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"All models are wrong, but some
are useful."

GEORGE BOX



Abstract
In the last few decades, major advances have been made in the way we col-
lect and generate data in all aspects of life. At the same time, the technical
approaches for analyzing and interpreting datasets have improved. The inter-
section of these trends is referred to as Big Data and this plays an important
role in precision medicine and other fields of computer science.
Feature selection algorithms have contributed to considerable progress in cop-
ing with the growing amount of machine readable information. They can
identify a minimal set of features that are relevant for developing highly ac-
curate prediction models. Thus, feature selection simplifies the interpretabil-
ity as well as computability of big datasets. Many different feature selection
methods already exist. Previous studies have shown that some of these are
biased, depending on the feature type and dataset quality. In this thesis,
an ensemble consisting of eight different feature selection methods (EFS) is
introduced. An ensemble of learning algorithms has the advantage of being
able to address the biases of the individual approaches. Additionally, EFS
provides a cumulative quantitative feature ranking. EFS was applied on sev-
eral biomedical datasets. Different feature subset selections resulting from
the EFS ranking were evaluated on three popular prediction models, namely
logistic regression, random forest and support vector machine. In most cases,
a significant improvement of the prediction performance could be achieved
when compared to the same models constructed with all features.
The EFS approach and the evaluations were implemented as an R package
EFS as well as a web-based application. A quantitative feature ranking and
a cumulative barplot of the feature’s importance values are provided as the
output.
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Zusammenfassung
In den letzten Jahrzehnten wurden bedeutende Fortschritte darin gemacht,
Daten aus allen Lebensbereichen zu erzeugen und anzusammeln. Zeitgle-
ich verbesserten sich auch die technischen Möglichkeiten diese Datensätze zu
analysieren und interpretieren. Die Schnittstelle dieser beiden Entwicklun-
gen wird Big Data genannt und spielt eine wichtige Rolle im Bereich der
Hochtechnologiemedizin.
Einen beträchtlichen Beitrag zur Bewältigung dieser enorm wachsenden Menge
an maschinenlesbaren Informationen brachten die sogenannten Feature Selec-
tion Algorithmen. Sie bestimmen die minimale Teilmenge von Parametern,
die für Vorhersagemodelle mit hoher Genauigkeit relevant sind. Somit verein-
facht eine Feature Selection die Interpretierbarkeit, sowie die Berechenbarkeit
großer Datensätze. Es existieren bereits mehrere verschiedene Feature Selec-
tion Methoden. Frühere Studien zeigen jedoch, dass einige dieser Methoden
Fehleranfälligkeiten aufgrund von Parametertyp und der Qualität der Daten-
sätze aufzeigen. In dieser Arbeit wird ein Ensemble aus acht verschiedenen
Feature Selection Methoden (EFS) vorgestellt. Ein Ensemble von Lernal-
gorithmen hat den Vorteil die Fehleranfälligkeiten von einzelnen Methoden
auszugleichen. Zusätzlich liefert EFS eine kumulative, qualitative Rangliste
der Parameter. EFS wurde auf mehrere biomedizinische Datensätze angewen-
det. Verschiedene Parameterteilmengen, die aus der EFS-Rangliste hervor
gegangen sind, wurden mittels folgender drei gängiger Vorhersagemodellen
evaluiert: logistische Regression, Random Forest und Support Vector Ma-
chines. In den meisten Fällen konnte eine signifikante Steigerung der Vorher-
sageperformance erreicht werden. EFS und die Evaluationsmethoden wurden
sowohl als R-Paket EFS, wie auch als Web-Applikation implementiert. Der
Output besteht hierbei aus einer quantitativen Parameterrangliste und einem
kumulativen Barplot der Werte der Feature-Importance.



Acknowledgments
Through my PhD studies at the Straubing Center of Science, I had the greatest privilege
to work with kind and inspiring people without whom it would not be possible to finish
my thesis. My special appreciation and thanks go to my mentor, Prof. Dr. Dominik
Heider, whose guidance and support enabled me to complete this dissertation. I would
like to thank him for encouraging my research and for allowing me to grow as a research
scientist. I also greatly appreciate the support and supervision of the dissertation by
Prof. Dr. Dmitrij Frischmann.
Many thanks also go to my colleagues and friends at the Straubing Center of Science, in

particular those at the Chair of Bioinformatics, the Chair of Marketing and Management
of Biogenic Resources and the Chair of Business Economics of Biogenic Resources for
their great company and the friendly working atmosphere during the last three years.
Finally, I am very grateful to my family and friends for their continuous support and

encouragement whilst completing the dissertation. Special thanks to my parents for
their constant support and understanding.

IV



Contents

Contents V

List of Figures VII

List of Tables IX

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Aims and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Methods 5
2.1. Base Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2. Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3. Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4. Variable Importance Measures embedded in Random Forests . . . 10

2.2. Ensemble Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Subset selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1. Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 14

3. Results 16
3.1. Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1. Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2. Study Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1. Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2. Study Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3. Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1. Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2. Study Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4. Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1. Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

V



CONTENTS

3.4.2. Study Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5. Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Discussion 24
4.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. Discussion of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1. Ensemble method . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2. Base Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3. Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4. Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3. Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4. Future Prospects and Conclusion . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 31

Appendix 36

A. Figures 37

B. Papers 53
B.1. Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2. Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3. Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.4. Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VI



List of Figures

A.1. Cumulative barplot FS of stenosis . . . . . . . . . . . . . . . . . . . . . . 38
A.2. Cumulative barplots of MI-Mortality datset . . . . . . . . . . . . . . . . 39
A.3. Cumulative barplots of Fibrosis datset . . . . . . . . . . . . . . . . . . . 39
A.4. Cumulative barplots of FLIP datset . . . . . . . . . . . . . . . . . . . . . 40
A.5. Cumulative barplots of SPECTF datset . . . . . . . . . . . . . . . . . . . 40
A.6. Cumulative barplots of Sonar datset . . . . . . . . . . . . . . . . . . . . . 41
A.7. Cumulative barplots of WBC datset . . . . . . . . . . . . . . . . . . . . . 41
A.8. Barplot of importance values of the Arcene dataset . . . . . . . . . . . . 42
A.9. Barplot of importance values of the Ad dataset . . . . . . . . . . . . . . 42
A.10.ROC curves of logistic regression models with above-average-EFS features

and features over the π
4 -cutoff of Arcene dataset. . . . . . . . . . . . . . . 43

A.11.ROC curves of logistic regression models with above-average-EFS features
and features over the π

4 -cutoff of Ad dataset. . . . . . . . . . . . . . . . . 43
A.12.ROC curves of logistic regression models with above-average-EFS features

and features over the π
4 -cutoff of Arcene dataset. . . . . . . . . . . . . . . 44

A.13.ROC curves of logistic regression models with above-average-EFS features
and features over the π

4 -cutoff of Ad dataset. . . . . . . . . . . . . . . . . 44
A.14.ROC curves of logistic regression models with all features and features

with importance values over the mean by EFS of Arcene dataset . . . . . 45
A.15.ROC curves of logistic regression models with all features and features

with importance values over the mean by EFS of Ad dataset . . . . . . . 45
A.16.ROC curves of RF models with all features and above-average-EFS fea-

tures of MI dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.17.ROC curves of RF models with all features and above-average-EFS fea-

tures of Fibrosis dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.18.ROC curves of RF models with all features and above-average-EFS fea-

tures of FLIP dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.19.ROC curves of RF models with all features and above-average-EFS fea-

tures of SPECTF dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.20.ROC curves of RF models with all features and above-average-EFS fea-

tures of Sonar dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.21.ROC curves of RF models with all features and above-average-EFS fea-

tures of WBC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.22.ROC curves of RF models with all features and above-average-EFS fea-

tures of Arcene dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

VII



LIST OF FIGURES

A.23.ROC curves of RF models with all features and above-average-EFS fea-
tures of Ad dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.24.Single barplots of MI-Mortality datset . . . . . . . . . . . . . . . . . . . 50
A.25.Single barplots of Fibrosis datset . . . . . . . . . . . . . . . . . . . . . . 50
A.26.Single barplots of FLIP datset . . . . . . . . . . . . . . . . . . . . . . . . 51
A.27.Single barplots of SPECTF datset . . . . . . . . . . . . . . . . . . . . . . 51
A.28.Single barplots of Sonar datset . . . . . . . . . . . . . . . . . . . . . . . . 52
A.29.Single barplots of WBC datset . . . . . . . . . . . . . . . . . . . . . . . . 52

VIII



List of Tables

3.1. Evaluation of Arcene data. AUC values of a logistic regression model
and a random forest model. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Evaluation of Ad data. AUC values of a logistic regression model and
a random forest model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3. Random Forest AUC evaluation. Comparison of ROC curves from
RF model with all features and RF model with features with importance
values over the mean as calculated by EFS. . . . . . . . . . . . . . . . . . 22

3.4. Support vector machine AUC evaluation. Comparison of ROC
curves from SVM model with all features and SVM model with features
with importance values over the mean as calculated by EFS. . . . . . . . 22

3.5. Subset selection criteria. Comparison between importance mean and
minimum of importances of −π

4 -rotation method. . . . . . . . . . . . . . . 23

IX



1. Introduction

Data is more than just binary information. It is a set of related features. The process of
discovering patterns, trends and anomalies in datasets is called data mining, this is one
of the greatest challenges of the information age, involving approaches from the fields of
machine learning, statistics and database systems.
In the following chapter, I will give an introduction to this doctoral thesis. First, I will
explain the background of this thesis. Then I will introduce the aims and hypothesis
and finally, I will give an outlook over the remaining parts of this thesis.

1.1. Background
The term machine learning (ML) was coined by Arthur L. Samuel, who was a pioneer in
the field of artificial intelligence, in 1959. He came up with the idea that it might be more
efficient to teach computers to learn themselves rather than teaching them everything
about the world that they should know. Due to the internet, the amount of digital
information has increased enormously in recent times. More and more data is being
generated, stored and made available for further processing. This may appear useful
as it represents the procurement of new information, but apart from that, it also poses
new challenges in terms of identifying the significant elements of this information. ML
approaches are developing quickly and they are able to manage these vast datasets. They
are so pervasive nowadays that we use them a dozen times a day without even knowing
it. ML is the current state-of-the-art in developing artificial intelligence. Because the
amount of machine readable information is growing immensely, pre-processing filters
for big amounts of data are required. In large datasets, there is often the problem
that there are many features with only a small number of samples. Building a valid
model is negatively impacted by an increasing ratio between the number of features
and the sample size [1]. Comprehensive data analysis also includes many irrelevant and
redundant features, which "degrade the performance of concept learners both in speed
(due to high dimensionality) and predictive accuracy (due to irrelevant information)"

1



1. Introduction

[2]. Therefore, distinguishing between relevant and irrelevant or redundant features is
fundamental to ML approaches.
Feature selection (FS) is the process of detecting and selecting a subset of relevant

features for the construction of a model. In this process, as much of the irrelevant and
redundant information as possible should be identified and removed [3]. Guyon and
Elisseeff [4] summarize the main benefits of FS: "facilitating data visualization and data
understanding, reducing the measurement and storage requirements, reducing training
and utilization times, defying the curse of dimensionality to improve prediction perfor-
mance."
There are already many FS methods [5], most of which are focused on one aspect, for ex-
ample, dimensionality reduction in microarrays [6] or relevance and redundancy analysis
[7]. Ideally, the selected subset is necessary and sufficient to describe the real relation-
ships between dependent and independent features. In reality, there may be more than
one optimal subset which describes the real function [8]. In a preceding study together
with cardiologists from the University Hospital Duisburg-Essen, we recognized that the
Gini-index, when used as the feature selection method, is strongly biased on unbalanced
datasets (cf. B.1 in 3). Thus, the idea arose to look for an intersection of multiple
subsets proposed by different kinds of FS methods. In other words, implementing an
ensemble of FS methods may help to find an optimal subset of features. The individual
FS methods in an ensemble are called base selectors.
Preceding studies [9, 10, 11] have shown that ensemble learning approaches may out-

perform the single methods when several weak methods are combined. There are three
main reasons for this:

a) several different but equally optimal hypotheses may exist and an ensemble dimin-
ishes the risk of choosing an incorrect hypothesis,

b) learning algorithms calculate different locally optimal outcomes and the ensemble
approximates the real function, and

c) the real function may not correspond with one of the hypotheses in the hypothesis
space but by aggregating the outputs of the single models, the hypothesis space
may be expanded.

In this context, weak FS methods are regarded as those that are unstable with respect
to the errorproneness. Unstable methods may perform very badly on new datasets due
to overfitting in the training process or because they tend to prefer specific features,

2



1. Introduction

i.e., features of a specific type. There are two different approaches to ensemble learning
with respect to feature selection: i) homogeneous ones, which use the same FS method
with different training data and ii) heterogeneous ones, which use different FS methods
with the same dataset [12]. As I used different base selectors, the resulting ensemble is
heterogeneous.

1.2. Aims and Hypothesis
Against this background, this thesis states the following hypothesis:
A single feature selection approach gives less reliable results than an ensemble of dif-

ferent base feature selection methods for binary classifications.
The objective of this study is to develop an ensemble of feature selection methods

which outperforms each single feature selection in terms of classification accuracy and
stability of the selection. An accurate approach is expected to not show any bias arising
from either the quality of the dataset, e.g. because of an imbalance in the class variables,
or from the existence of different types of features in the dataset. The required stability
can be defined as the variation in feature selection results due to changes in the dataset.
Therefore, the ensemble feature selection (EFS) aims to be applicable to every kind
of data used in binary classification. This approach should propose a reliable ranking
of features and suggest a suitable subset of features, which improves the accuracy of
a model which is constructed by all features. In this thesis, existing feature selection
methods will be analyzed to determine their deficiencies and to compare them with the
EFS by several different evaluation techniques.
Thus, the aim is to develop a universal FS method which performs equally well on all
kinds of datasets, independently of the balance of data and type of features.

1.3. Thesis Structure
The rest of this thesis is arranged as follows: In chapter 2, an overview of the methods
used in the published papers and for the other research is given. Firstly, a deeper
insight into the chosen feature selection methods for the EFS approach is provided.
Then, the way in which the FS methods were assembled is described, followed by the
subset selection criteria. Finally, an evaluation of the methods is made.
In chapter 3, the results of the three articles (B.1,B.2, B.3) are presented together with
extended abstract (B.4 submitted at the 14th Annual Meeting of the Bioinformatics

3



1. Introduction

Italian Society, 2017 in Cagliari, Italy) and the results of the other investigations.
Chapter 4 includes a discussion of the strengths and weaknesses of the methods used
and the results of my research. In this chapter, an outlook on future work which is
needed is provided together with the conclusion.
In appendix A, all relevant figures are provided and the publications are included in
appendix B.

4



2. Methods

2.1. Base Selectors
In computer science, features are distinct attributes or aspects of an observed process.
Machine learning approaches deal with sets of features, which may contain up to hun-
dreds of thousands of features. The purpose of feature selection (FS) methods is to
detect features, that are relevant for the prediction of target variables. For clarification
purposes,: “[...] if a feature is to be relevant it can be independent of the input data but
cannot be independent of the class labels i.e. the feature that has no influence on the
class labels can be discarded.” [13].
By removing redundant features, both the efficiency of prediction models and the

learning performance can improve. In a multiple regression model, the prediction per-
formance can be biased by a high correlation between two or more predictor variables.
This phenomenon is called collinearity or multicollinearity, meaning that one feature
can be linearly described from the others with a substantial degree of accuracy. To pre-
vent bias in the prediction accuracy of the model, multicollinearity should be avoided
by removing the correlated feature subset and representing these data with their best
exponent. In terms of interpretation, having less features implies an enhanced compre-
hensibility of the learning results [14]. Due to the need for feature selection, there are
many different methods. Generally, they can be divided into supervised and unsuper-
vised procedures. In supervised learning, a function is inferred from a labelled training
dataset. In contrast, unsupervised learning tasks deal with unlabelled datasets. Hence,
the output cannot be evaluated in terms of accuracy. A classic example for the latter is
clustering. In this thesis, I only considered supervised methods for binary classification.
That means that the focus is on training data which can be classified in two groups
on the basis of a certain classification rule. In other words, binary classification is a
dichotomization of training datasets. There are three different kinds of supervised FS
approaches, namely filter, wrapper, and embedded methods[13, 15].
Filter methods are a pre-processing step used to obtain a ranking of relevant features.

