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Abstract

This work is concerned with the application of high-quality flight dynamics models to GNSS-
denied navigation of airplanes with low-cost sensors. Embedded in a 12-DOF aerodynamic
motion simulation, the flight dynamics model offers valuable information on frue airplane
motion. Because only pilot control inputs must be measured, this potential extension to a
classical navigation system comes at low hardware cost. Accurate models of aerodynamic
flight are not cheap, because a large number of flight test hours is usually required to gather
the data needed for system identification. However, because such models are also needed
for pilot training simulators, finding an extra use of already available flight dynamics models
might be attractive to save cost.

The aerodynamic navigation approach is specifically applied to small conventional
airplanes. This choice of platform promises good navigation performance but also presents
some severe obstacles. Most notably, flight is affected by instationary and non-uniform
motion of air mass and other non-standard atmosphere conditions with potentially extreme
phases. The limitations of accurately and reliably modeling these processes and the related
uncertainties demand for a solution with minimized dependency on such models. On the
other hand, the flight characteristics of conventional airplanes offer the potential to
propagate the horizontal airplane position estimate in time with superior linear error growth
compared to polynomial error growth of low-cost inertial navigation.

A detailed study of system theory points to advantageous characteristics of aided low-cost
inertial navigation and airplane aerodynamic motion propagation in GNSS-denied flight but
also reveals significant drawbacks of each model operating alone. This motivates the
combination of both propagation methods and first, optimal state estimation techniques
with equality constraints are applied to fuse models. The effort to develop a robust optimal
model fusion method is hindered by the sensitivity to unreliable atmosphere models and loss
of robustness in strong furbulence. Although a tuned model fusion method is developed
which is robust in all simulations, dependence on modeling assumptions still persists because
now the simulation environment used for tuning and testing must be verified.

This work therefore proposes a covariance-free integration of low-cost inerfial navigation and
high-quality airplane aerodynamics model. Inertial navigation is implemented in a modified
form and integrated with barometric altitude and 3-D magnetometer for best orientation
and vertical motion performance. The aerodynamic motion model is corrected using inertial
navigation reference information by application of a set of aerodynamically desensitized
constraints. The validity of this covariance-free integration in thoroughly justified. It is based
on the observed drawbacks of optimal model fusion and the specifics of the tuned model
fusion method for airplane aerodynamic navigation. If required, add-on covariance
information can be provided using best available statistical models of aerodynamic flight
uncertainties. It will however not affect navigation data processing.

A high-fidelity simulation tool is used for method development and testing throughout. A new
approach to realistically account for flight dynamics model errors is proposed. Assuming
state-of-art dynamic atmosphere models, statistical evaluation of performance is
conducted using Monte Carlo simulation. The new covariance-free method is applied to real
flight data in navigation postprocessing demonstrating the maturity of the new method.






Kurzfassung

Diese Arbeit untersucht die Anwendung hochgenauer Modelle der Flugdynamik in
Kombination mit gunstigen Sensoren zur Navigation bei Ausfall der GNSS-StUtzung. Ein solches
flugdynamisches Modell kann genutzt werden, um die aerodynamische Bewegung des
Flugzeuges in 12 Freiheitsgraden zu simulieren und somit die wahre Flugzeugbewegung zu
approximieren. Es bietet also eine zusatzliche Information zur Erweiterung eines klassischen
Navigationssystems zur Bestimmung der Flugzeugposition, -Geschwindigkeit und -
Orientierung. Da zus@tzlich nur die Steuereingaben des Piloten gemessen werden mussen, ist
diese Erweiterung mit geringen Hardware-Kosten verbunden. Die Erstellung hochgenauer
flugdynamischer Modelle ist aufgrund der gewdhnlich groBen Anzahl der zur
Systemidentifikation bendtigten Flugteststunden sehr aufwendig. Da solche Modelle aber
auBerdem fUr Flugtrainingssimulatoren bendtigt werden, ist die doppelte Verwendung dieser
Modelle wirtschaftlich sinnvoll.

Es wird gezeigt, dass die Flugeigenschaften kleiner, konventioneller Flugzeuge die
Entwicklung einer aerodynamischen Methode zur Positionspropagation ermoglichen, die
durch Nutzung des flugdynamischen Modells ein horizontales Positionsfehlerwachstum erster
Ordnung in der Zeit ermdglicht. Dies bedeutet eine deutliche Verbesserung zur polynomialen
Fehlerdrift, die fUr konventionelle Inertialnavigation bei Nutzung gunstiger Sensoren
charakteristisch ist.  Allerdings wird der reale aerodynamische Flug stark von
Atmosphdreneffekten beeinflusst, die aufgrund der Komplexitdt der zugrunde liegenden
atmosphdrischen Prozesse nur sehr begrenzt modelliert und somit berUcksichtigt werden
kénnen. In einer einfachen Simulation des aerodynamischen Fluges kann eine falsche oder
fehlende Modellierung z.B. der instationdren und ungleichférmigen Luftmassenbewegung
und anderer Atmosphdreneffekte in der Umgebung des Flugzeuges unter exiremen
Bedingungen zu groBen Abweichungen fUhren. Somit ist es notwendig, dass eine neue
aerodynamische Navigationsmethode die Abhdngigkeit von Atmosphdrenmodellen
minimiert.

In einer Untersuchung der Systemeigenschaften von Inertialnavigation mit gUnstigen
Sensoren und aerodynamischer Positionspropagation werden in der vorliegenden Arbeit die
charakteristischen Vorteile herausgearbeitet, wie auch die Einschrdnkungen, wenn beide
Methoden einzeln eingesetzt werden. Die Ergebnisse sind die Grundlage fUr die Entwicklung
einer kombinierten Methode, wobei zundchst optimale Datenfusionsmethoden mit
Zwangsbedingungen zur Fusion der inertialen und aerodynamischen Propagationsmodelle
angewendet werden. Hier zeigt sich in Simulationen mit turbulenter Atmosphdére, dass die
Abhdngigkeit von unzuverldssigen Modellen der Atmosphdreneffekte eine deutliche
Einschrankung der Robustheit der Methode bedeutet. Es ist zwar mdglich, die Parameter der
Methode so zu adaptieren, dass sie auch in Simulationen mit turbulenter Atmosphdére gut
funktioniert, allerdings bleibt damit eine Abhdngigkeit von der gewdhlten
Atmosphd&renmodellierung, die nun als Teil der Simulationsumgebung verifiziert werden muss.

Mit diesem Ergebnis wird ein alternativer Lésungsansatz begrindet, der die Kovarianz-freie
Integration  von Inertialnavigation mit gunstigen Sensoren und hochgenauem
flugdynamischen Modell vorschldgt. Die Inertialnavigation kann hinsichtlich vertikaler
Positionierung und Orientierungsbestimmung optimiert werden, was mit der Integration einer
modifizierten Implementierung des inertialen Propagationsmodells mit 3-D Magnetometer



und barometrischen Hohenmessungen erreicht wird. Es werden aerodynamisch
unempfindliche Zwangsbedingungen entwickelt, die es erlauben, das flugdynamische
Modell mit den inerfialen Referenzinformationen zu korrigieren. Dieser Kovarianz-freie
Integrationsansatz ist unabhdngig von der Modellierung der Unsicherheit der beiden
Prozesse, kann aber mit einem separaten Kovarianzmodell fUr die Ausgabe ergénzt werden.

In dieser Arbeit wird eine detaillierte Simulationsumgebung entwickelt und durchgehend zur
Untersuchung der entwickelten Methoden eingesetzt. Dabei kommt ein neuer Ansatz zur
BerUcksichtigung der Fehler in der flugdynamischen Modellierung zum Einsatz. Mit in der
Literatur gdngigen Modellen der dynamischen Atmosphdre wird eine Monte Carlo
Evaluation der Navigationsleistung durchgefuhrt. Zudem wird die Funktion der neuen
Kovarianz-freien Navigationsmethode anhand realer Sensoraufzeichnungen aus einem
Flugtest bewiesen.
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Acronyms and abbreviations

2drms Twice the RMS radial error

AOA Aerodynamic angle of attack

AOSS Aerodynamic angle of sideslip

CAD Computer-aided design

CEP Circular error probable

DOF Degree of freedom

ECDF Empirical cumulative distribution function
ECEF Earth-centered earth-fixed coordinate frame
ECI Earth-centered inertial coordinate frame
EGM Earth gravitational model

EKF Extended Kalman filter

FOG Fiber-optic gyro

FTE Flight technical error

GNSS Global navigation satellite system

GPS Global positioning system

HDG Heading

IMU Inertial measurement unit

INS Inertial navigation system (inertial motion model)
MCE Monte Carlo evaluation

MEMS Micro-electro-mechanical systems

NCEP U.S. National Centers for Environmental Prediction
NED North-East-Down coordinate frame

R95 95% radial position accuracy

RAIM Receiver autonomous integrity monitoring
RAP Rapid Refresh numerical weather model
Ref Reference tfrue motion

RLG Ring laser gyro

RMS Root mean square

RNAV Area navigation

RNP Required navigation performance

RPM Revolutions per minute

SF Scale factor error

TRAJ Flight path frajectory




TSE Total system error

VDM Vehicle dynamics model (aerodynamic motion model)
WGS84 World geodetic system 1984

WMM World magnetic model

Coordinate frames and axes transformations

3-D vectors written in coordinates of one of the following Cartesian coordinate frames are

denoted by a bold symbol with index denoting the frame, e.g. v,,.

Axes of one coordinate frame can be aligned with those of another coordinate frame by
consecutive rotations. In this work, the corresponding transformation angles are defined by
rotations about the individual axes in order 3-2-1. The axes of the second and third rotation

are given by the intermediate frame resulting from the preceding rotations.

Index

Name

Description

Axes tfransformations

ECI frame

Earth-centered, non-rotating.
x3-0xXis aligned with Earth'’s
rotation axis.

ECEF frame

Earth-centered, earth-fixed.
x1-0OXis points at Greenwich
meridian, x3-axis aligned with
Earth’s rotation axis.

NED frame

Centered in navigation
reference point R, axes
pointing North, East and
down w.r.t. WGS84 ellipsoid

—¢p—m/2 A)

e-n: (0

body-fixed frame

Centered in navigation
reference point R, axes
pointing forward, right and
down with respect to vehicle
geometry

n—->b:(Pnp Onp Wnp)

a;

level aerodynamic
frame

Centered in navigation
reference point R, axes by
rotating NED frame to align
x1-0Xis with aerodynamic
velocity vector

n-a:(0 va xa)

@ -a:(s 0 0)

aerodynamic frame

Centered in navigation
reference point R, axes by
rotating body-fixed frame to
align x;-axis with
aerodynamic velocity vector

~Ba)

a->b:(0 a4




Symbols and notation

Aerodynamics

Aerodynamic motion variables may be denoted by (-) 4 if necessary to distinguish them from
kinematic (-), or wind motion (+),, variables.

Dynamic pressure

Wing reference area

Reference length

Mean aerodynamic chord

Wing span

Semi-span

Air density

Dynamic air viscosity

Speed of sound

Reynolds number

Mach number

Airspeed

Aerodynamic angle of attack

Aerodynamic angle of sideslip

Aerodynamic course angle

Aerodynamic climb angle

%)
=R (R|SIR|R(R[R[o|0 |||~ =

Aerodynamic bank angle

Airplane model

() sero refers to aerodynamic modeling,
moments.

(Dprop refers to modeling of propulsion forces and

F Force vector
m Airplane mass
M Moment vector
15, Inertia matrix in body-fixed coordinates w.r.t. G
L, Ly, I, Moments of inertia
Ly, Iy Iy, Products of inertia
u, Control input vector
3 Roll control input
n Pitch control input
¢ Yaw confrol input
Or Throttle setting
cy Vehicle model coefficients




Earth models

g Gravitation vector

g Gravitational acceleration

14 Gravity vector

R Earth radius
GM Earth's gravitational constant
Wg Schuler frequency

Error states

For a given erroneous variable, §(-) denotes the corresponding error. The given variable may
be measured () or computed (1. Because the perturbation form is chosen for error analysis
throughout this work, the error §(-) will be equivalent to the additive correction of the given
variable required to compute the true value. E.g. if the variable is a vector with true value v,
and computed value v, the correction is v, = v,, + 6v,,.

Generally, for error perturbation of orientation variables a mulfiplicative definition of error is
employed. For example §,;, - §,2 and R,,RY, describe the errors in computed orientation
quaternion g,;, and rotation matrix R,,;,. The following two orientation error parametrizations
are adopted in this work, which are equivalent in linear approximation:

Phi angle orientation error in NED frame
— T
$n=1on ¢ Pol coordinates

& =[6¢p; 6¢p, 63T Vector of orientation error Euler angles

Estimation

The common notations of expectation value E[-], variance Var[-] and covariance Covl[-,]
are used. Computed values before correction are denoted by (-)~, values after correction
are denoted by (-)*.

Total state vector

Filter state vector (error state space)

Filter input vector

Process noise

Filter system matrix

Filter input matrix

Discrete filter state model fransition matrix
Discrete filter state model input matrix
Filter observation (error state space)
Measurement noise

Slowly-varying measurement error

Noisy measurement error

Observation matrix

Process noise measurement feedthrough matrix
Filter gain matrix

Filter state covariance matrix
Measurement noise covariance matrix
Process noise covariance matrix

Q™ v |RIQ T2 |2 [~ |8 w|n (e [2]x|N




Vectors and matrices

e;=[1 0 0] First basis vector
e,=[0 1 0] Second basis vector
e;=[0 0 1] Third basis vector
a,=[ay ag ap]T Vector a in NED frame coordinates

Vector a in body-fixed frame coordinates

skew(a) Matrix equivalent of vector cross product a x
veck(M) Vector equivalent of skew-symmetric part of
matrix M
alip Component of vector a parallel to vector b
alp Component of vector a orthogonal to vector b

Vehicle motion

Kinematic motion variables may be denoted by () if necessary to distinguish them from
aerodynamic ()4 or wind motion (), variables. A vector denoted by (1) contains
horizontal motion states in North and East direction only.

()¢ denotes motion variables that refer to the vehicle center of gravity, ()R refers to the
navigation reference point R. (-)R¢ denotes a relative motion variable, e.g. rR¢ = r¢ — R,

Navigation state vector in NED frame
parametrization

Vehicle state vector (rigid body motion)

WGS84 |atitude

WGS84 longitude

WGS84 height

Column vector of WGS84 position

3-D position vector with respect to ECEF frame

Velocity vector with respect to ECEF frame

Velocity vector magnitude

Kinematic course angle

Kinematic climb angle

Orientation quaternion

Direction cosine matrix

Roll angle

Pitch angle

Heading angle

Acceleration vector

Specific force vector

Angular rates vector

Angular rates vector magnitude

Roll rate

Pitch rate

Yaw rate




T INTRODUCTION

Integrated inertial and satellite navigation (INS/GNSS) is the future standard for low-cost
aircraft navigation. GNSS alone provides sufficient accuracy and reliability for lateral
navigation for enroute operations with state of the art receiver autonomous integrity
monitoring. Future solutions for estimation of aircraft position, velocity and orientation in all
segments of general aviation flight will largely rely and depend on the potential of GNSS
technology and integration with low-cost INS.

One important limitation of this optimistic outlook is the fundamental lack of robustness of
satellite signal transmission. While reliable detection of signal-related failure conditions is
possible, elaborate jamming will always be a single point of failure of satellite navigation.
Consequently, the possibility of losing the performance enhancement of GNSS for low-cost
aircraft navigation must be considered.

1.1 PROBLEM SPECIFICATION AND STATE OF THE ART

This thesis addresses the need for a backup positioning function for small general aviation
that allows safely continuing flight when GNSS aiding becomes unavailable. Given the
visibility of typically 20 or more satellites from 4 different GNSSs at an elevation of 10° or higher
in North America and Europe in 2017 [1], the reasons for unavailable GNSS aiding in flight are
primarily user equipment faults and disturbance of signal reception. While the first case can
be mitigated by redundant hardware, the latter condition is most likely spatially limited (e.g.
jamming). It is arguable if in such a scenario similar good positioning accuracy as with GNSS
aiding is required. Instead, the backup navigation function must be sufficient to allow safely
leaving the area where GNSS reception is disturbed. This makes a slow degradation over time
of positioning performance acceptable. At the same time, additional system cost, weight
and power consumption for implementation of this backup function must be small because
it is not used under normal conditions.

Classical ground-based navigation aids (i.e. radio navigation) currently undergo significant
change: Both the Long-Range Navigation system (LORAN) and the Distance Measuring
Equipment architecture (DME) are subject of current research aiming at enhancement of
the (sfill) existing ground infrastructure (and the on-board equipment) to meet the
requirements of a backup system to GNSS. elLoran [2] should meet meter-level positioning
accuracy, but the number of stations has already critically reduced [3, 4]. eDME [5, 6] is
enhanced by carrier phase tracking and other innovations that increase the capacity and
accuracy of the system. Technically, both enhanced systems are designed to be a full
backup system to GPS (alternative positioning, navigation and timing, APNT). While these
systems do provide the required positioning function specified above, they require at least
an extra receiver and antenna on-board and would be obsolete while GNSS is available. In
addition, they might over-perform: As described above, if GNSS reception is disturbed, a
reasonable contingency plan is to leave the denied area, e.g. fly to an alternate airport
instead of continuing approach and landing. Finally, because these radio navigation
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systems provide similar functionality as GNSS, they would very likely be subject to the same
jamming or spoofing action that is targeting GNSS.

Consequently, a simple, on-board backup system with negligible additional system cost,
weight and power consumption that specifically provides the navigation information
required for safe contingency operation in the unlikely event of GNSS denial is needed. It is
specifically not intended for use in flight segments with stringent performance requirements
(e.g.landing), because here GNSS is assumed available (if need be, at the alternate airport).

A high-quality Inertial Navigation System (INS) can provide coarse (and drifting) position
information with highest availability and resilience [7], but not at acceptable cost for
application in small general aviation. Here, a low-cost INS/GNSS will be the core of future
navigation systems for operation under normal conditions. Because low-cost INS/GNSS
means low-cost inertial sensors with insufficient accuracy for unaided position propagation,
the required backup navigation function cannot be implemented with this architecture by
itself. In order to improve the accuracy of position (and other navigation information, such
as velocity) during outages of GNSS, additional information must be integrated with INS.
Sensor measurements are an obvious choice to allow for observation and estimation of
navigation errors, for example air data and 3-D magnetometer.

An existing method for backup enroute (and oceanic) flight navigation is heading and
airspeed dead reckoning. This method is for example implemented in the Garmin G1000
Cockpit for the Cessna Citation Mustang [8] where it continues to provide an estimate of
aircraft position based on the last valid position fix obtained with GPS and a relative horizontal
motion computed from airspeed and magnetic heading measurements.

These state of the art techniques inertial navigation, sensor measurement aiding of INS and
heading and airspeed dead reckoning will be studied in this thesis considering the chosen
application. The engineering problem specified above will additionally be addressed by
application of dynamic model aided navigation, which is a promising field of research for
low-cost GNSS-denied navigation for small general aviation airplanes.

1.2 FIELD OF RESEARCH

This thesis presents research on the integration of a sofftware model of flight dynamics for
backup navigation of small general aviation airplanes. Generally, dynamic model aided
navigation offers an improvement in navigation performance by integration of additional
knowledge on how the vehicle moves and reacts to control inputs. Compared to
conventional navigation sensors, hardware cost of including this software model and
measuring control inputs is low. In addition, it is insensitive to a large number of environmental
conditions affecting air data and magnetic field measurements.

While these advantages have been highlighted before in the available literature, this thesis
is the first to specifically address the characteristics of airplane flight dynamics. An
aerodynamic navigation method that takes the specifics of conventional airplanes into
account and exploits favorable properties should have superior performance. Small general
aviation airplanes have especially benign flight characteristics and at the same tfime would



strongly benefit from low-cost backup navigation. This motivates research on aerodynamic
navigation for airplanes.

Integration of a dynamics model of the vehicle is fundamentally different from conventional
sensor measurement aiding of INS. The following gives a brief review of the history of dynamic
model aided navigation by presenting the publications that are most relevant for the
research in this thesis.

1.2.1 History of dynamic model aided navigation

The first application of aircraft vehicle dynamics to navigation is due to Koifman and Bar-
Itzhack and was published in 1999 [?]. Navigation applications were preceded by earlier
research on attitude and heading determination with aerodynamic models, e.g. [10].

The 1999 paper by Koifman and Bar-Itzhack considers inertial navigation and the dynamics
model of an airplane as two navigation systems running in parallel. The authors propose the
notion that “nature and behavior of the errors of the two systems differ from one another,
therefore the EKF should distinguish between the two error groups and estimate them”. Errors
are observed in the differences of the computed navigation states of the two models. This
corresponds to constraining the extended Kalman filter to state estimates that are exactly
equal for both models.

Consequently, the first publication on havigation with aerodynamic models already presents
a complete mathematical framework for combination of the two propagation models using
optimal state estimation techniques: The models are assumed to refer to exactly the same
truth motion, which allows to observe differences of errors in differences of computed total
states of both models.

Although apparently not known to the authors of [?], earlier theoretical research on optimal
state estimation with multiple propagation models by Julier and Durrant-Whyte published in
1996 [11] provides a consistent mathematical foundation for model fusion. The authors prove
that mathematical optimality, i.e. the best estimator based on the available information, is
achieved with a combined system of multiple propagation model states and linear
constraints relating equivalent states. This is termed “horizontal model fusion”. The question
how exactly these constraints should be designed is not addressed, but equality constraints
on e.g. equivalent position or velocity states in all models are proposed.

The next significant step in the field is due to Vasconcelos et al., who make a different choice
for implementing the aerodynamic propagation model and equality constraints in the
publications [12] (2006) and [13] (2010). Application to model-scale rotorcraft requires a
reduction of computational cost, which is achieved by only including one state for the
vehicle angular rate vector in the combined model with INS. Vehicle angular rates are
constrained to be equal to measured inertial angular rates. Although the propagation of
vehicle orientation, velocity and position states is omitted, the complete information on
vehicle dynamics is sfill included in the estimation: A second equality constraint is
implemented for accelerations computed by inertial navigation and the vehicle dynamics
equations of motion. Thus, the informatfion on both translational and rotational motion is
fused.
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In a 2013 publication [14], Crocoll and the author propose a “Unified model technique” for
inertial and aerodynamic model fusion. This method matches the computational efficiency
of the method of Vasconcelos but is mathematically equivalent to the optimal method of
Koifman with equality constraints on velocity and orientation states. The authors explain
restrictions in the selection of motion states for the definition of model fusion equality
constraints.

1.3 CONTRIBUTION

This work deals with the development of a low-cost backup navigation function and in
partficular with a new approach to dynamic model aided navigation specifically for small
general aviation airplanes.

First, it is noted that the lack of position fixing during outages of GNSS requires substantial use
of propagation methods such as INS. In any case, a propagation method — or a combination
of methods — will be the backbone of the desired navigation function. Therefore, the first part
of the research presented here studies navigation propagation methods with respect to

e Their error characteristics in a low-cost implementation. What are sources of error, how
does error propagate and accumulate in specific motion states?

e Available low-cost measures to effectively reduce error. How well can adverse error
characteristics identified before be mitigated by including additional information?2

e Their comparative qualities. Is there a potential for improvement by combination of
the studied methods?

The study of low-cost navigation propagation methods provides the theoretical basis for the
development of GNSS-denied navigation. The specific interest in a possible advantageous
combination of propagation methods leads to results that motivate the focus on
aerodynamic navigation in the remainder of this work. After answering the question, whether
there is any potential improvement by combination, research on how to realize this
improvement is the logical next step.

The integration of inertial navigation and aerodynamic model for the application in small
general aviation airplanes presents new challenges. Robust operation must be guaranteed
in a wide range of environmental conditions encountered in long operation times and
travelled distances. This especially includes rough atmosphere conditions such as strong
wind, gusts and turbulence. The enormous complexity of real atmosphere processes and the
characteristic intermittency of rough atmosphere conditions lead to a modeling problem:
These effects can neither be predicted accurately with on-board software models, nor can
errors of simpler models be statistically accounted for with sufficient significance required for
state of the art integration techniques. Consequently, the focus of this part of the thesis is to

e Study the application of optimal model fusion techniques to small general aviation
airplanes in a realistic atmosphere environment. Provide a detailed understanding of
the causes of low robustness encountered for these methods in the specific
application

¢ Develop a new technique forintegration of inertial and aerodynamic models. How to
combine models without depending on unreliable or unavailable modelsg How to



exploit the characteristics of inertial navigation and airplane aerodynamic motion to
that end?e

The development of a new method for model integration aims to overcome significant
obstacles of a real application of aerodynamic navigation for manned airplanes: Only if the
method is robust per design even in extremely rough atmosphere it can be considered
reliable for safety-of-life applications. The central part of this work is dedicated to find a
solution to this problem by accounting for the specific and dissimilar qualities of inertial
navigation and airplane aerodynamic motion.

Finally, a realistic assessment of method behavior, robustness and performance is required
to allow for further development and use in real applications. Because a large number of
tests and long total flight duration is necessary for meaningful evaluation, a simulation tool
must be developed. This work presents a novel approach to account for aerodynamic
model uncertainties in simulation. Automatic generation of input data for various flight
scenarios and wind conditions allows studying aerodynamic navigation in a detailed Monte
Carlo simulation:

e What behavior and performance can redlistically be expected from the proposed
method?
e How does modeling quality of aerodynamic motion affect the resultse

In addition, application of the proposed aerodynamic navigation method to real flight data
is necessary to prove its applicability under real world conditions and provide verification of
theoretical results and simulations.

To summarize briefly, this thesis has three goals. The first is to provide a fundamental
theoretical understanding of low-cost GNSS-denied navigation and identify potential
improvements by combination of propagation methods. Second, integration of inertial
navigation and airplane aerodynamic motion model must be realized in a way that is fully
independent from unreliable or unknown knowledge of processes and statistics for best
performance and robustness. To conclude this work, the new aerodynamic navigation
method must be evaluated in simulation and real data tests to show its potential.
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1.4 OUTLINE

This thesis is organized as follows: The first three chapters address the main goals defined
previously. Each section of chapter 2 studies a different theoretical aspect of low-cost GNSS-
denied flight navigation. After a presentation of available navigation propagation methods,
their required computation models and inputs, they are discussed and compared with
respect to sources and propagation of error (section 2). In section 3, their suitability for aiding
with auxiliary on-board information is studied. The focus is on mitigation of the weaknesses
specific to each method. Chapter 2 concludes by highlighting the potential performance
gain by combination of inertial navigation and the aerodynamic motion model.

Chapter 3 explains how the problem of unreliable or unavailable models for aerodynamic
flight in rough atmosphere is solved, which is the major difficulty in applying aerodynamic
navigation to small general aviation airplanes. The text follows the actual course of research
of the author’s work. It first discusses the application of optimal state estimation techniques
to combine inertial and aerodynamic models in a model fusion filter in section 1. The
limitations of this approach when dealing with intermittent and unknown rough dynamic
atmosphere processes are explained. The steps taken to adapt model fusion accordingly
and the remaining shortcomings of the improved state estimation technique are described.
The motivation for a fundamentally different approach and the development of a new
covariance-free integration of inertial and aerodynamic models then follow in section 2.

The first section of chapter 4 presents the simulation framework developed for the evaluation
of navigation with an airplane aerodynamic motion model. This comprises generation of
realistic reference data with an automatic trajectory generation tool, modeling of dynamic
atmosphere effects, measurement errors and a new technique of modeling aerodynamic
model uncertainty. Section 2 then conducts a rigorous assessment of the proposed
aerodynamic navigation method in Monte Carlo simulation. Accuracy, robustness in rough
atmosphere and the sensitivity to two central system quality parameters are evaluated.
Section 3 concludes chapter 4 with the application of the proposed method to 30min of real
flight data in postprocessing.

Chapter 5 completes the research on a new method for aerodynamic navigation of small
general aviation airplanes with a study of a potential future use case. This includes a
discussion of applicable flight navigation certification aspects. From this, necessary system
improvements are identified and the next step of development and extensions of the future
navigation system are proposed.



2 METHODS FOR GNSS-DENIED FLIGHT NAVIGATION

For applications where position information is critical, position-fixing must be supplemented
by a backup function for computation of position estimate in case of primary function failure.
Without any absolute horizontal position information available, this backup function provides
an estimate of change in position since the last available positon fix. Referring to its most
important application scenario, this backup function will be termed GNSS-denied flight
navigation in this work. For highest reliability, only information available on-board and
independent of external infrastructure, weather and visibility is used. In addition, this thesis
aims at developing a method providing a backup navigation function based on the systems
already available on standard general aviation aircraft, not requiring additional expensive
equipment.

The aim of this chapter is to analyze and compare three methods for aircraft position
estimate propagation and understand how their respective qualities are favorable and
might be combined for a low-cost application. First, the underlying computation schemes
are presented, which differ in the underlying motion models describing state propagation,
including positon, and their inputs that need to be available from measurements or
knowledge.

The second section in this chapter then takes a detailed look at these methods with respect
to how errors in initial state or inputs propagate to and accumulate in position and other
motion model states. This is essential in order to judge how accurately position can be
propagated using any of the motion models for alonger time open loop. On the other hand,
identified short term error dynamics will be essential for the performance of aided position
propagation.

In some cases, unfavorable error propagation and dynamics can be contained if additional
information is available, e.g. by integration of an extra on-board measurement. The third
section therefore presents improvements to unaided motion model propagation by means
of low-cost aiding.

Finally, a number of aided position propagation methods with well-understood advantages
and weaknesses presents the basis for further research of GNSS-denied flight navigation. If
complementary qualities of any two of these methods can be found, these could be
implemented in parallel in an attempt to improve performance. Based on the findings of this
chapter, research on how to optimally combine these methods will follow in chapter 3.

2.1 TOTAL STATE PROPAGATION

Propagation of position state requires determination and time integration of velocity.
Consequently, the kinematic equations are at the core of any of the methods presented in
the following. Differences arise depending on whether velocity is available as measurement,
or integrated from acceleration. Acceleration again may be available as measurement or
computed from equations of motion and models of forces and moments acting on the
vehicle. Because in the latter case there is no measurement of motion involved, this can be
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considered a simulation approach to determine vehicle motion using a dynamics model. In
conftrast, the first two alternatives which use measured velocity or acceleration as input to
the kinematic equations may be considered a measurement approach to determine
vehicle motion with a kinematics model only.

Three different motion models for position propagation can be distinguished. The first, which
integrates a measurement of velocity in order to obtain position change relative to initial
condition, is known as dead reckoning. This is a very general classification independent of
the actual type of velocity measurement used. The most common low-cost type of dead
reckoning methods for aircraft using measurements of heading and airspeed will be studied
in the following subsection.

Inertial navigation allows the computation of motion from measured acceleration, and is
presented in the second subsection. Although the same kinematic equation for time
integration of velocity to obtain position is used, the term dead reckoning will not be used
for inertial navigation. The reason for this differentiation lies in the strongly dissimilar error
propagation characteristics, as will be discussed in section 2.2. The term dead reckoning will
exclusively be used for methods that integrate position from a measurement of velocity and
exhibit the typical error drift of such a motion model.

If acceleration can be computed with some model, vehicle motion may be determined
without any actual measurement of motion. This constitutes the third type of motion model,
a vehicle dynamics model (VDM). For aircraft, this can be realized using models of
aerodynamic and propulsion forces and moments, models of weight and balance and
translational and rotational equations of motion. Instead of velocity or acceleration, the
inputs to the aerodynamics and propulsion model must be available as measurement or
from some additional model. In this work, the ferm aerodynamic motion model will be used
for the vehicle dynamics model of an aircraft.

The diversity of these three motion models for position propagation justifies a detailed study
of their respective qualities for low-cost GNSS-denied flight navigation.

2.1.1 Heading and airspeed dead reckoning

The dead reckoning method is the simplest way to predict the change of vehicle position
and is applied to horizontal motion only for most types of vehicles. Measurements of speed
and direction of motion are combined in a two-dimensional velocity vector which is
integrated in time starting from the last known position [7]. While manual dead reckoning will
compute a new position estimate only once it is needed using averaged speed and
direction of motion, this work is concerned with computer methods where high rate
computation is the standard.

Figure 1 shows the geometry of heading and airspeed dead reckoning for straight and level
flight. The measured quantities, vehicle heading ¥,,;, and magnitude of the aerodynamic
velocity vector V, = ||v,ll,, are used to compute an approximation of the North and East
components of aerodynamic velocity vector vy,. Here it is assumed that the aerodynamic
velocity vector is aligned with the aircraft centerline e,. Adding an estimate of wind velocity
vector then yields an approximation of North and East components of frue kinematic velocity
vector v, which are integrated in time in order to propagate position estimate. The



procedure is similar for ships, where a measurement of speed through water is used and
combined with heading and an estimate of water drift velocity.

Generally, three sources of error can be identified for heading and airspeed dead reckoning.
First, measurements of aircraft heading and airspeed are distorted by measurement error.
Second, the assumption that aerodynamic velocity vector is aligned with the aircraft
centerline is not correct in presence of aerodynamic angle of sideslip 4. Finally, true wind
velocity vector vy, may differ significantly from the available estimate which further
increases dead reckoning error. The last two error effects contribute to the kinematic angle
of sideslip Bx which is the difference of vehicle heading and frue course angle yx in straight
and level flight. Again, dead reckoning for ships using heading, speed through water and an
estimate of water drift velocity shows equivalent error sources.

In this work, only aircraft applications are of interest and a basic dead reckoning method for
aircraft will be described in the following. Error propagation of heading and airspeed dead
reckoning is discussed in more detail in section 2.2.1.

Figure 1: Geometry of dead reckoning for straight and level flight

2.1.1.1 System equations

Given airspeed V,, heading angle ¥,,;, and horizontal wind velocity vector at aircraft location
vuwn (North and East components of air mass velocity), the horizontal kinematic velocity
vector can be computed approximately as

- cos(Wpp)
Van = Vgwn + [Sin(ll’nb) A (2-1)
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This assumes ¥,,;, = y, and cos(y,) = 1, which holds for small aerodynamic angle of sideslip in
straight and level flight.

The dead reckoning method uses the approximation of horizontal kinematic velocity vector
in equation (2-1) to continuously compute the desired position information. Horizontal
position of navigation reference point R is parametrized as vector Ay of geodetic latitude
and longitude (see e.g. [15-17]) with respect to the WGS84 ellipsoid [18]

...geodetic latitude
...geodetic longitude

R
Ay = Pwessa

R
/1W6584

Starting from initial estimate Ay 4, €.9. the last available GNSS position, the horizontal WGS84
position vector Ay can be propagated in time by integration of the differential equation (see
appendix A.2 for a derivation including the vertical)

! 1
0
, M(p¥ + hR
Ay = | (Dlvessan) + Miyessa ) - 22
0
| (N(Plcssao) + Miyessa) cos (¢1§/G$84)J

For simplicity, normal and meridian curvature radii M and N (see [16] and appendix A.2) may
be computed at initial latitude. This simplification infroduces negligible error given the overall
low accuracy of the dead reckoning method. A more detailed discussion will follow in the
next section andin [19].

The cosine of latitude in equation (2-2) must be computed regularly at the propagated
position since its value changes significantly at high latitudes for nonzero north velocity. A
different choice of position parametrization for use in high latitude regions is strongly
recommended (direction cosine matrices or quaternions, c.f. polar navigation and world-
wide capability in [20, 21]).

If no information on height is available, using the last known hf¢se4.0 is acceptable for small
general aviation airplanes with typically low service ceilings.

2.1.1.2 Algorithm inputs

The dead reckoning method assumes vehicle heading information is available as system
input. Because heading cannot be simply measured on a moving and rotating platform, this
input generally is generated by another system. This system could be a magnetic compass,
AHRS or navigation system. In any case, system behavior has a strong effect on the
generated heading information used by the dead reckoning method. Consequently, a
characterization of this signal is rather complex and requires the heading system to be
included in the analysis as a whole.

Information on airspeed is commonly available on all types of aircraft, because it is of
fundamental importance for flight control. Depending on size, speed and complexity of the
aircraft, the airspeed may be computed as indicated, calibrated or true airspeed
(IAS/CAS/TAS). The first two only require measurement of impact pressure, i.e. the differential
pressure between static and total air pressure, but neglect deviations of the properties of air
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at aircraft location from sea level conditions. CAS is more exact and more complex because
instrument and installation position errors have been corrected [22]. Furthermore, for flight
Mach numbers above 0.3, compressible flow effects are accounted for assuming sea level
conditions. Computation of TAS accounts for local air conditions but requires measurements
of static air pressure and total air temperature (or outside air temperature) in addition to
impact pressure. This means two more physical air measurements to be installed, calibrated
and maintained.

Finally, horizontal wind vector at aircraft location is nearly impossible to determine when
navigation precision is degraded (due to loss of GNSS) and without precise air data
measurements. Instead, a long term wind vector average computed while in normal
operation or a weather model predicted wind vector may be used. If available, weather
radio information on wind vector may be an option, too.
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2.1.2 Inertial navigation

Inertial navigation uses an accelerometer to determine the acceleration by which the
trajectory of an object is perturbed from the freely-falling trajectory at its current position. An
accelerometer can determine this acceleration by observing the inertial resistance of an
accurately modeled mechanical probe against disturbance from moving by inertia.

For example, an ideal point-mass satellite would not experience any interference while it
follows a freely-falling trajectory in the gravitational field of earth, moon, sun and all other
large celestial objects. Consequently, an ideal accelerometer installed on board would
produce zero output (see [23] for a similar thought experiment). If the satellite has finite size,
it will experience solar radiation and atmospheric drag (for low perigee). This prevents the
satellite and the mechanical probe inside the accelerometer from moving with inertia. Both
will resist this disturbance, and the observed effect on the mechanical state of the
accelerometer’s probe allows to compute the experienced acceleration by application of
the laws of motion. For a slowly moving object in a weak and stationary gravitational field,
Newton's equations of motion are applicable [24]. For an introductory discussion of inertia
and gravitation, the reader is referred to [25, 26].

For the simplest mechanical probe that could be used in an accelerometer — a point mass
attached to a spring — the inertial resistance is observed as a force acting on and stretching
or compressing the spring. The measured acceleration is spring force divided by mass of the
probe. Therefore, the accelerometer output is generally referred to as specific force.

For practical use, the object’s motion should be described in some fixed reference system,
such as the earth-centered inertial (ECIl) frame. This requires the apparent relative
acceleration of the ECI frame (i.e. freely-falling center of gravity of the earth) and the current
freely-falling frame at object position to be added to the measured acceleration. Resolved
in an inertial frame (e.g. at the center of gravity of the solar system), this relative acceleration
is the difference in gravitational acceleration experienced by the center of gravity of the
earth and the object.

For terrestrial inertial navigation, i.e. in close proximity of the earth, this choice of reference
frame avoids the complexity of computing gravitation due to all (close) celestial bodies.
Because earth itself is affected by gravitation of the same bodies, only earth’s gravitation
and the differential gravitational accelerations remain. Referring to their effect on the large
water masses on earth, the latter are referred to as tidal accelerations. Due to their
differential nature, they are small close to the earth. The largest tidal acceleration is caused
by the gravitational attraction and coupled motion of earth and moon and has a maximum
value on earth’s surface of ~0.115ug at the point closest to the moon (c.f. [27]). The tidal
acceleration of the sun is smaller by approximately 55% [27]. For all but highest accuracy
terrestrial inertial navigation, these tidal accelerations can be neglected and only earth’s
gravitational acceleration remains in the equation.

Because the accelerometer’s measurement is resolved in direction of a defined input axis of
its mechanical probe, computing position and velocity of the object in reference frame
coordinates requires a triad of accelerometers aligned with the reference frame axes. If it is
not possible to keep the triad constantly aligned with the reference frame axes, the relative
orientation must be known and used for projection of the individual measurements in the
direction of velocity integration. Technical designs that aim to keep the accelerometer triad
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of input axes aligned with the ECI (or other) reference frame axes are called gimbaled (or
platform) inerfial navigation systems. Similar to the measurement principle of
accelerometers, gimbaled inertial systems rely on the inertial resistance of mechanical
gyroscopes against rotation around their input axes to keep the platform carrying the
accelerometer triad aligned. The mechanical complexity and resulting cost of these designs
is their most important drawback [28]. The modern alternative is called strapdown inertial
navigation [21, 29] and uses a navigation computer for the fransformation of measurements
of the accelerometer triad which is rigidly installed on the object and defines the body-fixed
coordinate frame in this work. This requires high rate propagation of the triad orientation with
respect to the reference frame, accomplished by integrating inertial angle increments of a
triad of gyroscopes. A brief account on the historical development and best practice
recommendation of processing (rotation) inertial data in strapdown systems can be found
in [29].

