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Abstract— This paper presents a protective control frame-
work for robot manipulators using sliding mode based state
estimation and disturbance reconstruction. Specifically, the non-
linear dynamic state-space model of the robot is transformed
into a descriptor form, allowing the design of a sliding mode
observer and a sliding mode based trajectory tracking control.
Different reaction strategies to protect the robot manipulator
are presented according to the strength of the disturbance and
whether the environment is completely perceptible. Finally, to
show the effectiveness of this novel combination of sliding mode
observer and protective controller, an experiment on a two
degree-of-freedom manipulator is conducted.

I. INTRODUCTION

With the increasing demand of interaction and cooperation

between humans and robots, the safety of human collabo-

rators and the self-protectability of the robots has become

a critical issue in human-robot interaction (HRI) related

tasks. This includes how to handle unexpected faults of robot

components and collisions between robots and the environ-

ment, even humans. Even though different trajectory schemes

based on collision avoidance have been proposed in the past

decades [1], collisions may also happen due to trajectory

deviations or unmodelled environment dynamics. For years,

isolating robots from humans solved this problem [2]. While

nowadays, external sensors such as proximity sensors [3],

image sensors [4], [5], strain gauges [6] and sensitive skins

[7] are utilized to detect manipulator collisions and system

faults, such that the safety of HRI is guaranteed.

Even though external sensors proved to be powerful in

detecting collisions and faults, they bring up cost and involve

reliability issues to the system. It has become popular to

utilize system ‘analytic redundancy’ to induce an effective

‘residual signal’ by which the profile of collision impact

can be indicated [8], which contributes to the disturbance

estimation problem. It has been suggested that the internal

impacts, e.g. joint actuator faults and the external impacts,

e.g. collision with the environment, of robots can be mod-

elled as disturbance torques exerted on robot joints, such that

both problems can be formulated as disturbance estimation

issues and solved under the framework of fault detection and

isolation (FDI) [9]. In this paper we extend the concept of

“collision” to also cover the contact with pulling forces. Thus

the profile of the internal or external torques can be recon-

structed using a disturbance observer with the information

only from the measurement of joint encoders, after which
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a protective reaction controller can be conducted to protect

the manipulator and human cooperators in the environment

from further impact.

A number of approaches have been proposed to solve

disturbance estimation problems in HRI scenarios [2], [10],

[11], [12]. In [2], the collision force is calculated using

the desired trajectory and the commanded torques on the

joints. This approach only performs well when the current

trajectory of the robot consists with the desired trajectory,

which does not always happen. In [10], [11] the generalized

momentum method is introduced to compute the disturbance.

The approach is efficient in terms of computational cost since

it does not require the inverse of the inertia matrix, but joint

velocities are required which are obtained after being filtered

from the derivative of joint positions. Among those popular

methods, sliding mode theory stands out for its advantage of

insensitivity and adaptivity towards disturbance and model

uncertainties. Firstly applied on linear systems [13], [14],

[15] and later extended to nonlinear systems [16], [17], [18],

sliding mode observer (SMO) approaches have recently been

used for disturbance estimation (DE) and fault diagnosis and

isolation (FDI) of robot manipulators [19], [20]. However,

in these approaches, either the measurement of both joint

angular positions and joint velocities is available, or the

disturbance on different joints are not coupled with the time-

varying parameters. However in many practical cases, the

joint velocities are calculated by taking the derivative of po-

sition measurements, which is contaminated by noise. Thus

derivative-based velocity acquisition is not an appropriate

solution for disturbance observation.

Inspired by methods in [13], [21], [22], we design a SMO

that estimates robot joint velocities and disturbance torques,

as well as a sliding mode controller (SMC) that governs the

trajectory tracking and the reaction strategy after collision

or system fault. In this approach, no external sensors are

needed for disturbance handling. The reconstructed distur-

bance torques are then used for the design of the protective

controller. Specifically, when the disturbance is weak, the

disturbance is supressed by the controller such that the

desired trajectory is tracked; while for strong disturbance,

proper protective reaction is taken to protected from further

impact [23].