5



2. Methods

Their merit is their simplicity. They are based on ranking criterion and a set threshold,
which are used to remove dispensable variables.
Wrapper methods use the quality of the prediction performance as importance mea-

sure. Embedded methods select the features within a training process, which saves
computation time. However, the wrapper models tend to be computationally more
costly than filters [16].
I used implementations in R (http://www.r-project.org/) for the different basal

feature selection methods.
In the following sections, eight different FS methods are introduced. These were used

as the base selectors in the thesis. Three of them are filter methods and include median,
Pearson and Spearman correlation. The other methods are embedded methods and
include logistic regression, the Gini-index-based, error-rate-based variable importance
measures (VIMs) of Breiman’s random forest implementation and the error-rate-based
and AUC-based VIMs of the conditional random forest implementation.

2.1.1. Median

The simplest method for finding out whether a feature is relevant for a classification
is to compare the distributions of the feature’s values in both classes. Therefore, a
Mann-Whitney-U test (also called Mann-Whitney-Wilcoxon test) is conducted for each
feature.
The Mann-Whitney-U test is often used as an alternative to the t test, where the

features are not normally distributed. While the t test compares the means, the Mann-
Whitney-U test compares the median.
If the shapes of the distribution curves are the same and the only difference between

the two classes is a shift in location, there is indeed a difference in the medians. However,
the Mann-Whitney-U test can also detect differences in the spread of values, even when
the medians are equal. Thus, it is not just a test of medians (cf. [17]), but for reasons
of abbreviation and simplification the method is called the median.
The null hypothesis is that the distributions of feature values of the two classes do not

differ. Normal distribution is not necessary. The following calculations are incorporated
in the Mann-Whitney-U test: Firstly, ranks are assigned to the values of the features,
where observations with tied values are assigned the equal averaged ranks. The statistic
U is calculated as follows:

U1 = R1 −
n1(n1 + 1)

2 ,
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2. Methods

where R1 is the sum of the ranks of class one and n1 is the sample size of class one. This
is analogous for U2. The smaller value of U1 and U2 is taken for testing significance. Let
us suppose that U1 ≤ U2. The p-value for the corresponding rank-sum test is calculated
as follows:

p = Pr(r1 6= R1) = 2 · Pr(r1 ≥ R1),

where Pr(E) is the probability of event E and r1 is the distribution of the rank sum of
class one, since U1 ≤ U2.
The Mann-Whitney-U test is very fast to compute and it is not parametric. However,

the results are not reliable where there is a relationship between the features. Another
negative influence on the accuracy emerges in high-dimensional datasets.

2.1.2. Correlation coefficients

A correlation coefficient describes the extent to which two features are dependent by
calculating the strength and the direction of the correlation. Correlation coefficients as
a feature selection criteria fall into the category of filter methods. The advantage of this
method is the high computational speed. Former studies have shown that correlation
based feature selections outperformed wrapper methods on small datasets and delivered
comparable results [18, 19].
In big datasets, it often happens that two features are highly correlated with each

other, which means that a relationship can be inferred between them. This phenomenon
is called collinearity or multicollinearity. It does not reduce the prediction power of
the model, but it distorts the feature ranking. Furthermore, irrelevant and redundant
features affect the speed of the learning algorithms. To avoid multicollinearity, I im-
plemented the correlation methods as fast-correlation-based filter (FCBF) after [7]. For
this, a threshold had to be defined which determined the maximum tolerated correlation
among the features. In my experiments, I decided to set the threshold at 0.7, as this
is the most frequently used correlation threshold [20]. There are also more restrictive
[21] and less restrictive [22] suggestions for the threshold. Taking X1 and X2 as two
features which have a correlation exceeding the given threshold, the features with the
higher correlation with the class variable is the predominant feature. The other feature
will be discarded, meaning that it is given an importance value of zero.
Another aspect is how the correlations between features are conducted. A pairwise cor-
relation between all features is very time-consuming. A solution to this is the following:
first, correlations of all features with the class variable are calculated. Then, the best

7



2. Methods

correlated feature is tested against all other features. If a correlation can be detected
which exceeds the threshold, that feature is deleted. The next step is to test the second
best correlated feature and so on. By not testing the correlations of redundant features,
substantial savings in computation time can be achieved.
Of the many which exist the two most popular correlation coefficients are Pearson’s

product moment and Spearman’s rank correlation coefficients. In some respects, these
correlation coefficients do not differ significantly. However, their results can be distin-
guished according to the type of the tested parameter. To cover the whole range of
different parameter types, I included both measures in the ensemble.

Pearson correlation

The Pearson product-moment correlation coefficient r evaluates the linear relationship
between two features. This is convenient for measuring the correlation between numerical
parameters. The Pearson correlation coefficient r is calculated as follows:

r = Cov(X, Y )
σXσY

.

Instead of calculating the covariance and standard deviation of the ranks, these statistics
are calculated using the actual parameters X and Y . The formula is:

r =
∑n
i=1(xi −X)(yi − Y )√∑n

i=1(xi −X)2
√∑n

i=1(yi − Y )2
,

where n is the sample size and X and Y are the sample means.

Spearman correlation

Spearman’s rho compares the monotonic relationship of the two parameters. Thus, it
is often used to find a relationship between ordinal parameters. De La Fuente et al.
recommend Spearman rank correlation for biochemical networks, because it does not
depend on normality and the linearity of interactions [23]. To calculate Spearman’s rho,
we observe the ranks rk(xi) and rk(yi) of the two parameters X and Y of length n.

ρ = Cov(rk(X), rk(Y ))
σrk(X)σrk(Y )

,

8
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where σrk(X) is the standard deviations of the ranks of X,

Cov(rk(X), rk(Y )) = 1
n

n∑
i=1

(rk(Xi)rk(Yi)− rk(X)rk(Y )

is the covariance of the ranks of X and Y and rk(X) is the mean of the ranks of X.
There is a more popular formula, which can only be used, if all ranks appear exactly
once:

ρ = 1− 6
n∑
j=1

d2
i

n(n2 − 1) ,

where di = rk(Xi)− rk(Yi).

2.1.3. Logistic Regression

Regression models are used to calculate the relationship between features. If the depen-
dent variable is categorical and binary, a logistic regression model is used. It estimates
probabilities using a logistic function, which has the following formula:

f(t) = 1
1 + e−t

This logistic function, also called the antilogit transformation, allows us to go from real
input to probabilities, which lie between 0 and 1. Values under 0.5 are allocated to class
0 and values above 0.5 are allocated to class 1. For multiple explanatory variables, t can
be expressed as follows:

t = β0 + β1X1 + . . .+ βnXn,

where X1, . . . , Xn are the n parameters. Logistic regression models the logit-transformed
probability as a linear relationship with the dependent variable. To provide compara-
bility of the variables’ importances, a z-transformation must be conducted in a pre-
processing step:

zXi
= Xi −X

σX
,

where X is the mean and σX the standard deviation of variable X. The β-values can
be used as importance measures, because they describe the strength of the relationship
towards the dependent variable. The inverse of the logistic function f(t) is the logit

g(p) = ln( p

1− p),

9
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where p is a number between 0 and 1. The β-values are calculated as follows:

g(f(t)) = ln
(

f(t)
1− f(t)

)
= β0 + β1X1 + . . .+ βnXn.

The β-values can have negative values. Thus, the absolute values are used as quantitative
importance measures.

2.1.4. Variable Importance Measures embedded in Random Forests

The following four FS methods are incorporated into two different implementations
of the random forest (RF) algorithm. RFs are an ensemble of learning methods for
classification and regression tasks. They consist of multiple decision trees and, in the
case of classifications, their output is the class voted by the majority. Ho [24] criticized
the limited complexity of decision trees. Thus, he was the first who developed the idea
of randomly selecting features. Breiman extended the RFs with the concept of bagging
[25] to reduce variances and avoid overfitting. Bagging is an abbreviation for bootstrap
aggregating, which describes a two-step process. The first one is the bootstrapping,
which means randomly generating distinct subsets of the same training dataset. The
second step is aggregating the outputs by calculating their average. Breiman’s algorithm
incorporates two different FS methods, namely the Gini-index-based measure and the
permutation error-rate-based measure [26]. In the context of RFs, the FS methods are
called variable importance measures (VIMs). Breiman’s RF is the most famous and
its corresponding R-package is called randomForest. It uses the CART (classification
and regression trees) algorithm, which only generates binary trees and therefore seeks
the optimal binary splitting. However, there are also other implementations of the RF.
For example, the conditional random forest incorporated in the R-package party [27].
It is based on conditional inference trees and offers two VIMs, which are preferable to
those of randomForest if there are different types of features: a conditional permutation
error-rate [28] and a permuted AUC-based VIM [29]. The difference to CART trees is
that in the tree building process, each feature is globally tested for its association with
the response, yielding a global p-value. Within this globally selected predictor, the best
split is finally chosen. Thus, the splitting is unbiased.
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Gini-index-based VIM

The Gini-index (also called Gini coefficient) is a statistical measure, which was developed
by Corrado Gini to express unequal distributions [30]. Breiman integrated the Gini
impurity into his RF algorithm as a splitting criterion. The Gini impurity measures
how often a randomly chosen element would be incorrectly labelled if it was randomly
labelled. The random labels correspond with the distribution of labels in the subset. In
the formula of the Gini index, the measure of the Gini impurity for binary classification
is defined as follows:

G = 2p(1− p),

where p = N1
N

is the proportion of one of the classes, in this case for response Y = 1,
and N1 is the number of units in this class. The Gini impurity is:

IG = G− (NL

N
GL + NR

N
GR),

where GR and GL are the Gini-indexes calculated for the following right and left child
nodes and NL and NR are the numbers of units in the left and right nodes after splitting.
Adding up the decrease in Gini impurity over all of the trees in the random forest for
each feature indicates the importance of the variable.

Error-rate-based VIM

For each construction of a tree, a different bootstrap sample is chosen from the original
data. Thus, it is not necessary to conduct cross-validation, which would involve dividing
the dataset into k subsets and defining iteratively one subset as the test dataset and
the other k − 1 subsets as the training dataset. In RFs, about one-third of the samples
are left out of the bootstrap sample and not used in the construction of the tree. This
portion is called the out-of-bag (OOB) data. The error-rate-based VIM is computed from
permuting the OOB data: first, the prediction error on the OOB data is calculated, then
the same is done after randomly permuting each feature. The difference between both
error-rates is averaged over all trees and normalized by their standard deviation (except
the standard deviation is zero).

Conditional error-rate-based VIM

The underlying mathematics in this error-rate-based VIM is the same as in the previous
VIM. Strobl et al [31] pointed out that correlations between features have a severe
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effect on random forest VIMs. The classical error-rate-based VIM overestimates the
importance of the correlated features, which may be due to the preference for correlated
features in the early splits. Taking Xi as the tested feature on the dependent variable
Y and Z = X1, . . . , Xj−1, Xj−1, . . . , Xm the remaining features. A positive value of
the classical error-rate-based VIM signifies a correlation of Xi and either Y or Z. An
unbiased VIM should only consider the correlation between Xi and Y . Therefore, the
remaining features are grouped and Xi is only permuted in those fixed groups Z = zj.
Unbiased conditional inference tree [32] are used as the underlying permutation grid.

AUC-based VIM

The AUC-based permutation VIM [29] is closely related to the conditional error-rate-
based VIM. However, instead of using the error rate, the prediction accuracy is measured
by the area under the curve (AUC) [33]. Analogous to the error-rate the AUC is com-
puted for each tree after and before permuting a feature. In general, the AUC is used
to evaluate the ability of classification models to correctly distinguish between different
classes. In this case, the dependent variables X1, . . . , Xn are considered as the units to
be predicted, rather than the samples i = 1, . . . , n [34]. The AUC of a tree is an estima-
tor of class probabilities, i.e. it estimates the probability of each observation belonging
to either class 0 or to class 1.

12
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2.2. Ensemble Feature Selection
The idea of ensemble learning is widely used in the field of machine learning. The
high levels of interest in ensemble learning methods is based on the assumption that
several models obtain more reliable results than any one individual model. An ensemble
increases the performance compared to single methods, if the individual classifiers are
both accurate and make their errors on different parts of the input space [35].
Therefore, we utilized the eight base selectors introduced above. All of them have

distinct biases and benefits according to the types of features, the degree of imbalance
or the size of datasets.
Paper B.2 explains how the base selectors are integrated and how their results are nor-
malized to a common range to ensure comparability.

2.3. Subset selection criteria
After analyzing feature importance and compiling a ranking of features, a subset se-
lection is required. The selected feature subset should simplify the comprehensibility
of the relationships within the dataset and optimize the calculation speed as well as
the performance of the successive prediction models. From EFS, a continuous measure
of importances is obtained. The next step is to identify a cut-off point above which
features are considered to improve prediction performance. There are different methods
for that task, for example, the mean method. It calculates the mean of all importance
values from EFS as being the cut-off point. The mean measure is implemented in the
R-package EFS. Another technique would be to arrange the features in ascending or-
der and identify the largest difference from one feature to another. As mentioned in
B.4, this method is not suitable for datasets with an exponentially growing importance
curve, because it will only select the most important feature. Therefore, I developed a
new subset selection method: the π

4 -rotation B.4.

2.4. Evaluation Methods
All evaluations of the prediction performance were made using an area under the curve
(AUC) analysis of the receiver operating characteristic (ROC) curves. ROC curves
illustrate the performance of binary classifiers by plotting the true positive rate (TPR)
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against the false positive rate (FPR) at various threshold settings. The underlying
prediction models of the ROC curves were either logistic regression, random forest or a
support vector machine (SVM). The main ideas of logistic regression and random forest
have already been described. Thus, I will only elaborate on SVM in the following sub-
section.
Comparing two AUCs of the ROC curve is done using a roc-test after DeLong et al.
from the R-package pROC [36].
The EFS R-package, described in paper B.3, provides certain additional evaluation tools
including permutation tool, which permutes the class variable in order to compare the
prediction performance with random guessing, an importance variance measure, and the
Jaccard-index [37], which tests the stability of the importance values of multiple EFS
iterations.

2.4.1. Support Vector Machine

Support vector machines are supervised learning models for regression and classification
analysis. In the case of binary classification, the goal of the SVM is to separate the two
classes by a function, which is generated through the training dataset. The aim is to
separate the data using something similar to a hyperplane. However, in many datasets,
it is not possible to divide the classes linearly. Therefore, additional dimensions are
added, a process which is described by a scalar productK(x, y) = 〈φ(x), φ(y)〉.According
to Mercer’s theorem [38], this scalar product has to be a positive-definite kernel, to
ensure that the structures are retained. In other words, the kernel matrices should only
have non-negative Eigenvalues. The use of a positive-definite kernel ensures that the
optimization problem will be convex and the solution will be unique. Choosing the right
kernel can be tedious. Therefore, I tested the four most common kernels on all datasets
and chose the one which performed the best. The tested kernels include radial basis,
linear, polynomial and the Bessel function. Linear kernels only allow lines or hyperplanes
to be identified. The simplest kernel function is given by

K(x, y) = xTy + c,

where c is a constant. The Gaussian kernel is also called radial basis kernel and enables
identification of circles (or hyperspheres):

K(x, y) = ||x− y||
2

2σ2 ,
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where the adjustable parameter σ plays a crucial role in the performance of the ker-
nel. The polynomial kernel can model feature conjunctions up to the order d of the
polynomial:

K(x, y) = (αxTy + c)d,

the adjustable parameter α is the slope and c is a constant. The polynomial kernels are
well suited for normally distributed datasets. The Bessel kernel is defined as:

K(x, y) = Jv+1(σ||x− y||)
||x− y||−n(v+1) ,

where J is the Bessel function of first kind [39]. All of them are provided in the ksvm
function of the kernlab R-package.
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3. Results

3.1. Paper I
Baars T, Neumann U, Jinawy M, Hendricks S, Sowa JP, Kälsch J, Riemenschneider
M, Gerken G, Erbel R, Heider D, and Canbay A. In Acute Myocardial Infarction
Liver Parameters are Associated with Stenosis Diameter. Medicine. 2016;
95(6): e2807 (Appendix B.1)

3.1.1. Brief Introduction

This paper examines the statistical coherence of the liver parameter and the stenosis
diameter in patients with acute myocardial infarction. The retrospective single-centre
study includes a cohort of 437 patients, who underwent coronary angiography in the
catheterization laboratory of the West German Heart and Vascular Centre Essen, Uni-
versity Hospital Essen, after suffering an acute myocardial infarction. The observed
parameters were of different type and range. There were socio-demographic and serum
parameters, which were either numeric or categorical. Most of the categorical param-
eters were dichotomous. Due to the imbalance of the class variable stenosis diameter,
models were conducted with a 100-fold leave-one-out cross-validation. Missing values
were imputed by mean imputation.
The author of this thesis contributed the statistical analysis of the importance of

the parameters via the Gini-index-based VIM, which is embedded in the random forest
algorithm. The importance was calculated based on 100 individual RF models.

