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Preface

This is a publication-based dissertation. The work presented here has been accepted
for publication in international, peer-reviewed journals. The first chapters of this thesis
provide the methodological background as well as a summary of relevant literature. Next,
short summaries of the two published articles are included. Finally, general conclusions
on this dissertation’s contributions are presented. The full texts of the articles, as well
as the associated supporting material, are included in the appendix.






Abstract

Approaches to heterogeneous catalysis which aim at a detailed microscopic understand-
ing necessarily employ simplified models. Simplifications often include (a) using a single
crystal model catalyst and (b) treating a reduced reaction network. In this thesis, we
use computational modeling to explore some consequences of the latter approximation.
In addition, we introduce new methodology for multiscale modeling of reactions with
extended reaction networks.

In the first part of the thesis, we have built and analyzed a first-principles kinetic
Monte Carlo (1p-kMC) model of simultaneous oxidation of NO and CO at Pd(100) un-
der oxygen-rich conditions. Previous microscopically detailed studies analyzed either
pathway separately (CO oxidation or NO oxidation). In contrast, supported catalyst
experiments show different types of inhibiting and/or enhancing effects when both re-
actions occur simultaneously. Our detailed 1p-kMC model predicts inhibiting effects at
oxygen-lean conditions and synergistic effects at oxygen-rich conditions. In the latter
case, very low NO concentrations can drastically reduce oxygen coverages, suggesting
that NO can strongly inhibit oxide formation. Such behavior arises from intricate kinetic
effects and highlights the difficulties of extrapolating results from simplified models to
more realistic situations as well as the importance of further improving the complexity
of theoretical models.

The second part of this work has focused on extending methodology for the coupling of
1p-kMC and computational fluid dynamics (CFD) simulations. These multiscale mod-
eling schemes are crucial for the validation of microkinetic models with in-situ catalysis
experiments, something particularly important when small reactant quantities can have
marked effects in the catalyst’s behavior. We have extended an existing multiscale
approach, in which the coupling is done through the interpolation of a precalculated
dataset of steady-state reactivity. For this, we developed a novel interpolation method
based on the modified Shepard method. The interpolants consist of a weighted sum of
linear approximations centered on the points on the dataset. The weights are based
on automatically generated local metrics. In this way, it is possible to exploit the
special characteristics of 1p-kMC-based reactivity maps and construct interpolants of
significantly better quality using smaller datasets. This is particularly advantageous for
kinetic models with many gas-phase species, as they normally would require larger input
datasets, i.e. many computationally demanding 1p-kMC simulations. Furthermore, the
mathematical simplicity of the method makes it suitable for use by non-experts, which
can facilitate the development of multiscale models.
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Zusammenfassung

Der Einsatz von Studien zur Erlangung eines detaillierten, atomar aufgelstes
Verstindnis von heterogener Katalyse basiert notwendigerweise auf vereinfachen-
den Modellen. Diese beinhalten meist einerseits die Benutzung von Einkristall-
Modellkatalysatoren und andererseits die Behandlung eines reduzierten Reaktionsnetz-
werkes. In der vorliegenden Dissertation werden Computermodellierungstechniken be-
nutzt, um die Auswirkungen dieser zweiten Ndherung zu erforschen. Zusétzlich wird
eine neue Methodik zur Multiskalenmodellierung von Reaktionen mit umfangreichen
Reaktionsnetzwerken vorgeschlagen.

Der erste Teil der Arbeit fokussiert sich entsprechend auf den Aufbau und die Ana-
lyse eines first-principles kinetic Monte Carlo (1p-kMC) Modells zur Beschreibung der
gleichzeitigen Oxidation von NO und CO an Pd(100) Oberflichen unter sauerstoffrei-
chen Bedingungen. Bisherige atomar aufgeloste Studien betrachteten hierbei meist die
CO oder NO Oxidation als isolierte Reaktionswege. Solche Annahmen widersprechen
allerdings experimentellen Studien auf getrégerten Katalysatoren, die verschiedene Ar-
ten von hemmenden und/oder verstérkenden Effekten zeigten, sobald beide Reaktionen
gleichzeitig auftreten. Das hier vorgeschlagene erweiterte 1p-kMC Modell sagt hemmen-
de Effekte unter sauerstoffarmen Bedingungen und synergistische Effekte unter sauer-
stoffreichen Bedingungen vorher. Im letzteren Fall kénnen niedrige NO Konzentratio-
nen die Sauerstoffbedeckung drastisch reduzieren. Dies deutet darauf hin, dass NO die
Oberflichenoxidbildung stark einschrénkt. Solch ein Verhalten resultiert aus verworre-
nen kinetischen Effekten und ist damit ein Paradebeispiel fiir die die Schwierigkeiten,
die aus einer Extrapolation von vereinfachten Modellen hin zu komplizierteren, realisti-
scheren Situationen entstehen kéonnen. Zugleich unterstreicht diese Erkenntnis damit die
Notwendigkeit komplexerer theoretischer Modelle.

Im Mittelpunkt des zweiten Teiles der Arbeit steht die Kopplung von 1p-kMC und
Computer-Fluiddynamik (CFD) Simulationen. Diese Multiskalenmodellierungsschemata
sind von essentieller Bedeutung fiir die Validierung mikrokinetischer Modelle mit Hilfe
von in-situ Experimenten, insbesondere wenn bereits kleinste Mengen von Reaktan-
ten aufgeprigte Effekte auf das Katalysator-Verhalten haben. In diesem Zusammenhang
wird ein existierender Multiskalenansatz derart erweitert, dass die entsprechende Skalen-
kopplung nun durch die Interpolation zuvor berechneter steady-state Reaktivitdtsdaten
erfolgt. Hierfiir wird, basierend auf der modifizierten Shepard Methode, eine neuartige
Interpolationsroutine entwickelt. Die Interpolanten bestehen dabei aus einer gewichteten
Summe von linearen N#éherungen, die auf den Punkten des Datensatzes zentriert sind.
Die entsprechenden Gewichte basieren wiederum auf automatisch generierten lokalen
Metriken. Auf diese Weise ist es moglich, die spezielle Charakteristik von 1p-kMC ba-
sierten Reaktivititsfunkttionen auszunutzen und damit signifikant bessere Interpolanten
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Zusammenfassung

mit kleineren Datensétzen zu konstruieren. Dies ist besonders fiir kinetische Modelle mit
mehreren Gasphasenspezies vorteilhaft, die normalerweise grofie Input-Datensétze und
damit viele rechenintensive 1p-kMC Simulationen erfordern. Letztlich ist die hier vor-
geschlagene Methode durch ihre mathematische Einfachheit auch fiir Laien zugénglich,
was im Umkehrschluss der weiteren Entwicklung von Multiskalenmodellen zutréglich ist.
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1 Introduction

It is difficult to overstate the impact of heterogeneous catalysis in the quality of life:
it is crucial to clean exhaust gases from motor vehicles; to facilitate the production of
fertilizers; and to provide a plethora of key chemical compounds for industrial processes.
Clearly, there are great incentives to reach a detailed understanding of catalytic pro-
cesses, with the ultimate aim of maximizing their cost-, energy- and materials-efficiency.
However, such task is daunting: catalytic processes are extremely complex. Such com-
plexity stems mainly from the fact that catalysis is an intrinsically multiscale problem.
From the electronic structure of the materials, through the mesoscopic composition of
porous catalyst, to the flow dynamics in the reaction chamber, phenomena occurring at
vastly different time and length scales have an impact on the final performance of the
catalytic process. Due to this complexity, most of the advances in catalyst design in the
last few decades have been extensively based on a trial-and-error based approach.

A complementary way to tackle this problem is to take a bottom-up approach. This
starts with a detailed microscopic understanding of the catalytic phenomena. Here,
the powerful tools of surface science, including spectroscopic and scanning microscopy
techniques, provide crucial microscale information such as binding sites of intermediates,
overlayer structures and binding energies[1]. Nevertheless, traditional techniques have
the disadvantage of being restricted to ultra high vacuum (UHV) conditions. This implies
that reactions need to be run at pressures much smaller than those in realistic systems,
or that the characterization experiments need to be performed ez situ, i.e. after the
reaction has finished.

Luckily, advances in experimental techniques are changing this picture. So-called in
situ methods consist of adaptations of traditional surface science experimental setups
which allows for the study of catalysts during operation at pressures close to ambient|[2].
These techniques are a highly promising way towards a fundamental understanding
of catalytic processes, and have already provided valuable new insights[3, 4, 5, 6, 7].
However, there are still several challenges to be resolved. At higher pressures, mass
and heat transfer effects become relevant. In such situation, the nominal values of
pressure and temperature at the inlet of the reactor might differ considerably from the
values at the immediate vicinity of the catalyst. Therefore, conclusions on its intrinsic
reactivity can be difficult to reach[8, 9]. This is aggravated due to the fact that in-situ
experiments typically require complex experimental setups. These comprise, e.g. nozzles
from pumping systems close to the sample in spectroscopic techniques[10], or the tips
of scanning microscopes[11]. The presence of such elements alters flow profiles and
complicates their analysis, in particular preventing the use of simplified flow patterns.

Theoretical approaches have for a long time been invaluable to support and validate
experimental discoveries. Fig. 1.1 indicates some of the theoretical methods considered
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Figure 1.1: The different methods used to describe the scales relevant to heterogeneous catal-
ysis. The microscale is described with density functional theory (DFT), the
mesoscale with first principles kinetic Monte Carlo (1p-kMC) and the macroscale
with computational fluid dynamics (CFD). In addition, the formalisms that help
connecting the different scales are also indicated: transition state theory (TST) for
micro- to mesoscale and interpolation for meso- to macroscale.

in this thesis, roughly indicating the length and time scales that they can describe. At
the smallest scale are ab initio electronic structure methods. These have been shown to
provide quantitative predictions on materials properties. Such predictions are material-
specific and independent from experimental inputs, i.e. there are no adjustable param-
eters. This makes such theoretical calculations a powerful complement to experiments.
Density functional theory (DFT) in particular has been a key element in heterogeneous
catalysis research. Due to its relatively low computational cost and high accuracy, DFT
has become the method of choice for the treatment of large chemically complex sys-
tems including extended solid surfaces [12]. In contrast, traditional ab initio quantum
chemistry approaches remain mostly limited to treating gas-phase reactions. DFT is
currently the workhorse in computational materials research in general, and in surface
science (and heterogeneous catalysis) in particular.

Initially, first-principle methods have focused on providing equilibrium information
to support surface science experiments. For example, helping to elucidate which are



the most stable intermediates of a given reaction pathway. More recently, advanced
approaches such as so-called ab-initio thermodynamics, are able predict the equilibrium
structure of surfaces at elevated temperature and exposed to different gas compositions|6].
In the realm of kinetics, DFT can be also used to evaluate reaction barriers of elementary
processes and obtain detailed reaction energy diagrams[13].

This information can be used to speculate on the characteristics of the reaction’s ki-
netics, e.g. by guessing which the “rate-determining step” is. However, quite often the
kinetic behavior is more complex than what can be deduced from energetics only: which
processes are executed can depend in non trivial ways on the overlayers that form, or
there could be more than one single rate-controlling step for some conditions[14]. In
these cases explicit simulations of kinetics are needed. The most widely used methods
for this purpose are rate-equation based. These rely on a mean field (MF) approx-
imation which neglects the effects of the overlayer structures and of fluctuations or
correlations[15]. They are expected to fail in cases in which diffusion is slow or lim-
ited, or when lateral interactions effects are important[15, 16]. Therefore, in this thesis
we employ first-principles kinetic Monte Carlo (1p-kMC) simulations, which provide a
much more detailed description of the catalytic process. Contrary to MF-based mod-
els, 1p-kMC uses an explicit representation of the surface lattice and takes into account
all fluctuations and correlations arising from kinetic effects[17]. This method has been
incredibly successful in pushing forward our understanding of catalysis[18, 19, 6].

One problem of this approach is the fact that the construction of a predictive-quality
1p-kMC model is a challenging and time consuming task. Extensive details on the cata-
lyst’s structure, all relevant intermediates and all relevant reaction barriers are needed.
Currently, there is no standard approach for automatically obtaining all this informa-
tion and generating the required catalog of elementary processes. Moreover, there is
currently no 1p-kMC model which can describe the full complexity of an industrial het-
erogeneous catalyst. In view of this, a valid strategy is to treat simpler problems, that
can nevertheless provide novel insights. In this sense, two major approximations are
normally used: On the one hand, single crystal model catalysts are used. On the other
hands, only simplified reaction pathways are considered.

In the first part of this work, we have examined the latter approximation. We have
taken the simultaneous oxidation of CO and NO by Oz at Pd(100) as a showcase for the
very relevant problem of automotive exhaust treatment with platinum-group metals.
The oxidation of these two species has been treated in the past with microscopically
detailed 1p-kMC models, but only separately[20, 21, 22, 23]. Moreover, the Pd(100)
surface has received enormous attention, in particular through attempts to elucidate
which is the morphology of the “active phase” for CO oxidation. Different studies have
been published which support the idea that an oxide forms during activity, others that
reject this idea, and others which suggest that the surface oscillates between oxidized
and reduced states[24, 25, 26, 27, 20, 28, 5]. Our main result shows that CO and NO
oxidation pathways interact in a complex way. In particular, kinetic effects arising from
the addition of very small amounts of NO can drastically reduce the surface’s oxygen
coverage under oxygen-rich conditions. This has implications on the stability of the
surface oxides when NO is present. It also highlights that active phases observed in
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experiments involving only CO and O are not guaranteed to appear under more realistic
gas mixtures, even when the additional species are a minority.

Although an extensive set of DFT calculations have informed the construction of our
model and provided the kinetic barriers, approximations had to be made in the process.
It is thus very important to experimentally validate the results. As kinetics have shown
to play a crucial role in the effects observed, detailed in situ experiments characterizing
the surface under high pressure conditions are needed to observe the predicted effects.
In addition, a multiscale coupling method able to incorporate a description of the gas
dynamics on top of the intrinsic kinetics modeled by 1p-kMC is necessary for direct
comparison. However, at the time of this writing, there is no standard coupling method-
ology. This has motivated the second part of this work, which focused on extending the
multiscale methodology developed by Matera and collaborators|29, 8, 9, 30].

This approach is based on the interpolation of a precalculated steady-state activity
dataset. This makes it computationally much more efficient at runtime and conceptually
simpler than alternative direct coupling methods[30]. A disadvantage is that it is limited
to reactions involving only a small number Ng,e. of reactive gas-phase species. This
is because the activity maps are functions of D = Ngpec + 1 variables: Ngpec partial
pressures and the temperature. Higher dimensional functions are more challenging to
interpolate, because the number of data points required normally grows exponentially
with the dimension. For this reason, this coupling method has up to now been limited to
reactions with only two relevant gas-phase species (such as CO oxidation). In this thesis,
we have developed a new interpolation method tailored to solve this problem. The new
method is able to exploit the characteristics of 1p-kMC-based activity maps and produce
good quality interpolants using small input datasets. An additional advantage of the
method is that it is based only on geometrical considerations and that all adjustable
parameters have clear conceptual interpretations. We expect these properties will make
it easy to use by researchers who are not necessarily experts in interpolation and thus
facilitate the generation of multiscale models of heterogeneous catalysis.

This thesis is organized as follows. Chapter 2 presents the theoretical basis for the
quantum mechanical treatment of heterogeneous catalysis and the fundamentals of DFT.
Chapter 3 introduces the basics of microkinetic modeling, with a focus on 1p-kMC. Chap-
ter 4 gives a summary of the literature on the kinetics of CO and NO oxidation at the
Pd(100) surface. Chapter 5 is an overview of existing methodology for the coupling of
1p-kMC and CFD simulations. In chapter 6, short summaries of the publications in-
cluded in this thesis are given, as well as statements of the individual contributions of
each author. General conclusions and an outlook with potential future research direc-
tions are presented in chapter 7. Finally, full copies of the publications are included in
appendix A.



2 The microscopic scale and density
functional theory

2.1 The potential energy surface

At the smallest scale, heterogeneous catalysis is dominated by the breaking and making
of chemical bonds. These are the result of the interaction between the atoms in the
catalyst and the reaction intermediates, mediated by their electronic structure. A quan-
tum mechanical description of this interaction is needed. Almost invariably catalysis
research relies on the (typically very good) approximation that electronic dynamics is
much faster than the dynamics of the nuclei. It is possible thus to treat them separately,
by solving the dynamics of the electrons for any given configuration of the nuclei as if
they were fixed. This is the well known Born-Oppenheimer approximation, and leads to
the definition of the potential energy surface (PES)

E =ER4,..,Ry,) = E%R4,....,Rn,,) + V*(Ry,...,Ry,,), (2.1)

which gives the total of the system as a function of the nuclear coordinates R;. Nat
is the total number of atoms, E® represents the electronic contribution (including the
interaction of electrons with the nuclei) and V™™ represents the potential energy due
to the electrostatic interaction between the nuclei. As we will see in the next chapter,
the PES is a central element for the construction of 1p-kMC models used to simulate
chemical kinetics and efficient methods to evaluate it at arbitrary nuclear positions are
needed.
The PES can be obtained by solving the time-independent electronic Schrédinger
equation
ﬁ\I/(I‘l,...,I‘NeleC) = Eel\I/(I‘l,...,I'NeleC) (22)

where U(ry,...,ry,.. ) is the ground state wave-function of the system, the r; are the
positions of the Ngje. electrons and H is the electronic Hamiltonian operator

A= (T + Voo 4 7o)

Nelec Nelec
1 1 (2.3)
o B DDA ERD Dl el DE L)
=1 i<j Iri = rjll2 =

given by the sum of the kinetic energy operator T, the electron-electron interaction
potential V¢ and the external potential V°**. In our case, the external potential corre-
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sponds to the interaction of the electrons with the nuclei

Nat

’UeXt(I‘Z’) ext — (2‘4)
Z HR - rzllz

where the Z; are the atomic numbers. In the formulas above, the Hamiltonian H depends
parametrically on the nuclear positions {Ry, ..., Ry, } through Vext - As consequence, the
wavefunction ¥(ry,...,ry,. ) and the energy E*! are also functions of such parameters.
We omit including this explicitly in most formulas to keep notation more compact.

Direct solution of equation (2.2) is prohibitively expensive with modern computers
for all but the simplest examples. Luckily, a vast collection of different approximate
solution methods have been developed. These provide different levels of accuracy and
computation costs. By far the most widely used in catalysis research is density functional
theory (DFT), as it provides a good compromise between these two factors.

2.2 Density functional theory

The Schrodinger equation given by eq. (2.2) is a 3Nje.-dimensional partial differential
equation, which can only be solved analytically for Nge. < 2. For systems relevant for
heterogeneous catalysis, in which not only reacting molecules but also the solid substrate
need to be considered, the value of Nge. can easily reach the thousands. The large
dimensionality of the wave function makes the use of traditional wavefunction-based
computational methods impractical in this case. Density based methods, such as DFT,
provide a solution to this problem.

The conceptual basis for DFT can be fond in the two Hohenberg-Kohn (HK)
theorems [31]. In order to state them, we must consider a class of eigenvalue prob-
lems similar to eq. (2.2), in which the 7" and V. terms in the Hamiltonian (2.3) are
fixed, but such that the external potential v***(r) is arbitrary (i.e. not necessarily equal
to veXt( ) from eq. (2.4)). The first HK theorem (HK1) relates the choice of the external
potential and the ground state electronic density, given by

p(r) = elec/drgd dry,, P (r, 1o, TN, )P (T, T2, TN ) (2.5)

It is intuitively clear that fixing v***(r) also fixes the ground state density p(r), as it
fully determines the Hamiltonian. HK1 states that the converse is also true: given a den-
sity function p(r), there exists an unique external potential vex(r) for which p(r) is the
ground state density. Therefore the Hamiltonian, and thus all ground state properties
of the system can be considered functionals of the density. L.e. for any arbitrary p(r) we
can write U = W[p] for the ground state wavefunction. This result shows that a descrip-
tion of the system based on the density p, instead of the wave function W, is in principle
possible. Such description can overcome the challenge of the high dimensionality of
eq. (2.2), as p is a function of only the 3 variables.



2.2 Density functional theory

Given a certain Hamiltonian H, defined by fixing the value of v™* = ¢ we can

define an energy functional according to

B ol = (wlp] [H

lp]). (2.6)

It is important to notice that this functional can be evaluated for any arbitrary density,
i.e. p does not need to coincide with the ground state density p associated to Hamiltonian

H. The second HK theorem (HK2) states that

E:lp] < Eglp] Vp#p. (2.7)

This implies that the ground state density corresponds to a minimum of the energy
functional.

The most popular method to make use of the HK theorems for practical energy evalua-
tions is due to Kohn and Sham[32]. The basic idea behind Kohn-Sham-DFT (KS-DFT) is
to use an auxiliary, fictitious system which is easier to solve: a system of non-interacting
electrons, i.e. such that Vee = 0. The HK1 theorem implies that there exists one
external potential v (r) for which this auxiliary system has a ground state density ex-
actly equal to the ground state density of the interactive systems we intend to solve. In
what follows, we will refer to quantities pertaining to this non-interactive system with a
subindex s. Similarly, we will indicate quantities pertaining to the interactive system of
interest with a subindex 0.

As it is non-interacting, the wave function of the auxiliary system will be given by
a single Slater determinant of single particle orbitals gofs (r), which are know as Kohn-
Sham orbitals. This leads to a simple expression for the density of the non-interacting
system

elec

Z i (2.8)

which we require by definition to be equal to the ground state density of the interacting
system, i.e. ps = po.
It is possible to write the energy functional from eq. (2.6) for the interacting system
as
Ej[p] =Ts[p] + V<[] + J[p] + Exc[p]

Nat

1 f:ec/dwKS* /drz R - r, (2.9)

—I—;/d dr ,M_'_EXC[,O]’

v — |

where Hj is the Hamiltonian of the interacting system, T[p] is the kinetic energy for
the non-interacting system, V®*[p] the energy contribution from the external potential
(of the original problem) and .J[p] is the Hartree term representing the classical (electro-
static) part of the electron-electron interaction. The exchange-correlation term Fy[p]
contains all information for which no explicit functional form can be derived.
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The Kohn-Sham orbitals (p?s are solutions of the eigenvalue problem for the non-
interactive auxiliary system. To derive them, it is necessary to find an expression for
the effective external potential v*(r). This can be done using the variational principle

arising from HK2 (cf. eq. (2.7)), namely

0E g, [p]
Ho
— =0. 2.10
5p (2.10)
p=po
This leads to .
ngt — ,ngt(r) + /dr/ |r,(i)r| + ch(l‘), (211)

where v§*" is the external potential for the interactive system, i.e. eq. (2.4), and

8 Exelp]

2 (2.12)

Uxe(T) =

p=po

is the exchange-correlation potential. Therefore, the Kohn-Sham orbitals can be ob-
tained by solving

2 !
<—;V2 + v (r) + /dr' Fr/p(rr)| + vxc(r)> XS = ;K8 (2.13)
which are the Kohn-Sham equations. As the effective potential depends on the density,
which in turn depends on the occupied eigenfunctions gofs, the Kohn-Sham equations
need to be solved recursively: from an initial guess of the density, the eigenproblem is
solved for an updated density. This is repeated until self-consistency is achieved, i.e.
until the change in the density between iterations is below a given tolerance.