By contributing to the combination of a sliding mode

disturbance observer and a sliding mode controller for robot

manipulators, we propose a complete framework for robot

disturbance observation and reaction strategy, which can be

widely applied to critical topics such as collision detection

and reaction, as well as fault detection and reaction. Our
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scheme has been tested and successfully applied on a two-

degree-of-freedom (DoF) manipulator system as shown in

Fig. 1, which will be discussed in details later.

Fig. 1: The 2-DoF Robot Manipulator for the Experiment

The rest of this paper is organized as follows. The as-

sumptions and the state-space dynamic model of the robot

control system are given in Section II. Section III presents a

system transformation, the observer design, the error system

analysis, the trajectory tracking controller, reaction strategies

and the design procedures. An experiment is provided in

Section IV to examine the validity of the scheme in robot

control. Section V concludes the paper.

II. PRELIMINARIES

Based on the Euler-Lagrange equations [24], the dynamic

model of an n-joint robot manipulator can be written as

τ = M(q)q̈+C(q, q̇)q̇+G(q)+F (q̇) , (1)

where M(q)∈R
n×n, C(q, q̇)∈R

n×n, G(q)∈R
n×1 and F(q̇)∈

R
n×1 are inertia matrix, coriolis and centrifugal matrix, gravi-

tational and frictional vectors of the manipulator. q(t)∈R
n×1

is the vector of joint angles, while τ(t)∈R
n×1 is the vector of

torques applied on robot joints. To be brief, in the following,

we omit the explicit ‘t’ for the variables that depend on

time. Note that the joint torque τ is the combination of the

commanded torque vector u and the disturbance torque τd :

τ = u+ τd (2)

Considering that only the joint angle q is measurable, (1)
can be further rewritten as

{

ẋ = Ax+Bg(x,u)+BM−1 (ϒx)τd ,
y =Cx,

(3)

where x =
[

qT q̇T
]T

∈ R
2n×1 is the state and y ∈ R

n×1 is

the measurable output, and

A =

[

0 In

0 0

]

, B =

[

0

In

]

, C =
[

In 0
]

,

g(x,u) =−M−1(ϒx) [C(ϒx, q̇)q̇+G(q)+Fq̇− u] ,

q = ϒx, and ϒ =
[

In 0
]

are system parameter matrices, and In ∈ R
n×n is the n

dimensional identity matrix. In order to apply our method,

we make the following assumptions on the non-linear term

in (3) and the constraints for the disturbance torque τd .

Assumption 1: The nonlinear function g(x,u) satisfies the

Lipschitz condition, i.e. with any x1,x2 ∈R
2n×1, there exists

γ ≥ 0, such that [25], [26]

‖g(x2,u)− g(x1,u)‖ ≤ γ ‖x2 − x1‖ . (4)

Assumption 2: The torque disturbance τd is bounded by

‖τd‖ ≤ τM,‖τ̇d‖ ≤ τm. (5)

where τM,τm > 0 are boundary values that should be de-

termined by experiments. For simplification, we define an

equivalent decoupled disturbance as

fd = M−1 (ϒx)τd . (6)

According to Assumption 2, this decoupled disturbance is

also bounded by

‖ fd‖ ≤ fM,‖ ḟd‖ ≤ fm, (7)

where fM , fm > 0 are positive boundary values which can be

determined in experiments. Thus (3) can be rewritten as

{

ẋ = Ax+Bg(x,u)+B f fd ,
y =Cx,

(8)

where B f = [ 0 In ]T . Similar to the method in [22], [27], we

transform (8) into a descriptor form to enable the estimation

of the full state and the disturbance fd by introducing the

following auxiliary differential equation

ḟd = Φ fd −Φ fd + ḟd, (9)

with an auxiliary disturbance variable being defined as

f̄ = fd +Φ−1 ḟd , (10)

where Φ > 0 is a properly selected scaling matrix. Thus by

constructing a new augmented state vector x̄ =
[

xT f T
d

]T

the dynamic equation of the system can be written as

{

Ē ˙̄x = Āx̄ + B̄g(x,u)+ B̄ f f̄ ,
y = C̄x̄,

(11)

where

Ē =

[

I2n B f Φ−1

0 In

]

, Ā =

[

A 0

0 −Φ

]

,

B̄ =

[

B

0

]

, B̄ f =

[

B f

Φ

]

, C̄ = [ C 0 ].