3.1.2. Study Findings

The results of the Gini-index-based VIM appeared to be biased in such a way that cat-
egorical parameters with fewer categories, namely the dichotomous parameters, seem to
get lower importance values by default.
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For example, the medical practitioners considered the gender to be an important pre-
diction parameter, but according to the Gini-index this was 0. Further investigations
revealed that the Gini-index is known to compute a lower importance for features with
fewer categories [40, 41]. Thus, dichotomous features are evaluated to be irrelevant
for the prediction model. Besides gender, a low importance was calculated for the di-
chotomous parameters Diabetes mellitus, (N-)STEMI, dislipidemia, predisposition, and
smoking, which had three categories, including smoker, former smoker, and non-smoker
(cf. boxplot on page 4 of appendix B.1).

3.1.3. Conclusion

The Gini-index-based VIM incorporated in the random forest algorithm produces un-
reliable results for categorical parameters. Therefore, a comparison with other feature
selection methods was needed. Subsequently, I applied the following EFS method from
paper B.2 on the dataset from paper B.1, which gave the gender parameter higher im-
portance (0.34 with an average importance of 0.34) (cf. figure A.1).

3.2. Paper II
Neumann U, Riemenschneider M, Sowa JP, Baars T, Kälsch J, Canbay A, and Heider D.
Compensation of feature selection biases accompanied with improved predic-
tive performance for binary classification by using a novel ensemble feature
selection approach. BioData Mining. 2016; 9(1), 36. (Appendix B.2).

3.2.1. Brief Introduction

The article introduces and analyzes the eight different FS methods mentioned in chap-
ter 2. Furthermore, the author of this thesis developed an ensemble framework of these
FS methods by normalizing their outputs to a common scale. The so-called ensemble
feature selection (EFS) was tested on six different datasets. As a follow-up to the study
described in paper B.1, I retrieved the MI-Mortality dataset from the West German
Heart and Vascular Centre Essen, University Hospital Essen. The datasets Fibrosis and
FLIP were provided by the Department of Gastroenterology and Hepatology of the Uni-
versity Hospital Duisburg-Essen. The remaining datasets SPECTF, Sonar, and WBC
were provided by UCI Machine Learning Repository [42].
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To evaluate the feature ranking, logistic regressions were performed for the following
different feature subsets and the AUCs of their ROC curves were also analyzed:

a) features, which were above the average EFS importance,

b) features, which were above the average importance of the AUC-based VIM,

c) all features.

A leave-one-out cross-validation (LOOCV) was conducted, although LOOCV is known
to give inflated variance estimation [43]. However, in this case, it was only used to assess
the method’s performance.
The author of this thesis developed the EFS framework, performed the data analysis

and wrote the manuscript together with co-authors MR and DH.

3.2.2. Study Findings

The resulting ROC curves are shown on page 10 of appendix B.2. The AUCs of the sub-
sets a) and b) were compared using the method of DeLong et al. [36]. The performance
of the best EFS ranked features increased in all datasets, however, the improvement was
not always significant: MI-Mortality (p=0.228), Fibrosis (p=0.273), FLIP (p=0.254),
SPECTF (p=0.444), Sonar (p=0.2), and WBC (p=0.02). Additionally, a comparison
via Venn diagrams was made between the feature subsets a) and b)(cf. Venn diagrams
on page 8 of appendix B.2). The results showed, that no distinct trend is obvious ac-
cording to the size of the subsets.

3.2.3. Conclusion

In conclusion, it can be said that the prediction performance of logistic regression could
be enhanced by the EFS method and there is no particular preference for any type of
parameter in the feature subset selected by EFS.

3.3. Paper III
Neumann U, Genze N, and Heider D. EFS: An Ensemble Feature Selection Tool
implemented as R-package and Web-Application. BioData Mining. 2017; 10(1),
21. (Appendix B.3)
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3.3.1. Brief Introduction

The third publication is a technical report on the implementation of the EFS method
as an R-package and its corresponding web-application on http://efs.heiderlab.de.
The R package EFS is divided into three functions, namely ensemble_fs, barplot_fs
and efs_eval.
The author of this thesis implemented the R-Package together with NG, implemented

the web application and drafted the manuscript.

3.3.2. Study Findings

The first function ensemble_fs includes an ensemble of the eight feature selection meth-
ods introduced in paper B.2. The user can select an individual subset of these selections
and their summed results will be normalized to a range between 0 and 1. The output is a
m×n-table, where n is the number of features and m is the number of selected methods
to be conducted. The barplot_fs function displays the results of ensemble_fs in a
barplot. In efs_eval, several measures are offered to evaluate the accuracy and stability
of the subset selection made by EFS. The user can choose between an evaluation of the
prediction performance via the ROC curve of an underlying LR model or measures of
stability, either as the Jaccard index or a permutation test. The class variable is ran-
domly permuted to see if there is a significant difference in performance when compared
to guessing. The web-application is a pared-down version of the R-package developed by
NG with R-shiny. It contains the ensemble_fs and a simplified version of barplot_fs.
Evaluations are not available on the web-application.
The resulting barplots from barplot_fs with order = TRUE of the the six datasets of
paper B.2 are shown in figures A.2 to A.7.

3.3.3. Conclusion

The EFS method can improve prediction accuracy and simplify the interpretability by
reducing the number of features. So far, the method was only tested on small datasets.
For future research, the method should be tested on larger datasets with more features
than the number of samples. With the web-application, we supply a pared-down version
suitable for practitioners who are not used to dealing with R.
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3.4. Paper IV
Neumann U and Heider D.: Assessment of Subset Selection Criteria of Quanti-
tative Feature Selection Methods. Proceedings of the 14th Annual Meeting of the
Bioinformatics Italian Society, 2017 in Cagliari, Italy, submitted (Appendix B.4)

3.4.1. Brief Introduction

Feature selection (FS) methods are an important pre-processing step in prediction mod-
els. They distinguish between features which are relevant for prediction and those which
can be neglected. By applying the EFS method, we obtain a quantitative feature rank-
ing. approach.EFS uses the mean as an integrated subset selection criterion. However,
there are also other possibilities to define a subset selection criterion, such as selecting
the best 15% or the best 10% of all features. A more conservative cut-off point is the
elbow of the importance curve. In other words, we locate the point on the curve where
the slope exceeds 45 degrees: first, a rotation of the curve by −45 (i.e. −π

4 degrees) is
conducted followed by a minimum search.
The author of this thesis developed the π

4 -framework, performed the data analysis and
drafted the manuscript.

3.4.2. Study Findings

We analyzed two big datasets Ad and Arcene with 1.430 and 79.360 features respectively.
The datasets were obtained from the UCI Machine Learning Repository [42]. We could
observe that the curve of feature importance values grew exponentially (cf. figures A.8
and A.9). Tables 3.1 and 3.2 show the results of the assessment of subset selection
criteria. In general, it turned out that having less features results in better performance
due to the reduction of noise. The π

4 -rotation is the most conservative method, i.e., it
selects the smallest number of features. Figures A.10 to A.13 show the according ROC
curves.

3.4.3. Conclusion

For datasets with exponential curves of importances, the π
4 -rotation method provides an

improvement in prediction performance with using the random forest model compared
to more liberal methods like the mean. In further studies, the performance should be
tested with other datasets with large numbers of parameters.

20



3. Results

Table 3.1.: Evaluation of Arcene data. AUC values of a logistic regression model
and a random forest model.

Method AUC from LR AUC from RF Nr of features
Mean 66.7%(60.0...80.0) 89.9%(80.0...100.0) 5038
best 15% 79.9%(70.0...90.0) 91.9%(90.0...100.0) 1488
best 10% 79.9%(70.4...89.4) 90.9%(85.2...96.6) 992
π
4 -rotation 62.5%(51.5...73.6) 92.5%(87.3...97.8) 374

Table 3.2.: Evaluation of Ad data. AUC values of a logistic regression model and a
random forest model.

Method AUC from LR AUC from RF Nr of features
Mean 55.2%(50.0...60.0) 98.4%(100.0...100.0) 613
best 15% 69.9%(70.0...70.0) 98.4%(100.0...100.0) 214
best 10% 91.9%(89.6...94.1) 98.5% (97.6...99.3) 143
π
4 -rotation 95.2%(93.5...97.0) 98%(97.1...98.9) 53

3.5. Further Results
Following paper B.2, I tested two larger dataset named Arcene and Ad from the UCI
Machine Learning Repository with the R-package described in paper B.3. The eval-
uation using logistic regression gave poor ROC curve results (figures A.14 and A.15),
which indicates that it was not a linear problem. The evaluation was conducted with
random forest as the prediction model. The ROC curves for all of the eight smaller
datasets are shown in figures A.16 to A.23. Meanwhile, the random forest evaluation
test is also incorporated in the EFS R-package. Table 3.3 shows all results for the ROC
evaluation test based on an RF model using all features and another model using only
above-average-EFS features. The accuracy of the datasets Fibrosis, Sonar, and Arcene
improved significantly with a significance level of 5%.
The difference in prediction performance between a model with all features and a

model with only the above-average-EFS features was also tested using a ROC test,
which was constructed on a support vector machine (SVM) prediction. The results are
shown in table 3.4. We can observe that for the MI, Fibrosis, and Arcene datasets, the
improvement in accuracy was significant, with a significance level of 5%. The kernels
were selected based on the best AUCs. The following SVM kernels were tested on all
datasets: radial basis, linear, polynomial, and Bessel.
Taking the accuracy analysis with logistic regression from paper B.2 (Table 3) into

account, nearly every dataset showed an improvement in prediction performance de-
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Table 3.3.: Random Forest AUC evaluation. Comparison of ROC curves from RF
model with all features and RF model with features with importance values
over the mean as calculated by EFS.

Dataset p-value of ROC-test
MI-Mortality 0.17
Fibrosis 0.037
FLIP 0.491
SPECTF 0.456
Sonar 0.018
WBC 0.125
Arcene 0.005
Ad 0.250

Table 3.4.: Support vector machine AUC evaluation. Comparison of ROC curves
from SVM model with all features and SVM model with features with im-
portance values over the mean as calculated by EFS.

Dataset kernel p-value of ROC-test
MI-Mortality Bessel <0.001
Fibrosis radial basis 0.039
FLIP Bessel 0.098
SPECTF linear 0.106
Sonar radial basis 0.481
WBC radial basis 0.123
Arcene linear 0.005
Ad polynomial 0.279

pending on the underlying model, except for FLIP and Ad.
In paper B.4, I studied possible subset selection tools. After testing the −π

4 -rotation
method on the two large datasets Arcene and Ad, I also tested it on the smaller datasets
from paper B.2. Table 3.5 shows the resulting p-values for the roc-tests with logistic
regression and RF as the underlying models after DeLong [36].

22



3. Results

Table 3.5.: Subset selection criteria. Comparison between importance mean and
minimum of importances of −π

4 -rotation method.
Dataset mean threshold −π

4 threshold p (LR) p (RF)
MI-Mortality 5 8 0.881 0.179
Fibrosis 7 6 0.486 0.598
FLIP 5 5 1 0.759
SPECTF 19 12 0.8 0.335
Sonar 24 10 0.556 0.006 (mean is better)
WBC 10 7 0.949 0.427
Arcene 5038 69 0.004 0.012
Ad 613 15 <0.001 0.065 (mean is better)
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4.1. Summary
An ensemble of feature selection methods aims to improve subsequent data analysis and
model construction through ranking and selecting suitable subsets of features, thereby
reducing dimensionality and simplifying the model. Therefore, the objective of this the-
sis is to create an ensemble of FS methods which outperforms each single approach with
respect to stability and accuracy. Dietterich [9] stated in 2000 that this assertion is com-
monly valid for machine learning approaches. For FS methods, the statement was proven
by Saeys [8]. The novelty of EFS is the concrete model consisting of eight quantitative
FS methods with different strengths and weaknesses, with these being combined in a
cumulative feature ranking. The aim was to increase diversity in the base selectors and
stability in the ranking of features. In addition, it contains several evaluation methods
and is available as both an R-package and a web-application.
The demand for such an approach emerged following analysis of the cardiological

dataset from paper B.1. A binary classification via random forest was conducted and
the feature importance values were calculated using the Gini index. This measure showed
a strong discrimination against binary features in contrast to continuous ones, a typical
behavior confirmed by former studies [40, 41]. Thus, we aimed to find a better method
for biomarker discovery. Medical practitioners require easy to handle and comprehensible
techniques to be able to identify important features from a large quantity of features by
ranking them in order of relevance. The need for such techniques does not only appear
in precision medicine but rather in all fields which work with high-dimensional data.
Different evaluations showed that the EFS approach could more or less accomplish

the objectives of my study on various datasets. However, there also appeared to be some
limitations on the chosen methods.
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4.2. Discussion of Methods
In this thesis, the chosen methods can be divided into three different categories: base
selectors which are implemented in an ensemble, techniques to distinguish between rel-
evant and redundant features as well as to define a subset of selected features, and the
approaches used for evaluation.
In the following section, I will first discuss the method of ensemble learning, then

the choice of base selectors, followed by the subset selection techniques, and finally the
evaluation methods.

4.2.1. Ensemble method

In recent decades, ensemble learning methods have drawn increased attention in the
machine learning field. They are considered to enhance the robustness [8] of the se-
lected feature subsets. Robust feature selection allow the domain experts to have more
confidence in their results and their interpretations. Previous studies have shown that
different feature subsets may yield equal results [5]. Therefore, an ensemble of feature
selection techniques may help with choosing a more stable subset, which is a combination
of the proposals of several different FS methods. There are two kind of ensemble learning
methods, namely homogeneous and heterogeneous methods. Two well-known homoge-
neous ensemble approaches are boosting [44] and bagging [25], which have shown higher
accuracy when using decision trees [45] and neural networks [46] as classification algo-
rithms. The idea of both methods is to obtain different training sets for each classifier
through a resampling procedure. However, in the case of feature selection, the ensemble
of classifiers is used to vote for features rather than class labels. An example of an
ensemble of FS method is the SVM ensemble by Kim et al. [47], which is an ensemble
of support vector machines (SVMs). Ensembles of FS are applied to biomedical data to
detect biomarkers [48]and to conduct text mining tasks [49]. EFS does not resample the
same method in random training set variations. As a heterogeneous measure, it contains
eight different FS methods for binary classifications, with each differing in their bias to
error-proneness. In addition, the implementations of EFS give the users the ability to
choose which FS methods they want to use.
There are different possibilities for combining the results of the base selectors using

so called aggregators. Seijo-Pardo et al. [12], for example, introduced the SVM-Rank.
Also, voting systems, where each base selector has one vote, are possible aggregators. I
decided to preserve the metric scale of the single rankings and add it up to a cumulative
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ranking. Thus, all FS methods have the same weighting in the ranking process.