The readerisreferred to [21, 23, 28, 30] for more information on inertial navigation technology.

2.1.2.1 System equations

The navigation state vector with reference point R is parametrized with position in geodetic
latitude, geodetic longitude and height with respect to the WGS84 ellipsoid [15-18], velocity
relative to ECEF frame written in NED coordinates and the orientation quaternion from NED
frame to body-fixed frame (see appendix A.1):

[Pivessa] ...geodetic latitude
L ...geodetic longitude
Zy = | hf cosa ...height above WGS84 ellipsoid
VR ...ECEF velocity in NED coordinates
G., 1---NED tobody-fixed frame orientation quaternion

Both indications for WGS84 coordinates and navigation reference point R are omitted in the
following and throughout this thesis for brevity anywhere possible. Instead, alternative
position reference frames or state vector reference points will be noted. The vector of WGS84
position is defined as A = [¢, 1, h]7.

The set of ordinary differential equations (2-3) (see [31, 32] and appendix A.2) describes the
motion of a point mass in presence of specific forces along the orthogonal axes of the body-
fixed frame f), = foe, + fb”ey + fb”ez and gravity of the earth y,,. The rotation of body-fixed
frame b (epx, €p .y, €p,,) With respect to inertial frame is described by the inertial angular rates
vector w;y,:

.y
=) +h
i= o
(N(¢) + h) cos(¢p)
h=—v, (2-3)
U = Rup(@np)fp + ¥n(@, h) — (ZRZn ¢, Dwie + @en($, by v, UE)) X Tn

- 1 — — Pt a
Ty = 5 (np * Bip — Bin($, 4, b, vy, VE) * G
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Note that the differential equations for WGS84 position in the horizontal are the same as for
heading and airspeed dead reckoning (2-2) but with normal and meridian curvature radii M
and N computed at current latitude ¢. R,,;, and R,,, are direction cosine matrices defined by
NED to body-fixed frame orientation quaternion and WGS84 latitude and longitude
respectively. They are computed using (see appendix A.1)

96 +q7—a5—495 209192 — 9093) 2(9193 + 9092)
2(q192 + 9093) 6 —9i + 45 —aq5  2(q293 — Goq1)
2(9193 — q042) 2(9293 + 9091) 96— 491 —q5+ 43

R(@) =

and

—sin(¢p) cos(1) —sin(1) —cos(¢) cos(A)

—sin(¢) sin(A) cos(1) —cos(¢) sin(1)
cos(¢p) 0 —sin(¢)

The fransport rate w,, appears in the differential equations for ECEF velocity in NED
coordinates v,, and for NED to body-fixed frame orientation quaternion with

R., =

— T
Win = Wep + Renwie

While earth rotation rate vector w;, is constant to sufficient accuracy for inertial navigation
applications with w;e = ||wiell, = 7292115 - 10~ 1rad/s [18], fransport rate must be computed
using
) Vg .
@) T
UN
@Wen =1 M(¢) +h|
tan(¢) vg
| N(¢) +hl

The so-called strapdown equations in NED frame (2-3) will be abbreviated in the remainder
of this work as function s(z,,, fp, @;p).

Aninertial navigation system (INS) computes z,,,,  over time according fo above strapdown
equations (2-3), given an initial value and specific force and inertial angular rates measured
by IMU, denoted as f, and @;;,.

Although equations (2-3) can be numerically integrated using any time integration scheme,
such as classical 4th order Runge-Kutta [33], accuracy in applications with large rotational
movements is much higher using the exact quaternion update for orientation propagation,
which is derived in appendix A.1. In the following, a simple strapdown navigation algorithm
suitable for the navigation studies presented in this work is summarized.

Defining a time-averaged angular rates vector w;, in time interval [t,t + At], and with
equation (A-41), the orientation of body-fixed frame b is propagated in time as follows

Giverae = Qive - (cos(Atllwgpll/2) + sin(Atllwy, l|/2)7,)

With i, the quaternion counterpart of normalized angular rates vector n, = w;;,/|lwip |l
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In this work, g, is chosen to parametrize body-fixed frame orientation and the initial
quaternion g,, is computed using the position and NED to body-fixed frame orientation

quaternion at fime t
?iibt = ?iebt = Gen (P, At) - Zinbt

For simplicity, alignment of inertial frame i and ECEF frame e can be assumed at time t, i.e.
Gie, = 1. Gen(dy,4,) is computed by solving equation (A-66) for the coefficients of the

quaternion according to equation (A-32).
Now the earth rotation in time interval [t, t + At] can be accounted for
Gierynr = die,  (cos(Atllwee|l/2) + sin(Atl|wie |l /2)T,)
With 1, the quaternion counterpart of normalized earth rate vector n, = ;. /||w;.||.

The propagated ECEF to body-fixed frame quaternion at tfime t + At is

a = 0. -1 . 0.
ebiinr = diecrnr " Dibesac

With the propagated position af time t + At and with g,., = 1, the propagated NED to body-
fixed frame quaternion at time t + At is

qanAt = ﬁgr% (¢t+At; At+At) ’ qebt+At (2'4)
= Gon (Pernes Aerar) - (cos(Atllwiel/2) — sin(Atllwiell/2)Te) - Gen(Pe, Ar) - Gnb,
- (cos(At|lwp I /2) + sin(At||lw;p |l /2)T)

Note that approximation of the change of body rotation axis in the output time interval is
possible e.g. as proposed in [34]. Also refer to [29] for recommended steps to account for
effects due to high frequency motion.

For integration of position and velocity states in INS, a 24 order Runge-Kutta time integration
scheme without intermediate step is used in this work (the explicit trapezoidal method [33]
also known as improved Euler method [35]). It can be combined with above orientation
quaternion update (2-4), abbreviated as function p in the following. Defining a subset
StranS(Zntrans'fn) of the ordinary differential equations (2-3) for franslational state vector

Zn,ans = 0,4, R, v5]" only, a concise description of the time integration method is possible.

The improved Euler method consists of a forward Euler prediction step
ZntTanS;+At = Z"transt + Atstrans (ZntTaT'LSt' fnt) (2'5)
Gnvrrpr = P(@nbp P At Drvae Arsae @ip, At)

With f,., = R(@np,)f»,- The preliminary results denoted by a * are improved in a successive
trapezoidal rule correction step yielding the final propagated navigation state Zntranspqn

and gny, t+At

At
— — * * -
ZntransH_At - Zntranst + 2 (Strans (Zntranst’fnt) + Strans (Zntranst+At’fnt+At)> (2-6)

1 1
qnbt+At =P (qnbt' ¢ti At' ¢t+At' At+At'Ewibt + Ewibt+At' At)
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With friiar = R(ﬁnb:.,.At)fbH,At- Note that transport rate integration is not included in the
orientation propagation step but solely represented by position propagation.

The presented strapdown navigation algorithm (2-4), (2-5) and (2-6) for time propagation of
navigation state vector z,, is a simplification of more evolved schemes found in the literature,
e.g. [34, 36]. Similar to all available algorithmes, it introduces time discretization errors due to
truncation of terms of (in this case) 39 and higher order in At in equations (2-5) and (2-6) and
due to the assumption of a specific behavior of specific force and inertial angular rates
vectors in interval [t t + At]. Here constant directions of these vectors in [t,t + At] are
assumed. This simplification is acceptable for the navigation studies presented in this work
where high-rate inertial data is available and the effects of high-frequency motion are
negligible compared to other error effects.

2.1.2.2 Algorithm inputs

For inertial navigation using the strapdown algorithm described above, three input signals
are required. First, measurements of specific force vector and inertial angular rates vector
must be provided at sufficiently high rate. Because no other information on vehicle motion is
used in inertial navigation, these measurements must contain full bandwidth motion
information. If true motion is not fully resolved by time discrete inertial measurements,
discretization errors may be rectified in the integration of motion.

Because inertial angular rates measurements should describe rotational motion of the
accelerometer sensor triad, the gyroscopes are always closely integrated mechanically with
the accelerometers in an inertial measurement unit (IMU). Thus the IMU produces vector
measurements of specific force and inertial angular rate, usually at equal rates.

Various measurement technologies have been developed over the last decades and used
in IMUs for inertial navigation. Classical mechanical designs have been mostly replaced by
quartz and MEMS (micro-electro-mechanical systems) designs for accelerometers and
MEMS, FOG (fiber-optic gyro) and RLG (ring laser gyro) designs for gyroscopes (c.f. [30]).

The third required input for inertial navigation is the gravity vector y,,. Because this gravity
vector includes the effects of earth gravitation and centripetal acceleration in a frame fixed
to rotate with the earth (such as ECEF which is used to define velocity v,,), it can also be
computed given gravitation vector and earth rotation rate using

Yn = R'gn(ge — Wi X (wie X re)) (2'7)

In any case, accurate computation models exist for terrestrial navigation: Normal gravity (the
best approximation of earth’s gravity assuming an ellipsoidal shape and rotation) can be
computed with the formula of Somigliana valid at the surface of the WGS84 reference
ellipsoid and a Taylor series expansion for small positive heights (see appendix A.2, [18] and
[37]). Alternatively, gravitation vector for use with equation (2-7) can be computed as
gradient of a series expression approximating actual earth gravitational potential (e.g.
EGM96 [18] or EGM2008 [38]).
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2.1.3 Aerodynamic motion model

The previous methods for position propagation presented in this section both use
measurements of the actual motion. With fundamental kinematic equations to integrate
these measurements, the type of object to be navigated is irrelevant. These methods may
even be applied to objects that cannot move at all. Now, the possibility of navigation of a
vehicle with well-understood system dynamics shall be considered. In this case,
measurement of motion may be replaced by simulation of motion using models of vehicle
dynamics (a vehicle dynamics model, VDM).

The ultimate goal of development of a vehicle is to realize the desired system behaviorin the
final product. Consequently, understanding of its dynamics is present for any professionally
developed vehicle. Due to the potentially catastrophic consequences when the final
products (or prototypes) behavior in flight is not stable, this is especially true for aircraft. In
two ways: First, considerable effort is made to understand and define a desired system
behavior, which would guarantee save flight. Second, throughout the development process
and intensively already before first flight of a prototype, achievement of desired behavior is
constantly verified by design reviews. This process should result in converging qualities of
defined and verified system behavior. The preferable form to define desired oridentify actual
(preliminary) system behavior is a dynamics model. A dynamics model allows for software
simulation of a part or the whole of the systems behavior in a given application scenario. In
this work, a vehicle dynamics model (VDM) shall be defined as a model that allows for
simulation of tfranslational and rotational motion of a coordinate frame fixed to the vehicle
(body-fixed frame), given control and environmental inputs. Flight control or control and
stability augmentation systems shall not be part of the VDM, and control inputs are as applied
on the actuators and engines.

Airplanes with conventional design have distinctive flight dynamics that are also present in
the vehicle dynamics model. This makes airplane VDM especially suited for use a position
propagation method as will be detailed in later sections.

It is assumed that other means of navigation are always available during taxi and takeoff or
mission is aborted. The aerodynamic motion model for position propagation will only be
usable in flight. Because it is considered for use in a backup navigation function, landing is
not considered an issue: For landing, visual reference or accurate means of navigation must
be available.

As explained above, the high-quality aerodynamic motion model is expected to be
available from airplane development. This work is not concerned with high-fidelity models for
airplane flight — typically comprising aerodynamics, propulsion system, fuel flow, weight and
balance models among others. The following focuses on the aspects that are relevant for
this research: A characterization of the information available from a high-fidelity
aerodynamic motion model that is usable for low-cost infegrated navigation. The available
information is related to the navigation states and the dependencies of the model are
identified. Some simplifications are permissible at this point, because only the significant
influences need to be accounted for an acceptable characterization of the behavior and
uncertainty of a general aviation airplane model.
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2.1.3.1 System equations

The model of airplane aerodynamic forces and moments is complemented by models of
propulsion forces and moments, fuel consumption, loading and weight and balance.
Altogether, the vehicle dynamics model (VDM) can be used to simulate flight of arigid body
airplane given a correct initial condition and control inputs over time:

d [Zn S(Zn'fgrwib)

= (Dib] ~ g, (Mg — Wy X (Igbwib))

(2-8)
The 12-DOF vehicle state vector z, is composed of position, kinematic velocity and
orientation that are parametrized in the same way as in a common inertial navigation
mechanization (z,) plus inertial angular rates in body-fixed frame w;;,. Therefore, strapdown
navigation differential equations s appear in the first row of the right hand side of equation
(2-8).

The specific force vector that determines point mass motion corresponds to the holding
forces acting on the actual IMU accelerometer triad (which defines the navigation reference
point R), divided by its mass. Because the vehicle is assumed perfectly rigid here, this is equal
to the sum of external forces computed from the models and acting on the vehicle plus inner
forces at point R, divided by aircraft mass m. Inner forces are due to rotation and angular
acceleration of the vehicle and lever arm between R and vehicle center of gravity G (with
7R¢ = 0 and all geometry assumed to be rigid, c.f. appendix A.3)
R G
f§=F—b= Z %_(bibxrga_wibx(wibxrgG) (2-9)

m
Aero,Prop

The second row of equation (2-8) consists of the Euler equation of rotational motion for arigid
body with tfime invariant mass distribution (a restriction that can be relaxed considering time
scales for mass change to be much larger than for rotational motion). See appendix A.4 and
[39] for a detailed derivation.

The effective moment acting in center of gravity G is the sum of external moments only:

M§ = Z M3,

Aero,Prop

Aerodynamic and propulsion forces in the center of gravity FgAm and ngmp are surface

integrals of air pressure and friction forces acting on airplane wings, fuselage, propeller etc.
A physically exact model would therefore be of infinite order. Modeling fidelity and
complexity is significantly reduced by directly modeling forces and moment vector pairs
used in the equations above, localized at a defined model reference point instead of
computing actual surface integrals, e.g.

G — A ;
FbAero - Fb Aero (Zv' Zy, Vwn, Owp, Up, Cv)

MG

— MmA ; AG A 2
b gero — Mb Aero (Zv' Zy, Vwn, Owp, Up, Cv) Ty X Fb Aero (Zv' Zy, Vwn, Wwp, Up, Cv)

This aerodynamic model computes a force and moment vector pair acting in the
corresponding model reference point A. u, is the vector of direct pilot control inputs or

actuated confrols and ¢, is the vector of model coefficients. Note that this aerodynamic
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model does not infroduce any additional states and, in combination with the equations of
motion (2-8) that give z,, presents a direct algebraic scheme to compute aerodynamic
forces and moments. The propulsion model takes a similar form. Although high fidelity
propulsion system models might include states for shaft speed and other, this is not
considered here.

Computation of the specific force vector in the navigation reference point R using equation
(2-9) requires both the vehicles inertial angular rates in body-fixed frame w; and
corresponding time derivative w;;, to account for relative acceleration effects due to the
lever arm between navigation reference point and time variable center of gravity location
rR¢ The inertial angular rates time derivative is obtained from the Euler equation of rotational
motion, the second row in equation (2-8).

The presented equations of motion (2-8), (2-9) are valid for a rigid body, i.e. under the
assumption that mass distribution over the vehicle geometry is time invariant. Although this is
not strictly the case for a conventional small general aviation airplane with a reciprocating
or turboprop engine, the rate of change of total mass due to consumption of fuel in fuselage
or wing tanks is small. Consequently, the loss of accuracy due to truncation of terms
accounting for time variant mass distribution in the equations of motion is negligible
compared the inevitable modeling errors in aerodynamic and propulsion forces and
moments. Still, mass m, inertia matrix 1, and center of gravity location ¢ change significantly
over the duration of a long flight and must by continuously computed from models that take
fuel consumption and mass distribution info account.

Note that unlike for inertial navigation, common time-integration schemes may be used to
integrate above system of differential equations. A good choice of method offers numerical
robustness and accuracy at reasonable computational cost. The classical 4t order Runge-
Kutta method [33] is typically applied for fixed airplane simulation [22, 40, 41] and is therefore

selected here. With input data valid at equidistant fime points t,t+%At and t + At, the

vehicle state vector z,, = [z,Tl win]T is propagated in time as

At . .k < 0 . %
Zyiype = Zve T 6 (ZVt + 22”t+1/2At + 22”t+1/2At + ZUt+At)

For this single propagation step of state vector z, from time t to time t + At, the right hand
side of equation (2-8) must be evaluated 4 times:
1. At the initial state z,,, and using input data valid at fime t, which gives z,,. This is used
to compute the predicted state (denoted by a ) at infermediate time t + %At

Zy, + EAtin

2. At predicted intermediate state Z”:+1/2At and using input data valid at time t + %At,

* —
ZUt+1/2At -

which gives 21,:“/2“. This is used to compute the corrected state (denoted by a ¢) at

intermediate time t + %At

Zv2+1/zm =Zy, + 2 AtZV;+1/2At
3. Af corrected intermediate state Z”;+1/2At and using input data valid at time t + %At,
which gives z,,‘;ﬂ/m. This is used to compute the predicted state at time t + At
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Zyrsne = Zop T AtZV:H/ZAt
4. Finally at predicted state z,;, ,, and using input data valid at time t + At, which gives
Zogine
For a given rate of input data, vehicle state vector is computed at only half that rate. If this
is for some reason undesirable (e.g. because input data rate is already low), a 2@ order
Runge-Kutta scheme with equal rates of input and propagated state vector data can be
used (improved Euler or explicit trapezoidal method [33, 35]). Because both precision and

stability of vehicle motion propagation is affected, time integration should be tested
thoroughly in simulation.

2.1.3.2 Algorithm inputs

For evaluation of equations (2-8) and (2-9), the sums of external forces and moments in some
defined reference point of the aerodynamic model, aircraft mass and inertia matrix must be
available. Furthermore, center of gravity position is required to compute forces and moments
in center of gravity.

Aircraft mass m, inertia I, and center of gravity position rf¢ are computed with a weight
and balance model. Such a model could be based on CAD data of geometry and mass
distribution of the empty aircraft in combination with a fuel load and inertia model (for
reciprocating or turboprop engines) and models for passenger and luggage load and
inertia. Fuel consumption must be provided by the engine model to account for the slow
change in weight and balance properties in flight. While measuring initial weight and
balance on ground and using a model for change due to fuel burn only would certainly be
more accurate, this is a considerable operational burden and not always possible.

Dimensional analysis of aerodynamics (see [42, 43]) shows that resulting aerodynamic forces
and moments acting on a body of a specific shape and a specific orientation with respect
to free stream air motion relative to the body can be formulated as dimensionless
coefficients

1
C, = #FAero,Lift
ijA Sref
1
Cy = # FAero,Sideforce
ZPVA Sref
1
Cp = 1 . FAero,Drag
fpVAZSref 210
1 ( a )
G = #MAero,x
2 pVA Sref lx
1
Cm = #MAero,y
2 pVA Sref ly
1
Cp = TMAero,z
2 pPVi Sref Ly

20



The components of aerodynamic moment are written in body-fixed frame coordinates. For
airplanes, lift is defined as force perpendicular to free stream motion relative to the airplane,
lying in the plane of e, and e, body-fixed axes (the plane of symmetry of a conventional
airplane). The scalar product of the vector of aerodynamic force and the body-fixed —e,
vector determines the sign of lift. Drag is the force acting in direction of free stream motion
(for positive values). Aerodynamic sideforce is perpendicular to both, positive in the right-
wing hemisphere.

Srer ANd Iy, 1,1, are reference area and lengths. For adirplanes, they are chosen as wing
reference areaand [, = [, = b, I, = ¢ with wing span b and mean aerodynamic chord ¢ (see
[22]).

With ambient air density p, dynamic pressure, which appears in all of above definitions, is

1 2
q:=5pVa

Dimensional analysis finds that for any given body geometry and body orientation with
respect to free stream motion relative to the body, the aerodynamic coefficients (2-10) are
functions of two dimensionless parameters among others

_ PValge
u

Re

...Reynolds number
V4
M = o Mach number

with a reference length Iz, (€.9. mean aerodynamic chord ¢), dynamic viscosity u and
speed of sound a. Despite the importance of vehicle weight in the context of stability and
trim, there is only a weak and indirect influence of gravity on aerodynamics due to vertical
gradients in the atmospheric conditions.

The free stream motion of air relative to the body is described by the aerodynamic velocity
vector, which is the vector difference of body kinematic velocity and velocity of the ambient
air mass at the point of interest, typically the reference point of the aerodynamic model. In
NED coordinates, this is (c.f. Figure 1)

Van = Vn — Vwn (2’] ])

In equation (2-11), wind velocity vector vy, is defined as having an equivalent, but opposite
in sign, effect on aerodynamic forces and moments compared to the kinematic velocity
vector vn, when all other properties of air and vehicle states are unchanged. This can be
exemplified by the equivalency of aerodynamics in wind tunnel testing at zero kinematic
velocity and in real flight. Wind velocity vector vy, corresponds to the average undisturbed
air mass velocity relative to ECEF frame in a volume where it affects airplane aerodynamics.

In flight, airplane geometry will vary with control surface deflections, flaps and gear position.
In addition, angle of attack and angle of sideslip with respect to aerodynamic velocity
vector change dynamically due to body rotation or wind. For real time capable
computation of aerodynamic forces and moments, which is required here, algebraic models
are used. Various possible forms used for modeling aerodynamics of airplanes can be found
in the literature [22, 41, 44]. One suitable possibility for airplanes valid over large portions of
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the allowed values for angle of attack is a linear model of all aerodynamic coefficients
except drag, which is better modeled with a quadratic model

CL=Cro+ Craay
Cy = Cyo + CypBa
Cp = Cpo + k(Cp, — Cpp)? 012
Cr=Cpo+ Cipfa+ Cpp™ + Cpor™ + (1 (2-12)
Cn = Cno + Cgaq + Cmqq* + Cmnn
Cp =Cpo + CnBﬁA + Cnpp* + Cnrr* + Cn((

With aerodynamic angles of attack and sideslip, a, and B4, nhondimensional aerodynamic
rates p*, ¢* and r* and control inputs for roll, pitch and yaw &é,n and ¢ (see Figure 2).

Figure 2: Control deflections and body-fixed frame for a conventional airplane

For a higher fidelity of the model, more terms and derivatives may be used. All of above
derivatives and the coefficient of induced drag k are functions of Reynolds number Re,
Mach number M and changes in geometry such as flaps and gear position. In addition,
bilinear and higher order (nonlinear) effects of control surface deflections, aerodynamic
angle of aftack and aerodynamic angle of sideslip may be represented by varying
aerodynamic derivatives. As mentioned above, the goal here is not to present a high-fidelity
model but to study the predominant model characteristics instead. A linear model (2-12) with
constant derivatives is sufficient to model the relevant aerodynamics of a conventional
general aviation airplane in proximity of a regular reference flight condition, where changes
in Re and M are small and nonlinear effects are small (e.g. no high aerodynamic angle of
attack).

In equation (2-12), the influence of airplane orientation with respect to aerodynamic velocity
vector is accounted for by aerodynamic angles of attack and sideslip, a4 and By4. In case of
rotation of the airplane with a kinematic angular rate, there is an additional effect on
aerodynamics due to gradual change of relative free stream orientation over the geometry
of the airplane. Instationary effects may be present because changes in the aerodynamics,
e.g. of the wings, will affect the aerodynamics at airplane tail with some delay. Similarly, air
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mass motion could be inhomogeneous in space or change in time at the aircraft location,
leading to equivalent effects on aerodynamics. Both is accounted for by the aerodynamic
rates which appear in above equation in nondimensionalized form:

. Waxb
P =
WayC

2V
Lo @azb
2V,

*

(2-13)

The vector of aerodynamic rates is defined as linear combination of kinematic and air mass
motion with equivalent effect (but with opposite sign) on aerodynamics:

Wypp = Wip — Wyyp (2-14)

This quantity describes the gradual change in relative motion of undisturbed air and local
vehicle surface over the whole vehicle geometry. Changes of the unperturbed air flow
parallel to air velocity vector are negligible for all sizes of real airplanes.

The wind angular rates vector wy,,, is a simplified representation of time and spatial changes
in the air mass velocity vector field v,;,-(r, t). It can be considered as the sum of all equivalent
effects due to air mass velocity vector gradients dv,;,-/dt and dv,;,./orT in combination with
movement of the vehicle, with negative sign.

The parameters in the functions of aerodynamic coefficients (2-12) as well as dynamic
pressure needed to compute dimensional aerodynamic forces and moments using equation
(2-10) could all be measured using a total pressure tube, airflow vanes for a and g and a
gyroscope for inertial rates in (2-14) while neglecting wind angular rates wy,,. Together with
weight and balance information and propulsion forces and moments, this would allow to
compute virtual specific force measurements at IMU position using equation (2-9) and time
derivatives of inertial angular rates using the Euler equation of rotational motion for a rigid
body in the second row of equation (2-8). That way, the measurements of a real IMU for
strapdown inertial navigation could be replaced by a virtual measurement based on vehicle
models and measurements such as aerodynamic angle of attack. Because for example an
acceleration accuracy of 1mg would require aircraft mass to be known in flight within 0.1%
error, it is obvious that even low-cost IMU measurements, once calibrated, would be superior
and the approach to measure inputs for equations (2-10) and (2-12) is dismissed.

Instead, it is preferable to compute the parameters using the known navigation state vector
z,. This implements a feedback of navigation errors to the aerodynamic model with a
favorable effect on error dynamics, as will be shown in the next section. Equation (2-11) is
used to compute aerodynamic velocity vector which, in combination with vehicle
orientation, defines aerodynamic angles of aftack and sideslip @« and g. For this, wind
velocity vector vy, must be known, which will prove to be a drawback of this approach.

Using an atmosphere model, air density can be computed as a function of height (e.g. with
the standard atmosphere [45], which is representative for middle latitudes in the northern
hemisphere [46]) and can be used together with aerodynamic velocity magnitude to
calculate dynamic pressure. This is an alternative to computing air density from measured
static pressure and outside air temperature, which does not require an outside air
temperature sensor. In this work, the variability of air density at sea level and as function of
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the vertical is not addressed or studied in the method evaluation. While computing air density
from static pressure and temperature measurements will consistently account for real
atmosphere conditions, computing air density from an atmosphere model requires model
calibration for non-standard conditions.

For the nondimensional aerodynamic rates (2-13), the aerodynamic angular rates vector wy,,
is computed using (2-14). The inertial angular rates w;, are contained in the vehicle state
vector z,, the wind angular rates wy,;, must be known.

With exception of gyroscopic moments due to internal rotating masses, the propulsion system
forces and moments are largely independent of kinematic velocity and inertial angular rates
of the vehicle too. Instead, aerodynamic velocity v,, and aerodynamic angular rates wyy,
are influential model parameters. Dependence of aerodynamic and propulsion models on
vehicle state time derivative will not be considered in the rest of this work. Therefore, with
influential parameters only, the models for aerodynamic and propulsion forces and moments
can be written as

A

Fy pero (h» Vap, Wpp, Up, Cv)
A

My, (R vy, @ap,up, €y)
P

Fiprop (h, Vap, wap, Uy, €;)

P
M} pro (h, Vap, wap, Uy, €;)

(2-15)

For the problem at hand, it will not be possible to predict the values of vy, and wy,;, or model
their change in time as the vehicle flies along a specific trajectory. Similarly to heading and
airspeed dead reckoning, a long term wind vector average, weather model predicted wind
vector or weather radio information on wind vector may be used. Since the wind angular
rates vector wy,, represents changes in air mass velocity vector field, it can be expected to
be more variable than actual wind velocity vector and there is no way to provide this
information to the aerodynamic propagation method. Consequently, it must be assumed
zero.

The required input of pilot or autopilot controls u,, including &,n and { as well as all other
conftrols for engines, gear, etc. can accurately be provided by measurements of control
surface and mechanical control system deflections. Depending on whether axial or angular
displacement is measured, laser distance and magnetic angle measurements are options
for sensor types to be used. In a digital fly-by-wire flight control system, actuator position and
digital control signals are available in addition.

Finally, the coefficients of aerodynamic and propulsion models ¢, are needed. More
generally, accurate models of aerodynamics and propulsion systems must be available for
the specific airplane the desired navigation function is developed for.

Airplane flight simulators for use in pilot training need to be validated against a number of
requirements in order to be qualified for training purposes (c.f. [47]). Beside aspects of flight
operation, realistic cockpit simulation, visualization, motion cueing and simulator control, the
simulated flying qualities are thoroughly compared against true airplane qualities. This
includes flight stability and performance, e.g. tolerances on airspeed, climb, attitude and
dynamics for a number of typical and emergency flight segments. Consequently, the
software models of flight simulators with high flight model fidelity levels V and VIl [47] with
strict tolerances on airplane-specific flight dynamics are well suited for use as position
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propagation motion model as infended in this work. Simulators with flight model fidelity level
Il have reduced tolerances (i.e. representative models). But they are sfill strictly required to
correctly model the flight dynamics qualitatively —i.e. in terms of principal stability of flight
dynamics. The usability of airplane models of such lower quality for backup navigation will
be assessed later in this work.

The cost of development and certification of such an airplane specific simulation software is
high due to the large number of flight test hours required both for identification of the model
using system identification techniques (e.g. [48]) and following validation of the created
model against independent flight data according (see e.g. [49] for an example of highest
qualification level flight simulator aerodynamic identification and validation).
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2.1.4 Relevant aspects

This section has discussed the characteristics of three different motion models for position
propagation that can be used for GNSS-denied flight navigation. Given the crificality of
position information for the applications of interest, high reliability of the backup position
estimation function is desired. This strongly depends on the number and type of physical
measurements required, and specifically on their integrity and robustness.

It is found that all of the three motion models take inputs that must be measured on-board:
Heading and airspeed for dead reckoning, specific forces and inertial angular rates for
inertial navigation and control inputs for the aerodynamic motion model. The low-cost design
usually mandates a simplex sensor suite. In this case, the integrity of input data is to large
extent determined by the probability of an out-of-tolerance measurement, because
detection of such an event is generally difficult without sensor redundancy or high overall
accuracy. Only for some sensors the occurrence of out-of-tolerance measurements might
be related to typical sensor faults that are relatively easy to detect with a priori measures
(e.q. frozen digital output). For other sensors, faults might be much more complex in their
appearance and harder to detect. This is especially the case for airspeed and control
deflection measurements, being exposed to open air or soiling and partly mechanical. Both
MEMS inertial sensors and solid-state magnetic compass are closed box sensors well
protected from pollution that could impair their measurement function. For the magnetic
compass, disturbances of the environmental magnetic field due to a large number of
conditions (e.g. driving electrical actuators) may corrupt sensor output. For control inputs, a
redundant measurement (or availability of digitalized control input) appears possible even
in a low-cost design. This increases integrity of control input information over integrity of
simplex measurements in the scope of this analysis. In terms of availability, sensors with interior
on-board measurements such as solid state magnetic compass and inertial measurements
are preferable. Only hardware fault might interrupt operation, while for airspeed,
interruptions due to icing or blockage seem much more probable assuming unfavorable
weather conditions. For control inputs, the larger number of sensors can be considered a
limitation of availability because probability of single hardware fault is approximately
multiplied by the number of individual sensors.

Besides measured inputs, all three of the described motion models need further input
information for the propagation of position estimate. Inerfial navigation and the
aerodynamic motion model need a value for gravity at current position. At least in the
accuracy required for low-cost applications, this information is reliably available for world-
wide operation using EGM2008 gravitation or Somigliana gravity models (see [38] and [18]
respectively). Heading and airspeed dead reckoning as well as the aerodynamic motion
model need information on wind velocity vector at aircraft position. As has been noted
before, provision of accurate and reliable wind vector information proves very difficult.

Finally, simplifications and model imperfections must be considered in this comparison. Given
exact gravity input, inertial navigation is an exact motion model. No simplifications are
necessary in an actual implementation of this method, except for discrete time integration.
Time discretization errors can be reduced to be orders of magnitude smaller than errors due
to measurement and gravity imperfections by design using state-of-the-art strapdown
algorithms that match the application [29, 34, 36, 50]. Using classical 4" order Runge-Kutta
time integration and low-pass filtering of measured input data if needed, time discretization
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errors are negligible for dead reckoning and the aerodynamic motion model. These methods
more significantly suffer from simplifications necessary for implementation. Heading and
airspeed dead reckoning assumes a simplified geometry where aerodynamic velocity is
always horizontally aligned with body longitudinal axis. For a number of dynamic flight
conditions, this causes error in the approximated velocity used in position time integration.
While geometry and kinematics are exact in the aerodynamic motion model, this method
uses approximate models of aerodynamic and propulsion forces and moments, weight and
balance and vehicle geometry.

As result of this study of required measurements, model inputs and simplifications for
implementation, inertial navigation offers some advantages compared to the other models
if only a single motion model is used. Regarding the input data, it is the most reliable option
and, in addition, it is the only motion model that describes true motion without simplifications
or imperfections. Compared to heading and airspeed dead reckoning, the aerodynamic
motion model uses more reliable measurements of control inputs. Still, both require wind
velocity vector at aircraft position that is hardly available. Because dead reckoning
computes an approximation of horizontal velocity and the aerodynamic motion model relies
on a simplified model of true flight physics, inertial navigation is the choice for a single motion
model with maximum validity for a wide range of operational and environmental conditions.

One important aspect that distinguishes the aerodynamic motion model from dead
reckoning or inertial navigation is that the implementation of this method is very specific to
the navigation platform (i.e. vehicle). In contrast, inertial navigation is perfectly indifferent to
the platform carrying the navigation system. For heading and airspeed dead reckoning the
type of vehicle only affects the validity of assuming alignment of aerodynamic velocity and
longitudinal axis. Aerodynamic motion propagation will require different software and
measured inputs for any different vehicle. Consider for example the difference for two similar
airplanes, one with retractable landing gear, the other with fixed landing gear. The first will
need an additional measurement of gear position to be included in the motion model input
vector. In addition, aerodynamic properties are affected by gear position and this must be
accounted for in the software model used to compute aerodynamic and propulsion forces
and moments.
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2.2 ERROR STATE PROPAGATION

Without absolute position information, the change in position starting from the last known or
accurately measured point must be predicted using one of the methods infroduced in the
previous section. Errors, once infroduced in inifial values, measured inputs or inputs
computed from models, will remain in the computation. The way how these navigation errors
propagate and accumulate, especially in estimates of position and velocity, is of great
interest for assessment of propagation method usability.

The following analysis will allow to quantitatively predict method performance if used open
loop, i.e. without updates or corrections to the motion model states. A performance study is
based on statistical models of initial value and input errors, and uses either the error
covariance model, which can be derived from linear(ized) error dynamics, or Monte Carlo
simulation of the error dynamics to yield statistical measures of performance. If a position
prediction method is designed to meet a specific open loop performance, e.g. position
accuracy over time (drift), this error propagation analysis and specifically the long term error
dynamics are the basis for deriving required input and sensor accuracy. While historically
limited computational capabilities required simulation of linear(ized) error dynamics (or
analytical discussion where possible), Monte Carlo simulation of the whole navigation system
software is possible today. This has the advantage of greatest possible correspondence of
operational method and analysis, and will be the preferred approach to performance
assessment and design in this work.

Observability analysis of system errors, as will follow in the next section, is yet another reason
for error propagation analysis. The short term error dynamics of system states in combination
with system-specific observations determine the closed loop behavior with an estimation
filter, such as the extended Kalman filter (EKF). Implementation of the EKF requires a
covariance model of system error dynamics.

If filter estimates of motion model errors are used to update or correct the model, the open
loop performance will be only of importance for short time intervals between filter updates.
At least for model errors that are observable and will be corrected by the filter, short term
error dynamics are of greater interest than the long term dynamics in closed loop.

2.2.1 Heading and airspeed dead reckoning

The dead reckoning method is the simplest algorithm to compute change in position over
time, requiring only a single time integration. This simplicity represents an advantage,
because the number of error sources is very limited. As will be shown in the following
subsection, integration of position from speed and direction measurements results in linear
position error growth. This first order error influence and resulting steady positon drift
constitutes the distinctive characteristic of the dead reckoning method and makes it suitable
for use with low-cost equipment over long time intervals.
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2.2.1.1 Position drift

The position error of dead reckoning is described by the following differential equation found
by perturbation analysis of equation (2-2) and subsequent linearization. Input errors,
elevation angle 0,,;,, aerodynamic angles of attack and sideslip and errors error in computed
roll and pitch are assumed small (see appendix A.5).

1
5h, = |M (Bivcsse0) + Miiasss (1) ]I
| 0 (N(6cs8a0) + Myesas) cos(Dfssa)] (2-16)
(oo + [tz o
oo @ + cos(@ny) 1 = sin(@) )V,

Again, ¥,,, = x4 and cos(y,) = 1 is assumed, which holds for small angles of aerodynamic
sideslip in straight and level flight and thus for the greatest part of the flight.

Errors in the computation of normal and meridian radii have been neglected in this analysis
because they correspond to scale factor errors on the order of 1ppm for distances travelled
in north direction of ~100km (and radii computed at initial position). Similarly, errors in height
of up to 5500m (approximately 18000ft ) will cause a scale factor error in position
propagation of less than 1000ppm which is still negligibly small. Notice that integration of
longitude becomes very sensitive to latitude errors at high latitudes. 10km north position error
introduce a scale factor error in longitude propagation of 15000ppm at 85° latitude and
2600ppm at 60° latitude respectively. For the applications considered here, this effect may
be dismissed from analysis as well.

Equation (2-16) describes three different error sources in aircraft dead reckoning: First, there
is a wind drift directly related to the integration of error in horizontal wind velocity vector
dvywn Used for position propagation. Second, the airspeed measurement error §V, will cause
along-track error. Finally, heading error and deviations from to assumed zero-sideslip straight
and level flight condition infroduce across-track error or misalignment error.

All of these errors are accumulated in position estimate by integration over time. For zero
velocity and with above simplifications

1
§AL(1) = |M(¢I§/Gss4,0) + hiycssa (1) ]i
l t : t (N(¢5VG584’0) + h‘}’?‘/ng‘*) COS(‘pI}A?/Gssz;)J
. < Jt 06vHWndt + ft 0 [Zfi((zjfj))] OVadt (2-17)
¥ -ft: [_C(S)lsrzl(qurllzb)] (6%np + cos(Ppp) Ba — sin(Ppp) aA)VAdt>
+8A L (to)

All error terms are first order in elapsed time At =t — t,. Partial cancellation of integrated
position error due to constant input error in airspeed or heading may occur if direction of
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motion changes. Similarly, time variant input errors in airspeed or heading may be rectified
by changes in direction of motion. Still, for any motion trajectory, errors of heading and
airspeed dead reckoning scale linearly with time. This is a very favorable error characteristic
for low-cost applications where input errors can be large. It effectively weights temporary
errors with the time duration of occurrence. Consequently, large input errors due to low cost
instrumentation are permissible and have little effect on position accuracy as long as they
exist for short times only.
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2.2.2 Inertial navigation

Because the inerfial motion model by itself is accurate without approximation, system
dynamics are independent of actual navigation state vector parametrization.
Consequently, the error dynamics are the same for e.g. a local-level, ECEF or ECI strapdown
inerfial navigation mechanization using the same initial and input values (i.e. inerfial
measurements and gravity or gravitation).

For terrestrial navigation systems, inertial navigation error dynamics are commonly analyzed
in a local-level mechanization, such as NED or wander frame. As has been noted above,
equivalence for different mechanization holds — but a local-level parametrization of errors is
preferable because it isolates characteristic error behavior in vertical and horizontal
channels. This offers greater insight in system error behavior. Although system implementation
and characteristics of input errors are significantly different, inertial navigation error analysis
is largely equivalent for gimbaled platform and strapdown (i.e. analytic platform) system:s.
This is the reason why the results of early inertial navigation error propagation analysis still hold
for modern systems, while consideration of input error faces new problems due to new
technologies (see e.g. suggestions in [29]).

The error analysis of terrestrial inertial navigation with a local-level mechanization can be
classified in two different approaches. They differ in the definition of error of the computed
local-level velocity: Comparing the computed velocity vector against the true velocity
vector written in coordinates of the local-level frame at true position — or comparing the
computed velocity vector against the true velocity vector written in coordinates of the local-
level frame at computed position.

The first is known as perturbation error approach [51]. The perturbation velocity error
motivates definition of orientation error as misalignment of the true local-level frame and the
(analytic) platform frame, where accelerometer measurements are integrated. This is the phi
formulation of orientation error [20, 52], the corresponding rotation vector is referred to as phi
angle orientation error. The alternative velocity error, defined in the computed local-level
frame [20], is usually combined with orientation error defined as misalignment of the
computed local-level frame and the (analytic) platform frame, known as psi formulation [20,
52-54] and defining the psi angle orientation error.

