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Abstract— In this paper, we propose a framework for pri-
oritized constraint-based specification of robot tasks. This
framework is integrated with a cognitive robotic system based
on semantic models of processes, objects, and workcells. The
target is to enable intuitive (re-)programming of robot tasks,
in a way that is suitable for non-expert users typically found
in SMEs. Using CAD semantics, robot tasks are specified as
geometric inter-relational constraints. During execution, these
are combined with constraints from the environment and the
workcell, and solved in real-time. Our constraint model and
solving approach supports a variety of constraint functions
that can be non-linear and also include bounds in the form
of inequalities, e.g., geometric inter-relations, distance, collision
avoidance and posture constraints. It is a hierarchical approach
where priority levels can be specified for the constraints, and
the nullspace of higher priority constraints is exploited to
optimize the lower priority constraints. The presented approach
has been applied to several typical industrial robotic use-cases
to highlight its advantages compared to other state-of-the-art
approaches.

I. INTRODUCTION

Our main motivation in this work is to exploit the
paradigm of constraint-based robot programming based on
underspecified robot tasks, in order to create a programming
interface that is intuitive and natural to use for non-expert
users.

A majority of current industrial robotic systems lack a
clear distinction between task-level programming and robot
programming. The ability to program a task by referring to
manipulation objects and their properties, without necessarily
and explicitly considering domain specific knowledge (e.g.,
the workspace and robot limits), is important from the view-
point of intuitiveness. This distinction is a central concept
in our approach, where our framework automatically and
transparently from the user combines a task description with
domain specific knowledge required for execution by a robot.

Robotic tasks often do not require strictly defined goals,
e.g., for a pick task on a cylindrical pipe-like object, the
grasping can be done at any point on its rim. The redundancy
can be even higher when these target poses are mapped to
robot configurations. We propose the use of geometric inter-
relational constraints to define such underspecified robot
tasks. The possibility of incorporating min/max values or
bounds for constraint functions significantly enhances the
scope of constraint-based task definitions. As an example,
in the grasping scenario presented in Fig. 2, minimum and

∗TUM CREATE, 1 CREATE WAY, Singapore. †fortiss, An-Institut
Technische Universität München, Munich, Germany. ‡Technische Univer-
sität München, Munich, Germany. Correspondence should be addressed to
somani@in.tum.de

(a)

�max

�min

(b)

�max

�min

(c)

Fig. 1: Manipulation of a tray: The robot task is to carry a
tray that contains objects. To prevent the objects from falling,
the tray must be kept upright. Allowed tolerances in rotation
can be encoded as min-max values of the orientations �min
and �max along the respective axes. (a) The tray is grasped
by a dual-arm robot. A set of min-max constraints can be
used to express the inherent flexibility of the grasping task.
(b) and (c) The tray is grasped by a single robot arm.

maximum values of the distance from the cylinder’s axis to
the tool center point are used to encode the varying span of
gripper fingers. Similarly, the cylinder can be grasped higher
or lower depending on the length of the gripper fingers. This
is expressed as bounds on the vertical distance of the tool
center point from the cylinder’s center point. Such constraints
are difficult to express without inequalities.

Another exemplary robotic task that describes the moti-
vation behind this work is indicated in Fig. 1. The robot
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Fig. 2: Underspecified robot tasks: the robot pose is not completely specified and can be moved in the nullspace highlighted
by the dotted axes. The grasping point can be located anywhere along the rim of the cylinder (a) (blue). Also, depending
on the gripper span (b) and finger length (c), it can be moved along the green and red axes respectively.

holds a tray which carries a cup filled with a liquid. The
task for the robot is to carry the tray. The primary constraint
related to this task is that the liquid shouldn’t spill. This task
can be expressed in the operational space using frameworks
such as [1], by fixing the orientation of the tray while
keeping the translations free. Additional constraints from the
environment (e.g., collision avoidance), robot model (e.g.,
physical joint limits) and safety requirements (e.g., joint
velocity limits) also need to be incorporated. Given the
increasing number of tasks and constraints, some of which
are also intrinsically non-linear, priorities between them are
also essential to represent their relative importances. This
can be handled by frameworks such as [2]–[4]. This task
can also be expressed using constraints between different
frames (robot base, tray, cup) using the iTaSC approach [5].
Depending on the amount of liquid in the cup, the orientation
constraints can be relaxed to have minimum and maximum
values. This allows more flexibility in task execution and
can be handled by frameworks such as [6], [7]. While the
aforementioned frameworks can handle this task to varying
levels of complexity, they still require the task to be specified
in terms of desired poses, velocities, forces or constraints
between frames. [8] and [9] go a step further and define
tasks as relations between geometric entities that comprise
manipulation objects (e.g., orientation of the planar surface
of the tray).

