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Abstract 

 

This work is concerned with the application of high-quality flight dynamics models to GNSS-

denied navigation of airplanes with low-cost sensors. Embedded in a 12-DOF aerodynamic 

motion simulation, the flight dynamics model offers valuable information on true airplane 

motion. Because only pilot control inputs must be measured, this potential extension to a 

classical navigation system comes at low hardware cost. Accurate models of aerodynamic 

flight are not cheap, because a large number of flight test hours is usually required to gather 

the data needed for system identification. However, because such models are also needed 

for pilot training simulators, finding an extra use of already available flight dynamics models 

might be attractive to save cost. 

The aerodynamic navigation approach is specifically applied to small conventional 

airplanes. This choice of platform promises good navigation performance but also presents 

some severe obstacles. Most notably, flight is affected by instationary and non-uniform 

motion of air mass and other non-standard atmosphere conditions with potentially extreme 

phases. The limitations of accurately and reliably modeling these processes and the related 

uncertainties demand for a solution with minimized dependency on such models. On the 

other hand, the flight characteristics of conventional airplanes offer the potential to 

propagate the horizontal airplane position estimate in time with superior linear error growth 

compared to polynomial error growth of low-cost inertial navigation. 

A detailed study of system theory points to advantageous characteristics of aided low-cost 

inertial navigation and airplane aerodynamic motion propagation in GNSS-denied flight but 

also reveals significant drawbacks of each model operating alone. This motivates the 

combination of both propagation methods and first, optimal state estimation techniques 

with equality constraints are applied to fuse models. The effort to develop a robust optimal 

model fusion method is hindered by the sensitivity to unreliable atmosphere models and loss 

of robustness in strong turbulence. Although a tuned model fusion method is developed 

which is robust in all simulations, dependence on modeling assumptions still persists because 

now the simulation environment used for tuning and testing must be verified. 

This work therefore proposes a covariance-free integration of low-cost inertial navigation and 

high-quality airplane aerodynamics model. Inertial navigation is implemented in a modified 

form and integrated with barometric altitude and 3-D magnetometer for best orientation 

and vertical motion performance. The aerodynamic motion model is corrected using inertial 

navigation reference information by application of a set of aerodynamically desensitized 

constraints. The validity of this covariance-free integration in thoroughly justified. It is based 

on the observed drawbacks of optimal model fusion and the specifics of the tuned model 

fusion method for airplane aerodynamic navigation. If required, add-on covariance 

information can be provided using best available statistical models of aerodynamic flight 

uncertainties. It will however not affect navigation data processing. 

A high-fidelity simulation tool is used for method development and testing throughout. A new 

approach to realistically account for flight dynamics model errors is proposed. Assuming 

state-of-art dynamic atmosphere models, statistical evaluation of performance is 

conducted using Monte Carlo simulation. The new covariance-free method is applied to real 

flight data in navigation postprocessing demonstrating the maturity of the new method. 



  



Kurzfassung 

 

Diese Arbeit untersucht die Anwendung hochgenauer Modelle der Flugdynamik in 

Kombination mit günstigen Sensoren zur Navigation bei Ausfall der GNSS-Stützung. Ein solches 

flugdynamisches Modell kann genutzt werden, um die aerodynamische Bewegung des 

Flugzeuges in 12 Freiheitsgraden zu simulieren und somit die wahre Flugzeugbewegung zu 

approximieren. Es bietet also eine zusätzliche Information zur Erweiterung eines klassischen 

Navigationssystems zur Bestimmung der Flugzeugposition, -Geschwindigkeit und –

Orientierung. Da zusätzlich nur die Steuereingaben des Piloten gemessen werden müssen, ist 

diese Erweiterung mit geringen Hardware-Kosten verbunden. Die Erstellung hochgenauer 

flugdynamischer Modelle ist aufgrund der gewöhnlich großen Anzahl der zur 

Systemidentifikation benötigten Flugteststunden sehr aufwendig. Da solche Modelle aber 

außerdem für Flugtrainingssimulatoren benötigt werden, ist die doppelte Verwendung dieser 

Modelle wirtschaftlich sinnvoll. 

Es wird gezeigt, dass die Flugeigenschaften kleiner, konventioneller Flugzeuge die 

Entwicklung einer aerodynamischen Methode zur Positionspropagation ermöglichen, die 

durch Nutzung des flugdynamischen Modells ein horizontales Positionsfehlerwachstum erster 

Ordnung in der Zeit ermöglicht. Dies bedeutet eine deutliche Verbesserung zur polynomialen 

Fehlerdrift, die für konventionelle Inertialnavigation bei Nutzung günstiger Sensoren 

charakteristisch ist. Allerdings wird der reale aerodynamische Flug stark von 

Atmosphäreneffekten beeinflusst, die aufgrund der Komplexität der zugrunde liegenden 

atmosphärischen Prozesse nur sehr begrenzt modelliert und somit berücksichtigt werden 

können. In einer einfachen Simulation des aerodynamischen Fluges kann eine falsche oder 

fehlende Modellierung z.B. der instationären und ungleichförmigen Luftmassenbewegung 

und anderer Atmosphäreneffekte in der Umgebung des Flugzeuges unter extremen 

Bedingungen zu großen Abweichungen führen. Somit ist es notwendig, dass eine neue 

aerodynamische Navigationsmethode die Abhängigkeit von Atmosphärenmodellen 

minimiert. 

In einer Untersuchung der Systemeigenschaften von Inertialnavigation mit günstigen 

Sensoren und aerodynamischer Positionspropagation werden in der vorliegenden Arbeit die 

charakteristischen Vorteile herausgearbeitet, wie auch die Einschränkungen, wenn beide 

Methoden einzeln eingesetzt werden. Die Ergebnisse sind die Grundlage für die Entwicklung 

einer kombinierten Methode, wobei zunächst optimale Datenfusionsmethoden mit 

Zwangsbedingungen zur Fusion der inertialen und aerodynamischen Propagationsmodelle 

angewendet werden. Hier zeigt sich in Simulationen mit turbulenter Atmosphäre, dass die 

Abhängigkeit von unzuverlässigen Modellen der Atmosphäreneffekte eine deutliche 

Einschränkung der Robustheit der Methode bedeutet. Es ist zwar möglich, die Parameter der 

Methode so zu adaptieren, dass sie auch in Simulationen mit turbulenter Atmosphäre gut 

funktioniert, allerdings bleibt damit eine Abhängigkeit von der gewählten 

Atmosphärenmodellierung, die nun als Teil der Simulationsumgebung verifiziert werden muss. 

Mit diesem Ergebnis wird ein alternativer Lösungsansatz begründet, der die Kovarianz-freie 

Integration von Inertialnavigation mit günstigen Sensoren und hochgenauem 

flugdynamischen Modell vorschlägt. Die Inertialnavigation kann hinsichtlich vertikaler 

Positionierung und Orientierungsbestimmung optimiert werden, was mit der Integration einer 

modifizierten Implementierung des inertialen Propagationsmodells mit 3-D Magnetometer 



und barometrischen Höhenmessungen erreicht wird. Es werden aerodynamisch 

unempfindliche Zwangsbedingungen entwickelt, die es erlauben, das flugdynamische 

Modell mit den inertialen Referenzinformationen zu korrigieren. Dieser Kovarianz-freie 

Integrationsansatz ist unabhängig von der Modellierung der Unsicherheit der beiden 

Prozesse, kann aber mit einem separaten Kovarianzmodell für die Ausgabe ergänzt werden.  

In dieser Arbeit wird eine detaillierte Simulationsumgebung entwickelt und durchgehend zur 

Untersuchung der entwickelten Methoden eingesetzt. Dabei kommt ein neuer Ansatz zur 

Berücksichtigung der Fehler in der flugdynamischen Modellierung zum Einsatz. Mit in der 

Literatur gängigen Modellen der dynamischen Atmosphäre wird eine Monte Carlo 

Evaluation der Navigationsleistung durchgeführt. Zudem wird die Funktion der neuen 

Kovarianz-freien Navigationsmethode anhand realer Sensoraufzeichnungen aus einem 

Flugtest bewiesen. 
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Aerodynamics 

Aerodynamic motion variables may be denoted by (⋅)𝐴 if necessary to distinguish them from 
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Airplane model 

(⋅)𝐴𝑒𝑟𝑜 refers to aerodynamic modeling, (⋅)𝑃𝑟𝑜𝑝 refers to modeling of propulsion forces and 

moments. 

𝑭 Force vector 

𝑚 Airplane mass 

𝑴 Moment vector 

𝑰𝑏𝑏
𝐺  Inertia matrix in body-fixed coordinates w.r.t. 𝐺 
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Earth models 

𝒈 Gravitation vector 

𝑔 Gravitational acceleration 

𝜸 Gravity vector 

𝑅 Earth radius 

𝐺𝑀 Earth’s gravitational constant 
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Error states 

For a given erroneous variable, 𝛿(⋅) denotes the corresponding error. The given variable may 

be measured (⋅)̃ or computed (⋅)̂. Because the perturbation form is chosen for error analysis 

throughout this work, the error 𝛿(⋅) will be equivalent to the additive correction of the given 

variable required to compute the true value. E.g. if the variable is a vector with true value 𝒗𝑛 

and computed value �̂�𝑛, the correction is 𝒗𝑛 = �̂�𝑛 + 𝛿𝒗𝑛. 

Generally, for error perturbation of orientation variables a multiplicative definition of error is 

employed. For example �̆�𝑛𝑏 ⋅ �̂̆�𝑛𝑏
−1 and 𝑹𝑛𝑏�̂�𝑛𝑏

𝑇  describe the errors in computed orientation 

quaternion �̂̆�𝑛𝑏 and rotation matrix �̂�𝑛𝑏. The following two orientation error parametrizations 

are adopted in this work, which are equivalent in linear approximation: 

𝝓𝑛 = [𝜙𝑁 𝜙𝐸 𝜙𝐷]
𝑇 

Phi angle orientation error in NED frame 

coordinates 

𝜱 = [𝛿𝜙1 𝛿𝜙2 𝛿𝜙3]
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Estimation 

The common notations of expectation value 𝐸[⋅], variance 𝑉𝑎𝑟[⋅] and covariance 𝐶𝑜𝑣[⋅,⋅] 

are used. Computed values before correction are denoted by (⋅)−, values after correction 

are denoted by (⋅)+. 

𝒛 Total state vector 

𝒙 Filter state vector (error state space) 

𝛿𝒔 Filter input vector 

𝝎 Process noise 

𝑨 Filter system matrix 

𝑩 Filter input matrix 

𝜱 Discrete filter state model transition matrix 

𝜞 Discrete filter state model input matrix 

�̃� Filter observation (error state space) 

𝝂 Measurement noise 

𝒃 Slowly-varying measurement error 

𝒏 Noisy measurement error 

𝑯 Observation matrix 

𝑮𝝎 Process noise measurement feedthrough matrix 

𝑲 Filter gain matrix 

𝑷 Filter state covariance matrix 

𝑹 Measurement noise covariance matrix 

𝑸 Process noise covariance matrix 



Vectors and matrices 

𝒆1 = [1 0 0]𝑇 First basis vector 

𝒆2 = [0 1 0]𝑇 Second basis vector 

𝒆3 = [0 0 1]𝑇 Third basis vector 

𝒂𝑛 = [𝑎𝑁 𝑎𝐸 𝑎𝐷]𝑇 Vector 𝒂 in NED frame coordinates 

𝒂𝑏 = [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑇  Vector 𝒂 in body-fixed frame coordinates 

𝑠𝑘𝑒𝑤(𝒂) Matrix equivalent of vector cross product 𝒂 × 

𝑣𝑒𝑐𝑘(𝑴) Vector equivalent of skew-symmetric part of 

matrix 𝑴 

𝒂|∥𝒃 Component of vector 𝒂 parallel to vector 𝒃 

𝒂|⊥𝒃 Component of vector 𝒂 orthogonal to vector 𝒃 

 

Vehicle motion 

Kinematic motion variables may be denoted by (⋅)𝐾 if necessary to distinguish them from 

aerodynamic (⋅)𝐴  or wind motion (⋅)𝑊  variables. A vector denoted by (⋅)𝐻  contains 

horizontal motion states in North and East direction only. 

(⋅)𝐺  denotes motion variables that refer to the vehicle center of gravity, (⋅)𝑅  refers to the 

navigation reference point 𝑅. (⋅)𝑅𝐺 denotes a relative motion variable, e.g. 𝒓𝑅𝐺 = 𝒓𝐺 − 𝒓𝑅. 

𝒛𝑛 Navigation state vector in NED frame 

parametrization 

𝒛𝑣 = [𝒛𝑛
𝑇 𝝎𝑖𝑏

𝑇 ]𝑇 Vehicle state vector (rigid body motion) 

𝜙 WGS84 latitude 

𝜆 WGS84 longitude 

ℎ WGS84 height 

𝜦 = [𝜙 𝜆 ℎ]𝑇 Column vector of WGS84 position 

𝒓 3-D position vector with respect to ECEF frame 

𝒗 Velocity vector with respect to ECEF frame 

𝑉 Velocity vector magnitude 
𝜒 Kinematic course angle 

𝛾 Kinematic climb angle 

�̆�𝑛𝑏 Orientation quaternion 

𝑹𝑛𝑏 Direction cosine matrix 

𝛷𝑛𝑏 Roll angle 

𝛩𝑛𝑏 Pitch angle 

𝛹𝑛𝑏 Heading angle 

𝒂 Acceleration vector 

𝒇 Specific force vector 

𝝎 Angular rates vector 

𝜔 Angular rates vector magnitude 

𝑝 Roll rate 

𝑞 Pitch rate 

𝑟 Yaw rate 
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1 INTRODUCTION 

 

Integrated inertial and satellite navigation (INS/GNSS) is the future standard for low-cost 

aircraft navigation. GNSS alone provides sufficient accuracy and reliability for lateral 

navigation for enroute operations with state of the art receiver autonomous integrity 

monitoring. Future solutions for estimation of aircraft position, velocity and orientation in all 

segments of general aviation flight will largely rely and depend on the potential of GNSS 

technology and integration with low-cost INS. 

One important limitation of this optimistic outlook is the fundamental lack of robustness of 

satellite signal transmission. While reliable detection of signal-related failure conditions is 

possible, elaborate jamming will always be a single point of failure of satellite navigation. 

Consequently, the possibility of losing the performance enhancement of GNSS for low-cost 

aircraft navigation must be considered. 

 

1.1 PROBLEM SPECIFICATION AND STATE OF THE ART 
 

This thesis addresses the need for a backup positioning function for small general aviation 

that allows safely continuing flight when GNSS aiding becomes unavailable. Given the 

visibility of typically 20 or more satellites from 4 different GNSSs at an elevation of 10° or higher 

in North America and Europe in 2017 [1], the reasons for unavailable GNSS aiding in flight are 

primarily user equipment faults and disturbance of signal reception. While the first case can 

be mitigated by redundant hardware, the latter condition is most likely spatially limited (e.g. 

jamming). It is arguable if in such a scenario similar good positioning accuracy as with GNSS 

aiding is required. Instead, the backup navigation function must be sufficient to allow safely 

leaving the area where GNSS reception is disturbed. This makes a slow degradation over time 

of positioning performance acceptable. At the same time, additional system cost, weight 

and power consumption for implementation of this backup function must be small because 

it is not used under normal conditions. 

Classical ground-based navigation aids (i.e. radio navigation) currently undergo significant 

change: Both the Long-Range Navigation system (LORAN) and the Distance Measuring 

Equipment architecture (DME) are subject of current research aiming at enhancement of 

the (still) existing ground infrastructure (and the on-board equipment) to meet the 

requirements of a backup system to GNSS. eLoran [2] should meet meter-level positioning 

accuracy, but the number of stations has already critically reduced [3, 4]. eDME [5, 6] is 

enhanced by carrier phase tracking and other innovations that increase the capacity and 

accuracy of the system. Technically, both enhanced systems are designed to be a full 

backup system to GPS (alternative positioning, navigation and timing, APNT). While these 

systems do provide the required positioning function specified above, they require at least 

an extra receiver and antenna on-board and would be obsolete while GNSS is available. In 

addition, they might over-perform: As described above, if GNSS reception is disturbed, a 

reasonable contingency plan is to leave the denied area, e.g. fly to an alternate airport 

instead of continuing approach and landing. Finally, because these radio navigation 
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systems provide similar functionality as GNSS, they would very likely be subject to the same 

jamming or spoofing action that is targeting GNSS. 

Consequently, a simple, on-board backup system with negligible additional system cost, 

weight and power consumption that specifically provides the navigation information 

required for safe contingency operation in the unlikely event of GNSS denial is needed. It is 

specifically not intended for use in flight segments with stringent performance requirements 

(e.g. landing), because here GNSS is assumed available (if need be, at the alternate airport). 

A high-quality Inertial Navigation System (INS) can provide coarse (and drifting) position 

information with highest availability and resilience [7], but not at acceptable cost for 

application in small general aviation. Here, a low-cost INS/GNSS will be the core of future 

navigation systems for operation under normal conditions. Because low-cost INS/GNSS 

means low-cost inertial sensors with insufficient accuracy for unaided position propagation, 

the required backup navigation function cannot be implemented with this architecture by 

itself. In order to improve the accuracy of position (and other navigation information, such 

as velocity) during outages of GNSS, additional information must be integrated with INS. 

Sensor measurements are an obvious choice to allow for observation and estimation of 

navigation errors, for example air data and 3-D magnetometer.  

An existing method for backup enroute (and oceanic) flight navigation is heading and 

airspeed dead reckoning. This method is for example implemented in the Garmin G1000 

Cockpit for the Cessna Citation Mustang [8] where it continues to provide an estimate of 

aircraft position based on the last valid position fix obtained with GPS and a relative horizontal 

motion computed from airspeed and magnetic heading measurements. 

These state of the art techniques inertial navigation, sensor measurement aiding of INS and 

heading and airspeed dead reckoning will be studied in this thesis considering the chosen 

application. The engineering problem specified above will additionally be addressed by 

application of dynamic model aided navigation, which is a promising field of research for 

low-cost GNSS-denied navigation for small general aviation airplanes. 

 

1.2 FIELD OF RESEARCH 
 

This thesis presents research on the integration of a software model of flight dynamics for 

backup navigation of small general aviation airplanes. Generally, dynamic model aided 

navigation offers an improvement in navigation performance by integration of additional 

knowledge on how the vehicle moves and reacts to control inputs. Compared to 

conventional navigation sensors, hardware cost of including this software model and 

measuring control inputs is low. In addition, it is insensitive to a large number of environmental 

conditions affecting air data and magnetic field measurements.  

While these advantages have been highlighted before in the available literature, this thesis 

is the first to specifically address the characteristics of airplane flight dynamics. An 

aerodynamic navigation method that takes the specifics of conventional airplanes into 

account and exploits favorable properties should have superior performance. Small general 

aviation airplanes have especially benign flight characteristics and at the same time would 
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strongly benefit from low-cost backup navigation. This motivates research on aerodynamic 

navigation for airplanes. 

Integration of a dynamics model of the vehicle is fundamentally different from conventional 

sensor measurement aiding of INS. The following gives a brief review of the history of dynamic 

model aided navigation by presenting the publications that are most relevant for the 

research in this thesis.  

 

1.2.1 History of dynamic model aided navigation 

 

The first application of aircraft vehicle dynamics to navigation is due to Koifman and Bar-

Itzhack and was published in 1999 [9]. Navigation applications were preceded by earlier 

research on attitude and heading determination with aerodynamic models, e.g. [10]. 

The 1999 paper by Koifman and Bar-Itzhack considers inertial navigation and the dynamics 

model of an airplane as two navigation systems running in parallel. The authors propose the 

notion that “nature and behavior of the errors of the two systems differ from one another, 

therefore the EKF should distinguish between the two error groups and estimate them”. Errors 

are observed in the differences of the computed navigation states of the two models. This 

corresponds to constraining the extended Kalman filter to state estimates that are exactly 

equal for both models. 

Consequently, the first publication on navigation with aerodynamic models already presents 

a complete mathematical framework for combination of the two propagation models using 

optimal state estimation techniques: The models are assumed to refer to exactly the same 

truth motion, which allows to observe differences of errors in differences of computed total 

states of both models. 

Although apparently not known to the authors of [9], earlier theoretical research on optimal 

state estimation with multiple propagation models by Julier and Durrant-Whyte published in 

1996 [11] provides a consistent mathematical foundation for model fusion. The authors prove 

that mathematical optimality, i.e. the best estimator based on the available information, is 

achieved with a combined system of multiple propagation model states and linear 

constraints relating equivalent states. This is termed “horizontal model fusion”. The question 

how exactly these constraints should be designed is not addressed, but equality constraints 

on e.g. equivalent position or velocity states in all models are proposed. 

The next significant step in the field is due to Vasconcelos et al., who make a different choice 

for implementing the aerodynamic propagation model and equality constraints in the 

publications [12] (2006) and [13] (2010). Application to model-scale rotorcraft requires a 

reduction of computational cost, which is achieved by only including one state for the 

vehicle angular rate vector in the combined model with INS. Vehicle angular rates are 

constrained to be equal to measured inertial angular rates. Although the propagation of 

vehicle orientation, velocity and position states is omitted, the complete information on 

vehicle dynamics is still included in the estimation: A second equality constraint is 

implemented for accelerations computed by inertial navigation and the vehicle dynamics 

equations of motion. Thus, the information on both translational and rotational motion is 

fused. 
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In a 2013 publication [14], Crocoll and the author propose a “Unified model technique” for 

inertial and aerodynamic model fusion. This method matches the computational efficiency 

of the method of Vasconcelos but is mathematically equivalent to the optimal method of 

Koifman with equality constraints on velocity and orientation states. The authors explain 

restrictions in the selection of motion states for the definition of model fusion equality 

constraints.  

 

1.3 CONTRIBUTION 
 

This work deals with the development of a low-cost backup navigation function and in 

particular with a new approach to dynamic model aided navigation specifically for small 

general aviation airplanes. 

First, it is noted that the lack of position fixing during outages of GNSS requires substantial use 

of propagation methods such as INS. In any case, a propagation method – or a combination 

of methods – will be the backbone of the desired navigation function. Therefore, the first part 

of the research presented here studies navigation propagation methods with respect to 

• Their error characteristics in a low-cost implementation. What are sources of error, how 

does error propagate and accumulate in specific motion states? 

• Available low-cost measures to effectively reduce error. How well can adverse error 

characteristics identified before be mitigated by including additional information? 

• Their comparative qualities. Is there a potential for improvement by combination of 

the studied methods? 

The study of low-cost navigation propagation methods provides the theoretical basis for the 

development of GNSS-denied navigation. The specific interest in a possible advantageous 

combination of propagation methods leads to results that motivate the focus on 

aerodynamic navigation in the remainder of this work. After answering the question, whether 

there is any potential improvement by combination, research on how to realize this 

improvement is the logical next step. 

The integration of inertial navigation and aerodynamic model for the application in small 

general aviation airplanes presents new challenges. Robust operation must be guaranteed 

in a wide range of environmental conditions encountered in long operation times and 

travelled distances. This especially includes rough atmosphere conditions such as strong 

wind, gusts and turbulence. The enormous complexity of real atmosphere processes and the 

characteristic intermittency of rough atmosphere conditions lead to a modeling problem: 

These effects can neither be predicted accurately with on-board software models, nor can 

errors of simpler models be statistically accounted for with sufficient significance required for 

state of the art integration techniques. Consequently, the focus of this part of the thesis is to 

• Study the application of optimal model fusion techniques to small general aviation 

airplanes in a realistic atmosphere environment. Provide a detailed understanding of 

the causes of low robustness encountered for these methods in the specific 

application 

• Develop a new technique for integration of inertial and aerodynamic models. How to 

combine models without depending on unreliable or unavailable models? How to 
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exploit the characteristics of inertial navigation and airplane aerodynamic motion to 

that end? 

The development of a new method for model integration aims to overcome significant 

obstacles of a real application of aerodynamic navigation for manned airplanes: Only if the 

method is robust per design even in extremely rough atmosphere it can be considered 

reliable for safety-of-life applications. The central part of this work is dedicated to find a 

solution to this problem by accounting for the specific and dissimilar qualities of inertial 

navigation and airplane aerodynamic motion. 

Finally, a realistic assessment of method behavior, robustness and performance is required 

to allow for further development and use in real applications. Because a large number of 

tests and long total flight duration is necessary for meaningful evaluation, a simulation tool 

must be developed. This work presents a novel approach to account for aerodynamic 

model uncertainties in simulation. Automatic generation of input data for various flight 

scenarios and wind conditions allows studying aerodynamic navigation in a detailed Monte 

Carlo simulation: 

• What behavior and performance can realistically be expected from the proposed 

method? 

• How does modeling quality of aerodynamic motion affect the results? 

In addition, application of the proposed aerodynamic navigation method to real flight data 

is necessary to prove its applicability under real world conditions and provide verification of 

theoretical results and simulations. 

To summarize briefly, this thesis has three goals. The first is to provide a fundamental 

theoretical understanding of low-cost GNSS-denied navigation and identify potential 

improvements by combination of propagation methods. Second, integration of inertial 

navigation and airplane aerodynamic motion model must be realized in a way that is fully 

independent from unreliable or unknown knowledge of processes and statistics for best 

performance and robustness. To conclude this work, the new aerodynamic navigation 

method must be evaluated in simulation and real data tests to show its potential. 
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1.4 OUTLINE 
 

This thesis is organized as follows: The first three chapters address the main goals defined 

previously. Each section of chapter 2 studies a different theoretical aspect of low-cost GNSS-

denied flight navigation. After a presentation of available navigation propagation methods, 

their required computation models and inputs, they are discussed and compared with 

respect to sources and propagation of error (section 2). In section 3, their suitability for aiding 

with auxiliary on-board information is studied. The focus is on mitigation of the weaknesses 

specific to each method. Chapter 2 concludes by highlighting the potential performance 

gain by combination of inertial navigation and the aerodynamic motion model. 

Chapter 3 explains how the problem of unreliable or unavailable models for aerodynamic 

flight in rough atmosphere is solved, which is the major difficulty in applying aerodynamic 

navigation to small general aviation airplanes. The text follows the actual course of research 

of the author’s work. It first discusses the application of optimal state estimation techniques 

to combine inertial and aerodynamic models in a model fusion filter in section 1. The 

limitations of this approach when dealing with intermittent and unknown rough dynamic 

atmosphere processes are explained. The steps taken to adapt model fusion accordingly 

and the remaining shortcomings of the improved state estimation technique are described. 

The motivation for a fundamentally different approach and the development of a new 

covariance-free integration of inertial and aerodynamic models then follow in section 2. 

The first section of chapter 4 presents the simulation framework developed for the evaluation 

of navigation with an airplane aerodynamic motion model. This comprises generation of 

realistic reference data with an automatic trajectory generation tool, modeling of dynamic 

atmosphere effects, measurement errors and a new technique of modeling aerodynamic 

model uncertainty. Section 2 then conducts a rigorous assessment of the proposed 

aerodynamic navigation method in Monte Carlo simulation. Accuracy, robustness in rough 

atmosphere and the sensitivity to two central system quality parameters are evaluated. 

Section 3 concludes chapter 4 with the application of the proposed method to 30𝑚𝑖𝑛 of real 

flight data in postprocessing. 

Chapter 5 completes the research on a new method for aerodynamic navigation of small 

general aviation airplanes with a study of a potential future use case. This includes a 

discussion of applicable flight navigation certification aspects. From this, necessary system 

improvements are identified and the next step of development and extensions of the future 

navigation system are proposed. 
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2 METHODS FOR GNSS-DENIED FLIGHT NAVIGATION 

 

For applications where position information is critical, position-fixing must be supplemented 

by a backup function for computation of position estimate in case of primary function failure. 

Without any absolute horizontal position information available, this backup function provides 

an estimate of change in position since the last available positon fix. Referring to its most 

important application scenario, this backup function will be termed GNSS-denied flight 

navigation in this work. For highest reliability, only information available on-board and 

independent of external infrastructure, weather and visibility is used. In addition, this thesis 

aims at developing a method providing a backup navigation function based on the systems 

already available on standard general aviation aircraft, not requiring additional expensive 

equipment. 

The aim of this chapter is to analyze and compare three methods for aircraft position 

estimate propagation and understand how their respective qualities are favorable and 

might be combined for a low-cost application. First, the underlying computation schemes 

are presented, which differ in the underlying motion models describing state propagation, 

including positon, and their inputs that need to be available from measurements or 

knowledge. 

The second section in this chapter then takes a detailed look at these methods with respect 

to how errors in initial state or inputs propagate to and accumulate in position and other 

motion model states. This is essential in order to judge how accurately position can be 

propagated using any of the motion models for a longer time open loop. On the other hand, 

identified short term error dynamics will be essential for the performance of aided position 

propagation. 

In some cases, unfavorable error propagation and dynamics can be contained if additional 

information is available, e.g. by integration of an extra on-board measurement. The third 

section therefore presents improvements to unaided motion model propagation by means 

of low-cost aiding. 

Finally, a number of aided position propagation methods with well-understood advantages 

and weaknesses presents the basis for further research of GNSS-denied flight navigation. If 

complementary qualities of any two of these methods can be found, these could be 

implemented in parallel in an attempt to improve performance. Based on the findings of this 

chapter, research on how to optimally combine these methods will follow in chapter 3. 

 

2.1 TOTAL STATE PROPAGATION 
 

Propagation of position state requires determination and time integration of velocity. 

Consequently, the kinematic equations are at the core of any of the methods presented in 

the following. Differences arise depending on whether velocity is available as measurement, 

or integrated from acceleration. Acceleration again may be available as measurement or 

computed from equations of motion and models of forces and moments acting on the 

vehicle. Because in the latter case there is no measurement of motion involved, this can be 
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considered a simulation approach to determine vehicle motion using a dynamics model. In 

contrast, the first two alternatives which use measured velocity or acceleration as input to 

the kinematic equations may be considered a measurement approach to determine 

vehicle motion with a kinematics model only. 

Three different motion models for position propagation can be distinguished. The first, which 

integrates a measurement of velocity in order to obtain position change relative to initial 

condition, is known as dead reckoning. This is a very general classification independent of 

the actual type of velocity measurement used. The most common low-cost type of dead 

reckoning methods for aircraft using measurements of heading and airspeed will be studied 

in the following subsection. 

Inertial navigation allows the computation of motion from measured acceleration, and is 

presented in the second subsection. Although the same kinematic equation for time 

integration of velocity to obtain position is used, the term dead reckoning will not be used 

for inertial navigation. The reason for this differentiation lies in the strongly dissimilar error 

propagation characteristics, as will be discussed in section 2.2. The term dead reckoning will 

exclusively be used for methods that integrate position from a measurement of velocity and 

exhibit the typical error drift of such a motion model. 

If acceleration can be computed with some model, vehicle motion may be determined 

without any actual measurement of motion. This constitutes the third type of motion model, 

a vehicle dynamics model (VDM). For aircraft, this can be realized using models of 

aerodynamic and propulsion forces and moments, models of weight and balance and 

translational and rotational equations of motion. Instead of velocity or acceleration, the 

inputs to the aerodynamics and propulsion model must be available as measurement or 

from some additional model. In this work, the term aerodynamic motion model will be used 

for the vehicle dynamics model of an aircraft. 

The diversity of these three motion models for position propagation justifies a detailed study 

of their respective qualities for low-cost GNSS-denied flight navigation.  

 

2.1.1 Heading and airspeed dead reckoning 

 

The dead reckoning method is the simplest way to predict the change of vehicle position 

and is applied to horizontal motion only for most types of vehicles. Measurements of speed 

and direction of motion are combined in a two-dimensional velocity vector which is 

integrated in time starting from the last known position [7]. While manual dead reckoning will 

compute a new position estimate only once it is needed using averaged speed and 

direction of motion, this work is concerned with computer methods where high rate 

computation is the standard. 

Figure 1 shows the geometry of heading and airspeed dead reckoning for straight and level 

flight. The measured quantities, vehicle heading Ψ𝑛𝑏 and magnitude of the aerodynamic 

velocity vector 𝑉𝐴 = ‖𝒗𝐴‖2, are used to compute an approximation of the North and East 

components of aerodynamic velocity vector 𝒗𝐴𝑛. Here it is assumed that the aerodynamic 

velocity vector is aligned with the aircraft centerline 𝒆𝑥. Adding an estimate of wind velocity 

vector then yields an approximation of North and East components of true kinematic velocity 

vector 𝒗𝑛  which are integrated in time in order to propagate position estimate. The 
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procedure is similar for ships, where a measurement of speed through water is used and 

combined with heading and an estimate of water drift velocity. 

Generally, three sources of error can be identified for heading and airspeed dead reckoning. 

First, measurements of aircraft heading and airspeed are distorted by measurement error. 

Second, the assumption that aerodynamic velocity vector is aligned with the aircraft 

centerline is not correct in presence of aerodynamic angle of sideslip 𝛽𝐴. Finally, true wind 

velocity vector 𝒗𝑊𝑛  may differ significantly from the available estimate which further 

increases dead reckoning error. The last two error effects contribute to the kinematic angle 

of sideslip 𝛽𝐾 which is the difference of vehicle heading and true course angle 𝜒𝐾 in straight 

and level flight. Again, dead reckoning for ships using heading, speed through water and an 

estimate of water drift velocity shows equivalent error sources. 

In this work, only aircraft applications are of interest and a basic dead reckoning method for 

aircraft will be described in the following. Error propagation of heading and airspeed dead 

reckoning is discussed in more detail in section 2.2.1.  

 

 

Figure 1: Geometry of dead reckoning for straight and level flight 

 

2.1.1.1 System equations 

 

Given airspeed 𝑉𝐴, heading angle Ψ𝑛𝑏 and horizontal wind velocity vector at aircraft location 

𝒗𝐻𝑊𝑛 (North and East components of air mass velocity), the horizontal kinematic velocity 

vector can be computed approximately as 

 
𝒗𝐻𝑛 ≈ 𝒗𝐻𝑊𝑛 + [

cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
] 𝑉𝐴 (2-1) 
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This assumes 𝛹𝑛𝑏 ≈ 𝜒𝐴 and cos(𝛾𝐴) ≈ 1 , which holds for small aerodynamic angle of sideslip in 

straight and level flight. 

The dead reckoning method uses the approximation of horizontal kinematic velocity vector 

in equation (2-1) to continuously compute the desired position information. Horizontal 

position of navigation reference point 𝑅 is parametrized as vector 𝚲𝐻 of geodetic latitude 

and longitude (see e.g. [15–17]) with respect to the WGS84 ellipsoid [18] 

𝚲𝐻 = [
𝜙𝑊𝐺𝑆84
𝑅

𝜆𝑊𝐺𝑆84
𝑅 ]

…geodetic latitude

…geodetic longitude 
 

Starting from initial estimate 𝚲𝐻,0, e.g. the last available GNSS position, the horizontal WGS84 

position vector 𝚲𝐻 can be propagated in time by integration of the differential equation (see 

appendix A.2 for a derivation including the vertical) 

 

�̇�𝐻 =

[
 
 
 
 

1

𝑀(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅
0

0
1

(𝑁(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅 ) 𝑐𝑜𝑠(𝜙𝑊𝐺𝑆84
𝑅 )]

 
 
 
 

𝒗𝐻𝑛 (2-2) 

   
For simplicity, normal and meridian curvature radii 𝑀 and 𝑁 (see [16] and appendix A.2) may 

be computed at initial latitude. This simplification introduces negligible error given the overall 

low accuracy of the dead reckoning method. A more detailed discussion will follow in the 

next section and in [19]. 

The cosine of latitude in equation (2-2) must be computed regularly at the propagated 

position since its value changes significantly at high latitudes for nonzero north velocity. A 

different choice of position parametrization for use in high latitude regions is strongly 

recommended (direction cosine matrices or quaternions, c.f. polar navigation and world-

wide capability in [20, 21]). 

If no information on height is available, using the last known ℎ𝑊𝐺𝑆84,0
𝑅  is acceptable for small 

general aviation airplanes with typically low service ceilings. 

 

2.1.1.2 Algorithm inputs 

 

The dead reckoning method assumes vehicle heading information is available as system 

input. Because heading cannot be simply measured on a moving and rotating platform, this 

input generally is generated by another system. This system could be a magnetic compass, 

AHRS or navigation system. In any case, system behavior has a strong effect on the 

generated heading information used by the dead reckoning method. Consequently, a 

characterization of this signal is rather complex and requires the heading system to be 

included in the analysis as a whole. 

Information on airspeed is commonly available on all types of aircraft, because it is of 

fundamental importance for flight control. Depending on size, speed and complexity of the 

aircraft, the airspeed may be computed as indicated, calibrated or true airspeed 

(IAS/CAS/TAS). The first two only require measurement of impact pressure, i.e. the differential 

pressure between static and total air pressure, but neglect deviations of the properties of air 
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at aircraft location from sea level conditions. CAS is more exact and more complex because 

instrument and installation position errors have been corrected [22]. Furthermore, for flight 

Mach numbers above 0.3, compressible flow effects are accounted for assuming sea level 

conditions. Computation of TAS accounts for local air conditions but requires measurements 

of static air pressure and total air temperature (or outside air temperature) in addition to 

impact pressure. This means two more physical air measurements to be installed, calibrated 

and maintained. 

Finally, horizontal wind vector at aircraft location is nearly impossible to determine when 

navigation precision is degraded (due to loss of GNSS) and without precise air data 

measurements. Instead, a long term wind vector average computed while in normal 

operation or a weather model predicted wind vector may be used. If available, weather 

radio information on wind vector may be an option, too. 
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2.1.2 Inertial navigation 

 

Inertial navigation uses an accelerometer to determine the acceleration by which the 

trajectory of an object is perturbed from the freely-falling trajectory at its current position. An 

accelerometer can determine this acceleration by observing the inertial resistance of an 

accurately modeled mechanical probe against disturbance from moving by inertia. 

For example, an ideal point-mass satellite would not experience any interference while it 

follows a freely-falling trajectory in the gravitational field of earth, moon, sun and all other 

large celestial objects. Consequently, an ideal accelerometer installed on board would 

produce zero output (see [23] for a similar thought experiment). If the satellite has finite size, 

it will experience solar radiation and atmospheric drag (for low perigee). This prevents the 

satellite and the mechanical probe inside the accelerometer from moving with inertia. Both 

will resist this disturbance, and the observed effect on the mechanical state of the 

accelerometer’s probe allows to compute the experienced acceleration by application of 

the laws of motion. For a slowly moving object in a weak and stationary gravitational field, 

Newton’s equations of motion are applicable [24]. For an introductory discussion of inertia 

and gravitation, the reader is referred to [25, 26]. 

For the simplest mechanical probe that could be used in an accelerometer – a point mass 

attached to a spring – the inertial resistance is observed as a force acting on and stretching 

or compressing the spring. The measured acceleration is spring force divided by mass of the 

probe. Therefore, the accelerometer output is generally referred to as specific force.  

For practical use, the object’s motion should be described in some fixed reference system, 

such as the earth-centered inertial (ECI) frame. This requires the apparent relative 

acceleration of the ECI frame (i.e. freely-falling center of gravity of the earth) and the current 

freely-falling frame at object position to be added to the measured acceleration. Resolved 

in an inertial frame (e.g. at the center of gravity of the solar system), this relative acceleration 

is the difference in gravitational acceleration experienced by the center of gravity of the 

earth and the object. 

For terrestrial inertial navigation, i.e. in close proximity of the earth, this choice of reference 

frame avoids the complexity of computing gravitation due to all (close) celestial bodies. 

Because earth itself is affected by gravitation of the same bodies, only earth’s gravitation 

and the differential gravitational accelerations remain. Referring to their effect on the large 

water masses on earth, the latter are referred to as tidal accelerations. Due to their 

differential nature, they are small close to the earth. The largest tidal acceleration is caused 

by the gravitational attraction and coupled motion of earth and moon and has a maximum 

value on earth’s surface of ~0.115𝜇𝑔 at the point closest to the moon (c.f. [27]). The tidal 

acceleration of the sun is smaller by approximately 55% [27]. For all but highest accuracy 

terrestrial inertial navigation, these tidal accelerations can be neglected and only earth’s 

gravitational acceleration remains in the equation. 

Because the accelerometer’s measurement is resolved in direction of a defined input axis of 

its mechanical probe, computing position and velocity of the object in reference frame 

coordinates requires a triad of accelerometers aligned with the reference frame axes. If it is 

not possible to keep the triad constantly aligned with the reference frame axes, the relative 

orientation must be known and used for projection of the individual measurements in the 

direction of velocity integration. Technical designs that aim to keep the accelerometer triad 
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of input axes aligned with the ECI (or other) reference frame axes are called gimbaled (or 

platform) inertial navigation systems. Similar to the measurement principle of 

accelerometers, gimbaled inertial systems rely on the inertial resistance of mechanical 

gyroscopes against rotation around their input axes to keep the platform carrying the 

accelerometer triad aligned. The mechanical complexity and resulting cost of these designs 

is their most important drawback [28]. The modern alternative is called strapdown inertial 

navigation [21, 29] and uses a navigation computer for the transformation of measurements 

of the accelerometer triad which is rigidly installed on the object and defines the body-fixed 

coordinate frame in this work. This requires high rate propagation of the triad orientation with 

respect to the reference frame, accomplished by integrating inertial angle increments of a 

triad of gyroscopes. A brief account on the historical development and best practice 

recommendation of processing (rotation) inertial data in strapdown systems can be found 

in [29]. 

The reader is referred to [21, 23, 28, 30] for more information on inertial navigation technology. 

 

2.1.2.1 System equations 

 

The navigation state vector with reference point 𝑅 is parametrized with position in geodetic 

latitude, geodetic longitude and height with respect to the WGS84 ellipsoid [15–18], velocity 

relative to ECEF frame written in NED coordinates and the orientation quaternion from NED 

frame to body-fixed frame (see appendix A.1): 

𝒛𝑛 =

[
 
 
 
 
 
𝜙𝑊𝐺𝑆84
𝑅

𝜆𝑊𝐺𝑆84
𝑅

ℎ𝑊𝐺𝑆84
𝑅

𝒗𝑛
𝑅

�̆�𝑛𝑏 ]
 
 
 
 
 …geodetic latitude

…geodetic longitude

…height above WGS84 ellipsoid

…ECEF velocity in NED coordinates

…NED to body-fixed frame orientation quaternion

 

Both indications for WGS84 coordinates and navigation reference point 𝑅 are omitted in the 

following and throughout this thesis for brevity anywhere possible. Instead, alternative 

position reference frames or state vector reference points will be noted. The vector of WGS84 

position is defined as 𝚲 = [𝜙, 𝜆, ℎ]𝑇. 

The set of ordinary differential equations (2-3) (see [31, 32] and appendix A.2) describes the 

motion of a point mass in presence of specific forces along the orthogonal axes of the body-

fixed frame 𝒇𝑏 = 𝒇𝑏∥𝒆𝑥
+ 𝒇𝑏∥𝒆𝑦

+ 𝒇𝑏∥𝒆𝑧
 and gravity of the earth 𝜸𝑛. The rotation of body-fixed 

frame 𝑏 (𝒆𝑏,𝑥, 𝒆𝑏,𝑦, 𝒆𝑏,𝑧) with respect to inertial frame is described by the inertial angular rates 

vector 𝝎𝑖𝑏: 

 �̇� =
𝑣𝑁

𝑀(𝜙) + ℎ

�̇� =
𝑣𝐸

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙)

ℎ̇ = −𝑣𝐷

 

(2-3) 

�̇�𝑛 = 𝑹𝑛𝑏(�̆�𝑛𝑏)𝒇𝑏 + 𝜸𝑛(𝜙, ℎ) − (2𝑹𝑒𝑛
𝑇 (𝜙, 𝜆)𝝎𝑖𝑒 +𝝎𝑒𝑛(𝜙, ℎ, 𝑣𝑁 , 𝑣𝐸)) × 𝒗𝑛 

�̇̆�𝑛𝑏 =
1

2
(�̆�𝑛𝑏 ⋅ �̆�𝑖𝑏 − �̆�𝑖𝑛(𝜙, 𝜆, ℎ, 𝑣𝑁 , 𝑣𝐸) ⋅ �̆�𝑛𝑏) 
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Note that the differential equations for WGS84 position in the horizontal are the same as for 

heading and airspeed dead reckoning (2-2) but with normal and meridian curvature radii 𝑀 

and 𝑁 computed at current latitude 𝜙. 𝑹𝑛𝑏 and 𝑹𝑒𝑛 are direction cosine matrices defined by 

NED to body-fixed frame orientation quaternion and WGS84 latitude and longitude 

respectively. They are computed using (see appendix A.1) 

𝑹(�̆�) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

and 

𝑹𝑒𝑛 = [

−𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜆) −𝑠𝑖𝑛(𝜆) −𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜆)

−𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) −𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜆)

𝑐𝑜𝑠(𝜙) 0 −𝑠𝑖𝑛(𝜙)
] 

The transport rate 𝝎𝑒𝑛  appears in the differential equations for ECEF velocity in NED 

coordinates 𝒗𝑛 and for NED to body-fixed frame orientation quaternion with 

𝝎𝑖𝑛 = 𝝎𝑒𝑛 + 𝑹𝑒𝑛
𝑇 𝝎𝑖𝑒 

While earth rotation rate vector 𝝎𝑖𝑒 is constant to sufficient accuracy for inertial navigation 

applications with ωie = ‖𝛚ie‖2 = 7292115 ⋅ 10
−11rad/s [18], transport rate must be computed 

using 

𝝎𝑒𝑛 =

[
 
 
 
 
 
 

𝑣𝐸
𝑁(𝜙) + ℎ

−
𝑣𝑁

𝑀(𝜙) + ℎ

−
𝑡𝑎𝑛(𝜙) 𝑣𝐸
𝑁(𝜙) + ℎ ]

 
 
 
 
 
 

. 

The so-called strapdown equations in NED frame (2-3) will be abbreviated in the remainder 

of this work as function 𝒔(𝒛𝑛, 𝒇𝑏 , 𝝎𝑖𝑏). 

An inertial navigation system (INS) computes 𝒛𝑛𝐼𝑁𝑆 over time according to above strapdown 

equations (2-3), given an initial value and specific force and inertial angular rates measured 

by IMU, denoted as �̃�𝑏 and �̃�𝑖𝑏. 

Although equations (2-3) can be numerically integrated using any time integration scheme, 

such as classical 4th order Runge-Kutta [33], accuracy in applications with large rotational 

movements is much higher using the exact quaternion update for orientation propagation, 

which is derived in appendix A.1. In the following, a simple strapdown navigation algorithm 

suitable for the navigation studies presented in this work is summarized. 

Defining a time-averaged angular rates vector 𝝎𝑖𝑏  in time interval [𝑡, 𝑡 + Δ𝑡] , and with 

equation (A-41), the orientation of body-fixed frame 𝑏 is propagated in time as follows 

�̆�𝑖𝑏𝑡+Δ𝑡 = �̆�𝑖𝑏𝑡 ⋅ (cos(Δ𝑡‖𝝎𝑖𝑏‖/2) + sin(Δ𝑡‖𝝎𝑖𝑏‖/2)�̆�𝑏) 

With �̆�𝑏 the quaternion counterpart of normalized angular rates vector 𝒏𝑏 = 𝝎𝑖𝑏/‖𝝎𝑖𝑏‖. 
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In this work, �̆�𝑛𝑏  is chosen to parametrize body-fixed frame orientation and the initial 

quaternion �̆�𝑖𝑏𝑡  is computed using the position and NED to body-fixed frame orientation 

quaternion at time 𝑡 

�̆�𝑖𝑏𝑡 = �̆�𝑒𝑏𝑡 = �̆�𝑒𝑛(𝜙𝑡, 𝜆𝑡) ⋅ �̆�𝑛𝑏𝑡 

For simplicity, alignment of inertial frame 𝑖 and ECEF frame 𝑒 can be assumed at time 𝑡, i.e. 

�̆�𝑖𝑒𝑡 = 1 . �̆�𝑒𝑛(𝜙𝑡, 𝜆𝑡)  is computed by solving equation (A-66) for the coefficients of the 

quaternion according to equation (A-32). 

Now the earth rotation in time interval [𝑡, 𝑡 + Δ𝑡] can be accounted for 

�̆�𝑖𝑒𝑡+Δ𝑡 = �̆�𝑖𝑒𝑡 ⋅ (cos(Δ𝑡‖𝝎𝑖𝑒‖/2) + sin(Δ𝑡‖𝝎𝑖𝑒‖/2)�̆�𝑒) 

With �̆�𝑒 the quaternion counterpart of normalized earth rate vector 𝒏𝑒 = 𝝎𝑖𝑒/‖𝝎𝑖𝑒‖.  

The propagated ECEF to body-fixed frame quaternion at time 𝑡 + Δ𝑡 is 

�̆�𝑒𝑏𝑡+Δ𝑡 = �̆�𝑖𝑒𝑡+Δ𝑡
−1 ⋅ �̆�𝑖𝑏𝑡+Δ𝑡 

With the propagated position at time 𝑡 + Δ𝑡 and with �̆�𝑖𝑒𝑡 = 1, the propagated NED to body-

fixed frame quaternion at time 𝑡 + Δ𝑡 is 

 �̆�𝑛𝑏𝑡+Δ𝑡 = �̆�𝑒𝑛
−1(𝜙𝑡+Δ𝑡, 𝜆𝑡+Δ𝑡) ⋅ �̆�𝑒𝑏𝑡+Δ𝑡 (2-4) 

= �̆�𝑒𝑛
−1(𝜙𝑡+Δ𝑡, 𝜆𝑡+Δ𝑡) ⋅ (cos(Δ𝑡‖𝝎𝑖𝑒‖/2) − sin(Δ𝑡‖𝝎𝑖𝑒‖/2)�̆�𝑒) ⋅ �̆�𝑒𝑛(𝜙𝑡, 𝜆𝑡) ⋅ �̆�𝑛𝑏𝑡

⋅ (cos(Δ𝑡‖𝝎𝑖𝑏‖/2) + sin(Δ𝑡‖𝝎𝑖𝑏‖/2)�̆�𝑏) 
   

Note that approximation of the change of body rotation axis in the output time interval is 

possible e.g. as proposed in [34]. Also refer to [29] for recommended steps to account for 

effects due to high frequency motion. 

For integration of position and velocity states in INS, a 2nd order Runge-Kutta time integration 

scheme without intermediate step is used in this work (the explicit trapezoidal method [33] 

also known as improved Euler method [35]). It can be combined with above orientation 

quaternion update (2-4), abbreviated as function 𝒑  in the following. Defining a subset 

𝒔𝑡𝑟𝑎𝑛𝑠(𝒛𝑛𝑡𝑟𝑎𝑛𝑠, 𝒇𝑛)  of the ordinary differential equations (2-3) for translational state vector 

𝒛𝑛𝑡𝑟𝑎𝑛𝑠 = [𝜙, 𝜆, ℎ, 𝒗𝑛
𝑇]𝑇 only, a concise description of the time integration method is possible. 

The improved Euler method consists of a forward Euler prediction step 

 𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡+Δ𝑡
∗ = 𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡

+ Δ𝑡𝒔𝑡𝑟𝑎𝑛𝑠 (𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡
, 𝒇𝑛𝑡) (2-5) 

 �̆�𝑛𝑏𝑡+Δ𝑡
∗ = 𝒑(�̆�𝑛𝑏𝑡, 𝜙𝑡, 𝜆𝑡 , 𝜙𝑡+Δ𝑡

∗ , 𝜆𝑡+Δ𝑡
∗ , 𝝎𝑖𝑏𝑡 , Δ𝑡)  

   
With 𝒇𝑛𝑡 = 𝑹(�̆�𝑛𝑏𝑡)𝒇𝑏𝑡. The preliminary results denoted by a * are improved in a successive 

trapezoidal rule correction step yielding the final propagated navigation state 𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡+Δ𝑡
 

and �̆�𝑛𝑏𝑡+Δ𝑡 

 
𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡+Δ𝑡

= 𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡
+
Δ𝑡

2
(𝒔𝑡𝑟𝑎𝑛𝑠 (𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡

, 𝒇𝑛𝑡) + 𝒔𝑡𝑟𝑎𝑛𝑠 (𝒛𝑛𝑡𝑟𝑎𝑛𝑠𝑡+Δ𝑡
∗ , 𝒇𝑛𝑡+Δ𝑡

∗ )) (2-6) 

 
�̆�𝑛𝑏𝑡+Δ𝑡 = 𝒑(�̆�𝑛𝑏𝑡, 𝜙𝑡, 𝜆𝑡 , 𝜙𝑡+Δ𝑡, 𝜆𝑡+Δ𝑡,

1

2
𝝎𝑖𝑏𝑡 +

1

2
𝝎𝑖𝑏𝑡+Δ𝑡, Δ𝑡)  
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With 𝒇𝑛𝑡+Δ𝑡
∗ = 𝑹(�̆�𝑛𝑏𝑡+Δ𝑡

∗ )𝒇𝑏𝑡+Δ𝑡 . Note that transport rate integration is not included in the 

orientation propagation step but solely represented by position propagation.  

The presented strapdown navigation algorithm (2-4), (2-5) and (2-6) for time propagation of 

navigation state vector 𝒛𝑛 is a simplification of more evolved schemes found in the literature, 

e.g. [34, 36]. Similar to all available algorithms, it introduces time discretization errors due to 

truncation of terms of (in this case) 3rd and higher order in Δ𝑡 in equations (2-5) and (2-6) and 

due to the assumption of a specific behavior of specific force and inertial angular rates 

vectors in interval [𝑡, 𝑡 + Δ𝑡] . Here constant directions of these vectors in [𝑡, 𝑡 + Δ𝑡]  are 

assumed. This simplification is acceptable for the navigation studies presented in this work 

where high-rate inertial data is available and the effects of high-frequency motion are 

negligible compared to other error effects. 

 

2.1.2.2 Algorithm inputs 

 

For inertial navigation using the strapdown algorithm described above, three input signals 

are required. First, measurements of specific force vector and inertial angular rates vector 

must be provided at sufficiently high rate. Because no other information on vehicle motion is 

used in inertial navigation, these measurements must contain full bandwidth motion 

information. If true motion is not fully resolved by time discrete inertial measurements, 

discretization errors may be rectified in the integration of motion. 

Because inertial angular rates measurements should describe rotational motion of the 

accelerometer sensor triad, the gyroscopes are always closely integrated mechanically with 

the accelerometers in an inertial measurement unit (IMU). Thus the IMU produces vector 

measurements of specific force and inertial angular rate, usually at equal rates. 

Various measurement technologies have been developed over the last decades and used 

in IMUs for inertial navigation. Classical mechanical designs have been mostly replaced by 

quartz and MEMS (micro-electro-mechanical systems) designs for accelerometers and 

MEMS, FOG (fiber-optic gyro) and RLG (ring laser gyro) designs for gyroscopes (c.f. [30]). 

The third required input for inertial navigation is the gravity vector 𝜸𝑛. Because this gravity 

vector includes the effects of earth gravitation and centripetal acceleration in a frame fixed 

to rotate with the earth (such as ECEF which is used to define velocity 𝒗𝑛), it can also be 

computed given gravitation vector and earth rotation rate using 

 𝜸𝑛 = 𝑹𝑒𝑛
𝑇 (𝒈𝑒 −𝝎𝑖𝑒 × (𝝎𝑖𝑒 × 𝒓𝑒)) (2-7) 

   
In any case, accurate computation models exist for terrestrial navigation: Normal gravity (the 

best approximation of earth’s gravity assuming an ellipsoidal shape and rotation) can be 

computed with the formula of Somigliana valid at the surface of the WGS84 reference 

ellipsoid and a Taylor series expansion for small positive heights (see appendix A.2, [18] and 

[37]). Alternatively, gravitation vector for use with equation (2-7) can be computed as 

gradient of a series expression approximating actual earth gravitational potential (e.g. 

EGM96 [18] or EGM2008 [38]). 
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2.1.3 Aerodynamic motion model 

 

The previous methods for position propagation presented in this section both use 

measurements of the actual motion. With fundamental kinematic equations to integrate 

these measurements, the type of object to be navigated is irrelevant. These methods may 

even be applied to objects that cannot move at all. Now, the possibility of navigation of a 

vehicle with well-understood system dynamics shall be considered. In this case, 

measurement of motion may be replaced by simulation of motion using models of vehicle 

dynamics (a vehicle dynamics model, VDM). 

The ultimate goal of development of a vehicle is to realize the desired system behavior in the 

final product. Consequently, understanding of its dynamics is present for any professionally 

developed vehicle. Due to the potentially catastrophic consequences when the final 

products (or prototypes) behavior in flight is not stable, this is especially true for aircraft. In 

two ways: First, considerable effort is made to understand and define a desired system 

behavior, which would guarantee save flight. Second, throughout the development process 

and intensively already before first flight of a prototype, achievement of desired behavior is 

constantly verified by design reviews. This process should result in converging qualities of 

defined and verified system behavior. The preferable form to define desired or identify actual 

(preliminary) system behavior is a dynamics model. A dynamics model allows for software 

simulation of a part or the whole of the systems behavior in a given application scenario. In 

this work, a vehicle dynamics model (VDM) shall be defined as a model that allows for 

simulation of translational and rotational motion of a coordinate frame fixed to the vehicle 

(body-fixed frame), given control and environmental inputs. Flight control or control and 

stability augmentation systems shall not be part of the VDM, and control inputs are as applied 

on the actuators and engines. 

Airplanes with conventional design have distinctive flight dynamics that are also present in 

the vehicle dynamics model. This makes airplane VDM especially suited for use a position 

propagation method as will be detailed in later sections. 