4.2.2. Base Selectors

Nowadays, a big variety of FS methods exist with many different variations [4, 5, 50].
They have been developed to handle different tasks, with some being widely applicable
and others only having special applications. In this study, eight different FS methods
for binary classification were used. In the following section, I will discuss these methods
and explain why they were chosen.
The median FS method involves the Mann-Whitney-U-test, for which homogeneity of

variance is a precondition. If this criteria has not been met, the underlying test should
be the Brunner-Munzl test[51]. However, a previous study has shown that the differences
in results are not significant, but only slightly better for equal sample sizes. For varying
sample sizes, the Brunner-Munzel test performs better [52]. Therefore, a preceding sub-
sampling would be appropriate. In practice, the test data should be pre-processed to
satisfy variance homogeneity. MWU only tests the equality of medians if the distribution
of the two classes are of similar shape and equal scales. This is called the pure shift
model, which does not appear very often in real datasets. Several studies address this
topic and recommend only using the MWU test if variances are equal [53, 54], or at
least, their ratio should not exceed 1.5 [55].
Correlations, of which there are different variations, are fast filter methods created

to detect causal dependencies. I implemented a version of the correlation coefficients
called fast-correlation-based filter (FCBF) after Yu and Liu [7]. This measure prevents
multicollinearity by removing those features where there is a high correlation between
them. This might be criticized as practitioners are interested in all features which
are relevant to the class variable when ranking features. However, multicollinearity
can lead to an overestimation of the accuracy of subsequent prediction models. In this
work, the ranking functions is a preprocessing step for binary classification and therefore
multicollinearity can be avoided.
Logistic regressions are widely used to detect the relationships between variables and a

binary class variable. The weights of the regression are embedded importance measures
[56]. They reflect the relevance of features for the prediction performance and thus allow
us to neglect the features with very small weights. LRs have the disadvantage that they
are only able to identify linear relationships between features.
Originally, the Gini-index was developed to describe the dispersion of wealth or income

of populations. Therefore, it was intended to be a measure of inequality of metric values.
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Previous articles have described its bias with categorical variables [57, 58]. They detected
a downward-error for small sample sizes as well as a bias for binary features or features
with less categories. The reason for including the Gini-index in the EFS approach is that
in predictive medicine, it is still the state of the art in variable importance measures for
random forests [41].
It may be possible to criticize four of the eight FS methods in my EFS approach, which

are embedded in an RF algorithm. Due to my research on random forest prediction,
I recognized the differences in the results of variable importance measures from RF.
The next step was comparing it with the other four standard FS methods. We noticed
marked differences in the importance values, cf. figures A.24 to A.29. Interestingly,
the two measures from the conditional forest did not show big differences in the feature
ranking. Janitza et al. [29] state that the AUC-based measure only performs better
than the error-rate-based one for unbalanced datasets, i.e., for datasets with different
class sizes. In our case, we prevent unbalanced data by sub-sampling.
Another limitation on the EFS method is its slowness and computational costs. The aim
of ensemble learning approaches is to reduce computational time by combining multiple
weak classifiers to obtain a reliable classifier which outperforms each single one. The
enhancement should affect accuracy as well as computational velocity. Due to both FS
measures embedded in the conditional random forest, the EFS became computationally
expensive. For future studies, there is a potential for optimization.

4.2.3. Subset Selection

There are two different ways to determine the importance of features [7] and therefore
a subset of relevant features. On the one hand there is the individual evaluation, which
returns a feature ranking by assigning an importance value to each feature individu-
ally. Subset evaluation, on the other hand, is an iterative process in which successive
feature subsets are tested according to an optimality criterion until the optimal subset
is found. The latter has the advantage of being able to of remove redundant features.
However, searching through all possible feature subsets is computationally inefficient
and thus not suitable for high-dimensional data. Thus, I implemented an individual
evaluation method into EFS. The cumulative ranking of all base selectors is used for the
underlying importance values. After getting a feature ranking, the next step is to find
a decision procedure on the relevance of the features. Traditional thresholds are fixed
percentages of features, e.g., the best 10% or 25%. When choosing such a percentage,
the number of features for each individual dataset and the distribution of importance
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values play an important role. Another straightforward threshold criterion is to take
the mean of the importance values, as was done in papers B.2 and B.3. For datasets
with only a few features, the method worked well. However, in bigger datasets the mean
importance value could be very low due to the presence of many irrelevant features.
Therefore, the subsets of features are too big for a precise prediction. In paper B.4, a
novel approach is introduced which improves the subset selection for importance values
ascending exponentially, namely the −π

4 -rotation method. This method searches for the
global minimum after rotating −π

4 . Therefore, it detects the point where the difference
in importance values of the increasingly ordered features exceeds 45 degrees. The dis-
advantage of this method is that it only works for features with exponentially growing
importance. If the importance values form a logarithmic curve, the mean measure would
be more appropriate.

4.2.4. Evaluation Methods

In papers B.2 and B.3, the evaluation of prediction accuracy was performed by comparing
the ROC curves of an underlying logistic regression with a leave-one-out cross-validation
(LOOCV). Afterwards, I also evaluated a random forest model and support vector ma-
chines (SVMs) with the ROC curves to detect non-linear relations in the datasets.
Saeys et al. [8] also used the Jaccard-index to evaluate the stability of subset selection.

They suggested using a Spearman rank correlation to check the similarity in feature
rankings and a Pearson correlation for the feature weighting and more specifically for
the importance values. In addition to that, I implemented a permutation test to check
if the retrieved AUCs are better than making a guess. Furthermore, the variances of
importances are calculated after bootstrapping the class variable.
All evaluation tools are intended for the users to be able to examine the stability of

the feature selection and the accuracy of a model constructed using EFS feature subsets.

4.3. Discussion of Results
Although the underlying model has an effect on the ROC curves, nearly each dataset
showed enhanced performance when models with all features were compared with ones
with only the above-average-EFS features, except in the case of FLIP and Ad. In the
case of Ad, the prediction accuracy is very high when all features are taken in both the
RF (AUC: 98.8% with confidence interval [100%, 100%]) and the SVM (AUC: 96.4%
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with confidence interval [95.1%, 97.8%]) models. Therefore, a significant improvement
is nearly impossible. The FLIP dataset, on the other hand, has a very low prediction
performance for all the tested models. Thus, the dataset is assumed to be inappropriate
for making good predictions, even when the subset of features is optimized.
In general, big datasets include many features which can be neglected as predictors

[59]. Thus, the need for better cut-off algorithms to distinguish the relevant features
from the irrelevant features emerges. The results of EFS from six datasets are discussed
in paper B.2. Subsequently, I tested the EFS on two bigger datasets, namely Ad and
Arcene. The EFS output provides a ranking of features. In both datasets, the curve of
the calculated importance values from EFS is similar to an exponential function. By
taking the mean of importance as a cut-off point for relevance, figures A.14 and A.15
show no significant enhancement of the AUC values compared to constructing the model
with all features. In the case of Ad, the performance is significantly worse. Here, the
underlying prediction model is a logistic regression. The means of importance values of
Arcene and Ad are in both cases 0.12 and the maximum importance values are 0.84 and
0.96 respectively. Figures A.8 and A.9 show that in both cases, there are many features
with little importance, which reduce the mean value. Provided there is a reliable feature
ranking approach, a criteria for subset selection should be able to detect the elbow of
the curve of importance values. The novel −π

4 -procedure detects the point where the
slope of the importance values curve exceeds 45 degrees. By applying this threshold
to the datasets Ad and Arcene, figures A.10 and A.11 show an increase in accuracy.
The underlying model for the ROC curves was again a logistic regression. However,
conducting the same analysis with random forest as the underlying model does not show
significant difference between the mean and the −π

4 -cutoff for Ad (cf. figure A.13). The
reason for this is the same as mentioned above: the AUC of the features with importance
above the mean is already very high (98.2% with confidence interval [100%, 100%]). On
the opposite, figure A.12 shows a significant enhancement in performance with a p-value
of 0.012. As can be seen, two datasets are not sufficient to make a valid statement.
Therefore, more high-dimensional datasets will have to be tested.

4.4. Future Prospects and Conclusion
I have already mentioned that some future work is needed to improve the speed of
the EFS algorithm. The computational time could be reduced by appropriate paral-
lelization. Another approach would be to replace the two methods implemented in the
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conditional random forest with weaker and therefore faster FS methods. For this, future
investigations on a variety of FS method are needed. The EFS implementations are not
able to recognize the form of the importance values curve. Therefore, it cannot decide
which subset selection criteria to choose: either the mean or the −π

4 -measure, meaning
that the user has to make a manual decision. There is still a lot to be done on this in
future to obtain an integrated subset selection. The results show some enhancement in
prediction performance with the −π

4 -cut-off. More high-dimensional datasets would have
to be tested to validate the approach.
So far, EFS is only applicable for binary classifications. Extensions to general classifica-
tion or regressions would require more effort but could be feasible.
In conclusion, it can be said that the EFS method brought the expected reduction

in dimension in the form of a quantitative ranking of features. With the −π
4 threshold

a promising method has been developed for finding a threshold between relevant and
redundant features. The reliability of the EFS feature ranking is very high. Although the
results could not always improve the prediction performance, a significant improvement
could be shown in most cases.
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Figure A.1.: Cumulative barplot of liver parameters associated with stenosis diameter
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Figure A.2.: Cumulative barplots of MI-Mortality datset
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Figure A.3.: Cumulative barplots of Fibrosis datset
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Figure A.5.: Cumulative barplots of SPECTF datset
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Figure A.6.: Cumulative barplots of Sonar datset
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Figure A.7.: Cumulative barplots of WBC datset
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Figure A.10.: ROC curves of logistic regression models with above-average-EFS features
and features over the π

4 -cutoff of Arcene dataset.
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Figure A.11.: ROC curves of logistic regression models with above-average-EFS features
and features over the π
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Figure A.18.: ROC curves of RF models with all features and above-average-EFS fea-
tures of FLIP dataset.
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Figure A.19.: ROC curves of RF models with all features and above-average-EFS fea-
tures of SPECTF dataset.
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Figure A.20.: ROC curves of RF models with all features and above-average-EFS fea-
tures of Sonar dataset.
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Figure A.21.: ROC curves of RF models with all features and above-average-EFS fea-
tures of WBC dataset.
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Figure A.22.: ROC curves of RF models with all features and above-average-EFS fea-
tures of Arcene dataset.
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Figure A.23.: ROC curves of RF models with all features and above-average-EFS fea-
tures of Ad dataset.
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Figure A.24.: Single barplots of MI-Mortality datset
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Figure A.25.: Single barplots of Fibrosis datset50
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Figure A.26.: Single barplots of FLIP datset
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Figure A.27.: Single barplots of SPECTF datset51
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Figure A.28.: Single barplots of Sonar datset
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In Acute Myocardial Infarction Liver Parameters
Are Associated With Stenosis Diameter

Theodor Baars, MD, Ursula Neumann, MSc, Mona Jinawy, cand.med., Stefanie Hendricks, cand.med.,
Jan-Peter Sowa, PhD, Julia Kälsch, MD, Mona Riemenschneider, PhD, Guido Gerken, MD,

Raimund Erbel, MD, Dominik Heider, PhD, and Ali Canbay, MD

Abstract: Detection of high-risk subjects in acute myocardial infarc-

tion (AMI) by noninvasive means would reduce the need for intracar-

diac catheterization and associated complications. Liver enzymes are

associated with cardiovascular disease risk. A potential predictive value

for liver serum markers for the severity of stenosis in AMI was analyzed.

Patients with AMI undergoing percutaneous coronary intervention

(PCI; n¼ 437) were retrospectively evaluated. Minimal lumen diameter

(MLD) and percent stenosis diameter (SD) were determined from

quantitative coronary angiography. Patients were classified according

to the severity of stenosis (SD� 50%, n¼ 357; SD< 50%, n¼ 80).

Routine heart and liver parameters were associated with SD using

random forests (RF). A prediction model (M10) was developed based

on parameter importance analysis in RF.

Age, alkaline phosphatase (AP), aspartate aminotransferase (AST),

and MLD differed significantly between SD� 50 and SD< 50. Age,

AST, alanine aminotransferase (ALT), and troponin correlated signifi-

cantly with SD, whereas MLD correlated inversely with SD. M10 (age,

BMI, AP, AST, ALT, gamma-glutamyltransferase, creatinine, troponin)

reached an AUC of 69.7% (CI 63.8–75.5%, P< 0.0001).

Routine liver parameters are associated with SD in AMI. A small set

of noninvasively determined parameters can identify SD in AMI, and

might avoid unnecessary coronary angiography in patients with low

risk. The model can be accessed via http://stenosis.heiderlab.de.

(Medicine 95(6):e2807)

Abbreviations: ALT = alanine aminotransferase, AMI = acute

myocardial infarction, AP = alkaline phosphatase, AST = aspartate

aminotransferase, AUC = Area under the Curve, BMI = body

mass index, CI = confidence interval, CRP = C-reactive protein,

CVD = cardiovascular diseases, DT = decision tree, GGT =

gamma-glutamyltransferase, HDL = high-density lipoprotein,

LDL = low-density lipoprotein, MLD = minimal lumen diameter,

NAFLD = nonalcoholic fatty liver disease, PCI = percutaneous

coronary intervention, QCA = quantitative coronary analysis, RF =

random forest, RLD = reference lumen diameter, ROC = receiver

operation characteristics, SD = stenosis diameter, SEM = standard

error of the mean.

INTRODUCTION

C ardiovascular diseases (CVD) and acute myocardial infarc-
tion (AMI) are responsible for about 17.5 million of

worldwide deaths per year and are the leading cause of death
globally.1 The prognosis of patients surviving the AMI depends
on the amount of myocardium that undergoes irreversible
injury, that is, the infarct size.2 Early reperfusion is the gold
standard for therapy in AMI and the only way to reduce infarct
size. However, reperfusion can induce an additional damage as
reperfusion injury.3 To identify the extent of stenosis in cor-
onary vessels and thus the necessity for a percutaneous coronary
intervention (PCI) in AMI, a cardiac catheterization has to be
performed. This procedure is invasive and not without risk for
the patients (eg, aortic dissection, aneurysm, arrhythmia, etc.).4

Assessment of the stenosis severity with noninvasive means,
that is, based on serum markers of cardiovascular injury, would
spare patients without the need for an intervention.

Besides traditional cardiovascular risk factors, clinical
studies indicated a potential link between liver disease, prim-
arily nonalcoholic fatty liver disease (NAFLD), and CVD.
NAFLD is by now accepted as hepatic manifestation of meta-
bolic syndrome5 and is associated with insulin resistance,6 type
2 diabetes,7,8 and CVD.9,10 NAFLD patients may also have a
higher prevalence of subclinical atherosclerosis, independent of
the established cardiovascular risk factors.11 To assess subcli-
nical atherosclerosis potent noninvasive procedures are avail-
able, such as carotid intima media thickness measurement,
brachial artery flow mediated dilatation, and arterial stiff-
ness.12,13 Using coronary imaging, such as multislice computed
tomography, studies have also shown, that NAFLD was sig-
nificantly related to lipid core14 calcified plaques.15–17 Apart
from this, elevation of common markers of liver injury [gamma-
glutamyltransferase (GGT), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (AP),
and bilirubin] are associated with the risk of CVD.18–21 How-
ever, it is currently unknown, if liver enzyme concentrations are
associated with the severity of a stenosis in AMI.

In the present retrospective study, we have focused on
patients with AMI undergoing PCI and aimed to predict the
necessity for a PCI with minimally invasive measures. Due to
the emergency situation of AMI, quantitative coronary analysis
(QCA) remained the only coronary imaging method to assess
the severity of the stenosis. To evaluate the use of possible
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noninvasive predictors in AMI we compared patients with AMI
undergoing PCI with a percent stenosis diameter (SD) � 50%
and with SD < 50% using QCA. Correlations were calculated
for demographic data and classic serum parameters for heart and
liver diseases with the SD using a machine learning approach
(random forests). Based on those (noninvasive) parameters
which were identified as most important by the random forests,
a prediction model was developed to identify high-risk subjects
in need for PCI.

MATERIALS AND METHODS

Ethics Statement
The study protocol conformed to the ethical guidelines of

1975 Declaration of Helsinki and was approved by the Institu-
tional Review Board (Ethik-Kommission der Medizinischen
Fakultät der Universität Duisburg-Essen; Germany; reference
number 15-6356-BO). Due to the retrospective nature of the
study, the Institutional Review Board cancelled the need for
written informed consent.