In order to obtain eq. (2.9), all terms for which no explicit analytic expression is know
where hidden in the Ey.[p] term. The success of DFT relies in part on the fact that the
other terms in eq. (2.9) represent the largest contributions to the energy. If an exact
expression for Ey.[p] was know, DFT would be able to provide the exact energy for the
interacting system. In practice, it is necessary to find approximations. The simplest
one used in practice is the local density approximation (LDA), for which the functional
takes the form

EEPMp) = [ drp(e) kP (p(r), (214)
where the value of elPA(p(r)) is taken as the value corresponding to the homogeneous
electron gas. This simple idea works surprisingly well to predict geometric properties
(e.g. bond distances) of molecules and solids. However, binding energies arising from
LDA calculations are typically less accurate. Therefore, more advanced approximations
are needed to deal with problems in chemistry. In this work we employ the so-called
generalized gradient approximation (GGA), in which the exchange correlation functional
is of the form

EGGA|| = / dr fSGA (p(x), Vp(r)), (2.15)
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i.e. information on the density gradient of reference systems is also included. Contrary
to the LDA, there are several different versions of GGA functionals, depending on how
fGGA is defined. In this work we employ the popular functional by Perdew, Burke and
Ernzerhof[33], known as PBE functional.

The calculations performed during the work on this thesis were done with CASTEP[34].
This software package implements DFT for periodic systems, uses plane waves to ex-
pand the KS orbitals and treats core electrons implicitly with pseudopotentials. These
characteristics are favorable to deal with systems containing a periodic metallic surface,

in which electrons are delocalized, such as those of interest in this thesis.






3 The mesoscopic scale and first-principles
kinetic Monte Carlo

3.1 The separation of timescales and the master equation

Once a reliable way of evaluating the PES is available, simulating catalysis reduces in
principle to solving the equations of motion arising from it. In particular, treating the
motion of the nuclei classically is a good approximation, particularly in cases without
hydrogen or other light atoms. This suggests the use of classical molecular dynamics
(MD) simulations to sample the behavior of a catalyst: starting from several different
initial conditions sampled from a thermal ensemble, the evolution of the systems could
be propagated with the forces obtained from the PES. After enough simulations have
been run for enough time, the desired properties, such as turnover frequencies (TOF)
and overlayer configurations could be obtained.

In practice, this is not computationally feasible. On the one hand, the length scale of
catalytic phenomena is an obstacle. As relevant length scales encompass tens of lattice
constants at a minimum, first-principles based MD would be highly expensive. On the
other hand, a more pressing problem is related to the separation of time scales. PESs
for catalytic problems are characterized by the presence of several local minima (e.g as
is illustrated in fig. 3.1.a). The basins defined by such minima are separated from each
other by energy barriers that are typically much larger than the thermal energy of the
system k7. As a direct consequence of this, the resulting dynamics consists of large
periods in which the system remains trapped inside the basins, interrupted by short
transition periods in which it jumps between two basins. The long time spent in basins
corresponds simply to the thermal vibrations of the reaction intermediates adsorbed on
fixed lattice sites. The motion in these metastable states is of little relevance to the
overall evolution of the catalytic cycle. In contrast, the movements between metastable
states correspond to the elementary reaction events which actually move the reaction
forward. These are the diffusional hops between adjacent adsorption sites, the adsorption
(desorption) of intermediates from (to) the gas phase and the breaking and making of
chemical bonds during surface reactions. Due to the high barriers, a typical period of
metastable oscillation inside a basin is several orders of magnitude smaller than the total
time spent inside basins. The elementary reaction events are therefore rare events. In
order to simulate such a system with molecular dynamics, time steps need to be smaller
than the oscillation timescale. Conversely, total simulation times need to be several
times larger than the time between elementary reaction events. In some cases, millions
of MD steps would be needed to observe a single reaction event. Considering that a
huge number of such events are required for proper sampling, the computational cost
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3 The mesoscopic scale and first-principles kinetic Monte Carlo

of running such simulation would still be prohibitively large even if the PES could be
evaluated instantly.

Luckily, this large timescale separation can be turned into an advantage. Considering
the relatively long time spent inside each basin, it is a reasonable approximation to
assume that the system will have reached metastable equilibrium before performing
a jump to the next basin. Once such metastable equilibrium is reached, the future
dynamic evolution will only depend on the current basin the system sits on and not on
the preceding trajectory. Thanks to this, a clear method to coarse-grain the description
of the system’s state arises. Instead of using the full phase space (i.e. the coordinates
and velocities of the nuclei) to describe the state of the system, it is possible to use
discrete states o;, one for each basin. We can thus define a mapping C from the phase
space () to these coarse grained states

C :Q C RGNat — {Ul’ "'7UNstatcs}

: . (3.1)
P: (RlyaRNat7R17"'7RNat) —>C(P)7

where N, is the total number of atoms in the system and Ngtates iS the number of
basins in the PES. This is illustrated in fig. 3.1.b. This mapping is by definition not
bijective, as many different points of the phase state will be mapped to the same discrete
state. In the case of heterogeneous catalysis, the periodicity of the solid surface helps
define the discrete states: the intermediates adsorb onto lattice sites that respect this
periodicity. The minima of the PES correspond to the different possible arrangements
of the (meta)stable intermediates in the lattice, i.e. which intermediate (if any) sits on
each lattice site. This is illustrated in fig. 3.1.c.

Under the coarse-grained description, only a probabilistic treatment is possible. How-
ever, we can only hope to give a probabilistic treatment of catalysis anyway, as we can
never pretend to know precisely the velocity and position of each atom on the catalyst
and the intermediates in any realistic situation. A stochastic process with the charac-
teristic described above, in which the system evolves between discrete states without
memory of its previous trajectory, is a Markovian jump process[35]. Such processes are
described by a master equation (ME)

Nstates

dp; .

Tﬁ &)=Y (kjpi(t) — kipi(t) i =1, .., Netates, (3.2)
Jj=0
JFi

where the p;(t) represents the probability of finding the system in state o; at time ¢
and the coefficients k;; are the rate constants, which represent the probability per unit
of time of transitioning from state o; to o;. If we were able to solve the ME, the
resulting probabilities {p1(t), ..., PN.uee ()} would provide all the information necessary
to characterize chemical kinetics, including TOF and coverage patterns. The ME is
generally a matrix differential equation of extremely high dimensionality though, as the
number of states Ngiates i huge even for the simplest examples in heterogeneous catalysis.
For example, a square lattice of (10 x 10) sites in which a single type of adsorbates can
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3.1 The separation of timescales and the master equation

hhh

.[ = Dr g g
. ,[k ].[ OOO® A.[Q :
QU@

L

oy
A 4\ J

hOk_{V Y :"
go[on 00

rar- 7N 1@7 S

i{ &%

Ve
4N
o
h d
Y
!

-~
Y
h d
71
LJ
Y
h 4
Y
71
LJ

g

)

00
@

h i
C
}‘
@
r Y
h i
r Y
I\

Y
b
@
r Y
I\

e
26
o)

[
L
)
[
Y
[

Figure 3.1: a) A 2D cut of a PES. A system with thermal energy kg7 much smaller than the
depth of the basins will evolve with rare event dynamics. b) Contour lines for the
PES (gray lines) with the coarse-grained discrete states associated to each basin
indicated with black lines. c¢) In heterogeneous catalysis applications, a coarse-
grained discrete state exists for each possible way of filling the surface lattice with
the different (meta)stable intermediates.

sit leads to Nytates = 2199 ~ 1 x 1030, Correspondingly, the number of rate constants kij
is N2

Luckily, in the case of heterogeneous catalysis, the number of different rate constants
is much smaller than that. Firstly, rate constants connecting basins located far away
from each other in the configuration space can be treated as zero, as the probability
of the system transitioning directly between two such basins will be extremely small
compared to rate constants connecting close laying basins. For example, this would
correspond to a diffusional hop of an adsorbate between adjacent lattice sites versus a
direct hop across distant sites. Clearly, there will be a maximum distance after which
direct hops become highly improbable. Secondly, the symmetry of the lattice can be
exploited to further reduce the number of different positive rate constants, i.e. processes
representing the same elementary reaction step (in the same chemical environment) will
have equal rate constants, regardless of their specific location in the lattice.

In addition, rate constants for physical systems need to satisfy relations known as
detailed balance. To derive them, we consider our system in the steady state: the proba-
bilities p;(t) are independent of time, i.e. pg(t) = py ', dpg(t)/dt = 0. The ME, eq. (3.2),

tates*®
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3 The mesoscopic scale and first-principles kinetic Monte Carlo

reduces to
Nstates

> (kp? = ki) = 0. (33)
§=0

J#i
As this relation must be valid for each state, i.e. for 0 < ¢ < Ngtates, this can only be
satisfied if each of the terms in the sum are zero, i.e. if

kjiqu = kijpfq vV 0< 1,7 < Ngtates- (34)

If the system is in equilibrium at constant temperature 7" and constant chemical poten-
tials (i.e. the Grand Canonical ensemble), we have

pfq x e_Gi/kBT, (3.5)

where G; is the Gibbs free energy of the system in state i. Eqs. (3.4) and (3.3) lead to

ki G — G; o
Ejji = exp (_]kBj—') vV 0 < 1,7 S Nstates- (36)

Relations (3.6) define the conditions for detailed balance (also sometimes referred as
microscopic reversibility) and are valid even when the system is not in equilibrium.

3.2 Solving the master equation: kinetic Monte Carlo (kMC)

Even taking into account the reduction in the number of individual rate constants de-
scribed above, a direct numerical solution of the ME is still impossible due to the high
dimensionality. Alternatively, it is possible to sample the Markov process directly by
simulating a random walk across the states o;, guided by the transition probabilities k;;.
Such procedure is known as kinetic Monte Carlo (kMC).

The result of an individual kMC simulation is a sequence of states and time intervals
between the transitions from state to state. By averaging several of such stochastic
trajectories, the p;(t) can be sampled. In practice, however, the quantities of interest for
heterogeneous catalysis, such as TOFs and coverage patterns, can be sampled directly
from the kMC trajectories.

Fig. 3.2 represents an intuitively simple version of an algorithm to obtain a kMC tra-
jectory. Under the Markovian approximation, the probability per unit time of escaping
from a given state o; to another given state o; is given by the rate constant k;;. This
leads to a probability distribution for the time of first escape towards such basin

Py o) = ke Mt (3.7)
We can simulate the stochastic jump process by drawing escape times for each reachable
process o; # o; according to distribution (3.7). This can be done by drawing uniformly
distributed random numbers p; € (0,1] and taking 7; = —In(p;)/ki; as the times of
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3.2 Solving the master equation: kinetic Monte Carlo (kMC)

Determine all Draw a random number for each process
possible processes ———* P01/ +++s PNproes € (0, 1]
START —— allowed by the
current l
configuration and Evaluate the escape time for each process
hei
their rate constants Ti=—In(0)/ki
and find the smallest one
(kg: Tq) | Tg=min(T1, ..., TNpoes)
Update clock l
END «—
tot+ 1y Execute process q

Figure 3.2: The first reaction kinetic Monte Carlo algorithm.

escape. The process with the shortest 7; determines the time interval and the state to
which the system moves.

In this thesis, we employ an alternative kMC algorithm: the so-called direct algorithm.
It has the advantage of only requiring the generation of two random numbers per step.
This is based on the facts that: (a) The probability distribution of the time of first
escape from state o; to any other state is given by

p;escape(t) _ k;Ote_kf‘Ott, (3,8)
where
Nstates
ot = Z kij (3.9)
j=1
ji

is the sum of all rates constants for escaping state o;; and (b) the probability of the
system escaping towards a given state o is k;;/k{°". This can be exploited to employ
the algorithm depicted in figure 3.3. In this case, given two uniformly distributed random
numbers p1, p2 € (0, 1], the next state to be visited is chosen according to

o | KE"™(q) < prk{°" < k"(q+ 1), (3.10)

where

K g) =) ki (3.11)

is a partial sum of rate constants (clearly k"™ (Nprocs) = ki°%). Once the process has
been chosen, the time for the step is then drawn from distribution (3.8) according to

In pp

T = —W. (312)

The direct kMC algorithm is more efficient than the first reaction algorithm in cases
where the number of different rate constants is small and constant in time. Using
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3 The mesoscopic scale and first-principles kinetic Monte Carlo

Determine all — Draw two random numbers p1, p2 €(0, 1]
possible processes 1

ktot
START —— allowed by the
current Sum the rates of all allowed processes
configuration and Kot = Z kj
j

their rate constants

: q < P1kiot
and pick the process q, such that
q-1 q
Update clock on K < pakior < ;kj
END — t_’t_m(PZ) 1 0
Kiot «— Execute process q (update state)

Figure 3.3: The direct kinetic Monte Carlo algorithm

appropriate data structures, the selection of the next time step can be made in constant
time with respect to the size of the simulation lattice. All kMC simulations in this work
were performed using the kmos framework, which takes advantage of such scaling. kmos
is a free and open source software package authored by Max J. Hoffmann[36]. It consists
of a user-friendly Python interface that facilitates the generation of an abstract model
definition, which is then used to automatically generate efficient Fortran code. A Python
interface to run and analyze results is also provided. While performing the research that
led to this thesis, I have also contributed extensively to the development of the kmos
framework. Besides the official documentation[37], the reader is encouraged to take a
look at the introductory lecture notes which I co-authored[38].

3.3 Getting the rate constants: transition state theory

In our discussion of the kMC method, the rate constants have entered as input parame-
ters. In early kMC studies, the rate constants have been guessed from chemical intuition
or simply used as adjustable parameters[39, 40]. However, the rate constants are simply
a property of the underlying system’s dynamics and thus a function of the PES. There-
fore, it is possible to use a PES based on first principles to obtain kMC models which
are both material specific and free of empirical parameters. Such methodology is known
as first principles kMC (1p-kMC)[41, 18, 19, 6].

The straightforward way to evaluate the rate constants k;; would be to directly sample
the system’s dynamics. Running several molecular dynamics simulations would allow for
the sampling of time of escape distributions from which the k;; could be evaluated. Due
to the separation of time scales discussed in section 3.1, this is prohibitively expensive.
Direct calculation of the rate constants would negate the improvement in efficiency
provided by the kMC method.

In practice, approximate methods can be used for a much more efficient evaluation of
rate constants. The most widely used approximation is transition state theory (TST)[42].
In TST, the rate constants k;; are approximated by the equilibrium (normalized) forward
flux across a (hyper-)surface separating the PES basins associated to states o; and
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3.3 Getting the rate constants: transition state theory

oj. This approximation overestimates the values of the k;;: it is assumed that each
forward crossing of the dividing surface corresponds to a reactive event, i.e. re-crossings
are neglected. However, TST rate constants can be expressed as ensemble-averages
and can be evaluated through equilibrium-sampling methods such as Metropolis Monte
Carlo[42, 43].

In this work, we employ a further approximation known as harmonic TST (hTST).
In h'TST, the dividing surface is defined as a hyper-plane that goes through the highest
energy point along the minimum energy path (MEP) connecting the minima x; and x;
associated to the basins o; and ;. Such point is known as the transition state (TS) and
will be denoted by x};s. It corresponds to a saddle point of the PES in which the Hessian
(the matrix of second partial derivatives) has a single negative eigenvalue. The dividing
plane is taken perpendicular to the direction of this eigenvalue. The hTST rate constants
are calculated based on the hypotheses that (a) the probability of finding the system
in a close vicinity of the bottom of the initial basin (i.e. close to local minimum x;) is
much larger than the probability of finding it anywhere else within the basin; (b) that
crossings occur through points close to X;I;-S with a much higher probability than through
any other point in the dividing surface; and (c) that the PES can be approximated by
quadratic functions around x; and xiTjS. Under these conditions, a formula for the rate
constant can be derived that depends only on the shape of the PES at the bottom of
the basin and at the TS, namely

kT ZES AE
kot = == —— 1

TS
ij
and AE = EES — E; is the energy difference between these two positions: the reaction
barrier. In this way, the calculation of the rate constants requires only the evaluation of
properties of the system at the minimum and the TS.

In this work, we have evaluated the rate constants using the approach put forward
by Reuter and Scheffler, which was introduced in reference [41]. For bound-to-bound
processes, the ratio of the partition functions is approximated as Z;ES /Z; =~ 1, as the
vibrational properties at the minimum and the TS are expected to be similar. Therefore,
rate equations for diffusion and reaction processes are calculated using

kij = kBl exXp (—M> . (3.14)

For processes of adsorption, the gas phase is treated as a reservoir composed of a
mixture of Ngpec ideal gas species of molecular masses m; at constant partial pressures
p; and constant temperature 1. The rate of adsorption of species ¢ into a given site s in
the surface unit cell can be modeled as

where Z};S and Z; are the vibrational partition functions at x; and x respectively;

ke = Sis(T)Li(pi, T), (3.15)
where
piA

Li(pi, T) = ——==
(p ) \/27Tm,-k:BT

(3.16)
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3 The mesoscopic scale and first-principles kinetic Monte Carlo

is the impingement rate of molecules of species ¢ into the unit cell’s surface area A
and 0 < S;4(T) < 1 plays the role of a local sticking coefficient. Employing the hole
model for adsorption, we assume that only molecules impinging at lateral position within
a given area Ag around the site s will be steered towards it. In a classical picture,
molecules need to have energy higher than the barrier they encounter when impinging
on the surface. If all molecules had to overcome the same barrier AFE, we would have
Sis(T) = (As/A) exp(—AE/kgT). Therefore, we can approximate

S; (T T As AE?’(“‘%S 3.17
is(T) = fis M) Zrexp | == ) (3.17)

where AE;"SS is highest barrier in the MEP, i.e. the adsorption barrier, and the factor
0 < fis(T) <1 accounts for the error due to adsorption attempts through paths with
higher barriers than the MEP. In the moderate temperatures used in this work, the
kinetic energy of the impinging particles is not too high and we can expect them to be
efficiently steered into the MEP. Therefore we take f; = 1 for all adsorption processes.
In the specific case of the simultaneous CO and NO oxidation model constructed for this
thesis, all adsorption processes are non-activated: i.e. all adsorption barriers are zero.
Therefore, the formula for adsorption rates used in that case is

A
jads — __Pifls 3.18
v = aamkeT (3.18)

The values of the areas A, were calculated by evenly dividing the total unit cell area A
among all adsorption sites available to the corresponding adsorbate.

Considering the desorption processes as reverse adsorption processes, we can use de-
tailed balance to get

fads AG: (T.
1,8 _exp< G’L,S( 7pl)>, (319)

kdes keT

where AG; s = G%‘f — Gf}";s is the difference in Gibbs free energy between the state
with the molecule in the gas phase and the state with the molecule adsorbed. The
Gibbs free energy of the gas phase state will be given by the chemical potential of
the gas Gy = wi(T,pi) = Ej%s + Api(T,p;), where E}%.( is the total energy of the
molecule in the gas phase. Values for Ap;(T, p;) can be easily obtained by interpolating
available tabulated values[44]. For small molecules in a chemisorbed state, the entropic
contributions to the free energy are small, and can be neglected. We thus approximate
the free energy in the bound state with the corresponding total energy: G?fis ~ B

Under these approximations, eq. (3.20) reads

(3.20)

ke Api(T, pi) — EpP
- P T T ’
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where we introduced the binding energy of the molecule i on site s: Ekénd = Bt — ot

i,gas"
Therefore, the formula for the desorption rates results
EPind — Ap(T, p;
kdes — gads oxep | 22 (T, i) . (3.21)
’ ) kBT

3.4 Uncertainties in 1p-kMC models

The methods used to derive the rates are evidently only approximate. Although it would
be possible to lift many of the approximations outlined in section 3.3, this would not
alleviate the main source of error on the rates: the DFT-PES itself. Barriers calculated
using GGA functionals can have errors of ~ 0.2 eV. Considering that the barriers enter
the rate expressions exponentially, this can lead to errors of up to a couple orders of
magnitude in the rates. It is currently not possible to go beyond a GGA level of theory
for systems as those addressed in this thesis, as obtaining all the necessary barriers would
be extremely computationally expensive with any significantly more accurate method.
For this reason, current 1p-kMC are not typically able to reach exact quantitative agree-
ment with experiment and only qualitative agreement can be expected. Local[14] and
global[45] sensitivity analysis methods exist which allow to quantify the effect of these
errors on the predicted rates. However, this is outside the scope of this thesis.

Another source of error in kMC models (in catalysis and other areas) is related to
the model definition itself. When constructing a 1p-kMC model, transitions judged
to be unlikely are simply excluded from the process list. These typically include e.g.
adsorption into less favorable lattice sites, long-distance diffusional hops, or any process
that presents very high barriers. In addition, it is typically impossible to find all minima
in a DFT-PES and all connecting transition states in an automatic fashion due to the
extreme amount of computational power this would require. In principle, also the effects
of different chemical environments surrounding the reacting intermediate should be taken
into account. These lateral interaction effects can increase the amount of minima and
barrier calculations drastically, making only approximate methods feasible[27, 21, 46].

Experimental input can help with these issues. Although the fitting of rate con-
stants to experimental results can easily lead to wrong microscopic insight[16], direct
experimental observations can clearly provide crucial insight. Observations such as the
presence of specific intermediates or the selectivity towards a certain product can be
directly compared to kMC simulations[4, 5].
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4 NO and CO oxidation at Pd(100)

Platinum group metals (PGM) are of great interest in catalysis mainly because they are a
key component of automotive catalytic converters. The majority of the global production
of Platinum, Palladium and Rhodium is used for such end[47]. Pd is considerably cheaper
than Pt and there has been significant growth in its use in automotive catalysis[48]. The
three most important exhaust products are carbon monoxide, the nitrogen oxides NO
and NOg (collectively symbolized as NO; ), and hydrocarbons (HC). Modern three-way
catalytic converters (TWC) can efficiently treat these exhaust components by oxidizing
CO and HC and reducing NO,.