It is assumed that other means of navigation are always available during taxi and takeoff or 

mission is aborted. The aerodynamic motion model for position propagation will only be 

usable in flight. Because it is considered for use in a backup navigation function, landing is 

not considered an issue: For landing, visual reference or accurate means of navigation must 

be available. 

As explained above, the high-quality aerodynamic motion model is expected to be 

available from airplane development. This work is not concerned with high-fidelity models for 

airplane flight – typically comprising aerodynamics, propulsion system, fuel flow, weight and 

balance models among others. The following focuses on the aspects that are relevant for 

this research: A characterization of the information available from a high-fidelity 

aerodynamic motion model that is usable for low-cost integrated navigation. The available 

information is related to the navigation states and the dependencies of the model are 

identified. Some simplifications are permissible at this point, because only the significant 

influences need to be accounted for an acceptable characterization of the behavior and 

uncertainty of a general aviation airplane model. 
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2.1.3.1 System equations 

 

The model of airplane aerodynamic forces and moments is complemented by models of 

propulsion forces and moments, fuel consumption, loading and weight and balance. 

Altogether, the vehicle dynamics model (VDM) can be used to simulate flight of a rigid body 

airplane given a correct initial condition and control inputs over time: 

 
�̇�𝑣 =

𝑑

𝑑𝑡
[
𝒛𝑛
𝝎𝑖𝑏

] = [
𝒔(𝒛𝑛, 𝒇𝑏

𝑅 , 𝝎𝑖𝑏)

𝑰𝑏𝑏
𝐺 −1

(𝑴𝑏
𝐺 −𝝎𝑖𝑏 × (𝑰𝑏𝑏

𝐺 𝝎𝑖𝑏))
] (2-8) 

   
The 12-DOF vehicle state vector 𝒛𝑣  is composed of position, kinematic velocity and 

orientation that are parametrized in the same way as in a common inertial navigation 

mechanization (𝒛𝑛) plus inertial angular rates in body-fixed frame 𝝎𝑖𝑏. Therefore, strapdown 

navigation differential equations 𝒔 appear in the first row of the right hand side of equation 

(2-8). 

The specific force vector that determines point mass motion corresponds to the holding 

forces acting on the actual IMU accelerometer triad (which defines the navigation reference 

point 𝑅), divided by its mass. Because the vehicle is assumed perfectly rigid here, this is equal 

to the sum of external forces computed from the models and acting on the vehicle plus inner 

forces at point 𝑅, divided by aircraft mass 𝑚. Inner forces are due to rotation and angular 

acceleration of the vehicle and lever arm between 𝑅 and vehicle center of gravity 𝐺 (with 

�̇�𝑏
𝑅𝐺 = 𝟎 and all geometry assumed to be rigid, c.f. appendix A.3) 

 
𝒇𝑏
𝑅 =

𝑭𝑏
𝑅

𝑚
= ∑

𝑭𝑏
𝐺
𝑖

𝑚
𝐴𝑒𝑟𝑜,𝑃𝑟𝑜𝑝

− �̇�𝑖𝑏 × 𝒓𝑏
𝑅𝐺 −𝝎𝑖𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏

𝑅𝐺) (2-9) 

   
The second row of equation (2-8) consists of the Euler equation of rotational motion for a rigid 

body with time invariant mass distribution (a restriction that can be relaxed considering time 

scales for mass change to be much larger than for rotational motion). See appendix A.4 and 

[39] for a detailed derivation. 

The effective moment acting in center of gravity 𝐺 is the sum of external moments only: 

𝑴𝑏
𝐺 = ∑ 𝑴𝑏

𝐺
𝑖

𝐴𝑒𝑟𝑜,𝑃𝑟𝑜𝑝

 

Aerodynamic and propulsion forces in the center of gravity 𝑭𝑏
𝐺
𝐴𝑒𝑟𝑜

 and 𝑭𝑏
𝐺
𝑃𝑟𝑜𝑝

 are surface 

integrals of air pressure and friction forces acting on airplane wings, fuselage, propeller etc. 

A physically exact model would therefore be of infinite order. Modeling fidelity and 

complexity is significantly reduced by directly modeling forces and moment vector pairs 

used in the equations above, localized at a defined model reference point instead of 

computing actual surface integrals, e.g. 

𝑭𝑏
𝐺
𝐴𝑒𝑟𝑜

= 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

(𝒛𝑣 , �̇�𝑣, 𝒗𝑊𝑛, 𝝎𝑊𝑏, 𝒖𝑝, 𝒄𝑣) 

𝑴𝑏
𝐺
𝐴𝑒𝑟𝑜

= 𝑴𝑏
𝐴
𝐴𝑒𝑟𝑜

(𝒛𝑣 , �̇�𝑣 , 𝒗𝑊𝑛, 𝝎𝑊𝑏 , 𝒖𝑝, 𝒄𝑣) − 𝒓𝑏
𝐴𝐺 × 𝑭𝑏

𝐴
𝐴𝑒𝑟𝑜

(𝒛𝑣, �̇�𝑣 , 𝒗𝑊𝑛, 𝝎𝑊𝑏 , 𝒖𝑝, 𝒄𝑣) 

This aerodynamic model computes a force and moment vector pair acting in the 

corresponding model reference point 𝐴 . 𝒖𝑝  is the vector of direct pilot control inputs or 

actuated controls and 𝒄𝑣 is the vector of model coefficients. Note that this aerodynamic 
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model does not introduce any additional states and, in combination with the equations of 

motion (2-8) that give �̇�𝑣 , presents a direct algebraic scheme to compute aerodynamic 

forces and moments. The propulsion model takes a similar form. Although high fidelity 

propulsion system models might include states for shaft speed and other, this is not 

considered here. 

Computation of the specific force vector in the navigation reference point 𝑅 using equation 

(2-9) requires both the vehicles inertial angular rates in body-fixed frame 𝝎𝑖𝑏  and 

corresponding time derivative �̇�𝑖𝑏 to account for relative acceleration effects due to the 

lever arm between navigation reference point and time variable center of gravity location 

𝒓𝑅𝐺. The inertial angular rates time derivative is obtained from the Euler equation of rotational 

motion, the second row in equation (2-8). 

The presented equations of motion (2-8), (2-9) are valid for a rigid body, i.e. under the 

assumption that mass distribution over the vehicle geometry is time invariant. Although this is 

not strictly the case for a conventional small general aviation airplane with a reciprocating 

or turboprop engine, the rate of change of total mass due to consumption of fuel in fuselage 

or wing tanks is small. Consequently, the loss of accuracy due to truncation of terms 

accounting for time variant mass distribution in the equations of motion is negligible 

compared the inevitable modeling errors in aerodynamic and propulsion forces and 

moments. Still, mass 𝑚, inertia matrix 𝑰𝑏𝑏
𝐺  and center of gravity location 𝐺 change significantly 

over the duration of a long flight and must by continuously computed from models that take 

fuel consumption and mass distribution into account. 

Note that unlike for inertial navigation, common time-integration schemes may be used to 

integrate above system of differential equations. A good choice of method offers numerical 

robustness and accuracy at reasonable computational cost. The classical 4th order Runge-

Kutta method [33] is typically applied for fixed airplane simulation [22, 40, 41] and is therefore 

selected here. With input data valid at equidistant time points 𝑡, 𝑡 +
1

2
Δ𝑡  and 𝑡 + Δ𝑡 , the 

vehicle state vector 𝒛𝑣 = [𝒛𝑛
𝑇  𝝎𝑖𝑏

𝑇 ]
𝑇
 is propagated in time as 

𝒛𝑣𝑡+𝛥𝑡 = 𝒛𝑣𝑡 +
Δ𝑡

6
(�̇�𝑣𝑡 + 2�̇�𝑣𝑡+1/2Δ𝑡

∗ + 2�̇�𝑣𝑡+1/2Δ𝑡
⋄ + �̇�𝑣𝑡+Δ𝑡

∗ ) 

For this single propagation step of state vector 𝒛𝑣 from time 𝑡 to time 𝑡 + Δ𝑡, the right hand  

side of equation (2-8) must be evaluated 4 times: 

1. At the initial state 𝒛𝑣𝑡 and using input data valid at time 𝑡, which gives �̇�𝑣𝑡. This is used 

to compute the predicted state (denoted by a ∗) at intermediate time 𝑡 +
1

2
Δ𝑡 

𝒛𝑣𝑡+1/2Δ𝑡
∗ = 𝒛𝑣𝑡 +

1

2
Δ𝑡�̇�𝑣𝑡 

2. At predicted intermediate state 𝒛𝑣𝑡+1/2Δ𝑡
∗  and using input data valid at time 𝑡 +

1

2
Δ𝑡, 

which gives �̇�𝑣𝑡+1/2Δ𝑡
∗ . This is used to compute the corrected state (denoted by a ⋄) at 

intermediate time 𝑡 +
1

2
Δ𝑡 

𝒛𝑣𝑡+1/2Δ𝑡
⋄ = 𝒛𝑣𝑡 +

1

2
Δ𝑡�̇�𝑣𝑡+1/2Δ𝑡

∗  

3. At corrected intermediate state 𝒛𝑣𝑡+1/2Δ𝑡
⋄  and using input data valid at time 𝑡 +

1

2
Δ𝑡, 

which gives �̇�𝑣𝑡+1/2Δ𝑡
⋄ . This is used to compute the predicted state at time 𝑡 + Δ𝑡 
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𝒛𝑣𝑡+Δ𝑡
∗ = 𝒛𝑣𝑡 + Δ𝑡�̇�𝑣𝑡+1/2Δ𝑡

⋄  

4. Finally at predicted state 𝒛𝑣𝑡+Δ𝑡
∗  and using input data valid at time 𝑡 + Δ𝑡, which gives 

�̇�𝑣𝑡+Δ𝑡
∗  

For a given rate of input data, vehicle state vector is computed at only half that rate. If this 

is for some reason undesirable (e.g. because input data rate is already low), a 2nd order 

Runge-Kutta scheme with equal rates of input and propagated state vector data can be 

used (improved Euler or explicit trapezoidal method [33, 35]). Because both precision and 

stability of vehicle motion propagation is affected, time integration should be tested 

thoroughly in simulation. 

 

2.1.3.2 Algorithm inputs 

 

For evaluation of equations (2-8) and (2-9), the sums of external forces and moments in some 

defined reference point of the aerodynamic model, aircraft mass and inertia matrix must be 

available. Furthermore, center of gravity position is required to compute forces and moments 

in center of gravity. 

Aircraft mass 𝑚, inertia 𝑰𝑏𝑏
𝐺  and center of gravity position 𝒓𝑏

𝑅𝐺 are computed with a weight 

and balance model. Such a model could be based on CAD data of geometry and mass 

distribution of the empty aircraft in combination with a fuel load and inertia model (for 

reciprocating or turboprop engines) and models for passenger and luggage load and 

inertia. Fuel consumption must be provided by the engine model to account for the slow 

change in weight and balance properties in flight. While measuring initial weight and 

balance on ground and using a model for change due to fuel burn only would certainly be 

more accurate, this is a considerable operational burden and not always possible.  

Dimensional analysis of aerodynamics (see [42, 43]) shows that resulting aerodynamic forces 

and moments acting on a body of a specific shape and a specific orientation with respect 

to free stream air motion relative to the body can be formulated as dimensionless 

coefficients 

 
𝐶𝐿 =

1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓

𝐹𝐴𝑒𝑟𝑜,𝐿𝑖𝑓𝑡

𝐶𝑌 =
1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓

𝐹𝐴𝑒𝑟𝑜,𝑆𝑖𝑑𝑒𝑓𝑜𝑟𝑐𝑒

𝐶𝐷 =
1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓

𝐹𝐴𝑒𝑟𝑜,𝐷𝑟𝑎𝑔

𝐶𝑙 =
1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓𝑙𝑥

𝑀𝐴𝑒𝑟𝑜,𝑥

𝐶𝑚 =
1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓𝑙𝑦

𝑀𝐴𝑒𝑟𝑜,𝑦

𝐶𝑛 =
1

1
2𝜌𝑉𝐴

2𝑆𝑟𝑒𝑓𝑙𝑧

𝑀𝐴𝑒𝑟𝑜,𝑧

 (2-10) 
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The components of aerodynamic moment are written in body-fixed frame coordinates. For 

airplanes, lift is defined as force perpendicular to free stream motion relative to the airplane, 

lying in the plane of 𝒆𝑥 and 𝒆𝑧 body-fixed axes (the plane of symmetry of a conventional 

airplane). The scalar product of the vector of aerodynamic force and the body-fixed −𝒆𝑧 

vector determines the sign of lift. Drag is the force acting in direction of free stream motion 

(for positive values). Aerodynamic sideforce is perpendicular to both, positive in the right-

wing hemisphere. 

𝑆𝑟𝑒𝑓  and 𝑙𝑥 , 𝑙𝑦, 𝑙𝑧  are reference area and lengths. For airplanes, they are chosen as wing 

reference area and 𝑙𝑥 = 𝑙𝑧 = 𝑏, 𝑙𝑦 = 𝑐̅ with wing span 𝑏 and mean aerodynamic chord 𝑐̅ (see 

[22]). 

With ambient air density 𝜌, dynamic pressure, which appears in all of above definitions, is 

𝑞 ≔
1

2
𝜌𝑉𝐴

2 

Dimensional analysis finds that for any given body geometry and body orientation with 

respect to free stream motion relative to the body, the aerodynamic coefficients (2-10) are 

functions of two dimensionless parameters among others 

𝑅𝑒 =
𝜌𝑉𝐴𝑙𝑅𝑒
𝜇

…Reynolds number

𝑀 =
𝑉𝐴
𝑎

… Mach number 

 

with a reference length 𝑙𝑅𝑒  (e.g. mean aerodynamic chord 𝑐̅), dynamic viscosity 𝜇  and 

speed of sound 𝑎. Despite the importance of vehicle weight in the context of stability and 

trim, there is only a weak and indirect influence of gravity on aerodynamics due to vertical 

gradients in the atmospheric conditions. 

The free stream motion of air relative to the body is described by the aerodynamic velocity 

vector, which is the vector difference of body kinematic velocity and velocity of the ambient 

air mass at the point of interest, typically the reference point of the aerodynamic model. In 

NED coordinates, this is (c.f. Figure 1) 

 𝒗𝐴𝑛 = 𝒗𝑛 − 𝒗𝑊𝑛 (2-11) 

   
In equation (2-11), wind velocity vector 𝒗𝑊𝑛  is defined as having an equivalent, but opposite 

in sign, effect on aerodynamic forces and moments compared to the kinematic velocity 

vector 𝒗𝑛, when all other properties of air and vehicle states are unchanged. This can be 

exemplified by the equivalency of aerodynamics in wind tunnel testing at zero kinematic 

velocity and in real flight. Wind velocity vector 𝒗𝑊𝑛 corresponds to the average undisturbed 

air mass velocity relative to ECEF frame in a volume where it affects airplane aerodynamics. 

In flight, airplane geometry will vary with control surface deflections, flaps and gear position. 

In addition, angle of attack and angle of sideslip with respect to aerodynamic velocity 

vector change dynamically due to body rotation or wind. For real time capable 

computation of aerodynamic forces and moments, which is required here, algebraic models 

are used. Various possible forms used for modeling aerodynamics of airplanes can be found 

in the literature [22, 41, 44]. One suitable possibility for airplanes valid over large portions of 
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the allowed values for angle of attack is a linear model of all aerodynamic coefficients 

except drag, which is better modeled with a quadratic model 

 𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼𝛼𝐴 
𝐶𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛽𝛽𝐴 

𝐶𝐷 = 𝐶𝐷0 + 𝑘(𝐶𝐿 − 𝐶𝐿0)
2 

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛽𝛽𝐴 + 𝐶𝑙𝑝𝑝
⋆ + 𝐶𝑙𝑟𝑟

⋆ + 𝐶𝑙𝜉𝜉 

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼𝛼𝐴 + 𝐶𝑚𝑞𝑞
⋆ + 𝐶𝑚𝜂𝜂 

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽𝛽𝐴 + 𝐶𝑛𝑝𝑝
⋆ + 𝐶𝑛𝑟𝑟

⋆ + 𝐶𝑛𝜁𝜁 

(2-12) 

   
With aerodynamic angles of attack and sideslip, 𝛼𝐴 and 𝛽𝐴, nondimensional aerodynamic 

rates 𝑝⋆, 𝑞⋆ and 𝑟⋆ and control inputs for roll, pitch and yaw 𝜉, 𝜂 and 𝜁 (see Figure 2). 

 

 

Figure 2: Control deflections and body-fixed frame for a conventional airplane 

 

For a higher fidelity of the model, more terms and derivatives may be used. All of above 

derivatives and the coefficient of induced drag 𝑘  are functions of Reynolds number 𝑅𝑒, 

Mach number 𝑀 and changes in geometry such as flaps and gear position. In addition, 

bilinear and higher order (nonlinear) effects of control surface deflections, aerodynamic 

angle of attack and aerodynamic angle of sideslip may be represented by varying 

aerodynamic derivatives. As mentioned above, the goal here is not to present a high-fidelity 

model but to study the predominant model characteristics instead. A linear model (2-12) with 

constant derivatives is sufficient to model the relevant aerodynamics of a conventional 

general aviation airplane in proximity of a regular reference flight condition, where changes 

in 𝑅𝑒 and 𝑀 are small and nonlinear effects are small (e.g. no high aerodynamic angle of 

attack). 

In equation (2-12), the influence of airplane orientation with respect to aerodynamic velocity 

vector is accounted for by aerodynamic angles of attack and sideslip, 𝛼𝐴 and 𝛽𝐴. In case of 

rotation of the airplane with a kinematic angular rate, there is an additional effect on 

aerodynamics due to gradual change of relative free stream orientation over the geometry 

of the airplane. Instationary effects may be present because changes in the aerodynamics, 

e.g. of the wings, will affect the aerodynamics at airplane tail with some delay.  Similarly, air 

𝛿𝜉𝛿𝜂

𝛿𝜁

𝒆𝑥

𝒆𝑦

𝒆𝑧

𝒗𝐴

𝛽𝐴

𝛼𝐴
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mass motion could be inhomogeneous in space or change in time at the aircraft location, 

leading to equivalent effects on aerodynamics. Both is accounted for by the aerodynamic 

rates which appear in above equation in nondimensionalized form: 

 
𝑝⋆ =

𝜔𝐴𝑥𝑏

2𝑉𝐴
 

𝑞⋆ =
𝜔𝐴𝑦𝑐̅

2𝑉𝐴
 

𝑟⋆ =
𝜔𝐴𝑧𝑏

2𝑉𝐴
 

(2-13) 

   
The vector of aerodynamic rates is defined as linear combination of kinematic and air mass 

motion with equivalent effect (but with opposite sign) on aerodynamics: 

 𝝎𝐴𝑏 = 𝝎𝑖𝑏 −𝝎𝑊𝑏 (2-14) 

   
This quantity describes the gradual change in relative motion of undisturbed air and local 

vehicle surface over the whole vehicle geometry. Changes of the unperturbed air flow 

parallel to air velocity vector are negligible for all sizes of real airplanes. 

The wind angular rates vector 𝝎𝑊𝑏 is a simplified representation of time and spatial changes 

in the air mass velocity vector field 𝒗𝑎𝑖𝑟(𝒓, 𝑡). It can be considered as the sum of all equivalent 

effects due to air mass velocity vector gradients 𝜕𝒗𝑎𝑖𝑟/𝜕𝑡 and 𝜕𝒗𝑎𝑖𝑟/𝜕𝒓
𝑇 in combination with 

movement of the vehicle, with negative sign.  

The parameters in the functions of aerodynamic coefficients (2-12) as well as dynamic 

pressure needed to compute dimensional aerodynamic forces and moments using equation 

(2-10) could all be measured using a total pressure tube, airflow vanes for 𝛼 and 𝛽 and a 

gyroscope for inertial rates in (2-14) while neglecting wind angular rates 𝝎𝑊𝑏. Together with 

weight and balance information and propulsion forces and moments, this would allow to 

compute virtual specific force measurements at IMU position using equation (2-9) and time 

derivatives of inertial angular rates using the Euler equation of rotational motion for a rigid 

body in the second row of equation (2-8). That way, the measurements of a real IMU for 

strapdown inertial navigation could be replaced by a virtual measurement based on vehicle 

models and measurements such as aerodynamic angle of attack. Because for example an 

acceleration accuracy of 1𝑚𝑔 would require aircraft mass to be known in flight within 0.1% 

error, it is obvious that even low-cost IMU measurements, once calibrated, would be superior 

and the approach to measure inputs for equations (2-10) and (2-12) is dismissed. 

Instead, it is preferable to compute the parameters using the known navigation state vector 

𝒛𝑛 . This implements a feedback of navigation errors to the aerodynamic model with a 

favorable effect on error dynamics, as will be shown in the next section. Equation (2-11) is 

used to compute aerodynamic velocity vector which, in combination with vehicle 

orientation, defines aerodynamic angles of attack and sideslip 𝛼  and 𝛽 . For this, wind 

velocity vector 𝒗𝑊𝑛 must be known, which will prove to be a drawback of this approach. 

Using an atmosphere model, air density can be computed as a function of height (e.g. with 

the standard atmosphere [45], which is representative for middle latitudes in the northern 

hemisphere [46]) and can be used together with aerodynamic velocity magnitude to 

calculate dynamic pressure. This is an alternative to computing air density from measured 

static pressure and outside air temperature, which does not require an outside air 

temperature sensor. In this work, the variability of air density at sea level and as function of 
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the vertical is not addressed or studied in the method evaluation. While computing air density 

from static pressure and temperature measurements will consistently account for real 

atmosphere conditions, computing air density from an atmosphere model requires model 

calibration for non-standard conditions. 

For the nondimensional aerodynamic rates (2-13), the aerodynamic angular rates vector 𝝎𝐴𝑏 

is computed using (2-14). The inertial angular rates 𝝎𝑖𝑏 are contained in the vehicle state 

vector 𝒛𝑣, the wind angular rates 𝝎𝑊𝑏 must be known. 

With exception of gyroscopic moments due to internal rotating masses, the propulsion system 

forces and moments are largely independent of kinematic velocity and inertial angular rates 

of the vehicle too. Instead, aerodynamic velocity 𝒗𝐴𝑏 and aerodynamic angular rates 𝝎𝐴𝑏 

are influential model parameters. Dependence of aerodynamic and propulsion models on 

vehicle state time derivative will not be considered in the rest of this work. Therefore, with 

influential parameters only, the models for aerodynamic and propulsion forces and moments 

can be written as 

 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

(ℎ, 𝒗𝐴𝑏 , 𝝎𝐴𝑏 , 𝒖𝑝, 𝒄𝑣) 

𝑴𝑏
𝐴
𝐴𝑒𝑟𝑜

(ℎ, 𝒗𝐴𝑏 , 𝝎𝐴𝑏 , 𝒖𝑝, 𝒄𝑣) 

𝑭𝑏
𝑃
𝑃𝑟𝑜𝑝

(ℎ, 𝒗𝐴𝑏 , 𝝎𝐴𝑏 , 𝒖𝑝, 𝒄𝑣) 

𝑴𝑏
𝑃
𝑃𝑟𝑜𝑝

(ℎ, 𝒗𝐴𝑏 , 𝝎𝐴𝑏 , 𝒖𝑝, 𝒄𝑣) 

(2-15) 

   
For the problem at hand, it will not be possible to predict the values of 𝒗𝑊𝑛 and 𝝎𝑊𝑏 or model 

their change in time as the vehicle flies along a specific trajectory. Similarly to heading and 

airspeed dead reckoning, a long term wind vector average, weather model predicted wind 

vector or weather radio information on wind vector may be used. Since the wind angular 

rates vector 𝝎𝑊𝑏 represents changes in air mass velocity vector field, it can be expected to 

be more variable than actual wind velocity vector and there is no way to provide this 

information to the aerodynamic propagation method. Consequently, it must be assumed 

zero. 

The required input of pilot or autopilot controls 𝒖𝑝, including 𝜉, 𝜂 and 𝜁 as well as all other 

controls for engines, gear, etc. can accurately be provided by measurements of control 

surface and mechanical control system deflections. Depending on whether axial or angular 

displacement is measured, laser distance and magnetic angle measurements are options 

for sensor types to be used. In a digital fly-by-wire flight control system, actuator position and 

digital control signals are available in addition. 

Finally, the coefficients of aerodynamic and propulsion models 𝒄𝑣  are needed. More 

generally, accurate models of aerodynamics and propulsion systems must be available for 

the specific airplane the desired navigation function is developed for. 

Airplane flight simulators for use in pilot training need to be validated against a number of 

requirements in order to be qualified for training purposes (c.f. [47]). Beside aspects of flight 

operation, realistic cockpit simulation, visualization, motion cueing and simulator control, the 

simulated flying qualities are thoroughly compared against true airplane qualities. This 

includes flight stability and performance, e.g. tolerances on airspeed, climb, attitude and 

dynamics for a number of typical and emergency flight segments. Consequently, the 

software models of flight simulators with high flight model fidelity levels V and VII [47] with 

strict tolerances on airplane-specific flight dynamics are well suited for use as position 
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propagation motion model as intended in this work. Simulators with flight model fidelity level 

III have reduced tolerances (i.e. representative models). But they are still strictly required to 

correctly model the flight dynamics qualitatively – i.e. in terms of principal stability of flight 

dynamics. The usability of airplane models of such lower quality for backup navigation will 

be assessed later in this work. 

The cost of development and certification of such an airplane specific simulation software is 

high due to the large number of flight test hours required both for identification of the model 

using system identification techniques (e.g. [48]) and following validation of the created 

model against independent flight data according (see e.g. [49] for an example of highest 

qualification level flight simulator aerodynamic identification and validation). 
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2.1.4 Relevant aspects 

 

This section has discussed the characteristics of three different motion models for position 

propagation that can be used for GNSS-denied flight navigation. Given the criticality of 

position information for the applications of interest, high reliability of the backup position 

estimation function is desired. This strongly depends on the number and type of physical 

measurements required, and specifically on their integrity and robustness.  

It is found that all of the three motion models take inputs that must be measured on-board: 

Heading and airspeed for dead reckoning, specific forces and inertial angular rates for 

inertial navigation and control inputs for the aerodynamic motion model. The low-cost design 

usually mandates a simplex sensor suite. In this case, the integrity of input data is to large 

extent determined by the probability of an out-of-tolerance measurement, because 

detection of such an event is generally difficult without sensor redundancy or high overall 

accuracy. Only for some sensors the occurrence of out-of-tolerance measurements might 

be related to typical sensor faults that are relatively easy to detect with a priori measures 

(e.g. frozen digital output). For other sensors, faults might be much more complex in their 

appearance and harder to detect. This is especially the case for airspeed and control 

deflection measurements, being exposed to open air or soiling and partly mechanical. Both 

MEMS inertial sensors and solid-state magnetic compass are closed box sensors well 

protected from pollution that could impair their measurement function. For the magnetic 

compass, disturbances of the environmental magnetic field due to a large number of 

conditions (e.g. driving electrical actuators) may corrupt sensor output. For control inputs, a 

redundant measurement (or availability of digitalized control input) appears possible even 

in a low-cost design. This increases integrity of control input information over integrity of 

simplex measurements in the scope of this analysis. In terms of availability, sensors with interior 

on-board measurements such as solid state magnetic compass and inertial measurements 

are preferable. Only hardware fault might interrupt operation, while for airspeed, 

interruptions due to icing or blockage seem much more probable assuming unfavorable 

weather conditions. For control inputs, the larger number of sensors can be considered a 

limitation of availability because probability of single hardware fault is approximately 

multiplied by the number of individual sensors. 

Besides measured inputs, all three of the described motion models need further input 

information for the propagation of position estimate. Inertial navigation and the 

aerodynamic motion model need a value for gravity at current position. At least in the 

accuracy required for low-cost applications, this information is reliably available for world-

wide operation using EGM2008 gravitation or Somigliana gravity models (see [38] and [18] 

respectively). Heading and airspeed dead reckoning as well as the aerodynamic motion 

model need information on wind velocity vector at aircraft position. As has been noted 

before, provision of accurate and reliable wind vector information proves very difficult. 

Finally, simplifications and model imperfections must be considered in this comparison. Given 

exact gravity input, inertial navigation is an exact motion model. No simplifications are 

necessary in an actual implementation of this method, except for discrete time integration. 

Time discretization errors can be reduced to be orders of magnitude smaller than errors due 

to measurement and gravity imperfections by design using state-of-the-art strapdown 

algorithms that match the application [29, 34, 36, 50]. Using classical 4th order Runge-Kutta 

time integration and low-pass filtering of measured input data if needed, time discretization 
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errors are negligible for dead reckoning and the aerodynamic motion model. These methods 

more significantly suffer from simplifications necessary for implementation. Heading and 

airspeed dead reckoning assumes a simplified geometry where aerodynamic velocity is 

always horizontally aligned with body longitudinal axis. For a number of dynamic flight 

conditions, this causes error in the approximated velocity used in position time integration. 

While geometry and kinematics are exact in the aerodynamic motion model, this method 

uses approximate models of aerodynamic and propulsion forces and moments, weight and 

balance and vehicle geometry. 

As result of this study of required measurements, model inputs and simplifications for 

implementation, inertial navigation offers some advantages compared to the other models 

if only a single motion model is used. Regarding the input data, it is the most reliable option 

and, in addition, it is the only motion model that describes true motion without simplifications 

or imperfections. Compared to heading and airspeed dead reckoning, the aerodynamic 

motion model uses more reliable measurements of control inputs. Still, both require wind 

velocity vector at aircraft position that is hardly available. Because dead reckoning 

computes an approximation of horizontal velocity and the aerodynamic motion model relies 

on a simplified model of true flight physics, inertial navigation is the choice for a single motion 

model with maximum validity for a wide range of operational and environmental conditions. 

One important aspect that distinguishes the aerodynamic motion model from dead 

reckoning or inertial navigation is that the implementation of this method is very specific to 

the navigation platform (i.e. vehicle). In contrast, inertial navigation is perfectly indifferent to 

the platform carrying the navigation system. For heading and airspeed dead reckoning the 

type of vehicle only affects the validity of assuming alignment of aerodynamic velocity and 

longitudinal axis. Aerodynamic motion propagation will require different software and 

measured inputs for any different vehicle. Consider for example the difference for two similar 

airplanes, one with retractable landing gear, the other with fixed landing gear. The first will 

need an additional measurement of gear position to be included in the motion model input 

vector. In addition, aerodynamic properties are affected by gear position and this must be 

accounted for in the software model used to compute aerodynamic and propulsion forces 

and moments. 
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2.2 ERROR STATE PROPAGATION 
 

Without absolute position information, the change in position starting from the last known or 

accurately measured point must be predicted using one of the methods introduced in the 

previous section. Errors, once introduced in initial values, measured inputs or inputs 

computed from models, will remain in the computation. The way how these navigation errors 

propagate and accumulate, especially in estimates of position and velocity, is of great 

interest for assessment of propagation method usability. 

The following analysis will allow to quantitatively predict method performance if used open 

loop, i.e. without updates or corrections to the motion model states. A performance study is 

based on statistical models of initial value and input errors, and uses either the error 

covariance model, which can be derived from linear(ized) error dynamics, or Monte Carlo 

simulation of the error dynamics to yield statistical measures of performance. If a position 

prediction method is designed to meet a specific open loop performance, e.g. position 

accuracy over time (drift), this error propagation analysis and specifically the long term error 

dynamics are the basis for deriving required input and sensor accuracy. While historically 

limited computational capabilities required simulation of linear(ized) error dynamics (or 

analytical discussion where possible), Monte Carlo simulation of the whole navigation system 

software is possible today. This has the advantage of greatest possible correspondence of 

operational method and analysis, and will be the preferred approach to performance 

assessment and design in this work. 

Observability analysis of system errors, as will follow in the next section, is yet another reason 

for error propagation analysis. The short term error dynamics of system states in combination 

with system-specific observations determine the closed loop behavior with an estimation 

filter, such as the extended Kalman filter (EKF). Implementation of the EKF requires a 

covariance model of system error dynamics. 

If filter estimates of motion model errors are used to update or correct the model, the open 

loop performance will be only of importance for short time intervals between filter updates. 

At least for model errors that are observable and will be corrected by the filter, short term 

error dynamics are of greater interest than the long term dynamics in closed loop. 

 

2.2.1 Heading and airspeed dead reckoning 

 

The dead reckoning method is the simplest algorithm to compute change in position over 

time, requiring only a single time integration. This simplicity represents an advantage, 

because the number of error sources is very limited. As will be shown in the following 

subsection, integration of position from speed and direction measurements results in linear 

position error growth. This first order error influence and resulting steady positon drift 

constitutes the distinctive characteristic of the dead reckoning method and makes it suitable 

for use with low-cost equipment over long time intervals. 
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2.2.1.1 Position drift 

 

The position error of dead reckoning is described by the following differential equation found 

by perturbation analysis of equation (2-2) and subsequent linearization. Input errors, 

elevation angle Θ𝑛𝑏, aerodynamic angles of attack and sideslip and errors error in computed 

roll and pitch are assumed small (see appendix A.5). 
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(2-16) 

 

⋅ (𝛿𝒗𝐻𝑊𝑛 + [
cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
] 𝛿𝑉𝐴

+ [
−sin(𝛹𝑛𝑏)

cos(𝛹𝑛𝑏)
] (𝛿𝛹𝑛𝑏 + cos(𝛷𝑛𝑏)𝛽𝐴 − sin(𝛷𝑛𝑏)𝛼𝐴)𝑉𝐴) 

   
Again, 𝛹𝑛𝑏 ≈ 𝜒𝐴  and cos(𝛾𝐴) ≈ 1 is assumed, which holds for small angles of aerodynamic 

sideslip in straight and level flight and thus for the greatest part of the flight. 

Errors in the computation of normal and meridian radii have been neglected in this analysis 

because they correspond to scale factor errors on the order of 1𝑝𝑝𝑚 for distances travelled 

in north direction of ~100𝑘𝑚 (and radii computed at initial position). Similarly, errors in height 

of up to 5500𝑚  (approximately 18000𝑓𝑡 ) will cause a scale factor error in position 

propagation of less than 1000𝑝𝑝𝑚 which is still negligibly small. Notice that integration of 

longitude becomes very sensitive to latitude errors at high latitudes. 10𝑘𝑚 north position error 

introduce a scale factor error in longitude propagation of 15000𝑝𝑝𝑚 at 85° latitude and 

2600𝑝𝑝𝑚 at 60° latitude respectively. For the applications considered here, this effect may 

be dismissed from analysis as well. 

Equation (2-16) describes three different error sources in aircraft dead reckoning: First, there 

is a wind drift directly related to the integration of error in horizontal wind velocity vector 

𝛿𝒗𝐻𝑊𝑛 used for position propagation. Second, the airspeed measurement error 𝛿𝑉𝐴 will cause 

along-track error. Finally, heading error and deviations from to assumed zero-sideslip straight 

and level flight condition introduce across-track error or misalignment error. 

All of these errors are accumulated in position estimate by integration over time. For zero 

velocity and with above simplifications 
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⋅ (∫ 𝛿𝒗𝐻𝑊𝑛𝑑𝑡
𝑡

𝑡0

+∫ [
cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
] 𝛿𝑉𝐴𝑑𝑡

𝑡

𝑡0

 

+∫ [
− sin(𝛹𝑛𝑏)

cos(𝛹𝑛𝑏)
] (𝛿𝛹𝑛𝑏 + cos(𝛷𝑛𝑏)𝛽𝐴 − sin(𝛷𝑛𝑏) 𝛼𝐴)𝑉𝐴𝑑𝑡

𝑡

𝑡0

) 

+𝛿𝚲𝐻(𝑡0) 
   

All error terms are first order in elapsed time Δ𝑡 = 𝑡 − 𝑡0. Partial cancellation of integrated 

position error due to constant input error in airspeed or heading may occur if direction of 
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motion changes. Similarly, time variant input errors in airspeed or heading may be rectified 

by changes in direction of motion. Still, for any motion trajectory, errors of heading and 

airspeed dead reckoning scale linearly with time. This is a very favorable error characteristic 

for low-cost applications where input errors can be large. It effectively weights temporary 

errors with the time duration of occurrence. Consequently, large input errors due to low cost 

instrumentation are permissible and have little effect on position accuracy as long as they 

exist for short times only. 
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2.2.2 Inertial navigation 

 

Because the inertial motion model by itself is accurate without approximation, system 

dynamics are independent of actual navigation state vector parametrization. 

Consequently, the error dynamics are the same for e.g. a local-level, ECEF or ECI strapdown 

inertial navigation mechanization using the same initial and input values (i.e. inertial 

measurements and gravity or gravitation). 

For terrestrial navigation systems, inertial navigation error dynamics are commonly analyzed 

in a local-level mechanization, such as NED or wander frame. As has been noted above, 

equivalence for different mechanization holds – but a local-level parametrization of errors is 

preferable because it isolates characteristic error behavior in vertical and horizontal 

channels. This offers greater insight in system error behavior. Although system implementation 

and characteristics of input errors are significantly different, inertial navigation error analysis 

is largely equivalent for gimbaled platform and strapdown (i.e. analytic platform) systems. 

This is the reason why the results of early inertial navigation error propagation analysis still hold 

for modern systems, while consideration of input error faces new problems due to new 

technologies (see e.g. suggestions in [29]). 

The error analysis of terrestrial inertial navigation with a local-level mechanization can be 

classified in two different approaches. They differ in the definition of error of the computed 

local-level velocity: Comparing the computed velocity vector against the true velocity 

vector written in coordinates of the local-level frame at true position – or comparing the 

computed velocity vector against the true velocity vector written in coordinates of the local-

level frame at computed position. 

The first is known as perturbation error approach [51]. The perturbation velocity error 

motivates definition of orientation error as misalignment of the true local-level frame and the 

(analytic) platform frame, where accelerometer measurements are integrated. This is the phi 

formulation of orientation error [20, 52], the corresponding rotation vector is referred to as phi 

angle orientation error. The alternative velocity error, defined in the computed local-level 

frame [20], is usually combined with orientation error defined as misalignment of the 

computed local-level frame and the (analytic) platform frame, known as psi formulation [20, 

52–54] and defining the psi angle orientation error. 

Both approaches have been shown to be equivalent for small errors [52], but differ in 

implementation when used for integrated navigation [20]. If suitable for the given navigation 

task, other combinations of velocity error and orientation error definitions are possible. 

Even more diversity in inertial navigation error models found in the literature is due to different 

choices of position error definition. The misalignment between the true local-level frame and 

the computed local-level frame, commonly referred to as delta theta vector, is a 

parametrization of horizontal position error. For small errors, this misalignment vector is the 

difference of phi and psi orientation errors. The vertical component of theta corresponds to 

an additional degree of freedom of heading error definition (c.f. [55]). Depending on the 

type of local-level mechanization (e.g. NED or wander frame), several choices are possible 

to fix (e.g. set to zero or constant) one of the linearly dependent errors in vertical direction 

[20], thus determining all by estimating just one. When using the misalignment 

parametrization of position error, an additional height error state must be included. 
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In this work, position error is defined as additive error of WGS84 position, velocity error is 

defined using the perturbation approach (which will also be applied for all vector error 

definitions in this work) and phi formulation is adopted for orientation error parametrization. 

Error propagation analysis is applied to the strapdown inertial navigation algorithm 

presented in the previous section. Since this is a NED frame mechanization, there is no error 

due to computed wander angle, and the vertical component of position misalignment 

vector is a function of latitude error only (c.f. [56]). Thus the 9-DOF representation of 

strapdown inertial navigation errors derived in the following is complete. 

 

2.2.2.1 Perturbation error analysis of terrestrial inertial navigation 

 

The computed navigation states are corresponding to section 2.1.2.1 

�̂�𝑛 =

[
 
 
 
 
 
�̂�

�̂�
ℎ̂
�̂�𝑛
�̂̆�𝑛𝑏]

 
 
 
 
 

…geodetic latitude

…geodetic longitude

…height above WGS84 ellipsoid

…ECEF velocity in NED coordinates

…NED to body-fixed frame orientation quaternion

 

The computed navigation states denoted by a hat are propagated using the strapdown 

inertial navigation algorithm described in section 2.1.2.1 and possibly corrected by estimates 

of navigation state error if available (as in an integrated navigation system). In addition to 

initial errors and errors in the navigation state corrections, errors in the strapdown 

propagation of navigation state contribute to the total error of computed navigation states. 

The propagation errors are mostly due to input errors in the IMU measurements of specific 

force and inertial angular rates, �̃�𝑏 and �̃�𝑖𝑏. The input error in computed gravity vector is 

neglected in this work because it is very small compared to accelerometer measurement 

error for the applications of interest. In the following, the navigation state errors will be 

defined. 

For the perturbation error model, velocity error is simply the difference of the true NED velocity 

vector and the computed velocity vector:  

𝛿𝒗𝑛 = 𝒗𝑛 − �̂�𝑛 

The error of the vector of WGS84 position is 

𝛿𝚲 = [
𝛿𝜙
𝛿𝜆
𝛿ℎ

] = [
𝜙 − �̂�

𝜆 − �̂�
ℎ − ℎ̂

] 

The computed NED to body-fixed frame orientation quaternion �̂̆�𝑛𝑏 is used in the strapdown 

algorithm (2-3) to transform body-fixed accelerometer measurements to an approximation 

of the NED frame, referred to as platform frame. The misalignment of this approximation with 

respect to the NED frame can be described by the product of true and inverse of computed 

NED to body-fixed frame orientation quaternions. With the relationship of an orientation 

quaternion and a rotation vector (A-41), a corresponding orientation error rotation vector 

𝝓𝑛 with magnitude 𝜙 and unit vector 𝒏𝜙 can be defined:  
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�̆�𝑛𝑏 ⋅ �̂̆�𝑛𝑏
−1 = [

cos (
𝜙

2
)

sin (
𝜙

2
)𝒏𝜙

] (2-18) 

   
The rotation vector 𝝓𝑛 is the phi angle orientation error in NED frame coordinates 

𝝓𝑛 = [

𝜙𝑁
𝜙𝐸
𝜙𝐷

] 

It is sometimes referred to as (equivalent) tilt in literature [57, 58]. 

Equation (2-18) can be linearized as 

�̆�𝑛𝑏 ⋅ �̂̆�𝑛𝑏
−1 ≐ [

1
1

2
𝝓𝑛
] 

With equation (A-20) the relationship of true and computed NED to body-fixed frame rotation 

matrix and phi angle orientation error is 

 𝑹𝑛𝑏�̂�𝑛𝑏
𝑇 = 𝐼 + sin(𝜙) 𝑠𝑘𝑒𝑤(𝒏𝜙) + (1 − cos(𝜙))𝑠𝑘𝑒𝑤(𝒏𝜙)

2
 (2-19) 

   
with the computed NED to body-fixed frame rotation matrix �̂�𝑛𝑏

𝑇 . The corresponding 

linearized relationship is 

𝑹𝑛𝑏�̂�𝑛𝑏
𝑇 ≐ 𝑰 + 𝑠𝑘𝑒𝑤(𝝓𝑛) 

Defining a vector of orientation error Euler angles  

𝜱 = [

𝛿𝜙1
𝛿𝜙2
𝛿𝜙3

] 

the misalignment of platform frame with respect to true NED frame can be described as a 

Euler angle rotation sequence:  

 

�̆�𝑛𝑏 ⋅ �̂̆�𝑛𝑏
−1 =

[
 
 
 
 
 cos (

𝛿𝜙3
2
)

0
0

sin (
𝛿𝜙3
2
)]
 
 
 
 
 

⋅

[
 
 
 
 
 cos (

𝛿𝜙2
2
)

0

sin (
𝛿𝜙2
2
)

0 ]
 
 
 
 
 

⋅

[
 
 
 
 
 cos (

𝛿𝜙1
2
)

sin (
𝛿𝜙1
2
)

0
0 ]

 
 
 
 
 

 (2-20) 

   
Linearization of equation (2-20) gives 

�̆�𝑛𝑏 ⋅ �̂̆�𝑛𝑏
−1 ≐ [

1
1

2
𝜱
] 

Consequently, the Euler angle parametrization of orientation error 𝜱  and the phi angle 

orientation error 𝝓𝑛 are equivalent in linear approximation. Because only linear perturbation 

error analysis will is conducted in this work the two definitions of orientation error can be used 

interchangeably since the derived linearized differential equations are the same:  

�̇�𝑛|𝝓𝑛=𝟎
≐ �̇�|

𝜱=𝟎
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The orientation error Euler angles 𝜱 are related to the error in computed NED to body-fixed 

frame rotation matrix �̂�𝑛𝑏
𝑇  as follows:  

 

𝜱 = [

atan2(𝑅32, 𝑅33)

asin(−𝑅31)

atan2(𝑅21, 𝑅11)
]  𝑤𝑖𝑡ℎ 𝑹𝑛𝑏�̂�𝑛𝑏

𝑇 = [

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

] (2-21) 

With above error definitions, the vector of navigation state errors for perturbation error 

analysis of inertial navigation in this work is defined as 

𝛿𝒛𝑛 ≔

[
 
 
 
 
𝛿𝜙
𝛿𝜆
𝛿ℎ
𝛿𝒗𝑛
𝝓𝑛 ]

 
 
 
 

 

The linearized system of ordinary differential equations for inertial navigation error dynamics 

from perturbation analysis is 

 𝛿�̇�𝑛 = 𝑨𝛿𝒛𝑛 + 𝑩𝛿𝒔 (2-22) 

   
Neglecting gravity model errors in the analysis of low-cost methods, 𝛿𝒔 = [𝛿𝒇𝑏𝐼𝑀𝑈

𝑇 , 𝛿𝝎𝑖𝑏𝐼𝑀𝑈
𝑇 ]

𝑇
 is 

the vector of IMU measurement errors defined as 

𝛿𝒇𝑏𝐼𝑀𝑈 = 𝒇𝑏𝐼𝑀𝑈 − �̃�𝑏 

𝛿𝝎𝑖𝑏𝐼𝑀𝑈 = 𝝎𝑖𝑏𝐼𝑀𝑈 − �̃�𝑖𝑏 

The system and input matrices in (2-22) are summarized in the following (derivations found in 

appendix A.6, in [39] and in [32], where it is related to the error model in [59]. A similar error 

model with position error defined in local level coordinates is found in [60]). 
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𝑨𝛿𝚲,𝝓𝑛 = 𝟎 
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𝑨𝛿𝒗𝑛,𝛿𝚲 = 
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Where the partial derivatives of gravity in down direction with respect to height and latitude 

must be derived from the gravity model used or a simplified spherical model. 

𝑨𝛿𝒗𝑛,𝛿𝒗𝑛 = 

[
 
 
 
 
 
 
 

𝑣𝐷

𝑀(�̂�) + ℎ̂
−2𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) −

2 𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂

𝑣𝑁

𝑀(�̂�) + ℎ̂

2𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) +
𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂

𝑡𝑎𝑛(�̂�) 𝑣𝑁 + 𝑣𝐷

𝑁(�̂�) + ℎ̂
2𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +

𝑣𝐸

𝑁(�̂�) + ℎ̂

−
2𝑣𝑁

𝑀(�̂�) + ℎ̂
−2𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) −

2𝑣𝐸

𝑁(�̂�) + ℎ̂
0

]
 
 
 
 
 
 
 

 

𝑨𝛿𝒗𝑛,𝝓𝑛 = −𝑠𝑘𝑒𝑤(�̂�𝑛𝑏�̃�𝑏) 

𝑨𝝓𝑛,𝛿𝚲 =

[
 
 
 
 
 
 
 𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) 0

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2

0 0 −
𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +
𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
0 −

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
]
 
 
 
 
 
 
 

 

𝑨𝝓𝑛,𝛿𝒗𝑛 =

[
 
 
 
 
 
 
 0 −

1

𝑁(�̂�) + ℎ̂
0

1

𝑀(�̂�) + ℎ̂
0 0

0
𝑡𝑎𝑛(�̂�)

𝑁(�̂�) + ℎ̂
0
]
 
 
 
 
 
 
 

 

𝑨𝝓𝑛,𝝓𝑛 =

[
 
 
 
 
 
 
 0 −𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) −

𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂

𝑣𝑁

𝑀(�̂�) + ℎ̂

𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) +
𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂
0 𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +

𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝑣𝑁

𝑀(�̂�) + ℎ̂
−𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) −

𝑣𝐸

𝑁(�̂�) + ℎ̂
0

]
 
 
 
 
 
 
 

 

While precise motion propagation with the strapdown inertial navigation equation requires 

calculation of curvature radii and gravity of an oblate ellipsoidal earth, simplifications 

assuming a spherical model are permissible for error propagation analysis. 
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The effect of input errors on inertial navigation error dynamics is given by 

 𝑩𝛿𝒗𝑛,𝛿𝒇𝑏 = �̂�𝑛𝑏 

𝑩𝝓𝑛,𝛿𝝎𝑖𝑏 = �̂�𝑛𝑏 
(2-23) 

   
Because measured specific force in NED coordinates �̂�𝑛𝑏�̃�𝑏 directly appears in the 𝑨𝛿𝒗𝑛,𝝓𝑛 

block matrix of the system matrix in (2-22), use of advanced methods for integrated 

navigation filter design may be advantageous to avoid problems due to measurement noise 

[56].  

 

2.2.2.2 Error dynamics and stability 

 

The errors of NED frame strapdown inertial navigation are studied with respect to their 

dynamics in short time intervals and in long time intervals. 

The integration of inertial angular rates and specific force measurements corresponds to 

propagation of IMU measurement errors to orientation error and velocity error respectively, 

according to (2-23). Orientation errors are in turn propagated to velocity error, due to 

integration of imperfectly rotated specific force vector, represented by the block matrix 

𝑨𝛿𝒗𝑛,𝝓𝑛 . Finally, velocity error is directly propagated to position error in the position time 

integration, see 𝑨𝛿𝚲,𝛿𝒗𝑛. Consequently, IMU measurement errors are propagated as follows 

to position error (neglecting error feedback loops) 

 
𝛿𝚲(t) ~∬𝑨𝛿𝚲,𝛿𝒗𝑛 (𝑩𝛿𝒗𝑛,𝛿𝒇𝑏𝛿𝒇𝑏𝐼𝑀𝑈 + 𝑨𝛿𝒗𝑛,𝝓𝑛∫𝑩𝝓𝑛,𝛿𝝎𝑖𝑏𝛿𝝎𝑖𝑏𝐼𝑀𝑈𝑑𝑡)𝑑𝑡

2 (2-24) 

   
By inspection of 𝑨𝛿𝒗𝑛,𝝓𝑛, the third order error propagation due to inertial angular rates error is 

restricted to directions perpendicular to �̂�𝑛𝑏�̃�𝑏. For sustained flight, external force cancels 

weight and thus third order error propagation is present in the horizontal. Note that it would 

not be an issue in free fall since specific force would vanish. Additionally, specific force 

measurement error causes second order position error growth in all dimensions. 

A mathematically more rigorous analysis is possible for simplified versions of the system of error 

differential equations (2-22). The direct propagation of input error to position error according 

to equation (2-24) will be shaped into a particular solution of the differential equations, given 

a specific time history of input errors (c.f. [30]). It is instructive to study the homogenous 

solution, i.e. the Eigendynamics of the error system, to understand how the system will 

dynamically react given initial error. Based on a study of Eigendynamics, some fundamental 

statements of how the system will shape input error are made. A special case of input signal 

shaping by an undamped oscillatory system is amplification, or resonance, for periodical 

inputs close to one of the systems Eigenfrequencies. Alternatively, particular solutions of a 

simplified error system and basic input functions may be discussed (see [30]). 

Studying the dynamics of the coupled system of error differential equations (2-22) reveals 

large time constants, as will be shown in the following. Consequently, the polynomial position 

error growth discussed above will be observed in short term, and will be dominated by the 

coupled system dynamics of (2-22) in the long term. 

Neglecting the specialties of the chosen position parametrization in latitude and longitude, 

it appears that error dynamics would be the same everywhere on a spherical non-rotating 
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earth. Studying the available sensor accuracies for the given low-cost applications, 

simplifications by assuming spherical earth geometry and gravitation are admissible. Earth 

rate is negligibly small compared to IMU measurement error, and flight times are short 

compared to the period of earth rotation. In addition, velocities are sufficiently low to neglect 

errors in Coriolis effect. Thus, using an isotropic local-level parametrization by choosing 

latitude �̂� = 0, a strongly simplified system of error differential equations is attained. Height 

appears in equation (2-22) only in sums with earth radii and as a parameter of gravity 

gradient. Therefore, ℎ̂ = 0 is a good approximation here. Furthermore, in the analysis of long-

term error propagation, horizontal accelerations are neglected. 

For a spherical non-rotating earth model with mean radius 𝑅1 = 6371008.7714m  [18, 61], 

neglecting transport rate effects and at latitude �̂� = 0 and height ℎ̂ = 0, equation (2-22) can 

be simplified to 

𝑨𝛿𝒗𝑛,𝛿𝒗𝑛 = 𝑨𝝓𝑛,𝛿𝚲 = 𝑨𝝓𝑛,𝝓𝑛 = 𝟎 

𝑨𝛿𝚲,𝛿𝒗𝑛 =

[
 
 
 
 
1

𝑅1
0 0

0
1

𝑅1
0

0 0 −1]
 
 
 
 

 

𝑨𝛿𝒗𝑛,𝛿𝚲 = [
0 0 0
0 0 0
0 0 −2𝜔𝑆

2
] 

With the definition of Schuler frequency 

 
𝜔𝑆 = √

𝑔

𝑅1
 (2-25) 

   
With the gravitational acceleration of a spherical earth at its surface 𝑔 =

𝐺𝑀

𝑅1
2 ≈ 9.8𝑚/𝑠

2 (for 

earth’s gravitational constant 𝐺𝑀 see e.g. [18]). With definition (2-25), −2𝜔𝑆
2 corresponds to 

the vertical gravitation gradient of a spherical earth in 𝑨𝛿𝒗𝑛,𝛿𝚲. 

Now, assuming alignment with local-level axes, i.e. �̂�𝑛𝑏 = 𝑰 , and neglecting long-term 

horizontal accelerations 

𝑨𝛿𝒗𝑛,𝝓𝑛 = [
0 −𝑔 0
𝑔 0 0
0 0 0

] 

And finally 

𝑨𝝓𝑛,𝛿𝒗𝑛 =

[
 
 
 
 0 −

1

𝑅1
0

1

𝑅1
0 0

0 0 0]
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This gives a set of homogeneous differential equations for horizontal error dynamics 

𝛿𝜙 ≈
𝑑2

𝑑𝑡2
(
1

𝑅1
𝛿𝑣𝑁) ≈

1

𝑅1

𝑑

𝑑𝑡
(−𝑔𝜙𝐸) ≈ −

𝜔𝑆
2

𝑅1
𝛿𝑣𝑁 

𝛿𝜆 ≈
𝑑2

𝑑𝑡2
(
1

𝑅1
𝛿𝑣𝐸) ≈

1

𝑅1

𝑑

𝑑𝑡
(𝑔𝜙𝑁) ≈ −

𝜔𝑆
2

𝑅1
𝛿𝑣𝐸 

And for vertical error  

 
𝛿ℎ̈ ≈

𝑑

𝑑𝑡
(−𝛿𝑣𝐷) ≈ 2𝜔𝑆

2𝛿ℎ (2-26) 

   
As noted above, these are slow error dynamics with a period of 𝑇𝑆 =

2𝜋

𝜔𝑆
≈ 84(60)𝑠 for the 

stable undamped oscillatory horizontal error dynamics (known as Schuler dynamics) and a 

time-to-double of 𝑇2,𝛿ℎ =
ln(2)

√2𝜔𝑆
≈ 400𝑠 for the exponentially unstable vertical error dynamics. 

It follows that while polynomial measurement error propagation according to equation (2-

24) dominates in the short term, error growth in the horizontal will be restrained by the stable 

Schuler dynamics for propagation times exceeding a significant portion of the Schuler period 

(e.g. 
𝑇𝑆

4
≈ 21(60)𝑠 ), while vertical error growth will even be aggravated by the instable 

dynamics (2-26) in the long term or if initial height error is large. 

The problem of vertical error instability is often directly addressed in the mechanization 

algorithm. For aviation applications, barometric altitude is used for vertical channel damping 

by means of higher order feedback loops [62] or a vertical channel Kalman filter [63]. The 

combination Baro-INS is the state of art, as it is a very robust solution to the vertical problem 

and independent of GNSS availability (c.f. [7, 15, 20]).  

 

 

Figure 3: Horizontal position error of navigation grade inertial navigation (stationary laboratory test) 
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For constant error of specific force input in the horizontal 𝛿𝒇𝐻𝐼𝑀𝑈  (i.e. due to y-axis 

accelerometer bias in level flight), the horizontal error dynamics will be the same as for an 

initial error in attitude (i.e. leveling error): The computed platform will accelerate horizontally 

(and rotate with transport rate) until the sum of specific force misalignment error and 

accelerometer bias is zero: 

𝑔
𝛿𝒙𝐻,𝑎𝑣𝑔

𝑅1
≈ 𝛿𝒇𝐻𝐼𝑀𝑈 

This will stimulate Schuler oscillation, centered at a position offset by 𝛿𝒙𝐻,𝑎𝑣𝑔 ≈ 𝛿𝒇𝐻𝐼𝑀𝑈/𝜔𝑆
2 (see 

the definition of Schuler frequency (2-25)) and with a stable bound of total horizontal position 

error of approximately 2𝛿𝒇𝐻𝐼𝑀𝑈/𝜔𝑆
2 [30]. Although this equivalent effect of initial misalignment 

and horizontal accelerometer on horizontal error can be effectively eliminated with leveling 

of the computed platform at navigation system initialization, accelerometer bias is not 

constant in low-cost sensors. With perfect gyros and zero initial error, constant 1𝑚𝑔  of 

accelerometer bias causes approximately 3.44𝑁𝑀  (or 6371𝑚) average position error and 

stable Schuler oscillations with an amplitude of the same value. 