Our motivation is to develop a framework that can repre-
sent such robot tasks using geometric (non-linear) constraints
between manipulation objects (with minimum and maximum
values), optimally combine them with other constraints (from
the environment, robot model, etc.) with different priority
levels, and execute it efficiently (< 4ms).

The proposed framework is based on a composable struc-
ture where several constraints, each describing (parts of) a
task or behavior, can be combined. The framework supports
several types of constraints: some arise from the task defini-
tion (e.g., assembly mating constraints), others from aspects
of the robot and the workcell (e.g., obstacles, joint limits).
These constraints can be specified at the pose or velocity
levels in operational space (x) or the robot’s configuration

space (q). Priority levels can also be specified for each of the
constraints. This is useful for enforcing safety constraints, as
well as adapting the robot behavior during runtime when not
all constraints can be satisfied simultaneously. The solver
can exploit the nullspace of mandatory or higher priority
constraints to optimize lower priority constraints or sec-
ondary objectives (e.g., posture optimization). An important
contribution in this work is a constraint-based robot control
framework, which takes these different types of (non-linear,
inequality) constraints with multiple levels of priorities as
input and solves them to obtain target poses for the robot.

II. RELATED WORK

Our work builds upon several classical robotic concepts
such as operational space control [1], and ideas such as
constraint-based task specification [5], prioritized motion
control [4], task-constraint-based control [3], [9], task-space
inverse dynamics [10], motion primitives [11], robot skill
definitions [12], trajectory optimization [13], geometric con-
straint solving for CAD models [8] and intuitive interfaces
for robot programming [14]–[16].

Constraint-based robot programming has a long history
dating back to the task-level planner Handey (1987) [17] and
operational space constraints for redundant robots [1], fol-
lowed by works on multiple objective prioritized control and
whole body control in [2], [4], [18], frame-based constraints
in iTaSC [5], task-based control [3], and more recently in
task space inverse dynamics [10] and geometric constraints
based on CAD semantics [9].

In terms of the types of constraints and solvers used,
most robotics frameworks optimize in the linear least squares
sense, e.g., operational space control [1], iTaSC [5], and more
recently in Task-Space Inverse Dynamics [10]. However,
most tasks are naturally expressed with inequality con-
straints, e.g., joint limits [19], collision avoidance [3], [20],
and singularity avoidance [21]. A number of frameworks
can handle inequality constraints [6], [7], but do not allow
prioritized tasks. In [4], a specialized optimal solver that
can handle linear inequality constraints with multiple levels
of priorities was presented. Many robotic constraints are



TABLE I: Comparison of Control Frameworks

Framework Optimal Efficient Geometric Constraints Force Control Inequality Hierarchical Under Actuated Output

This work 3 3 3 3 3 3 q
TSID [10] 3 3 3 3 �
WBCF [2] 3 3 3 3 �
Lenz et al. [3] 3 3 3 3 q̇
iTaSC [5], [7] 3 3 3 3 3 3 q̇
Somani et al. [9] 3 3 3 q
Rodriguez et al. [8] 3 3 3 3 q

non-linear by definition (e.g., manipulability [21]) and the
constraint solving framework needs to support this explicitly.

Applications based on a representation of coordinate
frames and geometric relations between them were presented
in [22]. [8] and [9] defined geometric relations between
geometric entities (e.g., points, lines, surfaces) that comprise
manipulation objects. Modern trajectory optimization frame-
works such as CHOMP [23] can keep a given distance to
obstacles, and the more recent Trajopt [13] allows opera-
tional constraints to be defined.

