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Abstract—We present a framework for online coordinated
obstacle avoidance with formal safety guarantees. Such a formally
verified trajectory planner can be used in shared human-robot
workspaces to guarantee safety. The obstacle avoidance is based
on estimation of the human occupancy on two different time
scales. A long-term plan is created based on a probabilistic
task representation, learned by demonstration, and an estimate
of the human occupancy to be avoided. Using an additional
overapproximative, short-term prediction of human motion we
guarantee that the robot can always account for sudden or reflex
movements. We demonstrate our two-level obstacle avoidance
in simulation. The results show that our method reduces the
number of safety stops one would encounter when using only the
formal safety verification, and synthesizes alternative movement
plans that preserves the coordination observed in the original
demonstrations.

I. INTRODUCTION

Programming by Demonstration (PbD) allows humans to
transfer skills to robots using only a few demonstrations
[1]. Small and medium enterprises that require flexible au-
tomation can benefit from such a technique, as it allows
fast reprogramming without advanced programming expertise.
Operating robots in such environments, however, requires
safety guarantees. In previous work we showed how a robot
trajectory can be formally verified online to guarantee safety
of humans separated from the robot by a light curtain [2]; the
robot will execute a previously verified controlled stop if the
proposed trajectory is unsafe. Although the safe stops provide
a formal safety guarantee, they might be avoided if the robot
is allowed to deviate from its original trajectory.

Tracking a single trajectory is unnecessarily restrictive when
deviations from the trajectory do not interfere with task
performance. Instead, we rely on a control strategy based on
the minimal intervention principle stating “Deviations from the
average trajectory are only corrected when they interfere with
task performance.” [3]. In previous work [4], [5], we showed
that task-space representations with a probabilistic form can
be used to define task performance. This probabilistic form
effectively represents the task as a distribution over trajectories
instead of a single trajectory. The encoded variance of, and
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correlation among the state variables facilitate synthesis of
alternative movements that maintain the original movement
characteristics, also referred to as coordination patterns [6].

In this work we employ the previously proposed prob-
abilistic task representation in [5] to generate alternative
trajectories to avoid unnecessary stops caused by the formal
safety verification. These alternative trajectories are obtained
by intentionally deviating the robot from the average trajectory,
by introducing via-points in the objective function.

Avoiding dynamic obstacles such as humans in trajectory
planning gives rise to several approaches. Distance metrics
are used to scale robot velocity while preserving the spatial
path so that the robot slows down as the human gets closer
[7]. Dynamic Road Maps (DRMs) [8] precompute a graph
of configurations, and paths are quickly planned by graph
traversal of non-colliding nodes. Mainprice and Berenson [9]
predict human motion to compute occupancy probabilities in
task space, used by a trajectory optimiser to plan a non-
colliding path.

Exploiting task representations to quickly generate alterna-
tive movement plans can lead to high-performing and ver-
satile algorithms. The Dynamic Movement Primitives (DMP)
framework has multiple extensions that involve obstacle avoid-
ance. Park et al. [10] use a dynamic potential field that
considers the dynamics of the obstacle to achieve smoother
avoidance behavior compared to static potential fields. Krug
and Dimitrov use the DMP framework in a Model Predictive
Control (MPC) approach [11], where obstacles are avoided
by including them as a constraint in an optimization problem.
However, since DMP does not encode correlation among state
variables, coordinated recovery of disturbances that interfere
with the task performance is not possible.

Khansari and Billard [12] propose a local obstacle avoidance
technique for autonomous dynamical systems (DS), which
modulates the DS such that it avoids dynamic obstacles,
while conserving the stability properties of the original DS. In
contrast to DMP, this approach can recover from avoidance
in a coordinated way, but the complexity of the motions that
can be encoded is limited.

Although the methods described above are all effective,
none of them provides a formal guarantee on safety. Two
main ways to guarantee safety in shared workspaces exist [13]:
ensuring non-contact, and limiting force and power within
contacts. We focus on the former, though our approach may
be adapted to the latter. Piecewise planning which formally
guarantees noncollision is proposed by Petti and Fraichard for
mobile robots [14] and adapted to serial-link robots in [2].978-1-5090-1897-0/16/$31.00 c⃝2016 IEEE
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Fig. 1: (a) Long-term planning around expected human movement;
(b) short-term failsafe manoeuvre in case of unexpected motion.