 

 

Figure 4: Horizontal position error of low tactical grade inertial navigation (stationary laboratory test) 

 

A constant horizontal inertial angular rates error 𝛿𝝎𝐻𝐼𝑀𝑈 will accumulate to linear growth of 

attitude error (hence the term gyro drift), superposed by Schuler oscillations. Given the 

equivalence of horizontal accelerometer bias and misalignment discussed above, this results 

in linear growth of average position error: 



40 

𝑑

𝑑𝑡
𝛿𝒙𝐻,𝑎𝑣𝑔 ≈ 𝑅1𝛿𝝎𝐻𝐼𝑀𝑈 

This explains how the stable Schuler dynamics, driven by IMU measurement errors of specific 

force and inertial angular rates, allow for accurate free inertial horizontal terrestrial 

navigation using high end sensors with linear growth of average horizontal position error and 

drift rates below 2𝑁𝑀/ℎ (see Figure 3 for an example of navigation grade INS performance). 

For example, with above approximation, a constant 0.01°/ℎ gyro bias correspond to 0.6𝑁𝑀/ℎ 

horizontal position drift. Note that this simple math does not account for the effect of other 

sensor errors stimulated in strapdown systems.  

As has been noted above, periodical input error with frequency close to the Schuler 

frequency will be amplified in the open-loop inertial error dynamics [30]. While ideal white 

noise input error of both accelerometer and gyro will too lead to a long term growth of 

average position error, it scales with square of propagation time. Due to relatively low noise 

specifications of inertial sensors, the random walk caused by high frequency noise errors is 

negligible for long term horizontal position propagation with the inertial model. 

For low-cost inertial navigation, any reasonable bound on horizontal position or velocity error 

will be exceeded before Schuler dynamics become relevant for long propagation times, see 

Figure 4 and Figure 5. 

 

 

Figure 5: Initial position error growth of low tactical grade inertial navigation (stationary laboratory test) 

 

Heading error is also affected by Schuler dynamics via transport rate, but is mostly 

characterized by unbounded error growth due to gyro drift. Large heading error will 

adversely affect horizontal velocity and attitude accuracy in presence of horizontal 

accelerations and must be corrected.  
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2.2.2.3 Modified inertial motion model error dynamics 

 

For accurate determination of attitude with low-cost inertial sensors, a modification of the 

strapdown equations (2-3) can improve performance if horizontal accelerations occur only 

temporarily. 

For ideal stationary translational motion, external forces acting on the vehicle exactly cancel 

weight. With constant 𝝎𝑖𝑏 = 𝟎, the gravity vector and the true value of IMU specific force 

measurement are related as 

 𝒇𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = −𝑹𝑛𝑏
𝑇 𝜸𝑛 (2-27) 

   
The NED frame velocity vector changes due to rotation of NED frame with earth and 

transport rate 

�̇�𝑛stationary = −(2𝑹𝑒𝑛
𝑇 (𝜙, 𝜆)𝝎𝑖𝑒 +𝝎𝑒𝑛(𝜙, ℎ, 𝑣𝑁, 𝑣𝐸)) × 𝒗𝑛 

Neglecting deflections of the vertical, the NED frame gravity vector is 

𝜸𝑛 ≈ [
0
0
𝛾𝐷

] 

Consequently, under the assumption of stationary horizontal motion (2-27), scaling the IMU 

specific force measurement according to  

𝜔2

𝜔𝑆
2 𝒇𝑏 

does not affect the horizontal translational motion computed with equations (2-3). A 

modified NED frame kinematic velocity differential equation can be defined 

 
�̇�𝑛mod = 𝑹𝑛𝑏

𝜔2

𝜔𝑆
2 𝒇𝑏 + 𝜸𝑛(𝜙𝑟𝑒𝑓 , ℎ) − (2𝝎𝑖𝑒

n +𝝎𝑒𝑛) × 𝒗𝑛 − 2𝜁𝜔 (𝒗𝑛 − 𝒗𝑛𝑟𝑒𝑓) (2-28) 

   
Under the condition of stationary translational motion, constant 𝝎𝑖𝑏 = 𝟎 and with accurate 

reference position and velocity 𝒗𝑛𝑟𝑒𝑓 , this modification is consistent with true horizontal 

motion: 

�̇�𝑁mod = �̇�𝑁stationary 

�̇�𝐸mod = �̇�𝐸stationary 

For accurate vertical inertial motion, the vertical velocity differential equation should be 

implemented independently using the reference values for horizontal motion 

 �̇�𝐷 = 𝑓𝐷 + 𝛾𝐷(𝜙𝑟𝑒𝑓 , ℎ) − 𝜔𝑁𝑣𝐸𝑟𝑒𝑓 +𝜔𝐸𝑣𝑁𝑟𝑒𝑓 (2-29) 

   
With  

𝝎𝑛 = [

𝜔𝑁
𝜔𝐸
𝜔𝐷
] = 2𝑹𝑒𝑛

𝑇 (𝜙𝑟𝑒𝑓 , 𝜆𝑟𝑒𝑓)𝝎𝑖𝑒 +𝝎𝑒𝑛 (𝜙𝑟𝑒𝑓 , ℎ, 𝑣𝑁𝑟𝑒𝑓 , 𝑣𝐸𝑟𝑒𝑓) 
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Similar to original inertial navigation, barometric altitude should be used for damping of 

vertical errors in a Baro-inertial vertical channel. 

The effect of error in the assumption of stationary horizontal motion (2-27) and the 

homogeneous errors dynamics of the modified inertial model will be discussed in the 

following. Accounting for errors in the computation 

�̂̇�𝑛mod = �̂�𝑛𝑏
𝜔2

𝜔𝑆
2 (𝒇𝑏 − 𝛿𝒇𝑏𝐼𝑀𝑈) + 𝜸𝑛 −

𝑑𝜸𝑛
𝑑𝛿𝚲𝑇

𝛿𝚲 − (2𝝎𝑖𝑒
n +𝝎𝑒𝑛 − 2δ𝝎𝑖𝑒

n − δ𝝎𝑒𝑛) × (𝒗𝑛 − δ𝒗𝑛)

− 2𝜁𝜔 (𝒗𝑛 − δ𝒗𝑛 − 𝒗𝑛𝑟𝑒𝑓) 

The linearized error differential equation corresponding to equation (2-28) is, assuming an 

ideal reference kinematic velocity 𝒗𝑛𝑟𝑒𝑓 = 𝒗𝑛 

𝛿�̇�𝑛 ≐ (1 −
𝜔2

𝜔𝑆
2)𝒇𝑛 +

𝜔2

𝜔𝑆
2𝑹𝑛𝑏𝛿𝒇𝑏𝐼𝑀𝑈 −

𝜔2

𝜔𝑆
2 𝒇𝑛 × 𝝓𝑛 +

𝑑𝜸𝑛
𝑑𝛿𝚲𝑇

𝛿𝚲 − (2δ𝝎𝑖𝑒
n + δ𝝎𝑒𝑛) × 𝒗𝑛

− (2𝝎𝑖𝑒
n +𝝎𝑒𝑛) × δ𝒗𝑛 − 2𝜁𝜔δ𝒗𝑛 

The assumption (2-27) is violated due to accelerations of the vehicle and relative 

acceleration of navigation reference point 𝑅 and vehicle center of gravity 𝐺 for nonzero 

inertial rates and angular accelerations. Neglecting vertical disturbances, the specific force 

vector is  

𝒇𝑛 ≈ [

𝑓𝑁
𝑓𝐸
−𝑔
] 

For this study, the effect of NED frame north alignment and earth rate will be neglected. 

Therefore approximately 

2𝝎𝑖𝑒
n +𝝎𝑒𝑛 ≈ [

𝜔𝑁
𝜔𝐸
0
] 

And vertical orientation error can be set to zero 

𝝓 = [
𝜙𝑁
𝜙𝐸
0
] 

Neglecting transport rate rotation of vertical velocity error, gravity gradient and 

accelerometer measurement error, the horizontal velocity error components evolve as 

𝛿�̇�𝑁 ≈ (1 −
𝜔2

𝜔𝑆
2)𝑓𝑁 −

𝜔2

𝜔𝑆
2 𝑔𝜙𝐸 − 𝛿𝜔𝐸𝑣𝐷 − 2𝜁𝜔𝛿𝑣𝑁 

𝛿�̇�𝐸 ≈ (1 −
𝜔2

𝜔𝑆
2)𝑓𝐸 +

𝜔2

𝜔𝑆
2 𝑔𝜙𝑁 + 𝛿𝜔𝑁𝑣𝐷 − 2𝜁𝜔𝛿𝑣𝐸 
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Neglecting the terms in vertical velocity 𝑣𝐷 , and with the simplified error dynamics of 

horizontal orientation error at latitude �̂� = 0 and height ℎ̂ = 0 and the definition of Schuler 

frequency (2-25) 

 
�̈�𝑁 ≈ −

𝛿�̇�𝐸
𝑅1

≈ −𝜔2𝜙𝑁 − 2𝜁𝜔�̇�𝑁 +𝜔
2 (1 −

𝜔𝑆
2

𝜔2
)
𝑓𝐸
𝑔⏟        

𝑓𝜙𝑁

 

�̈�𝐸 ≈
𝛿�̇�𝑁
𝑅1

≈ −𝜔2𝜙𝐸 − 2𝜁𝜔�̇�𝐸 +𝜔
2 (
𝜔𝑆
2

𝜔2
− 1)

𝑓𝑁
𝑔⏟        

𝑓𝜙𝐸

 

(2-30) 

   
The homogeneous error dynamics of horizontal velocity and orientation errors have a natural 

frequency 𝜔 that corresponds to the scaling of specific force input. Choosing 𝜁 = 1/√2 and 

𝜔 < 𝜔𝑆 will implement non-resonating damped error dynamics with good values for both rise 

and settling time (𝑇5% ≈ 3/𝜁𝜔 ≈ 0.68𝑇𝜔 [64]). This significantly improves accuracy of horizontal 

orientation in unaccelerated motion with 𝑓𝑁 = 𝑓𝐸 = 0. 

In sustained turning flight with kinematic velocity 𝑉𝐾  and turning rate �̇�𝐾 , the periodical 

horizontal accelerations 

 𝑓𝑁 ≈ −𝑉𝐾�̇�𝐾sin (�̇�𝐾𝑡 + 𝜒0) 
 

𝑓𝐸 ≈ 𝑉𝐾�̇�𝐾cos (�̇�𝐾𝑡 + 𝜒0) 
(2-31) 

   
will drive above orientation error differential equations (2-30). For �̇�𝐾 ≫ 𝜔, the error response 

amplitude is strongly reduced by approximately 40𝑑𝐵/lg (�̇�𝐾/𝜔) [64]. For sustained turning 

flight of fixed-wing small general aviation aircraft typically 

�̇� ≥ 3°/𝑠 

√𝑓𝑁
2 + 𝑓𝐸

2 ≤ 𝑔 tan(30°) 

The combination of lowest turning rate and largest horizontal acceleration corresponds to a 

kinematic velocity of approximately 108𝑚/𝑠 identified as worst case. 
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Figure 6: Transient attitude errors in coordinated turning flight with 30° bank angle. 𝜁 = 1/√2, 𝜔 = 2𝜋/7(60)𝑠 

 

For a choice of 𝜔 = 2𝜋/7(60)𝑠, the worst-case of forcing functions 𝑓𝜙𝑁 and 𝑓𝜙𝐸 in sustained 

turning flight would induce periodical errors 𝜙𝑁 and 𝜙𝐸 with an amplitude of approximately 

3° after transients have settled (or a constant orientation error of the same magnitude in a 

turning coordinate frame). 

 

 

Figure 7: Transient attitude errors in coordinated turning flight with 30° bank angle. 𝜁 = 1/√2, 𝜔 = 2𝜋/21(60)𝑠 
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Because airplane maneuvers usually only consist of turns of a fraction of full circle, the 

transient response of error equations (2-30) is of greater interest. Figure 6 shows along-track 

and across-track orientation error in sustained turns with lateral acceleration of 𝑔 tan(30°) and 

velocities of 32.5𝑚/𝑠 and 108𝑚/𝑠 for 𝜔 = 2𝜋/7(60)𝑠. Figure 7 shows the same results for 𝜔 =

2𝜋/21(60)𝑠 

If rate of turn �̇�𝐾 can be determined accurately, the lateral acceleration in turning flight can 

be corrected according to equations (2-31). Note that this requires accurate attitude and 

heading information. Alternatively, thresholds on inertial rates and violation of equation (2-

27) can be implemented to automatically set 𝜔 = 𝜔𝑆 in accelerated flight.  
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2.2.3 Aerodynamic motion model 

 

The error dynamics of 12-DOF vehicle dynamics model simulation are more complex than in 

case of inertial navigation. Since point mass motion is assumed for the VDM center of gravity, 

inertial error dynamics are contained in the full 12-DOF error dynamics as well, but they are 

covered in the more significant error dynamics of aerodynamic flight. These strongly depend 

on the type of aircraft, and will be discussed for conventional small general aviation 

airplanes.  

The airplanes considered here are designed and verified to exhibit benign flight dynamics 

minimizing the stress and required skill for the pilot (see e.g. §23.181(b) in [65, 66]). Unlike 

airplanes flown by extensively trained pilots (such as fighter airplanes and competition-level 

sailplanes), small general aviation airplanes will react to small disturbances from the current 

flight condition in a dynamically stable way. A software model of flight dynamics that has 

been qualified in accordance to high fidelity flight model certification specifications [47] or 

verified in a similar way, will accurately replicate the flight characteristics of the true airplane. 

Therefore, such a model will show similar dynamics after a disturbance from a defined 

reference flight condition. Given this similarity and the stability of both true and modeled 

flight dynamics, the dynamics of errors of flight simulation will exhibit the same benign 

characteristics as the true airplane flight dynamics: The dynamics of errors of aerodynamic 

position propagation and the tested and verified benign flight dynamics of the small general 

aviation airplane are similar. 

In this section, a short and simplified perturbation error analysis of decoupled 12-DOF airplane 

motion will be conducted to show how the stability and damping qualities of the total state 

flight dynamics translate to the corresponding error dynamics of modeled flight. Assuming 

an ideal model and in linear approximation, the dynamics of perturbation of true flight from 

a reference flight condition and the dynamics of error of modeled flight compared to true 

flight are equivalent. A rigorous analysis of perturbed state flight dynamics assuming 

decoupled lateral and longitudinal airplane motion is found in many textbooks (e.g. [22, 41]) 

and not repeated here. The important conclusion is that using high-quality models, the error 

dynamics of the aerodynamic motion model will inherit the flight dynamics of the airplane. 

To confirm the characteristics of aerodynamic model error dynamics for complex nonlinear 

models and flight conditions that do not agree with the simplifications of theoretical analysis, 

and to extend the analysis to model error and large input errors, an extensive simulation study 

is required. This may include that the airplane software model is tested in simulation similar to 

the flight test program conducted with the real airplane (e.g. according to [67]) and 

compared against flight test data over the whole operational envelope. Furthermore, it has 

to be verified that errors in the weight and balance model are limited so that they do not 

affect flight dynamics. 

In this thesis, the reliability of error dynamics for conventional airplanes is confirmed by Monte 

Carlo simulation using one model for truth flight dynamics and a large number of 

approximate models. 
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2.2.3.1 Perturbation error analysis of aerodynamic flight 

 

To demonstrate how flight dynamics stability and damping translate to the error dynamics of 

12-DOF aerodynamic motion model simulation, a perturbation error analysis will be 

conducted in the following. This analysis is valid for small errors, i.e. computed state and 

measured input in vicinity of true state and input. Then the true aerodynamic forces and 

moments in center of gravity 𝐺 can be approximated based on computed values and errors 

in a linear coefficient form, for example as follows: 

𝐶𝐿 = 𝐶𝐿𝛼𝛿𝛼𝐴 + �̂�𝐿 

𝐶𝑌 = 𝐶𝑌𝛽𝛿𝛽𝐴 + �̂�𝑌 

𝐶𝑙
𝐺 = 𝐶𝑙𝛽𝛿𝛽𝐴 + 𝐶𝑙𝑝𝛿𝑝

⋆ + 𝐶𝑙𝑟𝛿𝑟
⋆ + 𝐶𝑙𝜉𝛿𝜉 + 𝐶𝑙𝜁𝛿𝜁 + �̂�𝑙 

𝐶𝑚
𝐺 = 𝐶𝑚𝛼𝛿𝛼𝐴 + 𝐶𝑚𝑞𝛿𝑞

⋆ + 𝐶𝑚𝜂𝛿𝜂 + �̂�𝑚 

𝐶𝑛
𝐺 = 𝐶𝑛𝛽𝛿𝛽𝐴 + 𝐶𝑛𝑝𝛿𝑝

⋆ + 𝐶𝑛𝑟𝛿𝑟
⋆ + 𝐶𝑛𝜉𝛿𝜉 + 𝐶𝑛𝜁𝛿𝜁 + �̂�𝑛 

Which are the formulas for coefficients of lift, sideforce, roll moment, pitch moment and yaw 

moment respectively, c.f. (2-10) with aerodynamic reference point at center of gravity 

location for simplicity. Wind vector will always be assumed zero for this analysis. 𝛿𝛼𝐴 and 𝛿𝛽𝐴 

denote the errors of computed aerodynamic angles of attack and sideslip (without indices 

in the following). 

𝛿𝜉, 𝛿𝜂 and 𝛿𝜁 are errors of control surface deflections (aileron, elevator and rudder) which 

are used as input to the model. These can be measured accurately and their errors will be 

neglected for this analysis. Assuming a high-quality aerodynamic motion model is used, errors 

in model coefficients as well as weight and balance errors are neglected as well. 

The errors of computed aerodynamic rates vector 𝝎𝐴𝑏  are represented here by the 

nondimensional (aerodynamic) rates in roll, pitch and yaw direction (in order 𝑝, 𝑞, 𝑟) 

𝛿𝑝⋆ =
𝛿𝜔𝐴𝑥𝑏

2�̂�𝐴
, 𝛿𝑟⋆ =

𝛿𝜔𝐴𝑧𝑏

2�̂�𝐴
 

𝛿𝑞⋆ =
𝛿𝜔𝐴𝑦𝑐̅

2�̂�𝐴
 

With the computed airspeed �̂�𝐴 = ‖�̂�𝑛 − �̂�𝑊𝑛‖2, wingspan 𝑏 and mean aerodynamic chord 

𝑐̅. 

The aerodynamic drag coefficient can for example be modeled with a quadratic formula 

(see (2-12)). Accounting for state errors and linearization gives to following perturbation 

formula 

𝐶𝐷 = 𝑘 ((𝐶𝐿 − 𝐶𝐿0)
2 − (�̂�𝐿 − 𝐶𝐿0)

2
) + �̂�𝐷 ≐ 2𝑘(�̂�𝐿 − 𝐶𝐿0)𝐶𝐿𝛼𝛿𝛼 + �̂�𝐷 

In flight simulation, the computed aerodynamic coefficients are used to determine external 

forces and moments. The true aerodynamic forces and moments differ from computed 

values in linear approximation as follows 
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𝑭𝑏
𝐺
𝐴𝑒𝑟𝑜

= 𝑞𝑆𝑟𝑒𝑓𝑹𝑎𝑏
𝑇 [

−𝐶𝐷
𝐶𝑌
−𝐶𝐿

]

≐ 𝛿𝑞
�̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

�̂�
− �̂�𝑆𝑟𝑒𝑓�̂�𝑎𝑏

𝑇 (𝜳𝑎�̃� × [

−𝐶𝐷
𝐶𝑌
−𝐶𝐿

])

+ �̂�𝑆𝑟𝑒𝑓�̂�𝑎𝑏
𝑇 [

−2𝑘(�̂�𝐿 − 𝐶𝐿0)𝐶𝐿𝛼𝛿𝛼𝐴
𝐶𝑌𝛽𝛿𝛽𝐴
−𝐶𝐿𝛼𝛿𝛼𝐴

] + �̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

 

(2-32) 

 

𝑴𝑏
𝐺
𝐴𝑒𝑟𝑜

= 𝑞𝑆𝑟𝑒𝑓 [

𝑏𝐶𝑙
𝐺

𝑐̅𝐶𝑚
𝐺

𝑏𝐶𝑛
𝐺

] ≐ 𝛿𝑞
�̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

�̂�
+ �̂�𝑆𝑟𝑒𝑓 [

𝑏(𝐶𝑙𝛽𝛿𝛽𝐴 + 𝐶𝑙𝑝𝛿𝑝
⋆ + 𝐶𝑙𝑟𝛿𝑟

⋆)

𝑐̅(𝐶𝑚𝛼𝛿𝛼𝐴 + 𝐶𝑚𝑞𝛿𝑞
⋆)

𝑏(𝐶𝑛𝛽𝛿𝛽𝐴 + 𝐶𝑛𝑝𝛿𝑝
⋆ + 𝐶𝑛𝑟𝛿𝑟

⋆)

] + �̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

 (2-33) 

   
With the dynamic pressure 𝑞 ≔

1

2
𝜌𝑉𝐴

2 , where 𝜌  is the altitude-dependent air density, and 

reference wing area 𝑆𝑟𝑒𝑓. The error of computed dynamic pressure can be linearized as  

𝛿𝑞 ≐
1

2
�̂�𝐴
2
𝜕𝜌

𝜕ℎ
𝛿ℎ + �̂��̂�𝐴𝛿𝑉𝐴 

The vector 𝜳𝑎�̃� is defined to model the misalignment of the computed aerodynamic frame 

in linear approximation: 𝑹𝑎𝑏�̂�𝑎𝑏
𝑇 ≐ 𝑰 + [𝜳𝑎�̃� ×] (from linearization of equation (A-20)). 𝜳𝑎�̃� can 

be interpreted as small angle rotation vector or vector of small Euler angles (c.f. discussion of 

𝝓𝑛 and 𝜱 in 2.2.2.1). Assuming small absolute values of aerodynamic angles of attack and 

sideslip allow to write 

−�̂�𝑆𝑟𝑒𝑓�̂�𝑎𝑏
𝑇 (𝜳𝑎�̃� × [

−𝐶𝐷
𝐶𝑌
−𝐶𝐿

]) ≈ �̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

× [

0
𝛿𝛼𝐴
−𝛿𝛽𝐴

] 

The influence of error in aerodynamic motion model state is much less for propulsion forces 

and moments and will be neglected for this analysis. 

Above perturbation formulas, in combination with linearizations of equation (2-9) and the 

Euler equation of rotational motion (2-8), and the system of strapdown navigation error 

dynamics (2-22) constitute a simplified system of error dynamics for the aerodynamic motion 

model. 

 

2.2.3.2 Error dynamics and stability 

 

The basic mechanisms of 12-DOF aerodynamic motion model error dynamics can be 

identified by studying simplified equations of motion driven by the forces and moments (2-

32) and (2-33). 

Analysis is significantly simplified by assuming constant zero wind velocity vector, so that  

 𝒗𝐴 = 𝒗𝐾 
𝑉 = 𝑉𝐴 = 𝑉𝐾 
𝛼 = 𝛼𝐴 = 𝛼𝐾 
𝛽 = 𝛽𝐴 = 𝛽𝐾 
𝛾 = 𝛾𝐴 = 𝛾𝐾 
𝝎𝐴 = 𝝎𝐾 

(2-34) 
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And similar equalities for all corresponding error quantities. 

From the first error term in aerodynamic force (2-32) 

 
𝛿𝑞
�̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

�̂�
= �̂�𝑏

𝐺
𝐴𝑒𝑟𝑜

(
1

�̂�

𝜕𝜌

𝜕ℎ
𝛿ℎ + 2

𝛿𝑉𝐴

�̂�𝐴
) (2-35) 

   
one can see that an error in computed air density or in airspeed will have significant effect 

in all flight conditions where aerodynamic force is large. From the principle of aerodynamic 

flight – aerodynamic lift cancels weight – it follows that this is most often the case. For all these 

flight conditions, and because air density reduces with increasing height, a positive error in 

aerodynamic motion model height will have a negative contribution to the error in 

aerodynamic lift. 

With 𝛿�̇�𝐷 ≈
1

𝑚

𝜕𝐹𝑧
𝐺
𝐴𝑒𝑟𝑜

𝜕ℎ
𝛿ℎ +

𝜕𝛾𝐷

𝜕ℎ
𝛿ℎ, the simplified dynamics of aerodynamic motion model height 

error, isolated from the dynamics of airspeed error, can be derived as 

𝛿ℎ̈ = −𝛿�̇�𝐷 ≈ (𝛾𝐷
1

�̂�

𝜕𝜌

𝜕ℎ
−
𝜕𝛾𝐷
𝜕ℎ
)𝛿ℎ 

Although gravity gradient 
𝜕𝛾𝐷

𝜕ℎ
 is small in magnitude, it has negative sign and causes 

exponential error growth of vertical errors in inertial navigation. 
𝜕𝛾𝐷

𝜕ℎ
 is on the order of −3 ⋅

10−6
1

𝑠2
 [30] and 𝛾𝐷

1

�̂�

𝜕𝜌

𝜕ℎ
 on the order of −1 ⋅ 10−3

1

𝑠2
 in troposphere and stratosphere regimes. 

Consequently, the isolated height error dynamics for an airplane in level flight are undamped 

but neutrally stable with a time period on the order of 200𝑠. 

The second term in parenthesis in equation (2-35) gives rise to another error mechanism for 

level flight conditions. The simplified dynamics of vertical velocity error in level flight are with 

𝛿�̇�𝐷 ≈
1

𝑚

𝜕𝐹𝑧
𝐺
𝐴𝑒𝑟𝑜

𝜕𝑉
𝛿𝑉, neglecting the effect of height error 

𝛿�̇�𝐷 ≈ −2𝛾𝐷
𝛿𝑉

�̂�
 

Which can alternatively be represented by error in climb angle 𝛾 (not be be confused with 

vertical gravity 𝛾𝐷) in linear approximation 

𝛿�̇� ≈ 2𝛾𝐷
𝛿𝑉

�̂�2
 

Due to its physical nature, aerodynamic lift is tilted in NED frame when climb angle changes, 

to remain perpendicular to velocity vector. In linear approximation for zero climb angle 𝛾 

𝛿�̇� ≈ −𝛾𝐷𝛿𝛾 

This gives the following error dynamics for magnitude of velocity 

𝛿�̈� ≈ −2𝛾𝐷
2
𝛿𝑉

�̂�2
 

which directly corresponds to the (1-DOF) phugoid Eigenmode of airplane dynamics, with a 

well-known formula for the (approximate) Eigenfrequency 𝜔0,𝑃ℎ ≈ √2𝛾𝐷/�̂� . 
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Note that this 1-DOF analysis is overly simplified since it neglects simultaneous changes in any 

other parameter that determines aerodynamic lift. Especially angle of attack (or the error 

thereof) is not constant. For a more rigorous 2-DOF analysis of coupled phugoid and short 

period airplane dynamics, see [22]. The results also apply to aerodynamic motion model error 

dynamics. 

The low-frequency phugoid Eigenmode is present in flight dynamics of the true airplane, the 

12-DOF aerodynamic motion model and in the corresponding error dynamics. According to 

the certification specifications for small airplanes [65, 66], for periods greater 15𝑠  even 

instability of the phugoid mode of flight dynamics is admissible, with doubling times greater 

55𝑠. For instable phugoid dynamics of the true airplane, the corresponding error dynamics of 

the aerodynamic motion model need to be damped. This is not addressed further in this work 

because the airplane model used exhibits sufficiently damped phugoid dynamics. 

Rotational motion is barely affected by error in dynamic pressure. In equation (2-33), the error 

term for aerodynamic moments in center of gravity 𝛿𝑞
�̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

�̂�
 is negligible for stationary flight 

conditions where �̂�𝑏
𝐺
𝐴𝑒𝑟𝑜

≈ 𝟎. More notable are the dynamics of errors of lateral rotational 

motion due to their influence on aerodynamic moments, which will be discussed later in this 

section. 

Errors of aerodynamic angle of attack strongly influence lift vector, since for conventional 

airplanes 𝐶𝐿𝛼 is somewhere near the theoretical value of 2𝜋 found with thin airfoil theory [42]. 

For analysis of angle of attack error dynamics for zero wind vector, a simplified equation of 

rotational motion based on the second row of equation (2-8) is used with equation (2-33) 

 
𝛿�̇�⋆ ≈

𝑐̅

2�̂�⏟
𝑛𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

1

𝐼𝑦𝑦⏟
𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑖𝑡𝑎

�̂�𝑆𝑟𝑒𝑓𝑐̅(𝐶𝑚𝛼𝛿𝛼 + 𝐶𝑚𝑞𝛿𝑞
⋆)⏟                

𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑚𝑒𝑛𝑡

 
(2-36) 

   
assuming zero products of inertia and neglecting inertia cross coupling of rotational motion. 

With approximately zero computed and true angle of sideslip, the error of angle of attack 

changes as 

 
𝛿�̇� ≈

2�̂�

𝑐̅
𝛿𝑞⋆ (2-37) 

   
Above equation assumes that angle of attack dynamics settle much faster than point mass 

motion will be affected by changing aerodynamic force. This is verified by the high 

frequency for this error Eigenmode. Taking the time derivative of (2-36) and inserting (2-37) 

gives 

𝛿�̈�⋆ ≈
𝑐̅

2�̂�

�̂�𝑆𝑟𝑒𝑓𝑐̅𝐶𝑚𝑞

𝐼𝑦𝑦
𝛿�̇�⋆ +

�̂�𝑆𝑟𝑒𝑓𝑐̅𝐶𝑚𝛼

𝐼𝑦𝑦⏟      
−𝜔0,𝑆𝑃

2

𝛿𝑞⋆ 

The natural frequency 𝜔0,𝑆𝑃 is on the order of (2𝜋)𝐻𝑧 for small general aviation airplanes. For 

these aircraft, this damped, high-frequency mode is always stable. Again, this error mode 

has its total state equivalent in the short period mode of flight dynamics. 

To gain an understanding of the error dynamics of lateral motion, a corresponding set of 

simplified equations of motion is derived. Euler angles of roll Φ𝑛𝑏 and azimuth Ψ𝑛𝑏 are chosen 
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as lateral orientation state parametrization and for true and computed values of roll and 

azimuth approximately zero and small pitch angle Θ𝑛𝑏 (omitting indices) 

 
𝛿Φ̇ ≈

2�̂�

𝑏
𝛿𝑝⋆ (2-38) 

 
𝛿Ψ̇ ≈

2�̂�

𝑏
𝛿𝑟⋆ (2-39) 

   
The error dynamics of rotational motion are approximated based on the second row of 

equation (2-8) and equation (2-33) as  

 
𝛿�̇�⋆ ≈

𝑏

2�̂�

1

𝐼𝑥𝑥
�̂�𝑆𝑟𝑒𝑓𝑏(𝐶𝑙𝛽𝛿𝛽 + 𝐶𝑙𝑝𝛿𝑝

⋆ + 𝐶𝑙𝑟𝛿𝑟
⋆) (2-40) 

 
𝛿�̇�⋆ ≈

𝑏

2�̂�

1

𝐼𝑧𝑧
�̂�𝑆𝑟𝑒𝑓𝑏(𝐶𝑛𝛽𝛿𝛽 + 𝐶𝑛𝑝𝛿𝑝

⋆ + 𝐶𝑛𝑟𝛿𝑟
⋆) (2-41) 

   
Again the products of inertia are assumed zero and inertia cross coupling is neglected. 

There is a lateral error in velocity mainly due to rotation of aerodynamic lift to remain in the 

plane of symmetry of the airplane. For level flight conditions with aerodynamic lift equal to 

weight and with equation (2-32) 

 
𝛿�̇�𝑦 ≈ 𝛾𝐷𝛿Φ +

�̂�𝑆𝑟𝑒𝑓

𝑚
(𝐶𝑌𝛽 − �̂�𝐷)𝛿𝛽 (2-42) 

   
Perturbation analysis of NED frame velocity vector yields the following linearization for 𝑹𝑛𝑏 =

𝑹𝑏𝑎 = 𝐼 (i.e. assuming zero Azimuth, roll angle and angle of sideslip and negligible pitch angle 

and angle of attack) 

𝛿𝒗𝑛 = 𝛿 (𝑹𝑛𝑏𝑹𝑏𝑎 [
V
0
0
]) ≐ [

𝛿Φ
𝛿Θ
𝛿Ψ
] × [

�̂�
0
0

] − [
0
𝛿𝛼
−𝛿𝛽

] × [
�̂�
0
0

] + [
𝛿V
0
0
] 

This gives for the lateral component with 𝛿𝑣𝑦 = 𝛿𝑣𝐸 

 
𝛿𝛽 ≈ −𝛿Ψ+

1

�̂�
𝛿𝑣𝑦 (2-43) 

   
The time derivative is 

𝛿�̇� ≈ −𝛿Ψ̇ +
1

�̂�
𝛿�̇�𝑦 

Inserting equations (2-39) and (2-42) gives 

 
𝛿�̇� ≈ −

2�̂�

𝑏
𝛿𝑟⋆ +

1

�̂�
(𝛾𝐷𝛿Φ+

�̂�𝑆𝑟𝑒𝑓

𝑚
(𝐶𝑌𝛽 − �̂�𝐷)𝛿𝛽) (2-44) 

   
Equations (2-38), (2-40), (2-41) and (2-44) can be combined as a 4-DOF system of error 

dynamics 
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𝑑

𝑑𝑡
[

𝛿Φ
𝛿𝛽

𝛿𝑝⋆

𝛿𝑟⋆

] ≈

[
 
 
 
 
 
 
 
 0 0

2�̂�

𝑏
0

1

�̂�
𝛾𝐷

1

�̂�

�̂�𝑆𝑟𝑒𝑓

𝑚
(𝐶𝑌𝛽 − �̂�𝐷) 0 −

2�̂�

𝑏

0
𝑏

2�̂�

1

𝐼𝑥𝑥
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑙𝛽

𝑏

2�̂�

1

𝐼𝑥𝑥
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑙𝑝

𝑏

2�̂�

1

𝐼𝑥𝑥
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑙𝑟

0
𝑏

2�̂�

1

𝐼𝑧𝑧
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑛𝛽

𝑏

2�̂�

1

𝐼𝑧𝑧
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑛𝑝

𝑏

2�̂�

1

𝐼𝑧𝑧
�̂�𝑆𝑟𝑒𝑓𝑏𝐶𝑛𝑟]

 
 
 
 
 
 
 
 

[

𝛿Φ
𝛿𝛽

𝛿𝑝⋆

𝛿𝑟⋆

] 

This model is equivalent to the corresponding 4-DOF models of decoupled lateral airplane 

dynamics found in the literature on flight dynamics and stability. With typical values for small 

general aviation airplane flight 

�̂�𝐷 = 0.05, �̂� = 80𝑚/𝑠, �̂� = 3920𝑃𝑎, 𝛾𝐷 = 9.80665𝑚/𝑠
2, 𝑏 = 10.2𝑚, 𝑆𝑟𝑒𝑓 = 17.1𝑚

2 

and vehicle dynamics model coefficients and weight and balance parameters taken from 

[44] (data for the NAVION general aviation airplane) 

𝐶𝑌𝛽 = −0.564 

𝐶𝑙𝛽 = −0.074, 𝐶𝑙𝑝 = −0.41, 𝐶𝑙𝑟 = 0.107 

𝐶𝑛𝛽 = 0.071, 𝐶𝑛𝑝 = −0.0575, 𝐶𝑛𝑟 = −0.125 

𝑚 = 1250𝑘𝑔 

𝐼𝑥𝑥 = 1420𝑘𝑔𝑚
2 

𝐼𝑧𝑧 = 4800𝑘𝑔𝑚
2 

it is possible to numerically determine exemplary Eigenvectors and Eigenvalues of the linear 

dynamical system above. One can identify three error modes that correspond to the flight 

dynamic modes for spiral, Dutch-roll and roll typical for fixed-wing aircraft. The natural 

frequencies and relative damping coefficients are 

 

 Spiral error Dutch-Roll error Roll error 

Natural frequency 𝜔0 [
𝑟𝑎𝑑

𝑠
] 0.0057 3.5263 12.5985 

Relative damping 𝜁 [−] 1 0.2166 1 
Table 1: Lateral error dynamics natural frequency 𝜔0 and relative damping 𝜁 (Example) 

 

The Eigenvectors for these lateral error dynamics of aerodynamic motion model 12-DOF 

simulation are (magnitude and phase angles for each participating error state) 

 

 Spiral error Dutch-Roll error Roll error 

𝜹𝚽 0.9999 0° 0.6248 ±78.9484° 0.7787 180° 
𝜹𝜷 0.0128 0° 0.7510 ±0° 0.0415 0° 
𝜹𝒑⋆ 0.0004 180° 0.1404 ∓178.5417° 0.6254 0° 
𝜹𝒓⋆ 0.0075 0° 0.1610 ∓83.6528° 0.0262 0° 

Table 2: Lateral error dynamics Eigenvectors (Example) 
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As expected, these results are again equivalent to those of linearized airplane flight dynamics 

analysis for decoupled lateral motion. 

The oscillatory error mode (second column in above tables) involves error dynamics of roll 

rate and roll angle as well as yaw rate and angle of sideslip, each two separated by a phase 

angle of about 90° . Its total state counterpart, the Dutch-Roll mode of airplane flight 

dynamics, receives special attention in the design of airplanes in order to meet strict handling 

qualities requirements (see e.g. §23.181(b) in [65, 66]). Thanks to strong damping of this mode 

for both the real airplane and the used aerodynamic motion model, which is verified not only 

with linear analysis for level flight but extensively in flight testing, the corresponding dynamic 

error mode can generally considered uncritical for the application of an aerodynamic 

motion model in navigation. 

The third error mode identified with above analysis shows that errors in roll rate are quickly 

damped to zero without oscillation. Nevertheless, sustained roll rate error will occur for 

example due to errors in measured control inputs or aerodynamic motion model coefficients. 

The same is true for the first error mode found for lateral flight dynamics, which is considered 

to be the most critical for navigation use of 12-DOF airplane aerodynamic motion model 

simulation. Unlike the roll error mode, the non-oscillatory spiral error mode has a large time 

constant 𝑇𝑆 ≈ 1100𝑠 for the example airplane, and thus makes 12-DOF simulation of airplanes 

similar to the one studied above very susceptible to input errors affecting roll orientation.  

Although Ψ and 𝑣𝑦  have been eliminated in the simple analysis above, the approximate 

lateral acceleration in horizontal flight equation (2-42) 

𝛿�̇�𝑦 ≈ 𝛾𝐷𝛿Φ +
�̂�𝑆𝑟𝑒𝑓

𝑚
(𝐶𝑌𝛽 − �̂�𝐷)𝛿𝛽 

shows that the spiral error mode will strongly affect across-track positioning and course over 

ground accuracy. Additionally, with angle of sideslip error 𝛿𝛽  remaining small, error of 

azimuth 𝛿Ψ  will grow quickly. Note that, according to small airplane certification 

specifications [65, 66], the corresponding total state dynamics spiral mode may often be 

“neutrally stable or even mildly divergent in roll and yaw”. Due to the noted equivalency of 

flight total state and error dynamics, the problem of lateral error divergence is severe.  

Even with stable spiral error mode, small and temporary input errors will lead to a heading 

difference after flight dynamics of true airplane and aerodynamic motion model have 

recovered the initial flight condition. Large or constant input error affecting lateral motion will 

cause lateral divergence of true and simulated motion due to the spiral error mode. 

Consequently, means to make aerodynamic motion model simulation robust with respect to 

lateral divergence are required. 

The reliability of the aerodynamic motion model, including a mechanism for heading error 

damping, must be studied in simulation to account for a vast number of combinations of 

reference flight condition, atmosphere dynamics and pilot reactions.  
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2.2.4 Method comparison 

 

The analysis conducted in this section allows evaluating how well each of the three 

presented motion models is suited for unaided position propagation. For each motion model, 

the growth of individual errors has been studied and, if applicable, different characteristics 

for short or long time intervals of open-loop propagation have been identified. Generally, for 

the desired application, the long term error propagation characteristics of the motion model 

must be suitable for use in an unaided method. If that is not the case (at least for selected 

error states), the possible improvement with low-cost aiding will be addressed in the following 

section. 

Because dead reckoning navigation is based on integration of position from a velocity 

measurement, position error is simply initial error plus a time integral of velocity measurement 

error. Consequently, large measurement errors will affect position accuracy only scaled by 

the duration of their occurrence. For low-cost sensors with complex error characteristics, this 

means a significant increase in method reliability. For example, the performance of heading 

and airspeed dead reckoning is hardly affected by gusts or temporary disturbances in 

airspeed or magnetic heading measurements (e.g. in dynamic flight), as long as the total 

duration is short compared to full mission time. Furthermore, linear position error growth 

increases method reliability because its characteristic strictly remains the same for full 

duration of flight and is independent of initial error. Consequently, judging by its error 

propagation characteristics, heading and airspeed dead reckoning is a good choice for use 

in low-cost applications. 

 

 

Figure 8: Horizontal error propagation and dynamics 

 

Unlike dead reckoning, both inertial and aerodynamic motion models exhibit unfavorable 

higher order error propagation, see Figure 8. For inertial navigation, the error propagation 

analysis in this section revealed polynomial position error growth due to IMU measurement 

errors which will dominate the short term performance of the inertial motion model (see (2) 

in Figure 8). This error characteristic is especially critical, because it is directly and exclusively 
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related to the quality of sensors used. Sensor quality of low-cost systems nowadays still is far 

away from what would be termed navigation grade quality (i.e. gyro drift better 0.01°/ℎ and 

comparable level of other errors). Although polynomial error growth is suppressed for large 

errors, and oscillatory Schuler errors with long term linear growth of average error dominate 

(see (3) in Figure 8), the performance of low cost systems would be on the order of thousands 

of kilometers of error per hour. In contrast, for very short term motion propagation (e.g. only 

seconds with low-cost sensors) and starting from an accurate initial state, polynomial error 

growth corresponds to errors much smaller than possible with dead reckoning.  

For aerodynamic position propagation, the case is even more complex. It has been found 

that the aerodynamic motion model is indifferent to heading, and heading error will 

accumulate due to temporary or continuous disturbances of lateral motion due to input or 

model error. A linear growth of the difference between true and simulated direction of flight 

would cause growth of lateral position error with second order in time for small errors (see (4) 

in Figure 8). Because, ultimately, heading error is limited and position error can only grow as 

fast as true and simulated airplane fly away from each other at opposite directions, 

aerodynamic position propagation is strictly limited to linear position error growth in the long 

term and for large errors (see (6) in Figure 8). But more importantly, and unlike for inertial 

navigation, the divergent lateral error propagation can be prevented by simple 

countermeasures: Position propagation with the aerodynamic motion model requires some 

means of heading alignment of simulated and true motion. If this is provided for, the 

aerodynamic motion model allows for accurate position propagation with first order error 

growth.  
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2.3 MOTION MODEL AIDING 
 

In the previous sections of this chapter, three algorithms for propagation of position estimate 

have been studied. Because all of them exhibit increasing position error over time, they 

would typically be combined with accurate position information at regular time intervals, if 

available (e.g. with GPS). Integration of inertial navigation and GNSS is a very successful 

example of this strategy and subject of many textbooks [15, 20, 29]. An introductory 

derivation is found in appendix A.7. 

With no absolute information on position available, a steady increase in position error has to 

be accepted. The previous section on error propagation showed that all of the three motion 

models exhibit favorable first order position error growth under certain circumstances. In fact, 

heading and airspeed dead reckoning was found to be always first order, while inertial 

navigation only adopts first order behavior in long term average drift, superposed by 

oscillating errors that scale with sensor quality. For short propagation times, a polynomial 

propagation of measurement error to positon error renders the open-loop inertial motion 

model useless for low-cost applications. Consequently, ways to reset this polynomial error 

growth at short time intervals using auxiliary information on velocity or attitude are studied in 

this section in order to allow use of inertial navigation for low-cost position propagation. 

The aerodynamic motion model is first order in position error growth for long times and large 

errors (because errors are the difference of true and simulated flight). But initially, the 

divergence in lateral motion due to spiral error mode will represent higher order position error 

propagation in time. Because of this, the aerodynamic motion model must be kept aligned 

with the true flight direction.  

In the following, possibilities to improve the performance of above algorithms using 

measurements that are independent of external infrastructure, weather, time of day and 

visibility and furthermore low-cost are presented. The information on state vector error 

contained in the sensor measurement will be studied. In presence of suitable total state 

dynamics, observability of all motion model error states may be enhanced. This is assessed in 

an application-oriented observability analysis that uses an analytical approach to anticipate 

(a priori) and explain (a posteriori) observability in certain maneuvers in combination with 

extensive Monte Carlo simulation for realistic evaluation. This combined approach proved 

very efficient for observability analysis of systems with complex total state trajectories and 

uncertain dynamics. 

The extended Kalman filter will be used as state estimation method of choice for correction 

of observed navigation errors using the available measurements. A brief description of the 

nomenclature used can be found in appendix A.8. 

The extended Kalman filter method is superior to nonlinear methods of data fusion for 

problems where nonlinearities in process model and observations as well as estimation errors 

are small, and observations carry unimodal information. For integrated navigation based on 

inertial navigation, the gain from more precisely dealing with nonlinearities is negligible if 

orientation errors are small, and the much higher computational cost of nonlinear methods 

not justified. Nonlinearities of 3-D magnetometer and true airspeed measurements are 

manageable for accurate orientation and if the velocity error is small compared to true 

airspeed. Furthermore, no observation ambiguities are present. While use of the 

aerodynamic model requires linearization at higher rates, computational cost is still 
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acceptable and the extended Kalman is used throughout this work. For details on this 

method, see [68–70]. 

 

2.3.1 Heading and airspeed dead reckoning 

 

The dead reckoning method offers little opportunity for state estimation, because only 

position is integrated and position aiding usually unavailable when this method is used. If 

additional information was available, e.g. from redundant velocity and heading sensors, the 

integrated measurements would rather be improved on signal level. 
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2.3.2 Inertial navigation 

 

The inertial motion model requires closed-loop high-rate error correction in order to restrain 

2nd order accelerometer error propagation in all directions and 3rd order gyro error 

propagation to position in directions perpendicular to measured specific force. In practical 

applications, accurately measuring both translational and rotational motion states in three 

dimensions is rarely possible. It is necessary to find a combination of available measurements 

that each offer observability of several motion error states. This is studied for low-cost GNSS-

denied inertial navigation in this section. While Monte Carlo simulation of aided inertial 

navigation along a number of selected dynamical motion trajectories is the most straight 

forward way to assess effectiveness of low-cost aiding for a given application, a more 

theoretical approach based on covariance propagation will be chosen in the following.  

 

2.3.2.1 Observability of inertial navigation errors 

 

Assume the inertial motion model is used for propagation of state vector 𝒛𝑛 along a specific 

trajectory in a Monte Carlo experiment with a large number of repetitions. Initial errors and 

input errors are drawn from zero-mean normal distributions. As result, the computed motion 

model states 𝑧𝑖 at the end are scattered randomly around an average value 𝜇𝑖 = 𝐸[𝑧𝑖] with 

a certain variance 𝑉𝑎𝑟[𝑧𝑖] = 𝐸[(𝑧𝑖 − 𝜇𝑖)
2]. 

Because the possibility to reduce errors in motion propagation using a deterministic 

computation scheme to be applied in every single Monte Carlo run is of interest, this is studied 

in the following. In the described Monte Carlo experiment, this would mean that the variance 

of a selected motion state 𝑧𝑖 can be reduced by applying an additive correction term 𝛿�̂�𝑖: 

𝑉𝑎𝑟[𝑧𝑖 + 𝛿�̂�𝑖] = 𝑉𝑎𝑟[𝑧𝑖] + 𝑉𝑎𝑟[𝛿�̂�𝑖] + 2𝐶𝑜𝑣[𝑧𝑖 , 𝛿�̂�𝑖] < 𝑉𝑎𝑟[𝑧𝑖] 

Consequently, the correction must be constructed so that  

𝑉𝑎𝑟[𝛿�̂�𝑖] + 2𝐶𝑜𝑣[𝑧𝑖, 𝛿�̂�𝑖] < 0 

Assume a measurement �̃�𝑗  of some other motion state 𝑧𝑗  is available, perturbed by zero 

mean error 𝜈𝑗 with variance 𝑉𝑎𝑟[𝜈𝑗] = 𝑅𝑗 

�̃�𝑗 = 𝑧𝑗 + 𝜈𝑗 

With a linear correction function 

𝛿�̂�𝑖 = 𝑐 ⋅ �̃�𝑗 = 𝑐(𝑧𝑗 + 𝜈𝑗) 

the condition for reduced variance of corrected state estimate 𝑧𝑖 + 𝛿�̂�𝑖 becomes 

𝑉𝑎𝑟[𝛿�̂�𝑖] + 2𝐶𝑜𝑣[𝑧𝑖 , 𝛿�̂�𝑖] = 𝑐
2 ⋅ (𝑉𝑎𝑟[𝑧𝑗] + 𝑅𝑗) + 2𝑐 ⋅ 𝐶𝑜𝑣[𝑧𝑖, 𝑧𝑗] < 0 

With the obvious choice 

 
𝑐 = −

𝐶𝑜𝑣[𝑧𝑖, 𝑧𝑗]

𝑉𝑎𝑟[𝑧𝑗] + 𝑅𝑗
 (2-45) 

   
the condition above is satisfied if and only if 
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𝐶𝑜𝑣[𝑧𝑖 , 𝑧𝑗] ≠ 0 

Consequently, if the covariance of two selected states is nonzero and one of the two is 

measured, the other can be estimated as well. The effectiveness of correction (2-45) can be 

evaluated by studying the ratio of variance of corrected and uncorrected motion model 

state 

𝑉𝑎𝑟[𝑧𝑖 + 𝛿�̂�𝑖]

𝑉𝑎𝑟[𝑧𝑖]
= 1 −

1

1 +
𝑅𝑗

𝑉𝑎𝑟[𝑧𝑗](

 
𝐶𝑜𝑣[𝑧𝑖, 𝑧𝑗]

√𝑉𝑎𝑟[𝑧𝑖]𝑉𝑎𝑟[𝑧𝑗])

 

2

 

And with measurement uncertainty small compared to the uncertainty of measured state 𝑧𝑗, 

the decisive quantity for effective correction of state 𝑧𝑖  is the magnitude of correlation 

coefficient [71] 

𝜌𝑖𝑗 =
𝐶𝑜𝑣[𝑧𝑖, 𝑧𝑗]

√𝑉𝑎𝑟[𝑧𝑖]𝑉𝑎𝑟[𝑧𝑗]

 

Note that, with appropriate definitions, this concepts also holds for the observability of 

combinations and vectors of error states, which usually is the case. 

The resemblance of above correction function (2-45) with the Kalman filter update step is 

obvious. This observability analysis addresses the question if and how well errors could be 

estimated in an optimal framework with exact system models. The correlation coefficient for 

a given trajectory can be evaluated by analytical or numerical covariance propagation, 

see below. For a more realistic study of estimation effectiveness in cases with noticeable 

modelling imperfections and complex measurement error, Monte Carlo simulation of state 

estimation must be used.  

As has been mentioned above, the required update intervals for low-cost systems are so 

short that all error dynamics identified in the previous section, including vertical instability with 

a doubling time of 400𝑠, can safely be neglected. Consequently, it is sufficient to evaluate 

the correlation of inertial motion model state errors due to propagation of errors. Because 

flight velocity is low, errors in transport rate are small compared to gyro errors and can be 

neglected for short flight segments. Similarly, earth rate will not have an influence for the 

quality of inertial sensors in low-cost systems. For short time intervals and small vertical errors, 

vertical gravity gradient can be neglected. This significantly reduces complexity and allows 

for an intuitive evaluation of observability. Orientation error 𝝓 , velocity error 𝛿𝒗𝑛  and 

cartesian position error 𝛿𝒙𝑛 are studied. 

Several typical motion trajectories may be considered to discuss error observability. For low-

cost systems it is sufficient to evaluate the propagation and correlation of errors for flight 

along a short trajectory consisting of unaccelerated segment followed by a 90° banked turn. 

At the end of the first flight segment 𝑡1 = 𝑡0 + Δ𝑡, with �̂�𝑛𝑏 = 𝑰 and �̂�𝑛𝑏�̃�𝑏 = −𝑔𝒆3 

𝝓(𝑡1) ≈ 𝝓(𝑡0) + Δ𝑡𝛿𝝎𝑖𝑏𝐼𝑀𝑈 

𝛿𝒗𝑛(𝑡1) ≈ 𝛿𝒗𝑛(𝑡0) + Δ𝑡𝛿𝒇𝑏𝐼𝑀𝑈 + 𝑔𝒆3 × (Δ𝑡𝝓(𝑡0) +
1

2
Δ𝑡2𝛿𝝎𝑖𝑏𝐼𝑀𝑈) 
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𝛿𝒙𝑛(𝑡1) ≈ 𝛿𝒙𝑛(𝑡0) + Δ𝑡𝛿𝒗𝑛(𝑡0) +
1

2
Δ𝑡2𝛿𝒇𝑏𝐼𝑀𝑈 + 𝑔𝒆3 × (

1

2
Δ𝑡2𝝓(𝑡0) +

1

6
Δ𝑡3𝛿𝝎𝑖𝑏𝐼𝑀𝑈) 

At the end of the first segment, with zero initial covariance of errors  

𝑉𝑎𝑟[𝛿𝒙𝑛(𝑡1)] =  𝑉𝑎𝑟[𝛿𝒙𝑛(𝑡0)] + Δ𝑡
2𝑉𝑎𝑟[𝒗𝑛(𝑡0)] +

1

4
Δ𝑡4𝑉𝑎𝑟[𝛿𝒇𝑏𝐼𝑀𝑈]

+ 𝑠𝑘𝑒𝑤(𝑔𝒆3) (
1

4
Δ𝑡4𝑉𝑎𝑟[𝝓(𝑡0)] +

1

36
Δ𝑡6𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]) 𝑠𝑘𝑒𝑤(𝑔𝒆3)

𝑇 

𝑉𝑎𝑟[𝛿𝒗𝑛(𝑡1)] =  𝑉𝑎𝑟[𝛿𝒗𝑛(𝑡0)] + Δ𝑡
2𝑉𝑎𝑟[𝛿𝒇𝑏𝐼𝑀𝑈]

+ 𝑠𝑘𝑒𝑤(𝑔𝒆3) (Δ𝑡
2𝑉𝑎𝑟[𝝓(𝑡0)] +

1

4
Δ𝑡4𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]) 𝑠𝑘𝑒𝑤(𝑔𝒆3)

𝑇 

𝑉𝑎𝑟[𝝓(𝑡1)] =  𝑉𝑎𝑟[𝝓(𝑡0)] + Δ𝑡
2𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈] 

And the correlation of errors  

𝐶𝑜𝑣[𝛿𝒙𝑛(𝑡1), 𝛿𝒗𝑛(𝑡1)]

= Δ𝑡𝑉𝑎𝑟[𝒗𝑛(𝑡0)] +
1

2
Δ𝑡3𝑉𝑎𝑟[𝛿𝒇𝑏𝐼𝑀𝑈]

+ 𝑠𝑘𝑒𝑤(𝑔𝒆3) (
1

2
Δ𝑡3𝑉𝑎𝑟[𝝓(𝑡0)] +

1

12
Δ𝑡5𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]) 𝑠𝑘𝑒𝑤(𝑔𝒆3)

𝑇 

𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡1),𝝓(𝑡1)] = 𝑠𝑘𝑒𝑤(𝑔𝒆3) (Δ𝑡𝑉𝑎𝑟[𝝓(𝑡0)] +
1

2
Δ𝑡3𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]) 

With  

𝑠𝑘𝑒𝑤(𝑔𝒆3) = [
0 −𝑔 0
𝑔 0 0
0 0 0

] 

It can be seen that only horizontal velocity errors become correlated with horizontal 

orientation errors and gyro measurement errors in unaccelerated flight. Because 𝑉𝑎𝑟[𝝓(𝑡0)] 

and 𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈] are diagonal matrices, along-track velocity error is only correlated with 

across-track orientation error and vice versa. The correlation coefficient can be computed 

for zero initial motion model state covariance matrices 

𝜌𝛿𝒗𝑛𝝓 =

[
 
 
 
 
 
 
 
 
 
 
 0 −

1

√
𝑉𝑎𝑟[𝛿𝑓𝑥𝐼𝑀𝑈]

1
4Δ𝑡

2𝑔2𝑉𝑎𝑟 [𝛿𝜔𝑦𝐼𝑀𝑈]
+ 1

0

1

√
𝑉𝑎𝑟 [𝛿𝑓𝑦𝐼𝑀𝑈]

1
4Δ𝑡

2𝑔2𝑉𝑎𝑟[𝛿𝜔𝑥𝐼𝑀𝑈]
+ 1

0 0

0 0 0]
 
 
 
 
 
 
 
 
 
 
 

 

As expected, the higher integration order of gyro input error dominates and causes full 

correlation of horizontal velocity and orientation errors in the medium term. This also applies 

to the correlation of horizontal position and orientation errors in unaccelerated flight. By 

inspection, the correlation coefficients of equal directions of position and velocity error tend 
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to one quickly as initial state covariance becomes negligible compared to integrated input 

error. 