The approach presented in this paper has three new
enhancements compared to state-of-the-art approaches (es-
pecially to our previous work [9]). Firstly, we create a new
and more powerful constraint model and constraint solving
formulation that can handle non-linear inequality constraints,
thereby allowing us to model much more complicated con-
straints. Secondly, this framework uses the same constraint
formulation to model both task constraints (e.g., geometric
inter-relational constraints) and environment constraints (e.g.,
obstacle avoidance, velocity limits), making it possible to
seamlessly integrate them during runtime. Finally, we sup-
port different priority levels for tasks, where the low priority
tasks are optimized in the nullspace of the higher priority
tasks.

A qualitative comparison of our framework to other ap-
proaches is shown in Table I. As evident from this table, there
are several works that have addressed one or more qualita-
tive features that are included in our proposed framework.
However, in terms of tasks at the configuration/operational
position level, our framework offers a unique and larger set
of features than the rest. The support for force constraints is
one aspect where some of the other frameworks fare better,
and this is a feature that we plan to include in the future.

We first describe the modeling of different types of con-
straints in Section III. Section IV then presents the constraint
solving approaches for different applications. Some robotic
applications based on our approach are discussed in Sec-
tion V. Finally, analysis and evaluations of our approach are
described in Section VI, followed by conclusion and ideas
for future work in Section VII.

III. ROBOT CONSTRAINT MODELING

Distinction between different types of constraints is an
important concept in our approach. Robot independent task
constraints depend only on the manipulation objects (e.g.,

assembly), manipulation constraints (e.g., grasping) depend
on the object and tool, workcell constraints (e.g., collision
avoidance, velocity limits) depend on the workcell and robot,
and robot constraints depend only on the robot model (e.g.,
joint limits). To execute a task on a robot, several constraints
at different levels are combined together, and solved using
our constraint solving framework.

A. Geometric constraints

We use a boundary representation (B-REP) [24] for all
geometric entities in the robotic system. This format de-
composes each object into semantically meaningful primitive
shapes (e.g., points, lines, planes, cylinders). Robot tasks can
then be specified in terms of geometric constraints between
these entities. Given a fixed and a constrained shape, a
geometric constraint adds restrictions to the relative pose of
the constrained shape w.r.t. the fixed shape. If both geometric
entities can move, an additional constraint is added where
the fixed and constrained geometries are swapped. While
the definition of constraint functions depends on the involved
geometric entities, their bounds also depend on user-specified
minimum and maximum values for the constraints.

An oriented point in Cartesian space consists of a 3D
position (p) and a 3D direction vector (n). Table II lists some
of the geometric constraints that are supported by our system
and are relevant to our use-cases.

B. Environment and safety constraints

In addition to direct geometric relations, the robot con-
troller needs to incorporate safety requirements arising from
the robot model (e.g., joint limits) and from the work-
cell/environment (e.g., collision avoidance). Besides these,
there are additional limitations on the robot’s speed and ac-
celeration when a human is present in the robot’s workspace
to ensure safe collaboration. These constraints are summa-
rized in Table III.

1) Obstacle avoidance: Almost all robot tasks require
that collisions are avoided. Minimum distances are efficiently
computed between each link of the robot and the object to
be avoided using the Gilbert/Johnson/Keerthi algorithm [25].
Each distance computation provides the minimum distance
dij , and the points pi and pj on the robot link Bi and obstacle
Oj respectively. If the distance d is below a threshold value
dthresh, the robot motion is constrained in a way that it does



TABLE II: Summary of supported geometric constraints

Fixed Constrained Constraint (i) Constraint Function (gi) Lower Bound (lb) Upper Bound (ub)

Point1 Point2 Distance (dmin, dmax) [p21Tp21] [d2min] [d2max]

Plane1 Plane2 Parallel Distance Angle (dmin, dmax, �min, �max) [nT1p21;n2
Tn1] [dmin; cos(�max)] [dmax; cos(�min)]

Line1 Line2 Parallel Distance (dmin, dmax) [‖p21 − (nT1 p21)n1‖
2
2;n2

Tn1] [d2min; 1] [d2max; 1]

Line1 Plane2 Coincident [n2T(p21 − (nT1p21)n1)] [0] [0]
Point1 Plane2 Distance (dmin, dmax) [n2Tp21] dmin dmax
Point1 Line2 Distance (dmin, dmax) [‖p21 − (n2Tp21)n2‖22] d2min d2max
Plane1 Point2 Distance (dmin, dmax) [nT1p21] dmin dmax
Frame1 Frame2 Transformation (T 12,d ) [dist(T 12 ,T

1
2,d )] − −

not move closer to the object, see (1).