Study Design and Sample Acquisition
In a retrospective single-center study, a cohort of 437

patients was enrolled [body mass index (BMI): 27.8� 0.2 kg/
m2; age: 64.8� 0.6; males/females: 306 (70.0%)/131 (30.0%)].
All patients had an AMI and underwent coronary angiography
in the catheterization laboratory of the West German Heart and
Vascular Centre Essen, University Hospital Essen between
January 2009 and June 2014. AMI was defined as a troponin
value above the 99th percentile of the upper reference level and
either with a ST-segment elevation or new left bundle-branch
block on the electrocardiogram (STEMI, n¼ 176)22 or without
an ST-segment elevation or new left bundle-branch block on the
electrocardiogram (NSTEMI, n¼ 261).23 Patients were classi-
fied according to their calculated SD in 2 groups: SD� 50%
(n¼ 357) and SD< 50% (n¼ 80). Serum parameters were
determined in the central laboratory unit of the University
Hospital Essen (Department of Clinical Chemistry and Labora-
tory Medicine) by standardized methods. Exclusion criteria
were a high-grade aortic valve disease, cardiomyopathy, cardiac
allograft vasculopathy, endocarditis, hypertensive emergency,
myocarditis, pericarditis, tachyarrhythmia absoluta by atrial
fibrillation, coronary vasospasm, and survival of sudden cardiac
death. In addition, patients with a coronary artery disease after
coronary artery bypass graft were excluded from the present
study (see Supplementary Figure 1, http://links.lww.com/MD/
A688). Patients with noncardiac reasons of troponin elevation
were excluded: acute neurological disease (including stroke or
cerebral hemorrhage), acute pulmonary embolism, aortic dis-
section, diseases like amyloidosis, sarcoidosis, or scleroderma,
inflammatory myopathies (ie, polymyositis, dermatomyositis),
sepsis, and patients, who were on cardiotoxic medication
(adriamycin, 5-flurouracil, herceptin).

Quantitative Coronary Angiography
All patients received oral acetylsalicylic acid (100 mg/day)

and underwent PCI. All measurements were performed at the
Angiography Core Laboratory at the West German Heart and
Vascular Centre Essen, University Hospital, University Duis-
burg-Essen. Coronary angiography was performed using the
femoral approach and 6 or 8 F guiding catheters. Stenosis
severity was quantified using off-line caliper measurements
(QCA-MEDIS, Leiden, NL) before stent implantation.24 The

diameter of the catheter tip was measured with digital calipers
and used for image calibration. The reference lumen diameter
(RLD) and the most narrow point (ie, minimal lumen diameter
(MLD)) were calculated. The SD was defined as follows:

SD ¼ RLD�MLD

RLD
� 100

Dataset and Statistics
The dataset (437 patients) included the sociodemographic

parameters sex and age, BMI, the dichotomous variables
STEMI/NSTEMI, smoker/nonsmoker, diabetes mellitus, dysli-
pidemia, family predisposition, as well as the serum parameters
AP, GGT, AST, ALT, C-reactive protein (CRP), bilirubin,
creatinine, and troponin. For 302 cases (245 with SD� 50%,
57 with SD< 50%), also information about total cholesterol
levels, high-density lipoprotein (HDL), low-density lipoprotein
(LDL), and triglyceride levels were available. We refer to these
302 cases as dataset 2.

Predictive Modeling
Statistical data analyses were performed with R (http://

www.r-project.org/). All data are presented as mean� standard
error of the mean (SEM) unless specified otherwise. Missing
values were imputed by mean imputation. Correlation analysis
was performed using Spearman correlation coefficient r.

For building up predictive models, random forests (RFs)
implemented in the randomForest package of R were used. An
RF is an ensemble learning method that can be used for
classification as well as regression,25 which has gained popu-
larity in the recent years.26–28 RFs are classifiers consisting of
a collection of decision trees (DTs) that are combined via
majority vote. When using the trained RF for prediction, an
unseen instance was assigned to the positive class voted for by at
least 50% of the trees. Besides being highly accurate classifiers,
RFs can be used to estimate variable importance, for example,
by measuring the mean decrease in Gini impurity. The import-
ance was calculated based on 100 individual RF models. Due to
the imbalance in the dataset, we also build models with repeated
(100 times) subsampling.

For evaluation of the classifier performance, a 100-fold
leave-one-out cross-validation scheme was used and the recei-
ver operation characteristics (ROC) curve and the correspond-
ing area under the curve (AUC) were calculated with pROC.29

The 95% confidence interval (CI) was computed with 2000
stratified bootstrap replicates. The ROC curve was built by
plotting the sensitivity against the specificity for every possible
cut-off between the 2 classes. The significance Ps of the AUC
values was calculated based on permutation tests (n¼ 1000).
PU values for comparison between classifiers are based on the
Mann–Whitney U test.

RESULTS

Patient Characteristics and Basic Parameters
Detailed data of the included patients can be found in

Table 1, comprising distribution of demographic parameters
(age, BMI) as well as standard parameters of heart (troponin),
renal (creatinine), liver damage (AP, GGT, AST, ALT, bilir-
ubin), and risk factors (smoking, diabetes, etc.). The data set
was divided into 2 groups, 1 containing patients with a
SD� 50% and 1 containing patients with a SD< 50%. This
cut-off usually indicates necessity for an intervention (ie,
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balloon dilation or placement of a stent). For both datasets only
a small number of values had to be imputed. For dataset 1
(without HDL, LDL, cholesterol, and triglycerides) the follow-
ing numbers of values were missing and imputed: BMI: 25 cases
(5.7%), smoker/nonsmoker, diabetes mellitus, dyslipidemia,
family predisposition (each): 8 cases (1.8%), AP: 52 cases
(11.9%), GGT: 1 case (0.2%), bilirubin: 35 cases (8%), CRP:
14 cases (3.2%), creatinine: 6 cases (1.4%), and troponin:
4 cases (0.9%). For dataset 2 (with HDL, LDL, cholesterol,
and triglycerides) the following numbers of values were missing
and imputed: BMI: 7 cases (2.3%), AP: 14 cases (7.9%), GGT:
1 case (0.3%), bilirubin: 21 cases (6.9%), and CRP: 7 cases
(2.3%). Patients with a SD� 50% were younger and had
significantly higher AP and AST levels, whereas BMI, ALT,
GGT, bilirubin, CRP, troponin, and creatinine did not differ
between the groups (Table 1).

Angiographic Data of Minimal Lumen Diameter
(MLD), Reference Lumen Diameter (RLD), and
Stenosis Diameter (SD) Before Stent
Implantation

The RLD did not differ between patients with a SD� 50
(2.84� 0.74 mm) and those with a SD< 50 (2.92� 0.78 mm)
before stent implantation. The group separation by SD resulted
in an artificially significant difference in MLD (SD� 50:
0.55� 0.46 mm; SD< 50: 1.93� 0.67 mm; P< 0.0001) as well
as SD (SD� 50: 80.4� 0.8%; SD< 50: 34.6� 0.5%;
P< 0.0001).

Stenosis Diameter and Noninvasively
Determined Parameters Correlate Significantly

Significant correlations between SD and age (r¼�0.1112,
P¼ 0.02), AST (r¼ 0.2606, P< 0.0001), ALT (r¼ 0.2099,
P< 0.0001), and troponin (r¼ 0.3104, P< 0.0001) were found.
As expected, MLD correlated inversely with SD before stent

implantation (Supplementary Figure 2, http://links.lww.com/
MD/A688). Other noninvasive parameters did not exhibit sig-
nificant correlations with the SD (Table 2).

High Importance of Liver Serum Parameters for
Prediction of Stenosis Diameter

As serum liver markers were significantly correlated to the
SD, an RF importance analysis for classification into SD� 50
and SD< 50 was performed. A high importance (�10) of the
variables age (12.16� 0.03), BMI (13.40� 0.03), as well as the
serum parameters AP (15.81� 0.04), GGT (10.41� 0.02), AST
(10.98� 0.02), ALT (11.84� 0.03), creatinine (13.40� 0.03),
and troponin (15.20� 0.03) were identified. The serum

TABLE 1. Demographic and Basic Parameters of the Patient Cohort

Parameter Stenosis Diameter �50% (n¼ 80) Stenosis Diameter <50% (n¼ 357) P

Age 64.12� 0.09 68.03� 0.17 0.0157
BMI 27.76� 0.05 27.73� 0.11 0.966
AP 80.78� 0.26 72.88� 0.33 0.031
GGT 55.06� 0.72 56.56� 1.66 0.9123
AST 121.42� 1.72 64.18� 1.24 0.0077
ALT 59.23� 1.33 53.48� 2.1 0.7558
Bilirubin 0.63� 0.03 0.58� 0.05 0.3436
CRP 2.17� 0.14 1.65� 0.28 0.2161
Creatinine 1.36� 0.04 1.42� 0.11 0.6732
Troponin 11.37� 0.46 13.01� 1.88 0.8138
STEMI (n) 26 (32.5%) 150 (42%) 0.1309

�

NSTEMI (n) 54 (67.5%) 207 (58%)
Ex-/smoker 18 (22.8%)/22 (27.8%) 74 (21.1%)/122 (34.9%) 0.4875

�

Type 2 diabetes 28 (35.4%) 121 (34.6%) 0.8957
�

Hypercholesterolemia 70 (88.6%) 273 (78%) 0.0421
�

Familial predisposition 30 (38%) 105 (30%) 0.1809
�

Data are presented as mean�SEM.
ALT¼ alanine transaminase, AP¼ alkaline phosphatase, AST¼ aspartate transaminase, BMI¼ body mass index, CRP¼C-reactive protein,

GGT¼ gamma-glutamyl transferase.�
Comparison between patients with astenosis diameter 50% and with a stenosis diameter<50% was done by Student t test (not marked) or Fisher’s

exact test /Chi-square, respectively (�).

TABLE 2. Correlation of Noninvasively Determined
Parameters With Diameter Stenosis

Parameter R P

Age �0.1112 0.02
BMI 0.0502 0.3092
AP 0.0857 0.0931
GGT 0.0068 0.8872
AST 0.2606 <0.0001
ALT 0.2099 <0.0001
Bilirubin 0.0922 0.0648
CRP 0.0711 0.1442
Creatinine �0.0917 0.057
Troponin 0.307 <0.0001

Spearman correlation coefficient r of parameter x with stenosis
diameter.

ALT¼ alanine transaminase, AP¼ alkaline phosphatase, AST¼
aspartate transaminase, BMI¼ body mass index, CRP¼C-reactive
protein, GGT¼ gamma-glutamyl transferase.
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parameters bilirubin and CRP showed a relatively high import-
ance (importance >5), while other parameters did not exhibit a
high importance for the RF classification and thus were
excluded from further analyses (Figure 1).

New Diagnostic Model for Prediction of Stenosis
Diameter

Based only on parameters with an importance �10 (age,
BMI, AP, GGT, AST, ALT, creatinine, troponin) a prediction
model (M10) was developed. M10 reached an AUC of 69.7% CI
63.8–75.5% (Ps< 0.0001) (Figure 2). Addition of the less
important parameters (bilirubin, CRP), did not improve the
model (M5) in terms of AUC. In fact, the AUC value of
M5 was slightly, but significantly lower (Ps< 0.0001,
PU¼ 0.0015). The AUC gives an overview of the general
performance of a classifier. Certain specificities and corre-
sponding sensitivities can be read out directly from the ROC
curve, for example, the sensitivity of M10 at a specificity of
90% and 95% is 38.5% and 32.1%, respectively. Repeated
subsampling did not improve the prediction performance of the
classifiers. In dataset 2, the univariate analyses essentially led to
the same results. However, age (P¼ 0.0745) was no longer
significantly correlated with SD. This may be due to the smaller
number of patients in dataset 2. Total cholesterol levels, HDL,
LDL, and triglyceride levels were not significantly correlated
with the SD and no significant differences between SD� 50 and
SD< 50 were found. Next, we trained RF models on dataset 2:
(i) with the parameters of M10, and (ii) with parameters from
M10 and total cholesterol levels, HDL, LDL, and triglyceride
levels. We found no significant differences in terms of AUC
between (i) and (ii). DISCUSSION

In the present retrospective study, we have investigated the
correlation of demographic data and specific serum parameters
with the SD in patients with AMI undergoing PCI using a machine
learning approach. Based on parameters with an importance of�10
in the RF analyses, a prediction model with an AUC of 69.7% was
developed. Besides age and troponin, liver transaminases (ALT
and AST), and AP were identified as highly important for dis-
crimination of patients with SD� 50 and SD< 50.

The extent and severity of stable CVD is reported to be
lower in younger populations,30 and the incidence of ST seg-
ment elevation myocardial infarction increases linearly with the
age in men, but exponentially in women.31 In contrast, in the
presented cohort age was inversely correlated to SD, implying
that younger patients had more severe stenosis. In line with
previous studies troponin was associated with a higher SD in the
present study. Elevated levels of troponin are associated with
coronary artery calcification in patients with mild CVD32,33 as
well as in non-ST-elevation myocardial infarction.34

It was also possible to confirm an association between the
liver transaminases (ALT, AST) and the severity of the SD.19 In
a previous study a positive correlation was observed between
liver transaminases and the severity of CVD in women, but not
in men.35 Saely et al36 also investigated the possible association
of ALT and AST with angiographically determined CVD and
the presence of metabolic syndrome. A significant association
was identified between ALT and ALT/AST ratio with metabolic
syndrome, but there was no association between liver transam-
inases and angiographically determined CVD. This might be
due to the currently set normal ranges, which might be too high
to detect ongoing liver injury in a metabolic setting.37 Apart
from liver diseases reduced arterial perfusion or congestion due
to (acute) cardiac failure can also affect liver serum parameters.

FIGURE 1. Importance analysis. The y-axis show the estimated
importance by mean decrease in Gini impurity for the different
parameters (x-axis). ALT¼alanine transaminase, AP¼ alkaline
phosphatase, AST¼aspartate transaminase, BMI¼body
mass index, CRP¼C-reactive protein, GGT¼gamma-glutamyl
transferase, NSTEMI¼non-ST elevation myocardial infarction,
STEMI¼ ST elevation myocardial infarction.

FIGURE 2. Performance of prediction model (M10) for the pre-
diction of stenosis diameter. On the y-axis the sensitivity and on
the x-axis the specificity is shown. The ROC curve is shown as a
bold solid line. The AUC of M10 is 69.7% (CI 63.8–75.5%). The
confidence interval is shown as dashed lines. The dotted line marks
the performance of random guessing.
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Within our cohort 100 patients (23%) with AST or ALT
concentrations >100 U/L were found, though only 12 of these
exhibited signs of right heart burden in echocardiography
(Supplementary Table 1, http://links.lww.com/MD/A688).
Though, the majority of patients with elevated serum liver
enzymes exhibited either confirmed liver disease or signs of
metabolic syndrome, which would suggest a NAFLD-type liver
injury. Taken together works of other groups and our data
suggest that liver damage precedes cardiac manifestations in
metabolic syndrome in most cases.

In the present study, AP was identified as the variable with
the highest importance to predict SD� 50 or SD< 50. How-
ever, this was only detected by the RF approach as the univariate
analysis was not able to show a significant association between
AP and the SD. AP has been known as predictor of mortality for
patients with CVD, who already underwent successful PCI with
drug-eluting stent,38 and for those, who survived AMI.39 AP is
associated with CVD risk in elderly men40 and correlated with
the severity of CVD.41 A possible mechanistic explanation for
the high importance of AP in the presented classification could
be related to AP acting as a regulator of vascular calcification.42

Shantouf et al20 found a significant association between high
AP and the coronary artery calcification score in a cohort of 137
maintenance hemodialysis patients. AP and CVD could also be
connected via inflammatory processes,39 which may derive
from adipose tissue inflammation observed in obese patients
with metabolic syndrome.43,44 This is supported by association
of AP with CRP observed in previous studies.40,45 Thus, AP
levels may reflect inflammation of hepatic origin, as CRP is also
mainly derived from the liver. In vascular disease, atherosclero-
sis is associated with inflammatory processes, and in advanced
atherosclerotic plaque also increased serum AP were found.45

Study Limitations
The presented study has some limitations that need to be

addressed in future works. Besides the relatively small number
of patients in the whole cohort, one limiting aspect is the
different size of subgroups. The cohort consisted of 357 patients
with a SD� 50% and the reference group with a SD< 50%
consisted of only 80 samples. To reduce the bias in the
classification, a subsampling approach was performed, which
randomly selects a subset out of the larger group in similar size
as the smaller group (n¼ 80). However, there were no
significant differences in the results between the subsampled
and the initial computations. Due to the retrospective nature of
the study, there were some missing values, especially within the
parameters HDL, LDL, triglyceride, and total cholesterol.