For the second flight segment 𝑡 ∈ [𝑡1, 𝑡2], choosing �̇� > 0 with no loss of generality 

�̂�𝑛𝑏 = [
cos(�̇�𝑡) − sin(�̇�𝑡) 0
sin(�̇�𝑡) cos(�̇�𝑡) 0
0 0 1

]

[
 
 
 
 
1 0 0

0 cos (
𝜋

2
) − sin (

𝜋

2
)

0 sin (
𝜋

2
) cos (

𝜋

2
) ]
 
 
 
 

= [
cos(�̇�𝑡) 0 sin(�̇�𝑡)

sin(�̇�𝑡) 0 − cos(�̇�𝑡)
0 1 0

] 

and  

�̂�𝑛𝑏�̃�𝑏 = −𝑔𝒆3 + �̂�𝑛𝑏 [
0
0
−𝑉�̇�

] = −𝑔𝒆3 + 𝑉�̇�(cos(�̇�Δ𝑡) 𝒆2 − sin(�̇�Δ𝑡) 𝒆1) 

For simplicity, analytical evaluation will be restricted to errors in orientation and velocity. 

Because the coefficients of the position error differential equation are constant, observability 

is not affected by motion trajectory dynamics. 

Again accounting for direct error propagation only in the short time interval [𝑡1, 𝑡2] 

𝝓(𝑡2) ≈ 𝝓(𝑡1) + ∫ �̂�𝑛𝑏𝑑𝑡
𝑡2

𝑡1

𝛿𝝎𝑖𝑏𝐼𝑀𝑈 

𝛿𝒗𝑛(𝑡2) ≈ 𝛿𝒗𝑛(𝑡1) + ∫ �̂�𝑛𝑏𝑑𝑡
𝑡2

𝑡1

𝛿𝒇𝑏𝐼𝑀𝑈 −∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)(𝝓(𝑡1) + ∫ �̂�𝑛𝑏𝑑𝑡
𝑡

𝑡1

𝛿𝝎𝑖𝑏𝐼𝑀𝑈)𝑑𝑡
𝑡2

𝑡1

 

The covariance becomes 

𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡2),𝝓(𝑡2)]

= 𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡1),𝝓(𝑡1)] + 𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡1), 𝛿𝝎𝑖𝑏𝐼𝑀𝑈]∫ �̂�𝑛𝑏
𝑇 𝑑𝑡

𝑡2

𝑡1

−∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)𝑑𝑡
𝑡2

𝑡1

𝑉𝑎𝑟[𝝓(𝑡1)] − ∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)𝑑𝑡
𝑡2

𝑡1

𝐶𝑜𝑣[𝝓(𝑡1), 𝛿𝝎𝑖𝑏𝐼𝑀𝑈]∫ �̂�𝑛𝑏
𝑇 𝑑𝑡

𝑡2

𝑡1

−∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)∫ �̂�𝑛𝑏𝑑𝑡
𝑡

𝑡1

𝑑𝑡
𝑡2

𝑡1

𝐶𝑜𝑣[𝛿𝝎𝑖𝑏𝐼𝑀𝑈, 𝝓(𝑡1)]

− ∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)∫ �̂�𝑛𝑏𝑑𝑡
𝑡

𝑡1

𝑑𝑡
𝑡2

𝑡1

𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]∫ �̂�𝑛𝑏
𝑇 𝑑𝑡

𝑡2

𝑡1

 

Neglecting correlation of motion model errors at 𝑡1 and input error in [𝑡1, 𝑡2] 

 𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡2),𝝓(𝑡2)]

= 𝐶𝑜𝑣[𝛿𝒗𝑛(𝑡1),𝝓(𝑡1)] − ∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)𝑑𝑡
𝑡2

𝑡1

𝑉𝑎𝑟[𝝓(𝑡1)]

− ∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)∫ �̂�𝑛𝑏𝑑𝑡
𝑡

𝑡1

𝑑𝑡
𝑡2

𝑡1

𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈]∫ �̂�𝑛𝑏
𝑇 𝑑𝑡

𝑡2

𝑡1

 

(2-46) 

   
Flying a quarter cycle �̇�Δ𝑡 =

𝜋

2
, the matrices in above equation are 

∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)𝑑𝑡
𝑡2

𝑡1

= [
0 Δ𝑡𝑔 𝑉

−Δ𝑡𝑔 0 𝑉
−𝑉 −𝑉 0

] 
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∫ 𝑠𝑘𝑒𝑤(�̃�𝑛)∫ �̂�𝑛𝑏𝑑𝑡
𝑡

𝑡1

𝑑𝑡
𝑡2

𝑡1

=

[
 
 
 
 
 
 (
Δ𝑡

𝜋
)
2

⋅ 4𝑔 (
𝜋

2
− 1)

Δ𝑡

𝜋
⋅ 2𝑉 (

𝜋

2
− 1) −(

Δ𝑡

𝜋
)
2

⋅ 4𝑔

−(
Δ𝑡

𝜋
)
2

⋅ 4𝑔
Δ𝑡

𝜋
⋅ 2𝑉 −(

Δ𝑡

𝜋
)
2

⋅ 4𝑔 (
𝜋

2
− 1)

−
Δ𝑡

𝜋
⋅ 2𝑉 0

Δ𝑡

𝜋
⋅ 2𝑉 (

𝜋

2
− 1) ]

 
 
 
 
 
 

 

∫ �̂�𝑛𝑏
𝑇 𝑑𝑡

𝑡2

𝑡1

=
Δ𝑡

𝜋
[
2 2 0
0 0 𝜋
2 −2 0

] 

Both the second and last term in equation (2-46) introduce covariance of vertical velocity 

error and horizontal orientation errors and vice versa, assuming diagonal matrices 𝑉𝑎𝑟[𝝓(𝑡1)] 

and 𝑉𝑎𝑟[𝛿𝝎𝑖𝑏𝐼𝑀𝑈] . This corresponds to an extension of observability due to horizontal 

accelerations, and vanishes for 𝑉 = 0 in above analysis. 

 

2.3.2.2 Barometric altitude 

 

Ways to integrate a barometric altitude measurement with the vertical channel 

computation of inertial navigation have been mentioned earlier in the first section of this 

chapter. Notable references are [62, 63].  

Neglecting the details of computing barometric altitude from absolute air pressure 

measurements and complex barometer error behavior (c.f. [72, 73] for details on this topic), 

the observation equation is 

�̃�𝑥 = ℎ̃ − ℎ̂ = 𝛿ℎ − 𝛿ℎ𝑏𝑎𝑟𝑜 + 𝜈𝑏𝑎𝑟𝑜 

Height error 𝛿ℎ  and a state-independent barometer error 𝛿ℎ𝑏𝑎𝑟𝑜  are observable in 

combination. 

As has been discussed above, vertical velocity and vertical position errors are always strongly 

correlated. In addition, in the presence of horizontal accelerations, vertical translational error 

becomes correlated with horizontal orientation errors. Therefore, a barometric altitude 

measurement provides (slight) observability of horizontal errors in dynamic flight. 

 

2.3.2.3 Airspeed 

 

The possibility to further aid INS by air data measurements is widely recognized. Which errors 

can be estimated depends on whether aerodynamic angle of attack and aerodynamic 

angle of sideslip sensors are available. In this work, it is generally assumed that aerodynamic 

angle of attack or aerodynamic angle of sideslip is not measured, as such sensors are rarely 

installed on small general aviation airplanes. Instead, the aerodynamic model can be used 

to estimate the direction of aerodynamic velocity, as will be studied later in this work (c.f. [74, 

75]). 

The most general way to implement true airspeed aiding is a nonlinear scalar function and is 

linearized to yield the following observation equation 
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�̃�𝑥 = �̃�𝐴 − ‖�̂�𝑛 − �̂�𝑊𝑛‖2 ≐
1

𝑉𝐴
𝒗𝐴𝑛 ⋅ (𝛿𝒗𝑛 − 𝛿𝒗𝑊𝑛) + 𝜈𝑝𝑟𝑒𝑠 

Consequently, errors of kinematic and wind velocity vector are observable in combination 

and in direction of aerodynamic velocity vector only. For unaccelerated flight, this direction 

is constant. In this case, the translational errors in orthogonal horizontal direction are 

unobservable. Therefore, the third order propagation of input errors in this direction will 

quickly lead to position error exceeding any reasonable bound for navigation. 

Because above observation is in fact implemented using computed aerodynamic velocity 

vector �̂�𝐴𝑛, errors of kinematic and wind velocity vector will be estimated in direction of �̂�𝐴𝑛. 

For sustained flight with constant direction of aerodynamic velocity in NED frame, 

unobserved kinematic velocity errors 𝛿𝒗𝑛|⊥𝑣𝐴  will grow large. Only due to the approximation 

𝒗𝐴𝑛 ≈ �̂�𝐴𝑛 necessary to implement the observation above, these errors will cause inconsistent 

observability, an effect that could be described as artificial aiding. Of course, this will only 

happen when errors 𝛿𝒗𝑛|⊥𝑣𝐴   have become large compared to 𝑉𝐴  already. Thus, 

performance of airspeed aided INS still depends on inertial sensor quality for longer phases 

of flight with constant direction, and systems with low-cost IMU will perform badly. 

A possible way to mitigate this is to assume the direction of true airspeed measurement is 

known, e.g. aligned with body-fixed x-axis (i.e. assuming 𝛼 = 𝛽 = 0 and therefore 𝑹𝑎𝑏 = 𝑰): 

 
�̃�𝑥 = [

�̃�𝐴
0
0

] − (�̂�𝑏 − �̂�𝑊𝑏) ≐ 𝑹𝑛𝑏
𝑇 (𝛿𝒗𝑛 − 𝛿𝒗𝑊𝑛) + 𝝂 (2-47) 

   
Because this is an artificial vector observation with significant approximation error in direction, 

the orientation error term has been neglected in the right hand side linearization. Otherwise, 

orientation error would be directly observable with an airspeed measurement, which is not 

recommended. Direction approximation error and orientation error can be considered as 

correlated measurement error in the covariance update computations 

𝝂 = [

𝜈𝑝𝑟𝑒𝑠
0
0
] − [

0
𝛿𝛼
−𝛿𝛽

] × [
�̃�𝐴
0
0

] − �̂�𝑛𝑏
𝑇 (𝝓 × �̂�𝐴𝑛) 

Note that although the direction of differential pressure probe is known, this device is 

designed to measure pressure difference in stagnation point and (largely) unperturbed flow. 

Although it will not do so perfectly, and the measurement will be altered by larger 

misalignment with the airflow, it truly is a scalar measurement, not a vector measurement. 

Therefore, the implementation of TAS-aiding using measurement equation (2-47) 

inconsistently assumes zero aerodynamic angle of attack and aerodynamic angle of 

sideslip.  

 

2.3.2.4 3-D Magnetometer 

 

If no other means to accurately estimate orientation are available, the magnetic field vector 

measurement �̃�𝑏  provided by a 3-D magnetometer is a valuable source of information. 

Provided the engineering challenges of shielding or removing magnetic disturbances from 

onboard sources (e.g. electrical actuators) and calibrating soft and hard iron effects in the 
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measurement have been mastered, it corresponds to the local environmental magnetic field 

at the position of the aircraft. With increasing altitude and thus distance from man-made or 

otherwise irregular contributions to environmental magnetic field, the measurement mostly 

represents the earth magnetic field, for which accurate models are available. Defining the 

observation equation 

�̃�𝑥 ≔ �̃�𝑏 − �̂�𝑛𝑏
𝑇 �̂�𝑛 

The corresponding linearized form is 

�̃�𝑥 ≐ −�̂�𝑛𝑏
𝑇 (𝝓 × �̂�𝑛) + �̂�𝑛𝑏

𝑇 𝛿𝑩𝑛 + 𝝂𝑚𝑎𝑔 

In this work, the error of modeled local environmental magnetic field vector 𝛿𝑩𝑛, which is 

correlated in time, space and with position error, will not be given special attention. Instead, 

it is partly eliminated by constraining the observation to errors in orientation 

�̃�𝑥 ≔ �̃�𝑏 − �̂�𝑛𝑏
𝑇 �̂�𝑛 (1 +

(�̂�𝑛𝑏
𝑇 �̂�𝑛) ⋅ (�̃�𝑏 − �̂�𝑛𝑏

𝑇 �̂�𝑛)

‖�̂�𝑛‖2
) 

With the linearization 

�̃�𝑥 ≐ −�̂�𝑛𝑏
𝑇 (𝝓 × �̂�𝑛) + �̂�𝑛𝑏

𝑇 𝛿𝑩𝑛|⊥�̂�𝑛 + 𝝂𝑚𝑎𝑔 

While the parallel part of model error does not affect orientation error estimation the 

remaining orthogonal part �̂�𝑛𝑏
𝑇 𝛿𝑩𝑛|⊥�̂�𝑛  must at least approximately be accounted for by 

increasing measurement noise 𝝂𝑚𝑎𝑔.  

Note that although this vector observation allows to estimate east orientation error, which 

always is perpendicular to earth magnetic field vector, this is not recommended. Modeling 

error of dip angle (c.f. [76]) is strongly correlated in space and thus in time travelling along a 

specific trajectory. Due to its combined observation with east orientation error, this model 

error must either be modeled and estimated, or this part of observation must be removed 

altogether. 

The environmental magnetic field vector approaches 90° dip angle for high northern and 

southern latitudes. This causes the observability of vertical orientation error due to the term 

−𝑹�̃�𝑏
𝑇 (𝝓 × �̂�𝑛) to vanish. Consequently, heading information from 3-D magnetometer aiding 

becomes inaccurate for high latitudes and unavailable in proximity of the poles.  
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2.3.3 Aerodynamic motion model 

 

The primary objective of aiding the aerodynamic motion model is to prevent lateral 

divergence due to spiral error mode. This is a prerequisite for achieving first order position 

propagation accuracy. In the initial phase of spiral error mode, there is mostly a contribution 

in roll, as has been demonstrated with the exemplary linear analysis of decoupled lateral 

errors in the previous section. Because with increasing roll angle the dynamic system of errors 

of the aerodynamic model changes significantly thus complicating an analytical approach, 

a Monte Carlo simulation study is preferred to assess observability of spiral mode error using 

various aiding measurements. The results of this study are discussed in the following and are 

the basis for further decisions on method design. 

 

2.3.3.1 Simulation study 

 

In the following, aiding of the aerodynamic motion model with accurate (reference) 

measurements is studied in simulation in order to determine the most beneficial aiding 

information for use with the available airplane model. 

It is assumed that no external information on dynamic atmosphere is available. In this 

simulation, wind velocity and model coefficient errors are implemented as consider states in 

the extended Kalman filter framework, c.f. appendix A.8. Using consider states, only the 

respective uncertainty is accounted for in computing the filter covariance, but the actual 

values are not estimated, and e.g. constant �̂�𝑊𝑛 = 𝟎 and �̂�𝑊𝑏 = 𝟎 are used for wind velocity 

and angular rates. This consider state approach for wind and model coefficients is chosen 

because on-board sensor quality and the accuracy of corresponding statistical models are 

insufficient to estimate wind or improve a high-quality aerodynamic model by estimating 

model coefficient errors. 

Besides reference measurements of vehicle state errors such as errors in height 𝛿ℎ, kinematic 

velocity magnitude 𝛿𝑉𝐾 , orientation 𝛿𝜙𝑁 , 𝛿𝜙𝐸 , 𝛿𝜙𝐷  and inertial angular rates 𝛿𝝎𝑖𝑏 , a 

measurement of error of specific force in navigation reference point 𝑅, 𝛿𝒇𝑏
𝑅, is studied. The 

results of aided aerodynamic motion propagation in presence of realistic measurement and 

model errors and atmosphere dynamics are presented in Table 3. All Kalman filter updates 

are computed at a rate of 1𝐻𝑧 and the uncertainties and errors of the aiding measurements 

correspond to the accuracy of a tactical grade INS/GNSS navigation system. For more 

information about the simulation framework used for evaluation of preliminary methods, refer 

to section 4.1.1. 

Aiding of attitude, heading or inertial rates errors is found to effectively mitigate the lateral 

divergent error mode of aerodynamic motion propagation. The Monte Carlo simulation 

study indicates that with any one of these aiding measurements, aerodynamic motion can 

be the basis of a position propagation method. Because the roll angle error is a major 

component of the spiral error mode, a measurement of horizontal orientation errors and thus 

errors of roll and pitch very effectively prevents lateral divergence of the airplane 

aerodynamic model. Heading error offers good observability of spiral error mode because it 

is strongly correlated with roll error in horizontal flight where the deflected lift vector causes 

lateral acceleration error. In addition, similar to aiding error in course over ground, heading 
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error aiding effectively improves the position propagation performance of the aerodynamic 

model by reducing first order error.  

 

Aiding information Position propagation performance in 1ℎ 

𝛿ℎ Lateral divergence 

𝛿𝑉𝐾 and 𝛿ℎ Lateral divergence (see Figure 9) 

𝛿𝜙𝑁, 𝛿𝜙𝐸 and 𝛿ℎ ~10𝑁𝑀/ℎ (𝐶𝐸𝑃)  in first 600𝑠, 14𝑁𝑀 (𝐶𝐸𝑃) 𝑚𝑎𝑥 

𝛿𝜙𝑁, 𝛿𝜙𝐸 , 𝛿𝜙𝐷 and 𝛿ℎ ~5.4𝑁𝑀/ℎ (𝐶𝐸𝑃) in 1ℎ (see Figure 10) 

𝛿𝜙𝐷 and 𝛿ℎ ~5.5𝑁𝑀/ℎ (𝐶𝐸𝑃) in 1ℎ 

𝛿𝝎𝑖𝑏 and 𝛿ℎ ~9𝑁𝑀/ℎ (𝐶𝐸𝑃) in first 600𝑠, 26𝑁𝑀 (𝐶𝐸𝑃) 𝑚𝑎𝑥 

𝛿𝒇𝑏
𝑅 and 𝛿ℎ Lateral divergence 

Table 3: Airplane aerodynamic motion model aided by reference measurement 

 

 

Figure 9: Laterally divergent aerodynamic position 

propagation with speed over ground aiding (100 runs) 

Figure 10: Aerodynamic position propagation with 

orientation error aiding (100 runs) 

 

The simulation study shows that insufficient aiding such as measurements of height error, 

speed over ground error or specific force error will not prevent arbitrary lateral motion. See 

Figure 9 for the Monte Carlo results of aerodynamic motion propagation with aiding of speed 

over ground error only. 
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The quantitative results of the Monte Carlo simulation in Table 3 indicate that aiding of the 

vertical orientation error 𝜙𝐷  of aerodynamic motion is essential for accurate position 

propagation. With this aiding information, good results were achieved with a position error 

that very closely matches wind drift for the given set of flight trajectories (c.f. 4.1.1). 

 

2.3.3.2 Restrictions of aiding the aerodynamic motion model 

 

In addition to first results for positioning performance, the simulation study revealed a 

significant restriction of aiding the aerodynamic motion model. State estimation with the 

aerodynamic motion model is found to be not reliably robust in realistic dynamic atmosphere 

conditions if kinematic reference information is used. Navigation filter failure has been 

observed when aiding the aerodynamic motion model with a measurement of kinematic 

velocity vector error and keeping the wind state estimates constant. 

Generally, GNSS-denied state estimation with the aerodynamic motion model and low cost 

on-board sensors cannot estimate dynamic wind well. Due to insufficient observability 

without GNSS aiding and dedicated measurement equipment, a suboptimal consider-state 

approach is applied in this simulation study, and wind state estimates are fixed to an 

uncertain constant value. Alternatively, estimation of long-term wind vector might be 

attempted, assuming a long correlation in time to account for the major contribution to 

position drift. 

 

 

Figure 11: Diverging computed aerodynamic flight in presence of dynamic wind error and pilot control 

 

With such a suboptimal approach for wind estimation, the correction of observed errors in 

kinematic velocity results in an equivalent change in aerodynamic velocity vector (see the 

discussion of equation (2-11) in 2.1.3.2). In body-fixed frame coordinates, the aerodynamic 

velocity vector corresponds to airspeed, aerodynamic angle of attack and aerodynamic 

angle of sideslip that have significant effect on the aerodynamic forces and moments (see 

2.1.3.2). Consequently, a correction of these aerodynamic states has a strong effect 

especially on rotational aerodynamic motion, which can lead to divergence of computed 

and true airplane motion and significant linearization error in the extended Kalman filter. 

𝛿𝒗𝑊

𝛿𝐶𝑙𝛽

𝛿𝜉, 𝛿𝐶𝑙𝜉

VDM

Real𝛿𝐶𝑛𝛽
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Under realistic atmosphere conditions, dynamic wind estimation error is inevitable. In 

turbulent atmosphere, the pilot or autopilot will counteract the disturbances of the true 

airplane flight with dynamic control inputs, which are measured and used as input to 

compute aerodynamic motion. This, in combination with large dynamic errors in the 

aerodynamic motion model wind input, can result in fast divergence of true and computed 

aerodynamic motion. Because the pilot inputs are intended to cancel the disturbances of 

aerodynamic flight due to true dynamic atmosphere, they adversely affect computed flight, 

as illustrated in Figure 11. The estimated wind input for the aerodynamic motion model will at 

best account for the low-frequency content of dynamic wind. 

If the resulting errors in the computed kinematic velocity vector are corrected suboptimally, 

e.g. assuming constant wind velocity as discussed above, the dynamic response of the 

aerodynamic motion model to the inconsistent correction of aerodynamic state can further 

aggravate the divergence. This will eventually result in a failure of the navigation filter when 

an extended Kalman filter is applied for state estimation. This is an important finding for aiding 

of the aerodynamic motion model that must be considered in the development of 

integration architectures in chapter 3. 

Optimal, i.e. fully consistent, corrections of the aerodynamic model using kinematic 

reference information require simultaneous estimation of kinematic motion states, model 

coefficients, dynamic wind velocity vector and even wind rates. Flight dynamics trim errors, 

e.g. a constant error in airspeed, must be calibrated by an equilibrium correction of model 

coefficients and motion states. In addition, dynamic estimation of wind is required for 

consistent estimation of both kinematic and aerodynamic motion in dynamic atmosphere 

conditions. Unfortunately, on-line calibration of the high-quality model coefficients is not an 

option for the given application where on-board sensor quality and observability in GNSS-

denied flight are insufficient. For wind estimation, a long-term average would be beneficial 

for reducing position drift in GNSS-denied navigation but suboptimal with respect to dynamic 

wind estimation. Nevertheless, a short-term wind vector estimation might be attempted to 

increase the robustness of state estimation with an aerodynamic motion model in turbulent 

atmosphere. This will be discussed further in in chapter 3. 
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2.3.4 Method comparison 

 

Both the inertial and the aerodynamic motion model need specific additional aiding 

information to remedy disadvantageous error propagation characteristics identified in the 

previous section. In case of the inertial propagation model, the problem consists of 

polynomial propagation of inertial measurement error to all directions of position error in 2nd 

order and perpendicular to specific force in 3rd order. The measurements available for aiding 

in GNSS-denied flight were shown to not reliably offer full observability of error in conventional 

flight conditions. While maneuvering flight enhances observability with a barometric altitude 

measurement to include horizontal position errors, and measurement of airspeed offers 

observability in direction of turning aerodynamic velocity vector, unaccelerated flight with 

negligible body rotation still suffers from unobserved polynomial error propagation. 

For the aerodynamic propagation model, the improvement by integrating specific on-board 

measurements is significant. It has been shown that aiding of angular rates errors, attitude 

errors or heading error all prevent lateral divergence. This allows exploiting the first order 

position error characteristic of the integrated aerodynamic motion model. 

Nevertheless, state estimation with the aerodynamic motion model proves to be difficult. 

Several differences of the inertial and aerodynamic motion models influence the 

characteristics of aided INS and aided aerodynamic motion model (aided VDM).  

 

 

Figure 12: Comparison of aided INS and aided aerodynamic motion model (aided VDM) 

  

The fundamental restrictions of aiding the aerodynamic motion model compared to aided 

INS are listed in Figure 12. First, changes of individual motion states can significantly affect 

computed aerodynamic forces and moments and thus stimulate a dynamic response of the 

motion model. This happens for example in an unbalanced correction of kinematic motion 

states and wind states, resulting in a change of the aerodynamic states, such as airspeed, 
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aerodynamic angle of attack and aerodynamic angle of sideslip. When estimated errors in 

the kinematic states are corrected, this dynamic response is undesired because it introduces 

additional (dynamic) error. For aided INS on the other hand, the dynamic response of the 

motion model to kinematic state error corrections is negligible given the very low frequency 

of Schuler and other error dynamics. 

The airplanes and corresponding aerodynamic motion models discussed in this work exhibit 

stable “trim” flight conditions. Errors in the model coefficients result in errors in the 

aerodynamic states of these flight conditions. A correction of these errors will be reverted 

due to the stability – in addition to a possibly significant transient response as noted above. 

For aerodynamic course and bank angles, this effect is small. However, aerodynamic 

degrees of freedom with strong dynamic or static stability – such as airspeed, aerodynamic 

angles of attack and sideslip, aerodynamic climb angle – can only be corrected in 

combination with a correction of model coefficients preserving the equilibrium of forces and 

moments. If such a correction of model coefficients is not possible because a high-quality 

aerodynamic motion model is used that cannot reliably be calibrated with on-board means, 

the aerodynamic states should remain unchanged as well. An exception is possible for the 

states that are subject to weak (or no) stability. This will be addressed in chapter 3. 

Aerodynamic velocity and aerodynamic angular rates, which strongly affect the 

aerodynamic forces and moments, differ from corresponding kinematic states (kinematic 

velocity and inertial angular rates) due to wind velocity and wind rates, see 2.1.3.2. Given 

measurements of kinematic motion, these aerodynamic motion states can consequently 

only be observed in combination with dynamic wind estimates. Large wind estimation error 

can result in inconsistent estimation of aerodynamic states from measurements of kinematic 

motion.  

Finally, for the long flight durations and distances travelled that are typical for the addressed 

application, atmospheric turbulence is to be expected. As has been discussed in the 

previous subsection 2.3.3.2, this environmental condition is likely to cause divergence of 

computed and true airplane motion. Unlike for aided INS, where input errors can be 

overbounded reliably, a sudden and possibly extreme increase in aerodynamic motion 

model state error must be handled. Given the limitations of state estimation with the 

aerodynamic motion model discussed above, this constitutes a significant problem to be 

discussed in the next chapter. 

Thanks to much weaker error state dynamics and reliable online calibration of IMU 

measurement biases, the inertial motion model does not suffer from such restrictions for 

aiding with filter updates. In addition to the accurate computation of attitude that is essential 

for heading error estimation with a 3-D magnetometer measurement, the inertial motion 

model represents the optimal platform for integration of auxiliary sensors such as barometer 

and magnetometer. 
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2.4 CONCLUSION 
 

Judging by the required inputs and modeling assumptions, inertial navigation is the most 

robust of the three motion models presented in this chapter. It is an exact model that can be 

applied to any platform and is valid for any type of motion. In addition to gravity vector, only 

IMU measurements are used as inputs that are only affected by environmental disturbances 

at the location of installation, such as vibrations and temperature change. Furthermore, 

inertial navigation offers excellent observability of errors in a combination of straight and 

turning flight with 3-D position or velocity measurements. This makes it the perfect choice for 

integration with GNSS aiding, if available. 

For GNSS-denied flight navigation, the inertial propagation model suffers from polynomial 

position error growth that only is observable for a continued succession of large changes in 

direction of flight. Except for high-quality and high-cost systems, these errors quickly exceed 

any acceptable limit. Here, the simple heading and airspeed dead reckoning method 

proved to offer a good alternative. Its position error is only due to integrated velocity 

measurement error and always grows first order in time. It is a simplified model of motion but 

temporary modeling and input errors, for example in turns or presence of magnetic 

disturbance, will only affect position accuracy scaled by their duration of occurrence. This 

exemplifies the advantageous characteristics that come with first order error propagation 

and are well suited for low-cost applications with simplex input measurements. 

For conventional fixed-wing aircraft, the aerodynamic position propagation method, if 

integrated with some aiding measurement on lateral motion such as vehicle heading, was 

found to exhibit first order position error growth as well. If an accurate software model of flight 

dynamics, e.g. qualified for use in a flight training device, is available, simulated flight offers 

a precise model for longitudinal motion. Similarly to dead reckoning, wind input error is 

integrated in time and any information of wind velocity will improve position propagation 

accuracy. Moreover, the effect of wind and heading errors on position is negligible for short 

durations of occurrence. Nevertheless, the lack of accurate on-board models for predicting 

wind velocity and wind angular rates reduces method robustness. 

Because the inertial model can provide very accurate information on attitude if aided with 

the horizontal motion provided by the aerodynamic propagation method, it constitutes the 

ideal platform for computation of magnetic heading using a 3-D magnetometer 

measurement. Heading (and attitude) in turn is the essential aiding information needed to 

make the airplane motion model an accurate first order position propagation method. 

Consequently, a combination of these two motion models promises a GNSS-denied flight 

navigation with the benefit of accurate attitude information and first order position error 

growth. 
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3 ARCHITECTURES FOR INTEGRATING INERTIAL AND AERODYNAMIC 

MOTION MODELS 

 

Using both inertial and aerodynamic motion models in parallel is possible even in a low-cost 

application. Inertial sensors are either already installed on the aircraft (with an interface to 

the data available) or can be integrated as low-cost, small size and weight and power 

MEMS-based system. Except for measurement of pilot controls, the aerodynamic model 

requires additional real-time software only. Although the identification of a high-quality 

aerodynamic model is expensive, it may already be available from flight training simulators. 

The previous chapter showed that the inertial model is desirable for its high robustness and 

accurate measurement of angular motion. The aerodynamic model proved to be a first 

order accurate position propagation method that could outperform classical heading and 

airspeed dead reckoning. Now, the best way to combine the two motion models for GNSS-

denied navigation of airplanes must be found. 

Two approaches are discussed in this chapter: State estimation techniques that assume that 

all errors in modeling underlying processes can be described with satisfying statistical 

significance, and a new technique for airplanes that is insensitive to imperfections of the 

statistical models for aerodynamic flight and dynamic atmosphere. 

First, assuming strict equivalence of motion described by inertial navigation and vehicle 

dynamics model (such as the aerodynamic motion model), the fusion of the two motion 

models is studied. Optimality of state estimation given multiple process models with 

equivalent states (i.e. related to an identical truth process) is discussed in [11]. Optimal model 

fusion has first been applied to airplane navigation in [9]. More efficient variants of optimal 

model fusion have later been proposed and studied in applications to rotorcraft [12, 13, 77, 

78], airplanes [14, 79] and underwater vehicles [80]. This variety of vehicles addressed 

evidences the generic nature of this approach. Because the respective improvement of 

fused models depends on their relative uncertainty, sensitivity to the accuracy of statistical 

error models is high for optimal model fusion. 

Studying method performance in rough atmosphere with turbulence and strong gusts 

reveals that state estimation techniques require careful tuning especially of aerodynamic 

and dynamic atmosphere uncertainty processes. Both robustness and accuracy of the 

method are affected. Although a specific setting of tuning parameters can be determined 

in Monte Carlo simulation in order to achieve robustness in rough atmosphere and good 

accuracy, it is desired to find a desensitized method for higher reliability and independence 

from simulation fidelity. 

The second section of this chapter therefore proposes a new method for airplane 

aerodynamic model navigation. For this approach, the best combination of low-cost inertial 

and high-quality airplane aerodynamic models is not determined by fusion of equivalent 

information with known error statistics as in [11]. Instead, the valuable information content of 

each of the two motion models is identified in inertial rotational motion and aerodynamic 

translational motion. 

In a robust solution to the given problem of GNSS-denied airplane flight navigation, models 

should therefore be combined in a complementary integration architecture, leaving their 
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individual characteristics intact. From this understanding results a simpler method of model 

combination with the benefit of independence from unreliable or unknown information on 

system statistics that is needed for determining relative information content in state 

estimation techniques. 

The complementary integration architecture for inertial and aerodynamic models 

developed in this chapter presents a solution to the model combination problem if the 

uncertainty of aerodynamic flight cannot be modeled reliably. State estimation techniques 

are not applicable to model combination with unknown statistics. The new approach exploits 

the complementary characteristics of the two models studied in chapter 2 for a best possible 

solution without need for unreliable or unavailable covariance models of dynamic 

atmosphere processes. 

 

3.1 OPTIMAL STATE ESTIMATION (CLASSICAL DATA FUSION) 
 

Previous work on navigation using an aerodynamic motion model proposed the fusion of 

aerodynamic propagation and inertial navigation based on the notion that errors in motion 

states of the two models are statistically dissimilar and will be reduced by combination [9]. 

Although development of the proposed method will take a different way later in this chapter, 

two basic ways to fuse aerodynamic and inertial motion using an optimal filter will be 

assessed first. 

If one compares the aerodynamic motion model (2-8) and (2-9) with strapdown inertial 

navigation (2-3), only two parts of it provide new information on vehicle motion: 

(1) Equation (2-9) replaces measured specific force as input to the strapdown equation 

with a computed quantity 

(2) Assuming a rigid vehicle body, the Euler equation of rotational motion and the models 

for external moments provide a differential equation for the otherwise measured 

inertial angular rates vector  

 

 

Figure 13: Signal-level model fusion 
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3.1.1 Signal-level model fusion 

 

In each case above it is possible to compare the computed and measured specific force or 

inertial angular rates by value in order to determine IMU measurement errors and errors in the 

inputs and coefficients of the models. In an optimal filter, the computed specific force vector 

and inertial angular rates vector are fused with IMU measurements on “signal-level” in order 

to improve accuracy of the inputs for the strapdown equation used to propagate navigation 

state vector 𝒛𝑛 in time, see Figure 13. 

The architecture depicted in Figure 13 can be implemented in two ways: One continuously 

using the aerodynamic motion model for integration of navigation state vector 𝒛𝑛 (c.f. [77, 

81, 82]), and the other using the IMU measurements as inputs to the strapdown algorithm, 

which gives a conventional inertial motion model (c.f. [13]). In both cases, IMU 

measurements, vehicle rotational dynamics and the model for specific force are used for 

estimation of errors in 𝒛𝑛, angular rates and inertial measurements. This will be described in 

detail in the following. 

For the “signal-level” fusion architecture shown in Figure 13, the redundant signals are related 

mathematically 

𝝎𝑖𝑏 = �̃�𝑖𝑏 + 𝛿𝝎𝑖𝑏𝐼𝑀𝑈 

𝒇𝑏
𝑅 = �̃�𝑏 + 𝛿𝒇𝑏𝐼𝑀𝑈 

That is, the IMU measurements of inertial angular rates and specific force corrected by exact 

measurement error are stated to be identical to exact values of modeled inertial angular 

rates and specific force in navigation reference point 𝑅 . Note that this differs from the 

definition of IMU measurements and errors, stating that their sum is exactly equal to rotation 

and acceleration of the real IMU. The assumed equivalence of inertial and aerodynamic 

model truth motion is the basis of the ideal model fusion techniques discussed in this section. 

To integrate the stated relationship of IMU measurements and aerodynamic motion in the 

framework of an extended Kalman filter, an error state observation can be defined 

 
�̃�𝑥 ≔ [

�̃�𝑖𝑏 − �̂�𝑖𝑏
�̃�𝑏 − �̂�𝑏

𝑅 ] = [
𝛿𝝎𝑖𝑏 − 𝛿𝝎𝑖𝑏𝐼𝑀𝑈
𝛿𝒇𝑏

𝑅 − 𝛿𝒇𝑏𝐼𝑀𝑈
] (3-1) 

   
For estimation of IMU measurement errors, a slowly varying part 𝒃 and a complementary part 

𝒏 are distinguished for both gyroscope and accelerometer errors. The intention is to estimate 

the first, while accounting for fluctuating and noisy disturbances due to the second only: 

𝛿𝝎𝑖𝑏𝐼𝑀𝑈 = 𝒃𝐺𝑦𝑟𝑜 + 𝒏𝐺𝑦𝑟𝑜 

𝛿𝒇𝑏𝐼𝑀𝑈 = 𝒃𝐴𝑐𝑐 + 𝒏𝐴𝑐𝑐 

Refer to appendix A.8 and [83] for more information on extended Kalman filter augmentation 

and implementation accounting for complex input and measurement errors. 

The error in modeled specific force vector in equation (3-1) is not a (filter) state and must be 

linearized with respect to rigid body errors and augmented filter states. Inserting the 

differential equation for inertial angular rates in the second row of (2-8) into equation (2-9), 

specific force can be computed as  
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𝒇𝑏
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𝑭𝑏
𝐺
𝑖
(𝒛𝑣, 𝒗𝑊𝑛 , 𝝎𝑊𝑏, 𝒖𝑝, 𝒄𝑣)

𝑚

− (𝑰𝑏𝑏
𝐺 −1

(∑𝑴𝑏
𝐺
𝑖
(𝒛𝑣 , 𝒗𝑊𝑛, 𝝎𝑊𝑏 , 𝒖𝑝, 𝒄𝑣 , 𝒓𝑏

𝑅𝐺) − 𝝎𝑖𝑏 × (𝑰𝑏𝑏
𝐺 𝝎𝑖𝑏)))

× 𝒓𝑏
𝑅𝐺 −𝝎𝑖𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏

𝑅𝐺) 

(3-2) 

   
The function of sum of external moments in center of gravity ∑𝑴𝑏

𝐺
𝑖
 takes the center of gravity 

position 𝒓𝑏
𝑅𝐺 as additional input parameter. 

With navigation error states 𝛿𝒛𝑛 defined as in classical inertial navigation perturbation error 

analysis (see 2.2.2.1) and the vector of errors of moments and products of inertia defined as 

𝛿𝑰𝑏𝑏
𝐺 ≔ [𝛿𝐼𝑥𝑥, 𝛿𝐼𝑦𝑦, 𝛿𝐼𝑧𝑧, 𝛿𝐼𝑥𝑦, 𝛿𝐼𝑥𝑧, 𝛿𝐼𝑦𝑧]

𝑇
 

the error in modeled specific force vector can be linearized as 

𝛿𝒇𝑏
𝑅 ≐

𝜕𝒇𝑏
𝑅

𝜕𝛿𝒛𝑛
𝑇 𝛿𝒛𝑛 +

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑖𝑏
𝑇 𝛿𝝎𝑖𝑏 +

𝜕𝒇𝑏
𝑅

𝜕𝒗𝑊𝑛
𝑇 𝛿𝒗𝑊𝑛 +

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑊𝑏
𝑇 𝛿𝝎𝑊𝑏 +

𝜕𝒇𝑏
𝑅

𝜕𝒖𝑝
𝑇 𝛿𝒖𝑝 +

𝜕𝒇𝑏
𝑅

𝜕𝒄𝑣
𝑇 𝛿𝒄𝑣 +

𝜕𝒇𝑏
𝑅

𝜕𝑚
𝛿𝑚

+
𝜕𝒇𝑏

𝑅

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇 𝛿𝑰𝑏𝑏

𝐺 +
𝜕𝒇𝑏

𝑅

𝜕𝒓𝑏
𝑅𝐺𝑇

𝛿𝒓𝑏
𝑅𝐺 

The individual linearizations of modeled specific force with respect to the various parameters 

can be found in appendix A.9. Note that the relative acceleration terms in equation (3-2) 

explicitly depend on inertial angular rates vector 𝝎𝑖𝑏. Navigation state and wind velocity 

vector on the other hand only appear as input parameters of the functions of external forces 

and moments (2-15). Referring to the discussion of aerodynamic motion model input 

parameters in 2.1.3.2, the linearization of modeled specific force vector can be written as  

 
𝛿𝒇𝑏

𝑅 ≐
𝜕𝒇𝑏

𝑅

𝜕ℎ
𝛿ℎ +

𝜕𝒇𝑏
𝑅

𝜕𝒗𝐴𝑏
𝑇 𝛿𝒗𝐴𝑏 +

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑖𝑏
𝑇 𝛿𝝎𝑖𝑏 +

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑊𝑏
𝑇 𝛿𝝎𝑊𝑏 +

𝜕𝒇𝑏
𝑅

𝜕𝒖𝑝
𝑇 𝛿𝒖𝑝 +

𝜕𝒇𝑏
𝑅

𝜕𝒄𝑣
𝑇 𝛿𝒄𝑣

+
𝜕𝒇𝑏

𝑅

𝜕𝑚
𝛿𝑚 +

𝜕𝒇𝑏
𝑅

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇 𝛿𝑰𝑏𝑏

𝐺 +
𝜕𝒇𝑏

𝑅

𝜕𝒓𝑏
𝑅𝐺𝑇

𝛿𝒓𝑏
𝑅𝐺 

(3-3) 

   
The errors in equation (3-3) corresponding to uncertainty of vehicle model coefficients and 

dynamic atmosphere must be considered for filter tuning, e.g. as an augmented filter state 

and noise. Depending on the choice for augmenting filter state vector, equation (3-3) can 

be reordered defining a measurement matrix 𝑯, a process noise feedthrough matrix 𝑮𝝎 and 

a vector of artificial measurement noise 𝝂 = [𝝂𝝎𝑃𝑀
𝑇 , 𝝂𝒇𝑃𝑀

𝑇 ]
𝑇
 

 �̃�𝑥 = 𝑯𝒙 + 𝑮𝝎𝝎+ 𝝂 (3-4) 

   
where 𝝎 is the vector of white process noise. Pilot control input or atmospheric noise for 

example has already influenced the error state in the current propagation step (or similarly 

IMU noise), and reappears in this equation as measurement noise. 

To consistently account for the correlation of process noise and measurement noise, a new 

optimal gain 𝑲 must be derived, seeking to minimize trace of a posteriori covariance (c.f. 

[69]). 

With the a posteriori Kalman filter estimate 
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𝒙𝑘+1
+ = 𝑲(�̃�𝑥𝑘+1 −𝑯𝒙𝑘+1

− ) + 𝒙𝑘+1
−  

and the time discrete filter state model with process noise 𝝎𝑘 averaged in time interval 

[𝑡𝑘 , 𝑡𝑘+1] 

𝒙𝑘+1 = 𝚽𝑘𝒙𝑘 + 𝜞𝑘𝝎𝑘 

the measurement equation (3-4) can be rewritten and inserted into above filter estimate 

update equation 

�̃�𝑥𝑘+1 = 𝑯𝚽𝑘𝒙𝑘 +𝑯𝜞𝑘𝝎𝑘 +𝑮𝝎𝝎𝑘 + 𝝂𝑘 

and 

𝒙𝑘+1
+ = 𝑲(𝑯𝚽𝑘𝒙𝑘 + (𝑯𝜞𝑘 + 𝑮𝝎)𝝎𝑘 + 𝝂𝑘 −𝑯𝚽𝑘𝒙𝑘

+) + 𝚽𝑘𝒙𝑘
+ 

Taking the influence of process noise on both state propagation and measurement into 

account, the covariance of a posteriori filter estimate 𝒙𝑘+1
+  is 

𝑷𝑘+1
+ = 𝐸[(𝒙𝑘+1

+ − 𝒙𝑘+1)(𝒙𝑘+1
+ − 𝒙𝑘+1)

𝑇]

= 𝐸[(𝑲(𝑯𝚽𝑘𝒙𝑘 + (𝑯𝜞𝑘 + 𝑮𝝎)𝝎𝑘 + 𝝂𝑘 −𝑯𝚽𝑘𝒙𝑘
+) + 𝚽𝑘𝒙𝑘

+ −𝚽𝑘𝒙𝑘 − 𝜞𝑘𝝎𝑘)(… )
𝑇]

= 𝐸[((𝑰 − 𝑲𝑯)𝚽𝑘(𝒙𝑘
+ − 𝒙𝑘) − (𝑰 − 𝑲𝑯)𝜞𝑘𝝎𝑘 +𝑲𝑮𝝎𝝎𝑘 +𝑲𝝂𝑘)(… )

𝑇]

= (𝑰 − 𝑲𝑯)𝑷𝑘+1
− (𝑰 − 𝑲𝑯)𝑇 − (𝑰 − 𝑲𝑯)𝜞𝑘𝑸𝑮𝝎

𝑇𝑲𝑇 −𝑲𝑮𝝎𝑸𝜞𝑘
𝑇(𝑰 − 𝑲𝑯)𝑇

+𝑲(𝑹 + 𝑮𝝎𝑸𝑮𝝎
𝑇)𝑲𝑇 

Minimal trace of this a posteriori covariance matrix is chosen as optimality criterion and can 

be represented by the linear problem 

𝜕𝑡𝑟(𝑷𝑘+1
+ )

𝜕𝑲
= −2(𝑯𝑷𝑘+1

− )𝑇 + 2𝑲(𝑹 + 𝑮𝝎𝑸𝑮𝝎
𝑇 +𝑯𝑷𝑘+1

− 𝑯𝑇) − (𝑰 − 𝑲𝑯)𝜞𝑘𝑸𝑮𝝎
𝑇

− (𝑮𝝎𝑸𝜞𝑘
𝑇(𝑰 − 𝑲𝑯)𝑇)

𝑇
+ (𝑯𝜞𝑘𝑸𝑮𝝎

𝑇𝑲𝑇)
𝑇
+𝑲𝑮𝝎𝑸𝜞𝑘

𝑇𝑯𝑇

= −2(𝑯𝑷𝑘+1
− )𝑇 + 2𝑲(𝑹+ 𝑮𝝎𝑸𝑮𝝎

𝑇 +𝑯𝑷𝑘+1
− 𝑯𝑇) − 2(𝑮𝝎𝑸𝜞𝑘

𝑇)
𝑇
+ 2𝑲𝑯𝜞𝑘𝑸𝑮𝝎

𝑇

+ 2𝑲𝑮𝝎𝑸𝜞𝑘
𝑇𝑯𝑇 = 𝟎 

From this condition the optimal gain matrix 𝑲 can be derived 

 𝑲 = (𝑷𝑘+1
− 𝑯𝑇 + 𝜞𝑘𝑸𝑮𝝎

𝑇)(𝑹 + 𝑮𝝎𝑸𝑮𝝎
𝑇 +𝑯𝑷𝑘+1

− 𝑯𝑇 +𝑯𝜞𝑘𝑸𝑮𝝎
𝑇 + 𝑮𝝎𝑸𝜞𝑘

𝑇𝑯𝑇)
−1

 (3-5) 

   
For high noise and high update rate this special gain matrix must be used for consistent error 

estimation. This increases implementation complexity, because it differs from Kalman gain 

computation for a conventional measurement update. Furthermore, input propagation 

matrix 𝜞𝑘 must be kept in memory or computed again. When the process noise appearing 

in measurement equation (3-4) is small, it can be neglected and the conventional Kalman 

gain matrix can be used instead.  



Architectures for integrating inertial and aerodynamic motion models 77 

3.1.2 State-level model fusion 

 

In an alternative architecture, the aerodynamic motion model runs in parallel to INS. This 

provides a fully redundant, highly available “software” solution for navigation state vector 𝒛𝑛 

which can be used for combination and comparison on “state-level”: 

 

 

Figure 14: State-level model fusion  

 

This approach to inertial and aerodynamic motion fusion, first proposed in similar form by 

Koifman [9], uses the following measurements, referred to as pseudo measurements in the 

following for lack of any real measured quantity (also called virtual or perfect measurements 

in the literature, c.f. [84]): 

�̃�𝛿𝒗𝑛 ≔ �̂�𝑛𝑉𝐷𝑀 − �̂�𝑛𝐼𝑁𝑆 

In the extended Kalman filter framework, the following observation equation is used  

 �̃�𝛿𝒗𝑛 = 𝛿𝒗𝑛𝐼𝑁𝑆 − 𝛿𝒗𝑛𝑉𝐷𝑀 + 𝝂𝛿𝒗𝑛 (3-6) 

   
And similarly for orientation error the nonlinear measurement  

 �̃�𝜱 ≔ 𝒇(�̂�𝑛𝑏𝐼𝑁𝑆�̂�𝑛𝑏𝑉𝐷𝑀
𝑇

) (3-7) 

   
The direction cosine matrices �̂�𝑛𝑏𝐼𝑁𝑆 and �̂�𝑛𝑏𝑉𝐷𝑀 are computed from the NED-to-body-fixed 

frame orientation quaternions �̂̆�𝑛𝑏𝐼𝑁𝑆 and �̂̆�𝑛𝑏𝑉𝐷𝑀 respectively. The function 𝒇 computes the 

vector of Euler angles corresponding to the direction cosine matrix �̂�𝑛𝑏𝐼𝑁𝑆�̂�𝑛𝑏𝑉𝐷𝑀
𝑇

, c.f. 

equation (2-21). 
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Above pseudo measurement can be linearized to yield the corresponding Kalman filter 

observation equation [14] 

 �̃�𝜱 ≐ −𝜱𝐼𝑁𝑆 +𝜱𝑉𝐷𝑀 + 𝝂𝜱 (3-8) 

   
In both cases (3-6) and (3-8), virtual measurement noise 𝝂𝛿𝒗𝑛 and 𝝂𝜱 has been introduced. 

The pseudo measurement noise covariance matrices 𝑹𝒗𝑛 = 𝐸[𝝂𝛿𝒗𝑛𝝂𝛿𝒗𝑛
𝑇 ] and 𝑹𝜱 = 𝐸[𝝂𝜱𝝂𝜱

𝑇 ] 

can be set to zero without numerical ramifications as discussed in [14]. This forces estimated 

states equal and implements the assumed equality of inertial and aerodynamic truth for 

translational and rotational motion. With zero measurement noise covariance, state-level 

motion fusion mathematically corresponds to methods studied or applied in [9, 14, 78, 79, 81, 

85]. 

A similar measurement for redundant vehicle dynamics model reference point and INS 

position states could be defined 

�̃�𝛿𝝀 ≔ �̂�𝑉𝐷𝑀 − �̂�𝐼𝑁𝑆 = 𝛿𝝀𝑉𝐷𝑀 − 𝛿𝝀𝑉𝐷𝑀 + 𝝂𝛿𝝀 

With the vector of WGS84 coordinates 𝝀 = [𝜙, 𝜆, ℎ]𝑇 . It has been shown in [14] that using 

pseudo measurements for position and velocity in parallel is superfluous and can cause 

numerical problems at high update rates. 

For a physically more meaningful alternative to equation (3-6) with arbitrary location of 

navigation reference point 𝑅 on the vehicle, inertial and aerodynamic translational motion 

can be constrained equal in the center of gravity 

𝒗𝑛
𝐺
𝐼𝑁𝑆

= 𝒗𝑛
𝐺
𝑉𝐷𝑀

 

With  

𝒗𝑛
𝐺
𝐼𝑁𝑆

= 𝒗𝑛𝐼𝑁𝑆 + 𝑹𝑛𝑏𝐼𝑁𝑆 ((�̃�𝑖𝑏 + 𝛿𝝎𝑖𝑏𝐼𝑀𝑈) × 𝒓𝑏
𝑅𝐺) 

𝒗𝑛
𝐺
𝑉𝐷𝑀

= 𝒗𝑛𝑉𝐷𝑀 +𝑹𝑛𝑏𝑉𝐷𝑀(𝝎𝑖𝑏 × 𝒓𝑏
𝑅𝐺) 

The following pseudo measurement is defined 

 �̃�𝑥 ≔ �̂� 𝑛
𝐺
𝑉𝐷𝑀

− �̂�𝑛
𝐺
𝐼𝑁𝑆

= �̂�𝑛𝑉𝐷𝑀 − �̂�𝑛𝐼𝑁𝑆 + �̂�𝑛𝑏𝑉𝐷𝑀(�̂�𝑖𝑏 × �̂�𝑏
𝑅𝐺) − �̂�𝑛𝑏𝐼𝑁𝑆(�̃�𝑖𝑏 × �̂�𝑏

𝑅𝐺) (3-9) 

   
It is preferable to define the pseudo measurement in NED frame as above, because 

kinematic velocity vector errors will become observable independently of orientation errors 

in flight at zero angular rates. For a measurement defined in body-fixed frame, velocity and 

orientation errors would always be observable in combination only. 

The pseudo measurement (3-9) can be linearized to yield the following filter observation 

equation (by adding 𝒗𝑛
𝐺
𝐼𝑁𝑆

− 𝒗𝑛
𝐺
𝑉𝐷𝑀

= 𝟎) 

 �̃�𝑥 ≐ 𝛿𝒗𝑛𝐼𝑁𝑆 − 𝛿𝒗𝑛𝑉𝐷𝑀 − 𝑠𝑘𝑒𝑤(�̃�𝑖𝑏 × �̂�𝑏
𝑅𝐺)𝜱𝐼𝑁𝑆 + 𝑠𝑘𝑒𝑤(�̂�𝑖𝑏 × �̂�𝑏

𝑅𝐺)𝜱𝑉𝐷𝑀
+ �̂�𝑛𝑏𝑉𝐷𝑀𝑠𝑘𝑒𝑤(�̂�𝑏

𝑅𝐺)𝛿𝝎𝑖𝑏 − �̂�𝑛𝑏𝐼𝑁𝑆𝑠𝑘𝑒𝑤(�̂�𝑏
𝑅𝐺)𝒃𝐺𝑦𝑟𝑜

+ (�̂�𝑛𝑏𝐼𝑁𝑆𝑠𝑘𝑒𝑤(�̃�𝑖𝑏) − �̂�𝑛𝑏𝑉𝐷𝑀𝑠𝑘𝑒𝑤(�̂�𝑖𝑏)) 𝛿𝒓𝑏
𝑅𝐺

− �̂�𝑛𝑏𝐼𝑁𝑆𝑠𝑘𝑒𝑤(�̂�𝑏
𝑅𝐺)𝒏𝐺𝑦𝑟𝑜 + 𝝂𝒗𝑛𝐺 

(3-10) 
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With corresponding definitions of measurement matrix 𝑯 and process noise feedthrough 

matrix 𝑮𝝎 , accounting for the gyro noise term −�̂�𝑛𝑏𝐼𝑁𝑆𝑠𝑘𝑒𝑤(�̂�𝑏
𝑅𝐺)𝒏𝐺𝑦𝑟𝑜 , the observation 

equation can be written in the form 

�̃�𝑥 = 𝑯𝒙 + 𝑮𝝎𝝎+ 𝝂 

If this pseudo measurement is used at high rate with significant IMU inertial angular rates 

measurement noise, the adapted optimal filter gain matrix (3-5) should be used.  
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3.1.3 Modeling uncertainties of aerodynamic flight 

 

The model fusion techniques compute a best estimate combination of inertial and vehicle 

motion models. To this end, accurate covariance information is required, as it determines the 

respective weighting of combined motion model information. 

Ideal modeling of aerodynamic flight would include atmosphere process models 

accounting for an unsteady, non-uniform air mass velocity vector field traversed by the 

aircraft. This would allow to compute dynamic wind velocity vector and wind rates at aircraft 

location affecting aerodynamics and flight dynamics. In an application scenario for 

airplanes, where altitudes and travelled distances are large, such high-fidelity models of 

atmosphere processes are not available for on-board online use. Therefore, aerodynamic 

flight must instead be computed assuming steady and uniform wind (or wind changing 

according to some low frequency weather model). In addition to dynamic air mass motion, 

non-standard atmosphere conditions, such as air density at altitude, cause complex input 

and process error of the aerodynamic motion model. 

Application of an optimal model fusion filter requires that any uncertainty in modeling 

aerodynamic flight is accounted for accurately by statistical models used for filter 

covariance propagation. Unfortunately, accurate high-fidelity statistical models are equally 

challenging to define and implement as the corresponding process models. 

Consequently, optimal model fusion techniques suffer from a lack of reliability of dynamic 

atmosphere uncertainty models for aerodynamic flight in open-air. The intensity of 

aerodynamic disturbances encountered in flight can change unpredictably for the 

application of interest. Statistical models for smooth atmosphere dynamic wind vector and 

wind rates can abruptly become invalid on the onset of gale-force winds, gusts and 

turbulence. In this case, the inconsistent statistical information provided to the navigation 

filter can result in failure of the optimal filter. 

Due to the large variety of atmospheric disturbances to be accounted for, an adaptive 

approach trying to identify rough atmosphere conditions using on-board measurements and 

switching filter covariance models accordingly is not considered robust. On the other hand, 

general overbounding of dynamic atmosphere uncertainty is not a solution either, because 

an optimal filter would mostly neglect aerodynamic motion model information for high 

magnitude and correlation time of wind and wind rates uncertainty. 

The difficulty of implementing an optimal model fusion filter for inertial navigation and 

airplane aerodynamics is further increased by estimation of errors in aerodynamic model 

coefficients. Similarly to dynamic atmosphere processes, defining reliable statistical models 

for aerodynamic model uncertainty is challenging. Furthermore, uncertainty models for 

inertial navigation, dynamic atmosphere and aerodynamic motion must accurately 

compute covariance as well as respective correlation of errors. For the high accuracy 

aerodynamics models considered here, this constitutes a prohibitive risk of miscalibration of 

model coefficients due to statistics modeling error. 

The ideal model fusion method is especially vulnerable to inconsistent statistical models as 

estimation error in wind velocity and aerodynamic model coefficients can significantly harm 

performance.   
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3.1.4 Tuned model fusion filter 

 

In the preliminary effort of developing model fusion methods using optimal filters, an 

uncertainty model for wind velocity vector with small correlation time in combination with 

estimation of this high-frequency wind vector was key for good performance and robustness. 

This choice of wind uncertainty model is deliberately inconsistent with the dynamic 

atmosphere conditions in simulation where dynamic wind has a large correlation time 

coefficient. Although this result quantitatively still depends on the simulation environment 

and the atmospheric models, it indicates to the solution of the modeling problem of state 

estimation techniques. 