Our goal is to control a robot to complete a previously
demonstrated task while formally guaranteeing that the trajec-
tory used to complete the task is safe at all times. We define
the terms Reachable Occupancy and Expected Occupancy of
the human and Safe Trajectory of the robot:

Definition 1 (Expected and Reachable Occupancy). Let

Y(t, ũ) ⊂ R3 be the subset of Cartesian space which the

human occupies at time t, following a trajectory ũ. The

reachable occupancy at time t is Γr(t) = {Y(t, ũ)|ũ ∈ Ũ}
where Ũ is the set of all possible trajectories. Expected

occupancy Γe(t) = {Y(t, ũ)|ũ ∈ Ũe} ⊆ Γr(t) contains the

most likely trajectories, Ũ .

Definition 2 (Safe Trajectory). We define a robot trajectory

as a function ξ : [0,∞) → Rn, where ξ(t) ∈ Rn is the

state of the robot at time t. Let A(ξ) ⊂ R3 be the spatial

occupancy of the robot. We call a robot trajectory x safe when

∀t > 0 : A(ξ(t)) ∩ Γr(t) = ∅ ∨ ξ̇(t) = 0 holds.

In other words, if the robot is not stationary, the robot must
not collide with the human. Such a measure of safety may
be used to comply with workplace standards in areas where
robots work with humans [15]. In this first work we only
consider avoiding collision between the robot end-effector and
the human arm — one of the fastest moving parts of the human
body. Methods for quickly calculating occupied volumes of
kinematic chains over a range of joint positions (e.g., [16]) can
be used to extend the proposed method to collision-checking
for the entire robot. The method used to model the human
arm (see Sec. III-A) can be straightforwardly extended to the
entire body.

The novelty of the proposed approach lies in the combina-
tion of long-term and short-term plans. As humans move fast
and unpredictably, the reachable occupancy grows fast and
would unnecessarily restrict movement if we were to plan the
trajectory around it. Hence we take a two-step approach: A
long term plan (Fig. 1a) is generated from the probabilistic
task encoding, by avoiding expected human motion. A short-
term plan (Fig. 1b) consists of the first part of the long-term
plan, followed by a failsafe stopping manoeuvre, which has
been verified safe. If the next part of the long-term plan is not
verified safe, the failsafe trajectory is executed. Both plans are
continuously updated.

The paper is structured as follows: in the next section we
describe the proposed approach. The methods are detailed in

Sec. III. We present the results of a simulation in Sec. IV, and
discuss and conclude in Sec. V.

II. APPROACH

Algorithm 1 Formally verified obstacle avoidance

1: ◃ Initialization:
2: u1:Np

, ξ̃1:Np
← predictControl(ξ0, ∅)

3: ū0:∞ ← 0

4: k ← 0
5: while not at end of motion do

6: γk ← getHumanState()
7: ◃ Verify control for next iteration:
8: ūk+1:∞ ← verify(ūk:∞,uk+1,γk, ξk)
9: ◃ Prediction:

10: p← generateViaPoints(γk, ξ̃k+(1:Np))

11: uk+(2:(Np+1)), ξ̃k+(2:(Np+1))← predictControl(ξ̃k+1,p)
12: ◃ Apply command verified previous timestep:
13: ξk+1 ← applyControl(ūk)
14: k ← k + 1

Algorithm 1 explains our approach. ξk is the state of the
system and γk is the state of the human at discrete time k, or a
sequence of time steps k1 : k2. Estimated states are indicated
by ξ̃. Verified control inputs uk are indicated by ūk. p is the
vector of via-points that are generated to avoid obstacles. Np

is the prediction horizon.
At each time step k our method:

• verifies safety of the new short-term plan uk+1:∞ (input
uk+1 plus stop) using an overapproximative model of
human behaviour (line 8) and updates the control input,

• generates inputs uk+(2:(Np+1))
1 taking into account

predicted occupancy of the human (lines 10-11),
• executes the control command ūk, and observes the state

of the system to be used in the computations of the next
time step. (line 13).

