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Abstract

In this thesis, we study models for pattern formation in the Gram-positive bac-
terium Staphylococcus aureus. Starting from gene regulation mechanisms, we derive
a reaction-diffusion model including quorum sensing and biofilm formation and
demonstrate the potential of the model by finite element simulations. Furthermore
we consider a front instability approach to determine the onset of pattern formation
and investigate effects related to Darcy’s law using level set simulations.

Zusammenfassung

In dieser Arbeit betrachten wir Modelle fiir Musterbildung im Gram-postiven
Bakterium Staphylococcus aureus. Ausgehend von Genregulationsmechanismen
leiten wir ein Reaktions-Diffusions-Modell mit Quorum Sensing und Biofilmbildung
her und untersuchen es mit Finite Elemente Simulationen. Des Weiteren betrachten
wir einen Front-Instabilitdtsansatz, um zu bestimmen, wann Musterbildung einsetzt,
und untersuchen mit Level Set Simulationen Effekte im Zusammenhang mit Darcy’s
Gesetz.
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Part |.

Introduction






1. Motivation and outline

Bacteria are intriguing organisms, which show very diverse and intelligently coor-
dinated behavior, often perfectly adapted to environmental conditions |72]|. The
bacterium Staphylococcus aureus (S. aureus) is an important human pathogen,
which is of special interest since it is a main cause of hospital-acquired infections
through biofilm formation in its methicillin resistant strains |68, 72, 78|. Further-
more, S. aureus is found in diverse biological settings, such as soil, human skin
or public places like hospitals [68, [72|. Tt is relatively complex and has thus not
yet been studied as profoundly as other bacteria, such as its close relative Bacillus
subtilis (B. subtilis), e.g., |82, |127, |143]. The detailed study of S. aureus and its
regulation systems by models and simulations in this thesis is aimed at a better
understanding of the physical and biological mechanisms involved in its pattern
formation. This knowledge may in the future be used to identify mutant types in a

time- and cost-efficient way and may thus help to prevent or cure S. aureus infections.

Discrete and continuous patterns are observed in all areas of life and have been
studied in a variety of biological settings. A famous example are animal coat
patterns of diverse animals such as leopards, snakes or butterflies [106], [122] and
also the skin [42} |131]. The same underlying mechanisms are found in phenomena
such as chemical reactions and ecological interactions |106|. Further investigations
have been carried out on patterns in chemotaxis |23, [28], [117|, tumor growth [31,
83|, general growing domains |27, 38| and neural models [106]. In many approaches,
scale and domain growth considerations play a role. Furthermore, mathematical
modeling approaches include not only Turing [106, 141] or Turing-Hopf [27] pattern
formation, but also discrete models such as cellular automata [47, 51| and combined
Turing-Hopf instability approaches for discrete models |48|. Pattern formation has
also been investigated experimentally in the biological and physical context |23 86,

132|. Tt is thus a natural phenomenon of great interest across several disciplines.

In a laboratory setting bacteria colonies show a variety of patterns. Several models

have been developed to investigate this process using mostly reaction-diffusion
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1. Motivation and outline

equations, e.g., [14, 98,199, [102|. Furthermore, bacteria colony survival crucially
depends on biofilm formation. This process has been studied in S. aureus and
several related bacteria, e.g., [30, 35, 37, 100, 127]. Pattern formation is specific for
different bacterial mutants, which have one or several disabled gene loci. Therefore
the pattern formed by a bacterial colony is a characteristic feature which may help
to determine the mutations of the bacteria [65]. Thus, in this thesis we investigate
bacterial pattern formation of the Gram-positive bacterium S. aureus in the context

of quorum sensing and biofilm formation.

To this end the thesis is divided into three parts, where Part |I| constitutes the
introduction, Part [[I] includes reaction-diffusion models and Part [[T]] deals with
the effects of bacterial division. We introduce the necessary biological, physical
and mathematical background, including the numerical simulation techniques, in
Chapters [2] and [3] of Part [ Then in Chapter [4] of Part [[I] we derive a new model
for the production of the S. aureus quorum sensing substance autoinducing peptide
(AIP) and the principal biofilm component polysaccharide intercellular adhesin
(PIA), starting from cell regulation mechanisms. Using finite element simulations,
we show that changing the related parameter values in a system of five partial
differential equations allows to obtain the qualitative phenotypes of S. aureus mu-
tants as observed in the laboratory. We furthermore compare our results to the five
morphologies of bacterial pattern formation introduced in [98|. In Chapter [5| we
investigate a front instability approach for a reduced system of two partial differen-
tial equations, which includes nutrient-dependence in the bacterial diffusion term,
and compare the obtained predictions to Turing instability parameters. Finally, in
Part [ITT, we investigate the effects of pressure on bacterial pattern formation. In this
context we concentrate on effects induced by bacterial division, which all bacterial
colonies experience and which are considered in Chapter [l For the numerical

simulations of Chapter [6] we employ a finite element based level set method.

The following introduction uses several biological abbreviations. A short overview

of some important abbreviations can be found in Table below.

Abbreviation for Abbreviation for
TSS toxic shock syndrome MRSA strain methicillin resistant S. aureus strain
AHL acyl homoserine lactone CSF competence and sporulation factor
ATP adenosine triphosphate ABC transporter ATP-binding cassette transporter
LHSC lifting Hele-Shaw cell EPS exopolysaccharide
AIP autoinducing peptide PIA polysaccharide intercellular adhesin

Table 1.1.: Abbreviations for biological terms used in the introduction.
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2. Biological and physical
background

In the following we give a short introduction to the biological setting which we model,
namely pattern formation in the bacterium S. aureus, and to its special properties.
This includes the process of quorum sensing in bacterial colonies. Furthermore, we

introduce Darcy’s law, which will be relevant in Part [[T1]

2.1. The bacterium Staphylococcus aureus

Bacteria are very diverse prokaryotic microorganisms |72| that are about 0.1—700 pum
in length, but can show different morphologies |72|. After growing to a fixed size,
bacteria reproduce asexually using the reproduction mechanism of binary fission [72].
Bacteria divide rapidly under optimal and nearly optimal conditions. If nutrients
are sparse, some bacteria can sense the local population density and coordinate
their behavior using quorum sensing. One distinguishes between Gram-positive

and Gram-negative bacteria. This notation is due to the Gram straining method [72].

The bacterium S. aureus is a Gram-positive non-sporulating bacterium of the genus
Staphylococcus, the class Bacilli and the order Bacillales. It is a close relative of
the Gram-positive bacterium B. subtilis, which has the same class and order. Under
the microscope S. aureus forms grape-like clusters [72| and large round golden or
yellow colonies. This is the reason for the name of the bacterium: The Latin word
"aureus" means "golden". The bacterium commonly occurs on the human skin and
nasal passages and can cause a wide range of bacterial infections from very minor
skin infections to fatal diseases such as pneumonia |72|. It is responsible for a large
number of hospital-acquired infections since S. aureus bacteria can survive under
harsh conditions, adhere to smooth surfaces and are well cultivated at a temperature
of 37°C [72]. The methicillin resistant S. aureus (MRSA) strains show resistance
against several antibiotics |72]. Furthermore, also resistances against disinfectants

and against clearance by host defenses can be found [150]. Some strains produce
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2. Biological and physical background

Figure 2.1.: Staphylococcus aureus pattern formation in the laboratory. Colony on
1.5% agar with standard nutrient concentration after five days [65].

toxins, which can lead to the toxic shock syndrome (TSS) [72]. S. aureus infections
are persistent and difficult to treat. Together with the increasing awareness for
the clinical relevance of bacterial biofilm formation [150|, this leads to an increased

interest in the study of this bacterium.

We investigate S. aureus mathematically in a laboratory setting, where the bacterium
and its mutants are commonly grown in growth media with varying densities and
nutrient concentrations. In this setting S. aureus, and also other bacteria such as B.
subtilis, form distinct patterns on the agar surface as it can be seen in Figure [2.1]
These patterns are characteristic of the bacterium and its mutants and thus strong

candidates for the identification of particular mutants.

2.2. Quorum sensing in bacteria colonies

In general, bacteria live in large communities of cells. In order to coordinate the
behavior of the population in a way that benefits the bacterial population as a whole,
there is a need for communication and coordination of behavior within or between
species. This is achieved by the use of signaling molecules such as autoinducers,
that are excreted by the bacteria if they sense that the population density reaches

certain threshold values.
Such a behavior was observed in the 1970’s |55] (63} [L08| for the bacteria Vibrio

fischeri (V. fischeri) and Vibrio harveyi. The bacterium V. fischeri is found in
the light organs of bony fishes and the squid at densities of 10!° — 101! cells per

14



2.2. Quorum sensing in bacteria colonies

milliliter as well as in sea water, where it only reaches densities of less than 102
cells per milliliter. Due to this density difference, the bacteria can determine where
they are using quorum sensing, and luminescence is only induced when the bacteria
are associated to a host. With increasing cell density, the luminescence per cell
increases up to its 100-fold value 77| and the bacteria provide light for the fish in a
symbiotic process. The quorum sensing substance involved in the autoinduction of
the bacterial luminescence is the autoinducer N-3-oxohexanoyl-lI-homoserine lactone
(30C6-HSL) [6], a member of the acyl homoserine lactone (AHL) family [104]
who is able to diffuse freely across the cell membrane [77]. At low cell densities
the autoinducer can diffuse freely outside the cell, but at higher cell densities the

molecules accumulate, which leads to quorum sensing activation.

In the DNA of V. fischeri two divergently transcribed units are responsible for the
autoinducer synthesis: In the presence of autoinducer, the gene luzR encodes the
LuxR protein which activates the luzICDABEG gene by binding at the correspond-
ing binding site. The [uzl gene then encodes the autoinducer synthase while the
other genes play only mechanistic roles. The autoinducer synthase is responsible for
producing the autoinducer molecule. This constitutes a positive feedback cycle as
the level of the autoinducer has to reach a certain threshold for the cycle to start,

which then further increases the autoinducer concentration [10].

The mechanism of quorum sensing can be found in many bacterial species, allowing
the bacteria to accomplish a collective task. However the quorum sensing system
itself differs for Gram-positive bacteria such as S. aureus or B. subtilis. B. sub-
tilis monitors the concentration of competence and sporulation factor (CSF) in
order to measure the cell density and determine the best time for its entry into
sporulation |77]. In S. aureus bacteria the main quorum sensing system is the agr
regulation system, which, depending on the environmental conditions, plays a role

in the colony’s biofilm formation.

There are two main characteristics of quorum sensing in Gram-positive bacteria
in comparison to Gram-negative bacteria. The first is that Gram-positive bacteria
employ secreted peptides as the autoinducers and the second is that they use two-
component adaptive circuits for signal transduction. These consist of a family of
homologous proteins, where the first component is a membrane-bound sensor kinase
protein, which autophosphorylates to start the information transfer process, and the

second component is a response regulator protein that controls gene transcription.
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2. Biological and physical background

In this way, sensory information is relayed by cascades of (de-)phosphorylation and
Gram-positive bacteria can adapt to a wide range of environmental conditions [10].
The peptide signaling substances are produced by cleaving a precursor protein,
which is produced at the peptide signal precursor locus. The peptide signal is
transported out of the cell by an ATP-binding cassette (ABC) transporter. The
principle of the quorum sensing process in Gram-positive bacteria is depicted in
Figure which is adapted from [10].

signal peptides

ABC-transporter eceo

\ bacterium

protein cleavaae phosphorylation

| I;‘ response regula or

transcription of target genes

sensor kinase

precursor

translation~§nto precursor protein

Figure 2.2.: The general principle of quorum sensing in a Gram-positive bacterium.

Deterministic, time-continuous models of quorum sensing can either consist of
systems of ordinary differential equations if the spatial component is disregarded or
of systems of partial differential equations if diffusion outside the cells is included
into the model. In the case without diffusion, the exchange of molecules between
the cytoplasm and the outside of the cell can be included as +(djue — dau,), where
u. and u, denote the concentrations of the signaling molecule in- and outside the
cell and dy,dy € R, denote the rates of diffusion into and out of the cell. When
considering a setting in which diffusion takes place outside single cells, an integral
formulation for the net inflow into the cell can be used and an appropriate condition
has to be added for the evolution at the cell boundary [104].

The gene regulation processes inside the cell, and thus also the differences and
similarities between the bacteria, influence the form of the quorum sensing substance
production term f(u.). A general form for this term, which can be adapted to the

degree of polymerization n, is introduced in [104] as

n

U
Ue) =+ ———— — Yol
f< ) /6 Uthresh + U? 7

Here the parameter o € R, denotes the basic production rate of the quorum sensing
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2.3. Darcy’s law in Hele-Shaw cells

substance and its increase due to a positive feedback is described by f € R,. The
parameter Uesn € R denotes the threshold between low and increased production
levels and v. € R, is the abiotic degradation rate of the quorum sensing substance

in the cytoplasm.

2.3. Darcy’s law in Hele-Shaw cells

The setting of Hele-Shaw cells resembles the setting of bacterial growth in a labora-
tory. This is due to the fact that in both cases, displacements in a small layer of the
respective substances are considered. The Hele-Shaw cell consists of two immiscible
fluids between two parallel (glass) plates with the spacing h € R, between them.
In the thin gap the more viscous fluid is displaced by the less viscous one or by air,
which is considered as a non-viscous fluid. The point of investigating this scenario
is that, while small-scale disturbances are stabilized by surface tension, interface
instabilities can occur that lead to fingering patterns. In a lifting Hele-Shaw cell
(LHSC) and also when a lower viscosity fluid is injected into the Hele-Shaw cell,
these patterns closely resemble the branching patterns observed in bacterial colony
growth [133, [134].

In this context, Darcy’s law describes the dependence of the velocity v on the
pressure gradient Vp. The fluid dynamics in the thin gap of a Hele-Shaw cell can be
derived from the three-dimensional Navier-Stokes equations via asymptotic analysis
to the Darcy’s law formulation given by [61, |132]:

h2
v=—-—Vp, V-v=0, (2.1)

where the parameter © € R, denotes the viscosity. The evolution of the boundary
depends on the surface tension’s stabilizing effect according to the Young-Laplace
boundary condition given by [p] = —~vk, with the surface tension v € Ry, the
curvature of the boundary £ € R and the pressure jump [p] across the boundary in

the direction of the outer normal vector.

2.4. Darcy’s law in bacterial biofilm growth

Biofilms are found in many natural, industrial and medical settings. In medical
settings, they can be responsible for chronic and possibly lethal infections. Biofilms

consist of bacteria, their byproducts and also trapped particles. While laboratory
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2. Biological and physical background

Qpy

medium

biomass components

Figure 2.3.: Two-dimensional model setting for biomass growth modeling.

biofilms mostly consist of one single species, in nature several species may be
involved, as well as fungi and algae or other microorganisms. The bacteria produce
the exopolysaccharide (EPS) component of the extracellular matrix, which holds the
colony together [152]. Depending on the biological situation under consideration,
there are two main growth scenarios for a bacteria colony: In a liquid environment
the bacteria in the biofilm obtain nutrients from all sides, which yields highly
heterogeneous growth and possible detachment processes |2, |35, 136, 56, 64]. In a
laboratory environment the colony feeds from the nutrient suspension, which leads

to growth in height and planar expansion |127].

Bacterial colony growth in a surrounding medium depends on pressure build-up by
dividing bacteria and on the surrounding medium density and nutrient concentration.
The pressure induced by substrate-limited bacterial division results in the idea to
introduce an equation for the pressure, from which the velocity is calculated using
Darcy’s law [49]. With the growth function of the biofilm denoted by ¢g and Darcy’s

law given as v = —AVp, in [49] the Poisson equation
—AMp=g

for the pressure is obtained. While the model in [49] is developed for the situation of
biofilm growth into a static aqueous environment, the authors mention similarities
to Hele-Shaw flow and bacterial colony pattern formation. Also in the situation
of a circular colony as displayed in Figure [2.3] growth is driven by the availability
of nutrients in the domain €2, outside the colony and biomass growth induces
spreading of the population. The applicability of pressure-based models including
Darcy’s law in the situation of circular bacterial colony growth is further supported

by (66, 67|, where effects related to chemotaxis are considered.
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2.4. Darcy’s law in bacterial biofilm growth

Biologically the secretion of EPS is important in biofilm formation since the EPS
induce osmotic pressure gradients [127]. The resulting biofilm growth, thickening
and spreading leads to an increased relative fitness of those colonies which are
able to secrete EPS. In the chronology of its evolution, a colony inoculated on
an agar plate first thickens, and then starts expanding its base. In B. subtilis
colonies, an approximately five-fold increase in radius is observed over 24 hours,
with significantly slower expansion for EPS mutant colonies [127]. We note that
also in multi-component biofilm models Darcy’s law-like behavior is observed, for
example in [127] for the relative motion of water with respect to the network

component.
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3. Mathematical background

In the following, we give a short introduction to several mathematical methods which
are used in this thesis. We introduce time scale analysis and existing approaches
for pattern formation, which are relevant in Part |lLI. Furthermore, we define the
necessary function spaces and introduce the appropriate techniques for the finite
element simulations in this thesis and give a short introduction to level set methods,
which are used in Part [TI.

3.1. Time scale analysis

Often the aim in biomathematical modeling is to describe several processes which
happen on different timescales. A famous example for time scale analysis methods
is Michaelis-Menten enzyme kinetics as established by Leonor Michaelis and Maud
Menten in 1913 [101] and as described in [105]. Similar observations can be made in
many living organisms and the corresponding dynamics differ from those of simple
chemical reactions. In an enzyme kinetics process, a substrate is transformed into
a product substance by the catalytic effects of enzymes, which form a complex
with the substrate. The enzymes are not consumed in the process, but are again
available for binding to the substrate after the process is completed. The entire

process is often written in the form

k
E+Se==SE-2s p+P,
k_1
where arrows denote chemical reactions with the corresponding reaction rates indi-
cated above or below. While a double arrow means that the reaction is reversible,

this is not the case for a single arrow.

Using the law of mass action, a system of differential equations can be derived
from the diagram of the chemical reactions, including differential equations for the
enzyme (e), the substrate (s), the complex (¢) and the product (p) concentrations.

This system is simplified using that there is a constant amount of enzyme in the
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3. Mathematical background

system, i.e., e(t) + ¢(t) = eg. Furthermore, the differential equation for the product
concentration p(t) can be omitted for now as it can be directly determined from
the concentration of the complex and does not influence the other equations. Thus

we obtain a system of two differential equations

d

= kieos + (kus + k_i)e,

dt

d

d_j = ]{,‘1608 — (kls + k—l + kQ)C,

with the initial conditions s(0) = s and ¢(0) = 0.

This system is then non-dimensionalized to include the relation between the initial

values of enzymes and substrate ¢ := z—g In the dimensionless system the new

variables u(7) := %) and v(1) := % are considered on the timescale 7 := kjegt

and we obtain

d

Ut K — Mo, (3.1)

dr

d 1

L s K, o
with the initial conditions «(0) = 1 and v(0) = 0 as well as the constants \ := k’fio

and K = % When we consider a system in which there is much less enzyme
than substrate, we also obtain that ¢ = i—g < 1 and we can use this to consider
the Equations and on two different timescales. The system as presented
above is called the slow system, where Equation (3.1]) represents the reference time

scale and Equation (3.2) takes place on a much faster timescale since £ > 1.

When we use another timescale 7 := Z for the non-dimensionalization, we obtain

the fast system

f;; — e (—ut (u+ K = A\), (3.3)
%:u—(ujLK)v. (3.4)

Now Equation (3.4)) for the fast complex formation represents the reference time

scale and the substrate conversion in Equation (3.3)) is very slow in comparison.

The slow system in the limit € — 0 corresponds to a quasi-steady state assumption

since we have that 53—3 ~ 0. From this we derive a fixed relation between the
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3.1. Time scale analysis

u

concentrations of complexes and substrate v = and a differential equation for

u+K
u of the form
du U A AU
— = K-\ = — — = — .
- u+ (u+ )u+K u+u quKu e

Thus the slow process of substrate to product conversion can now be described

using only one single differential equation.

The fast complex formation takes place before the slow substrate conversion process.
When considering the fast system in the limit ¢ — 0, we obtain that % =0, i.e.,
the value of u is constant. Equation (3.4) with the initial value v(0) = vy can then

be solved as

v(7) = voexp(—(u+ K)7) + (1 —exp(—(u+ K)7)) .

U
u+ K

For 7 — oo we obtain the limit lim; . v(7) = 75, which reminds us of the result

for the relation between u and v obtained from the quasi-steady state assumption

for the slow system. Thus we conclude that the fast system describes how the

u
u+K?

slow system dynamics, as depicted in Figure [3.1]

system settles on the slow manifold v = where its evolution then follows the

slow manifold

v <0 U:u—il—LK

44—

v >0
L 2
initial state

\ 4
IS

Figure 3.1.: Michaelis-Menten dynamics. Fast system makes the dynamics settle on
the slow manifold, where slow system dynamics dominate.

Often one is interested only in the final result of such a process, in our case the

rate of product formation % on the original time scale. Due to the considerations

above, it is now much easier to find a closed form expression for this rate. We use

our results from the time scale analysis to obtain

u(T) _ koeos(t)
wrt)+ K s(t)+ Ky

dp

dt = k’gc(t) = k’geo’l}(’/’) = k’geo
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3. Mathematical background

where K,, = so K = % is known as the Michaelis-Menten constant and we have

obtained a saturated growth equation.

3.2. Pattern formation and bifurcations

Many biological mechanisms in nature generate spatial or temporal patterns. Among
these are vital processes in embryology, animal coat pattern formation in zebras,
snakes or alligators, as well as bacterial pattern formation. Apart from taking place
in very different species, these processes also happen on different scales and serve
different purposes. While in animal coat pattern formation, the pattern is formed
on the coat of a single animal to protect it from predators or to facilitate hunting in
a special environment, in bacterial pattern formation, an entire colony of bacteria

participates in the formation of the pattern.

Despite these apparent differences, many biological mechanisms of pattern forma-
tion can be united through a similar description in terms of mathematics. The
typical tool for this task are systems of reaction-diffusion equations, which describe
the spatio-temporal evolution of the concentrations of the substances involved in
the pattern formation process. Each of these equations typically includes a diffu-
sion term, which may be standard Fickian diffusion, porous medium diffusion or
also related diffusion mechanisms. The equations are then completed by their re-

action components, which describe the interactions between the different substances.

In the case of Fickian diffusion, the system is of the form

Oc
— = D Ac+ f(c),
o ()
where ¢ = (cq,...,¢,)T € R is the vector of the concentrations of the chemical

substances and bifurcations rely on the behavior of the eigenvalues of the system.

Three principal types of instabilities in reaction-diffusion systems of this form are
Turing, Hopf and wave instabilities. While Turing bifurcations yield patterns that
are spatially periodic and stationary in time, Hopf bifurcations lead to spatially
homogeneous patterns that are oscillatory in time and wave bifurcations produce
patterns that are both spatially periodic and oscillatory in time |71, [149]. The most
famous mechanism for the mathematical description of biological pattern formation

in the case of constant diffusion coefficients is the Turing mechanism, which was
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3.2. Pattern formation and bifurcations

discovered by Turing in 1952 [141] and has been investigated since then in great
detail, e.g., [88, (90}, 92|. Furthermore, investigations of Turing pattern formation
for inhomogeneities, e.g., [18, 91, 112, [113|, and growing domains, e.g., |38, 39],
have been performed. Here we follow the description of Turing pattern formation
in [106).

In general, diffusion is considered to have a stabilizing effect on a system of differential
equations. However, for the principle of Turing pattern formation the opposite is
the case: Turing pattern formation takes place when a uniform steady state which is
linearly stable in the absence of diffusion looses its spatial stability in the presence
of diffusion. This process is called diffusion-driven instability and generates spatially
inhomogeneous patterns. It has to involve at least two different substances with
different diffusion constants D4 # D;, where often the substance A is called the
activator and the substance [ is called the inhibitor. The corresponding nonlinear
reaction terms are denoted by F'(A,I) and G(A,I). Then the entire system reads

% = DAAA+ F(A, ),
% = D;AI +G(A, ).

For the diffusion-driven instability we take d := I[))_i € R, and consider the system

of reaction-diffusion equations in its non-dimensional form

ou

— =A :
U Aty f ), (3.5)
—g;} =dAv+ vg(u,v), (3.6)

where the parameter v € R, results from the inclusion of a typical length scale
in the non-dimensionalization of the original system and thus represents the size
of the considered domain. These equations are accompanied by the homogeneous

Neumann boundary condition

(n-V) (“) =0 ondQ

with the outward unit normal vector n to the domain boundary 02 and appropriate

initial conditions u(x,0) and v(x, 0).
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3. Mathematical background

The two-dimensional system without diffusion reads

du dv

e vf(u,v), — = 9(u,v),

and thus the spatially homogeneous steady state (ug,vy) can be determined as the
positive solution to the condition f(u,v) = g(u,v) = 0. In order to investigate the

stability, we linearize around the steady state (ug,vg) to obtain

U — Ug
W =
vV — 1
and thus for |w| small, we have that
w; = yAw, where A= (fu f”) : (3.7)
(w0,v0)

Gu  Gu

At

with the Jacobi matrix A. We look for solutions w o e in order to investigate

how the spatial derivation from the equilibrium (ug,vy) evolves in time. Then
the eigenvalues A determine the stability behavior of the noise. Eigenvalues with
R(A) < 0 at the steady state w = 0 mean that the steady state is linearly stable

and the perturbations decay to zero as t — oo.

When we substitute the form of the solutions into Equation (3.7)), we obtain from
det(yA — AI) = 0 that the characteristic equation reads

22— Y (fu + gv) A+ '72 (fugv - fvgu) =0.
—_—— —_———
=tr(A) =det(A)

The eigenvalues Ay and A, are calculated as
Ay = %7 [tr(A) + {tr(A)? — 4det(A)}”2}
and R(\) < 0 if
tr(A) = fu+tg, <0 and  det(A) = fugy — fugu >0, (3.8)

which needs to be satisfied in order for the homogeneous stationary state without
diffusion to be linearly stable. Therefore (3.8]) imposes restrictions on the parameter

range.
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3.2. Pattern formation and bifurcations

In the restricted parameter range we then analyze the full system of Equations ({3.5))—
(3.6) by linearizing about the steady state w = 0, which gives

10
w; = D Aw + yAw, where D = (0 d) . (3.9)

For the problem with diffusion we search for the roots A of the characteristic

polynomial
det(A\ — vA + Dk*) =0, (3.10)

which depends on the wavenumber k. Furthermore, we define W(r) to be the

time-independent solution of the spatial eigenvalue problem
AW + E*W =0, (n- V)W =0 on 09. (3.11)

For example, if we consider a one-dimensional domain 2 = (0, p) where p > 0, with

zero flux boundary conditions, then W  cos (%), where n is an integer. With

the wavenumber k = %”, we define the wavelength as w = 27” = %.

In a finite domain there is a discrete set of possible wavenumbers since n is an

integer. Since the problem is linear, the solutions are of the form
w(r,t) = Z cre™ Wy (r).
k

Here W(r) denotes the solution of (3.11]) corresponding to k, A denotes the eigen-
value for temporal growth and the coefficients ¢, are determined by a Fourier
expansion of the initial conditions in terms of Wy(r). Then Equation (3.10)) follows

by substituting w(r,¢) into Equation (3.9 and using (3.11]).
From Equation (3.10)) it follows that
N+ AR (L +d) = y(fu+g0)] + h(k*) =0, (3.12)

where h(k?) := dk* — y(d f, + g,)k* + y? det(A). We now have to find A such that
R(A(k)) > 0 for some k = kr # 0 for the diffusion-driven instability. We calculate
the dispersion relation A = A\(k) as

A= = [(1+d) = 1(fu + 9.)] £ \/IR(L+d) = 7(Fu+ 9 — 4h(k2).  (3.13)
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3. Mathematical background

Thus R(A(k)) > 0 can be obtained if h(k?) or the coefficient of X in Equation ((3.12))
are negative. However, due to the constraints in the case without diffusion, the
coefficient of X is greater than zero and thus we need h(k*) < 0. Since from
Equation (3.8)) we know that det(A) > 0, we find the additional condition

dfu+g,>0=d#1. (3.14)

Furthermore, in order to be able to achieve that h(k*) < 0 for some nonzero kp with
k¥ < k2 < k32, we need the minimum hy;, = 2 [det(A) - %] to be smaller

than zero and therefore we obtain the condition
(df, + go)* — 4d det(A) > 0. (3.15)

Thus we can state the following theorem [106]:

Theorem 3.2.1. (Turing bifurcations)

Let the matriz A satisfy fu, + g, < 0 and fug, — fogu > 0. Let furthermore d > 0,
d # 1 and df, + g, > 0. Then there are diagonal matrices D as introduced in ,
such that for certain k2, the matriz YA — k*D has eigenvalues with positive real part
iof d satisfies

(d fu+go)? > 4ddet(A).

Let us assume that f, > 0 and g, < 0. Then from the first condition in and
from , it follows that d > 1, which means that the inhibitor diffuses faster
than the activator. The critical wavenumber, at which h;, = 0, is determined from
k2=~ (d%(cm)lﬂ. For d > d. a band of unstable wavenumbers k appears, which

represents a saddle-node bifurcation. Then the Turing solutions are of the form
Z e th (r) for large t,

since their behavior is determined by the eigenvalues with R(A(k)) > 0. The
conditions and f evaluated at the spatially homogeneous stationary
state (ug,vo) thus determine if a Turing pattern is formed. We can determine the
relevant discrete wavenumbers k, and thus also the relevant eigenfunctions, on

a finite domain, which tell us which spatial patterns are the ones that establish
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3.3. Pattern formation for nutrient-dependent bacterial diffusion

(a) Pattern for (ns, D) = (1,0.2). (b) No pattern for (ng, D) = (1, 3).

Figure 3.2.: Turing pattern simulations for Equations f with standard
diffusion and parameters as in Figure |5.1} The initial nutrient concen-
tration is ng = 1 and D denotes the relation between the bacterial and
nutrient diffusion coefficients.

themselves. The relevant band of unstable wavenumbers, in which the dispersion

relation is positive, is given as

k% = Q_Zl [(dfu +gv) - ((dfu +gv)2 - 4ddet(A))1/2} < k2

< 55 (@ fu+90) + (@ fu + 9.) = dddet(4))2] = k.