Both approaches have been shown to be equivalent for small errors [52], but differ in
implementation when used for integrated navigation [20]. If suitable for the given navigation
task, other combinations of velocity error and orientation error definitions are possible.

Even more diversity in inertial navigation error models found in the literature is due to different
choices of position error definition. The misalignment between the frue local-level frame and
the computed local-level frame, commonly referred to as delta theta vector, is a
parametrization of horizontal position error. For small errors, this misalignment vector is the
difference of phi and psi orientation errors. The vertical component of theta corresponds to
an additional degree of freedom of heading error definition (c.f. [55]). Depending on the
type of local-level mechanization (e.g. NED or wander frame), several choices are possible
to fix (e.g. set to zero or constant) one of the linearly dependent errors in vertical direction
[20], thus determining all by estimating just one. When using the misalignment
parametrization of position error, an additional height error state must be included.
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In this work, position error is defined as additive error of WGS84 position, velocity error is
defined using the perturbation approach (which will also be applied for all vector error
definitions in this work) and phi formulation is adopted for orientation error parametrization.
Error propagation analysis is applied to the strapdown inertial navigation algorithm
presented in the previous section. Since this is a NED frame mechanization, there is no error
due to computed wander angle, and the vertical component of position misalignment
vector is a function of latitude error only (c.f. [56]). Thus the 9-DOF representation of
strapdown inertial navigation errors derived in the following is complete.

2.2.2.1 Perturbation error analysis of terrestrial inertial navigation

The computed navigation states are corresponding to section 2.1.2.1

[ ) ] ...geodetic latitude
A ...geodetic longitude
h ...height above WGS84 ellipsoid

|
| D, | ...ECEF velocity in NED coordinates
[qan ...NED to body-fixed frame orientation quaternion

)

The computed navigation states denoted by a hat are propagated using the strapdown
inertial navigation algorithm described in section 2.1.2.1 and possibly corrected by estimates
of navigation state error if available (as in an integrated navigation system). In addition to
initial errors and errors in the navigation state corrections, errors in the strapdown
propagation of navigation state contribute to the total error of computed navigation states.
The propagation errors are mostly due to input errors in the IMU measurements of specific
force and inertial angular rates, f, and @;,. The input error in computed gravity vector is
neglected in this work because it is very small compared to accelerometer measurement
error for the applications of interest. In the following, the navigation state errors will be
defined.

For the perturbation error model, velocity erroris simply the difference of the true NED velocity
vector and the computed velocity vector:

Sv, =v, -V,

The error of the vector of WGS84 position is

51 [o-¢
A= 62|=|1-1
6hl  [h—h

The computed NED to body-fixed frame orientation quaternion q,,;, is used in the strapdown
algorithm (2-3) to transform body-fixed accelerometer measurements to an approximation
of the NED frame, referred to as platform frame. The misalignment of this approximation with
respect to the NED frame can be described by the product of true and inverse of computed
NED to body-fixed frame orientation quaternions. With the relationship of an orientation
quaternion and a rotation vector (A-41), a corresponding orientation error rotation vector
¢, with magnitude ¢ and unit vector ng can be defined:
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¢
Gnb * qrp = Cogqb()i) (2-18)
sin 2 ng

The rotation vector ¢,, is the phi angle orientation error in NED frame coordinates

b
“[e]
b

It is sometimes referred to as (equivalent) tilt in literature [57, 58].

Equation (2-18) can be linearized as

Gnp qnb _[ ¢n]

With equation (A-20) the relationship of frue and computed NED to body-fixed frame rotation
matrix and phi angle orientation error is

R,,RY, = I + sin(¢) skew(n¢) + (1 - cos(¢))skew(n¢) (2-19)

with the computed NED to body-fixed frame rotation matrix RY, . The corresponding
linearized relationship is

R,,RY, = I+ skew(¢,)

Defining a vector of orientation error Euler angles

D = (5¢,
JoR!

the misalignment of platform frame with respect to tfrue NED frame can be described as a
Euler angle rotation sequence:

5¢1]

l[cos (6¢3) I[cos ( ) |[cos (%)}
Tnp " G = i g | | sin (%) | (2-20)
[sin (452 [ [ o |

Linearization of equation (2-20) gives

qnb ZI/T_II} - [ ]

Consequently, the Euler angle parametrization of orientation error @ and the phi angle
orientation error ¢,, are equivalent in linear approximation. Because only linear perturbation
error analysis will is conducted in this work the two definitions of orientation error can be used
inferchangeably since the derived linearized differential equations are the same:

¢”|¢n=0 = d)|<p=o
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The orientation error Euler angles @ are related to the error in computed NED to body-fixed
frame rotation matrix R, as follows:

D=

atan2(R3;, R33) Ri1 Rz Ry3
] (2-21)

asin(—R3;) | with R,,RY, = [R21 Ry, Ry
atan2(R,q,R11) R3; Rs3z Rz
With above error definitions, the vector of navigation state errors for perturbation error
analysis of inertial navigation in this work is defined as

d¢
51|

6z, =\ 6h
év,
bn

The linearized system of ordinary differential equations for inertial navigation error dynamics
from perturbation analysis is

6z, = A6z, + Bés (2-22)

Neglecting gravity model errors in the analysis of low-cost methods, s = [SbeTMU,SwibITMU]T is
the vector of IMU measurement errors defined as

8Fbimy = Foimy = o
Swib]MU = wib]MU - a’ib

The system and input matrices in (2-22) are summarized in the following (derivations found in
appendix A.6, in [39] and in [32], where it is related to the error model in [59]. A similar error
model with position error defined in local level coordinates is found in [60]).

Un
0 0 ——
(M($) + 1)
Asasa = tan($) g 0 D
(N(@) + h) cos(¢) (N($) + )" - cos($)
| 0 0 0 -
! 0 0
[M((;B) +h ]
Aspsv,, 1

(N((f)) + ﬁ) . cos((f))
0 -1

Aspg, =0
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Where the partial derivatives of gravity in down direction with respect to height and latitude
must be derived from the gravity model used or a simplified spherical model.
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While precise motion propagation with the strapdown inertial navigation equation requires
calculation of curvature radii and gravity of an oblate ellipsoidal earth, simplifications
assuming a spherical model are permissible for error propagation analysis.
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The effect of input errors on inertial navigation error dynamics is given by

_~

Bs., =R
1) n,Sfb Anb (2_23)
Bd)n,&wib = Rnb
Because measured specific force in NED coordinates R,,,, f,, directly appears in the Asy o,
block matrix of the system matrix in (2-22), use of advanced methods for integrated
navigation filter design may be advantageous to avoid problems due to measurement noise
[56].

2.2.2.2 Error dynamics and stability

The errors of NED frame strapdown inertial navigation are studied with respect to their
dynamics in short time intervals and in long time intervals.

The integration of inertial angular rates and specific force measurements corresponds to
propagation of IMU measurement errors to orientation error and velocity error respectively,
according to (2-23). Orientation errors are in turn propagated to velocity error, due to
integration of imperfectly rotated specific force vector, represented by the block matrix
Asy, 6, - Finally, velocity error is directly propagated to position error in the position fime
infegration, see Asy 5y, Consequently, IMU measurement errors are propagated as follows
to position error (neglecting error feedback loops)

SA(Y) ~ ﬂ Asasv, (Bavn,af,,5fb1MU + Asv, 0, f B¢n,6wib6wib1MUdt> dt? (2-24)

By inspection of 4s,, 4,. the third order error propagation due to inertial angular rates error is
restricted to directions perpendicular to R, f,. For sustained flight, external force cancels
weight and thus third order error propagation is present in the horizontal. Note that it would
not be an issue in free fall since specific force would vanish. Additionally, specific force
measurement error causes second order position error growth in all dimensions.

A mathematically more rigorous analysis is possible for simplified versions of the system of error
differential equations (2-22). The direct propagation of input error to position error according
to equation (2-24) will be shaped into a particular solution of the differential equations, given
a specific time history of input errors (c.f. [30]). It is instructive to study the homogenous
solution, i.e. the Eigendynamics of the error system, to understand how the system will
dynamically react given initial error. Based on a study of Eigendynamics, some fundamental
statements of how the system will shape input error are made. A special case of input signal
shaping by an undamped oscillatory system is amplification, or resonance, for periodical
inputs close to one of the systems Eigenfrequencies. Alternatively, particular solutions of a
simplified error system and basic input functions may be discussed (see [30]).

Studying the dynamics of the coupled system of error differential equations (2-22) reveals
large time constants, as will be shown in the following. Consequently, the polynomial position
error growth discussed above will be observed in short ferm, and will be dominated by the
coupled system dynamics of (2-22) in the long term.

Neglecting the specialties of the chosen position parametrization in latitude and longitude,
it appears that error dynamics would be the same everywhere on a spherical non-rotating
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earth. Studying the available sensor accuracies for the given low-cost applications,
simplifications by assuming spherical earth geometry and gravitation are admissible. Earth
rate is negligibly small compared to IMU measurement error, and flight times are short
compared to the period of earth rotation. In addition, velocities are sufficiently low to neglect
errors in Coriolis effect. Thus, using an isotropic local-level parametrization by choosing
latitude ¢ = 0, a strongly simplified system of error differential equations is attained. Height
appears in equation (2-22) only in sums with earth radii and as a parameter of gravity
gradient. Therefore, h = 0 is a good approximation here. Furthermore, in the analysis of long-
term error propagation, horizontal accelerations are neglected.

For a spherical non-rotating earth model with mean radius R; = 6371008.7714m [18, 61],
neglecting transport rate effects and at latitude ¢ = 0 and height A = 0, equation (2-22) can
be simplified to

Aé"l]nravn = A¢n16A = A¢nr¢n = 0

1
1 o]
[Ry I
SASvp | 0 1 0 |
Ry

l 0 O —1J

0 0 0
Asv, 50 = [0 0 0 ‘
0 0 —2w?

With the definition of Schuler frequency
g
wg = R (2-25)

With the gravitational acceleration of a spherical earth at its surface g = (;—';' ~ 9.8m/s? (for
1

earth’s gravitational constant GM see e.g. [18]). With definition (2-25), —2w# corresponds to
the vertical gravitation gradient of a spherical earth in As,, sa-

Now, assuming alignment with local-level axes, i.e. R,, =1, and neglecting long-term
horizontal accelerations

0 —g O
A‘Svn'¢n = [g 0 0]
0 0 O
And finally
0 ! 0
A =(1
$n,6vn
R 0 OJ
0 0 0
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This gives a set of homogeneous differential equations for horizontal error dynamics

2

6...~d2(16 ) ( )~ ws
¢~dt2 R, Un R dt 9%e R, Un

52‘d2(5)1()~ S s
dt? VE) R, dt 9bn VE

And for vertical error
. d
6h ~ o (—6vp) =~ 2w28h (2-26)

As noted above, these are slow error dynamics with a period of T¢ = — ~ 84(60)s for the
stable undamped oscillatory horizontal error dynamics (known as Schuler dynamics) and a

In(2)

time-to-double of T s, = = ies

~ 400s for the exponentially unstable vertical error dynamics.

It follows that while polynomial measurement error propagation according to equation (2-
24) dominates in the short term, error growth in the horizontal will be restrained by the stable
Schuler dynamics for propagation times exceeding a significant portion of the Schuler period
(e.g. %z 21(60)s), while vertical error growth will even be aggravated by the instable

dynamics (2-26) in the long term or if initial height error is large.

The problem of vertical error instability is often directly addressed in the mechanization
algorithm. For aviation applications, barometric altitude is used for vertical channel damping
by means of higher order feedback loops [62] or a vertical channel Kalman filter [63]. The

combination Baro-INS is the state of art, as it is a very robust solution to the vertical problem
and independent of GNSS availability (c.f. [7, 15, 20]).

Navigati de INS (height fixed
4000 avigation grade (height fixed)
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g
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Time [h]

Figure 3: Horizontal position error of navigation grade inertial navigation (stationary laboratory test)
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For constant error of specific force input in the horizontal 6fy,,,, (i.e. due to y-axis
accelerometer bias in level flight), the horizontal error dynamics will be the same as for an
initial error in attitude (i.e. leveling error): The computed platform will accelerate horizontally
(and rotate with fransport rate) until the sum of specific force misalignment error and
accelerometer bias is zero:

6xH,avg

R, ~ 6fhmy

This will stimulate Schuler oscillation, centered at a position offset by §xy vy = 6f uy,,/wé (s€€
the definition of Schuler frequency (2-25)) and with a stable bound of total horizontal position
error of approximately 26fy,,,,/wé [30]. Although this equivalent effect of initial misalignment
and horizontal accelerometer on horizontal error can be effectively eliminated with leveling
of the computed platform at navigation system initialization, accelerometer bias is not
constant in low-cost sensors. With perfect gyros and zero initial error, constant 1mg of
accelerometer bias causes approximately 3.44NM (or 6371m) average position error and
stable Schuler oscillations with an amplitude of the same value.

25 _ x10° Low tactical grade INS (height fixed)

-
2]
|

Horizontal position error [m]
|

05

07\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘

0 1 2 3 4 5 6 7 8
Time [h]

Figure 4: Horizontal position error of low factical grade inertial navigation (stationary laboratory test)

A constant horizontal inertial angular rates error wy ,,,, Will accumulate to linear growth of

aftitude error (hence the term gyro drift), superposed by Schuler oscillations. Given the
equivalence of horizontal accelerometer bias and misalignment discussed above, this results
in linear growth of average position error:
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d

dt 5xH,avg =~ R16wH]MU

This explains how the stable Schuler dynamics, driven by IMU measurement errors of specific
force and inertial angular rates, allow for accurate free inertial horizontal terrestrial
navigation using high end sensors with linear growth of average horizontal position error and
drift rates below 2NM /h (see Figure 3 for an example of navigation grade INS performance).
For example, with above approximation, a constant 0.01°/h gyro bias correspond to 0.6NM/h
horizontal position drift. Note that this simple math does not account for the effect of other
sensor errors stimulated in strapdown systems.

As has been noted above, periodical input error with frequency close to the Schuler
frequency will be amplified in the open-loop inertial error dynamics [30]. While ideal white
noise input error of both accelerometer and gyro will too lead to a long term growth of
average position error, it scales with square of propagation time. Due to relatively low noise
specifications of inertial sensors, the random walk caused by high frequency noise errors is
negligible for long term horizontal position propagation with the inertial model.

For low-cost inertial navigation, any reasonable bound on horizontal position or velocity error
will be exceeded before Schuler dynamics become relevant for long propagation times, see
Figure 4 and Figure 5.
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Figure 5: Initial position error growth of low tactical grade inertial navigation (stationary laboratory test)

Heading error is also affected by Schuler dynamics via transport rate, but is mostly
characterized by unbounded error growth due to gyro drift. Large heading error will
adversely affect horizontal velocity and attifude accuracy in presence of horizontal
accelerations and must be corrected.
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2.2.2.3 Modified inertial motion model error dynamics

For accurate determination of attitude with low-cost inertial sensors, a modification of the
strapdown equations (2-3) can improve performance if horizontal accelerations occur only
temporarily.

For ideal stationary translational motion, external forces acting on the vehicle exactly cancel
weight. With constant w;, = 0, the gravity vector and the true value of IMU specific force
measurement are related as

fbstationary = _Rﬂbyn (2-27)

The NED frame velocity vector changes due to rotation of NED frame with earth and
fransport rate

1‘7nstationary = —(ZRZn(qb, Dwie + @Wen (P, h, vy, vE)) X Uy

Neglecting deflections of the vertical, the NED frame gravity vector is

0
0

YD

Yn=

Consequently, under the assumption of stationary horizontal motion (2-27), scaling the IMU
specific force measurement according to

wzf
w2’?

S

does not affect the horizontal franslational motion computed with equations (2-3). A
modified NED frame kinematic velocity differential equation can be defined

2
. w
Unmod — Rnb w_gfb + Yn(¢refv h) - (Zw?e + wen) XUy — 2{w (vn - vnref) (2’28)

Under the condition of stationary translational motion, constant w;;, = 0 and with accurate
reference position and velocity Vn e this modification is consistent with frue horizontal

motion:
UNmod = sttationary

VEmod = VE stationary

For accurate vertical inertial motion, the vertical velocity differentfial equation should be
implemented independently using the reference values for horizontal motion

Up = fp +Vp(Pres h) — WONVEpor T WEVN,of (2-29)
With
wy
Wy = [wE = 2R£n(¢ref:/1ref)wie + wen (‘.bref: h, UNyes vEref)
Wp
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Similar to original inertial navigation, barometric altitude should be used for damping of
vertical errors in a Baro-inertial vertical channel.

The effect of error in the assumption of stationary horizontal motion (2-27) and the
homogeneous errors dynamics of the modified inertial model will be discussed in the
following. Accounting for errors in the computation

~ - w? dy
Vpod = R"bw_g(fb — SbeMU) ) d61;1T SA — Qwi, + Wy — 28w], — 8wey) X (v, — SVy,)

—2{w (vn - 6v, —vnref)

The linearized error differential equation corresponding to equation (2-28) is, assuming an
ideal reference kinematic velocity Vnyor = VUn

] w? w? w?
6vn = <1 _w_§>fn +w_§Rnb8fb1MU _w_gfn ¢n d6AT 6A (28("16 +6wen) X Uy
- Qwl, + w.y) X dv, — 2{wbv,

The assumption (2-27) is violated due to accelerations of the vehicle and relative
acceleration of navigation reference point R and vehicle center of gravity ¢ for nonzero
inertial rates and angular accelerations. Neglecting vertical disturbances, the specific force
vector is

For this study, the effect of NED frame north alignment and earth rate will be neglected.
Therefore approximately

Wy
Zw?e T Wep & [(‘)E]
0

And vertical orientation error can be set to zero

-

Neglecting transport rate rotation of vertical velocity error, gravity gradient and
accelerometer measurement error, the horizontal velocity error components evolve as

) w? w?
ovy = (1 — —2> fn ——=9br — Swgvp — 2{wdvy
wg Wg

2 w2
Svg = < — —2>fE qu,’JN + Swyvp — 2{wovg
Wg wg
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Neglecting the terms in vertical velocity v,, and with the simplified error dynamics of
horizontal orientation error at latitude ¢ = 0 and height A = 0 and the definition of Schuler
frequency (2-25)

. 5 : w?\ f;
by = _R_IE ~ —w2¢N —2{woy + w? <1 —w—§>§
fon ~
. Ovy 5 : 5 w? I (2-30)
¢E“R—1z—w P — Awpp + 07| ——1 g
fop

The homogeneous error dynamics of horizontal velocity and orientation errors have a natural
frequency w that corresponds to the scaling of specific force input. Choosing ¢ = 1/+/2 and
w < wg Willimplement non-resonating damped error dynamics with good values for both rise
and settling time (Tsq, = 3/{w = 0.68T,, [64]). This significantly improves accuracy of horizontal
orientation in unaccelerated motion with fy = fz = 0.

In sustained turning flight with kinematic velocity Vx and turning rate yx. the periodical
horizontal accelerations

fn = —VkXgsin(xgt + Xxo)
(2-31)
fe = Vgxgcos(igt + Xo)

will drive above orientation error differential equations (2-30). For yx > w, the error response
amplitude is strongly reduced by approximately 40dB/lg(xx/w) [64]. For sustained turning
flight of fixed-wing small general aviation aircraft typically

X =3°/s

/sz + f# < g tan(30°)

The combination of lowest turning rate and largest horizontal acceleration corresponds to a
kinematic velocity of approximately 108m/s identified as worst case.
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Figure 6: Transient attitude errors in coordinated turning flight with 30° bank angle. { = 1/v2, w = 2m/7(60)s

For a choice of w = 2r/7(60)s, the worst-case of forcing functions f,, and f_ in sustained
turning flight would induce periodical errors ¢y and ¢ with an amplitude of approximately
3° after transients have settled (or a constant orientation error of the same magnitude in a
turning coordinate frame).
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Figure 7: Transient attitude errors in coordinated turning flight with 30° bank angle. { = 1/v2, w = 21/21(60)s
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Because airplane maneuvers usually only consist of turns of a fraction of full circle, the
transient response of error equations (2-30) is of greater interest. Figure 6 shows along-track
and across-frack orientation error in sustained turns with lateral acceleration of g tan(30°) and

velocities of 32.5m/s and 108m/s for w = 2m/7(60)s. Figure 7 shows the same results for w =
2m/21(60)s

If rate of turn yx can be determined accurately, the lateral acceleration in turning flight can
be corrected according to equations (2-31). Note that this requires accurate attitude and
heading information. Alternatively, thresholds on inertial rates and violation of equation (2-
27) can be implemented to automatically set w = wg in accelerated flight.
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2.2.3 Aerodynamic motion model

The error dynamics of 12-DOF vehicle dynamics model simulation are more complex than in
case of inertial navigation. Since point mass motion is assumed for the VDM center of gravity,
inertial error dynamics are contained in the full 12-DOF error dynamics as well, but they are
covered in the more significant error dynamics of aerodynamic flight. These strongly depend
on the type of aircraft, and will be discussed for conventional small general aviation
airplanes.

The airplanes considered here are designed and verified to exhibit benign flight dynamics
minimizing the stress and required skill for the pilot (see e.g. §23.181(b) in [65, 66]). Unlike
airplanes flown by extensively trained pilots (such as fighter airplanes and competition-level
sailplanes), small general aviation airplanes will react to small disturbances from the current
flight condition in a dynamically stable way. A software model of flight dynamics that has
been qualified in accordance to high fidelity flight model certification specifications [47] or
verified in a similar way, will accurately replicate the flight characteristics of the true airplane.
Therefore, such a model will show similar dynamics after a disturbance from a defined
reference flight condition. Given this similarity and the stability of both true and modeled
flight dynamics, the dynamics of errors of flight simulation will exhibit the same benign
characteristics as the true airplane flight dynamics: The dynamics of errors of aerodynamic
position propagation and the tested and verified benign flight dynamics of the small generall
aviation airplane are similar.

In this section, a short and simplified perturbation error analysis of decoupled 12-DOF airplane
motion will be conducted to show how the stability and damping qualities of the total state
flight dynamics translate to the corresponding error dynamics of modeled flight. Assuming
an ideal model and in linear approximation, the dynamics of perturbation of true flight from
a reference flight condition and the dynamics of error of modeled flight compared to true
flight are equivalent. A rigorous analysis of perturbed state flight dynamics assuming
decoupled lateral and longitudinal airplane motion is found in many textbooks (e.g. [22, 41])
and notf repeated here. The important conclusion is that using high-quality models, the error
dynamics of the aerodynamic motion model will inherit the flight dynamics of the airplane.

To confirm the characteristics of aerodynamic model error dynamics for complex nonlinear
models and flight conditions that do not agree with the simplifications of theoretical analysis,
and to extend the analysis to model error and large input errors, an extensive simulation study
is required. This may include that the airplane software model is tested in simulation similar fo
the flight test program conducted with the real airplane (e.g. according to [67]) and
compared against flight test data over the whole operational envelope. Furthermore, it has
to be verified that errors in the weight and balance model are limited so that they do not
affect flight dynamics.

In this thesis, the reliability of error dynamics for conventional airplanes is confirmed by Monte
Carlo simulation using one model for fruth flight dynamics and a large number of
approximate models.
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2.2.3.1 Perturbation error analysis of aerodynamic flight

To demonstrate how flight dynamics stability and damping translate to the error dynamics of
12-DOF aerodynamic motion model simulation, a perturbation error analysis will be
conducted in the following. This analysis is valid for small errors, i.e. computed state and
measured input in vicinity of true state and input. Then the true aerodynamic forces and
moments in center of gravity G can be approximated based on computed values and errors
in a linear coefficient form, for example as follows:

C, = Croba, +C,
Cy = Cyp6Pa+ Cy
Cl = Cp6Pa + Cpbp* + Cpp 67" + Ce 68 + €126 + €
Cr = Cna 0y + Cing8q* + Cpppén + Cry
Cr = CnpbPa + Cppdp™ + Cpp 61 + Ce68 + €06 + €,y

Which are the formulas for coefficients of lift, sideforce, roll moment, pitch moment and yaw
moment respectively, c.f. (2-10) with aerodynamic reference point at center of gravity
location for simplicity. Wind vector will always be assumed zero for this analysis. da, and §8,
denote the errors of computed aerodynamic angles of attack and sideslip (without indices
in the following).

6¢, 6n and 6¢ are errors of control surface deflections (aileron, elevator and rudder) which
are used as input to the model. These can be measured accurately and their errors will be
neglected for this analysis. Assuming a high-quality aerodynamic motion modelis used, errors
in model coefficients as well as weight and balance errors are neglected as well.

The errors of computed aerodynamic rates vector w,, are represented here by the
nondimensional (aerodynamic) rates in roll, pitch and yaw direction (in order p, q, )

. (Swab

op* = ——,6r
P =70,

_ (S(IJAZb
A

*

6(’0143/5
A

*

With the computed airspeed V, = ||9,, — Dynll2, Wingspan b and mean aerodynamic chord
C.

The aerodynamic drag coefficient can for example be modeled with a quadratic formula
(see (2-12)). Accounting for state errors and linearization gives to following perturbation
formula

Cp =k ((C, = Co)? = (€L = Cro)”) + Cp = 2k(Cy — Cuo)Craba + Cp

In flight simulation, the computed aerodynamic coefficients are used to determine external
forces and moments. The true aerodynamic forces and moments differ from computed
values in linear approximation as follows
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_CD
FgAero = quefREb Cy ]

L

. FbAero ~ ST D
= (SQT — qSrefRop | Waa X Cy (2-32)
—C;
~ —2k(C, — CLo)Crabay ~
+ quengb Cyﬁ(sﬁ,q + FgAero
—Crabay
bClG =G b(Clﬁ(SﬁA + Clp6p* + Clr6r*)
s b . i . _
MgAero = qSrer |CCn [ = 64 (;em + qSrer C(Cma‘saA + Cnqdq ) + MgAero (2-33)
bCy b(CppdBa + CopBp* + Cpy67*)

With the dynamic pressure q = %pVAZ, where p is the altitude-dependent air density, and
reference wing area S,.r. The error of computed dynamic pressure can be linearized as

L 1_.0p

0 =3Vigy

Sh + pV,6V,

The vector ¥,; is defined to model the misalignment of the computed aerodynamic frame
in linear approximation: Ry, RY, = I + [¥ 45 X] (from linearization of equation (A-20)). ¥,z can
be interpreted as small angle rotation vector or vector of small Euler angles (c.f. discussion of
¢, and @ in 2.2.2.1). Assuming small absolute values of aerodynamic angles of attack and
sideslip allow to write

_CD

_quefﬁgb (q,ad X [ CY
_CL

0
) ~ FgAero X [ SQA ]
—6Ba
The influence of error in aerodynamic motion model state is much less for propulsion forces
and moments and will be neglected for this analysis.

Above perturbation formulas, in combination with linearizations of equation (2-9) and the
Euler equation of rotational motion (2-8), and the system of strapdown navigation error
dynamics (2-22) constitute a simplified system of error dynamics for the aerodynamic motion
model.

2.2.3.2 Error dynamics and stability

The basic mechanisms of 12-DOF aerodynamic motion model error dynamics can be
identified by studying simplified equations of motion driven by the forces and moments (2-
32) and (2-33).

Analysis is significantly simplified by assuming constant zero wind velocity vector, so that

‘DA=‘DK
V=V,=V
@~ %= A 2-34
B = Ba = B (2-34)
Y =%Ya =Yk
Wy = Wk
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And similar equalities for all corresponding error quantities.

From the first error term in aerodynamic force (2-32)

FG
5q % =F5, . e% Sh+2 %“) (2-35)
one can see that an error in computed air density or in airspeed will have significant effect
in all flight conditions where aerodynamic force is large. From the principle of aerodynamic
flight — aerodynamic lift cancels weight — it follows that this is most often the case. For all these
flight conditions, and because air density reduces with increasing height, a positive error in
aerodynamic motion model height will have a negative contribution to the error in
aerodynamic lift.

G
With 6vp =~ %%M + %’Sh, the simplified dynamics of aerodynamic motion model height

error, isolated from the dynamics of airspeed error, can be derived as

.. ) 1dp 0dyp
6h = —61]1_) = ()/D 5% - E) 6h
Although gravity gradient ‘%’ is small in magnitude, it has negative sign and causes
exponential error growth of vertical errors in inertial navigation. "’GL: is on the order of =3
10‘6Si2 [30] and yD%Z—fl on the order of —1- 10‘3Slzin troposphere and stratosphere regimes.

Consequently, the isolated height error dynamics for an airplane in level flight are undamped
but neutrally stable with a fime period on the order of 200s.

The second term in parenthesis in equation (2-35) gives rise to another error mechanism for

level flight conditions. The simplified dynamics of vertical velocity error in level flight are with
1 9FF

6vp ~ ——£e2 6V, neglecting the effect of height error
, sV
8vp = —2yp 2

Which can alternatively be represented by error in climb angle y (not be be confused with
vertical gravity yp) in linear approximation

4

oy = ZVDW

Due to its physical nature, aerodynamic lift is tilted in NED frame when climb angle changes,
to remain perpendicular to velocity vector. In linear approximation for zero climb angle y

8V =~ —ypby
This gives the following error dynamics for magnitude of velocity

Y4
which directly corresponds to the (1-DOF) phugoid Eigenmode of airplane dynamics, with a
well-known formula for the (approximate) Eigenfrequency wg pp, = V2yp/V .
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Note that this 1-DOF analysis is overly simplified since it neglects simultaneous changes in any
other parameter that determines aerodynamic lift. Especially angle of attack (or the error
thereof) is not constant. For a more rigorous 2-DOF analysis of coupled phugoid and short
period airplane dynamics, see [22]. The results also apply to aerodynamic motion model error
dynamics.

The low-frequency phugoid Eigenmode is present in flight dynamics of the true airplane, the
12-DOF aerodynamic motion model and in the corresponding error dynamics. According to
the certification specifications for small airplanes [65, 66], for periods greater 15s even
instability of the phugoid mode of flight dynamics is admissible, with doubling times greater
55s. For instable phugoid dynamics of the true airplane, the corresponding error dynamics of
the aerodynamic motion model need to be damped. This is not addressed further in this work
because the airplane model used exhibits sufficiently damped phugoid dynamics.

Rotational motionis barely affected by error in dynamic pressure. In equation (2-33), the error
G
term for aerodynamic moments in center of gravity 5q% is negligible for stationary flight

conditions where MgAem ~ 0. More notable are the dynamics of errors of lateral rotational

motion due to their influence on aerodynamic moments, which will be discussed later in this
section.

Errors of aerodynamic angle of attack strongly influence lift vector, since for conventional
airplanes €y, is somewhere near the theoretical value of 2 found with thin airfoil theory [42].
For analysis of angle of attack error dynamics for zero wind vector, a simplified equation of
rotational motion based on the second row of equation (2-8) is used with equation (2-33)

- c 1 R B .
5¢* = 0 E quefc(Cma@c + Cmg8q*) (2-34)
hrod 6 aerodynamic moment

nondimensionalization ., oment of inerita

assuming zero products of inertia and neglecting inertia cross coupling of rotational motion.

With approximately zero computed and frue angle of sideslip, the error of angle of attack
changes as

2V
8 ~—bq" (2-37)

Above equation assumes that angle of attack dynamics settle much faster than point mass
motion will be affected by changing aerodynamic force. This is verified by the high
frequency for this error Eigenmode. Taking the time derivative of (2-36) and inserting (2-37)
gives

2V Iyy Iyy
‘“’g,sp

The natural frequency wg sp is oN the order of (2m)Hz for small general aviation airplanes. For
these aircraft, this damped, high-frequency mode is always stable. Again, this error mode
has its total state equivalent in the short period mode of flight dynamics.

To gain an understanding of the error dynamics of lateral motion, a corresponding set of
simplified equations of motion is derived. Euler angles of roll ®,,;,, and azimuth ¥,,;, are chosen
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as lateral orientation state parametrization and for frue and computed values of roll and
azimuth approximately zero and small pitch angle 6,,;, (omitting indices)

.20

5h ~ 752,* (2-38)
.20

oY ~ 751’* (2-39)

The error dynamics of rotational motion are approximated based on the second row of
equation (2-8) and equation (2-33) as

. b1 N .
op* = —A—quefb(Cl,;5ﬁ + Cpp6p™ + Cppe 61 ) (2-40)
2V Ly
b 1
87* ~ —=—04S,¢rb(CrpP + Cnpdp* + Cnyp67*) (2-41)
2V I,

Again the products of inertia are assumed zero and inertia cross coupling is neglected.

There is a lateral error in velocity mainly due to rotation of aerodynamic lift to remain in the
plane of symmetry of the airplane. For level flight conditions with aerodynamic lift equal to
weight and with equation (2-32)

qs

S0y ~ ypdD + T:lef (Cyp —Cp)5B (2-42)

Perturbation analysis of NED frame velocity vector yields the following linearization for R,;, =
R,, =1 (i.e. assuming zero Azimuth, roll angle and angle of sideslip and negligible pitch angle
and angle of attack)

\ 5P [V 0 7] [V
6vn=6<Ranba0)i 5@><0]— da |x|o|l+]|0
0 ov 0 —op 0 0

This gives for the lateral component with v, = §vg
1
6B =~ —6¥ + 56173, (2-43)
The time derivative is
. .1
5 ~ =W + 56,

Inserting equations (2-39) and (2-42) gives

~

. 2V 1
5,8%—757’ +§ ypod +

EI\Sref A
- (Cyp — CD)(S[?) (2-44)

Equations (2-38), (2-40), (2-41) and (2-44) can be combined as a 4-DOF system of error
dynamics
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2V

0 0 5 0
od 1 1q5ref 2]7 oD
= C C 0 ——
i Y - VVD 7 (Yﬁ D) b 5B
dt |op* b 1 b 1 b 1 op*
S5r* 0 ZVI qsrefbclﬁ ﬁ@ rebelp ﬁ; rebelr S5r*
b 1 b 1 _ b 1
0 ﬁ;qsrefbcnﬁ ﬁl_qsrefbcnp ﬁl_qsrefbcnr_

This model is equivalent to the corresponding 4-DOF models of decoupled lateral airplane
dynamics found in the literature on flight dynamics and stability. With typical values for small
general aviation airplane flight

Cp = 0.05, V =80m/s, § = 3920Pa, yp = 9.80665m/s%, b = 10.2m, Sy = 17.1m?

and vehicle dynamics model coefficients and weight and balance parameters taken from
[44] (data for the NAVION general aviation airplane)
Cyp = —0.564

Cip = —0.074,Cy, = —0.41,C; = 0.107

Cpp = 0.071,Cppp = —0.0575, Cpy. = —0.125

m = 1250kg
L = 1420kgm?
1, = 4800kgm?

it is possible to numerically determine exemplary Eigenvectors and Eigenvalues of the linear
dynamical system above. One can identify three error modes that correspond to the flight
dynamic modes for spiral, Dutch-roll and roll typical for fixed-wing aircraft. The natural
frequencies and relative damping coefficients are

Spiral error Dutch-Roll error | Roll error
Natural frequency Wo [%] 0.0057 3.5263 12.5985
Relative damping ¢ [—] 1 0.2166 1

Table 1: Lateral error dynamics natural frequency w, and relative damping ¢ (Example)

The Eigenvectors for these lateral error dynamics of aerodynamic motion model 12-DOF

simulation are (magnitude and phase angles for each participating error state)

Spiral error Dutch-Roll error Roll error
oP 0.9999 0° 0.6248 +78.9484° 0.7787 180°
6B 0.0128 0° 0.7510 +0° 0.0415 0°
op* 0.0004 180° 0.1404 +178.5417° 0.6254 0°
or* 0.0075 0° 0.1610 +83.6528° 0.0262 0°

Table 2: Lateral error dynamics Eigenvectors (Example)
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As expected, these results are again equivalent to those of linearized airplane flight dynamics
analysis for decoupled lateral motion.

The oscillatory error mode (second column in above tables) involves error dynamics of roll
rate and roll angle as well as yaw rate and angle of sideslip, each two separated by a phase
angle of about 90°. Its total state counterpart, the Dutch-Roll mode of airplane flight
dynamics, receives special attention in the design of airplanes in order to meet strict handling
qualities requirements (see e.g9. §23.181(b) in [65, 66]). Thanks to strong damping of this mode
for both the real airplane and the used aerodynamic motion model, which is verified not only
with linear analysis for level flight but extensively in flight testing, the corresponding dynamic
error mode can generally considered uncritical for the application of an aerodynamic
motion model in navigation.

The third error mode identified with above analysis shows that errors in roll rate are quickly
damped to zero without oscillation. Nevertheless, sustained roll rate error will occur for
example due to errors in measured control inputs or aerodynamic motion model coefficients.
The same is true for the first error mode found for lateral flight dynamics, which is considered
to be the most critical for navigation use of 12-DOF airplane aerodynamic motion model
simulation. Unlike the roll error mode, the non-oscillatory spiral error mode has a large time
constant Tg = 1100s for the example airplane, and thus makes 12-DOF simulation of airplanes
similar to the one studied above very susceptible to input errors affecting roll orientation.

Although ¥ and v, have been eliminated in the simple analysis above, the approximate
lateral acceleration in horizontal flight equation (2-42)
qs

ref _ A
L (Cyp — C)op

61.73, =~ YDSGD +

shows that the spiral error mode will strongly affect across-frack positioning and course over
ground accuracy. Additionally, with angle of sideslip error §8 remaining small, error of
azimuth ¥ will grow quickly. Note that, according to small airplane certification
specifications [65, 66], the corresponding fotal state dynamics spiral mode may often be
“neutrally stable or even mildly divergent in roll and yaw". Due to the noted equivalency of
flight total state and error dynamics, the problem of lateral error divergence is severe.

Even with stable spiral error mode, small and temporary input errors will lead to a heading
difference after flight dynamics of true airplane and aerodynamic motion model have
recovered the inifial flight condition. Large or constant input error affecting lateral motion will
cause lateral divergence of frue and simulated motion due to the spiral error mode.
Consequently, means to make aerodynamic motion model simulation robust with respect to
lateral divergence are required.

The reliability of the aerodynamic motion model, including a mechanism for heading error
damping, must be studied in simulation to account for a vast number of combinations of
reference flight condition, atmosphere dynamics and pilot reactions.
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2.2.4 Method comparison

The analysis conducted in this section allows evaluating how well each of the three
presented motion models is suited for unaided position propagation. For each motion model,
the growth of individual errors has been studied and, if applicable, different characteristics
for short or long time intervals of open-loop propagation have been identified. Generally, for
the desired application, the long term error propagation characteristics of the motion model
must be suitable for use in an unaided method. If that is not the case (at least for selected
error states), the possible improvement with low-cost aiding will be addressed in the following
section.

Because dead reckoning navigation is based on integration of position from a velocity
measurement, position error is simply initial error plus a time integral of velocity measurement
error. Consequently, large measurement errors will affect position accuracy only scaled by
the duration of their occurrence. For low-cost sensors with complex error characteristics, this
means a significant increase in method reliability. For example, the performance of heading
and airspeed dead reckoning is hardly affected by gusts or temporary disturbances in
airspeed or magnetic heading measurements (e.g. in dynamic flight), as long as the total
duration is short compared to full mission time. Furthermore, linear position error growth
increases method reliability because its characteristic strictly remains the same for full
duration of flight and is independent of initial error. Consequently, judging by its error
propagation characteristics, heading and airspeed dead reckoning is a good choice for use
in low-cost applications.

Aerodynamic
Dead reckoning Inertial navigation | position
propagation

(1) (2) LateraL Y
DIVERGENCE
Short Itlerm and QUADRATIC
small errors
CU+BIC Unear o)
LINEAR MU ERROR (HDG ALIGNED)
VELOCITY ERROR |  prOPAGATION
PROPAGATION (6)
LINEAR
Long term and FLIGHT ERROR
large errors LINEAR  (3) |  pROPAGATION
SCHULER
DYNAMICS

Figure 8: Horizontal error propagation and dynamics

Unlike dead reckoning, both inertial and aerodynamic motion models exhibit unfavorable
higher order error propagation, see Figure 8. For inertial navigation, the error propagation
analysis in this section revealed polynomial position error growth due to IMU measurement
errors which will dominate the short term performance of the inertial motion model (see (2)
in Figure 8). This error characteristic is especially critical, because it is directly and exclusively
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related to the quality of sensors used. Sensor quality of low-cost systems nowadays still is far
away from what would be termed navigation grade quality (i.e. gyro drift better 0.01°/h and
comparable level of other errors). Although polynomial error growth is suppressed for large
errors, and oscillatory Schuler errors with long term linear growth of average error dominate
(see (3) in Figure 8), the performance of low cost systems would be on the order of thousands
of kilometers of error per hour. In contrast, for very short term motion propagation (e.g. only
seconds with low-cost sensors) and starting from an accurate initial state, polynomial error
growth corresponds to errors much smaller than possible with dead reckoning.

