 6225. Lecture Notes in Computer Science. Springer, 2010, pp. 125–139.

[82] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
“Pushing the Limits: A Very Compact and a Threshold Implementation of
AES”. In: Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings. Ed. by Kenneth G. Paterson. Vol. 6632.
Lecture Notes in Computer Science. Springer, 2011, pp. 69–88.

[83] Debdeep Mukhopadhyay. “An Improved Fault Based Attack of the Advanced
Encryption Standard”. In: Progress in Cryptology - AFRICACRYPT 2009, Second

132

Bibliography

International Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,
2009. Proceedings. Ed. by Bart Preneel. Vol. 5580. Lecture Notes in Computer
Science. Springer, 2009, pp. 421–434.

[84] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Threshold Imple-
mentations Against Side-Channel Attacks and Glitches”. In: Information and
Communications Security, 8th International Conference, ICICS 2006, Raleigh, NC,
USA, December 4-7, 2006, Proceedings. Ed. by Peng Ning, Sihan Qing, and
Ninghui Li. Vol. 4307. Lecture Notes in Computer Science. Springer, 2006,
pp. 529–545.

[85] NIST Computer Security Division. Advanced Encryption Standard (AES). FIPS
Publication 197. National Institute of Standards and Technology, U.S. Depart-
ment of Commerce, 2001.

[86] NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. FIPS Publication 202. National Institute of
Standards and Technology, U.S. Department of Commerce, May 2014.

[87] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer Berlin Heidelberg, 2009.

[88] Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal Malkin, and
Moti Yung. “A block cipher based pseudo random number generator secure
against side-channel key recovery”. In: Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2008, Tokyo,
Japan, March 18-20, 2008. Ed. by Masayuki Abe and Virgil D. Gligor. ACM,
2008, pp. 56–65.

[89] Krzysztof Pietrzak. “A Leakage-Resilient Mode of Operation”. In: Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings. Ed. by Antoine Joux. Vol. 5479. Lecture Notes in Computer
Science. Springer, 2009, pp. 462–482.

[90] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD”. In:
Cryptographic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings. Ed. by Colin
D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779. Lecture Notes in
Computer Science. Springer, 2003, pp. 77–88.

[91] Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan Mangard. “Eval-
uation of the Masked Logic Style MDPL on a Prototype Chip”. In: Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings. Ed. by Pascal Paillier and Ingrid

133

Bibliography

Verbauwhede. Vol. 4727. Lecture Notes in Computer Science. Springer, 2007,
pp. 81–94.

[92] François Poucheret, Lyonel Barthe, Pascal Benoit, Lionel Torres, Philippe Mau-
rine, and Michel Robert. “Spatial EM jamming: A countermeasure against EM
Analysis?” In: 18th IEEE/IFIP VLSI-SoC 2010, IEEE/IFIP WG 10.5 International
Conference on Very Large Scale Integration of System-on-Chip, Madrid, Spain, 27-29
September 2010. IEEE, 2010, pp. 105–110.

[93] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. “Simple
Key Enumeration (and Rank Estimation) Using Histograms: An Integrated
Approach”. In: Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings.
Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813. Lecture Notes in
Computer Science. Springer, 2016, pp. 61–81.

[94] Emmanuel Prouff and Matthieu Rivain. “Masking against Side-Channel At-
tacks: A Formal Security Proof”. In: Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by Thomas
Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science.
Springer, 2013, pp. 142–159.

[95] Emmanuel Prouff and Thomas Roche. “Higher-Order Glitches Free Imple-
mentation of the AES Using Secure Multi-party Computation Protocols”. In:
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings. Ed. by Bart
Preneel and Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer Science.
Springer, 2011, pp. 63–78.

[96] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis (EMA):
Measures and Counter-measures for Smart Cards”. In: Smart Card Programming
and Security: International Conference on Research in Smart Cards, E-smart 2001
Cannes, France, September 19–21, 2001 Proceedings. Ed. by Isabelle Attali and
Thomas Jensen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 200–
210.

[97] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. “Consolidating Masking Schemes”. In: Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I. Ed. by Rosario Gennaro and Matthew
Robshaw. Vol. 9215. Lecture Notes in Computer Science. Springer, 2015, pp. 764–
783.

[98] Vincent Rijmen. Efficient Implementation of the Rijndael S-box.