Depending on the geometry of the domain, the eigenfunctions are determined
analytically or numerically [106]. As seen above, Turing bifurcations happen when
h(k?) becomes negative. For h(k?) = 0 the linearization has a vanishing eigenvalue
at the bifurcation point, i.e., ®(A) = 0 and F(\) = 0, due to Equation (3.13]).
Bifurcation analysis can be performed for each system parameter found in one of
the conditions , and . As an example of such a bifurcation analysis,
we perform a detailed Turing analysis in Chapter [5. This stability analysis is used
to obtain the pattern formation results depicted in Figure where standard

diffusion simulations for two parameter sets are displayed on a rectangular domain.

3.3. Pattern formation for nutrient-dependent

bacterial diffusion

In several papers on bacterial colony pattern formation such as , , , 102],
computationally derived bifurcation diagrams are presented, but the conditions for

instability are not derived in a formal way. The models in [98] (99} [102] consider
the bacterium B. subtilis, where five main morphological patterns are observed:

The diffusion-limited aggregation, the Eden, the concentric ring, the disk and the
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3. Mathematical background

dense branching morphology patterns. Some of these patterns, but not all of them
at once, are achieved in the numerical simulations of the models. We will see in
Part [[I] that our detailed reaction-diffusion system is able to reproduce the whole
spectrum of different pattern types at once. The corresponding simulation results
are depicted in Figure {.20] of Section [4.6.3]

The models in [82} 84} 98] vary in the number of equations considered. Apart from the
concentrations of nutrients n and bacteria b, which are always included, sometimes
also two separate bacteria concentrations of replicative and non-replicative bacteria
are considered [98|. For the bacteria diffusion coefficient, both density-dependent
terms of the form V- (bVb) |84] and terms of the mixed form V- ((1+w(x))nbVd) [82]
are found. Further aspects are addressed in the papers by Ben-Jacob et al. |12,
13} |14], where it is assumed that the bacteria produce a wetting layer of fluid that
leads to a diffusion term of the form V - (I"Vb) with the exponent v € Ry [14].
Here [ denotes the height of the lubrication layer in which the bacteria swim and
the influence of chemotaxis on branching and chiral patterns is considered [13|
14]. In |12], a connection between bacterial pattern formation and Hele-Shaw cell

modeling including surface tension is established.

Following the idea of [82], in this thesis we consider a bacterial diffusion coefficient
which is dependent on both the nutrient and the bacteria densities. This form is
due to the observation that bacterial movement is impeded if b = 0 or n = 0. Thus
we have a diffusion term of the form V - (enbVb), which leads to a system related

to the simple form

% =V - (onbVb) +cf(n,b), (3.16)
g—’z = An — f(n,b), (3.17)

where possible approaches for f(n,b) are a term of the form f(n,b) = nb or a type 11

term of the form f(n,b) = lfi’m

Another possible approach [73| to determine when bacterial pattern formation takes
place is to consider existence and uniqueness in the sense of weak solutions to a
model with a bacterial diffusion term of the form V - (dyn®b*Vb) with d, € R, and
the exponents «, 3 € R, in the domain  C R? |73]. Here assumptions on the
reaction terms as well as on the regularity of the initial data guarantee existence

and uniqueness of the solutions in the weak sense. A crucial assumption is the
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3.4. Instabilities arising from front propagation

simplified subcritical growth assumption, which reads |73]

24+«
142
in the two-dimensional case for a reaction term of the form f(n,b) = ﬁf—"i:
n

with a € Ry, ¢ € RY. Under several assumptions, which include the subcritical
growth assumption, it is shown in [73] that the solutions exhibit no blowup in finite
time, which means that they exist globally and are bounded in finite time. The
corresponding numerical simulations show circular growth of the bacterial colony. If

the condition is violated, finger-like patterns with and without blowups are observed.

However, for Equations ({3.16)—(3.17) it holds that « = 8 = 1. Furthermore, the type
IT reaction term introduced above corresponds to a = ¢ = 0 and is not admissible.
Another assumption in [73| is the assumption 8 > 2, which is not met here and

thus the main theorem of the paper cannot be applied to the case V - (enbVb).

In the following, we look for a different way to analyze the onset of pattern formation,
investigating closely the dependence of fingering patterns on the strength of the
bacterial diffusion for the bacterial diffusion term V - (onbVb). We aim to take
into account the special geometry of an initially circular bacterial colony, where the
instability develops from the front between the bacteria and the agar solution in the
domain [102] [103]. As we will see in Part [T} the evolution of the instabilities from

the moving front can be investigated analytically by a front instability approach.

3.4. Instabilities arising from front propagation

The principle of instabilities arising from front propagation is observed in several
physical settings such as Hele-Shaw cells or solidification processes. In addition,
several instabilities arise indirectly from the presence of interfaces such as the
Rayleigh-Bénard convection instability, which develops in flat liquid layers heated
from below and the Taylor-Couette instability, which is found where a viscous fluid
moves between two rotating cylinders [138]. This motivates us to investigate models

derived from the physical processes involved in colony growth in Part
The instability responsible for viscous fingering processes in a Hele-Shaw cell is

the Saffman-Taylor instability |11}, [121]. The higher the velocity and the lower

the surface tension, the more unstable or chaotic behavior is observed at the
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3. Mathematical background

interface [16]. A measure that is used in experimental studies to determine if the

1

flat interface is unstable is the parameter & as defined below. The interface is

considered unstable if

é = 12%(%)2 > (21)?,

where V' denotes the velocity of the interface, T' the interfacial tension, p the
viscosity, w the width of the cell and b the plate spacing in the Hele-Shaw cell [137].
It is observed that fingers become unstable at large values of 1/B and small values
yield a semicircular interface [137]. Some mechano-chemical models, which combine
mechanical modeling with reaction-diffusion equations, have been introduced in |41}

42, [131] for skin morphogenesis.

3.5. Finite element methods

Finite element methods rely on the weak (or variational) formulation of a problem
under investigation in appropriate function spaces |22]. In the weak formulation,
well-behaved test functions are introduced and an integral formulation is considered,
where derivatives can be shifted to the test functions by partial integration. For
the discrete numerical procedure the problem is then solved on a finite-dimensional
subspace of solutions. On the two-dimensional domain under investigation, a mesh

of triangles or rectangles (quadrilaterals) is generated.

First let us introduce the necessary function spaces [22, 24} |60]. Let in the following
) C R? denote the bounded Lipschitz domain under investigation with the boundary
0€). Then the Lebesgue spaces of integrable functions over ) for 1 < p < oo are
defined as

Q) {u: Q- R: [ |JuPdx < 0o}, p < 00
' {u: @ — R :ess sup{|u(x)|,x € Q} < 00}, p:oo’

where ess sup{|u(x)|,x € Q} = infacq ua)=0SUPxeoy 4 [u(X)| With the Lebesgue

measure ((A) of A. If a function is locally integrable, it belongs to the space
L. ={u:ue€ LK), K C compact},
which is of special importance for the definition of the weak derivative of a function.

In two dimensions, let & be a multiindex o = (a1, ) of order |a| = oy + ay = k.
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3.5. Finite element methods

Then for x = (x,y)? we define the a-th partial derivative of a function as

dlolu(x
D%u(x) := —aalxﬁ(ajy'

For u,v € L},. we define the a-th weak derivative of u, i.e., D*u = v, as the function

v that satisfies
/ uD%¢ dx = (—1)l / vpdx Vo € C2(Q),
Q 0

where C2°(£2) denotes the space of infinitely differentiable functions with compact
support. If a function v is a derivative of u in the classical sense, it is also a weak

derivative of u.

The spaces of the functions that are locally integrable and for which the weak
derivatives for all multiindices up to order k exist and belong to LP(€2) are called
Sobolev spaces

WEP(Q) :={u € L, : D*u € LP(Q), |a| < k}.

loc

The case p = 2 stands out, as in this case the norm on the Sobolev space induces

a natural inner product. The resulting spaces are the Hilbert spaces denoted by
HE(Q) == Wk2(Q).

Now we can introduce the variational formulation for a boundary value problem on
) C R? given as

-V - (A(x)Vu) = f in Q, u =0 on 09,

for A(x) € R?**? symmetric and uniformly positive definite, i.e., A(x) > ol for
some oy € Ry, and f sufficiently smooth. The continuous variational problem can
then be restated in the weak form as:

Find the solution u € V := H'(Q) such that

a(u,v) = Il(v) Vv eV,

where v are the test functions and a(u,v) := [, AVu - Vodx and l(v) := [, fvdx

denote the bilinear form and the linear form, respectively.
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The theorem of Lax-Milgram yields the existence and uniqueness of a solution to
the problem in the weak form and reads |22 24, [34]:

Theorem 3.5.1. (Laz-Milgram)

Let V' be a Hilbert space, a : V x V — R a continuous coercive bilinear form with
la(u,v)] < allullvivlly  and  a(u,u)| = eolfully

for u,v € V' and positive constants cy,co and | a continuous linear functional. Then

it exists a unique u € V' such that
a(u,v) = l(v) YveV.

For time-dependent problems, the derivative with respect to time has to be dis-
cretized using an adequate scheme. Such a scheme can be the explicit or the implicit

Euler scheme or the Crank-Nicolson scheme.

We look for the solution in the standard finite element space of continuous piecewise

polynomials of degree k called Vi¥ C V| where
ViF = {v, € HY(Q) : vp|p € PR(T), T € Tr}.

Here (7,)n>0 denotes the family of triangular meshes obtained through uniformly
refining a conform triangulation of the domain 2. The accuracy of the discrete
solution u;, depends on the degree k of the piecewise polynomials contained in the
approximation space as well as on the mesh size h. In the following, we use linear

polynomials and denote V}, := V}! for ease of notation.

In this case the discrete variational problem reads:
Find the solution u, € V}, such that

a(up,vp) = U(vy) Yo, € V.

If the set {¢1,...,¥n} describes a basis of V},, we rewrite the above variational

problem in terms of the basis of V}, and obtain the system of equations

N
> aly i)z =1,  i=1,...,N,

Jj=1
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3.5. Finite element methods

Figure 3.3.: Triangular finite element 7}, € T;, with three nodes N}, i =1,2,3.

using that u, = Zjvzl zj1;. This means that it is enough to consider the problem in
terms of the basis functions. If the bilinear form is given as a(u,v) = [, Vu- Vo dx
and the linear form is given as [(v) = fQ fvdx, the corresponding system of equa-
tions can be written in matrix-vector form as Sz = b. Here S denotes the stiffness
matrix, which is given as S = ([, V¥;(x)V¥;(x) dx);;, and b = ([, fo; dx); de-
notes the right-hand side load vector. Then the integration for the weak problem is

performed using routines for the expressions of the basis functions.

The size of these expressions depends on the number of nodes considered, as for
linear polynomials each basis function can be chosen to correspond to one node [22].
For N nodes the matrix for a scalar problem has the size N x N and the load vector
is of size N x 1. Let us consider a single triangle 7, with the nodes N} = (i, y}),

1 =1,2,3 and the corresponding linear non-zero hat functions

v

=97 (af + blx + cly), i=1,2,3.

Then the weights a, b} and ¢} are chosen as

t ot t t t ot t t ot t
a1 = ToYz — T3Ys, by = Ys — U3, €] = T3 — Lo,
t bt t ot ot t t ¢ t
Ay = T3Y1 — T1Y3, by = Y3 — Y1, Cy = T — Ty,
t bt t ot ¢t ¢ t ot t
ag = T1Yy — ToY1, by = Y1 — Yo, C3 = Ty — Ty,

such that we have ¢j(Nj) = d;; for 4,j = 1,2,3. This is due to the fact that the

area of the triangle 7T; can be described as

1 t t
T3] = 5 [det |7 ™
Dy 4y
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with the vectors p' = (p,p})" and q' = (¢}, ¢})" as depicted in Figure (3.3, For the

gradients we obtain
1 (b
Vit = “,
Yo <c§>

and thus, from the three non-zero hat functions, the triangle 7; contributes nine

integral terms to the stiffness matrix S. Large calculations can be simplified when
performed on a reference element, which is most often defined as the triangle with

the vertices (0,0), (1,0) and (0, 1), where the linear basis functions are chosen as

Yy =, Wy =y and Y3 :=1—x—y.

Then an affine transformation is used to bijectively map the vertices of a triangle

T; onto those of the reference triangle.

3.6. Level set methods

Level set methods offer an elegant way to track the motion of an interface. In
the following, we introduce the level set method in two dimensions following the
approach as stated in [130] and shortly discuss the theoretical and computational

advantages of the approach.

Let now the speed of propagation of a curve in normal direction be defined as
F =F(L,G,I), depending on the local (L), the global (G) and the independent (I)
properties of the curve. Then we distinguish between the boundary value and the
initial value level set formulations. The boundary value formulation is appropriate
whenever the curve will not pass a point x € R? twice, i.e., F' > 0 always holds. In
this approach, the position of the front can be characterized using the arrival time

T(x) at a point x as
VT|F =1

since VT is orthogonal to the T level sets and its magnitude is inversely proportional
to the speed T'. It also holds that "= 0 on I', the initial location of the interface
and the front I' is in general given as I'(t) = {x : T'(x) = t}. The front motion can

thus be described as a boundary value problem.
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4

(a) k= 0. (b) k = 200. (c) k = 350.

Figure 3.4.: Three-dimensional level set cone simulation of the constant velocity
expansion of a two-dimensional circle in time on a quadratic domain.
Time step increasing from left to right.

If the speed F' is not strictly positive or negative, we cannot use the boundary value
formulation, but need to use the initial value formulation, which can be stated as
follows:

We define the higher-dimensional function ¢ and define the front as the position of

its zero level set
o(x(t),t) =0, (3.18)
e, I'(t) = {x: ¢(x,t) = 0}. Applying the chain rule to Equation gives
¢+ Vo(x(t), 1) - % = 0,

which can be reformulated, using that F' = x; - n with n = %, as

when ¢(x,t = 0) is given.

A straight-forward example for the extension of the problem by one dimension is a
circle, whose radius grows. As depicted in Figure [3.4] starting from a circle in the
two-dimensional plane, as time progresses the growing circle forms a descending
cone in (x,t) coordinates. At a fixed time we consider cross sections through this
cone corresponding to the position of the circle in x-coordinates at the fixed time.

Numerically, level set methods are often considered in the context of finite difference
methods, e.g., [130} [136], but also finite element approaches are available, e.g., [52,
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69, 107). Both presented schemes allow for explicit implementations, which can be
made more efficient by the use of adaptive strategies. Furthermore, the normal

direction of the moving front is easily calculated as

VT Vol
and the curvature as
vT Vo
k=V. W —— or k=V+ =,
VT Vol

respectively. While the initial value approach is suitable whenever the speed function
F' can be negative and positive, the boundary value approach is advantageous since it
requires no time step and hence does not need to fulfill the Courant-Friedrichs-Lewy
(CFL) stability conditions [130].
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Modeling with reaction-diffusion

equations
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4. Detailed system of
reaction-diffusion equations for

Staphylococcus aureus

Systems of reaction-diffusion equations, such as the ones introduced in |14} 82} 84}, 99,
102|, represent the standard approach for the study of bacterial pattern formation.
While these models include partial differential equations for the nutrients as well
as subgroups of the bacteria population, they do not take into account the roles
of the bacterial biofilm and quorum sensing in pattern formation. Since biological
evidence [37| (100, (127 |151] points towards an important role of these factors in
bacterial colony growth, and consequently also in bacterial pattern formation, their

roles are in the following considered more closely for the bacterium S. aureus.

This chapter contains results included in the submitted publication "A beautiful
human pathogen: Staphylococcus aureus" |109] by the author with T. Horger and
C. Kuttler and in the submitted publication "From Staphylococcus aureus gene
regulation to its pattern formation" [110] by the author with T. Horger and C.
Kuttler.

4.1. Model setting

In the following, we extend an existing modeling approach |65] for pattern formation
in S. aureus, which is similar to the approaches in [98, |102]. We concentrate on
the effects of gene regulation systems and derive terms for the development of the
biofilm and quorum sensing substance concentrations, which are vital factors in
bacterial colony growth |50} |65, 151] and thus in pattern formation. So far the
system in [65] includes equations for the nutrient concentration, the replicative and
the non-replicative bacteria densities and the concentration of the quorum sensing
substance, which are denoted by the variables n for the nutrient concentration, the

variables b and s for the densities of replicative and non-replicative bacteria and
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

the variable ¢ for the quorum sensing substance, respectively. However, in [65] the
evolution of the quorum sensing substance is considered in a generic way. The

system in [65] is of the form

on

E = d,An — Gy gl(nv b) g2(‘])’ (4.1)
% =V (D3(n,b)Vb) + G2 g1(n,b) g2(q) — a(n,b), (4.2)
0s

5% = V - (D3(b)Vs) + a(n,b),, (4.3)
% = dyAq + f2(b, q), (4.4)

where the diffusion rates are given as

Dsy(n,b) := onb and Ds3(b) =7

with the parameters o,7,bs € R,.. The term Ds3(b) represents the movement of
the non-replicative bacteria, which is assumed to be a result of the non-replicative
bacteria being pushed by the replicative ones. If the concentration of replicative

bacteria b(x,t) is zero, this diffusion coefficient is zero as well. The replicative

bacteria growth term g;(n,b) := 1f:n for v € RY and the term

b
(1+2)(1+2)

az

a(n,b) :=¢ (4.5)

as well as the bacterial diffusion term V - (onbVb) in [65] are chosen according
to [102], [98] and [82], respectively. Here and in the following, we assume all param-

eters to be non-negative as customary for the modeling of biological systems.

The complete replicative bacteria growth term fi(n,b, q) in |65] is of the form

A = o Banle) = 1 (14— ). (46)

i, as above and ga(q) is defined as g2(q) :== 1 + .—5,. While

the first factor g;(n,b) represents a Holling type II response term for the limited

where g;(n,b) =

consumption of nutrients by the bacteria, the second factor g»(q) is chosen to account
for the decrease of nutrient consumption with an increasing concentration of the
quorum sensing substance concentration ¢. In [65] the quorum sensing substance

concentration is modeled using standard diffusion, which is adequate due to the
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4.1. Model setting

small size of the molecules, and a generic quorum sensing term [59, 104] of the form

2
q
fa(b.q) = (a + 5—) b — pqq.
Giny + @ '
This term shows that there is always a basic production of the quorum sensing
substance by the bacteria and that the production of the quorum sensing substance
is subject to a positive feedback loop, where an increased quorum sensing concen-
tration leads to a further increase of the production. Furthermore, the last term in

f2(b, q) represents the decay rate of the substance.

Our aim for the modeling in the following sections is to obtain a quorum sensing
reaction term, which is derived directly from the regulation processes in S. aureus
bacteria and which is thus specific for this bacterium, instead of using a generic
term. Furthermore, we include a new equation for the concentration of biofilm
substance in the system, since biofilm is an important factor in bacteria colony
growth. We also include the effects of biofilm and quorum sensing substance as
we replace the diffusion coefficients d,, and Dy(n,b) by newly derived coefficients
Dq(f) and Dy(n,b,q). The spatial spread of biofilm and quorum sensing signaling
molecules is assumed to be sufficiently well described by standard diffusion. For the
reaction terms in the equations for the nutrient concentration, the replicative and
the non-replicative bacteria densities, we use the terms introduced in [65]. Thus,

the new extended system consists of five equations and is of the form

on

i V- (Di(f)Vn) — Gy fi(n,b,q), (4.7)
% =V - (Dy(n,b,q)Vb) + G fi(n,b,q) — a(n,b), (4.8)
% = V- (Ds(b)Vs) + a(n, b), (4.9)
g 0 o
g_{ — dsAf + f3(n,b,q, f), (4.11)

where the terms f5(b, q) and f3(n, b, q, f) and the coefficients D;(f) and Dsy(n, b, q)

are derived in detail in the following sections.

Biofilm formation plays a crucial role for the development of an accurate and
detailed model since the biofilm component constitutes the environment in which

the bacterial colony grows and develops its characteristic features. Experimental
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

investigations of the role of biofilms in the growth of bacterial colonies extend to
several types of bacteria |46, [L00] and for our derivation of the additional equations
in the pattern formation model, we take into account investigations of bacterial
biofilms in the species S. aureus and B. subtilis. This is due to the fact that the
Gram-positive bacterium B. subtilis is closely related to S. aureus and that its
biofilm formation has been investigated in more detail in comparison to S. aureus
biofilm formation, which is often considered with a focus on its role in MRSA
strain infections [5|. The replicative bacteria are the only bacteria able to produce

biofilm, such that a non-zero density of these bacteria is necessary for biofilm growth.

Furthermore, quorum sensing signaling molecules impede the attachment and
development of a biofilm. Quorum sensing is mainly performed by the agr operon in
S. aureus, a process which has been investigated in |21, |150, |151]. A mathematical
model of the process was established in |76| and asymptotically analyzed on different
time scales. Out of the timescales analyzed there, the time scale corresponding
best to the processes considered in this modeling approach is the time scale of the
approach to the steady state. On this timescale the reduced model consists of six
ordinary differential equations, which describe the evolution of the concentrations of
mRNA cytoplasmic and transmembrane AgrB, AIP-bound receptor, phosphorylated
AgrA and free AIP. The concentrations of transmembrane AgrC, anchored AgrD,
cytoplasmic AgrA and up-regulated cells assume fixed values on this time scale.
Then the development of the concentration a of the free quorum sensing signaling
molecule AIP in time is described depending on the concentration S of anchored
AgrD and the concentration R of transmembrane AgrC as |76|

%:ﬁ_f (%—F)\R—%—)\S) — Q. (4.12)
Equation indicates that there are many interdependencies. Thus this equation
cannot be used without considering the evolution of the system in order to express
the production of free AIP molecules. However, we aim to establish a form for
the development of the concentration of AIP that can stand for itself, depending
only on the AIP concentration and external factors like the nutrient or bacteria
concentrations, while still taking into account the main processes involved. The
equation for the AIP concentration then has an effect on the biofilm formation,

since the repression of the agr system is necessary for the formation of biofilm [21].

The overall ability of bacteria to form biofilm is dependent on the particular carbon
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4.2. Derivation of the system of equations

source in the system as well as the laboratory strain used in the experiments. The
biological experiments were performed using several mutants of the Newman strain
of S. aureus on a tryptic soy broth (TSB) medium at 37°C. In this context a mutant
is a bacterium in which one or several gene loci are disabled, e.g., an agr mutant is

a bacterium which does not perform quorum sensing due to a disabled agr locus.

Biofilm is often produced by only a part of the bacterial population. If the bacterial
population divides into a subpopulation of extracellular matrix (ECM) producers
and a subpopulation of non-producers, the matrix producing bacteria are able to
profit from the non-producing population by releasing antimicrobial agents against
the non-producers and thriving on the molecules released by the lysed cells [94].
Constrained cell death in this situation leads to an accumulation of by-products,
which makes the growth of the colony saturate and results in wrinkling on the
colony surface [46]. Furthermore, the matrix-producing cells have a slightly higher
division time [94]. Since this behavior is mainly observed in competitive situations
with different strains, we do not include a differentiation into matrix producing and
non-producing cells, but assume the production to be proportional to the number
of reproductive bacteria. While the population, and with it the biofilm, grows,
on top of the biofilm a thin film of liquid is formed. In the final stages of colony
growth, water repellent hydrophobins can be found on top of the colony [148|. This

facilitates nutrient transport in the bacterial colony.

4.2. Derivation of the system of equations

In the following, we consider the different regulation systems involved in the biofilm
formation of S. aureus bacteria as depicted in Figure [{.1] first by themselves and

then concerning the interactions between the systems.

S. aureus bacteria perform quorum sensing via the two regulation systems agr and
luxS. While the agr system is only found in the Staphylococcus genus, the luxS
system is found in many bacterial species. Quorum sensing systems regulate the
behavior of the bacterial population in response to its own density by the help of
signaling substances. The quorum sensing substance used in the [uzS system is
AI-2 and the corresponding substance for the agr system is AIP. These substances
are produced with different aims. The goal of the agr system is to repress biofilm
formation and determine the structure of the biofilm, mainly using the regulation
factors PSM-a, PSM-S and d-toxin. In S. aureus, the luzS system regulates the
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus
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Figure 4.1.: Gene regulation in S. aureus. External influences written in blue,

resulting variable stress written in green, output substances of a cell
colony written in red. Red, blue, green and yellow areas indicate the
agr, sarA, sarA homologue and ica regulation subsystems, respectively.

gene transcription of CP5, a capsular polysaccharide which is a cell wall compo-

nent responsible for interaction with the host immune system during the invasive

process [153]. Also according to [153], the [uzS system is clearly involved only in

the production of capsular polysaccharide. Since we consider bacterial growth in a

laboratory setting, this pathway is not included into the model. Quorum sensing

induced biofilm structuring is important under the aspect of pattern formation since

it enhances the speed of nutrient transport in the biofilm [147].

The mediation of initial biofilm adhesion and aggregation into multicellular struc-

tures depends on a multitude of biophysical processes. Furthermore, initial adhesion
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4.2. Derivation of the system of equations

depends on the surface on which the biofilm grows: On biotic surfaces media-
tion takes place by Microbial Surface Components Recognizing Adhesive Matrix
Molecules (MSCRAMM), while on abiotic surfaces Bap protein is an important
regulator [43]. Due to the influence of physical factors, we do not consider initial
adhesion in detail. Other surface molecules such as exopolysaccharides (EPS) and
poly-N-acetylglucosamine (PNAG) homopolymer or polysaccharide intercellular
adhesin (PIA) regulate biofilm aggregation. PTA controls the intercellular adhesion
and is synthesized at the ica gene locus. There the icaADBC operon encodes
the enzymatically active membrane proteins IcaA, IcaD and IcaC as well as the
extracellular protein IcaB [44]. The protein IcaR is a transcriptional repressor of ica
transcription, whose expression is regulated by the alternative sigma factor o [44].
IcaR inhibits the expression of the icaADBC operon. The agr system is responsible
for the formation of PSM-a and PSM-/3 molecules involved in biofilm structuring
and dispersal [115]. The sarA homologues regulate the production of protein A as

well as the transcription and translation of a-toxin.

In our numerical simulations in Section [4.6] we investigate the effects of mutations
in the ica, spa, psm-a, psm-f and agr gene loci on bacterial pattern formation.
Therefore in the following considerations of gene regulation mechanisms, we are
especially interested in the quorum sensing substance AIP, the PSM, the biofilm
component PTA and in the concentration of protein A and reduce the full system

to account for these components.

For all concentrations of proteins and RNA, we consider concentrations of molecules

3 or mm?) in the dimensional model setting. Only

per volume unit (in this case cm
the proportions of up-regulated cells are considered as non-dimensional values. The
translation and transcription rates are measured in units translated /transcribed per
second and the same applies for the uptake, degradation and dilution, separation,
unbinding and (de)phosphorylation rates. If several molecules are required for a
certain process to take place, we adjust for the additional units by taking appropriate
units for the corresponding rate constants, e.g., the constant £ in Equation (4.20))

for the production of AIP from AgrD and AgrB has the unit [k] = cm®

molecules-second *

4.2.1. The agr system

An approach to modeling the S. aureus agr quorum sensing system, which is de-
picted in the red area in Figure can be found in [76]. The system of ordinary
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

differential equations is developed for the situation of a well-mixed environment with
sufficient supply of ribosomes, such that at each pass the entire strand of mRNA is
translated. These assumptions are reasonable also for our model. We start with an
approach similar to [76] for modeling the agr system in the following, which is then
adapted to our purpose of not only reducing the system, but finding single equations
for some of the regulating factors, that include the effects of other regulatory systems
in S. aureus. We consider the processes in a population of bacteria with a fixed
number of cells, where a proportion of the cells is up-regulated for the activity of
a regulatory system, such as the agr system, that uses phosphorylated AgrA for

up-regulation.

Parameter Rate constant for Parameter Rate constant for
b. gene locus up-regulation u. gene locus down-regulation
m. basal production of mRNA v. regulation-induced transcription
6. degradation and dilution K. translation

Table 4.1.: Recurring parameters in the regulation systems.

In the following, the basic binding speed at a gene locus is denoted by b.. It can
be increased, depending on the binding of external substances to the promoters.
In this process, the regulation of the binding speed depends on the amount of
mRNA in the system, as well as on internal cross-regulation mechanisms with
other regulatory subsystems. In the same way, down-regulation is proportional to
the number of up-regulated cells and can be increased by the presence of certain
substances. Furthermore, the degradation and dilution rate of a substance is always
denoted by the parameter d.. For simplicity, the interaction terms in the model are
chosen according to the law of mass action, without an explicit saturation term.
Table describes the meaning of typical recurring parameters and an overview of
the agr regulation equations is depicted in Figure [4.2] Here the system influences
are depicted in red, while the equations for the output variables, whose influence is

considered in the following, are depicted in blue.