These three steps may be executed in parallel since their
inputs and outputs are independent. The verification of the
subsequent time step provides a formal safety guarantee on
a short horizon because no control command is executed
without being previously verified. In case the verifier fails
to verify uk+1, the previously verified failsafe manoeuver
ūk+1:∞ guarantees a safe stop. To guide the trajectory around
the human and hence minimise the chance that a trajectory
will be determined to be unsafe, we also check if the expected

human occupancy collides with the long term motion plan
ξ̃k:(1+Np). If collision is detected, we generate a via-point p
that is taken into account in the control input prediction (lines
10-11). Details on human occupancy and verification of its
intersection by the robot are given in Secs. III-A and III-B,
respectively.

The robot motion is encoded in a Hidden Semi-Markov
Model (HSMM), providing a probabilistic movement repre-
sentation. This representation allows reproduction in which

1Here, a scalar added to a vector index e.g. k + (2 : (Np + 1)) is taken
to mean (k + 2) : (k +Np + 1)



TABLE I: Acceleration parameters used in both models, ms−2.

Overapproximative (Γr(t)) Expected Γe(t)

Hand 189 10
Elbow 163 5

deviations from the desired path are only corrected when they
interfere with task performance, as demonstrated in previous
work [4], [5]. Secs. III-C and III-D describe the learning and
reproduction of the task in detail.

III. METHODS

A. Human Arm Expected and Reachable Occupancies

The human arm occupancy Γ(t) must be quick to calculate,
easy to collision-check, and conservative for the case of the
formal verification. In [17], a kinematic model of the human
arm is used to create a set of enclosing swept volumes, though
complexity grows exponentially with the number of degrees of
freedom of the kinematic model, increasing collision-checking
time.

In our prediction, we consider the arm as two rigid bodies:
the upper arm from shoulder (S) to elbow (E) and the
forearm from elbow (E) to hand (H). Reachable occupancies
of points S, E and H are calculated from the sensor data
of position and velocity found online (in our case, infrared
motion capture of markers on shoulder, elbow and wrist),
and a set of accelerations determined offline. Both expected
and (overapproximative) reachable occupancies are based on
the same model; the former uses empirically chosen expected
accelerations whereas the latter uses maximum accelerations
from analysis of motion capture data. 38 subjects aged 18–49
performed punching, sideways and upward-sweeping motions
as fast as possible to capture maximum forward, lateral and
vertical accelerations, see Tab. I.

We show now how the arm occupancy is calculated. Let
B(r) = {z ∈ R3| ∥z∥2 ≤ r}. We call the set in R3 in which
a point y ∈ R3 after time t may be located the reachable set

Ry(t), which is:

Ry(t) = y(0)⊕B(δy)⊕ (ẏ(0)⊕B(δẏ)) · t⊕B(
amax

2
· t2),

where y(0) and ẏ(0) are the initial position and speed of the
point, δy and δẏ ∈ R are maximum measurement uncertainties
of position and velocity respectively, amax ∈ R is the max-
imum acceleration magnitude and ⊕ is the Minkowski sum
defined over sets G and H as G⊕H = {g+h | g ∈ G, h ∈ H}.
We enclose the reachable set of time interval [ta, tb], denoted
by Ry([ta, tb]), in a sphere enclosing Ry(ta) and Ry(tb). We
omit the proof that the sphere encloses the reachable set of
the interval for brevity. The occupancy of the forearm RF

and upper arm RU are capsules enclosing the convex hull
(CH) of RH and RE , and of RE and RS , respectively. RF

and RU are extended by the maximum length of a human
hand, 0.205m (from [18]) and the estimated maximum radius
of the upper arm with clothes, 0.08m, respectively. RU and
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Fig. 2: Occupancy of the human arm for time interval [ta, tb]. For
the hand, the reachable set of the interval encloses the reachable sets
from ta to tb.
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Fig. 3: Verifying safety of a manoeuvre. The desired trajectory
during time interval [tk+1, tk+2] is determined to be unsafe, as the
subsequent safe stop intersects the reachable occupancy. Hence, the
safe stop verified in the previous timestep is executed.

RF are capsules, which are fast to collision-check as in [19],
see Fig. 2.

RF ([ta, tb]) = CH(RH([ta, tb]),RE([ta, tb]))⊕B(0.205),

RU ([ta, tb]) = CH(RS([ta, tb]),RE([ta, tb]))⊕B(0.08),

Γ([ta, tb]) = RF ([ta, tb]) ∪RU ([ta, tb]).
(1)

To generate the via points in line 10 of Alg. 1, we check
whether human and robot intersect at specific times in the
future. If so, we find the plane on which both forearm and
upper arm in Γe([ta, tb]) lie. We then move any intersecting
points normal to this plane in the direction from which the end-
effector approaches, until they lie just outside the boundary of
the expected occupancy.