134

Bibliography

[99] Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-Order
Masking of AES”. In: Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings. Ed. by Stefan Mangard and François-Xavier Standaert. Vol. 6225.
Lecture Notes in Computer Science. Springer, 2010, pp. 413–427.

[100] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. “Higher-Order Masking
and Shuffling for Software Implementations of Block Ciphers”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings. Ed. by Christophe Clavier
and Kris Gaj. Vol. 5747. Lecture Notes in Computer Science. Springer, 2009,
pp. 171–188.

[101] Thomas Roche and Emmanuel Prouff. “Higher-order glitch free implementa-
tion of the AES using Secure Multi-Party Computation protocols - Extended
version”. In: J. Cryptographic Engineering 2.2 (2012), pp. 111–127.

[102] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R.
Rao, and Pankaj Rohatgi. “Efficient Rijndael Encryption Implementation with
Composite Field Arithmetic”. In: Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001, Pro-
ceedings. Ed. by Çetin Kaya Koç, David Naccache, and Christof Paar. Vol. 2162.
Lecture Notes in Computer Science Generators. Springer, 2001, pp. 171–184.

[103] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury.
“A Diagonal Fault Attack on the Advanced Encryption Standard”. In: IACR
Cryptology ePrint Archive (2009).

[104] Pascal Sasdrich, Amir Moradi, and Tim Güneysu. “White-Box Cryptography
in the Gray Box”. In: Fast Software Encryption: 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Ed. by
Thomas Peyrin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 185–
203.

[105] Laurent Sauvage, Sylvain Guilley, and Yves Mathieu. “Electromagnetic Ra-
diations of FPGAs: High Spatial Resolution Cartography and Attack on a
Cryptographic Module”. In: TRETS 2.1 (2009), 4:1–4:24.

[106] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochastic Model
for Differential Side Channel Cryptanalysis”. In: Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings. Ed. by Josyula R. Rao and Berk Sunar.
Vol. 3659. Lecture Notes in Computer Science. Springer, 2005, pp. 30–46.

135

Bibliography

[107] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic,
and Jean-Pierre Seifert. “Simple photonic emission analysis of AES”. In: J.
Cryptographic Engineering 3.1 (2013), pp. 3–15.

[108] Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos. “Optical Fault Attacks
on AES: A Threat in Violet”. In: Sixth International Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2009, Lausanne, Switzerland, 6 September
2009. Ed. by Luca Breveglieri, Israel Koren, David Naccache, Elisabeth Oswald,
and Jean-Pierre Seifert. IEEE Computer Society, 2009, pp. 13–22.

[109] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. “A Collision-
Attack on AES: Combining Side Channel- and Differential-Attack”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2004: 6th International Workshop
Cambridge, MA, USA, August 11-13, 2004. Proceedings. Ed. by Marc Joye and Jean-
Jacques Quisquater. Vol. 3156. Lecture Notes in Computer Science. Springer,
2004, pp. 163–175.

[110] Kai Schramm, Thomas J. Wollinger, and Christof Paar. “A New Class of
Collision Attacks and Its Application to DES”. In: Fast Software Encryption, 10th
International Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003, Revised
Papers. Ed. by Thomas Johansson. Vol. 2887. Lecture Notes in Computer Science.
Springer, 2003, pp. 206–222.

[111] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613.

[112] Claude E. Shannon. “Communication Theory of Secrecy Systems”. In: The Bell
System Technical Journal 28.4 (Oct. 1949), pp. 656–715.

[113] Joseph H. Silverman. “Fast Multiplication in Finite Fields GF(2N)”. In: Crypto-
graphic Hardware and Embedded Systems, First International Workshop, CHES’99,
Worcester, MA, USA, August 12-13, 1999, Proceedings. Ed. by Çetin Kaya Koç and
Christof Paar. Vol. 1717. Lecture Notes in Computer Science. Springer, 1999,
pp. 122–134.

[114] Sergei Skorobogatov. “Flash Memory ’Bumping’ Attacks”. In: Cryptographic
Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings. Ed. by Stefan Mangard
and François-Xavier Standaert. Vol. 6225. Lecture Notes in Computer Science.
Springer, 2010, pp. 158–172.