To assess atherosclerosis and the SD in coronary vessels a
range of methods is available for patients with subclinical or
stable CVD. These methods comprise different noninvasive
approaches (carotid intima media thickness measurement, bra-
chial artery flow mediated dilatation, arterial stiffness, and
multislice computed tomography) and invasive procedures
(intravascular ultrasound, QCA). Due to the special emergency
situation of AMI and the retrospective nature of the present
study, QCA remained the only coronary imaging to assess the
severity of the SD. QCA has important limitations: Only lumen,
but not the coronary vessel wall can be visualized. The extent of
atheroma within the vessel wall is not reliably determined by
standard angiographic techniques. Moreover, lumen size is a
relatively crude measure of atherosclerotic disease, especially
in patients with only mild stenotic lesions.46 Though, in the
presented setting (emergency) no other coronary imaging
method was feasible. This may change, when noninvasive

parameters could predict the severity of stenosis and thus enable
a larger time frame until PCI needs to be performed in some
AMI cases with less severe stenosis.

Another limitation occurring due to the retrospective
nature in a cardiologic emergency setting is a lack of infor-
mation on liver diseases. Only serum parameters as surrogate
indicators for liver injury were available. While our data hint to
a connection of liver injury and severity of AMI in metabolic
syndrome the exact association cannot be inferred from this
study. When reviewing the medical records of the patient cohort
only 6 individuals with established/ liver disease (3 with
NAFLD, 3 with alcoholic fatty liver disease) were identified.

CONCLUSIONS
Taken together, age and troponin, but also the classic liver

enzymes AST and ALT were significantly correlated with the
diameter stenosis in patients with AMI undergoing PCI. This
adds to the proposed close link between liver and CVD,
especially in metabolic syndrome. Moreover, it was possible
to build a predictive model from age, BMI, and 6 noninvasively
determined serum parameters to classify patients for a SD of <
or �50. By using a sensitivity cutoff of 90%, the false negative
rate is only 10%. The corresponding specificity of the model is
27%. Thus, those patients that have a severe stenosis are reliably
detected with our model, however taking into account a mod-
erate number of patients that would undergo catheterization
without a clinical need. We implemented a webserver at http://
stenosis.heiderlab.de using the aforementioned sensitivity cut-
off of 90%, which can be used to predict SD.

Liver parameters may be relevant factors to predict the
severity of stenosis in AMI and to identify high-risk subjects in a
noninvasive way, sparing patients with less severe stenosis the
dangerous procedure of cardiac catheterization and coronary
angiography.
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Abstract

Motivation: Biomarker discovery methods are essential to identify a minimal subset of
features (e.g., serum markers in predictive medicine) that are relevant to develop
prediction models with high accuracy. By now, there exist diverse feature selection
methods, which either are embedded, combined, or independent of predictive
learning algorithms. Many preceding studies showed the defectiveness of single
feature selection results, which cause difficulties for professionals in a variety of fields
(e.g., medical practitioners) to analyze and interpret the obtained feature subsets.
Whereas each of these methods is highly biased, an ensemble feature selection has the
advantage to alleviate and compensate for such biases. Concerning the reliability,
validity, and reproducibility of these methods, we examined eight different feature
selection methods for binary classification datasets and developed an ensemble
feature selection system.

Results: By using an ensemble of feature selection methods, a quantification of the
importance of the features could be obtained. The prediction models that have been
trained on the selected features showed improved prediction performance.

Keywords: Machine learning, Feature selection, Ensemble learning, Biomarker
discovery, Random forest

Background
In the fields of predictive medicine as well as molecular diagnostics the need for sim-
plification of datasets with many parameters frequently emerges. Therefore, approaches
are necessary, which can identify important parameters (sometimes also referred to as
features, independent variables, or predictor variables). Such quantifiable parameters
that allow diagnostic validity are called biomarkers. In 2001, the Biomarkers Definitions
Working Group of the American National Institute of Health defined a biomarker as
“a characteristic that is objectively measured and evaluated as an indication of normal
biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention“ [1]. Examples for biomarkers are serum parameters, genetic markers, or
socio-demographic markers.

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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The detection of biomarkers can be conducted by computer-assisted approaches,
namely feature selection (FS) methods. A great variety of FS techniques already exist. In
general, these approaches can be separated into: filter methods, wrapper methods, and
embedded methods. The first one is independent of any prediction model and therefore
shows an advantage in regards of computation time compared to the other approaches.
Filter methods use weighting measures, such as correlation coefficients [2] or mutual
information [3]. The wrapper methods are computationally intensive, but in turn pro-
vide better accuracy compared to filter methods [4]. This type of approach occurs outside
the model construction, however it uses the outcome as a guideline. The third type, the
embedded methods, is an alternative to wrapper methods. These approaches combine
the advantages of both methods stated above, namely the low computational costs and an
adequate accuracy. This is due to the fact that the process of feature selection is already
part of the model construction. There are three main criteria a feature selection method
should meet, namely reliability, validity, and reproducibility. Methods that display these
characteristics are called stable. Based on the definition of biomarkers, non-generalizable
features are not considered to be reliable markers. There are several factors that can cause
instability of the feature selection, e.g., the complexity of multiple biomarkers, a small-
n-large-p-problem, or when the algorithm simply ignores stability [5, 6]. Thus, feature
selection results have to be treated with care. For example, the Gini-index is widely used
in predictive medicine, but it has also been demonstrated to deliver instable results due
to unbalanced datasets [7, 8]. To counteract instability of feature selection methods, we
developed an ensemble feature selection (EFS) method, which compensates biases of sin-
gle FS. The idea of ensemble methods is already widely used in learning algorithms [9]. In
this article we will introduce eight FS methods and our quantifying EFS method.We eval-
uated our EFS method compared to the state-of-the-art method AUC-FS with regard to
the prediction performance in subsequent classification based on six different datasets.
Furthermore, we compared the results with prediction models without pre-selection of
features.

Methods
With the development of the EFS method we take advantage of the benefits of multi-
ple feature selection methods and combine their normalized outputs to a quantitative
ensemble importance. The key features of our EFS method are:

1. The combination of widely known and extensively tested feature selection methods.
2. The balance of biases by using an ensemble.
3. The evaluation of EFS.

Eight different feature selection methods have been used for the EFS approach. Since
random forests have drawn increased attention in the field of predictive medicine,
four of the chosen feature selection methods are embedded in a random forest algo-
rithm. Further, we considered the outcome of a logistic regression (i.e., the coefficients)
as another embedded method as well as the filter methods median, Pearson-, and
Spearman-correlation.
We used implementations in R (http://www.r-project.org/) for the different basal fea-

ture selection methods. Before we go into details a general data setting is introduced:
Let vectors Xi = (x1,i, . . . , xN ,i) be the prediction variables for i ∈ {1, . . .M} and
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Y = (y1, . . . , yN ) be the response variable. Altogether, a data matrix of size N × M + 1
is received, where N is the number of samples and M is the number of prediction
variables.

Random forest

Random forests (RFs) are ensemble learning methods for classifications and regressions
consisting of multiple decision trees [10]. RFs have been shown to give highly accu-
rate predictions on biological [11–13] and biomedical data [14, 15]. There are different
implementations of the RF algorithm in R available, which offer diverse feature selection
methods. In the context of RFs, these feature selection methods are called variable impor-
tance measures (VIMs). We integrated two of the available implementations of RFs into
our EFS method: (i) the RF method adapted from Breiman [10], which uses the CART
(classification and regression tree) algorithm for individual node decisions, implemented
in the R package randomForest and (ii) the cforest [16] implementation from the R-
package party, because of its promising AUC score VIM. In RF approaches, randomness
is gained by the general technique of bootstrap aggregating, also called bagging, mean-
ing that for the tree building process only a subset of the data samples are chosen with
replacement. We used 1000 decision trees in both RFs. In order to get robust results, we
averaged the VIMs over 100 RF models.
The raw variable importance score for Xi is given by the average over the set of all

decision trees t ∈ {1, . . . ,T} in the RF:

̂VIXi = 1
T

T
∑

t=1

̂VIXi(t).

In addition, we define an indicator function I(A) by:

I(A) =
{

1, if the argumentAis fulfilled,
0, otherwise.

Gini-index

The Gini-index is the sum of products between different class proportions over all classes
for each variable, which is in the case of a binary classification:

G = 2p(1 − p),

where p = N1
N is the proportion of one of the classes, in this case for response Y = 1, and

N1 is the number of units in this class.
The Gini-index G defines a measure dij of the decrease in heterogeneity at node j:

dij = G − (
NL
N

GL + NR
N

GR),

where GR and GL respectively are the Gini-indexes calculated for the following right and
left nodes andNL andNR are the numbers of units in the left and right node after splitting.
With this measure the variable importance for Xi in tree t is defined as:

VIXi(t) =
∑

j∈J
dijI(Xi splits at node j).

For deeper insights in the functionality of the Gini VIM we refer to [7].
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Mean accuracy error-rate-based VIM

The mean accuracy error-rate-based VIM uses the out-of-bag (OOB) data. The OOB
consists of the subset of all samples which are not used for the construction of decision
trees: For each tree, the prediction error on the OOB portion of the data is recorded
(error rates for classification, mean square errors for regression). This process is repeated
after permuting each predictor variable. The difference between both is averaged over all
trees, and normalized by the standard deviation of the differences, except the standard
deviation is zero. For each tree t, we get the following formula:

̂VIXi(t) = 1
|B(t)|

∑

j∈B(t)
I(yj = pj) − I(yj = pj,π i),

where pi is the RF prediction of the response variable, π i is the permutation of the values
in the i-th variable and B(t) is the OOB data for tree t.

Conditional error-rate-based VIM

In principle, the underlyingmathematical model for the conditional error-rate-based VIM
is the same as for the mean accuracy error-rate-based VIM. The conditional VIM takes
biases in variable importance into account, which are generated by a correlation of the
tested Xi with the other prediction variables.
For Z = X1, . . . ,Xi−1,Xi+1, . . . ,XM we calculate

̂VIXi(t) = 1
|B(t)|

∑

j∈B(t)
I(yj = pj) − I(yj = pj,π i|Z),

where B(t) is the OOB data for tree t. In other words, the variable Xi is permuted, while Z
is fixed at Z = z := (cp1, . . . , cpi−1, cpi+1, . . . , cpM), consisting of the cut points for each
variable in Z, which are defined through the partition of the feature space of Xi induced
by the current tree t.

AUC-based VIM

In contrast to the aforementioned VIMs, the AUC-based VIM does not employ the error-
rate, but instead uses the Area Under the Curve (AUC). It is calculated as the integral
of the Receiver Operating Characteristic (ROC) curve, which is received by mapping the
sensitivity against specificity for every possible cut-off between the two classes.
In contrast to error-rate-based methods, which give more weight to the majority class,

the AUC does not favor any class. In previous studies the AUC was shown to be a par-
ticularly appropriate VIM for unbalanced data settings and should be considered as the
state-of-the-art model [17, 18]. The AUC-score is an estimator for the probability that a
randomly chosen sample from class Y = 1 receives a higher class probability for class
Y = 1 than a randomly chosen sample from class Y = 0. The variable importance for
each tree t is calculated as:

̂VIXi(t) = AUCi − AUCπ i

whereAUCi andAUCπ i respectively are the AUCs computed from the OOB observations
in tree t before respectively after permuting the values of predictor Xi.
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Logistic regression

Even though RFs have become very popular, it is not totally understood why the algo-
rithm acts in its specific way. An embedded feature selectionmethod, which is understood
in more details, is the weighting system (i.e., coefficients) of the logistic regression. For
feature selection, we access the model’s coefficients, i.e., the β−values of the regression
equation. It should be noted that the range of features can strongly differ. Due to this fact,
the β-coefficients of parameters are not directly comparable. To provide comparability of
the variables’ importances, we conducted a z-transformation:

zX = X − X
sX

,

where X is the mean and sX the standard deviation of variable X, respectively. Through
standardization by z-transformation, the mean of β-coefficients become zero with a
standard deviation of 1, thus assuring that the features all have the same domain.
Subsequently, the values are ordered according to their absolute values in decreasing
order.

Correlation coefficient

The correlation between any two features can be described as the quantification of the
extent of statistical dependence between them, which can be quantified by different cor-
relation coefficients. We used the approach of [19] to select features that are highly
correlated with the dependent variable, but show only low correlation with other predic-
tors. We used a threshold for the correlation between the predictor variables of p = 0.7.
In order to avoid collinearity a threshold of 0.7 is most frequently used [20], although
recommendations for more restrictive (e.g., 0.4 [21]) and less restrictive (e.g., 0.8 [22])
thresholds exist. In our study, we adopted two correlation coefficients, namely the Pearson
product-moment correlation and the Spearman rank correlation coefficient.

Pearson

For any two features X and Y with samples j = 1, . . . , n, the Pearson product-moment
correlation coefficient is defined as

rXY =
∑n

j=1(xj − x)(yj − y)
√

∑n
j=1(xj − x)2

∑n
j=1(yj − y)2

,

where x and y are the sample means of X and Y.

Spearman

For the Spearman rank correlation coefficient we observe the sample’s ranks rk(xi) and
rk(yi) of the features X = (x1, . . . , xn) and Y = (y1 . . . , yn) and compute

ρ = 1 − 6
n

∑

j=1

d2i
n(n2 − 1)

,

where di = rk(xi) − rk(yi).
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Median

For the median feature selection, we used a Mann-Whitney-U test [23] comparing the
positive and negative class of the response variable Y. The test evaluates following hypoth-
esis: Sincemed0 andmed1 are the medians of the negative and positive class of a predictor
variable, the null hypothesis for each predictor variable is defined as:

H0 : med0 = med1.

The resulting p-values of the Mann-Whitney-U test are used as scoring system for the
feature selection. Thus, a smaller p-value indicates a higher importance.

Ensemble feature selection

Feature selection methods as a preprocessing step for supervised learning algorithms
provide several benefits, such as reduced computational costs (e.g., training time, stor-
age requirements), but also improved prediction performance. However, different feature
selection methods provide different subsets of features. Hence they give rise to sample
selection bias. In general, the aim of supervised learning algorithms is to find a suitable
hypothesis which makes the best prediction for a particular problem. Improvements can
be achieved by combining multiple hypotheses instead of testing only one. This is the
main concept of ensemble learning methods. Ensemble techniques are widely used in
machine learning algorithms to achieve higher stability. The RF algorithm is an example
for bootstrap aggregating [24]. This technique combines several prediction models using
a randomly drawn subset of the training data. Another type of ensemble learning meth-
ods are boosting algorithms, which merge several weak classifiers to a stronger one. The
most popular implementation is AdaBoost [25].
In the current study, we developed a stable feature selection procedure, which is based

on the idea of ensemble learning. For our EFSmethodwe integrated eight different feature
selection methods and normalized all individual outputs to a common scale, an interval
from 0 to 1. Thereby we ensure the comparability between different FS methods and con-
serve the distances of importance between one feature to another. This normalization is
achieved in two different ways: For all feature selections, except for the median, the abso-
lute value of the FS method output is a value which illustrates the increase of importance.
By dividing through the maximum value we get values between 1 and 0:

impXi = βi
max(βm)m∈M

.

In the case of the median FS we receive a p-value for each feature Xi, which is
normalized as follows:

impXi = 1 − pi + min(pi).

For the four RF based VIMs, we computed 100 repetitions and averaged the importance
for each feature. This procedure guarantees a higher robustness of the feature importance
and the selected subset.
We evaluated the selected subsets by using a logistic regression model with a leave-

one-out cross validation (LOOCV) to avoid overfitting. LOOCV is known to give inflated
variance estimation [26], but in our study we used the LOOCV only for comparing the



Neumann et al. BioDataMining  (2016) 9:36 Page 7 of 14

different methodologies. The EFS system selects those parameter that have a higher
importance than the mean importance:

impXi > impXM ,

where impXM symbolizes the mean of all variable importances. Alternatively, the median
or Q3 could be used as well, however, both would lead to a fixed number of selected
parameter irrespective of their relevance for the subsequent classification model.
The logistic regression model based on the EFS-selected features was then compared

to logistic regression models either trained on all features and on features selected by the
AUC-based VIM, which is considered to be one of the state-of-the-art methods for feature
selection.We examined the AUC-values of the ROC curves with ROCR [27]. Additionally,
the improvement in performance between the AUC-based VIM, the EFS subset, and the
model without feature selection is measured by a comparison of the AUCs via the method
of DeLong et al. [28].