Let P,, denote the proportion of up-regulated cells due to binding at the agr
promoter with the binding speed by4-. Let furthermore Rs denote the amount
of mRNAIIIL. Then in the basic model, in contrast to the approach in [76], we
include multiple influences on the binding, resulting in the agr up-regulation
activity, denoted by [agr+] > 0, and the agr down-regulation activity, denoted
by [agr—] > 0. This allows the proportion of up-regulated bacteria to increase

depending on the up-regulation factors as well as to decrease in proportion to the
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4.2. Derivation of the system of equations
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Figure 4.2.: Differential equations for gene regulation in the S. aureus agr subsystem.
System influences in red, equations for output variables in blue.

down-regulation factors and the amount of up-regulated cells. The proportion of
up-regulated cells is always between 0 and 1 since at P4, = 0, the derivative is
positive and negative at F,, = 1. Thus, if the proportion of up-regulated bacteria is
zero, no further down-regulation is possible and, if it is one, no further up-regulation
is possible. In Figure [4.1, we see that activity at the agr operon is positively
influenced by the amount of mRNAIII (R3), phosphorylated AgrA (Ap), SarA
([SarA]) and SarU ([SarU]) |25] and negatively influenced by the concentration of

oB ([o®]) |20]. Therefore we state our modeling approach as

l[agr+] := R3 + [SarA| + [SarU] + Ap, [agr—] = [07], (4.13)
dPugr

dtg = bygrlagr+](1 — Pug) — Uagr[agr—]Pagr, (4.14)
dM.

dtQ = Nmy + NvgPagy — Op, Mo, (4.15)

where N denotes the amount of bacteria per volume unit and msy denotes the
basal production rate of mRNAII. The term [agr+] is kept as simple as possible in
that the influences of the substances are considered independently of each other.
Equation describes the increase of the proportion of up-regulated cells, which
is proportional to [agr+] and the amount of down-regulated cells 1 — B,,,., and
the decrease of this proportion, which is proportional to [agr—] and the amount of
up-regulated cells F,,4. The corresponding proportionality constants are denoted
by bagr and u,g,, respectively. In Equation for the amount of mRNAII
(Ms), the first term denotes the basal production and the parameter vy denotes the
up-regulation velocity of this production by increased agr activity. Furthermore,
the last term —dyz, My describes the degradation and dilution of mRNAIL.
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

Variable Concentration of Variable Concentration of
Pogr agr up-regulated cells Mo mRNATI
B AgrB D AgrD
C AgrC A AgrA
a ATP R AgrC-AIP complex
Ap phosphorylated AgrA Rs RNAIIIT
Ppsy PSM up-regulated cells Mpsm PSM mRNA
[PSM)] PSM f amyloid fibrils
[0-toxin] d-toxin [SarA] SarA
[SarU] SarU [0P] oB

Table 4.2.: Variables for the agr subsystem as described in Section m

As it can be seen in Table [£.2] in the following the concentrations of the proteins
AgrB, AgrD, AgrC and AgrA are denoted by B, D, C and A, respectively. These
proteins are produced by the P2 operon transcription and translation of mRNAII
(Ms). While AgrB is a membrane protein, AgrA can be phosphorylated by AgrC
(with bound AIP) and the quorum sensing substance AIP is produced from AgrD
under the influence of AgrB, which is represented by the terms £kDB in Equa-
tion and Equation . Since we assume that the entire strand of mRNA
is translated at each pass, we assume the translation rates to be of the same order

K, and obtain

dB

o Ky Ma — 0B, (4.16)
D

Cil_t = ks My — kDB — 0pD, (4.17)

dc

E = K)MQMQ — 50& + ’)/R - 500, (418)

dA

% = HJMQMQ + uAp — ¢AR — (SAA (419)

Here the variables a, Ap and R denote the concentrations of AIP, phosphorylated
AgrA and AIP-bound AgrC, respectively. AIP is bound to AgrC (+5Ca) in a
reversible (+yR) binding and the phosphorylation and dephosphorylation of AgrA
are modeled as ¢ AR and +uAp. For the concentrations of AIP, phosphorylated
AgrA and AgrC-AIP complex we obtain

d
d—‘z — kDB — M\a — Ca + R, (4.20)

dA

d—tP — QAR — uAp — 04, Ap, (4.21)
dR
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4.2. Derivation of the system of equations

where the constant A\, denotes the degradation of AIP outside the cell.

We furthermore include the production of the biofilm-promoting phenol-soluble
modulins (PSM) from AgrA, which are responsible for biofilm structuring and
dispersal as well as the production of amyloid fibrils [116, [125]. The regulation of
PSM is not directly dependent on the agr locus since the transcription is independent
of the concentration of RNAIII [116]. We obtain

dPZ;:M = bpsmAp(1 — Ppsy) — upsyPrsu, (4.23)
d]\/ZSM = Nmpsy + Nvpsy Ppsv — Onpsy, Mpsur, (4.24)
w = rkpsuMpsy — Spsu[PSM], (4.25)

% = Coger D[PSM] — 0. (4.26)

The S. aureus agr regulation of PSM genes occurs independently of RNAIII and
is regulated by direct binding of the AgrA response regulator [119]. The PSM are
expressed from several discrete loci in the S. aureus genome, which, due to their
size, have only been discovered recently [125|. They stabilize the biofilm to the
influence of mechanical stress and enzymatic degradation [125] and their production
is positively influenced by agr activity. It was observed that PSM and the N-
terminal amphipathic leader of the AgrD propeptide (N-AgrD) amino acid sequence
aggregate to form amyloid fibrils, which are strongly resistant to degradation [126].
Due to the amphipathic a-helical structure of PSM, PSM can lyse eukaryotic cells,
such as neutrophils, monocytes and erythrocytes, by non-specific destruction of

biological membranes [54].

Apart from the P2 operon transcription considered above, we account for the P3
operon, which influences the production of protein A and a-toxin. The P3 operon is
responsible for the formation of the untranslated RNAIII, which is an intracellular
effector that up-regulates extracellular protein genes and down-regulates cell wall
colonization factor genes |76]. RNAIII experiences transcription but not translation,
which allows it to base pair with other mRNA strains in order to inhibit encoding
of virulence factors [146|. Nevertheless d-hemolysin (HId)/d-toxin is encoded by
RNAIII by translation after a conformational change [15].

The transcription of d-toxin and a-toxin is derepressed during the exponential
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

growth phase [93] and the inhibitor d-toxin is one of the hydrophobic PSM [111].
The protein d-toxin is encoded by the gene hid located within RNAIII (Rs), and
we thus obtain the amount of d-toxin by transcription from RNAIII. This gives the
equations

dRs

W = ng + NUgPagr — 5R3R3, (427)

d[d-toxin)]

dt = RR3R3—5

s-toxin [0-toxin], (4.28)
where the rate constants in Equation (4.27) are defined analogously to those in
Equation (4.15) for the concentration of mRNATI.

4.2.2. The sarA system

In this section we investigate the sarA regulation subsystem as depicted in the
blue area in Figure [4.1] S. aureus biofilm formation is essentially dependent on the
staphylococcal accessory regulator sarA, while a minor role is also attributed to
the oB-operon [142]. Furthermore, the production of biofilm in Staphylococci is
a reaction of the bacterial population to environmental conditions, including the
availability of salt and glucose, oxygen and iron and the pH environment [144]. In
the following, we include the influence of environmental factors on the sarA system.
To this end the formula

[str] := a| T — T\e| + Blosmolarity] + v|pH — pH,ef| + d[ethanol]

is used to model the stress on the system. Here T denotes the temperature in
degrees Celsius and for the temperature as well as for the pH level, we consider
derivations from a reference equilibrium value. The dependencies are modeled
using independent linear terms with the corresponding dimensional rate constants
a, 3,7,0 € R,. Note that, in contrast to salt concentration, osmolarity depends on
the temperature of the medium. It is inversely proportional to temperature and
high concentrations of NaCl can lead to salt stress. We do not set up a differential
equation for [str| since we assume that the included values are constant in a labora-
tory medium. Furthermore, we choose the parameters such that the values for [str]

are between 0 and 1.

Stress is a regulator of the production of the rsbU gene product, which together

with the rsbV and rsbW gene products, influences the expression of the o®-operon,
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4.2. Derivation of the system of equations

Variable Concentration of Variable Concentration of
[str] stress in the system [C4] RsbW-RsbV complex
[C5] RsbW-o 8 complex Prou | RsbU up-regulated cells
Mpspu RsbU mRNA [RsbU] RsbU
[RsbV] RsbV [RsbWV] RsbW

P, sigma up-regulated cells M, sigma mRNA
Poora sarA up-regulated cells Mara sarA mRNA

Table 4.3.: Variables for the sarA subsystem as described in Section m

responsible for the regulation of sarA transcription, in a competitively inhibitory
process. The regulation of rsbU activity in S. aureus is different from that in
B. subtilis [114] and thus investigated in detail in the following. An overview of
the variables considered in the sarA subsystem can be found in Table [£.3] and the
principal equations are depicted in Figure [£.3]

dProy _ . dMpshy 7 Ny M ,| dRsbU] __ . y 5
[,% =by (1 - PI{sbL") — Uo Prabv ‘ ((# = Nmrav + NVrshv Prevv — 51\1,7“,:3’[1@&1/ ‘ ‘[d%] = Kpswv Mrsiu — ORshU [RSI?U]

dephosphorylation

. - binding ; -
S J<—>{ ABIV] _ o Ap L RsbU] — d[RsbV][RsbW] — Sy [RsbV]

inding -:ompetition

4B — (b + by[C1)) 11(1 = Py) = woPy |—{ Bl = Nomg + Nug Py = b1, My |—

Aol — i M, — 6, (0" ‘

d[Sar A . | AMyarn _ T . . Iy dPgrs B
580 Moot — ralSar Al ] 250 = N + NtsaraPrar s = 00t Maae [ 25 = byaral0®)(1 = Prara) = hars Pars |

Figure 4.3.: Differential equations derived from gene regulation in the S. aureus
sarA subsystem with oZ. External influences in green.

The RNA polymerase (RNAP) core enzyme and the oP-factor can associate to
form an RNAP holoenzyme [128], which recognizes promoter regions in the DNA,
initiating transcription [46]. The regulatory protein RsbW binds to o at the
rate ko if the environmental stress on the system is low, keeping it from aggre-
gating to the RNAP core enzyme. The corresponding complex is denoted by Cj.
If the stress increases, RsbU dephosphorylates RsbV, such that RsbV can bind
to RsbW. The complex O is formed at rate k; and the activated o factor is
released, which then binds to the RNAP core enzyme, forming an RNAP holoen-
zyme [85]. Thus ¢% and RsbV compete for the binding with RsbW. All bindings as
well as the dephosphorylation are assumed to be reversible. If the binding occurs

at a certain rate k;, i € {1,2}, then the rate for the reverse process is denoted by k_;.

We set up differential equations for the complex formation processes. Similar to the
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

well-known Michaelis-Menten framework, we obtain

d[dC;] = —k_1[Cy] + k1 [RsOW|[RsbV],
% = —k_2[Co] + ko [RsbW][0”].

We assume that the rates of complex formation k; and ks depend on the stress
level of the system. This means that the more stress, the higher the binding rate
k1 of RsbW and RsbV, and the lower the binding rate ky of RsbW and oZ. We
assume that the unbinding rates for both complexes are independent of the stress
level and of the same order as the basic binding rates denoted by &) and k). Since
the stress level [str] is between 0 and 1, we model the binding rates as ki = [str]k}
and ko = (1 — [str])kY. The processes of binding and unbinding happen very fast
and are thus assumed to be in equilibrium. It follows that the values K; := kk—j for

i € {1,2} are taken as

RsbW][RsbV] K, — [RsbW] [aB]_

[CY] ’ [Cs]

K, = [ (4.29)
This means that the equations for the complex formations do not have to be
considered any further. The values K;, which describe the relationships between
binding and unbinding for the respective complexes, depend on [str] as a consequence
of the dependence of the k; on [str]. Due to mass conservation for o, [RsbV] and
[RsbW] 101} /105|, the following equations with the constant dimensional parameters

09, g and ry hold:
[UB] + [Cs] =00, [RsbV]+ [C1] =wvo, [RsbW]+ [Ci] + [Co] = ro. (4.30)

We thus express the amount of molecules of the complex [C4], composed of [RsbW]
and [RsbV], in dependence on the concentrations of [RsbV] and [¢%] molecules. The

higher the concentration of [C}], the more transcription happens at the o”-operon.
Using Equations (4.29)-(4.30) and multiplying by 8 =1 we obtain the formula

[RsbV]/ K, [RsbV][str]

O =M RV + 1R~ T RtV [str] + [0P](1 = [otr])’

where the parameter r( carries the dimension of [C}]. Here we set the basic binding

and unbinding constants kY and k_; from above to be equal, which results in the
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4.2. Derivation of the system of equations

fact that the constants

1
and Ky, = ;
1 — [str]

are inversely proportional to [str] and (1 — [str]), respectively. We model a system
of competition, where the up-regulation of translation levels depends on the stress
levels. We know that the amount of [C}] is in the interval (0,1) if ry is chosen
appropriately as g € (0,1] and [RsbV] # 0. In order to consider the proportion

of complexes in relation to the amount of biomass, we further set the value of r( to 1.

Additionally, we include the number of up-regulated cells P,. The o®-operon,
consisting of rsbU, rsbV, rsbW and sigB, is controlled by two different promoters.
The entire strand is transcribed from the o4-dependent promoter sigBp;, while part
of it, i.e., rsbV, rsbW and sigB, is also transcribed from the o®-dependent promoter

sigBpg. Both promoters show a rapid response to environmental stress [128].

In our system, the stress [str] is a non-zero quantity. We thus model the increase
in sigB transcription from the different promoters using different up-regulation
mechanisms. While the binding rate constant for the up-regulation of RsbU
production in Equation is expressed as by[str|, the rate constant for RsbV,
RsbW and ¢® in Equation is of the form (b + b, [C1])[str]. This is due to the
fact that transcription from the P3 promoter is increased because of the formation of
the holoenzyme from ¢? and polymerase core enzyme. The corresponding amounts
of mRNA are denoted by Mggy and M,. Here Pgryy denotes the proportion of
bacteria whose RsbU production is up-regulated and P, denotes the proportion of

bacteria whose production of RsbV, RsbW and o7 is up-regulated. We obtain the

system
dPrs
C];th = bo[StT](l — PRst) — UOPRst7 (431)
dP,
= (bo + b, [C4])[str](1 — P,) — ug Py, (4.32)
dMp,
d]; Y — Nmgauw + Nvgsy Prss — IMpoo MRshU s (4.33)
dM,
L = Ny + Nog Py = 5y, M. (4.34)

Environmental stress leads to a direct activation of the promoters. In S. aureus,
overexpression of RsbU is sufficient to trigger an immediate and strong activation

of 0P [128]. This can be explained by a basal transcription of rsbU from the
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

o4-controlled P1 promoter at rate xpsyMpssy. The protein RsbU then dephos-
phorylates RsbW to allow binding of RsbW to RsbV at rate ki[RsbV]|[RsbW].
Then this enables the release of o® at rate k_5[C,], which forms a holoenzyme at
rate ky[oP][RsbW], which can induce transcription at the P3-promoter. Therefore,

B increases with the concentration of RsbU, without any

the amount of active o
significant influence from the ratio RsbV/RsbV-P of standard and phosphorylated
RsbV. The level of this basal activity is higher than the corresponding level for
B. subtilis, which activates stress-induced o”-transcription due to a shift in the
RsbV /RsbV-P ratio [114]. In addition, and in contrast to the case in B. subtilis, it
was found that stress activates o®-dependent transcription, which takes place at
the rate k,M,, but is not accompanied by a strong accumulation of RsbV, RsbW,

and o® |114]. The increase in 0B~ dependent transcription is modeled by the factor

[str] in Equation (4.32)).

Only the dephosphorylated amount of RsbV is counted and we thus assume that
the amount of RsbV is a direct consequence of the availability of RsbU, which
dephosphorylates RsbV-P. We thus take the transcription term /iUMJﬁ[Rst |. If
the cell is in an unstressed state, most of the RsbV is phosphorylated by RsbW [114]
at the rate d[RsbW][RsbV]. In the unstressed as well as in the stressed cell, the
RsbV /RsbV-P ratio is approximately 0.22 if RsbU is present. This ratio cannot be
changed remarkably due to stress in S. aureus, only very high RsbU levels permit
an increase up to 0.35, which was considered to not be significant [114]. Due to this
fixed relationship, we do not model the amount of phosphorylated RsbV explicitly as
it can be calculated from the amount of dephosphorylated RsbV at any time. Stress-
induced binding of RsbV and RsbW is included using the rate ki [RsbV][RsbW]
and the corresponding unbinding process has the rate k_;[C}]. Rate constants d.
denote the degradation rate constants of a substance. The Equations —
for [oP], [RsbV] and [RsbW| are simplified considerably by taking into account that

Al = 0 and 42l = 0. This yields

d[RsbU]|

FT Krsiy Mpsvr — dpsvr[RsOU], (4.35)
d[UB] B B
7 = KJMU — k?g[O' HRSbW] + k_Q[CQ] - 50[0' ]
= koM, — 0,07, (4.36)
1
% = I{UMU@[RS[)U] - (d + kl)[RSbV] [RSbW] + k’_l[Cl] - 6Rst [RSbV]
1
= KUMG@[RSZ)U] — d[RsbV][RsbW] — dpspyv [RsDV], (4.37)
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4.2. Derivation of the system of equations

d|RsbW
[ ;t b, - (k1 [RsbV] + koo B]) [RsDW] + k_1[Ch] + k_o[CY]
— Opshw [RsOW]
= kg Mo — Opspw [RsOW]. (4.39)

The DNA binding protein SarA is transcribed via three overlapping transcripts at
the sarA operon, denoted by P1, P2 and P3. While the P1 and P2 promoters are
o“-dependent, the P3 promoter is positively regulated by o [32]. Thus, the basic
transcription is independent of the level of ¢ and additional transcription takes
place at increased concentration levels. SarA also activates its own expression |25|,
but this is neglected here for the sake of model simplification. At the transition from
exponential growth to late exponential and stationary growth, the sarA transcription
shifts from the o4-dependent promoter to the o?-dependent promoter.

We obtain

dPsarA

dt = bsa'rA [UB](l - Psa'rA) - usa'rAPsa'rA7 (439)
dMsar

dt A = NmsarA + starAPsarA - 5MSMAMSQ7’A7 (440)
d A
% - HsarAMsarA - 5sarA [SCLTA] (441)

The resulting equations are depicted in Figure[d.3] We have seen that SarA positively
influences transcription at the agr locus. In the following section, we will see that
the protein SarA also positively influences transcription at the ica locus and is thus

a principal regulator of S. aureus biofilm formation.

4.2.3. The ica system

The intercellular adhesion (ica) locus depicted in the yellow area in Figure is
part of the accessory genes, which means that it cannot be found in every bacterial
strain |7]. Nevertheless it is found in most S. aureus strains [44] and it is necessary
for biofilm production [29]. In Figure the principal equations for the ica system
are depicted and an overview of the used variables can be found in Table [4.4]

The transcription at the ica locus is a direct consequence of the concentrations
of 0B and SarA. It is a requirement for the synthesis of the main extracellular
polymeric substance component polysaccharide intercellular adhesin (PIA/PNAG).
In the ica operon of S. aureus and Staphylococcus epidermidis (S. epidermidis),

the ica genes icaA, icaD, icaC and icaB are transcribed divergently from the gene
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

‘ AR — o1 Micat — OicarlLcaR)

dMica1 _ . 5 ] dPicay _
‘—{ = Nmijcar + Nica1 Picar — ;o0 Micar “—{ el = bica1 (1 = Pica1) — Wica1 Pical

dpd‘;“ = bicaz([Sar Al + Ticar )(1 = Picaz) = ticaz[IcaR]* Picaz }—" d‘“i{f“z = NMiica2 + NVicaz Pica2 — Onyons Mica2 ‘

J

‘ APIAL _ 1 11eaADBC] — (6pra + S0aa) PIA] ‘<—{ deadDBC) _ (o Moy — SeanppolIcaADBC] ‘

Figure 4.4.: Differential equations derived from gene regulation in the S. aureus
tca subsystem. External influences in green, system influences in red,
equations for output variables in blue.

icaR [44]. Many proteins directly and indirectly influence transcription at the
1caADBC operon. Among the proteins included in our model, especially SarA has
a direct influence through binding to the icaADBC promoter region and is thus
included in Equation . Nevertheless, the transcription of icaR is unaffected by
the deletion of sarA for both S. epidermidis and S. aureus [44]. The influence of o
may be considered indirect |44] since the ica locus does not have a corresponding
binding site [29]. The IcaR dimers bind in cooperative pairs to the icaADBC' opera-
tor, where they inhibit transcription [44]. Thus, we use the quadratic term [IcaR]?
in Equation for [ica2—]. In S. epidermidis the activity at the icaR locus
is reduced by environmental stress, especially high levels of ethanol but remains
unaffected by changed concentrations of NaCl and glucose. Furthermore, IcaR has
no effect on the expression of its own gene in both S. aureus and S. epidermidis.
In contrast, the concentration of glucose does have a small effect in S. aureus [44],
where increasing levels of glucose lead to less repression by IcaR. In Equation (4.42))
we model the positive influences of the SarA and nutrient concentrations on the
gene locus with the weight r;..2, since the nutrients do not bind at the promoter
site. For the nutrient concentration n, we assume that the up-regulation due to

nutrients can be described logistically.

Variable Concentration of Variable Concentration of
n nutrients Picat icaR up-regulated cells
M;car icaR mRNA [IcaR) IcaR
Pica2 icaADBC up-regulated cells Moo icaADBC mRNA
[IcaADBC] IcaADBC [PIA] | polysaccharide intercellular adhesin

Table 4.4.: Variables for the ica subsystem as described in Section .

The synthesis of PIA is achieved by a combination of all products of the icaADBC
gene cluster. While the proteins IcaA and IcaD are necessary for the expolysac-
charide synthesis, IcaC translocates the poly-N-acetylglucosamine polymer to the

bacterial surface and IcaB deacetylates the molecule, enabling fixation to the bacte-
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4.2. Derivation of the system of equations

rial cell surface [44]. The icaADBC cluster genes are thus modeled together with

the concentration [[caADBC| and we obtain the system of equations

n

[ica2+] := [SarA] + ricaan(1 — Fn)’ lica2—] := [IcaR]?, (4.42)

df;;al = bica1(1 = Pica1) — Uica1 [517] Pica1, (4.43)

d];i;ﬂ = bicaz[ica2+](1 — Pica2) — Uicaz[1ca2—] Picas, (4.44)

d]\;[;cm = NMica1 + NVica1 Picar = OM;e01 Micar, (4.45)
% = NMicaz + NVicaz Picaz — 0,0 Mica2, (4.46)
d[IS?R] = Kica1 Mica1 — Oicar|IcaR)], (4.47)
W = KicazMicaz — dicarppc|[caADBC], (4.48)
d[IZA] = Y[IcaADBC] — (0pra + Sada [5[221] )[PIA]. (4.49)

The constants b;.q1 and b;.q2 denote the binding speeds at the icaR and icaADBC
loci. A remarkable observation in some strains is that, while in combined sarA
and 0P mutants, the overall biofilm formation attributable to PIA is decreased
following decreased ica activity, the decrease is strongest for sarA mutants. For
mutants only in o?, the least decrease is observed. This may be explained by an
intermediate substance that would either degrade the PIA product or repress the
PIA synthesis, the production of the intermediate substance being up-regulated by
[0P] and down-regulated by [SarA] [142]. We model this by an additional factor

[o”]

5addm in the equation for the PIA production. This factor is close to daqq if
[0P] and [SarA] are present at similar levels and greater than ,qq if the level of
o is higher than that of [SarA]. If the concentration of [o”] is smaller than that
of [SarA], the factor is less than d,qq. Since it is uncertain if this factor has a
negative influence on the production of PIA or if it increases the degradation of the
PIA already produced, both approaches are valid and for simplicity we choose to
describe the influence as an additional degradation term. For our purpose, we can

simplify even more by observing that the amount of [SarA] is only up-regulated

by the amount of [¢?]. Thus we take lim;_, % = limpy_ oo % = const. when

the number of bacteria N increases with time. With the additional death §,qq We

obtain the approximation

d[PIA]
dt

~ Y[ IcaADBC] — (dpra + 0aaa)[PLA].
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

4.2.4. The sarA homologue system

In this section we model the sarA homologues depicted in the green area in Fig-
ure [4.1] There are at least nine major sarA homologues, including sarR, sarS,
rot, sarT, sarU, sarV, mgrA, sarX and sarZ. The gene loci sarS and sarT are
adjacent, but transcribed divergently [95]. Furthermore, while no differences in
expression among strains can be observed for the sarA, sarT and sarU genes |9),
other homologues behave differently in different strains of S. aureus. We thus
include the genes sarT and sarU into our model. The genes mgrA, rot, sarZ, sarR
and sarS are expressed in all strains, but the level of expression varies from strain

to strain [9]. As a representative of this group we include the sarS gene.

Variable Concentration of Variable Concentration of
Pt sarT up-regulated cells Marr sarT mRNA
[SarT) SarT Porv sarU up-regulated cells
Mo sarU mRNA [SarU] SarU
Piors sarS up-regulated cells Mors sarS mRNA
[SarsS] SarS Pspa spa up-regulated cells
Mpa spa mRNA [protein A] protein A

P hla up-regulated cells Mpq hla mRNA

[a-toxin] a-toxin

Table 4.5.: Variables for the sarA homologue subsystems as described in Sec-

tion @

Very delicate interactions take place between the sarA homologues, which include
interactions with the agr regulation system. They have an influence on the pro-
duction of protein A (via spa) and a-toxin (via hla). The variables included into
the model can be found in Table and an overview of the regulation processes is
depicted in Figure

The sarA-agr network is responsible for the expression of cell-wall associated
adhesins during exponential growth and the expression of secreted enzymes and
toxins in the transition to post-exponential growth [124]. SarA directly regulates
the expression of sarS and sarT. The transcription at sarT is further reduced by a
high activity of the agr quorum sensing system. SarT binds to the sarS promoter,
increasing its activity and SarS influences the transcription of spa. The transcription
of hla depends on the level of SarT. This is expressed in the following system of

equations

dP sarT

dt == bsarT(l - PsarT) - USC”«T([SCL?”A] + R3)PsarT7 (450)
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4.2. Derivation of the system of equations

‘ dp;“,‘;w = bsarv(1 = Psarv) — tsarv [SarT) Pogrus }—»‘ ‘“"{;;ﬁ” = Narvr + NVsart Psarvr = Ont, 0 Msarv }—" % = kMg — Osaru[SarU] ‘

[sarU—]

‘ % = kMqrr = Osarr[SarT) “—{ (m(ifﬂ = Nigarr + NVsart Poart — 001,00 Msarr

<—{ Lot — by (1 = Paarr) — tsarr([SarA] + Rs) Paarr

[sarS+]
[hla—]

Bhuia — bria([SarA] + Rs)(1 = Pua) — wnia([SarS] + [SarT]) Pua

dt

[ L= = by s[SarT)(1 = Paaes) = tars([SarA] + ) Prrs |

“ J

AMoars _ N /
‘ oS = Nigars + NVsars Poars — 001,005 Msars

) J

[hla—]

\ A = Mo — Opars[SarS) }—{[ at] B = by SarS](1 = Papa) — tpa([SarA] + Ra)Pepa

AMpia ) 5 Y
‘ T = Npta + NVniaPuia — a0, Mhta ‘

dlproteinA] ; i AMue A N C
‘ Aol einA) — Ny — Sprora[proteinA] ‘*—{ 228 = Niapa + NVspa Papa = 31,0 Mipa

Ao=ton] — iRy Mg — Gafox — toxin])

Figure 4.5.: Differential equations derived from gene regulation in the S. aureus sar
homologue subsystems. System influences in red, equations for output

variables in blue.

CU\/;;—S:TT = Nmsarr + NVsarr Psarr — On,yp Msarr,
% = kMorr — Ogarr[SarT),
dP;_;TU = byt (1 = Prartr) — tsarr[SarT] Puagr,
CM/‘C[Z—?TU = Nmsarv + NVsarts Psarr — OM g, Msaru s
% = kMgary — Osarv[SarlU],
% = boars[SarT](1 — Paurs) — tsans([SarA] + Rs) Pars,
% = Nmsars + NVsars Pears — M, 0,5 Msars,
% = kMsars — Osars[SarS].

(4.51)
(4.52)
(4.53)
(4.54)
(4.55)
(4.56)
(4.57)

(4.58)

SarA has a further direct influence on its homologues since it binds to conserved

regions termed Sar boxes within promoter regions of the genes encoding protein A

and a-toxin [53] in the same way it binds to the promoter region for agr. Furthermore,
mRNAIII regulates the transcription and translation of a-toxin [25]. We obtain the

equations
[spa+] := [SarS], [spa—] := [SarA] + Rs,
C”; " Dopalispat (1 = Papa) = tspal5pa—]Prpa,
d]\;[]‘;pa = Nmgpa + NVspa Popa — Ont,pe Mispa,
W = KkMspa — Oprota[protein A,

(4.59)

(4.60)
(4.61)

(4.62)
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

[hla+] = [SarA] + Rs, [hla—] = [SarS] + [SarT], (4.63)
Pl by [hlat)(1 — Praa) — walhla—) Pr (4.64)
d]\;[:la = Nmpia + NnaPhia — 0y, Mhta (4.65)
w = kR3 My, — 0, ]c-toxin). (4.66)

4.3. Non-dimensional equations

In this section we non-dimensionalize the dimensional model introduced in Sec-
tion in order to reduce the number of parameters in the system. It is important
to choose an appropriate time scale, since we want to consider all subsystems on the
same time scale. We further note that the processes in our model take place on very
different time scales. In the following sections, we also consider the orders of the
speeds of the different processes in order to justify time scale induced simplifications
of the model.

An important assumption is that the new timescale is the same for all subsystems.
Since often several proteins are translated from neighboring strangs of mRNA, we
conclude that the mRNA are very similar and assume that the degradation rates
of the mRNA needed for protein formation are the same in all subsystems. Thus,
while we use different variables, such as d,s,,,, for the sarA subsystem or dyy,,,,
for the ica subsystem, in the following it is important to keep in mind that all
these parameters are assumed to be equal to d,,. Accordingly we choose the new

timescale |76]
T = 5M2t,

where dp, = 0ry = OMpsyy = OMpuy = OMioyy = OM,,,p- Lime scale values for specific

non-dimensional parameters of the model can be found in |70, |76].

