
CommonRoad: Composable Benchmarks for Motion Planning on Roads

Matthias Althoff, Markus Koschi, and Stefanie Manzinger

Abstract— Numerical experiments for motion planning of
road vehicles require numerous components: vehicle dynamics,
a road network, static obstacles, dynamic obstacles and their
movement over time, goal regions, a cost function, etc. Providing
a description of the numerical experiment precise enough
to reproduce it might require several pages of information.
Thus, only key aspects are typically described in scientific
publications, making it impossible to reproduce results—yet, re-
producibility is an important asset of good science. Composable
benchmarks for motion planning on roads (CommonRoad)
are proposed so that numerical experiments are fully defined
by a unique ID; all information required to reconstruct the
experiment can be found on the CommonRoad website. Each
benchmark is composed by a vehicle model, a cost function,
and a scenario (including goals and constraints). The scenarios
are partly recorded from real traffic and partly hand-crafted to
create dangerous situations. We hope that CommonRoad saves
researchers time since one does not have to search for realistic
parameters of vehicle dynamics or realistic traffic situations,
yet provides the freedom to compose a benchmark that fits
one’s needs.

I. INTRODUCTION

Reproducibility of results is a cornerstone of science [1],

[2]. One obstacle towards reproducibility in motion planning

of road vehicles is that details of the experimental results are

often not fully provided—some reasons are page limitations

of publications, an overwhelming number of required details,

or simply because some details are taken for granted. Pro-

viding detailed benchmarks would help in this regard and

also simplify comparing different planning methods.

First attempts to improve reproducibility and compara-

bility of motion planning algorithms have been made in

the robotics community, but mostly for (mobile) robotic

manipulators and not for motion planning in the automotive

sector. This work provides the first benchmark collection

for motion planning on roads, which specifies in depth the

motion planning problem consisting of initial state, goal

region, road network, static and dynamic obstacles, and the

model of the ego vehicle (vehicle for which motion planning

is conducted). Before highlighting the main features of Com-

monRoad, we present a literature review that is categorized

into benchmark problems, datasets, and motion planning

libraries. Most previous work in robotic motion planning

focused on providing libraries that facilitate benchmarking,

*This work was supported by the Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Priority Programme SPP 1835
Cooperative Interacting Automobiles (grant number: AL 1185/4-1) and by
the BMW Group within the Car@TUM project.

All authors have equally contributed to this work and are
with Faculty of Informatics, Technische Universität München,
85748 Garching, Germany {althoff, markus.koschi,
stefanie.manzinger}@tum.de

without providing a set of benchmark problems in a standard-

ized form. We address this problem by providing composable

benchmarks that can be referenced to with a unique ID. Our

proposed collection also facilitates benchmarking, but this

paper does not provide performance metrics—this should be

better determined by workshops to reach consensus.

a) Benchmarks: We would first like to note that we

only reference benchmarks that are still publicly available.

The need of benchmarks in robotics is formulated in [3],

but this early work does not provide a specific benchmark.

Several European projects for benchmarking in robotics have

been conducted in the 2000s (e.g. [4]–[6]), but none has

considered motion planning on roads. Detailed benchmarks

have been developed in particular for robotic grasping [7], [8]

and for robotic manipulators with a focus on indoor human

environments [9]. More abstract benchmark problems for

motion planning are provided by the Texas A&M University1

and by Rice University2.

b) Datasets: While no benchmarks for motion planning

on roads exist, recordings of vehicle movements are avail-

able; however, none of them is a benchmark problem since

initial state, goal regions, and a dynamic vehicle model are

missing. Furthermore, there exists no data format commonly

used by different research groups. One of the most popular

datasets of recorded traffic participants is from the Next

Generation Simulation (NGSIM) program [10], [11]. Other

datasets exist, but they have not recorded all relevant vehicles

in a common reference frame, see e.g. [12]. Another class

of works provides results on recorded data, but the data has

never been or is no longer publicly available, e.g. [13]–[15].

c) Motion planning libraries: One of the most suc-

cessful motion planning libraries in robotics is the Open

Motion Planning Library (OMPL) [16], which implements

many of the most important sampling-based approaches.

The OMPL has also been integrated into MoveIt! [17],

but remains to be a stand-alone software. MoveIt! itself is

integrated into the Robot Operating System (ROS) [18]. Cur-

rently, further infrastructure to facilitate benchmarking with

OMPL is developed [19]. Earlier libraries for sampling-based

motion planning are the Online, Open-source, Programming

System for Motion Planning (OOPSMP ) [20] and the Open

Robotics and Animation Virtual Environment (OpenRAVE)

[21] with similar goals as OMPL. Both libraries contain some

benchmark problems (none for automated driving), but their

focus is on the implementation of planning algorithms. A

library implementing graph-based search is the Search-Based

1parasol.tamu.edu/groups/amatogroup/benchmarks
2plannerarena.org



Planning Library (SBPL)3, which is useful if one e.g. uses

motion primitives that span a search tree [22]. Besides graph-

based techniques, there also exists the Covariant Hamilto-

nian Optimization for Motion Planning (CHOMP) library

for gradient-based optimization techniques [23].

d) Automotive benchmarks beyond motion planning:

One of the most successful automotive benchmarks is the

KITTI benchmark targeting computer vision [24]. Another

important aspect is simultaneous localization and mapping;

the OpenSLAM4 project and the Radish project5 host a

collection of benchmarks and libraries for SLAM.

e) Novelty and key features: CommonRoad is a bench-

mark collection for motion planning of road vehicles (avail-

able at commonroad.in.tum.de) with the following features:

• Reproducibility/unambiguity: All information re-

quired to reproduce the results of a motion planner

is provided in an unambiguous way and explained by

manuals on our website.