For aerodynamic position propagation, the case is even more complex. It has been found
that the aerodynamic motion model is indifferent to heading, and heading error will
accumulate due to temporary or continuous disturbances of lateral motion due to input or
model error. A linear growth of the difference between frue and simulated direction of flight
would cause growth of lateral position error with second order in time for small errors (see (4)
in Figure 8). Because, ultimately, heading error is limited and position error can only grow as
fast as true and simulated airplane fly away from each other at opposite directions,
aerodynamic position propagation is strictly limited to linear position error growth in the long
term and for large errors (see (6) in Figure 8). But more importantly, and unlike for inertial
navigation, the divergent lateral error propagation can be prevented by simple
countermeasures: Position propagation with the aerodynamic motion model requires some
means of heading alignment of simulated and true motion. If this is provided for, the
aerodynamic motion model allows for accurate position propagation with first order error
growth.
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2.3 MOTION MODEL AIDING

In the previous sections of this chapter, three algorithms for propagation of position estimate
have been studied. Because all of them exhibit increasing position error over time, they
would typically be combined with accurate position information at regular time intervals, if
available (e.g. with GPS). Integration of inertial navigation and GNSS is a very successful
example of this strategy and subject of many textbooks [15, 20, 29]. An introductory
derivation is found in appendix A.7.

With no absolute information on position available, a steady increase in position error has to
be accepted. The previous section on error propagation showed that all of the three motion
models exhibit favorable first order position error growth under certain circumstances. In fact,
heading and airspeed dead reckoning was found to be always first order, while inertial
navigation only adopts first order behavior in long term average drift, superposed by
oscillating errors that scale with sensor quality. For short propagation times, a polynomial
propagation of measurement error to positon error renders the open-loop inertial motion
model useless for low-cost applications. Consequently, ways to reset this polynomial error
growth at short time intervals using auxiliary information on velocity or attitude are studied in
this section in order to allow use of inertial navigation for low-cost position propagation.

The aerodynamic motion model is first order in position error growth for long times and large
errors (because errors are the difference of tfrue and simulated flight). But initially, the
divergence in lateral motion due to spiral error mode will represent higher order position error
propagation in time. Because of this, the aerodynamic motion model must be kept aligned
with the frue flight direction.

In the following, possibilities to improve the performance of above algorithms using
measurements that are independent of external infrastructure, weather, time of day and
visibility and furthermore low-cost are presented. The information on state vector error
contained in the sensor measurement will be studied. In presence of suitable total state
dynamics, observability of all motion model error states may be enhanced. This is assessed in
an application-oriented observability analysis that uses an analytical approach to anticipate
(a priori) and explain (a posteriori) observability in certain maneuvers in combination with
extensive Monte Carlo simulation for realistic evaluation. This combined approach proved
very efficient for observability analysis of systems with complex total state trajectories and
uncertain dynamics.

The extended Kalman filter will be used as state estimation method of choice for correction
of observed navigation errors using the available measurements. A brief description of the
nomenclature used can be found in appendix A.8.

The extended Kalman filter method is superior to nonlinear methods of data fusion for
problems where nonlinearities in process model and observations as well as estimation errors
are small, and observations carry unimodal information. For integrated navigation based on
inertial navigation, the gain from more precisely dealing with nonlinearities is negligible if
orientation errors are small, and the much higher computational cost of nonlinear methods
not justified. Nonlinearities of 3-D magnetometer and true airspeed measurements are
manageable for accurate orientation and if the velocity error is small compared to frue
airspeed. Furthermore, no observation ambiguities are present. While use of the
aerodynamic model requires linearization at higher rates, computational cost is sfill
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acceptable and the extended Kalman is used throughout this work. For details on this
method, see [68-70].

2.3.1 Heading and airspeed dead reckoning

The dead reckoning method offers little opportunity for state estimation, because only
position is infegrated and position aiding usually unavailable when this method is used. If
additional information was available, e.g. from redundant velocity and heading sensors, the
infegrated measurements would rather be improved on signal level.

Methods for GNSS-denied flight navigation 57



2.3.2 Inertial navigation

The inertfial motion model requires closed-loop high-rate error correction in order to restrain
2nd order accelerometer error propagation in all directions and 3@ order gyro error
propagation to position in directions perpendicular to measured specific force. In practical
applications, accurately measuring both translational and rotational motion states in three
dimensions is rarely possible. It is necessary to find a combination of available measurements
that each offer observability of several motion error states. This is studied for low-cost GNSS-
denied inertial navigation in this section. While Monte Carlo simulation of aided inertial
navigation along a number of selected dynamical motion trajectories is the most straight
forward way to assess effectiveness of low-cost aiding for a given application, a more
theoretical approach based on covariance propagation will be chosen in the following.

2.3.2.1 Observability of inertial navigation errors

Assume the inertial motion model is used for propagation of state vector z,, along a specific
trajectory in a Monte Carlo experiment with a large number of repetitions. Initial errors and
input errors are drawn from zero-mean normal distributions. As result, the computed motion
model states z; at the end are scattered randomly around an average value u; = E[z;] with
a certain variance Var[z;] = E[(z; — u;)?].

Because the possibility to reduce errors in motion propagation using a deterministic
computation scheme to be applied in every single Monte Carlo run is of interest, this is studied
in the following. In the described Monte Carlo experiment, this would mean that the variance
of a selected motion state z; can be reduced by applying an additive correction term §2;:

Var[z; + 62;] = Var|z;] + Var[§Z;] + 2Cov|z;, §Z;] < Var|z]
Consequently, the correction must be constructed so that
Var([62;] + 2Cov[z;,62;] < 0

Assume a measurement Z; of some other motion state z; is available, perturbed by zero
mean error v; with variance Var[v;] = R;

Z; = zj +v;
With a linear correction function
62, =c-Zj=c(z +vj)
the condition for reduced variance of corrected state estimate z; + §2; becomes
Var[62;] + 2Cov|z;, 62;] = ¢* - (Var|z;| + R;) + 2¢ - Cov|z;, z]| < 0
With the obvious choice

Cov[zl-,zj]

€= Var[z]-] + R]-

(2-45)

the condition above is satisfied if and only if
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Cov[zi, Zj] #0

Consequently, if the covariance of two selected states is nonzero and one of the two is
measured, the other can be estimated as well. The effectiveness of correction (2-45) can be
evaluated by studying the ratio of variance of corrected and uncorrected motion model
state

Var(z; + 6] B 1 Cov[zi,zj]
Var|z]

VT]tzj] Var[z;]Var [z]-]

And with measurement uncertainty small compared to the uncertainty of measured state z;,

the decisive quantity for effective correction of state z; is the magnitude of correlation
coefficient [71]

COU[ZL', Zj]

pij =
Var[z;|Var [Zj]

Note that, with appropriate definitions, this concepts also holds for the observability of
combinations and vectors of error states, which usually is the case.

The resemblance of above correction function (2-45) with the Kalman filter update step is
obvious. This observability analysis addresses the question if and how well errors could be
estimated in an optimal framework with exact system models. The correlation coefficient for
a given trajectory can be evaluated by analytical or numerical covariance propagation,
see below. For a more redlistic study of estimation effectiveness in cases with noticeable
modelling imperfections and complex measurement error, Monte Carlo simulation of state
estimation must be used.

As has been mentioned above, the required update intervals for low-cost systems are so
short that all error dynamics identified in the previous section, including vertical instability with
a doubling time of 400s, can safely be neglected. Consequently, it is sufficient to evaluate
the correlation of inertial motion model state errors due to propagation of errors. Because
flight velocity is low, errors in tfransport rate are small compared to gyro errors and can be
neglected for short flight segments. Similarly, earth rate will not have an influence for the
quality of inertial sensors in low-cost systems. For short fime intervals and small vertical errors,
vertical gravity gradient can be neglected. This significantly reduces complexity and allows
for an intuitive evaluation of observability. Orientation error ¢, velocity error §v,, and
cartesian position error §x,, are studied.

Several typical motion trajectories may be considered to discuss error observability. For low-
cost systems it is sufficient to evaluate the propagation and correlation of errors for flight
along a short trajectory consisting of unaccelerated segment followed by a 90° banked furn.

At the end of the first flight segment t; = t, + At, with R,,, = I and R,,,f, = —ge;

¢(t1) ~ ¢(t0) + At6(‘)ib”\4u

1
SV, (ty) ~ 6v,(ty) + AtSfy,, + ges X (At¢(t0) + EAHawi,,,MU)
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8x,(t1) = 6x,(to) + AtéV,(ty) + %At25fb1MU + ges X (%Atztb(to) + %Atg’é‘wibmu)
At the end of the first segment, with zero initial covariance of errors
Var[6x,,(t;)] = Var[dx, (ty)] + At*Var[v,(t,)] + %At‘*Var[é‘beMu]
+ skew(ges) GAt‘*Var[gb(to)] + %At'SVar[(SwibIMU]) skew(ge3)T
Var[§v,(t)] = Var[5v,(to)] + At*Var[5fp,,,,]
+ skew(ges) (AtzVar[gb(to)] + %At4Var[8wib1MU]> skew(ge3)T

Var[¢(t))] = Var[¢p(ty)] + AtZVar[8wib1MU]
And the correlation of errors
Cov[6x,(t1), v, (t1)]
= AtVar[v, (ty)] + %At?’Var[é‘fblMU]

1 1
+ skew(ges) (ZAt?’Var[d)(to)] + EAtsVar[5wib1MU]> skew(ge3)T

Cov[6v,(ty), p(t;)] = skew(ges) (AtVar[d)(tO)] + %At3Var[5wib1MU]>

With
0 —g O
skew(ges) = [g 0 o0
0 0 O

It can be seen that only horizontal velocity errors become correlated with horizontal
orientation errors and gyro measurement errors in unaccelerated flight. Because Var[¢(t,)]
and Var[dwy,,,,| are diagonal matrices, along-track velocity error is only correlated with
across-track orientation error and vice versa. The correlation coefficient can be computed

for zero initial motion model state covariance matrices

1
0 - 0
Var[SfoMU] 41
1
ZAtngVar [6nyMU]
Psv,p = 1 0 0
T Var [5fyIMU] +1
ZAtzngar[5waMU]
0 0 04

As expected, the higher integration order of gyro input error dominates and causes full
correlation of horizontal velocity and orientation errors in the medium term. This also applies
to the correlation of horizontal position and orientation errors in unaccelerated flight. By
inspection, the correlation coefficients of equal directions of position and velocity error tend
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to one quickly as initial state covariance becomes negligible compared to integrated input
error.

For the second flight segment t € [ty, t,], choosing y > 0 with no loss of generality

. o [ 0 0 . s
cos(yt) —sin(yt) 0] 0 cos(g) —sin(n) cos(yt) 0 sin(yt)

=

Ryp = |sin(yt) cos(yt) O 2 7TZ = [sin(yt) 0 —cos(yt)
0 0 Hlo sin (E) cos (E) 0 1 0
and
o R 0
R.vfr =—ges+ R,y | 0 | =—ges +Vy(cos(yAt) e, — sin(yAt) e,)

—Vy

For simplicity, analytical evaluation will be restricted to errors in orientation and velocity.
Because the coefficients of the position error differential equation are constant, observability
is not affected by motion trajectory dynamics.

Again accounting for direct error propagation only in the short time interval [t4, t,]

3

¢(ty) = P(ty1) +f Rypdt 8Wip py

ty

3

ty _ t
Sv,(ty) = 6vn(t1)+f RnbdtSbeMU—f skew(fr) <qb(t1)+f Rnbdt5wib,MU> dt
ty

ty ty
The covariance becomes
Cov[6v,(t5), P(t,)] .
= Cov[6v,(ty), p(t)] + Cov[c?vn(tl),éwibmu]ft Zﬁflbdt
1

ty t, t2
—f skew(f,)dt Var[¢p(t,)] —f skew(f,)dt Cov[q)(tﬂ,&wibwu]f RT, dt
t t ty

1 1

ty _ t
—f skew(fn)f R,pdt dt Cov[Swp ., P(t1)]
t ty

1

t, t tz
—f skew(fn)f ﬁnbdtdtVar[SwiblMU]f RT, dt
t t1 tq

1

Neglecting correlation of motion model errors at t; and input errorin [tq, t,]

Cov[5v, (L), (t2)]

= Cov[6v,(t,), Pp(t)] — J:Z_gkew(in)dt Var[¢(t,)] (2-46)

ty t ty
—f skew(fn)f ﬁnbdtdtVar[SwibIMU]f RT dt
t t1 tl

1

Flying a quarter cycle yAt = g the matrices in above equation are

ty _ 0 Atg |74
f skew(fn)dt = [—Atg 0 V]
t -V =V 0
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[ /A2 A At A At
t t () 49G-1) T vG-1)  -(3)

2 Z = At\? At At\? A
skew R, dtdt = (=) . . (=) . -
J, shewtd) | R )2 T -(3) w(G-)

At At T
——v 0 ?-zv(§—1)

f Rl,dt=—|0 0 =
ts Tla —2 o0

Both the second and last term in equation (2-46) infroduce covariance of vertical velocity
error and horizontal orientation errors and vice versa, assuming diagonal matrices Var[¢(t,)]
and Var[éwyy,,,,] - This corresponds to an extension of observability due to horizontal
accelerations, and vanishes for V = 0 in above analysis.

2.3.2.2 Barometric altitude

Ways to integrate a barometric altitude measurement with the vertical channel
computation of inertial navigation have been mentioned earlier in the first section of this
chapter. Notable references are [62, 63].

Neglecting the details of computing barometric altitude from absolute air pressure
measurements and complex barometer error behavior (c.f. [72, 73] for details on this topic),
the observation equation is

Vi = h—h=6h— Shparo + Vharo

Height error §h and a state-independent barometer error &hy,., are observable in
combination.

As has been discussed above, vertical velocity and vertical position errors are always strongly
correlated. In addition, in the presence of horizontal accelerations, vertical franslational error
becomes correlated with horizontal orientation errors. Therefore, a barometric altitude
measurement provides (slight) observability of horizontal errors in dynamic flight.

2.3.2.3 Airspeed

The possibility to further aid INS by air data measurements is widely recognized. Which errors
can be estimated depends on whether aerodynamic angle of attack and aerodynamic
angle of sideslip sensors are available. In this work, it is generally assumed that aerodynamic
angle of attack or aerodynamic angle of sideslip is not measured, as such sensors are rarely
installed on small general aviation airplanes. Instead, the aerodynamic model can be used
to estimate the direction of aerodynamic velocity, as will be studied later in this work (c.f. [74,
75]).

The most general way to implement true airspeed aiding is a nonlinear scalar function and is
linearized to yield the following observation equation
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Vi = VA — 1P, — Pyl = V_::vAn - (6v, — Svyy) + Vpres

Consequently, errors of kinematic and wind velocity vector are observable in combination
and in direction of aerodynamic velocity vector only. For unaccelerated flight, this direction
is constant. In this case, the translational errors in orthogonal horizontal direction are
unobservable. Therefore, the third order propagation of input errors in this direction will
quickly lead to position error exceeding any reasonable bound for navigation.

Because above observation is in fact implemented using computed aerodynamic velocity
vector v,,. errors of kinematic and wind velocity vector will be estimated in direction of v,,.
For sustained flight with constant direction of aerodynamic velocity in NED frame,
unobserved kinematic velocity errors v,|,,, Will grow large. Only due to the approximation
v = Uy, NEcessary to implement the observation above, these errors will cause inconsistent
observability, an effect that could be described as arfificial aiding. Of course, this will only
happen when errors évy,l|,,, have become large compared fo V, already. Thus,
performance of airspeed aided INS sfill depends on inertial sensor quality for longer phases
of flight with constant direction, and systems with low-cost IMU will perform badly.

A possible way to mitigate this is to assume the direction of true airspeed measurement is
known, e.g. aligned with body-fixed x-axis (i.e. assuming a = g = 0 and therefore R, = I):

Va
0
0

yx = - (ﬁb - ﬁWb) = RZlb (5vn - 5an) + v (2_47)

Because thisis an artificial vector observation with significant approximation error in direction,
the orientation error term has been neglected in the right hand side linearization. Otherwise,
orientation error would be directly observable with an airspeed measurement, which is not
recommended. Direction approximation error and orientation error can be considered as
correlated measurement error in the covariance update computations

Vpres 0 VA .
v=| 0 |—|d8a |x|0|—RL,(pXDs)
0 —op 0

Note that although the direction of differential pressure probe is known, this device is
designed to measure pressure difference in stagnation point and (largely) unperturbed flow.
Although it will not do so perfectly, and the measurement will be altered by larger
misalignment with the airflow, it truly is a scalar measurement, not a vector measurement.
Therefore, the implementation of TAS-aiding using measurement equation (2-47)
inconsistently assumes zero aerodynamic angle of attack and aerodynamic angle of
sideslip.

2.3.2.4 3-D Magnetometer
If no other means to accurately estimate orientation are available, the magnetic field vector
measurement B, provided by a 3-D magnetometer is a valuable source of information.

Provided the engineering challenges of shielding or removing magnetic disturbances from
onboard sources (e.g. electrical actuators) and calibrating soft and hard iron effects in the
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measurement have been mastered, it corresponds to the local environmental magnetic field
at the position of the aircraft. With increasing altitude and thus distance from man-made or
otherwise irregular contributions to environmental magnetic field, the measurement mostly
represents the earth magnetic field, for which accurate models are available. Defining the
observation equation

¥x =B, — R},By,
The corresponding linearized form is
735 = —T%le(¢ X En) + ﬁZb(SBn + Vmag

In this work, the error of modeled local environmental magnetic field vector §B,,, which is
correlated in fime, space and with position error, will not be given special attention. Instead,
it is partly eliminated by constraining the observation to errors in orientation

(RhBy) - (By Tezbﬁn)>
1B,

yx =B, —R},B, (1 +

With the linearization
Vi = _ﬁgb(‘p X En) + §5b53n|¢§n + Vinag

While the parallel part of model error does not affect orientation error estimation the
remaining orthogonal part IA?,lecSBnllgn must at least approximately be accounted for by

increasing measurement NOISe V4.

Note that although this vector observation allows to estimate east orientation error, which
always is perpendicular to earth magnetic field vector, this is not recommended. Modeling
error of dip angle (c.f. [76]) is strongly correlated in space and thus in time travelling along a
specific trajectory. Due to its combined observation with east orientation error, this model
error must either be modeled and estimated, or this part of observation must be removed
altogether.

The environmental magnetic field vector approaches 90° dip angle for high northern and
southern latitudes. This causes the observability of vertical orientation error due to the term
—R}, (¢ x B,,) to vanish. Consequently, heading information from 3-D magnetometer aiding
becomes inaccurate for high latitudes and unavailable in proximity of the poles.
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2.3.3 Aerodynamic motion model

The primary objective of aiding the aerodynamic motion model is to prevent lateral
divergence due to spiral error mode. This is a prerequisite for achieving first order position
propagation accuracy. In the initial phase of spiral error mode, there is mostly a contribution
in roll, as has been demonstrated with the exemplary linear analysis of decoupled lateral
errors in the previous section. Because with increasing roll angle the dynamic system of errors
of the aerodynamic model changes significantly thus complicating an analytical approach,
a Monte Carlo simulation study is preferred to assess observability of spiral mode error using
various aiding measurements. The results of this study are discussed in the following and are
the basis for further decisions on method design.

2.3.3.1 Simulation study

In the following, aiding of the aerodynamic motion model with accurate (reference)
measurements is studied in simulation in order to determine the most beneficial aiding
information for use with the available airplane model.

It is assumed that no external information on dynamic atmosphere is available. In this
simulation, wind velocity and model coefficient errors are implemented as consider states in
the extended Kalman filter framework, c.f. appendix A.8. Using consider states, only the
respective uncertainty is accounted for in computing the filter covariance, but the actual
values are not estimated, and e.g. constant vy, = 0 and @, = 0 are used for wind velocity
and angular rates. This consider state approach for wind and model coefficients is chosen
because on-board sensor quality and the accuracy of corresponding statistical models are
insufficient to estimate wind or improve a high-quality aerodynamic model by estimating
model coefficient errors.

Besides reference measurements of vehicle state errors such as errors in height §h, kinematic
velocity magnitude 6V, orientation §¢y ., ¢, S¢p and inertial angular rates dw;, , A
measurement of error of specific force in navigation reference point R, §f%, is studied. The
results of aided aerodynamic motion propagation in presence of realistic measurement and
model errors and atmosphere dynamics are presented in Table 3. All Kalman filter updates
are computed at arate of 1Hz and the uncertainties and errors of the aiding measurements
correspond to the accuracy of a tactical grade INS/GNSS navigation system. For more
information about the simulation framework used for evaluation of preliminary methods, refer
to section 4.1.1.

Aiding of attitude, heading or inertial rates errors is found to effectively mitigate the lateral
divergent error mode of aerodynamic motion propagation. The Monte Carlo simulation
study indicates that with any one of these aiding measurements, aerodynamic motion can
be the basis of a position propagation method. Because the roll angle error is a major
component of the spiral error mode, a measurement of horizontal orientation errors and thus
errors of roll and pitch very effectively prevents lateral divergence of the airplane
aerodynamic model. Heading error offers good observability of spiral error mode because it
is strongly correlated with roll error in horizontal flight where the deflected lift vector causes
lateral acceleration error. In addition, similar to aiding error in course over ground, heading
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error aiding effectively improves the position propagation performance of the aerodynamic
model by reducing first order error.

Aiding information

Position propagation performance in 1h

6h

Lateral divergence

6Vyg and 6h

Lateral divergence (see Figure 9)

8¢y, ¢ and Sh

~10NM/h (CEP) in first 600s, 14NM (CEP) max

6¢dn, 6dg, dpp and Sh

~5.4NM/h (CEP) in 1h (see Figure 10)

S¢p and Sh ~5.5NM/h (CEP) in 1h
Sw;, and Sh ~9NM/h (CEP) in first 600s, 26NM (CEP) max
5fR and 6h Lateral divergence

Table 3: Airplane aerodynamic motion model aided by reference measurement
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Figure 9: Laterally divergent aerodynamic position Figure 10: Aerodynamic position propagation with
propagation with speed over ground aiding (100 runs)  orientation error aiding (100 runs)

The simulation study shows that insufficient aiding such as measurements of height error,
speed over ground error or specific force error will not prevent arbitrary lateral motion. See
Figure 9 for the Monte Carlo results of aerodynamic motion propagation with aiding of speed

over ground error only.
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The quantitative results of the Monte Carlo simulation in Table 3 indicate that aiding of the
vertical orientation error ¢, of aerodynamic motion is essential for accurate position
propagation. With this aiding information, good results were achieved with a position error
that very closely matches wind drift for the given set of flight trajectories (c.f. 4.1.1).

2.3.3.2 Restrictions of aiding the aerodynamic motion model

In addition to first results for positioning performance, the simulation study revealed a
significant restriction of aiding the aerodynamic motion model. State estimation with the
aerodynamic motion modelis found to be not reliably robust in realistic dynamic atmosphere
conditions if kinematic reference information is used. Navigation filter failure has been
observed when aiding the aerodynamic motion model with a measurement of kinematic
velocity vector error and keeping the wind state estimates constant.

Generally, GNSS-denied state estimation with the aerodynamic motion model and low cost
on-board sensors cannot estimate dynamic wind well. Due to insufficient observability
without GNSS aiding and dedicated measurement equipment, a suboptimal consider-state
approach is applied in this simulation study, and wind state estimates are fixed to an
uncertain constant value. Alternatively, estimation of long-term wind vector might be
attempted, assuming a long correlation in time to account for the major contribution to
position drift.

,,,,,,,,,,,,,,,,
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Figure 11: Diverging computed aerodynamic flight in presence of dynamic wind error and pilot control

With such a suboptimal approach for wind estimation, the correction of observed errors in
kinematic velocity results in an equivalent change in aerodynamic velocity vector (see the
discussion of equation (2-11) in 2.1.3.2). In body-fixed frame coordinates, the aerodynamic
velocity vector corresponds to airspeed, aerodynamic angle of attack and aerodynamic
angle of sideslip that have significant effect on the aerodynamic forces and moments (see
2.1.3.2). Consequently, a correction of these aerodynamic states has a strong effect
especially on rotational aerodynamic motion, which can lead to divergence of computed
and true airplane motion and significant linearization error in the extended Kalman filter.
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Under realistic atmosphere conditions, dynamic wind estimation error is inevitable. In
turbulent atmosphere, the pilot or autopilot will counteract the disturbances of the true
airplane flight with dynamic conftrol inputs, which are measured and used as input to
compute aerodynamic motion. This, in combination with large dynamic errors in the
aerodynamic motion model wind input, can result in fast divergence of true and computed
aerodynamic motion. Because the pilot inputs are intfended to cancel the disturbances of
aerodynamic flight due to tfrue dynamic atmosphere, they adversely affect computed flight,
as illustrated in Figure 11. The estimated wind input for the aerodynamic motion model will at
best account for the low-frequency content of dynamic wind.

If the resulting errors in the computed kinematic velocity vector are corrected suboptimally,
e.g. assuming constant wind velocity as discussed above, the dynamic response of the
aerodynamic motion model to the inconsistent correction of aerodynamic state can further
aggravate the divergence. This will eventually result in a failure of the navigation filter when
an extended Kalman filter is applied for state estimation. This is an important finding for aiding
of the aerodynamic motion model that must be considered in the development of
integration architectures in chapter 3.

Optimal, i.e. fully consistent, corrections of the aerodynamic model using kinematic
reference information require simultaneous estimation of kinematic motion states, model
coefficients, dynamic wind velocity vector and even wind rates. Flight dynamics trim errors,
e.g. a constant error in airspeed, must be calibrated by an equilibrium correction of model
coefficients and motion states. In addition, dynamic estimation of wind is required for
consistent estimation of both kinematic and aerodynamic motion in dynamic atmosphere
conditions. Unfortunately, on-line calibration of the high-quality model coefficients is not an
option for the given application where on-board sensor quality and observability in GNSS-
denied flight are insufficient. For wind estimation, a long-term average would be beneficial
forreducing position drift in GNSS-denied navigation but suboptimal with respect to dynamic
wind estimation. Nevertheless, a short-term wind vector estimation might be attempted to
increase the robustness of state estimation with an aerodynamic motion model in furbulent
atmosphere. This will be discussed further in in chapter 3.
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2.3.4 Method comparison

Both the inerfial and the aerodynamic motion model need specific additional aiding
information to remedy disadvantageous error propagation characteristics identified in the
previous section. In case of the inertial propagation model, the problem consists of
polynomial propagation of inertial measurement error to all directions of position error in 2nd
order and perpendicular to specific force in 3 order. The measurements available for aiding
in GNSS-denied flight were shown to not reliably offer full observability of errorin conventional
flight conditions. While maneuvering flight enhances observability with a barometric altitude
measurement to include horizontal position errors, and measurement of airspeed offers
observability in direction of turning aerodynamic velocity vector, unaccelerated flight with
negligible body rotation sfill suffers from unobserved polynomial error propagation.

For the aerodynamic propagation model, the improvement by integrating specific on-board
measurements is significant. It has been shown that aiding of angular rates errors, attitude
errors or heading error all prevent lateral divergence. This allows exploiting the first order
position error characteristic of the integrated aerodynamic motion model.

Nevertheless, state estimation with the aerodynamic motion model proves to be difficult.
Several differences of the inerfial and aerodynamic motfion models influence the
characteristics of aided INS and aided aerodynamic motion model (aided VDM).

Aided INS Aided VDM

., ' . Stron g dyn amic Moa.le"l p.erturbat/ons (non- )
Model d namics Integration model equilibrium changes) such as input
V' response errors or suboptimal corrections

stimulate dynamic response

Coefficient errors Coefficient errors affect trim, stability
and control

IMU calibration error

MOdEI errors Wind error Wind error introduces a mismatch of

kinematic and aerodynamic motion

Turbulent Intermittent turbulence introduces

Failure sources IMU dynamic wind error in combination
atmOSphere with strong pilot control

Figure 12: Comparison of aided INS and aided aerodynamic motion model (aided VDM)

The fundamental restrictions of aiding the aerodynamic motion model compared to aided
INS are listed in Figure 12. First, changes of individual motion states can significantly affect
computed aerodynamic forces and moments and thus stimulate a dynamic response of the
motion model. This happens for example in an unbalanced correction of kinematic motion
states and wind states, resulting in a change of the aerodynamic states, such as airspeed,
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aerodynamic angle of attack and aerodynamic angle of sideslip. When estimated errors in
the kinematic states are corrected, this dynamic response is undesired because it infroduces
additional (dynamic) error. For aided INS on the other hand, the dynamic response of the
motion model to kinematic state error corrections is negligible given the very low frequency
of Schuler and other error dynamics.

The airplanes and corresponding aerodynamic motion models discussed in this work exhibit
stable *trim” flight conditions. Errors in the model coefficients result in errors in the
aerodynamic states of these flight conditions. A correction of these errors will be reverted
due to the stability — in addition to a possibly significant transient response as noted above.
For aerodynamic course and bank angles, this effect is small. However, aerodynamic
degrees of freedom with strong dynamic or static stability — such as airspeed, aerodynamic
angles of attack and sideslip, aerodynamic climb angle — can only be corrected in
combination with a correction of model coefficients preserving the equilibrium of forces and
moments. If such a correction of model coefficients is not possible because a high-quality
aerodynamic motion model is used that cannot reliably be calibrated with on-board means,
the aerodynamic states should remain unchanged as well. An exception is possible for the
states that are subject to weak (or no) stability. This will be addressed in chapter 3.

Aerodynamic velocity and aerodynamic angular rates, which strongly affect the
aerodynamic forces and moments, differ from corresponding kinematic states (kinematic
velocity and inertial angular rates) due to wind velocity and wind rates, see 2.1.3.2. Given
measurements of kinematic motion, these aerodynamic motion states can consequently
only be observed in combination with dynamic wind estimates. Large wind estimation error
can result in inconsistent estimation of aerodynamic states from measurements of kinematic
motion.

Finally, for the long flight durations and distances travelled that are typical for the addressed
application, atmospheric turbulence is to be expected. As has been discussed in the
previous subsection 2.3.3.2, this environmental condition is likely to cause divergence of
computed and true airplane motion. Unlike for aided INS, where input errors can be
overbounded reliably, a sudden and possibly extreme increase in aerodynamic motion
model state error must be handled. Given the limitations of state estimatfion with the
aerodynamic motion model discussed above, this constitutes a significant problem to be
discussed in the next chapter.

Thanks to much weaker error state dynamics and reliable online calibration of IMU
measurement biases, the inertial motfion model does not suffer from such restrictions for
aiding with filter updates. In addition to the accurate computation of attitude that is essential
for heading error estimation with a 3-D magnetometer measurement, the inertial motion
model represents the optimal platform for integration of auxiliary sensors such as barometer
and magnetometer.
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2.4 CONCLUSION

Judging by the required inputs and modeling assumptions, inertial navigation is the most
robust of the three motion models presented in this chapter. It is an exact model that can be
applied to any platform and is valid for any type of motion. In addition to gravity vector, only
IMU measurements are used as inputs that are only affected by environmental disturbances
at the location of installation, such as vibrations and temperature change. Furthermore,
inertial navigation offers excellent observability of errors in a combination of straight and
turning flight with 3-D position or velocity measurements. This makes it the perfect choice for
integration with GNSS aiding, if available.

For GNSS-denied flight navigation, the inertial propagation model suffers from polynomial
position error growth that only is observable for a continued succession of large changes in
direction of flight. Except for high-quality and high-cost systems, these errors quickly exceed
any acceptable limit. Here, the simple heading and airspeed dead reckoning method
proved to offer a good alternative. Its position error is only due to integrated velocity
measurement error and always grows first order in time. It is a simplified model of motion but
temporary modeling and input errors, for example in turns or presence of magnetic
disturbance, will only affect position accuracy scaled by their duration of occurrence. This
exemplifies the advantageous characteristics that come with first order error propagation
and are well suited for low-cost applications with simplex input measurements.

For conventional fixed-wing aircraft, the aerodynamic position propagation method, if
integrated with some aiding measurement on lateral motion such as vehicle heading, was
found to exhibit first order position error growth as well. If an accurate software model of flight
dynamics, e.g. qualified for use in a flight fraining device, is available, simulated flight offers
a precise model for longitudinal motion. Similarly to dead reckoning, wind input error is
integrated in time and any information of wind velocity will improve position propagation
accuracy. Moreover, the effect of wind and heading errors on position is negligible for short
durations of occurrence. Nevertheless, the lack of accurate on-board models for predicting
wind velocity and wind angular rates reduces method robustness.

Because the inertial model can provide very accurate information on attitude if aided with
the horizontal motion provided by the aerodynamic propagation method, it constitutes the
ideal platform for computation of magnetic heading using a 3-D magnetometer
measurement. Heading (and attitude) in turn is the essential aiding information needed to
make the airplane motion model an accurate first order position propagation method.
Consequently, a combination of these two motion models promises a GNSS-denied flight
navigation with the benefit of accurate attitude information and first order position error
growth.
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3 ARCHITECTURES FOR INTEGRATING INERTIAL AND AERODYNAMIC
MOTION MODELS

Using both inertial and aerodynamic motion models in parallel is possible even in a low-cost
application. Inertial sensors are either already installed on the aircraft (with an interface to
the data available) or can be integrated as low-cost, small size and weight and power
MEMS-based system. Except for measurement of pilot controls, the aerodynamic model
requires additional real-time software only. Although the identification of a high-quality
aerodynamic model is expensive, it may already be available from flight training simulators.
The previous chapter showed that the inertial model is desirable for its high robustness and
accurate measurement of angular motion. The aerodynamic model proved to be a first
order accurate position propagation method that could outperform classical heading and
airspeed dead reckoning. Now, the best way to combine the two motion models for GNSS-
denied navigation of airplanes must be found.

Two approaches are discussed in this chapter: State estimation techniques that assume that
all errors in modeling underlying processes can be described with satisfying statistical
significance, and a new technique for airplanes that is insensitive to imperfections of the
statistical models for aerodynamic flight and dynamic atmosphere.

First, assuming strict equivalence of motion described by inertial navigation and vehicle
dynamics model (such as the aerodynamic motion model), the fusion of the two motion
models is studied. Optimality of state estimation given multiple process models with
equivalent states (i.e. related to an identical fruth process) is discussed in [11]. Optimal model
fusion has first been applied to airplane navigation in [?]. More efficient variants of optimal
model fusion have later been proposed and studied in applications to rotorcraft [12, 13, 77,
78], airplanes [14, 79] and underwater vehicles [80]. This variety of vehicles addressed
evidences the generic nature of this approach. Because the respective improvement of
fused models depends on their relative uncertainty, sensitivity to the accuracy of statistical
error models is high for optimal model fusion.

Studying method performance in rough atmosphere with turbulence and strong gusts
reveals that state estimation techniques require careful tuning especially of aerodynamic
and dynamic atmosphere uncertainty processes. Both robustness and accuracy of the
method are affected. Although a specific setting of tuning parameters can be determined
in Monte Carlo simulation in order to achieve robustness in rough atmosphere and good
accuracy, it is desired to find a desensitized method for higher reliability and independence
from simulation fidelity.

The second section of this chapter therefore proposes a new method for airplane
aerodynamic model navigation. For this approach, the best combination of low-cost inertial
and high-quality airplane aerodynamic models is not determined by fusion of equivalent
information with known error statistics as in [11]. Instead, the valuable information content of
each of the two motion models is identified in inertial rotational motion and aerodynamic
franslational motion.

In a robust solution to the given problem of GNSS-denied airplane flight navigation, models
should therefore be combined in a complementary integration architecture, leaving their
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individual characteristics intfact. From this understanding results a simpler method of model
combination with the benefit of independence from unreliable or unknown information on
system statistics that is needed for determining relative information content in state
estimation techniques.

The complementary integration architecture for inertial and aerodynamic models
developed in this chapter presents a solution to the model combination problem if the
uncertainty of aerodynamic flight cannot be modeled reliably. State estimation techniques
are not applicable to model combination with unknown statistics. The new approach exploits
the complementary characteristics of the two models studied in chapter 2 for a best possible
solution without need for unreliable or unavailable covariance models of dynamic
atmosphere processes.

3.1 OPTIMAL STATE ESTIMATION (CLASSICAL DATA FUSION)

Previous work on navigation using an aerodynamic motion model proposed the fusion of
aerodynamic propagation and inertial navigation based on the notion that errors in motion
states of the two models are statistically dissimilar and will be reduced by combination [?].
Although development of the proposed method will take a different way later in this chapter,
two basic ways to fuse aerodynamic and inertial motion using an optimal filter will be
assessed first.

If one compares the aerodynamic motion model (2-8) and (2-9) with strapdown inertial
navigation (2-3), only two parts of it provide new information on vehicle motion:

(1) Equation (2-9) replaces measured specific force as input to the strapdown equation
with a computed quantity

(2) Assuming arigid vehicle body, the Euler equation of rotational motion and the models
for external moments provide a differential equation for the otherwise measured
inertial angular rates vector
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Figure 13: Signal-level model fusion

Architectures for integrating inertial and aerodynamic motion models 73



3.1.1 Signal-level model fusion

In each case above it is possible to compare the computed and measured specific force or
inertial angular rates by value in order to determine IMU measurement errors and errors in the
inputs and coefficients of the models. In an optimal filter, the computed specific force vector
and inertial angular rates vector are fused with IMU measurements on “signal-level” in order
to improve accuracy of the inputs for the strapdown equation used to propagate navigation
state vector z,, in fime, see Figure 13.

The architecture depicted in Figure 13 can be implemented in two ways: One continuously
using the aerodynamic motion model for integration of navigation state vector z,, (c.f. [77,
81, 82]), and the other using the IMU measurements as inputs to the strapdown algorithm,
which gives a conventional inertial motfion model (c.f. [13]). In both cases, IMU
measurements, vehicle rotational dynamics and the model for specific force are used for
estimation of errors in z,,, angular rates and inertial measurements. This will be described in
detail in the following.

For the “signal-level” fusion architecture shown in Figure 13, the redundant signals are related
mathematically

Wiy = @i + Wi,
f§ sz+6fb1MU

That is, the IMU measurements of inertial angular rates and specific force corrected by exact
measurement error are stated to be identical to exact values of modeled inertial angular
rates and specific force in navigation reference point R. Note that this differs from the
definition of IMU measurements and errors, stating that their sum is exactly equal to rotation
and acceleration of the real IMU. The assumed equivalence of inertial and aerodynamic
model truth motion is the basis of the ideal model fusion techniques discussed in this section.

To integrate the stated relationship of IMU measurements and aerodynamic motion in the
framework of an extended Kalman filter, an error state observation can be defined

~ _ [®»— a’ib] _ [5“’1'17 — @iy 1y (3-1)

Ya = i-b_fg 6f§_6fb1MU

For estimation of IMU measurement errors, a slowly varying part b and a complementary part
n are distinguished for both gyroscope and accelerometer errors. The intention is to estimate
the first, while accounting for fluctuating and noisy disturbances due to the second only:

6wib1MU = bGyro + Ngyro
6fb1MU = bgcc + Nycc

Refer to appendix A.8 and [83] for more information on extended Kalman filter augmentation
and implementation accounting for complex input and measurement errors.

The error in modeled specific force vector in equation (3-1) is not a (filter) state and must be
linearized with respect to rigid body errors and augmented filter states. Inserting the
differential equation for inertial angular rates in the second row of (2-8) into equation (2-9),
specific force can be computed as

74



G
R _ Z Fj i(zv' Vywn @wp, Up, Cv)
b m

-1 3-2
- (ng (Z M3 (20, i, @, €3, 7EC) — @i X (zzbwib))) -2
X TR — wip X (@i X TRE)

The function of sum of external moments in center of gravity ¥, Mgi takes the center of gravity
position rf¢ as additional input parameter.