4.3.1. The agr system

Following [76|, for the agr subsystem we first determine the stationary states of the
system in the case k = 0 and F,, = 0 and then use these as the starting values of the
system. We non-dimensionalize with respect to the starting values. Due to k& = 0,
the stationary values for a, R and Ap equal zero, i.e., a(0) = R(0) = Ap(0) = 0. We

choose the non-dimensionalizations for these variables in order to simplify our system
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as much as possible. Further the notation X’ denotes the non-dimensionalized form
of the original variable X. We find the following non-dimensional equations for the

agr subsystem:

dPa r
d—Tg = b;gr[agr—i_]/(l - Pagr‘) - u;gr [agr—]lpagm (467)
dM;
dT2 - 1 + U/Pagr - Méa (468)
dB’
= NMj — B, (4.69)
ap’
— =AM - D)~ KD'B, (4.70)
dCl / 12 ! ! ! ! D/
o = MM O = O AR, (4.71)
A
W N0 - ) 4 iy SR, (172
da'
% —KD'B — )\;a/ o B’C”a’ + 7/77R/7 (473)
A
ddTP = /AR — [/ Ap — M}, (4.74)
dR' /
dr %Cla' — (Y + MR (4.75)

In these equations, as we use non-dimensional variables, we also employ new

parameters, which are given as follows:

N\ 04 0 _dc _Op _Oap _ Or Yoo bagr N3
‘ 5M2 5M2 5M2 5M2 5M2 5M2 , “r 512\42 7
o Uggrka N My o V2. 1o kB _ kNmaK r_ P
agr (5M2505Mg ’ o ’ (51\42 5]2\/[2 53 ’ (5]\42 ’
N = al , = T = BC = 6Nm2/£M2’ ¢ = ¢C and n:= 6—D.
“ N, 0, On, (5]2\4250 On, oo

This means that also 04 = dp = 6c = dp = d4, = dr and i = 1, which is reasonable
since the dominating factor is the dilution, which is the same for all substances. For

the remaining reparametrizations we obtain

1= Omdp Al = oy g Swde p

a = s =
NmaKag, NmaKag, NmaKag,

The resulting system is depicted in Figure 4.6, We furthermore reconsider the

activation and deactivation factors as well, since the new timescale applies and the
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

variables are rescaled. Thus we obtain

N N o'vo

lagr+]" = 6m3 (Ry + a([SarA] + [SarU]) + Ap)) and [agr—] := —577; i [05],
Rs3 ocOM,

where the parameter « is defined as a := ’g—;‘ and assumed to be equal for all

substances X € {[SarA],[SarU], Ap}. This is detailed in Section [4.5.1]

dPpsy 3y 1 o
‘ S = bpgpn Ap(L = Ppsur) — Wpgp Prsu ‘

T — % U B0 (o + VR
dA, /

My ‘
= =14 vpgy Prsv — Mpsy = =dAR — (W + M)A

SN \(Mpp — [PSM]) L \DIPSM) - )| | % =KD'B - na - #C + 7R

¢)phosphorylation

‘ W NMf— A) + A — YAR | |2 =M, — D)~ KD'B

dr dr

2 =2 - B)

| =0 -C) - ZCd R

G =1+ 0P — M, ‘1[‘5’;‘;“'"]/ = MR}, — [6 — toxin]')

AL I

‘iZ“T“ = Vo, [Ry + a([Sar Al + [SarU] + Ap)|(1 = Pagr) — Uagr[0”] Pagr }—»‘ % =14 5P, — R}

Figure 4.6.: Nondimensional differential equations derived from gene regulation in
the S. aureus agr subsystem. System influences in red, equations for
output variables in blue.

In the same way as above, we non-dimensionalize the equations for the PSM and
for d-toxin, where we also choose the new time scale 7 = dpt = dp,t = dprpg,, -
We non-dimensionalize using again the stationary points, this time assuming in

addition that Ppgy; = 0. The resulting equations are

dP / / /
;TSM = UpsnAp(1 — Ppsar) — upsyPrsu, (4.76)
dM; , ,
d—iSM =1+ vpsy Pprsy — Mpgys, (4.77)
d[PSM] , ,
ALY _ \0py — (PST). (178)
df/ / !/ !/
L —\DIPSM] - f), (4.79)
dR}
d7'3 =1+ UéPagr - éy (480)
d[0-toxin]’
% = A(R, — [5-toxin]'), (4.81)
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with the new parameters

N\ dpsm 0 Os—towin Voo bpsy Nmakar, ,_ Upsm
=3 =5 =5 ) PSM *= T s s s y  Upsy = on
Mpsn Mpsn R3 R3CVM;CVA R3
v . UpsSM and v, = i
PSM ‘= 3= .
mpsm ms

Since in this case all stationary state components are greater zero, the reparametriza-
tions are achieved from the stationary points. For the next system of equations
we need the values of [str] and the availability of nutrients. These quantities are

already given as non-dimensional values.

4.3.2. The sarA system

The next subsystem to be non-dimensionalized is the sarA system of regulation with
the competitive interaction between o® and RsbV for RsbW. The non-dimensional
equations with the assumptions Prgyy = P, = Psyya =0 and d = by = by, = bggra =

0 and the new timescale 7 = 0yt = dprp,,,, ¢ are of the form

dlzf:w = bo[str](1 — Prevr) — uoPrsbu, (4.82)
Wo — ty + 1, st~ o) — P, (153
% = 1+ Vo Prstr — Mpaur, (4.84)
dji\z‘; =1+ v, Py — M, (4.85)
ARSTY N — (RO, (4.56)
%f]/ =AM = [0"]), (4.87)
% = A(M.[RsbU]' — [RsbV]) — d'[RsbV]'[RsbWT, (4.88)
ARSWY _ Mty — (rabw), (489
% = Vgralo®) (1 = Puara) — Wy a Peara, (4.90)
% = 14 VgaPaara = Mig,a, (4.91)
SO My — [Sara]). (492
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where we use the new parameters

b/ R bo I Uo bl o bU / L VRsbU
0 =5 y o Uy = 5 R VRsbU -= )
MRspu MRspu MRspu MRsbU
N\ = 5Rst - 50 - 5Rst - 6Ris - 5sa'rA / L bsarANma/iU
T - - - - ) sarA T ¢ ¢ ¢
6MRst 5M¢r 6MRst 5MRst (5Msm"A 6MRst6C"6Mo'
g d[RsbW]  drk,Nm, ;o Usara 4 o o Vsara
T (5 - (5 5 (5 ) Usara = 6 an VsaraA *= .
MRspu Mpspy Y RsbW UM, MRspu MsarA

4.3.3. The ica system

The ica regulation system is non-dimensionalized using the assumptions P, =

Picoo = 0 and b;eq1 = bicaz = 0 and the new timescale 7 = 1t = dpy,.,,¢ to obtain

the system
dPicq
dr - = b;cal(l - Pical) - u'/ical [Str]f)icala (493)
dP'L'caZ / . / / : /
d = bica2 [an2+] (1 - PiCd?) — Ujea2 [an2_] Pica27 (494)
T
dM’!
T =1t Pt = M, (1.95)
dM’!
e T (1.96)
d[IcaR]
% - )‘(Mi/cal - [ICCLR]/)a (497)
d[IcaADBCY
% = \(M.,, — [IcaADBCY), (4.98)
i
d|[PIA]
[ . L o\(IcaADBCY — (PI1AY), (4.99)
T
where we introduce the new parameters
/ L bical / L bicaQNmsarAK'sarA / L Ujcal
ical * 7 ’ ica2 T ) Wil *= )
5Mical 6Mica2 6Msa'rA 63(1774 6Mica1
u/ - uicaZN2mlzcal’%?cal ! i Vical U/- — Vica2
ica * 5Mica2 6?\4ica151'2€aR ) ical * mical’ ica * Micas
and )\ — 5icaR _ 57§caADBC’ _ 5PIA _ 5add
' 6Mica1 5Mica2 6Mica2 6Mica2 '

The non-dimensionalization for [ica2+| is considered separately due to the de-

pendence on the nutrient concentration n. From Equation (4.42) we know that
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4.3. Non-dimensional equations

[ica2+] = [SarA] + rice2n(1 — ). The reparametrization yields
sar N sar.
bica2 [ZCCL2+] = bica2 (%[SGTA}/ + Tz'ca2n(1 — %))
- b;,ca2 ([SGTA]/ + T;ca2n(1 - Ki)) - bzca2 [an2+]/'

Inserting into the differential equation, we verify that the reparametrizations

b/ L bica2/€sa7"ANmsarA o bica2 [S&A] and 7"/ Tica2
ica2 * - ica2 *
55aT’A5MsarA 5Mica2 5Mica2 [SG’TA]

are a good choice. Note that, in the partial differential equation model (4.7)—(4.11]),

the concentration of nutrients is also non-dimensional.

4.3.4. The sarA homologue system

For the sarA homologues sarT, sarU and sarS, the corresponding equations are
non-dimensionalized with the assumptions Psyr = Psorr = Psars = Pepa = Phia = 0

and b; = by = 0 taking into account the new timescale 7 = dp,t = 0ar,,.,t as follows:

We assume that the degradation times for the sarU and sarS mRNAs are the same

as the degradation time for the sarT mRNA and obtain the system of equations

dPsar
e L = 0,(1 = Puyr) — th(a[SarA) + R})Perr, (4.100)
M/
d dSm«T — 140, Py — M o (4.101)
T
d[SarT
AT Ny~ [S0rTY), (1102)
=
dPsar
= Y =¥ (1 = Puv) — v, [SarT) Pogro, (4.103)
M/
d dsarU — 1 + U;m«UPsaTU _ M;aTU, (4104)
T
d
—[SC‘ZU] AM.,; — [SarU]), (4.105)
dPsar
p 5 = W[SarT) (1 — Purs) — uy(a[SarA) + Ry)Pars, (4.106)
dM;ar
dr 5= =1+ UsarSPszer - ;aT‘S? (4107)
d
DS My~ [Sars]), (1.108)
dr
dP,,,
dTp = by[SarS) (1 — Pya) — up(a[SarA]' + R}) Papa, (4.109)
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

dMp, : ,
dr 1+ 0 Popa — My, (4.110)
d[protein A]’
w — A(M,,, — [protein A]'), (4.111)
-
d P
d:‘l = by(a[SarA]' + R3)(1 — Pua) — uy([SarS) + [SarT]") Pua, (4.112)
dMj
d:la =1+ U;LlaPhla - Mi/zlm (4113)
d]a-toxin]’
dlo-toxinl’ _ \ apr _ factoxin]), (4.114)
dr
The relations between the parameters such as 2¢Z- and 5ijarU are comparable and
sarT sarU
we thus simplify in the following by assuming that these and similar fractions take
the same value. With the expressions [SarT| = =Nl and [SarS) = ;= Mears
MgqrrOSarT Mgqrg9SarsS

we obtain that in the above system the new parameters are calculated from the old

ones as follows:

b/ . bsarT o bsarU b/ L bsarS[Sd\;ﬂT] bspa[Sd}S] o bhla[Sd}T]
1 2 -

= - ) ’
5Msa'rT 5MsarU 5Msar5' 5Mspa 5Mhlu
u/ L Uhla[SGTT] o usarU[SaTT] U, L usarTNm?) o usarSNm?) o uspaNmS
1= - ’ 2 - - )
5Mhla 5MsarU 5Msa7‘T 5R3 6Msa'rS 5R3 5Mspa. 5R3
o= KsarA v . UsarT v . Usaru v . Usars V= Uspa
T ) sarT ) sarU ) sarS T ) spa " )
5sarA MsarT MsarU Msars Mspa
/ Uhla 5SarT 6SarU 5Sa7‘S 6protA 5a
Vhlg i= and )\::6 =5 =5 =5 =5
Mhla Msar Msarvu Msars Mspa Mpq

Note that in the following sections, we use the non-dimensional parameters and
variables, while omitting the dashes on both the variables and the parameters for

notational convenience.

4.4. Rescaled equations

As in Section we keep the separation into subsystems and aim to reduce the
submodels such that the remaining equations are those for the evolution of the

concentrations of substances that influence another submodel.

For example the influences on the agr-system are the amount of bacteria and the
amounts of the proteins SarA ([SarA]) and SarU ([SarU]). From this subsystem,
we would like to keep the equations for the substances PSM ([PSM]), amyloid fibrils
(f) and d-toxin ([0-toxin]) as well as the equation for mRNAIII (R3). Furthermore,

the sarA system depends on the stress and nutrient levels and we are interested in
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4.4. Rescaled equations

the concentration of SarA. The ica system uses the concentration of SarA and from
this system the PIA concentration ([PIA]) is obtained. The sarA homologue system
requires the concentrations of mRNAIIT and SarA and yields the concentrations of
protein A ([protein A]), a-toxin ([a-toxin]) and SarU. Our goal for the entire system
is to achieve equations for the variables [PSM], f, [6-toxin], [PIA], [protein A] and
[a-toxin| dependent on the external stress ([str]), the concentration of nutrients (n)

and the amount of replicative bacteria b in the full model.

First we determine the timescale, on which we consider the regulation processes.
This timescale is the timescale of the slow system. Here the scale of interest is
the scale in which the system up- and down-regulations happen. Thus the fast
regulation processes are considered in relation to the regulations of P, for the
gene loci act € {agr, PSM, RsbU, o, sar A, ical,ica2, sarT, sarU, sarS, spa, hla} of
interest. As an example, the changes in the concentration of AgrA, AgrB, AgrC
and AgrD as well as those in the concentration of RNA have to be much faster than
the reference time scale, since only many of those changes together can achieve a

change in the proportion of up-regulated cells.

A recurring equation in the regulation processes is the equation

dPact
dr

= Dact[act+](1 — Pact) — Uact[aCt—] Pacs.

Here we introduce the parameter € since the parameters b, and wu,.; are in fact of
order £ < 1, as this process is slow in comparison to the processes described in the

recurring set of equations

dMac
—t =1+ Uactpact - Mactu
dr
dX
— = Mac - X )
dr (Mo )

where X denotes a substance in the regulation system. We note that, in terms
of notation, the agr system constitutes a special case, since here mRNAII (M,)
and RNAIII (Rj3) have to be considered. For details we refer to Figure [4.6] Thus
we rescale using the rescaled parameters, where we introduce l;act and U, by the

equations

bact = 5bact and Uact = EUact-
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

On the slow reference time scale 7 := 7 of the changes in the proportions P, of

up-regulated cells, we then obtain the set of equations

dPac 7 N
pE b = baetlact-+](1 — Pagt) — face[act—] Pact, (4.115)
=
dM,,.
E—2 — 1 4 0ot Pact — Mo, (4.116)
dr
dX
22 = AN Moo — X). 4.117
ez (Mact ) ( )

Asymptotically, i.e., for £ — 0, the concentrations of the substances M, and X
depend on P, in the form X = M, = 1 + Vet Pact, Where v,y = const., which
reduces the system [105|. The differential equation for the amount of X on the time
scale 7 is a direct consequence of the evolution of P, as

dX dPac 7 ~
d’]A' = Uact ?t - Uact (bact [aCt+] (1 - Pact) - u&Ct [aCt_] PaCt> *

We can solve for P, analytically, if [act+]| and [act—] do not depend on P, as
described in Section [£.5] The connecting principle for all subsystems is that the
evolution of the proportion of up-regulated cells is the slowest process. There are
some differences between the speeds of the faster processes, some being even faster
than others [76]. However, since we consider the processes on the slowest timescale,
all the fast processes approach the quasi-steady state in the asymptotic limit. In
the following, we use the regular variables b, and u,. instead of the hatted ones

for notational clarity.

In the processes described in the subsystems there are significant differences be-
tween certain rate constants, which are investigated here in order for the resulting
description of biofilm formation to be accurate. In agreement with [76], we use the
parameter € := 7+ < 1, which represents the relationship between the basal mRNA
transcription rate and the regulation-induced transcription, valid for all subsystems.
In order for quorum sensing to be effective, the quorum sensing induced regulation
takes place faster than the regular effects. Some publications assume ¢ to be of order
1073 |76]. This modeling assumption is due to the very analytic approach of the
paper. Since our focus is directed towards including the results into a PDE model,
we take rates similar to the ones introduced in |70]. Both models are consistent in
magnitude, but in [70] it is assumed that the activation rates are the largest rates,
being five times the degradation rates, about 100 times the rates of spontaneous

separations and ten times the sizes of all remaining parameters.
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4.4. Rescaled equations

The parameters to be considered for the agr system are the regulation speed (v),
the binding rate of AIP to AgrC (f) and the activation rate of AgrA by AIP-bound
AgrC (¢) as well as the dephosphorylation rate of AgrA (u). The rate constant A,
is the quotient of the degradation rate of AIP and the degradation and dilution
rate of mRNAII. Since we consider the up-regulation process, we assume that the
natural degradation outside the cell A, is very small |[76]. We take most parameters

to be close to 1 and choose e = 107!, Then we introduce the O(1) parameters

0, 5,6, fis Aa by
: W= efl, Ao = Eq. (4.118)

Thus in terms of magnitude the activation rates are about 100 times the spontaneous
separation rates and 10 times the remaining parameters. These considerations of
parameter orders of magnitude will be used in Section to determine the

magnitudes of the parameters in the full system.

4.4.1. The agr system

For the agr subsystem on the timescale 7, we find a subsystem similar to |[76] with
the concentration X = B and can thus express the amount of AgrB in dependence
of the amount of up-regulated cells. We find that only very few concentrations are
needed in an explicit form since they provide the connections between the different

subsystems. We investigate the agr subsystem asymptotically and obtain

AM, A1+ vPy,) AMs + 7R
My=B=1+vP,,, D= — o) oo MR
2 T+ vlag A+ kB~ A+ k(L + 0Py A+ Ba
kDB +9R . AMy + pnAp R BCa
A+ BC A+ oR ICEDY

GAR
d S 411
an P (4.119)

Now we want to find an explicit form for the concentration of free AIP (a) and for
the concentration of phosphorylated AgrA (Ap), which influences the agr activity
term due to the positive feedback loop. In order to describe the concentration Ap
explicitly, we need expressions for the concentrations of AgrA (A) and AIP-bound
AgrC (R). A also depends on Ap and R, while R depends on the concentration of
AgrC (C) and a. We thus want to find explicit expressions for all these variables
in the steady state. We simplify the expression for a using that \, is very small,
as stated in Equation (4.118). The term for the concentration of free AIP thus
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

simplifies to

kDB +R xx0 kDB + ’yR
~ w0 * BC

The approximate expression for a is used to find that C'a ~ W and to find a

simpler expression for R given by

_ BCa  kDB+~R
7+>\ S N

We solve for R to obtain that

kDB
R="= (4.120)

This is used to calculate

k(1+3%)DB k(14 %) DB(A+pa)  k(1+3) X+ fa
g C B (AMy+AR) B A g

a~

Since B = M, we can replace M in the equation for D and thus find

Iy A kAR A k14D 1
B AL (147 B 3- B L%
k(L4 7) 1 LB+ 1) A1+ 0Py
- A k(1+vPagr) -
B e -5 F A
k(1

Inserting Equation (4.120)) into the form for A from Equation (4.119)) then gives
A= %é‘%, which is used to find the expression
PAR  ¢(AMs + pAp)

Ap =
'u+/\ (M+)‘)(kDB

(4.122)

)

Solving Equation (4.122]) for the variable Ap yields

AP — ¢>‘M2 ¢AM2
<u+A)(,§;—QB+¢)<1—m) (1 + N (22 + ¢) — o
PA(L + v Pyy,) B A1 + vpagr)

Pyor - A +k(14+vPagr)
(n+A) %—;i)gzﬂLﬂ—ﬁbM (1 +A) = F iy, R
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4.4. Rescaled equations

(1+vP,)
- S (4.123)

(1 +A) (1 0Pagr)? T 1

where we use the known expressions for B and D from Equation (4.119)). This
equality and Equation (4.67)) for P, form the reduced agr subsystem. Note that
the velocity of up-regulation v is larger than other terms, and thus dominates the

behavior. Other terms such as p are very small.

Similarly, for the subsystem of PSM and é-toxin we search expressions for the levels
of [PSM], f, [0-toxin] and R3. Thus we keep Equation (4.76) for Ppgys and, as a

result, express the other variables as

Mpgy = [PSM] =14 vpsmPpswm, Rs = [5—tOXiIl] =1+ UgPagr
1+ 0Py

and f=DIPSM]| =
1+ 51+ vP,)

<1+UPSMPPSM>- (4124)

Again the velocities vpgy; and v3 are the largest parameters.

4.4.2. The sarA system
For this system, we keep Equations (4.82)—(4.83) and Equation (4.90) for the

proportions of up-regulated cells Prgyy, P, and Ps,.4 on the timescale 7. Using

these variables, we obtain for the other concentrations that it holds

MRst = [RSbU] = 1+ vRSbUPRst, MJ — [O'B] _ [RSbW] 1 I fUO_P0_7
M S MO’ 1 s P s 1 o'Pg-

[RsbV] = R de _ (1+ g bUd rsot ) (1 + v, Py) and
L3 M, 1+ $(1+v,Fy)

Mara = [SCLTA] =1+ VsaraPsara. (4125)

The parameters Vg, Vsara and d are considered to be large and we are interested

in the amount of SarA depending on the stress and the nutrient levels.

4.4.3. The ica system

Using the same principle as in the previous subsystems, we obtain the equations

Mical = [IC@R] =1+ Uicalpicab MicaQ = [[CCLADBC] =1+ UicaZPica2
and [PIA] = [IcaADBC| = 1 + vica2 Pica2- (4.126)
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

Furthermore, Equations (4.93)) and (4.94)) for P, and P2 are included, where the
parameters v;.,1 and v;.q2 represent the set of large parameters. In order to model

the biofilm, we are interested in the resulting concentration of the substance PIA.

4.4.4. The sarA homologue system

For this system, we keep Equations (4.100)), (4.103)), (4.106), (4.109) and (4.112))

for Psarr, Psarvs Psars, Pspa and Py, since we are interested in the quantities of

protein A, a-toxin and SarU. In the usual way, we obtain that

MsarT = [SGTT] =1+ UsarTPsarTa MsarU = [SGTU] =1+ vsarUPsarUv
MsarS = [SCLT’S] =1+ USCLT‘SPSGTS7 Mspa = [prOtein A] =1+ Uspapspa
and Mo = [a-toxin] = 1 + vp Phia- (4.127)

In this system the parameters vsg, 7, Vsartr, Usarss Uspa and vy, are considered to be

large.

4.5. Modeling of biofilm formation

In the following, we consider in detail the necessary calculations to obtain the desired

evolution equations from the reduced system of equations derived in Section [£.4]

4.5.1. Modeling the proportions of up-regulated cells

So far, we have derived a system of fewer evolution equations as well as explicit
expressions for the amounts of the substances in direct dependence on the proportion
of up-regulated cells. The general form for the development of the proportion of
up-regulated cells is stated in Equation (4.115)), with the general terms for the
activation and inactivation of the up-regulation of a certain regulatory system
denoted by [act+] and [act—]. In the following, we distinguish several levels of
regulation. For the full system of partial differential equations, only the variables
from Equations (4.128)—(4.134)) are of interest. Thus, in these equations we assume
that in order to have an effect on the regulation in another subsystem, a certain
concentration of the substances must be reached. The concentration values calcu-
lated in Section represent quasi-stationary solutions. This means that, while
these variables are approximately stationary and can be calculated explicitly, other
variables in the system may still change, for example due to the external input

variables, and thus also change the quasi-stationary values. In the following, we
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4.5. Modeling of biofilm formation

extend this quasi-stationary approach by assuming that also some of the proportions
of up-regulated cells P, are in an approximately stationary state. This assumption
is taken for those variables P,.;, which are not directly related to one of the output
variables a, [PSM], f, [0-toxin], [PIA], [protein A] and [a-toxin|. For the directly
related P, at the top level of the system we consider the full differential equation,

in order to capture possible alterations by changing external concentrations.

For the general form of P,., we determine the explicit solution of Equation (4.115|)

as

Poct(7) =Pact (0) exp(—(bact [act+] + uact[act—])7)
Dact [act+]
bact[act+] + wact [act—]

(1 — exp(—(bact[act+] + uacs[act—])7))

with the initial condition P, (0) = 0. Furthermore, we use an exponential relation-
ship between the number of bacteria and time, i.e., N = exp(%) & 7 =cln(N), to
obtain that

bact [act+]
bact [aCt+] 4 Ut [act—]

Pact(N> — (1 . Nfc(bact[act+]+uact[actf])).

This allows to eliminate the explicit time dependency by a dependency on the number
N of bacteria in the population. Exponential growth is a plausible simplification
especially when the bacteria have sufficient supply of nutrients. Since the number of
bacteria in the system is large and it holds that b,ci[act+], uac[act—] and ¢ > 0, it

is reasonable to consider the limit N — oo as a further approximation. Figure [4.7]

bact [aCt +]
bact [act+]+uact [act—]

of bacteria such as N = 100. For ¢ = 1 and b,ct[act+] + uact[act—] = 1 we calculate
1 — N-clbactlacttltuacfact=]) — 1 — 0,01 = 0.99. Thus it holds that the relative
approximation error ]%);P‘“t < 1% already for N > 100, which is equivalent
to 7 =1In(100) ~ 4.61. Note that for b,.s[act+] + uact[act—] > 1 the convergence is

shows the fast convergence to , even for relatively small numbers

even faster. As a result we approximate the term P,. (V) further to obtain that

Dact[act+]

paC ~ b
© 7 Dot actH] + e Jact—]

where the dependence on N is also eliminated.

For the directly related P, we assume that % # 0. Thus for these equations in

the full system we have %X = _&X_ dbac

= = ap 2t # 0 and we obtain the following equations
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Figure 4.7.: Influence of N on P, (N) for the parameters b, [act+] = waei[act—] =

0.5, c=1.

on the slow timescale

da  k(1+73) ” APy,

dr I} dr ’
dPSM]  dPpsu
T = UpSM 4

df vl +vpsmuPpsm) dPagr

vpsm (1 +vP,g) dPpsu

di — (1+E(1+vP,y,))? df

d[d-toxin] dPugr
—_— = VPq ———
7 P dr
d[P[ A] dP;eno
47 = Vica2 A7 s
7 7
d[protein A] dPsp,
—_— = _—
dr P dr
d[a-toxin] dPya
—_— = Vpy ——.
7 e = g7

T+ 51+ 0Py

dr

Y

(4.128)

(4.129)

(4.130)

(4.131)
(4.132)
(4.133)

(4.134)

The next goal is to make the system dependent on the quantities that are involved in

the exchange of information between the subsystems and finally derive an expression

in terms of the external variables of the system, such as the concentration of AIP

denoted by a. To this end we also non-dimensionalize the activation factors [act+].

In order to express these terms in terms of the non-dimensional variables, we insert

the expressions found for the non-dimensional dashed variables. For example we see

that in the new expression [agr+|" the variables are multiplied by a factor. After

sorting by orders of magnitude, we obtain

N
ﬂRé +
OR,

[agr—i—]/ _ /{sarANmsarA
6sarA 6M5MA
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N sar sar
S (Rg 42 A[Sar Al + " Y1Sart] + R A’P) :
5R3 5S(ZTA 5sarU 5A

where we assume that ms = Mgara = Mgy = Mo and 0r, = s, 4 = OM.py = M-

Consequently also the factors are assumed to be equal, i.e., agg, == ’gsa—’“j = ’gsa—’“g =
sar sar
KM,

. and thus they are also equal to the parameter a = ’;S“—T;‘ from the sarA
homologues subsystem in Section £.3.4] The factor 4y, is incorporated into the
factor beg, in the differential equation as bﬁlgr := bagrBagr- This results in a simplified

expression for [agr+]’, which is stated as

N sar ! / !
lagr+]' = =2 ( Ry + =4 ([Sar A) + [SarU + A)
5R3 5sarA

= Bagr (R + a([SarA]" + [SarU] + A%)). (4.135)

Again the prime is omitted in the following for notational clarity.

4.5.2. Modeling the concentration of AIP

Since we obtain that a = MITJF%)(l + v P, ) from Equation (4.121]), we calculate that
1 Ba } 1 { BAa ]
Pop =~ | — 1| == |22 g, (4.136)
Y [k(l—l—}) v | k(A +7)
Using Equation (4.124), this leads to
U3 BAa 1
Ry=1+4wsP,, =142 222 _qf. 4.137

_ [PSM

We furthermore use that Ppgas UPSI]M_l, due to Equation (4.124]), to obtain that

ﬁ_ U[PSM} dpagr CLﬁ)\UpSM dPPSM

At (1+2)> di k[(A+7)+Ba] dF

We derive expressions for the derivatives of g, Ppsy Pica2, Pspa and Py, and for
[PSM], that depend only on n, [str] and a. To this end it is necessary to express
Ap in terms of the external variable a using Equation (4.123]) and the expression

for P, from Equation (4.136)). This is calculated as

BAa

A k(140 Pagr) T
(1 +A) (0P )? 1 (u+ )x)—k il Pt 4]
¢(k(k+'v))
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BAa
k¢(k(/\+7) )3

(,U + /\)O‘ + kk(ﬁ)ﬁyﬂ + kﬁb(%y

¢(fAra)?
(1t + N)AE2(A +79)3 + E2BAa(A +7)?) + ko(BAa)*(A +7)
o(fra)’
(1t + XNAE2(A +7)2(A + 7 + Ba) + dk(A +7)(BAa)?

a3

- A1 —|— AQ(I + 143(127

(4.138)

where we define

2 3 2 2
Al:k(/ﬂrk)(wrv), Ay o= B E VAT,

E(A+7)
¢B3)\2 ¢52A2 :

[3)

(4.139)

We also replace the concentrations in the agr system activation term from Equa-
tion . The first factor that contributes to the regulation is the amount of
SarA. Since [SarA] = 14 vsqr4 Psara, we consider Equation for the proportion
P,u4. Then we determine P, from Equation in order to use the expression
[0B] = 1 + v, P, from Equation (4.125). Furthermore, from Equation we
know that

MpravMs (14 vrav Prav) (1 + v, Py)

RsbV] = =
[FesbV] 1+§’M0 1+§’(1+UUP(,)

Since both rsbV and sigB are transcribed from the P3 operon and, in order
to focus on the principal dependencies, we approximate by the assumption that
[RsbV] ~ [¢P] in the equation

[RsbV][str]

(1] = g [RsbV][str] + [0B](1 — [str])

For ro = 1 this yields the expression

B [str]
[C1] = U%_lbv] + [str] + (1 — [str])

~ [str].
We can thus define

g([str]) := (bo + b, [str])[str]

and rewrite Equation (4.83]) for the evolution of P, and determine its stationary
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solution from the equation

dP, g([str])

dr :g([Str])(l—Po)_uopo as P, = g([StT’D—f-UU = f([StT])
For the expression of f([str]), we obtain
F(lstr]) = g([str]) _ (bo + by[str])[str] (4.140)

g([str]) +us  (bo + by[str])[str] + u,
_ By[str] + By[str]?
B3+ By[str] + By[str]?’

with By := by, By := b, and Bs := u,. Then we use this result to calculate [o7],

using Equation (4.125)), as
[05] = 1+ v,P, = 14 v, f([str]).