[115] François-Xavier Standaert and Cédric Archambeau. “Using Subspace-Based
Template Attacks to Compare and Combine Power and Electromagnetic Infor-
mation Leakages”. In: Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008.

136

Bibliography

Proceedings. Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture
Notes in Computer Science. Springer, 2008, pp. 411–425.

[116] François-Xavier Standaert, Tal Malkin, and Moti Yung. “A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks”. In: Advances in Cryp-
tology - EUROCRYPT 2009, 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. Ed. by Antoine Joux. Vol. 5479. Lecture Notes in Computer Science.
Springer, 2009, pp. 443–461.

[117] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. “Leakage Resilient Cryptography in Practice”. In:
Towards Hardware-Intrinsic Security - Foundations and Practice. Ed. by Ahmad-
Reza Sadeghi and David Naccache. Information Security and Cryptography.
Springer, 2010, pp. 99–134.

[118] Kris Tiri and Ingrid Verbauwhede. “A Dynamic and Differential CMOS Logic
Style to Resist Power and Timing Attacks on Security IC’s”. In: IACR Cryptology
ePrint Archive (2004).

[119] Kris Tiri and Ingrid Verbauwhede. “A Logic Level Design Methodology for
a Secure DPA Resistant ASIC or FPGA Implementation”. In: 2004 Design,
Automation and Test in Europe Conference and Exposition (DATE 2004), 16-20
February 2004, Paris, France. IEEE Computer Society, 2004, pp. 246–251.

[120] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. “Cryptanalysis of DES Implemented on Computers with Cache”.
In: Cryptographic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings. Ed. by Colin
D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779. Lecture Notes in
Computer Science. Springer, 2003, pp. 62–76.

[121] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. “An Optimal Key Enumeration Algorithm and Its Application
to Side-Channel Attacks”. In: Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected
Papers. Ed. by Lars R. Knudsen and Huapeng Wu. Vol. 7707. Lecture Notes in
Computer Science. Springer, 2012, pp. 390–406.

[122] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. “An Optimal Key Enumeration Algorithm and Its Application
to Side-Channel Attacks”. In: Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected
Papers. Ed. by Lars R. Knudsen and Huapeng Wu. Vol. 7707. Lecture Notes in
Computer Science. Springer, 2012, pp. 390–406.

137

Bibliography

[123] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. “Se-
curity Evaluations beyond Computing Power”. In: Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in
Computer Science. Springer, 2013, pp. 126–141.

[124] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. “Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note”. In: Advances in Cryptology - ASIACRYPT 2012
- 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings. Ed. by Xi-
aoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science.
Springer, 2012, pp. 740–757.

[125] Nicolas Veyrat-Charvillon and François-Xavier Standaert. “Generic Side-
Channel Distinguishers: Improvements and Limitations”. In: Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings. Ed. by Phillip Rogaway. Vol. 6841. Lecture
Notes in Computer Science. Springer, 2011, pp. 354–372.

[126] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. “An ASIC
Implementation of the AES SBoxes”. In: Topics in Cryptology - CT-RSA 2002, The
Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA, USA, February 18-
22, 2002, Proceedings. Ed. by Bart Preneel. Vol. 2271. Lecture Notes in Computer
Science. Springer, 2002, pp. 67–78.

[127] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. “Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings”. In:
Selected Areas in Cryptography: 14th International Workshop, SAC 2007, Ottawa,
Canada, August 16-17, 2007, Revised Selected Papers. Ed. by Carlisle Adams, Ali
Miri, and Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 264–277.

[128] Yu Yu and François-Xavier Standaert. “Practical Leakage-Resilient Pseudoran-
dom Objects with Minimum Public Randomness”. In: Topics in Cryptology -
CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,
CA, USA, February 25-March 1, 2013. Proceedings. Ed. by Ed Dawson. Vol. 7779.
Lecture Notes in Computer Science. Springer, 2013, pp. 223–238.

[129] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. “Practical
leakage-resilient pseudorandom generators”. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois,

138

Bibliography

USA, October 4-8, 2010. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov. ACM, 2010, pp. 141–151.

139

List of Publications

Refereed Proceedings

[P20] Fabrizio De Santis, Andreas Schauer, and Georg Sigl. “ChaCha20-Poly1305
authenticated encryption for high-speed embedded IoT applications”. In: De-
sign, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne,
Switzerland, March 27-31, 2017. Ed. by David Atienza and Giorgio Di Natale.
IEEE, 2017, pp. 692–697.