First, note that this choice of tuning neglects the additional uncertainty in aerodynamic 

motion model velocity and position due to an unknown slowly varying or constant wind 

vector which would have to be considered in an ideal model fusion filter. Because this work 

is specifically concerned with the combination of low-cost inertial navigation and a high-

quality aerodynamic model as discussed in chapter 2, the quantification of slowly-varying 

wind uncertainty is indeed expendable for model combination: For the desired mission times, 

translational uncertainty of the inertial model will nearly always exceed even extreme wind 

drift (c.f. the empirical atmosphere extremes in [86]). Therefore, neglecting the influence of 

long-term wind uncertainty in the fusion of low-cost inertial navigation and the aerodynamic 

motion model has little effect on model fusion position drift. This tuning further increases the 

confidence of the information on average kinematic velocity provided by the aerodynamic 

motion model compared to the inertial model. 

Secondly, the increased uncertainty of aerodynamic moments and high-frequency wind 

vector reduces the weighting of rotational motion information of the aerodynamic motion 

model used by the model fusion filter. While this is consistent in rough atmosphere conditions, 

where the aerodynamic motion model orientation and angular rates can be significantly in 

error, it corresponds to a conservative overbounding of aerodynamic rotational motion 

uncertainty in normal, smooth atmosphere flight. With this choice of filter tuning, the model 

fusion filter will apply large corrections to both aerodynamic model orientation and wind 

velocity vector in rough atmosphere. For robustness of the aerodynamic navigation method, 

it is essential that the body-fixed frame aerodynamic velocity vector is not subjected to large 

changes by filter corrections. If the optimal model fusion method is applied, this can only be 

achieved by estimation of a high-frequency wind vector that compensates for 

discrepancies of kinematic and aerodynamic motion. At the same time, aerodynamic 

model attitude and heading are corrected thus improving position propagation accuracy. 

The specialized tuning developed for model fusion methods implements a specific type of 

combination of low-cost inertial navigation and high-quality aerodynamic motion model. In 

contrast to the horizontal model fusion paradigm [11], which assumes homogeneous 

information in both (or multiple) models, this is a complementary combination of information 

from different motion degrees of freedom for each model. The best way to integrate the two 

models for the specific problem at hand is a vertical, or complementary, combination of 

inertial rotational motion (aided by 3-D magnetometer) and aerodynamic horizontal 

translational motion. 

While choosing the better information from each of the two models to be combined, this 

complementary strategy also reduces the importance of statistical modeling by 
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conservatively overbounding insignificant information. In addition, the aerodynamic model 

coefficients are kept constant. This keeps the reliability of a certified high-quality model 

intact.  
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3.1.5 Shortcomings of state estimation techniques 

 

Application of an optimal model fusion filter requires accurate statistical models of current 

atmospheric conditions, flight dynamics and inertial navigation uncertainty and error 

correlation. A specific tuning of the model fusion filter has been developed that avoids 

extensive modeling of uncertainties and exploits the complementary characteristics of the 

two motion models. That way, good position performance and method robustness is 

achieved in simulation. 

The tuned model fusion filter approach is not directly applicable to a real-word airplane 

application. Quantitatively, the choice of tuning parameters depends on the simulation 

framework used for method optimization. In 2.3.3.2 the potential loss of method robustness 

due to inconsistent coupling of kinematic and aerodynamic motion has been discussed. The 

high-frequency dynamic wind vector uncertainty model has been found to be a robust 

countermeasure against filter failure in simulation but may not be sufficient in real rough 

atmosphere conditions to be encountered in operation for large altitudes, flight times and 

travelled distances.  

The need of an accurate high-fidelity simulation tool to tune a navigation method to be 

robust results in a need for strict verification of this tool. Tuning of the high-frequency wind 

velocity vector estimation must guarantee for aerodynamic navigation method robustness 

even in extreme atmosphere conditions. 

Consequently, it is desired to further reduce sensitivity of aerodynamic navigation method 

performance and robustness with respect to modeling and filter tuning. This will be the focus 

of the following section. Optimal model fusion is a formalized approach that can be applied 

to a wide range of problems but has been found to suffer from unreliable modeling. For the 

specific problem at hand, the complementary characteristics of inertial and airplane 

aerodynamic models will be exploited more extensively to improve aerodynamic 

navigation. 

Note that this discussion is independent of the actual model fusion technique used. In ideal 

optimal estimation, state-level and signal-level are equivalent (exact constraints on 

translational and rotational kinematic motion). Differences arise due to finite filter update 

rates and for the tuned model fusion filter. In this case, the low-pass effect of orientation and 

c.g. velocity updates can be beneficial. 
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3.2 COVARIANCE-FREE INTEGRATION 
 

The study of inertial and aerodynamic motion model characteristics, optimal model fusion 

and the results for tuning of model fusion indicate that a static, covariance-free integration 

can be implemented to combine the two models. The best tuning of a model fusion filter for 

good robustness in a variable and potentially rough dynamic atmosphere environment 

encountered in airplane applications largely neglects accurate atmosphere uncertainty 

modeling (because it is unavailable). Instead, it profits from a mostly invariable and 

complementary combination of inertial rotational and aerodynamic translational motion. 

The distinctive qualities of low-cost inertial navigation aided by barometric altitude and 3-D 

magnetometer and the high-quality airplane aerodynamic model are perfectly suited for 

such a static complementary combination strategy. The potential performance gain in an 

ideal horizontal model fusion architecture [11], with bidirectional aiding of the models for all 

motion degrees of freedom, is small due to the significant inequality of information content. 

Furthermore, while realization of ideal model fusion ideally requires adaptive uncertainty 

models of atmosphere statistics, a new method can be defined that solely relies on safe 

assumptions on how to exclusively select complementary information from the two models. 

Such a method works without a model fusion filter depending on unreliable or unknown 

statistical models. Statistically weighted averaging of information is replaced by covariance-

free exclusive selection in a fixed implementation of complementary model combination. 

To that end, means to feed information from aerodynamic to inertial model and vice versa 

must be developed. The goal is to precisely define the lines between information used from 

one or the other model in complementary integration. A significant advantage of a 

covariance-free approach to inertial and aerodynamic motion model integration is the 

unrestricted freedom of designing a mechanism to couple the two models.  

The main steps to improve the airplane aerodynamic motion model for accurate first order 

position propagation as studied in chapter 2 can be accomplished with a set of 

aerodynamically desensitized constraints presented in the following subsection. These 

constraints feed accurate reference information from the inertial motion model to the 

aerodynamic motion model while avoiding disturbances to the flight dynamics. 

The modification of the inertial motion model presented in section 2.2.2.3 offers an 

advantageous form for this integration strategy: It is already modified for better attitude 

computation accuracy in vehicles with only temporary horizontal accelerations and its 

performance can directly be improved by provision of reference information on horizontal 

position and velocity. Because of the weak influence, the error statistics of reference 

information can be ignored in the reduced covariance model for rotational and vertical 

motion only used for integration of barometric altitude and 3-D magnetometer. Alternatively, 

error loops could be used for integration of these measurements. 

No online improvement of the aerodynamic model is attempted due to the lack of sensor 

accuracy in GNSS-denied flight and in order to maintain the reliability of a certified high-

quality model.  

The covariance-free approach to complementary integration of inertial navigation and 

aerodynamic motion model is presented in the following subsections. First, the details of 

exchanging complementary information between the inertial and aerodynamic motion 
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models are discussed. Because covariance information might be required as navigation 

data output, an “add on” covariance model consistent with the proposed aerodynamic 

navigation method will be derived. This covariance model can use the best available 

statistical models for atmosphere uncertainty, but the computation of navigation state is not 

affected. Finally, the proposed method will be fit into the existing navigation framework and 

operational modes. 
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3.2.1 Aerodynamically desensitized model constraints 

 

The aerodynamic motion model must be continuously corrected using reference information 

from the inertial motion model in order to achieve a number of goals. First, the divergent 

lateral error modes must be damped effectively without affecting longitudinal motion. 

Consequently, roll stabilization must be implemented in order to keep aerodynamic model 

lateral motion aligned.  

In addition, simulation of the aerodynamic model must be robust in turbulent atmosphere 

with possibly intense measured pilot control input inconsistent with estimated wind. This leads 

to large dynamic distortions of aerodynamic model kinematic states. Correction of 

aerodynamic model attitude or orientation in general affects the fundamental degrees of 

freedom of airplane flight dynamics – the aerodynamic angles of attack and sideslip. The 

discussion in 2.3.3.2 revealed that due to the strong dynamics of aerodynamic flight and 

especially static stability, only equilibrium corrections should be made to aerodynamic states 

and aerodynamic model coefficients in order to preserve robustness in rough atmosphere. 

This is generally not possible for lack of accurate models. However, unlike in the tuned model 

fusion filter, where this problem is only evaded by a dynamical estimation of wind vector, 

which allows keeping aerodynamic states mostly unchanged in the correction of kinematic 

states, a more thorough solution is possible for the covariance-free method. 

All corrections to the aerodynamic motion model must be implemented such that the 

fundamental degrees of freedom of airplane flight dynamics remain unchanged. This means 

that kinematic velocity and vehicle orientation may only be changed simultaneously while 

keeping aerodynamic angles of attack and sideslip, airspeed and aerodynamic climb angle 

constant. All of these quantities have a strong direct effect on aerodynamic forces and 

moments, or a direct effect on the longitudinal equilibrium of forces (as is the case for the 

aerodynamic climb angle). For given values of air density, aerodynamic bank angle, wind 

and control inputs, longitudinal stability and trim of the aerodynamic motion model prescribe 

certain equilibrium values of airspeed, aerodynamic angle of attack and aerodynamic 

climb angle (equivalently the longitudinal orientation of gravity vector). The aerodynamic 

angle of sideslip is governed by the equilibrium of body yaw moments. 

On the other hand, the values of aerodynamic course angle 𝜒𝐴  and aerodynamic bank 

angle 𝜇𝐴  of the aerodynamic motion model may be corrected without concerns for 

robustness because the dynamic response of airplane flight dynamics is weak. This allows for 

aerodynamically desensitized corrections of aerodynamic motion model kinematic states. 

Finally, translational propagation accuracy must be improved with error growth ideally close 

to ideal wind drift. To achieve this, the remaining sources of first order growth in position error 

must be addressed. Because no reference information on kinematic velocity vector or 

course over ground is available in the low-cost GNSS-denied application, vehicle heading 

constitutes the best available alternative. Again, correction of heading may perturb flight 

dynamics with potentially severe consequences for filter stability and an aerodynamically 

desensitized correction must implemented. 

Height ℎ and horizontal position (if a reference value is available) can be corrected with 

negligible effect on flight dynamics, possibly with synchronous recalibration of the height 

model for air density. Continuous correction of height is important for robust aerodynamic 
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motion simulation in presence of large input or model errors that cause trim error in 

aerodynamic climb angle and a large deviation in altitude for stationary horizontal flight. 

The corrections to height ℎ, aerodynamic course angle 𝜒𝐴 and aerodynamic bank angle 𝜇𝐴, 

while keeping 𝛾𝐴, 𝛼𝐴, 𝛽𝐴 and 𝑉𝐴 unchanged, are sufficient to use the airplane aerodynamic 

motion model as accurate, first-order propagation method. These aerodynamically 

desensitized constraints will be described in detail in the following. 

 

3.2.1.1 Aerodynamic orientation error 

 

For the correction of aerodynamic course angle 𝜒𝐴 and aerodynamic bank angle 𝜇𝐴, the 

errors of these quantities must be determined. Given a reference value of vehicle orientation 

of significantly better accuracy than the computed VDM orientation, errors in this reference 

value can be neglected and approximate orientation error Euler angles 𝜱 = [𝛿𝜙1, 𝛿𝜙2, 𝛿𝜙3]
𝑇 

can be computed. As discussed in 2.2.2.1, these Euler angles describe the relative orientation 

of platform frame 𝑝 with respect to the NED frame 𝑛 and per definition of the platform frame 

are a parametrization of error of computed NED to body-fixed frame orientation. 

 

 

Figure 15: Errors in aerodynamic orientation angles 
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In addition to NED to body-fixed frame orientation quaternion, rotation matrix and Euler 

angles, the aerodynamic course, climb and bank angles 𝜒𝐴, 𝛾𝐴, 𝜇𝐴  in combination with 

aerodynamic angles of attack and sideslip 𝛼𝐴, 𝛽𝐴  are a parametrization of vehicle 

orientation. Figure 15 shows the coordinate frame axis transformations between the body-

fixed frame 𝑏 and the NED, level aerodynamic and aerodynamic frames 𝑛, 𝑎𝑙 , 𝑎 as well as 

their computed counterparts 𝑝, �̂�𝑙 , �̂�. The consecutive axis rotations that transform one frame 

into another are given by their equivalent orientation quaternion (c.f. appendix A.1). 

Due to the equivalence of aerodynamic angle parametrization and e.g. the Euler orientation 

angles parametrization of NED to body-fixed frame orientation, the contained orientation 

errors are also equal. Consequently, corrections of the aerodynamic orientation angles can 

be derived from the orientation error Euler angles 𝜱.  

 

 

Figure 16: Simplified aerodynamic orientation errors 

 

Determining the errors in the aerodynamic angles is significantly simplified by the assumption 

that the aerodynamic climb angle 𝛾𝐴 and the aerodynamic angles of attack and sideslip 

𝛼𝐴, 𝛽𝐴  are error free, as required for aerodynamically desensitized correction of VDM 
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orientation. With this, only the aerodynamic course angle 𝜒𝐴 and the aerodynamic bank 

angle 𝜇𝐴 contribute to the VDM orientation error. In addition, for flight condition with small 

aerodynamic climb angle 𝛾𝐴 , these two rotations are about orthogonal axes in good 

approximation. This allows studying the relationship of the orientation error Euler angles 𝜱 and 

errors in computed aerodynamic course angle �̂�𝐴 and computed aerodynamic bank angle 

�̂�𝐴 separately. Figure 16 shows how errors in these two angles contribute to NED to platform 

frame misalignment if they are the only source of aerodynamic orientation error. 

 

3.2.1.2 Correction of aerodynamic bank angle 𝝁𝑨 

 

By correcting the VDM aerodynamic bank angle 𝜇𝐴  the divergent lateral motion of the 

aerodynamic model can effectively be restrained. By inspection of case (1) shown in Figure 

16, the error in computed aerodynamic bank angle can be determined as the misalignment 

of computed level aerodynamic frame �̂�𝑙 with respect to the true level aerodynamic frame 

𝑎𝑙. The NED to level aerodynamic frame orientation quaternion is considered known without 

error in the correction of aerodynamic bank angle: 

�̆�𝑛𝑎𝑙 =

[
 
 
 
 
 𝑐𝑜𝑠 (

𝜒𝐴
2
)

0
0

𝑠𝑖𝑛 (
𝜒𝐴
2
)]
 
 
 
 
 

⋅

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛾𝐴
2
)

0

𝑠𝑖𝑛 (
𝛾𝐴
2
)

0 ]
 
 
 
 
 

 

The level aerodynamic frame is defined by rotation of the NED frame such that the x-axis is 

aligned with the aerodynamic velocity vector. The y-axis remains in the horizontal plane. The 

aerodynamic climb and course angles are 

𝛾𝐴 = asin(
−(𝑣𝐷𝑉𝐷𝑀 − 𝑣𝑊,𝐷)

‖𝒗𝑛𝑉𝐷𝑀 − 𝒗𝑊‖2

) 

𝜒𝐴 = 𝑎𝑡𝑎𝑛2(𝑣𝐸𝑉𝐷𝑀 − 𝑣𝑊,𝐸 , 𝑣𝑁𝑉𝐷𝑀 − 𝑣𝑊,𝑁) 

Given a reference value of vehicle orientation �̆�𝑛𝑏𝑟𝑒𝑓, the error in computed aerodynamic 

bank angle 𝛿𝜇𝐴 = 𝜇𝐴 − �̂�𝐴 can be extracted from the following orientation quaternion 

�̆�𝑎𝑙�̂�𝑙 = �̆�𝑛𝑎𝑙
−1 ⋅ �̆�𝑛𝑏𝑟𝑒𝑓 ⋅ �̆�𝑛𝑏𝑉𝐷𝑀

−1 ⋅ �̆�𝑛𝑎𝑙 =

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛿𝜇𝐴
2
)

𝑠𝑖𝑛 (
𝛿𝜇𝐴
2
)

0
0 ]

 
 
 
 
 

 

Note that this quaternion product is equivalent to transformation of the phi angle orientation 

error 𝝓 from NED frame to level aerodynamic frame coordinates 𝝓𝑎𝑙 = 𝑹𝑛𝑎𝑙
𝑇 𝝓𝑛. Neglecting all 

other orientation errors, the error in computed aerodynamic bank angle is the projection of 

phi angle orientation error onto the direction of aerodynamic velocity: 

𝛿𝜇𝐴 = 𝒆1𝑹𝑛𝑎𝑙
𝑇 𝝓𝑛 =

1

𝑉𝐴
𝒗𝐴𝑛
𝑇 𝝓𝑛 
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It is desired to rotate the aerodynamic model only in direction of aerodynamic velocity 

vector in order to leave 𝒗𝐴𝑏𝑉𝐷𝑀 unchanged. This corresponds to a change in aerodynamic 

bank angle 𝜇𝐴 of the aerodynamic motion model. Consequently, the aerodynamic model 

orientation quaternion is updated as follows 

 �̆�𝑛𝑏𝑉𝐷𝑀 → �̆�𝑛𝑎𝑙 ⋅ �̆�𝑎𝑙�̂�𝑙 ⋅ �̆�𝑛𝑎𝑙
−1 ⋅ �̆�𝑛𝑏𝑉𝐷𝑀 (3-11) 

   
 

3.2.1.3 Correction of aerodynamic course angle 𝝌𝑨 

 

For correction of aerodynamic model heading, the aerodynamic model kinematic velocity 

vector in NED frame coordinates must be changed simultaneously in order to keep 𝒗𝐴𝑏𝑉𝐷𝑀 

unchanged. This corresponds to a change of aerodynamic course angle 𝜒𝐴. The heading 

correction is derived from the NED frame orientation error with respect to the reference 

�̆�𝑛𝑏𝑟𝑒𝑓 

�̆�𝑛𝑏𝑟𝑒𝑓�̆�𝑛𝑏𝑉𝐷𝑀
−1 =

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛿𝜙3
2
)

0
0

𝑠𝑖𝑛 (
𝛿𝜙3
2
)]
 
 
 
 
 

⋅

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛿𝜙2
2
)

0

𝑠𝑖𝑛 (
𝛿𝜙2
2
)

0 ]
 
 
 
 
 

⋅

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛿𝜙1
2
)

𝑠𝑖𝑛 (
𝛿𝜙1
2
)

0
0 ]

 
 
 
 
 

 

As shown for case (2) in Figure 16 only an error in the aerodynamic course angle is assumed 

𝛿𝜒𝐴 = 𝜒𝐴 − �̂�𝐴. Neglecting the first two elements of the vector of orientation error Euler angles 

𝜱, inspection of Figure 16 reveals that 

𝜒𝐴 = 𝛿𝜙3 + �̂�𝐴 

and consequently 𝛿𝜙3 = 𝛿𝜒𝐴. 

The VDM orientation and velocity vector are updated as follows 

 

�̆�𝑛𝑏𝑉𝐷𝑀 →

[
 
 
 
 
 𝑐𝑜𝑠 (

𝛿𝜙3
2
)

0
0

𝑠𝑖𝑛 (
𝛿𝜙3
2
)]
 
 
 
 
 

⋅ �̆�𝑛𝑏𝑉𝐷𝑀 

 

𝒗𝑛𝑉𝐷𝑀 → 𝑹𝐷(𝒗𝑛𝑉𝐷𝑀 − 𝒗𝑊) + 𝒗𝑊 

(3-12) 

   
The rotation matrix 𝑹𝐷 that transforms the NED frame aerodynamic velocity vector can be 

computed from the heading correction with equation (A-20): 

𝑹𝐷 = 𝑰 + sin(𝛿𝜙3) 𝑠𝑘𝑒𝑤(𝒆3) + (1 − cos(𝛿𝜙3))𝑠𝑘𝑒𝑤(𝒆3)
2 

The two correction schemes for lateral motion and heading do not affect aerodynamic 

model aerodynamic angles of attack and sideslip and can therefore be applied even if the 

reference orientation contains high frequency content inconsistent with the motion of 

simulated VDM. This approach increases robustness of the aerodynamic navigation method 

in all possible atmosphere conditions. 
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3.2.1.4 Correction of position 

 

Finally, vertical translational motion can be updated in a straight-forward way. Vertical 

position is simply set to the reference value 

 ℎ𝑉𝐷𝑀 → ℎ𝑟𝑒𝑓 (3-13) 

   
If a reference value for 3-D position is available, a correction scheme equivalent to equation 

(3-13) can be used for updating all components of aerodynamic model position. 
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3.2.2 Integration with the modified inertial motion model 

 

The reference values for vertical motion and orientation ℎ𝑟𝑒𝑓 and �̆�𝑛𝑏𝑟𝑒𝑓 used for correction 

of the aerodynamic motion model as described in the previous subsection can be provided 

by the modified inertial motion model presented in 2.2.2.3. 3-D magnetometer aiding and 

barometric altitude damping of the vertical inertial channel are applied as discussed in 2.3.2. 

The reference values for horizontal position and velocity in the modified inertial motion model 

equation will be taken from the aerodynamic motion model. 

The combined motion model can be summarized as follows. The aerodynamic motion model 

(2-8) and (2-9) is propagated using  

�̇�𝑖𝑏𝑉𝐷𝑀 = 𝑰𝑏𝑏
𝐺 −1

(𝑴𝑏
𝐺 −𝝎𝑖𝑏𝑉𝐷𝑀 × (𝑰𝑏𝑏

𝐺 𝝎𝑖𝑏𝑉𝐷𝑀)) 

�̇�𝑛𝑉𝐷𝑀 = 𝒔(𝒛𝑛𝑉𝐷𝑀, 𝒇𝑏𝑉𝐷𝑀, 𝝎𝑖𝑏𝑉𝐷𝑀) 

𝒇𝑏𝑉𝐷𝑀 =
𝑭𝑏
𝐺

𝑚
− �̇�𝑖𝑏𝑉𝐷𝑀 × 𝒓𝑏

𝑅𝐺 −𝝎𝑖𝑏𝑉𝐷𝑀 × (𝝎𝑖𝑏𝑉𝐷𝑀 × 𝒓𝑏
𝑅𝐺) 

The external forces and moments in center of gravity 𝐺 are computed using aerodynamic 

motion model states, NED frame wind velocity vector, control inputs, model coefficients and 

center of gravity position 

𝑴𝑏
𝐺 = ∑ 𝑴𝑏

𝐺
𝑖

𝐴𝑒𝑟𝑜,𝑃𝑟𝑜𝑝

(ℎ𝑉𝐷𝑀, 𝑹𝑛𝑏
𝑇
𝑉𝐷𝑀

(𝒗𝑛𝑉𝐷𝑀 − 𝒗𝑊𝑛),𝝎𝑖𝑏𝑉𝐷𝑀, 𝒖𝑝, 𝒄𝑣 , 𝒓𝑏
𝑅𝐺) 

𝑭𝑏
𝐺 = ∑ 𝑭𝑏

𝐺
𝑖
(ℎ𝑉𝐷𝑀, 𝑹𝑛𝑏

𝑇
𝑉𝐷𝑀

(𝒗𝑛𝑉𝐷𝑀 − 𝒗𝑊𝑛),𝝎𝑖𝑏𝑉𝐷𝑀, 𝒖𝑝, 𝒄𝑣)

𝐴𝑒𝑟𝑜,𝑃𝑟𝑜𝑝

 

The modified inertial motion model is propagated with 

�̇�𝑛𝐼𝑁𝑆 = 𝑹𝑛𝑏𝐼𝑁𝑆
𝜔2

𝜔𝑆
2 𝒇𝑏𝐼𝑀𝑈 + 𝜸𝑛(𝜙𝑉𝐷𝑀, ℎ𝐼𝑁𝑆)

− (2𝑹𝑒𝑛
𝑇 (𝜙𝑉𝐷𝑀, 𝜆𝑉𝐷𝑀)𝝎𝑖𝑒 +𝝎𝑒𝑛(𝜙𝑉𝐷𝑀, ℎ𝐼𝑁𝑆, 𝑣𝑁𝐼𝑁𝑆, 𝑣𝐸𝐼𝑁𝑆)) × 𝒗𝑛𝐼𝑁𝑆

− 2𝜁𝜔(𝒗𝑛𝐼𝑁𝑆 − 𝒗𝑛𝑉𝐷𝑀) 

�̇̆�𝑛𝑏𝐼𝑁𝑆 =
1

2
(�̆�𝑛𝑏𝐼𝑁𝑆 ⋅ �̆�𝑖𝑏𝐼𝑀𝑈 − �̆�𝑖𝑛(𝜙𝑉𝐷𝑀, 𝜆𝑉𝐷𝑀, ℎ𝐼𝑁𝑆, 𝑣𝑁𝐼𝑁𝑆, 𝑣𝐸𝐼𝑁𝑆) ⋅ �̆�𝑛𝑏INS) 

The vertical component of the velocity vector differential equation is replaced by 

�̇�𝐷𝐼𝑁𝑆 = 𝑓𝐷𝐼𝑁𝑆 + 𝛾𝐷(𝜙𝑉𝐷𝑀, ℎ) − 𝜔𝑁𝑣𝐸𝑉𝐷𝑀 +𝜔𝐸𝑣𝑁𝑉𝐷𝑀 

𝝎𝑛 = [

𝜔𝑁
𝜔𝐸
𝜔𝐷
] = 2𝑹𝑒𝑛

𝑇 (𝜙𝑉𝐷𝑀, 𝜆𝑉𝐷𝑀)𝝎𝑖𝑒 +𝝎𝑒𝑛(𝜙𝑉𝐷𝑀, ℎ𝐼𝑁𝑆, 𝑣𝑁𝑉𝐷𝑀, 𝑣𝐸𝑉𝐷𝑀) 

ℎ̇𝐼𝑁𝑆 = −𝑣𝐷𝐼𝑁𝑆 
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3.2.3 Add on covariance model 

 

Although the model constraints presented in subsection 3.2.1 are independent of statistical 

models for vehicle model and dynamic atmosphere uncertainty, an auxiliary covariance 

model can be implemented if statistical models are available. The method behavior will 

remain unchanged, preserving its good reliability, but additional uncertainty information can 

be provided to the navigation data user. 

Referring to the notation for extended Kalman filter states defined in appendix A.8, the model 

constraints can be written as error state updates in a linearized form 

 
𝑴𝑠𝑒𝑙 [

𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

+

= 𝑻−1𝑲1𝑻𝑴𝑠𝑒𝑙 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

−

+ 𝑻−1𝑲2𝑴𝑟𝑒𝑓 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

−

 (3-14) 

   
The update matrices 𝑲1  and 𝑲2  depend on the specific correction scheme. The 

transformation matrix 𝑻 and its inverse will be defined accordingly. The rectangular binary 

matrices 𝑴𝑠𝑒𝑙 and 𝑴𝑟𝑒𝑓 have one entry of 1 in each row and full rank. 𝑴𝑠𝑒𝑙 is defined to select 

the error states affecting aerodynamic motion from the augmented filter state vector. For 

the updates defined in subsection 3.2.1, 𝑴𝑠𝑒𝑙 is defined such that 

𝑴𝑠𝑒𝑙 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

] =

[
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝑛𝑉𝐷𝑀
𝝓𝑛𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 

 

𝑴𝑟𝑒𝑓 selects all other error states. Consequently with size 𝑛 of augmented filter state vector 

and twelve VDM error states 

𝑴𝑠𝑒𝑙𝑴𝑟𝑒𝑓
𝑇 = 𝟎12×(𝑛−12) 

𝑴𝑟𝑒𝑓𝑴𝑠𝑒𝑙
𝑇 = 𝟎(𝑛−12)×12 

And 

𝑴𝑟𝑒𝑓
𝑇 𝑴𝑟𝑒𝑓 +𝑴𝑠𝑒𝑙

𝑇 𝑴𝑠𝑒𝑙 = 𝑰 

The update step for the complete filter state vector equivalent to equation (3-14) can be 

written as 

[
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

+

= (𝑴𝑟𝑒𝑓
𝑇 𝑴𝑟𝑒𝑓 +𝑴𝑠𝑒𝑙

𝑇 𝑻−1𝑲1𝑻𝑴𝑠𝑒𝑙 +𝑴𝑠𝑒𝑙
𝑇 𝑻−1𝑲2𝑴𝑟𝑒𝑓) [

𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

−

 

The augmented filter covariance matrix 𝑷 = 𝑉𝑎𝑟[[𝛿𝒛𝐼𝑁𝑆
𝑇 𝛿𝒛𝑉𝐷𝑀

𝑇 𝒂𝑇]𝑇] can be updated with 

 𝑴𝑠𝑒𝑙𝑷
+𝑴𝑠𝑒𝑙

𝑇 = 𝑻−1(𝑲1𝑻𝑴𝑠𝑒𝑙𝑷
−𝑴𝑠𝑒𝑙

𝑇 𝑻𝑇𝑲1
𝑇 +𝑲2𝑴𝑟𝑒𝑓𝑷𝑴𝑟𝑒𝑓

𝑇 𝑲2
𝑇)𝑻−𝑇 

 

𝑴𝑠𝑒𝑙𝑷
+𝑴𝑟𝑒𝑓

𝑇 = 𝑻−1(𝑲1𝑻𝑴𝑠𝑒𝑙𝑷
+𝑴𝑟𝑒𝑓

𝑇 +𝑲2𝑴𝑟𝑒𝑓𝑷𝑴𝑟𝑒𝑓
𝑇 ) 

(3-15) 

   
The covariance 𝑴𝑟𝑒𝑓𝑷𝑴𝑟𝑒𝑓

𝑇  remains unchanged. 



94 

With applicable values for the matrices 𝑲1 , 𝑲2  and 𝑻 , equation (3-15) can be used to 

consistently update the covariance matrix for aerodynamic navigation if one of the model 

constraints presented in 3.2.1 is applied. 

For the lateral error correction (3-11), a transformation of error states facilitates the definition 

of a linearized error state update equation. Furthermore, by defining an error state for body-

fixed frame aerodynamic velocity vector 𝛿𝒗𝐴𝑏𝑉𝐷𝑀 , it is possible to exactly implement 

invariance of the uncertainty of this error in the update in the covariance model.  

Aerodynamic errors are transformed according to 

𝑻𝑴𝑠𝑒𝑙 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

] =

[
 
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑎𝑙𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 
 

 

With the psi angle orientation error in level aerodynamic frame coordinates 

𝝓𝑎𝑙 = 𝑹𝑎𝑙𝑛𝑉𝐷𝑀
𝝓𝑛 = [

𝜙𝑥
𝜙𝑦
𝜙𝑧

] 

The error of aerodynamic velocity vector in body-fixed frame coordinates can be written as 

𝛿𝒗𝐴𝑏 = 𝛿 (𝑹𝑛𝑏
𝑇 (𝒗𝑛 − 𝒗𝑊𝑛)) = 𝑹𝑛𝑏

𝑇 𝛿𝒗𝑛 + 𝑹𝑛𝑏
𝑇 (𝒗𝐴𝑛 ×𝝓𝑛) − 𝑹𝑛𝑏

𝑇 𝛿𝒗𝑊𝑛 

With 𝒗𝐴𝑛𝑉𝐷𝑀 = 𝒗𝑛𝑉𝐷𝑀 − 𝒗𝑊𝑛 the transformation matrix and its inverse are 

𝑻 =

[
 
 
 
𝑰 𝟎 𝟎 𝟎
𝟎 𝑹𝑛𝑏

𝑇
𝑉𝐷𝑀

𝑹𝑛𝑏
𝑇
𝑉𝐷𝑀

𝑠𝑘𝑒𝑤(𝒗𝐴𝑛𝑉𝐷𝑀) −𝑹𝑛𝑏
𝑇
𝑉𝐷𝑀

𝟎 𝟎 𝑹𝑎𝑙𝑛𝑉𝐷𝑀
𝟎

𝟎 𝟎 𝟎 𝑰 ]
 
 
 

 

𝑻−1 =

[
 
 
 
 
𝑰 𝟎 𝟎 𝟎
𝟎 𝑹𝑛𝑏𝑉𝐷𝑀 −𝑠𝑘𝑒𝑤(𝒗𝐴𝑛𝑉𝐷𝑀)𝑹𝑎′𝑛

𝑇

𝑉𝐷𝑀
𝑰

𝟎 𝟎 𝑹𝑎𝑙𝑛
𝑇

𝑉𝐷𝑀
𝟎

𝟎 𝟎 𝟎 𝑰]
 
 
 
 

 

The error correction (3-11) corresponds to the following linearized update of transformed error 

state 

[
 
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑎𝑙𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 
 
+

= 𝑲1

[
 
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑎𝑙𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 
 
−

+𝑲2𝑴𝑟𝑒𝑓 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

−

=

[
 
 
 
 
 
 

𝛿𝜦𝑉𝐷𝑀
−

𝛿𝒗𝐴𝑏𝑉𝐷𝑀
−

[1 0 0]𝑹𝑎𝑙𝑛𝑉𝐷𝑀
𝝓𝑛𝐼𝑁𝑆

𝜙𝑦𝑉𝐷𝑀
−

𝜙𝑧𝑉𝐷𝑀
−

 𝛿𝒗𝑊𝑛
− ]

 
 
 
 
 
 

 

In the transformed error state space only the first element of VDM orientation error is reset 

with the corresponding information from the inertial motion model. This consistently models 

the covariance when the error in VDM aerodynamic bank angle is corrected using inertial 

motion model reference orientation. 
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Consequently, 𝑲1  is the 12 × 12  identity matrix with exception of a zero in the row 

corresponding to the first component of 𝝓𝑎𝑙𝑉𝐷𝑀
. 𝑲2 is a zero matrix with exception of the 

entry  

[1 0 0]𝑹𝑎𝑙𝑛𝑉𝐷𝑀
 

in the row corresponding to the first component of 𝝓𝑎𝑙𝑉𝐷𝑀
 and the columns corresponding 

to 𝝓𝑛𝐼𝑁𝑆. 

The correction of aerodynamic model heading according to equation (3-12) can written as 

update of transformed error states  

𝑻𝑴𝑠𝑒𝑙 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

] =

[
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑛𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 

 

with the transformation matrix  

𝑻 = [

𝑰 𝟎 𝟎 𝟎
𝟎 𝑹𝑛𝑏

𝑇
𝑉𝐷𝑀

𝑹𝑛𝑏
𝑇
𝑉𝐷𝑀

𝑠𝑘𝑒𝑤(𝒗𝐴𝑛𝑉𝐷𝑀) −𝑹𝑛𝑏
𝑇
𝑉𝐷𝑀

𝟎 𝟎 𝑰 𝟎
𝟎 𝟎 𝟎 𝑰

] 

Again, an error state for body-fixed frame aerodynamic velocity vector 𝛿𝒗𝐴𝑏𝑉𝐷𝑀 is defined 

and remains exactly constant in the update 

[
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑛𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 
+

= 𝑲1

[
 
 
 
𝛿𝜦𝑉𝐷𝑀
𝛿𝒗𝐴𝑏𝑉𝐷𝑀
𝝓𝑛𝑉𝐷𝑀
 𝛿𝒗𝑊𝑛 ]

 
 
 
−

+𝑲2𝑴𝑟𝑒𝑓 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

]

−

=

[
 
 
 
 
 
 
𝛿𝜦𝑉𝐷𝑀

−

𝛿𝒗𝐴𝑏𝑉𝐷𝑀
−

𝜙𝑁𝑉𝐷𝑀
−

𝜙𝐸𝑉𝐷𝑀
−

𝜙𝐷𝐼𝑁𝑆
−

 𝛿𝒗𝑊𝑛
− ]

 
 
 
 
 
 

 

Only the vertical component of aerodynamic model phi orientation error 𝝓𝑛𝑉𝐷𝑀 is updated 

to be equal to the error of the inertial model used as reference. 𝑲1 is the 12 × 12 identity 

matrix with exception of a zero in the row corresponding to 𝜙𝐷𝑉𝐷𝑀. 𝑲2 is a zero matrix with 

exception of a one in the row corresponding to 𝜙𝐷𝑉𝐷𝑀 and the column corresponding to 

𝜙𝐷𝐼𝑁𝑆. 

Finally, for the update of aerodynamic model position, no transformation of error states is 

required 

𝑻 = 𝑰 

With a redefinition of 𝑴𝑠𝑒𝑙 and 𝑴𝑟𝑒𝑓 so that 

𝑴𝑠𝑒𝑙 [
𝛿𝒛𝐼𝑁𝑆
𝛿𝒛𝑉𝐷𝑀
𝒂

] = 𝛿𝜦𝑉𝐷𝑀 

the uncertainty of VDM height or position is reset with the corresponding value for the inertial 

model providing the reference information. 
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3.2.4 Wind information, aiding measurements and operational integration 

 

The aerodynamic navigation method allows for integration of any slowly-varying wind vector 

estimate, e.g. from a weather forecast model. For this, the wind vector data is simply used as 

input to the aerodynamic model. Furthermore, the auxiliary covariance model can account 

for uncertainty of aerodynamic model wind input if appropriate statistical information is 

available. Although this will not influence the computed navigation data of the desensitized 

method, it can be used to improve the covariance output provided to the navigation data 

user. 

Because the aerodynamic navigation method is designed to be a backup for flight 

navigation when GNSS is denied, availability of GNSS for aiding of low-cost inertial navigation 

is assumed as the normal operation condition. In this case, the modified inertial motion model 

can be set to normal operation by choosing 𝜔 = 𝜔𝑆 and conventional integrated INS/GNSS 

navigation is used to provide navigation and covariance user data. To allow for smooth 

transition to GNSS-denied mode if necessary, the aerodynamic model is already active and 

updated with the desensitized constraints in 3.2.1 using INS/GNSS as reference. Because 

accurate absolute position information is available, the aerodynamic model position can be 

updated continuously to match the INS/GNSS reference position. 

For initialization of the aerodynamic motion model, the airplane must be in air. This ensures 

that the control inputs are valid. An increase in INS/GNSS height of several meters can be 

used as trigger signal. Thanks to the high robustness of covariance-free aerodynamic 

navigation with the desensitized constraints in 3.2.1, initialization is not critical. Reference 

values for velocity, orientation and angular rates from INS/GNSS are sufficient. 

Although the previous subsection presented a covariance model for the desensitized 

aerodynamic navigation method, the primary requirement for this method is that unreliable 

statistical models never influence navigation data output. Therefore, only the inertial motion 

model with an accurate uncertainty model may be used to integrate auxiliary aiding 

measurements and the aerodynamic motion model should never be corrected with state 

estimation filter updates. This is the case for barometric altitude and 3-D magnetometer, 

which are used as aiding measurement for the modified inertial model. If additionally an 

airspeed measurement is available, it can be integrated with INS/GNSS but not with the 

modified inertial model due to the modified horizontal velocities. Aiding the aerodynamic 

motion model with airspeed would not only require reliable uncertainty models for 

aerodynamic flight and dynamic atmosphere, but also require an online calibration of the 

aerodynamic model to correct trim condition errors resulting in discrepancies of measured 

and computed airspeed. Because modification of the aerodynamic model coefficients is 

prohibitive in the operational navigation method, an airspeed measurement can only be 

used in INS/GNSS mode. 
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3.3 CONCLUSION 
 

Covariance-free integration for combined inertial and aerodynamic flight navigation was 

presented in the preceding section of this chapter. Optimal, and some suboptimal, state 

estimation techniques have been favored in the known literature on navigation with vehicle 

models. The detailed discussion of the fixed-wing aircraft flight navigation problem without 

GNSS aiding has revealed that the best way of combining information from low-cost inertial 

and high-quality airplane aerodynamic models is predefined by their complementary 

characteristics and can be implemented even without accurate and reliable statistical 

models of atmosphere processes. 

The optimal model fusion techniques presented in the first section compute a best estimate 

combination of the motion described by inertial model and simulated vehicle motion. This is 

based on the plausible assumption that the truth processes approximated by the two motion 

models are identical. As a consequence, the respective uncertainties of the two models to 

be fused must be known with good statistical significance. Because of the great diversity of 

possible atmospheric conditions influencing open-air aerodynamic flight, reliable and 

accurate statistical uncertainty models are nearly impossible to define. For an optimal design 

of the model fusion filter, the model fusion will likely be biased, with a significant reduction in 

performance.  

A second detrimental effect of inaccurate uncertainty models of dynamic atmosphere 

effects and aerodynamic flight in rough atmosphere is that aerodynamic motion model 

states may be estimated inconsistently: If the optimal filter is tuned assuming smooth 

atmosphere condition, it will resolve observed noisy discrepancies between computed 

inertial and aerodynamic motion mostly by updating motion model states, not wind states. 

In turbulence, computed dynamic inertial and aerodynamic motion differ significantly. 

Assuming a large correlation time coefficient for wind vector, the optimal filter makes large 

inconsistent corrections to aerodynamic model aerodynamic angles of attack and sideslip. 

Because of the strong dynamics of aerodynamic flight for fixed-wing aircraft, disturbing 

aerodynamic angle of attack or aerodynamic angle of sideslip of the simulated motion can 

cause large errors especially in orientation. Resulting linearization errors in covariance 

propagation and filter updates may lead to failure of the optimal model fusion filter in rough 

atmosphere conditions. 

These issues with optimal model fusion for airplanes can partly be resolved with a tuned 

model fusion method which is optimized using a detailed simulation tool, resulting in good 

performance and robustness in simulation. Although the reliability of this tuned method in a 

real application is strictly limited by the extent to which the high fidelity simulation 

environment needed for tuning can be verified, it points to a new solution. The filter tuning 

does not rely on accurate statistical models of dynamic atmosphere uncertainties but 

instead implements a prioritized fusion of model information based on complementary 

characteristics. Still, method robustness is not guaranteed but depends on tuning 

quantitatively. 

The proposed method therefore uses the airplane aerodynamic model for horizontal 

translational propagation and the modified inertial model aided by barometric altitude and 

3-D magnetometer for orientation and vertical motion in a covariance-free integration. 

Unlike for the tuned model fusion method, this fully exploits complementary motion model 
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characteristics and eliminates the need for tuning altogether. The best way to implement 

GNSS-denied airplane flight navigation is an exclusive combination of optimal aerodynamic 

translational and inertial rotational information offering comparable performance and 

superior robustness. 

Correction of the aerodynamic motion model is implemented using a set of aerodynamically 

desensitized constraints. These constraints allow to improve the position propagation 

performance using inertial navigation reference information on vehicle orientation. 

Furthermore, method robustness is maximized thanks to the isolation of sensitive flight 

dynamics degrees of freedom. 
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4 SYSTEM SIMULATION AND REAL DATA POST PROCESSING 

 

Due to its complexity, the behavior of the aerodynamic navigation method can only 

qualitatively be predicted based on theoretical considerations. For a more thorough 

assessment, parts of or the complete navigation method must be studied in simulation or in 

a test with real data. 

The simulation approach requires all inputs to the method to be created using corresponding 

process and measurement models. The generation of simulated input data consists of two 

separate steps. First, actual vehicle motion is simulated, in this case airplane flight. The 

simulated motion and all inputs (such as pilot controls and wind) are recorded and constitute 

the truth reference for the definition of simulated navigation method output errors. The 

second step of simulated navigation input generation uses the truth data to compute 

simulated measurement data of the sensors available to the navigation method. 

Using simulated input data for the inertial motion model requires a high level of kinematic 

consistency of accelerations and angular rates with the simulated true motion. Only if the 

simulated truth motion trajectory satisfies the inertial quality requirement it is possible to strictly 

relate the output errors observed in simulation to errors in navigation [87]. High fidelity of the 

simulation environment is required for the evaluation of aerodynamic flight navigation – 

including models for dynamic atmosphere and flight dynamics. 

Method evaluation in simulation allows controlling all input errors affecting the navigation 

method. This includes the case where all errors are disabled. In this case, the navigation 

method output should be near perfect in order to verify method implementation. Only after 

this initial verification of simulation tool and navigation method implementation can input 

errors be accounted for in order to predict navigation method behavior and accuracy in a 

real application. This requires that all relevant input errors present in a real application are 

included in the simulation. Furthermore, in order to attain meaningful results for method 

behavior and performance, all error models must be sufficiently accurate and represent at 

least the most influential error effects. 

This simulation tool is used in two ways in this work. First, single simulation runs of the navigation 

method under test using input data generated from a single truth motion trajectory allow for 

a detailed assessment of method behavior. Monte Carlo evaluation (MCE) is based on a 

large number of simulation runs and allows for a statistically significant assessment of method 

performance. 

Simulation evaluation is continuously applied to the preliminary navigation methods 

developed in this work. This not only affirms gradual improvement in performance but also is 

crucial for identification of method shortcomings. The simulation tool is specifically designed 

to account for a wide range of operational conditions for the navigation method. In many 

cases for the preliminary methods, a lack of robustness in special operational conditions is 

discovered. 

The proposed aerodynamic navigation method is thoroughly evaluated with this simulation 

tool with respect to accuracy and robustness. Due to the high fidelity of the simulation 

framework and the large number of different missions and operational conditions considered 

in the extensive Monte Carlo evaluation, a meaningful result is presented. In addition to 
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Monte Carlo evaluation, the proposed aerodynamic navigation method is directly applied 

to real flight data, without any modifications to the method. This demonstrates the maturity 

of the new method. 

 

4.1 SIMULATION FRAMEWORK 
 

For practical judgement of improvement or deterioration of method performance related to 

changes in its design, Monte Carlo evaluation (MCE) is employed throughout method 

development. This section first presents the simulated truth flight data used in the assessment 

of developed aerodynamic navigation methods. The following subsections describe the 

flight simulation needed to create this data consisting of a flight autopilot for the 

aerodynamic motion model and models for dynamic atmosphere processes. The last two 

subsections discuss models for input error generation for sensor measurements and the 

aerodynamic model coefficients. 

 

4.1.1 Evaluation of preliminary flight navigation methods 

 

For the evaluation of preliminary methods a different set of truth flight data files is used than 

in the final assessment of performance and robustness in section 4.2. The set consists of 100 

flights of 1ℎ  along roughly the same trajectory in space shown in Figure 17. Each single 

simulated flight takes place in a unique dynamic atmosphere. The flight data is generated 

using the waypoint autopilot presented in the following subsection. 

Due to different wind velocity and wind rates time histories, the simulated truth flight path, 

rotational motion and control inputs vary for every run. Additionally, the length of the flight 

path or the time when a certain maneuver is flown is not the same for any two Monte Carlo 

runs. Besides precise evaluation of single simulation runs, only high level performance 

measures can therefore be studied in ensemble results in Monte Carlo evaluation. Since it is 

not intended to weight navigation performance requirements for specific instances along 

the trajectory (e.g. dynamic/stationary), the total variability of the flight process may simply 

be included when determining worst, typical or some percentile navigation performance 

(e.g. horizontal position errors) over the flight time of 3600𝑠. 

For every simulation run of Monte Carlo evaluation, sensor errors and navigation initial guess 

errors are generated randomly, including the errors of coefficients of the vehicle dynamics 

model used for navigation as well as weight and balance errors. The details of how the 

representative uncertainty model for all vehicle dynamics model information is generated 

can be found in 4.1.5. It will be assumed that the VDM used for navigation is of good quality 

achievable with state of the art methods of system identification. 

Wind drift from integrating true wind velocity vector 𝒗𝑊𝑛 for the complete flight duration of 

3600𝑠 is ~12𝑁𝑀/ℎ 2𝑑𝑟𝑚𝑠 or better than 5.3𝑁𝑀/ℎ for the best 50% and better than 2.1𝑁𝑀/ℎ for 

the best 10% for this set of flights. For comparison with the performance of the simulated 

navigation methods, the statistics of integrated wind velocity error given an exact initial guess 

at time 𝑡0 = 900𝑠 are shown in Figure 19. The initial guess of wind velocity vector is set to 

decay exponentially with a time constant of 400𝑠. 
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Figure 17: Flight path A for Monte Carlo evaluation (realization for seed 1) 

 

Figure 18: Wind velocity vector and WGS84 height (realization for seed 1) 

 

Figure 19: Ideal position error due to wind drift with exact initial guess exponentially decaying with time constant 
𝑇 = 400𝑠 



102 

4.1.2 Trajectory generation 

 

For Monte Carlo evaluation of aerodynamic flight navigation methods, a large number of 

simulated flights is required, accounting for the variety of atmospheric conditions that affect 

aerodynamic motion. For this reason a waypoint flight autopilot was developed and 

presented in [87]. This trajectory generation tool allows to quickly create a large number of 

simulated flights along a predefined waypoint path, under varying atmospheric conditions. 

 

 

Figure 20: Flight paths generated for kinematic bank angle limits of 60° and 30° (from [87]) 

 

The trajectory generation tool creates truth motion data with high kinematic consistency that 

satisfies the inertial quality requirement [87]. Furthermore, the truth motion can be exactly 

computed by the aerodynamic navigation method if model coefficient and generated 

input errors are zero in an ideal simulation. In this work, only one aerodynamic motion model 

is used as truth model in the trajectory generation process. Uncertainty in the aerodynamic 

model available for the aerodynamic flight navigation method is accounted for by random 

model coefficient errors, see section 4.1.5. 

The waypoint autopilot tool is used to create the four different sets of flight data used for 

Monte Carlo evaluation presented in sections 4.1.2, 4.1.5.1, 4.2.1 and 4.2.2. For evaluation of 

the robustness of the desensitized aerodynamic navigation method in 4.2.2 an additional 

truth flight trajectory is used created by manually piloted simulated flight. 
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4.1.3 Dynamic atmosphere models 

 

In this work a statistical model for local (i.e. at aircraft position) wind velocity vector written in 

NED coordinates 𝒗𝑊𝑛  is used. This model was developed in [88] based on airliner flight 

measurement data below 10000𝑓𝑡. It has previously been used for similar purpose in [19] to 

describe random variations of wind velocity vector during 1ℎ of flight using Gauß-Markov 

statistical models for wind velocity in North and East directions. The implementation is based 

on the model presented in [19] 

�̇�𝑊𝑁 = −
1

𝑇𝑊
𝑣𝑊𝑁 + 𝑛𝑊𝑁 

�̇�𝑊𝐸 = −
1

𝑇𝑊
𝑣𝑊𝐸 + 𝑛𝑊𝐸 

The correlation time coefficient is 𝑇𝑊 = 400𝑠. 𝑛𝑊𝑁 and 𝑛𝑊𝐸 are driving white noise processes 

with zero mean and noise density 5𝑚/𝑠 ⋅ √
2

𝑇𝑊
. 

A reduced value of 1𝑚/𝑠 ⋅ √
2

𝑇𝑊
 is used in this work for simulated flight in calm atmosphere. 

Additionally, the following model for the Down component of wind velocity vector is used in 

this work 

�̇�𝑊𝐷 = −
1

𝑇𝑊
𝑣𝑊𝐷 + 𝑛𝑊𝐷 

With again 𝑇𝑊 = 400𝑠 and a smaller noise density for the zero mean white noise process 𝑛𝑊𝐷 

of 1𝑚/𝑠 ⋅ √
2

𝑇𝑊
, or 0.1𝑚/𝑠 ⋅ √

2

𝑇𝑊
 for simulated flight in calm atmosphere. 

The models above are used both for simulation purposes, i.e. to generate dynamic wind 

velocity vector time histories in the generation process of aerodynamic flight trajectories, and 

as basis for augmented filter state uncertainty models for use in model fusion (c.f. appendix 

A.8 for filter augmentation). Additionally, simple trigonometric stochastic gust models are 

used to generate a number of vertical and horizontal random discrete gusts in aerodynamic 

flight simulations. Gust velocities are superimposed with dynamic wind velocity vector 𝒗𝑊𝑛 in 

trajectory generation. 

To account for rough atmosphere conditions in the generation of aerodynamic flight 

trajectories, the Dryden turbulence model is used in this work [89, 90]. The implementation 

corresponds to MATLAB/Simulink® release 2014b block “Dryden Wind Turbulence Model (+q 

+r)” [91], according to specifications in standard [90]. Wind speed at 6𝑚 is 15𝑚/𝑠 in direction 

0°  and turbulence scale length for medium and high altitudes is 533.4𝑚 . The Dryden 

turbulence model outputs both high frequency wind velocity disturbances that will be 

superimposed with 𝒗𝑊𝑛  and wind angular rates 𝝎𝑊𝑏 . Various levels of intensity and 

corresponding probabilities of exceedance are defined [90, 91]. See Figure 46 and Figure 47 

for examples of wind velocity vector and wind rates in severe turbulence simulated for 

robustness evaluation of the proposed aerodynamic navigation method. 

If not noted otherwise, the level of turbulence intensity in simulations of aerodynamic flight in 

this work will vary randomly according to the specified statistics (probability of exceedance 
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of a certain level of turbulence). This random variation is implemented by switching to higher 

turbulence level when a first order Gauß-Markov process with a time correlation coefficient 

of 500𝑠 exceeds a specified threshold value. 

This implementation aims at generating short patches of strong turbulence during standard 

1ℎ  simulations. That way, the variability of atmosphere conditions encountered in real 

airplane flight is realistically accounted for. The continuous change of level of turbulence in 

the simulations of aerodynamic flight in this work constitutes a challenge to aerodynamic 

navigation methods. It furthermore avoids that the developed aerodynamic navigation 

methods are specialized to work in a single atmospheric condition only. 
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4.1.4 Sensor error models 

 

For all sensor measurements available to the aerodynamic navigation method, error models 

are implemented. This includes IMU consisting of accelerometer and gyroscope triads, 

barometric altimeter, airspeed probe, 3-D magnetometer and control deflection and 

throttle setting sensors. 

White and flicker power-law noise [83] is used in all measurement models, see Figure 21 - 

Figure 23. The influence of barometric altitude and airspeed measurement errors on the 

desensitized aerodynamic navigation method is very limited. Therefore, approximate and 

conservative error models were used for these sensor measurements. Although errors in the 

aerodynamic model control inputs can have significant influence on navigation method 

performance, this is specifically the case for constant or slowly-varying components of error. 

Constant control input errors are equivalent to error in the aerodynamic model control 

derivatives. Because this error is already accounted for by the aerodynamic coefficients 

uncertainty model presented in 4.1.5., the control inputs measurement error model can be 

considered insignificant. 

The 3-D magnetometer error model is implemented according to the specifications for a 

commercially available low-cost sensor, see Figure 23. Although errors in the magnetometer 

measurement due to distortions in the environmental magnetic field can be significant and 

threaten the robustness of optimal filter navigation methods, they are not accounted for in 

simulation. For the desensitized aerodynamic navigation method, only accuracy is affected 

by large magnetic field measurement errors. Because of the transient character of these 

disturbances and the first order position error growth for the proposed navigation method, 

the effect on accuracy is negligible. 

The IMU measurement error model corresponds to the model described in [83]. IMU errors are 

defined in three levels of quality, see Table 4. In simulation, only in-run errors are accounted 

for by the inertial sensors measurement model. Initial errors (i.e. switch-on) are considered as 

errors of navigation system initial guess only.  

 

IMU Low quality Medium quality High quality 

Gyro bias* and 

noise 

10°/h, 0.3°/sqrt(h) 1°/h, 0.3°/sqrt(h) 0.1°/h, 0.1°/sqrt(h) 

SF and 

misalignment 

1500ppm, 1mrad 500ppm, 1mrad 100ppm, 0.1mrad 

Accel. bias* and 

noise 

100µg, 29µg/sqrt(Hz) 100µg, 29µg/sqrt(Hz) 10µg, 50µg/sqrt(Hz) 

SF and 

misalignment 

1000ppm, 0.5mrad 500ppm, 0.5mrad 500ppm, 0.3mrad 

Table 4: IMU qualities. All values except noise are RMS of flicker noise processes. SF processes are low pass 

filtered at 0.001Hz. 

* Total operational in run variability 
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5  

Figure 21: Barometric altitude measurement model 

 

Figure 22: Airspeed measurement model 

 

Figure 23: 3-D magnetometer measurement model 



System simulation and real data post processing 107 

4.1.5 Aerodynamic model uncertainty 

 

In previous studies of navigation methods aided by models of fixed wing aircraft [9, 92, 93], 

very basic means to account for the difference between true flight process and 

computation model were applied. Uncertainty models are needed for this research in two 

ways: first in the design of the estimation method, second to generate realistic errors in 

evaluation of the method using a simulation tool. In the known literature, independent 

random errors of the model coefficients were assumed for both method design and 

simulation, with error magnitude taken as some percentage of true model coefficient value. 

This work aims to make reliable statements on aerodynamic navigation accuracy and 

robustness. Due to the infinite number of possible combinations of vehicle state and 

atmosphere condition, a large number of tests is necessary and simulation for Monte Carlo 

evaluation (MCE) becomes the only viable option to meaningfully assess method 

performance. In order to account for the effect of model error on computed aerodynamic 

and propulsion forces in a realistic way in simulation, two detailed uncertainty models for the 

aerodynamic motion model, one optimistic and one conservative, are presented in this 

subsection. In the definition of these uncertainty models, it is assumed that the vehicle 

dynamics model is created using system identification methods based on flight test data 

[48]. 