With navigation error states 6z,, defined as in classical inertial navigation perturbation error
analysis (see 2.2.2.1) and the vector of errors of moments and products of inertia defined as

T
I, = [6Lyy, 61y, 81,4, 813y, 81y, 81, ]
the error in modeled specific force vector can be linearized as
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The individual linearizations of modeled specific force with respect to the various parameters
can be found in appendix A.9. Note that the relative acceleration terms in equation (3-2)
explicitly depend on inertial angular rates vector w;,. Navigation state and wind velocity
vector on the other hand only appear as input parameters of the functions of external forces
and moments (2-15). Referring to the discussion of aerodynamic motion model input
parameters in 2.1.3.2, the linearization of modeled specific force vector can be written as

ofF  ofF ofF ofE off  ofF
5fb=—ah oh + o T SAb+a lTb6 lb+a 6wa+_0u£6 p+—ac17;6c,,
oft ofE £ (3-3)
+=——=6ém+ =61 = 6rp¢
om 6Igb rga

The errors in equation (3-3) corresponding to uncertainty of vehicle model coefficients and
dynamic atmosphere must be considered for filter tuning, e.g. as an augmented filter state
and noise. Depending on the choice for augmenting filter state vector, equation (3-3) can
be reordered defining a measurement matrix H, a process noise feedthrough matrix G, and

ipe s . T
a vector of artificial measurement noise v = [Vi,pu, Vfpu|
Y =Hx+G,w+Vv (3-4)

where w is the vector of white process noise. Pilot control input or atmospheric noise for
example has already influenced the error state in the current propagation step (or similarly
IMU noise), and reappears in this equation as measurement noise.

To consistently account for the correlation of process noise and measurement noise, a new
optimal gain K must be derived, seeking to minimize frace of a posteriori covariance (c.f.
[69]).

With the a posteriori Kalman filter estimate
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Xiy1 = K(yXR+1 - Hx1;+1) + Xj41
and the time discrete filter state model with process noise w; averaged in time interval
[t tet1]
X1 = PrXxy + Twy

the measurement equation (3-4) can be rewritten and inserted into above filter estimate
update equation

yxk+1 = Hq)kxk + Hrkwk + wak + Vi
and
x,':_,_l = K(H(Dkxk + (HFk + Gw)(l)k + Vi — HQkx,t) + Qkx]t

Taking the influence of process noise on both state propagation and measurement into
account, the covariance of a posteriori filter estimate x}, ; is

Piii = E[(61 — Xie) (K — %)
= E[(K(H®x) + (HI + G,)w) + V) — HOpxi) + @ xf — @ xp — Mewy ) ()]
=E[((I - KH)®(x} — x;,) — (I - KH)T 0y + KG,w; + Kvi.)(...)T]
= - KH)Py,,(I-KH)" — (I - KH)I',QG,"K" — KG,QIr'-.(I — KH)"
+K(R+6,Q6, )K"

Minimal trace of this a posteriori covariance matrix is chosen as optimality criterion and can
be represented by the linear problem

otr(P;
g;ﬂ) = —2(HPi,,)” + 2K(R + 6,QG,,” + HPy, HT) — (I - KH)I'.QG,,"

— (6,Qri( — KH)") + (HI.Q6,"K")" + KG,QI'LH"
= —2(HPj,,)" + 2K(R + 6,QG," + HP;, HT) — 2(G,Qr%)" + 2KHT.QG,,"
+2KG,QIr''H" =0
From this condition the optimal gain matrix K can be derived
K = (Py,H" +I'.QG6,")(R+ 6,QG," + HP;. . H" + HT,QG," + qur};HT)‘l (3-5)

For high noise and high update rate this special gain matrix must be used for consistent error
estimation. This increases implementation complexity, because it differs from Kalman gain
computation for a conventional measurement update. Furthermore, input propagation
matrix I', must be kept in memory or computed again. When the process noise appearing
in measurement equation (3-4) is small, it can be neglected and the conventional Kalman
gain matrix can be used instead.
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3.1.2 State-level model fusion

In an alternative architecture, the aerodynamic motion model runs in parallel to INS. This
provides a fully redundant, highly available “software” solution for navigation state vector z,
which can be used for combination and comparison on “state-level™:
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Figure 14: State-level model fusion

This approach to inertial and aerodynamic motion fusion, first proposed in similar form by
Koifman [9]. uses the following measurements, referred to as pseudo measurements in the
following for lack of any real measured quantity (also called virtual or perfect measurements
in the literature, c.f. [84]):

Ysv, = Unypy ~ Unyys
In the extended Kalman filter framework, the following observation equation is used
Vovy, = Vniys = SVnypy + Vo, (3-6)
And similarly for orientation error the nonlinear measurement
~ = = T
Yo = f(RanNSRnbVDM) (3_7)

The direction cosine matrices Ti’nbms and ﬁnbvnm are computed from the NED-to-body-fixed
frame orientation quaternions 3nbms and ﬁnbVDM respectively. The function f computes the

—~

vector of Euler angles corresponding to the direction cosine matrix R R c.f.

equation (2-21).

nbyys™nbypy -
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Above pseudo measurement can be linearized to yield the corresponding Kalman filter
observation equation [14]

Yo = —Piys + Pypy + Vo (3-8)

In both cases (3-6) and (3-8), virfual measurement noise vs,, and vg has been introduced.
The pseudo measurement noise covariance matrices R, = E[vsy, v, | and Re = E[vevp)|

can be set to zero without numerical ramifications as discussed in [14]. This forces estimated
states equal and implements the assumed equality of inertial and aerodynamic truth for
translational and rotational motion. With zero measurement noise covariance, state-level
motion fusion mathematically corresponds to methods studied or applied in [, 14, 78, 79, 81,
85].

A similar measurement for redundant vehicle dynamics model reference point and INS
position states could be defined

Vsa = Aypu — Ains = 8Aypy — 8Aypy + Vsz

With the vector of WGS84 coordinates 4 = [¢,4,h]”. It has been shown in [14] that using
pseudo measurements for position and velocity in parallel is superfluous and can cause
numerical problems at high update rates.

For a physically more meaningful alternative to equation (3-6) with arbitrary location of
navigation reference point R on the vehicle, inertial and aerodynamic translational motion
can be constrained equal in the center of gravity

G — 12,G
vnINS - vnVDM

With
G — ~ RG
Vs = Vnyns T Rnbjys ((wib + i 1) X Th )

G _ ] RG
Vnypm = Vnypum + RnbVDM(wlb XTp )

The following pseudo measurement is defined
~ a6 e o =~ 5 ~ ~RG 5) ~ ARG
Yx = Vaypy ~ Vnins = Ynypy ~ Vnyns + RnbVDM(wib XTp ) - RanNs(“’ib XTp ) (3-9)

It is preferable to define the pseudo measurement in NED frame as above, because
kinematic velocity vector errors will become observable independently of orientation errors
in flight at zero angular rates. For a measurement defined in body-fixed frame, velocity and
orientation errors would always be observable in combination only.

The pseudo measurement (3-9) can be linearized to yield the following filter observation

equation (by adding v§ .« — V5,5, = 0)

Yx = 6vn1Ns - 6vnVDM - Skew(a’ib x ?§G)¢INS + Skew(a’ib X ?§G)¢VDM
+ Rupy oy skew (#5°)5wiy — Rup yygskew (5% )bgyro
+ (ﬁanNSSkeW(a)ib) - knbVDMSkeW(aib)) 61‘56
skew (5% Jgyro + V0

(3-10)

- Rnbuvs
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With corresponding definitions of measurement matrix H and process noise feedthrough
matrix G, ., accounting for the gyro noise term —R,;,,skew(73¢)ng,., . the observation
equation can be written in the form

y.=Hx+G,w+Vv

If this pseudo measurement is used at high rate with significant IMU inertial angular rates
measurement noise, the adapted optimal filter gain matrix (3-5) should be used.
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3.1.3 Modeling uncertainties of aerodynamic flight

The model fusion techniques compute a best estimate combination of inertial and vehicle
motion models. To this end, accurate covariance information is required, as it determines the
respective weighting of combined motion model information.

ldeal modeling of aerodynamic flight would include atmosphere process models
accounting for an unsteady, non-uniform air mass velocity vector field traversed by the
aircraft. This would allow to compute dynamic wind velocity vector and wind rates at aircraft
location affecting aerodynamics and flight dynamics. In an application scenario for
airplanes, where altitudes and travelled distances are large, such high-fidelity models of
atmosphere processes are not available for on-board online use. Therefore, aerodynamic
flight must instead be computed assuming steady and uniform wind (or wind changing
according to some low frequency weather model). In addition to dynamic air mass motion,
non-standard atmosphere conditions, such as air density at altitude, cause complex input
and process error of the aerodynamic motion model.

Application of an optimal model fusion filter requires that any uncertainty in modeling
aerodynamic flight is accounted for accurately by stafistical models used for filter
covariance propagation. Unfortunately, accurate high-fidelity statistical models are equally
challenging to define and implement as the corresponding process models.

Consequently, optimal model fusion techniques suffer from a lack of reliability of dynamic
atmosphere uncertainty models for aerodynamic flight in open-air. The intensity of
aerodynamic disturbances encountered in flight can change unpredictably for the
application of interest. Statistical models for smooth atmosphere dynamic wind vector and
wind rates can abruptly become invalid on the onset of gale-force winds, gusts and
turbulence. In this case, the inconsistent statistical information provided to the navigation
filter can result in failure of the optimal filter.

Due to the large variety of atmospheric disturbances to be accounted for, an adaptive
approach trying to identify rough atmosphere conditions using on-board measurements and
switching filter covariance models accordingly is not considered robust. On the other hand,
general overbounding of dynamic atmosphere uncertainty is not a solution either, because
an optfimal filter would mostly neglect aerodynamic motion model information for high
magnitude and correlation time of wind and wind rates uncertainty.

The difficulty of implementing an optimal model fusion filter for inertial navigation and
airplane aerodynamics is further increased by estimation of errors in aerodynamic model
coefficients. Similarly to dynamic atmosphere processes, defining reliable statistical models
for aerodynamic model uncertainty is challenging. Furthermore, uncertainty models for
inertial navigation, dynamic atmosphere and aerodynamic motion must accurately
compute covariance as well as respective correlation of errors. For the high accuracy
aerodynamics models considered here, this constitutes a prohibitive risk of miscalibration of
model coefficients due to statistics modeling error.

The ideal model fusion method is especially vulnerable to inconsistent statistical models as
estimation error in wind velocity and aerodynamic model coefficients can significantly harm
performance.
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3.1.4 Tuned model fusion filter

In the preliminary effort of developing model fusion methods using optimal filters, an
uncertainty model for wind velocity vector with small correlation time in combination with
estimation of this high-frequency wind vector was key for good performance and robustness.
This choice of wind uncertainty model is deliberately inconsistent with the dynamic
atmosphere conditions in simulation where dynamic wind has a large correlation time
coefficient. Although this result quantitatively still depends on the simulation environment
and the atmospheric models, it indicates to the solution of the modeling problem of state
estimation techniques.

First, note that this choice of tuning neglects the additional uncertainty in aerodynamic
motion model velocity and position due to an unknown slowly varying or constant wind
vector which would have to be considered in an ideal model fusion filter. Because this work
is specifically concerned with the combination of low-cost inertial navigation and a high-
quality aerodynamic model as discussed in chapter 2, the quantification of slowly-varying
wind uncertainty is indeed expendable for model combination: For the desired mission times,
translational uncertainty of the inertial model will nearly always exceed even extreme wind
drift (c.f. the empirical atmosphere extremes in [86]). Therefore, neglecting the influence of
long-term wind uncertainty in the fusion of low-cost inertial navigation and the aerodynamic
motion model has little effect on model fusion position drift. This tuning further increases the
confidence of the information on average kinematic velocity provided by the aerodynamic
motion model compared to the inertial model.

Secondly, the increased uncertainty of aerodynamic moments and high-frequency wind
vector reduces the weighting of rotational motion information of the aerodynamic motion
model used by the model fusion filter. While this is consistent in rough atmosphere conditions,
where the aerodynamic motion model orientation and angular rates can be significantly in
error, it corresponds to a conservative overbounding of aerodynamic rotational motion
uncertainty in normal, smooth atmosphere flight. With this choice of filter tuning, the model
fusion filter will apply large corrections to both aerodynamic model orientation and wind
velocity vector in rough atmosphere. For robustness of the aerodynamic navigation method,
it is essential that the body-fixed frame aerodynamic velocity vectoris not subjected to large
changes by filter corrections. If the optimal model fusion method is applied, this can only be
achieved by estimation of a high-frequency wind vector that compensates for
discrepancies of kinematic and aerodynamic motion. At the same time, aerodynamic
model attitude and heading are corrected thus improving position propagation accuracy.

The specialized tuning developed for model fusion methods implements a specific type of
combination of low-cost inertial navigation and high-quality aerodynamic motion model. In
confrast to the horizontal model fusion paradigm [11], which assumes homogeneous
information in both (or multiple) models, this is a complementary combination of information
from different motion degrees of freedom for each model. The best way to integrate the two
models for the specific problem at hand is a vertical, or complementary, combination of
inertial rotational motion (aided by 3-D magnetometer) and aerodynamic horizontal
translational motion.

While choosing the better information from each of the two models to be combined, this
complementary strategy also reduces the importance of statistical modeling by
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conservatively overbounding insignificant information. In addition, the aerodynamic model
coefficients are kept constant. This keeps the reliability of a certified high-quality model
intact.
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3.1.5 Shortcomings of state estimation techniques

Application of an optimal model fusion filter requires accurate statistical models of current
atmospheric conditions, flight dynamics and inertial navigation uncertainty and error
correlation. A specific tuning of the model fusion filter has been developed that avoids
extensive modeling of uncertainties and exploits the complementary characteristics of the
two motion models. That way, good position performance and method robusthess is
achieved in simulation.

The tuned model fusion filter approach is not directly applicable to a real-word airplane
application. Quantitatively, the choice of tuning parameters depends on the simulation
framework used for method optimization. In 2.3.3.2 the potential loss of method robustness
due to inconsistent coupling of kinematic and aerodynamic motion has been discussed. The
high-frequency dynamic wind vector uncertainty model has been found to be a robust
countermeasure against filter failure in simulation but may not be sufficient in real rough
atmosphere conditions to be encountered in operation for large altitudes, flight fimes and
travelled distances.

The need of an accurate high-fidelity simulation tool to tune a navigation method to be
robust results in a need for strict verification of this tool. Tuning of the high-frequency wind
velocity vector estimation must guarantee for aerodynamic navigation method robustness
even in extreme atmosphere conditions.

Consequently, it is desired to further reduce sensitivity of aerodynamic navigation method
performance and robustness with respect to modeling and filter tuning. This will be the focus
of the following section. Optimal model fusion is a formalized approach that can be applied
to a wide range of problems but has been found to suffer from unreliable modeling. For the
specific problem at hand, the complementary characteristics of inertial and airplane
aerodynamic models will be exploited more extensively to improve aerodynamic
navigation.

Note that this discussion is independent of the actual model fusion technique used. In ideal
optimal estimation, state-level and signal-level are equivalent (exact constraints on
translational and rotational kinematic motion). Differences arise due to finite filter update
rates and for the tuned model fusion filter. In this case, the low-pass effect of orientation and
c.g. velocity updates can be beneficial.
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3.2 COVARIANCE-FREE INTEGRATION

The study of inertial and aerodynamic motion model characteristics, optimal model fusion
and the results for tuning of model fusion indicate that a static, covariance-free integration
can be implemented to combine the two models. The best tuning of a model fusion filter for
good robustness in a variable and potentially rough dynamic atmosphere environment
encountered in airplane applications largely neglects accurate atmosphere uncertainty
modeling (because it is unavailable). Instead, it profits from a mostly invariable and
complementary combination of inertial rotational and aerodynamic translational motion.

The distinctive qualities of low-cost inertial navigation aided by barometric altitude and 3-D
magnetometer and the high-quality airplane aerodynamic model are perfectly suited for
such a static complementary combination strategy. The potential performance gain in an
ideal horizontal model fusion architecture [11], with bidirectional aiding of the models for alll
motion degrees of freedom, is small due to the significant inequality of information content.
Furthermore, while realization of ideal model fusion ideally requires adaptive uncertainty
models of atmosphere statistics, a new method can be defined that solely relies on safe
assumptions on how to exclusively select complementary information from the two models.
Such a method works without a model fusion filter depending on unreliable or unknown
statistical models. Statistically weighted averaging of information is replaced by covariance-
free exclusive selection in a fixed implementation of complementary model combination.

To that end, means to feed information from aerodynamic to inertial model and vice versa
must be developed. The goal is to precisely define the lines between information used from
one or the other model in complementary integration. A significant advantage of a
covariance-free approach to inertial and aerodynamic motion model integration is the
unrestricted freedom of designing a mechanism to couple the two models.

The main steps to improve the airplane aerodynamic motion model for accurate first order
position propagation as studied in chapter 2 can be accomplished with a set of
aerodynamically desensitized constraints presented in the following subsection. These
constraints feed accurate reference information from the inertial motion model to the
aerodynamic motion model while avoiding disturbances to the flight dynamics.

The modification of the inerfial motion model presented in section 2.2.2.3 offers an
advantageous form for this integration strategy: It is already modified for better attitude
computation accuracy in vehicles with only temporary horizontal accelerations and ifs
performance can directly be improved by provision of reference information on horizontal
position and velocity. Because of the weak influence, the error statistics of reference
information can be ignored in the reduced covariance model for rotational and vertical
motion only used for integration of barometric altitude and 3-D magnetometer. Alternatively,
error loops could be used for integration of these measurements.

No online improvement of the aerodynamic model is attempted due to the lack of sensor
accuracy in GNSS-denied flight and in order to maintain the reliability of a certified high-
quality model.

The covariance-free approach to complementary integration of inerfial navigation and
aerodynamic motion model is presented in the following subsections. First, the details of
exchanging complementary information between the inertial and aerodynamic motion
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models are discussed. Because covariance information might be required as navigation
data output, an “add on” covariance model consistent with the proposed aerodynamic
navigation method will be derived. This covariance model can use the best available
statistical models for atmosphere uncertainty, but the computation of navigation state is not
affected. Finally, the proposed method will be fit into the existing navigation framework and
operational modes.
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3.2.1 Aerodynamically desensitized model constraints

The aerodynamic motion model must be continuously corrected using reference information
from the inertial motion model in order to achieve a number of goals. First, the divergent
lateral error modes must be damped effectively without affecting longitudinal motion.
Consequently, roll stabilization must be implemented in order to keep aerodynamic model
lateral motion aligned.

In addition, simulation of the aerodynamic model must be robust in turbulent atmosphere
with possibly intense measured pilot control input inconsistent with estimated wind. This leads
to large dynamic distortions of aerodynamic model kinematic states. Correction of
aerodynamic model attitude or orientation in general affects the fundamental degrees of
freedom of airplane flight dynamics — the aerodynamic angles of attack and sideslip. The
discussion in 2.3.3.2 revealed that due to the strong dynamics of aerodynamic flight and
especially static stability, only equilibrium corrections should be made to aerodynamic states
and aerodynamic model coefficients in order to preserve robustness in rough atmosphere.
This is generally not possible for lack of accurate models. However, unlike in the tuned model
fusion filter, where this problem is only evaded by a dynamical estimation of wind vector,
which allows keeping aerodynamic states mostly unchanged in the correction of kinematic
states, a more thorough solution is possible for the covariance-free method.

All corrections to the aerodynamic motion model must be implemented such that the
fundamental degrees of freedom of airplane flight dynamics remain unchanged. This means
that kinematic velocity and vehicle orientation may only be changed simultaneously while
keeping aerodynamic angles of attack and sideslip, airspeed and aerodynamic climb angle
constant. All of these quantities have a strong direct effect on aerodynamic forces and
moments, or a direct effect on the longitudinal equilibrium of forces (as is the case for the
aerodynamic climb angle). For given values of air density, aerodynamic bank angle, wind
and controlinputs, longitudinal stability and trim of the aerodynamic motion model prescribe
certain equilibrium values of airspeed, aerodynamic angle of attack and aerodynamic
climb angle (equivalently the longitudinal orientation of gravity vector). The aerodynamic
angle of sideslip is governed by the equilibrium of body yaw moments.

On the other hand, the values of aerodynamic course angle y, and aerodynamic bank
angle u, of the aerodynamic motion model may be corrected without concerns for
robustness because the dynamic response of airplane flight dynamics is weak. This allows for
aerodynamically desensitized corrections of aerodynamic motion model kinematic states.

Finally, translational propagation accuracy must be improved with error growth ideally close
to ideal wind drift. To achieve this, the remaining sources of first order growth in position error
must be addressed. Because no reference information on kinematic velocity vector or
course over ground is available in the low-cost GNSS-denied application, vehicle heading
constitutes the best available alternative. Again, correction of heading may perturb flight
dynamics with potentially severe consequences for filter stability and an aerodynamically
desensitized correction must implemented.

Height h and horizontal position (if a reference value is available) can be corrected with
negligible effect on flight dynamics, possibly with synchronous recalibration of the height
model for air density. Continuous correction of height is important for robust aerodynamic
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motion simulation in presence of large input or model errors that cause trim error in
aerodynamic climb angle and a large deviation in altitude for stationary horizontal flight.

The corrections to height h, aerodynamic course angle y, and aerodynamic bank angle iy,
while keeping y,. a4, B4 and V, unchanged, are sufficient to use the airplane aerodynamic
motion model as accurate, first-order propagation method. These aerodynamically
desensitized constraints will be described in detail in the following.

3.2.1.1 Aerodynamic orientation error

For the correction of aerodynamic course angle y, and aerodynamic bank angle uy, the
errors of these quantities must be determined. Given a reference value of vehicle orientation
of significantly better accuracy than the computed VDM orientation, errors in this reference
value can be neglected and approximate orientation error Euler angles @ = [§¢4, §¢,, 5p3]7
can be computed. As discussed in 2.2.2.1, these Euler angles describe the relative orientation
of platform frame p with respect to the NED frame n and per definition of the platform frame
are a parametrization of error of computed NED to body-fixed frame orientation.
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Figure 15: Errors in aerodynamic orientation angles
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In addition to NED to body-fixed frame orientation quaternion, rotation matrix and Euler
angles, the aerodynamic course, climb and bank angles ya,va, s iIn combination with
aerodynamic angles of attack and sideslip a4, 84 are a parametrization of vehicle
orientation. Figure 15 shows the coordinate frame axis tfransformations between the body-
fixed frame b and the NED, level aerodynamic and aerodynamic frames n, a;, a as well as
their computed counterparts p, a;, a. The consecutive axis rotations that transform one frame
into another are given by their equivalent orientation quaternion (c.f. appendix A.1).

Due to the equivalence of aerodynamic angle parametrization and e.g. the Euler orientation
angles parametrization of NED to body-fixed frame orientation, the contained orientation
errors are also equal. Consequently, corrections of the aerodynamic orientation angles can
be derived from the orientation error Euler angles &.
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Figure 16: Simplified aerodynamic orientation errors

Determining the errors in the aerodynamic angles is significantly simplified by the assumption
that the aerodynamic climb angle y, and the aerodynamic angles of attack and sideslip
au, B4 are error free, as required for aerodynamically desensitized correction of VDM
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orientation. With this, only the aerodynamic course angle y4, and the aerodynamic bank
angle u, contribute to the VDM orientation error. In addition, for flight condition with small
aerodynamic climb angle y,. these two rotations are about orthogonal axes in good
approximation. This allows studying the relationship of the orientation error Euler angles @ and
errors in computed aerodynamic course angle x4, and computed aerodynamic bank angle
[, separately. Figure 16 shows how errors in these two angles contribute to NED to platform
frame misalignment if they are the only source of aerodynamic orientation error.

3.2.1.2 Correction of aerodynamic bank angle p,

By correcting the VDM aerodynamic bank angle u, the divergent lateral motion of the
aerodynamic model can effectively be restrained. By inspection of case (1) shown in Figure
16, the error in computed aerodynamic bank angle can be determined as the misalignment
of computed level aerodynamic frame a; with respect to the true level aerodynamic frame
a;. The NED to level aerodynamic frame orientation quaternion is considered known without
error in the correction of aerodynamic bank angle:

COS(() |[COSOV7A -I

ﬁnal = 0 Ya
| sin(—)|
[sin ()] | §Z)J

The level aerodynamic frame is defined by rotation of the NED frame such that the x-axis is
aligned with the aerodynamic velocity vector. The y-axis remains in the horizontal plane. The
aerodynamic climb and course angles are

Y4 = asin (_(UDVDM _ UW'D))

”vnVDM - lelz

X4 = atanZ(vEVDM ~—VwE UNypy — UW,N)

Given a reference value of vehicle orientation zinbref' the error in computed aerodynamic
bank angle §u, = uy — i, can be extracted from the following orientation quaternion

[cos (%)1
I 2 /|
| %) |
2

0
L o |

Note that this quaternion product is equivalent to transformation of the phi angle orientation
error ¢ from NED frame to level aerodynamic frame coordinates ¢,, = R},q,¢,. Neglecting all

other orientation errors, the error in computed aerodynamic bank angle is the projection of
phi angle orientation error onto the direction of aerodynamic velocity:

- -1
qalal qnal qnbref qnbVDM qnal sin

Suy = elR;rLal¢n = v:gnd’n

Va
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It is desired to rotate the aerodynamic model only in direction of aerodynamic velocity
vector in order to leave vy, ,,,, Unchanged. This corresponds to a change in aerodynamic

bank angle u, of the aerodynamic motion model. Consequently, the aerodynamic model
orientation quaternion is updated as follows

EinbVDM - zinal ' zialdl ' Zir_u%l ' ﬁnbVDM (3_] ])

3.2.1.3 Correction of aerodynamic course angle y,

For correction of aerodynamic model heading, the aerodynamic model kinematic velocity
vector in NED frame coordinates must be changed simultaneously in order to keep vapy,p,,
unchanged. This corresponds to a change of aerodynamic course angle y,. The heading
correction is derived from the NED frame orientation error with respect to the reference

T re
I[cos %)]I i[cos ((%)i I[cos (%)i
Gnorer@rovon = o || ool Si”(_l)
|lsin<%>J |lsm(072)J| |[ 82 J

As shown for case (2) in Figure 16 only an error in the aerodynamic course angle is assumed
dxa = xa — Xa- Neglecting the first two elements of the vector of orientation error Euler angles
@, inspection of Figure 16 reveals that

Xa=06¢3+ Xa
and consequently §¢s = Sy .

The VDM orientation and velocity vector are updated as follows

cos (%)

- 0 -
Anbypy ~ 0 "dnbypy

o (59)]

(3-12)

Vnypu ~ Rp (vnVDM - UW) + vy

The rotation matrix R, that transforms the NED frame aerodynamic velocity vector can be
computed from the heading correction with equation (A-20):

Ry, = I +sin(8¢3) skew(ez) + (1 — cos(8¢p3))skew(es)?

The two correction schemes for lateral motion and heading do not affect aerodynamic
model aerodynamic angles of attack and sideslip and can therefore be applied even if the
reference orientation contains high frequency content inconsistent with the motion of
simulated VDM. This approach increases robustness of the aerodynamic navigation method
in all possible atmosphere conditions.
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3.2.1.4 Correction of position

Finally, vertical translational motion can be updated in a straight-forward way. Vertical
position is simply set to the reference value

hypm = href (3-13)

If areference value for 3-D position is available, a correction scheme equivalent to equation
(3-13) can be used for updating all components of aerodynamic model position.
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3.2.2 Integration with the modified inertial motion model

The reference values for vertical motion and orientation h,..; and Gnb res used for correction

of the aerodynamic motion model as described in the previous subbsection can be provided
by the modified inertial motion model presented in 2.2.2.3. 3-D magnetometer aiding and
barometric altitude damping of the vertical inertial channel are applied as discussed in 2.3.2.
The reference values for horizontal position and velocity in the modified inertial motion model
equation will be taken from the aerodynamic motion model.

The combined motion model can be summarized as follows. The aerodynamic motion model
(2-8) and (2-9) is propagated using

. — 76 "1 (g6 G
WDibypy = Ibb (Mb — Wibypy X (IbbwibVDM))

Znypy = S(Znypu Foyp @ibypu)
f —F—g—a')- X 186 — w, X (w; X rR¢)
bvom — ibypm b ibypm ibypm b
The external forces and moments in center of gravity G are computed using aerodynamic
motion model states, NED frame wind velocity vector, control inputs, model coefficients and
center of gravity position

G — G T RG
Mb - Z Mbi (hVDM' RnbVDM(vnVDM - an)ﬁ wibVDM’ Uy, €y, Ty )
Aero,Prop
G _ G T
Fb - z Fbi(hVDM' RnbVDM(vnVDM - an)ﬁ wibVDM’ Uy, C];)
Aero,Prop

The modified inertial motion model is propagated with

2
1:71’111\]5 = RanNSw_EbeMU + Yn(¢VDM'h1NS)

- (ZR’gn((pVDM: AVDM)wie + wen((;bVDM' hINS' UNns vEle)) X Unins
= 200(Vny5 ~ Vnypy)

. 1
qanNS = E (qanNS ’ wiblMU - win(¢VDM'AVDM' hINS' UNINS’ vEINS) ’ qnble)

The vertical component of the velocity vector differential equation is replaced by
Upns = fD,NS + Yo (dvom, h) — WNVEypy T WEVNy DM

Wy
w, = |WE

Wp

= 2R£Tl(¢VDM! AVDM)wie + Wen (¢VDMJ hINSl UNVDMI vEVDM)

hins = ~VUbns
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3.2.3 Add on covariance model

Although the model constraints presented in subsection 3.2.1 are independent of statistical
models for vehicle model and dynamic atmosphere uncertainty, an auxiliary covariance
model can be implemented if statistical models are available. The method behavior will
remain unchanged, preserving its good reliability, but additional uncertainty information can
be provided to the navigation data user.

Referring to the notation for extended Kalman filter states defined in appendix A.8, the model
constraints can be written as error state updates in a linearized form

6z;ys " 0zins 1 0z;ns |
Msei |8zypy| =T 'KiTMgey |8zypy | + T 'KoMyer |52y py (3-14)
a a a

The update matrices K; and K, depend on the specific correction scheme. The
transformation matrix T and its inverse will be defined accordingly. The rectangular binary
matrices M., and M,..r have one entry of 1 in each row and fullrank. M, is defined to select
the error states affecting aerodynamic motion from the augmented filter state vector. For
the updates defined in subsection 3.2.1, My, is defined such that

86Aypm

6z;ys 5vnVDM

Mser | 02vou :l ¢nVDM
@ l SV

M, selects all other error states. Consequently with size n of augmented filter state vector
and twelve VDM error states

MselMZef = 012><(n—12)
MrefMZel = 0(n—12)><12
And
MiofMyor + Mg Moy = I

The update step for the complete filter state vector equivalent to equation (3-14) can be
written as

+

8z;ps r ——_ ——_ 0zins ]
(SZVDM = (MrefMTef + MselT KlTMsel + MselT KZMref) 5ZVDM
a a

The augmented filter covariance matrix P = Var[[6zfys 6zhp, a’]"] can be updated with

MselP+M§el = T_l(KlTMselP_MZelTTK’{ + KZMrefPM;Ceng)T_T
(3-15)
MselP+MZ:ef = T_l(KlTMselP+M1Tef + KZMrefPM:ef)

The covariance MrefPMfef remains unchanged.
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With applicable values for the matrices K;, K, and T, equation (3-15) can be used to
consistently update the covariance matrix for aerodynamic navigation if one of the model
constraints presented in 3.2.1 is applied.

For the lateral error correction (3-11), a transformation of error states facilitates the definition
of a linearized error state update equation. Furthermore, by defining an error state for body-
fixed frame aerodynamic velocity vector 6vay,,,, . it is possible to exactly implement

invariance of the uncertainty of this error in the update in the covariance model.

Aerodynamic errors are transformed according to

5 [ 64ypy ]
ZINs SV
TMsel [5ZVDM] = 4) VDM
a ypm
6vWTl

With the psi angle orientation error in level aerodynamic frame coordinates

bx
d’al = RaanDMd’n = ¢y

¢,

The error of aerodynamic velocity vector in body-fixed frame coordinates can be written as

6vap =6 (Rz'lb (v, — "Wn)) = R£b5vn + Rrsz (Van X Pp) — R£b5VWn

With van 01 = Ynypy — Ywa the transformation matrix and its inverse are
I 0 0 0
T = [0 RZLbVDM RgbVDMSkeW(vAnVDM) _RzleDM]
[0 0 Rapm,p . 0
0 0 0 I
I 0 0 0
-1 = 0 Rupypy _Skew(vAnVDM)RZInVDM I
0 0 Rin, o 0
0 0 0 I

The error correction (3-11) corresponds to the following linearized update of fransformed error
state

[ SAypum ]+ [ SAypum ]_ _ SVabypu
I5vaVDM| _ I6vaVDM| 8ZINS _ [1 0 O]RaanDM¢n1NS
¢ s )} + KoMyer (Szypy| = -
I Qlypm I I AQlypm I a ¢yVDM
I SVyn Svyn bzvpm
SV

In the transformed error state space only the first element of VDM orientation error is reset
with the corresponding information from the inertial motion model. This consistently models
the covariance when the error in VDM aerodynamic bank angle is corrected using inertial
motion model reference orientation.
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Consequently, K; is the 12 x 12 identity matrix with exception of a zero in the row
corresponding to the first component of ¢alVDM. K, is a zero matrix with exception of the

entry

[1 0 OlRup,,,

in the row corresponding to the first component of ¢alVDM and the columns corresponding

fo Prins

The correction of aerodynamic model heading according to equation (3-12) can written as
update of tfransformed error states

8Aypy
6z;ys [6vaVDM]
TMS@l 6ZVDM = | ¢nVDM
a l 6vWTl J
with the transformation matrix
1 0 0 0
T = 0 Rz'leDM REbVDMSkeW(vAnVDM) _RﬁbVDM
0 0 1 0
0 0 0 |

Again, an error state for body-fixed frame aerodynamic velocity vector §vyy,,,,, is defined
and remains exactly constant in the update

[ 5A‘72M T
8Aypum ]+ [ 8Aypm ]_ 5z _ 5vaVDM
ov b ov b INS ¢ -
Abypm| _ . AbypMm +K, Mref 82y NKDM
¢nVDM J [ ¢nVDM J a o) VDM
SVyn Svyn bpns
L Svy, |

Only the vertical component of aerodynamic model phi orientation error ¢,,,,, is updated

to be equal to the error of the inertial model used as reference. K, is the 12 x 12 identity
matrix with exception of a zero in the row corresponding o ¢p,,,,,- K2 is a zero matrix with

exception of a one in the row corresponding fo ¢p,,,,, and the column corresponding to
¢D1NS'

Finally, for the update of aerodynamic model position, no transformation of error states is
required

T=1
With a redefinition of M, and M,..¢ so that

6z;ys

Mg, = 6Aypum

8zypym
a

the uncertainty of VDM height or position is reset with the corresponding value for the inertial
model providing the reference information.
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3.2.4 Wind information, aiding measurements and operational integration

The aerodynamic navigation method allows for integration of any slowly-varying wind vector
estimate, e.g. from a weather forecast model. For this, the wind vector data is simply used as
input to the aerodynamic model. Furthermore, the auxiliary covariance model can account
for uncertainty of aerodynamic model wind input if appropriate statistical information is
available. Although this will not influence the computed navigation data of the desensitized
method, it can be used to improve the covariance output provided to the navigation data
user.

Because the aerodynamic navigation method is designed to be a backup for flight
navigation when GNSS is denied, availability of GNSS for aiding of low-cost inertial navigation
is assumed as the normal operation condition. In this case, the modified inertial motion model
can be set to normal operation by choosing w = wg and conventional integrated INS/GNSS
navigation is used to provide navigation and covariance user data. To allow for smooth
transition to GNSS-denied mode if necessary, the aerodynamic model is already active and
updated with the desensitized constraints in 3.2.1 using INS/GNSS as reference. Because
accurate absolute position information is available, the aerodynamic model position can be
updated continuously to match the INS/GNSS reference position.

For initialization of the aerodynamic motion model, the airplane must be in air. This ensures
that the control inputs are valid. An increase in INS/GNSS height of several meters can be
used as trigger signal. Thanks to the high robustness of covariance-free aerodynamic
navigation with the desensitized constraints in 3.2.1, initialization is not critical. Reference
values for velocity, orientation and angular rates from INS/GNSS are sufficient.

Although the previous subsection presented a covariance model for the desensitized
aerodynamic navigation method, the primary requirement for this method is that unreliable
statistical models never influence navigation data output. Therefore, only the inertial motion
model with an accurate uncertainty model may be used to integrate auxiliary aiding
measurements and the aerodynamic motion model should never be corrected with state
estimation filter updates. This is the case for barometric altitude and 3-D magnetometer,
which are used as aiding measurement for the modified inertial model. If additionally an
airspeed measurement is available, it can be integrated with INS/GNSS but not with the
modified inertial model due to the modified horizontal velocities. Aiding the aerodynamic
motion model with airspeed would not only require reliable uncertainty models for
aerodynamic flight and dynamic atmosphere, but also require an online calibration of the
aerodynamic model to correct trim condition errors resulting in discrepancies of measured
and computed airspeed. Because modification of the aerodynamic model coefficients is
prohibitive in the operational navigation method, an airspeed measurement can only be
used in INS/GNSS mode.
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3.3 CONCLUSION

Covariance-free integration for combined inertial and aerodynamic flight navigation was
presented in the preceding section of this chapter. Optimal, and some suboptimal, state
estimation techniques have been favored in the known literature on navigation with vehicle
models. The detailed discussion of the fixed-wing aircraft flight navigation problem without
GNSS aiding has revealed that the best way of combining information from low-cost inertial
and high-quality airplane aerodynamic models is predefined by their complementary
characteristics and can be implemented even without accurate and reliable statistical
models of atmosphere processes.

The optimal model fusion techniques presented in the first section compute a best estimate
combination of the motion described by inertial model and simulated vehicle motion. This is
based on the plausible assumption that the truth processes approximated by the two motion
models are identical. As a consequence, the respective uncertainties of the two models to
be fused must be known with good statistical significance. Because of the great diversity of
possible atmospheric conditions influencing open-air aerodynamic flight, reliable and
accurate statistical uncertainty models are nearly impossible to define. For an optimal design
of the model fusion filter, the model fusion will likely be biased, with a significant reduction in
performance.

A second detrimental effect of inaccurate uncertainty models of dynamic atmosphere
effects and aerodynamic flight in rough atmosphere is that aerodynamic motion model
states may be estimated inconsistently: If the optimal filter is tuned assuming smooth
atmosphere condition, it will resolve observed noisy discrepancies between computed
inertial and aerodynamic motion mostly by updating motion model states, not wind states.
In turbulence, computed dynamic inertial and aerodynamic motion differ significantly.
Assuming a large correlation time coefficient for wind vector, the optimal filter makes large
inconsistent corrections to aerodynamic model aerodynamic angles of attack and sideslip.
Because of the strong dynamics of aerodynamic flight for fixed-wing aircraft, disturbing
aerodynamic angle of attack or aerodynamic angle of sideslip of the simulated motion can
cause large errors especially in orientation. Resulting linearization errors in covariance
propagation and filter updates may lead to failure of the optimal model fusion filter in rough
atmosphere conditions.

These issues with optimal model fusion for airplanes can partly be resolved with a tuned
model fusion method which is optimized using a detailed simulation tool, resulting in good
performance and robustness in simulation. Although the reliability of this funed method in a
real application is strictly limited by the extent to which the high fidelity simulation
environment needed for tuning can be verified, it points to a new solution. The filter tuning
does not rely on accurate statistical models of dynamic atmosphere uncertainties but
instead implements a prioritized fusion of model information based on complementary
characteristics.  Still, method robustness is not guaranteed but depends on tuning
quantitatively.

The proposed method therefore uses the airplane aerodynamic model for horizontal
translational propagation and the modified inertial model aided by barometric altitude and
3-D magnetometer for orientation and vertical motion in a covariance-free integration.
Unlike for the tuned model fusion method, this fully exploits complementary motion model
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characteristics and eliminates the need for tuning altogether. The best way to implement
GNSS-denied airplane flight navigation is an exclusive combination of optimal aerodynamic
translational and inertial rotational information offering comparable performance and
superior robustness.

Correction of the aerodynamic motion modelis implemented using a set of aerodynamically
desensitized constraints. These constraints allow to improve the position propagation
performance using inertial navigation reference information on vehicle orientation.
Furthermore, method robustness is maximized thanks to the isolation of sensitive flight
dynamics degrees of freedom.
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4 SYSTEM SIMULATION AND REAL DATA POST PROCESSING

Due to its complexity, the behavior of the aerodynamic navigation method can only
qualitatively be predicted based on theoretical considerations. For a more thorough
assessment, parts of or the complete navigation method must be studied in simulation or in
a test with real data.