[P19] Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. “Low-Cost Setup
for Localized Semi-invasive Optical Fault Injection Attacks - How Low Can We
Go?” In: Constructive Side-Channel Analysis and Secure Design - 8th International
Workshop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers.
Ed. by Sylvain Guilley. Vol. 10348. Lecture Notes in Computer Science. Springer,
2017, pp. 207–222.

[P18] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
“Automatic generation of high-performance modular multipliers for arbitrary
mersenne primes on FPGAs”. In: 2017 IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2017, McLean, VA, USA, May 1-5, 2017. IEEE
Computer Society, 2017, pp. 35–40.

[P17] Hermann Seuschek, Fabrizio De Santis, and Oscar M. Guillen. “Side-channel
leakage aware instruction scheduling”. In: Proceedings of the Fourth Workshop on
Cryptography and Security in Computing Systems, CS2@HiPEAC 2017, Stockholm,
Sweden, January 24, 2017. Ed. by Mats Brorsson, Zhonghai Lu, Giovanni Agosta,
Alessandro Barenghi, and Gerardo Pelosi. ACM, 2017, pp. 7–12.

[P16] Florian Unterstein, Johann Heyszl, Fabrizio De Santis, and Robert Specht.
“Dissecting Leakage Resilient PRFs with Multivariate Localized EM Attacks - A
Practical Security Evaluation on FPGA”. In: Constructive Side-Channel Analysis
and Secure Design - 8th International Workshop, COSADE 2017, Paris, France, April
13-14, 2017, Revised Selected Papers. Ed. by Sylvain Guilley. Vol. 10348. Lecture
Notes in Computer Science. Springer, 2017, pp. 34–49.

141

8 List of Publications

[P15] Fabrizio De Santis, Tobias Bauer, and Georg Sigl. “Hiding Higher-Order Uni-
variate Leakages by Shuffling Polynomial Masking Schemes: A More Efficient,
Shuffled, and Higher-Order Masked AES S-box”. In: Proceedings of the ACM
Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Austria,
October, 2016. Ed. by Begül Bilgin, Svetla Nikova, and Vincent Rijmen. ACM,
2016, pp. 17–26.

[P14] Fabrizio De Santis, Tobias Bauer, and Georg Sigl. “Squeezing Polynomial
Masking in Tower Fields - A Higher-Order Masked AES S-Box”. In: Smart Card
Research and Advanced Applications - 15th International Conference, CARDIS 2016,
Cannes, France, November 7-9, 2016, Revised Selected Papers. Ed. by Kerstin Lemke-
Rust and Michael Tunstall. Vol. 10146. Lecture Notes in Computer Science.
Springer, 2016, pp. 192–208.

[P13] Oscar M. Guillen, Fabrizio De Santis, Ralf Brederlow, and Georg Sigl. “Towards
Side-Channel Secure Firmware Updates - A Minimalist Anomaly Detection
Approach”. In: Foundations and Practice of Security - 9th International Symposium,
FPS 2016, Québec City, QC, Canada, October 24-25, 2016, Revised Selected Papers.
Ed. by Frédéric Cuppens, Lingyu Wang, Nora Cuppens-Boulahia, Nadia Tawbi,
and Joaquín García-Alfaro. Vol. 10128. Lecture Notes in Computer Science.
Springer, 2016, pp. 345–360.

[P12] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
“X25519 Hardware Implementation for Low-Latency Applications”. In: 2016
Euromicro Conference on Digital System Design, DSD 2016, Limassol, Cyprus,
August 31 - September 2, 2016. Ed. by Paris Kitsos. IEEE Computer Society, 2016,
pp. 99–106.

[P11] Hermann Seuschek, Johann Heyszl, and Fabrizio De Santis. “A Cautionary
Note: Side-Channel Leakage Implications of Deterministic Signature Schemes”.
In: Proceedings of the Third Workshop on Cryptography and Security in Computing
Systems, CS2@HiPEAC, Prague, Czech Republic, January 20, 2016. Ed. by Martin
Palkovic, Giovanni Agosta, Alessandro Barenghi, Israel Koren, and Gerardo
Pelosi. ACM, 2016, pp. 7–12.