Engines that operate using a higher air-to-fuel ratio (such as diesel engines and so
called lean-burn gasoline engines) present a challenge for traditional TWCs. Under the
oxygen excess conditions of these exhausts, it becomes difficult to fully reduce NO,.
As these types of engines can provide increased fuel efficiency (and thus reduced total
emissions), it is desirable to develop catalytic technology that can properly treat their
exhausts. Nitrogen Storage Reduction (NSR) relies on cyclic engine operation, switching
between longer fuel-lean cycles during which NO is oxidized into NOy and stored in a
carrier material, and fuel-rich bursts in which all NOgy is reduced[49, 50]. For this
application, the capabilities of PGMs for NO oxidation in oxygen-rich environments are
of interest.

In the context of technical catalysis research, several studies have been performed on
supported catalysts and their effect on mixtures closely resembling lean-burn or diesel
exhausts[51, 52, 53, 54, 55, 56, 57]. Of particular interest for this work are studies which
focus on the effect CO presence has in NO oxidation, and vice versa. Early studies
initially suggested that the interaction of both oxidation pathways have inhibiting ef-
fects on each other[58, 55, 59]. However, there have also been indications of synergistic
effects[59, 54]. For example, Boubnov and collaborators[54] studied simultaneous oxi-
dation of CO and NO over Pt/AlyO3 catalysts. They found that the presence of NO
is favorable for CO oxidation in the initial stages of the reaction, a result attributed to
the presence of active surface oxide species produced during NO oxidation. They also
observed steady-state NO oxidation rate to be significantly higher when CO is present
in the mix, which was attributed to the regeneration of oxidized catalysts by CO.

The different observations found in literature clearly demonstrate that the synergis-
tic/inhibiting effects of these oxidation processes arise from complex kinetics. In the
context of the experiments discussed above, where supported catalysts and complex gas
mixtures were employed, several factors will have an effect on the final observations.
These include: the specific composition of the input gas mixture, the details of the com-
position and microstructure of the catalyst used, the geometry of the reaction chamber,
as well as other effects outside the control of the researchers, such as nanoparticle sin-
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4 NO and CO oxidation at Pd(100)

tering. This situation motivates the complementary pursuit of a bottom-up approach.
In this spirit, focusing on single-crystal model catalysts and simpler gas mixtures, it is
possible to reach a more complete understanding of kinetic effects.

In this work, we have focused on the Pd(100) crystal facet, for which several detailed
microscopic studies have been performed, from UHV to near ambient pressures. Good-
man and collaborators[60, 61, 62], using a variety of experimental techniques, character-
ized a set of ordered CO and NO coverage-dependent over-layers on various Pd single
crystal surfaces. The interaction of CO and NO with Pd surfaces has been investigated in
various DFT studies [63, 64, 65, 66, 67, 68, 69]. In particular, the nature of the Pd(100)
surface under oxygen rich conditions and at higher pressures has also attracted atten-
tion. However, information is mostly available in the context of CO oxidation (without
NO). Additionally to the plain metal surface, various surface oxide terminations, in-
cluding a subnanometric (v/5 x v/5) surface oxide, have been proposed[26, 70, 71, 72].
Rogal, Reuter and Scheffler compared the relative stability of different terminations of
the Pd(100) surface in a mixture of CO and Og using first principles thermodynamics|26].
They found that both the pristine metallic termination and the (\/5 X \/5) surface oxide
termination could be stable under relevant reaction conditions. Oscillatory behavior
between these phases that was observed in kinetic experimental studies [28] and could
be explained through the analysis of 1p-kMC models of CO oxidation, which indicated
the existence of a bistability region [20, 21]. In-situ spectroscopic studies confirmed both
phases to be catalytically active and suggested that the formation of bulk oxide is ki-
netically hindered even at relatively high temperatures [3, 4]. The effects of gas-phase
transport limitations have only recently entered the discussion, and it was found that
these play a prominent role also for single crystal catalysts [70, 73].

Regarding NO oxidation conditions, Jelic and Meyer[74] employed first principles ther-
modynamics to obtain the surface phase diagram of Pd(100) and Pd(111) in contact with
NO and O2 mixtures. Jelic and collaborators[22] then developed a 1p-kMC model for the
(v/5x v/5) termination which showed high efficiency for NO oxidation under an oxidizing
feed, supporting the suitability of Pd oxides for NSR catalysis. Smeltz et al. [75] studied
NO oxidation at Pt(111) in a batch reactor and performed ez situ X-Ray photoelectron
spectroscopy and Auger electron Spectroscopy. Various theoretical mean-field[76, 77]
and 1p-kMC|[78, 23] models have been developed for this reaction. Among other results,
these studies have found that lateral interactions play an important role in the oxidation
kinetics.

A common denominator of such detailed single-crystal studies is that they typically
focus on the oxidation of a single component, i.e. either CO or NO, as a way to reduce
the complexity of the problem. Considering the varied inhibition and/or synergy effects
observed in supported catalysts experiments, exploring the interaction of NO and CO
oxidation pathways in a detailed fashion becomes of interest. This was the focus of the
first publication included in this thesis, summarized in section 6.1.
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5 Coupling to the macroscopic scale

Fluid dynamics models that incorporate heterogeneous catalysis are established in the
field of technical catalysis and are a crucial part of the process of reactor design[79]. To
solve flow problems computationally, different schemes such as finite difference (FDM),
finite volume (FVM) or finite element methods (FEM) can be used according to the
nature of the geometries and flow patterns. All these methods provide a way of dis-
cretizing the problem, by subdividing the spatial domain into small cells and the time
into a set of discrete intervals. In this way, the partial differential equations (PDEs)
that govern the fluid dynamics (i.e. the Navier-Stokes equations) are transformed into
algebraic equations that can be solved computationally. The effects of the catalyst enter
the problem as boundary conditions for the PDEs

i :(;57;(1‘,15) i = 17---7Nspe(:7 (5'1)

where the ¢; represent the mass flow per unit area and unit time of species i entering
(or exiting) the fluid cell due to the catalytic reaction, r represents a position on the
a catalyst’s surface, and t is the time. The ¢; are simply proportional to the TOFs
determined by the microkinetic model, where the proportionality constant is simply the
molecular mass of the corresponding gas species.

When the chemical kinetic models used are based on rate equations it is possible to
treat the ¢; under the same discretization scheme as the fluid equations. This cannot
be done when 1p-kMC is used, because this method does not provide a set of closed
differential equations (as the ME, eq. (3.2), is not explicitly solved). Therefore, spe-
cial coupling schemes are needed in this case. A straightforward way of doing this is to
solve each problem separately within small time intervals, alternating between fluid steps
and catalysis steps and communicating the results in between. Such direct coupling ap-
proach has been used by Vlachos[80] and Kissel-Osterrieder et al.[81] for one-dimensional
transport (zero-dimensional surface) models and empirical kMC models. Majumder and
Broadbelt[82] extended these methods to a problem with a one-dimensional surface,
employing a simple model mechanism.

There are several limitations to the application of direct coupling, especially for prob-
lems with arbitrary geometries and/or dealing with complex chemistry. One of them is
simply the high computational cost, as kMC can be several orders of magnitude more ex-
pensive than rate equation-based approaches. Needing to perform an independent kMC
simulation for each fluid cell in contact with the catalyst and for each time step can
easily become a computational bottleneck. Furthermore, being a stochastic approach,
kMC generates results which contain statistical noise, which can make the coupled simu-
lation unstable[83]. This is aggravated in cases in which the derivatives of the boundary
conditions are required, since noise can can drastically increase the error of numerical
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derivatives. Reducing statistical noise can only be achieved by performing more kMC
simulations, which increases computational costs even more.

Several strategies have been developed to alleviate these difficulties. Robust control
methods[84] have been employed to reduce instabilities caused by stochastic noise. To
reduce the amount of kMC calculations necessary, approaches such as in-situ adaptive
tabulation[85] or the gap-tooth method[82] can be used. The former keeps results from
performed kMC simulation in a database and only executes additional simulations if
an interpolation of stored values is judged not to be accurate enough. In the latter
coupling approach, the catalyst’s surface is divided into small sub-domains (teeth), in
which kMC simulations are explicitly performed, and larger separating regions (gaps), in
which reactivity is obtained via the interpolation of the results from the teeth. Although
these methods are promising, direct coupling of kMC and CFD is currently still limited
to simplified geometries and/or phenomenological reactivity models.

All these limitations of direct coupling can be avoided provided one additional ap-
proximation is valid: the instantaneous steady state approximation. In most cases of
interest, the time the catalyst takes to reach its steady-state is much smaller than the
timescale of change of the macroscopic fluid problem. In those cases, it can be assumed
that whenever the gas phase conditions over the catalyst change, the reaction rates will
immediately adapt to the steady-state rates under the new conditions. This approxi-
mation dramatically simplifies the problem at hand, as now boundary conditions on the
catalyst can be described as a function of the partial pressures of the different gas species

Pj, 3 = 1,..., Ngpec, and the temperature 1" directly on top of the catalyst:

¢i = ¢Z(rat) = 'I“i(pl(r,t), "'7pNspeC(r7t)’T(r7t)) =1, --~,Nspec- (52)

In this situation, a valid strategy is to precompute a database of steady-state TOF
values for a range of partial pressure and temperature values that covers the values
expected during the simulation. Such database can then be used to generate a continuous
representation of the r; functions through interpolation. If the interpolation is fast to
evaluate, the 1p-kMC/CFD coupled simulation can be made as efficient as simulations
based on rate-equation microkinetic models. Such an interpolation-based scheme has
been put forward by Matera and Reuter[8, 9] and has even been used to simulate complex
flow dynamics found in in-situ reactivity experiments[30, 5].

Under this scheme, the main challenge is finding an interpolation method that can
be evaluated quickly and that can be constructed with an initial database of 1p-kMC
simulations that is not too large. The latter part is challenging due to the nature of the
steady state 1p-kMC reactivity maps. Such functions are best represented under the
transformation of coordinates

T)— x=(1 ol )=
(P15 s PNupees T) x = (log(p1) og(pr)T) (5.3)

i = fi = log(rs),

i.e. logarithmic scale in the pressures and mass flow and inverse scale in temperature.
In the transformed coordinates the f; present a smooth, almost linear behavior on large
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regions of their domain. Such regions correspond to steady-state kinetic phases, char-
acterized by a defined coverage regime on the catalyst. In contrast, they present highly
non-linear behavior in the boundaries between such regions. Typically, such transition
regions are relatively localized and present sharp changes in the function values and/or
its gradient. In principle, a high density of points is needed there to get an interpolant
of decent quality. This problem is aggravated when the number of species becomes
large. The domain of functions f; is of dimension D = Ngpec + 1. The number of points
needed to densely sample a volume of space grows exponentially with the dimension:
the number of points on a grid of a given resolution n in each dimension is equal to n”.
This is known as the curse of dimensionality and makes it challenging to densely sample
the highly non-linear regions of the reactivity maps, as a very large number of 1p-kMC
simulations would in principle be needed.

In this thesis, we have developed an extension of the modified Shepard interpolation
method that uses a set of automatically generated local metrics to alleviate the problem
of the curse of dimensionality. This is presented in the second included paper, which is
summarized in section 6.2.
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6 Publications summaries with details of
contributions

6.1 Paper 1: Synergistic inhibition of oxide formation in
oxidation catalysis: A first-principles kinetic Monte Carlo
study of NO + CO oxidation at Pd(100)

Authors: J. M. Lorenzi, S. Matera and K. Reuter. Published in ACS Catalysis, Volume
6, Number 8, Pages 5191-5197, July 2016. DOI: 10.1021/acscatal.6b01344.

Summary

This paper presents a 1p-kMC model of simultaneous oxidation of CO and NO by Os
on a single-crystal Pd(100) catalyst. The model is based on an extensive set of DFT
calculations. The effect of the strong lateral interactions are incorporated using blocking
rules. The analysis in the paper focused on studying the effects of the presence of NO
on CO oxidation kinetics. For conditions in which the Pd surface is most active towards
CO oxidation, i.e. at CO/Oy ratios close to stoichiometry, predicted activity is reduced
when NO is present. A markedly different result was found for the case of oxygen-
rich feeds. Under such conditions, the surface is predicted to be fully oxygen poisoned
in the absence of NO, indicating the formation of a surface oxide. Interestingly, the
addition of only small amounts of NO (~ 1075 bar) drastically reduced the steady-state
O coverage and increased CO oxidation activity. This suggests that small amounts of
NO could stabilize the pristine metal phase of Pd(100) by limiting the amount of oxygen
adatoms and thus inhibiting oxidation. Through the analysis of modified versions of the
kinetic model details on the nature of this synergistic effect where revealed to be quite
intricate. Turning off NO oxidation from the model suppressed the enhancing effect on
CO oxidation, demonstrating that this effect goes beyond simple coadsorption effects.
In addition, simulations under other modified versions of the model demonstrated that
both the generation of empty sites through NOgo desorption as well as an NOs-mediated
O-diffusion mechanism are responsible for the onset of the oxidation inhibition at such
low NO partial pressures.

Author contributions

This project was carried out in collaboration with Dr. S. Matera, currently at the
Mathematics Department of the Freie Universitdt Berlin. Dr. Matera originally pro-
posed the project while he was still working as a postdoctoral fellow in the Lehrstuhl
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6 Publications summaries with details of contributions

fiir Theoretische Chemie. He provided scientific advise throughout the project. Prof.
Dr. Karsten Reuter closely supervised the project and provided critical scientific input
regarding both the construction of the model and the analysis of the results. He also
contributed significantly to the co-writing and editing of the manuscript.

I performed all DFT calculations the 1p-kMC model is based on, including all binding
energy evaluations, transition state searches and the extensive analysis of the lateral
interactions used to justify the blocking-rules scheme used. I also defined the 1p-kMC
model conceptually and implemented it using the kmos simulation framework. In ad-
dition, I performed all 1p-kMC simulations presented in the paper, prepared all figures
and co-wrote the manuscript.

6.2 Paper 2: Local-metrics error-based Shepard interpolation
as surrogate for highly non-linear materials models in high
dimensions

Authors: J. M. Lorenzi, T. Stecher, K. Reuter and S. Matera. Submitted to the Journal
of Chemical Physics.

Summary

This paper presents a novel scattered data interpolation method. The method aims at
interpolating high dimensional functions which present concentrated regions of highly
non-linear behavior but are smooth in the rest of the domain. Normally a very large
amount of data points would be needed to properly interpolate such functions, as the
non-linear regions would need to be sampled densely and the amount of points needed
to densely sample a region of space grows exponentially with dimension (i.e. the effect
known as the curse of dimensionality). The method presented in this work is based on
the modified Shepard (MS) interpolation. Interpolants are constructed as weighted sums
of linear local approximations centered at the points in the database (nodes). The novel
element in our approach is the fact that the weights are based on local metrics. These
local metrics are generated automatically according to the input data in the vicinity
of each node. Using a collection of challenging analytic functions, we showed that the
method can provide remarkably good interpolations even when using very small data
sets. We tested dimensions from 2 to 7 and compared our method to different versions of
MS as well as to the state of the art Gaussian Processes Regression (GPR) method. In
all cases our method resulted superior. In addition, we also interpolated a 7-dimensional
TOF function arising from a 1p-kMC model, as this application originally motivated
this project. In this case we also found the method to provide qualitatively very good
results for very small data sets (= 1024 points) and quantitatively good results for mod-
erately large date sets (=~ 8192 points). An additional advantage of the model is that its
mathematical formulation is conceptually simple and based solely on geometrical consid-
erations. In addition, all adjustable parameters either have a geometrical interpretation
or represent an error scale. We are optimistic that these characteristics will make the
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6.2 Paper 2: Local-metrics error-based Shepard interpolation

method easy to apply by researchers that are not necessarily experts in interpolation
methods.

Author contributions

Dr. Sebastian Matera proposed the conceptual basis for the interpolation method, closely
supervised the project and provided scientific guidance. In addition, he provided the
implementation of the 1p-kMC model used for testing and contributed to the writing
and editing of the manuscript. Prof. Dr. Karsten Reuter also supervised the work and
contributed to the writing of the manuscript. Dr. Thomas Stecher performed all GPR
calculations used for testing and wrote the corresponding parts of the manuscript. He
additionally helped with the proofreading of the manuscript.

I developed the algorithm for the interpolation method. To achieve this, I performed
extensive testing of different strategies for the generation of the local metrics. This was
facilitated by my implementation of the interpolation routines as a modular Python
package, in which computationally demanding routines where included as C-extensions.
In addition, I designed the set of analytic test functions and generated all the input data
necessary for the tests, including the 1p-kMC calculations. Moreover, I constructed all
MS-based interpolants, evaluated the error of each of them, performed all data analysis,
wrote the majority of the manuscript and generated all figures.
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7 Summary and outlook

This thesis focused on the multiscale modeling of heterogeneous catalysis beyond typical
simplified reaction pathways. The first part has explored interaction effects between CO
and NO oxidation reaction pathways. This was motivated by the potential importance
of such effects in the context of Nitrogen Storage Reduction catalysis, as observed in
earlier experiments done under technically realistic conditions. A detailed first principles
kinetic Monte Carlo model of the reactions occurring simultaneously at a Pd(100) single
crystal catalyst was built. The model showed that both reactions interact in non-trivial
ways, particularly indicating that the presence of small amounts of NO could have a
strong oxidation-inhibiting effect. This suggests that observations from fundamental
studies focusing on the nature of the active phase of platinum group metals under CO
oxidation conditions cannot easily be extrapolated to more realistic conditions where
the gas phase contains more species. The effects observed are the consequence of rather
complex kinetic effects, which could only be elucidated thanks to the detailed modeling.

The importance of such complex kinetic effects even for simple model catalysts high-
lights the importance of advancing methodology which can simplify and accelerate the
comparison of theory and experiment. This thesis has contributed to this by extending
an existing multiscale 1p-kMC/CFD framework. Multiscale modeling is crucial to prop-
erly interpret in-situ experiments, in which mass and heat transfer effects are important.
The contribution in this work consisted of an improved interpolation method based on
the popular modified Shepard method. The interpolation is used as an intermediate
step in the 1p-kMC/CFD coupling scheme, to improve efficiency. The new interpolation
method achieves better results than the state of the art while using considerably fewer
1p-kMC simulations as input data.

At present, a collaboration with experts in in-situ X-ray photoelectron spectroscopy
(XPS) is ongoing. Motivated by the results of our 1p-kMC model, they are performing
simultaneous NO and CO oxidation experiments on Pd(100). Interestingly, initial re-
sults support the existence of the oxidation inhibition effect due to NO. However, mass
transfer effects seem to also play an important role in the experimental observations.
Therefore, an important future step is to incorporate the CO4+NO oxidation model into
the multiscale modeling scheme and simulate the experiment. This should give novel
insight on the effects of mass transfer, and help validate or disprove the hypothesis of
the model.

Methodologically, there are also several promising future developments. In this thesis,
the novel interpolation method has been shown to require fewer data points that other
methods for sets of input points uniformly distributed. We believe that even greater
efficiency can be obtained through a targeted selection of the data points’ locations. For
this, available error estimates could be used: After an initial coarse interpolant is gen-
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7 Summary and outlook

erated from a coarse, uniformly distributed data set, new data points would be placed
where error estimates are large. In this way it should be possible to only run 1p-kMC
simulations which provide maximal improvement in interpolant accuracy, minimizing
data redundancy. Such adaptivity scheme could be directly implemented into the kmos
kMC modeling framework, enabling the generation of continuous representations of reac-
tivity maps directly from the abstract definition of the 1p-kMC model. The availability
of such an automated tool should significantly facilitate the generation of multiscale
1p-kMC/CFD models.

In addition, due to its general formulation, the interpolation scheme is potentially
useful beyond kMC/CFD coupling. One possible application is towards global sensitivity
analysis (GSA) of 1p-kMC models. GSA evaluates how much errors of each rate constant
impact the observable prediction of the simulation. Such analysis might require the
evaluation of hundreds of thousands of 1p-kMC simulations[45]. Initial tests have shown
that most of these calculations could be replaced with interpolant evaluations, saving
vast amounts of computational data. In addition, with minimal extensions, the model
should be applicable to different interpolation problems such as, e.g. PES interpolation
for MD simulations.
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ABSTRACT: Oxide formation under oxygen-rich reaction conditions has
independently been reported for both CO oxidation and NO oxidation with Pd
single-crystal model catalysts. We present a first-principles kinetic Monte Carlo
study addressing the simultaneous occurrence of both reactions at Pd(100) exposed
to CO- and NO-containing feeds. Even in most oxygen-rich feeds, very small
amounts of NO are found to reduce the surface oxygen coverage well below the
level required to induce oxide formation. Even though NO and CO compete for the
same surface sites and surface oxygen, the ongoing NO oxidation reactions

furthermore lead to a partially strong enhancement of the CO oxidation activity.
This highlights synergistic effects of multicomponent gas feeds on both surface composition and catalytic activity that cannot be
captured, nor extrapolated from prevalent studies focusing on individual reactions.
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1. INTRODUCTION

The last two decades have seen an extensive (partially heated)
discussion, with regard to the active state of late-transition-
metal catalysts commonly employed in oxidation catalysis.'~*
In the oxygen-rich environment, the formation of oxides, thin
oxide films, or other heavily oxygen-loaded surface structures
would generally be expected for Pt-group metals on
thermodynamic grounds. Under operating conditions, this is
opposed by the continuing reduction due to the ongoing
surface reactions, as well as kinetic limitations to dissociative
oxygen adsorption or further oxidation. For the purpose of
identifying which effects dominate for the working catalyst,
strong efforts have been devoted to identify the surface
structure and composition of low-index model catalysts under
reaction conditions that come as close as possible to those of
technological oxidation catalysis.”® Corresponding near-am-
bient in situ measurements or first-principles microkinetic
modeling studies have partially confirmed the formation of
oxygen-rich surface structures, partially rejected such formation,
or even reported an oscillatory formation and decomposi-
tion.””"?