In case of system identification, where the model is estimated based on time histories of a 

limited number of in-flight measurements, model coefficients are generally observed in 

combinations. Consequently, errors in coefficient estimates are correlated, depending on 

the choice of vehicle model parametrization (i.e. the definition of model coefficients). This 

correlation of errors reflects that although the estimates of individual coefficients are not 

accurate, the output of a function of coefficients might be estimated with better accuracy 

in a certain flight envelope. This is for example the case for the estimate of aerodynamic 

pitch moment derivative with respect to aerodynamic angle of attack 𝐶𝑚𝛼, which is strongly 

correlated with the aerodynamic lift aerodynamic angle of attack derivative 𝐶𝐿𝛼 . In 

combination, the estimated sum of pitch moments in the center of gravity will very 

accurately match the equilibrium observed in stationary flight at various aerodynamic 

angles of attack in the flight test data. But individual coefficient estimation errors are larger 

because they are never perfectly observed independently. Another example is the 

correlation of errors of the coefficients of aerodynamic parasitic and induced drag for 

estimation. Especially when using flight data at a single flight condition and lift coefficient 𝐶𝐿, 

these coefficients will be estimated inaccurately. Still, in combination they will give a good 

match to observed aerodynamic drag (which, again, is correlated with thrust model error). 

This indicates the importance of an uncertainty model for the aerodynamic motion model 

describing the coefficient error variance and their correlation: Not the individual model 

coefficient error but rather the final flight dynamics error influences aerodynamic navigation 

performance. The intention is to define an uncertainty model that will realistically represent 

achievable model quality depending on the measurement accuracy of flight test 

instrumentation used for system identification. Additional modeling error stems from the fact 

that VDM is a low-order approximation of true flight. This type of error is more challenging to 

realistically account for in method evaluation in simulation. The optimistic VDM uncertainty 

model will assume all relevant effects are modeled and error only is caused by inaccurate 
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coefficient estimates. The conservative VDM uncertainty model will also account for low-

order approximation error.  

In the following, simulation is used to quantify model errors and covariance of errors for the 

aerodynamic motion model. Simulating all steps of actual system identification would 

provide the highest level of realism for VDM errors, but would be too complex. Some 

challenges of real system identification can be easily bypassed in simulation: Choice of initial 

guess and model parametrization, flight envelope grid and model parameter interpolation 

that usually require system identification expertise, can be left out as will be described later. 

Other difficulties can readily be avoided in simulation, such as those involved with data 

recording, sensor calibration, airplane weight and balance, fuel consumption etc. 

 

4.1.5.1 Simulation for uncertainty model generation 

 

For the simulations used to define the aerodynamic motion uncertainty model, the highly 

dynamic flight trajectory of approximately 1ℎ duration shown in Figure 24 was created. The 

single simulated flight data serves as basis for the generation of initial guess and 

measurement data with random errors for 500 runs of system identification simulation. 

 

 

Figure 24: Dynamic flight path for system ID simulations (average kinematic velocity of 70𝑚/𝑠) 

 

A very calm atmosphere was simulated throughout this single flight. The Dryden turbulence 

model was deactivated, and low intensity dynamic wind velocity vector processes were 

used (see 4.1.3). Consequently, only very weak atmospheric disturbance due to dynamic 

wind velocity vector is present, see Figure 25. The dynamic flight covers a large part of the 

flight envelope of a small general aviation airplane in cruise configuration, see Figure 26 and 

Figure 27. 
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To increase vehicle dynamics model coefficient observability, 2 ⋅ 3  direct control input 

maneuvers were included, c.f. Figure 28 and Figure 29. Additionally, at 3 instances time 

varying angle of sideslip is commanded (c.f. Figure 30).   
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Figure 25: Wind velocity vector 

 

Figure 26: WGS84 height and airspeed 

 

Figure 27: Roll angle and turn rate 



System simulation and real data post processing 111 

 

Figure 28: Direct pitch command input and phugoid response (one of three occurrences) 

 

Figure 29: Direct roll and yaw command input and response (one of three occurrences) 

 

Figure 30: Commanded angle of sideslip and response (one of three occurrences) 



112 

4.1.5.2 Weight and balance uncertainty model 

 

In this work, weight and balance is the set of all aircraft properties related to mass and mass 

distribution. This is total mass 𝑚, center of gravity location 𝒓𝑏
𝑅𝐺, moments of inertia 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 

and products of inertia 𝐼𝑥𝑦 , 𝐼𝑥𝑧, 𝐼𝑦𝑧. Due to fuel consumption, all of these quantities change 

during flight, related to reduction of fuel mass in the (wing) tanks. 

To account for the imperfect knowledge of these quantities both in system identification and 

aerodynamic navigation, a weight and balance uncertainty model is defined. Because an 

exact fuel consumption model is used in all simulations, this uncertainty model is designed to 

represent both initial and average uncertainty of weight and balance quantities. 

Because variations in mass, center of gravity and inertia generally are not independent, but 

all related to changes in mass distribution, a simple geometry of uncertain point masses is 

defined in order to generate consistent errors. Using the standard deviations specified in 

Table 5, a generic covariance matrix of errors 𝛿𝑚, 𝛿𝐼𝑥𝑥 , 𝛿𝐼𝑦𝑦 , 𝛿𝐼𝑧𝑧, 𝛿𝐼𝑥𝑦, 𝛿𝐼𝐼𝑥𝑧, 𝛿𝐼𝑦𝑧, 𝛿𝑟𝑥
𝐺 , 𝛿𝑟𝑦

𝐺 , 𝛿𝑟𝑧
𝐺 

can be computed. 

For a suitable choice of point mass geometry, Cholesky decomposition [94] can be applied 

to this covariance matrix in order to create consistent random weight and balance errors 

from a multivariate random distribution. 

 

Point Mass Location Accurate (System ID) Normal (Standard flight) 

Center 3𝑘𝑔 5𝑘𝑔 

Nose luggage 1𝑘𝑔 5𝑘𝑔 

Aft luggage 2𝑘𝑔 5𝑘𝑔 

Left wing fuel tank 5𝑘𝑔 5𝑘𝑔 

Right wing fuel tank 3𝑘𝑔 10𝑘𝑔 

Elevator 1𝑘𝑔 1𝑘𝑔 

Canopy 1𝑘𝑔 1𝑘𝑔 

Left wing tip 1𝑘𝑔 1𝑘𝑔 

Left engine 3𝑘𝑔 3𝑘𝑔 

Left landing gear 2𝑘𝑔 2𝑘𝑔 
Table 5: Point mass uncertainties (standard deviation) for accurate and normal weight and balance uncertainty 

model 

 

For the simulations of aerodynamics and propulsion model parameter estimation in the 

remainder of this subsection, an accurate weight and balance uncertainty model given by 

small point mass uncertainties will be used for estimation filter design and generation of errors. 

In all other simulations of aerodynamic flight navigation in this work, the weight and balance 

uncertainty (and similarly simulated errors) will be assumed to be large, corresponding to the 

last column in Table 5. 
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4.1.5.3 Optimistic uncertainty model 

 

This work is not concerned with development or application of actual system identification, 

which is also not needed for creating an uncertainty model. Only the core part of actual 

coefficient estimation is simulated, yet in a simplified way using the same extended Kalman 

filter framework as used for navigation, augmented by model coefficient errors defined 

below. 

Everything else that constitutes the engineering challenges of real system identification is 

considered in an abstract way only. For the optimistic uncertainty model an accurate model 

parametrization is assumed that is valid for the complete flight envelope. It is assumed that 

the resulting nonlinear estimation problem is mastered perfectly, e.g. by linearization, ideal 

local model identification and ideal interpolation of locally valid linear models. 

To create this uncertainty model, model parameter estimation with the augmented 

navigation filter is conducted in simulation, but only significant linear aerodynamic and 

propulsion coefficients are chosen to be estimated. All higher order effects present in the 

truth model used for flight test trajectory generation are perfectly known. 

For the computation of vehicle forces and moments the functions 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

, 𝑴𝑏
𝐺
𝐴𝑒𝑟𝑜

, 𝑭𝑏
𝑃
𝑃𝑟𝑜𝑝

 and 

𝑴𝑏
𝐺
𝑃𝑟𝑜𝑝

 are used, each implemented in the form 

 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

= 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜,𝑖𝑑𝑒𝑎𝑙

+ Δ𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

 (4-1) 

   
where 𝑭𝑏

𝐴
𝐴𝑒𝑟𝑜,𝑖𝑑𝑒𝑎𝑙

 is exactly the function used in the generation of the flight trajectory and 

the “Δ-model” is implemented as function of the “Δ-coefficients” to be estimated 

 𝒄𝑣 = [Δ𝐶𝐷0, Δ𝑘, Δ𝐶𝑌0, Δ𝐶𝑌𝛽, Δ𝐶𝐿0, Δ𝐶𝐿𝛼, Δ𝐶𝑙0, Δ𝐶𝑙𝛽 , Δ𝐶𝑙𝑝, Δ𝐶𝑙𝑟, 

Δ𝐶𝑙𝜉 , Δ𝐶𝑚0, Δ𝐶𝑚𝛼, Δ𝐶𝑚𝑞 , Δ𝐶𝑚𝜂 , Δ𝐶𝑛0, Δ𝐶𝑛𝛽 , Δ𝐶𝑛𝑝, Δ𝐶𝑛𝑟 , Δ𝐶𝑛𝜁 , 

Δ𝐹𝑥𝑃𝑟𝑜𝑝,0, Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
, Δ𝑀𝑥𝑃𝑟𝑜𝑝,𝛿𝑇

, Δ𝑀𝑧𝑃𝑟𝑜𝑝,𝛿𝑇
] 

(4-2) 

   
With this compute 

Δ𝐶𝐿 = Δ𝐶𝐿0 + Δ𝐶𝐿𝛼𝛼 

Δ𝐶𝑌 = Δ𝐶𝑌0 + Δ𝐶𝑌𝛽𝛽 

Δ𝐶𝐷 = 𝛥𝐶𝐷0 + 𝛥𝑘(𝐶𝐿 − 𝐶𝐿0)
2 + (𝑘 + 𝛥𝑘)(2(𝐶𝐿 − 𝐶𝐿0)𝛥𝐶𝐿 + 𝛥𝐶𝐿

2) 

Δ𝐶𝑙 = Δ𝐶𝑙0 + Δ𝐶𝑙𝛽𝛽 + Δ𝐶𝑙𝑝𝑝
⋆ + Δ𝐶𝑙𝑟𝑟

⋆ + Δ𝐶𝑙𝜉𝜉 

Δ𝐶𝑚 = Δ𝐶𝑚0 + Δ𝐶𝑚𝛼𝛼 + Δ𝐶𝑚𝜂𝜂 

Δ𝐶𝑛 = Δ𝐶𝑛0 + Δ𝐶𝑛𝛽𝛽 + Δ𝐶𝑛𝑝𝑝
⋆ + Δ𝐶𝑛𝑟𝑟

⋆ + Δ𝐶𝑛𝜁𝜁 

Aerodynamic forces and moments 

Δ𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

= 𝑞𝑆𝑟𝑒𝑓𝑹𝑎𝑏
𝑇 [

−Δ𝐶𝐷
Δ𝐶𝑌
−Δ𝐶𝐿

] 

and 
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Δ𝑴𝑏
𝐺
𝐴𝑒𝑟𝑜

= 𝑞𝑆𝑟𝑒𝑓𝑹𝑎𝑏
𝑇 [

𝑏Δ𝐶𝑙
𝑐̅Δ𝐶𝑚
𝑏Δ𝐶𝑛

] + 𝒓𝑏
𝐺𝐴 × Δ𝑭𝑏

𝐴
𝐴𝑒𝑟𝑜

− Δ𝒓𝑏
𝐺 × (𝑞𝑆𝑟𝑒𝑓𝑹𝑎𝑏

𝑇 [

−𝐶𝐷 − Δ𝐶𝐷
CY + Δ𝐶𝑌
−𝐶𝐿 − Δ𝐶𝐿

]) 

And propulsion forces and moments (for a two-engine airplane) 

Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡 = Δ𝐹𝑥𝑃𝑟𝑜𝑝,0 + Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
𝛿𝑇,𝐿𝑒𝑓𝑡 

Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡 = Δ𝐹𝑥𝑃𝑟𝑜𝑝,0 + Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
𝛿𝑇,𝑅𝑖𝑔ℎ𝑡 

Δ𝑭𝑏
𝑃
𝑃𝑟𝑜𝑝

= (Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡 + Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡)𝒆1 

Δ𝑴𝑏
𝐺
𝑃𝑟𝑜𝑝

= Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡𝒓𝑏
𝐺𝑃𝐿𝑒𝑓𝑡 × 𝒆1 + Δ𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡𝒓𝑏

𝐺𝑃𝑅𝑖𝑔ℎ𝑡 × 𝒆1 − Δ𝒓𝑏
𝐺 × (𝑭𝑏

𝑃
𝑃𝑟𝑜𝑝

+ Δ𝑭𝑏
𝑃
𝑃𝑟𝑜𝑝

)

+ Δ𝑀𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
(𝛿𝑇,𝐿𝑒𝑓𝑡 + 𝛿𝑇,𝑅𝑖𝑔ℎ𝑡)𝒆1 + Δ𝑀𝑧𝑃𝑟𝑜𝑝,𝛿𝑇

(𝛿𝑇,𝐿𝑒𝑓𝑡 + 𝛿𝑇,𝑅𝑖𝑔ℎ𝑡)𝒆3 

This “Δ-model” approach corresponds to system identification using ideal flight test data, 

where perturbations of state and input from selected linearization point are small. Because 

the estimation problem is significantly facilitated in this case, convergence of estimation 

errors (4-2) can easily be achieved, see Figure 31. All true values of the “Δ-coefficients” 𝒄𝑣 are 

zeros. 

Again, building a global model from multiple locally valid, linear models can be left to the 

hypothetical real case of full system ID. The uncertainty model is given by the resulting 

coefficient estimation errors of this simulation and the filter covariance matrix for seed 1 and 

can be applied independent of reference state. 

This optimistic uncertainty model represents achievable aerodynamic motion model 

accuracy from system identification considering flight test sensor and measurement errors, 

wind estimation inaccuracy and limited coefficient observability. It is assumed that masterly 

system identification would manage to include any relevant higher order effects in the VDM 

and could identify them from interpolation of local linear models. This optimistic uncertainty 

model will be used for assessment for best achievable accuracy and robustness of VDM 

navigation. 

Compared to previous ways to account for VDM error, this approach offers a higher level of 

realism by considering some of the limitations of real system ID that do not depend on 

engineering skills. The aerodynamic motion model quality is strongly related to flight 

instrumentation accuracy available for system identification. 
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Figure 31: Estimation of “𝛥-model” coefficients 𝒄𝑣 (500 sample estimates and 3-𝜎) 
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4.1.5.4 Conservative uncertainty model 

 

With less optimistic assumptions on how well the system ID is performed to create the 

aerodynamic motion model used for navigation, a second uncertainty model can be 

defined, used to evaluate conservative or worst-case performance. 

Again, simplified system ID is simulated, but without ideal knowledge of higher order effects 

present in the truth model used for test flight trajectory simulation. The estimation problem 

becomes considerably more involved due to large model error. 

The exact true model functions in equation (4-1) are replaced by linear approximations 

𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

= 𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

+ Δ𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜

 

with  

𝑭𝑏
𝐴
𝐴𝑒𝑟𝑜,𝑙𝑖𝑛𝑒𝑎𝑟

= 𝑞𝑆𝑟𝑒𝑓𝑹𝑎𝑏
𝑇

[
 
 
 
−(𝐶𝐷0 + 𝑘(𝐶𝐿 − 𝐶𝐿0)

2)

𝐶𝑌0 + 𝐶𝑌𝛽𝛽

− (𝐶𝐿0 + 𝐶𝐿𝛼𝛼)⏟        
𝐶𝐿 ]

 
 
 

 

and a similar computation scheme for 𝑴𝑏
𝐺
𝐴𝑒𝑟𝑜,𝐿𝑖𝑛𝑒𝑎𝑟

 based on the linear aerodynamic 

coefficients model (2-12). Linear propulsion forces and moments are computed consistent 

with the corresponding “Δ-model” 

𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡 = 𝐹𝑥𝑃𝑟𝑜𝑝,0 + 𝐹𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
𝛿𝑇,𝐿𝑒𝑓𝑡 

𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡 = 𝐹𝑥𝑃𝑟𝑜𝑝,0 + 𝐹𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
𝛿𝑇,𝑅𝑖𝑔ℎ𝑡 

𝑭𝑏
𝑃
𝑃𝑟𝑜𝑝

= (𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡 + 𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡) 𝒆1 

𝑴𝑏
𝐺
𝑃𝑟𝑜𝑝

= 𝐹𝑥𝑃𝑟𝑜𝑝,𝐿𝑒𝑓𝑡𝒓𝑏
𝐺𝑃𝐿𝑒𝑓𝑡 × 𝒆1 + 𝐹𝑥𝑃𝑟𝑜𝑝,𝑅𝑖𝑔ℎ𝑡𝒓𝑏

𝐺𝑃𝑅𝑖𝑔ℎ𝑡 × 𝒆1 +𝑀𝑥𝑃𝑟𝑜𝑝,𝛿𝑇
(𝛿𝑇,𝐿𝑒𝑓𝑡 + 𝛿𝑇,𝑅𝑖𝑔ℎ𝑡)𝒆1

+𝑀𝑧𝑃𝑟𝑜𝑝,𝛿𝑇(
𝛿𝑇,𝐿𝑒𝑓𝑡 + 𝛿𝑇,𝑅𝑖𝑔ℎ𝑡)𝒆3 

An approximate guess is used for the constant linear model coefficients. Because the 

aerodynamic and propulsion models used in the generation of simulated flight paths include 

significant complex or higher order effects not implemented in the linear model above (or 

the “Δ-model” used for corrections), estimation convergence and accuracy are reduced. 

This model of VDM uncertainty is less general than the optimistic one, since it depends on the 

choice of model parametrization. Yet it represents a conservative assumption on VDM 

quality. 
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4.2 METHOD EVALUATION IN MONTE CARLO SIMULATION 
 

The proposed aerodynamic navigation method will be assessed in detail in this section. 

Monte Carlo evaluation (MCE) is the essential tool for testing and verification of complex 

navigation methods. Although theoretical analysis of inertial navigation has become a 

powerful tool thanks to the expertise of generations of navigation engineers that could not 

rely on modern computers (e.g. [51, 53, 54]), it is limited in the effects induced by dynamic 

vehicle motion it can account for. For low-cost strapdown inertial technology this becomes 

even more important – for example because of significant scale factor error. For integrated 

navigation using state estimation techniques, the importance of dynamic vehicle motion for 

system behavior and performance is further increased due to the dependence of error 

observability and thus estimation on vehicle motion. 

Aerodynamic navigation exhibits several qualities that mandate Monte Carlo evaluation. 

Aerodynamic motion model error propagation is strongly coupled with vehicle dynamics 

and analytical approaches are limited to simplified flight conditions (see 2.2.3). The same is 

true for the modified inertial motion model where horizontal accelerations induce attitude 

error. Attitude error in turn causes error in the observation of heading error using a 3-D 

magnetometer measurement.  

The advantages of Monte Carlo evaluation make it a perfect completion to the theoretical 

studies in the previous chapters of this work: The complete navigation method software 

implementation can be tested, without any simplifications. Realistic vehicle dynamic motion 

can be simulated in full complexity and in combination with physical realizations of all errors. 

That way, a large number of combinations of errors and dynamic motion conditions can be 

evaluated accounting for nonlinearities and possible error rectification. In addition, Monte 

Carlo evaluation of the navigation method in a realistic simulation framework can be used 

to assess method robustness. Studying outliers in the results often gives hints to problems and 

limited robustness of the method implementation under test. 

The large number of simulation runs allows for a statistically significant evaluation of 

navigation method performance. For a GNSS-denied flight navigation method, horizontal 

position accuracy is decreasing over time and the corresponding statistic should 

consequently be evaluated as a function of time. Neglecting the weak influence of 

horizontal position error and initial wind estimate, the changes in the statistics are negligible 

for a number of other error states, such as aerodynamic velocity vector in body-fixed frame 

coordinates. Aerodynamic angle of attack and aerodynamic angle of sideslip are of special 

interest for flight control applications and will be studied in detail with respect to their 

accuracy. 

Finally, the influence of inertial sensors and aerodynamic motion model quality on the 

proposed aerodynamic navigation method performance will be assessed with Monte Carlo 

simulations. The new navigation method design is based on a low-cost requirement, and the 

penalty of using a low-cost IMU instead of more accurate inertial sensor will be evaluated. 

Similarly, the question whether the requirement for model quality may be relaxed will be 

addressed. 
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4.2.1 Position drift 

 

For Monte Carlo evaluation of the final aerodynamic navigation method proposed in this 

work, a different set of simulated flights is used as truth trajectory than for testing preliminary 

methods earlier. Figure 32 shows the truth flight path and navigation result for one of a total 

of 500 simulation runs. The test scenario consists of 15𝑚𝑖𝑛 of initial GNSS-aided navigation 

followed by a transition and 45𝑚𝑖𝑛 of GNSS-denied aerodynamic navigation. 

 

 

Figure 32: Flight path B for Monte Carlo evaluation and navigation trajectory for run 1 

 

 

Figure 33: Wind velocity and wind rates vectors (realization for seed 1) 

 

Dynamic atmosphere, including random discrete gusts and turbulence with varying level of 

intensity (see 4.1.3), is accounted for with a different time history for every simulation run (see 

Figure 33 for an example). The waypoint autopilot used for fast generation of 500 flight 
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trajectories along the same predefined waypoint path is intentionally configured to only 

loosely and slowly counteract perturbations in flight condition and direction. This will 

introduce a great variability of simulated truth flight process due to random dynamic 

atmosphere effects. Figure 34 shows the vertical flight path and airplane roll angle time 

history for the truth trajectory of run 1. In both cases, the effect of strong turbulence (in this 

simulation run e.g. at 𝑡 = 1000𝑠) and gusts (e.g. approximately at 500𝑠) is easily discernible. 

The results for ideal position drift due to unknown wind velocity only are shown in Figure 35. 

For evaluation of these statistics, an exact initial guess is set to decay exponentially with a 

time constant of 400𝑠 corresponding to the wind model time constant (see 4.1.3). 

 

 

Figure 34: WGS84 height and roll angle (realization for seed 1) 

 

 

Figure 35: Ideal position error due to wind drift with exact initial guess exponentially decaying with time constant 
𝑇 = 400𝑠 
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Figure 36: Modified inertial model attitude errors for run 1 

 

Figure 37: Modified inertial model vertical orientation 

error for run 1 

Figure 38: Aerodynamic model airspeed error for run 1 

 

Figure 39: Aerodynamic model aerodynamic angle of attack and angle of sideslip errors for run 1 
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After selecting a different truth trajectory for every run of Monte Carlo simulation, each 

perturbed by random atmosphere effects, the navigation state initial guess, sensor 

measurement and model coefficient errors are accounted for. Model coefficient errors are 

generated according to the optimistic uncertainty model defined in 4.1.5.3 and 4.1.5.2. 

Consequently, the randomness of aerodynamic motion model error is accounted for by 

varying the model used for navigation while the same truth model is used for generation of 

all trajectories. 

Navigation results for a single run of Monte Carlo simulation are shown in Figure 36 - Figure 

39. Again, the influence of atmospheric disturbances is visible in the errors of aerodynamic 

velocity magnitude and aerodynamic angles of attack and sideslip. For the aerodynamic 

quantities, the change in covariance is due to a change in the wind uncertainty model. 

Initially, during GNSS-aided navigation, it is optimized for good wind velocity vector 

estimation. During GNSS-denied aerodynamic navigation in the last 45𝑚𝑖𝑛 of simulation, the 

wind uncertainty model has no influence on navigation method behavior and is simply set 

to best represent drift due to slowly-varying wind vector.  

 

 

Figure 40: Position drift statistics for 500 runs 

 

Figure 40 shows the statistics of position drift for the desensitized aerodynamic navigation 

method in 500 Monte Carlo simulation runs. The statistics for ideal wind drift are also included 

in this figure for comparison, demonstrating the good performance of the aerodynamic 

position propagation model. Typical position drift performance (CEP) of GNSS-denied 

aerodynamic flight navigation amounts to ~6.4𝑁𝑀/ℎ. The 95% radial position accuracy (R95) 

grows at ~13.21𝑁𝑀/ℎ after loss of GNSS aiding.  
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4.2.2 Velocity and attitude errors 

 

Vertical position and velocity, attitude and heading are computed by the modified inertial 

navigation model aided by barometric altimeter and 3-D magnetometer. In the covariance-

free model integration based on complementary characteristics of inertial and aerodynamic 

models, the influence of the aerodynamic motion model on modified inertial navigation is 

very limited. Because the aerodynamic motion model has been found to be indifferent to 

true vehicle heading, exhibit divergence in lateral motion and only weak stability in vertical 

motion with possible large trim error, only position and horizontal velocities are used to 

improve orientation propagation in inertial navigation. 

Consequently, the errors in vertical motion and vehicle orientation are mostly determined by 

errors in inertial, altimeter and magnetometer measurements in combination with errors due 

to imperfect elimination of horizontal accelerations in the modified inertial model algorithm. 

Although these are important performance parameters for the proposed aerodynamic 

navigation method, they are not related to the original research of this work. A detailed 

evaluation of these errors for a variety of different implementations of modified inertial 

navigation and measurement errors (e.g. due to environmental disturbances) is therefore 

omitted. Instead, position drift was evaluated in the previous subsection using the straight-

forward implementation of modified inertial navigation presented in 2.2.2.3 and sensor errors 

of a 3-D magnetometer from 4.1.4, therefore giving an impression of achievable 

performance. This could possibly be improved with more sophisticated elimination of 

horizontal accelerations in attitude propagation or deteriorated in presence of strong 

disturbances of the magnetic field measurement. 

 

 

Figure 41: Outlier-prone empirical cumulative distribution (ECDF) of airspeed errors (excess kurtosis of 5.3) 
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Similarly, the aerodynamic quantities airspeed, angle of attack, angle of sideslip and 

aerodynamic climb angle are solely determined by the aerodynamic motion model flight 

dynamics. The aerodynamically desensitized model constraints proposed in 3.2.1 explicitly 

leave these aerodynamic states unchanged in the complementary covariance-free 

integration of inertial navigation and aerodynamic model. The aerodynamic errors are 

determined by the quality of flight dynamics system identification and are very important for 

the performance of the final aerodynamic navigation method. The optimistic aerodynamic 

motion uncertainty model proposed in 4.1.5 allows to realistically evaluate the achievable 

performance if system identification is accomplished very successfully and model quality is 

only limited by the accuracy of flight test instrumentation and wind estimation. Besides noise-

like error, the uncertainty of control input to the aerodynamic motion model is also reflected 

by model coefficient uncertainties, e.g. of the coefficient determining thrust at zero throttle. 

 

 

Figure 42: Outlier-prone empirical cumulative 

distribution (ECDF) of aerodynamic angle of attack 

errors (excess kurtosis of 18.4) 

Figure 43: Outlier-prone empirical cumulative 

distribution (ECDF) of aerodynamic angle of sideslip 

errors (excess kurtosis of 9.0) 

 

Unlike for position, evaluation of empirical cumulative distribution functions (ECDFs) of errors 

in airspeed and aerodynamic angles of attack and sideslip is possible assuming stationary 

statistics. In addition to system errors, statistics shown in Figure 41, Figure 42 and Figure 43 in 

addition depend on the choice of dynamic atmosphere models used in Monte Carlo 

simulation, see 4.1.3. High excess values of kurtosis (airspeed 5.3, AOA 18.4 and AOSS 9.0) are 

proof of the non-Gaussian statistics that are due to the intermittent nature of atmospheric 

turbulence strongly affecting aerodynamic states. 

In the covariance-free integration of inertial navigation and aerodynamic motion model 

using the aerodynamically desensitized constraints, the aerodynamic states airspeed, angles 

of attack and sideslip and aerodynamic climb angle are directly determined by model 

propagation. They are deliberately not corrected or updated otherwise – in contrast to 

methods based on an optimal filter – which would represent an estimation of aerodynamic 

states.  



124 

4.2.3 Robustness in rough atmosphere 

 

Rough atmosphere conditions have been identified as potential failure causes of 

aerodynamic navigation methods. Especially state estimation based techniques suffer from 

low robustness in turbulence depending on the choice of filter tuning parameters. The 

proposed aerodynamic navigation method is designed to offer a significant improvement in 

terms of robustness. In the following, the simulations used to assess method robustness and 

the results for the proposed navigation method will be presented. Four different test cases of 

1ℎ duration each are used, one manually piloted flight in sustained moderate turbulence 

and three realizations of autopiloted flight in severe turbulence for a total of 10% mission 

time. Similarly to the Monte Carlo evaluation of method accuracy, GNSS-aiding is available 

for the first 15𝑚𝑖𝑛 of flight, followed by 45𝑚𝑖𝑛 of GNSS-denied navigation. 

 

 

Figure 44: Flight path A for robustness evaluation (one of three realizations) 

 

The three autopiloted flight trajectories are generated using the same list of waypoints as in 

4.1.1, see Figure 44. The intensity of atmospheric turbulence smoothly changes according to 

the implementation described in 4.1.3. Severe turbulence [90] is present for 6𝑚𝑖𝑛 . The 

probability of exceedance for severe turbulence is specified as 10−5 in [90] representing an 

extreme atmospheric condition. Figure 46 and Figure 47 show the strong fluctuations in wind 

velocity and rates. 

Monte Carlo evaluation is conducted using these three truth trajectories repeatedly in 

combination with initial and input errors in a total of 100 simulation runs. Figure 48 shows the 

horizontal navigation position errors for all runs. No single event of navigation failure occurred. 
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Figure 45: WGS84 height Figure 46: Sample wind velocity vector in severe 

turbulence 

 

Figure 47: Sample wind rates vector in severe turbulence 

 

Figure 48: Horizontal position error in flight path A robustness test 
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In addition to the simulated trajectories created with the waypoint autopilot tool described 

in 4.1.2, one flight path of 1ℎ duration was created by manually controlling the airplane 

model, see Figure 49 and Figure 50. For lack of motion cueing, the control inputs do not 

include any high frequency feedback of atmospheric disturbances. Moderate turbulence 

(corresponding to a probability of exceedance of 10−3  according to [90]) was present 

throughout. Figure 51 and Figure 52 show samples of the turbulent wind velocity and wind 

rates vectors. 

 

 

Figure 49: Flight path B for robustness evaluation (manually piloted) 

 

100 Monte Carlo runs are simulated using this truth trajectory in combination with random 

navigation initial and input errors in order to assess method robustness in sustained moderate 

turbulence. Figure 53 shows the horizontal position errors for 100  runs. Due to the single 

dynamic atmosphere truth in this Monte Carlo simulation, the results are clearly biased, which 

is not an issue in this case. The proposed aerodynamic navigation method showed no 

restrictions with respect to robustness in this simulation test. 
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Figure 50: WGS84 height Figure 51: Sample wind velocity vector 

 

Figure 52: Sample wind rates vector 

 

Figure 53: Horizontal position error in manually piloted flight path robustness test 
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4.2.4 Effect of IMU and aerodynamic model quality on method performance 

 

The aerodynamic navigation method developed in this work is designed to use a 

combination of low-cost inertial sensors and high-quality aerodynamic motion model. The 

efficiency of this design will be evaluated in the following by studying the influence of 

increasing inertial sensor quality or reducing model quality. Although robustness properties of 

the method are affected by reducing aerodynamic model quality as well, the principal 

performance measure for this study is position drift. 

Figure 54 shows 2𝑑𝑟𝑚𝑠  horizontal accuracy for the proposed aerodynamic navigation 

method in three Monte Carlo simulations (4.1.1) using the different IMU error models in Table 

4. Ideal information on wind velocity and rates is available throughout the simulation duration 

of 3600𝑠 . For medium and high quality IMU error models, the horizontal error natural 

frequency of the modified inertial motion model (3.2.2) can be set to 𝜔 = 𝜔𝑆  while 

maintaining damping with aerodynamic model velocities. Attitude errors and, as a 

consequence of reduced 3-D magnetometer observation error, vertical orientation error are 

significantly smaller than for the low quality IMU error model. 

 

 

Figure 54: Improvement of position drift with IMU 

quality, ideal wind information available 

Figure 55: Improvement of position drift with IMU 

quality, wind initially estimated 

 

Although the aerodynamic motion model is unchanged and the accuracy of initial wind 

vector estimation during availability of GNSS-aiding not important because of ideal wind 

information, Figure 54 shows strong improvement of position accuracy with better IMU 

quality. The improvement is due to the reduction of error in flight direction of the 

aerodynamic motion model corrected in heading using inertial orientation in equation (3-

12). 

The strong improvement is only observed in the ideal case with perfect wind information 

available to the aerodynamic navigation method. Figure 55 shows the results of the same 

comparison for Monte Carlo simulations with unknown wind velocity and rates using the 
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models described in 4.1.3. Although accuracy of initial wind estimation depends on IMU 

quality, the effect on position drift during GNSS-denied navigation is negligible. 

Consequently, for the expected operation condition with standard unknown wind velocity, 

the performance of the proposed aerodynamic navigation method is largely independent 

of IMU quality. 

Using the conservative (low quality) aerodynamic motion uncertainty model developed in 

4.1.5.4 has only limited effect on method performance. Figure 56 shows 2𝑑𝑟𝑚𝑠 horizontal 

accuracy of aerodynamic navigation in Monte Carlo simulations using the optimistic and 

conservative model uncertainty variants. Again, ideal wind information is available to the 

navigation method in this simulation. In Monte Carlo simulations with unknown dynamic 

atmosphere, no significant difference in performance is observable for different qualities of 

the aerodynamic model. 

 

 

Figure 56: Improvement of position drift with aerodynamic model quality 

 

Consequently, a perfect model is not required for desensitized aerodynamic flight 

navigation. Simple system identification may be acceptable for the aerodynamic 

navigation method, if only nominal performance is of interest. It will be sufficient to replicate 

longitudinal stationary flight for conventional operating flight conditions, which is most 

important for position drift. But for reliable performance and robustness, a high quality model 

with large flight envelope and verified accuracy is necessary. The presented aerodynamic 

navigation method relies on similar benign flight dynamics of the aerodynamic model and 

the true airplane for safe operation. 
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4.3 POST PROCESSING OF REAL FLIGHT DATA 
 

Although the simulation tool used in this work was developed specifically to account for 

limitations of the accuracy of aerodynamic navigation due to model error and input error, 

not all effects can be modeled adequately. Therefore, a test of the aerodynamic navigation 

method using real flight data is required to demonstrate that all challenges of a real-world 

application can be mastered. 

Most significantly, the real flight will exhibit a number of complex processes that could not be 

considered in simulation. This includes airframe deformations and fuel slosh that dynamically 

influence weight and balance properties. Because the aerodynamic navigation method is 

applied to a different airplane than the one used for system identification flight testing, 

scaling and offset of the measured control inputs or surface deflections and throttle setting 

may differ. While this does not affect stability properties, it will cause error in the aerodynamic 

model longitudinal trim condition determined by airspeed, climb angle and altitude. 

Similarly, the position and orientation of the IMU may differ from the flight test system 

instrumentation, which will affect the aerodynamic navigation method. Note that the 

proposed aerodynamic navigation method reduces the influence of IMU and aerodynamic 

model misalignment, because pitch is not corrected (see 3.2.1). 

 

 

Figure 57: Flight path of navigation method and reference data. GNSS-denied from 200𝑠  
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The true flight data used for method evaluation and the navigation flight path determined 

with the proposed aerodynamic navigation method are shown in Figure 57. After 200𝑠 of 

GNSS-aiding, the performance of GNSS-denied aerodynamic flight navigation is 

demonstrated for 1800𝑠. Barometric altitude, airspeed and control measurements are taken 

from recorded real measurements directly. 3-D magnetometer measurements are simulated 

using the recorded reference truth flight trajectory. IMU data is derived from recorded high-

quality data by application of the low-quality IMU error model (4.1.4). 

In this case, an error in the aerodynamic motion model trim condition is observable: 

Comparison of true and navigation flight path shown in Figure 57 indicates noticeable along-

track velocity error. Because it is independent of flight direction, it is not related to unknown 

wind velocity vector. Instead, errors in the aerodynamic motion model lead to this navigation 

error. Figure 61 indicates a bias of kinematic velocity in down direction throughout the test 

duration corresponding to too small kinematic climb angle. This points to an error in the 

longitudinal force model determined by thrust and drag. In addition, errors in the pitch 

moment model can have a similar effect on aerodynamic model trim condition, but Figure 

62 gives no indication of bias of angle of attack. Due to the frequent turns in true flight path, 

the effect of error in longitudinal trim on position error cancels to some extent, as can be 

seen especially in the north position error Figure 59. 

Figure 58 and Figure 60 show typical performance of the modified inertial motion model with 

low-cost sensors. North and east orientation error are clearly disturbed by the frequent 

horizontal accelerations in true flight path, resulting in a bias in 𝛿𝜙𝑁 . Because this bias is 

directly related to error in the heading error observation with a 3-D magnetometer (see 

2.3.2.4), vertical orientation error 𝛿𝜙𝐷 contains significant bias too. 

The effect of unknown wind velocity vector is clearly visible in the aerodynamic angle of 

sideslip error computed assuming zero wind, see Figure 62. The computed error correlates 

with changes in direction of flight. 

 

 

Figure 58: Modified inertial model attitude errors (versus reference) 
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Figure 59: Aerodynamic model horizontal position errors 

 

Figure 60: Modified inertial model vertical orientation 

error (versus reference) 

Figure 61: Aerodynamic model vertical velocity error 

 

Figure 62: Aerodynamic model angle of attack and angle of sideslip errors (versus kinematic reference) 
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5 SYSTEM IMPROVEMENTS FOR FUTURE APPLICATIONS REQUIRING 

CERTIFICATION 

 

The accuracy of the proposed aerodynamic navigation method is primarily limited by drift 

due to unknown wind velocity vector. Using the dynamic wind model based on airliner flight 

measurement data published in [88] in Monte Carlo simulations for performance assessment, 

the positioning performance of aerodynamic navigation is found to be not suitable for 

continuous flight navigation. Aerodynamic navigation is better suited as a backup function 

for low precision navigation allowing for safe contingency operation for a limited time, 

leaving the area where GNSS is denied. 

For example, performance specifications similar to RNAV 5 [95, 96] for enroute operations 

could be addressed. EASA AMC 20-4A [95] specifies basic area navigation (RNAV 5) 

performance for continental enroute operations in designated European airspace. For RNAV 

5, the accuracy requirements might match the performance of the desensitized 

aerodynamic navigation method for a reasonable duration of backup navigation 

operation, as will be discussed later. 

GNSS standalone operation with single hardware and RAIM can be considered as suitable 

primary navigation source satisfactory for basic RNAV. Basic RNAV does not require 

monitoring and alerting functions or redundant hardware, because comparison with other 

navigation means by the pilots and change to alternate (ground based) navigation is 

possible [95, 96]. Consequently, the proposed aerodynamic navigation method can be a 

replacement of ground-based navigation aids (radio navigation) used as backup. 

Loss of all navigation function is required improbable by EASA AMC 25-11 [97]. When ground 

based navigation is not used as alternate to GNSS, simultaneous loss of GNSS standalone and 

backup navigation function and misleading information should be considered a major 

failure condition similar to RNAV 1 and RNAV 2 navigation specifications [96] and FAA 

specifications for RNAV equipment in [98]. This corresponds to a probability of failure of 

10−4/ℎ or 10−5/ℎ for single/multi-engine small airplanes [99].  

For the required probability of loss of all navigation function, redundant hardware is 

mandatory if radio navigation is not used. With single GNSS standalone as primary and 

aerodynamic navigation as backup function, this requirement could be met. In case of the 

desensitized aerodynamic backup navigation method, additional hardware redundancy 

can be implemented low-cost. Redundant computing boards can be used and redundant 

input data for the aerodynamic motion model is available either form additional 

measurement of stick and pedal position and engine RPM or from digital control commands 

if available.  

RNAV 5 operation requires a total system error (TSE) – a combination of error in determined 

aircraft position and all other error sources that cause a deviation of actual from desired 

flight path (flight technical error, FTE) – to be less than 5𝑁𝑀  for 95%  of flight time [95]. 

Accounting for a flight technical error of 1𝑁𝑀 95%, the required accuracy of computed 

aircraft position is 4.9𝑁𝑀 for 95% of flight time. 
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The applicability of the desensitized aerodynamic navigation method for RNAV 5 operations 

will be studied in the following subsection. Shortcomings and possible future improvements 

of the proposed method will be discussed. 

 

5.1 IMPROVEMENT OF SYSTEM PERFORMANCE WITH WIND INFORMATION 
 

The identified position accuracy requirement for RNAV 5 operations of 4.9𝑁𝑀 95% can be 

met by the aerodynamic navigation method only for a limited time due to position drift. As 

discussed in 4.2.4, the position drift evaluated in simulations is largely determined by wind drift 

when using the realistic wind uncertainty model described in 4.1.3. Only if wind uncertainty is 

reduced, e.g. by providing wind velocity information to the aerodynamic navigation 

method, other system parameters such as IMU and aerodynamic model quality, will 

influence position performance noticeably.  

 

 

Figure 63: Improvement of position drift with wind information 

Figure 63 presents a comparison of position performance in Monte Carlo simulations (4.1.1) 

using the dynamic wind vector model (4.1.3) and with various levels of wind information 

available to the aerodynamic navigation method. 

With on-board wind vector estimation (active while GNSS is still available), the results of 

Monte Carlo simulation in this work indicate that GNSS-denied navigation can be continued 

with RNAV 5 accuracy for approximately 900𝑠 . This result is based on the realistic wind 

uncertainty model used in simulations. The performance would be badly affected by an 

extreme change in wind vector while GNSS is denied. Consequently, only short-term RNAV 5 



System improvements for future applications requiring certification 135 

operations are possible without external wind vector information, assuming the GNSS-aided 

wind vector estimate remains valid for short time intervals. 

Figure 63 shows that providing only the slowly-varying components of dynamic wind vector 

to the navigation method already has a significant impact on performance. For the used 

atmospheric models, a low-frequency information of true wind velocity vector at aircraft 

position with a time coefficient of less than 1000𝑠 enables the proposed low-cost desensitized 

aerodynamic navigation method to sustain operations according to RNAV 5 accuracy 

specifications for about 45𝑚𝑖𝑛.  

With accurate external low-pass wind information, aerodynamic navigation performance is 

independent of the true low-frequency dynamic wind. Note that this is necessary to 

implement an aerodynamic navigation method with reliable long-term performance, 

considering the possibility of extreme atmosphere conditions. Otherwise, wind speeds of 

26𝑚/𝑠 with a probability of occurrence 10% at an altitude of 1𝑘𝑚 [86] would prohibit any use 

of aerodynamic navigation as reliable source. 

The results for aerodynamic navigation with external low-pass wind information are 

independent of model assumptions for slowly-varying wind used in simulation.  The effect of 

high-pass dynamic wind (i.e. not contained in the wind information) on position performance 

on the other hand is difficult to evaluate and the results are specific to the simulation models 

used. For high-frequency content, the effect is limited due to aircraft inertia and the low-pass 

behavior of flight dynamics and becomes negligible for high frequencies compared to other 

system errors caused by magnetic measurement, IMU and model imperfections. The small 

contribution of high frequency content to position uncertainty could be approximated with 

an adaptive model observing increasing noise in accelerometer and gyroscope 

measurement due to rough atmosphere. Development of reliable adaptive uncertainty 

models for high-frequency atmospheric disturbances for prediction of position error statistics 

should be considered for future research. 

Note that the notion of low-frequency dynamic wind velocity at aircraft position relates to 

strong correlation of a corresponding wind velocity vector field in space and time (i.e. with 

large temporal and spatial correlation coefficients). This results in low-frequency content in 

the wind velocity vector at aircraft position as the aircraft flies through the vector field at 

limited speed. 

The ideal requirement of a low-pass information of true wind velocity vector at aircraft 

position can of course only approximately be met. The following subsection present ideas for 

an extension of the desensitized aerodynamic navigation method with sources of 

approximate wind information. 
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5.2 WEATHER PREDICTION AND AIRCRAFT-TO-AIRCRAFT WEATHER INFORMATION 
 

Aerodynamic flight navigation requires reliable information on low-frequency dynamic wind 

vector in order to achieve a performance improvement for enroute navigation. Furthermore, 

this wind information source could provide uncertainty statistics for the determination of 

allowable duration of GNSS-denied navigation. 

Two possibilities of implementing this information source with available means can be 

identified. First, radio weather prediction data may be used, such as the Rapid Refresh (RAP) 

numerical weather model [100] which is run by the U.S. National Centers for Environmental 

Prediction (NCEP). Due to the much stronger signal of radio transmission and the absence of 

a ranging problem, it can be considered a much more reliable signal. For increased 

reliability, the implementation of on-board weather prediction model fed by broadcast data 

could be considered, but constant propagation of wind vector in rare interruptions of 

transmission would be sufficient for limited durations. 

A broadcast weather prediction is based on meteorological computations using a large 

array of weather measurements distributed over the region (or globally). The availability of 

reference data from measurement stations allows for evaluation of statistics of errors in the 

spatial extrapolation and temporal prediction of especially low-frequency wind vector. 

Secondly, for populated airspaces and routes, other airplanes may have passed the same 

area shortly beforehand while GNSS-aiding was available to them, either because a local 

GNSS-denial event has not yet occurred, or because loss of GNSS of the aircraft to be 

navigated is due to on-board faults. In this case, performance of GNSS-denied aerodynamic 

flight navigation of the succeeding airplane could be improved by aircraft-to-aircraft 

communication of wind vector estimate. Due to limited distance in space and time, the error 

in low-frequency wind velocity vector, which is strongly correlated in space and time, can 

be expected to be small. 

Because the routes and altitudes for the small airplanes under consideration in this work will 

be mostly populated by similar small generation aircraft (away from airports), the sensor 

quality on board of nearby aircraft is low. Consequently, the reliability of estimated wind 

vector is an issue. Alternatively, the aircraft-to-aircraft approach could be implemented via 

a data hub and centralized estimation. This allows to include data or estimations from airliners 

with verified accurate on-board sensors in addition to small aircraft sensors and spatial 

interpolation. Similar to above weather prediction model approach, this relies on the 

estimation of an atmospheric wind velocity vector field parametrized in space and time and 

becomes a meteorological problem. 

Consequently, a very important task for future research is the assessment of meteorological 

methods for use for aerodynamic navigation. Both the accurate estimation of low-frequency 

wind velocity vector and the availability of reliable uncertainty statistics for this component 

of dynamic wind would be key contributions to a potential future use of the desensitized 

aerodynamic navigation method as backup in airplane operations.  
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6 SUMMARY AND CONCLUSIONS 

 

Throughout this work, special consideration is given to the unique qualities of the flight 

dynamics of small general aviation airplanes and low-cost inertial navigation. The detailed 

understanding of the complementary characteristics of these two motion models is the basis 

for the presented solutions and innovations. 

The main achievement of the presented work is twofold. First, a new way is found to reliably 

integrate knowledge of airplane flight dynamics with inertial navigation even if severe 

deficiencies in modeling of atmosphere processes and uncertainties exist. The innovation 

overcomes a fundamental limitation of earlier optimal state estimation based techniques 

affecting robustness of aerodynamic navigation for airplanes in rough atmosphere 

conditions. 

Second, a robust backup navigation function for GNSS-denied phases of flight is proposed, 

which uses a high-quality model of airplane flight dynamics. This thesis thoroughly elaborates 

in theory and experiment the capability of integrated navigation propagation models for 

low-cost applications. The innovative covariance-free integration of inertial and 

aerodynamic models is applied to small general aviation airplanes and tested rigorously. The 

study comprises a new approach to realistically account for aerodynamic model errors in 

simulation and an unadjusted application to real flight data in postprocessing. 

 

New findings in system theory 

In more detail, the presented research can be summarized as follows. Heading and airspeed 

dead reckoning, inertial navigation and the aerodynamic motion model are studied and 

compared with respect to their qualities for low-cost navigation propagation without GNSS 

aiding. Unaided position propagation is discussed qualitatively and quantitatively for short 

and long time intervals. Favorable error propagation characteristics with linear position drift 

are identified for the dead reckoning method and the aerodynamic motion model under 

the restriction that a specific lateral error mode must be damped. The advantages of 

navigation propagation methods with linear position drift behavior for use with low-cost 

sensors and high risk of temporary disturbances are explained. 

Low-cost inertial navigation error propagation and observability with on-board aiding 

measurements is discussed in detail. It is explained why low-cost inertial navigation is 

preferable for aided estimation of rotational motion and vertical motion but suffers from 

unfavorable error propagation for horizontal translational motion in GNSS-denied phases. The 

basic design of a combination of inertial navigation and aerodynamic motion model is 

conceived, using inertial orientation computation to restrain aerodynamic motion lateral 

divergence and improve the accuracy of translational aerodynamic motion. A modified 

inertial motion model is developed which is optimized for rotational motion accuracy. 

This work is the first dealing with the application of an airplane aerodynamic motion model 

to navigation that identifies an important restriction in aiding the aerodynamic model with 

auxiliary measurements in a navigation filter. The findings are explained with the specifics of 

airplane flight dynamics. Changes in the aerodynamic degrees of freedom governing 
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airplane aerodynamic flight, such as aerodynamic angle of sideslip, stimulate strong 

dynamic modes especially affecting rotational motion. If corrections are not applied 

consistently as equilibrium changes to all flight dynamics degrees of freedom and 

aerodynamic model coefficients simultaneously – which would require very accurate filter 

covariance models of aerodynamic flight and model uncertainty – the resulting dynamic 

disturbances can cause large errors affecting filter linearization and potentially lead to filter 

failure. Due to the intermittency of atmospheric disturbances, large wind estimation errors in 

turbulence usually are not consistently described by filter covariance models. Consequently, 

large erroneous corrections to aerodynamic degrees of freedom often occur if an estimation 

filter with imperfect covariance models of atmosphere and model uncertainties is used to 

update aerodynamic model kinematic states. 

Nevertheless, it is shown that in standard conditions lateral error divergence can effectively 

be mitigated by aiding attitude or heading errors. This allows using the aerodynamic motion 

model for propagation of translational motion with linear position drift. How to robustly 

correct aerodynamic model motion in challenging atmosphere conditions is addressed later 

in section 2 of chapter 3. 

 

Innovative integration architecture 

A considerable part of the research related with this thesis dealt with inertial and 

aerodynamic model fusion, which is favored in the available literature. In model fusion, 

optimal state estimation techniques are employed assuming exact equivalence of truth 

motion for both models. Others have demonstrated good results with model fusion for 

multicopter applications which clearly proves the capability of model fusion for this type of 

vehicle. 

This thesis deals with small general aviation airplanes and shows that model fusion is not the 

best choice for this specific application. This is discussed in detail and the problems 

encountered with model fusion are related to the specifics of airplane aerodynamic flight in 

an unprotected atmosphere environment. Due to the long flight durations and distances 

travelled, short but extreme atmospheric disturbances must be expected. The intermittency 

of these events makes both accurate on-board modeling of underlying processes 

(prediction) and of related uncertainty statistics impossible. This modeling deficiency is a 

significant drawback for the application of optimal state estimation techniques. A tuned 

model fusion filter is developed which overcomes these problems to some extend and 

provides the inspiration for further research in this work. But the fundamental drawbacks of 

model fusion for airplanes persist and motivate the development of a new method. 

The proposed covariance-free integration comprises three contributions. First, the 

complementary integration strategy for low-cost inertial navigation and high-quality airplane 

aerodynamic motion model is defined. This approach allows replacing statistically weighted 

averaging of information by a predefined selection of only one of the models for any part of 

vehicle motion, i.e. rotational, vertical and horizontal translational motion. Based on the 

discussion of system theory, it applies the modified inertial motion model to provide 

information about vertical motion and rotational motion. Inertial rotational motion is used to 

restrain aerodynamic model lateral errors. In turn, the aerodynamic model, with damped 

lateral error, provides accurate information on horizontal translational motion with first order 
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position drift. With this integration strategy, the limitations of model fusion techniques due to 

modeling deficiencies are successfully resolved. The covariance-free integration eliminates 

the need for accurately modeling uncertainties of inertial and aerodynamic motion models 

for combination of the two models. 

The aerodynamically desensitized constraints for airplane aerodynamic motion successfully 

solve the second problem of model fusion for airplanes, i.e. the restrictions in aiding the 

aerodynamic model in dynamic atmosphere conditions. Based on the discussion of flight 

dynamics of small general aviation airplanes, a set of correction schemes for the 

aerodynamic model is proposed that allows integration with inertial navigation but fully 

preserves robustness in rough atmosphere. The desensitized constraints are the 

recommended choice to use airplane flight dynamics for navigation propagation with first 

order position drift. At the same time, they are suited for robustly controlling the model in 

phases of flight with GNSS-aiding. 

An add-on covariance model is developed for use with the new covariance-free integration 

method. It is fully consistent with the aerodynamically desensitized constraints and can be 

used to provide auxiliary covariance information to the navigation data user. Covariance 

modeling is fully separated from the computation of navigation state, for the reasons 

elaborated earlier. Still, if models are available that are deemed appropriate for this purpose, 

they can be used to compute covariance of aerodynamic navigation. 

 

Capability demonstration and proposals for future development 

To study the behavior of the new method under realistic conditions encountered in flight and 

to demonstrate achievable performance for small general aviation airplanes, the thesis 

comprises an extensive evaluation in simulation and experiment. An automatic trajectory 

generation tool is used to generate reference data for a large variety of aerodynamic flight 

scenarios. Special consideration is given to challenging atmosphere conditions, and realistic 

models for dynamic wind vector and turbulence are implemented. 

For system simulation, an innovative way to account for the uncertainties of aerodynamic 

and propulsion forces and moments in aerodynamic navigation is proposed. Two uncertainty 

models for aerodynamic motion are developed. One represents best achievable 

aerodynamic model accuracy given a realistic quality of sensor instrumentation used for 

system identification flight tests. It is assumed that all challenges related to system 

identification are accomplished expertly, resulting in a high-quality model. A second, 

conservative uncertainty model is defined for studying the effect of low aerodynamic model 

quality on the performance of the proposed method. 

The benefit of using Monte Carlo simulation for evaluation of the proposed method lies in the 

large variety of scenarios of aerodynamic flight that are tested. The automatic trajectory 

generation tool is used to create a database of more than 600 flights of 1h length, each 

affected by a different time history of dynamic atmosphere processes. This causes the 

individual flights to differ significantly, especially in rotational motion and (auto-)pilot control 

inputs. Furthermore, each flight is representative in a way that it accounts for the 

intermittency of atmosphere conditions and includes smooth and turbulent phases in 

random succession. The large number of reference flight data is then used to generate 

realistic sensor measurement data time histories, again with different realizations for each 
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simulation run. Consequently, the results of Monte Carlo evaluation presented in this thesis 

provide a meaningful picture of method behavior in a large number of combinations of true 

motion dynamics, measurement errors, atmosphere conditions and control inputs. 

The work concludes with a comprehensive assessment of the GNSS-denied navigation 

performance and robustness of the proposed method both using the Monte Carlo simulation 

framework and a real flight data postprocessing test. The demonstrated robustness is good 

without any failure in large collection of tests. Position accuracy is close to ideal drift 

determined by wind estimation error. These results validate the complementary integration 

strategy for inertial and aerodynamic motion and the development of aerodynamically 

desensitized constraints. The combination of meaningful Monte Carlo evaluation with good 

results in a real data test encourages studying the application of the method in navigation 

systems for small general aviation airplanes. 

Nevertheless, the amount of empirical validation of the new navigation method is still low. 

Therefore, future efforts of aerodynamic navigation development should address the 

question how a similar level of trust can be achieved as for conventional INS/GNSS integrated 

navigation. A possible solution is to initially include the aerodynamic navigation function as 

“payload” only, i.e. without providing output to the pilot. That way, a large dataset of 

recorded inputs and accurate reference data from INS/GNSS can be generated. Although 

true wind velocity vector will not be known, the data set can be used to simulate GNSS-

denied navigation and determine an empirical model of method accuracy. This model may 

be considered as more reliable replacement for the covariance information computed with 

the add-on model based on simple assumptions of dynamic atmosphere uncertainty. 

Finally, the demonstrated performance of the method in its current form is compared with 

the requirements of applicable navigation performance specifications. It is generally suitable 

as replacement of classical ground based navigation aids for use as backup navigation 

function for contingency operations with low navigation accuracy when GNSS is denied. 

Without external wind information, GNSS-denied navigation could be continued with RNAV 

5 accuracy for more than 10𝑚𝑖𝑛, based on the results of Monte Carlo simulation presented 

in section 4.2.1. For an airplane travelling at 140𝑘𝑛, this corresponds to a distance travelled 

of approximately 43𝑘𝑚. This demonstrates that the requirement to be able to leave the area 

where GNSS is denied safely by navigating with the backup system can be met. 

In order to meet RNAV 5 horizontal position accuracy requirements for a longer time, the rate 

of position drift must be limited. A possible extension of the new aerodynamic navigation 

method is proposed that provides low-pass wind velocity vector information for improved 

aerodynamic motion model position propagation. Possibilities how this wind information can 

be broadcast or computed are discussed. Because of the crucial influence on accuracy 

and reliability, the transfer of meteorological knowledge to the field of aerodynamic 

navigation and especially the integration of available weather information are identified as 

further important aspects of future research. 
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Appendix A  

A.1 MATH 
 

This appendix is based on the author’s Diploma thesis [39] and the references cited therein. 

 

Basic functions 

The function 𝑠𝑘𝑒𝑤 applied to a 3-D vector 𝒗 = [𝑣1 𝑣2 𝑣3]𝑇 

 
𝑠𝑘𝑒𝑤(𝒗) = [𝒗 ×] = [

0 −𝑣3 𝑣2
𝑣3 0 −𝑣1
−𝑣2 𝑣1 0

] (A-1) 

   
computes the skew-symmetric matrix equivalent so that for another 3-D vector 𝒍 

 𝒗 × 𝒍 = 𝑠𝑘𝑒𝑤(𝒗)𝒍 (A-2) 

   
Inversely, the function 𝑣𝑒𝑐𝑘 computes the vector equivalent of a skew-symmetric 3-D matrix. 