[P10] Michael Tempelmeier, Fabrizio De Santis, Jens-Peter Kaps, and Georg Sigl. “An
area-optimized serial implementation of ICEPOLE authenticated encryption
schemes”. In: 2016 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016. Ed. by William H.
Robinson, Swarup Bhunia, and Ryan Kastner. IEEE Computer Society, 2016,
pp. 49–54.

[P9] Fabrizio De Santis, Oscar M. Guillen, Ermin Sakic, and Georg Sigl. “Ciphertext-
Only Fault Attacks on PRESENT”. In: Lightweight Cryptography for Security and

142

Refereed Proceedings

Privacy - Third International Workshop, LightSec 2014, Istanbul, Turkey, September
1-2, 2014, Revised Selected Papers. Ed. by Thomas Eisenbarth and Erdinç Öztürk.
Vol. 8898. Lecture Notes in Computer Science. Springer, 2014, pp. 85–108.

[P8] Fabrizio De Santis and Stefan Rass. “On Efficient Leakage-Resilient Pseudo-
random Functions with Hard-to-Invert Leakages”. In: Progress in Cryptology -
LATINCRYPT 2014 - Third International Conference on Cryptology and Information
Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised
Selected Papers. Ed. by Diego F. Aranha and Alfred Menezes. Vol. 8895. Lecture
Notes in Computer Science. Springer, 2014, pp. 127–145.

[P7] Fabrizio De Santis, Michael Kasper, Stefan Mangard, Georg Sigl, Oliver Stein,
and Marc Stöttinger. “On the Relationship between Correlation Power Analysis
and the Stochastic Approach: An ASIC Designer Perspective”. In: Progress in
Cryptology - INDOCRYPT 2013 - 14th International Conference on Cryptology in
India, Mumbai, India, December 7-10, 2013. Proceedings. Ed. by Goutam Paul and
Serge Vaudenay. Vol. 8250. Lecture Notes in Computer Science. Springer, 2013,
pp. 215–226.

[P6] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and Georg
Sigl. “Clustering Algorithms for Non-profiled Single-Execution Attacks on
Exponentiations”. In: Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers. Ed. by Aurélien Francillon and Pankaj Rohatgi. Vol. 8419.
Lecture Notes in Computer Science. Springer, 2013, pp. 79–93.

[P5] Johann Heyszl, Dominik Merli, Benedikt Heinz, Fabrizio De Santis, and Georg
Sigl. “Strengths and Limitations of High-Resolution Electromagnetic Field
Measurements for Side-Channel Analysis”. In: Smart Card Research and Advanced
Applications - 11th International Conference, CARDIS 2012, Graz, Austria, November
28-30, 2012, Revised Selected Papers. Ed. by Stefan Mangard. Vol. 7771. Lecture
Notes in Computer Science. Springer, 2012, pp. 248–262.

[P4] Matthias Hiller, Fabrizio De Santis, Dominik Merli, and Georg Sigl. “Relia-
bility bound and channel capacity of IBS-based fuzzy embedders”. In: 2012
NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2012, Erlangen,
Germany, June 25-28, 2012. Ed. by Umeshkumar D. Patel, Khaled Benkrid, and
David Merodio. IEEE, 2012, pp. 213–220.

[P3] Alessandro Barenghi, Guido Bertoni, Fabrizio De Santis, and Filippo Melzani.
“On the Efficiency of Design Time Evaluation of the Resistance to Power
Attacks”. In: 14th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, DSD 2011, August 31 - September 2, 2011, Oulu, Finland. IEEE
Computer Society, 2011, pp. 777–785.

143

8 List of Publications

[P2] Giovanni Agosta, Alessandro Barenghi, Fabrizio De Santis, and Gerardo Pelosi.
“Record Setting Software Implementation of DES Using CUDA”. In: Seventh
International Conference on Information Technology: New Generations, ITNG 2010,
Las Vegas, Nevada, USA, 12-14 April 2010. Ed. by Shahram Latifi. IEEE Computer
Society, 2010, pp. 748–755.