While the case is thus not generally settled, an important
feature common to previous atomic-scale investigations of
single-crystal model catalysts is the consideration of a simplified
gas composition, i.e., only the presence of one reducing agent in
the feed has been systematically addressed. In the predom-
inantly studied CO oxidation, for instance, this is CO; in NO
oxidation, this is NO. This makes the problem more tractable,
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but neglects possibly important inhibitive or synergistic effects
that have frequently been discussed for the multicomponent
feeds of real applications.'*”** Inspired by the automotive
exhaust gas composition of lean-burn or diesel engines, we
assess this possibility for a gas phase containing both CO and
NO and by setting up a first-principles kinetic Monte Carlo
model that correspondingly accounts for simultaneous NO and
CO oxidation reactions. As the substrate, we specifically select
the Pd(100) surface, for which oxide formation has been
reported experimentally for both CO oxidation'” and NO
oxidation.”” The stability, in particular of a monolayer thin
PdO(101) surface oxide layer,””* has also been confirmed by
constrained ab initio thermodynamics and first-principles
kinetic Monte Carlo (1p-kMC) studies considering either a
CO + 029’“ or a NO + O, atmosphere.m27 In contrast, a
recent 1p-kMC study for CO oxidation at Pd(100) has
emphasized the suppression of dissociative O, adsorption by
higher surface coverages, which kinetically limits the O
coverage to values below the threshold inducing oxide
formation.*®

We find that this effect is dramatically increased by the
simultaneous presence of NO in the feed. Already smallest
amounts of NO, of the order or smaller than, e.g., that typically
present under NO, storage reduction (NSR) conditions,”"***°
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are sufficient to reduce the surface oxygen coverage below the
values required for oxide formation for a wide range of near-
ambient O, and CO pressures. Interestingly, this goes hand in
hand with a significant increase in the CO oxidation activity for
oxygen-rich conditions. Our systematic analysis tracks both
effects down to the reduction of kinetic adsorption limitations
by additional reaction and diffusion channels offered in the
enhanced NO + CO oxidation reaction network. Correspond-
ing synergistic effects in multicomponent gas phases can be
neither captured nor extrapolated from studies selectively
addressing the catalytic function in feeds containing only
subsets of the reactive species.

2. THEORY

We use 1p-kMC simulations to numerically evaluate the
microkinetics of the NO + CO oxidation reaction network.
Different from mean-field rate-equation based microkinetic
simulations, 1p-kMC thereby fully treats the correlations,
fluctuations, and explicit spatial distributions of the reaction
intermediates at the catalyst surface.”” Targeting steady-state
reaction conditions with defined temperature and reactant
partial pressures, the 1p-kMC simulations yield the detailed
occurrence of any elementary process or local surface
configuration within the entire reaction network. Appropriately
averaged over a sufficiently large ensemble of surface sites, this
leads to the average coverages of all reaction intermediates and
to the catalytic activity (measured as turnover frequency (TOF)
in product molecules per area and time). As with any
microkinetic model, the necessary input to the simulations
includes a list of all elementary processes in the reaction
network, together with their respective rate constants. The
latter are determined using densitzr functional theory (DFT)
and transition-state theory (TST).”>** To be able to account
for the geometric arrangement of the individual surface sites
active in the reaction network, 1p-kMC additionally requires
this information in the form of a lattice model.

For the CO oxidation part of the reaction network, we rely
on the 1p-kMC model established previously by Hoffmann et
al”®** Therefore, the following subsections provide first a
concise summary of this model and then an account of the
computational setup used to obtain the first-principles rate
constants and perform the 1p-kMC simulations. This very
framework is subsequently employed to extend the CO
oxidation model toward (simultaneous) NO oxidation, the
details of which are described in subsection 2.3.

2.1. Literature 1p-kMC Model of CO Oxidation at
Pd(100). The 1p-kMC model of CO oxidation at Pd(100) by
Hoffmann et al.”*** considers the high-symmetry hollow and
bridge sites as adsorption sites for O and CO, respectively. The
list of elementary processes correspondingly contains all
nonconcerted adsorption, desorption, diffusion, and Lang-
muir—Hinshelwood reaction processes involving these sites.
Oxygen adsorbs dissociatively and CO unimolecularly. Both
processes are nonactivated. The corresponding desorption
processes are time reversals of these adsorption processes, with
rate constants fulfilling detailed balance. Since CO, binds only
very weakly to Pd(100), CO oxidation is modeled as associative
desorption, i.e., with the formed CO, desorbing instantaneously
and irreversibly at the temperatures of interest in this study.

Systematic DFT calculations identified strong short-range
repulsive interactions between the adsorbed reaction inter-
mediates.** ™" In the 1p-kMC model, these are accounted for
through site-blocking rules that exclude processes leading to

31,32
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O—O pairs at nearest-neighbor (NN) hollow—hollow dis-
tances, to CO—CO pairs closer than or at next-NN bridge—
bridge distance, and O—CO pairs at NN hollow-bridge
distance.”® Diffusion processes are thus hops between NN
sites obeying these site-blocking rules, whereas, for dissociative
O, adsorption, these rules imply the necessity of a pattern of
eight empty hollow sites, such that the two O atoms can adsorb
in next-NN sites and have no NNs in any of the surrounding
hollow sites (the so-called 8-site rule***®).

2.2. Computational Setup. For the calculation of the first-
principles rate constants, we employ the approach described by
Reuter and Scheffler.”* This approach relies on kinetic gas
theory to determine the rate constants for adsorption processes,
whereas, for bound-to-bound transitions such as surface
diffusion or Langmuir—Hinshelwood reactions, harmonic
TST is applied. Desorption events are modeled as reverse
adsorption processes with rate constants satisfying detailed
balance. Gas-phase chemical potentials are interpolated to
tabulated values,”****" which assures correct equilibrium
conversion of the gas-phase species. The necessary first-
principles input is then essentially reduced to binding energies
and reaction barriers. We compute these energetic parameters
with DFT and using the plane-wave code CASTEP, together
with standard library ultrasoft pseudo-potentials.*’ Electronic
exchange and correlation is treated at the level of the
generalized gradient approximation functional by Perdew,
Burke, and Ernzerhof (PBE)* that was also employed in the
1p-kMC model of CO oxidation at Pd(100).”**

The calculations are performed within supercell geometries,
using four layer slabs (with the topmost two layers fully
relaxed), 3 X 3 surface unit cells, and a 10 A vacuum. The
energetics of the gas-phase molecules is calculated using a 12 A
X 12 A X 12 A box and I'-point sampling. At the employed
cutoff of 400 eV and a k-point density of 0.4 A~ for the
supercell calculations, the targeted binding energies and
reaction barriers are converged to within 50 meV. Transition-
state searches are performed using the climbing-image Nudged
Elastic Band (NEB)* method. We made sure that all forces at
the saddle points were lower than 0.05 eV/A and also checked
the nature of the transition state by calculating the vibrational
frequencies using the finite displacement method (keeping the
substrate frozen). Both NEB calculations and vibrational
analyses are performed within the Atomistic Simulation
Environment (ASE).44

This computational framework yields energetic parameters
that are fully compatible with the literature values of the CO
oxidation 1p-kMC model, with small deviations within 70 meV,
because of the use of a smaller surface unit cell in the preceding
work. A notable exception is presented by the CO oxidation
reaction barrier, which was previously estimated by reaction
coordinate scans as ~0.9 eV and is now computed with the
NEB method as 0.68 eV (vide infra). We confirmed that none
of the conclusions presented in ref 28 are affected by this
change in the barrier value.

The 1p-kMC model was implemented and run using the
kmos computer package.” The simulations are performed in
simulation cells containing 20 X 20 Pd(100) unit cells
(comprising 1200 bridge and hollow sites) and periodic
boundary conditions. Test simulations in larger cells containing
up to 60 X 60 unit cells showed no evidence of finite size
effects. Analogous to the procedure employed by Hoffmann et
al,”®* the numerical efficiency of the simulations was increased
by raising the barriers of otherwise dominant diffusion
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processes by 0.5 eV. Validation runs with smaller diffusion
barriers showed no significant changes, demonstrating that,
even with the raised barriers, diffusion is still fast enough to
achieve an equilibration of the adlayer ordering between the
other (rare) elementary processes.”” With these settings,
running the simulations over 10" kMC steps was found to
be enough to reach steady state and subsequently achieve
sufficient sampling for converged average coverages and TOFs.

2.3. Extended 1p-kMC Model of CO + NO Oxidation at
Pd(100). The properties of Pd(100) toward NO adsorption
and NO reduction to N, have been extensively studied both
theoretically**™* and experimentally.”*™>* Consistent with
these works, our DFT calculations at varying coverages indicate
a preferential NO adsorption at the high-symmetry bridge sites
offered by the Pd(100) surface. These previous studies
furthermore suggest that Pd(100) terraces are not very active
toward NO dissociation. In particular, both Loffreda et al.* and
Hammer*® computed rather high barriers in excess of 1.6 eV for
this process. Focusing on oxidizing conditions, we correspond-
ingly neglect NO dissociation events, as well as further reaction
channels requiring NO dissociation in the 1p-kMC model and
focus on the unimolecular adsorption (and desorption) of NO
at bridge sites. This choice is supported a posteriori by test
simulations that augment our 1p-kMC model with NO
dissociation and N, formation processes with barriers from
ref 48 and that indeed resulted in almost no NO dissociation
events occurring in the entire relevant range of gas-phase
conditions.

In contrast, NO oxidation yields NO, as another reaction
intermediate to consider. Different from CO,, we find NO, to
bind with moderate strength to Pd(100), requiring its explicit
incorporation into the 1p-kMC model. A systematic calculation
of NO, binding to all Pd(100) high-symmetry sites in upright
and tilted configurations (see the Supporting Information (SI))
identifies the tilted on-top configuration shown in Figure 1 as
most stable one, with a binding energy of —1.55 eV.

Figure 1. Top view (left) and side view (right) of the optimized
adsorption geometry of NO, at Pd(100). O, N, and Pd atoms are
depicted as red, blue, and gray spheres, respectively.

Similar to CO and O, we suspect sizable lateral interactions
also with and between the additional reaction intermediates
(NO and NO,). We computed a DFT database of 97
(co)adsorption configurations in 2 X 2 and 3 X 2 surface
unit cells to extract these lateral interactions through pairwise
cluster expansions.’®*® Aiming at higher coverage config-
urations, we thereby neglect the tilt of the NO, adsorption
geometry and assume a C,, symmetry in the interactions. As
detailed in the SI and irrespective of the particular interaction
figures considered in the cluster expansions, this yields strongly
repulsive interactions at short range, as previously found for
CO oxidation. Consistent with the procedure employed in the
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original CO oxidation 1p-kMC model,”*** we account for these

strong interactions through site-blocking rules, suppressing any
processes that would lead to top—top, bridge—bridge, top—
hollow, top—bridge, and bridge—hollow species at NN distance.
In the case of bridge—bridge interactions (NO—NO, NO—
CO), this site blocking also extends to a second NN distance
across a top site. Similar to the previous findings for CO and
0,%% the cluster expansions, in fact, also predict finite-size
repulsive interactions at even larger distances. We correspond-
ingly expect the employed shortest-range site-blocking rules to
yield a lower bound to the effect of the true interactions.
Preliminary 1p-kMC simulations with further ranging site-
blocking blocking rules indeed show all the effects discussed
below.

Under consideration of the site-blocking rules, all adsorption,
desorption, diffusion and reaction processes of the extended
CO + NO oxidation model are then essentially defined by the
energetic quantities compiled in Table 1. The adsorption

Table 1. Summary of All DFT Binding Energies, As Well As
Diffusion and Reaction Barriers Used in the Extended 1p-
kMC NO + CO Oxidation Model

parameter value
Binding Energies
Eg —117 &V
B —2.00 eV
B —227 eV
EXgP —1.55 eV
Diffusion Barriers
AEST 024 eV
AESS 0.12 eV
AESS 0.14 eV
AE, 0.15 eV
Surface Reactions
CO +0 — CO,
AEP™ 0.68 eV
NO + O & NO,
AEP™ 1.06 eV
AE"* 032 eV

processes additionally require a sticking coefficient. Systematic
potential energy scans vertically lifting NO and NO, from their
adsorption site provide no evidence for an additional activation
barrier to adsorption. We correspondingly model NO and NO,
adsorption as nonactivated and use sticking coefficients of 0.5
and 1, respectively, which arises in the hole model underlying
the Reuter/Schefller approach34 from a straightforward equi-
partitioning of all impinging molecules over the available active
sites per surface unit cell. We note that NO oxidation is a
reversible process, which is endothermic in the forward
direction (cf. Table 1). Notwithstanding, NO, dissociation
requires an adjacent empty bridge—hollow second NN site pair,
which will favor NO oxidation at higher coverages.”” For the
reaction conditions considered in this study, we treat the
desorption of the formed NO, as being irreversible, i.e., there is
no readsorption of NO, from the gas phase. At the low NO,
TOFs, the underlying assumption thereby is that the small
amount of formed NO, is quickly swept away with the stream
in the reactor geometries typicallsy employed in in situ studies
on single-crystal model catalysts.”>~>” For channel-type reactors
as used for supported real catalysts back-reactions might instead
become quite important.*
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3. RESULTS

3.1. Synergism in the CO + NO Oxidation Activity. We
start analyzing the effect of additional NO species present in
the feed gas by comparing the CO oxidation activity in the
absence of gaseous NO with that resulting in the presence of a
small amount of NO, corresponding to pyo = 107* bar. Figure
2 shows the corresponding results as a function of oxygen and
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Figure 2. Steady-state CO oxidation turnover frequency (TOF), as a
function of oxygen and CO partial pressures at T = 600 K, in the
absence of additional NO in the feed (left panel) and for a finite
amount of NO, corresponding to pyo = 107" bar (right panel).
Hatched lines represent the regions in which the catalyst is poisoned
by either CO or oxygen. As the O-poisoned region is absent in the
finite pyo case, contour lines for the O coverage are included. The
crosses in the diagrams indicate the (po, pco) conditions used in

Figure 3.

CO partial pressures and for a temperature of 600 K. In the
absence of NO, we obtain the expected confinement of high
catalytic activity to a narrow range of gas-phase conditions
around a stoichiometric CO/O, partial pressure ratio. Under
corresponding pressure ratios (and sufficient absolute pres-
sures), both reaction intermediates, CO and O, are stabilized at
the surface in appreciable amounts, which then enables efficient
execution of the Langmuir—Hinshelwood-type oxidation
reaction. Outside this pressure corridor, the surface gets
poisoned by one of the intermediates as also indicated in
Figure 2. Under the site-blocking rules employed in the present
1p-kMC model such (O or CO) poisoning corresponds to
reaching a maximum coverage of 0.5 monolayer (ML), which
then prevents any coadsorption of the respective other species.
In the case of O-poisoning, reaching such a critical coverage
would, in reality, induce the formation of a surface oxide, which,
for PA(100), is known to start at an O coverage of >0.5 ML.”*
For any lower O coverage, we should instead be well inside the
applicability regime of the present microkinetic model focusing
exclusively on surface reactions at metal Pd(100).”"'"*7%3
Intriguingly, the addition of only a small amount of NO to
the feed gas heavily reduces this steady-state O coverage under
oxygen-rich conditions. Already for the chosen pyo = 107* atm,
which is at or below the pressures representative for NSR
conditions,”*”*° no O-poisoning is reached anymore in the
entire pressure range displayed in Figure 2. Instead, the oxygen
coverage reaches at maximum of ~0.25 ML, predicting that
oxide formation would be clearly inhibited, even under the
most oxygen-rich reaction conditions shown. In corresponding
environments, the additional NO also leads to a significant
increase in the CO oxidation activity, i.e., the active region with
appreciable TOFs is much wider in the right panel of Figure 2,
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while the maximum TOF values reached are barely changed.
This positive effect on the CO oxidation properties is quite
remarkable considering that CO and NO compete for the same
surface sites and for the same adsorbed oxygen species.

3.2. Coverage and Lateral Interactions. In order to
analyze these intriguing findings in more detail, we now
concentrate on two specific (po, pco) conditions, which are

marked with crosses in Figure 2. Both correspond to a fixed
condition of po = 1 bar at T = 600 K and contrast a situation

that, in the absence of NO, is in the high-activity
stoichiometric-pressure regime (pco = 1 bar, magenta cross)
and a situation that, in the absence of NO, is in the O-poisoned
regime (pco = 0.01 bar, black cross). For the sake of simplicity,
we will henceforth refer to these two reaction conditions
shortly as “high activity” and “poisoned”. The top panels of
Figure 3 show how the CO and NO oxidation activities change
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Figure 3. CO and NO oxidation TOFs (top panels) and surface
coverages 6 (bottom panels), as a function of NO partial pressure and
T = 600 K. Compared are two specific reaction conditions marked
with crosses in Figure 2: po, = 1 bar, pco = 1 bar (magenta, left panels)

CO

and po, = 1 bar, pco = 0.01 bar (black, right panels), representing high-

activity and O-poisoned conditions in the absence of NO, respectively.

for these two cases when the NO pressure is continuously
increased. For the “high activity” case, the TOFs evolve
smoothly and in a form that is intuitive, in view of the
competition of the NO and CO oxidation reactions for the
same surface sites and adsorbed oxygen. With increasing pyo,
the initially high CO oxidation TOF gradually decreases, at the
expense of a continuously rising NO oxidation TOF. In
contrast, much more abrupt variations arise in the “poisoned”
case. Here, appreciable CO oxidation activity only sets in above
a critical pyo (~107° atm), then decays again after this initial
steep increase. Interestingly, the NO oxidation activity sets in
simultaneously with the CO oxidation activity, but then
plateaus for higher pyo at exactly the same value as in the
“high activity” case.

The key to understanding the less intuitive activity variation
of the “poisoned” case comes from an analysis of the surface
coverages also compiled in Figure 3 for both cases. For the
“high activity” case, we find, at the lowest NO pressures, an O
coverage of ~0.2 ML and a CO coverage at a similar value. This
is roughly what thermodynamics wants: If we switch off all
oxidation reactions in the 1p-kMC simulations and thereby
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simulate the adsorption—desorption equilibrium situation, we
obtain O and CO coverages of ~0.3 ML and ~0.35 ML,
respectively, for these pressure conditions. Under the highly
repulsive lateral interactions, this is close to the maximum
coverage that can be achieved at the surface. The ongoing
surface reactions thus remove surface species faster than can be
replenished from the gas phase, resulting in average coverages
that are below this ideal thermodynamic limit. At increasing
Pno» NO starts to compete with CO for the bridge sites. Since
NO is subject to the same repulsive lateral interactions with O,
this does not affect the O surface population substantially. Its
coverage remains almost constant, as is apparent from Figure 3.
NO replaces CO at the surface to ultimately reach the
maximum possible coverage of 0.5 ML at the highest NO
pressures shown. This gradual replacement then effectuates the
intuitive smooth TOF variations previously discussed.

The situation is quite different in the “poisoned” case. At the
lowest pyo, the ideal thermodynamic coverages resulting from
the mere adsorption—desorption equilibrium would be similar
to those for the “high activity” case (~0.3 ML O and ~0.35 ML
CO). In contrast, we see, in Figure 3, the maximum coverage of
0.5 ML O possible in the present 1p-kMC model that
concomitantly completely suppresses CO at the surface. This
difference from the “high activity” case comes from the changed
Po,/Pco partial pressure ratio. With a ratio of 100:1, CO is now

an absolute minority species, which makes replenishment of
surface CO through adsorption a much slower process. In
consequence, the ongoing surface reactions diminish the
surface CO population so much that enough space is created
to accommodate more surface oxygen. Under the highly
repulsive O—O interactions, this corresponds to a ¢(2 X 2)
motif. The highly repulsive O—CO interactions then prevent
any adsorption of CO into such an oxygen-enriched area. A
critical NO pressure is necessary to break this deadlock. Above
pno & 107° atm, NO can be stabilized at the surface, which
goes hand in hand with the abrupt reduction of the surface
oxygen coverage back to the 0.2 ML case. This frees surface
sites for CO adsorption and leads to a strong increase in CO
oxidation activity. After this transition, the situation is then
equivalent to the “high activity” case with a gradual replacement
of CO by NO. Since the NO coverage eventually reaches the
same maximum value, the NO oxidation TOF also plateaus at
the same value.

3.3. Beyond Coadsorption Effects. From the analysis to
this point, it would seem as if the observed positive effect of
NO on the “poisoned” case is a simple coadsorption effect, in
which the additional presence of NO at the surface helps to
suppress the buildup of a poisoning O coverage. Yet, further
analysis demonstrates that the cooperativity is more intricate.
Selectively switching off the NO oxidation reactions in the 1p-
kMC model simulates precisely the effect of a mere
coadsorption of (nonreactive) NO. Indeed, such simulations
yield a coverage pattern that resembles that discussed for the
fully reactive simulations to a large extent, except for a shift in
the pyo axis. The “high activity” case exhibits the smooth
gradual replacement of CO by NO at bridge sites at ~0.2 ML
O coverage that is essentially independent of pyo. The
“poisoned” case shows the abrupt reduction of the O coverage
once a threshold NO pressure of ~107* bar is exceeded.
Surprisingly, however, these equivalent coverages yield
significantly changed CO oxidation TOFs, as summarized in
Figure 4. While in the “high activity” case the TOF is
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Figure 4. CO oxidation TOFs for the “high activity” (magenta, left
panel) and “poisoned” (black, right panel) cases. Compared are the
full simulation results as given in Figure 3 (solid lines) to results when
the NO oxidation reactions are switched off in the 1p-kMC
simulations (dashed lines). Without these reactions, the positive
cooperativity is gone and the CO oxidation TOF in the “poisoned”
case (black, right panel) remains low at all NO pressures.

systematically lowered by ~2 orders of magnitude for all but
the lowest NO partial pressures, the more striking finding is
that, for the “poisoned” case, the CO oxidation TOF remains
low for all NO pressures. The “poisoned” case thus remains
essentially poisoned, irrespective of an additional presence of
NO in the feed. Although we do observe a small enhancing
effect due to NO, it is of a much smaller magnitude. In
particular, for the intermediate NO pressures just above the
threshold at pyo &~ 107° bar, this implies a quenching of the CO
oxidation activity of more than 4 orders of magnitude (cf.
Figure 4).

By further modifying the process list considered in the 1p-
kMC simulations, we can trace this finding back to the removal
of kinetic adsorption limitations by additional reaction and
diffusion channels enabled through the NO oxidation part of
the reaction network. Both channels bring locally O-poisoned
configurations at the surface out of the deadlock situation, by
either creating additional NO or CO adsorption possibilities
through NO, desorption or by diffusional intermixing. Both
cases offer increased possibilities to react off adsorbed O and
thereby induce the transition from the O-poisoned coverage to
a situation with coexisting NO + O already at lower pyo. At
these lower pyo, a resulting intermediate NO coverage still
leaves sites for CO coadsorption, which, in turn, enables
efficient Langmuir—Hinshelwood CO oxidation reactions and
the concomitant enhancement of the CO oxidation TOF.