Thus, in the following we turn to Equation (4.90) for Py,,.4 and obtain its solution
as

bsarA [UB]

bsarA [UB] + Usara .

PsarA =

Using Equation (4.125)), we calculate the expression
bsarA[UB]
bsarA [UB] + UsarA

bsarA(l + 'UO'f([StT]))
Usara + bsarA(l + UUf([StTD) ‘

[SarA] :== 1+ vsgra

=14 Veprn (4.141)

The evolution equations in the system of the sarA homologues are dependent of
each other. Given the concentrations that can be calculated for this system, the
concentration of SarU is needed as an input for the activation term of the agr system.
The proportion of sarU up-regulated cells Pj,,.y is calculated from Equation (4.103)

as

by
PSG,T' = T o
Y7 by + ui[SarT]
and thus using Equation (4.127)) we obtain

by

SarU| =1 sar Psar =1 sartU7 T "
[SarU] + Vsart Lear v Ubl—i-ul[SarT]
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

Therefore the concentration of SarU depends on the unknown concentration of SarT,

which is determined in the following.

In order to determine the concentration of SarT, we consider the system of equations

for the regulations of the gene loci sarT, sarU and sarS, which reads

dPsar
o T = bl(l — PsarT) — UQ(O![SCLTA] + R3)PsarT7
dPsar
e v = bl(l — PsarU) — Ul[SarT]PsarUa
S
dPsarS
T = bg[S&TT](l — PsarS) — UQ(Oé[SCLTA] + RS)PS(IT‘S'
S

They have the quasi-steady state solutions

Pyt = o
T by + up(a[SarA] + Rs)’
b
Psar = T o
Y7 by + ui[SarT]
T
PS(M‘S = bQ[Sar ]

bo[SarT) + us(a[SarA] + Rs)’

if the interdependence can be accounted for by the expression of the terms through
the external variables such as the concentration of AIP (a) and the stress level ([str]).
We thus start by determining P,,,7, which depends on the concentrations of SarA
and mRNATII, determined outside the subsystem for the sarA homologues. From the
term for P,,.o we then calculate the concentration of SarT using Equation .
Due to Equation , Equation and the form of the solution P,,.r, we

obtain the following result

by
by + us(a[SarA| + R3)

PsarT =

U3 BAa UzowsarAbsarA<1 + Uof<[8t7’])) -

VEA+79)  bsara(l + vef([str])) + tUsara

v
=by- b1+u2(a—|—1—;3)—|—

We then define A, B such that it holds that P,,7 = b, [%] ~" and write A and B in

the form

A= Kl + K2a + (KB + K4CL)f([St?"]) and B = bsarA + Usara + bsarAvaf([Str])'
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4.5. Modeling of biofilm formation

In these equations the constants K;, ¢ € {1,...,4} are defined as

v,
Ky = uenpabsgra + (b1 + ZLQ(OZ +1-— f)) (bsarA + usarA)7

Ky = %U)sam + Usara),
K3 := [UQQUsarA + b tug(a+1— %)] bsaravs and
us BAv3
4= mbsam%-

Thus, we obtain from Equation (4.127)) that for the concentration of SarT the

following equation holds:

Ty + To f([str])
K + Kya + (K3 + Kya) f([str])

B
[SCLTT] =14+ UsarTblz =1+ VsarT (4142)

In the above equation the parameters 77 and 75 are defined as

Ty :=b (bsarA + usarA) and T3 := bibsaravs-

For the expression of the SarU concentration we again use Equation (4.127) to

obtain

by

[SarU] = 1 + vsorv Psarv = 1 + Vsaru m
b A

(bl + ul)A + ulvsarTblB

Ky + Ksa+ (K3 + Kya) f([str])

K5 + Koa + (Kg + Kya) f([str])’

=1+ Vsaru

=1+ UsarU bl

(4.143)
with the new parameters

K5 = (bl + Ul)K1 + ulvsarTbl (bsarA + usarA)a
Kﬁ = (bl + Ul)Kg + UlvsarTblbsarAUU'

The expression for SarS is calculated in the same way as those for SarT and SarA
and is needed for the regulation of spa activity and thus the production of protein A.
We use Equation (4.127)) and calculate Ps,.5 to be

[SarT]
[SarT| + 32 (a[SarA] + Rj)

PsarS -
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

b
1+ UsarT b1+u2(o¢[51arA]+R3)
b u
1+ vearr b1+u2(a[,5‘1arA]+R3) _2( [SCLT’A] + Rg)
b1 (1 + Vsarr) + ug(a[SarA] +R3)

N b1(1 + Vsarr) + U2 (1 + 7 b1 (a[SarA] + R3) + (a[SaTA] + R3)?

5+ f ([str] k(A7)

bi(1 + Vgarr) + Uz (1 o ( (1 - vsarABsﬁEf(t{jgr])> +14+ [k(’iﬁ) — 1D

(0%
2
£(str) v [_Bra
< (]. + VsarA B5+f([st7"])) + 1 + _3 |: k(A7) - 1i|>

Q

b (1+UsarT +U2 <O[ (1+UsarABf(StT]) )) +1+1;_3 |: Bra —1]>

@‘
l\.’)l\.’)

b (1 + UsarT + us ( > 1 +oa— 3 ‘I’ U2 ( > |:aUSQT’A B5+[th{s]tr})

vs _BAa S ([str]) v3 _BAa
+ % k(m)] 5 [1 Tam Sy W A B TRy k(m)}
S1 + SQBKL + Sga

st/ (lstrl) (4.144)
TS+ S5 gl + Sea+ [Sr + St + Soa]”
Here the new parameters S;, ¢ € {1,...,9} are defined as
S1:=b1(1 4 vsarr) + U2 (1 +a— %) ) S9 1= UpQVsqar A,
S3 = uy U3 k(fi 5 Sy = by (1 + vggrr) + us (1 + 22) (1 +a— %) ,
Ss 1= ( Z;)SQ, S 1= ( Z;) Sy, S ::b’é%(ua—%),
Sg 1= bg% 9 and Sg 1= b;%Sg.

The expressions for the concentrations of mRNAIII (R3) and phosphorylated AgrA
(Ap) from Equation and Equations (4.138)-(4.139) together with Equa-
tion and Equation for the concentrations of SarA and SarU are now
used to rewrite Equation and thus the evolution of Py, .

Furthermore, we use that B, = %[ k(ﬁf\fw) — 1] according to Equation (4.136)) and
obtain
dPa T

df-g = bogrlagr+|(1 — Pyyr) — Uagr[agr—] Py,

Aa Aa
= bogrlagr+] (1 + % - m> — Uggr[agr— ]1 {h 1]
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4.5. Modeling of biofilm formation

= bagr [R3 + a([SarA] + [SarU] + Ap)] (1 + . ﬂ)

v vk(A+7)
BAa 1]

B
) |
B 1 BAa vs vz PBla
—bagr <1+;—m> |}+20[-;+;m
bsarA(l +v(,f([str])) Kl —I—K2a+ (Kg —|—K4Cl)f([8t’l“])
+ OtVsara Usara + bsara(1 + vo f([str])) + AVsarvby K5 + Kya + (K¢ + Kya) f([str])
a BAa 1]

3
@ Al + AQCL -+ A3a2:| — Uagr (1 + fUUf([Str])) [m — ; .

_|_

This is equivalent to a general term of the form

APagr _ 1+ v, f([str])
I (Cy — Csa) {03 + Cyf([str]) + Csa + Cg S Py (4.145)
Ky + Ksa + (K3 + Kya) f([str]) ad
O R, T Kaa + (Kot Kaa)f(istr]) T AT Aga T A3a2} = (Cy + Crof([str])),

with f([str]) as defined in Equation (4.140) and the new parameters C;, where
ie{l,...,10}, given by

1

6)\ U3 Uqgr
Crimbor (142), Chim by Cyem 1420 — 28 4 Yoo
L D ( *v) 2Ty TR T,
Ugar ﬁ)\ UsarA
Cy:= —gUU, Cy = ———v s Ce == QUgarA, Cr = )
4 bagr > Uk()\ + ’7) ° ¢ 4 ! bsarA
Cg = QUgqrbr, Cy 1= Uggr and Cho 1= UggrVs-

We further reduce the expression for SarA from Equation (4.141)) by using that
1+ v, f([str]) = vy f([str]). Thus we obtain in Equation (4.145) that

Lo fstr]) o waf(str) _ . fstr])

~ = Co—=——""F"— 4.146
CCr+1+uv,f(str]) ~  °Crtuf([str])  °Bs+ f([str]) (4.146)
with Bs := €7 = jteera Then Equation (4.145)) reads
dPagr S ([str])
—— = (Cy — Csa) |C5+ C t C Co———""= 4.147
pEs (Ch ba) | Cs + Cyf ([str]) + Csa + 635 + f([str]) ( )
K1+ Ksa + (K3 + Kya) f([str]) a’ ]
+C + —(Cy+C tr])).
8K5+K2a+ (K6+K4a)f([st7’]) Al +A26L+A36L2 ( 9 10f<[5 r]))
We see that agr up-regulation is dependent on the stress level and on the concen-
tration of AIP. With the corresponding evolution for d’;% from Equation (4.147))
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

we obtain the differential equation for AIP that reads

da k(1+3) dp,,

a3 UTar

_ B f([str])
= 011(01 020/) 03 + C4f([8t?"]) + C5CL + 06 B5 T f([str]) (4148)
K1+ Ksa+ (K3 + Kya) f([str]) a?
C — C(Cy+C tr])).
T O Kot (Kot Kaa) f(i]) T Ayt Agat Agaz| ~ C11(Co+ Crof (str]))
. kE(14+21)
with the new parameter C;; defined as C; := 3 .

4.5.3. Modeling the concentrations of PSM, amyloid fibrils

and /-toxin

The next evolution equation to be investigated is Equation (4.76)) for the evolution
of Ppsyr. PSM molecules enable the lysis of cells to gain nutrients. This equation
constitutes a special case since here the regulation and the production of the regulator

substance take place at the same level. We insert the term Ap = W;AW from

Equation (4.138]) to obtain the equation

dPpsy b a?
i PMATT Ava + Asa?

(1 — Ppsm) — upsm Ppsir-

This means that an increase in the PSM concentration is positively influenced by
the concentration of free AIP, i.e., the presence of quorum sensing. Due to abundant
nutrient supply in the medium and a homogeneous bacteria population, cell lysis

only plays a minor role and the concentration of PSM is not included explicitly.

The evolution of the concentration of amyloid fibrils in Equation is a direct
result of the up-regulation mechanism for PSM production and of the agr activity.
Since we do not include the evolution of Ppgj; and since amyloid fibrils are most
important in in vivo settings, Equation is not investigated further here, but
we note that the model can be extended accordingly if required and that we obtain

important information for adapting the parameter values.

Equation (4.131]) for d-toxin only differs from Equation (4.147)) for P,g, by the factor
v3 and can thus be derived without further calculation. This is in accordance with

experimental results, as the amount of d-toxin is directly related to agr activity.

The substance d-toxin inhibits spreading of the colony. Thus, it is used in the
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4.5. Modeling of biofilm formation

spreading term of the active bacteria in the full model. Furthermore, §-toxin, and

thus agr activity, inhibits biofilm formation |111].

4.5.4. Modeling the concentrations of PIA, protein A and
a-toxin

In order to investigate the concentration of PIA according to Equation (4.132]),

we consider regulation at the ica locus. From the evolution of P, according to

Equation (4.94)), we find with Equation (4.42) that

dPicaZ
dt

= bica? <[SGTA] + Tica2 (1 - Kﬁ)) (1 - PicaZ) — Ujca2 [IC@R]2Pica2-
The terms in this equation are known since the concentration of SarA is calculated
from Equation (4.141]) and the concentration of nutrients (n) is explicitly included
in the full model.

The evolution of P,.,; is described according to Equation (4.93|), which has the

stationary solution Pj.,; = — bt This is then used to determine the concen-
bical+Uical [Str]

tration of IcaR from Equation (4.126)) as

bical
bical + Uical [St?"]

[IcaR] = 1+ Vica1 Pica1 = 1 + Vica1

Thus, with the expression for [PIA] from Equation (4.126]) and Equation (4.94)) we

calculate

d[PIA] P
dr g

—w 1 + o, bz’cal 2P'
1ca ical bical + Uieql [St'f’] ica2
PIA]—1
= Vjca2 <bica2 ({SCLTA] + Tica2T <1 - i)) (1 - Q)
n Vica2

K.
2 [PIA] — 1)

bzcal
bzcal + uzcal St’f‘

( )
= bica2 ([SarA] + Ticaal ( )) (1 4+ vicaz — [P1A])
( )

zcal

([PIA] —1)

bzcal + uzcal StT
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

where n denotes the nutrient concentration. With Equation (4.146)), the above
equation approximately reduces to the equation

d[PIA] _ f([str]) n
d+ ~ bica2 (1 + UsarAm + Tica2M (1 - E)) (UicaQ - [PIA])
uica?bzzcalvzzcal ([P[A] o 1)

a (bical + Ujcal [StT])Q

:Pﬁ+%§£%%%ﬁ+3m(r—%ﬁ]G%—Wbm

__(f%%fiﬁTDj(LPIAJ__1% (4.149)

with the new parameters

Pl = bica27 P2 = bicaQUsarAa P3 = bica2ri0a27 P4 ‘= Vjca2,

2 2
Uica2b' 1U‘ 1 bical

ical Uical

Thus, the evolution equation for PIA is written in dependence of the substance itself
and the external variables n and [str]. PIA is considered to be a main biofilm indi-

cator, thus from this equation the principal form of the biofilm evolution is obtained.

The concentrations of spa and hla up-regulated cells are called Py, and P, respec-
tively, and evolve according to Equation (4.109)) and Equation (4.112)). Furthermore,

we know the expressions for [SarA|, [SarS] and R3 from Equation (4.146), Equa-
tion (4.127)) with Equation (4.144) and Equation (4.137)).

Thus, we use the expression for protein A from Equation (4.127)) to obtain that

A P
d[piiof—] = Uspaddipa = Uspa [b2 [SaTS](l - Pspa) B UQ((I[SCZTA] + R3)P5pa]
T T

:vm{@wwﬂ<1—@93ﬂii @Qlﬂii]

Vspa

)—mewm+m)

VUspa

= by[SarS|(1 4 vsp, — [prot A]) — us(a[SarA] + Rs)([prot A] — 1)

b2 UsarsS <Sl + 52% T SSa)
~ | by +

5 | (1+vspq — [prot Al)

f([str]) f([str])
S4 + Sg,m + 56(1 + [57 + ng + Sga]
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bg VsarsS (Sl + SQ% + Sga)

= by + 5 | (1+vgp, — [prot Al)
S4 + 55% + 56a+ [57 -+ Sg% + Sga]
f([str])
_ _ 2 __JAN Al —
( (1+a )+SQB5+f([StT])+S3a ([prot A] — 1)
514—52—[87”;]7, +Sga
=|D; + D, - Bs+f([str]) : 5 | (D3 — [prot A])
S4 + S5B5f+([;—gtr] + Sﬁ(L‘i‘ [57 + Sg% + Sga]
f([str]) )
—(Dy+ 5= 4 g t Al —1),
(P S35 ey + S ot 411

with the parameters

Dii=by, Dyi=byvss, Ds:=1+v,, and Dii=us <1 Ya— ﬁ)
v

The evolution equation for protein A has a form which depends on [str|, a and
the concentration of protein A. We note that agr activity, represented by the

concentration of AIP, is crucial for this equation.

Cell-to-cell interaction in biofilm formation is regulated by a-toxin. In addition to
the evolution equations mentioned for the derivation of the equation for protein
A, here we use that [SarT] is given according to Equation . Analogously to
the above derivation, we use that [a-toxin| = 1 + vp Phe from Equation (4.127)) to
obtain that

d[a- toxin] AP
= Vhla——5~—
dr

= Uhla(bg [SarA] + R3)(1 — Pug) — ur([SarS] + [SarT]) Pua)

=Unta (ba(c[SarA] + Its) < W)—ul([&wﬂ + [SarT])W>

bo(a[SarA] + Rs)(1 + v — [a—toxin]) —uy([SarS] + [SarT])([a-toxin] — 1)

ST+ Sz% + Ssa
f([str])
(2 + Vaars [str]) : ([str]) 2
S+ SE’W + Sga + [S? + ng + Sga]

T + Tof ([str)) |
Ky + Kya+ (K3 + K4a)f([5tr])> ([a-toxin] — 1)

+ UsarT
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— + QUsara

- o flstr]) v BAa
‘@O+“ v By + f(str]) v k(A +7

>> (1 4 vnia — [a-toxin])

([str])
f([str])

(2 + Vsars g g F([str]) g S S f([str]) g 2
4t 5 Bs+f([str]) o0+ |07 + 8 Bs+£([str]) T 290

Sl+SQB5+ —l—Sga

Ty + T f ([str]) ‘
Ky + Kya+ (K3 + K4a)f([8tr])> (la-toxin] —1)

f([str])
Bs + f([str])

+ UsarT

— (El + E, + E3a> (B4 — [a-toxin])

S+ o iy + S50

Sy + 85% + Sga + [57 + SS—B JI[thZtr] + Sga

T+ Ty () |
Ky + Ko+ (K + K4a)f([8tr])) ([a-toxin] — 1),

— <E5+E6 2

+ By

with the parameters

U36/\
20k(A+7)’

E, =1+ Uhlas E6 = u1vsars and E7 = u1Vgerr.

Ey =0y <1 +a— E) , By = bUsera, B3 = By = 2uy,

v

Thus, also here we have found a form that depends on [str|, a and the concentration

of a-toxin itself.

4.5.5. Derivation of the reaction and diffusion terms in the

full model

In the previous Sections [£.5.2] [4.5.3] and [4.5.4], we have achieved a reduced system
of equations, which allows to determine the evolution of the concentrations of the
biofilm factors AIP, amyloid fibrils, PSM, protein A, d-toxin (HIld), a-toxin (Hla)

and PIA in time. The concentrations of these biofilm factors have very distinct

effects on S. aureus biofilm formation, which are considered in detail in this section.

Although S. aureus bacteria do not have a flagella, they are able to spread on soft
agar with a velocity of approximately 10042, This spread is inhibited during the
stationary growth phase by the secretion of inhibitors against colony-spreading [111].
The inhibitory activity can be measured for different S. aureus strains, taking one
unit of colony-spreading inhibitory activity as the fraction that inhibits colony-

spreading by 50%. An important inhibitor of colony-spreading is the protein d-toxin.
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4.5. Modeling of biofilm formation

Note that d-toxin inhibits colony-spreading without having an effect on the growth
rate of S. aureus [111]. The concentration of d-toxin is therefore included into
the replicative bacteria diffusion. From Equation and Equation we
conclude that the development of the concentration of -toxin is proportional to
that of the AIP concentration as

dlo-toxin] w3 da
di  wk(l+1)di’
We define oy := —v8__ and observe that both concentrations are zero initially.

vk(1+21)
Thus we assume that [6itoxin] = aya and divide by the factor 1+ «,q in the diffusion

of the replicative bacteria, where ¢ denotes the concentration of the quorum sensing

substance AIP in the full system.

Other PSM, like PSM-a and PSM-3, are stimulants of biofilm-spreading |33, |111].
They are able to lyse eukaryotic cells, especially in competitive settings with several
bacteria types, due to their ability to destroy non-specific biological membranes [33].
The POPC vesicle lysing capacity is highest for PSM-g3, a bit lower for PSM-a
and lowest for d-toxin [54]. We account for changes in the PSM concentrations by
altering several parameter values accordingly. In psm-o and/or psm-f mutants,
PSM-induced lysing is not available and thus the bacteria growth parameters G;
and Gy are smaller than in the wildtype bacterium. Furthermore, mutants lack
biofilm structure and thus have decreased nutrient diffusion coefficients, while the
diffusion coefficients for the biofilm itself and the replicative bacteria are increased.
Note that, since PSM production depends on the availability of phosphorylated
AgrA, also quorum sensing or agr mutants do not produce PSM. In vivo, psm-«
and/or psm-f mutants produce thicker biofilms, show reduced channel formation

and have a smoother surface than the wild-type [87].

Amyloid fibrils provide structural integrity to biofilms [120] and increase resistance
to degradation [125]. This plays a role especially in in vivo settings, where bacterial
colonies defend themselves against other bacterial strains or antibiotics. Since we
investigate biofilm formation in a laboratory setting, we do not explicitly include
amyloid fibrils into the full model, but note that their production depends on the
agr locus, such that the presence or absence of amyloid fibrils plays a role in certain
mutants. In terms of the parameters, due to the decreased structural integrity in
quorum sensing or agr mutants, the diffusion coefficient o of the replicative bacteria

increases.
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

Colonies of bacteria lacking a-toxin are unable to adhere to plastic surfaces under
static or flow conditions 26|, since the substance a-toxin is necessary for cell-to-cell
interaction during biofilm formation. Nevertheless a-toxin is no physical component
of the biofilm and adhesion is not as important in our setting as it would be in a
flow cell. Therefore the concentration of a-toxin is not explicitly included into the

equation for the biofilm concentration.

Protein A is most important in the context of invasion of a biological host [45] 96].
Nevertheless, as protein A facilitates colony spreading in a biological host and has a
positive effect on virulence, it also has an effect on laboratory colony growth. This
effect is represented by an increase in the replicative bacteria growth parameter §.
In attachment or spa mutants the parameter 0 is larger since agr and sarA activity
negatively regulate spa activity, while sarA activity positively regulates agr activity.
Therefore a decrease in spa activity goes hand-in-hand with an increase in quorum
sensing effects. Furthermore, the decrease in cell wall anchoring of protein A in
the spa mutant decreases the stability of the biofilm, which results in an increased

nutrient diffusion coefficient.

Since the evolution of the factors described above can be calculated explicitly, as

seen in Sections [4.5.3] and [4.5.4] our model for the laboratory setting may also

be extended to include these factors explicitly if this is necessary for a biological
setting. An example of a biological setting, in which these factors may be crucial, is
the very important modeling of biofilm formation on medical implants, a possibly

lethal process, including competition and host invasion.

Now we include the developments of the single substances into the full model. In the
equation for the quorum sensing signaling molecule AIP, we include Equation
multiplied by the concentration of replicative bacteria as the growth and decay
term for AIP. Denoting the AIP concentration in the full system by the variable ¢
and the density of replicative bacteria by b, it is of the form

dgq

f2<b, Q) = b%

Furthermore, the diffusion of AIP is modeled with a constant diffusion coefficient

d,.

Initial microbial adhesion to surfaces is a complex process that involves bacterial
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factors as well as physical interactions like Lifshitz-van der Waals forces, electrostatic
forces, acid-base interactions and Brownian motion forces. Among the considered
substances, PTA contributes to biofilm formation in S. aureus 29|, and in the close
S. aureus relative S. epidermidis, PIA is even considered a clear determinant of
biofilm formation [30|. This indicates that it may be sufficient for our purposes to

consider the amount of PIA for biofilm formation.

The production of PIA is not under the control of agr gene regulation [144].
Nevertheless the agr system must influence biofilm formation via other (unknown)
mechanisms since repression of agr is necessary to form a biofilm and the reactivation
of agr in established biofilms, through AIP addition or glucose depletion, triggers
detachment [21]. We thus model decay of biofilm in S. aureus as being agr-mediated
in a process that is different from the inter-cellular regulatory processes we have
considered so far, since it depends on the extra-cellular presence of the quorum
sensing signaling substance ¢. In addition to that, biofilm growth is assumed to
be negatively affected by the presence of AIP. Here we use Equation and
denote the concentration of PTA by the full system variable f. Then the reaction
term for the biofilm equation is of the form

d
b, ) =G i = S

Furthermore, the presence of biofilm facilitates diffusion and especially nutrient
transport. Therefore the concentration of biofilm is included into the nutrient
diffusion term by multiplication with the factor 1 + f > 1. The slight increase or
decrease in replicative bacteria diffusion due to the presence or absence of biofilm is

represented by an appropriate change in the corresponding diffusion coefficient.

With the notation from Section [4.1] we denote the time scale of the full system by ¢

and obtain the system of equations

X~V (D))~ (b0, (4.150)
0 =V (Dafn,b,.4)VD) + Cafa(n,b.q) — alin, B). (4.151)
2 Y (Dy()Vs) + aln,b), (4.152)
% = dgAq + f2(b, q), (4.153)
o~ 4AT+ fin b ) (4.154)
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Furthermore, we define the functions for the diffusion coefficients, which are given

as

onb D ' b

Di(f) = d(1+ ). Dalmbag) = 7

(4.155)

and which are used in the finite element discretization in Section 6.1l

4.5.6. Reparametrization of the reaction terms in the full

model

In this section we summarize and simplify the terms in f5(b, ¢) and f3(n, b, q, f) fur-

ther, where the reaction terms for the quorum sensing substance and the biofilm are
as described in Equation (4.148]) and Equation (4.149)), respectively. For simplicity,

we approximate the monotonically increasing function f([str]) by the variable [str],
since both f([str]) and [str| are modeling assumptions. As both expressions take
values in the interval (0,1), this important characteristic is preserved. An example
for the comparison of f([str]) as defined in Equation and the function

f([str]) = [str] is depicted in Figure [4.8]

([str]) and [str] in comparison

09t
08}
o7}
06}
Eos—
04t
03t

02t
01} —— f([str])
—— st
1 2 4 7 1

[str]

Figure 4.8.: Comparison of f([str]) and [str| with the parameters by = b, = 1 and
u, = 0.75.

For f5(b, q) we obtain the equation

ol 6) = Cus (€1 = Can) | o+ Cuf(str) + o + Co Ll

Ky + Koq + (K3 + Kaq) f([str]) n ¢
K5 + KQ(] + (Kﬁ + K4q)f([str]) Al + qu + A3q2

— C11 (Cy + Ciof([str])) b

(4.156)

+ Cs
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Parameter Formula Magnitude
i 3 po
Ay k (u+>\§(>\>;+7) 1A,
2 2 ~
A, k (u;{g\g(;;%y) e3 A,
A3 %}‘:7) 643
Bs T £Bs
C; bagr(l + %) o
BA S
CQ bagrm C:Q
Cg 14+ 2a— % + % Cg
Cy %UU 6:'4/5
Cs vk(A ) U3 C~’5 /5
C(6 QUsqrA C’6/5
CS avsarUbl 08/5
CQ Uqgr ~CQ
ClO I;Léclzgr:f])o' 010/5
_‘_7 ~
C11 7 ~C11
K, U20WsarAbsara + (b1 +ug(a+1 — %))(bsarA + Usara) {(1/6
K2 Uqu\i_v,?) (bsarA + usarA) {(2/5
KB [u2avsa7’A + bl + UZ(a +1- %)}bsarAva K3/€2
uz SAv 7%
Ky Uk2£\+’$) bsm‘Avo’ ]{4/62
K5 (bl + ul)Kl + ulvsarTbl(bsarA + usarA) {(5/6
K (b1 + u1) K3 + u1Vsarrb1bsar AV K6~/52
Py bica2 Py
P2 bicaQUsarA PZ/E
Py bica2Tica2 ~P3
P4 Vica2 P4/5
P Uica2bleq Vg, P /2
5 Us a1 5~
Ps I Ps

Table 4.6.: Parameters from Sections [4.5.2H4.5.4] in terms of the non-dimensional
model parameters with their corresponding magnitudes.

e
~ G,b(1—aq) [ﬁq <q + ag—) + B2,

+ 6str,q

1+ c1q + c2q?
Ky + Kaoq + (K3 + K4Q)[3757“]} b
K5 —I—KQC]—F (K@ +K4C])[St7"] str

with the new parameters

Gq = 0103011, o =

=

and

Co

¢, G
017 q - — Cg’ 3 C5A1’
. Cy Cg[str]
=1+ =
Bstr _I— 03 [St?“] + 03<B5 + [St?"])’

sty ‘= CH(CQ + Cl(][StT’]).

/Bstr,q =

Cs

Cs

In the above definitions, we approximate the function f([str]) by the constant

parameter [str]. Furthermore, the magnitudes of the above parameters are as
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Parameter(s) Formula Magnitude
[str] model assumption €(0,1)
dq, df model assumption -
0y model assumption —
By model assumption —
oy model assumption -
G, C1C3C0n Gy
« CQ/Cl ~5[
Bq Cs/Cs Bq/e
a3 (C5A1)71 5[3/83
C1 AQ /Al 51 /E
C2 Az/Ay éa/e3
Cg[str 5
Str I+ %[5”] + 03(365[4:[5]”]) ?;tr/s
Bstr,q CS/CS ﬁstr,q/‘g
[hstr C11(Cy + Cholstr]) fistr/€
Gf P, Gf
Py [str ~
Vitr L+ % ’str/ €
Tn PS/Pl :}’n
Kf P4 Kf /E
* P Xk
’yStT7f Py (P6+5[str])2 Pystr,f/€2
K, model assumption -

Table 4.7.: New parameters from Sections and in terms of the model
parameters from Table [£.6] with their corresponding magnitudes.

described in Table [4.6] and Table .7 In our numerical simulations, we use the
parameter magnitude results as indicators for the size relationships between the
parameters in our derived equations, and adapt the overall parameter magnitudes

to the parameters used in the nutrient and bacteria equations.

For the term f3(n, b, q, f) in the evolution equation of the biofilm, we obtain

fa(n,b,q, f) =b { (P1 + &% + Py (1 - K%)) (P — f)
Ps

1
~ )

1
~ 650 | (i (1= ) ) 05 = 1) =g f| 15— T o a15)

n

with the new parameters

PQ[StT] Pg
Gr=P, =142 8 kP
= AL s P(Bs+[str]) " R fim
Ps

Totrd = Py (Py + [str])?