Our target in this paper is to design a control strategy

based on the full estimation of the system state x̂ and

the reconstruction of disturbance τ̂d , so that the protective

mechanism of the manipulator can react on disturbance

appropriately in various situations.
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III. DISTURBANCE OBSERVER AND CONTROLLER DESIGN

A. SMO design

For the estimation of the unknown state and disturbance

in x̄, the following sliding mode observer is designed:
{

Ē ˙̄̂x = Ā ˆ̄x+ B̄g(x̂,u)+ L̄ f us + L̄
(

y− C̄ ˆ̄x
)

,
ŷ = C̄ ˆ̄x,

(12)

where ˆ̄x =
[

x̂T f̂ T
d

]T
is the estimation of the augmented

state x̄, and L̄, L̄ f are properly chosen gain matrices while

us is the discontinuous input to be designed.

Combining the SMO (12) and the descriptor model (11),

the error dynamics can be obtained as

Ē ˙̄e =
(

Ā− L̄C̄
)

ē+ B̄ēg (x̂,x,u)+ L̄ f us − B̄ f f̄ , (13)

where ē = ˆ̄x− x̄ and ēg(x̂,x,u) = g(x̂,u)−g(x,u). According

to Assumption 1, a positive parameter γ exists such that

‖ēg(x̂,x,u)‖= ‖g(x̂,u)− g(x,u)‖ ≤ γ ‖x̂− x‖.

With the discontinuous input gain matrix defined as L̄ f =
B̄ f , the discontinuous input us in (12) is chosen as

us =−
(

fM +max
∣

∣λ
(

Φ−1
)∣

∣ fm + ζ
)

sgn(s) , (14)

where the constant ζ > 0 can be chosen as ζ ≪ fM +
max

∣

∣λ
(

Φ−1
)
∣

∣ fm and Φ should be selected such that the

amplitude of the constant gain ( fM +max|λ (Φ−1)| fm) in us

is small. The switching function s is selected as

s = HC̄ē, (15)

where H ∈ R
n×n is defined by the bounded constraint

(

HC̄
)T

= P̄Ē−1B̄ f , (16)

where P̄ is the Lyapunov matrix of the error system (13).

The LMI-based method to solve 12 and to find a proper

gain matrix H is presented in Appendix I.

A critical issue to guarantee the stability of the error

dynamics of the SMO is the appropriate choice of a gain

matrix L̄. In [21], together with the stability analysis of

observation error dynamics, the observer gain is selected as

L̄ = ĒQ̄−1C̄T . While following Lemma 2 in [28] and Lemma

3 in [27], we design the high gain L̄ for the SMO as in

Lemma 1, which proves to be more successful and effective

during experimental verification.

Lemma 1: If the descriptor system (11) is observable, the

matrix Ē−1(Ā− L̄C̄) can be designed to be Hurwitz with an

appropriate gain L̄.

Proof: See Appendix II.

The sufficient condition for the stability of the error system

(13) is shown in Theorem 1.

Theorem 1: With the designed observer gain L̄ determined

by Lemma 1, the discontinuous function us and its gain

matrix L f defined above, if there exists a positive constant

γ ≥ 0 and matrices P̄≥ 0 and H with appropriate dimensions,

such that the bounded constraint (16) and the following

constraint are satisfied:
(

P̄Ē−1
(

Ā− L̄C̄
)

+ γP̄B̄Te

)

+
(

P̄Ē−1
(

Ā− L̄C̄
)

+ γP̄B̄Te

)T
< 0,
(17)

then the error system (13) is asymptotically stable.

Proof: See Appendix III.

It is worth mentioning that we thus extend the methods of

SMO design from linear systems [27], [28] to the nonlinear

case (11).

With the observer shown in (12), the reconstructed values

of system state x̂=
[

q̂T ˙̂qT
]T

, and the disturbance torque

τ̂d = M(ϒx) f̂d (18)

is obtained.