As stated, the effect of the additional reaction channel is
thereby simply the creation of free adsorption sites due to the
desorption of formed NO,. We can selectively assess this effect
by allowing for the formation and decomposition of surface
NO, in the 1p-kMC simulations, but disabling the possibility of
NO, desorption (cf. the SI). More intriguing, however, is the
diffusional channel. As illustrated in Figure S, the formation and
subsequent decomposition of a NO, reaction intermediate at
the surface creates a new O diffusion possibility out of local
configurations, where regular hopping diffusion would be
suppressed by the repulsive lateral interactions. Because of the
endothermicity of the NO oxidation reaction step, the
decomposition of a once-formed NO, is a likely process, if a
neighboring free site and the blocking rules allow for it. We can
again selectively assess the effect of this new diffusion channel
by restricting NO, decomposition only back into the original
NO + O configuration out of which the NO, was formed in the
1p-kMC simulations. A corresponding suppression of the
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Figure S. Top view illustrating the additional O diffusion mechanism
enabled through the formation (left panel) and subsequent
decomposition (right panel) of a NO, reaction intermediate. O, N,
C, and Pd atoms are depicted as red, blue, black, and gray spheres,
respectively.

diffusion mechanism results in TOFs that are only minimally
modified from the results shown in Figure 4 when no NO
oxidation reactions are allowed to occur at all. Allowing for the
diffusion mechanism (i.e, an unrestricted formation and
decomposition of NO, species) increases the maximum CO
oxidation TOF reached already by more than 1 order of
magnitude, compared to these no-NO-oxidation results. The
remaining difference to the TOFs obtained with the true model
with all processes enabled (cf. Figure 4) are then due to the
additional reaction channel. While regular coadsorption effects
as described in the last section can, to some extent, be
extrapolated from separate studies of the individual oxidation
reactions, this is neither the case for the additional reaction nor
for the diffusion channel. Cooperative effects on the catalytic
activity due to such mechanisms are correspondingly missed in
traditional studies focusing on idealized feeds containing only
one reducing agent.

4. CONCLUSIONS

Fundamental studies that concentrate on establishing micro-
scopic insight into surface catalysis at single-crystal model
catalysts largely focus on purified gas feeds containing a
minimum number of components. In oxidation -catalysis,
prominent examples are the reactions of CO oxidation, NO
oxidation, or water oxidation, each of which is selectively
studied in gas phases containing oxygen plus one reductant
(CO, NO, or H,0, respectively). While this approach reduces
the complexity of the problem, it dismisses possible cooperative
effects that may arise in multicomponent gas feeds as is
common in real applications. We investigated such effects using
a 1p-kMC model that describes the simultaneous CO and NO
oxidation at a Pd(100) model catalyst. Our results indeed show
strong synergistic effects on both the surface composition and
the catalytic activity that could not have been extrapolated from
the separate study of both oxidation reactions. Very small
amounts of NO in the feed gas are sufficient to reduce the
surface oxygen coverage well below the level that would
otherwise have induced oxide formation in corresponding
oxygen-rich environments in CO oxidation catalysis. Simulta-
neously, this small amount of NO strongly enhances the CO
oxidation activity in this oxygen-rich regime, despite competing
for the same surface sites and adsorbed oxygen. One key factor
behind such nonadditive effects is that already smallest amounts
of an additional reaction intermediate (here, NO) may induce
surface phase transitions in the adlayer formed by the other
intermediates (here, O and CO). This effect is amplified in the
presence of strongly repulsive lateral interactions, as is common
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at late transition-metal surfaces. This complexity cannot be
easily captured in prevalent mean-field microkinetic modeling
and may thus have been overlooked so far. It can only be
grasped with most advanced site-resolved microkinetic analyses,
which reveal intricacies in heterogeneous catalysis that continue
to surprise us.
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i configurations were used as initial conditions for

1 Adsorption of NO; on fig d 1 cond f
geometry optimizations, in which the molecule
Pd(lOO) and the upper two layers of the substrate were
allowed to relax. The initial configurations in-

cluded: (i) “upright” configurations with the
N atom down over each of the high symme-
try sites (top, bridge and hollow) and with the
O atoms aligned either parallel, at a 45° an-

a) 226 meV b) 277 meV gle or (only for the bridge site) perpendicular

c) 308 meV d) 546 meV plane, so that one of the O atoms was c'lose.r to
the surface. After the geometry optimizations
Figure S1: Metastable adsorption configura- most of the initial configurations relaxed to the

to the Pd-Pd direction; and (ii) “tilted” con-
figurations, one for each of the “upright” ones,
in which the molecule was rotated 45° around
the N atom along an axis perpendicular to its

tions found for NOy on Pd(100). Energies are geometry presented in Fig. 1 of the main text,
relative to the most stable conﬁguration shown the one with the lowest energy observed. The

in the main text. four next most stable final geometries found are

presented in figure S1 along with their relative

Several adsorption geometries for the NOj energy with respect to the most stable configu-
molecule were analyzed within our density- ration.

functional theory (DFT) setup to determine
the most stable configuration. For this, the
molecule (in its vacuum-converged geometry)
was placed on different high symmetry positions
over a 4-layer thick, (2x2) Pd(100) slab. These

S1



Table S1: Lateral interaction parameters per
adsorbate for the selected lattice-gas Hamilto-
nian. Values in meV.

2NN, to 2NN, to 2NN, to
VNO—I\tIg VCO—l\tIOp chg Vco—(gop
239 214 199 175
2NN, hol 2NN, hol 2NN, hol
Vio—co  Veo-no VOQEIEO VNo-NO
138 127 102 88
Véotno,  Vaito  Viotwo, VRO,-Nos
86 85 64 59
VERS  VéRo, Vadino Vo
33 17 11 4

2 Lateral Interactions

To compute the strength of the lateral interac-
tions and guide the definition of site-blocking
rules of our 1p-kMC model, we calculated a
database of DFT energies for different over-
layer configurations. Adsorbates were placed
on their corresponding adsorption site in su-
percells containing slabs with either (2 x 2) or
(3 x 2) surface unit cells and 4 layer thickness.
Preliminary calculations showed that configu-
rations containing any pair of adsorbates at
distances closer than the first nearest neighbor
(INN) distance between top and hollow sites
(~1.97A) do not correspond to potential en-
ergy minima (i.e. adsorbates moved away from
the original adsorption sites during geometry
optimizations). Consequently, no configuration
with coadsorption at such close distances was
considered.

In all configurations, O, CO and NO adsor-
bates and the topmost two substrate layers were
allowed to fully relax during the optimizations.
Aiming to describe higher coverage conditions,
NO, was constrained to maintain a Cg, sym-
metry above the top site. Under this constraint
NO2-NOs, interactions at 1NN top-top distance
turned out extremely large and tended to cor-
rupt the inversion of the lattice gas Hamilto-
nian (LGH). We correspondingly concluded on
a site-blocking rule for this short distance and
did not consider corresponding configurations
in the database. Configurations for which any

S2

2NN
VXOVNO'»

2NN, hol
Voo

Figure S2: Representation of the interactions
selected for the lattice gas Hamiltonian from
table S1. XO and YO represent either CO or
NO.

of the adsorbates was displaced to a different
adsorption site were also discarded and not con-
sidered in the analysis below. Figure S5 at the
end of the document schematically shows the
resulting 97 DFT calculated configurations that
were used. Binding energies at the zero cov-
erage limit were taken from calculations with
a single adsorbate in (3 x 3) surface unit cells
(0.11 ML coverage).

The DFT energies obtained for these configu-
rations were used to fit a short-ranged LGH.
Due to the relatively large number of adsor-
bates, we considered pairwise interactions only.
Starting with a set of 23 interaction figures, and
following the approach used by Zhang et al.,5!
we found that the most accurate LGH (i.e. that
which minimizes the leave-one-out cross valida-
tion (LOO-CV) score®!) corresponds to the one
presented in table S1, in which the 16 interac-
tions shown in Fig S2 were selected. However,
even when only allowing a maximum of 12 in-
teractions, the strongest interactions in table S1
are selected with values that differ by less than
20meV from the corresponding values in ta-
ble S1. Additionally, we have also performed
the same analysis by excluding all configura-
tions (and interactions) containing NO,. Un-
der these conditions we observe that again the
9 strongest NOo-free interactions from table S1
are selected, and that the corresponding values
differ again by less that 30 meV. We are thus



confident that the symmetrized treatment given
to NOy does not have important effects on the
interactions between the other species at the
level of accuracy we aim at in this analysis. The
highly repulsive interaction values obtained for
the shortest-range distances in table S1 and the
robustness with which they are obtained, fully
justifies the site-blocking rules employed in the
1p-kMC model in the main text.

3 Influence of the blocking-
rules scheme

The set of blocking rules used was defined such
that all interactions stronger than 130 eV per
adsorbate would be blocked. This corresponds
to prohibiting (cf. table S1)

0O-0 coadsorption at 1NN hollow-hollow dis-
tances

a.

CO-CO, CO-NO and NO-NO coadsorptions
at 2NN bridge-bridge distances across top
sites, and

c. CO-CO coadsorptions at 2NN bridge-bridge
distances across hollow sites

in addition to blocking coadsorptions at dis-
tances equal or smaller than 1.97 A (which do
not even correspond to metastable configura-
tions as discussed in the previous section). This
was done to keep our extended set of blocking
rules fully consistent with the one used by Hoff-
mann and Reuter. 52

The robustness of our results with respect to
this choice has been systematically checked as
follows: Fig. S3 compares the TOF for CO oxi-
dation predicted with the blocking-rules scheme
just described (solid lines, same data as in Fig. 3
of the main text), with the predictions from two
alternative schemes, one “softer” (dashed lines)
and one “harder” (dotted lines). The “softer”
model corresponds to releasing the blocking of
CO-CO coadsorption at 2NN bridge-bridge dis-
tance across hollow sites (effectively raising the
blocking “cut-off energy” to 170 eV). It can be
seen that the effects are completely negligible.

S3

On the other hand, the “harder” scheme ex-
tends blocking by prohibiting all CO-CO, CO-
NO and NO-NO coadsorptions at 2NN bridge-
bridge distances (i.e. both across hollow and
top sites). Although somewhat larger than in
the previous case, differences are still small.
The most notable deviation is observed for the
“poisoned” case, and accounts to a shift of the
transition in the pyo axis. The farther reach-
ing interactions included into the site-blocking
of this “harder” scheme have only smaller finite
values. In reality, adsorption into correspond-
ing configurations will not be entirely blocked.
We therefore expect the effect predicted by the
“harder” scheme to actually represent an up-
per bound, i.e. the true quantitative effect of
neglecting the finite farther-reaching repulsive
interactions in the main model will be less than
what is predicted by the “harder” scheme. All
in all, this analysis thus shows clearly that none
of the qualitative effects put forward in this
work are affected by the details of the employed
blocking-rule scheme.
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Figure S3: TOF as a function of NO partial
pressure and at T" = 600K for the “high ac-
tivity” (magenta, left panel) and “poisoned”
(black, right panel), predicted using different
blocking-rule schemes. Solid lines correspond
to the results reported in the main text (cf. Fig.
3); dashed lines, to a softer lateral interaction
model; and dotted lines, to harder one (details
in text).



4 Results with modified

process lists
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Figure S4: CO oxidation TOFs at T = 600 K
for the “high activity” (magenta, left panel) and
“poisoned” (black, right panel) cases as in Fig.
3 of the main text. Compared are results from
three altered 1p-kMC models: Dotted lines cor-
respond to the model with NO oxidation com-
pletely turned off. Dashed lines correspond to a
model in which NO, formation (but no desorp-
tion) is allowed, but dissociation is restricted
(see text). Solid lines correspond to the model
in which NO, formation and dissociation is un-
restricted (but NOy desorption is turned off).

As discussed in the main text, we have an-
alyzed different modifications to our 1p-kMC
model to clearly elucidate the source of the re-
activity enhancement. The modifications im-
plemented are: (i) the NO oxidation elementary
process was completely turned off; (ii) the sur-
face NO oxidation process is on, but the NOy
desorption process is turned off and the NOy
dissociation process is restricted, such that this
intermediate can only dissociate into the NO +
O configuration that initially generated it; and
(iii) only NOg desorption is turned off and NO,
formation and dissociation is unrestricted. The
difference between cases (ii) and (iii) allow to
isolate the effects of the NO, mediated O mo-
bility schematically shown in Fig 5 of the main
text. The resulting CO oxidation TOF for each
of these cases is presented in Fig S4, with results
from cases (i), (i) and (iii) shown with dotted,
dashed and solid lines, respectively. As dis-
cussed, for the “poisoned” case the incremen-

S4

tal addition of the different elementary reac-
tion events shifts the position of the transition
from O-poisoned to the NO+O reactive state
to lower values of pno.

5 Kinetic Monte Carlo vs.

mean-field microkinetics

Mean-field microkinetics is generally not able
to properly model a system with strong lateral
interactions. Following the approach by Temel
et al.5% we compared the results of our 1p-kMC
model to a mean-field description based on ex-
actly the same elementary process list and ex-
actly the same first-principles based rate con-
stants. In complete analogy to the work by
Temel et al.5® for CO oxidation at RuOy(110)
we found the mean-field description to predict
a much wider pressure range of appreciable cat-
alytic activity at 7" = 600 K already in the ab-
sence of NO. In fact, no O-poisoned regime is
obtained in the entire pressure range shown in
Fig. 2 of the main text. With this deficiency the
mean-field model would correspondingly not be
able to reliably capture the extended activity
range observed in the 1p-kMC model at finite
NO pressure.
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Many problems in computational materials science and chemistry require the evaluation of expensive functions
with locally rapid changes, such as the turn-over frequency of first principles kinetic Monte Carlo models for
heterogeneous catalysis. Because of the high computational cost, it is often desirable to replace the original
with a surrogate model, e.g. for use in coupled multiscale simulations. The construction of surrogates
becomes particularly challenging in high-dimensions. Here, we present a novel version of the modified Shepard
interpolation method which can overcome the curse of dimensionality for such functions to give faithful
reconstructions even from very modest numbers of function evaluations. The introduction of local metrics
allows us to take advantage of the fact that, on a local scale, rapid variation often occurs only across a small
number of directions. Furthermore, we use local error estimates to weight different local approximations,
which helps avoiding artificial oscillations. Finally, we test our approach on a number of challenging analytic
functions as well as a realistic kinetic Monte Carlo model. Our method not only outperforms existing isotropic

metric Shepard methods but also state-of-the-art Gaussian Process regression.

PACS numbers: 82.65.4r,82.20.-w,05.10.Gg,05.10.Ln,07.05.Kf,07.05.Mh,07.05.Tp
Keywords: kinetic Monte Carlo, machine learning, interpolation, surrogate models

I. INTRODUCTION

The interest in multiscale modeling approaches for ma-
terials science and chemistry has exploded in the last two
decades. One important class of such approaches employs
sequential (or hand-shaking) strategies, where a smaller
scale model is employed as the closure of a larger scale
model. In the simplest case, this just requires the adjust-
ment of a finite set of parameters, e.g. the viscosity of an
isothermal Newtonian fluid. In the general setting, the
analytic form of the closure is not known and the small-
scale model is required to determine functions of the
large-scale variables. A prototypical example is ab initio
molecular dynamics, where the functional dependence of
the Potential Energy Surface (PES) is obtained from first
principles electronic structure simulations. Employing a
microscale simulation every time the function is evalu-
ated is, of course, very time-consuming and then usually
the bottleneck of such multiscale approaches. One way to
accelerate this is to parametrize a surrogate model using
the small-scale simulations and employ this in the large-
scale simulations instead of the microscale simulator. A
number of different general purpose surrogate models
have been used in this way, including Neural Networks!,
Gaussian Processes?#, full® and sparse grid splines®, and
modified Shepard interpolation”®.

The present work grew out of our efforts to couple
first-principles kinetic Monte Carlo (1p-kMC) to Compu-
tational Fluid Dynamics (CFD) simulations for reactive

a)juan.lorenzi@tum.de

flows over a heterogeneous catalyst, using local modi-
fied Shepard interpolations®® and extensions thereof!%:!1,
Here, the surrogate model is used to interpolate the cat-
alytic turnover frequency (TOF') obtained from the meso-
scopic 1p-kMC simulations as a function of the tempera-
ture T" and the partial pressures {p;} of the Nype. different
gas phase species. The surrogate model then serves as a
boundary condition in CFD. A corresponding use of sur-
rogate models for coupling mean-field microkinetic mod-
els to CFD is widespread, including the use of splines!?13
or in situ adaptive tabulation'?. The latter has also been
employed in the kMC+CFD context for the simulation
of crystal growth and catalysis'®16, albeit with a phe-
nomenological kMC model.

Efficiently and reliably interpolating 1p-kMC based
TOF maps is a challenging problem. Under the appro-
priate coordinate transformation (i.e. logarithmic pres-
sures and TOF, as well as inverse temperature) the maps
display an approximately linear behavior for large parts
of the ({p;},T)-space. Usually, these linear regions cor-
respond to steady-state kinetic ”phases”, characterized
by a defined coverage regime on the catalyst.!”1® In
contrast, the behavior at the boundaries between such
”phases” is highly non-linear and characterized by a rapid
change of the TOF value and gradient within a narrow
range of p; and T values. This is challenging for most in-
terpolation methods and normally it is necessary to sam-
ple such regions densely to get satisfactory results. This
is aggravated further in higher dimensions (i.e. for prob-
lems with a larger number of gas-phase species Npec),
because the number of points required to densely fill
space grows exponentially with the number of dimen-



sions (the so-called curse of dimensionality). For this
reason, 1p-kMC+CFD studies have, up to now, been
limited to problems involving only a small number of
gas-phase species, such as CO oxidation,'%!1'® where,
in addition to the temperature, only the CO and oxygen
partial pressures play a role. Modeling more complex
pathways would, of course, be of great interest. For ex-
ample, in competitive CO+NO oxidation'®, the dimen-
sionality is already five (at least), because the TOFs also
depend on the partial pressures of NO and NOs.

In this article, we present an extension to the popu-
lar local modified Shepard interpolation®® addressing the
problem of approximating functions with sharp transi-
tions in higher dimensions. Our approach constructs a
local metric for each data point (node), which is then
used to determine local polynomial approximations (the
nodal functions), which are combined to estimate func-
tion values at arbitrary points (query points). In this
way, we can exploit (local) low-dimensionality of the tar-
get functions: sharp variations typically occur only along
a few directions, while the function is smoother along the
others. Having metrics that are local is then crucial, be-
cause the direction of rapid change might vary across the
domain. In the 1p-kMC context, sharp variations in rates
are often associated with phase transitions in the surface
coverages. These transitions have interfaces which are
quasi-(D — 1)-dimensional for D dimensional problems.
Close to such regions, only the direction perpendicular to
the transition region presents rapidly changing behavior,
and thus the function is approximately one-dimensional
there. Where two interfaces meet (i.e. around points
where three phases coexist) the behavior will be approx-
imately two-dimensional. The idea of a local metric is
shared with Locally Weighted Projection Regression,?!
which differs, however, in the way the metric is deter-
mined and the nodal functions are blended. Most sig-
nificantly, we do not base the blending on the distances
between the query point and the nodes, but on estimates
of the approximation quality of the nodal functions at

the query points'®22,

This combination of a local metric with error estimate
based weighting largely suppresses artificial wiggles and
especially overshoots close to sharp changes, while the re-
sulting interpolant is once differentiable by construction.
Our method produces accurate and qualitatively correct
interpolations of a number of test functions with rapid,
localized transitions, even in higher dimensions (up to at
least 7) and from small data sets. All these properties are
desirable in a multiscale context: overshoots and wiggles
might introduce qualitatively wrong behavior, e.g. ar-
tificial hysteresis in 1p-kMC/CFD couplings; large-scale
solvers often require continuous derivatives, e.g. many
CFD codes incorporate the stiff chemistry using implicit
ODE solvers??; finally, the small-scale models are often
very costly and a large number of function evaluations
is usually not affordable. While our present focus is on
activity data, especially from 1p-kMC, our approach is
very general and should also be of help in other fields,

possibly with suitable adaptations.

This paper is structured as follows. In section II, we
present the methodology of our interpolation, as well as
the details of other versions of the Shepard interpolant
that are relevant to this work. In section III, we use
examples to demonstrate the performance of our inter-
polant. The examples include a collection of analytic test
functions (cf. subsection IITA) and a realistic 1p-kMC
reactivity map (cf. subsection IIIB). In section IV, we
offer conclusions on our findings and discuss future direc-
tions which might lead to an improvement of the devised
methodology.

Il. METHODS

Our approach belongs to the class of modified Shepard
(MS) interpolation methods. They are meshless, scat-
tered data interpolation methods, because they require
neither the input data to lay on a predefined grid nor
any kind of triangulation (meshing). The defining char-
acteristic of the MS approach is the use of a collection of
local approximations of the target function, centered on
the data points. The interpolant itself is evaluated as a
weighted sum of these approximations.

In section IT A we introduce the common features of
MS interpolation methods as well as one of the stan-
dard versions, which we will call distance-based MS (cf.
section ITA). In section IIB, we discuss some of the
limitations of distance-based MS and a way to overcome
these by using an estimate of the error of the local ap-
proximations as the basis for the weighting. This con-
stitutes what we call error-based MS, first introduced
in ref.!?. In section IIC we consider problems arising
from the use of isotropic weighting schemes when dealing
with high-dimensional functions with localized regions of
rapid change. We explain how local metrics can be con-
structed and combined with the error estimates to solve
such issues, resulting in the error-based local metric M'S
(EBLMMS) method. Finally, in section IID, we discuss
our choice of input data, i.e. the set of independent vari-
ables for which we evaluate the original function.

A. Modified Shepard Interpolation

Formally, our aim is to interpolate a target function
f:RP R (1)

within a certain D-dimensional domain Q =
[z, e % Lo [25™, 28] € R. D is the number
of parameters that define the value of the function (e.g.
D = Ngpec+1 in the above 1p-kMC/CFD coupling exam-
ple). The interpolant is constructed using a set of points
X = {x1,%2,...,xn5} C Q, known as nodes, and the corre-

sponding function values F = {f1, fa,..., fn} C R, with

Ji = f(xq).



The formula for the modified Shepard interpolant is2°

_ im0 _$ g 0,00 L @

ch\]ﬂ wi(x) k=1

where the nodal functions @} are local approximations of
f around the nodes xj, wy are the relative interpolation
weights, and

9(x)

Wi(x) = — (x)

> im We(X)

are the normalized interpolation weights, or simply the
weights.