0 ≤ dij = ‖(pi − pj)‖ ≤ dthresh,∀Bi, Oj (1)

2) Robot limits: Limitation of the robot kinematic struc-
ture, e.g., joint position/velocity/acceleration limits, can be
modeled as inequality constraints (Table III).

3) Whole body limits: Limitations on the operational po-
sition/velocity/acceleration of each robot link or operational
element can also be modeled as inequality constraints (Ta-
ble III).

C. Manipulability optimization

The manipulability measure, introduced by
Yoshikawa [21], indicates the feasibility of velocities
in different Cartesian directions from a given robot pose. It
can be used as a quality measure for robot poses, and the
optimization goal is to maximize this measure (Table III).
(2) shows a unit sphere in joint velocity space, which can
be projected into Cartesian space using the pseudo-inverse
of the robot Jacobian J # (3). This can be simplified to
(4), which then represents the space of feasible Cartesian
velocities.

q̇Tq̇ = 1 (2)
(

J #ẋ
)T J #ẋ = 1 (3)

ẋT
(

JJT
)−1 ẋ = 1 (4)

This can also be understood in terms of the eigenvalues
and eigenvectors of JJT, where the eigenvectors represent
the axis directions, and square-roots of the eigenvalues the
lengths of the axes. Yoshikawa’s manipulability measure
√

det
(

JJT
)

specifies the volume of the ellipsoid and is
maximized in isotropic configurations (where the lengths of
the axes are equal).

IV. CONSTRAINT SOLVING APPROACH

Let the vector (t, r) denote a pose in operational space
with the translation t and the rotation represented as axis
angles r = (w, �), where ‖w‖ = 1, 0 ≤ � ≤ �. Rigid
transformations are represented as x = (t, r). The generic
non-linear inequality constraint solving approach in (5) per-
forms optimization in the space of an optimization variable

v. It requires an optimization function f (v) along with
functions for constraints gi(v) and their bounds lb(gi), ub(gi).
Derivatives )f∕)v, )gi∕)v may also be provided and can be
used for the optimization routine.

argmin
v

f (v)

subject to lb(gi) ≤ gi(v) ≤ ub(gi), i = 1,… , m.
(5)

This optimization problem (5) is then solved using the
non-linear optimization utility from the NLOpt1 library with
the COBYLA [26] solver.

In case of prioritized tasks, the specialized solver formu-
lation in Section IV-B is used. This is the most generic
formulation which is equivalent to the other formulations
in some special cases. When the minimization of the joint
position distance is at the second priority level and all
others are at the first priority level, the prioritized solver
is equivalent to the formulation IV-A.

A. Optimization in configuration space

In this formulation, the optimization is performed over
the target configurations of the robot (v = q). Since some of
the task constraints are functions of relative transformations
gi(x), there needs to be a function x = FKΔ(q) which can
be constructed using the forward kinematic function (FK(q))
of the robot (6).

FKΔ(q) = FK(q) FK(qcurrent)−1 (6)

The derivative of the cost function (7) can be computed with
central differences (8) with a step Δq = 1 × 10−7

)gi
)q

=
)gi
)x

)x
)q

(7)

)x
)q

=
FKΔ(q + Δq) − FKΔ(q − Δq)

2Δq
(8)

The function to be minimized is the distance from the
current joint position qcurrent to the target joint position q,
i.e., f (q) = ‖q − qcurrent‖2 in (5).

1http://ab-initio.mit.edu/nlopt



TABLE III: Summary of supported environment/robot constraints

Fixed Constrained Constraint (i) Constraint Function (gi) Lower Bound (lb) Upper Bound (ub)

Object Oj Link Bi Distance (dmin)
[

‖(pi − pj)‖
]

dmin −

− Robot Joint Angles (qmin, qmax) [q] qmin qmax
− Robot Joint Velocities (q̇min, q̇max) [q̇] q̇min q̇max
− Robot Cartesian Velocity (ẋmin, ẋmax) [ẋ] ẋmin ẋmax

− Robot Manipulability 1∕
(

1 +
√

det
(

JJT
))