B. Sliding mode based trajectory tracking controller

If the reconstructed disturbance τ̂d is weak, which means

there is assumed to be no collision, the manipulator is

supposed to be able to track the desired trajectory xd =
[

qT
d q̇T

d

]T
, where qd , q̇d ∈ R

n are respectively desired

joint angular positions and velocities of the robot. Consider-

ing the system dynamics (3), the nonlinear term Bg(x,u) is

treated as fictitious input U , and the real control input u is

calculated as

u = g−1(x,B+
U ), (19)

where B+ is the pseudo-inverse of B defined as

B+ = (BT B)−1BT . (20)

Thus we can rewrite (8) as

{

ẋ = Ax+U +B f fd ,
y =Cx.

(21)

With the SMO (12), we obtain

˙̂x = Ax̂+ Û +L f 1us + L̄1 (y−Cx̂)−B f Φ
−1 ˙̂fd , (22)

with L f 1 = B f and Û =Bg(x̂,u). Additionally with the

auxiliary equation ẋd =Axd −Axd + ẋd, and the tracking error

ς = xd − x̂, we obtain

ς̇ = A(ς − xd)+ ẋd − Û − L̄1 (y−Cx̂)+B f

(

Φ−1 ˙̂fd − us

)

.

(23)

A critical issue here is to choose a proper Û in order to

obtain a stable tracking error dynamics (23) in the form

ς̇ = H ς with H being Hurwitz. Before introducing the

controller, we choose the switching function as

ŝ = Gς −G

∫ t

0
(A+K)ς (δ )dδ . (24)

where the parameter matrix G is positive definite, G > 0. So
the derivative of the switching function ŝ is

˙̂s = G
[

−Axd + ẋd − Û −B f us − L̄1 (y−Cx̂)
]

+B f Φ−1 ˙̂fd −Kς .

(25)

By setting ˙̂s = 0, we have

Ûeq =−Axd + ẋd −B f us − L̄1 (y−Cx̂)+B f Φ
−1 ˙̂fd −Kς .

(26)

Substituting (26) into (23), it follows that

ς̇ = (A+K)ς . (27)
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It can be seen that, if A+K is Hurwitz, the tracking error

dynamics (27) is stable. The gain K is selected by pole

placement. The element ˙̂fd and the discontinuous function

us cannot be introduced into the control input for the reason

that ˙̂fd is not available and us can cause more chattering.

Therefore, we redesign the control input as

u = M(q̂)B+
Ûκ +C(q̂, ˙̂q) ˙̂q+G(q̂)+F ˙̂q, (28)

where

Ûκ =−Axd + ẋd − L̄1 (y−Cx̂)−Kς + Ûs. (29)

The discontinuous element Ûs is designed to replace

B f Φ−1 ˙̂fd and B f us

Ûs =
(

−
∥

∥B f Φ−1 fm

∥

∥−
∥

∥B f fM +B f Φ
−1 fm

∥

∥−ϑ
)

sgn(ŝ) ,
(30)

where ϑ ≥ 0. With the control input (28) and (29), we

analyze the reachability of the controller as in the following

theorem.

Theorem 2: With the SMO in (12) and the controller in

(28), the error ς approaches the surface (24) in finite time

and remains there in subsequent time.

Proof: We define the Lyapunov function

V = 0.5ŝT ŝ. (31)

Using (25) and (28), we obtain the derivative of V as

V̇ = ŝT ˙̂s

= ŝT G
(

−Ûs −B f us +B f Φ−1 ˙̂fd

)

.

Thus, with G ≥ 0 and (30) , it follows that

V̇ ≤ ŝT G(−ϑsgn(ŝ))≤ 0. (32)

Hereupon, if (32) holds, the reachability of the switching

function is proved.