Datasets

To evaluate our EFS method, we used six different datasets. An overview of the datasets
is given in Table 1.
The first datasetMI-Mortalitywas provided by the Clinic for Cardiology,West German

Heart and Vascular Centre Essen of the University Hospital Duisburg-Essen. It con-
sists of 14 socio-demographic and serum parameters from 406 patients. The purpose
of this study was to examine which parameters are important for the mortality predic-
tion after treatment on myocardial infarction. The data was collected during a follow-up
study of [29].
The Department of Gastroenterology and Hepatology of the University Hospital

Duisburg-Essen provided the datasets Fibrosis [30] and FLIP, which again consist of
socio-demographic and serum parameters. Both deal with different scores to predict
fibrosis.
SPECTF is a dataset from the UCIMachine Learning Repository [31]. It describes diag-

nosing of cardiac Single Proton Emission Computed Tomography (SPECT) images. The
class-variable is distinguishing between normal (=0) and abnormal (=1).
The Sonar dataset has also been retrieved from the UCI Machine Learning Repository

and obtained by bouncing sonar signals off a metal cylinder or rock at various angles and
under various conditions. The prediction model should be able to distinguish between
rocks and metal cylinders.
In the WBC dataset a classification between benign and malignant tumors in breast

cancer samples is intended. Benign tumors are not cancerous, thus these samples are class
0. Malignant tumor samples are class 1.

Table 1 Overview of datasets. Number of features after removing samples with missing values

Dataset No. of Samples No. of Features Categorical Numeric

MI-Mortality 406 14 7 7

Fibrosis 101 26 7 19

FLIP 103 13 6 7

SPECTF 267 44 44 0

Sonar 208 60 0 60

WBC 569 30 0 30
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In order to reduce the number of missing values in the datasets, features with more
than 20% missing values were discarded. Additionally, columns with zero variance were
removed.

Results
Selected features

The number of selected features from EFS and AUC-FS varies for each dataset. The Gini
FS method is known to prefer categorical variables with many categories and disregards
potential important binary prediction variables [32]. In contrast to the Gini FS, we could
observe that the variable type did not play a decisive role for the importance. Through
aggregating different FS methods into an ensemble, biases of individual methods are
compensated.
In Fig. 1 Venn diagrams are shown, illustrating the feature subsets derived from the

AUC-FS and EFS, respectively. The Venn diagrams show no distinct trend for the number
of features that were selected by the respective method, i.e., in some datasets EFS selects
more features than the AUC-FS, while in other datasets it is the other way around.
For the Fibrosis data the selected subset of AUC-FS contains eight features, whereas the

EFS subset consists of only seven. Five features have been selected by bothmethods, while
the other features are disjoint. The WBC dataset yielded a similar result. Both methods
selected a subset of ten features, with eight features being selected by both methods. The

Fig. 1 Venn diagrams. Comparison of feature subsets retrieved from AUC importance and EFS importance
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results of the MI-Mortality data and FLIP data are similar: EFS selected a subset of five
features while AUC-FS returned four features, which all are contained in the EFS selected
subset. The datasets of the SPECTF resp. Sonar studies also deliver analogous subset
schemes. The major part of selected features are chosen by both FS methods (14 and
18, respectively). Our EFS method considered five and six additional features, while the
AUC-FS selected one and two additional features, which do not occur in the intersection
of both subsets.
The EFS selected more features than the AUC-FS in four out of six cases, however the

percentages of selected features out of all possible prediction variables ranged from 26.9
to 43.2% (cf. Table 2).

Performance evaluation

In order to evaluate our EFS method in comparison to the AUC-FS, we used a logistic
regression model with LOOCV. Additionally, we trained a logistic regression model with-
out feature selection. Table 3 summarizes the results for all datasets. The resulting ROC
curves are shown in Fig. 2.
For each dataset, the resulting model trained on the EFS selected subset of features per-

formed superior compared to the models trained either on the AUC-FS selected features
or on all features without selection.
However, the EFS showed a significantly higher AUC value only for the dataset WBC.

For all other datasets, the AUCs were higher for the EFS compared to the AUC-FS as well,
however the results were not significant: MI-Mortality (p = 0.228), Fibrosis (p = 0.273),
FLIP (p = 0.254), SPECTF (p = 0.444), Sonar (p = 0.2), and WBC (p = 0.02).
The model using the EFS selected features showed significant higher AUC values com-

pared to the model trained without feature selection for all datasets except MI-Mortality
and FLIP (p = 0.201 and p = 0.971, respectively). Taken together, throughout all datasets
we can observe an enhancement of performance by using the EFS method, although it is
not significant in all datasets.
Additionally, we evaluated the robustness of our EFS approach by using permutation

tests [33, 34]. To this end, the logistic regression models are compared to models that are
trained on randomly permuted class labels. P-values for all datasets were less than 0.001.
Moreover, we evaluated the stability of the EFS approach in terms of selected features.

To this end, we evaluated the variance of the importance of the five most important fea-
tures using a 10-fold cross-validation of the datasets repeated 10 times. Furthermore, we
used the Jaccard-index [35] as a stability score, described by the following formula:

J(S1, . . . , Sn) = |S1 ∩ . . . ∩ Sn|
|S1 ∪ . . . ∪ Sn| ,

Table 2 Types of selected features. Evaluation of the selected features subsets of AUC-FS and EFS

Dataset AUC-FS selected EFS selected EFS/all in % Numeric* Categorical*

MI-Mortality 4 5 35.7 3 2

Fibrosis 8 7 26.9 5 3

FLIP 4 5 38.5 3 2

SPECTF 15 19 43.2 0 19

Sonar 20 24 40.0 24 0

WBC 10 10 33.3 9 1
*refers to the EFS selected features
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Table 3 Results on datasets

Dataset All [CI] AUC-FS [CI] EFS [CI] AUC-FS vs. EFS* all vs. EFS**

MI-Mortality 0.758 [0.700, 0.800] 0.757 [0.704, 0.811] 0.776 [0.725, 0.826] 0.228 0.201

Fibrosis 0.493 [0.300, 0.600] 0.681 [0.537, 0.824] 0.746 [0.617, 0.874] 0.273 0.018

FLIP 0.759 [0.600, 0.900] 0.723 [0.582, 0.863] 0.761 [0.633, 0.890] 0.254 0.971

SPECTF 0.807 [0.700, 0.900] 0.856 [0.811, 0.901] 0.865 [0.821, 0.910] 0.444 4.68e-4

Sonar 0.792 [0.700, 0.900] 0.840 [0.787, 0.894] 0.862 [0.813, 0.911] 0.200 0.009

WBC 0.611 [0.600, 0.700] 0.987 [0.977, 0.998] 0.991 [0.981, 1.000] 0.020 1.21e-41

Column 1 to 3 are AUCs values of all features, selected by AUC-FS and by the EFS with confidential intervalls in brackets. The last
two columns show the p-values of the comparison by the method of [28]. The function compares the AUC of the ROC curves of
(*) the AUC-FS and EFS method and (**) of all parameters and EFS outcome. Statistical significant p-values are printed in bold

where S1, . . . , Sn are different subsets of features. Thereby, a Jaccard-index close to 1 rep-
resents a high similarity of feature subsets. It turned out that EFS gives highly stable
results with variances of the importance values less than 0.0235. Moreover, the Jaccard-
index of the selected features by EFS was 1 for all data sets. Table 4 shows all variances of
the importance and the corresponding boxplots can be found in the Additional file 1.

Discussion
Feature selection methods have been studied for several decades (e.g., [36]). There
are already many publications [37–41] on how to improve the performance of feature
selection methods.
We provide an ensemble feature selection tool to conduct a feature selection for binary

classification, which showed promising performance on all datasets. In contrast to ensem-
ble methods of previous studies [42–44], the aim of this work was to combine filter
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Fig. 2 Performance of logistic regression models. On the y-axis the sensitivity and on the x-axis the specificity
is shown. Three ROC curves are shown per dataset: of all features (solid), the AUC-FS selected (dashed) and
the EFS selected (twodashed) features. The dotted linemarks the performance of random guessing
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Table 4 Variance of feature importances. Variance of the five most important features of a 10-fold
cross-validation

Dataset Variance #1 Variance #2 Variance #3 Variance #4 Variance #5

MI-Mortality 0.001759124 0.004694053 0.004904828 0.003720571 0.001580310

Fibrosis 0.003124527 0.008085472 0.019901386 0.009202372 0.019804508

FLIP 0.006604973 0.011325453 0.014731007 0.023499884 0.020140657

SPECTF 0.000380482 0.014946809 0.011520607 0.005807655 0.002880478

Sonar 0.003887830 0.001792209 0.003004598 0.003115140 0.002680274

WBC 0.001071784 0.001769331 0.002912278 0.000387555 0.001096465

and embedded methods. Due to their focus on predictions, embedded methods usu-
ally attain a higher prediction performance, whereas the advantage of filter methods are
low computational cost and low complexity. By using ensembles, the advantages of both
strategies can be combined and individual biases are alleviated. Concerning the enhanced
approximation of embedded methods, we excluded wrapper methods from our study.
The cforest method requiresmore time than any other component of the EFS algorithm,

thus calculations of datasets with hundreds of thousands of features would take up a lot
of CPU time. A workload saving alternative would be a reduction of the repetition rate
of the RF algorithms, in particular of the cforest algorithms. However, in turn this will
negatively affect the VIM’s robustness. In our computations the repetition rate was set to
100 and the average variable importance was reported. Since, there is no generalization
on how many repeats are necessary to get a robust result.
The evaluation of feature subsets depicted in the Venn diagrams reflects that in four out

of six cases our EFS method selects more features than the AUC-FS. We assume that the
reason for this phenomenon is based on the importance weighting system of the AUC-
FS. As threshold for the decision which features are considered to be the most important
ones, the respective mean over all importance values was taken. If there are only a few
features lying above average, this might be an indication that the values of those features
which are considered important are overestimated compared to the non-selected fea-
tures. Thus the mean increases and less features reach that threshold. Alternatively, the
opposite case could be true, meaning in one or more of the other feature selection meth-
ods the assigned importance values hardly differ. This in turn has an alleviating factor on
the importance values of our ensemble of feature selection methods.
In the current study, we used the logistic regression method to analyze the perfor-

mance of our EFS. For binary classification, logistic regression is the statistical method of
choice, in particular in the field of predictive medicine [45]. It has the ability of detecting
possible causal relationships between features. By conducting a z-transformation on the
whole dataset the relationships become easy to interpret via the β-coefficients. Although
the logistic regression model has many advantages, the prediction performance could be
improved by using other predictive models in future studies. To get a broader and more
generalizable rating for the results of our EFS method, an evaluation by methods such as
support vector machines or RFs could additionally be conducted.
The output of all individual feature selection methods is normalized and summed up to

our EFS result using the same weighting for all methods. However, there are more possi-
bilities how the ensemble importance of features can be calculated, such as majority vote
or by a weighting system. A weighting system could consider the individual robustness
of each FS method, whereas a majority vote does not provide comparability between the
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Table 5 Quantity of selected features. Number of selected features of our EFS method with and
without the AUC-FS

Dataset EFS EFS without AUC-FS Intersection

MI-Mortality 5 5 5

Fibrosis 7 9 7

FLIP 5 5 5

SPECTF 19 20 19

Sonar 24 24 24

WBC 10 11 9

importance of features. This issue could be solved by a weighted majority vote. For more
details on fusion methods we refer to [9].
We determined several thresholds for the computation, namely the number of repe-

titions of the RF algorithms (100 times), the threshold of missing values (20%), and the
correlation threshold between the dependent variables (0.7). In some data cases varying
these thresholds might yield a better performance. However, for comparability reasons
we used fixed thresholds for all datasets.
We also examined the subsets of features selected by the EFSmethod without the AUC-

FS to estimate the influence of the AUC-FS. The selected features are essentially the same
(cf. Table 5). In three datasets the subsets are slightly larger, which supports our theory
on the overestimating effect of the AUC-FS on relevant feature’s importance.
By the stability-test we proofed, that the EFS method is a stable and reliable approach

for binary classification.

Conclusion
In the current study, we could show the advantages of our EFS method for binary classi-
fication data, namely the robustness and stability of feature ranking and subset selection.
The evaluation of prediction performance via ROC curves of a logistic regression model
showed an improvement of the prediction based on the EFS selected features compared
to all features on every tested dataset.
Further investigations on the topic of enhancing feature selection methods will be con-

ducted in future. Firstly, we will evaluate our EFS method on high-dimensional data, such
as data retrieved frommicroarray or next-generation sequencing analyses. So far we used
datasets with less than 600 samples and a maximum of 60 features. Secondly, in future
studies we would like to investigate how our method deals with multiple classes instead of
binary classification. Therefore, it will be necessary to substitute the median feature selec-
tion method with an appropriate alternative. Another interesting application will be the
extension on regression models where classes are replaced by continuous values. Another
direction of our future work on EFS methods will concern the composition of our FS
method set. By combining feature selection algorithms the accuracy will improve by the
expense of increased complexity. Using an ensemble of several simple methods can gain
a higher accuracy than one complex method (cf. [9]). Due to this theory, an evaluation is
needed on which FS methods are mandatory to gain a maximum accuracy.

Additional file

Additional file 1: Boxplots of five most important features in bootstrapping analyses. (JPEG 199 kb)
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Abbrevations
AUC: Area under the curve; CART: Classification and regression tree; CPU: Central processing unit; EFS: Ensemble feature
selection; FS: Feature selection; LOOCV: Leave-one-out cross validation; OOB: Out-of-bag; RF: Random forest; ROC:
Receiver operating characteristic; VIM: Variable importance measure
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Abstract

Background: Feature selection methods aim at identifying a subset of features that
improve the prediction performance of subsequent classification models and thereby
also simplify their interpretability. Preceding studies demonstrated that single feature
selection methods can have specific biases, whereas an ensemble feature selection has
the advantage to alleviate and compensate for these biases.

Results: The software EFS (Ensemble Feature Selection) makes use of multiple feature
selection methods and combines their normalized outputs to a quantitative ensemble
importance. Currently, eight different feature selection methods have been integrated
in EFS, which can be used separately or combined in an ensemble.

Conclusion: EFS identifies relevant features while compensating specific biases of
single methods due to an ensemble approach. Thereby, EFS can improve the
prediction accuracy and interpretability in subsequent binary classification models.

Availability: EFS can be downloaded as an R-package from CRAN or used via a web
application at http://EFS.heiderlab.de.

Keywords: Machine learning, Feature selection, Ensemble learning, R-package

Background
In the field of data mining, feature selection (FS) has become a frequently applied pre-
processing step for supervised learning algorithms, thus a great variety of FS techniques
already exists. They are used for reducing the dimensionality of data by ranking features
in order of their importance. These orders can then be used to eliminate those features
that are less relevant to the problem at hand. This improves the overall performance of
the model because it addresses the problem of overfitting. But there are several reasons
that can cause instability and unreliability of the feature selection, e.g., the complexity of
multiple relevant features, a small-n-large-p-problem, such as in high-dimensional data
[1, 2], or when the algorithm simply ignores stability [3, 4]. In former studies, it has been
demonstrated that a single optimal FS method cannot be obtained [5]. For example, the
Gini-coefficient is widely used in predictive medicine [6, 7], but it has also been demon-
strated to deliver unstable results in unbalanced datasets [8, 9]. To counteract instability
and therewith unreliability of feature selection methods, we developed an FS procedure
for binary classification, which can be used, e.g., for random clinical trials. Our new

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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approach ensemble feature selection (EFS) [10] is based on the idea of ensemble learning
[11, 12], and thus is based on the aggregation of multiple FS methods. Thereby a quan-
tification of the importance scores of features can be obtained and the method-specific
biases can be compensated. In the current paper we introduce an R-package and a web
server based on the EFS method. The user of the R-package as well as the web applica-
tion can decide which FS methods should be conducted. Therewith, the web server and
the R-package can be applied to perform an ensemble of FS methods or to calculate an
individual FS score.

Implementation
We used existing implementations in R (http://www.r-project.org/) for our package EFS.
The following section will briefly introduce our methodology. For deeper insights please
refer to [10]. Our EFS currently incorporates eight feature selection methods for binary
classifications, namely median, Pearson- and Spearman-correlation, logistic regression,
and four variable importance measures embedded in two different implementations of
the random forest algorithm, namely cforest [9] and randomForest [13].