• Composability: Our benchmarks are composed of ve-

hicle models, cost functions, and scenarios (including

goals and constraints). All components are carefully

chosen to easily combine and interchange them.

• Representativeness: Our benchmark problems contain

recorded traffic to faithfully represent real traffic and

hand-crafted problems since most recorded traffic situ-

ations are not critical/dangerous.

• Portability: We use XML to describe our scenarios,

which is platform-independent. We also provide exe-

cutable vehicle models implemented in MATLAB and

Python, which are also platform-independent.

• Scalability: Our benchmark examples range from sim-

ple static scenarios with a few obstacles and a large

driving corridor (i.e. region where collisions cannot

take place) to complex scenarios with many dynamic

obstacles and a small driving corridor.

• Openness: All benchmarks are freely available from

our website with the possibility to suggest new ones.

• Independence: Our benchmarks are independent from

planning libraries and our scenario representation could

serve as an interchange format between other tools.

II. BENCHMARK COMPOSITION AND PLANNING

PROBLEM

As previously mentioned, we compose benchmarks using

vehicle models, cost functions, and scenarios (including

goals and constraints). This modularity makes it easy to

generate many benchmarks from a smaller set of components

and also simplifies comparing the effects of vehicle models

or cost functions by only changing those components.

A. Benchmark Composition

Let us introduce with M, C, S, and B the respective

IDs of the model, the cost function, the scenario, and the

3wiki.ros.org/sbpl
4www.openslam.org
5radish.sourceforge.net

benchmark. The benchmark ID is constructed by separating

partial IDs by colons in the following order:

B = M:C:S.

For instance, for M=PM2, C=JB1, S=OV001, the bench-

mark ID is B = PM2:JB1:OV001. If using one’s own com-

ponent is preferred, one can use the ID IND (for individual).

For instance, if one uses an individual cost function for

the previous example, the ID becomes PM2:IND:OV001.

If one prefers to build upon an existing component, which

is modified, the new ID should have M- as a prefix. After

modifying the model of the first example, the new ID is

M-PM2:JB1:OV001 (of course, the modification should be

described in detail). In case a collaborative planning bench-

mark is composed, we list the models and cost functions for

n controllable traffic participants by n-dimensional lists:

B = [M1,. . . ,Mn]:[C1,. . . ,Cn]:C-S,

where the index refers to the vehicle and a collabora-

tive scenario is indicated by using the prefix C-, where

M- should be used first if both are required. The i-th

model and cost function corresponds to the i-th ego vehicle

specified in the scenario XML file as introduced later in

Sec. V-C. If only one model and/or cost function is used,

it is assumed that all controlled vehicles use the same one.

For instance, the benchmark ID for M1=PM1, C1=JB1,

M2=PM3, C2=JB1, M3=ST2, C3=SA1, and S=C-OV011, is

B = [PM1,PM3,ST2]:[JB1,JB1,SA1]:C-OV011.

B. Motion Planning Problem

The proposed benchmarks codify an optimization prob-

lem whose solution is the motion plan. Let us denote by

fM (x(t), u(t)) the right hand side of the state space model

of vehicle model M so that

ẋ(t) = fM (x(t), u(t)), (1)

where x ∈ R
n is the state vector and u ∈ R

m is the

input vector. We further require the initial state x0,S ∈ R
n

(x(t0) = x0,S) provided by scenario S, the initial time t0,

and the final time tf . More details on the models can be

found in Sec. III. The cost function JC of ID C consisting

of terminal costs ΦC and running costs LC is

JC(x(t), u(t), t0, tf )

= ΦC(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

LC(x(t), u(t), t) dt,

which is detailed in Sec. IV. We denote the time-varying, free

drivable space on the road surface as WS,free(t) ⊂ R
2 and

introduce O(x(t)) : Rn → P (R2) (P () returns the power

set) as the function that returns the occupancy of a vehicle

given its state. A possible solution has to ensure that the

occupancy of the vehicle is in the free space (∀t ∈ [t0, tf ] :
O(x(t)) ∈ WS,free(t)) and respects additional constraints

gS(x(t), u(t), t) ≤ 0 provided by scenario S, such as speed

limits or other traffic rules [25]. Equality constraints can be



constructed from inequality constraints (e.g. x ≤ 0 ∧ −x ≤
0 ≡ x = 0). Let us further denote the goal region GS ⊂ R

n

of scenario S, which can be disjoint sets (see Sec. V-C). As

soon as x(t) ∈ GS at time t = tf , a feasible solution is found.