− −

Input: Optimization variable v, Constraint functions gk,
their bounds lb(gk) ≤ gk(v) ≤ ub(gk)
(1 ≤ k ≤ m) and priority levels [1, .., n]

Output: v
for priority level 1 ≤ i ≤ n do

foreach each constraint gk do
if Priority(gk) > i then Tlp ← Tlp ∪ gk ;
if Priority(gk) < i then Thp ← Thp ∪ gk ;
if Priority(gk) = i then

if gk is bounded then
Thp ← Thp ∪ gk

else
Tlp ← Tlp ∪ gk

end
end

end
if Tlp = ∅ then f = ‖v‖2 else use Equation (9);
solve for v using Equation (10)
foreach each constraint gk do

if Priority(gk) = i & gk is unbounded then
ub(gk)← gk

end
end

end
Algorithm 1: Constraint solving for prioritized tasks

B. Task priorities and nullspaces

In the previous sections, tasks are modeled as constraints g
in the optimization problem, while the optimization function
f tries to find the closest robot pose in operational or
configuration space that satisfies the constraints. Hence, all
task constraints are modeled at the same priority level. While
this approach allows finding a solution that satisfies all the
constraints simultaneously, it also has some limitations. The
optimization function would simply not converge in case
some constraints are not satisfiable. In such cases, it is
important to define a priority on the constraints so that
the optimization of some unsatisfiable constraints can be
sacrificed in favor of higher priority constraints.

To achieve this, the constraint solving framework is mod-
ified. In the new formulation (10), the high-priority tasks
(Thp) are modeled as constraints g while the low-priority task
(Tlp) are considered as costs that need not be fully satisfied,
but minimized. Hence, their distance from their bounds
are added to the optimization function f (9). Unbounded

CylinderA

PlaneA

AxisA

(a)

PointB1

PointB2
PlaneB

AxisB

(b)

Grasping (All Priority 1)

ParallelDistance(AxisA, AxisB) =
[f inger length(B)∕2 − radius(CylinderA), f inger length(B)∕2]

Distance(PlaneA, PlaneB) = [± height(CylinderA)∕2]
Distance(AxisA, PointB1) = [radius(CylinderA), f inger span(B)∕2]
Distance(AxisA, PointB2) = [radius(CylinderA), f inger span(B)∕2]

Environment/Robot Constraints

Avoid collisions (Priority 1)
Minimize Cartesian delta of end-effector (Priority 2)

Fig. 3: Constraints for grasping a cup and avoiding obstacles

(minimization) constraints in Thp are converted to bounded
constraints by setting their bounds to be their function value
g achieved in the previous iteration. This ensures that the
optimal values achieved by these high-priority minimization
constraints are not sacrificed by lower-priority constraints.

By iterating through several priority levels j, setting Thp
as the set of all constraints with priority i ≤ j and Tlp
as the set of all constraints with priority k > j, this
approach is extended to support multiple priority levels (see
Algorithm 1).

fi =

⎧

⎪

⎨

⎪

⎩

0 ∶ lb(gi) ≤ gi ≤ ub(gi)
‖gi − ub(gi)‖22 ∶ gi > ub(gi)
‖lb(gi) − gi‖22 ∶ gi < lb(gi)

(9)

The resulting optimization problem is then

argmin
v

∑

gi∈Tlp

fi

subject to lb(gk) ≤ gk(v) ≤ ub(gk), gk ∈ Thp.
(10)



Fig. 4: Intuitive user-interface for definition of geometric
constraints between individual shape elements of CAD mod-
els. After selecting a pair of valid surfaces, the user is
presented with a preview of all valid constraints between
the selected surfaces.

V. APPLICATIONS

We use our robot programming approach to perform some
industrial robotic tasks such as grasping of cylindrical objects
and manipulation of a tray. While the constraint models and
solver formulations are novel contributions of this work,
inverse kinematics, trajectory generation and low-level robot
control use the Robotics Library2 by Rickert [27]. A video
of the implementation of these applications on a robotic
workcell with a Comau Racer7-1.4 robot is attached with
the submission, and also available online3.