By abstracting the human body to a set of rigid links
enclosed in capsules, this method can be extended to the whole
body of one or more humans, where the complexity grows
linearly with the number of capsules.

B. Formal Verification of Robot Trajectory

We now consider verifying the short-term plans, shown in
Fig. 3. During time interval [tk, tk+1], we verify whether the
trajectory for [tk+1, tk+2] and a subsequent controlled stop
of duration ts will intersect the reachable occupancies in
their respective time intervals. If no intersection occurs, the
control input uk+1 at tk+1 is verified. Otherwise, the control
input ūk+1 — part of the failsafe manoeuvre verified in the
previous time step — is applied as shown in Fig. 3. In our
implementation, input is the acceleration of the robot, which
is constant over a time step and during a controlled stop.

Proposition 1. The centre of a sphere of radius r under

constant acceleration a has position s(τ) at time τ . Then



the Minkowski sum of line segment L from s(0) to s(t) and a

sphere of radius
|a|
8 t2 + r bounds the set {s(τ)| 0 ≤ τ ≤ t}.

Proof. Let v be the velocity at time 0. Then:

s(τ) = s(0) + vτ +
a

2
τ2. (2)

Where 0 ≤ τ ≤ t, the point

s∗(τ) = s(0)
t− τ

t
+ s(t)

τ

t
(3)

lies on L. Substituting s(t) = s(0)+vt+a
2 t

2 into (3), subtract-
ing (2) and rearranging, we obtain s∗(τ)− s(τ) = a

2 τ(t− τ).
The magnitude of this is a maximum at τ = t

2 , hence the
distance from s(τ) to the point s∗(τ) on L is no greater than
|a|
8 t2, to which we add r to account for the moving sphere’s

radius.

C. Probabilistic Movement Encoding

The robot is programmed by providing N demonstrations
of the skill to transfer. Each demonstration consists of Tn data
points ξt = [x⊤

t , ẋ
⊤

t ]
⊤

, where xt and ẋt are the robot position
and velocity in task space, n ∈ {1, ... , N} and t ∈ {1, ... , Tn}.

The demonstrated data are encoded in a Hidden Semi-
Markov Model (HSMM) [20], an extension of the Hidden
Markov Model (HMM) in which the state self-transistion
probabilities aii are set to zero, and state duration is explic-
itly modeled as a probability distribution. In this work we
model this duration using a Gaussian N (µD

i ,Σ
D
i ) defined

by a duration mean µD
i and variance ΣD

i . Each hidden state
is represented by a single multivariate Gaussian N (µi,Σi)
encoding the local movement dynamics with the mean and
covariance defined as

µi =

[

µi,x

µi,ẋ

]

, Σi =

[

Σi,xx Σi,xẋ

Σi,ẋx Σi,ẋẋ

]

,

respectively. Summarizing, an HSMM with K states is defined
by the parameters {ai,j,Πi, µ

D
i ,Σ

D
i ,µi,Σi}Ki,j , with Πi the

state priors. These parameters are estimated from the demon-
stration data by Expectation Maximization (EM) using an
efficient Forward-Backward algorithm [21].

D. Control Prediction

The control commands are computed using linear uncon-
strained Model Predictive Control (MPC) [22]. Similarly to
our previous work [5], we consider a quadratic cost function
in both system state and control input, namely

J =

k+Np+1
∑

r=k+1

(

ξ̂r−ξr
)⊤

Qr

(

ξ̂r−ξr
)

+

k+Np
∑

r=k+1

u⊤

rRr ur,

and a discrete linear system ξk+1 = Aξk +Buk.
The task specifying parameters of the cost function are

generated from the probabilistic model of the movement and
the newly introduced via-points ph:

ξ̂r=

{

ph, if r=h

µsr , otherwise
Qr=

⎧

⎪

⎨

⎪

⎩

[

cxI 0

0 cẋI

]

, if r=h

(Σsr )
−1, otherwise

where sr indicates the index of the activated state at time r,
and h indicates a time step on the control horizon. The list
of indices [sk+2, ... , sk+Np+2] is generated from the HSMM
transition model using a procedure detailed below. The im-
portance of the via-point is controlled through the tracking
costs cx and cẋ representing the tracking cost on the desired
position and velocity of the via-point.