After introducing an input trajectory as u(·) (in contrast to

a value u(t) at time t), we can finally formulate the motion

planning problem as finding

u∗(·) = argmin
u(·)

JC(x(t), u(t), t0, tf ) (2)

subject to

ẋ(t) = fM (x(t), u(t)), O(x(t)) ∈ WS,free(t),

gS(x(t), u(t), t) ≤ 0, x(t0) = x0,S , x(tf ) ∈ GS .

Associated with the optimal input trajectory u∗(·) in (2)

is an optimal state trajectory x∗(·) that can be obtained by a

forward simulation of (1). Directly solving (2) is referred to

as trajectory planning (see [26, Sec. 4.]). An alternative is to

first find a path that the vehicle should follow for which an

optimal velocity profile is computed, which we refer to as

path planning with subsequent velocity optimization (see [26,

Sec. 4.]). Both techniques can be used to solve our proposed

benchmarks.

III. VEHICLE MODELS

This section presents models for vehicle dynamics ranging

from simple to complex. For each model it is assumed that

underlying controllers exist that can realize a commanded

acceleration (positive and negative within given limits). For

adaptive cruise control in particular, numerous works already

exist that realize a commanded acceleration, see e.g. [27],

[28]. The effects of engine characteristics in terms of fuel

consumption can be considered in the cost function (see

Sec. IV).

The lateral dynamics, however, cannot be abstracted away

to the same extent using controllers, especially when con-

straints such as the danger of roll-over must be considered

in extreme maneuvers [29], [30]. For this reason, our models

consider increasingly complex lateral vehicle dynamics and

tire models: point-mass model, kinematic single-track model,

single-track model, and a multi-body model. Some details

of the first two models are presented subsequently, whereas

due to space restrictions, the full detailed description of

the single-track model and the multi-body model can be

found in our vehicle model documentation on our website.

Executable MATLAB and Python implementations of all

presented models are also available. We have not included

Dubin or Reeds-Shepp cars since they require changing the

steering angle infinitely fast (see e.g. [31]).

The model IDs are constructed by first choosing the

model type (e.g. ST for single-track) followed by a number,

which refers to the parameterization in the vehicle model

documentation of our repository.

A. Point-Mass Model (M=PM)

The point-mass model is the simplest model that is

commonly used for motion planning, see e.g. [32], [33].

This model abstracts the vehicle as a point mass whose

absolute acceleration is bounded (Kamm’s circle). Let us

introduce � as the placeholder for a variable and �x and

�y to denote the value of the corresponding variable in

x and y direction (world coordinates), respectively. After

further introducing position s, acceleration a, and maximum

absolute acceleration amax, the dynamics is

s̈x = ax, s̈y = ay,
√

a2x + a2y ≤ amax.

The point-mass model ignores the minimum turning circle,

which is considered next in the kinematic single-track model.

B. Kinematic Single-Track Model (M=KS)

The kinematic single-track model (also known as the

kinematic bicycle model) considers only two wheels, where

the front and rear wheel pairs are each lumped into one

wheel, because the roll dynamics is neglected (see Fig. 1

and [34, Sec. 2.2]). This also explains the term single-track

model. Tire slip is not considered, but the kinematic single-

track model can be used when the vehicle does not operate

close to its physical capabilities [26], [35]. For instance,

when planning a parking maneuver, tire slip is not important,

but the point-mass model would not be sufficient since the

non-holonomic behavior and, in particular, the minimum

turning radius would not be considered.

In addition to the variables already introduced, we also

require the velocity of the steering angle vδ, the steering

angle δ, the heading Ψ, and the parameter l describing the

wheelbase as well as the parameter vS describing the velocity

above which the engine power is limiting maximum positive

acceleration rather than maximum tire forces (see Fig. 1).

We further denote by � the minimum possible value, by �

the maximum possible value, by �lat the value of a variable

in lateral direction, and by �long the value in longitudinal

direction (vehicle-fixed coordinates). The differential equa-

tions of the kinematic single-track model as defined in this

work are

δ̇ = vδ, Ψ̇ =
v

l
tan(δ), v̇ = along,

ṡx = v cos(Ψ), ṡy = v sin(Ψ),

under consideration of the constraints

vδ ∈ [vδ, vδ], δ ∈ [δ, δ], v ∈ [v, v], (3)

along ∈ [−amax, a], a =

{

amax
vS
v

for v > vS ,

amax otherwise,
(4)

√

a2long + (v Ψ̇)2 ≤ amax (alat = v Ψ̇). (5)

Constraint (3) considers that the steering velocity, the steer-

ing angle, and the vehicle velocity are bounded. Limited en-

gine power and braking power as detailed in [36, Sec. III.B]

are considered by (4). Finally, as in the point-mass model,

constraint (5) models Kamm’s circle.

Note that kinematic single-track models differ slightly in

publications, depending on whether one considers that 1)

the steering angle or the steering velocity is an input, 2) the



vehicle velocity or the vehicle acceleration is an input, or

3) the front or rear wheel is the reference point (here: rear

wheel, see Fig. 1). For instance, in [26, eq. (8)], the vehicle

velocity and the steering velocity are inputs. Additionally,

other works do not provide all the constraints of our model

(which can be easily removed, but a removal should be stated

since this simplifies motion planning).