Median

This method compares the positive samples (class = 1) with negative samples
(class = 0) by a Mann-Whitney-U Test. The resulting p-values are used as a measure of
feature importance. Thus, a smaller p-value indicates a higher importance.

Correlation

We used the idea of a fast correlation based filter of of Yu and Liu [14] to select features
that are highly correlated with the dependent variable, but show only low correlation with
other features. The fast correlation based filter eliminates features with high correlation
with other features to avoid multicollinearity. The eliminated features get an importance
value of zero. Two correlation coefficients, namely the Pearson product-moment and
the Spearman rank correlation coefficient were adopted and their p-values were used as
importance measure.

Logistic regression

The weighting system (i.e., β-coefficients) of the logistic regression (LR) is another
popular feature selection method. As preprocessing step a Z-transformation is conducted
to ensure comparability between the different ranges of feature values. The β-coefficients
of the resulting regression equation represent the importance measure.

Random forest

Random forests (RFs) are ensembles of multiple decision trees, which gain their ran-
domness from the randomly chosen starting feature for each tree. There are different
implementations of the RF algorithm in R available, which offer diverse feature selec-
tion methods. On the one hand we incorporated the randomForest implementation based
on the classification and regression tree (CART) algorithm by Breiman [13]. The cforest
implementation from the party package, on the other hand, uses conditional trees for the
purpose of classification and regression (cf. [15]). In both implementations an error-rate-
based importance measure exists. The error-rate-based methods measure the difference
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before and after permuting the class variable. Due to their dependency on the underlying
trees, results are varying for both error-rates. The randomForest approach also provides
an importance measure based on the Gini-index, which measures the node impurity in
the trees.Whereas in cforest an AUC-based variable importancemeasure is implemented.
The AUC (area under the curve) is the integral of the receiver operating characteristics
(ROC) curve. The AUC-based variable importancemeasure works to the error-rate-based
one, but instead of computing the error rate for each tree before and after permuting a
feature, the AUC is computed.

Ensemble learning

The results of each individual FS methods are normalized to a common scale, an interval
from 0 to 1

n , where n is the number of conducted FS methods chosen by the user. Thereby
we ensure the comparability of all FS methods and conserve the distances between the
importance of one feature to another.

R-package

The EFS package is included in the Comprehensive R Archive Network (CRAN) and can
be directly downloaded and installed by using the following R command:
install.packages("EFS")

In the following, we introduce EFS’s three functions ensemble_fs, barplot_fs and
efs_eval. A summary of all commands and parameters is shown in Table 1.

Table 1Method overview

Command Parameters Information

ensemble_fs data object of class data.frame

classnumber index of variable for binary classification

NA_threshold threshold for deletion of features with a greater proportion of NAs

cor_threshold correlation threshold within features

runs amount of runs for randomForest and cforest

selection selection of feature selection methods to be conducted

barplot_fs name character string giving the name of the file

efs_table table object of class matrix retrieved from ensemble_fs

efs_eval data object of class data.frame

efs_table table object of class matrix retrieved from ensemble_fs

file_name character string, name which is used for the two possible PDF files.

classnumber index of variable for binary classification

NA_threshold threshold for deletion of features with a greater proportion of NAs

logreg logical value indicating whether to conduct an evaluation via logistic regres-
sion or not

permutation logical value indicatingwhether to conduct a permutation of the class variable
or not

p_num number of permutations; default set to a 100

variances logical value indicating whether to calculate the variances of importances
retrieved

from bootstrapping or not

jaccard logical value indicating whether to calculate the Jaccard-index or not

bs_num number of bootstrap permutations of the importances

bs_percentage proportion of randomly selected samples for bootstrapping

The R-package EFS provides three functions
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ensemble_fs

The main function is ensemble_fs. It computes all FS methods which are chosen via
the selection parameter and gives back a table with all normalized FS scores in a
range between 0 and 1

n , where n is the number of incorporated feature selection methods.
Irrelevant features (e.g., those with too many missing values) can be deleted.
ensemble_fs(data, classnumber,

NA_threshold, cor_threshold,

runs, selection)

The parameter data is an object of class data.frame. It consists of all features and
the class variables as columns. The user has to set the parameter classnumber, which
represents the column number of the class variable, i.e., the dependent variable for clas-
sification. NA_threshold represents a threshold concerning the allowed proportion
of missing values (NAs) in a feature column. The default value is set to 0.2, mean-
ing that features with more than 20% of NAs are neglected by the EFS algorithm. The
cor_threshold parameter is only relevant for the correlation based filter methods.
It determines the threshold of feature-to-feature correlations [14]. The default value of
cor_threshold is 0.7. The results of RF-based FSmethods vary due to the randomness
of their underlying algorithms. To obtain reliable results, the RF methods are conducted
several times and averaged over the number of runs. This parameter, namely runs, is
set to 100 by default. The user can select the FS methods for the EFS approach by using
the selection parameter. Due to the high computational costs of the RFs, the default
selection is set to
selection = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE),

meaning that the two FS methods of the conditional random forest are not used by
default.

barblot_fs

The barblot_fs function sums up all individual FS scores based on the output of
ensemble_fs and visualizes them in an cumulative barplot.
# Create a cumulative barplot based on the output from EFS

barplot_fs(name, efs_table)

The barplot_fs function uses the output of the ensemble_fs function, namely the
efs_table, as input. The parameter name represents the filename of the resulting PDF,
which is saved in the current working directory.

efs_eval

The efs_eval function provides several tests to evaluate the performance and
validity of the EFS method. The parameters data, efs_table, file_name,

classnumber and NA_threshold are identical to the corresponding parameters in
the ensemble_fs function:

efs_eval(data, efs_table, file_name,

classnumber , NA_threshold,

logreg = TRUE,

permutation = TRUE, p_num,

variances = TRUE, jaccard = TRUE,

bs_num, bs_percentage).
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Performance evaluation by logistic regression

The performance of the EFS method can automatically be evaluated based on a logis-
tic regression (LR) model, by setting the parameter logreg = TRUE. efs_eval uses
an LR model of the selected features with a leave-one-out cross-validation (LOOCV)
scheme, and additionally trains an LR model with all available feature in order to com-
pare the two LR models based on their ROC curves and AUC values with ROCR [16]
and pROC based on the method of DeLong et al. [17]. A PDF with the ROC curves is
automatically saved in the working directory.

Permutation of class variable

In order to estimate the robustness of the resulting LR model, permutation tests [18, 19]
can be automatically performed, by setting the parameter permutation = TRUE. The
class variable is randomly permuted p_num times and logistic regression is conducted.
The resulting AUC values are then compared with the AUC from the original LR model
using a Student’s t-Test. By default, p_num is set to 100 permutations.

Variance of feature importances

If the parameter variances is TRUE an evaluation of the stability of feature impor-
tances will be conducted by a bootstrapping algorithm. The samples are permuted
for bs_num times and a subset of the samples (bs_percentage) is chosen to cal-
culate the resulting feature importances. By default, the function chooses 90% of the
samples and uses 100 repetitions. Finally, the variances of the importance values are
reported.

Jaccard-index

The Jaccard-index measures the similarity of the feature subsets selected by permuted
EFS iterations:

J (S1, . . . , Sn) = |S1 ∩ . . . ∩ Sn|
|S1 ∪ . . . ∪ Sn| ,

where Si is the subset of features at the i-th iteration, for i = 1, . . . , n. The value
of the Jaccard-index varies from 0 to 1, where 1 implies absolute similarity of sub-
sets. If jaccard = TRUE is set, the Jaccard-index of the subsets retrieved from the
bootstrapping algorithm is calculated.

Availability and requirements

The package is available for R-users under the following requirements:

• Project name: Ensemble Feature Selection
• Project home page (CRAN): http://cran.r-project.org/web/packages/EFS
• Operating system (s): Platform independent
• Programming language: R (≥ 3.0.2)
• License: GPL (≥ 2)
• Any restrictions to use by non-academics: none

Due to the high relevance of our EFS tool for researchers who are not very
familiar with R (e.g., medical practitioners), we also provide a web application at
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http://EFS.heiderlab.de. It contains the functions ensemble_fs and barplot_fs.
Therefore no background knowledge in R is necessary to use our new EFS software.

Results
The dataset SPECTF has been obtained from the UCI Machine Learning Repository
[20] and is used as an example. It describes diagnosing of cardiac Single Proton Emis-
sion Computed Tomography (SPECT) images. The class-variable represents normal (= 0)
and abnormal (= 1) results and can be found in the first column of the table of the file
SPECTF.csv at the UCI repository. In general, the EFS approach accepts all types of data,
i.e., all types of variables, except categorical variables. These variables have to be trans-
formed to dummy variables in advance. Data has to be combined in a single file with one
column indicating the class variable with 1 and 0, e.g., representing patients and control
samples, or, e.g., positive and negative samples. After loading the dataset, we compute the
EFS and store it in the variable “efs”:

library(EFS)

# Loading dataset in environment

efsdata <- read.table("SPECTF.csv", sep = ";")

# Start feature selection

efs <- ensemble_fs(data = efsdata, classnumber = 1,

NA_threshold = 0.2, cor_threshold = 0.7,

runs = 100, selection = rep(TRUE, 8))

The results can be visualized by the barplot_fs function:

# Create a cumulative barplot based on the output from efs

barplot_fs("SPECTF", efs)

The output is a PDF named “SPECTF.pdf”. Figure 1 shows this cumulative barplot, where
each FS method is given in a different color. Various methods to evaluate the stability and
reliability of the EFS results are conducted by the following command:

# Create a ROC Curve based on the output from efs

eval_tests <- efs_eval(data = efs_data, efs_table = efs,

file_name = "SPECTF",

classnumber = 1, NA_threshold = 0.2,

logreg = TRUE,

permutation = TRUE, p_num = 100,

variances = TRUE, jaccard = TRUE,

bs_num = 100, bs_percentage = 0.9)

The user retrieves two PDF files. Firstly, the resulting ROC curves of the LR test
(“SPECTF_ROC.pdf”) including the p-value, according to Fig. 2. The p-value clearly
shows that there is a significant improvement in terms of AUC of the LR with fea-
tures selected by the EFS method compared the LR model without feature selection.
Additionally, Fig. 3 shows the file “SPECTF_Variances.pdf”, in which boxplots of the
importances retrieved from the bootstrapping approach are given. The calculated vari-
ances can be accessed in the eval_tests output. A low variance implies that the importance
of a feature is stable and reliable.
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Fig. 1 Cumulative barplot retrieved from barplot_fs function of R-package EFS

An additional example is provided in the documentation of the R-package on a dataset
consisting of weather data from the meteorological stations in Frankfurt(Oder), Germany
in February 2016.

Conclusion
The EFS R-package and the web-application are implementations of an ensemble feature
selection method for binary classifications. We showed that this method can improve the
prediction accuracy and simplifies the interpretability by feature reduction.

Fig. 2 Performance of LR model. On the y-axis the average true positive rate (i.e., sensitivity) and on the x-axis
the false positive rate (i.e., 1-specificity) is shown. Two ROC curves are shown: of all features (black) and the
EFS selected features (blue). The dotted linemarks the performance of random guessing
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Fig. 3 Boxplot of importances retrieved from the bootstrapping algorithm

Abbreviations
AUC: Area under the curve; CART: Classification and regression tree; CRAN: Comprehensive R archive network; EFS:
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Motivation

Feature selection plays a crucial role as a preprocessing step of data mining. For-
mer studies revealed the importance of feature selection methods to improve the
performance and efficiency of algorithms in pattern recognition, classification,
and regression [1, 2]. The methods are designed to distinguish features which
are relevant for a prediction model from those which are negligible. By that,
an efficient subset selection criterion is indispensable to set a cutpoint between
relevant and irrelevant features. In general, we can distinguish between quan-
titative and qualitative feature rankings. The latter provide a binary decision
as output, classifying the features to be relevant or redundant. In contrast, a
quantitative feature ranking estimates the relevance for each feature as a quan-
titative value. Ordering these values in an ascending order an importance curve
is obtained. Based on this ranking, a cutpoint must be identified, which selects
a subset of highly relevant features. In this work, we used the ensemble feature
selection (EFS)[4] as underlying feature ranking approach.EFS uses the mean
as an integrated subset selection criterion. For small datasets, the EFS method
outperforms each single method [3]. However, in large datasets, i.e., with more
than 1000 features, smaller subsets seem to be less prone to overfitting and thus
lead to better prediction results in subsequent prediction models. There exist
also more conservative subset selection criteria, such as selecting the best 15%
or the best 10% of all features. Another method for finding a suitable subset
is the detection of the cutpoint with the highest slope, i.e., the point with the
highest increase of importance. For datasets with an exponential curve of impor-
tance values, this method selects only the feature with the highest importance.
Based on these findings, we developed a feature subset selection method: the
π
4 -rotation.

Methods

For the assessment of subset selection methods we chose four different ap-
proaches. First, the mean value of the feature’s relevance value, which is in-
tegrated in the EFS ranking. It identifies the features above-average as relevant,
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which is most common and a liberal cutpoint. Unfortunately, many redundant
features have importance values below average, which levels down the mean. Be-
sides the mean, we evaluated two percentage-based cutoffs, namely the best 15%
and the best 10% features. Moreover, we used the π

4 -rotation method, which is a
more sophisticated method. The idea behind the π

4 -rotation is to draw a curve of
the ascending importance values received from the EFS algorithm (c.f. panel A)
and B) of figure 1) and to detect the cutpoint where the smoothed curve exceeds
a slope of 45 degrees. Features which lie above this cutpoint are considered to
be important.

B: AdA: Arcene

Fig. 1. Feature importance values in ascending order of A) Arcene dataset and B) Ad
dataset.
ROC curves of logistic regression models with all features and features with importance
values over the mean by EFS of C) Arcene dataset and D) Ad dataset.

It might happen that there are several points in which the slope fulfills the re-
quirement to be over 45 degree. Therefore, we rotate the curve by −45 degrees
(i.e., −π

4 in radians) and seek for a global minimum. If the minimum is the last
variable of the range ordered by ascending importance, no distinct leap at the
curve of importance values exists. In this case, the π

4 -rotation method cannot be
applied.

Results

We analyzed two big datasets Ad and Arcene with 1430 and 79360 features
received from the UCI Machine Learning Repository [5]. Both possess an ex-
ponential curve of importance values. The results from the evaluation via ROC
curves of logistic regression models as well as random forest models are shown
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in tables 1 and 2. It turned out that the pi/4-rotation is the most conservative
method, i.e., it selects the smallest number of features. Its subset selection has a
high performance in both datasets. The highest AUCs with the logistic regres-
sion models based on the Arcene dataset are found with the percentage-based
criteria. In comparison, the random forest results showed the best AUC with
the π

4 -rotation, but not significantly higher than the AUC obtained from the
mean-selection (p-value = 0.164). In the Ad dataset, the AUCs of the logistic
regression models are negatively correlated with the number of selected features.
In case of the random forest model, there are no significant differences in the
AUCs.

Significance was calculated with a roc-test by the method of DeLong et al.
[6], which compares the ROC curves retrieved from the mean subset with the
ROC curve from the π

4 -rotation cutpoint subset.

Table 1. Evaluation of Arcene data. AUC values of a logisic regression model and
a random forest model.

Method AUC from LR AUC from RF Nr of features

Mean 66.7%(60.0...80.0) 89.9%(80.0...100.0) 5038
best 15% 79.9%(70.0...90.0) 91.9%(90.0...100.0) 1488
best 10% 79.9%(70.4...89.4) 90.9%(85.2...96.6) 992
π
4

-rotation 62.5%(51.5...73.6) 92.5%(87.3...97.8) 374

Table 2. Evaluation of Ad data. AUC values of a logisic regression model and a
random forest model.

Method AUC from LR AUC from RF Nr of features

Mean 55.2%(50.0...60.0) 98.4%(100.0...100.0) 613
best 15% 69.9%(70.0...70.0) 98.4%(100.0...100.0) 214
best 10% 91.9%(89.6...94.1) 98.5% (97.6...99.3) 143
π
4

-rotation 95.2%(93.5...97.0) 98%(97.1...98.9) 53
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