The cost is optimized using the standard Riccati equations
for a tracking problem (see e.g. [23]),

Pr = Qr−A
⊤(Pr+1B(B⊤Pr+1B+R)−1

B⊤Pr+1−Pr+1)A

dr = (A⊤−A⊤Pr+1B(B⊤Pr+1B+R)−1B⊤)

(Pr+1(Aξ̂r − ξ̂r+1)+dr+1),

using initial conditions PNp+1 = QNp+1 and dNp+1 = 0.
Pr and dr are then used to compute the control inputs
uk+(2:(Np+1)) and the state predictions ξ̃k+(2:Np+1), using
forward integration

ξ̃r+1 = Aξ̃r+Bur, ur = Kr(ξ̂r−ξ̃r) + f r

with feedback gain and feedforward terms defined as

Kr = (B⊤PrB +R)−1B⊤PrA,

f r =−(B
⊤PrB+R)−1B⊤(P r(Aξ̂r−ξ̂r)+dr).

The construction of the objective function used in our
approach is based on a state sequence s =

{

s1, ... , sNp

}

,
that is regenerated at each time step of the reproduction. This
process relies on the forward variable αi,k of the HSMM. It
defines the probability of being in state i at time step k given
the observation {ξ1, ξ2, ... , ξk}, i.e. P(i|ξ1, ξ2, ... , ξk), and is
recursively computed with (see e.g. [24])

αi,k=ΠiN
D

k,i

k
∏

r=1

Nr,i +
K
∑

j=1

k−1
∑

d=1

αj,t−d aj,iN
D

d,i

k
∏

r=k−d+1

Nr,i,

when k is smaller than the time history dmax, otherwise

αi,k=
dmax
∑

d=1

K
∑

j=1

αj,k−d aj,i N
D

d,i

k
∏

r=k−d+1

Nr,i,

with Nr,i = N
(

ξr| µi,Σi

)

and ND

d,i = N (d|µD

i ,Σ
D

i ).
At each time step the forward variable is used for

two purposes. First, to keep track of the probability
P(i|ξ1, ξ2, ... , ξk). Here, αi,k is computed while taking into
account the current system state ξk. This process is initialized
with the priors, i.e. αi,0 = Πi. Second, Np predictions are
computed to create the state sequence prediction s with

sr = argmax
i∈{1,··· ,K}

αi,r, ∀ r ∈ {k + 1, k + 2, · · · , k +Np}.

When computing the predictions, we assume that the prob-
ability of ξr being in a given state is 1 for all states, i.e.
Nr,i = 1∀i

When a safety stop is active — because the action uk was
not verified to be safe — one can either continue or pause
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Fig. 4: Visualization of the HSMM models used to verify the
proposed approach. Each column represents the model of one letter.
Top row: 2D representation of the 3D-letter models used, gray lines
indicate (partial) demonstrations, each coloured ellipsoid represents
a Gaussian (boundary is one standard deviation, colours correspond
to transition in the second row), arrows originating from the centers
represent the mean velocity encoded by that Gaussian. Bottom row:
The state transition duration model. Interconnecting arrows represent
between state transition probability, outer arrows indicate state prior
probability. The colour intensity of the arrows indicate magnitude of
the probability.

Fig. 5: Movement reproduction results for each of the letter models.
Each trajectory represents a different test case: C0 (grey-dotted), C1
(green) and C2 (blue). The location of the human arm, and the plane
used to generate the via-points are visualized by the red capsules
intersected with the cyan plane. The 3D ellipsoids represent the same
Gaussians as presented in Fig. 4, with corresponding colours.

the update of the forward variable. In the former case, the
temporal behavior encoded in the HSMM is respected; The
predicted state sequence will evolve, thereby omitting part of
the trajectory to ensure that the system reaches the final state
in time. In the latter case, such re-planning will not occur, and
the system will continue the trajectory once the robot resumes
normal operation. We choose the latter to ensure reproduction
of the original movement.

TABLE II: Number of safety stops observed for different experimen-
tal conditions: no interference (C0), formal verification (C1), formal
verification & replanning (C3).