C. Protective reaction strategy

When the observed disturbance is strong, it indicates that a

collision force acts on the robot. In this case, the robot should

not be forced to track the desired trajectory discarding the

disturbance force, otherwise the strong contact force might

cause unrecoverable damages to the environment. Therefore

we suggest that a protective reaction strategy should be taken

when a strong disturbance is detected, such that the desired

trajectory of the robot can be modified and safety of both

robot and the environment can be guaranteed. Hence, we

introduce the following two protective strategies considering

different situations:

1) If the position of the obstacle is not known, the desired

trajectory is modified. Instead, the control input u of the robot

in terms of (28) is bounded;

2) If the position of the obstacle is known, the desired

trajectory xd of the robot is changed accordingly, and the

control input u should also be bounded.

Fig. 2 shows the geometrical relation between a n-DoF

manipulator and the colliding obstacle before a collision hap-

pens. Assuming anti-clockwise to be the positive direction,

Fig. 2: Disturbance on i-th joint

the angular distance between the obstacle and the i-th link

can be defined as

ϕ p,i = ϕO,i − qi, (33)

where ϕO,i,qi ∈ (−π,π) are respectively the positions of the

obstacle and link i in the joint space coordinate, and i =
1, · · · ,n. Thus the obstacle distance vector ϕP ∈R

n×1 can be

defined as

ϕ p = [ϕT
p,1 ... ϕT

p,n]
T . (34)

Under the definition given above, the protective strategies

can be specifically described as follows.

Strategy 1 : When the value of ϕP is not available, we

have no information about the position of the obstacle. In

this case, we define a saturated control input ũ ∈ R
n×1 in

place of the original input u:

ũi =







−uδ ,i, ui ∈
(

−∞,−uδ ,i

]

,
ui, ui ∈

(

−uδ ,i,uδ ,i

)

,
uδ ,i, ui ∈

[

uδ ,i,+∞
)

,
(35)

where ui is the i-th element of u, and uδ ,i is the positive

saturation value of control input defined as

uδ ,i = δ ie
−|ki τ̂d,i|, (36)

and δ i,ki > 0 are positive parameters that are determined in

the experiment. τ̂d,i is the reconstructed disturbance torque

of i-th joint of the robot.

Strategy 2 : If the value of ϕP is available, we have the

information about the position of the obstacle. In this case,

the desired trajectory of the robot is changed, such that the

possible damage is reduced. Here we define the modified

trajectory as

xd,c = [q̃T
d

˙̃qT
d ]

T , (37)

where

q̃d = q+

∫ t+∆t

t

˙̃qT
d dt (38)

and

˙̃qd,i =

{

ls,i ˙̂qie
ks,i(|τ̂d,i|−τs,i),

∣

∣τ̂d,i

∣

∣− τs,i > 0,
q̇d,

∣

∣τ̂d,i

∣

∣− τs,i 6 0,
(39)
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where t is the current time, ∆t is an adjustable interval and

ls,i and ks,i are scaling factors. The basic idea behind this

strategy is to take advantage of the prior knowledge about

the environment to modify the desired trajectory such that the

contact force between the robot and the obstacle vanishes. In

this paper we propose two practical scenarios to demonstrate

the protective strategies. The first one is a ball hitting on the

robot causing a collision; while the second one is a rope

accidentally trapping the robot preventing it from moving

forward. It is worth mentioning that the first case has been

considered by previous research [2]. The second scenario,

however, is still rarely studied. By proposing our protective

control framework, we extend collision reaction to a broader

range such that previous work is generalized. For the two

cases mentioned above, the parameters involved in (39) can

be determined according to Tab. I.

TABLE I: Reaction strategies in different situations

φ p,i τ̂
d,i

Type ˙̂qi ls,i ks,i

+

+
+
-
-

ball pushing

rope pulling

+
-
+
-

1
−1
−1
1

+ |ks,i|
−|ks,i|
−|ks,i|
+ |ks,i|

-

+
+
-
-

rope pulling

ball pushing

+
-
+
-

1
−1
−1
1

+ |ks,i|
−|ks,i|
−|ks,i|
+ |ks,i|

Remark 1: When ˙̂qi = 0, the commanded torque input

follows strategy I. Thus a combination of strategy 1 and

strategy 2 is possible and straightforward.

Remark 2: The control strategy designed in this paper can

protect the robot given the dynamic equations of motion and

information on the current configuration of the manipulator.