Consequently, 

 𝑣𝑒𝑐𝑘(𝑠𝑘𝑒𝑤(𝒗)) = 𝒗 (A-3) 
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Coordinate transformations of 3-D vectors 

The direction cosine matrix (DCM) or rotation matrix 𝑹𝑎𝑏 ∈ 𝑆𝑂(3) (i.e. a 3-D orthogonal matrix 

with determinant +1) is defined to transform the coordinates of a 3-D vector 𝒗 from cartesian 

frame 𝑏 to cartesian frame 𝑎 

 𝒗𝑎 = 𝑹𝑎𝑏𝒗𝑏 (A-4) 

   
The rotation matrix 𝑹𝑎𝑏  is related to other parameters of relative orientation of frame 𝑏 with 

respect to frame 𝑎 as follows: 

If frame 𝑏 can be constructed by rotation of frame 𝑎 about a single axis (1,2,3) with an angle 

𝛼𝑎𝑏, the two frames are aligned in this specific axis and 𝑹𝑎𝑏 is 

 
1st axis:   𝑹𝑎𝑏 = 𝑹1(𝛼𝑎𝑏) = [

1 0 0
0 cos(𝛼𝑎𝑏) − sin(𝛼𝑎𝑏)

0 sin(𝛼𝑎𝑏) cos(𝛼𝑎𝑏)
] (A-5) 

 
2nd axis:   𝑹𝑎𝑏 = 𝑹2(𝛼𝑎𝑏) = [

cos(𝛼𝑎𝑏) 0 sin(𝛼𝑎𝑏)
0 1 0

− sin(𝛼𝑎𝑏) 0 cos(𝛼𝑎𝑏)
] (A-6) 

 
3rd axis:   𝑹𝑎𝑏 = 𝑹3(𝛼𝑎𝑏) = [

cos(𝛼𝑎𝑏) − sin(𝛼𝑎𝑏) 0

sin(𝛼𝑎𝑏) cos(𝛼𝑎𝑏) 0
0 0 1

] (A-7) 

   
For general relative orientation of frame 𝑏 with respect to frame 𝑎, a maximum of three 

consecutive rotations about different axes is sufficient to construct frame 𝑏 from frame 𝑎. 

Obviously, a number of possibilities exists for selection and order of rotation axes. In this work, 

the Euler angle definition is adopted. Frame 𝑎 is first rotated about its 3𝑟𝑑 axis with angle 𝛼𝑎𝑏,3, 

then rotated about the 2𝑛𝑑 axis of the frame constructed by the first single-axis rotation with 

angle 𝛼𝑎𝑏,2 and finally about the 1𝑠𝑡 axis of the frame constructed by the previous two single-

axis rotations with angle 𝛼𝑎𝑏,1. Consequently, the rotation matrix 𝑹𝑎𝑏 defined by these Euler 

angles 𝛼𝑎𝑏,1, 𝛼𝑎𝑏,2 and 𝛼𝑎𝑏,3 is 

 𝑹𝑎𝑏 = 𝑹([𝛼𝑎𝑏,1 𝛼𝑎𝑏,2 𝛼𝑎𝑏,3]𝑇) ≔ 𝑹3(𝛼𝑎𝑏,3)𝑹2(𝛼𝑎𝑏,2)𝑹1(𝛼𝑎𝑏,1) (A-8) 

= [

cos(𝛼𝑎𝑏,3) cos(𝛼𝑎𝑏,2) cos(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,1) sin(𝛼𝑎𝑏,2) − cos(𝛼𝑎𝑏,1) sin(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,1) sin(𝛼𝑎𝑏,3) + cos(𝛼𝑎𝑏,1) cos(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,2)

cos(𝛼𝑎𝑏,2) sin(𝛼𝑎𝑏,3) cos(𝛼𝑎𝑏,1) cos(𝛼𝑎𝑏,3) + sin(𝛼𝑎𝑏,1) sin(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,2) cos(𝛼𝑎𝑏,1) sin(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,2) − cos(𝛼𝑎𝑏,3) sin(𝛼𝑎𝑏,1)

−sin(𝛼𝑎𝑏,2) cos(𝛼𝑎𝑏,2) sin(𝛼𝑎𝑏,1) cos(𝛼𝑎𝑏,1) cos(𝛼𝑎𝑏,2)

] 

   
Specifically for a transformation from body-fixed frame 𝑏 to NED frame 𝑛, the Euler angles are 

(in this order) roll angle Φ𝑛𝑏, pitch angle Θ𝑛𝑏 and yaw angle (or Azimuth) Ψ𝑛𝑏. With this 

 𝑹𝑛𝑏 = 𝑹([Φ𝑛𝑏 Θ𝑛𝑏 Ψ𝑛𝑏]
𝑇) (A-9) 

   
As a generalization of the single-axis rotation matrices (A-5) through (A-7), frame 𝑏 can be 

constructed by rotation of frame 𝑎 about an unit vector 𝒏𝑎 , ‖𝒏𝑎‖ = 1 with an angle 𝛼𝑎𝑏. The 

corresponding rotation matrix 𝑹𝑎𝑏 will be derived in the following.  

First, define a coordinate frame 𝑟  with the first axis aligned with the vector of rotation 

direction 𝒏𝑎. I.e., the first basis vector of frame 𝑟 written in coordinates of frame 𝑎 is 

 𝑹𝑟𝑎
𝑇 𝒆1 = 𝒏𝑎 (A-10) 

   
The second basis vector of frame 𝑟 is chosen arbitrarily but orthogonal to the first, i.e.  

 𝑹𝑟𝑎
𝑇 𝒆2 = 𝒖𝑎 , with ‖𝒖𝑎‖ = 1, 𝒏𝑎

𝑇𝒖𝑎 = 0 (A-11) 
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The third basis vector completes the orthonormal basis of frame 𝑟  and therefore the 

transformation matrix can be written as 

 𝑹𝑟𝑎
𝑇 = [𝒏𝑎 𝒖𝑎 𝒏𝑎 × 𝒖𝑎] (A-12) 

   
With (𝒏𝑎

𝑇𝒏𝑎)(𝒖𝑎
𝑇𝒖𝑎) = 1 and (𝒏𝑎

𝑇𝒖𝑎) = 0 it is straightforward to verify that 

 det(𝑹𝑟𝑎) = det(𝑹𝑟𝑎
𝑇 ) = 1 (A-13) 

   
Furthermore  

 𝑹𝑟𝑎
𝑇 𝑹𝑟𝑎 = 𝒏𝑎𝒏𝑎

𝑇 + 𝒖𝑎𝒖𝑎
𝑇 + (𝒏𝑎 × 𝒖𝑎)(𝒏𝑎 × 𝒖𝑎)

𝑇 = 𝑰 (A-14) 

   
Which is evident by the fact that multiplication of 𝑹𝑟𝑎

𝑇 𝑹𝑟𝑎  with each of the three linear 

independent vectors 𝒏𝑎, 𝒖𝑎 and 𝒏𝑎 × 𝒖𝑎 results in the identical vector. This verifies that above 

equation (A-12) defines a rotation matrix 𝑹𝑟𝑎 ∈ 𝑆𝑂(3). 

With equation (A-5), the rotation matrix 𝑹𝑎𝑏 given by rotation axis unit vector 𝒏𝑎 and angle 

𝛼𝑎𝑏 becomes 

 𝑹𝑎𝑏 = 𝑹(𝒏𝑎 , 𝛼𝑎𝑏) = 𝑹𝑟𝑎
𝑇 𝑹1(𝛼𝑎𝑏)𝑹𝑟𝑎

= 𝒏𝑎𝒏𝑎
𝑇 + cos(𝛼𝑎𝑏)𝒖𝑎𝒖𝑎

𝑇 + sin(𝛼𝑎𝑏)(𝒏𝑎 × 𝒖𝑎)𝒖𝑎
𝑇

− sin(𝛼𝑎𝑏)𝒖𝑎(𝒏𝑎 × 𝒖𝑎)
𝑇 + cos(𝛼𝑎𝑏)(𝒏𝑎 × 𝒖𝑎)(𝒏𝑎 × 𝒖𝑎)

𝑇 
(A-15) 

   
Note that unit vector 𝒖𝑎 is chosen arbitrarily with 𝒏𝑎

𝑇𝒖𝑎 = 0. 

Equation (A-15) reveals the expected properties of 𝑹𝑎𝑏, e.g. 𝑹𝑎𝑏𝒏𝑎 = 𝒏𝑎. More interestingly, 

on inspection of for the skew-symmetric part of 𝑹𝑎𝑏 

 1

2
(𝑹𝑎𝑏 − 𝑹𝑎𝑏

𝑇 ) = sin(𝛼𝑎𝑏)(𝒏𝑎 × 𝒖𝑎)𝒖𝑎
𝑇 − sin(𝛼𝑎𝑏)𝒖𝑎(𝒏𝑎 × 𝒖𝑎)

𝑇 (A-16) 

   
the following holds for every 3-D vector 𝒗𝑎 = 𝑹𝑟𝑎

𝑇 [𝑣1 𝑣2 𝑣3]𝑇 with 𝑣1, 𝑣2, 𝑣3 ∈ ℜ 

 1

2
(𝑹𝑎𝑏 − 𝑹𝑎𝑏

𝑇 )𝒗𝑎 = sin(𝛼𝑎𝑏)𝒏𝑎 × 𝒗𝑎 (A-17) 

   
From the generality of vector 𝒗𝑎  it follows that equivalently the skew-symmetric part of 

rotation matrix 𝑹𝑎𝑏 is 

 1

2
(𝑹𝑎𝑏 − 𝑹𝑎𝑏

𝑇 ) = sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) (A-18) 

   
With this, equation (A-15) becomes 

 𝑹𝑎𝑏 = 𝒏𝑎𝒏𝑎
𝑇 + cos(𝛼𝑎𝑏)(𝒖𝑎𝒖𝑎

𝑇 + (𝒏𝑎 × 𝒖𝑎)(𝒏𝑎 × 𝒖𝑎)
𝑇) + sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) (A-19) 

   
For the unit vector 𝒏𝑎 the identity 𝑰 − 𝒏𝑎𝒏𝑎

𝑇 + 𝑠𝑘𝑒𝑤(𝒏𝑎)
2 = 𝟎 holds and can be used together 

with equation (A-14) to further simplify equation (A-19)  

 𝑹𝑎𝑏 = 𝑰 + sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) + (1 − cos(𝛼𝑎𝑏))𝑠𝑘𝑒𝑤(𝒏𝑎)
2 (A-20) 

   
This is the analytical expression of a rotation matrix corresponding to a rotation vector that 

was derived in [101]. 
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Rotation matrix ordinary differential equation 

In the following, the differential equation for a general rotation matrix 𝑹𝑐𝑏 will be derived. 

Assume a frame 𝑎 with constant orientation relative to frame 𝑐, 𝑹𝑐𝑎 = 𝑐𝑜𝑛𝑠𝑡., so that  

 �̇�𝑐𝑏 = �̇�𝑐𝑎⏟
=𝟎

𝑹𝑎𝑏 + 𝑹𝑐𝑎�̇�𝑎𝑏 
(A-21) 

   
With equation (A-20) 

 
�̇�𝑐𝑏 = 𝑹𝑐𝑎

𝑑

𝑑𝑡
(𝑰 + sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) + (1 − cos(𝛼𝑎𝑏))𝑠𝑘𝑒𝑤(𝒏𝑎)

2) (A-22) 

   
Without loss of generality chose 𝛼𝑎𝑏 = 0 so that 𝑹𝑐𝑎 = 𝑹𝑐𝑏 and with equation (A-14)  

 �̇�𝑐𝑏 = 𝑹𝑐𝑏�̇�𝑎𝑏𝑠𝑘𝑒𝑤(𝒏𝑎) (A-23) 

   
Note that no assumption was made on how the rotation vector direction 𝒏𝑎 evolves in time. 

Define the angular rates vector 

 𝝎𝑐𝑏 ≔ �̇�𝑎𝑏𝒏𝑎 (A-24) 

   
and the skew-symmetric matrix equivalent of 𝝎𝑐𝑏 

 𝛀𝑐𝑏 = 𝑠𝑘𝑒𝑤(𝝎𝑐𝑏) = [𝝎𝑐𝑏 ×] (A-25) 

   
With this, (A-23) gives the differential equation of the rotation matrix 𝑹𝑐𝑏  for arbitrary 

coordinate frames 𝑐 and 𝑎 

 �̇�𝑐𝑏 = 𝑹𝑐𝑏𝛀𝑐𝑏 (A-26) 
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Quaternion orientation parametrization 

In the following the basic concept of quaternion orientation parametrization is presented. 

Define the hypercomplex space 

 ℍ = {𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 | 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ ℝ} (A-27) 

   
𝑖 , 𝑗  and 𝑘  are imaginary units with = 𝑗𝑗 = 𝑘𝑘 = −1  ,  𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗  and  𝑗𝑖 = −𝑘, 𝑖𝑘 =

−𝑗, 𝑘𝑗 = −𝑖. 

Multiplying two quaternions �̆�, �̆� ∈ ℍ gives 

 �̆� ⋅ �̆� = (𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3) ⋅ (𝑝0 + 𝑖𝑝1 + 𝑗𝑝2 + 𝑘𝑝3)

= 𝑞0𝑝0 − (𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3)

    +𝑖(𝑞0𝑝1 + 𝑞1𝑝0 + 𝑞2𝑝3 − 𝑞3𝑝2)

    +𝑗(𝑞0𝑝2 + 𝑞2𝑝0 + 𝑞3𝑝1 − 𝑞1𝑝3)

    +𝑘(𝑞0𝑝3 + 𝑞3𝑝0 + 𝑞1𝑝2 − 𝑞2𝑝1)

 (A-28) 

   
The quaternion inverse with �̆� ⋅ �̆�−1 = 1 ∈ ℍ is defined for �̆� ≠ 0 by   

 
�̆�−1 =

1

𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2
(𝑞0 − 𝑖𝑞1 − 𝑗𝑞2 − 𝑘𝑞3) (A-29) 

   
Define a function that transforms a 3-D vector to a quaternion 

 �̆� ∶ ℝ3×1 → ℍ, 𝒙 ↦ �̆�

�̆�([𝑥1, 𝑥2, 𝑥3]
𝑇) = 𝑖𝑥1 + 𝑗𝑥2 + 𝑘𝑥3

 (A-30) 

   
For a unit quaternion �̆� ∈ ℍ1  with ℍ1 = {𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 ∈ ℍ | 𝑞0

2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 = 1} ⊂ ℍ 

and with above definitions the following transformations are equivalent 

 �̆� = �̆� ⋅ �̆� ⋅ �̆�−1

⇔
𝒚 = 𝑹(�̆�)𝒙

 (A-31) 

   
where �̆� and �̆� are the quaternion counterparts of 3-D vectors 𝒙 and 𝒚 and 

 

𝑹(�̆�) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (A-32) 

   
𝑹(�̆�) will be shown to be a rotation matrix 𝑹(�̆�) ∈ 𝑆𝑂(3) in the following subsection. 

With this, a quaternion �̆�𝑎𝑏 ∈ ℍ1  can be used to describe the orientation of frame 𝑏 with 

respect to frame 𝑎, e.g. 

 �̆�𝑎 = �̆�𝑎𝑏 ⋅ �̆�𝑏 ⋅ �̆�𝑎𝑏
−1

⇔
𝒗𝑎 = 𝑹(�̆�𝑎𝑏)𝒗𝑏

 (A-33) 

   
With the rotation matrix  

 𝑹𝑎𝑏 = 𝑹(�̆�𝑎𝑏) (A-34) 
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Rotation vector and orientation quaternion 

By comparing the rotation matrix 𝑹𝑎𝑏 given by a rotation axis unit vector 𝒏𝑎 and an angle 

𝛼𝑎𝑏 from equation (A-20) 

 𝑹𝑎𝑏 = 𝑰 + sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) + (1 − cos(𝛼𝑎𝑏))𝑠𝑘𝑒𝑤(𝒏𝑎)
2 (A-35) 

   
and the equivalent transformation matrix described by a unit quaternion �̆�𝑎𝑏 = 𝑞0 + 𝑖𝑞1 +

𝑗𝑞2 + 𝑘𝑞3 ∈ ℍ1 from equation (A-32) 

 

𝑹(�̆�𝑎𝑏) = [

𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2 0 0

0 𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2 0

0 0 𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2

]

+ 2 [

𝑞1
2 𝑞1𝑞2 𝑞1𝑞3

𝑞1𝑞2 𝑞2
2 𝑞2𝑞3

𝑞1𝑞3 𝑞2𝑞3 𝑞3
2

] + 2𝑞0 [

0 −𝑞3 𝑞2
𝑞3 0 −𝑞1
−𝑞2 𝑞1 0

]

= (𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2)𝑰 + 2 [

𝑞1
𝑞2
𝑞3
] [𝑞1 𝑞2 𝑞3]

+ 2𝑞0𝑠𝑘𝑒𝑤([𝑞1 𝑞2 𝑞3]𝑇) 

(A-36) 

   
we find for the skew-symmetric parts 

 sin(𝛼𝑎𝑏)𝑠𝑘𝑒𝑤(𝒏𝑎) = 2𝑞0𝑠𝑘𝑒𝑤([𝑞1 𝑞2 𝑞3]𝑇) 

⟺ sin(𝛼𝑎𝑏)𝒏𝑎 = 2𝑞0 [

𝑞1
𝑞2
𝑞3
] 

(A-37) 

   
With ‖𝒏𝑎‖ = 1 it follows that 

 sin2(𝛼𝑎𝑏) = 4𝑞0
2(𝑞1

2 + 𝑞2
2 + 𝑞3

2) (A-38) 

   
With �̆�𝑎𝑏 ∈ ℍ1 this gives 

 sin2(𝛼𝑎𝑏) = 4𝑞0
2(1 − 𝑞0

2) (A-39) 

   
With the solutions 

 𝑞0 ∈ {cos (
𝛼𝑎𝑏
2
) ,−cos (

𝛼𝑎𝑏
2
) , sin (

𝛼𝑎𝑏
2
) ,−sin (

𝛼𝑎𝑏
2
)} (A-40) 

   
Requiring that 𝑹(�̆�𝑎𝑏) = 𝑰 for 𝛼𝑎𝑏 = 0 reduces the solutions to 𝑞0 = ±cos(𝛼𝑎𝑏/2). Both are 

valid: from the quadratic form of equation (A-32) follows that 𝑹(−�̆�𝑎𝑏) = 𝑹(�̆�𝑎𝑏). 

Choosing the solution 𝑞0 = cos(𝛼𝑎𝑏/2) and with equation (A-37) and the sum identity 

sin(𝛼𝑎𝑏) = 2sin(𝛼𝑎𝑏/2)cos(𝛼𝑎𝑏/2) we get 

 �̆�𝑎𝑏 = cos(𝛼𝑎𝑏/2) + sin(𝛼𝑎𝑏/2)�̆�𝑎 (A-41) 

   
where �̆�𝑎 is the quaternion counterpart of rotation axis unit vector 𝒏𝑎. 

With the sum identity cos(𝛼𝑎𝑏) = cos
2(𝛼𝑎𝑏/2) − sin

2(𝛼𝑎𝑏/2)  and the half-angle formula 

2 sin2(𝛼𝑎𝑏/2) = 1 − cos(𝛼𝑎𝑏) we find for the symmetric parts of equation (A-36) 

 
(𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2)𝑰 + 2 [

𝑞1
𝑞2
𝑞3
] [𝑞1 𝑞2 𝑞3] = cos(𝛼𝑎𝑏)𝑰 + (1 − cos(𝛼𝑎𝑏) )𝒏𝑎𝒏𝑎

𝑇 (A-42) 
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For the unit vector 𝒏𝑎 the identity 𝑰 − 𝒏𝑎𝒏𝑎
𝑇 + 𝑠𝑘𝑒𝑤(𝒏𝑎)

2 = 𝟎 holds and equation (A-42) can be 

further simplified  

 
(𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2)𝑰 + 2 [

𝑞1
𝑞2
𝑞3
] [𝑞1 𝑞2 𝑞3] = 𝑰 + (1 − cos(𝛼𝑎𝑏) )𝑠𝑘𝑒𝑤(𝒏𝑎)

2 (A-43) 

   
This proves the equivalence of the symmetric parts of equations (A-35) and (A-36).  

Consequently, the transformation matrix equivalent 𝑹(�̆�𝑎𝑏) of a unit quaternion �̆�𝑎𝑏 given by 

equation (A-32) and repeated in (A-36) is a rotation matrix 𝑹𝑎𝑏 ∈ 𝑆𝑂(3). The rotation is defined 

by the rotation angle 𝛼𝑎𝑏  and the rotation unit vector 𝒏𝑎  that can be extracted from 

equations (A-41) and (A-35) (repeated from (A-20)). 
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Orientation quaternion ordinary differential equation 

In the following, the differential equation for a general orientation quaternion �̆�𝑐𝑏  will be 

derived. Assume a frame 𝑎 with constant orientation relative to frame 𝑐, �̆�𝑐𝑎 = 𝑐𝑜𝑛𝑠𝑡., so that 

from equation (A-23) 

 �̆�𝑐𝑏 = �̆�𝑐𝑎�̆�𝑎𝑏 (A-44) 

   
And the time derivative becomes 

 �̇̆�𝑐𝑏 = �̇̆�𝑐𝑎⏟
=𝟎

�̆�𝑎𝑏 + �̆�𝑐𝑎�̇̆�𝑎𝑏 (A-45) 

   
With equation (A-41) 

 
�̇̆�𝑐𝑏 = �̆�𝑐𝑎

𝑑

𝑑𝑡
(cos(𝛼𝑎𝑏/2) + sin(𝛼𝑎𝑏/2)�̆�𝑎) (A-46) 

   
Without loss of generality chose 𝛼𝑎𝑏 = 0 so that �̆�𝑐𝑎 = �̆�𝑐𝑏 and consequently  

 
�̇̆�𝑐𝑏 =

1

2
�̆�𝑐𝑏�̇�𝑎𝑏�̆�𝑎 (A-47) 

   
With the quaternion equivalent of the angular rates vector defined in equation (A-24) �̆�𝑐𝑏 =

𝑖𝜔𝑐𝑏,𝑥 + 𝑗𝜔𝑐𝑏,𝑦 + 𝑘𝜔𝑐𝑏,𝑧 the differential equation for orientation quaternion �̆�𝑐𝑏 becomes 

 
�̇̆�𝑐𝑏 =

1

2
�̆�𝑐𝑏 ⋅ �̆�𝑐𝑏 (A-48) 
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A.2 TRANSLATIONAL MOTION OF A POINT MASS 
 

This appendix is based on chapter 2 of the author’s Diploma thesis [39] and the references 

cited therein. 

 

Translational motion of a point mass 

The classical mechanics of Newton conceptually understand the influence of gravitation as 

a force comparable to conventional forces such as aerodynamic forces. The force acting 

on a point mass 𝑚 in 𝑃 is 

 𝑭𝑖(𝑃) = 𝑭𝑖,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑃) + 𝑭𝑖,𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑃) (A-49) 

   
𝑭𝑖,𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑃) = 𝑚 ⋅ 𝒈𝑖,𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒(𝑃) is the gravitational force resulting from all other masses in 

the universe. 𝑭𝑖,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑃) is the sum of all other forces acting on the point mass. This force 

can be ‘felt’ by an observer and is proportional to the specific force 𝒇𝑏 measured by an ideal 

accelerometer aligned with the axes of frame 𝑏 and located in point 𝑃:  

 𝑭𝑖,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑃) = 𝑚𝑹𝑖𝑏𝒇𝑏(𝑃) (A-50) 

   
Furthermore, Newton’s physics state the existence of an inertial reference frame 𝑖 where the 

translational motion of the point mass 𝑚 in 𝑃 is given by 

 
𝒂𝑖 = �̈�𝑖 =

1

𝑚
𝑭𝑖(𝑃) (A-51) 

   
If no other point is given as argument, 𝒙𝑖 is the vector from the center of frame 𝑖 to 𝑃. 

Although superseded by the theory of relativity, the errors from using classical mechanics 

with equations (A-49) and (A-51) are extremely small for velocities much smaller than the 

speed of light and relatively small masses. Consequently, effects of relativity can be 

neglected for applications in general aviation.  

The gravitational force resulting from all other masses in the universe cannot be modeled. 

Assuming Galilei-invariance, we can circumvent this problem by describing the motion of 

point 𝑃 in an earth centered and earth fixed (ECEF) frame with index 𝑒:  

 
𝒂𝑖 = 𝒂𝑖(𝑃𝑒) +

𝑑2

𝑑𝑡2
(𝑹𝑖𝑒𝒙𝑒) (A-52) 

   
When describing motion with respect to the earth’s center 𝑃𝑒 , only the difference of 

gravitational acceleration due to masses in the universe in 𝑃𝑒 and 𝑃 remains. This is referred 

to as tidal acceleration. These differences are relatively small and can be neglected for most 

aviation applications: 

 𝑑2

𝑑𝑡2
(𝑹𝑖𝑒𝒙𝑒) = 𝒂𝑖 − 𝒂𝑖(𝑃𝑒) ≈ 𝑹𝑖𝑏𝒇𝑏(𝑃) + 𝒈𝑖,𝑒𝑎𝑟𝑡ℎ(𝑃) + 𝒈𝑖,𝑡𝑖𝑑𝑎𝑙(𝑃, 𝑡)⏟        

≈𝟎

 (A-53) 

   
Note that it has been assumed here that the point mass is negligible compared to earth’s 

mass. The earth is in free fall: 𝒇𝑏(𝑃𝑒) = 𝟎. 
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With the differential equation for direction cosine matrices (DCM) �̇�𝑎𝑏 = 𝑹𝑎𝑏[𝝎𝑎𝑏 ×] (A-26) the 

relative acceleration can be written as  

 
𝑑2

𝑑𝑡2
(𝑹𝑖𝑒𝒙𝑒) = 𝑹𝑖𝑒 (�̇�𝑒 + 2𝝎𝑖𝑒 × 𝒗𝑒 + �̇�𝑖𝑒 × 𝒙𝑒⏟      

≈𝟎

+𝝎𝑖𝑒 × (𝝎𝑖𝑒 × 𝒙𝑒)) (A-54) 

   
Where Euler acceleration due to earth angular acceleration can be neglected (𝝎𝑖𝑒 ≈ 𝑐𝑜𝑛𝑠𝑡. 

is a very good approximation). 

Equating (A-53) and (A-54), translational motion in ECEF reference frame of a point mass 𝑚 

in 𝑃 can be calculated from inertial measurements in 𝑃 as 

 �̇�𝑒 ≈ 𝑹𝑒𝑏𝒇𝑏(𝑃) + 𝜸𝑒(𝑃) − 2𝝎𝑖𝑒 × 𝒗𝑒 (A-55) 

   
A model for the gravity vector 

 𝜸𝑒(𝑃) = 𝒈𝑒,𝑒𝑎𝑟𝑡ℎ(𝑃) − 𝝎𝑖𝑒 × (𝝎𝑖𝑒 × 𝒙𝑒) (A-56) 

   
and the rate of earth rotation 𝜔𝑖𝑒 = ‖𝝎𝑖𝑒‖2 = 7292115 ⋅ 10

−11𝑟𝑎𝑑/𝑠 must be provided (e.g. by 

the WGS84 model, see [18] and following subsections of this appendix). By definition 𝒆𝑧,𝑖 ∥

𝒆𝑧,𝑒, therefore 

 
𝝎𝑖𝑒 = 𝜔𝑖𝑒 ⋅ [

0
0
1
] (A-57) 
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Inertial navigation equations in ECEF frame 

For a rigid body, the translational equation takes its simplest form if the location of the 

accelerometer and the reference point of motion are identical: 𝑃𝐼𝑀𝑈 = 𝑃. In that case, the 

translational equation is identical to the equation for a point mass (A-55):  

 �̇�𝑒 = 𝑹𝑒𝑏𝒇𝑏(𝑃) + 𝜸𝑒(𝑃) − 2𝝎𝑖𝑒 × 𝒗𝑒 (A-58) 

   
In the context of rigid body motion, frame 𝑏 is referred to as body-fixed frame. In the body-

fixed frame 𝑏, the rigid body constraints can be written as  

 �̇�𝑏(𝑃) = 𝟎   for any point P  on the body (A-59) 

   
The most general way to describe the body’s orientation is with the direction cosine matrix 

(DCM) for transformation from 𝑏 to ECEF frame 𝑹𝑒𝑏. 

With 𝑹𝑒𝑏 = 𝑹𝑖𝑒
𝑇 ⋅ 𝑹𝑖𝑏 a different form of the differential equation for the DCM (A-26) can be 

derived where the gyroscope measurement 𝝎𝑖𝑏 appears directly as input: 

 �̇�𝑒𝑏 = 𝑹𝑖𝑒
𝑇 ⋅ �̇�𝑖𝑏 + �̇�𝑖𝑒

𝑇 ⋅ 𝑹𝑖𝑏 = 𝑹𝑒𝑏𝜴𝑖𝑏 −𝜴𝑖𝑒𝑹𝑒𝑏 (A-60) 

   
Finally, the differential equation for the position in ECEF frame 𝒓𝑒 = 𝒓𝑒(𝑃) completes the set 

of equations. The inertial navigation system equations in ECEF frame and with DCM 

orientation parametrization are 

 �̇�𝑒 = 𝒗𝑒 (A-61) 

 �̇�𝑒 = 𝑹𝑒𝑏𝒇𝑏 + 𝜸𝑒(𝒙𝑒) − 2𝝎𝑖𝑒 × 𝒗𝑒 (A-62) 

 �̇�𝑒𝑏 = 𝑹𝑒𝑏𝜴𝑖𝑏 −𝜴𝑖𝑒𝑹𝑒𝑏 (A-63) 

   
With the IMU measurements 

 
𝒖𝐼𝑀𝑈 = [

𝒇𝑏
𝝎𝑖𝑏
𝑏 ] (A-64) 
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Inertial navigation equations in n-frame 

In this section the inertial navigation equations are derived for position in WGS84 geodetic 

coordinates, velocities in north-east-down directions (NED frame, index 𝑛) and orientation 

parametrization with quaternions. 

The NED frame is defined as north-indicating and locally tangential to the WGS84 ellipsoid 

[18]. In this text the origin of the NED frame will always be located in the origin of the body-

fixed frame 𝑃𝑏 . Therefore it serves as rotational reference frame only. It is necessary to 

explicitly define the velocity in 𝑛-frame as 

 𝒗𝑛 = 𝑹𝑒𝑛
𝑇 𝒗𝑒 (A-65) 

   
The transformation from 𝑛 to 𝑒 frame is 

 
𝑹𝑒𝑛 = [

𝑐𝑜𝑠(𝜆) −𝑠𝑖𝑛(𝜆) 0
𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) 0
0 0 1

] ⋅ [
−𝑠𝑖𝑛(𝜙) 0 −𝑐𝑜𝑠(𝜙)

0 1 0
𝑐𝑜𝑠(𝜙) 0 −𝑠𝑖𝑛(𝜙)

]

= [

−𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜆) −𝑠𝑖𝑛(𝜆) −𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜆)

−𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) −𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜆)

𝑐𝑜𝑠(𝜙) 0 −𝑠𝑖𝑛(𝜙)
] 

(A-66) 

   
With the geodetic latitude 𝜙 and the geodetic longitude 𝜆 of point 𝑃𝑏. The WGS84 position 

of 𝑃𝑏 is defined by the triple (𝜙, 𝜆, ℎ) 

 𝝀 = [𝜙, 𝜆, ℎ]𝑇 (A-67) 

   
With the height above WGS84 reference ellipsoid ℎ. 

The position of 𝑃𝑏 in ECEF frame 𝒙𝑒 can be calculated from WGS84 coordinates with [16] 

 

𝒙𝑒 = −𝑹𝑒𝑛 [
0
0

𝑁(𝜙) + ℎ
] − [

0
0

𝑒2𝑁(𝜙) 𝑠𝑖𝑛(𝜙)
] = [

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜆)

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜆)

((1 − 𝑒2)𝑁(𝜙) + ℎ) 𝑠𝑖𝑛(𝜙)
] (A-68) 

   

With the normal curvature radius 𝑁(𝜙) =
𝑎

√1−𝑒2 𝑠𝑖𝑛2𝜙
 and the first eccentricity 𝑒 = √

𝑎2−𝑏2

𝑎2
 [16]. 𝑎 

and 𝑏 are the semi-major and semi-minor axis of the WGS84 ellipsoid respectively [18]. 

The differential equation for WGS84 position with NED velocities as input can be derived from  

 
𝒗𝑛 = [

𝑣𝑁
𝑣𝐸
𝑣𝐷
] = 𝑹𝑒𝑛

𝑇 𝒗𝑒 (A-69) 

   
by inserting 

 
𝒗𝑒 = �̇�𝑒 = −�̇�𝑒𝑛 [

0
0

𝑁(𝜙) + ℎ
] − 𝑹𝑒𝑛 [

0
0

𝑁′(𝜙)�̇� + ℎ̇
] − [

0
0

𝑒2𝑁′(𝜙)�̇� 𝑠𝑖𝑛(𝜙)
]

− [

0
0

𝑒2𝑁(𝜙) 𝑐𝑜𝑠(𝜙) �̇�
] 

(A-70) 

   
 

This gives  
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𝒗𝑛 = −[𝝎𝑒𝑛 ×] [

0
0

𝑁(𝜙) + ℎ
] − [

0
0

𝑁′(𝜙)�̇� + ℎ̇
]

− 𝑒2 [
𝑐𝑜𝑠(𝜙)
0

−𝑠𝑖𝑛(𝜙)
] (𝑁′(𝜙) 𝑠𝑖𝑛(𝜙) + 𝑁(𝜙) 𝑐𝑜𝑠(𝜙))�̇�

= [
0
0

𝑁(𝜙) + ℎ
] × 𝝎𝑒𝑛 − [

𝑀(𝜙) 𝑐𝑜𝑡(𝜙) �̇�
0
ℎ̇

] 

(A-71) 

   
With the meridian curvature radius 𝑀(𝜙) =

𝑎(1−𝑒2)

(1−𝑒2 𝑠𝑖𝑛2𝜙)
3
2

 [16]. 

The angular rate between NED and ECEF frame is defined by the differential equation for 𝑹𝑒𝑛 

as 

 

𝝎𝑒𝑛 = 𝑣𝑒𝑐𝑘(𝑹𝑒𝑛
𝑇 �̇�𝑒𝑛) = 𝑣𝑒𝑐𝑘 [

0 𝑠𝑖𝑛(𝜙) �̇� −�̇�

− 𝑠𝑖𝑛(𝜙) �̇� 0 −𝑐𝑜𝑠(𝜙) �̇�

�̇� 𝑐𝑜𝑠(𝜙) �̇� 0

] = [

𝑐𝑜𝑠(𝜙) �̇�

−�̇�

− 𝑠𝑖𝑛(𝜙) �̇�

] (A-72) 

   
𝝎𝑒𝑛 is referred to as transport rate. Rotating with 𝝎𝑒𝑛 the NED frame remains north indicating 

and locally tangential to the WGS84 ellipsoid. 

Inserting equation (A-72) in (A-71) and after some simplification of the terms including normal 

and meridian curvature radii 

 

𝒗𝑛 = [

(𝑁(𝜙) + ℎ)�̇� − 𝑀(𝜙) 𝑐𝑜𝑡(𝜙) �̇�

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙) �̇�

−ℎ̇

] = [

(𝑀(𝜙) + ℎ)�̇�

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙) �̇�

−ℎ̇

] (A-73) 

   
Equation (A-73) can be inverted to find the WGS84 position differential equations with 

velocities in 𝑛-frame:  

 �̇� =
𝑣𝑁

𝑀(𝜙) + ℎ

�̇� =
𝑣𝐸

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙)

ℎ̇ = −𝑣𝐷

 (A-74) 

   
With equation (A-74) the transport rate 𝝎𝑒𝑛 becomes 

 

𝝎𝑒𝑛(𝜙, ℎ, 𝑣𝑁 , 𝑣𝐸) =

[
 
 
 
 
 
 

𝑣𝐸
𝑁(𝜙) + ℎ

−
𝑣𝑁

𝑀(𝜙) + ℎ

−
𝑡𝑎𝑛(𝜙) 𝑣𝐸
𝑁(𝜙) + ℎ ]

 
 
 
 
 
 

 (A-75) 

   
Deriving the differential equation for velocities in 𝑛-frame from the ECEF inertial navigation 

equation (A-62) is straightforward:  

 
�̇�𝑛 =

𝑑

𝑑𝑡
(𝑹𝑒𝑛

𝑇 𝒗𝑒) = �̇�𝑒𝑛
𝑇 𝒗𝑒 + 𝑹𝑒𝑛

𝑇 �̇�𝑒

= −𝝎𝑒𝑛 × 𝒗𝑛 − 2(𝑹𝑒𝑛
𝑇 𝝎𝑖𝑒) × 𝒗𝑛 + 𝑹𝑛𝑏𝒇𝑏 + 𝜸𝑛(𝒙𝑒) 

(A-76) 
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The differential equation for the NED to body-fixed frame orientation quaternion is (A-48) 

 
�̇̆�𝑛𝑏 =

1

2
�̆�𝑛𝑏 ⋅ �̆�𝑛𝑏 (A-77) 

   
Alternatively with �̆�𝑛𝑏 = �̆�𝑖𝑏 − �̆�𝑛𝑏

−1 ⋅ �̆�𝑖𝑛 ⋅ �̆�𝑛𝑏 and preferable because IMU rate measurements 

𝝎𝑖𝑏 explicitly appear as input: 

 
�̇̆�𝑛𝑏 =

1

2
(�̆�𝑛𝑏 ⋅ �̆�𝑖𝑏 − �̆�𝑖𝑛 ⋅ �̆�𝑛𝑏) (A-78) 

   
Finally the full set of inertial navigation equations for WGS84 positions, NED-velocities and 

orientation parametrization with quaternions is 

 �̇� =
𝑣𝑁

𝑀(𝜙) + ℎ

�̇� =
𝑣𝐸

(𝑁(𝜙) + ℎ) 𝑐𝑜𝑠(𝜙)

ℎ̇ = −𝑣𝐷

 (A-79) 

 �̇�𝑛 = 𝑹𝑛𝑏(�̆�𝑛𝑏) ⋅ 𝒇𝑏 + 𝜸𝑛(𝜙, ℎ) − (2𝑹𝑒𝑛
𝑇 (𝜙, 𝜆) ⋅ 𝝎𝑖𝑒 +𝝎𝑒𝑛(𝜙, ℎ, 𝑣𝑛, 𝑣𝑒)) × 𝒗𝑛 (A-80) 

 
�̇̆�𝑛𝑏 =

1

2
(�̆�𝑛𝑏 ⋅ �̆�𝑖𝑏 − �̆�𝑖𝑛(𝜙, 𝜆, ℎ, 𝑣𝑛, 𝑣𝑒) ⋅ �̆�𝑛𝑏) (A-81) 

Like equations (A-61) through (A-63) these equations take the measurements of a body-fixed 

IMU sensor as input. Because of this they are referred to as strapdown equations. If not 

mentioned otherwise, the function 𝒔 will refer to the strapdown equations (A-79) through (A-

81) in this text with  

 �̇�𝑛(𝑡) = 𝒔(𝒛𝑛(𝑡), 𝒇𝑏(𝑡),𝝎𝑖𝑏(𝑡)) (A-82) 

 

𝒛𝑛(𝑡) =

[
 
 
 
 
𝜙(𝑡)

𝜆(𝑡)

ℎ(𝑡)

𝒗𝑛(𝑡)

�̆�𝑛𝑏(𝑡)]
 
 
 
 

 and 𝒖𝐼𝑀𝑈(𝑡) = [
𝒇𝑏
𝝎𝑖𝑏
𝑏 ] (A-83) 

   
Note that for 𝜙 → +

𝜋

2
 and 𝜙 → −

𝜋

2
 the derivative of geodetic longitude �̇� and the transport 

rate 𝝎𝑒𝑛 (see equation (A-75)) go to ∞. Because the transport rate appears in the differential 

equations for 𝒗𝑛 and 𝒒𝑛𝑏 as well, the complete set of inertial navigation system equations in 

the form of equations (A-79) through (A-81) is invalid at the geographic poles. This 

shortcoming can be accepted in most cases (for 𝜙 ≤ 84°: 
1

𝑐𝑜𝑠(𝜙)
≤ 10). If all-world applicability 

is required, �̇�  and �̇�  differential equations can be substituted by a quaternion position 

differential equation. Furthermore, north-indicating azimuth navigation must be given up in 

vicinity of the geographic poles (c.f. polar navigation and world-wide capability in [20, 21]). 

The definition of the WGS84 ellipsoid as a geocentric equipotential ellipsoid [18] reduces the 

effort of gravity modeling for small heights ℎ to a 1D model  

 
𝜸𝑛 = [

0
0
𝛾𝐷

] (A-84) 

   
where only the gravity component normal to the WGS84 ellipsoid is nonzero. 
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On the ellipsoid surface this is in accordance with the exact closed form solution for the 

gravity field of an equipotential ellipsoid provided by the formula of Somigliana  

 
𝛾𝐷(𝜙, ℎ)|ℎ=0 = 𝛾𝑒

1 + 𝑘 𝑠𝑖𝑛2(𝜙)

√1 − 𝑒2 𝑠𝑖𝑛2(𝜙)
 (A-85) 

   
with 𝑘 =

𝑏𝛾𝑝

𝑎𝛾𝑒
− 1, see [18]. 

The equipotential ellipsoid is defined by semi-major axis 𝑎, ellipsoidal flattening 𝑓, angular 

rate 𝜔𝑖𝑒  and the earth’s gravitational constant 𝐺𝑀 . See [18] for the values of these 

parameters and formulas for derived parameters used in Somigliana’s formula, such as semi-

minor axis 𝑏, first eccentricity 𝑒 and gravity at equator and poles 𝛾𝑒 and 𝛾𝑝. 

For heights below 30𝑘𝑚 a 2nd order approximation yields acceptable results 

 
𝛾𝐷(𝜙, ℎ) ≈ 𝛾𝐷(𝜙, ℎ)|ℎ=0 ⋅ (1 −

2

𝑎
(1 + 𝑓 +𝑚 − 2𝑓 𝑠𝑖𝑛2(𝜙))ℎ +

3

𝑎2
ℎ2) (A-86) 

   
with 𝑚 =

‖𝝎𝑖𝑒‖
2𝑎2𝑏

𝐺𝑀
, see [18]. 
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A.3 SPECIFIC FORCE LEVER ARM 
 

This appendix is an more detailed version of the derivation found in section 2.6 of the author’s 

Diploma thesis [39]. 

 

Starting with the relationship of kinematic velocity of navigation reference point 𝑅  and 

center of gravity 𝐺 

 𝒗𝑒
𝑅 = 𝒗𝑒

𝐺 + �̇�𝑒
𝐺𝑅 (A-87) 

   
With the definition of NED kinematic velocity 𝒗𝑛 ≔ 𝑹𝑒𝑛

𝑇 𝒗𝑒 and the rigid body assumption �̇�𝑏
𝐺𝑅 =

𝟎 this becomes 

 𝒗𝑛
𝑅 = 𝑹𝑒𝑛

𝑇 𝒗𝑒
𝐺 + 𝑹𝑛𝑏(𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅) (A-88) 

   
Taking the time derivative of above equation yields the desired differential equation of NED 

velocity in navigation reference point 𝑅 (again with �̇�𝑏
𝐺𝑅 = 𝟎) 

 �̇�𝑛
𝑅 = 𝑹𝑒𝑛

𝑇 (𝝎𝑛𝑒 × 𝒗𝑒
𝐺) + 𝑹𝑒𝑛

𝑇 �̇�𝑒
𝐺 + 𝑹𝑛𝑏 (𝝎𝑛𝑏 × (𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅)) + 𝑹𝑛𝑏(�̇�𝑒𝑏 × 𝒓𝑏
𝐺𝑅) (A-89) 

   
The equations of motion of a point mass are valid in the center of gravity. Consequently, they 

can be inserted for the time derivative of kinematic velocity of the center of gravity �̇�𝑒
𝐺. The 

first two terms on the right hand side become 

𝑹𝑒𝑛
𝑇 (𝝎𝑛𝑒 × 𝒗𝑒

𝐺) + 𝑹𝑒𝑛
𝑇 �̇�𝑒

𝐺 = 𝑹𝑒𝑛
𝑇 (𝝎𝑛𝑒 × 𝒗𝑒

𝐺) + 𝑹𝑛𝑏𝒇𝑏
𝐺 +𝑹𝑒𝑛

𝑇 𝜸𝑒
𝐺 − 2𝑹𝑒𝑛

𝑇 (𝝎𝑖𝑒 × 𝒗𝑒
𝐺) = �̇�𝑛

𝐺 (A-90) 

   
This gives 

 �̇�𝑛
𝑅 = �̇�𝑛

𝐺 + 𝑹𝑛𝑏 (𝝎𝑛𝑏 × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅)) + 𝑹𝑛𝑏(�̇�𝑒𝑏 × 𝒓𝑏

𝐺𝑅)⏟                              
Δ𝒂𝑛,1

𝐺𝑅

 
(A-91) 

   
The two last terms on the right hand side are caused by the lever arm between center of 

gravity and navigation reference point 𝒓𝑏
𝐺𝑅. Additionally, when writing center of gravity NED 

velocity time derivative �̇�𝑛
𝐺 as function of navigation reference point velocity and computing 

gravity vector in point 𝑅 

 (A-92) 

�̇�𝑛
𝐺 = 𝑹𝑛𝑏𝒇𝑏

𝐺 + 𝒈𝑛
𝑅 −Δ𝒈𝑛

𝐺𝑅⏟    
≈𝟎

−𝑹𝑒𝑛
𝑇 (𝝎𝑖𝑒 × (𝝎𝑖𝑒 × 𝒓𝑒

𝐺)) − 𝑹𝑒𝑛
𝑇 ((2𝝎𝑖𝑒 + 𝑹𝑒𝑛𝝎𝑒𝑛) × (𝑹𝑒𝑛𝒗𝑛

𝑅 − �̇�𝑒
𝐺𝑅))

= 𝑹𝑛𝑏𝒇𝑏
𝐺 + 𝜸𝑛

𝑅 − (2𝑹𝑒𝑛
𝑇 𝝎𝑖𝑒 +𝝎𝑒𝑛) × 𝒗𝑛

𝑅

+ 𝑹𝑒𝑛
𝑇 (𝝎𝑖𝑒 × (𝝎𝑖𝑒 × (𝑹𝑒𝑏𝒓𝑏

𝐺𝑅))) + (2𝑹𝑒𝑛
𝑇 𝝎𝑖𝑒 +𝝎𝑒𝑛) × (𝑹𝑛𝑏(𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅))
⏟                                                

Δ𝒂𝑛,2
𝐺𝑅

 

   
With the lever arm corrections Δ𝒂𝑏

𝐺𝑅 ≔ 𝑹𝑛𝑏
𝑇 ( Δ𝒂𝑛,1

𝐺𝑅 + Δ𝒂𝑛,2
𝐺𝑅 )  an equivalent specific force in 

navigation reference point 𝑅 can be defined that may consistently be used as input to the 

strapdown equations to determine �̇�𝑛
𝑅 (i.e. corresponds to what an ideal accelerometer triad 

would measure at this point) 

 𝒇𝑏
𝑅 ≔ 𝒇𝑏

𝐺 + Δ𝒂𝑏
𝐺𝑅 (A-93) 
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Writing 

Δ𝒂𝑛,2
𝐺𝑅 = 𝑹𝑛𝑏 ((2𝑹𝑒𝑏

𝑇 𝝎𝑖𝑒) × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅) + (𝑹𝑛𝑏

𝑇 𝝎𝑒𝑛) × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅))

+ 𝑹𝑒𝑛
𝑇 (𝝎𝑖𝑒 × (𝝎𝑖𝑒 × (𝑹𝑒𝑏𝒓𝑏

𝐺𝑅))) 
(A-94) 

   
And inserting Δ𝒂𝑛,1

𝐺𝑅  and Δ𝒂𝑛,2
𝐺𝑅  in Δ𝒂𝑏

𝐺𝑅 

Δ𝒂𝑏
𝐺𝑅 = 𝝎𝑖𝑏 × (𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅) + (𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × (𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅) + �̇�𝑒𝑏 × 𝒓𝑏
𝐺𝑅

+ 𝑹𝑒𝑏
𝑇 (𝝎𝑖𝑒 × (𝝎𝑖𝑒 × (𝑹𝑒𝑏𝒓𝑏

𝐺𝑅))) 
(A-95) 

   
Using the identity 

 𝝎𝑖𝑏 × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅) = −𝒓𝑏

𝐺𝑅 × (𝝎𝑖𝑏 ×𝝎𝑒𝑏) − 𝝎𝑒𝑏 × (𝒓𝑏
𝐺𝑅 ×𝝎𝑖𝑏) (A-96) 

   
This becomes  

Δ𝒂𝑏
𝐺𝑅 = (𝑹𝑒𝑏

𝑇 𝝎𝑖𝑒) × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅) + 𝝎𝑒𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏

𝐺𝑅) + (𝝎𝑖𝑏 ×𝝎𝑒𝑏) × 𝒓𝑏
𝐺𝑅 + �̇�𝑒𝑏 × 𝒓𝑏

𝐺𝑅

+𝑹𝑒𝑏
𝑇 (𝝎𝑖𝑒 × (𝝎𝑖𝑒 × (𝑹𝑒𝑏𝒓𝑏

𝐺𝑅))) 
(A-97) 

   
With 

(𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × (𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅) +𝝎𝑒𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏
𝐺𝑅)

= (𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × (𝝎𝑒𝑏 × 𝒓𝑏

𝐺𝑅) + 𝝎𝑒𝑏 × ((𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × 𝒓𝑏

𝐺𝑅 +𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅)

= 𝝎𝑖𝑏 × (𝝎𝑒𝑏 × 𝒓𝑏
𝐺𝑅) + (𝝎𝑖𝑏 − 𝑹𝑒𝑏

𝑇 𝝎𝑖𝑒) × ((𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × 𝒓𝑏

𝐺𝑅)

= 𝝎𝑖𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏
𝐺𝑅) − (𝑹𝑒𝑏

𝑇 𝝎𝑖𝑒) × ((𝑹𝑒𝑏
𝑇 𝝎𝑖𝑒) × 𝒓𝑏

𝐺𝑅) 

(A-98) 

   
This simplifies to 

 Δ𝒂𝑏
𝐺𝑅 = 𝝎𝑖𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏

𝐺𝑅) + (𝝎𝑖𝑏 ×𝝎𝑒𝑏) × 𝒓𝑏
𝐺𝑅 + �̇�𝑒𝑏 × 𝒓𝑏

𝐺𝑅 (A-99) 

   
With �̇�𝑖𝑏 =

𝑑

𝑑𝑡
(𝑹𝑒𝑏

𝑇 𝝎𝑖𝑒 +𝝎𝑒𝑏) = 𝑹𝑒𝑏
𝑇 (𝝎𝑏𝑒 ×𝝎𝑖𝑒) + �̇�𝑒𝑏 = 𝝎𝑖𝑏 ×𝝎𝑒𝑏 + �̇�𝑒𝑏 finally 

 
Δ𝒂𝑏

𝐺𝑅 = 𝝎𝑖𝑏 × (𝝎𝑖𝑏 × 𝒓𝑏
𝐺𝑅) + �̇�𝑖𝑏 × 𝒓𝑏

𝐺𝑅 
(A-

100) 

   
Note that only the change in gravitation was neglected Δ𝒈𝑛

𝐺𝑅 ≈ 𝟎. 

 

  



164 

A.4 RIGID BODY EQUATIONS OF ROTATIONAL MOTION 
 

This appendix is based on chapter 4 of the author’s Diploma thesis [39]. 

 

With equations (A-49) and (A-51) for an infinitesimal mass 𝑑𝑚 located in 𝑃𝑑𝑚 

 𝑑𝐹𝑖,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑃𝑑𝑚) = 𝑑𝑚 ⋅ 𝒂𝑖(𝑃𝑑𝑚) − 𝑑𝐹𝑖,𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝑑𝑚) (A-101) 

   
With the vector from center of gravity 𝐺 to 𝑃𝑑𝑚 𝛥𝒙𝑖(𝑃𝑑𝑚) 

 𝒙𝑖(𝑃𝑑𝑚) = 𝛥𝒙𝑖(𝑃𝑑𝑚) + 𝒙𝑖(𝐺) (A-102) 

   
and 

 𝒂𝑖(𝑃𝑑𝑚) = 𝛥�̈�𝑖(𝑃𝑑𝑚) + 𝒂𝑖(𝐺) (A-103) 

   
the integral of infinitesimal moments in 𝐺 due to infinitesimal external forces is 

 

𝑴𝑖,𝑠𝑢𝑚 ≔ ∫ 𝛥𝒙𝑖(𝑃𝑑𝑚) × 𝑑𝐹𝑖,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑃𝑑𝑚)

𝑚

 

= ∫ 𝛥𝒙𝑖(𝑃𝑑𝑚) × 𝛥�̈�𝑖(𝑃𝑑𝑚)𝑑𝑚

𝑚

− ∫ 𝛥𝒙𝑖(𝑃𝑑𝑚)𝑑𝑚

𝑚

× (𝒂𝑖(𝐺) + 𝒈𝑖(𝐺)) 

(A-104) 

   
where variations of gravitational acceleration over the body have been neglected, i.e. 

𝒈𝑖(𝑃𝑑𝑚) ≈ 𝒈𝑖(𝐺). From the definition of the center of gravity 𝐺 and with equation (A-102) it 

follows that 

 

∫ 𝛥𝒙𝑖(𝑃𝑑𝑚)𝑑𝑚

𝑚

= ∫ 𝒙𝑖(𝑃𝑑𝑚)𝑑𝑚

𝑚

−𝑚𝒙𝑖(𝐺) ≡ 𝟎 (A-105) 

   
Furthermore with the direction cosine matrix differential equation (A-26) and for a constant 

mass distribution and with rigid body constraints (A-59)  

 
𝛥�̈�𝑖(𝑃𝑑𝑚) =

𝑑2

𝑑𝑡2
(𝛥𝒙𝑏(𝑃𝑑𝑚)) =

𝑑2𝑹𝑖𝑏
𝑑𝑡2

𝛥𝒙𝑏(𝑃𝑑𝑚) = (𝑹𝑖𝑏𝜴𝑖𝑏𝜴𝑖𝑏 + 𝑹𝑖𝑏�̇�𝑖𝑏)𝛥𝒙𝑏(𝑃𝑑𝑚) (A-106) 

   
This gives 

 

𝑴𝑏,𝑠𝑢𝑚 ≔ 𝑹𝑖𝑏
𝑇 ∫ 𝛥𝒙𝑖(𝑃𝑑𝑚) × 𝛥�̈�𝑖(𝑃𝑑𝑚)𝑑𝑚

𝑚

 

= ∫ 𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))(𝜴𝑖𝑏𝜴𝑖𝑏 + �̇�𝑖𝑏)𝛥𝒙𝑏(𝑃𝑑𝑚)𝑑𝑚

𝑚

 

(A-107) 

   
This result can be simplified using the Jacobi identity 𝒗1 × (𝒗2 × 𝒗3) + 𝒗2 × (𝒗3 × 𝒗1) +

𝒗3 × (𝒗1 × 𝒗2) = 𝟎 . For two skew symmetric matrices 𝜴1 = 𝑠𝑘𝑒𝑤(𝒗1)  and 𝜴2 = 𝑠𝑘𝑒𝑤(𝒗2)  this 

cross product identity gives 

 𝜴1𝜴2 = 𝜴2𝜴1 + 𝑠𝑘𝑒𝑤(𝜴1𝒗2) = 𝜴2𝜴1 − 𝑠𝑘𝑒𝑤(𝜴2𝒗1) (A-108) 
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Using this identity 

 𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝜴𝑖𝑏𝜴𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚)

= (𝜴𝑖𝑏𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚)) − 𝑠𝑘𝑒𝑤(𝜴𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚)))𝜴𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚)

= 𝜴𝑖𝑏𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝜴𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚) 

(A-109) 

   
Now with 𝜴𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚) =  −𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝝎𝑖𝑏 and �̇�𝑖𝑏𝛥𝒙𝑏(𝑃𝑑𝑚) =  −𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))�̇�𝑖𝑏 

 

𝑴𝑏,𝑠𝑢𝑚 = − ∫ 𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑑𝑚

𝑚

�̇�𝑖𝑏 

−𝜴𝑖𝑏 ∫ 𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑑𝑚

𝑚

𝝎𝑖𝑏 

(A-110) 

   
Define the inertia matrix  

 

𝑰𝑏𝑏 ≔ − ∫ 𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑠𝑘𝑒𝑤(𝛥𝒙𝑏(𝑃𝑑𝑚))𝑑𝑚

𝑚

 (A-111) 

   
For 𝛥𝒙𝑏(𝑃𝑑𝑚) = [𝛥𝑥 𝛥𝑦 𝛥𝑧]𝑇 this is 

 

𝑰𝑏𝑏 = ∫ [

𝛥𝑦2 + 𝛥𝑧2 −𝛥𝑥𝛥𝑦 −𝛥𝑥𝛥𝑧

−𝛥𝑥𝛥𝑦 𝛥𝑥2 + 𝛥𝑧2 −𝛥𝑦𝛥𝑧

−𝛥𝑥𝛥𝑧 −𝛥𝑦𝛥𝑧 𝛥𝑥2 + 𝛥𝑦2
] 𝑑𝑚

𝑚

 (A-112) 

   
Inserting (A-111) in (A-110) gives the equation of rotational motion in body-fixed frame 

 𝑴𝑏,𝑠𝑢𝑚 = 𝑰𝑏𝑏�̇�𝑖𝑏 + 𝜴𝑖𝑏𝑰𝑏𝑏𝝎𝑖𝑏 (A-113) 

   
Note that with 𝑰𝑏𝑏 = 𝑐𝑜𝑛𝑠𝑡. this is equivalent to  

 
𝑴𝑖,𝑠𝑢𝑚 = 𝑹𝑖𝑏𝑴𝑏,𝑠𝑢𝑚 =

𝑑

𝑑𝑡
(𝑹𝑖𝑏𝑰𝑏𝑏𝝎𝑖𝑏) (A-114) 
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A.5 ERROR STATE PROPAGATION MODEL FOR HEADING AND AIRSPEED DEAD RECKONING 
 

 

In the perturbation analysis of equation (2-2) 

 

 �̇�𝐻 =

[
 
 
 
 

1

𝑀(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅
0

0
1

(𝑁(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅 ) 𝑐𝑜𝑠(𝜙𝑊𝐺𝑆84
𝑅 )]

 
 
 
 

𝒗𝐻𝑛 (A-115) 

   
errors in the computation of normal and meridian radii can be neglected because they 

correspond to scale factor errors on the order of 1𝑝𝑝𝑚  for distances travelled in north 

direction of ~100𝑘𝑚 (and radii computed at initial position). Similarly, errors in height of up to 

5500𝑚 (approximately 18000𝑓𝑡) will cause a scale factor error in position propagation of less 

than 1000𝑝𝑝𝑚 which is still negligibly small. 