C. Single-Track Model (M=ST)

The natural extension of the kinematic single-track model

is the single-track model (also known as the bicycle model),

which considers tire slip [34, Sec. 2.3] influencing the slip

angle β, which is illustrated in Fig. 1 as the angle between the

velocity vector v and the vehicle orientation Ψ. Works that

perform planning of evasive maneuvers closer to physical

limits require the single-track model, see e.g. [37], [38].

We additionally consider the load transfer of the vehicle

due to longitudinal acceleration along (neglecting suspension

dynamics). Due to space limitations, we refer the reader to

our vehicle model documentation for a detailed description

and derivation of the single-track model.

Since the single-track model uses a linear relationship

between slip angle and tire force (thus ignoring saturation

effects), constraint (5) is important for limiting possible tire

forces. Please note that in contrast to this work, other works

often only consider constant velocity when referring to a

single-track model (see e.g. [34, Sec. 2.3]). Also, the weight

transfer between the front and rear axle is often neglected in

single-track models (see e.g. [37]).

reference point [sx, sy]T for

single-track model (center of mass)

Ψ

β

lreference point [sx, sy]T for kinematic

single-track model (rear wheel)

δ

x

y

v

Fig. 1. Combined illustration of kinematic/standard single-track model.

D. Multi-Body Model (M=MB)

Although the previously introduced single-track model al-

ready considers many important effects of vehicle dynamics,

it does not consider the vertical load of all 4 wheels due

to roll, pitch, and yaw, their individual spin and slip, and

nonlinear tire dynamics. An example of a multi-body model

used for motion planning of a road vehicle can be found

in [39]. Although many commercial multi-body models for

vehicle dynamics exist6, those models are proprietary and

thus not appropriate for a benchmark that requires public

accessibility. Our multi-body model is taken out of [40,

Appendix A], which is one of few detailed and accessible

multi-body dynamics descriptions. Due to the complexity

of the multi-body model, we refer to the vehicle model

documentation of our repository and only mention the main

features.

6www.carsim.com, www.tesis-dynaware.com, www.mscsoftware.com

The multi-body dynamics is described by 3 masses: The

unsprung mass and the sprung masses of the front and rear

axles. The forces between these masses are described by the

dynamics of the suspension and the tire model. We consider

all suspension forces in [40, Appendix A] originating from

springs, dampers, and anti-roll bars. For the tire dynamics

we use the PAC2002 Magic-Formula tire model, which is

widely used in industry [41]. Rewriting all equations as a

state space model yields 29 state variables.

E. Numerical Experiments and Interchangeability of Models

In order to facilitate switching between different models

and to compare results as done in this subsection, we describe

in our vehicle model documentation how parameter sets

and initial states can be converted in the best possible

way between models. There, we further provide state-space

formats of all models so that it is easier to build one’s own

executable models in addition to the ones in MATLAB and

Python.

To illustrate better differences between models, we briefly

present numerical experiments for a BMW 320i (parameter

set 2 in vehicle model documentation). The duration of each

experiment is 1 s, and the initial velocity is 15 m/s; further

details of the experiments can be found in the vehicle model

documentation. First, we compare the kinematic single-track

model, the single-track model, and the multi-body model

when driving a left curve. It can be easily seen in Fig. 2(a)

that the kinematic single-track model realizes the tightest

bend since it does not consider tire slip; the single-track

model is a little wider due to considering tire slip. This effect

is even stronger for the multi-body model since it already

considers saturation of tire forces before constraint (5) is

active. This can be seen even better when comparing the slip

angles of the single-track model and the multi-body model

in Fig. 2(b).

Second, we demonstrate understeering and oversteering

(see [34, Sec. 3.3]) for the multi-body model during corner-

ing by braking into the corner (along = −0.7 g, g represents

the gravity constant), coasting (along = 0 g), and heavily

accelerating (along = 0.63 g) the rear-wheel-driven vehicle

(power oversteer) as shown by the slip angle in Fig. 3(a). It

can also be easily observed, by plotting the pitch in Fig. 3(b),

that the vehicle is “diving” during braking while the front

lifts during acceleration.

IV. COST FUNCTIONS

This section proposes standardized cost functions for the

motion planning problem in (2). Analogously to the com-

posability of the benchmarks, we compose different types of

partial cost functions to a single cost function. The partial

cost functions have a unique ID p and the set P contains all

IDs of the proposed partial cost functions. The overall cost

function is obtained by the weighted sum

JC(x(t), u(t), t0, tf ) =
∑

i∈I

wi Ji(x(t), u(t), t0, tf ),

where I ⊂ P contains the IDs of the applied partial cost

functions and wi ∈ R
+ are weights. We first present popular



0 5 10 15

0

0.5

1

1.5

2

2.5

x-position sx [m]

y
-p

o
si

ti
o
n
s
y

[m
] KS model

ST model

MB model

(a) Path of center of gravity.

0 0.5 1

0

0.005

0.01

0.015

0.02

0.025
ST model

MB model

time t [s]

sl
ip

an
g
le

β
[r

ad
]

(b) Slip angle.

Fig. 2. Comparing the kinematic single-track (KS) model, the single-track
(ST) model, and the multi-body (MB) model during cornering.

0 0.5 1

-0.1

-0.05

0

0.05

time t [s]

sl
ip

an
g
le

β
[r

ad
]

coasting

braking

accelerating

(a) Slip angle.