Typically, the nodal functions are low-order polynomi-
als, mostly first or second order. In this work, we will
only consider the linear case and take

Qr(x) = fx

3)

“+ay - (X — Xk)

D

4

=fr + E ak,i(Tr,i — i) )
i=1

The coefficients aj; are obtained by minimizing the
weighted sum of squared errors

N
D in(xi) (Qu(xi) — £:)* (5)
iZh

where we have introduced the relative construction

weights Wi (X;).

The flexibility in the selection of the weights w; and
wy, allows for the definition of different classes of Shepard

interpolants. In this work, however, we only consider
relative interpolation weights which satisfy

wi(x) >0 (6a)
xlig(lk wg(x) = +00 (6b)
lim  wg(x)=0. (6¢)

|x—xp | =400

This guarantees that the normalized weights constitute
a Shepard partition of unity, i.e.

Wi(x) >0 (7a)
Wi(xk) = 5ik (7b)
Z Wix)=1  Vx. (7c)

The property (7b) and the fact that Qr(xx) = fr en-
sure that the interpolant goes through each of the dat-
apoints exactly (i.e. g(xi) = f; Vi). By releasing one
(or both) of these conditions, the method could easily be
extended to also deal with noisy input data. However,
this is outside the scope of this work.

A simple ansatz for the weights would be wg(x) =
We(x) = |x — x3|72, ie. inverse-square decay, which

was used for the interpolation weights by Shepard in his
original work?*. In most cases, however, such long-range
weights are undesirable and we want to construct the
local approximations @)y using only points close to the
corresponding node xj. Accordingly, we can only expect
such functions to be predictive near xy.

For this reason, alternative versions of Shepard inter-
polation use weights which either (a) decay (much) faster
than inverse-square at longer distances™2! or (b) have fi-
nite support, i.e. the weights are only non-zero in a vicin-
ity of the nodes?%2%26, In the latter case, which is the
one we use in this work, each of the nodal functions Qg
is built using only a subset of the nodes o, C X. Such
subsets are called stars. Correspondingly, the range of
influence of each node x;, is limited to a region

wr ={x | wp(x) >0} CQ (8)

around it. Such regions are called clouds. The simplest
choice is to make clouds and stars isotropic. This is most
easily achieved by making wy(x) and @ (x) non-zero only
inside D-Balls centered around xj.2° In the seminal work
of Renka,?° relative interpolation weights are correspond-

ingly defined according to
2
di (x)
(1 N Plgwk )+

(%)
Rw,lc
and construction weights according to
(o-42)’
~ ok /)4
wk(x IR
(dk(x))
Rq,k

where dj(x) = ||x — xi||2 is the Euclidean distance be-
tween query point x and node x; and

wi(x) =

; (10)

z,if x>0
()4 = { 0,ifz<0 (11)

The radii R, are chosen such that a given number of
nodes N,, fall inside each cloud oj. Similarly, the R, j
are chosen such that all stars o} contain a given number
N, of nodes. A representation of these elements is given
in Fig. 2a.

Alternatively, clouds can be defined such that each
query point is inside the clouds of exactly NV, nodes. In
this formulation distance based weights can be defined
according to

2
_die(x)
(1 Rw<x))+
2
di(x)
(R’L(x))

where R, (x) depends on the query point x and is
set to the distance to its N,th neighbor. Such a

wi(x) = ; (12)




method is implemented in the numerical subroutine li-
brary ALGLIB.26

N, and N,, are the two adjustable parameters of this
method. The smallest reasonable value for IV, is the num-
ber of free parameters in the nodal functions (i.e. D for
linear nodal functions), in order to be able to fit them
to the Ny nodes. In practice, IV, is chosen considerably
larger than D to avoid overfitting of the nodal functions.
N,, represents the range of validity of nodal functions and
controls how much clouds overlap. A priori, we would
expect that N, and N,, should not differ very much, as
they ultimately represent the range in which we expect
the target function to be reasonably approximated by
linear functions.

In what follows, we will refer to methods using con-
struction weights from eq. (10) and evaluation weights
from either eq. (9) or eq. (12) as distance-based MS
(DBMS) to differentiate them from the error-based meth-
ods which we define in the next section.

B. Error-Based Modified Shepard Interpolation (EBMS)

 f

FIG. 1. The cause for overshoots with distance-based weights.
The black curve represents the target function; colored
straight lines represent the nodal functions @); and Q; of nodes
x; and x;, respectively. The distance-based relative interpo-
lation weight associated to Q; at query point g, i.e. w;(q),
will be larger than that for x;, i.e. w;(q), even though the
latter’s nodal function predicts the target function value f(q)
considerably better.

Purely distance-based weights are a natural choice
when we expect target function values at a given query
point to be predicted better by nodal functions of closer
nodes than by nodal functions of more distant nodes.
This assumption might be violated by functions with
concentrated regions of large gradient changes. An il-
lustration of this is presented in Fig. 1, where nodes x;
and x; are located on different sides of such a region.
The query point q is on the same side as x; but closer

to x; (d; < dj). The prediction of nodal function @; (red
straight line in the figure) at point q is much worse than
that of @; (blue straight line) but the distance-based
weight of the former will be higher (w;(q) > w;(q)). We
therefore obtain a largely overpredicted function value,
even though we have a better approximation available.

Alternatively, we propose to weight nodal functions ac-
cording to how well they predict the target function, e.g.
inversely proportional to their error

S
|Qr(x) — f(x)]

Using an expression like eq. (13) results in a larger
weight for @; at query point q than for @);, because
Qi(a) — fla)| > |Q;(a) — f(q)|. Of course, the target
function value and, consequently, the nodal function er-
ror |Q(x)— f(x)| are unknown at arbitrary query points.

The key idea behind error-based modified Shepard in-
terpolation (EBMS)! is to use computationally cheap
error estimates instead

er(x) ~ [Qr(x) = fF(x) (14)

An analytic expression for such estimates can be ob-
tained from a formula giving upper bounds of the nodal
function’s error??, which can be parametrized using the
known errors of the nodal functions on nearby nodes.

We can formally derive the EBMS error estimates as
follows: Let 9;f, with ¢ = 1,...,D, be the (unknown)
partial derivatives of the target function f. From the
theory of Taylor expansions we have

f(x) = Ti(x) + Z(x) (15)

wi(x) (13)

= fi+ D> 0uf (i) (@i — o) + Zi(x)

i=1
where T}, is the first-order Taylor expansion of f around
Xr and Zj is the residual. It can be shown that, for
continuously differentiable target functions, there exists
a scalar by o > 0 such that??

| Zk(x)] < bro (di(x))? VX € wy (16)

where di(x) = ||x — xx|[?, as before. With this in mind,
we obtain a bound for the error |Qr(x) — f(x)| within
the cloud wy

|Qr(x) — f(x)] = |Qr(x) — Ti(x) — Zi(x)]
< Z [0i f (Xk) — anil|zi — zr ] — | Zk(x)] , (17)

where we have applied the definition of the nodal func-
tions, eq. (4), and the triangle inequality. Combining the
fact that Zf:l |z; — x| < Ddg(x) with eq. (16), and
taking

b1 =D 1gliag>§v({|3if(xk) — agil})



we obtain a formula for a bound on the errors of nodal
functions

|Qk(x) = ()] < bradi(x) + iz (di(x)*, (18)

which we can use as an analytic expression for our error
estimates

Ek(dk<X)) = bk,ldk(x) + bk}g(dk(x))2 . (19)

We need the error estimates € to approximate the pre-
diction error of Q. To achieve this, the coefficients by ;
and by, » are fitted by minimizing the sum of squared dif-
ferences between the error estimates and the known er-
rors in the cloud

Y (enldi(a) = Q) = fil)* (20)

XiEWE

In order to be consistent with the derivation of €, this
minimization is performed under the constraints

0 S bkyl,bk’g and
|Qr(x:) — fil < ex(dr(xs))

(21a)
for all x; € wy (21b)

Having obtained an expression for the error estimates
€r, we can now formally define the EBMS interpolant:
the nodal functions @y, are built exactly as in DBMS (cf.
egs. (4), (5) and (10)), but the interpolation weights are
given by

ARy, T dip ()

() (22)

wi(x) =

where ) is a localization function

AMR,r;d) = (23)

Lifd<R-—r
—2(B=4)? 1 3(E=4)’ ifR—r<d<R
0,ift R<d

A guarantees that the wy have finite support and that the
resulting interpolant is once differentiable. The width of
the transition, i.e. the region where 0 < A < 1, can
be made small by choosing 7, << R, which ensures
that the weights are purely error based (except for the
localization). It has already been shown that error-based
weights very effectively alleviate overshoots in DBMS for
low dimensional cases'®. In section III A, we show that
this also holds for higher dimensional functions.

Much like in the previous section, the radius R, of
equation (22) can be chosen to depend either on the node
(like Ry in eq. (9)) or on the query point (like Ry (x)
in eq. (12)), which changes the shape of the clouds. The
EBMS implementation we use in section III is based on
ALGLIB’s DBMS implementation,?® and thus uses the
query point based interpolation weights.!?

C. Local Metric Based Modified Shepard

In both DBMS and EBMS the relative construction
weights Wy (z) and the interpolation weights wy(x) de-
pend only on the distance ||x — xg||2. This isotropy
corresponds to the implicit assumption that the nodal
functions approximate the function equally well in all di-
rections. However, this may not reflect the true behavior
of the target function. An example of such an anisotropic
function is depicted in Fig. 2. The (linear) nodal func-
tion corresponding to node x; approximates the function
very well at query point qi, but we expect a large error
at query point qo (at the same distance from the node
as (1), because the function behaves highly non-linearly
in the direction x; — g2 (as indicated by the isolines).

To get an accurate interpolation of such a function us-
ing isotropic weights, we would need to densely sample
the domains of rapid change. This becomes intractably
expensive in higher dimensions, even if we were able to
detect these domains. An alternative is to introduce
anisotropic stars and clouds. Intuitively, stars and clouds
that are narrow in the directions of rapid variation and
wide in the other directions are needed, as illustrated
in Fig. 2. Instead of the (hyper-)spherical cloud for
isotropic weights in Fig. 2a, we thus introduce a cloud
which is contracted in the x; — qo direction, as shown in
Fig. 2b. This reduces the deviation of the target function
from the linear nodal function within the cloud, even if
the cloud still has the same volume.

A straightforward way to achieve anisotropic clouds is
to introduce a set of D x D matrices My, = (my,i5), each
associated to a node. We can then introduce a set of local
distance measures

dip(x) = |[My(x — xp)]2 (24)

and use this local metric to naturally extend the formulae
from the isotropic interpolant case. Since Mj is only
used to define distances, it suffices to consider symmetric,
positive definite matrices. Consequently, each of them is
determined by D(D + 1)/2 coefficients.

In this formalism, the interpolation weights are given

by

)\(17 To, dk(X))

() (25)

wi(x) =

where the local metric, eq. (24), is used instead of the
Euclidean distance. The clouds resulting from these error
weights are D-dimensional ellipsoids. Notice that the
Mj, already contain the information giving the size of
the ellipsoids. Consequently, there is no explicit radius
appearing in eq. (25). The parameter 7y defines the
thickness of the shell in which 0 < A < 1. To make this
parameter scale adequately with the dimension D of the
problem, we define it as

D\/ 1-— pPo - (26)

7”021—



FIG. 2. Schematic representation of the different geometric elements associated with the interpolation methods described in
this work. Small circles represent the nodes and gray lines represent contour levels of the target function, which accumulate
in regions of rapid change. The shaded region corresponds to the cloud wy, i.e. the support of the interpolation weight wy.
The region delimited by the blue dashed line represents the support of construction weight @, and defines the star or. Nodes
belonging to the star are colored blue. Query points qi, q2 are separated from x; by the same distance. In the isotropic case
(left panel) both regions are hyper-spheres with radius R,, and Ry, respectively. The weight associated with nodal function Qy
is the same at query points qi and qq, i.e. wi(q1) = wk(qz). In the anisotropic case (right panel), the supports of wy and wy
are coinciding hyper-ellipsoids, such that the weight associated with Qy is positive at query point q: but zero at point qo, i.e.

wk(d1) > wi(qz) = 0.

This ensures that the fraction of the cloud’s volume taken
by the shell is py (the proof is given in the supplementary
material, SM). In this work we use py = 0.1.

In this local metric based MS (LMMS) the nodal func-
tions Qy, are still constructed by minimizing eq. (5), but
now using anisotropic construction weights. We can gen-
eralize the isotropic construction weights from eq. (10)
to

() = (1- Jk(X)Q)i
(Jk(x))

where we have introduced the local distance measure
dr(x) = ||Mr(x — xx)||2 and the M} construction ma-
trices. The supports of the Wy, also D-dimensional ellip-
soids, define the anisotropic stars.

Intuitively, we expect the ellipsoids defining stars and
clouds to be aligned and geometrically similar, i.e. that
they can be mapped to each other through isotropic scal-
ing, since their orientation and shape should only depend
on the local gradients of the target function. Therefore,
we expect My = vMy, for some scalar . For simplicity,
we will only consider v = 1 in this work, thus restricting
our study to stars and clouds of equal size and shape.
Although a preliminary analysis has shown the effects of
~ to be small, we postpone a detailed analysis to a fu-
ture study. For the sake of simplicity of exposition, in
what follows, we will often use the term clouds instead

: (27)

of clouds and stars, even where strict conceptual analogy
with the isotropic methods would favor the term stars.

Constructing an error estimate for use with the
anisotropic version of the interpolant is straightforward.
To rationalize this, it is sufficient to notice that distances
from eq. (24) are simply the Euclidean distance in the
transformed coordinates x’ given by

x = x = Mx . (28)

Thanks to this, the formal derivation of the error esti-
mates from section IIB (cf. egs. (15) to (19)) is valid
also in the transformed coordinates. This means the er-
ror estimates € in eq. (25) are still given by eq. (19),
but using the local distance dj(x) from eq. (24). Corre-
spondingly, the coefficients by ; and by 2 are obtained by
minimizing expression (20) under the constraints of eq.
(21) using the local distance dj(x).

The only element missing is then a procedure to ob-
tain the matrices My. As discussed at the beginning of
this section, we want local matrices that minimize the
prediction error of the nodal functions. We can quantify
this with a (distance) weighted sum of errors given by

E(Mk) = Za)k(Mk’Xi) (Qk(Mk’Xi) - fl)2 ’ (29)
i

where we have highlighted the dependence of the nodal



functions Qf and the distance-based construction weights
Wy, (cf. eq. (25)) on Mj.

Directly minimizing eq. (29) would often not provide
useful results, since clouds will tend to shrink until the
number of nodes they contain is < D, trivially resulting
in £ = 0. This would lead to overfitting of the nodal
functions and/or to gaps in the cloud coverage of the
domain. Instead, we would like to control the number
of points that fall within a cloud, as we could in the
isotropic versions of the method. We would thus want to
perform the minimization, constraining the search space
to Mg-matrices that produce clouds with a given number
of nodes in them. However, introducing a discontinuous
constraint like node counts into a numerical minimization
scheme is technically difficult. To alleviate this, we have
decided to impose softer constraints.

We can define two estimates of the number of points
in a cloud: One given by

n—(My) = Z A1,y de(xi))) (30)

which is always equal or smaller than the actual number
of nodes in the cloud ng(My); and another given by

N
N (M) = > M1 +rp,rdi(xi) , (31)

i=1

which is always 74 (M) > no(My). Proof of the inequal-
ity relations for n4 and n_ are given in the SM. The
width parameters are given by

r_=1— %/1— psost (32a)
ry = D\/ 1 + Psoft — 1 (32b)

In the limit pgore — 0, both width parameters tend to zero
and the bounds n_ and 74 both converge to the actual
number of nodes in the cloud. However, for very low
values of psos the A function shows very steep gradients,
which would disqualify the estimates from egs. (30) and
(31) for use in numerical optimization routines. It is
necessary, therefore, to work with a finite psory and we
have employed psore = 0.2 throughout this study.

We use eqgs. (30) and (31) to define the following opti-
mization constraints

n—(My) > N¢
N (My) < 2N

(33a)
(33b)

which ensures that each cloud contains more than NV;
but less than 2N; nodes. Here, N; is a free parameter
of the interpolation method, analogous to N, and N,
in DBMS and EBMS. In this formulation, the points in
the cloud determine not only the D coefficients of the
nodal functions, but also the D(D + 1)/2 coefficients of
the local matrices. For this reason, it is necessary to have
N> D(D+1)/2.

The final necessary element, avoiding another poten-
tial pitfall, is a limit on the skewness of the matrices.
For node distributions, in which they are approximately
aligned, clouds will tend to extend in one direction and
shrink indefinitely in the others, leading to overfitted,
spurious nodal functions and gaps in the cloud coverage.
We can quantify the skewness of an ellipsoid as the ratio
between the length of its longest and its shortest prin-
cipal semi-axes, which is equal to the ratio between the
absolute values of the largest and the smallest eigenval-
ues of the corresponding matrix. This is the condition
number?” of the matrix, and can be approximated by

R(My) = || Myl |1V (34)

where ||-||1 represents the 1-norm for D x D matrices. We
penalize M}, with large x by introducing a multiplicative
factor to our cost function of the from

(M) — /€0>p

K(My) =1+ (“ o : (35)

+

where kg is the value at which this penalization term
starts to take effect, and p > 2. In this work we take
ko = 100 and p = 4.

In summary, local matrix coefficients are obtained by
minimizing the cost function

C(My) = E(My,)K (My) (36)

subject to the constraints of eq. (33).

For the rest of this work, we will refer to the inter-
polation method described in this section as error-based
LMMS interpolation, EBLMMS for short. We have im-
plemented the EBLMMS method as a python?® package,
with computationally critical parts implemented as C-
extensions with the help of the SWIG2® interface genera-
tor. Linear algebra operations on bigger matrices (mainly
the matrix of node coordinates), as well as the least
squares optimization of the nodal function coefficients,
cf. eq. (5), are done using the BLAS?® and LAPACK3!
linear algebra libraries. Both local matrix and error es-
timate parameter optimizations were implemented with
the help of the NLopt non-linear optimization library.32

The initial guess for the local matrices is taken as
M = Ip/Ry where Ip is the (D x D) identity matrix
and

Ry =

]i/(R}XN(Nt))D + (B (2N)P (37)

2 )
with RV (n) representing the distance from xj, to its n*™®
nearest neighbor. The algorithm used to fit the matrices
is Constrained Optimization by Linear Approximations
(COBYLA)33, which is a derivative-free optimization al-
gorithm able to handle non-linear constraints. COBYLA
works by solving consecutive linear approximations of the
target optimization problem. The approximations are
constructed using the points in a simplex (similar to the



one used in the well-known Nelder-Mead method), which
is reduced in size during the optimization.

We have explored three different stopping criteria for
the optimization: (a) the value of the cost function, eq.
(36), falls below some threshold value Cpin, (b) the size of
the simplex (i.e. the maximum distance between vertices)
is smaller than some value mq (which represents conver-
gence of the change of the matrix coefficients my ;;), or
(¢) the number of cost function evaluations exceeds Neya.
As expected, the choice of stopping criterion affects both
the quality of the interpolant and the time to reach con-
vergence. For criterion (a), larger values of Ciin (0bvi-
ously) reduce the CPU time for determining My, but can
affect the quality of the interpolant when the number of
nodes is large (and thus the value of the cost function is
small). In this work, we use Cyin = 108 for all calcu-
lations presented in section III. We find that reducing
the value of this parameter further provides only negli-
gible gains in interpolant quality. For criterion (b), we
find that it is most robust to employ a scale dependent
on the local environment of the node, and thus select
mo = 0.05(RYN(2N;) — RVYN(N,)). Finally, criterion (c)
is simply the backup for when the optimization takes too
long and we employ Neya = 1000 in this work.

In summary, we observe that the stopping criteria as
well as the initial value of the M} matrix can have a
strong impact on both the quality and construction time
of the interpolant. We believe this is a direction in which
considerable improvements could be made to the method.
However, as we will see in section IIT A, the method as
presented can already provide better results than other
state-of-the-art methods for the class of functions which
are of interest in this work.

The fitting of the error estimate parameters by ; and
by,2 is achieved using the derivatives-based Method of
Moving Asymptotes (MMA)3* optimization. The initial
guess for the parameters is a conservative guess

AF
bo1=10——
01 = 1045
b — 10-2F
027 T AXx)?

where AF and AX are the range of variation of the func-
tion values and the (maximum) range of variation of the
coordinate values, respectively. We stop the optimiza-
tion, when both by 1 and by 2 change by less than 10°
between two consecutive iteration steps.

For clarity, we finally present a summary of the algo-
rithm for EBLMMS construction as pseudocode in Algo-
rithm 1.

D. Interpolant Construction and Quality Evaluation

In section III we construct interpolants for different
target functions. In order to do this, we first need to
select the location of the nodes. As this work targets ap-
plications in higher dimensions, using nodes on regular

Algorithm 1 Construction of the EBLMMS
interpolant

1: procedure BUILD

2 Set ko, Nt

3 Load nodes X = (x1,...,Xn)

4 Load function values F' = (fi, ..., fn)

5: for k=1 to N do

6: DX + (X1 — Xk, o0y XN — Xk)

7 DF « (f1 = fr, ., fn = fx)

8 Get RYN(Ne), RYN (21Ny)

9 My « Ip/Ro (cf. eq. (37))

0 ap, My < Minimize C(...) (cf. eq. (36)) under

constraints (33) using COBYLA

11: {bk,1,bk,2} + Minimize eq. (20) under constraints
(21) using MMA

12: function C(My, DX, DF, ko)

13: DXgcated < MipDX

14: Get Qr by minimizing eq. (5)

15: Evaluate F (cf. eq. (29))

16: Evaluate K (cf. eq. (35))

17: return £ - K

10:

> eq. (36)

grids is not a viable option, because the number of to-
tal nodes for a given grid resolution grows exponentially
with the number of dimensions, i.e. N = n” where n is
the number of nodes in each coordinate. This is the so-
called curse of dimensionality. The use of sequences of
pseudo-random vectors is also not ideal for our problem.
Such sequences typically show regions with a locally high
or low density of points (compared to the overall den-
sity). For our purposes, regions where nodes accumulate
are undesirable as these nodes could become redundant
(especially in smooth regions of the test function). Cor-
respondingly, regions locally devoid of nodes could leave
parts of the domain outside of the cloud coverage.