The magnitudes of the parameters 73,., Ky and 73, , are also as described in
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4.5. Modeling of biofilm formation

Table Above we have approximated (f — 1) by f. Formulas for the equations
are given in terms of the parameters in the non-dimensional model from Section [4.3]
and we distinguish between the parameters introduced in Sections [4.5.2]
and [£.5.4] in Table [4.6] and those introduced in Sections [.5.5] and [£.5.6] in Table 4.7

4.5.7. Simulation of the system of regulation equations

In this section we simulate the non-dimensional system of ordinary differential
equations introduced in Section and given by the Equations —. We
investigate the behavior of these equations, with special attention to the system
reduction, using an ordinary differential equation solver in MATLAB [97]. We take
into account that the changes described in Equations — take place on
different time scales, as seen in Section 4.4l Thus we simulate a system consisting
of Equations (4.67)), (4.76)), (4.82), (4.83]), (4.90), (4.93)), (4.94), (4.100)), (4.103]),

(4.106), (4.109) and (4.112)), where the resulting concentrations of AIP and PIA are
calculated using Equation (4.121)) and Equation (4.126]), respectively.

The concentrations resulting from this system are shown in Figure [£.9(a)—(c). The
resulting concentrations of AIP and PIA in Figure [£.9|c) are then compared to
those obtained directly from the reduced Equations and with the
additional assumption f([str]) = [str] in Figure [4.9(d).

In both cases, the concentrations of nutrients and the stress level are assumed to be
constant at the levels n = 5 and [str] = 0.5. The parameters for the larger system
are chosen as n =5, [str] = 0.5, bygr = Uggr = A=k =7 =1 =bpsy = Upsm =
bo = up = by = bsara = Usara = bical = icaz = Uical = Uica2 = Ticaz = b1 = Ug = a =
up =by =1, v =3, 13 =V = Vsara = Vical = Vica2 = UsarT = VsarU = Vsars = O,
@w=0.1and ¢ = = K, = 10 and the parameters for the reduced system are
calculated from these parameters using the formulas from Table and Table

We see that both systems yield very similar concentrations of AIP and PIA, such
that we can say that the reduction does not lead to a significant loss of accuracy.
The peaks that arise in the concentrations of the larger system are due to the system
taking longer to swing into its final stage. However, we see that these peaks do not

alter the long-term behavior of the system significantly.
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Figure 4.9.: Comparison of the concentrations of AIP and PIA from the larger
rescaled system and the reduced system on the 7-timescale.

4.6. Simulation of the full system

In this section the finite element discretization of our system is presented and we
simulate the full system of partial differential equations derived in Section [£.5] using a
time-adaptive finite element method in two spatial dimensions which is implemented
in MATLAB. For further details on finite element methods, we refer to Section [3.5
and the references |22} |24]. Note that the model uses a random diffusion component
from a triangular distribution as introduced in 82|, in order to reflect the stochastic
fluctuation of the random movement of bacteria. This means that the diffusion
parameter ¢ has the form o = o¢(1 + A), where A is taken from a triangular
distribution supported by [—1,1]. Furthermore, as in 82|, the initial distribution of
cells is chosen as a normal distribution of the form by(x) = by exp(— (2% +4?)/6.25),

where we take by = 0.71.
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4.6. Simulation of the full system

4.6.1. Finite element discretization

We use a finite element method to simulate the model given by the Equations (4.150])—
(4.154) with the functions fi(n,b,q), a(n,b), f2(b,q), f3(n,b,q, f) and the diffusion

coefficients given by Equations (4.5)—(4.6) and (4.155)—(4.157). We recall that our

resulting system is of the form

% — V- (Dy(f)Vn) — G fr(n,b, q),

% =V - (Da(n,b,q)Vb) + G2 f1(n, b, q) — a(n,b),
% = V- (Ds(b)Vs) + a(n,b).

9]

a_z = d,Aq+ f2(b, q),

2N b,q f)

o = U [+ J3(n,b,q, f).

For the finite element method we need the weak form of the equations and use the
implicit Euler method for the time derivatives. For the simple case of an ODE
problem of the form fl—i’ = f(t,y), y(0) = yo, the implicit Euler approximation is of
the form yg1 = yr + 0t f(tgr1, Ypr1) with the time step dt. In the following, this
method is applied to the weak formulation of the time-dependent PDE problem in

order to obtain a variational formulation.

Since we assume homogeneous Neumann boundary conditions, this results in a

variational problem of the form

F((”ab>57Q:f)7(u’U7w’m’p)) -

/ [n gtnk u+ Di(f)Vn-Vu+ Gy fi(n,b,q)u
Q

b—b

+ &kv+D2(n,b,q)Vb-Vv—G2f1(n,b,q)v+a(n,b)v
+ 2 ;tsk w+ D3(b) Vs - Vw — a(n,b)w
—I—qgtqkm%—quq-Vm—fz(b,q)m

f =TIk _

s P dp V- NVp = fa(n, g, f)p| dx = 0.

Here the terms ny, b, sk, qx and f;. denote the approximations of the respective
concentrations in the previous time step k. This means that in fact we have taken

n,b,s,q,f) == (Mga1, brr1, Skat, Qeat, fre1). Our goal is to determine the tuple
+15 Ok+15 Sk+1, Qi+
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(n,b,s,q, f) such that

F((n,b,s,q, f), (u,v,w,m,p)) =0

for all (u,v,w,m,p) € (H'())°. This is achieved numerically by linearizing the
functional F at (7, b, $,q, f) in the direction (6n, db, 8s,dq,8f) for the fixed tuple
of test functions (u, v, w, m,p). The linear problem to be solved for each iteration

then becomes:
Find (dn, b, ds,0q,6f) € (H'(Q2))° such that

(o + 6n,b+ 6b, & + 85, + 6a, f + 6), (w,v,w,m,p)) =0 (4.158)

for all test functions (u,v,w,m,p) € (H'(Q))®>. To compute the solution of the
linearized problem in each step, we employ a Newton method. Note that the starting
point for the Newton iteration is always the solution calculated in the last time step.
Then the solution of is computed and the new approximation is taken to be
the solution from the last time step plus the calculated solution. This procedure is

repeated until the given error tolerance is reached.

In order to set up the linearized Equation (4.158) appropriately, we simplify our

notation and define
% :=(n,b,8,q, f), y = (u,v,w,m,p) and 0x := (dn, b, 0s,dq,0f).

Then we sort the terms in the resulting expression by their dependency on the

vector 0x to achieve a problem of the form
F(x+0x,y) = a(6x,y) — f(y) =0, (4.159)

to be solved for x. Here the residual —f(y) is defined as

—f(y) = /Q [%(nu — ngu) + Dy (f) Vi - Vu+ Gy fi(7, b, §) u

1 . . . . .
+5—t(bv—bkv)+D2(fL, b,q) Vb- Vv — Gy fi(n,b,q) v+ a(n,b)v
1 A .
+ g(éw — sgw) + D3(b) V§ - Vw — a(n, b) w

1. . ~
+ a(qm —qem) +dy Vi -Vm — fo(b,g)m

1 - R .
+g(fp—fkp)+def~Vp—f3(n,b,q7 f)p| dx,
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and the matrix a(dx,y) is of the form

a(ox,y) :/Q [%&Lu + Dy¢(f)0f V- Vu+ Dy(f) Vén - Vu

+ Glfln« b, §) onu + Gy fip(in, b, §) obu + Gy fig(1, b, q) Squ

aébv Doy (71, b,G) 60 Vb - Vo + Day(, b, ) 6b Vb - Vv

+ Dy (2, b, )5qu Vo + Dy(i2, b, ) Vb - Vo — Ga fin(2, b, §) 6 v
—Ggflb( b, §) 6bv — Gafig(1, b, 4) dqv + an(, b) dnv + ay(i, b) dbv

& 55w+ Dygy(b) 6b V5 - Vw 4 D3(b) Vs - Vw — a, (7, b) on

— ap(n, b) dbw

1 N .
+ 5 dgm +dyVoq-Vm — fo(b,G) 0bm — fou(b, §) dgm

1 P <.
+§5fp+de5f-Vp—f3n(n,bqf)5np fa(7, 0,4, ) obp
b )

— faqg(it b, 4, f) 6ap — fap(in, b, 4, f)of p

Since we consider a system of five differential equations, we distinguish several
cases in the numerical assemblation of the matrix and the residual. There are five
cases, one for each model variable s € {u, v, w, m,p}, for assembling the residual
f(y) and 25 cases, one for each pair (s, Utest) With csop € {0n,db,ds,0q,df}, for
assembling the system matrix a(0x,y). Furthermore, in the equations for f(y) and
a(0x,y) above, several terms of the same form can be found. In the equations
for f(y) and a(dx,y), terms of the same form can be treated in the same way
numerically and therefore we distinguish different routines, which assemble the

residual terms of the form

/ futest dx and / f Vg : Vutest dx
Q Q

and the matrix terms of the form

M = / [ Cool Utest dX, S = / f Vo - Vet dx and
0 0

R = / f Cso1 Vg - Ve dx,
Q

where f and g denote the coefficient functions.

We solve the variational problem over the space (V,)°, where V}, denotes the finite
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

element space of continuous piecewise linear polynomials given as
vy, = {Uh S Hl(Q) : Uh|T c Pl(T),T S 77L},

introduced in Section . We introduce the basis {1;};cjsn], where N denotes the
number of ansatz functions, in order to rewrite the variational problem. Note that
since the problem has five equations, the basis components are in fact vectors of
the form ¢; = (¢,,0,0,0,0) for j € [N], ¢; = (0,¢;_n5,0,0,0) for j € [2N]\[V],
by = (0,0,65-2x,0,0) for j € [BNJ\[2]V], ¢ = (0,0,0,6;_s,0) for j € [AN\[3N]
and 1; = (0,0,0,0,¢;_4n) for j € [5N]\[4N], where {¢;};c;n) is a Lagrange or
nodal basis of the space V,.

Then the variational problem from Equation (4.159)) in discrete form reads:
Find vy, € (V4,)° such that

a(vi, i) = (i) Ve € (Va)”.

Since v, = Z5N z;1;, this is equivalent to Z?fl a(y, ¢i)z; = f(i;) fori =1,... 5N.

j=1
In matrix notation the problem thus takes the form Az = b, where we write the
matrix A(i,7) = a(v;, ;) € RPN with the components M (i, j), S(i, j), R(i, j) €
RN “and the vector b(i) = §(1;) € R with the components described above,

in terms of the basis functions.

4.6.2. Time adaptivity

We distinguish between time and space adaptivity. While the latter involves changing
the finite element mesh and consequently requires appropriate error estimation,
time adaptivity only changes the time step in the simulation of a parabolic problem.
For our parabolic boundary value problem, we use a separate time discretization
and can thus consider time adaptivity as a separate process. We control the time
step based on the number of Newton steps required to obtain the spatial solution.
The underlying idea is to assume that a fast numerical convergence of the Newton
method implies that the solution is uncritical and that it has a good quality. Thus,

the four parameters

newton iy, < Newtonearlymin < NEWHON L earlymax < NEWTONyayx
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and two constant time factors ay, s € (0,1) with a; < s are defined. The time
step is forced to be larger than a minimal value in order to stop the algorithm if
convergence cannot be reached. If the number of Newton steps needed is larger
than newton,,., or if the solution did not converge, the step size is reduced by multi-
plication with the smaller factor a;. For a number of Newton steps that is between
NeWtoNearlymax and newtony,.y, the step size is only reduced by multiplication with
the larger factor as. If the number of Newton steps needed is too small, i.e., less
than or equal newtonyearlymin, Or the update norm is too small, the time step is

increased by division by the factor as.

4.6.3. Comparison of the numerical results to real data

This section is divided into two parts: In the first part we perform simulations of
bacteria colony growth in the wildtype and in several mutants of the bacterium
S. aureus "Newman". We then compare our results to real data in the form of
biological observations of bacteria colonies grown in the laboratory. The biological
real data observations have in part been published in [65] and are reprinted under
the terms of the Creative Commons Attribution License. This is indicated by
the reference |65] in the captions of the corresponding figures. Further biological
observations result from experiments performed at the University of Wiirzburg, also
as indicated in the figure captions. In the second part we compare our results to

the five morphologies of bacterial colonies introduced in 82, |98].

Parameter | Value || Parameter | Value || Parameter | Value || Parameter | Value
G1 7 G 7 o 0.5 Gy 0.1
G, 0.1 [iq 0.1 5 1 dy, 1
ds 2 dg 1 € 10 ¥ 1
Qm 0.3 z 1 T 0.25 bs 2

1/aq 2400 1/as 120 p 1 oy 1
« 0.1 By 1 a3 100 c1 1
Co 100 o 1 Bstr.q 1 K = Ky 1
K3 10 Ky 10 Ks 1 Kg 10

[str] 0.5 Vair 1 Yn 0.5 Vitr 10
ﬁf 1 Mf 0 Kf 10 Kn 10

Table 4.8.: Parameter values for the simulation of the wildtype S. aureus bacteria
colony.

For the wildtype bacterium we choose moderate parameter values since all regu-
lation subsystems are active and contribute to the growth of the colony. These
parameter values are described in Table and the corresponding simulation results
are depicted in Figures [A.T0H4.12] In order to display the colony structure, we
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Replicative bacteria Nonreplicative bacteria

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

15

10

o

(e) Quorum sensing substance.

Figure 4.10.: S. aureus wildtype single concentrations as obtained from simulation

with the parameters indicated in Table

add up the concentrations of replicative and non-replicative bacteria as well as
the concentration of biofilm as depicted in Figure [£.10[(a)—(c) to obtain the colony
depicted in Figure [1.12|(b). Since the dimensionless concentration of biofilm is in

the range of 0 to 4.5, these values are indicated by a light blue color and the larger
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(a) First day. (b) Simulation at ¢t = 2.28.
(c) Second day. (d) Simulation at t = 4.57.

(e) Third day. (f) Simulation at ¢ = 6.85.

(g) Fourth day.

(i) Fifth day. (j) Simulation at ¢ = 11.55.

Figure 4.11.: S. aureus wildtype colony evolution in time observed in the labora-
tory [65] in comparison to the evolution as obtained from simulation
with the parameters indicated in Table [4.8] Simulations take values
in the interval [0, 14].

concentration values, which range up to 14 in areas where bacteria are present,

are indicated by shades of yellow and red. The concentrations of nutrients and
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(a) S. aureus wildtype colony evolution. (b) S. aureus wildtype simulation result.

Figure 4.12.: S. aureus wildtype bacteria colony as obtained from simulation with
the parameters indicated in Table4.8|in (b) in comparison to biological
real data [65] in (a).

quorum sensing molecules are not added since these molecules are very small and
thus cannot be seen in the real data. The single component concentrations are
depicted in Figure [4.10| and Figure [4.11] shows the evolution of the wildtype bacteria
colony in time. In the biological real data in Figure M(a) we observe that the
wildtype bacterium shows a quite distinct structure with concentric rings of bacteria
and a narrow fingering or wrinkling structure towards the outer area of the colony.
The colony is mostly round with only few shallow dents. Furthermore, we observe
a thin layer of biofilm surrounding the bacteria in the real data. These features
are reproduced in the simulation result depicted in Figure [4.12(b), where a distinct
ring structure is observed, the colony fingers are close and a thin layer of biofilm
surrounds the colony. Thus in this case a good agreement is reached between the

real data and the simulation result.

The real data for the extracellular matrix or ica mutant as depicted in Figure [£.13|(a)
shows a less pronounced colony structure, especially in the inner area where the
ring structure is weaker than in the wildtype colony. The colony is round and very
narrow wrinkles are observed in the outer parts. Furthermore, the colony does not
have a surrounding biofilm layer. In this case we set Gy = p1y = 0 since the ica
locus of the bacteria is deactivated. The lack of biofilm leads to a slower availability
of nutrients for colony growth, such that the growth rates G; and G, are decreased
to G; = Gy = 5. In addition, we take ¢ = 1 in the replicative bacteria diffusion
since, without the added structure of the biofilm, the bacteria move faster. In the
simulation results depicted in Figure M(b) we observe that a good agreement is

reached as the ring structure is less pronounced and the branches are very close.
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(a) Ica mutant colony evolution. ) Ica mutant simulation result.

Figure 4.13.: S. aureus ica mutant bacteria colony as obtained from simulation with
the described parameter changes in (b) and biological real data [65|
in (a).

For the interested reader, the single concentrations of the five components, as shown
above for the wildtype colony, are depicted in Figure in the appendix.

(a) Spa mutant colony evolution. (b) Spa mutant simulation result.

Figure 4.14.: S. aureus spa mutant bacteria colony as obtained from simulation with
the described parameter changes in (b) and biological real data [65|
in (a).

In Figure [4.14)(a) we see the real data for the attachment mutant, in which the
spa locus is disabled. As in the wildtype, the ring structure can be observed, but
it is even more pronounced. An important difference to the wildtype is that the
spaces between the wrinkles in the outer part of the colony are larger in the spa
mutant. The bacteria colony is surrounded by a biofilm layer. Since a decrease in
the concentration of protein A is linked to an increase in the AIP concentration, we
obtain the effects of the spa mutation by increasing the effects of the quorum sensing

substance on colony growth, thus increasing the parameter § from d =1to d = 5. In
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addition, protein A binds to the cell wall envelope [45, 96|, thus providing stability
to the biofilm. In the attachment mutant bacterium, the biofilm is still present, but
less stable, leading to the slightly increased nutrient diffusion coefficient d,, = 1.5.
In the simulation result depicted in Figure [1.14b) we observe a good agreement
of the simulations as the distances between the fingers are increased, while a very
distinct ring structure is observed. For the interested reader, Figure in the

appendix depicts the single concentrations for the spa mutant.

(a) Ica and spa mutant colony evolution. (b) Ica and spa mutant simulation result.

Figure 4.15.: S. aureus ica and spa mutant bacteria colony as obtained from simu-
lation with the described parameter changes in (b) and biological real
data [65] in (a).

The combined spa and ica mutant real data is depicted in Figure M(a) and
shows features from both mutations. Here the concentric ring structure is more
pronounced than in the ica mutant and the outer areas of the colony show wider
gaps between the wrinkles in the colony structure. As above, there is no biofilm
formation due to the ica locus mutation. We combine the parameters G; = G5 = 5,
o = 1 from the ica mutant with the parameters 6 = 5, d,, = 1.5 from the spa
mutant to obtain the simulation result depicted in Figure [£.15|b). In comparison to
the 7ca mutant simulation result, it shows a stronger ring structure and wider gaps
between the fingers, and thus a good agreement of the real data and the simulation.

In addition, the single concentrations are depicted in Figure in the appendix.

The amyloid type 1 or psm-a mutant biological observation depicted in Figure M(a)
has a rather pronounced ring structure and narrow wrinkling in the outer areas
of the round colony, which means that the wrinkles in the outer part are close
to each other. In the real data as well as in the simulation result, depicted in

Figure [4.16|b), we observe a layer of biofilm, which surrounds the bacteria colony
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(a) Psm-cov mutant colony evolution. (b) Psm-a mutant simulation result.

Figure 4.16.: S. aureus psm-a mutant bacteria colony as obtained from simula-
tion with the described parameter changes in (b) and biological real
data [65] in (a).

and which is larger than the corresponding layer in the wildtype colony. Concerning
the regulation mechanisms, the effect of a lack of PSM is mainly the decreased
POPC vesicle lysing capacity. Since this capacity is smaller for PSM-« than for
PSM-f, also the decrease is smaller and thus we obtain the growth parameters
G, = G5 = 6. Due to the structuring effect of PSM, we decrease the parameter d,
to d, = 0.7 in the mutant. Since the psm-a mutation has much slighter effects than
the psm-f mutation on biofilm diffusion, we do not change the parameter d; here.

The interested reader can find the single concentrations for the psm-a mutant in
Figure in the appendix.

(a) Psm-f mutant colony evolution. (b) Psm-f mutant simulation result.

Figure 4.17.: S. aureus psm- mutant bacteria colony as obtained from simula-
tion with the described parameter changes in (b) and biological real
data [65] in (a).

Similar choices are taken for the amyloid type 2 or psm-£ mutant real data de-
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picted in Figure M(a), where the growth parameters are decreased to the values
GGy = G5 = 4. Since the psm- mutation has a much stronger effect than the psm-«
mutation, here we also slightly increase the replicative bacteria diffusion parameter
to 0 = 0.65. This reflects the fact that the lack of biofilm structure makes it easier
for the bacteria to move. Due to the structuring effect of PSM, the parameter d,
is changed to the value d,, = 0.4. Furthermore, since PSM positively influences
biofilm dispersal , we increase the mutant biofilm diffusion coefficient to d;y = 3.
The further decrease in G; and G is due to the higher lysing capacity of PSM-£.
The colony of this mutant shows very little structure and very little wrinkling in
a round colony shape in both the real data and the simulation results depicted in
Figure (b) Additionally the single concentrations for the psm-5 mutant can be
found in Figure [AT.5in the appendix.

(a) Psm-a and psm-f mutant colony evo-(b) Psm-« and psm- mutant simulation
lution. result.

Figure 4.18.: S. aureus psm-a and psm-f mutant bacteria colony as obtained from

simulation with the described parameter changes in (b) and biological
real data [89] in (a).

The biological observation for the mutant in both amyloid type 1 and type 2 is
depicted in Figure M(a). We observe a colony that shows a ring structure like the
amyloid type 1 mutant and an outer area with very few wrinkles like the type 2 mu-
tant. Furthermore, the colony shape is no longer round, but has pronounced dents
resulting in a flower-like colony shape. It is observed that the biofilm-enhancing
effect in psm-a and psm-f mutants is not additive. A possible reason for this is
the absence of the benefits on biofilm structuring and maturation induced by low
concentrations of PSM-£, as it is the case in S. epidermidis , , a close relative
of S. aureus. Thus we cannot simply add the effects from the type 1 and type 2

mutants. We take the nutrient consumption parameters G; = G5 = 2.5, which are

108



4.6. Simulation of the full system

(a) Agr mutant colony evolution. (b) Agr mutant simulation result.

Figure 4.19.: S. aureus agr mutant bacteria colony as obtained from simulation with
the described parameter changes in (b) and biological real data [65]
in (a).

smaller than the corresponding parameters in the single mutants. Furthermore,
we set the bacteria diffusion parameter to ¢ = 0.6, which represents a value in
between the values chosen for the psm-a and psm-£ mutants. This is also the case
for the nutrient diffusion coefficient, which is chosen to be d,, = 0.5 and the biofilm
diffusion coefficient dy = 2.5. In the simulation results depicted in Figure [£.1§|(b), a
good agreement of the simulation results is observed as the flower-like shape as well
as the predicted changes in wrinkling and ring structure are reproduced. Again the
interested reader can find the single concentration simulation results in Figure

in the appendix.

The quorum sensing or agr mutant real data as displayed in Figure M(a) shows
a very clear structure in the middle of the colony, while towards the outer areas,
the colony flattens and shows more pronounced dents. The colony is surrounded by
a biofilm layer, which is slightly uneven, but not as uneven as in the case of the
psm-a and psm-£ mutant colony. Since there is no quorum sensing, the parameters
G, and g1, are set to zero. No agr activity also means that there are no PSM, which
lyse cells to gain nutrients and help in biofilm structuring and dispersal. Thus the
growth parameters are decreased, i.e., G; = Gy = 2.5 as in the psm-a and psm-
mutant colony. Furthermore, since the biofilm is less structured without PSM,
the diffusion coefficient of the replicative bacteria is again increased to o = 0.6.
Analogously to the psm-a and psm-f mutant, the diffusion parameters for the
nutrients and for the biofilm are chosen as d,, = 0.5 and dy = 2.5, respectively. We
observe a good agreement of the simulation result depicted in Figure M(b)7 where

the structure in the middle of the colony as well as the slightly uneven biofilm layer
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4. Detailed system of reaction-diffusion equations for Staphylococcus aureus

Mutant G1 =Gy o Gy | Gqg | pg | 0| dn | df
Wildtype 7 05 |01]01]01 1] 1 2
Ica 5 1 0 |01]01]1] 1 2

Spa 7 05 010101 |5]|15| 2

Ica and spa 5 1 0 |01]01]|5]15 | 2
Psm-«a 6 05 [01]011]01]1]07 2
Psm-p 4 065|01]01(01]1|04 3
Psm-« and -8 2.5 06 [01]01|01|1]051]25
Agr 2.5 06 |01] 0 0 [1]05]25

Table 4.9.: Changed parameter values for the simulation of the S. aureus mutant
bacteria colonies in comparison to the parameters for the wildtype.

are reproduced. In addition, the single concentrations are depicted in Figure
in the appendix. A summary of the changes in the parameter values for the mutants
considered above is found in Table

In Figure the results for the five bacterial morphologies as introduced in [98|
are displayed. As in 98], the type of pattern is investigated depending on the
initial nutrient concentration ny and the concentration of the growth medium or
the bacterial diffusion coefficient o, respectively. We distinguish five different mor-
phologies: The diffusion-limited aggregation (DLA) denoted by A, the Eden-like
morphology denoted by B, the concentric ring-like morphology denoted by C', the
disk-like morphology denoted by D and the dense branching morphology (DBM)
denoted by F in Figure [£.20] Diffusion-limited aggregation colonies show a star-like
structure with only few branches, which have larger gaps in between them, and are
observed for low values of both ng and . In the Eden-like morphology, the bacteria
colony has a flower-like shape and the branches are close. In comparison to the
parameters in the DLA case, here the initial nutrient concentration is significantly
larger. The concentric ring-like morphology shows a rather round shape, in which
concentric structures are observed and is found for large values of ny and rather
large values of o. The disk-like morphology has a surface with very little structure
and a round colony shape, which is mainly caused by large diffusion coefficients. In
the DBM, the branches are dense but can be clearly distinguished and the shape of
the colony is mostly round. This is the case for medium to large diffusion coefficients

in combination with a medium to small initial nutrient concentration.

To obtain the morphologies displayed in Figure [£.20] we use the wildtype parameter
values as described in Table and alter the parameters ny and o, and in one
case also the parameter a4, as indicated by the axes of the diagram. Varying only

these three parameters yields a wide range of colony morphologies. The wildtype
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4.6. Simulation of the full system

colony represents a dense branching morphology phenotype at (o,nq) = (0.5,1.11).
Another DBM is found at (0.5,0.7), thus at the same nutrient level as the DLA
representative, which is found at (0.2,0.7). The Eden-like morphology is observed
at a larger initial nutrient concentration at (0.1,2.0) and disk-like patterns are
obtained at (1.0,2.0) and (0.5,3.0). For the concentric ring-like morphology we
obtain the result displayed at (0.2,4.0), where a ring structure is observed in the
inner part of the colony while the outer part of the colony shows a pattern which
resembles the beginning of branching, such that two different levels are observed.
Thus, the arrangement of the different colony types in the (o, ng) plane qualitatively

replicates the classification scheme displayed in [98].
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ag=10

35

25

g

0.5

0 0.25 0.5 0.75 1 1.25 15
g

Figure 4.20.: The five morphologies as obtained from simulations of the five equation
model. Dependence of pattern formation on levels of ¢ and ny.
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5. Analysis of pattern formation

In this chapter we investigate methods to analyze pattern formation in the simpli-
fied situation of a reduced system consisting of two partial differential equations.
Starting from standard Turing approaches as described in Part [, Section for
the investigation of a system such as Equations f, we later consider a
front instability approach in order to determine the onset of fingering for the mixed

bacterial diffusion term.

5.1. Turing pattern formation analysis

Turing pattern formation analysis as introduced in Section represents a well-
known approach for the investigation of pattern formation in systems of reaction-
diffusion equations. However, we keep in mind that there are two main challenges
for our situation of bacterial pattern formation. The first one is the initially circular
geometry of the biological setting, which does not represent a spatially homogeneous
stationary state as required for Turing pattern formation, and the second one is
the inhomogeneous bacteria diffusion coefficient. Our aim in the following is to
investigate the mechanisms behind the pattern formation in our particular model
setting. We start by investigating which role Turing pattern mechanisms could
play. To this end, we derive the corresponding Turing parameters and investigate

simulation results around these parameters.

For a system of equations similar to Equations (4.1)—(4.2)), a spatially homogeneous
stationary state is not readily obtained. As we consider only the equations for the
nutrient concentration n and the replicative bacteria density b, we obtain that the

steady state concentrations (7, b) have to satisfy the equation

b

T This is only possible if either 7 = 0 or b = 0.

where we recall that g,(7,b) =

113



5. Analysis of pattern formation

In order to obtain

ob

5 = Gan(n.B) — a(n.B) = 0,

also a(m,b) = has to vanish. This leads to the two possible types of

“r %)( )
steady states (7,b) = (O 0) and (,0) with b =0 and 7 > 0. In both cases, one of
the steady state concentrations is zero. Thus, in the following, we consider a simple

modified system of equations of the form

on nb

— =d,An — 1
ot T G11+7n+60’ (5.1)
ob

==V - (onbVb) + Gy

14+ 9n

in the domain €. Here the parameter €5 denotes a small positive inflow of nutrients
into the system and is necessary for a positive spatially homogeneous state of the

system. The spatially homogeneous stationary state of such a system is

_ 7 Hu Gago
n,b) = , :
(7,5) Gy —yu Gip

(5.3)

Then, the required positivity of the stationary state gives the first restriction on

the parameters d,,, o, G1, Ga,7,e9, 4 € R, as
Go — v > 0. (5.4)

With the transformations n — 7 +nq and b — b+ by, the bacteria diffusion term is

linearized as

=:p/o —g(n1b1) /o

Using the diffusion coefficient reparametrization D := 7-, the resulting linearized

system is of the form

on

82&1 = Any + juni + Ji2bs, (5.5)
b
8t1 = DnbAbl + ]21”1 + ]2251 + g(nl, bl) (56)
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5.1. Turing pattern formation analysis

The entries of the Jacobian J = (jx)x=12 in (7, ) are

iy = _ Gaeo(yp — G2)?(99°1* + 4Gy + G3) i = _G1M(472,u2 + 3Gy + G2)
(G2 + yp)? 7 (Ga +yp)? '
iy = Gl = G0 + 4Gy + GY) 0 (e~ Go)
B Giu(Ga +yp)* > (G +yu)?

Furthermore, the linearized system matrix L) := J — B), where —B,u is defined
T

as —Byu := (Anl dﬁAb1> , constitutes a mapping Ly : X? — (H?(Q2))? from the

space X% := {u € (H*(2))*: % = 0 on 09}.