The simulation approach requires all inputs to the method to be created using corresponding
process and measurement models. The generation of simulated input data consists of two
separate steps. First, actual vehicle motion is simulated, in this case airplane flight. The
simulated motion and all inputs (such as pilot controls and wind) are recorded and constitute
the tfruth reference for the definition of simulated navigation method output errors. The
second step of simulated navigation input generation uses the fruth data to compute
simulated measurement data of the sensors available to the navigation method.

Using simulated input data for the inertial motion model requires a high level of kinematic
consistency of accelerations and angular rates with the simulated tfrue motion. Only if the
simulated truth motion trajectory satisfies the inertial quality requirement it is possible to strictly
relate the output errors observed in simulation to errors in navigation [87]. High fidelity of the
simulation environment is required for the evaluation of aerodynamic flight navigation -
including models for dynamic atmosphere and flight dynamics.

Method evaluation in simulation allows controlling all input errors affecting the navigation
method. This includes the case where all errors are disabled. In this case, the navigation
method output should be near perfect in order to verify method implementation. Only after
this initial verification of simulation tool and navigation method implementation can input
errors be accounted for in order to predict navigation method behavior and accuracy in a
real application. This requires that all relevant input errors present in a real application are
included in the simulation. Furthermore, in order to attain meaningful results for method
behavior and performance, all error models must be sufficiently accurate and represent at
least the most influential error effects.

This simulation tool is used in two ways in this work. First, single simulation runs of the navigation
method under test using input data generated from a single tfruth motion trajectory allow for
a detailed assessment of method behavior. Monte Carlo evaluation (MCE) is based on a
large number of simulation runs and allows for a statistically significant assessment of method
performance.

Simulation evaluation is confinuously applied to the preliminary navigation methods
developed in this work. This not only affirms gradual improvement in performance but also is
crucial for identification of method shortcomings. The simulation tool is specifically designed
to account for a wide range of operational conditions for the navigation method. In many
cases for the preliminary methods, a lack of robustness in special operational conditions is
discovered.

The proposed aerodynamic navigation method is thoroughly evaluated with this simulation
tool with respect to accuracy and robustness. Due to the high fidelity of the simulation
framework and the large number of different missions and operational conditions considered
in the extensive Monte Carlo evaluation, a meaningful result is presented. In addition to
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Monte Carlo evaluation, the proposed aerodynamic navigation method is directly applied
to real flight data, without any modifications to the method. This demonstrates the maturity
of the new method.

4.1 SIMULATION FRAMEWORK

For practical judgement of improvement or deterioration of method performance related to
changes in its design, Monte Carlo evaluation (MCE) is employed throughout method
development. This section first presents the simulated truth flight data used in the assessment
of developed aerodynamic navigation methods. The following subsections describe the
flight simulation needed to create this data consisting of a flight autopilot for the
aerodynamic motion model and models for dynamic atmosphere processes. The last two
subsections discuss models for input error generation for sensor measurements and the
aerodynamic model coefficients.

4.1.1 Evaluation of preliminary flight navigation methods

For the evaluation of preliminary methods a different set of truth flight data files is used than
in the final assessment of performance and robustness in section 4.2. The set consists of 100
flights of 1h along roughly the same trajectory in space shown in Figure 17. Each single
simulated flight takes place in a uniqgue dynamic atmosphere. The flight data is generated
using the waypoint autopilot presented in the following subsection.

Due to different wind velocity and wind rates time histories, the simulated truth flight path,
rotational motion and control inputs vary for every run. Additionally, the length of the flight
path or the time when a certain maneuver is flown is not the same for any two Monte Carlo
runs. Besides precise evaluation of single simulation runs, only high level performance
measures can therefore be studied in ensemble results in Monte Carlo evaluation. Since it is
not infended to weight navigation performance requirements for specific instances along
the trajectory (e.g. dynamic/stationary), the total variability of the flight process may simply
be included when determining worst, typical or some percentile navigation performance
(e.g. horizontal position errors) over the flight time of 3600s.

For every simulation run of Monte Carlo evaluation, sensor errors and navigation initial guess
errors are generated randomly, including the errors of coefficients of the vehicle dynamics
model used for navigation as well as weight and balance errors. The details of how the
representative uncertainty model for all vehicle dynamics model information is generated
can be found in 4.1.5. It will be assumed that the VDM used for navigation is of good quality
achievable with state of the art methods of system identification.

Wind drift from integrating true wind velocity vector vy, for the complete flight duration of
3600s is ~12NM/h 2drms or better than 5.3NM /h for the best 50% and better than 2.1NM /h for
the best 10% for this set of flights. For comparison with the performance of the simulated
navigation methods, the statistics of integrated wind velocity error given an exact initial guess
at time t, = 900s are shown in Figure 19. The initial guess of wind velocity vector is set to
decay exponentially with a time constant of 400s.
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4.1.2 Trajectory generation

For Monte Carlo evaluation of aerodynamic flight navigation methods, a large number of
simulated flights is required, accounting for the variety of atmospheric conditions that affect
aerodynamic motion. For this reason a waypoint flight autopilot was developed and
presented in [87]. This tfrajectory generation tool allows to quickly create a large number of
simulated flights along a predefined waypoint path, under varying atmospheric conditions.

Generated flight paths
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Figure 20: Flight paths generated for kinematic bank angle limits of 60° and 30° (from [87])

The trajectory generation tool creates truth motion data with high kinematic consistency that
satisfies the inertial quality requirement [87]. Furthermore, the truth motion can be exactly
computed by the aerodynamic navigation method if model coefficient and generated
input errors are zero in an ideal simulation. In this work, only one aerodynamic motion model
is used as truth model in the trajectory generation process. Uncertainty in the aerodynamic
model available for the aerodynamic flight navigation method is accounted for by random
model coefficient errors, see section 4.1.5.

The waypoint autopilot tool is used to create the four different sets of flight data used for
Monte Carlo evaluation presented in sections 4.1.2, 4.1.5.1, 4.2.1 and 4.2.2. For evaluation of
the robustness of the desensitized aerodynamic navigation method in 4.2.2 an additional
truth flight trajectory is used created by manually piloted simulated flight.
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4.1.3 Dynamic atmosphere models

In this work a statistical model for local (i.e. at aircraft position) wind velocity vector written in
NED coordinates vy, is used. This model was developed in [88] based on airliner flight
measurement data below 10000ft. It has previously been used for similar purpose in [19] to
describe random variations of wind velocity vector during 1h of flight using GauB-Markov
statistical models for wind velocity in North and East directions. The implementation is based
on the model presented in [19]

1

VN = T VN + Ny
w
1

Vwg = — T_VWE + nyg
w

The correlation time coefficient is Ty, = 400s. ny,y and ny, g are driving white noise processes

with zero mean and noise density 5m/s - /Ti
w

A reduced value of 1m/s - JTZIS used in this work for simulated flight in calm atmosphere.
w

Additionally, the following model for the Down component of wind velocity vector is used in
this work

1
Vyp = T Vwp + Nwp
w

With again Ty, = 400s and a smaller noise density for the zero mean white noise process ny,p

of 1m/s - ’Ti or0.1m/s - ’Tifor simulated flight in calm atmosphere.
w w

The models above are used both for simulation purposes, i.e. to generate dynamic wind
velocity vector time histories in the generation process of aerodynamic flight trajectories, and
as basis for augmented filter state uncertainty models for use in model fusion (c.f. appendix
A.8 for filter augmentation). Additionally, simple trigonometric stochastic gust models are
used to generate a number of vertical and horizontal random discrete gusts in aerodynamic
flight simulations. Gust velocities are superimposed with dynamic wind velocity vector vy, in
trajectory generation.

To account for rough atmosphere conditions in the generation of aerodynamic flight
trajectories, the Dryden turbulence model is used in this work [89, 90]. The implementation
corresponds to MATLAB/Simulink® release 2014b block “Dryden Wind Turbulence Model (+q
+r)" [?1], according to specifications in standard [90]. Wind speed at 6m is 15m/s in direction
0° and turbulence scale length for medium and high altitudes is 533.4m. The Dryden
turbulence model outputs both high frequency wind velocity disturbances that will be
superimposed with vy, and wind angular rates wy,;, . Various levels of intensity and
corresponding probabilities of exceedance are defined [90, 91]. See Figure 46 and Figure 47
for examples of wind velocity vector and wind rates in severe turbulence simulated for
robustness evaluation of the proposed aerodynamic navigation method.

If not noted otherwise, the level of turbulence intensity in simulations of aerodynamic flight in
this work will vary randomly according to the specified statistics (probability of exceedance
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of a certain level of turbulence). This random variation is implemented by switching to higher
turbulence level when a first order GauBB-Markov process with a time correlation coefficient
of 500s exceeds a specified threshold value.

This implementation aims at generating short patches of strong turbulence during standard
1h simulations. That way, the variability of atmosphere conditions encountered in real
airplane flight is realistically accounted for. The continuous change of level of turbulence in
the simulations of aerodynamic flight in this work constitutes a challenge to aerodynamic
navigation methods. It furthermore avoids that the developed aerodynamic navigation
methods are specialized to work in a single atmospheric condition only.
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4.1.4 Sensor error models

For all sensor measurements available to the aerodynamic navigation method, error models
are implemented. This includes IMU consisting of accelerometer and gyroscope triads,
barometric altimeter, airspeed probe, 3-D magnetometer and control deflection and
throttle setting sensors.

White and flicker power-law noise [83] is used in all measurement models, see Figure 21 -
Figure 23. The influence of barometric altitude and airspeed measurement errors on the
desensitized aerodynamic navigation method is very limited. Therefore, approximate and
conservative error models were used for these sensor measurements. Although errors in the
aerodynamic model control inputs can have significant influence on navigation method
performance, this is specifically the case for constant or slowly-varying components of error.
Constant control input errors are equivalent to error in the aerodynamic model control
derivatives. Because this error is already accounted for by the aerodynamic coefficients
uncertainty model presented in 4.1.5., the control inputs measurement error model can be
considered insignificant.

The 3-D magnetometer error model is implemented according to the specifications for a
commercially available low-cost sensor, see Figure 23. Although errors in the magnetometer
measurement due to distortions in the environmental magnetic field can be significant and
threaten the robustness of optimal filter navigation methods, they are not accounted for in
simulation. For the desensitized aerodynamic navigation method, only accuracy is affected
by large magnetic field measurement errors. Because of the transient character of these
disturbances and the first order position error growth for the proposed navigation method,
the effect on accuracy is negligible.

The IMU measurement error model corresponds to the model described in [83]. IMU errors are
defined in three levels of quality, see Table 4. In simulation, only in-run errors are accounted
for by the inertial sensors measurement model. Initial errors (i.e. switch-on) are considered as
errors of navigation system initial guess only.

IMU Low quality Medium quality High quality

Gyro bias* and 10°/h, 0.3°/sqrt(h) 1°/h, 0.3°/sqrt(h) 0.1°/h, 0.1°/sqrt(h)
noise

SF and 1500ppm, Tmrad 500ppm, Tmrad 100ppm, 0.1Tmrad

misalignment
Accel. bias* and 100ug, 29ug/sart(Hz) | 100ug, 29ug/sart(Hz) | 10ug, 50ug/sart(Hz)
noise
SF and 1000ppm, 0.5mrad 500ppm, 0.5mrad 500ppm, 0.3mrad
misalignment
Table 4: IMU qualities. All values except noise are RMS of flicker noise processes. SF processes are low pass

filtered at 0.00THz.
* Total operational in run variability
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Figure 23: 3-D magnetometer measurement model
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4.1.5 Aerodynamic model uncertainty

In previous studies of navigation methods aided by models of fixed wing aircraft [9, 92, 93],
very basic means to account for the difference between true flight process and
computation model were applied. Uncertainty models are needed for this research in two
ways: first in the design of the estimation method, second to generate realistic errors in
evaluation of the method using a simulation tool. In the known literature, independent
random errors of the model coefficients were assumed for both method design and
simulation, with error magnitude taken as some percentage of true model coefficient value.

This work aims to make reliable statements on aerodynamic navigation accuracy and
robustness. Due to the infinite number of possible combinations of vehicle state and
atmosphere condition, a large number of tests is necessary and simulation for Monte Carlo
evaluation (MCE) becomes the only viable option to meaningfully assess method
performance. In order to account for the effect of model error on computed aerodynamic
and propulsion forces in a realistic way in simulation, two detailed uncertainty models for the
aerodynamic motion model, one optimistic and one conservative, are presented in this
subsection. In the definition of these uncertainty models, it is assumed that the vehicle
dynamics model is created using system identification methods based on flight test data
[48].

In case of system identification, where the model is estimated based on time histories of a
limited number of in-flight measurements, model coefficients are generally observed in
combinations. Consequently, errors in coefficient estimates are correlated, depending on
the choice of vehicle model parametrization (i.e. the definition of model coefficients). This
correlation of errors reflects that although the estimates of individual coefficients are not
accurate, the output of a function of coefficients might be estimated with better accuracy
in a certain flight envelope. This is for example the case for the estimate of aerodynamic
pitch moment derivative with respect to aerodynamic angle of attack ¢,,,. which is strongly
correlated with the aerodynamic lift aerodynamic angle of attack derivative €, . In
combination, the estimated sum of pitch moments in the center of gravity will very
accurately match the equilibrium observed in stationary flight at various aerodynamic
angles of attack in the flight test data. But individual coefficient estimation errors are larger
because they are never perfectly observed independently. Another example is the
correlation of errors of the coefficients of aerodynamic parasitic and induced drag for
estimation. Especially when using flight data at a single flight condition and lift coefficient ¢,
these coefficients will be estimated inaccurately. Still, in combination they will give a good
match to observed aerodynamic drag (which, again, is correlated with thrust model error).

This indicates the importance of an uncertainty model for the aerodynamic motion model
describing the coefficient error variance and their correlation: Not the individual model
coefficient error but rather the final flight dynamics error influences aerodynamic navigation
performance. The intention is to define an uncertainty model that will realistically represent
achievable model quality depending on the measurement accuracy of flight test
instrumentation used for system identification. Additional modeling error stems from the fact
that VDM is a low-order approximation of true flight. This type of error is more challenging to
realistically account for in method evaluation in simulation. The optimistic VDM uncertainty
model will assume all relevant effects are modeled and error only is caused by inaccurate
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coefficient estimates. The conservative VDM uncertainty model will also account for low-
order approximation error.

In the following, simulation is used to quantify model errors and covariance of errors for the
aerodynamic motion model. Simulating all steps of actual system identification would
provide the highest level of realism for VDM errors, but would be too complex. Some
challenges of real system identification can be easily bypassed in simulation: Choice of initial
guess and model parametrization, flight envelope grid and model parameter interpolation
that usually require system identification expertise, can be left out as will be described later.

Other difficulties can readily be avoided in simulatfion, such as those involved with data
recording, sensor calibration, airplane weight and balance, fuel consumption etc.

4.1.5.1 Simulation for uncertainty model generation

For the simulations used to define the aerodynamic motion uncertainty model, the highly
dynamic flight trajectory of approximately 1h duration shown in Figure 24 was created. The
single simulated flight data serves as basis for the generation of initial guess and
measurement data with random errors for 500 runs of system identification simulation.
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Figure 24: Dynamic flight path for system ID simulations (average kinematic velocity of 70m/s)

A very calm atmosphere was simulated throughout this single flight. The Dryden turbulence
model was deactivated, and low intensity dynamic wind velocity vector processes were
used (see 4.1.3). Consequently, only very weak atmospheric disturbance due to dynamic
wind velocity vector is present, see Figure 25. The dynamic flight covers a large part of the
flight envelope of a small general aviation airplane in cruise configuration, see Figure 26 and
Figure 27.
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To increase vehicle dynamics model coefficient observability, 2 -3 direct control input
maneuvers were included, c.f. Figure 28 and Figure 29. Additionally, at 3 instances time
varying angle of sideslip is commanded (c.f. Figure 30).
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Figure 27: Roll angle and turn rate
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4.1.5.2 Weight and balance uncertainty model

In this work, weight and balance is the set of all aircraft properties related to mass and mass
distribution. This is tfotal mass m, center of gravity location rR¢, moments of inertia I, Ly, 1,
and products of inertia Iy, I.,, 1,,,. Due to fuel consumption, all of these quantities change

during flight, related to reduction of fuel mass in the (wing) tanks.

To account for the imperfect knowledge of these quantities both in system identification and
aerodynamic navigation, a weight and balance uncertainty model is defined. Because an
exact fuel consumption model is used in all simulations, this uncertainty model is designed to
represent both initial and average uncertainty of weight and balance quantities.

Because variations in mass, center of gravity and inertia generally are not independent, but
all related to changes in mass distribution, a simple geometry of uncertain point masses is
defined in order to generate consistent errors. Using the standard deviations specified in
Table 5, a generic covariance matrix of errors §m, 8lyy , 61,y , 81,5, 61y, 8l1xy, 61,5, 6158, 617, 81F
can be computed.

For a suitable choice of point mass geometry, Cholesky decomposition [94] can be applied
to this covariance matrix in order to create consistent random weight and balance errors
from a multivariate random distribution.

Point Mass Location Accurate (System ID) Normal (Standard flight)
Center 3kg S5kg
Nose luggage 1kg S5kg
Aft luggage 2kg S5kg
Left wing fuel tank S5kg S5kg
Right wing fuel tank 3kg 10kg
Elevator 1lkg 1kg
Canopy 1kg 1lkg
Left wing tip lkg lkg
Left engine 3kg 3kg
Left landing gear 2kg 2kg

Table 5: Point mass uncertainties (standard deviation) for accurate and normal weight and balance uncertainty
model

For the simulations of aerodynamics and propulsion model parameter estimation in the
remainder of this subsection, an accurate weight and balance uncertainty model given by
small point mass uncertainties will be used for estimation filter design and generation of errors.

In all other simulations of aerodynamic flight navigation in this work, the weight and balance
uncertainty (and similarly simulated errors) will be assumed to be large, corresponding to the
last column in Table 5.
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4.1.5.3 Optimistic uncertainty model

This work is not concerned with development or application of actual system identification,
which is also not needed for creating an uncertainty model. Only the core part of actual
coefficient estimation is simulated, yet in a simplified way using the same extended Kalman
filter framework as used for navigation, augmented by model coefficient errors defined
below.

Everything else that constitutes the engineering challenges of real system identification is
considered in an abstract way only. For the optimistic uncertainty model an accurate model
parametrization is assumed that is valid for the complete flight envelope. It is assumed that
the resulting nonlinear estimation problem is mastered perfectly, e.g. by linearization, ideal
local model identification and ideal interpolation of locally valid linear models.

To create this uncertainty model, model parameter estimation with the augmented
navigation filter is conducted in simulation, but only significant linear aerodynamic and
propulsion coefficients are chosen to be estimated. All higher order effects present in the
truth model used for flight test trajectory generation are perfectly known.

For the computation of vehicle forces and moments the functions F# M¢ Fb and

b gero’ "D gero’ * b Prop
Mgmp are used, each implemented in the form

A _ A A
Fj Aero — Fy Aero,ideal + AF) Aero (4-1)

A

where Fi, Aero,ideal

is exactly the function used in the generation of the flight trajectory and
the “A-model” is implemented as function of the “A-coefficients” to be estimated

¢, = [ACpo, Ak, ACyo, ACy, ACLo, ACLq, ACio, AC g, ACy, AC,,,
ACig, ACmo, ACmay ACmg, ACmn, ACno, ACng, ACny, ACyy, ACre, (4-2)

AFx Prop,0’ AFx Prop,6t’ AMX Prop,61’ AMZProp,ST]

With this compute

AC, = ACy + AC,qa

ACy = ACyq + ACygp

ACp = ACpo + Ak(C, — Cr)? + (k + Ak)(2(Cy, — CLo)AC, + AC?)
AC; = ACyy + ACigB + ACy,p* + AC, 7™ + ACie€
ACp = ACpo + ACqa + ACyym
ACp = ACyg + ACypB + ACppp* + ACp, 7™ + ACys

Aerodynamic forces and moments

ACy
—AC,

—AC)
AFIquero = qSTefRZb ]

and
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bAC,
cAC,,
bAC,

G _ T
AIwaero - qsrefRab b pero

—Cp — AC)
+ 14 x AFf, —Ar§ X (quengb Cy + ACy D

—C, —AC,

And propulsion forces and moments (for a two-engine airplane)

AF,

XProp,Left = AR

XProp,0 + AR,

X Prop,8t 6T;L€ft

AF,

Prop,Right = AFXProp,O + AFxProp,zST(ST'Right

P —
AF), Prop — (AFXProp,Left + AFJCProp,Right) €

GP GPpR;
G — Left Right _ G P P
AMj Prop — AFXProza,Leftrb xXep+ AI;;CProp,Rightrb X e —Ary X (Fb Prop + AFbProp)

+AMypr o s, (87 1ert + O1 rigne)e1 + AM; b op.57 (871eft + 61 rignt)e€3

This “A-model” approach corresponds to system identification using ideal flight test dataq,
where perturbations of state and input from selected linearization point are small. Because
the estimation problem is significantly facilitated in this case, convergence of estimation
errors (4-2) can easily be achieved, see Figure 31. All true values of the "“A-coefficients” ¢, are
zeros.

Again, building a global model from multiple locally valid, linear models can be left to the
hypothetical real case of full system ID. The uncertainty model is given by the resulting
coefficient estimation errors of this simulation and the filter covariance matrix for seed 1 and
can be applied independent of reference state.

This opftimistic uncertainty model represents achievable aerodynamic motion model
accuracy from system identification considering flight test sensor and measurement errors,
wind estimation inaccuracy and limited coefficient observability. It is assumed that masterly
system identification would manage to include any relevant higher order effects in the VDM
and could identify them from interpolation of local linear models. This optimistic uncertainty
model will be used for assessment for best achievable accuracy and robustness of VDM
navigation.

Compared to previous ways to account for VDM error, this approach offers a higher level of
realism by considering some of the limitations of real system ID that do not depend on
engineering skills. The aerodynamic motion model quality is strongly related to flight
instrumentation accuracy available for system identification.
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Figure 31: Estimation of “A-model” coefficients ¢, (500 sample estimates and 3-a)
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4.1.5.4 Conservative uncertainty model

With less optimistic assumptions on how well the system ID is performed to create the
aerodynamic motion model used for navigation, a second uncertainty model can be
defined, used to evaluate conservative or worst-case performance.

Again, simplified system ID is simulated, but without ideal knowledge of higher order effects
present in the truth model used for test flight trajectory simulation. The estimation problem
becomes considerably more involved due to large model error.

The exact true model functions in equation (4-1) are replaced by linear approximations
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coefficients model (2-12). Linear propulsion forces and moments are computed consistent
with the corresponding “A-model”

FxProp,Left = FxProp,O + FxProp,(STdT:Left
FxProp,Right = FxProp,O + FxProp,ST(ST'Righf
FgProp = (FxProp,Left + FxProp,Right) €1
MgProp = FXProp,LeftrlGJPLeft xXept+ FXProp,RightrlG)PRight xXet+ MxProp,8T(6T,Left + 6T,Right)e1

+ MZprop,é‘T ((ST,Left + 5T,Right)e3

An approximate guess is used for the constant linear model coefficients. Because the
aerodynamic and propulsion models used in the generation of simulated flight paths include
significant complex or higher order effects not implemented in the linear model above (or
the “A-model” used for corrections), estimation convergence and accuracy are reduced.

This model of VDM uncertainty is less general than the optimistic one, since it depends on the
choice of model parameftrization. Yet it represents a conservative assumption on VDM
quality.
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4.2 METHOD EVALUATION IN MONTE CARLO SIMULATION

The proposed aerodynamic navigation method will be assessed in detail in this section.
Monte Carlo evaluation (MCE) is the essential tool for testing and verification of complex
navigation methods. Although theoretical analysis of inertial navigation has become a
powerful tool thanks to the expertise of generations of navigation engineers that could not
rely on modern computers (e.g. [51, 53, 54]), it is limited in the effects induced by dynamic
vehicle motion it can account for. For low-cost strapdown inertial technology this becomes
even more important — for example because of significant scale factor error. For integrated
navigation using state estimation techniques, the importance of dynamic vehicle motion for
system behavior and performance is further increased due to the dependence of error
observability and thus estimation on vehicle motion.

Aerodynamic navigation exhibits several qualities that mandate Monte Carlo evaluation.
Aerodynamic motion model error propagation is strongly coupled with vehicle dynamics
and analytical approaches are limited to simplified flight conditions (see 2.2.3). The same is
true for the modified inertial motion model where horizontal accelerations induce attitude
error. Attitude error in turn causes error in the observation of heading error using a 3-D
magnetometer measurement.

The advantages of Monte Carlo evaluation make it a perfect completion to the theoretical
studies in the previous chapters of this work: The complete navigation method software
implementation can be tested, without any simplifications. Realistic vehicle dynamic motion
can be simulated in full complexity and in combination with physical realizations of all errors.
That way, a large number of combinations of errors and dynamic motion conditions can be
evaluated accounting for nonlinearities and possible error rectification. In addition, Monte
Carlo evaluation of the navigation method in a realistic simulation framework can be used
to assess method robustness. Studying outliers in the results often gives hints to problems and
limited robustness of the method implementation under test.

The large number of simulation runs allows for a statistically significant evaluation of
navigation method performance. For a GNSS-denied flight navigation method, horizontal
position accuracy is decreasing over ftime and the corresponding statistic should
consequently be evaluated as a function of time. Neglecting the weak influence of
horizontal position error and initial wind estimate, the changes in the statistics are negligible
for a number of other error states, such as aerodynamic velocity vector in body-fixed frame
coordinates. Aerodynamic angle of attack and aerodynamic angle of sideslip are of special
interest for flight control applications and will be studied in detail with respect to their
accuracy.

Finally, the influence of inertial sensors and aerodynamic motion model quality on the
proposed aerodynamic navigation method performance will be assessed with Monte Carlo
simulations. The new navigation method design is based on a low-cost requirement, and the
penalty of using a low-cost IMU instead of more accurate inertfial sensor will be evaluated.
Similarly, the question whether the requirement for model quality may be relaxed will be
addressed.
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4.2.1 Position drift

For Monte Carlo evaluation of the final aerodynamic navigation method proposed in this
work, a different set of simulated flights is used as truth trajectory than for testing preliminary
methods earlier. Figure 32 shows the truth flight path and navigation result for one of a total
of 500 simulation runs. The test scenario consists of 15min of initial GNSS-aided navigation
followed by a fransition and 45min of GNSS-denied aerodynamic navigation.
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Figure 32: Flight path B for Monte Carlo evaluation and navigation trajectory for run 1
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Figure 33: Wind velocity and wind rates vectors (realization for seed 1)

Dynamic atmosphere, including random discrete gusts and turbulence with varying level of
intensity (see 4.1.3), is accounted for with a different time history for every simulation run (see
Figure 33 for an example). The waypoint autopilot used for fast generation of 500 flight
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trajectories along the same predefined waypoint path is infentionally configured to only
loosely and slowly counteract perturbations in flight condition and direction. This will
infroduce a great variability of simulated truth flight process due to random dynamic
atmosphere effects. Figure 34 shows the vertical flight path and airplane roll angle time
history for the truth trajectory of run 1. In both cases, the effect of strong turbulence (in this
simulation run e.g. at t = 1000s) and gusts (e.g. approximately at 500s) is easily discernible.

The results for ideal position drift due to unknown wind velocity only are shown in Figure 35.
For evaluation of these statistics, an exact initial guess is set to decay exponentially with a
time constant of 400s corresponding to the wind model time constant (see 4.1.3).
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Figure 34: WGS84 height and roll angle (realization for seed 1)
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Figure 35: Ideal position error due to wind drift with exact initial guess exponentially decaying with time constant
T = 400s
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Figure 37: Modified inertial model vertical orientation  Figure 38: Aerodynamic model airspeed error forrun 1
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Figure 39: Aerodynamic model aerodynamic angle of attack and angle of sideslip errors for run 1
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After selecting a different truth trajectory for every run of Monte Carlo simulation, each
perturbed by random atmosphere effects, the navigation state initial guess, sensor
measurement and model coefficient errors are accounted for. Model coefficient errors are
generated according to the optimistic uncertainty model defined in 4.1.5.3 and 4.1.5.2.
Consequently, the randomness of aerodynamic motion model error is accounted for by
varying the model used for navigation while the same truth model is used for generation of
all tfrajectories.

Navigation results for a single run of Monte Carlo simulation are shown in Figure 36 - Figure
39. Again, the influence of atmospheric disturbances is visible in the errors of aerodynamic
velocity magnitude and aerodynamic angles of attack and sideslip. For the aerodynamic
quantities, the change in covariance is due to a change in the wind uncertainty model.
Initially, during GNSS-aided navigation, it is optfimized for good wind velocity vector
estimation. During GNSS-denied aerodynamic navigation in the last 45min of simulation, the
wind uncertainty model has no influence on navigation method behavior and is simply set
to best represent drift due to slowly-varying wind vector.
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Figure 40: Position drift statistics for 500 runs

Figure 40 shows the statistics of position drift for the desensitized aerodynamic navigation
method in 500 Monte Carlo simulation runs. The statistics for ideal wind drift are also included
in this figure for comparison, demonstrating the good performance of the aerodynamic
position propagation model. Typical position drift performance (CEP) of GNSS-denied
aerodynamic flight navigation amounts to ~6.4NM/h. The 95% radial position accuracy (R95)
grows at ~13.21NM /h after loss of GNSS aiding.
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4.2.2 Velocity and attitude errors

Vertical position and velocity, attitfude and heading are computed by the modified inertial
navigation model aided by barometric altimeter and 3-D magnetometer. In the covariance-
free modelintegration based on complementary characteristics of inertial and aerodynamic
models, the influence of the aerodynamic motion model on modified inertial navigation is
very limited. Because the aerodynamic motion model has been found to be indifferent to
true vehicle heading, exhibit divergence in lateral motion and only weak stability in vertical
motion with possible large trim error, only position and horizontal velocities are used to
improve orientation propagation in inertial navigation.

Consequently, the errors in vertical motion and vehicle orientation are mostly determined by
errors in inertial, altimeter and magnetometer measurements in combination with errors due
to imperfect elimination of horizontal accelerations in the modified inertial model algorithm.
Although these are important performance parameters for the proposed aerodynamic
navigation method, they are not related to the original research of this work. A detailed
evaluation of these errors for a variety of different implementations of modified inertial
navigation and measurement errors (e.g. due to environmental disturbances) is therefore
omitted. Instead, position drift was evaluated in the previous subsection using the straight-
forward implementation of modified inertial navigation presented in 2.2.2.3 and sensor errors
of a 3-D magnetometer from 4.1.4, therefore giving an impression of achievable
performance. This could possibly be improved with more sophisticated elimination of
horizontal accelerations in attitude propagation or deteriorated in presence of strong
disturbances of the magnetic field measurement.
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Figure 41: Outlier-prone empirical cumulative distribution (ECDF) of airspeed errors (excess kurtosis of 5.3)
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Similarly, the aerodynamic quantities airspeed, angle of attack, angle of sideslip and
aerodynamic climb angle are solely determined by the aerodynamic motion model flight
dynamics. The aerodynamically desensitized model constraints proposed in 3.2.1 explicitly
leave these aerodynamic states unchanged in the complementary covariance-free
integration of inertial navigation and aerodynamic model. The aerodynamic errors are
determined by the quality of flight dynamics system identification and are very important for
the performance of the final aerodynamic navigation method. The optimistic aerodynamic
motion uncertainty model proposed in 4.1.5 allows to realistically evaluate the achievable
performance if system identification is accomplished very successfully and model quality is
only limited by the accuracy of flight test instrumentation and wind estimation. Besides noise-
like error, the uncertainty of control input to the aerodynamic motion model is also reflected
by model coefficient uncertainties, e.g. of the coefficient determining thrust at zero throttle.
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Figure 42: Outlier-porone empirical cumulative Figure 43: Outlier-prone empirical cumulative
distribution (ECDF) of aerodynamic angle of aftack disfribution (ECDF) of aerodynamic angle of sideslip
errors (excess kurtosis of 18.4) errors (excess kurtosis of 9.0)

Unlike for position, evaluation of empirical cumulative distribution functions (ECDFs) of errors
in airspeed and aerodynamic angles of attack and sideslip is possible assuming stationary
statistics. In addition to system errors, statistics shown in Figure 41, Figure 42 and Figure 43 in
addition depend on the choice of dynamic atmosphere models used in Monte Carlo
simulation, see 4.1.3. High excess values of kurtosis (airspeed 5.3, AOA 18.4 and AOSS 9.0) are
proof of the non-Gaussian statistics that are due to the intermittent nature of atmospheric
turbulence strongly affecting aerodynamic states.

In the covariance-free integration of inertial navigation and aerodynamic motion model
using the aerodynamically desensitized constraints, the aerodynamic states airspeed, angles
of aftack and sideslip and aerodynamic climb angle are directly determined by model
propagation. They are deliberately not corrected or updated otherwise — in contrast to

methods based on an optimal filter — which would represent an estimation of aerodynamic
states.
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4.2.3 Robustness in rough atmosphere

Rough atmosphere conditions have been identified as potential failure causes of
aerodynamic navigation methods. Especially state estimation based techniques suffer from
low robustness in turbulence depending on the choice of filter tuning parameters. The
proposed aerodynamic navigation method is designed to offer a significant improvement in
terms of robustness. In the following, the simulations used to assess method robustness and
the results for the proposed navigation method will be presented. Four different test cases of
1h duration each are used, one manually piloted flight in sustained moderate turbulence
and three realizations of autopiloted flight in severe turbulence for a total of 10% mission
time. Similarly to the Monte Carlo evaluation of method accuracy, GNSS-aiding is available
for the first 15min of flight, followed by 45min of GNSS-denied navigation.
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Figure 44: Flight path A for robustness evaluation (one of three realizations)

The three autopiloted flight trajectories are generated using the same list of waypoints as in
4.1.1, see Figure 44. The intensity of atmospheric turbulence smoothly changes according to
the implementation described in 4.1.3. Severe turbulence [90] is present for 6min. The
probability of exceedance for severe turbulence is specified as 107° in [90] representing an
extreme atmospheric condition. Figure 46 and Figure 47 show the strong fluctuations in wind
velocity and rates.

Monte Carlo evaluation is conducted using these three truth trajectories repeatedly in
combination with initial and input errors in a total of 100 simulation runs. Figure 48 shows the
horizontal navigation position errors for all runs. No single event of navigation failure occurred.

124



2500 40
] =
4 7 East
4 7— Down
30
2000;
] l g 10
E A z
ERE g
i i | ln ]
£0 # i ; \
1500 | I .
] [
4000~ T T T T T T T T T B L e e L s e e B B
0 500 1000 1500 2000 2500 3000 3500 4000 1100 1120 1140 1160 1180 1200 1220 1240 1260 1280 1300
Time [s] Time [s]
Figure 45: WGS84 height Figure 46: Sample wind velocity vector in severe
furbulence
E B2
20;
10—}
] l

Wind rates [deg/s]
o

3
\

Wl( m Iw ‘Ml'

g
TR B

8

1180 1182 1184 1188 1188 1190 192 1184 1198 1198 1200
Time [s]

Figure 47: Sample wind rates vector in severe turbulence

10* 10°

Figure 48: Horizontal position error in flight path A robustness test

System simulation and real data post processing 125



In addition to the simulated trajectories created with the waypoint autopilot tool described
in 4.1.2, one flight path of 1h duration was created by manually controlling the airplane
model, see Figure 49 and Figure 50. For lack of motion cueing, the control inputs do not
include any high frequency feedback of atmospheric disturbances. Moderate turbulence
(corresponding to a probability of exceedance of 1072 according to [90]) was present
throughout. Figure 51 and Figure 52 show samples of the turbulent wind velocity and wind
rates vectors.

35 3 25 2 15 -1 05 0 05 1
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Figure 49: Flight path B for robustness evaluation (manually piloted)

100 Monte Carlo runs are simulated using this fruth frajectory in combination with random
navigation initial and input errors in order to assess method robustness in sustained moderate
turbulence. Figure 53 shows the horizontal position errors for 100 runs. Due to the single
dynamic atmosphere truth in this Monte Carlo simulation, the results are clearly biased, which
is not an issue in this case. The proposed aerodynamic navigation method showed no
restrictions with respect to robustness in this simulation test.
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Figure 53: Horizontal position error in manually piloted flight path robustness test
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4.2.4 Effect of IMU and aerodynamic model quality on method performance

The aerodynamic navigation method developed in this work is designed to use a
combination of low-cost inertial sensors and high-quality aerodynamic motion model. The
efficiency of this design will be evaluated in the following by studying the influence of
increasing inertial sensor quality or reducing model quality. Although robustness properties of
the method are affected by reducing aerodynamic model quality as well, the principal
performance measure for this study is position drift.

Figure 54 shows 2drms horizontal accuracy for the proposed aerodynamic navigation
method in three Monte Carlo simulations (4.1.1) using the different IMU error models in Table
4.|dealinformation on wind velocity and rates is available throughout the simulation duration
of 3600s. For medium and high quality IMU error models, the horizontal error natural
frequency of the modified inerfial motion model (3.2.2) can be set to w = ws wWhile
maintaining damping with aerodynamic model velocities. Attitude errors and, as a
consequence of reduced 3-D magnetometer observation error, vertical orientation error are
significantly smaller than for the low quality IMU error model.
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Figure 54: Improvement of position drift with IMU  Figure 55: Improvement of position drift with IMU
quality, ideal wind information available quality, wind initially estimated

Although the aerodynamic motion model is unchanged and the accuracy of initial wind
vector estimation during availability of GNSS-aiding not important because of ideal wind
information, Figure 54 shows strong improvement of position accuracy with better IMU
quality. The improvement is due to the reduction of error in flight direction of the

aerodynamic motion model corrected in heading using inertial orientation in equation (3-
12).

The strong improvement is only observed in the ideal case with perfect wind information
available to the aerodynamic navigation method. Figure 55 shows the results of the same
comparison for Monte Carlo simulations with unknown wind velocity and rates using the
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models described in 4.1.3. Although accuracy of initial wind estimation depends on IMU
quality, the effect on position drift during GNSS-denied navigation is negligible.
Consequently, for the expected operation condition with standard unknown wind velocity,
the performance of the proposed aerodynamic navigation method is largely independent
of IMU quality.

Using the conservative (low quality) aerodynamic motion uncertainty model developed in
4.1.5.4 has only limited effect on method performance. Figure 56 shows 2drms horizontal
accuracy of aerodynamic navigation in Monte Carlo simulations using the optimistic and
conservative model uncertainty variants. Again, ideal wind information is available to the
navigation method in this simulatfion. In Monte Carlo simulations with unknown dynamic
atmosphere, no significant difference in performance is observable for different qualities of
the aerodynamic model.

4.5

Low quality aerodynamic model
High quality aerodynamic model
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Figure 56: Improvement of position drift with aerodynamic model quality

Consequently, a perfect model is not required for desensitized aerodynamic flight
navigation. Simple system identification may be acceptable for the aerodynamic
navigation method, if only nominal performance is of interest. It will be sufficient to replicate
longitudinal stationary flight for conventional operating flight conditions, which is most
important for position drift. But for reliable performance and robustness, a high quality model
with large flight envelope and verified accuracy is necessary. The presented aerodynamic
navigation method relies on similar benign flight dynamics of the aerodynamic model and
the true airplane for safe operation.
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4.3 POSTPROCESSING OF REAL FLIGHT DATA

Although the simulation tool used in this work was developed specifically to account for
limitations of the accuracy of aerodynamic navigation due to model error and input error,
not all effects can be modeled adequately. Therefore, a test of the aerodynamic navigation
method using real flight data is required to demonstrate that all challenges of a real-world
application can be mastered.

Most significantly, the real flight will exhibit a number of complex processes that could not be
considered in simulation. This includes airframe deformations and fuel slosh that dynamically
influence weight and balance properties. Because the aerodynamic navigation method is
applied to a different airplane than the one used for system identification flight testing,
scaling and offset of the measured control inputs or surface deflections and throttle setting
may differ. While this does not affect stability properties, it will cause error in the aerodynamic
model longitudinal trim condition determined by airspeed, climb angle and altitude.

Similarly, the position and orientation of the IMU may differ from the flight test system
instrumentation, which will affect the aerodynamic navigation method. Note that the
proposed aerodynamic navigation method reduces the influence of IMU and aerodynamic
model misalignment, because pitch is not corrected (see 3.2.1).
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Figure 57: Flight path of navigation method and reference data. GNSS-denied from 200s
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The true flight data used for method evaluation and the navigation flight path determined
with the proposed aerodynamic navigation method are shown in Figure 57. After 200s of
GNSS-aiding, the performance of GNSS-denied aerodynamic flight navigation is
demonstrated for 1800s. Barometric altitude, airspeed and control measurements are taken
from recorded real measurements directly. 3-D magnetometer measurements are simulated
using the recorded reference truth flight trajectory. IMU data is derived from recorded high-
quality data by application of the low-quality IMU error model (4.1.4).