For these reasons, we use low-discrepancy sequences
(also known as quasi-random sequences or Quasi-Monte-
Carlo points), which are deterministic vector sequences
covering a given domain more evenly than pseudo-
random vector sequences. This property is often ex-
ploited to perform high-dimensional numerical integra-
tion, where it allows accurate estimates to be obtained
from relatively few function evaluations. We expect this
to be beneficial for the determination of the nodal func-
tions as well, since fitting the expansion coefficients of a
polynomial approximation is closely related to integra-
tion. Specifically, we employ Sobol sequences®>3%, which
are very frequently used and widely implemented. For
each of the cases presented in section II, we construct
the database for the interpolant by evaluating the target
function on the first N vectors of the Sobol sequence of
the corresponding dimension {x%°*°'}V for a number
of different values of N.



a) kink_step

b) ball _step

FIG. 3. Representation of the 2D version of the analytic func-
tions used to test the interpolation method.

Ill. RESULTS

In this section, we analyze the performance of the
newly developed interpolant qualitatively and quantita-
tively. This is done in comparison to isotropic versions
of the MS method as well as against the state-of-the-art
Gaussian process regression method (GPR), which has
recently gained popularity in computational physics and
materials science?™*. To obtain a quantitative measure
of the interpolant’s quality, we estimate the L1 integral
of the error of the interpolation as

1N g(ya) — £yl
AF Ntest ’

o= (38)
where g is the interpolant, f the target function, and AF

is a measure of the variation of the function values given
by

AF = m{altx(f) - mén(f) . (39)

In all cases, we will be using the N5 vectors of the Sobol
sequence immediately following the points used as nodes,
Le. {y;}res = {xsebol} VAN Taking Nyese = 2 x 10°
was sufficient to converge ® values for all tests.

In section IIT A, we first use a collection of analytic
functions designed specifically to emulate the challeng-
ing features this method intends to tackle and to show
how the method performs for problems of different di-
mensionality. In section III B, we then test the method
by interpolating results from a realistic 1p-kMC model
of heterogeneous catalysis.

A. Analytic Test Functions

We define two function classes, which can be used to
construct related functions of arbitrary dimension. In
this work we test dimensions from D =2 to D =7. A
representation of the 2D test functions is given in Fig.
3. All functions from both classes have small gradients
across most of the domain, but show a sharp (but dif-
ferentiable), step-like transition concentrated around a

(D — 1)-dimensional hypersurface. What differentiates
the two function classes is the shape of this surface, which
also determines the intrinsic dimensionality of the func-
tions. The transition of kink_step is on the union of two
(D — 1)-dimensional half-hyperplanes which meet on a
common (D —2)-dimensional hyperplane. Therefore, this
function is intrinsically two-dimensional for all D values.
ball _step functions have the transition on the surface
of a D-ball and are thus fully D-dimensional. However,
they are approximately one-dimensional at length scales
smaller than the radius of the ball. As we will see, our
locally adaptive method is capable of exploiting this fact
to improve the quality of the interpolant. The detailed
definition of the test functions is given in the SM.

1. Analysis of Anisotropic Clouds

Error estimate
101 10°

FIG. 4. Representation of clouds from selected nodes. Gray
lines are contour lines of the 2D kink step target function
(cf. Fig. 3), gray dots mark the position of the nodes. The
total number of nodes is 256. The left panel corresponds
to EBMS with Ny = N, = 20, the right panel corresponds
to EBLMMS with Ny = 20. The clouds are represented by
ellipses, colored according to the value of the error estimate
€r(x). The symbols marking selected nodes (star, squares,
diamonds, triangle) are used to assist the discussion in the
text.

To demonstrate the working principle of the method in
a concrete example, we analyze the shape of the clouds
resulting from the EBLMMS interpolation of the 2D ver-
sion of kink_step (cf. figure 3.a) using 256 nodes. Fig-
ure 4 shows a comparison between the isotropic clouds
(Ngy = Ny, = 20, left) and the anisotropic clouds from
EBLMMS (N; = 20, right) for selected nodes, marked
by colored symbols. The clouds are represented by el-
lipses and are colored by the estimated error of the cor-
responding nodal functions at their boundaries. The tar-
get function is represented by gray equidistant contour
lines. In the isotropic case, all clouds close to the sharp
transition show a high error. In the local metric case,
the clouds generally align to the expected directions and
also become narrower as they get closer to the region of
strong gradient changes. Moreover, for any given node,
the error at the cloud boundaries is typically smaller in
the latter case. An exception is the node marked with a



star in the plot, located very close to the point in which
the transition region bends. Since there is no satisfac-
tory orientation for the cloud, the shape of the corre-
sponding ellipsoid is spurious. This is where the error
weighting scheme comes into play. The error associated
with the mentioned point is very high compared to those
of neighboring nodes, thus ensuring that the effect of
this ill-defined cloud is minimized. Another exception
is the point marked by a triangle. The resulting cloud
aligns in the expected direction, but still contains several
nodes that lie across the transition region. As a con-
sequence, the quality of the corresponding nodal func-
tion is low and, correspondingly, the associated weight
is low in the flat regions, where there are multiple nodal
functions which better predict the function values. The
nodes marked with squares are examples of these. For
these nodes the local matrix optimization has shrank the
ellipses to let them lie fully within a single smooth sub-
domain. In the isotropic case (left panel), the correspond-
ing clouds extend across the transition region and, conse-
quently, their nodal functions are not accurate within the
respective clouds and the error estimates are large. Nodes
marked with diamonds are located well within a region
of smooth behavior, so the isotropic method is expected
to work well. Here, the error estimates for both cases
are small and the EBLMMS clouds also have a roughly
circular shape.

2. Quantitative Analysis

As a quantitative test of the quality of our inter-
polant, we interpolate each of the test functions from
Fig. 3 in the domain Q = [0,1]” c RP for dimensions
D = 2/3,...,7, and evaluate the L1 error norm from
eq. (38) in each case. The EBLMMS method, as de-
scribed above, includes several free parameters. While
we leave the systematic assessment of the effect of each
parameter to a future study, we concentrate on the N;
parameter here, which has a clear geometric interpreta-
tion and is analogous to the IV, parameter in traditional
MS. We construct interpolants using N; = n;D, with
ny = 4,10, 20, 50,150, to cover a wide range of reason-
able values of this parameter. For each function class,
dimension D and n; value, we build interpolants for dif-
ferent numbers of nodes using the first N elements of the
Sobol sequence (cf. section IID). We take N as the pow-
ers of 2 between 64 and 32768 and evaluate ® for each
interpolant using eq. (38). In Fig. 5 we plot the best
(smallest) ® value obtained from all calculations (for a
given test function class, dimension D and number of
nodes N).

To quantify the specific effect of introducing
anisotropic clouds, we also calculate the L1 error re-
sulting from the EBMS interpolation (cf. section IIB).
EBMS interpolants are constructed using N, values equal
to the N; values used for EBLMMS. Moreover, N,, =
Ng/2, Ny = Ny and N,, = 2N, are tested. The best
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FIG. 5. Scaling of the ® error with increasing number of nodes
for the kink _step (dark, red lines) and the ball_step (light,
blue lines) functions in different dimensions. The EBLMMS
method (solid lines) is compared to EBMS (dashed lines) and
GPR (dotted lines) methods.

® values for each (Ny, N,,) and each dimension are in-
cluded in Fig. 5 as dashed lines. Naturally, the error
for the anisotropic case is always smaller. As expected,
it can also be seen that the relative improvement due to
using EBLMMS is larger for higher dimensions. This is
due to the fact that the rate of improvement of & with
N (scaling) decreases more slowly for EBLMMS than for
EBMS. It is also important to note that the benefit of
using local metrics is much more pronounced for the in-
trinsically low-dimensional kink_step test functions than
for the fully D-dimensional ball_step test functions.

To compare also to a non-MS method, we assess the
performance of Gaussian processes regression.3”38 Since
the popular squared exponential kernel yields very low
quality results for the target functions in this work, we
employ the more flexible neural network kernel, which
has been shown to be able to cope with discontinuities.?”



In particular we use the diagonally anisotropic version
of this kernel, which is the most general version avail-
able in the GPy library3®. The working equations of the
methods and further details are provided in the SM. Due
to computer memory constraints, we only present GPR
results up to node counts of N = 4096.

The GPR results are included in Fig. 5 as dotted lines.
We observe that the errors for GPR are larger than those
for EBLMMS in all cases except for D = 2 at larger
node counts. In this low-dimensional case, node counts
N 2 1000 correspond to very high node densities, which
usually is not practical. Moreover, the error is already
very low when GP becomes more accurate. Even for D =
3, the Shepard interpolations outperform GPR and the
improvement continues to increase with dimensionality.

To complement the results presented in this section, we
perform analogous calculations for two additional func-
tion classes, including one with rapid change of the gra-
dient but not the function value. Since the conclusions
drawn from the analysis of these functions are very sim-
ilar to the ones just presented, we only present these
results in the SM.

3. Graphical Analysis

It is important to point out that the small differences
in the values of ® in Fig. 5 do not always fully capture
the qualitative improvement provided by the EBLMMS
approach. To show this, we compare different interpo-
lations of the 5D ball_step-function graphically. The
wireframe plots in Fig. 6 show a number of interpolants
evaluated in a 2D cut of the full 5D domain, which passes
through the center and is parallel to coordinate direc-
tions 2 and 4 (cf. SM; we observe qualitatively very sim-
ilar behavior for the nine other possible pairs of axes).
All interpolants shown in Fig. 6 were constructed using
the same 1024 nodes. As well as for EBLMMS, EBMS
and GPR, which were used in the previous section, we
also present results for the traditional, distance-based
isotropic DBMS (cf. section ITA) and for what we call
DBLMMS (distance-based local metric MS), in which we
use the local matrices Mj, from EBLMMS to define the
clouds, but evaluate the interpolant using distance-based
interpolation weights (i.e. analogous to eq. (9), but using
the local anisotropic distances instead of Euclidean dis-
tances). In the figure, we highlight overshoots by chang-
ing the wireframe-color when the value of the interpolant
is above the (true) maximum of the target function. The
overshoot value is reported as a percentage of the step-
height (which here is 3). Regions of the wireframe in
which the interpolant is equal to or lower than the max-
imum remain colored in dark blue (i.e. according to the
lower end of the colorbar).

We start by discussing the differences between meth-
ods from the MS family, as they illustrate many of
the effects discussed in the methods section. The
isotropic, distance-based DBMS interpolant suffers from

11

Target function

RN
N [e)} o
Overshoot (%)

e o 9
o » ™

FIG. 6. Comparison of different approximations of the 5D
ball_step test function, using a database of size N = 1024.
Highlighted regions are colored according to how much the
interpolant has exceeded the maximum value of the target
function (as a percentage of the step height, i.e. 3).

overshoots, which are rather large in this example. The
shape of the step is barely reproduced and the func-
tion heavily smoothed out. In the isotropic EBMS in-
terpolant, such overshoots are considerably reduced and
the interpolant matches the target function very well far
from the highly non-linear region. However, this method
is still unable to reproduce the shape of the transition
region (the 5-ball), and some spurious features appear.

Looking at the bottom two panels, we can see that
anisotropic clouds improve the interpolation quality sig-
nificantly. However, the shape of the DBLMMS inter-
polant still shows several flaws. In particular, small os-
cillations appear, even in regions relatively far from the
highly non-linear transition. In addition, the transition
region is smoothed out considerably and its shape is not
particularly well reproduced. The EBLMMS interpolant,
finally, gives a much better qualitative match than any
of the other cases. Even with such a small number of
nodes, the shape of the highly non-linear transition re-



gion is traced very precisely. Moreover, there are no over-
shoots or oscillations detectable. The main source of the
observed integral error ® is a smoothing of the sharp
transition, which, to some extent, is probably unavoid-
able using such a small dataset.

For completeness, we also show a comparison with
GPR. All the spurious features observed for DBMS are
present, albeit somewhat less pronounced, namely over-
shoots, artificial oscillations, smoothing of the step and
an inability to properly capture the step’s shape. As a fi-
nal note, we point out that the good quality observed for
EBLMMS is not strongly dependent on the exact choice
of N;. In the SM we provide wireframe plots comparing
different values of this parameter to illustrate this.

B. Realistic 1p-kMC based data

Having demonstrated the capabilities of the EBLMMS
method for a variety of analytic function classes and in
multiple dimensions, we next tackle a realistic example,
interpolating the reactivity map arising from a 1p-kMC
model of heterogeneous catalysis. Specifically, we use
a reduced version of the well-established and frequently
studied model of CO oxidation at RuO2(110) by Reuter
and Scheffler®. The original model is based on an exten-
sive set of Density Functional Theory (DFT) calculations
and has been shown to accurately capture experimental
results.!” It considers two adsorption site types, bridge
(br) and coordinately unsaturated (cus), and two surface
species, CO and O. The elementary steps modeled in-
clude molecular CO adsorption and desorption, dissocia-
tive adsorption/associative desorption of Oa, irreversible
CO+O0 reaction and diffusional hops.

The reduced version of the model employed here was
introduced by GelB et al.*! and is obtained by excluding
all processes involving br sites. It has been shown that
chemical kinetics is mainly controlled by the cus sites*244
and that the reduced model reproduces the results of the
full model quantitatively for many reaction conditions*!.
Being computationally cheap, the reduced model can be
evaluated for a large number of different input parameter
values, which makes it a valuable test problem for our
interpolation method.

The reduced model contains 7 elementary reaction
steps. Single-site processes include unimolecular adsorp-
tion and desorption of CO; two-site processes, defined on
pairs of nearest neighbors, include dissociative adsorp-
tion and associative desorption of Oz, CO9 desorption as
an immediate result of reaction of a pair of adsorbed CO
and O, as well as diffusional hops of both species. The
whole reaction mechanism is summarized in Table I.

In the context of 1p-kMC/CFD coupling, the TOF for
this model is a function of 3 parameters, namely the par-
tial pressures of CO and oxygen, pco and po,, and the
temperature T. As we intend to demonstrate the capa-
bilities of the EBLMMS method in higher dimensional
problems, in this work we will study the TOF as a func-
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tion of the individual rate constants instead, i.e. we con-
sider the 7D function

f:RP SR
(K2, RS, S, KT, 1 KEB, k) —TOF

On the one hand, understanding the parametric depen-
dence of the TOF on the rate constants is useful to per-
form local or global sensitivity analyses*24345 which are
crucial to quantify the effects of uncertainty in the deter-
mination of rate constants (due to, e.g., DFT errors). On
the other hand, and more importantly for our purposes,
the characteristics of this 7D function in rate constant-
space are very similar to 1p-kMC TOF maps in ({p, }, T)-
space. This is highlighted in models such as the one used
here, in which the rate constants for non-activated ad-
sorption are directly proportional to the corresponding
partial pressures

AUC pa

Na V2mmaokpT

where m,, are the molecular masses, A,. is the surface
area of the RuO3(110) unit cell, kg is the Boltzmann
constant and n, is a factor arising from the multiplicity
of the adsorption processes included in the model. The
specific values are A, = 20.0642, nco = 2 and no, = 4.
Variation in temperature would correspond to concerted
changes of the rate constants for the activated processes,
which are also included in the domain of the 7D TOF
function. For example, the rate constant for CO oxida-
tion is given by

k: T AEreaC
greac — 2B exp ( ) , (42)

Eads = a=C0,0, , (41)

h kT

where h is the Planck constant and AE™?2° is the acti-
vation barrier for the CO oxidation elementary process.
Moreover, the 7D TOF function of eq. (40) also includes
variations in the parameters of the model beyond those
accessible by simple changes in pco, po, and T'. For these
reasons, this function is a useful proxy for a reactivity
map arising from a 1p-kMC containing more species.

The advantages of using such a proxy are twofold. On
the one hand, the computational cost to run this 1p-
kMC model is reasonably low. This allows us to per-
form the 200000+ kMC calculations used as systematic
test data. Just for the contour plots presented in the
next section we needed 10000 results for reference, which
with more complex multi-species models could cost vast
amounts of computational time. On the other hand, the
RuOy CO oxidation model has been characterized in de-
tail both in (pco, po,, T)-space?? 4649 and in rate con-
stant space?? 44 and its behavior is well understood. This
makes it ideal for testing new theoretical developments
such as the one presented here. In particular, the con-
ditions under which the model presents rapid changes in
reactivity are well known. Therefore, we can focus our
study there, where interpolation becomes most challeng-
ing.
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TABLE 1. List of elementary reaction events included in the reduced model for CO oxidation at RuO2. The default value for
each rate constant, as well its range of variation, are indicated. The default values correspond to reaction conditions T' = 600K,

pco = po, = lbar.

Name Expression

Default rate constant [1/s]

Range

[1/s]

20*

*

2*

2*

* 4+ CO
*+0

CO adsorption
O2 adsorption 2%
CO desorption CO*
O3 desorption 20
CO oxidation O + CO
CO diffusion  CO + *
O- diffusion O+ *

Ll

k25 = 2.0 x 108
k&y =9.7 x 107
kds = 9.2 x 108
kdr = 2.8 x 10
ke = 1.7 x 10°
kS8 =5.0x 107!
kST = 6.6 x 102

2.0 x 108
9.7 x 10°
9.2 x 10*
2.8 x 1071
1.7 x 103
5.0 x 1073
6.6 x 107*

2.0 x 101°
9.7 x 10°
9.2 x 10®
2.8 x 10°
1.7 x 107
5.0 x 10t
6.6 x 10°
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FIG. 7. Scaling of the ® error with increasing number of
nodes for the 1p-kMC model. The EBLMMS method (solid
lines) is compared to EBMS (dashed lines) and GPR (dotted
lines) methods.

Taking this into account, we consider the rate con-
stants corresponding to T' = 600K, pco = po, = 1bar as
the default (central) values. Such values lay close to the
anticipated (second order) phase transition?*. We define
the limits of the interpolation domain such as to encom-
pass a change in each of the rate constants of four orders
of magnitude in total (i.e. two orders of magnitude higher
and lower than the default cf. Table I). Considering the
Arrhenius-dependence of the rate constants for activated
processes on energy barriers, e.g. as in eq. (42), this
accounts for changes in activation barriers AF of up to
~ 0.25 eV. For the non-activated adsorption processes,
cf. eq. (41), this corresponds to a span of variation of 4
orders of magnitude in the partial pressures. To perform
the interpolation, the domain is mapped onto a logarith-
mic scale and into the [0, 1]7 unit hypercube.

The 1p-kMC predicted CO oxidation TOF is calcu-
lated for the first 3 x 10° vectors of the 7D Sobol sequence
to build the database that will later be split into nodes
and test points (cf. section IID). The 1p-kMC model
is implemented with the help of the kmos kinetic Monte

Carlo simulation package®® using a simulation cell con-
taining 400 individual cus sites. A total of 3 x 108 kMC
steps are used for relaxation and another 5 x 10® steps for
steady-state sampling. To build the interpolant, the TOF
values are also log-scaled. As the upper limit of the TOF
scale, we take TOF 0 = 3 x 106571, which is (slightly)
larger than the maximum TOF in the database. For low
TOF values, kMC sampling is challenging and simula-
tions can sometimes result in rates equal to zero, which
cannot be log-scaled. However, very low TOF conditions
are of little interest in catalysis and we therefore sidestep
this problem by capping the rates from below at a value
of TOFin = 107*s™!. The interpolation is then per-
formed using the transformed TOF values, in which the
[TOF 1in, TOF x| interval is logarithmically mapped to
the [0, 1] interval. While we observe that the relaxation
times used are sufficient to reach kinetic steady state,
we also find that a small amount of statistical noise re-
mains in the data, as can be seen in the line plots of
Fig. 8. To quantify this error, we recalculate 10* 1p-
kMC data points with different random number seeds
and find an average absolute error value due to noise of
~ 3 x 1073 (in the transformed TOF coordinates). How-
ever, for some points the kMC sampling error can be as
large as ~ 3 x 1071,

1. Quantitative Analysis and Method Comparison

Similar to section IIT A, the EBLMMS interpolant is
built for N; = 28,70, 140, 350, 700, 1050 and the number
of nodes NV equal to the powers of 2 from 64 to 32768. The
value of the error measure ®, eq. (38), is evaluated for
the transformed TOF values. A summary of the results
is presented in Fig. 7, where we again plot the smallest
value of ® (varying N;) obtained for each N (exactly as
in Fig. 5). Even for sample sizes as small as N ~ 2 x 102,
we can achieve global errors of ® ~ 1072, Considering
the highly non-linear behavior of the TOF (cf. Figs. 8
and 9) and the fact that such low values of N would
correspond to a regular grid with only ~ 3 points in each
coordinate direction, we think this is a remarkably good
approximation.

In Fig. 7 we also present results from the EBMS (cf.
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FIG. 8. 1D cuts of different 7D interpolants compared to 1p-kMC data not included in their input (dots). For each case, all
but one of the rate constants where fixed at their default values (cf. tab. I). Lines correspond to EBLMMS built with 1024
(light green) and 16384 (dark green) nodes and GPR built using 1024 nodes (light blue lines). Axes indicating partial pressures
associated to the adsorption rate constants (cf. eq (41)) and the activation barrier associated to the CO oxidation rate constant

(cf. 42) are also included.

section IIB) and GPR (cf. SM) methods for compari-
son. For EBMS, N, values equal to the N; values above
were used, as well as Ny, = Ny /2, Ny = Ny, N,y = 2N,.
As for the case of the analytic test functions, compar-
ing EBLMMS and EBMS shows that incorporating the
local metrics produces a noticeable improvement in the
quality measure. Interestingly, the error values for GPR
and EBLMMS are very similar, with EBLMMS’s being
slightly lower except for very low node counts. However,
a careful investigation reveals that important qualitative
differences are not sufficiently reflected by this error mea-
sure. In the next section, we demonstrate that GPR is
not able to capture features with rapid function value and
gradient changes as well as EBLMMS. Since such regions
are localized in a small volume fraction of the domain,
this difference is not properly captured by an integral er-
ror measure such as ®. In section III B 3, we show that
these difference can have large impacts in results of cou-
pled 1p-kMC/CFD simulations.

2. Graphical Analysis

To provide a clearer understanding of the quality and
scaling of the interpolant, we present 2D line plots of the
CO oxidation TOF as a function of selected rate con-
stants in Fig. 8. Both EBLMMS and GPR are compared
to a set of additional 1p-kMC data points (not included
in the interpolants’ input database). The curves show
the values the 7D interpolants take along 1D cuts of the

domain in which all but one of the parameters are kept
constant. We have decided to focus on the directions of
the adsorption rate constants, which can be directly as-
sociated to changes in the partial pressures pco and po,,
cf. eq. (41), and of the CO oxidation rate constant k"2,
which can be associated to potential errors in the activa-
tion barrier for oxidation, cf. eq. (42). These associated
dependencies have been indicated by extra axes in the
plots. In all three directions, the TOF presents a rapid,
step-like change in value and gradient, which presents a
challenge for the interpolation methods.