0 0.5 1

-0.04

-0.02

0

0.02

0.04

coasting

braking

time t [s]

p
it

ch
Θ

S
[r

ad
]

accelera-
ting

(b) Pitch.

Fig. 3. Investigating oversteering and understeering as well as pitch for
the multi-body model.

partial cost functions using the variables already introduced

in Sec. III:

• Time: JT = tf (see [42, eq. 2]).

• Acceleration: JA =
∫ tf

t0
a(t)2 dt (see [43, Sec. III.B]).

• Jerk: JJ =
∫ tf

t0
ȧ(t)2 dt (see [44, Sec. III]).

• Steering angle: JSA =
∫ tf

t0
δ(t)2 dt (see [45]).

• Steering rate: JSR =
∫ tf

t0
vδ(t)

2
dt (see [45]).

• Energy: JE =
∫ tf

t0
P (x(t), u(t)) dt, where

P (x(t), u(t)) is the required power of the engine

for the state x and the input u, which can be obtained

from engine mappings (see [28, Sec. III.B]).

• Yaw rate: JY =
∫ tf
t0

Ψ̇(t)2 dt (see [43, Sec. III.B]).

• Lane center offset: JLC =
∫ tf

t0
d(t)2 dt, where d is the

distance to the lane center or a driving corridor (see [43,

Sec. III.B]).

• Velocity offset: JV =
∫ tf

t0
(vdes(x(t))−v(t))2 dt, where

vdes(x(t)) is the desired velocity for the vehicle state x

(see [43, Sec. III.B]).

• Orientation offset: JO =
∫ tf

t0
(θdes(x(t)) − θ(t))2 dt,

where θdes(x(t)) is the desired orientation for the vehi-

cle state x (see [45]).

• Distance to obstacles: JD =
∫ tf

t0
max(ξ1(t), . . .,

ξo(t)) dt, where o is the number of obstacles, ξi(t) =
e−wdistdi(t), di(t) is the distance of the ego vehicle to

an obstacle, and wdist is an additional required weight

(see [46, eq. 7-8]).

• Path length: JL =
∫ tf

t0
v(t) dt (see [46, Tab. 1]).

• Terminal offset: JTO = d(tf )
2 (see [44, eq. 2]).

• Terminal distance to goal: JTG = dgoal(tf )
2, where

dgoal is the distance to the goal (see [47, Sec. IV.D]).

Let us now introduce a notation for writing the used weights

compactly. We write wT = 0.1, wSA = 0.4, and wY = 0.7 in

short as [(T |0.1), (SA|0.4), (Y |0.7)]. After agreeing that we

use SI units for all variables, this notation uniquely defines

a cost function. Most works, however, do not provide such

weights, so we cannot include their values in the current

version of the benchmark. We therefore hope that once the

structure is fixed, other researchers will contribute their used

weights. Works that published their used weights are listed

below, where the cost function ID is chosen as the initials

of the first authors plus a running number:

• JJB1 from [42, eq. 2]: [(T |1)].
• JSA1 inspired by [48, eq. 2]: [(SA|0.1), (SR|0.1),

(D|105)] (we use fewer parameters).

• JWX1 inspired by [46, Tab. IV]: [(T |10), (V |1),
(A|0.1), (J |0.1), (D|0.1), (LC|10)] (we use fewer

parameters and velocity difference instead of absolute

velocity).

V. SCENARIOS

As a last component, we introduce scenarios specified by

an XML file, which is composed of 1) a formal representa-

tion of the road network, 2) static and dynamic obstacles, and

3) the planning problem of the ego vehicle(s) as shown in

Fig. 4, where details of child elements are omitted for clarity.

In the following subsections we briefly describe each data

format in more detail. A detailed description can be found

in the XML documentation on our website. We also provide

a scenario documentation listing all available scenarios.

A. Road Network

For our benchmarks we use lanelets [49] as atomic,

interconnected, and drivable road segments to represent the

road network. A lanelet is defined by its left and right

bound, where each bound is represented by an array of

points (a polyline), as shown in Fig. 5. We have chosen

lanelets since they are as expressive as other formats, such

as e.g. OpenDRIVE7, yet have a lightweight and extensible

representation. Using lanelets allows the road network to

be modeled as a directed graph, where each node has

four types of outgoing edges: successor, predecessor, adja-

centLeft, and adjacentRight (see Fig. 4; predecessor is not

required but added for implementation reasons). Lanelets

additionally contain traffic regulations, e.g. the speed limit.

All road networks are stored using XML. The XML data

structure of OpenStreetMap8 can represent lanelets in the

WGS84 coordinate frame using references between lanelets

and primitive elements as described in [49]. Since we require

Cartesian coordinates and a compact element structure to also

represent obstacles and the planning problem, we propose

our CommonRoad XML data format as specified on our

website.