In this case, an error in the aerodynamic motion model trim condition is observable:
Comparison of true and navigation flight path shown in Figure 57 indicates notficeable along-
track velocity error. Because it is independent of flight direction, it is not related to unknown
wind velocity vector. Instead, errors in the aerodynamic motion model lead to this navigation
error. Figure 61 indicates a bias of kinematic velocity in down direction throughout the test
duration corresponding to too small kinematic climb angle. This points to an error in the
longitudinal force model determined by thrust and drag. In addition, errors in the pitch
moment model can have a similar effect on aerodynamic model trim condition, but Figure
62 gives no indication of bias of angle of attack. Due to the frequent turns in true flight path,
the effect of error in longitudinal trim on position error cancels to some extent, as can be
seen especially in the north position error Figure 59.

Figure 58 and Figure 60 show typical performance of the modified inertial motion model with
low-cost sensors. North and east orientation error are clearly disturbed by the frequent
horizontal accelerations in true flight path, resulting in a bias in §¢,. Because this bias is
directly related to error in the heading error observation with a 3-D magnetometer (see
2.3.2.4), vertical orientation error §¢, contains significant bias too.

The effect of unknown wind velocity vector is clearly visible in the aerodynamic angle of
sideslip error computed assuming zero wind, see Figure 62. The computed error correlates
with changes in direction of flight.
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Figure 58: Modified inertial model attitude errors (versus reference)
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Figure 61: Aerodynamic model vertical velocity error
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Figure 62: Aerodynamic model angle of attack and angle of sideslip errors (versus kinematic reference)
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5 SYSTEM IMPROVEMENTS FOR FUTURE APPLICATIONS REQUIRING
CERTIFICATION

The accuracy of the proposed aerodynamic navigation method is primarily limited by drift
due to unknown wind velocity vector. Using the dynamic wind model based on airliner flight
measurement data published in [88] in Monte Carlo simulations for performance assessment,
the positioning performance of aerodynamic navigation is found to be not suitable for
continuous flight navigation. Aerodynamic navigation is better suited as a backup function
for low precision navigation allowing for safe contingency operation for a limited tfime,
leaving the area where GNSS is denied.

For example, performance specifications similar to RNAV 5 [95, 96] for enroute operations
could be addressed. EASA AMC 20-4A [95] specifies basic area navigation (RNAV 5)
performance for continental enroute operations in designated European airspace. For RNAV
5, the accuracy requirements might match the performance of the desensitized
aerodynamic navigation method for a reasonable duration of backup navigation
operation, as will be discussed later.

GNSS standalone operation with single hardware and RAIM can be considered as suitable
primary navigation source satisfactory for basic RNAV. Basic RNAV does not require
monitoring and alerting functions or redundant hardware, because comparison with other
navigation means by the pilots and change to alternate (ground based) navigation is
possible [95, 96]. Consequently, the proposed aerodynamic navigation method can be a
replacement of ground-based navigation aids (radio navigation) used as backup.

Loss of all navigation function is required improbable by EASA AMC 25-11 [97]. When ground
based navigation is not used as alternate to GNSS, simultaneous loss of GNSS standalone and
backup navigation function and misleading information should be considered a major
failure condition similar to RNAV 1 and RNAV 2 navigation specifications [26] and FAA
specifications for RNAV equipment in [98]. This corresponds to a probability of failure of
10~*/h or 107> /h for single/multi-engine small airplanes [99].

For the required probability of loss of all navigation function, redundant hardware is
mandatory if radio navigation is not used. With single GNSS standalone as primary and
aerodynamic navigation as backup function, this requirement could be met. In case of the
desensitized aerodynamic backup navigation method, additional hardware redundancy
can be implemented low-cost. Redundant computing boards can be used and redundant
input data for the aerodynamic motion model is available either form additional
measurement of stick and pedal position and engine RPM or from digital control commands
if available.

RNAV 5 operation requires a total system error (TSE) — a combination of error in determined
aircraft position and all other error sources that cause a deviation of actual from desired
flight path (flight technical error, FTE) — to be less than 5NM for 95% of flight time [95].
Accounting for a flight technical error of 1INM 95%, the required accuracy of computed
aircraft position is 4.9NM for 95% of flight fime.
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The applicability of the desensitized aerodynamic navigation method for RNAV 5 operations
will be studied in the following subsection. Shortcomings and possible future improvements
of the proposed method will be discussed.

5.1 IMPROVEMENT OF SYSTEM PERFORMANCE WITH WIND INFORMATION

The identified position accuracy requirement for RNAV 5 operations of 49NM 95% can be
met by the aerodynamic navigation method only for a limited time due to position drift. As
discussed in 4.2.4, the position drift evaluated in simulations is largely determined by wind drift
when using the realistic wind uncertainty model described in 4.1.3. Only if wind uncertainty is
reduced, e.g. by providing wind velocity information to the aerodynamic navigation
method, other system parameters such as IMU and aerodynamic model quality, will
influence position performance noticeably.
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Figure 63: Improvement of position drift with wind information

Figure 63 presents a comparison of position performance in Monte Carlo simulations (4.1.1)
using the dynamic wind vector model (4.1.3) and with various levels of wind information
available to the aerodynamic navigation method.

With on-board wind vector estimation (active while GNSS is still available), the results of
Monte Carlo simulation in this work indicate that GNSS-denied navigation can be continued
with RNAV 5 accuracy for approximately 900s. This result is based on the realistic wind
uncertainty model used in simulations. The performance would be badly affected by an
extreme change in wind vector while GNSS is denied. Consequently, only short-term RNAV 5
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operations are possible without external wind vector information, assuming the GNSS-aided
wind vector estimate remains valid for short fime intervals.

Figure 63 shows that providing only the slowly-varying components of dynamic wind vector
to the navigation method already has a significant impact on performance. For the used
atmospheric models, a low-frequency information of true wind velocity vector at aircraft
position with a time coefficient of less than 1000s enables the proposed low-cost desensitized
aerodynamic navigation method to sustain operations according to RNAV 5 accuracy
specifications for about 45min.

With accurate external low-pass wind information, aerodynamic navigation performance is
independent of the true low-frequency dynamic wind. Note that this is necessary to
implement an aerodynamic navigation method with reliable long-term performance,
considering the possibility of extreme atmosphere conditions. Otherwise, wind speeds of
26m/s with a probability of occurrence 10% at an altitude of 1km [86] would prohibit any use
of aerodynamic navigation as reliable source.

The results for aerodynamic navigation with external low-pass wind information are
independent of model assumptions for slowly-varying wind used in simulation. The effect of
high-pass dynamic wind (i.e. not contained in the wind information) on position performance
on the other hand is difficult to evaluate and the results are specific to the simulation models
used. For high-frequency content, the effect is limited due to aircraft inertia and the low-pass
behavior of flight dynamics and becomes negligible for high frequencies compared to other
system errors caused by magnetic measurement, IMU and model imperfections. The small
contribution of high frequency content to position uncertainty could be approximated with
an adaptive model observing increasing noise in accelerometer and gyroscope
measurement due to rough atmosphere. Development of reliable adaptive uncertainty
models for high-frequency atmospheric disturbances for prediction of position error statistics
should be considered for future research.

Note that the notion of low-frequency dynamic wind velocity at aircraft position relates to
strong correlation of a corresponding wind velocity vector field in space and time (i.e. with
large temporal and spatial correlation coefficients). This results in low-frequency content in
the wind velocity vector at aircraft position as the aircraft flies through the vector field at
limited speed.

The ideal requirement of a low-pass information of true wind velocity vector at aircraft
position can of course only approximately be met. The following subsection present ideas for
an extension of the desensitized aerodynamic navigation method with sources of
approximate wind information.
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5.2 WEATHER PREDICTION AND AIRCRAFT-TO-AIRCRAFT WEATHER INFORMATION

Aerodynamic flight navigation requires reliable information on low-frequency dynamic wind
vectorin order to achieve a performance improvement for enroute navigation. Furthermore,
this wind information source could provide uncertainty statistics for the determination of
allowable duration of GNSS-denied navigation.

Two possibilities of implementing this information source with available means can be
identified. First, radio weather prediction data may be used, such as the Rapid Refresh (RAP)
numerical weather model [100] which is run by the U.S. National Centers for Environmental
Prediction (NCEP). Due to the much stronger signal of radio tfransmission and the absence of
a ranging problem, it can be considered a much more reliable signal. For increased
reliability, the implementation of on-board weather prediction model fed by broadcast data
could be considered, but constant propagation of wind vector in rare interruptions of
transmission would be sufficient for limited durations.

A broadcast weather prediction is based on meteorological computations using a large
array of weather measurements distributed over the region (or globally). The availability of
reference data from measurement stations allows for evaluation of statistics of errors in the
spatial extrapolation and temporal prediction of especially low-frequency wind vector.

Secondly, for populated airspaces and routes, other airplanes may have passed the same
area shortly beforehand while GNSS-aiding was available to them, either because a local
GNSS-denial event has not yet occurred, or because loss of GNSS of the aircraft to be
navigated is due to on-board faults. In this case, performance of GNSS-denied aerodynamic
flight navigation of the succeeding airplane could be improved by aircraft-to-aircraft
communication of wind vector estimate. Due to limited distance in space and time, the error
in low-frequency wind velocity vector, which is strongly correlated in space and time, can
be expected to be small.

Because the routes and altitudes for the small airplanes under consideration in this work will
be mostly populated by similar small generation aircraft (away from airports), the sensor
quality on board of nearby aircraft is low. Consequently, the reliability of estimated wind
vector is anissue. Alternatively, the aircraft-to-aircraft approach could be implemented via
a data hub and centralized estimation. This allows to include data or estimations from airliners
with verified accurate on-board sensors in addition to small aircraft sensors and spatial
interpolation. Similar to above weather prediction model approach, this relies on the
estimation of an atmospheric wind velocity vector field parametrized in space and time and
becomes a meteorological problem.

Consequently, a very important task for future research is the assessment of meteorological
methods for use for aerodynamic navigation. Both the accurate estimation of low-frequency
wind velocity vector and the availability of reliable uncertainty statistics for this component
of dynamic wind would be key contributions to a potential future use of the desensitized
aerodynamic navigation method as backup in airplane operations.
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6 SUMMARY AND CONCLUSIONS

Throughout this work, special consideration is given to the unique qualities of the flight
dynamics of small general aviation airplanes and low-cost inertial navigation. The detailed
understanding of the complementary characteristics of these two motion models is the basis
for the presented solutions and innovations.

The main achievement of the presented work is twofold. First, a new way is found to reliably
integrate knowledge of airplane flight dynamics with inertial navigation even if severe
deficiencies in modeling of atmosphere processes and uncertainties exist. The innovation
overcomes a fundamental limitation of earlier optimal state estimation based techniques
affecting robustness of aerodynamic navigation for airplanes in rough atmosphere
conditions.

Second, a robust backup navigation function for GNSS-denied phases of flight is proposed,
which uses a high-quality model of airplane flight dynamics. This thesis thoroughly elaborates
in theory and experiment the capability of integrated navigation propagation models for
low-cost applications. The innovative covariance-free integration of inertial and
aerodynamic models is applied to small general aviation airplanes and tested rigorously. The
study comprises a new approach to realistically account for aerodynamic model errors in
simulation and an unadjusted application to real flight data in postprocessing.

New findings in system theory

In more detail, the presented research can be summarized as follows. Heading and airspeed
dead reckoning, inertial navigation and the aerodynamic motion model are studied and
compared with respect to their qualities for low-cost navigation propagation without GNSS
aiding. Unaided position propagation is discussed qualitatively and quantitatively for short
and long time intervals. Favorable error propagation characteristics with linear position drift
are identified for the dead reckoning method and the aerodynamic motion model under
the restriction that a specific lateral error mode must be damped. The advantages of
navigation propagation methods with linear position drift behavior for use with low-cost
sensors and high risk of femporary disturbances are explained.

Low-cost inertial navigation error propagation and observability with on-board aiding
measurements is discussed in detail. It is explained why low-cost inertial navigation is
preferable for aided estimation of rotational motion and vertical motion but suffers from
unfavorable error propagation for horizontal franslational motion in GNSS-denied phases. The
basic design of a combination of inertial navigation and aerodynamic motion model is
conceived, using inertial orientation computation to restrain aerodynamic motion lateral
divergence and improve the accuracy of translational aerodynamic motion. A modified
inertial motion model is developed which is optimized for rotational motion accuracy.

This work is the first dealing with the application of an airplane aerodynamic motion model
to navigation that identifies an important restriction in aiding the aerodynamic model with
auxiliary measurements in a navigation filter. The findings are explained with the specifics of
airplane flight dynamics. Changes in the aerodynamic degrees of freedom governing
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airplane aerodynamic flight, such as aerodynamic angle of sideslip, stimulate strong
dynamic modes especially affecting rotational motion. If corrections are not applied
consistently as equilibrium changes to all flight dynamics degrees of freedom and
aerodynamic model coefficients simultaneously — which would require very accurate filter
covariance models of aerodynamic flight and model uncertainty — the resulting dynamic
disturbances can cause large errors affecting filter linearization and potentially lead to filter
failure. Due to the intermittency of atmospheric disturbances, large wind estimation errors in
turbulence usually are not consistently described by filter covariance models. Consequently,
large erroneous corrections to aerodynamic degrees of freedom often occur if an estimation
filter with imperfect covariance models of atmosphere and model uncertainties is used to
update aerodynamic model kinematic states.

Nevertheless, it is shown that in standard conditions lateral error divergence can effectively
be mitigated by aiding attitude or heading errors. This allows using the aerodynamic motion
model for propagation of translational motion with linear position drift. How to robustly
correct aerodynamic model motion in challenging atmosphere conditions is addressed later
in section 2 of chapter 3.

Innovative integration architecture

A considerable part of the research related with this thesis dealt with inertial and
aerodynamic model fusion, which is favored in the available literature. In model fusion,
optimal state estimation techniques are employed assuming exact equivalence of tfruth
motion for both models. Others have demonstrated good results with model fusion for
multicopter applications which clearly proves the capability of model fusion for this type of
vehicle.

This thesis deals with small general aviation airplanes and shows that model fusion is not the
best choice for this specific application. This is discussed in detail and the problems
encountered with model fusion are related to the specifics of airplane aerodynamic flight in
an unprotected atmosphere environment. Due to the long flight durations and distances
travelled, short but extreme atmospheric disturbances must be expected. The intermittency
of these events makes both accurate on-board modeling of underlying processes
(prediction) and of related uncertainty statistics impossible. This modeling deficiency is a
significant drawback for the application of optimal state estimation techniques. A tuned
model fusion filter is developed which overcomes these problems to some extend and
provides the inspiration for further research in this work. But the fundamental drawbacks of
model fusion for airplanes persist and motivate the development of a new method.

The proposed covariance-free integration comprises three contributions. First, the
complementary integration strategy for low-cost inertial navigation and high-quality airplane
aerodynamic motion model is defined. This approach allows replacing statistically weighted
averaging of information by a predefined selection of only one of the models for any part of
vehicle motion, i.e. rotatfional, vertical and horizontal translational motion. Based on the
discussion of system theory, it applies the modified inertial motion model to provide
information about vertical motion and rotational motion. Inertial rotational motion is used to
restrain aerodynamic model lateral errors. In turn, the aerodynamic model, with damped
lateral error, provides accurate information on horizontal translational motion with first order
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position drift. With this integration strategy, the limitations of model fusion techniques due to
modeling deficiencies are successfully resolved. The covariance-free integration eliminates
the need for accurately modeling uncertainties of inertial and aerodynamic motion models
for combination of the two models.

The aerodynamically desensitized constraints for airplane aerodynamic motion successfully
solve the second problem of model fusion for airplanes, i.e. the restrictions in aiding the
aerodynamic model in dynamic atmosphere conditions. Based on the discussion of flight
dynamics of small general aviation airplanes, a set of correction schemes for the
aerodynamic model is proposed that allows integration with inertial navigation but fully
preserves robustness in rough atmosphere. The desensitized constraints are the
recommended choice to use airplane flight dynamics for navigation propagation with first
order position drift. At the same time, they are suited for robustly controlling the model in
phases of flight with GNSS-aiding.

An add-on covariance model is developed for use with the new covariance-free integration
method. It is fully consistent with the aerodynamically desensitized constraints and can be
used to provide auxiliary covariance information to the navigation data user. Covariance
modeling is fully separated from the computation of navigation state, for the reasons
elaborated earlier. Still, if models are available that are deemed appropriate for this purpose,
they can be used to compute covariance of aerodynamic navigation.

Capability demonstration and proposals for future development

To study the behavior of the new method under realistic conditions encountered in flight and
to demonstrate achievable performance for small general aviation airplanes, the thesis
comprises an extensive evaluation in simulation and experiment. An automatic trajectory
generation tool is used to generate reference data for a large variety of aerodynamic flight
scenarios. Special consideration is given to challenging atmosphere conditions, and realistic
models for dynamic wind vector and turbulence are implemented.

For system simulation, an innovative way to account for the uncertainties of aerodynamic
and propulsion forces and moments in aerodynamic navigationis proposed. Two uncertainty
models for aerodynamic motion are developed. One represents best achievable
aerodynamic model accuracy given a realistic quality of sensor instrumentation used for
system identification flight tests. It is assumed that all challenges related to system
identification are accomplished expertly, resulting in a high-quality model. A second,
conservative uncertainty model is defined for studying the effect of low aerodynamic model
quality on the performance of the proposed method.

The benefit of using Monte Carlo simulation for evaluation of the proposed method lies in the
large variety of scenarios of aerodynamic flight that are tested. The automatic trajectory
generation tool is used to create a database of more than 600 flights of 1h length, each
affected by a different fime history of dynamic atmosphere processes. This causes the
individual flights to differ significantly, especially in rotational motion and (auto-)pilot control
inputs. Furthermore, each flight is representative in a way that it accounts for the
intermittency of atmosphere conditions and includes smooth and tfurbulent phases in
random succession. The large number of reference flight data is then used to generate
realistic sensor measurement data time histories, again with different realizations for each
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simulation run. Consequently, the results of Monte Carlo evaluation presented in this thesis
provide a meaningful picture of method behavior in a large number of combinations of true
motion dynamics, measurement errors, atmosphere conditions and control inputs.

The work concludes with a comprehensive assessment of the GNSS-denied navigation
performance and robustness of the proposed method both using the Monte Carlo simulation
framework and a real flight data postprocessing test. The demonstrated robustness is good
without any failure in large collection of tfests. Position accuracy is close to ideal drift
determined by wind estimation error. These results validate the complementary integration
strategy for inertial and aerodynamic motion and the development of aerodynamically
desensitized constraints. The combination of meaningful Monte Carlo evaluation with good
results in a real data test encourages studying the application of the method in navigation
systems for small general aviation airplanes.

Nevertheless, the amount of empirical validation of the new navigation method is still low.
Therefore, future efforts of aerodynamic navigation development should address the
question how asimilar level of frust can be achieved as for conventional INS/GNSS integrated
navigation. A possible solution is to inifially include the aerodynamic navigation function as
“payload” only, i.e. without providing output to the pilot. That way, a large dataset of
recorded inputs and accurate reference data from INS/GNSS can be generated. Although
frue wind velocity vector will not be known, the data set can be used to simulate GNSS-
denied navigation and determine an empirical model of method accuracy. This model may
be considered as more reliable replacement for the covariance information computed with
the add-on model based on simple assumptions of dynamic atmosphere uncertainty.

Finally, the demonstrated performance of the method in its current form is compared with
the requirements of applicable navigation performance specifications. It is generally suitable
as replacement of classical ground based navigation aids for use as backup navigation
function for contingency operations with low navigation accuracy when GNSS is denied.
Without external wind information, GNSS-denied navigation could be continued with RNAV
5 accuracy for more than 10min, based on the results of Monte Carlo simulation presented
in section 4.2.1. For an airplane fravelling at 140kn, this corresponds to a distance travelled
of approximately 43km. This demonstrates that the requirement to be able to leave the area
where GNSS is denied safely by navigating with the backup system can be met.

In order to meet RNAV 5 horizontal position accuracy requirements for a longer time, the rate
of position drift must be limited. A possible extension of the new aerodynamic navigation
method is proposed that provides low-pass wind velocity vector information for improved
aerodynamic motion model position propagation. Possibilities how this wind information can
be broadcast or computed are discussed. Because of the crucial influence on accuracy
and reliability, the fransfer of meteorological knowledge to the field of aerodynamic
navigation and especially the integration of available weather information are identified as
further important aspects of future research.
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Appendix A

A.1 MATH

This appendix is based on the author’s Diploma thesis [39] and the references cited therein.

Basic functions

The function skew applied to a 3-D vectorv = [v1 vz v3]T

0 -v3 v,
skew(v) = [v X] = [ Vs 0 —vll (A-1)
-v, 1 0
computes the skew-symmetric matrix equivalent so that for another 3-D vector 1
v X | = skew(v)l (A-2)

Inversely, the function veck computes the vector equivalent of a skew-symmetric 3-D matrix.
Consequently,

veck(skew(v)) = v (A-3)
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Coordinate transformations of 3-D vectors

The direction cosine matrix (DCM) or rotation matrix Ry, € SO(3) (i.e. a 3-D orthogonal matrix
with determinant +1) is defined to transform the coordinates of a 3-D vector v from cartesian
frame b to cartesian frame a

v, = R0y (A'A')

The rotation matrix Ry, is related to other parameters of relative orientation of frame b with
respect to frame a as follows:

If frame b can be constructed by rotation of frame a about a single axis (1,2,3) with an angle
a,p. the two frames are aligned in this specific axis and R, is

1 0 0
1staxis: Ry, = Ri(agp) = [0 cos(agp) _Sin(aab)] (A-5)
0 sin(ag,) cos(agp)
cos(agp) 0 sin(agyy)
2nd axis: Ry, = Ry(agp) = [ 0 1 0 ] (A-6)
—sin(agp) 0 cos(agp)
cos(agp) —sin(ag,) 0
3rd axis: R, = Rz(agy) = [Sin(aab) cos(agp) 0] (A-7)
0 0 1

For general relative orientation of frame b with respect to frame a, a maximum of three
consecutive rotations about different axes is sufficient to construct frame b from frame a.
Obviously, a number of possibilities exists for selection and order of rotation axes. In this work,
the Euler angle definition is adopted. Frame a is first rotated about its 3rd axis with angle agy, 3.
then rotated about the 2nd axis of the frame constructed by the first single-axis rotation with
angle ag;, , and finally about the 1st axis of the frame constructed by the previous two single-
axis rotations with angle a,, ;. Consequently, the rotation matrix R,;, defined by these Euler
angles agp 1. agp2 AN agy 3 is

R,y = R([%ab1  @ab,2 Aap3]") = R; (aab,S)RZ (aab,z)Rl (aab,l) (A-8)
c0S(@qap3) €0S(@ap2)  cOS(@qp3) Sin(@ap ) Sin(@qap2) — c0S(@ap1) sin(@apz)  sin(@ap1) sin(@apz) + cos(@aps) cos(@aps) sin(@ap2)
= [cos(@qp2) sin(etaps)  cos(etap1) coS(@apz) + sin(@aps) sin(@gps) sin(@apz)  cos(etap1) sin(@aps) sin(@ap2) — cos(@qp s ) sin(@a,1)
—sin(agp;) cos(@qp2) sin(@ap1) c0s(@qp,1) cos(@ap2)

Specifically for a transformation from body-fixed frame b to NED frame n, the Euler angles are
(in this order) roll angle @,,,. pitch angle 0,,;,, and yaw angle (or Azimuth) ¥,;,. With this

Ry = R([Pnp Oy Pnpl]") (A-9)

As a generalization of the single-axis rotation matrices (A-5) through (A-7), frame b can be
constructed by rotation of frame a about an unit vector ng, |In,|| = 1 with an angle a,;,. The
corresponding rotation matrix R, will be derived in the following.

First, define a coordinate frame r with the first axis aligned with the vector of rotation
direction n,. l.e., the first basis vector of frame r written in coordinates of frame a is

Rl,e; =n, (A-10)
The second basis vector of frame r is chosen arbitrarily but orthogonal to the first, i.e.

RT e, = u,, with ||luy|l = 1,nTu, =0 (A-11)
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The third basis vector completes the orthonormal basis of frame r and therefore the
transformation matrix can be written as

Rl,=[Na Ua Mg XUg] (A-12)
With (nIn,)(ufu,) = 1 and (nfu,) = 0 it is straightforward to verify that
det(R,,) = det(R%,) = 1 (A-13)
Furthermore
RT,R,, =n ,nl +u,ul + (ng x uy))(ng xu )" =1 (A-14)

Which is evident by the fact that multiplication of RT,R,, with each of the three linear
independent vectors n,, u, and n, X u, resultsin the identical vector. This verifies that above
equation (A-12) defines a rotation matrix R,., € SO(3).

With equation (A-5), the rotation matrix R, given by rotation axis unit vector n, and angle
a,p becomes

R,y = R(ng, agp) = RZ:aRl (agp)Rrq
= ngnl + cos(ag,)u ul + sin(ag,)(n, X u)ul (A-15)
— sin(agp)u,(ng X ua)T + cos(agp) (Mg X uy)(n, X ua)T

Note that unit vector u, is chosen arbitrarily with nfu, = 0.

Equation (A-15) reveals the expected properties of R, €.9. Rypn, = n,. More interestingly,
on inspection of for the skew-symmetric part of R,

1
E (Rab - Rgb) = Sin(aab)(na X ua)ug - Sin(aab)ua(na X ua)T (A'] 6)
the following holds for every 3-D vector v, = R, [v1 V2 v3]T withvy,v,,v; ER
1
E(Rab - Rgb)va = sin(agp)Ng X Vg (A-17)

From the generality of vector v, it follows that equivalently the skew-symmetric part of
rotation matrix Ry, is

1
E(Rab — RY,) = sin(agp)skew(n,) (A-18)
With this, equation (A-15) becomes

R, = ngnl + cos(agy) (ugul + (ng X uy)(ng x uy)") + sin(agy,)skew(n,) (A-19)

For the unit vector n, the identity I — n n? + skew(n,)? = 0 holds and can be used together
with equation (A-14) to further simplify equation (A-19)

Ry, = I + sin(ag,)skew(n,) + (1 — cos(agp) )skew(ny)? (A-20)

This is the analytical expression of a rotation matrix corresponding to a rotation vector that
was derived in [101].
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Rotation matrix ordinary differential equation

In the following, the differential equation for a general rotation matrix R, will be derived.
Assume a frame a with constant orientation relative to frame ¢, R, = const., so that

Rcb = IE.,CE Ry + RcaRab (A-21)
=0
With equation (A-20)
. d
R, = Rcaa (I + sin(agp)skew(ng) + (1 — cos(agy) )skew(ng)?) (A-22)

Without loss of generality chose a,;, = 0 so that R, = R, and with equation (A-14)
Rcp = Repdqpskew(ng) (A-23)
Note that no assumption was made on how the rotation vector direction n, evolves in tfime.
Define the angular rates vector
Wep = dgpNg (A-24)
and the skew-symmetric matrix equivalent of w,
Q. = skew(wcp) = [@cp X] (A-25)

With this, (A-23) gives the differential equation of the rotation matrix R., for arbitrary
coordinate frames ¢ and a

Ry = RepQep (A'Qé)
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Quaternion orientation parametrization

In the following the basic concept of quaternion orientation parametrization is presented.
Define the hypercomplex space

H = {qo +iqs +jqz + kqs | 90,91,92,q3 € R} (A-27)

i, j and k are imaginary units with =jj=kk=-1, ij=k,jk=1iki=j and ji=—k, ik =
—j, kj = —i.

Multiplying two quaternions q,p € H gives

q-p=(qo+iq; +jg; +kqs3) - (po + ip1 +jp2 + kp3)
= qopo — (911 + 4202 + q3p3)
+i(qop1 + q1Po + 9203 — 43P2) (A-28)
+j(qop2 + q2P0 + q3P1 — q1P3)
+k(qops + 3P0 + G102 — q201)

The quaternion inverse with g-g—! = 1 € H is defined for g = 0 by
1

\./_1 . .
q = (9o —iq1 — jqz — kqs) A-29
Gtaita+eg T T T A7)

Define a function that fransforms a 3-D vector to a quaternion

RS Hx-X

T([x1, %0, x3]7) = ixg + jxp + kxs (A-30)

For a unit quaternion g € H; with H; = {qy +iq; +jq, +kqzs EH | g3 +q? +q2+q5=1}c H
and with above definitions the following transformations are equivalent

% . q-1

y=q-X-q
PN (A-31)
y=R(@)x

where X and y are the quaternion counterparts of 3-D vectors x and y and

@+ai—ai—a5  2(q192 — 9093) 2(91493 + 9092)
R@ =| 2(q1q92+q093) a6 —ai+4a5—a5 2(92q3 — qo41) (A-32)
2(9193 — q092) 2(92q93 + q0q1) a6 —ai — a5 +aq3

R(q) will be shown to be a rotation matrix R(q) € SO(3) in the following subsection.

With this, a quaternion gq,;, € H; can be used to describe the orientation of frame b with
respect to frame a, e.g.

Vo =qap Vp- Zic;l}
o (A-33)

Vg = R(Ziab)vb
With the rotation matrix

R,y = R(Gup) (A'34)
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Rotation vector and orientation quaternion

By comparing the rotation matrix R, given by a rotation axis unit vector n, and an angle
a,p from equation (A-20)

R,, = I + sin(agp)skew(n,) + (1 — cos(ozm,))skew(na)2 (A-35)

and the equivalent transformation matrix described by a unit quaternion q,, = qo + iq; +
Jjq, + kq; € H, from equation (A-32)

a§ —af — a3 — 43 0 0
R(@ap) = 0 a§ —ai — a3 — 43 0
0 0 a§ —af — a3 — a3
@ B 04 [0 —q3 g
+2|q1q2, @5 4295 +2q0| a3 O —fh] (A-36)
0193 9205 45 T4z O 0
q1]
=(q6—af —q5 —aDI+2|q2|[91 92 45]
qs]
+ 2qoskew([91 92 93]T)
we find for the skew-symmetric parts
sin(ag,)skew(n,) = 2qoskew([q91 92 q3]7)
= Sln(aab)na = 2qo [ ] (A_37)
With |In,|| = 1 it follows that
sin®(aqp) = 4q5(qf +q3 +q3) (A-38)
With g, € H; this gives
sin®(aqp) = 495 (1 - q§) (A-39)
With the solutions
Tab Xap . Tab . Xap
qo € {cos (T) , —COS (T) ,sin (T) , —sin (T)} (A-40)

Requiring that R(q,,) = I for a,;, = 0 reduces the solutions to q, = + cos(a,y,/2). Both are
valid: from the quadratic form of equation (A-32) follows that R(—q,,) = R(Gp)-

Choosing the solution g = cos(ag,/2) and with equation (A-37) and the sum identity
sin(a,y) = 2sin(agp/2)cos(a,y,/2) we get

qop = cos(aab/Z) + Sin(aab/z)ﬁa (A'4] )
where 1, is the quaternion counterpart of rotation axis unit vector n,.

With the sum identity cos(agy,) = cos?(agp/2) — sin?(a,,/2) and the half-angle formula
2sin?(agp/2) = 1 — cos(ayy) We find for the symmetric parts of equation (A-36)

q1
qz
qs

(a6 — i — g5 — a3 +2 (91 92 93] = cos(agp)] + (1 — cos(agy) )n nk (A-42)
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For the unit vector n, the identity I — n,n! + skew(n,)? = 0 holds and equation (A-42) can be
further simplified

q1
Ch] [91 92 93] =1+ (1 — cos(ayy) )skew(n,y)? (A-43)
as

(9§ —ai—q5—q3)I+2

This proves the equivalence of the symmetric parts of equations (A-35) and (A-36).

Consequently, the transformation matrix equivalent R(q,;,) of a unit quaternion q,;, given by
equation (A-32) and repeatedin (A-36) is arotation matrix R, € SO(3). The rotationis defined
by the rotation angle a,, and the rotation unit vector n, that can be extracted from
equations (A-41) and (A-35) (repeated from (A-20)).
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Orientation quaternion ordinary differential equation

In the following, the differential equation for a general orientation quaternion g, will be
derived. Assume a frame a with constant orientation relative to frame ¢, ., = const., so that
from equation (A-23)

Aeb = Geaab (A-44)
And the time derivative becomes
Gep = zcgﬁab + Gealan (A-45)
=0
With equation (A-41)
e = T (€03(@/2) + sinCargs /200,) (-4

Without loss of generality chose a,;, = 0 so that ., = q., and consequently

- 1_ .
qcp = chbaabna (A-47)

With the quaternion equivalent of the angular rates vector defined in equation (A-24) &, =
lwepx +jwepy + ke, the differential equation for orientation quaternion g, becomes

ﬁcb =>qcp* Dcp (A-48)
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A.2 TRANSLATIONAL MOTION OF A POINT MASS

This appendix is based on chapter 2 of the author’s Diploma thesis [39] and the references
cited therein.

Translational motion of a point mass

The classical mechanics of Newton conceptually understand the influence of gravitation as
a force comparable to conventional forces such as aerodynamic forces. The force acting
on a point mass min P is

Fi (P) = Fi,external (P) + Fi,gravitation(P) (A'49)

F; gravitation(P) = M " Giuniverse(P) is the gravitational force resulting from all other masses in
the universe. F; gxternai(P) is the sum of all other forces acting on the point mass. This force
can be ‘felt’ by an observer and is proportional to the specific force f,, measured by anideal
accelerometer aligned with the axes of frame b and located in point P:

Fiexternai(P) = mRypf(P) (A-50)

Furthermore, Newton's physics state the existence of an inertial reference frame i where the
translational motion of the point mass m in P is given by

1
ai:xi:EFi(P) (A-51)

If no other point is given as argument, x; is the vector from the center of frame i to P.

Although superseded by the theory of relativity, the errors from using classical mechanics
with equations (A-49) and (A-51) are exiremely small for velocities much smaller than the
speed of light and relatively small masses. Consequently, effects of relativity can be
neglected for applications in general aviation.

The gravitational force resulting from all other masses in the universe cannot be modeled.
Assuming Galilei-invariance, we can circumvent this problem by describing the motion of
point P in an earth centered and earth fixed (ECEF) frame with index e:

d2
a; = ai(Pe) + W (Riexe) (A'52)

When describing motion with respect to the earth’s center P,, only the difference of
gravitational acceleration due to masses in the universe in P, and P remains. This is referred
to as tidal acceleration. These differences are relatively small and can be neglected for most
aviation applications:

2

P(Riexe) =a; — ai(Pe) ~ Ribfb (P) + gi,earth(P) + gi,tidal (P: t) (A-53)

=0

Note that it has been assumed here that the point mass is negligible compared to earth’s
mass. The earthis in free fall: f,(P,) = 0.
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With the differential equation for direction cosine matrices (DCM) R, = Ry [wgap X] (A-26) the
relative acceleration can be written as

d? . .
E (Riexe) = Rie (ve + Zwie XV, + Wi X X, + Wi X (wie X xe)) (A'54)
=0

Where Euler acceleration due to earth angular acceleration can be neglected (w;, ~ const.
is a very good approximation).

Equating (A-53) and (A-54), translational motion in ECEF reference frame of a point mass m
in P can be calculated from inertial measurements in P as

i7€ ~ Rebfb(P) + Ye(P) - 2(‘”ie XV, (A'55)
A model for the gravity vector
Ye(P) = ge,earth(P) — Wi X (wie X xe) (A'Sé)

and the rate of earth rotation w;, = ||w|l, = 7292115 - 10~ 1rad /s must be provided (e.g. by
the WGS84 model, see [18] and following subsections of this appendix). By definitione,; |
e, ., therefore

0
Wi = Wip * [0] (A-57)
1
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Inertial navigation equations in ECEF frame

For a rigid body, the translational equation takes its simplest form if the location of the
accelerometer and the reference point of motion are identical: P, = P. In that case, the
translational equation is identical to the equation for a point mass (A-55):

Ve = Rebfb(P) + Ye(P) — 2w XV, (A'58)

In the context of rigid body motion, frame b is referred to as body-fixed frame. In the body-
fixed frame b, the rigid body constraints can be written as

xp(P) = 0 for any point P on the body (A-59)

The most general way to describe the body’s orientation is with the direction cosine matrix
(DCM) for tfransformation from b to ECEF frame R,,.

With R,, = RY, - R;, a different form of the differential equation for the DCM (A-26) can be
derived where the gyroscope measurement w;;, appears directly as input:
R., =R}, Ry, + Rl - Ry, = Rop 2y, — 2R,y (A-60)

Finally, the differential equation for the position in ECEF frame r, = r.(P) completes the set
of equations. The inerfial navigation system equations in ECEF frame and with DCM
orientation parametrization are

X, =V, (A-61)
i’e = Rebfb + Ve (xe) — 2w, XV, (A—62)
Rep = Rep D2y, — 2i. Ry (A-63)
With the IMU measurements
_[f»
Uiy = [w?b] (A-64)
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Inertial navigation equations in n-frame

In this section the inertial navigation equations are derived for position in WGS84 geodetic
coordinates, velocities in north-east-down directions (NED frame, index n) and orientation
parametrization with quaternions.

The NED frame is defined as north-indicating and locally tangential to the WGS84 ellipsoid
[18]. In this text the origin of the NED frame will always be located in the origin of the body-
fixed frame P,. Therefore it serves as rotational reference frame only. It is necessary to
explicitly define the velocity in n-frame as

v, = RL, v, (A-65)
The transformation from n to e frame is

cos(1) —sin(A) 0] [—Sin((p) 0 —cos((p)]

R., = [Sin(l) cos(A) 0f- 0 1 0
0 0 1l Lcos(¢) 0 =—sin(¢)
—sin(¢) cos(A) —sin(1) —cos(¢)cos(A) (A-66)
= l—sin(qﬁ) sin(A) cos(1) —cos(¢) sin(l)‘
cos(¢p) 0 —sin(¢)

With the geodetic latitude ¢ and the geodetic longitude 1 of point P,. The WGS84 position
of P, is defined by the triple (¢, 4, h)

A=[p,AA]T (A-67)
With the height above WGS84 reference ellipsoid h.

The position of P, in ECEF frame x, can be calculated from WGS84 coordinates with [16]

0 0 (N(¢) + h) cos(¢) cos(1)
x. = —R,., 0 — 0 =| (N(¢p) + h) cos(p) sin(A) (A-68)
N(p) +hl Le®N(¢) sin(¢p) ((1 — e®)N() + h) sin(¢)
. . a . .. az_bz
With the normal curvature radius N(¢) = Tiotenie and the first eccentricity e = / o [16].a

and b are the semi-major and semi-minor axis of the WGS84 ellipsoid respectively [18].

The differential equation for WGS84 position with NED velocities as input can be derived from

Un
v, = |Ve| = RL, v, (A-69)
Up
by inserting
0 0 0
Ve =X, = _Ren 0 — Rey 0 - 0 ]
, . . .
N@)+h N'@ + il Le2N'($)§ sin(@) (A-70)
— 0 _
e?N(¢) cos(¢) ¢
This gives
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0 0
v, = —[w.y X] 0 — U
N(¢)+hl IN'(p)p+h
cos(¢) _
—e? [ 0 |(N'(¢)sin(¢p) + N(¢) cos($))¢ (A-71)
—sin(¢)
0 IM (¢) cot(¢) d)]
= 0 X Wepy — 0
N(¢) +h h
With the meridian curvature radius M(¢) = % [16].

(1-e?sin? ¢p)2

The angular rate between NED and ECEF frame is defined by the differential equation for R,,,
as

0 sin(¢p) A — cos(¢p) A
wen = veck(RL,R,,) = veck |- sin(¢p) A 0 —cos(p) A| = - (A-72)
¢ cos(¢p) A 0 —sin(¢) A

w,, is referred to as transport rate. Rotating with w,,, the NED frame remains north indicating
and locally tangential to the WGS84 ellipsoid.