From the plots it can already be seen that EBLMMS
presents the correct qualitative behavior even at a very
low node count of N = 1024. Although there are quanti-
tative errors for high £7°?¢ values, we see that EBLMMS
is able to reproduce the step-like nature of the transition.
For the k&5 (pco) and k%dzs (pco) cases, there is even
very good quantitative agreement. In contrast, GPR is
qualitatively poorer in all cases at such (desirably) low
node count. It is never able to reproduce the shape of
the curves, and misses to match the high TOF peak in all
cases. For the k™2 case, it does not even hint the step-
like shape. In 1p-kMC/CFD such interpolant deficiencies
are crucial: The highest TOF values at the ridge need
to be reproduced quantitatively, as this corresponds pre-
cisely to the region of highest activity targeted in catal-
ysis research. Steep TOF increases over small pressure
regions are also critical topological features that govern
potential reactor instabilities or gas-phase coupled activ-
ity oscillations. If such features are washed out as by the



GPR interpolant in Fig. 8, the very targets of coupled
microkinetic - fluid dynamical multiscale simulations can
not be met by construction.

Further increasing the number of nodes systematically
improves the quality of the EBLMMS interpolant. In Fig.
8, this is illustrated for N = 16384 nodes, in which very
good quantitative agreement is found for all the cases
shown. In the SM we have included a plot similar to
Fig. 8 presenting examples for other choices of number
of nodes N. There it can be seen that the quality of
GPR remains low even up to 4096 nodes (the highest
value analyzed).

Another impression of the behavior of the interpola-
tion method can be gained by looking at the contour
plots presented in Fig. 9. The plots show TOF contour
plots across cuts of the 7D domain in which all rate con-
stants except for k&% and k¢ are now kept fixed at
their default values. The panels on the left (same data
top and bottom) show 1p-kMC data explicitly calculated
on a (100 x 100) grid. The central panels show the TOF
values predicted by the 7D EBLMMS interpolant built
using N = 1024 (top) and N = 8192 (bottom) nodes.
The panels on the right show the corresponding absolute
value of the error, calculated in the transformed (loga-
rithmic) TOF scale. The plots demonstrate that even for
N = 1024 the qualitative features of the target function
are remarkably well reproduced. For N = 8192, the 1p-
kMC and EBLMMS results are almost indistinguishable
by eye. In addition, it can be observed that the errors
are concentrated in the regions of rapid gradient change
and very small in the rest of the domain. The conditions
of Fig. 8c are marked in the contour plots by a dot-
ted line. We can rationalize the difficulty of reproducing
TOF values for high £ by noting that these conditions
fall into the TOF peak observed in the contours (i.e. lo-
cated in the top-center region). This peak is relatively
localized and thus very difficult to predict using only a
small number of nodes. In the SM, an analogous contour
plot with GPR predictions using 1024 nodes is presented.
It shows that the qualitative behavior is poorer than the
corresponding EBLMMS interpolant.

3. A Stagnation Flow Example

To further underscore our general remarks on the
required accuracy of TOF interpolants in coupled 1p-
kMC/CFD simulations, we consider an isothermal and
stationary stagnation flow®!, where a mixture of CO,
Oy and Argon streams from a sieve-like inlet against a
disk-shaped catalyst. This is a suitable reactor model
for flat-faced single-crystal model catalysts as in the re-
duced RuO3(110) 1p-kMC CO oxidation model, which
we will continue to use for this demonstration. As il-
lustrated in Fig. 10, the geometry of the axisymmet-
ric reactor problem is fully determined by the vertical
height L of the inlet. For the calculations we employ
L = 3cm and an inlet velocity of 10cm/s. The oxygen
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partial pressures at the inlet is chosen as pg‘;et = 1bar,

the CO partial pressure pic‘;‘%)et varies between one and

four bar, and 50% of the mixture is always Argon, i.e
Pt = plet + plBlt. We obtain numerical solutions
to the resulting one-dimensional boundary value prob-
lem using our previously employed perturbative approach
(see supporting information in Ref.!!) and a stagnation
flow solver®?.

The interpolated TOF enters the stagnation flow equa-
tions as a non-linear boundary condition. As a refer-
ence, we use a dense regular 2D grid of 100 x 100 1p-
kMC data points in the pressure range (pco,po,) €
[1072,102)2, which we interpolate piecewise linearly.
Against this reference, we assess the performance of the
high-dimensional GPR and EBLMMS surrogate models
with a low number of interpolation nodes N = 1024
(cf. Fig. 8), i.e. we employ the full 7D interpolations
and eq. (41) to obtain the partial pressures. This way,
we can asses the impact of interpolation errors in mul-
tidimensional TOF maps onto CFD simulations results.
Such multidimensional TOF maps naturally arise from
1p-kMC models with many reactive species, but also the
here considered TOF map of the individual rates might
be beneficial in practice, e.g. when fitting reaction pa-
rameters to experimental reactor data.

Figure 10 shows the COs partial pressure directly
above the catalyst pcca(t)a;l, which would be the central ex-
perimental observable, e.g. when employing Planar Laser
Induced Fluorescence measurements'!:2, and which is
related to the catalytic activity. For our reference cal-
culations (black dots), we find a low, monotonically in-

creasing activity (p&gt) for piis* below the stoichiomet-

ric ratio. For high picngt, the activity is higher and mono-
tonically decreasing. These two regimes are connected
by a relatively narrow regime for pi&get slightly above the
stoichiometric ratio, in which we find multiple stationary
solutions that could give rise to gas-phase coupled oscil-
latory behavior of the catalytic activity. The EBLMMS-
based model reproduces the behavior of the reference
calculation with only minor quantitative differences. In
contrast, the GPR-based model deviates largely from the
reference calculation for most of the CO pressure range.
Particularly at the phase transition it provides a quali-
tatively wrong picture. Multiple solutions appear where
they should not be, while the true regime with multi-
ple solutions is missed. This is a direct consequence of
its inability to properly trace the steep TOF variations
predicted by the 1p-kMC model.

IV. SUMMARY AND OUTLOOK

We have presented an interpolation technique able to
faithfully approximate high-dimensional functions with
locally rapid changes, such as those arising from first-
principles kinetic Monte Carlo models for heterogeneous
catalysis. Exploiting the fact that such functions often
show locally low-dimensional behavior, small global er-
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rors can be achieved with this error-based local metric
modified Shepard (EBLMMS) method even with mod-
est numbers of function evaluations. Furthermore, the
method successfully suppresses undesired behavior, such
as oversmoothing and artificial wiggles.

Compared with existing methods from the Shepard
family as well as with state-of-the-art Gaussian process
regression, our approach proved to be superior for tested
target functions ranging from analytic test cases up to
numerical 1p-kMC data. In higher dimensions in par-
ticular, our combination of a locally changing metric and
error estimate based blending proved to be advantageous.
The superior accuracy was also shown to be very impor-
tant when building surrogates for use in 1p-kMC/CFD
coupling.

Another strength of the approach is its basis in geo-
metrical considerations and a conceptually simple math-
ematical description. Most input parameters either have

an intuitive geometrical meaning or can be interpreted as
an error, either in the error function or in the coefficients
of the local metric. Nevertheless, methodologically there
is still room for improvement. Most importantly, this
concerns the determination of the ellipsoids which define
the clouds. A better initial guess of the local metric as
well as the exploitation of more efficient and robust op-
timization algorithms are desirable. Furthermore, data
structures can be developed which exploit the finite sup-
port of the interpolation weights and make evaluation
times scale sub-linearly with the number of nodes. Fi-
nally, the cheaply available error estimates could be used
for parameter set optimization. Instead of having to split
the calculated data into construction and tests sets, the
parameters could be obtained by minimizing the error
estimates at points in which the true function value is
unknown.
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FIG. 10. Steady-state CO2 partial pressure immediately over
the catalyst as a function the CO partial pressure of the in-
let of the stagnation flow reactor schematically depicted in
the inset. Detailed conditions of the simulation are summa-
rized in the text. We compare the results obtained using as
catalyst boundary condition a reference solution (black) with
those using the EBLMMS- (green) and GPR- (blue) based
interpolants discussed in Fig. 8. Both surrogates are built
using a total of 1024 nodes.

SUPPLEMENTARY MATERIAL

See supplementary material for: (a) the justification of
egs. (26), (30) and (31), (b) the exact definition of the an-
alytic test functions, (c) a description of the GPR method
used, (d) error scaling plots for two additional test func-
tion classes, (e) a graphical comparison of EBLMMS in-
terpolants with different N; values, (f) a plot similar to
Fig. 8 for interpolants built with different numbers nodes
and (g) a graphical comparison between EBLMMS and
GPR for the 1p-kMC model.
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I. LOCALIZATION FUNCTION AND CLOUD NODE
COUNT ESTIMATES

Here we demonstrate the properties

n—(My) < no(My)
N4 (My) > no(My)

(S-1a)
(S-1b)

of the soft constraint functions defined in egs. (30) and
(31) in the main text. Given a symmetric, positive def-
inite matrix My, a vector x; € R and a real number
R > 0, we define the associated ellipsoid according to

E(My,xp, R) = {x € RP | ||[M(x —x0)|l2 < R} .
(5-2)
Such ellipsoids define the support of localization func-
tion A(R,r,dk(x)) (cf. eq. (23)), when the distance
dir(x) is given by eq. (24). In addition, A(R,r,dk(x))
is strictly equal to 1 when x belongs to the smaller ellip-
soid E(Mg,xx, R — 1), and 0 < A(R,7,di(x)) < 1 when
x is within the ellipsoidal shell between E(My,xx, R—1)
and E(My,xg, R). In the limit » = 0, A(R,0;dk(x)) is
the indicator function for F(My,xx, R), i.e.

' [ 1,if x € E(My, %y, R)

As this function is strictly equal to 1 in the whole
E(My,xk, R), we can see that

AMR,0;di(x)) > MR, r;di(x)) YVO<r<R (S-3)
Similarly, localization function A(R+r, 7, di(x)) has finite
support in ellipsoid E(M}, xx, R+7), and is strictly equal
to 1 on E(My,xg, R). This results in

AR, 0;dp(x)) < AR +7,73dp(x)) VO<7 (S-4)

From eq. (25) in the main text, we can see that
the clouds for the EBLMMS interpolant are given by
wr = E(Myg,xp,1). Correspondingly, the functions
A(1,0; di(x)) are indicator functions for clouds wy. With

a)juan.lorenzi@tum.de

this in mind, the total number of nodes in the cloud can
be calculated as the summation

mo(My) = Y A1, 05 dk (x:))

(S-5)
i=1
Using this and relation (S-3) we can see that
N
mo(Mi) = Y A(1,0,dk(x;)) (5-6)
i=1
N
> SO dy(x:)) = 1 (M)
i=1
and similarly, using relation (S-4),
N
UO(MR) = Z)‘(lvovdk(xi)) (8'7)
i=1
N
< SN+ 1, di () = iy (M),
i=1

This demonstrates relations (S-1).

Next, we justify egs. (26) and (32) (main text) for the
scaling of the rg, _ and r_ parameters with dimension
D (cf. section IIC from the main text). Using basic
concepts of multidimensional calculus, it is easy to prove
that the volume of the ellipsoids is given by

V (Bp(R))
V(E(M R)) = —————=
( ( » X0 )) det M )
where det M is the determinant of M and V (Bp(R)) is
the volume of a D-ball of radius R defined as

Bp(R) ={xeR” | |jx||z < R}

(S-8)

(5-9)

Using this, we see that the ratio between the volume
of an ellipsoidal shell between E(Mj,xy,1) (i.e. the
cloud wy) and E(Mp,xx,1 — r) (i.e. the region in
which A(1,7;dr(x)) = 1 strictly) and the volume of
E(My,xg, 1) itself is
V(E(M,x¢,1)) =V (E(M,x0,1 —1))
V(E(M,x0,1))
V(Bp(1) =V (Bp(l—r))
V(Bp(1))
1-(1-rP |

(S-10)
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FIG. S-1: Representation of the 2D version of the two
additional analytic function classes.

where we have used the fact that Bp(R) = Bp(1)RP.
Replacing the expression for ro (r_) from eq. (26) (eq.
(32a)), it is easy to see that the resulting volume ratio is
equal to pg (psof) (i-e. independent of D).

Similarly, if we consider an ellipsoidal shell immedi-
ately outside (surrounding) the cloud FE(My,xx,1), we
get

V (E(M,x0,1+74)) =V (BE(M,x0,1))
V (E(M,xo,1)) B

V(Bp(1+ry)) =V (Bp(1) _  (S-11)
V(Bp(1))
(1+r)P -1

Replacing 7 from eq. (32b) in the main text, the volume
ratio equals psoft -

Il. EXACT DEFINITION OF TEST FUNCTIONS

Here we present the formulae for the test functions
used in section IIT A of the main text as well as for two
additional test function classes only discussed in this SI.
Wireframe plots of the 2D versions of the extra func-
tions classes are presented in Fig. S-1. Functions of the
plane_step family present small gradients in most of the
domain, except for a sharp (but differentiable) step-like
transition located around a (D — 1)-hyperplane. There-
fore, these functions are intrinsically one-dimensional.
Functions of the quad_1in class are also intrinsically one-
dimensional. They are quadratic on one side of an hy-
perplane, and linear in the other. Contrary to the other
function classes used in this work, quad_lin functions
present rapid changes in the gradient, but not on the
function value.

All the parameters that enter the definition of the test
functions are summarized in Table S-I. For functions
with D < 7, the coefficients of vector parameters xg, ng
and n; were just taken as the first D coeflicients of the
vectors in the table.

All step-like functions are defined based on the 1D step

function
s(z,t) =
+ cos(z) (S-12)
where
. 1
Slg([l]’,t) = m (8-13)

is the sigmoid function, and ¢ defines the width of the
transition.
Using this we define the plane_step functions as

fprane step(X) =8 (no(xxo) t) , (S-14)

where ng is the direction normal to hyperplane where
the step-like transition occurs and xq is a point of such
hyperplane.

Functions of the kink step family are given by

fkink,step (X) -

if po,p1 <O
S(ma‘x(p()vpl)vt) or p(z) pll > 1

s(po,t) if pr < 0,po > 1
s(p1,t) if po < 0,p1 >1

(S-15)

with po =g - (x — x0)/[no| and p1 = ny - (x — x¢)/[n1|.
Here ng and n; are the directions normal to the half-
hyperplanes defining the kink; and xq is a point on the
hypersurface where they meet.

Functions of the ball_step family are given by

X — Xo + Rﬂ
ol

fball,step(x) =S (

RQ . (S-16)

where R is the ball’s radius, xq is a point on the edge of
the ball and, ng defines the direction normal to a hyper-
plane tangent to the ball that passes through xq.

Finally, functions of the quad_lin family are defined
with the help of the 1D function

u(z,t) =

yo + ax + B if x < —t
ap + a1z + agx® +asz® if —t<z <t
Yo+yrift<uz

(S-17)

where

—a)t
ao:yoJr%
a+y Bt
4 = — — —
2 4
_1—a B
“2="g Ty

B

a3 = ——



to make the transition smooth within a distance ¢t. With
this, we define

g - (X — XO)
77t )
g

where ng and xg define normal direction to and a point
belonging to the plane in which the rapid gradient change
takes place.

Fasaansn(x) = ( (5.18)

TABLE S-I: Values of the parameters defining the
analytic test functions.

Scalar parameters
t = 0.01 R =1.00
yo =100 a=6.00 =800 ~=-3.00
Vector parameters
x0 0.5 05 05 05 05 05 0.5
ng 0.551 0.795 0.219 0.714 0.683 0.516 0.556
n; 0.609 0.276 0.297 0.305 0.322 0.211 0.635

Ill. GAUSSIAN PROCESS REGRESSION

While we refer to textbooks!? for an in-depth intro-
duction of Gaussian Process Regression (GPR), we would
like to give a brief outline in order to clarify this point of
reference. GPR is a Bayesian method: it assumes a prior
probability distribution on the function values we wish
to predict and combines this with the observed, possi-
bly noisy data. The prior distribution of function values
is assumed to be a Gaussian process, which describes a
distribution over functions and can loosely be thought
of as an infinite-dimensional multivariate Gaussian dis-
tribution. Just as a multivariate Gaussian distribution
is defined by a mean vector and covariance matrix, a
Gaussian process is defined by a mean function m(x) (of-
ten taken to be 0) and a covariance function (or kernel)
k(x;,x;). Conditioning this prior on the observations
yields another (posterior) Gaussian process with the fol-
lowing predictive mean and covariance functions:!

g9(x) = f(x) = k"(x, X)(K(X) + 0, 1) 'F (S-19)
cov(f(x1), f(x2)) = k(x1,%x2) — k" (x1,X):
(K(X) + O'yI)ilk(Xg, X), (S-20)

where F are the observed function values at the nodes
X. k(x,X) is the vector composed of covariance func-
tion values k(x,x;), the matrix K (X) collects the values
of the covariance function between nodes, o, represents
the noise associated with the input data and I is the
identity matrix. Equations S-19 and S-20 are the key
working equations of GPR, with the former interpreted
as the central prediction and the latter indicating its un-
certainty. Note, in particular, that in general GPR as-
sumes the input data to be noisy, with the level of noise

not only affecting the posterior covariance, but also the
prediction (mean function). In essence, this allows GPR
to interpolate between noisy data points, thus avoiding
overfitting.

A. Covariance Functions and Hyperparameters

The choice of covariance function is key to a mean-
ingful application of GPR. It determines, for example,
how smooth the Gaussian process reconstruction will be.
Many commonly used covariance functions, including the
popular squared exponential covariance function,

_ 2
F(x1, %2) = 0% exp (—”) ENCE Y

212

are so-called stationary functions, meaning they only de-
pend on the difference x; — x3. Clearly, for the target
applications of this paper, such a choice would be inap-
propriate and we have indeed verified that it leads to
poor results. Instead we used the so-called ‘neural net-
work’ kernel (sometimes also referred to as ‘arc sine’ or
‘multilayer perceptron’ (MLP) kernel). It can be con-
structed as the limit of a neural network with one hidden
layer and an infinite number of hidden units,! thus repre-
senting a particularly general model. In its most general
form this kernel is given by!

knn(X1,%2) =

2 2% Y%
oi—sirfl — Xj x2 ——— . (8-22)
m V(A +2%]3%,) (1 + 2%) £Xs))

where X is obtained by augmenting the input vector x
by a leading entry of 1. Since we wanted to compare our
method to a readily available, off-the-shelf method, we
used the kernel in the slightly less general form imple-
mented in the freely-available GPy-package®, which con-
strains X to be diagonal. Its entries, together with oy and
the level of noise are referred to as “hyper-parameters”
in the machine learning literature. They can be learned
from the data by optimizing the so-called marginal likeli-
hood or evidence of the model (the normalization factor
of Bayes’ theorem), which provides a way to quantify how
well a model fits the data. It can also be used to compare
altogether different covariance functions, and, again, we
observe that the neural network kernel is much better
suited to our class of problems than a simple stationary
covariance function.

IV. ADDITIONAL ERROR SCALING PLOTS

In Fig. S-2 we present plots of how the ® error from eq.
38 scales with the number of nodes for the plane_step
and quad_lin function classes. The procedure to calcu-
late these results is exactly the same as the one described
in section IIT A 2 of the main text. The different methods
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FIG. S-2: Scaling of the ® error with increasing number
of nodes for the plane_step (dark, red lines) and the
quad_lin (light, blue lines) functions in different
dimensions. The EBLMMS method (solid lines) is
compared to EBMS (dashed lines) and GPR (dotted
lines) methods.

compare to each other similarly with these functions as
with the functions discussed in the main text. While
this is to be expected for plan_step function, results
for quad-1in demonstrate the benefits of employing the
EBLMMS approach are not limited to step-like functions.

V. WIREFRAMES PLOTS FOR ball_step FOR
DIFFERENT N; VALUES

Here we present a qualitative comparison of the
EBLMMS interpolation for different values of ;. This
is presented in Fig. S-3, where different interpolants of
the 5D ball_step are presented. The cut of the domain
used is the same as in Fig. 6 in the main text. While for
very large N; values the interpolant becomes smoothed
out, for Ny < 100 it is able to very reasonably trace the

o o o
o » ®
Overshoot

FIG. S-3: Wireframe plots for the 5D version of the
ball step test function, for different values of N;. The
number of nodes is N = 1024.

shape of the transition region step. Only for the smallest
N; value shown, some spurious features (similar to those
observed for EBMS) appear. This shows that there is a
wide range of values of N; that result in an interpolant
of reasonable quality.

VI. ADDITIONAL PLOTS FOR THE 1P-KMC
EXAMPLE

In figure S-4 we present additional line plots of cuts of
the 7D EBLMMS and GPR interpolants. There, we see
that, even for 4096 nodes, GPR still presents poor quali-
tative behavior, even showing artificial oscillations in the
k%)d; case. In contrast, EBLMMS already reaches good
quantitative behavior, with small errors even in the chal-
lenging £"?¢ case. An EBLMMS interpolant built with
32768 nodes (the largest node count used in this work)
is presented for reference, showing excellent quantitative
agreement.

In Fig. S-5, we present contours comparing cuts of a
7D EBLMMS interpolants (center panel) with a 7D GPR
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FIG. S-4: 1D cuts of different 7D interpolants compared to explicit 1p-kMC data not included in their input (dots).
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EBLMMS built with 4096 (light green) and 32768 (dark green) nodes and GPR built using 1024 nodes (light blue
lines). Axes indicating partial pressures associated to the adsorption rate constants (cf. eq (41)) and the activation

barrier associated to the CO oxidation rate constant (cf. 42) are also included.
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FIG. S-5: Contours of CO oxidation explicitly calculated with the 1p-kMC model (left), compared to the the
interpolation generated by the EBLMMS (center) and to GPR results (right). For both approximation methods the
number of nodes is N = 1024. The cut of the domain is done across the center of the domain (where all rate
constants have their default value) and is parallel to the axes corresponding to the CO adsorption and CO oxidation
rate constants. The dotted lines marks the conditions plotted in Fig. 8c in the main text.

model (right panel), both built using 1024 nodes. We also
include explicitly calculated 1p-kMC data (left panel) for
reference. As discussed in the main text, EBLMMS re-
produces the function except for the height of the very
localized maximum activity peak. In contrast, GPR pro-

duces a too smooth approximation, missing important
features of the underlying function such as the sharp
increase in reactivity when increasing CO adsorption.
Nevertheless, this qualitative failure is rather localized.
In seven dimensions, the subdomain where this happens



is therefore rather small and this qualitative failure has
therefore only a minor impact on the integral L1 error
norm.
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