Notice that integration of longitude becomes very sensitive to latitude errors at high latitudes. 

10𝑘𝑚 north position error introduce a scale factor error in longitude propagation of 15000𝑝𝑝𝑚 

at 85° latitude and 2600𝑝𝑝𝑚  at 60° latitude respectively. For the applications considered 

here, this effect may be dismissed from analysis as well. 

Consequently, horizontal position error approximately evolves in time according to 

 

𝛿�̇�𝐻 ≈

[
 
 
 
 

1

𝑀(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅
0

0
1

(𝑁(𝜙𝑊𝐺𝑆84,0
𝑅 ) + ℎ𝑊𝐺𝑆84

𝑅 ) 𝑐𝑜𝑠(𝜙𝑊𝐺𝑆84
𝑅 )]

 
 
 
 

𝛿𝒗𝐻𝑛 (A-116) 

   
with the error in horizontal kinematic velocity vector due to errors in wind and aerodynamic 

horizontal velocity vectors 

 𝛿𝒗𝐻𝑛 = 𝛿𝒗𝐻𝑊𝑛 + 𝛿𝒗𝐻𝐴𝑛 (A-117) 

   
The error in aerodynamic velocity vector is due to errors in computed body-frame 

orientation, errors in computed aerodynamic angles of attack and sideslip and due to error 

in measured airspeed: 

 𝛿𝒗𝐴𝑛 = 𝛿(𝑹𝑛𝑏𝑹𝑎𝑏
𝑇 [𝑉𝐴 0 0]𝑇)

= (𝑰 − �̂�𝑛𝑏𝑹𝑛𝑏
𝑇 )𝑹𝑛𝑎𝑙[𝑉𝐴 0 0]𝑇

+ 𝑹𝑛𝑏(𝑹𝑎𝑏
𝑇 �̂�𝑎𝑏 − 𝑰)�̂�𝑎𝑏

𝑇 [𝑉𝐴 0 0]𝑇 + 𝑹𝑛𝑎𝑙[𝛿𝑉𝐴 0 0]𝑇 

(A-118) 

   
With the linearization of orientation error 𝑰 − �̂�𝑛𝑏𝑹𝑛𝑏

𝑇 ≈ [𝜳 ×] (see section 2.2.2.1) accounting 

for small heading error only 𝜳 ≈ [0 0 𝛿𝛹𝑛𝑏]
𝑇 and with 

 
𝑹𝑛𝑎𝑙 = [

cos(𝜒𝐴) − sin(𝜒𝐴) 0

sin(𝜒𝐴) cos(𝜒𝐴) 0
0 0 1

] [
cos(𝛾𝐴) 0 sin(𝛾𝐴)
0 1 0

− sin(𝛾𝐴) 0 cos(𝛾𝐴)
] (A-119) 

   
the first term in equation (A-118) can be approximated with 𝛹𝑛𝑏 ≈ 𝜒𝐴 and cos(𝛾𝐴) ≈ 1 as 

 
(𝑰 − �̂�𝑛𝑏𝑹𝑛𝑏

𝑇 )𝑹𝑛𝑎𝑙 [
𝑉𝐴
0
0
] ≈ [

−sin(𝛹𝑛𝑏)

cos(𝛹𝑛𝑏)
0 

] 𝛿𝛹𝑛𝑏𝑉𝐴 (A-120) 
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Note that in this simplification horizontal orientation error (i.e. error in computed roll and pitch) 

is assumed negligible. 

Because no information is available on aerodynamic angles of attack and sideslip, the 

values of computed aerodynamic angles of attack and sideslip are zero and �̂�𝑎𝑏 = 𝑰. This 

gives approximately for small true aerodynamic angles of attack and sideslip 

(𝑹𝑎𝑏
𝑇 �̂�𝑎𝑏 − 𝑰)�̂�𝑎𝑏

𝑇 [𝑉𝐴 0 0]𝑇 ≈ [
𝑉𝐴
0
0
] × [

0
𝛼𝐴
−𝛽𝐴

] 

With  

𝑹𝑛𝑏 = [
cos(𝛹𝑛𝑏) − sin(𝛹𝑛𝑏) 0

sin(𝛹𝑛𝑏) cos(𝛹𝑛𝑏) 0
0 0 1

] [
cos(𝜃𝑛𝑏) 0 sin(𝜃𝑛𝑏)

0 1 0
− sin(𝜃𝑛𝑏) 0 cos(𝜃𝑛𝑏)

] [

1 0 0
0 cos(𝛷𝑛𝑏) − sin(𝛷𝑛𝑏)

0 sin(𝛷𝑛𝑏) cos(𝛷𝑛𝑏)
] 

this gives for the second term in equation (A-118)  

𝑹𝑛𝑏(𝑹𝑎𝑏
𝑇 �̂�𝑎𝑏 − 𝑰)�̂�𝑎𝑏

𝑇 [𝑉𝐴 0 0]𝑇

≈ [
− sin(𝛹𝑛𝑏)

cos(𝛹𝑛𝑏)
0 

] (cos(𝛷𝑛𝑏) 𝛽𝐴 − sin(𝛷𝑛𝑏)𝛼𝐴)𝑉𝐴 + ([
cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
0 

] sin(𝜃𝑛𝑏) + [
0
0
1
] cos(𝜃𝑛𝑏))

+ (sin(𝛷𝑛𝑏)𝛽𝐴 + cos(𝛷𝑛𝑏)𝛼𝐴)𝑉𝐴 

In the following, elevation angle is assumed small and sin(𝜃𝑛𝑏) ≈ 0. 

Finally, the last term becomes with 𝛹𝑛𝑏 ≈ 𝜒𝐴 and cos(𝛾𝐴) ≈ 1 and equation (A-119) 

𝑹𝑛𝑎𝑙[𝛿𝑉𝐴 0 0]𝑇 ≈ [
cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
0 

] 𝛿𝑉𝐴 − [
0
0

sin(𝛾𝐴)
] 𝛿𝑉𝐴 

The horizontal aerodynamic velocity error becomes approximately 

 
𝛿𝒗𝐻𝐴𝑛 ≈ [

cos(𝛹𝑛𝑏)

sin(𝛹𝑛𝑏)
] 𝛿𝑉𝐴 + [

− sin(𝛹𝑛𝑏)

cos(𝛹𝑛𝑏)
] (𝛿𝛹𝑛𝑏 + cos(𝛷𝑛𝑏) 𝛽𝐴 − sin(𝛷𝑛𝑏)𝛼𝐴)𝑉𝐴 (A-121) 

   
Inserting equations (A-121) and (A-117) in (A-116) gives equation (2-16). 

Elevation angle 𝛩𝑛𝑏, aerodynamic angles of attack and sideslip and errors error in computed 

roll and pitch are assumed small. Furthermore, 𝛹𝑛𝑏 ≈ 𝜒𝐴 and cos(𝛾𝐴) ≈ 1 is assumed. 
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A.6 PERTURBATION ERROR DIFFERENTIAL EQUATIONS 
 

 

This appendix is based on section 3.2 of the author’s Diploma thesis [39] and the references 

cited therein. 

 

The navigation state error vector is defined in this work as 

 

 𝛿𝒛 ≔

[
 
 
 
 
𝛿𝜙
𝛿𝜆
𝛿ℎ
𝛿𝒗𝑛
𝝓 ]
 
 
 
 

 (A-122) 

   
with the equivalence of Euler angle parametrization of orientation error 𝜱 and the phi angle 

orientation error 𝝓𝑛 in linear approximation  

𝝓𝑛 ≐ 𝜱 

the linear differential equations for phi angle orientation error 𝝓𝑛  can be derived by 

linearizing the nonlinear differential equations for the orientation error Euler angles 𝜱. 

The starting point is the following system of nonlinear navigation error differential equations 

 

[
 
 
 
 
 
𝛿�̇�

𝛿�̇�
𝛿ℎ̇
𝛿�̇�𝑛
�̇� ]
 
 
 
 
 

=

[
 
 
 
 
 
 �̇� − �̇̂�

�̇� − �̇̂�

ℎ̇ − ℎ̇̂
�̇�𝑛 − �̇̂�𝒏

[𝛿�̇�1, 𝛿�̇�2, 𝛿�̇�3]
𝑇
]
 
 
 
 
 
 

 (A-123) 

   
The derivatives of computed values are calculated from known equations and using known 

parameters and input values only. 

For the translation states with equation (A-82) accounting for accelerometer measurement 

error 𝛿𝒇𝑏 and gravity model error 𝛿𝜸𝑛:  

 

[
𝛿�̇�

𝛿�̇�
𝛿ℎ̇

] =

[
 
 
 
 
 

𝑣𝑁 + 𝛿𝑣𝑁

𝑀(�̂� + 𝛿𝜙) + ℎ̂ + 𝛿ℎ

𝑣𝐸 + 𝛿𝑣𝐸

(𝑁(�̂� + 𝛿𝜙) + ℎ̂ + 𝛿ℎ) ⋅ 𝑐𝑜𝑠(�̂� + 𝛿𝜙)

−𝑣𝐷 − 𝛿𝑣𝐷 ]
 
 
 
 
 

−

[
 
 
 
 
 

𝑣𝑁

𝑀(�̂�) + ℎ̂

𝑣𝐸

(𝑁(�̂�) + ℎ̂) ⋅ 𝑐𝑜𝑠�̂�

−𝑣𝐷 ]
 
 
 
 
 

 (A-124) 

   
and 

 𝛿�̇�𝑛 = 𝑹𝑛𝑏(�̃�𝑏 + 𝛿𝒇𝑏) − �̂�𝑛𝑏�̃�𝑏 + �̂�𝑛(�̂� + 𝛿𝜙, ℎ̂ + 𝛿ℎ) + 𝛿𝜸𝑛 − �̂�𝑛(�̂�, ℎ̂)

− (2𝑹𝑒𝑛
𝑇 (�̂� + 𝛿𝜙, �̂� + 𝛿𝜆)𝝎𝑖𝑒

+𝝎𝑒𝑛(�̂� + 𝛿𝜙, ℎ̂ + 𝛿ℎ, 𝑣𝑁 + 𝛿𝑣𝑛, 𝑣𝐸 + 𝛿𝑣𝑒)) × (�̂�𝑛 + 𝛿𝒗𝑛)

+ (2𝑹𝑒𝑛
𝑇 (�̂�, �̂�)𝝎𝑖𝑒 +𝝎𝑒𝑛(�̂�, ℎ̂, 𝑣𝑁 , 𝑣𝐸)) × �̂�𝑛 

(A-125) 
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Errors in the approximation of Earth’s angular rate are negligible and not considered here, 

i.e. �̂�𝑖𝑒 = 𝝎𝑖𝑒. 

The differential equation for the error in the NED to body-fixed rotation matrix 𝑹𝑛𝑏�̂�𝑛𝑏
𝑇  can be 

derived by accounting for gyroscope measurement error 𝛿𝝎𝑖𝑏 = 𝝎𝑖𝑏
𝑏 − �̃�𝑖𝑏 and equations (A-

25)-(A-26) 

 𝑑

𝑑𝑡
(𝑹𝑛𝑏�̂�𝑛𝑏

𝑇 ) = �̇�𝑛𝑏�̂�𝑛𝑏
𝑇 +𝑹𝑛𝑏�̇̂�𝑛𝑏

𝑇 = �̇�𝑛𝑏�̂�𝑛𝑏
𝑇 + 𝑹𝑛𝑏 �̇̂�𝑛𝑏

𝑇 �̂�𝑛𝑏⏟    
skew−symmetric

�̂�𝑛𝑏
𝑇

= �̇�𝑛𝑏�̂�𝑛𝑏
𝑇 −𝑹𝑛𝑏�̂�𝑛𝑏

𝑇 �̇̂�𝑛𝑏�̂�𝑛𝑏
𝑇

= (𝑹𝑛𝑏𝜴𝑖𝑏 −𝜴𝑖𝑛𝑹𝑛𝑏)�̂�𝑛𝑏
𝑇 −𝑹𝑛𝑏�̂�𝑛𝑏

𝑇 (�̂�𝑛𝑏�̂�𝑖𝑏 − �̂�𝑖𝑛�̂�𝑛𝑏)�̂�𝑛𝑏
𝑇

= 𝑹𝑛𝑏�̂�𝑛𝑏
𝑇 (�̂�𝑛𝑏𝛿𝜴𝑖𝑏�̂�𝑛𝑏

𝑇 + �̂�𝑖𝑛) − 𝜴𝑖𝑛𝑹𝑛𝑏�̂�𝑛𝑏
𝑇  

(A-126) 

   
The differential equation for the orientation error Euler angles 𝜱 is obtained by differentiation 

of equation (2-21) 

 
𝛿𝜙1 = 𝑎𝑡𝑎𝑛 (

𝑅32
𝑅33

)

𝛿𝜙2 = 𝑎𝑠𝑖𝑛(−𝑅31)

𝛿𝜙3 = 𝑎𝑡𝑎𝑛 (
𝑅21
𝑅11

)

 (A-127) 

   
with the elements 𝑅𝑖𝑗 of 𝑹 = 𝑹𝑛𝑏�̂�𝑛𝑏

𝑇 . This gives 

 
𝛿�̇�𝑁 =

𝑐𝑜𝑠(𝛿𝜑)

𝑐𝑜𝑠(𝛿𝜗)
�̇�32 −

𝑠𝑖𝑛(𝛿𝜑)

𝑐𝑜𝑠(𝛿𝜗)
�̇�33

𝛿�̇�𝐸 = −
1

𝑐𝑜𝑠(𝛿𝜗)
�̇�31

𝛿�̇�𝐷 =
𝑐𝑜𝑠(𝛿𝜓)

𝑐𝑜𝑠(𝛿𝜗)
�̇�21 −

𝑠𝑖𝑛(𝛿𝜓)

𝑐𝑜𝑠(𝛿𝜗)
�̇�11

 (A-128) 

   
To simplify derivation write �̇� = 𝑹𝑠𝑘𝑒𝑤(𝝎1) − 𝑠𝑘𝑒𝑤(𝝎2)𝑹. This gives 

 �̇�11 = 𝑅12𝜔1,𝑧 − 𝑅13𝜔1,𝑦 + 𝑅21𝜔2,𝑧 − 𝑅31𝜔2,𝑦

�̇�21 = 𝑅22𝜔1,𝑧 − 𝑅23𝜔1,𝑦 − 𝑅11𝜔2,𝑧 + 𝑅31𝜔2,𝑥

�̇�31 = 𝑅32𝜔1,𝑧 − 𝑅33𝜔1,𝑦 + 𝑅11𝜔2,𝑦 − 𝑅21𝜔2,𝑥

�̇�32 = −𝑅31𝜔1,𝑧 + 𝑅33𝜔1,𝑥 + 𝑅12𝜔2,𝑦 − 𝑅22𝜔2,𝑥

�̇�33 = 𝑅31𝜔1,𝑦 − 𝑅32𝜔1,𝑥 + 𝑅13𝜔2,𝑦 − 𝑅23𝜔2,𝑥

 (A-129) 

   
The elements of 𝑹 = 𝑹𝑛𝑏�̂�𝑛𝑏

𝑇  can be determined with equation (A-8) by setting 𝑹 =

𝑹3(𝛿𝜙𝐷)𝑹2(𝛿𝜙𝐸)𝑹1(𝛿𝜙𝑁). 

Finally, with equations (A-128) and (A-129), the nonlinear differential equation of orientation 

error Euler angles 𝜱 is 
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𝛿�̇�1 = 𝜔1,𝑥 + 𝑠𝑖𝑛(𝛿𝜙1) 𝑡𝑎𝑛(𝛿𝜙2)𝜔1,𝑦 + 𝑐𝑜𝑠(𝛿𝜙1) 𝑡𝑎𝑛(𝛿𝜙2)𝜔1,𝑧

−
𝑐𝑜𝑠(𝛿𝜙3)

𝑐𝑜𝑠(𝛿𝜙2)
𝜔2,𝑥 −

𝑠𝑖𝑛(𝛿𝜙3)

𝑐𝑜𝑠(𝛿𝜙2)
𝜔2,𝑦

𝛿�̇�2 = 𝑐𝑜𝑠(𝛿𝜙1)𝜔1,𝑦 − 𝑠𝑖𝑛(𝛿𝜙1)𝜔1,𝑧 + 𝑠𝑖𝑛(𝛿𝜙3)𝜔2,𝑥 − 𝑐𝑜𝑠(𝛿𝜙3)𝜔2,𝑦

𝛿�̇�3 =
𝑠𝑖𝑛(𝛿𝜙1)

𝑐𝑜𝑠(𝛿𝜙2)
𝜔1,𝑦 +

𝑐𝑜𝑠(𝛿𝜙1)

𝑐𝑜𝑠(𝛿𝜙2)
𝜔1,𝑧 − 𝑡𝑎𝑛(𝛿𝜙2) 𝑐𝑜𝑠(𝛿𝜙3)𝜔2,𝑥

−𝑡𝑎𝑛(𝛿𝜙2) 𝑠𝑖𝑛(𝛿𝜙3)𝜔2,𝑦 −𝜔2,𝑧

 (A-130) 

   
with 

 𝝎1 = �̂�𝑛𝑏𝛿𝝎𝑖𝑏 +𝝎𝑖𝑛(�̂�, �̂�, ℎ̂, 𝑣𝑁 , 𝑣𝐸)

𝝎2 = 𝝎𝑖𝑛(�̂� + 𝛿𝜙, �̂� + 𝛿𝜆, ℎ̂ + 𝛿ℎ, 𝑣𝑁 + 𝛿𝑣𝑛, 𝑣𝐸 + 𝛿𝑣𝑒)
 (A-131) 

   
The nonlinear error differential equations (A-124), (A-125) and (A-130) are linearized with 

respect to navigation state errors 𝛿𝒛 and sensor and model errors 𝛿𝒔 = [𝛿𝒇𝑏
𝑇 , 𝛿𝝎𝑖𝑏

𝑇 , 𝛿𝜸𝑛
𝑇]
𝑇
 in the 

stationary point 𝛿𝒛 = 𝟎, 𝛿𝒔 = 𝟎.  

The linearized differential equation of WGS84 position errors is  

 

[
𝛿�̇�

𝛿�̇�
𝛿ℎ̇

] ≐

[
 
 
 
 
 −

𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝑑𝑀

𝑑𝜙
|
�̂�

 0 −
𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

(𝑀(�̂�) + ℎ̂) 𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
𝑐𝑜𝑠(�̂�)

0 −
𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
⋅ 𝑐𝑜𝑠(�̂�)

0 0 0 ]
 
 
 
 
 

[
𝛿𝜙
𝛿𝜆
𝛿ℎ
]

+

[
 
 
 
 
 

1

𝑀(�̂�) + ℎ̂
0 0

0
1

(𝑁(�̂�) + ℎ̂) ⋅ 𝑐𝑜𝑠(�̂�)
0

0 0 −1]
 
 
 
 
 

𝛿𝒗𝑛 

(A-132) 

   
where 𝑀(𝜙) =

𝑎(1−𝑒2)

(1−𝑒2 𝑠𝑖𝑛2𝜙)
3
2

 and 𝑁(𝜙) =
𝑎

√1−𝑒2 𝑠𝑖𝑛2𝜙
 (see [16] and appendix A.2). Because a 

position error in north direction of 1𝑚 translates to an error in meridian curvature radius of 

~1𝑐𝑚  or less, 
𝑑𝑀

𝑑𝜙
|
�̂�

 can generally be neglected. Furthermore 
𝑀+ℎ

𝑁+ℎ
=

𝑀

𝑁+ℎ
+

ℎ

𝑁+ℎ
=
𝑀

𝑁
+ (1 −

𝑀

𝑁
)
ℎ

𝑁
 + 𝛰 (

ℎ2 

𝑁2
) ≈

𝑀

𝑁
 equals 1 for low altitudes compared to Earth’s radius with a maximum error 

of the order of 𝑒2 ≈ 0.00669438. Therefore it is valid to simplify the linearization as  

 

[
𝛿�̇�

𝛿�̇�
𝛿ℎ̇

] ≈

[
 
 
 
 
 0 0 −

𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠(𝜙′)
0 −

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
⋅ 𝑐𝑜𝑠(�̂�)

0 0 0 ]
 
 
 
 
 

[
𝛿𝜙
𝛿𝜆
𝛿ℎ
]

+

[
 
 
 
 
 

1

𝑀(�̂�) + ℎ̂
0 0

0
1

(𝑁(�̂�) + ℎ̂) ⋅ 𝑐𝑜𝑠(�̂�)
0

0 0 −1]
 
 
 
 
 

𝛿𝒗𝑛 

(A-133) 

   



Appendix 171 

The linearized differential equation for NED-velocity errors is with 

(𝑹𝑛𝑏 − �̂�𝑛𝑏)�̃�𝑏 = (𝑹𝑛𝑏�̂�𝑛𝑏
𝑇 − 𝑰)�̂�𝑛𝑏�̃�𝑏 

and equation (2-19) 

 

𝛿�̇�𝑛 ≐ 𝑠𝑘𝑒𝑤(𝝓𝑛)�̂�𝑛𝑏𝒇𝑏
′ + �̂�𝑛𝑏𝛿𝒇𝑏 +

[
 
 
 

0
0

𝑑𝛾𝐷
𝑑𝜙

|
�̂�,ℎ̂]
 
 
 

𝛿𝜙 + [

0
0

𝑑𝛾𝐷
𝑑ℎ
|
�̂�,ℎ̂

] 𝛿ℎ + 𝛿𝜸𝑛

− (2𝑠𝑘𝑒𝑤(𝛿𝜙𝒆2)𝑹𝑒𝑛
𝑇 (�̂�, �̂�) ⋅ 𝝎𝑖𝑒 +

𝑑𝝎𝑒𝑛
𝑑𝒛𝑇

|
(�̂�,ℎ̂,�̂�𝑁,�̂�𝐸)

𝛿𝒛) × �̂�𝑛

− 𝑠𝑘𝑒𝑤 (2𝑹𝑒𝑛
𝑇 (�̂�, �̂�)𝝎𝑖𝑒 +𝝎𝑒𝑛(�̂�, ℎ̂, 𝑣𝑁 , 𝑣𝐸)) 𝛿𝒗𝑛 

(A-134) 

   
The gradients of normal gravity γD  in height and geodetic latitude can be derived from 

equations (A-85) and (A-86). 

The approximation of Earth’s angular rate in NED frame is 

 

𝑹𝑒𝑛
𝑇 (�̂�, �̂�)𝝎𝑖𝑒 = [

𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�)

0
−𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�)

] (A-135) 

   
The approximated transport rate is 

 

𝝎𝑒𝑛(�̂�, ℎ̂, 𝑣𝑁 , 𝑣𝐸) =

[
 
 
 
 
 
 
 

𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝑣𝑁

𝑀(�̂�) + ℎ̂

−
𝑡𝑎𝑛(�̂�) 𝑣′𝐸

𝑁(�̂�) + ℎ̂ ]
 
 
 
 
 
 
 

 (A-136) 

   
It follows that 
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 𝑑𝝎𝑒𝑛
𝑑𝒛𝑇

|
(�̂�,ℎ̂,�̂�𝑁,�̂�𝐸)

𝛿𝒛

=

[
 
 
 
 
 
 
 −

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2  
𝑑𝑁

𝑑𝜙
|
�̂�

0 −
𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2

𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝑑𝑀

𝑑𝜙
|
�̂�

0
𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2  
𝑑𝑁

𝑑𝜙
|
�̂�

−
𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
0

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
]
 
 
 
 
 
 
 

[
𝛿𝜙
𝛿𝜆
𝛿ℎ
]

+

[
 
 
 
 
 
 
 0

1

𝑁(�̂�) + ℎ̂
0

−
1

𝑀(�̂�) + ℎ̂
0 0

0 −
𝑡𝑎𝑛(�̂�)

𝑁(�̂�) + ℎ̂
0
]
 
 
 
 
 
 
 

𝛿𝒗𝑛

≈

[
 
 
 
 
 
 
 −

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2 𝛿ℎ

𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2 𝛿ℎ

−
𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
𝛿𝜙 +

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2 𝛿ℎ

]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 

𝛿𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝛿𝑣𝑁

𝑀(�̂�) + ℎ̂

−
𝑡𝑎𝑛(�̂�) 𝛿𝑣𝐸

𝑁(�̂�) + ℎ̂ ]
 
 
 
 
 
 
 

 

(A-137) 

   
Again the derivatives of normal and meridian curvature radii have been neglected. As 

mentioned above, errors in the curvature radii due to position error are very small. 

The linearization can then be rewritten as 

𝛿�̇�𝑛 ≈ [�̂�𝑛𝑏 , 𝟎3, 𝑰3]𝛿𝒔 

+

[
 
 
 
 
 
 
 
 −2𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) �̂�𝐸 −

�̂�𝐸
2

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
 0

𝑡𝑎𝑛(�̂�) �̂�𝐸
2

(𝑁(�̂�) + ℎ̂)
2 −

�̂�𝑁�̂�𝐷

(𝑀(�̂�) + ℎ̂)
2

2𝜔𝑖𝑒(𝑐𝑜𝑠(�̂�) �̂�𝑁 − 𝑠𝑖𝑛(�̂�) �̂�𝐷) +
�̂�𝑁�̂�𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
0 −

𝑡𝑎𝑛(�̂�) �̂�𝑁�̂�𝐸 + �̂�𝐸�̂�𝐷

(𝑁(�̂�) + ℎ̂)
2

𝑑𝛾𝐷
𝑑𝜙

|
�̂�,ℎ̂

+ 2𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) �̂�𝐸 0
𝑑𝛾𝐷
𝑑ℎ
|
�̂�,ℎ̂
+

�̂�𝐸
2

(𝑁(�̂�) + ℎ̂)
2 +

�̂�𝑁
2

(𝑀(�̂�) + ℎ̂)
2
]
 
 
 
 
 
 
 
 

[
𝛿𝜙
𝛿𝜆
𝛿ℎ

] 

+

[
 
 
 
 
 
 
 

�̂�𝐷

𝑀(�̂�) + ℎ̂
−2𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) −

2 𝑡𝑎𝑛(�̂�) �̂�𝐸

𝑁(�̂�) + ℎ̂

�̂�𝑁

𝑀(�̂�) + ℎ̂

2𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) +
𝑡𝑎𝑛(�̂�) �̂�𝐸

𝑁(�̂�) + ℎ̂

𝑡𝑎𝑛(�̂�) �̂�𝑁 + �̂�𝐷

𝑁(�̂�) + ℎ̂
2𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +

�̂�𝐸

𝑁(�̂�) + ℎ̂

−
2�̂�𝑁

𝑀(�̂�) + ℎ̂
−2𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) −

2�̂�𝐸

𝑁(�̂�) + ℎ̂
0

]
 
 
 
 
 
 
 

𝛿𝒗𝑛

+ [

0 𝑓𝐷 −𝑓𝐸
−𝑓𝐷 0 𝑓𝑁
𝑓𝐸 −𝑓𝑁 0

]𝝓𝑛 

(A-138) 

   
Finally, the orientation error Euler angles 𝜱 differential equations are linearized: 

 

�̇� ≐ �̂�𝑛𝑏𝛿𝝎𝑖𝑏 + [

0 �̂�𝑖𝑛,𝐷 −�̂�𝑖𝑛,𝐸
−�̂�𝑖𝑛,𝐷 0 �̂�𝑖𝑛,𝑁
�̂�𝑖𝑛,𝐸 −�̂�𝑖𝑛,𝑁 0

] [

𝛿𝜙1
𝛿𝜙2
𝛿𝜙3

] −
𝑑𝝎𝑖𝑛
𝑑𝒛𝑇

|
(�̂�,ℎ̂,�̂�𝑁,�̂�𝐸)

𝛿𝒛 (A-139) 
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with 

 

𝝎𝑖𝑛(�̂�, ℎ̂, 𝑣𝑁 , 𝑣𝐸) = �̂�𝑒𝑛
𝑇 𝝎𝑖𝑒 + �̂�𝑒𝑛 =

[
 
 
 
 
 
 
 𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +

𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝑣𝑁

𝑀(�̂�) + ℎ̂

−𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) −
𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂ ]
 
 
 
 
 
 
 

 (A-140) 

   
and 

𝑑𝝎𝑖𝑛
𝑑𝒛𝑇

|
(�̂�,ℎ̂,�̂�𝑁 ,�̂�𝐸)

𝛿𝒛 =
𝑑(𝑹𝑒𝑛

𝑇 𝝎𝑖𝑒)

𝑑𝒛𝑇
|
�̂�

𝛿𝒛 +
𝑑𝝎𝑒𝑛
𝑑𝒛𝑇

|
(�̂�,ℎ̂,�̂�𝑁 ,�̂�𝐸)

𝛿𝒛 

≈ [

−𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) 𝛿𝜙

0
−𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) 𝛿𝜙

] +

[
 
 
 
 
 
 
 −

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2 𝛿ℎ

𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2 𝛿ℎ

−
𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
𝛿𝜙 +

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2 𝛿ℎ

]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 

𝛿𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝛿𝑣𝑁

𝑀(�̂�) + ℎ̂

−
𝑡𝑎𝑛(�̂�) 𝛿𝑣𝐸

𝑁(�̂�) + ℎ̂ ]
 
 
 
 
 
 
 

 

(A-141) 

   
The linearized differential equation can be rewritten as  

�̇� ≈ [𝟎3, �̂�𝑛𝑏, 𝟎3]𝛿𝒔 

+

[
 
 
 
 
 
 
 𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) 0

𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2

0 0 −
𝑣𝑁

(𝑀(�̂�) + ℎ̂)
2

𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +
𝑣𝐸

(𝑁(�̂�) + ℎ̂) 𝑐𝑜𝑠2(�̂�)
0 −

𝑡𝑎𝑛(�̂�) 𝑣𝐸

(𝑁(�̂�) + ℎ̂)
2
]
 
 
 
 
 
 
 

[
𝛿𝜙
𝛿𝜆
𝛿ℎ

]

+

[
 
 
 
 
 
 
 0 −

1

𝑁(�̂�) + ℎ̂
0

1

𝑀(�̂�) + ℎ̂
0 0

0
𝑡𝑎𝑛(�̂�)

𝑁(�̂�) + ℎ̂
0
]
 
 
 
 
 
 
 

𝛿𝒗𝑛

+

[
 
 
 
 
 
 
 0 −𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) −

𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂

𝑣𝑁

𝑀(�̂�) + ℎ̂

𝜔𝑖𝑒 𝑠𝑖𝑛(�̂�) +
𝑡𝑎𝑛(�̂�) 𝑣𝐸

𝑁(�̂�) + ℎ̂
0 𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) +

𝑣𝐸

𝑁(�̂�) + ℎ̂

−
𝑣𝑁

𝑀(�̂�) + ℎ̂
−𝜔𝑖𝑒 𝑐𝑜𝑠(�̂�) −

𝑣𝐸

𝑁(�̂�) + ℎ̂
0

]
 
 
 
 
 
 
 

𝜱 

(A-142) 
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A.7 INTEGRATED INS/GNSS NAVIGATION 
 

This appendix is based on section 3.2 of the author’s Diploma thesis [39] and the references 

cited therein. 

 

Equations of a conventional Kalman filter for uncorrelated measurements 

A Kalman-Filter has the property of an optimal state estimator for systems described by the 

following non-deterministic state-space equation (see also [68–70, 102]) 

 �̇�(𝑡) = 𝑨𝑘𝒛(𝑡) + 𝑩𝑘𝒔𝑘 (A-143) 

   
with the systems state vector 𝒛 and the vector of noisy inputs 𝒔𝑘  

 𝒔𝑘 = 𝒖(𝑡𝑘) + 𝒘𝑘 (A-144) 

   
𝒖(𝑡) is the vector-valued function of deterministic system inputs that is sampled at discrete 

time points 𝑡𝑘 . 𝒘𝑘  is the vector of unbiased and white Gaussian system- or process-noise 

averaged over time interval [𝑡𝑘 , 𝑡𝑘+1]. The covariance matrix of the system noise 𝒘𝑘 is defined 

by 

 𝑸𝑘 = 𝐸[𝒔𝑘𝒔𝑘
𝑇] = 𝐸[𝒘𝑘𝒘𝑘

𝑇] (A-145) 

   
The system and input matrices 𝑨𝑘 = 𝑨(𝑡𝑘)  and 𝑩𝑘 = 𝑩(𝑡𝑘)  and the input vector 𝒔𝑘  are 

constant for 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1. In that interval, both the fundamental solution of the homogenous 

system and a particular solution from variation of constants can be found for the state-space 

equation (A-143) 

 
𝒛𝑘+1 = 𝑒

𝑨𝑘(𝑡𝑘+1−𝑡𝑘)⏟      
=:𝜱𝑘

𝒛𝑘 +∫ 𝑒𝑨𝑘(𝑡𝑘+1−𝜏)𝑑𝜏
𝑡𝑘+1

𝑡𝑘

𝑩𝑘
⏟              

=:𝜞𝑘

𝒔𝑘 
(A-146) 

   
See [103] and other textbooks. 

In equation (A-146), we define the time-discrete propagation matrix 𝜱𝑘  and the time-

discrete control matrix 𝜞𝑘. For many applications it is admissible to truncate 3rd order and 

higher order terms in the matrix exponential series expansion:  

 
𝜱𝑘 ≐ 𝑰 + 𝑨𝑘(𝑡𝑘+1 − 𝑡𝑘) + 𝑨𝑘

2
(𝑡𝑘+1 − 𝑡𝑘)

2

2
 (A-147) 

 
𝜞𝑘 ≐ (𝑰(𝑡𝑘+1 − 𝑡𝑘) + 𝑨𝑘

(𝑡𝑘+1 − 𝑡𝑘)
2

2
)𝑩𝑘 (A-148) 

   
The Filter state vector of a time-discrete Kalman-Filter corresponds to the sampled state 

vector of the linear system (A-143) 

 𝒙𝑘 = 𝒛𝑘 (A-149) 

   
The motivation for data fusion is to find from an a priori estimate of the filter state 𝒙𝑘

− and a 

related measurement 𝒚�̃� at time 𝑡𝑘 a new (a posteriori) estimate 𝒙𝑘
+ that – if all filter inputs are 

unbiased – is unbiased, i.e. 𝐸[𝒙𝑘
+] = 𝒙𝑘 and is optimal in the sense of smallest (co-)variance. 
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In general, the filter state estimate (a priori or a posteriori) �̂�𝑘 is a vector. The corresponding 

covariance matrix is defined for a priori and a posteriori estimates of 𝒙𝑘 as 

 𝑷𝑘 = 𝐸[(�̂�𝑘 − 𝐸[�̂�𝑘])(�̂�𝑘 − 𝐸[�̂�𝑘])
𝑇] (A-150) 

   
Note that since 𝐸[𝒙𝑘

−] = 𝐸[𝒙𝑘
+] = 𝒙𝑘 , 𝑷𝑘  can also be interpreted as covariance of the 

estimation error 𝛿𝒙 = �̂� − 𝒙 with 𝐸[𝛿𝒙] = 𝟎. Also note that the Kalman-Filter only provides a 

modeled approximation of the true filter state covariance given in equation (A-150). For 

better readability this will not be indicated by notation in the following. 

For vector-valued filter state estimates, smallest covariance is not an unambiguous 

requirement. One possible mathematical definition of this optimality that results in a rather 

easy derivation of the filter equations is 

 𝑡𝑟𝑎𝑐𝑒(𝑷𝑘) → 𝑚𝑖𝑛! (A-151) 

   
Measurement vector 𝒚�̃�  and filter state vector 𝒙  are not necessarily identical in size or 

meaning. With a transformation matrix 𝑯𝑘 from filter state space to measurement space the 

linear combination of a priori estimate and measurement is  

 𝒙𝑘
+ = 𝒙𝑘

− +𝑲𝑘 ⋅ (𝒚�̃� −𝑯𝑘𝒙𝑘
−) (A-152) 

   
The term in brackets is termed innovation. It vanishes for ideal (error-free) measurements and 

estimates. The Kalman-Gain matrix 𝑲𝑘  corresponds to the relative weight of the 

measurement 𝒚�̃� in the update, i.e. equation (A-152) is identical to 

 𝒙𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝒙𝑘

− +𝑲𝑘𝒚�̃� (A-153) 

   
The Kalman-Gain is chosen such that the optimality requirement (A-151) is satisfied. Assuming 

measurement and a priori filter state estimate are independent and with equation (A-153), 

the a posteriori filter estimate covariance matrix becomes  

 𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

−(𝑰 − 𝑲𝑘𝑯𝑘)
𝑇 +𝑲𝑘𝑹𝑲𝑘

𝑇 (A-154) 

   
Equation (A-154) is a combination of a priori filter estimate covariance 𝑷𝑘

− = 𝐸[(𝒙𝑘
− −

𝐸[𝒙𝑘
−])(𝒙𝑘

− − 𝐸[𝒙𝑘
− ])𝑇] and measurement covariance 

 𝑹 = 𝐸[(𝒚�̃� − 𝐸[𝒚�̃�])(𝒚�̃� − 𝐸[𝒚�̃�])
𝑇] (A-155) 

   
It can be shown (see any of the references given in the beginning of this subsection) that the 

trace of 𝑷𝑘 is minimal for 

 𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹)
−1

 (A-156) 

   
For this optimal Kalman-Gain, the covariance update equation (A-154) can be simplified 

 𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

−(𝑰 − 𝑲𝑘𝑯𝑘)
𝑇 +𝑲𝑘𝑹𝑲𝑘

𝑇         …"Josephs Form"
= (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

− …not recommended
 (A-157) 

   
Although the shorter expression reduces computational effort, it is less suitable to preserve 

the symmetry and positive semi-definiteness properties of 𝑷𝑘 compared to the Josephs form. 

Various other mathematically equivalent forms exist in literature (e.g. U-D factorization [104]) 

which are based on factorization of 𝑷𝑘  in order to ensure symmetry of the computed 

covariance. 

The Kalman-Filter update equations are rewritten here for better readability:  
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 𝒙𝑘
+ = 𝒙𝑘

− +𝑲𝑘 ⋅ (𝒚�̃� −𝑯𝑘𝒙𝑘
−) …filter state estimate update

𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

−(𝑰 − 𝑲𝑘𝑯𝑘)
𝑇 +𝑲𝑘𝑹𝑲𝑘

𝑇         …"Josephs Form" covariance update
 (A-158) 

   
To allow for data fusion when an measurement 𝒚�̃� is available, the Filter has to provide for a 

current a priori filter state estimate 𝒙𝑘
−  and the corresponding a priori state estimate 

covariance 𝑷𝑘
−. To that end the Kalman-Filter propagates state estimate and covariance in 

time, based on equation (A-146): 

 𝒙𝑘
− = 𝜱𝑘−1�̂�𝑘−1 + 𝜞𝑘−1𝒖(𝑡𝑘−1) …filter state estimate propagation

𝑷𝑘
− = 𝜱𝑘−1𝑷𝑘−1𝜱𝑘−1

𝑇 + 𝜞𝑘−1𝑸𝑘−1𝜞𝑘−1
𝑇          …covariance propagation

 (A-159) 

   
For the derivation of the covariance propagation equation filter state estimate �̂�𝑘−1 and 

system noise 𝒘𝑘−1 were assumed to be uncorrelated. 

Equations (A-158) and (A-159) implement the conventional Kalman-Filter for independent 

measurements and uncorrelated system noise. Note that they allow for multi-sensor and 

multi-frequency data fusion, i.e. neither must 𝑯𝑘 be the same in every update step nor must 

updates be computed in equidistant steps. For example, two measurements available at the 

same time 𝑡𝑘 can be used for sequential updates of �̂�𝑘. 
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INS/GNSS integration with error state space Kalman-filter 

The conventional Kalman-Filter introduced previously in this appendix can be used to 

estimate errors in an inertial navigation system if sensor measurements or other information 

related to the navigation state is available (e.g. GPS and barometer measurements). This will 

be exemplified with loosely-coupled INS/GNSS integration in the following. 

For the INS/GNSS integration derived in this section, the filter state lies in the error state space 

 𝒙 = 𝛿𝒛 (A-160) 

   
The corresponding total state space is the linear span of the 10-DOF navigation state vector 

 

𝒛 = 𝒛𝑛 =

[
 
 
 
 
𝜙
𝜆
ℎ
𝒗𝑛
�̆�𝑛𝑏]

 
 
 
 

 (A-161) 

   
The linearized perturbation error equations (A-133), (A-138) and (A-142) can be cast into the 

form of a linear system of ordinary differential equations 

 𝛿�̇�(𝑡) = 𝑨𝑘 ⋅ 𝛿𝒛(𝑡) + 𝑩𝑘 ⋅ 𝛿𝒔𝑘 (A-162) 

   
With this linear approximation of the system of navigation state error differential equations, 

application of a conventional Kalman-Filter as presented previously in this appendix is 

possible. The considerations necessary for adaptation of the Kalman-Filter update step are 

presented in the following. 

The filter measurement 𝒚�̃� can be defined as 

 𝒚�̃� ≔ �̃� − 𝒈′(𝒛′) (A-163) 

   
With the real measurement �̃� that is an observation of the true system state 𝒛 disturbed by 

measurement noise assumed to be unbiased. The nonlinear transformation from system state 

space to measurement space – referred to as observation equation - is 

 𝒚 = 𝒈(𝒛) (A-164) 

   
This relation between true system state and error-free measurement is only approximately 

known and modeled as 𝒈′(𝒛). It is assumed that errors in the measurement model are noise-

like and unbiased. 𝒛′ is the erroneous approximation of the system state  

 𝒛′ = 𝒛 − 𝛿𝒛 (A-165) 

   
𝒛′(𝑡)  is a realization of the time integration of noisy IMU measurements by the INS. The 

stochasticity of this process is not relevant here. Therefore the covariance of the filter 

measurement is equal to the measurement covariance 

 𝑹 = 𝐸[(𝒚�̃� − 𝐸[𝒚�̃�])(𝒚�̃� − 𝐸[𝒚�̃�])
𝑇] = 𝐸[(�̃� − 𝐸[�̃�])(�̃� − 𝐸[�̃�])𝑇] (A-166) 

   
A linear transformation from filter state space (i.e. system error state space) to filter 

measurement space can be derived from equation (A-164): 

 �̃� + 𝛿𝒚 = 𝒈′(𝒛′ + 𝛿𝒛) + 𝛿𝒈 (A-167) 

   
This leads to the following linearization in 𝒛′ 
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�̃� + 𝛿𝒚 ≐ 𝒈′(𝒛′) +

𝜕𝒈′(𝒛′ + 𝛿𝒛)

𝜕(𝛿𝒛)
|
𝒛′
𝛿𝒛 + 𝛿𝒈 (A-168) 

   
Equation (A-168) can be reordered to give a linear relationship for 𝒚�̃� and 𝛿𝒛 

 
�̃� − 𝒈′(𝒛′) ≐

𝜕𝒈′(𝒛′ + 𝛿𝒛)

𝜕(𝛿𝒛)
|
𝒛′
𝛿𝒛 + 𝛿𝒈 − 𝛿𝒚⏟    

unbiased noise

 (A-169) 

   
For open-loop error estimation the transformation matrix from filter state space to filter 

measurement space is the measurement model Jacobian matrix evaluated at 𝒛′ 

 
𝑯 =

𝜕𝒈′(𝒛′ + 𝛿𝒛)

𝜕(𝛿𝒛)
|
𝒛′

 (A-170) 

   
For example, if a GPS position measurement in WGS84 geodetic coordinates is available, the 

measurement matrix is 

 𝑯𝐺𝑃𝑆𝑝𝑜𝑠 = [𝑰3 𝟎3×9] (A-171) 

   
With these definitions the filter state update of the conventional Kalman-Filter becomes 

 𝛿𝒛𝑘
+ = 𝛿𝒛𝑘

− +𝑲𝑘 ⋅ (�̃� − 𝒈′(𝒛𝑘
′ ) − 𝑯𝑘𝛿𝒛𝑘

−) (A-172) 

   
The linearization of the error differential equations only is valid if the assumptions made when 

linearizing are correct: The true system state 𝒛 must lie in close proximity of the linearization 

point. Consequently, for significant nonlinearities in system equation 𝒔 or large errors 𝛿𝒛 the 

best available estimate of system state �̂� should be used as linearization point. 

The best estimate of system state �̂� is obtained by correcting the computed INS system state 

using an estimate of system state error 𝛿�̂�: 

  �̂� = 𝒛′ + 𝛿�̂� (A-173) 

   
If the internal INS state is reset to this best estimate this is referred to as full-scale closed-loop 

error estimation. In this case the linear system (A-162) is derived using 

 𝛿�̇� = 𝒔(𝒛′ + 𝛿𝒛,𝒖′ + 𝛿𝒖) − 𝒔(𝒛′ + 𝛿�̂�, 𝒖′)⏟        
closed-loop INS integration

≐
𝜕𝒔

𝜕𝒛𝑇
|
�̂�,𝒖′

⋅ (𝛿𝒛 − 𝛿�̂�) +
𝜕𝒔

𝜕𝒖𝑇
|
�̂�,𝒖′

⋅ [𝛿𝒇𝑏
𝑇 𝛿𝝎𝑖𝑏

𝑇  ]𝑇 
(A-174) 

   
Because the deterministic propagation of estimated errors takes place in the INS time 

integration following the full-scale closed-loop correction, filter state estimate propagation 

according to equation (A-159) can be omitted. When a measurement is available, the a 

posteriori filter estimate will be used immediately to correct the a priori estimate of system 

state with equation (A-175). 

With 𝒈′(𝒛𝑘
′ ) ≐ 𝒈′(𝒛𝑘

′ + 𝛿𝒛𝑘
−) − 𝑯𝑘𝛿𝒛𝑘

− the closed-loop correction of INS state best estimate is 

 𝒛𝑘
+ = 𝒛𝑘

− +𝑲𝑘 ⋅ (�̃� − 𝒈
′(𝒛𝑘

−)) (A-175) 

   
The transformation matrix of the measurement model is evaluated at �̂� 

 
 𝑯 =

𝜕𝒈′(𝒛′ + 𝛿𝒛)

𝜕(𝛿𝒛)
|
�̂�

 (A-176) 
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The error state covariance matrix is updated and propagated linearly according to the 

equations of the conventional Kalman-Filter (A-158) and (A-159). Note that with equation (A-

173) and neglecting the stochasticity of the unaided INS process that computes 𝒛′(𝑡) the 

covariance of the system state estimate �̂� is equal to the error state estimate covariance 𝑷. 
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A.8 EXTENDED KALMAN FILTER WITH AUGMENTED AND CONSIDERED STATES 
 

For details on the extended Kalman filter method used in this work, many textbooks are 

available [68–70, 102]. This subsection will briefly explain the definition of augmented, 

observed and considered filter states as used in this work and how modifications to the 

Kalman filter implementation can improve performance for problems where only 

approximate statistical models are available. 

Generally, the extended Kalman filter is employed in this work to estimate the errors 𝛿𝒛 of 

motion states computed with one or a combination of the model presented before. In 

addition, auxiliary (augmented) states 𝒂 may be included in the augmented Kalman filter 

state vector 𝒙 

𝒙 = [
𝛿𝒛
𝒂
] 

Because the main goal of filter design in this work is the accurate estimation of motion model 

errors 𝛿𝒛 , the augmented states are related to either motion model inputs or aiding 

measurements used to update the extended Kalman filter. Examples are IMU measurement 

error or the offset in the barometric altitude measurement. Kalman filter state augmentation 

is discussed in all of the textbooks referenced above. 

Different strategies for improving filter performance in presence of real errors in model inputs 

and measurements are possible. High frequency variations in these errors that cannot be 

predicted accurately with some process model can simply be considered as down-sampled 

white noise and accounted for by adapting filter process or measurement noise of the 

conventional Kalman filter algorithm accordingly. Especially for error in aiding 

measurements, this yields good results if update rate is low so that the time interval between 

measurements is much larger than the correlation time of high frequency error. 

For components of error with slower variation in time but limited observability, the effect on 

motion model or measurement uncertainty must be modeled in the filter accounting for 

process time correlation. This is accomplished by defining a corresponding augmented state 

with a stochastic process model reflecting time correlation and uncertainty of this error. 

Because no deterministic propagation model is available for this augmented state, but it 

changes significantly in medium-term, convergence of the estimate cannot be expected 

due to a lack of continuous observability. In this case, the estimate for this augmented state 

is kept constant and only the corresponding uncertainty affecting motion model errors is 

considered. This is called a consider filter state. 

For augmented states with either accurate propagation models, long-term stability or good 

continuous observability, simultaneous estimation together with the motion model error 

states is possible and can improve filter performance. In some cases discussed in chapter 3 

of this work, augmented states will be estimated although no accurate prediction is possible 

and observability is bad (in case of wind vector error for optimal model fusion methods). The 

design decision whether an augmented filter state should be estimated or considered 

depends on the details of the problem. 

For a specific aiding measurement, it may not be desired to update certain motion model 

errors (c.f. magnetometer aiding). In this case, these motion model errors would also only be 
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considered in terms of their effect on observation uncertainty, but their estimates would be 

kept constant in the filter update. 

Depending on the considerations above, the decision which filter states are estimated and 

which are considered can be different for each measurement update. The filter state vector 

can be partitioned as follows 

[

𝒙𝑒
𝒙ℎ
𝒙𝑐
] = 𝑴𝒙 

𝑴 is a permutation matrix with 𝑴𝑴𝑇 = 𝑰. The observation equation becomes  

�̃�𝑥 = 𝑯𝑒𝒙𝑒 +𝑯ℎ𝒙ℎ = [𝑯𝑒 𝑯ℎ 0 ]𝑴𝒙 = 𝑯𝒙 

Only filter state elements with subscripts 𝑒 or ℎ appear in the observation. 𝒙𝑒  are the filter 

states that are updated as in the conventional Kalman filter. The states 𝒙ℎ  are only 

considered for their uncertainty in above observation equation, but not updated. Note that 

the matrix 𝑯𝑒 may include zero columns. 

Because not all information theoretically available is used to correct the filter estimate, the 

consider-state Kalman filter update is suboptimal 

𝒙𝑒
+ = 𝒙𝑒

− +𝑲𝑒(�̃�𝑥 −𝑯𝒙) 

The suboptimal gain matrix 𝑲𝑒 can be derived from the Kalman gain 𝑲 by deleting all rows 

that do not correspond to estimated states 𝒙𝑒. 

𝑲𝑒 = [𝑷𝑒𝑒 𝑷𝑒ℎ] [
𝑯𝑒
𝑯ℎ
] ([𝑯𝑒 𝑯ℎ] [

𝑷𝑒𝑒 𝑷𝑒ℎ
𝑷𝑒ℎ
𝑇 𝑷ℎℎ

] [
𝑯𝑒
𝑯ℎ
] + 𝑹)

−1

 

The filter covariance matrix is partitioned as follows 

𝑴𝑷𝑥𝑴
𝑇 = [

𝑷𝑒𝑒 𝑷𝑒ℎ 𝑷𝑒𝑐
𝑷ℎℎ 𝑷ℎ𝑐

𝑠𝑦𝑚. 𝑷𝑐𝑐

] 
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A.9 SPECIFIC FORCE LINEARIZATION 
 

𝜕𝒇𝑏
𝑅

𝜕𝛿𝒛𝑛
𝑇 =

1

𝑚

𝜕Σ𝑭𝑏
𝐺
𝑖

𝜕𝛿𝒛𝑛
𝑇 + 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏 𝜕Σ𝑴𝑏

𝐺
𝑖

𝜕𝛿𝒛𝑛
𝑇  

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑖𝑏
𝑇 =

1

𝑚

𝜕Σ𝑭𝑏
𝐺
𝑖

𝜕𝛿𝝎𝑖𝑏
𝑇 + 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏

(
𝜕Σ𝑴𝑏

𝐺
𝑖

𝜕𝛿𝝎𝑖𝑏
𝑇 − 𝑠𝑘𝑒𝑤(𝝎𝑖𝑏)𝑰𝑏𝑏

𝐺 + 𝑠𝑘𝑒𝑤(𝑰𝑏𝑏
𝐺 𝝎𝑖𝑏)) + 𝑠𝑘𝑒𝑤(𝝎𝑖𝑏 × 𝒓𝑏

𝑅𝐺)

+ 𝑠𝑘𝑒𝑤(𝝎𝑖𝑏)𝑠𝑘𝑒𝑤(𝒓𝑏
𝑅𝐺) 

𝜕𝒇𝑏
𝑅

𝜕𝒗𝑊𝑛
𝑇 = −

𝜕𝒇𝑏
𝑅

𝜕𝒗𝑛
𝑇  

𝜕𝒇𝑏
𝑅

𝜕𝝎𝑊𝑏
𝑇 = −

1

𝑚

𝜕Σ𝑭𝑏
𝐺
𝑖

𝜕𝛿𝝎𝑖𝑏
𝑇 − 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏 𝜕Σ𝑴𝑏

𝐺
𝑖

𝜕𝛿𝝎𝑖𝑏
𝑇  

𝜕𝒇𝑏
𝑅

𝜕𝒖𝑝
𝑇 =

1

𝑚

𝜕Σ𝑭𝑏
𝐺
𝑖

𝜕𝒖𝑝
𝑇 + 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏 𝜕Σ𝑴𝑏

𝐺
𝑖

𝜕𝒖𝑝
𝑇  

𝜕𝒇𝑏
𝑅

𝜕𝒄𝑣
𝑇 =

1

𝑚

𝜕Σ𝑭𝑏
𝐺
𝑖

𝜕𝒄𝑣
𝑇 + 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏 𝜕Σ𝑴𝑏

𝐺
𝑖

𝜕𝒄𝑣
𝑇  

𝜕𝒇𝑏
𝑅

𝜕𝑚
= −

Σ𝑭𝑏
𝐺
𝑖

𝑚2
 

𝜕𝒇𝑏
𝑅

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇 = 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)
𝜕𝑰𝑏𝑏
𝐺 −1

�̇�𝑖𝑏

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇 − 𝑠𝑘𝑒𝑤(𝒓𝑏

𝑅𝐺)𝑰𝑏𝑏
𝐺 −𝟏

𝑠𝑘𝑒𝑤(𝝎𝑖𝑏)
𝜕𝑰𝑏𝑏
𝐺 𝝎𝑖𝑏

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇  

with �̇�𝑖𝑏 = 𝑰𝑏𝑏
𝐺 −1

(Σ𝑴𝑏
𝐺
𝑖
−𝝎𝑖𝑏 × (𝑰𝑏𝑏

𝐺 𝝎𝑖𝑏)) . While 
𝜕𝑰𝑏𝑏
𝐺 𝒂

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇  with any vector 𝒂 ∈ ℜ3×1  is a simple 

operator  

𝜕𝑰𝑏𝑏
𝐺 𝒂

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇 = [

𝑎1 0 0 −𝑎2 −𝑎3 0
0 𝑎2 0 −𝑎1 0 −𝑎3
0 0 𝑎3 0 −𝑎1 −𝑎2

] 

The nonlinear operator 
𝜕𝑰𝑏𝑏
𝐺 −1

𝒂

𝜕𝛿𝑰𝑏𝑏
𝐺 𝑇  is more complex and should be derived and implemented 

using a symbolic math software package. 

𝜕𝒇𝑏
𝑅

𝜕𝒓𝑏
𝑅𝐺𝑇

= 𝑠𝑘𝑒𝑤(𝒓𝑏
𝑅𝐺)𝑰𝑏𝑏

𝐺 −𝟏 𝜕Σ𝑴𝑏
𝐺
𝑖

𝜕𝒓𝑏
𝑅𝐺𝑇

− 𝑠𝑘𝑒𝑤 (𝑰𝑏𝑏
𝐺 −1

(Σ𝑴𝑏
𝐺
𝑖
−𝝎𝑖𝑏 × (𝑰𝑏𝑏

𝐺 𝝎𝑖𝑏))) − 𝑠𝑘𝑒𝑤(𝝎𝑖𝑏)𝑠𝑘𝑒𝑤(𝝎𝑖𝑏) 