A. Task-level teaching interface for industrial robots

The geometric constraint solver described in this paper
is used in the cognitive back-end of a high-level teaching
framework for industrial robots [15]. The aim of the frame-
work is to enable shop floor workers, who are experts in
their manufacturing domain, to instruct robots without the re-
quirement of being robotics experts. The framework provides
domain-specific interfaces [16], which act as a front-end
to semantic process descriptions. This semantic description
language is based on a logical formalism that allows the
system to automatically reason about the state of a process
and potentially missing pieces of information. The cognitive
capabilities of the system support the human operator and
make teaching robot tasks less complex and more efficient.
In the domain of industrial assembly, constraints between
geometric entities (e.g., workpieces, tools, robot) can be
defined by selecting primitive shapes (i.e., surface, edge,
point) from their respective CAD models and choosing the
desired constraint from a filtered list of possible constraints
between the selected entities (Fig. 4). The design of this
interface is similar to popular CAD modeling softwares that
have been optimized for such mating operations. Hence,
the geometric constraints for robotic tasks need not be
programmed manually, but can be defined using a 3D GUI.

2http://www.roboticslibrary.org/
3http://youtu.be/baet9IkTK04

B. Cup grasping with obstacle avoidance

This task involves grasping a cylindrical object (a cup),
formulated using the constraints shown in Fig. 3. During
execution, additional constraints from the environment such
as collision avoidance are added. To ensure smooth mo-
tion, the Cartesian distance between the end-effectors in
successive motions is minimized as a low priority task.
This task is demonstrated on two robots: a 6-DOF Comau
Racer7-1.4 (Fig. 5a), and a 7-DOF KUKA Light Weight
Robot (LWR) (Fig. 5b). The robot utilizes the nullspace
of the task to avoid obstacles. In addition to the rotation
along the cylinder’s axis, the min-max constraint formulation
provides the robot additional degrees of freedom along the
length of the cylinder and along the length of the gripper
fingers.

C. Tray grasping with obstacle avoidance

This application involves manipulating a tray containing
a can with a liquid (as explained in Section I). It performed
using two different robotic platforms. With a 6-DOF Comau
Racer7-1.4, the tray was grasped using the parallel gripper
on one side (see Fig. 1b). Using a Comau dual arm, the
tray was grasped on two sides (see Fig. 1a). The constraint
formulations and the task nullspaces are speficied in Fig. 1.
The robot can utilize this nullspace to achieve secondary
objectives such as avoiding obstacles (see Fig. 5c).

D. Pick and place with manipulability optimization

This application consists of two tasks: grasping of a cylin-
drical object at its rim, and placement of the grasped object
on another position on the table. Some exemplary grasping
poses and the nullspace for the task constraints are illustrated
in Fig. 2. The task constraints for the placement step state
that the object should be placed in an upright orientation
on the table. This is combined with lower-priority posture
optimization (manipulability maximization) and solved using
the approach in Section IV-B.

The grasping pose in the first step of this application is
underspecified and can be further refined by jogging the robot
in the nullspace of the task constraints (Fig. 2). In Fig. 5d, the
first step of this application is shown with transparent objects.
Two different locations of the cylindrical object on the table
are used to illustrate how the underspecified grasping pose
is further optimized in its nullspace to minimize the joint
distance from the same starting pose (Section IV-A). The
manipulability values of different robot poses on the table
are overlaid (red indicates low, and green high) in Fig. 5d.
In the second step, the object is moved to a position on the
table that maximizes its manipulability.

VI. EVALUATION

Using the target applications and scenarios described in
Section V, some qualitative and quantitative evaluations were
done to assess the merits of our approach. All evaluations
were performed on a PC with a 4.0GHz Intel Core i7-6700K
CPU and 16GB of RAM.

http://www.roboticslibrary.org/
http://youtu.be/baet9IkTK04
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Fig. 5: Execution of constraint-based tasks. (a) Cup grasping with obstacle avoidance using 6-DOF Comau Racer7-1.4,
(b) Cup grasping with obstacle avoidance using 7-DOF LWR, (c) Grasping a tray with dual arm and avoiding multiple
obstacles, (d) Pick cylinder at rim and place with manipulability optimization.

Our implementation is based on the NLOpt library, where
we set the tolerance of the minimization function to be 10−8
and the acceptable tolerances for the inequality constraints
as 10−6. The derivative tolerance is set as 10−8.