7opendrive.org
8openstreetmap.org



/

lanelet

leftBound

point

lineMarking

rightBound

point

lineMarking

predecessor (ref to lanelet)

successor (ref to lanelet)

adjacentLeft (ref to lanelet)

adjacentRight (ref to lanelet)

trafficRegulations

obstacle

role: static

type: parkedVehicle/.../unknown

shape

obstacle

role: dynamic

type: car/truck/.../unknown

shape

trajectory

state

obstacle

role: dynamic

type: car/truck/.../unknown

occupancySet

occupancy

obstacle

role: dynamic

type: car/truck/.../unknown

shape

probabilityDistribution

planningProblem

initialState

goalRegion

state

Fig. 4. Structure of the XML files encoding each scenario. For clarity we
do not show all elements of the XML structure.

lanelet (road)

lanelet (rail)

road vehicle
tram

driving
direction

ego vehicle

right bound

left bound

lanelets

Fig. 5. Lanelets of a complex intersection in the city center of Munich
(scenario ID S=GER Muc 1a). Besides roads, tram rails are also modeled
by lanelets.

B. Obstacles

Obstacles are characterized by their role (static/dy-

namic), type (car/truck/bus/bicycle/pedestrian/construction-

Zone/parkedVehicle/priorityVehicle/unknown), shape (rect-

angle/circle/polygon), and movement over time (if the ob-

stacle is dynamic). We have restricted ourself to the shapes

rectangle, circle, and polygon since rectangles are a good

description for cars and trucks, circles are a good description

of pedestrians, and any other two-dimensional shape can be

modeled by a polygon if the number of points approaches

infinity. If motion planners depend on other representations,

one has to enclose the provided shape, see e.g. [50].

occupancy at final time of prediction horizon

trajectory

known behavior unknown behavior stochastic behavior

Fig. 6. Supported occupancy representation of predicted obstacle move-
ments.

When the obstacle is dynamic, we provide three possi-

bilities to describe the movement over time as illustrated in

Fig. 6: known behavior, unknown behavior bounded by sets,

and unknown behavior described by probability distributions.

a) Known behavior: We describe known behavior with

a trajectory, which is modeled as state sequence containing

position and orientation. After defining the reference points

of shapes of obstacles, the occupancy of an obstacle along

a trajectory is uniquely defined: the reference point of a

rectangle and a circle is their geometric center and the

reference point of a polygon is its first point (polygons are

stored as an ordered list of points).

b) Unknown behavior: Occupancy sets that evolve over

time are used to represent unknown behavior [36]. For

occupancy sets we only allow polygons as a representation

that can be obtained from our tool SPOT [51]. Please note

that one can also represent known behavior by evolving

occupancy sets, which do not change their size over time.

c) Unknown stochastic behavior: One can describe

unknown stochastic behavior with probability distributions

of states. Since many different probability distributions are

used (e.g. Gaussian [52], piecewise constant [53], etc.), we

provide a placeholder for probability distributions in our

XML structure. Please note that for stochastic behavior, the

distribution of the state and the dimension of the vehicle

have to be stored separately to correctly compute crash

probabilities [53, Sec. VI]. For this reason, we also store

the shape of obstacles as we do for known behavior.



Ego vehicle

Obstacle A

Obstacle B

Goal lane

t = 0s t = 0s t = 2.5s t = 2.5s t = 2.5s t = 5.5s t = 5.5s t = 5.5st = 0s

Fig. 7. Solution of our applied trajectory planner for scenario ”NGSIM US101 0”.

C. Planning Problem

Each ego vehicle has an initial state as well as one or

several goal regions. If several goal regions are provided,

we implicitly assume that only one of them has to be

reached, modeling options like overtaking or staying behind a

vehicle. The position of the goal region is defined by a point,

shape (rectangle/circle/polygon), or lanelet. For orientation,

velocity, and time, intervals or exact values can be provided.

Since different vehicle models can be used (see Sec. III), the

shape of the ego vehicle is part of the parameterization of

the model. Despite the fact that the different models have

different state variables, we can initialize all models by the

initial state of a single-track model as described in the vehicle

model documentation.

VI. EXAMPLE

We demonstrate our proposed benchmark collection with

a deliberately simple scenario, which is based on recorded

traffic data from the NGSIM U.S. 101 dataset (07:50 a.m. to

08:05 a.m.). Fig. 7 shows the trajectories of two vehicles and

the initial position of the ego vehicle. We consider all lanes

of the U.S. 101 highway provided by the NGSIM dataset;

however, we only depict three out of six lanes in Fig. 7 for

the sake of clarity. The goal of this scenario is to plan a

lane-change maneuver for the ego vehicle to the left-most

lane within a time horizon of tf ∈ [5.5, 6.0] s (see Fig. 7).

The applied trajectory planner is based on numerical

optimization; for a detailed explanation of the algorithm,

the interested reader is referred to [45, Sec. III.1]. In this

paper, we use a kinematic single-track model as described in

Sec. III based on the parameters KS1 described in the vehicle

model documentation. However, in order to demonstrate how

parameters can be modified, the parameter vS is changed to

vS → ∞. The cost function is chosen as

JSM1(x(t), u(t), t0, tf ) = wAJA + wSAJSA

+ wSRJSR + wLCJLC + wV JV + wOJO,

which minimizes the acceleration (JA), steering effort (JSA

and JSR), the distance and orientation offset to a reference

path (JLC and JO), and the velocity offset (JV ). The chosen

weights are

[(A|50), (SA|50), (SR|50), (LC|1), (V |20), (O|50)].