Inserting equation (A-72) in (A-71) and after some simplification of the terms including normal
and meridian curvature radii

(N(¢) + h)p — M(¢) cot(¢) ¢ M(¢) + h)¢
vy = (N(¢) + h) cos(¢) A = |(N(¢) + h) cos(¢) A (A-73)
—h —h

Equation (A-73) can be inverted to find the WGS84 position differential equations with
velocities in n-frame:

. vy

¢=u (p)+h

i= YE (A-74)
(N(¢) + h) cos()

h=—-vp

With equation (A-74) the transport rate w,,, becomes

Vg
N(¢p)+h
Un
wen(¢: h! Un, vE) =" M(¢) + h (A—75)
tan(¢) vg
[ N(¢) +hl

Deriving the differential equation for velocities in n-frame from the ECEF inertial navigation
equation (A-62) is straightforward:

d . .
¢ (Rgnve) = Rgnve + R’gnve (A—76)

i7n = d_
= —Wep XV, — Z(Rgnwie) X Vp + Rppfp + Yn(xe)
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The differential equation for the NED to body-fixed frame orientation quaternion is (A-48)
S 1
9np = Eqnb T Wpp (A-77)
Alternatively with @, = @;, — @1 - @y, - Gnp ONd preferable because IMU rate measurements
w;, explicitly appear as input:
S r_
dnp = E(qnb “@ip — Bip * Grp) (A-78)

Finally the full set of inertial navigation equations for WGS84 positions, NED-velocities and
orientation parametrization with quaternions is

- Un
*=u (@) +h
i= Ve (A-79)
W@+ eos@
h=—-vp
Vn = Ryp (ﬁnb) fp+ Yn((p: h) — (ZRgn((p' ) - Wi + wen(¢' h, vy, ve)) X Up (A'8O)
z.inb = %(ﬁnb “ @iy — Bin (D, A, h, v, Ve) - Grup) (A-81)

Like equations (A-61) through (A-63) these equations take the measurements of a body-fixed
IMU sensor as input. Because of this they are referred to as strapdown equations. If not
mentioned otherwise, the function s will refer to the strapdown equations (A-79) through (A-
81) in this text with

2, (t) = s(2,(0), fp (1), w3 () (A-82)
[ (O]

A(t)
h(t)
v, (0)
zinb (t)

Note that for ¢ - +Z and ¢ - - the derivative of geodetic longitude 1 and the transport

rate w,, (see equation (A-75)) go to «. Because the transport rate appears in the differential
equations for v,, and q,,;, as well, the complete set of inertial navigation system equations in
the form of equations (A-79) through (A-81) is invalid at the geographic poles. This

shorfcoming can be accepted in most cases (for ¢ < 84°: ﬁ(@ < 10). If all-world applicability

is required, ¢ and A differential equations can be substituted by a quaternion position
differential equation. Furthermore, north-indicating azimuth navigation must be given up in
vicinity of the geographic poles (c.f. polar navigation and world-wide capability in [20, 21]).

fz]

ib

z,(t) = and upyy(t) = (A-83)

The definition of the WGS84 ellipsoid as a geocentric equipotential ellipsoid [18] reduces the
effort of gravity modeling for small heights h to a 1D model

0
0

Ybp

Yn = (A-84)

where only the gravity component normal to the WGS84 ellipsoid is nonzero.
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On the ellipsoid surface this is in accordance with the exact closed form solution for the
gravity field of an equipotential ellipsoid provided by the formula of Somigliana

1+ k sin?(¢)

J1—e?sin%(¢p)

Yo (P, W)lh=0 = Ve (A-85)

with k =22 _ 1, see [18].
aYe

The equipotential ellipsoid is defined by semi-major axis a, ellipsoidal flattening f, angular
rate w;, and the earth’s gravitational constant GM . See [18] for the values of these
parameters and formulas for derived parameters used in Somigliana’s formula, such as semi-

minor axis b, first eccentricity e and gravity at equator and poles y, and y,,.
For heights below 30km a 2nd order approximation yields acceptable results

2 3
Yo, 1) = vo@, o+ (1 - = (1+ £ +m = 2f sin®($Dh + 12 (A-86)

lwiell*a*b

withm = , see [18].
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A.3 SPECIFIC FORCE LEVER ARM

This appendix is an more detailed version of the derivation found in section 2.6 of the author’s
Diploma thesis [39].

Starting with the relationship of kinematic velocity of navigation reference point R and
center of gravity G

vR = v§ + 7GR (A-87)

With the definition of NED kinematic velocity v, :== R%L,v, and the rigid body assumption #$k =
0 this becomes

vR = RT vG + Ry (wep X T5F) (A-88)
Taking the time derivative of above equation yields the desired differential equation of NED
velocity in navigation reference point R (again with ¢k = 0)

"75 = Rgn(wne X v?) + Rgni’g + Rnb (wnb X (web X rgR)) + Rnb (‘beb X rgR) (A'89)

The equations of motion of a point mass are valid in the center of gravity. Consequently, they
can be inserted for the time derivative of kinematic velocity of the center of gravity v$. The
first two terms on the right hand side become

Rgn(wne X vg) + Rgni)g = Rgn(wne X v?) + Rnbfg + Rgnyg - ZRgn(wie X vg) = 1'73 (A-90)
This gives

R =% + R, (wnb X (@ep X rgR)) + Rpp (@ep X 15) (A-91)

GR
Aan,1

The two last terms on the right hand side are caused by the lever arm between center of
gravity and navigation reference point rik. Additionally, when writing center of gravity NED
velocity time derivative v$ as function of navigation reference point velocity and computing
gravity vector in point R

(A-92)
1'7761 = Rnbfg + gTRl _AggR - Rgn(wie X (wie X Tg)) - Rgn((zwie + Renwen) X (Renvﬁ - i'gR))

~0
= Rnbfg + Yﬁ - (ZREnwie + wen) X vﬁ
+ Rgn (wie X (wie X (RebrgR))> + (ZR’gnwie + wen) X (Rnb (web X rgR))

GR
Aan’Z

With the lever arm corrections AagR = R%,( AaSR + AaS%) an equivalent specific force in

navigation reference point R can be defined that may consistently be used as input to the
strapdown equations to determine ¥R (i.e. corresponds to what anideal accelerometer triad
would measure at this point)

Ri= fS% + AagR (A-93)

162



Writing
8aS = Ry ((2RDy01) X (@ X T5F) + (Rhyw0en) X (@ X 75F) )
+RZ, (wl-e X (wie X (RebrgR))>
And inserting Aa$% and AaS% in Aag?
AafR = wip X (wep X TER) + (RT, i) X (wep X TER) + @y X THR
+ REp (wie X (wie X (RengR))>
Using the identity
Wiy X (Wep XTER) = —1ER X (W X Wep) — Wep X (TSR X wyy)
This becomes
AafR = (RT,w;e) X (wep X TER) + wep X (i X TER) + (@i X @ep) X TR + @0 X TR
+Rep (wie X (wie X (RengR)))
With
(RTywie) X (wep X TER) + wep X (i, X THR)
= (RDywie) X (@ep X T5F) + wep X ((RTywi) X T§F + wep x 15F)
= 0y X (@ep X T5F) + (03 — RGywie) X ((RDywic) X 57)
= wy X (i X157) — (RGywe) X ((Rgbwie) X rgR)
This simplifies to

GR _ GR GR g GR
Aab = wWip X (wib X1y ) + (wib X web) X1y + wyp X L

. . _ d T _ T . _ . .
With w;p = E(Rebwie + web) = Reb(wbe X (Die) F Wep = Wip X Wep + Wy fan”y
AagR = Wiy X (wib X rgR) + (bib X TgR

Note that only the change in gravitation was neglected AgéR ~ 0.

Appendix
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(A-95)

(A-96)

(A-97)

(A-98)

(A-99)

(A-
100)
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A.4 RIGID BODY EQUATIONS OF ROTATIONAL MOTION

This appendix is based on chapter 4 of the author’s Diploma thesis [39].

With equations (A-49) and (A-51) for an infinitesimal mass dm located in Py,
AF; externat(Pam) = dm - a;(Pam) — dF; gravitation Pam) (A-101)
With the vector from center of gravity G to Py, 4x;(Py)
X (Pam) = 4%;(Pam) + x,(G) (A-102)
and
a;(Pam) = 4%;(Pam) + a;(G) (A-103)

the integral of infinitesimal moments in G due to infinitesimal external forces is

Mi,sum = j Axi(Pdm) X dFi,external(Pdm)
m (A-104)
= | 4xi(Pam) X A5:(Pam)am — [ 3, (Pam)dm X (@4(6) + g:(6))

m

where variations of gravitational acceleration over the body have been neglected, i.e.
9:(Pam) = g:(G). From the definition of the center of gravity G and with equation (A-102) it
follows that

f Ax;(Pgp)dm = f xX;(Pg)dm —mx;(G) =0 (A-1095)

m

Furthermore with the direction cosine matrix differential equation (A-26) and for a constant
mass distribution and with rigid body constraints (A-59)

) a2 d?R,, .
Ax;(Pgm) = W(Axb(Pdm)) = T;Axb(Pdm) = (RipR:ip2ip + Rip Qi) A%, (Pyyy)  (A-106)

This gives

My sum = R}, f Ax;(Pgm) X A%;(Pgm)dm
m (A-107)
= f skeW(Axb(Pdm))(.Qib.Qib +Oib)Axb(Pdm)dm

m

This result can be simplified using the Jacobi identity v, X (v, X v3) + v, X (v3 X V1) +
v3 X (v; Xv,) = 0. For two skew symmetric matrices 2, = skew(v,) and 2, = skew(v;) this
cross product identity gives

!21!22 = .{22.{21 + SkeW(ﬂlvz) = !22!21 - SkeW(ﬂzvl) (A‘] 08)
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Using this identity

skew(Axb (Pdm))gibﬂibeb (Pam)
= (.QibSkeW(Axb (Pdm)) - SkeW(.Qibeb (Pdm))) ﬂibeb (Pdm) (A'] 09)
= 0, skew(Axy, (Pygyn) ) Rip Axy, (Pyyn)

Now with ‘Qibeb(Pdm) = —SkeW(Axb(Pdm))wib and 'Qibeb(Pdm) = —SkeW(Axb(Pdm))(bib

Mb,sum = — f SkeW(Axb(Pdm))SkBW(Axb(Pdm))dm d’ib

m (A-110)
-0 f skew(Axy, (Pym))skew(4x, (Pym))dm @y,
m
Define the inertia matrix
Iy, == — j skew(Axy, (Pygm))skew(4x,(Pym))dm (A-111)
m

For Ax,(Pgy) = [Ax Ay Az]T thisis

Ay? + Az* —AxAy —AxAz
I, = f —AxAdy  Ax?+Az?  —AyAz |dm (A-112)
m | —AxAz —AyAz  Ax? + Ay?

Inserting (A-111) in (A-110) gives the equation of rotational motion in body-fixed frame
My sum = Ipp@ip + Liplpp 04 (A-113)

Note that with I, = const. this is equivalent to

d
M;sum = RipMp ym = E(Riblbbwib) (A-114)
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A.5 ERROR STATE PROPAGATION MODEL FOR HEADING AND AIRSPEED DEAD RECKONING

In the perturbation analysis of equation (2-2)

1
0
: [M R + hE ]
Ay = | (¢Wcss4,0) WGS84 . |v1_m (A—] ]5)
0
l (N (¢I§/G$84,0) + hﬁ/GSSLL) cos (¢§/6584)J

errors in the computation of normal and meridian radii can be neglected because they
correspond to scale factor errors on the order of 1ppm for distances travelled in north
direction of ~100km (and radii computed at initial position). Similarly, errors in height of up to
5500m (approximately 18000ft) will cause a scale factor error in position propagation of less
than 1000ppm which is still negligibly small.

Notice that integration of longitude becomes very sensitive to latitude errors at high latitudes.
10km north position error infroduce a scale factor error in longitude propagation of 15000ppm
at 85° latitude and 2600ppm at 60° latitude respectively. For the applications considered
here, this effect may be dismissed from analysis as well.

Consequently, horizontal position error approximately evolves in time according to

! 1
0
. M(pR + hR
SAy = (¢WG534,0) WGS84 , P (A—] 16)
0
l (N (¢§/G$84,0) + hII5V6584) cos (¢I§VGSB4)J

with the error in horizontal kinematic velocity vector due to errors in wind and aerodynamic
horizontal velocity vectors

6171.1” = 517HWn + (SvHATl (A‘] ]7)

The error in aerodynamic velocity vector is due to errors in computed body-frame
orientation, errors in computed aerodynamic angles of attack and sideslip and due to error
in measured airspeed:

Svyy, = 6(Ran£b [Va O O]T)
= (I=RnpR}p)Ryg[Va 0 0] (A-118)
+ Rnb (Rgbkab - I)Rgb [VA 0 O]T + Rnal [6VA 0 O]T

With the linearization of orientation error I — R,,,RY, =~ [¥ x] (see section 2.2.2.1) accounting
for small heading erroronly ¥ = [0 0 §%,,]T and with

cos(xs) —sin(x,) O][ cos(ya) O sin(y,)
sin(y,)  cos(xa) 0] [ 0 1 0
0 0 1ll=sin(y,) 0 cos(ya)

Ry, = (A-119)

the first term in equation (A-118) can be approximated with ¥,,;, = x, and cos(y,) = 1 as

. VA —Sin(’Pnb)
(I = RupR%p)Rng, | O | = | cos(Wpy) |6%nnVa (A-120)
0 0
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Note that in this simplification horizontal orientation error (i.e. errorin computed roll and pitch)
is assumed negligible.

Because no information is available on aerodynamic angles of attack and sideslip, the
values of computed aerodynamic angles of attack and sideslip are zero and R, = I. This
gives approximately for small frue aerodynamic angles of attack and sideslip

V4 0
(Rgbﬁab — I)ﬁgb [VA 0 O]T |0 X]| ay
0 —Ba
With
cos(W,,) —sin(¥,,) O1[ cos(6np) 0 sin(6,p)1[1 0 0
Ry, = |sin(¥,,) cos(¥,p) 0[ 0 1 0 ”0 cos(Ppp)  —sin(Ppyp)
0 o ll-sin0) 0 cos@p)ll0 sin(@y,)  cos(@py)

this gives for the second term in equation (A-118)

Rnb(RgbRab_I)ﬁgb[VA 0 O]T

—sin(¥Wy) cos(¥np) 0
~ | cos(Wpp) |(coS(Pnp) Ba — sin(Ppp) @)V, + ( sin(¥,,;,) | sin(@np) + [0 cos(@nb))
0 0 1

+ (sin(@pp) Ba + cos(Ppp) @x)Vy
In the following, elevation angle is assumed small and sin(6,;) = 0.

Finally, the last term becomes with ¥,,, = x4 and cos(y,) = 1 and equation (A-119)

cos(¥p) 0
Rnal [6VA 0 O]T ~ Sin(llunb) 6VA — [ 0 “6VA
0 sin(y,)

The horizontal aerodynamic velocity error becomes approximately

cos(‘}’nb)] 4 [— sin(Wpp)

6nan ~ | i) cosrS) | 8% + cos(@u) Ba = sin(@up) an)Vy  (A121)

Inserting equations (A-121) and (A-117) in (A-116) gives equation (2-16).

Elevation angle 0,,;,, aerodynamic angles of attack and sideslip and errors error in computed
roll and pitch are assumed small. Furthermore, ¥,,,, = y4 and cos(y,) = 1 is assumed.

Appendix 167



A.6 PERTURBATION ERROR DIFFERENTIAL EQUATIONS

This appendix is based on section 3.2 of the author’s Diploma thesis [39] and the references
cited therein.

The navigation state error vector is defined in this work as
d¢
51
6z :=| Sh (A-122)
év,

¢

with the equivalence of Euler angle parametrization of orientation error @ and the phi angle
orientation error ¢,, in linear approximation

b=

the linear differential equations for phi angle orientation error ¢,, can be derived by
linearizing the nonlinear differential equations for the orientation error Euler angles &.

The starting point is the following system of nonlinear navigation error differential equations

166 b9
| SA | A=2
| 6k |= h— E (A-123)
|l6an| Dy, — VUp
P |[5¢1, 8¢5, 664]

The derivatives of computed values are calculated from known equations and using known
parameters and input values only.

For the translation states with equation (A-82) accounting for accelerometer measurement
error §f,, and gravity model error §y,,:

Uy + Ovy 10 Uy
sh| | M(p +6¢p) + h + Sh | | M@ +h |
lm = by + v - by (A-124)
Sh (N(¢ +6¢) +h+6h)-cos(p+6¢)| |(N(P)+h):cosd

—0p — 8vp —Up

and
Sijn = Rnb(fb + 6fb) - ﬁnbfb + ?n($ + 5¢, E + 6h) + 6Yn - ?n((f)l Fl)
— (2R%,($ + 8¢, 1+ 52) e
+ Wen (@ + 8¢, 7+ 61, Dy + 60y, D + 6v,) ) X (D + 60,
+ (2RL,(6 Davie + Wen( B 9, 92)) X By

(A-125)
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Errors in the approximation of Earth’s angular rate are negligible and not considered here,
i.e. (/‘\)ie = Wie-

The differential equation for the error in the NED to body-fixed rotation matrix R,,;, R, can be
derived by accounting for gyroscope measurement error Sw;;, = w?, — @;, and equations (A-
25)-(A-26)
d BT b pT BT h  PT BT B BT
&(Rannb) = RypRyp + RypRyp = Ryp Ry, + Ry Ry pRyp Ryp
) skew—symmetric
= Ry, R}, — Ry R, R, RY, (A-126)
= (Rnll\gib : -Qianll)Rzlb :RanZ;b (Rnbizib - -Qianb)Rz;b
= Ranz;b (Rnb(sgibRZ;b + -Qin) - gianbRILb

The differential equation for the orientation error Euler angles @ is obtained by differentiation
of equation (2-21)

_ R32
8¢, = atan (R )

33
6¢, = asin(—R3q) (A-127)

_ Ry4
8¢z = atan (R )

11

with the elements R;; of R = R, R},;,. This gives

_cos(69) . sin(6¢) .
N7 cos(89) 3% cos(89) 33
8¢ = —————R A-128
()bE C05(819) 31 ( )
cos(8Y) . sin(6y) .
D= —7aaoy R21— Ryq
cos(89) cos(89)
To simplify derivation write R = Rskew(w,) — skew(w,)R. This gives
R11 = Rypwi, — R13w1,y + Ry, — R31w2,y
Ry = Rywq, — R23w1,y —Ry1wz; + Ry
R31 = R3w1; — R33wqy + Ri1w3y — Ry1wp (A-129)
R3; = =R31w1; + R3301x + Ri2w3y — Rypwy
R33 = R31w1y — R301 5 + Ri3wyy — Ryzwy i

The elements of R =R,,RY, can be determined with equation (A-8) by setting R =
R3(8¢D)R2(5¢E)R1(8¢N)'

Finally, with equations (A-128) and (A-129), the nonlinear differential equation of orientation
error Euler angles @ is
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Sy = w1 + sin(8¢y) tan(5¢,) w1,y +cos(6¢y) tan(§¢;) wy ,

cos(6¢3) sin(6¢3)

B cos(8¢,) W2~ cos(6¢y) “2y

8¢y = cos(5¢1) w1,y — SIN(81) W1, + SIN(E¢P3) Wy, — cOS(Eh3) Wy (A-130)
sm(6¢1) COS(5¢1)
3 = cos(5¢ ) cos(5¢2) — tan(8¢;) cos(6¢3) wy
— tan(&pz) Sm(5¢3) Woy = Waz
with

@1 = Rupbwyy, + (¢, 4,1, 0y, ) (A-131)

Wy = Wi (P + 5P, A+ 64,k + 8h, Dy + Svy,, D + 6v,)

The nonlinear error differential equations (A-124), (A-125) and (A-130) are linearized with

respect fo navigation state errors §z and sensor and model errors 8s = [5f}, Sw?), Syﬂ]T in the
stationary point 6z = 0,6s = 0.

The linearized differential equation of WGS84 position errors is

where M(¢) = a(1—e)3 and N(¢) =

(1-e?sin2 ¢)2

0

(v(#) + f;l)) - cos(4)

o
—

-1

__ by dM __
s¢] | (M(@)+h) dely M(@)+h)  |rog
si|=[(M($) + ) tan() 7, B Dy [gﬁl
6h (N(®) + h)* cos() (N(@) +h)* - cos()
! 0 0 0 | (A-132)
[% 0 0
|M($) +h
+I 1 6vy,

\ﬁ (see [16] and appendix A.2). Because a

position error in north direction of 1m translates to an error in meridian curvature radius of

dM
~1lcm or less, —

M\ h

M+h

can generally be neglected. Furthermore — =

N+h

M
N+h

h M
s trm=w (-

—) —+0 (2—22) ~ % equals 1 for low altitudes compared to Earth’s radius with a maximum error

N/ N

of the order of e? = 0.00669438. Therefore it is valid to simplify the linearization as

170

8¢
SA|=
Sh

0
tan(@) Ug
(N((ﬁ) + fz) cos(¢")
0

_
|M(¢3) +h
*

(e)

I
L o

Un
(M(¢) +h)* 8¢
R 1
(N() + R)* - cos(@)| "
0 0 i (A-133)
0 0 ]I
1 0 |6vn
(N((ﬁ) + fl) . cos((ﬁ) |
0 1]



The linearized differential equation for NED-velocity errors is with
(Rnb - knb)fb = (Rnbﬁzb - I)Rnbfb

and equation (2-19)
0
. S 0

6V, = skew(P) R, f1, + RupSfp +|dy,
do |- ~ “dh |5 =

Ldg 1y dhlgn (A-134)

o A dw
- <25kew(5¢e2)R£n(¢, ) wi +— 5z> X U,
dz" |(@ ko505

— skew (ZRZn($, j.)(l)ie + wen((ﬁ’ E; ﬁN: ﬁE)) 517n

0

0
8+ |dyy |5h+6¥a

The gradients of normal gravity yp in height and geodetic latitude can be derived from
equations (A-85) and (A-86).

The approximation of Earth’s angular rate in NED frame is

o Wie cos((f))
R, (¢, D)w;e = 0 (A-135)
—Wie sin(qb)
The approximated transport rate is
Ug
N(¢)+h
U Uy
Wen (P, R, Dy, D) = IO (A-136)
_ tan(¢p)v'g
N(®) +

It follows that
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d®en 5z
dz" 1(37,05.96)
[ ___ % 4N 0 —_ s
(N() + ﬁ)zddd’ é (N($) +h)’ 50
Dy M Dy
= AN N2 A 0 —=
(M(®) +h)* 415 (M($) +B)’ [gﬁl
tan(qb) Ug dN tan((ﬁ) )
o —~"J7E
(N () +~)° d¢|¢ (N(¢) + h) cos?($) (N() + h)°
0 N(¢3) = O
1 (A-137)
+ _M(é) Th 0 ov,
__tan(§)
N(p)+h
_9—52 1 r dvg :
(N($) +h) N($) +h
Uy Svy
) (M(3) +5) HTM@) +h
Lt @ || @)
(N(@) +h)cos?(4) (N(p)+h) | L N(@)+h.

Again the derivatives of normal and meridian curvature radii have been neglected. As
mentioned above, errors in the curvature radii due to position error are very smaill.

The linearization can then be rewritten as

¥y ~ [Rpp, 03,1365

o~ D2 tan($p) 2 DnDp
-2 ie 0 = 5 = Ny
w coS(¢)UE (N(¢)+h)cosz(¢) (N(¢)+h)2 (M(¢)+h)2
N PN UNUE _ tan(é) ﬁNﬁE + ﬁEﬁD 6¢
e D ne B Gy B eas@) (V@) + i) i
drp (D)5 dyp 07 02
| Tt 2w | =t
gl sin($) % dhlar * (N() +R)" (M()+h)’]
Up o e (R _Ztan((f)) g Dy ] (A-138)
M(@)+h 2aiesin(®) = 5 7 M)+ h
o tan(@) Dg tan(P) oy + p - D s
+| 2w, sin(Pp) + Nk —N(dg) 7 2w, cos(Pp) + NG TR v,
20y R 20
— M(é) n ii —Za)l-e COS(¢) - W 0
0 fo —fe
_fD 0 fN d’n
fe —fn O
Finally, the orientation error Euler angles @ differential equations are linearized:
0 me wlnE 6¢1 dw
3 D N in
P = Rypéwyp + | ~Winp me [6¢2 R 0z (A-]39)
&)\in,E me (¢ th'vE)
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with

~

[ ~ v
Wie cos(d)) + N(TE-I-ﬁ
Win(P, h, Oy, U5) = RE@ie + By = _M(g—h (A-140)
. tan(p)D
|~@iesin(4) - N(dg) )+ q
and
dwin 5z = d(Ranie) dwen 5
dzT (®,h.0n,9E) z= dz” 3 dzT (3.7.9n.95) z
[ _ Ve ] Svg
~ 2 =~ =
N($) +h N(@) +h
—w;e sin(P) 5¢ ( ({;‘3, ) ((I?UN (A-141)
= 0 + — 2 +| =
e con() 4 NI A MOk
gy tan(@)0s o1 | ten()ove
| (N(@) +R)cos?(@) T (N(@)+h) | L N(@)+h
The linearized differential equation can be rewritten as
& ~ [0, Ry, 05]6s
[ L g Ug
Wie sm(d)) —
(N() + 1)
Dy 5¢p
+ 0 0 ————— 5,1‘
(M(®) +R)’ Lh
~ Vg tan(gB) g
ie + ~ 7 ~ 0 ——
_0) COS((lb) (N(¢) + h) COSZ(¢) (N(é\) + E)Z_
1 —
TN@) R
1 (A-142)
O R
tan(¢)
0 = =
N($)+h
R tan(P) vz Dy
0 wie st(®) =y R M(g) +h
(R tan(q,'A)) Ug . . Vg &
+wie sm(q,')) + N((f)) 7 0 Wie cos(d)) + N(qlA)) %
Dy - Pg
- —M(J)) 7 —Wie cos(q,’)) — —N((ﬁ) 7 0
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A.7 INTEGRATED INS/GNSS NAVIGATION

This appendix is based on section 3.2 of the author’s Diploma thesis [39] and the references
cited therein.

Eguations of a conventional Kalman filter for uncorrelated measurements

A Kalman-Filter has the property of an optimal state estimator for systems described by the
following non-deterministic state-space equation (see also [68-70, 102])

z(t) = Apz(t) + Bysy (A-143)
with the systems state vector z and the vector of noisy inputs s
S = u(tk) + Wi (A-] 44)

u(t) is the vector-valued function of deterministic system inputs that is sampled at discrete
time points t,. wy is the vector of unbiased and white Gaussian system- or process-noise
averaged over time interval [ty, ti+1]. The covariance matrix of the system noise wy, is defined
by

Qi = E[sisk] = E[w,wi] (A-145)

The system and input matrices A, = A(t,) and B, = B(t,) and the input vector s, are

constant for t, <t < t,,4. In that interval, both the fundamental solution of the homogenous

system and a particular solution from variation of constants can be found for the state-space
equation (A-143)

27

Zjpq = eMkleri=ti) z, 4 f

=@y, tr

1
eAk(ti+1=7) By s

(A-146)

=Ty
See [103] and other textbooks.
In equation (A-146), we define the fime-discrete propagation matrix @, and the time-

discrete control matrix I',. For many applications it is admissible to tfruncate 3 order and
higher order terms in the matrix exponential series expansion:

. 2 (tk+1 - tk)z A-14
(pk =TI+ Ak(tk+1 - tk) +Ak# ( 7)

troq — tr)?
(tk+1 k)>Bk

. (A-148)

ry= <I(tk+1 — ty) + Ay
The Filter state vector of a fime-discrete Kalman-Filter corresponds to the sampled state
vector of the linear system (A-143)
X = Zy (A—] 49)

The motivation for data fusion is to find from an a priori estimate of the filter state x;; and a
related measurement y; at time t, a new (a posteriori) estimate xj that —if all filter inputs are
unbiased - is unbiased, i.e. E[x}{] = x;, and is optimal in the sense of smallest (co-)variance.
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In general, the filter state estimate (a priori or a posteriori) X, is a vector. The corresponding
covariance matrix is defined for a priori and a posteriori estimates of x;, as
Py = E[(Xx — E[X DXy — E[’J\\Tk])T] (A-150)

Note that since E[xy] = E[x}]=x,. P, can also be interpreted as covariance of the
estimation error 6x = X — x with E[6x] = 0. Also note that the Kalman-Filter only provides a
modeled approximation of the true filter state covariance given in equation (A-150). For
better readability this will not be indicated by notation in the following.

For vector-valued filter state estimates, smallest covariance is not an unambiguous
requirement. One possible mathematical definition of this optimality that results in a rather
easy derivation of the filter equations is

trace(Py) — min! (A-151)

Measurement vector y, and filter state vector x are not necessarily identical in size or
meaning. With a tfransformation matrix H;, from filter state space to measurement space the
linear combination of a priori estimate and measurement is

xf = X + Ky - (7% — Hyxy) (A-152)

The term in brackets is termed innovation. It vanishes for ideal (error-free) measurements and
estimates. The Kalman-Gain matrix K, corresponds to the relative weight of the
measurement y, in the update, i.e. equation (A-152) is identical to

x; = (I - Kka)x; + Kkj’\); (A']53)

The Kalman-Gain is chosen such that the optimality requirement (A-151) is satisfied. Assuming
measurement and a priori filter state estimate are independent and with equation (A-153),
the a posteriori filter estimate covariance matrix becomes

Pf = —-KH)P,(I—- K H,)" + K,RK?, (A-154)

Equation (A-154) is a combination of a priori filter estimate covariance Py = E[(x; —
E[x;D(xi — E[x; DT] and measurement covariance

R =E[(yx - EV:Dx — Ey:D"] (A-155)

It can be shown (see any of the references given in the beginning of this subsection) that the
trace of Py is minimal for

Ky = PiHL(HPHL +R) (A-156)
For this optimal Kalman-Gain, the covariance update equation (A-154) can be simplified

Pf = —-KH)P,(I- K H,)" + K, RK?, ..."Josephs Form"

= (- KiH,)P; ...not recommended (A-157)

Although the shorter expression reduces computational effort, it is less suitable to preserve
the symmetry and positive semi-definiteness properties of P, compared to the Josephs form.
Various other mathematically equivalent forms exist in literature (e.g. U-D factorization [104])
which are based on factorization of P, in order to ensure symmetry of the computed
covariance.

The Kalman-Filter update equations are rewritten here for better readability:
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xXi =x; + Ky - (9 — Hixy) .. filter state estimate update

A-1
P{=(I-KH)P,(I—-KH,)" + K RK}, ..."Josephs Form" covariance update (A-158)

To allow for data fusion when an measurement y is available, the Filter has to provide for a
current a priori filter state estimate x;, and the corresponding a priori state estimate
covariance Pj. To that end the Kalman-Filter propagates state estimate and covariance in
time, based on equation (A-146):

Xy =DPp_1Xp_1 +Tp_qu(ty_q) .. filter state estimate propagation A159

Py =®y_ Py ®F_ + T 1Q_TE_, ...covariance propagation (A-159)
For the derivation of the covariance propagation equation filter state estimate x,_; and
system noise wy_; were assumed to be uncorrelated.

Equations (A-158) and (A-159) implement the conventional Kalman-Filter for independent
measurements and uncorrelated system noise. Note that they allow for multi-sensor and
multi-frequency data fusion, i.e. neither must H,, be the same in every update step nor must
updates be computed in equidistant steps. For example, two measurements available at the
same time t, can be used for sequential updates of x;.
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INS/GNSS integration with error state space Kalman-filter

The conventional Kalman-Filter introduced previously in this appendix can be used to
estimate errors in an inertfial navigation system if sensor measurements or other information
related to the navigation state is available (e.g. GPS and barometer measurements). This will
be exemplified with loosely-coupled INS/GNSS integration in the following.

For the INS/GNSS integration derived in this section, the filter state lies in the error state space
x =06z (A-160)

The corresponding total state space is the linear span of the 10-DOF navigation state vector
H
z=z,=|h | (A-161)
|

The linearized perturbation error equations (A-133), (A-138) and (A-142) can be cast into the
form of a linear system of ordinary differential equations

5z(t) = Ay, - 52(t) + By, - 55, (A-162)

With this linear approximation of the system of navigation state error differential equations,
application of a conventional Kalman-Filter as presented previously in this appendix is
possible. The considerations necessary for adaptation of the Kalman-Filter update step are
presented in the following.

The filter measurement y, can be defined as
yx=y—-9g'() (A-163)

With the real measurement y that is an observation of the true system state z disturbed by
measurement noise assumed to be unbiased. The nonlinear transformation from system state
space to measurement space —referred to as observation equation - is

y=49() (A-164)

This relation between frue system state and error-free measurement is only approximately
known and modeled as g'(z). It is assumed that errors in the measurement model are noise-
like and unbiased. z' is the erroneous approximation of the system state

z=z-6z (A-165)

Z'(t) is a realization of the time integration of noisy IMU measurements by the INS. The
stochasticity of this process is not relevant here. Therefore the covariance of the filter
measurement is equal to the measurement covariance

R =E[(y; - EV:DGx - EF:D"]1 = EIF - EFDGF — E[FD"] (A-166)

A linear transformation from filter state space (i.e. system error state space) to filter
measurement space can be derived from equation (A-164):

¥+ 8y =g'(z +62) + 5g (A-167)

This leads to the following linearization in z'
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0g'(z' + 6z)

y+oéy=9'(z)+ 3(62) 6z + 69 (A-168)

Z’

Equation (A-168) can be reordered to give a linear relationship for y, and 6z

., .09 (z +6z)
y—g(l)=W

éz+ &g — 3y (A-169)
7 unbiased noise
For open-loop error estimation the transformation matrix from filter state space to filter
measurement space is the measurement model Jacobian matrix evaluated at z’

_0g'(Zz' +62)

56D (A-170)

Z’

For example, if a GPS position measurement in WGS84 geodetic coordinates is available, the
measurement maftrix is

HGPSpos = [13 03><9] (A'] 7])
With these definitions the filter state update of the conventional Kalman-Filter becomes
8zf =6z, + K, - (y — g'(z},) — H,6z};) (A-172)

The linearization of the error differential equations only is valid if the assumptions made when
linearizing are correct: The true system state z must lie in close proximity of the linearization
point. Consequently, for significant nonlinearities in system equation s or large errors 6z the
best available estimate of system state z should be used as linearization point.

The best estimate of system state z is obtained by correcting the computed INS system state
using an estimate of system state error 8z:

2=z +6z (A-173)

If the internal INS state is reset to this best estimate this is referred to as full-scale closed-loop
error estimation. In this case the linear system (A-162) is derived using

§z=s(z' +6z,u' +6u)— s(z' +dz,u)
3s closed-l(:(i) INS inéeiration ) . (A-] 74)
—ﬁzu,'(52_5Z)+W2,u"[5fb 6wib]

Because the deterministic propagation of estimated errors takes place in the INS fime
integration following the full-scale closed-loop correction, filter state estimate propagation
according to equation (A-159) can be omitted. When a measurement is available, the a
posteriori filter estimate will be used immediately to correct the a priori estimate of system
state with equation (A-175).

With g'(z),) = g'(z), + 6z),) — H, 6z, the closed-loop correction of INS state best estimate is
7t =7 + K- (¥ — 9' (7)) (A-175)
The transformation matrix of the measurement model is evaluated at Z

_ 0g9'(z' + 6z)

o0 |, (A-176)
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The error state covariance matrix is updated and propagated linearly according to the
equations of the conventional Kalman-Filter (A-158) and (A-159). Note that with equation (A-
173) and neglecting the stochasticity of the unaided INS process that computes z'(t) the
covariance of the system state estimate z is equal to the error state estimate covariance P.
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A.8 EXTENDED KALMAN FILTER WITH AUGMENTED AND CONSIDERED STATES

For details on the extended Kalman filter method used in this work, many textbooks are
available [68-70, 102]. This subsection will briefly explain the definition of augmented,
observed and considered filter states as used in this work and how modifications to the
Kalman filter implementation can improve performance for problems where only
approximate statistical models are available.

Generally, the extended Kalman filter is employed in this work to estimate the errors 6z of
motion states computed with one or a combination of the model presented before. In
addition, auxiliary (augmented) states a may be included in the augmented Kalman filter
state vector x
6z
=[]
Because the main goal of filter design in this work is the accurate estimation of motion model
errors 8§z, the augmented states are related to either motion model inputs or aiding
measurements used to update the extended Kalman filter. Examples are IMU measurement
error or the offset in the barometric altitude measurement. Kalman filter state augmentation
is discussed in all of the textbooks referenced above.

Different strategies for improving filter performance in presence of real errors in model inputs
and measurements are possible. High frequency variations in these errors that cannot be
predicted accurately with some process model can simply be considered as down-sampled
white noise and accounted for by adapting filter process or measurement noise of the
conventional Kalman filter algorithm accordingly. Especially for error in aiding
measurements, this yields good results if update rate is low so that the time interval between
measurements is much larger than the correlation time of high frequency error.

For components of error with slower variation in time but limited observability, the effect on
motion model or measurement uncertainty must be modeled in the filter accounting for
process fime correlation. This is accomplished by defining a corresponding augmented state
with a stochastic process model reflecting time correlation and uncertainty of this error.
Because no deterministic propagation model is available for this augmented state, but it
changes significantly in medium-term, convergence of the estimate cannot be expected
due to alack of continuous observability. In this case, the estimate for this augmented state
is kept constant and only the corresponding uncertainty affecting motion model errors is
considered. This is called a consider filter state.

For augmented states with either accurate propagation models, long-term stability or good
continuous observability, simultaneous estimation together with the motfion model error
states is possible and can improve filter performance. In some cases discussed in chapter 3
of this work, augmented states will be estimated although no accurate prediction is possible
and observability is bad (in case of wind vector error for optimal model fusion methods). The
design decision whether an augmented filter state should be estimated or considered
depends on the details of the problem.

For a specific aiding measurement, it may not be desired to update certain motion model
errors (c.f. magnetometer aiding). In this case, these motion model errors would also only be
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considered in terms of their effect on observation uncertainty, but their estimates would be
kept constant in the filter update.

Depending on the considerations above, the decision which filter states are estimated and
which are considered can be different for each measurement update. The filter state vector
can be partitioned as follows

M is a permutation matrix with MMT = I. The observation equation becomes
yx:Hexe'l‘Hhxh:[He Hh O]Mx:Hx

Only filter state elements with subscripts e or h appear in the observation. x, are the filter
states that are updated as in the conventional Kalman filter. The states x, are only
considered for their uncertainty in above observation equation, but not updated. Note that
the matrix H, may include zero columns.

Because not all information theoretically available is used to correct the filter estimate, the
consider-state Kalman filter update is suboptimal

xe+ =Xx, + Ke(yx - Hx)

The suboptimal gain matrix K, can be derived from the Kalman gain K by deleting all rows
that do not correspond to estimated states x,.

y P.e Pon][H -
Kg = [Pee Peh] [HZ] ([He Hh] [P;; P;h] [H:] + R)
e

The filter covariance matrix is partitioned as follows

Pee Peh Pec
Pupp Py
sym. P

MP. M" =
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A.9 SPECIFIC FORCE LINEARIZATION

of> _ laZng + skew(rf6)I§ _l—aZMgi
96z ~ m 96z b Jbb s
aff 1 0ZF, _1[ 0ZME.
=— + sk RGYIG L— sk IS, + skew(IS, w;p) | + sk 5 X rRC
Sl ~ masal skew(rfe)IS, T skew(wip)I§, + skew(I§, ;) | + skew(w;p X 75%)
+ skew(w;p)skew(rg®)
ors _ ot
ovl,, vl
ofy _ 10IFp,  Skew(r5)s _1 0ZMj,
dwh, misw], bTPb 95wl
o = iaZng + skew(rRG)IG _1—62Mgi
dul, m oul b JTbb ou,
ofs 1 0XFg, _10ZM},

L+ skew(rRO)IS,

ocT  m acl act

ofy _ _ZFj,
om m2
afF oI5, &, _ IS, w;
% = skew(rﬁc)bb—Gle — skew(rf)Ig, 1skew(ool-b) bbG lTb
. . G -1 G G . algba . 3x1 .
with @;, = Iy, (ZMbi — W, X (Ibbwl-b)). While —2= with any vectfor a € R is a simple
asIG,
operator
0 0 - — 0
otge _[4 00 —h s
T = a, -, 0 —a3
a6lgb 0 0 a3 0 _a1 _a2

. o16, 'a . . .
The nonlinear opero’ror% is more complex and should be derived and implemented

o818,
using a symbolic math software package.

of RG\yG ~1 aZMgi ¢ 1 G G
T = skew(rfe)Ig, T skew (Ibb (ZMbl. — W X (Ibbwib))) — skew(w;p,)skew(w;p)
b b
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