The method is based on the improvement of the 5th reaction

strategy in [2], we generalized the collision cases to a broader

range of interaction of robot and the environment.

IV. EXPERIMENT

In this section, an experiment is conducted to evaluate

the protective reaction strategies. The sampling time in this

experiment is set to 1ms. The 2-DoF manipulator used for

experimental validation is shown in Fig. 1, whose parameter

matrices are

M (q) =

[

0.442+ 0.0286cos(q2) ∗
0.0088+ 0.0143cos(q2) 0.2226

]

,

C (q, q̇) =

[

−0.029sin(q2)q̇2 −0.014sin(q2)q̇2

0.014sin(q2)q̇1 0

]

,F (q̇) = [c1q̇1 c2q̇2]
T .

where c1,c2 = 2.6 × 10−4 are frictional coefficients of

the joints. Gravity impact is ignored due to the horizontal

construction. The matrices A, B and C are chosen as in (3).

The initial values of x, x̂, τd and τ̂d are all set to zero.

According to the approach presented in Section III, a SMO

and a SMC are designed before testing the reaction strategies.
(i) Set the parameters matrices as Φ =−36In, L̄ f = B̄ f and

κ = 0.1. The gain L̄ is chosen as

L̄ =

[

144.6 0 5241.8 0 262.1 0
0 144.6 0 5241.8 0 262.1

]

.
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t0 t1 t2 t3 t4 t5

t6 t7 t8 t9 t10 t11

TABLE II: Disturbances exerted by human
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Fig. 7: Desired trajectory and modified desired trajectory

(ii) The parameters fM , fm and γ are selected as fM =
20, fm = 360, γ = 100. The feasible solution for LMI group

(29),(41) and (42) is solved as

H =

[

−0.0115 0

0 −0.0115

]

.

andη = 6.6282× 10−11.
(iii) The constant ϑ in (30) is chosen as ϑ = 0.01. The

parameter matrix G in the switching function ŝ in (24) is
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chosen as G = I2n. The gain K is chosen as

K =







−50 0 0 0
0 −50 0 0

−630 0 −313/5 0
0 −4410 0 −143






.

The reference joint trajectory of the robot is chosen as
{

xd,1 = 1.5sin
(

π
5

t
)

xd,2 = 5sin
(

π
12

t
)

The commanded torques on the robot are exerted from t0. As

shown in Tab. II, at the time t2 and t8, the robot is pulled by a

rope tied on the endeffector, while at t4, t6 and t10, the robot

is hit by a ball. The safety bounds of the two manipulators are

chosen as τs,1 = 0.9Nm and τ s,2 = 1.9Nm. The parameters

in the saturation function (35) are selected as δ 1 = 2, k1 = 2,

ks,1 = 1, δ 2 = 4, k2 = 1.1 and ks,2 = 1.

In order to make a comparison of our SMO results with

the ‘real’ value in simulation, we calculate the ‘real’ state q̇,

q̈ and τd as below. The joint velocity q̇ is obtained through a

derivative filter F1(s) =
s

0.001s+1
from q. The disturbance τd

is calculated according to τd = τ −u, where the input torque

τ is τ = Mq̈+C(q, q̇)q̇+F(q̇). The acceleration q̈ is also

obtained through a derivative filter F2(s) =
s

0.02s+1
from q̇.

The angular disturbance φ p,i between obstacle and i-th

link, for i = 1,2, is assumed to be positive. From Fig. 3

it indicates that the full system state x̂ have been correctly

estimated. In Fig. 4, the reconstructed disturbance τ̂d roughly

consists with the ‘real’ disturbance τd . In Fig. 5, we intro-

duce a flag signal indicating whether the estimated torque

τ̂d,i on each joint exceeds the safety threshold τs,i, with ‘1’

for yes and ‘0’ for no. It can be seen that in the first time

interval, t0−t1, the threshold is exceeded due to the existence

of static friction. During other intervals, [t2, t3], [t4, t5], [t6, t7],
[t8, t9] and [t10, t11], the contacts with the rope and the ball

are successfully detected as shown in Fig. 5. During the

time intervals when disturbance is strong, the control input

is bounded to protect the robot as shown in Fig. 6; and the

new compensated reference trajectory is calculated as shown

in Fig. 7. While in other time intervals when the disturbance

is weak, the desired trajectory is tracked by the manipulator.