Since the ego vehicle should perform a lane-change to the

left lane, the reference path is set to the center of the goal

lane for computing the costs JLC and JO. Furthermore, the

optimization horizon is 5.5 s and the desired velocity is

vdes = 25 m/s.

The unique ID of the benchmark is B =
M-KS1:SM1:NGSIM US101 0, with vS → ∞. Our obtained

trajectory has a total cost of JSM1(x(t), u(t), t0, tf ) =
5.69 ·104. In contrast to other work, all details on the vehicle

model, the cost function, and the scenario are precisely

given by our unique ID. Please note that without the ID we

also would not have had the space to present all the details

of the scenario in this work, although it is quite simple.

VII. CONCLUSIONS

To the best of our knowledge, we provide the first set

of composable benchmark problems for motion planning on

roads accessible from commonroad.in.tum.de. While this

paper only provides a rough overview, all details can be

found in the provided documentation on our website. Each

composed benchmark has a unique ID that can be used in

publications or for one’s own organization of benchmarks.

This is demonstrated by an example for which we also

provide a solution. Our benchmark collection contains a mix

of recorded and constructed scenarios as well as scenarios

on highways, on rural roads, and in urban settings. Our

platform-independent repository can be extended by other

researchers and will also be extended by ourselves.

REFERENCES

[1] F. Amigoni, M. Reggiani, and V. Schiaffonati, “An insightful com-
parison between experiments in mobile robotics and in science,”
Autonomous Robots, vol. 27, pp. 313–325, 2009.

[2] F. Bonsignorio and A. P. del Pobil, “Toward replicable and measurable
robotics research,” IEEE Robotics & Automation Magazine, vol. 22,
no. 3, pp. 32–35, 2015.

[3] J. Baltes, “A benchmark suite for mobile robots,” in Proc. of the

IEEE/RSJ International Conference on lntelligent Robots and Systems,
2000, pp. 1101–1106.

[4] R. Dillmann. (2004) Benchmarks for robotics research. Deliverable
KA 1.10 of the EU project EURON.

[5] K. Pfeiffer, A. Bubeck, N. Blümlein, and M. Hägele. (2007) Action
plan and recommendation on benchmarks for mobile manipulation and
service robots. Deliverable D4.3 of the EU project Robot Standards
and Reference Architectures (RoSta).

[6] W. Nowak, A. Zakharov, S. Blumenthal, and E. Prassler. (2010)
Benchmarks for mobile manipulation and robust obstacle avoidance
and navigation. Deliverable D3.1 of EU Project Best Practice in
Robotics (BRICS).

[7] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The Columbia
Grasp Database,” in Proc. of IEEE International Conference on

Robotics and Automation, 2009, pp. 1710–1716.
[8] S. Ulbrich, D. Kappler, T. Asfour, N. Vahrenkamp, A. Bierbaum,

M. Przybylski, and R. Dillmann, “The OpenGRASP benchmarking
suite: An environment for the comparative analysis of grasping and
dexterous manipulation,” in Proc. of IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2011, pp. 1761–1767.
[9] B. Cohen, I. A. Şucan, and S. Chitta, “A generic infrastructure for

benchmarking motion planners,” in Proc. of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2012, pp. 589–
595.

[10] V. G. Kovvali, V. Alexiadis, and L. Zhang, “Video-based vehicle
trajectory data collection,” in Proc. of the Transportation Research

Board 86th Annual Meeting, 2007.



[11] V. Punzo, M. T. Borzacchiello, and B. Ciuffo, “On the assessment of
vehicle trajectory data accuracy and application to the Next Generation
SIMulation (NGSIM) program data,” Transportation Research Part C,
vol. 19, pp. 1243–1262, 2011.

[12] E. Romera, L. M. Bergasa, and R. Arroyo, “Need data for driver
behaviour analysis? Presenting the public UAH-DriveSet,” in Proc. of

the 19th IEEE International Conference on Intelligent Transportation

Systems, 2016, pp. 387–392.
[13] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system

for learning statistical motion patterns,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, pp. 1450–1464, 2006.
[14] B. T. Morris and M. M. Trivedi, “Learning, modeling, and classifica-

tion of vehicle track patterns from live video,” IEEE Transactions on

Intelligent Transportation Systems, vol. 9, pp. 425–437, 2008.
[15] Y. Zheng, J. Wang, X. Li, C. Yu, K. Kodaka, and K. Li, “Driving

risk assessment using cluster analysis based on naturalistic driving
data,” in Proc. of the 17th IEEE International Conference on Intelligent

Transportation Systems, 2014, pp. 2584–2589.
[16] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[17] S. Chitta, I. Sucan, and S. Cousins, “MoveIt!” IEEE Robotics &

Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.
[18] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[19] M. Moll, I. A. Şucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robotics & Automation Magazine, vol. 22, no. 3,
pp. 96–102, 2015.

[20] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for motion planning:
An online, open-source, programming system,” in IEEE International

Conference on Robotics and Automation, 2007, pp. 3711–3716.
[21] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for

autonomous robotics,” Carnegie Mellon University, Tech. Rep. CMU-
RI-TR-08-34, 2008.

[22] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions

on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.
[23] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:

Gradient optimization techniques for efficient motion planning,” in
Proc. of IEEE International Conference on Robotics and Automation,
2009, pp. 489–494.