With the above results we perform the Turing stability analysis according to
Theorem in Section [3.2] Following (3.8), the stability of the equilibrium

without diffusion translates to the Turing conditions
tr(J) = j11 + Jo2 <0 and det(J) = j11j22 — J12J21 > 0. (5.7)
The remaining Turing conditions for the diffusion-driven instability read
joo + Dabjyy >0 and  (jog + Dabji1)® > 4Dnab(ji1jaz — jizjz),  (5.8)
as in f. Then the first condition from is fulfilled if the condition
. Vut (G2 + 1)
Ga(G2 = ypu)(9721* + 4Gy + G3)

no_ g0G2(972u? + 4Goyp + G2)
Gy — yu V2 u3 (G + yp)

Jin+J22 <0 —

— n=

holds. Furthermore, due to (5.4), we know that the right-hand side, and thus also

€p, are greater than zero.

We verify that the second condition from (5.7) always holds by inserting the terms
for ji11j202 < 0 and 712721 < 0. We obtain the condition

J11J22 — Ji12J21 > 0
PN (_ Gaco(yp — Go)*(97*1* + 4Gy + G%)) (_72u3(’vu - Gz)) B
(G + yp)? (Ga +yp)?
(_ Grp(4y*p? + 3Gayp + G%)) (Ggao(w — G2)* (9% + 4Gy + G%)) -0
(Ga +yu)? Griu(Ga + yp)
(Gzeo(w — G2)X (97 1* 4+ 4Goyp + G%))
< 1 .
1(Ga + yp)
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(V1P (v — Ga) + Gop(4y*1® + 3Gy + G3)
(G +vp)?

= |Vt =Goy’ 1’ + 4Gy 1’ +3GE’ + Gop | > 0,

~
| =3G2v2u3

which is fulfilled since the parameters are positive by definition.

The first condition in (5.8)) yields the inequality

Diibji1 + jaz > 0

_ Gogo(yp — Go)*(99°1% + 4Gy + G%)) N (_ﬁﬁ(vu - Gz)) =0
1(Go + yp)t (G +yp)?

= — DiibGaeo(Ga — v1)*(97°1® + 4Goyp + G3) + 7?1 (Go — i) (Go + ) > 0

PGt )
bGago(9721? + 4Gy + G3)

<= Dnb (

<—D <

Furthermore, we note that again the right-hand side is greater than zero.

For the second condition in ([5.8)) we find the following inequality to be fulfilled by

the diffusion parameter D:

(Jo2 + Dm;]'n)2 > 4Dﬁl—7(j11j22 — J12j21)
=72, — 2Dnbj1jor + D*n?b%5% > —4Dnbj1ajo
V(v = Ga)®  2DabGheo(vp — G2)* (991 + 4Gy + G3)y* i’
(G2 +yp)S (G +yp)7
D?*n2b>Gaed (v — Go) (972 1 + 4Goyp + G3)?
+ 2 ; >
i P (yp+ Ga)
ADAb(4y*u* + 3Goyp + G3)Gieo(yi — G2)*(99%1* + 4Gy + G3)
(Y + Go)7
= D0 Gieg(Ga — y)* (972 1? + 4Goyp + G3)? + 7' 1 (Ga + yp)* >
2DnbGazop®(97°1” + 4Gy + G3) (G + ) [V 1 + TGay*i® + 6G3yp + 2G3)
<= D22 G297 1 + 4Gy + G2 + b (Gy + yu)? >
2DnbGago(97°1* + 4Gy + G3) (G + ) [P 1 + TGy *i® + 6G3yu + 2G3).

For the Turing bifurcations we are especially interested in the relationship between
the diffusion coefficients and the initial values. For the chosen parameter values
Gy =v=1,Gy =02, ¢g = 0.01 and p = 0.1, we calculate that the spatially
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Stability region in the (n,,D) parameter plane
T T T T

Stability region in the (n,,D) parameter plane
T T T T

Diffusion coefficient D
Diffusion coefficient D
@

. I I I I I I I I X
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 12 1.4
Equilibrium nutrient concentration ng Equilibrium nutrient concentration ng

(a) Conditions on the parameters. (b) Zoom into admissible area.

Figure 5.1.: Turing bifurcation diagram for Equations (5.5, (5.6). Parameters G; =
vy=1,pu=0.1, Gy =0.2, gg = 0.01. Parameter sets (n,, D) = (1,0.2)
and (ns, D) = (1, 3) for simulations indicated by red and blue cross.

homogeneous stationary state is (7, b) = (1,0.02).

Thus it follows that 7b = 0.02 and the Turing bifurcation takes place at Dgy =
it = (.3247. We observe that in this fraction the nutrient diffusion d,_,, is high

Terit

in comparison to the bacteria diffusion o4, even more so when we consider the

Tcrit

relationship between d and the effective diffusion value puis = Oerigib. From

Nerit

Perit  __ Dcritﬁb we Ca]_culate dncrit = 032’2% ~ 154pcrit7 Wthh iS unreahstic n a
Merit : ’

biological scenario.

The bifurcation diagram for the chosen parameter values is displayed in Figure |5.1}
where a set of parameter values for which we expect Turing pattern formation is
indicated by a red cross and another set of parameter values, where we do not
expect a Turing pattern, is indicated by a blue cross. Using these parameter values
and standard diffusion with the coefficient Dnb for initially homogeneous concen-
trations with a random disturbance, we obtain the simulation results depicted in
Figure [3.2) in Section [3.2] With the same sets of parameter values for the bacterial
colony simulations of Equations 7, we obtain the results later displayed in
Figure in Section [5.3]

An approach which seems promising for bacterial colony pattern formation is Turing
pattern analysis using an inhomogeneity approach. Inhomogeneity approaches

as introduced in [112, |[113] and |17 |18, 19, |91] are appealing since they allow for
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inhomogeneity in either the diffusion coefficient or in one of the remaining parameters
of a system of model equations. This idea appears promising to represent some
aspects of the special geometry of our model. Due to the circular geometry of
the bacterial colony, polar coordinates in the two-dimensional domain 2 are of
interest to investigate pattern formation along the one-dimensional radius of the
colony. However, while the colony, and thus also the radius, grow in time, a fixed
radius is required to divide the domain into two subdomains. Furthermore, a
single inhomogeneous parameter approach is not fully tailored to represent the
inhomogeneities in colony growth, as there are several differences in- and outside
the colony and thus step functions are needed for several parameters. Thus we
do not consider Turing inhomogeneity approaches in detail, but in the following
section concentrate on a front instability approach, which is based on traveling wave

solutions.

5.2. Front instability approach

In [123], global existence of traveling wave solutions of the system of equations
describing bacterial pattern formation introduced in [82], which is similar to our
system, is investigated. With the assumption d,, = 0 in the equation for the nutrient
density, the existence of sharp type traveling wave solutions is shown and a minimum
wave speed is derived. In [62], the existence of a finite traveling wave solution for
the degenerate mixed diffusion equation is investigated also in the case d,, # 0. This
approach opens another path to investigate bacterial pattern formation in the special
geometry of a growing bacterial colony. In order to determine when branching is
observed, we consider traveling wave solutions along the one-dimensional radial
direction. If diffusion is large enough, perturbations are smoothed out, otherwise
they develop to a pattern. Traveling wave approaches such as |57, 75, (103, [140] can
help to determine the critical diffusion coefficient for the onset of pattern formation
in our mixed diffusion model. In the following, we consider a numerical traveling

wave approach as introduced in [103].

For the planar front instability ansatz we do not need to modify our two-equation
system by adding a constant &y as in Equations (5.1))—(5.2) in order to obtain a
positive spatially homogeneous steady state. However, we want to ensure mass
conservation and reduce the number of parameters. For proof of principle we
therefore do not include a bacterial death term —ub and take Gy = Gy = 1. We
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consider the system of equations

on nb

— =d,An — , .
ot "1 (5.9)
0b nb

Note that we extend the non-linear diffusion term in the form
V - (onbVb) = o(nbAb + [bVn +nVb| - Vb).

In the following, we rescale using D := 7-. The system of Equations (5.9)(5.10)
has the two trivial homogeneous solutions (n*,0*) = (¢,,0) and (0, ¢,). Of these

homogeneous solutions, the first one is unstable since any small population of
bacteria can invade and due to the ample nutrient supply the population will grow.
The second solution is stable since any small amount of nutrients is eaten by the
bacteria, leading back to the stationary state. The propagation of the bacteria field
into the nutrient field corresponds to a propagation of the stable stationary state

into the unstable stationary state.

The problem stated in Equations — is well-posed, but the solutions may
not be classical due to the nutrient dependent diffusion |73, [123|. Following [123], we
can assume that for suitable initial and boundary conditions there exists a unique
pair of solutions (n,b) for all positive times. Furthermore, as in [123|, we deduce
that the traveling wave solutions are the only long time solutions supported by
Equations —. This is further supported by the results in |62], where an
existence and uniqueness proof is conducted for traveling wave solutions to a system

with mixed diffusion for the bacteria and reaction terms of the form n4b’ with ¢, > 1.

We consider a one-dimensional traveling wave approach in the radial direction

(z,y) = (x,0) with the variable £ := x — vot, which yields the equations

d?b dn db| db db nb
Dnb— + D |b— —| — — =0 511
"t {dH”dJ & E T T Y (5:11)
2
d“n dn nb _0 (5‘12)

@ T

in the co-moving frame. In the following, we adapt the approach from [103| for the
case of bacteria density dependent diffusion to our bacteria density and nutrient

concentration dependent diffusion model. For large negative values of &, n ap-
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proaches 0 and the term d% [nbg—é’} represents a smaller effective diffusion coefficient

than the bacteria density dependent term d% [bg—g]. Thus, the changes in the con-

centrations towards £ — —oo are slower than in the bacteria density dependent case.

The boundary conditions at & — d+o0o are given by the homogeneous steady states.

Thus for £ — —oo we obtain

b(§ = —o0) = o, deb(§ — —00) =0,

n(€ = —oc) =0,  den(¢ = —0) =0,
and for £ — oo we obtain

b€ = 00) =0,  deb(§ = o0) =0,

n(§ — 00) = ¢y, den(€§ — o0) = 0.

The stable state (¢, 0) at £ — —oo invades the unstable state (0, ¢,,) at £ — oco. We

choose ¢ such that the region outside the colony in which b(§) = 0 corresponds to

the region in which £ > 0. Thus, in this region the system of linear equations [103|
d*n dn

+U0—:0

is valid. It is solved explicitly to yield n(£) = ¢, — ¢ exp(—vo€), where ¢y € R, is a
constant. At the boundary £ = 0 the boundary conditions

d
TL(O) =Cy, — Cy > 0, d—Z|£:O = VpCp, (513)

have to be fulfilled. We consider the area near £ = 0, where for £ — 0 we assume
that the concentration b shows a behavior of the form b(¢) ~ A(—£)* according
to [62, 103|. Inserting this form into Equation (5.11]) for the traveling wave yields

DnA(=&)*a(a —1)A(=6)*?+ D A(—g)aj—z — naA(=€)*!
(—aA(=6)") — v A(=6)* " + %_ﬁa =0
<= Dna(a — 1)A% (=€) 2 — DaAQ(jl—Z(—f)zal + Dna? A*(—¢)* 2
— v (=€) + %_jj =0
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Since the dominant terms in £ have to cancel out at £ = 0, it holds that
Dn(0)a(a — 1)A*(—€)** % + Dn(0)a® A*(—€)** % — vgaA(—€)* " = 0.

It follows that for the above equation to be fulfilled it has to hold that

a=1 and A= (5.14)

Since we have chosen reaction terms that fulfill conservation of mass, we can reduce
the order of the system. Adding Equations (5.11]) and (5.12)) yields the system

d [ db db b
D (2 —0
dé (” dg) T T T Y

d’n d db dn db
Y =
aer dé( 5)“’0 ae T roge =0

and by integration from —oo to £ in the second equation, we obtain the system

Dd(nbdb) L U —

ac \"ae ) T T 14 m
dn db
d—g—l—Dnbd—g—i-vo(n—i-b—cb) 0.

Since the derivatives vanish at £ — +o0, it holds that ¢, = ¢,, = 1. Any other choice
of ¢, ¢, can be transformed to this case using a renormalized diffusion coefficient
Dpg as described in [103].

Following the approaches described in [58, 103, [L18|, we consider a heteroclinic
orbit in the (b, d¢b, n) phase space and shoot to a fitting point in order to determine
the planar velocity vy. Since the values for ¢ > 0 are determined analytically, we
do not need to use a shooting method on the positive line. Instead, at & = 0,
we compare the analytically obtained concentrations to those from the shooting
method on ¢ < 0 and choose vy as the value for which the boundary conditions
are fulfilled. For the computation of the front profiles, the initial concentrations
(Minit binit) = (0.001,0.999) are chosen for computational reasons and the point £ = 0
is set such that b(0) = 0. In Figure the obtained values of vy for several values
of D are displayed. As expected, in comparison to the bacteria density dependent
case with k£ =1 [103], we observe that smaller values of vy are chosen. Furthermore,
the behavior for small values of D differs as we observe very small and also similar

values of vy for small D. This reflects the fact that the effective diffusion is further
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reduced by the dependence on the small nutrient concentration.

Dependence of the planar velocity v, on the diffusion coefficient D
1.4 T T T T T T T T T

Figure 5.2.: Planar front velocities vy in dependence of the diffusion coefficient
D € [0.25,5.00].

In the following Sections [5.2.1| and [5.2.2, two different approaches to investigate

stability are presented. Since these approaches yield very similar results in the
bacteria density dependent case [103], we only perform one of these approaches for

the stability analysis, namely the investigation of the critical line as described in

Section [(.2.2

5.2.1. Linear stability analysis investigating the dispersion
relation

In the following, we introduce a perturbation of the front in order to study its

linear stability. This approach is relevant for both stability investigations mentioned

above. The perturbations are not only perturbations in b and n, but also in the

shape of the line. As in [103], for (z,y) € R?, we focus on perturbations of the form
h(y,t) := e exp(iqy + wt) and switch to the locally co-moving frame

C:=x—vot+h(y,t) =&+ h(y,t).
This yields the expressions

b(C,y,t) = bo(C) + ebi(C) exp(iqy + wt) and (5.15)
n(¢,y,t) = no(C) + eni(C) exp(iqy + wt), (5.16)

where (bg, ng) is the planar front solution determined above. Furthermore, € denotes

the amplitude, ¢ is the wave number and by, ny are twice continuously differentiable
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functions away from 0 with 2—1, L hounded.
0 no

Linearization of Equations (5.9)—(5.10) about the uniformly translating solution

with € = 0 gives the matrix formulation

b Dngbog? by f’bo
o) w + Dngboq 0 + 8 7 (5.17)
n1 0 w + q2 ny + no

where the matrix operator £ has the components

82 82b0 8b0 0 8n0 0 0 o
L11 = Dngb D 9Dng 2R 9, p9o 9 9
noboge + Do +20ngeas + D5e grlbe) Huogs + 977,
6b0+b06<
9%y by, DOIR D bo
- D 4 (2 %
L= Dhoger + DG+ 350 ac YT xamo
—_——
*Dboibg 3
No
_ d
£21 1+7n0 an
o? 9 bo
22 = 5 T 0p0 T Tty

A main difference to the results in [103] are the non-diagonal derivative terms in L,
which are due to the mixed bacterial diffusion coefficient. Furthermore, the form of

the terms £1; and L5 is due to the expansion

ﬁ (nb@) = nba% + {ban @} @ = nba—% + b@@_n +n (@)2
¢ ¢ 0¢? ¢ a¢] o¢ 9¢%  0¢ ¢ ¢
9% 1012 on n(ab)2

~"ae T2acac T \ac

The planar front looses stability when w becomes positive for spatial modes in

(0, ¢max)- Thus, the onset of lateral instability happens when the derivative dzl”) at

q = 0 becomes positive due to the variation of a model parameter. Since it holds

that
dbg
L <8no) =0, (5.18)
a¢

we introduce the variables by := b;+ 840 and g := n1+6”° and write the system (|5.17
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5. Analysis of pattern formation

r 61 _ w + Dn0b0q2 0 61 ' (519)
N 0 w+q*) \iy

Again, two different domains meet at ( = 0 and are considered separately. On the
positive line by = 0 and also for ¢ > 0, it holds that b;(¢) = 0. Thus we solve for

b1(¢) and n1(¢) in the system of equations, which is given as

as

0%n,y ony o 2
¢ "‘an—g_(w‘f'q Jn = (W +q°)—~

and obtained from Equation ([5.19)).

With 88—’20 as defined above, the solution for n;(¢) in this system is calculated

explicitly as

n1(C) = —covo exp(—vo() + do exp(—A(),

vo—+/va+4(w+gq?)
2

where \ := and dj is a constant. We furthermore investigate the

behavior of ny and b; as ( — 0 from the left. Since n; and its derivative are

continuous across ¢ = 0, for ny and d:ny at ( = 0 we obtain

n1(0) = —covp + do and (5.20)
9en1(0) = covy — do. (5.21)

The expression Z—(l) has to remain bounded, such that perturbations are arbitrarily

small when € — 0. Therefore we consider b; ~ B(—()?. Inserting this form into
Equation (5.17)) yields

82b1 82b0 Bbl n061 abo c%l 3710 0
D — + Dng—— — 2Dng——+ 1D
noboaCQJr n08C2b1+008§+1+7no+ noa( 8(+ 8§a§<b°b1)
b0n1 82b0 abo 81)0 8n1
— =+ D D\ — +D
T e A o o
ob
= (w + DngboqQ) <b1 + a_CO>
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5.2. Front instability approach

We insert the expressions by = A(—() and %—bg = —A and obtain the equation
B(—)?
DroA(~C)*~8(8 ~ 1B +0 — wBB(-0P~ + P opn,asp(- ¢y

14 yng
3710 8 A(—C)nl 9 2 anl
—Da—CAB(ﬁ+1)(—C) +m+O+DA ny — DA (_€>6_C

= wB(—¢)? —wA + DngA(=¢)P1¢* B — ADnogB(—()P¢%.

When we consider only the dominant terms and assume that they have to cancel
for the equation to be fulfilled at ¢ = 0, we obtain 5 =1 and

Dng(0)AB(B — 1)B — o8B + 2Dng(0)ABB + DA*n;(0) + wA = 0
<= B[Dno(0)AB(B + 1) — vof8] + DA*n1(0) + wA =0

p=1 .  DAn(0) +wA vony(0) w _ n(0)  w
—bB=- 2Dng(0)A —vy (Dn0(0)2 - Dn0(0)> - ( i > '

no(O) Vo

This means that the quotient Zb)—; = _(% + =) remains finite as the quotient %Eg;
also remains finite. At ( — —oo all perturbations vanish, which yields that for

( — —oo we obtain

b1(¢) =0, 9cbi(C) =0,

Due to Equation (5.15) and Equation (5.16]), this means that by(¢) and ng(¢) show
the same behavior as b(¢,y,t) and n((,y,t) as ( — —oo. This allows to calculate
the functions by(C), no(¢) as well as their derivatives Ocby(¢) and O,ng(¢) from
Equation as an ordinary differential equation initial value problem. The
resulting profiles of by and ny for the parameter values v = 0.1, D = 3.5 and
vp = 0.9231 are depicted in Figure [5.3]

Using a shooting method on Equation for different values of ¢, which starts
at ( — —oo and ends at ¢ = 0, in [103] a dependence of the form w = w(D, q, k)
for the wavelength is found. Here k& denotes the exponent in the bacteria density
dependent diffusion coefficient as used in [103]. Then the numerical linear dispersion
relation is obtained by performing the shooting method for several values of D and

k. However this approach is not performed here.
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5. Analysis of pattern formation

; byandn, 03 by and n derivatives

B, delta b,
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. on ob
(a) Profiles of ng and by. (b) Profiles of G and Z2.

Figure 5.3.: Profiles for the parameters v = 0.1, D = 3.5 and vy = 0.9231.

5.2.2. Linear stability analysis investigating the w-¢> curve

For the onset of instability we are interested in the critical diffusion coefficient D.,
such that for all D < D. a long-wavelength ¢ = 0 instability is found while all
modes are stable for D > D,. The critical line is defined [103| as the line where it
holds that

dw

)= =0

The ¢ = 0 mode is called the translational mode and it is the eigenmode of £ from
Equation (5.17)) to the eigenvalue w = 0 [103]. Here w is small and of order ¢* when
q is small. Furthermore for ¢ = 0 also ny = b; = 0 and thus for small ¢ these terms

are of order ¢ as well.

Thus, in Equation (5.17) the right-hand side terms involving n; and b; are of order

¢* and we obtain the following equation of order ¢?

r bl _ w + Dn0b0q2 0 %LCO ‘
nq 0 w ~+ q2 88—"40

Here the operator £ is as introduced in Equation (5.17)) and has a zero eigenvalue.
We use the solvability condition for the left zero mode ¥ = (¥, ¥)T which,
following [103], reads

T b
/OO dC ‘Ifl w + Dn0b0q2 0 8_CO —0
BN 2 0 wHq®) \Ge '
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5.2. Front instability approach

This equation is rewritten as

o0 obo - Ong e oo on
w/wdc( ac*‘“ac) 4 /oodC(D‘I””Ob“ac”’?ac)

and, following [103], for ¢* — 0 we find the equation

S dC ( DWingbo G + Wy e
= ( ‘) (5.22)
A S, de (0% + wadpe)

Thus, our task is to find the point at which the integral in the numerator changes
sign. In order to calculate the integral, we determine the adjoint matrix operator of

L and determine the zero mode solution numerically using a shooting method.

5.2.2.1. The adjoint eigenmodes

The left eigenvector of the matrix operator L is the same as the right eigenvector of

the adjoint matrix operator £* given by

Dboab a9 o) 9 b

[ — (Dnoboagz + (Db06n0 — ’Uo) o
a¢ o a2 — Y09 T [Hymo)?

o + no ___no
o¢ T Limo L+mo . (5.23)
%

__bp
(1+7n0)?

This adjoint matrix operator £* is obtained by partial integration from the operator
L. In general, we obtain boundary terms. Here the requirement that the boundary
terms vanish yields the boundary conditions on the adjoint functions, which have
to stay bounded [103].

As in [103] for ¢ > 0 we have by = 0 and thus it holds that

_n o ng __mno
L = Yoge + 1+vno 1+vno
0 92 o |
aC2 06(

Therefore the component ¥, in Equation (5.22)) has to fulfill the homogeneous

ordinary differential equation

0?0, 0¥y

o~ "ac

which can have an exponential or a constant solution. Since, due to the boundary

condition, the solution has to remain bounded, we have Wy = 1)y = const. for { > 0.
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5. Analysis of pattern formation

This yields the boundary conditions at ¢ = 0, which read

ov,

‘1’2@ = 0) = o, 8_C|<:0 =

0. (5.24)

Furthermore, by vanishes for positive ¢ and thus ¥ is only needed for { < 0. For
¢ < 0, we determine W; and ¥, using a shooting method, as described in the

following section.

5.2.2.2. A shooting method for the adjoint eigenmodes

The zero mode solution VU is determined using a shooting method [118, |135].
Shooting methods can be used to approximate the solution of a second order

ordinary differential equation boundary value problem of the form
y'(t) = f(ty(t), ¥ (1)), y(to) = yo, y(t1) =

on the time interval [to, t1] by the solution y(t; a) of the initial value problem
y'(t) = fy),y'(1),  ylte) =wo,  ¥(lo) =a.

The resulting error is measured by the function F(a) := y(t1,a) — y;. If the function

F(a) has a root a*, then y(t,a*) solves the boundary value problem.

For the mode ¥ with ¥ = (¥, ;)T we obtain the two-dimensional system of

equations

82\1’1 8n0 8\111 Ny _
D?”Lobo 8C2 + (Dboa—c — U()) ag + 1r P (‘Ifl — \112) = 0,
0*W, 0V, 0by 0, bo
- — Dby—2 U, — ) =
o~ "o e ac t e amp T

from Equation (5.23).

This set is then translated to a four-dimensional system in order to avoid the second

derivatives and we obtain the system

oV,

a_g - Zl7

(9Z1 . 1 3710 No

8_C a Dnobo ((UO DbO (9( > Zl * 1 -+ Yo [\112 \Ijl]) ’
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5.2. Front instability approach

Eigenmodes
; T

T T
n-like component
b-like component

Figure 5.4.: Components of the zero right eigenvector of the adjoint operator for
v=0.1, D = 3.5 and vy = 0.9231.

OV,

o

3Z2 Qbo bO

— =v9lo + Dby—21 + ——— ¥y — Uy|.
ac VoL + boaC 1+(1+7n0)2[ 2 1]

The component W, is related to n and defined on (—o00,00). Since the positive

solution is determined as Wy = 1)y, the boundary conditions for ¥y at {—o0, 0} are
Uy(—00) =0, Wy(0) = vy,

such that the modes can be continuously extended into the domain ahead of the
front. For the components related to b defined on (—o0, 0], there is no right boundary
condition, as long as the solution does not diverge. On the left boundary —oco we
have ¥;(—o00) = 0. Furthermore, the solutions have to satisfy

ov
8_g2|<:° =0

according to Equation ([5.24)). The resulting modes W and W, obtained from the
numerical simulations are depicted in Figure [5.4l The shooting method for the

calculation of the modes uses a fourth-order Runge-Kutta method.

Using nyg, by as well as their derivatives with respect to ( and the solution ¥, the
constant D, is calculated as the value at which the numerator in Equation ([5.22])
changes sign. In this calculation the translational mode (9¢bg, Ocng) is calculated as

the right zero eigenmode of £, as described above. We approximate by integrating
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5. Analysis of pattern formation

over the interval ¢ € [—ajnt, bint] as

0 dby D 0 oby g
/ d¢ (D\Iflnobo Tt 0720) ~/ dc <D\Ifln0b0 5 0 ag)

Din 8710
o (5)

since by = 0 for ¢ > 0. Furthermore, 1)y denotes the constant value of ¥y for { > 0.

This approximation is admissible since at larger absolute values of ¢ only small

changes are induced. For small negative (, only small values of ng and ‘9”0 are

dng
¢

is performed in MATLAB using trapezoidal numerical integration. In comparison to

observed and for large positive ( the expression is small as well. The mtegration
the bacteria density dependent case, the factor ng lowers the effective diffusion coeffi-
cient for ( < 0. Therefore we expect to obtain a larger critical diffusion coefficient D,
for the long-wavelength instability than in the bacteria density dependent case. In
fact for our example of v = 0.1, we obtain the critical diffusion coefficient D, ~ 3.95

in comparison to the critical diffusion coefficient D, ~ 1.5 for the case k = 1 in [103].

A diffusion coefficient D > D. means that all modes are stable. Thus, in this
case we can exclude an instability. However, whether an instability is observed for
D < D, also depends on the size of the domain and on the total simulation time,

and we investigate simulations on large domains in the following.

5.3. Comparison of the stability results using

numerical simulations

The numerical simulations of the systems (5.1)—(5.2) and (5.9)—(5.10) in this section
are performed using the numerical finite element methods described in Section [4.6]

adapted to the considered systems of equations.

In order to obtain the simulation results depicted in Figure in Section [3.2] we
use the classical Turing pattern formation setting of randomly disturbed spatially
homogeneous initial concentrations. In this case, Turing patterns are obtained
as expected from the evaluation of the Turing conditions. In contrast, bacterial
colony growth does not represent a classical setting as we do not have spatially

homogeneous initial conditions and since there is a mixed diffusion term in the
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5.3. Comparison of the stability results using numerical simulations

equation for the bacteria density. However, we would like to obtain an impression of
how the bacteria colony simulations change around the Turing instability parameters
derived in Section Bl

Concentration of bacteria Concentration of bacteria

3

2

o

o

O | 1

0.5

(a) Colony for D =0.2 at t =241.92.  (b) Colony for D = 3 at t = 241.92.

Figure 5.5.: Simulation of Equations (5.1))—(5.2) with parameters d, = G; = v = 1.0,
Gy =0.2,69=0.01, x = 0.1 on a domain of size 240 x 240 with varying
parameter D = =

dyn

Thus a comparison of two different bacteria colonies for (in)stability parameters as
predicted by the Turing pattern formation analysis is displayed in Figure[5.5 In this
figure, we observe a similar behavior in both cases, with a rounder colony shape for
the higher diffusion coefficient D = 3. Furthermore, due to the relationship between
the growth rates, where many nutrients are needed for only little bacteria colony
growth, the highest concentration of bacteria is found at the colony border. As
expected, the diffusion coefficient D = 3, which is increased far from the bifurcation
value D = 0.3247, leads to a considerably faster growth of the bacteria colony.
In both cases, a very low concentration of bacteria is observed in the middle of the
colony due to a combination of slow growth due to lack of nutrients and diffusion.
In contrast to the case D = 3, for D = 0.2, the start of fingering behavior can be
observed in Figure [5.5] However a similar fingering behavior is also observed in the
case D = 1, which lies outside the Turing pattern domain. We note that obtaining
parameters which fit the Turing instability regime was rather difficult and that we
also concluded before that these parameters represent a biologically less relevant
case, which can also be observed in the simulation results. Thus, we conclude that
the observed pattern formation in bacterial colony growth is not directly related to

a Turing mechanism.

An analogous comparison for the front instability approach from Section is
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5. Analysis of pattern formation

Concentration of bacteria 15 Concentration of bacteria

10

a) Colony for D =1 at t = 279.92. (b) Colony for D = 3 at t = 84.92.
Concentration of bacteria Q Concentration of bacteria

c¢) Colony for D = 3.5 at t = 84.92. d) Colony for D =4 at t = 84.92.

Concentration of bacteria Concentration of bacteria

10 10
9 9
8 8
7 7
6 6
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(e) Colony for D = 4.5 at t = 84.92. (f) Colony for D =5 at t = 84.92.