S M C

C1 0 128 18

C2 0 0 0

IV. EVALUATION

We evaluate the approach on a 3D data set containing free-
air drawing motions of the letters S, M and C captured,
filtered and scaled from a Leap Motion Controller.2 The
demonstration data consists of a combination of full and partial
demonstrations: S:(1,6), M:(1,6) C:(3,3), (full, partial). The
movement dynamics are encoded in K Gaussians forming
an HSMM, where K is set empirically. The EM procedure
is repeatedly initialized using the K-means algorithm while
keeping the model with highest log-likelihood. Fig. 4 shows
2D projections of the models obtained. In the reproductions
the trajectory is performed close to a moving arm. The arm
movement is from the publicly available CMU Graphics Lab
Motion Capture Database3.

Each letter is reproduced under three different conditions:
C0) Normal reproduction without considering the human,
C1) Reproduction with avoidance based on the formal safety
verification, C2) Reproduction with avoidance based on the
formal safety verification with additional obstacle avoidance.
We empirically set the prediction horizon to Np = 50, the cost
matrix R = 1e−8 I and the via-point strength cx = 2e − 3,
cẋ = 0. The time step is 16.7ms; potential via-points were
calculated at time steps 10 and 20 of the prediction horizon.
A reproduction is terminated when the HSMM reaches the
final state and the observed velocity is zero.

The resulting trajectories are visualized in Fig. 5 and infor-
mation on the number of safety stops is summarized in Tab. II.
A clear difference between the different conditions can be seen
for the letters M and C. Although the via point introduced
in C2 deforms the letters, the curvature remains consistent
with the shape of the original trajectory, because the motion
synthesis respects the encoded movement coordination. The
reproduction of C1 fails since it is stopped by the verifier, and
no safe control command was found before terminal conditions
of the experiments were met.

The reproduction of the letter S shows that C2 does not
always outperform C1: during reproduction, C2 seemed to be
too cautious in planning via-points to avoid the human, while
the formal verification did not require to stop once.

Tab. III displays mean, average, maximum and minimum
computation times required for the verification and the pre-
diction step. These values correspond to a simulation of
the experiment on a computer with a 2.5GHz i7 processor
and 16GB RAM using MATLAB. In our implementation the

2https://www.leapmotion.com/, retrieved April 15, 2016
3Subject 80, movement 69 “Painting” http://mocap.cs.cmu.edu,

retrieved August 1, 2015



TABLE III: Overview of computation times [ms] (n=1299)

µt σt tmax tmin

Verification 0.19 0.08 1.02 0.15
Prediction/Optimization 5.50 0.38 11.60 5.28

prediction and verification were performed sequentially, but
they can be performed in parallel as previously discussed
in Sec. II. There are no iterative optimisation or collision-
checking steps in the method, hence computation time is
deterministic and suitable for real-time application.

The correctness of this approach depends on the human
models used being conservative. We account for reflex move-
ments by determining the dynamic parameters of the human
from data of unrestricted human movements executed as fast as
possible. Such movements may happen in industrial scenarios,
for example when a worker touches something hot or sharp,
or deliberately tries to ‘trick’ the robot.

The effectiveness of this approach depends on the capability
of the sensors. The sensor data in our experiment is updated
with 60Hz, however, industrial safety-certified camera sys-
tems4 have lower frame rates and higher latency.

V. CONCLUSION & FUTURE WORK

We presented an approach that combines probabilistic task
representations with formal methods to achieve formally safe
coordinated obstacle avoidance. In both scenarios C1 and C2,
safety is guaranteed, but where the trajectory is replanned
through via points, no unnecessary stopping occurs. The
formal verifier provides a closed form alternative to the
usage of hard contraints to guarantee obstacle avoidance. This
reduces the computation required for trajectory optimization,
while guaranteeing avoidance of the robot and maintaining
coordination patterns found in the demonstration data.

In future work we plan to improve the proposed method
by improved selection of the via-points and their strength
parameters (cx and cẋ), and verify the approach in a real robot-
human scenario. Additionally, we may consider a different
safety criterion to Def. 2, such as limiting impact energy
specified in [25]. To the authors’ best knowledge, this work is
the first to combine the ease of imitation learning with formal
safety guarantees for the human.
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