V. CONCLUSION

A protective control framework based on state and distur-

bance estimation of robot manipulators using sliding mode

method have been studied in this paper. The SMO is utilized

to estimate the disturbance and the SMC is used to imple-

ment the protective reaction strategies according to different

cases. A model transformation has been used to augment

the nonlinear affine control system into a descriptor system,

based on which the SMO is designed. By the estimated

state and reconstructed torque disturbance, the SMC and

protective strategies are proposed to follow the trajectory in

weak disturbance and protect the robot manipulator in strong

disturbance respectively. A 2-DOF manipulator experiment

is conducted to examine the validity of our design schemes

in this paper.

APPENDIX I

Following the ideas in [21], [27], [28], an LMI approach

is introduced. The constraint (16) can be written as

Trace[
(

(

HC̄
)T

− B̄T
f Ē−T P̄T

)T (

(

HC̄
)T

− B̄T
f Ē−T P̄T

)

] = 0.

Thus there exists a parameter η > 0, such that

(

(

HC̄
)T

− B̄T
f Ē−T P̄T

)T (

(

HC̄
)T

− B̄T
f Ē−T P̄T

)

≤ ηI, (40)

where the parameter η is related to the optimization (41)

minη . (41)

By Schur-complement, (40) is rebuilt as
[

−ηI
(

(

HC̄
)T

− B̄T
f Ē−T P̄T

)T

∗ −I

]

≤ 0. (42)

Thus, the bounded constraint (16) is solved by using the LMI

equations (41) and (42) together.

APPENDIX II

For the given system (11), there exists a parameter κ such

that

Re
[

λ i

(

−
(

κI + Ē−1Ā
))]

< 0,∀i ∈ {1,2, . . . ,2n} . (43)

Given that [−(κI + Ē−1Ā),C̄] is observable, there exists a

positive definite matrix Q̄ such that

−C̄TC̄ = Q̄
[

κI + Ē−1(Ā− L̄C̄)
]

+
[

κI + Ē−1(Ā− L̄C̄)
]T

Q̄,
(44)

subject to

Re
[

λ i

(

Ē−1(Ā− L̄C̄)
)]

<−κ,∀i ∈ {1,2, . . . , n̄} ,

where the gain matrix L̄ defined as

L̄ = ĒQ̄−1C̄T , (45)

and Ē−1(Ā− L̄C̄) is Hurwitz.

APPENDIX III

For the error dynamics in (13) a Lyapunov function is

defined as

V (t) = ēT (t) P̄ē(t) . (46)

Thus we have

V̇ (t) = 2ēT (t) P̄ ˙̄e(t)
= 2ēT (t) P̄Ē−1[

(

Ā− L̄C̄
)

ē(t)+ B̄eg (x̂,x,u, t)
−L̄ f us (t)+ B̄ f f̄ (t)],

Subtituting (14) into (15) we have [27], [28]

2ēT (t) P̄Ē−1
[

−L̄ f us (t)+ B̄ f f̄ (t)
]

= −2( fM +λ max

(

Φ−1
)

fm + ζ)
∣

∣sT (t)
∣

∣+ 2sT (t) f̄ (t)

≤ −2( fM +λ max

(

Φ−1
)

fm + ζ)
∣

∣sT (t)
∣

∣+ 2
∣

∣sT (t)
∣

∣

∣

∣ f̄ (t)
∣

∣

≤ 0. (47)

According to Ē−1B̄ = B̄ and Assumption 1 we have

2ēT (t)P̄Ē−1B̄eg(x̂,u, t)≤ 2ēT (t)γP̄|B̄|Teē(t) (48)
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Subtituting (47) into (48) we have

V̇ (t)≤ 2ēT (t)
(

P̄Ē−1
(

Ā− L̄C̄
)

+ γP̄ |B̄|Te

)

ē(t) . (49)

If (17) is satisfied, then we have

V̇ (t)< 0

and the error dynamics (13) is asymptotically stable.
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