Figure 5.6.: Simulation of Equations (5.9)—(5.10) with parameters d,, = 1, v = 0.1
on a domain of size 240 x 240 with varying D = . Change in the
stability regime at D = 3.95 predicted by front instability approach.

depicted in Figure and Figure[5.7] These figures display simulation results for
parameter values D € {1.0,3.0,3.5,4.0,4.5,5.0}, such that we cover values of D
close to the predicted critical diffusion coefficient D, =~ 3.95. We recall that we
expect all modes to be stable for D > D., with a colony expanding in a round
shape without instabilities. This behavior is observed in Figure [5.6, where for

D > 4 the colonies are round and without structure. For decreasing values of D < 4
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Concentration of bacteria Concentration of bacteria
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a) Colony for D =1 at t = 488.92. b) Colony for D = 3 at t = 249.92.
Concentration of bacteria Concentration of bacteria
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6 6
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0 0

c¢) Colony for D = 3.5 at t = 224.92. d) Colony for D =4 at t = 209.92.
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(e) Colony for D = 4.5 at t = 199.92. (f) Colony for D =5 at t = 189.92.

o

o = N w A& o o ~N o o

Figure 5.7.: Simulation of Equations (5.9)—(5.10) with parameters d,, = 1, v = 0.1
on a domain of size 500 x 500 with varying D = s Change in the
stability regime at D = 3.95 predicted by front instability approach.

such as D = 3.5 or D = 3, the colonies start to show small indentations and a
structure develops inside the colonies. Simulations are performed on a domain of
size 240 x 240. As an example of full fingering behavior, we include the case D = 1.
Since the observed patterning behavior agrees well with the prediction of the front

instability approach, the approach seems appropriate.
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Concentration of bacteria Concentration of bacteria

(a) Colony for D = 2.5 at t = 249.92.  (b) Colony for D = 3.5 at ¢t = 224.92.

Figure 5.8.: Simulation of Equations (5.9)(5.10) with parameters d,, = 1, v = 0.1,
D € {2.5,3.5} on a domain of size 500 x 500.

According to , stability behavior depends on the system size and simulation
time since long-wavelength instabilities only develop if the corresponding unstable
modes are able to enter the domain. Thus, in Figure [5.7] we display simulation
results for the larger domain size 500 x 500 and longer simulation times. For both
domains, the mesh sizes of the finite elements are similar. We observe that the
round colony structure for D > 4 is preserved and that for decreasing D a structure
is observed inside the colony. In Figure (b), the colony for D = 3.5 is depicted.
If the parameter D is decreased further away from the critical value, we obtain
the simulation result displayed in Figure [5.8|a) for D = 2.5. In this simulation
we observe a further step in the transition to full fingering behavior as in the case
D =1, as we see that the colony structure and small indentations at the colony

boundary start to develop into fingers.

Tsurr “Tdom Tsurr “Tdom

D Tsurr Tdom Teurr
1 177 | 172.87 0.0234
3.5 | 240.5 | 239.02 0.0062
4.5 | 256.5 | 255.32 0.0046

Tsurr Tdom Teurr
237.5 | 235.68 0.0077
247.5 | 246.41 0.0044
262 | 260.84 0.0044

ok w| Y

Table 5.1.: Comparison of the radius of a colony with the same area to the colony
surrounding radius.

To also quantify the results, we extract a black-and-white representation of the
colonies in Figure in MATLAB and compare the radius that would correspond
to a circular domain of the same area to the radius of the smallest circle surrounding
the colony. This yields the relative results displayed in Table [5.1 We observe that
for D > 4, the relative radial difference remains below 0.5%, where a completely

circular domain is never reached due to the random bacterial diffusion component.
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5.3. Comparison of the stability results using numerical simulations

Furthermore, we note that even a perfect circle is never completely round on a

discrete numerical grid.

Concentration of bacteria Concentration of bacteria

10 10
8 8
6 6
4 4
2 2
0 0

) Simulation with 49732 triangles. ) Simulation with 199614 triangles.

Concentration of bacteria Concentration of bacteria

10 10
8 8
6 6
4 4
2 2
0 0

(c) Simulation with 448814 triangles.  (d) Simulation with 795874 triangles.

Figure 5.9.: Simulation of Equations (5.9)-(5.10) with parameters D = 3 on a
domain of size 240 x 240 with varying degrees of refinement.

The simulations in Figure are performed on a rectangular domain with side
length 240 and 448814 triangles. At this point we note that the choice of a
sufficient degree of refinement is important as it assures numerical convergence of
the method. This convergence can be observed in Figure [5.9, where simulation
results of the colony with D = 3 at time 104.92 are displayed for several degrees
of refinement. Convergence is observed in the colony size, which decreases when
a finer mesh is chosen until, for our chosen mesh size and the simulation result
depicted in Figure (C), even in comparison to the considerably finer mesh with
795874 triangles and the simulation result depicted in Figure [5.9(d), only small

non-qualitative changes are observed.
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Part Ill.

Modeling with pressure
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6. Modeling the effects of
pressure due to bacterial

division

The approaches considered so far have emphasized bacterial regulation processes in
the cell and between cells, which are described using systems of reaction-diffusion
equations. Physical effects such as pressure induced by the division of bacteria have
so far been considered indirectly in the different forms of diffusion, which aim at
evening out concentration differences. However these processes play an important
role in colony growth. In the following, we concentrate on pressure effects induced

by bacterial division, a process which is relevant for all bacteria colonies.

In laboratory experiments it is observed that the colony shape of S. aureus bac-
teria does not only depend on the mutant, but also in a very general way on the
environmental conditions. In Figure the shapes of S. aureus wildtype bacteria
colonies for varying concentrations of the agar medium are depicted. We observe
very different morphologies, where at the lowest agar concentration the colony seems
to almost flow out and at the highest agar concentration colony growth is restricted
to a small circular area. Furthermore, in Figure colony shapes after 5 days
for different nutrient concentrations in the medium are depicted. We observe that
a higher nutrient concentration in the medium leads to a rounder shape of the
colony and less fingering behavior and that an increasing agar concentration leads
to a significantly slower growth of the bacterial colony. In order to describe these
processes, models for the expansion of a colony due to cell division as in [49] or
models for the swelling of gel-like substances from the physical literature as in |37,
127| are of great interest. In all cases, the formation of biofilm, which encompasses

all components, is important for the physical processes.

Using a pressure model, we investigate in the following, which effects of S. aureus

pattern formation can be explained by the physics of biomass growth alone. The
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6. Modeling the effects of pressure due to bacterial division

(a) Colony after 5 days at (b) Colony after 5 days at (c) Colony after 5 days at
agar concentration 0.5%. agar concentration 1.5%. agar concentration 3.0%.

Figure 6.1.: Influence of the agar concentration on S. aureus pattern formation in
the laboratory [65, [89]. Nutrient concentration at standard level.

(a) Colony after 5 days at (b) Colony after 5 days at (c) Colony after 5 days at five
standard nutrient concen- double nutrient concen- fold nutrient concentra-
tration. tration. tion.

Figure 6.2.: Influence of the nutrient concentration on S. aureus pattern formation
in the laboratory |65, 89]. Agar concentration at 1.5% (standard level).

starting point for our modeling is Darcy’s law in Hele-Shaw cells as introduced in
Equation in Section . Then, in order to consider the evolution of a growth
limiting nutrient substance, a reaction-diffusion equation for the concentration n
is introduced, which drives biomass expansion described by a nutrient-dependent

Poisson equation.

6.1. Mathematical modeling

Bacteria colony expansion due to an increase of pressure from bacteria division is
similar in different bacteria species, such as B. subtilis and S. aureus and is a process
which can also be observed in similar form for other phenomena. While for colony
expansion with biofilm formation as described in [127], osmotic stresses seem to be
an important factor, all species experience pressure effects due to bacterial division.

Furthermore, species who do not secrete the exopolysaccharide (EPS) component of
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6.1. Mathematical modeling

the extracellular matrix or EPS mutants of species that usually secrete EPS show
slower expansion [127]. This is due to the fact that this expansion is mainly led by

cell-cell interactions, which we study in this chapter.

In a first modeling approach, we concentrate on the horizontal bacteria colony
expansion in the domain Q = Q, U, C R?, divided into the colony subdomain
), and the subdomain §2,. The boundary between the subdomains is defined as
I := Q,NQ, and the boundary of the whole domain is denoted by 9. For the
modeling we adapt the approaches from [49, 67|, which model situations similar to
the situation in a Hele-Shaw cell. In [67] the influence of chemotactic motility on

bacteria colony expansion is considered in an equation of the form

dp

— + V.- (pv) =V -m,

T (pv)
where m = xpVn denotes the chemotactic coefficient. Then with the assumption
of constant bacterial density p and Darcy’s law v = —K'Vp, a Poisson equation of
the form

X o2
Vip = —-=V’n
P="K

for the colony area is obtained. In contrast, in [49] biofilm growth is limited by

substrate availability and a Poisson equation of the form
—AV?p = g(u(9))

is obtained, where g(u(5)) = um(wﬁ denotes the use of the substrate S. While
for the model presented in [67] moving boundary simulations of a circular bacteria
colony are available, the model from [49]|, which includes the growth function, is
considered in the setting of biofilm growth in height. Our model is based on the
model from [49]. However, we consider time-dependence in the nutrient equation for
colony growth and investigate the situation of circular growth of the entire bacteria

colony instead of investigating the growth of biofilm layers.

For our model, as in both of the above references, we consider the density of biomass
b, which includes biofilm and bacteria in the case of a wildtype colony, and the
concentration of nutrients n and assume that the nutrients are only consumed

in the colony subdomain. We assume the evolution to take place according to
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6. Modeling the effects of pressure due to bacterial division

Equation (5.9) in Section with the consumption rate o, which is stated as

on nb
E_dnAn_al—kvn' (6.1)

Since b = 0 outside the colony subdomain €2;,, consumption automatically takes
place only in the area where b # 0. As stated in [49], diffusion constants can be

different in- and outside the colony subdomain, but this case is not considered here.

For the biomass, Darcy’s law v = —KVp holds for the two-dimensional velocity
vector v = (v;,v,)". This means that the propagation velocity of the colony is
proportional to the pressure gradient, with the proportionality constant K :=k/u
depending on the permeabilty tensor k£ and the kinematic viscosity p. In the colony

subdomain, the mass conservation law

0b nb

a—FV'(bV):Bl_’_vn

(6.2)

holds, where b denotes the density of the biomass and § € R, describes the speed
of the conversion of nutrients to biomass. If we assume constant density in the
colony subdomain, Equation (6.2)) simplifies to the equation

n

v'vzﬁl—l—’yn'

Then we use Darcy’s law to obtain a Poisson equation for the pressure of the form
n

—KV?p =
P Bl—f—vn

(6.3)

We assume that there is a constant non-zero concentration of biomass b in the

colony area and no biomass, i.e., b = 0, outside this area.

In contrast to the paper [67], where a moving boundary approach is used, we employ
a level set approach as described in Section [3.6] Starting from appropriate initial
conditions, we calculate the concentration of nutrients using Equation and
from this the pressure distribution on the entire domain using Equation for
the colony subdomain and a Laplace equation on §2,. The pressure distribution
yields the pressure gradients and thus also the velocity field using Darcy’s law.
Then, the level set signed distance function is updated using Equation and the

biomass density for the next iteration is determined from the position of the level set.
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6.2. Numerical simulations

This allows to determine the evolution of the colony without considering separate
subdomains, which are only connected at the boundary I'. Especially for the
concentration of nutrients, diffusion should take place across the boundary. Then

continuity of the nutrient concentration and of the flux
[n]lr =0, Vn' -n|r=Vn -n|p, (6.4)

as described in 67|, are automatically satisfied. Here n denotes the outward normal
vector of the colony domain. Furthermore, following [49], we do not include surface
tension effects. The stability analysis in [66, 67| heavily relies on the used separation
of domains and performs coupling at the radius of the colony at time ¢. Since our
approach does not provide this separation of domains, we do not perform a similar

stability analysis here.

6.2. Numerical simulations

For the numerical simulations we combine a finite element simulation of the Poisson
equation given in Equation (6.3) and the reaction-diffusion equation given in
Equation (6.1]) for the nutrient concentration with a finite element based level set

formulation for the position of the interface as in |2, |3} 52, 136].

6.2.1. Level set modeling approach

The level set modeling approach is appropriate for a system of this form since we
track the motion of an interface using the distance of the points in the domain to
the interface. We consider the evolution of a two-dimensional colony with uniform
density on the planar domain  C R? with homogeneous Neumann boundary.
The two different subdomains are the colony area (), and the area 2, containing
the agar medium surrounding the colony. Note that, as mentioned in the intro-
duction, the boundary between the domains is defined as I'(¢) := {x : ¢(x(t),t) = 0}.

Then the level set formulation for the motion of this interface is constructed as
follows: Let x(0) € €2 denote the initial position of a particle in 2 and x(¢) denote
the trace of this particle over time ¢ > 0. If a particle starts on the interface,
it remains on it for the entire calculation, which means that its signed distance
level set function ¢(x(t),t) is zero, i.e., ¢(x(t),t) = 0 for all £ > 0. We recall that
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6. Modeling the effects of pressure due to bacterial division

differentiation then yields that
¢t + ng(X, t) Xy = 0, (65)

where x; denotes the time derivative of the trace of the particle. This displacement

is described using the velocity field v = —K'Vp obtained from Darcy’s law.

When calculating the evolution of the level set using Equation , the signed
distance function property of the level set function ¢(x(t),t) may be lost as the
level sets adjacent to the zero level set may move with different velocities than the
zero level set. This makes the advection of the level set less accurate. In order to
reestablish the signed distance property, different approaches to reinitialize the level
set function have been developed, e.g., [40, |107, 130, |136]. These aim at fulfilling
two main requirements: The zero-level set position should be preserved and the
norm of the level set function gradient should satisfy ||V¢|| ~ 1. We distinguish

partial differential equation approaches and geometric approaches.

Partial differential equation approaches use a pseudo time-stepping scheme. To this
end, we introduce the pseudo timescale 7, which is not related to the physical time

t. On this scale an equation of the form

o = $u(6)( — v, (6.6
d(x,0) = ¢(x,t), (6.7)

is introduced, where d(x,7) corresponds to the level set function on the pseudo
timescale. When this equation is solved to equilibrium, it holds that ||Vd|| = 1,
since convergence occurs when the right hand side is zero. Thus the steady solu-
tions are distance functions. Furthermore, S (¢) denotes a smoothed sign function

depending on the initial condition for the pseudo timescale equation, which can

for example be of the form Sy, (¢) = \/# as in [136] or Sp,(¢) = W as

in [40] and where 0 < h < 1. However, solving Equations (6.6)—(6.7) to equilibrium
may require many steps and may thus slightly move the zero level set. A strategy
to overcome this shortfall is introduced in [136] for the finite difference method, and
extended to the finite element case in [107]. The idea is to apply a constraint which
ensures that the volume occupied by the colony and the agar components remains

constant during the reinitialization.
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6.2. Numerical simulations

Therefore at the pseudo time step 73, we consider the volume V* in each element

as an integral over the element area €2, given as

VF= [ H(d")dQ.,

Qe

where d* is the distance field at the k-th iteration of the pseudo time redistancing
and H(¢) denotes the Heaviside function

0, ifp<O
H(¢) =3, if[¢] =
1, ifp>0

Since the volume should not change, we require that V* = V°. Thus we can write

dH' (d°)
VE VO (78 - TO)/ d( dQ. ~ / H/(d°)(d* — d°)dQ, =0, (6.8)
Qe T

where we take H!(d) of the form

e}

: if |d| > ¢

TR+ Leos()], if|d < e

3 3

H(d) =

By a projection of the current level set values d* to values d*, which satisfy
Equation (6.8)), according to [107], we assume that the new distance field can be

calculated as

_fﬂe H'(d°) (dk do) a0,
Jo, (HL(d"))? d2

d" = d" + Xo, (7" — 7°)H.(d"), where Mg, =

and A\, is constant in €2.. However, we observe that, while it preserves the zero
level set for few pseudo time steps, this method also induces a slight change in the
zero level set for many steps. Furthermore, several parameters have to be chosen,

making the calculations difficult to control.

An alternative reparametrization method is geometric reparametrization via the fast
marching method [129, [130], which aims at solving the eikonal equation ||V¢|| = 1
directly. For our simulations, we use a finite element based version of this method,

similar to the one introduced in [69).
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6. Modeling the effects of pressure due to bacterial division

In the initialization of the method in [69], the set Z denotes the collection of triangles

which contain the discrete interface. Then the set of vertices corresponding to Z is
defined as

F={veV(T): Tel}CV,

where V(T') denotes the set of vertices of a triangle 7" and V denotes the collection
of all vertices. For each vertex v belonging to the set F, the discrete approximation
d(v) of the distance function is calculated. This approximation relies on orthogonal
projections and the calculated distance function is assumed to be good enough,

such that F represents the set of accepted vertices.

The active set of vertices A is defined as the set of the vertices which are not in F

themselves, but have a neighboring vertex in F, i.e., we take
A:={veV\F:Nw)nF# 0},

where N (v) denotes the collection of all neighboring vertices of v. For these vertices
the distance function is approximated similarly, but in relation to the distances
already known for F. Then the vertex vy, € A with the minimal distance function
is chosen and moved to the set F and those of its neighbors which are not in F are
added to the set A, i.e., we obtain Frew = F U {Umin} and Ayew = (AUN)\{vmin}
with N := N(min)\F. The distances of the neighbors are calculated and the proce-
dure is repeated until | A| = 0. The zero level set function is uniquely determined by
the calculated distance function and can now be determined with only very minor

changes to the zero level set before the reinitialization.

Our variant of the reinitialization method is similar to the fast marching method
described above. An example for the use of our method is depicted in Figure [6.3]
In a first step, we determine the set of elements, which are intersected by the zero
level set. This set of elements is colored in green in the example. In each of these
triangular elements, we determine the points on the edges where the zero level set
intersects. For the example element in Figure[6.3] these are the points Py and P;.
The discrete approximation of the circular zero level set, depicted in blue in the

example, consists of line segments, which connect the intersection points.

For the calculation of the approximate distance function d(v), we enrich the set

{Py, P1} of vertices on the zero level set by several additional points on the line
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6.2. Numerical simulations

Figure 6.3.: Fast marching reinitialization method on a coarse example finite element
grid with the circular zero level set in red and its discrete approximation
in blue. The green area describes the set Z of triangles which are
intersected by the zero level set.

between the two intersection points. Thus, in the example Py and P; as well as the
points Py a5, Pos and Py 75 form a set { Py, Po.as, Pos, Po7s, P1} which approximates
the zero level set {x : ¢(x(t),t) = 0}. The approximate distance functions for
the vertices v(7T") belonging to triangles 7" in the set of intersected elements Z are
calculated as the minimal distances to the set of points on the zero level set, which is
similar to the projection in [69]. In the example this means that the approximation
for the distance function d(v) for v € { Ny, Ny, N3} is calculated as the minimal
distance to the set { Py, P25, Pos, Pors, P1} of points on the zero level set. Note
that in the implementation the set of points on the zero level set is calculated for all
triangles in Z at once, such that cases where the minimal distance is achieved for a
point belonging to another triangle is treated accordingly. The calculated distance
function is assumed to be good enough, such that the set F of the vertices belonging
to triangles from the set Z represents the set of accepted vertices. For the example
in Figure [6.3] the set {Ny, Na, N3} is a subset of the set F. Then the remaining
distances are calculated in relation to this set. In order to ensure convergence, the
level set simulations of bacterial colony growth have been performed on grids with
different refinement levels and an appropriate refinement level has been chosen for

our following simulations.

6.2.2. Comparison of the numerical results to real data

The following simulations are performed in FEniCS [139] and the simulation results

are visualized in Paraview [1]. Using the parameter values in Table[6.1]on a circular
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6. Modeling the effects of pressure due to bacterial division

Parameter | Value || Parameter | Value || Parameter | Value || Parameter | Value
dp, 0.01 y 1.0 K 0.01 a=p 100
ng 1.0 70 0.05 R 0.5 Edist 0.001

Table 6.1.: Parameter and initial values for the level set simulation of colony growth
due to bacterial division.

domain of radius R = 0.5, we obtain the simulation results depicted in Figure [6.4]

which represent the shape of the zero level set function at different time points.

Figure 6.4.: Level set simulation of Equations (6.1]),(6.3) and (6.5) with Darcy’s
law for parameter values as indicated in Table at times t =

0,0.25,...,1.25,1.45.

The corresponding level sets in three dimensions at selected time points are depicted
in Figure 6.5} Here the signed distance property of the level set resulting from the
fast marching method reinitialization can be observed. The initial level set function

is slightly perturbed so that the initial zero level set has the radius
T =710 + €aist (cos(30) + sin(70) + cos(150) + sin(250)),

which changes with the polar coordinate angle 6 of a point in 2 C R? |132]. This
represents the fact that the shape of the initial bacteria colony is not perfectly
circular. The chosen circular domain has a radius of R = 0.5, where the initial
radius of the colony is chosen as ry = 0.05. Furthermore, the mesh for the level set
function is refined twice around the zero level set. This refinement is adapted as

the level set moves.
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6.2. Numerical simulations

(a) Level set from the side at ¢ = 0.0.  (b) Level set from above at ¢t = 0.0.

(c) Level set from the side at ¢t = 0.5. (d) Level set from above at ¢t = 0.5.

(e) Level set from the side at ¢ = 1.0. (f) Level set from above at t = 1.0.

(g) Level set from the side at ¢ = 1.45.  (h) Level set from above at ¢t = 1.45.

Figure 6.5.: Three-dimensional views of the level set function ¢(x,t) corresponding
to selected timesteps of the colony level sets in Figure

Changing a total of only three model parameters, we investigate the model’s reaction

to changing environmental conditions. Note that the colonies grow at very different
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6. Modeling the effects of pressure due to bacterial division

(a) Simulation for d, = (b) Simulation for d, = (c) Simulation for d, =
005, K = 005, t = 001, K = 001, t =  0.005 K = 0.005, t =
0,0.15,...,0.9. 0,0.25,...,1.25,1.45. 0,0.25,...,1.5.

Figure 6.6.: Simulations for the influence of the agar concentration on S. aureus
pattern formation.

(a) Simulation for ng = 1¢ = (b) Simulation for ng = 1.5, (c¢) Simulation for ny = 2,
0,0.25,....1.25,1.45. t=0,01,....0.6. t=0,0.05,...,0.4.

Figure 6.7.: Simulations for the influence of the initial nutrient concentration on S.
aureus pattern formation.

speeds, such that in Figure and Figure different ranges of time steps are
depicted. We model the varying agar concentrations as depicted in Figure [6.1] by
simultaneously increasing or decreasing the parameter K in Darcy’s law and the
parameter d,, for the nutrient diffusion, where an increase in these values corresponds
to a decreased agar concentration and a decrease corresponds to an increased agar
concentration. As expected the colony grows faster for the case corresponding
to a decreased agar concentration depicted in Figure (a) and slower growth is
observed for an increased agar concentration in Figure [6.6c). However, for the
decreased parameters the colony shape is similar to the reference case, whereas the
real data in Figure [6.1] shows a round colony shape. This corresponds well to the

first time steps of colony growth, but not to the later ones, where the simulated
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6.2. Numerical simulations

colony in Figure (C) shows fingering. However, also the biological observation in
Figure (c) shows a compressed fingering structure inside the round colony. Vary-
ing the initial value of the nutrients, we obtain results that replicate the biological
data as depicted in Figure In the numerical simulations, we observe that for
an increasing initial nutrient concentration, the colonies grow faster, needing less
time steps to reach the domain boundary. Also for increasing ng the colony shape
becomes rounder as expected from the real data. Thus we obtain a good qualitative
agreement with the real data depicted in Figure [6.2]

In [127] a distinct effect of agar concentration on EPS-mediated spreading is ob-
served. As the S. aureus wildtype strains considered in the experiments are able
to secrete EPS, including osmotic pressure effects into the modeling should be
the next step in the investigation of the dependence of colony evolution on agar
concentration. The mathematical modeling of S. aureus colony expansion due
to biofilm osmotic pressure effects is similar to that of B. subtilis as described
in [127]. While B. subtilis bacteria loose their ability to move using their flag-
ella at the secretion of the biofilm component EPS, the bacterium S. aureus is
also able to secrete EPS, but does not have a flagella at all. Thus, the slow ex-
pansion process of the biofilm driven by osmotic pressure must be comparable
in both species and similar models should apply. As in the case of B. subtilis,
this is not appropriate for the EPS mutant, which shows slower expansion caused

mainly by cell-cell interactions instead of osmotic effects, as described in this chapter.

While the model in [127] considers bacterial biofilm growth in height, models
such as |35, [36] are available, which model biofilm growth in a similar way to
two-dimensional multi-component tumor growth [4] |8]. Thus, a possible approach
would be to consider the biofilm as a biological gel composed of the main biomass
components EPS and water as in [37], where the polymer-producing bacteria are
enmeshed in the EPS. Then the EPS experiences swelling and contraction induced
by the osmotic pressure gradient and the forces acting in this situation are physical
forces resulting from the deformation of the matrix as well as chemical forces from
osmotic processes. From mass and momentum balance equations, a model could

then be derived for the evolution of the colony.

However, the crucial features of such a model are the different concentrations of the
colony components at different points in space, such that a level set approach, which

relies on the assumption that the concentrations of the components are constant
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6. Modeling the effects of pressure due to bacterial division

inside the domain, is no longer adequate. Instead the evolution of the colony could
be described using transport equations for the single components resulting from

mass balance considerations.
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Conclusion and outlook
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Conclusion and outlook

In this thesis we have considered several aspects of pattern formation processes in
bacterial colonies under laboratory conditions. We have focused on two different
modeling approaches, namely reaction-diffusion equations with nutrient-dependent

bacterial diffusion and pressure-based approaches.

We have first introduced the biological, physical and mathematical background and
the numerical simulation techniques in Chapters [2 and [3] of Part

In Part [[T] we have considered classical reaction-diffusion equation models. Thus, in
Chapter [4] starting from a detailed consideration of the gene regulation processes in
Staphylococcus aureus, we have derived ordinary differential equations to describe
the temporal evolution of the concentrations of the quorum sensing substance AIP
and of the biofilm. These were then incorporated into a partial differential equation
model consisting of evolution equations for the concentrations of replicative and
non-replicative bacteria, nutrients, quorum sensing substance and biofilm. We have
performed the corresponding numerical simulations using a time-adaptive finite
element method and demonstrated that the mutation-dependent pattern formation
of S. aureus bacteria in the laboratory can be obtained from the newly developed
system by a variation of the parameters associated to the mutated gene loci. We
have also demonstrated the reproduction of the five qualitative morphologies of
bacteria pattern formation with our model. Furthermore, in Chapter [5| we have
briefly considered Turing pattern formation approaches. We have observed that
these approaches do not yield a sufficient explanation for the fingering behavior
observed in bacterial colonies. However, we have derived a critical diffusion parame-
ter for the onset of long-wavelength instabilities in a reduced system of two partial

differential equations with mixed diffusion by adapting a front instability approach.
In Part [[TI, we have investigated a very general model for the effects of pressure

induced by biomass growth on pattern formation in the bacterial colony. We have

concentrated on the effects induced by bacterial division in Chapter [6 For the
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numerical simulations we have again employed a finite element method, which was

coupled to a level set method with a fast marching reinitialization.

The investigations in this thesis help to better understand S. aureus gene regulation
processes related to pattern formation as well as pressure-induced effects in general
bacterial pattern formation. Pattern formation is of special interest not only due
to the patterns themselves, but also due to the differences in pattern formation
for mutant colonies of a bacterium. In case of a pathological S. aureus infection,
determining which kind of bacterium is responsible for the infection is an important
part of finding the right treatment. In this context time is crucial. Growing bacterial
colonies in a laboratory and analyzing the obtained patterns may allow to determine
the mutant type in a time- and cost-efficient way. The results from this thesis
may be used to help develop a methodology for this, which is able to isolate and
recognize typical graphical patterns which can be attributed to a certain mutant.
In terms of future work, it seems promising to investigate further pressure-related
influences on colony growth such as osmotic pressure effects as described at the
end of Chapter [6] The related model approaches can become very complex and,
in comparison with experimental real data, further effects in pattern formation
can be isolated and studied in detail. Future work could also include investigating
a possible combination of these general models with specific models for quorum

sensing or considering pattern formation of mixed bacterial colonies.
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Al. Simulation results for the

mutant colonies

On the following pages, the single concentration simulation results for the ica,

spa, ica/spa, psm-a, psm-f, psm-a/psm-f and agr mutant colonies discussed in
Section are displayed.

159



Al. Simulation results for the mutant colonies

Replicative bacteria Nonreplicative bacteria

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

(e) Quorum sensing substance.

Figure Al.1.: Single concentrations for the S. aureus ica mutant as obtained from
simulation with the parameters indicated in Section .
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Replicative bacteria Nonreplicative bacteria

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

10

(e) Quorum sensing substance.

Figure A1.2.: Single concentrations for the S. aureus spa mutant as obtained from
simulation with the parameters indicated in Section .
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Al. Simulation results for the mutant colonies

Replicative bacteria

Nonreplicative bacteria

03
025
02
0.15
01
005

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

(e) Quorum sensing substance.

Figure A1.3.: Single concentrations for the S. aureus ica and spa mutant obtained
by simulation with the parameters from Section .
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Replicative bacteria Nonreplicative bacteria

0.2

0.1

0.0¢

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

o

(e) Quorum sensing substance.

Figure A1l.4.: Single concentrations for the S. aureus psm-a mutant as obtained
from simulation with the parameters indicated in Section W
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Al. Simulation results for the mutant colonies

Replicative bacteria Nonreplicative bacteria

0.3t

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

(e) Quorum sensing substance.

Figure A1.5.: Single concentrations for the S. aureus psm-5 mutant as obtained
from simulation with the parameters indicated in Section W
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Replicative bacteria Nonreplicative bacteria

0.6
0.5
0.4
0.3
0.2
0.1
0

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

45 5.5
5
45
4
3.5
3
2.5
2
15
1
0.5

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

(e) Quorum sensing substance.

Figure A1.6.: Single concentrations for the S. aureus psm-a and psm-f mutant
obtained by simulation with the parameters from Section .
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Al. Simulation results for the mutant colonies

Replicative bacteria Nonreplicative bacteria

(a) Replicative bacteria. (b) Nonreplicative bacteria.

Biofilm Nutrients

(c) Biofilm concentration. (d) Nutrient concentration.

Quorum sensing

(e) Quorum sensing substance.

Figure A1.7.: Single concentrations for the S. aureus agr mutant as obtained from
simulation with the parameters indicated in Section .
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