[P1] Giovanni Agosta, Alessandro Barenghi, Fabrizio De Santis, Andrea Di Biagio,
and Gerardo Pelosi. “Fast Disk Encryption through GPGPU Acceleration”. In:
2009 International Conference on Parallel and Distributed Computing, Applications
and Technologies, PDCAT 2009, Higashi Hiroshima, Japan, 8-11 December 2009.
IEEE Computer Society, 2009, pp. 102–109.

Refereed Journals

[J4] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl. “Fast
FPGA Implementations of Diffie-Hellman on the Kummer Surface of a Genus-2
Curve”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. (TCHES) 2018.1 (2018),
pp. 1–17.

[J3] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
“Low-latency X25519 hardware implementation: breaking the 100 microseconds
barrier”. In: Microprocessors and Microsystems - Embedded Hardware Design 52
(2017), pp. 491–497.

[J2] Silvan Streit and Fabrizio De Santis. “Post-Quantum Key Exchange on ARMv8-
A: A New Hope for NEON Made Simple”. In: IEEE Transactions on Computers
(2017).

[J1] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
“Towards fresh re-keying with leakage-resilient PRFs: cipher design principles
and analysis”. In: J. Cryptographic Engineering 4.3 (2014), pp. 157–171.

Refereed Book Chapters

[B1] Alessandro Barenghi, Luca Breveglieri, Fabrizio De Santis, Filippo Melzani,
Andrea Palomba, and Gerardo Pelosi. “Design Time Engineering of Side Chan-
nel Resistant Cipher Implementations”. In: Theory and Practice of Cryptography
Solutions for Secure Information Systems. Ed. by Atilla Elçi, Mehmet A. Orgun,
Josef Pieprzyk, Alexander G. Chefranov, Huaxiong Wang, and Rajan Shankaran.

144

Refereed Book Chapters

Advances in Information Security, Privacy, and Ethics (AISPE). IGI Global, 2013,
pp. 133–157.

145

	Introduction
	Secret-Key Cryptography
	Adversary Models
	Security Definitions

	Motivation of This Work
	Main Contributions and Open Issues
	Polynomial Masking Schemes
	Fresh Re-Keying with Leakage-Resilient PRFs

	Thesis Outline

	Background
	Power Consumption in CMOS Devices
	Power Measurements of ICs

	Electro-Magnetic Fields
	EM Measurements of ICs
	EM Probes
	IC Decapsulation
	EM Micro-probes

	Implementation Attacks
	Side-Channel Attacks
	Fault Attacks

	Implementation Countermeasures
	Masking Schemes
	Hiding Schemes
	Re-Keying Schemes

	Design of a Higher-Order and Shuffled Polynomially Masked AES S-box
	Polynomial Masking
	AES
	The SubBytes Operation

	Addition Chains
	Star Chains

	New Selection Principles
	Previous Work
	New Addition Chains

	Hardware Design
	Adding Shuffling
	Performance Evaluation

	Summary

	Squeezing Polynomial Masking into Tower Fields
	Arithmetic in Tower Fields
	Proposed Polynomially Masked AES S-box in GF((24)2)
	Hardware Design
	Performance Comparison

	Summary

	Electro-Magnetic Field Analysis of Polynomial Masking Schemes
	Evaluation Methodology
	Measurement Setup
	Side-Channel Collision Attacks

	Experimental Results on FPGA
	GF(28) AES S-box Implementation
	GF((24)2) AES S-box Implementation

	Summary

	Defeating the Super-Exponential Security of LRPRFs with Localized EM Attacks
	Leakage-Resilient Cryptography
	Pseudo-Random Functions
	The GGM Construction
	Leakage-Resilient Pseudo-Random Functions
	Fresh Re-Keying with PRF

	Evaluation Methodology
	FPGA Prototype Design
	Measurement Setup

	Univariate Localized EM Attacks
	Worst-case profiling in open mode
	Attacks exploiting worst-case profiles in fixed mode

	Multivariate Localized EM Attacks
	Summary

	Spatial Randomized Leakage-Resilient PRFs
	Evaluation of Permutation Networks
	Butterfly Networks
	Omega and Flip Networks
	Beneš Networks
	Comparison Overview

	Spatial Randomized Leakage-Resilient PRFs
	The Simple Way: Two Stage Rotations

	Hardware Design
	Implementation Results

	Summary

	Conclusion
	Summary
	Further Directions

	Bibliography
	List of Publications