[24] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[25] A. Rizaldi and M. Althoff, “Formalising traffic rules for accountability
of autonomous vehicles,” in Proc. of the 18th IEEE International

Conference on Intelligent Transportation Systems, 2015, pp. 1658–
1665.

[26] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[27] S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand,
W.-B. Zhang, D. H. McMahon, H. Peng, S. Sheikholeslam, and
N. McKeown, “Automated vehicle control developments in the PATH
program,” IEEE Transactions on Vehicular Technology, vol. 40, no. 1,
pp. 114–130, 1991.

[28] D. Kim, H. Peng, S. Bai, and J. M. Maguire, “Control of integrated
powertrain with electronic throttle and automatic transmission,” IEEE

Transactions on Control Systems Technology, vol. 15, no. 3, pp. 474–
482, 2007.

[29] D. Odenthal, T. Bünte, and J. Ackermann, “Nonlinear steering and
braking control for vehicle rollover avoidance,” in Proc. of the Euro-

pean Control Conference, 1999, pp. 598–603.
[30] P. Gaspar, I. Szaszi, and J. Bokor, “Reconfigurable control structure to

prevent the rollover of heavy vehicles,” Control Engineering Practice,
vol. 13, pp. 699–711, 2005.

[31] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[32] J.-B. Tomas-Gabarron, E. Egea-Lopez, and J. Garcia-Haro, “Vehicular
trajectory optimization for cooperative collision avoidance at high

speeds,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 4, pp. 1930–1941, 2013.

[33] D. N. Godbole, V. Hagenmeyer, R. Sengupta, and D. Swaroop,
“Design of emergency maneuvers for automated highway system:
Obstacle avoidance problem,” in Proc. of the 36th Conference on

Decision & Control, 1997, pp. 4774–4779.
[34] R. Rajamani, Vehicle Dynamics and Control. Springer, 2012.
[35] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-

ments,” in Proc. of the Conference on Intelligent Robots and Systems,
2005.

[36] M. Althoff and S. Magdici, “Set-based prediction of traffic participants
on arbitrary road networks,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 187–202, 2016.

[37] J. H. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of
time-optimal off-road vehicle maneuvers using the RRT∗,” in Proc.

of the 50th IEEE Conference on Decision and Control and European

Control Conference, 2011, pp. 3276–3282.
[38] Z. Shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous

vehicles,” IEEE Transactions on Robotics and Automation, vol. 7,
no. 2, pp. 241–249, 1991.

[39] E. Bertolazzi, F. Biral, and M. Da Lio, “Real-time motion planning
for multibody systems,” Multibody System Dynamics, vol. 17, no. 2,
pp. 119–139, 2007.

[40] R. W. Allen, H. T. Szostak, D. H. Klyde, T. J. Rosenthal, and K. J.
Owens, “Vehicle dynamic stability and rollover,” U.S. Department of
Transportation, Final Report DOT HS 807 956, 1992.

[41] Adams/Tire help, MSC Software, 2 MacArthur Place, Santa Ana,
CA 92707, April 2011, documentation ID: DOC9805. [Online].
Available: http://simcompanion.mscsoftware.com/infocenter

[42] J. E. Bobrow, “Optimal robot path planning using the minimum-time
criterion,” IEEE Journal of Robotics and Automation, vol. 4, no. 4,
pp. 443–450, 1988.

[43] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning
for BERTHA – a local, continuous method,” in Proc. of the IEEE

Intelligent Vehicles Symposium, 2014, pp. 450–457.
[44] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory

generation for dynamic street scenarios in a frenét frame,” in Proc.

of the IEEE International Conference on Robotics and Automation,
2010, pp. 987–993.

[45] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in Proc. of the 19th International IEEE Conference on

Intelligent Transportation Systems, 2016, pp. 452–458.
[46] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion

planner with trajectory optimization for autonomous vehicles,” in Proc.

of the IEEE International Conference on Robotics and Automation,
2012, pp. 2061–2067.

[47] J. Suh and S. Oh, “A cost-aware path planning algorithm for mobile
robots,” in Proc. of the IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, 2012, pp. 4724–4729.
[48] S. J. Anderson and S. C. Peters, “An optimal-control-based framework

for trajectory planning, threat assessment, and semi-autonomous con-
trol of passenger vehicles in hazard avoidance scenarios,” International

Journal of Vehicle Autonomous Systems, vol. 8, pp. 190–216, 2010.
[49] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-

sentation for autonomous driving,” in Proc. of the IEEE Intelligent

Vehicles Symposium, 2014, pp. 420–425.
[50] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle

motion planning,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2010, pp. 518–522.

[51] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction
of traffic participants,” in Proc. of the IEEE Intelligent Vehicles

Symposium, 2017.
[52] A. Lambert, D. Gruyer, G. S. Pierre, and A. N. Ndjeng, “Collision

probability assessment for speed control,” in Proc. of the 11th In-

ternational IEEE Conference on Intelligent Transportation Systems,
2008, pp. 1043–1048.

[53] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic
collision detection in autonomous driving,” IEEE Transactions on

Intelligent Transportation Systems, vol. 10, no. 2, pp. 299 – 310, 2009.