A. Runtime evaluation for different tasks

In order to assess the time efficiency of our approach,
we evaluated the controller runtimes for each of the tasks
and target applications mentioned in this paper. The results
are summarized in Table IV. The evaluation covers a wide
variety of tasks having 2–26 task space constraint dimensions
and 1–3 priority levels. For the first 4 tasks in Table IV, the
evaluation was performed by solving the constraints from a
random initial pose for the robot. The fifth task in Table IV
involves manipulability optimization. In this case, random
poses within the reachable range of the robot and on the
tabletop were chosen for the object to be picked. The last 3
tasks in Table IV include collision avoidance. In these cases,
the colliding object was moved along a pre-defined trajectory.
A random trajectory was not chosen for the colliding object
since it could lead to situations where collision avoidance is
impossible. The trajectory was chosen in a way that the robot
was able to avoid the collision while satisfying the geometric
constraints imposed by the underlying task.

In each of these evaluations, the runtime was averaged
over 10000 iterations. The average runtime ranges from
0.6ms for the simplest task to 15ms for the most complicated
one.

B. Comparison with other approaches

Table I presented a qualitative comparison of the features
offered by several state-of-the-art control frameworks. Based
on the implementations from our previous works [9], [28],
we compare TSID [10], WBCF [2] and our approach in terms
of average controller runtime and task errors. We could not
use the same set of tasks described in Table IV for this eval-
uation since the compared frameworks TSID [10], WBCF
[2] and even our previous works [9], [28] don’t support
inequality constraints. Besides, the aim of this comparison
is primarily to prove that the presented approach is at par
with state-of-art approaches in terms of computation time

TABLE IV: Runtime evaluation on application scenarios

Scenario Constraint
Dimensions

No. of
Priority
Levels

Runtime
COBYLA

(in ms)

Plane Distance 2 1 0.6 ± 0.1
Cylinder Grasp 5 1 0.8 ± 0.1
Cup Grasp 6 1 1.2 ± 0.2
Tray Grasping (Dual) 12 2 3.0 ± 0.2
Pick-Place + Manipulability 7 3 2.5 ± 0.3
Cup + Collision 12 2 2.3 ± 0.3
Cup + Collision (LWR) 13 2 3.3 ± 0.3
Tray Hold + Collisions (Dual) 26 2 15.0 ± 3.0

TABLE V: Runtime evaluation of control frameworks

Framework
Runtime

1 constraint
(in ms)

Runtime
2 constraints

(in ms)

This work 0.8 ± 0.1 0.9 ± 0.1
TSID [10] 0.5 ± 0.1 0.5 ± 0.1
WBCF [2] 0.8 ± 0.1 0.8 ± 0.1
Somani et al. [9] 4.0 ± 1.0 5.0 ± 0.8

and is better suited for real-time control. The first test case
involves a plane-plane-coincident constraint (Table II) where
3 DOFs of the robot are fixed. The second test case has two
plane-plane-coincident constraints, making 5 DOFs fixed.
The tolerance for task errors is set to be 10−6. The results
are summarized in Table V.

VII. CONCLUSIONS AND FUTURE WORK

This work presents an approach for constraint-based robot
programming, where robot tasks can be formulated using
geometric inter-relational constraints. When executed on a
robotic workcell, additional constraints arising from the
workcell description and the environment can be added
dynamically. This collection of prioritized constraints are
then solved in real-time to calculate target configurations



for the robot. Preliminary evaluations of this approach,
both qualitatively and quantitatively in terms of the task
errors and computational time have also been presented.
Runtime comparisons of our approach with some state-of-art
approaches on some common tasks have also been presented.
In conclusion, we have tried to demonstrate the effectiveness
of constraint-based methods in robotic applications. The
addition of inequality constraints increases significantly the
expressive power of constraint-based methods. Our frame-
work, when used in conjunction with intuitive task definition
interfaces [15], provides the complete robot programming
solution from semantic descriptions to real-time control.

This paper has focused on position control and kinematic
constraints, and extensions for incorporating robot dynamics
and force control in the framework are part of our plans
for future work. Also, we have only considered simple
primitive shapes (e.g., points, lines, planes and cylinders)
for geometric constraints. The use of other generic shape
descriptions such as Splines, Bézier curves or superquadrics
to define geometric constraints is an open research topic and
is a possible direction for future work.
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