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Abstract

A new method for numerical Bayesian inference, termed aBUS, is proposed, which is based

on Subset Simulation applied within the BUS (Bayesian Updating with Structural reliability

methods) approach. The performance of aBUS is independent of the number of uncertain

parameters of the problem by virtue of Subset Simulation. aBUS produces samples from

the posterior distribution and returns an estimate for the evidence of the Bayesian inference

problem. Compared to the standard BUS approach, the proposed method does not require

knowledge about the maximum of the likelihood function.

Besides aBUS, other methods for numerical Bayesian inference that generate samples from

the posterior distribution and provide an estimate for the evidence are discussed. For the

Transitional Markov Chain Monte Carlo (TMCMC) method and for Nested Sampling, po-

tential modifications are proposed. For the BUS approach, a Metropolis-Hastings based post-

processing step is proposed that enables application of standard BUS even if the maximum

value of the likelihood function is unknown.

Furthermore, probabilistic modeling approaches for the prior distribution and probability

models for error structures are investigated, and guidelines for probabilistic modeling are

given. The contribution of prior distribution and likelihood function to the evidence of the

Bayesian inference problem is discussed. It is shown that modeling as well as measurement

errors can be represented in terms of the prior probabilistic model or in terms of the likelihood

function without influence on the evidence of the inference problem, but with considerable

consequences for the efficiency of the applied numerical methods.

Moreover, the notion of uncertainty is discussed and a probabilistic framework for uncertainty

quantification is developed. The framework highlights the personal aspect of probability and

argues against classifying probabilities as subjective or objective. The introduced framework is

intended as a probabilistic foundation for stochastic forward analysis and Bayesian inference.
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Zusammenfassung

Ein neues numerisches Verfahren, genannt aBUS, zur Durchführung einer Bayes’schen In-

ferenz wird eingeführt. Dieses basiert auf Subset Simulation, angewendet innerhalb des BUS

(Bayesian Updating with Structural reliability methods) Ansatzes. Durch Subset Simula-

tion als Basis ist die Performance des Verfahrens unabhängig von der Anzahl der unsicheren

Modellparameter. aBUS erzeugt Stichproben der Posterior-Verteilung und schätzt die Plau-

sibilität des verwendeten stochastischen Modells ab. Verglichen mit anderen BUS Verfahren

benötigt der vorgeschlagene Ansatz das Maximum der Likelihood Funktion nicht als Ein-

gangsgröße.

Neben aBUS werden weitere numerische Bayes’sche Inferenz-Methoden betrachtet, welche

Stichproben der Posterior-Verteilung liefern und die Plausibilität des verwendeten stochastis-

chen Modells abschätzen. Potentielle Änderungen werden für TMCMC (Transitional Markov

Chain Monte Carlo) und für Nested Sampling vorgeschlagen. Für BUS wird ein auf dem

Metropolis-Hastings Algorithmus basierender Nachbereitungsschritt vorgeschlagen, welcher

es erlaubt, BUS selbst dann einzusetzen, wenn das Maximum der Likelihood Funktion nicht

genau bekannt ist.

Darüber hinaus wird die probabilistische Modellierung der Prior-Verteilung und die proba-

bilistische Beschreibung von Fehlermodellen diskutiert. Ratschläge für die probabilistische

Modellierung werden gegeben. Der Einfluss der gewählten Prior-Verteilung und der Likeli-

hood Funktion auf die berechnete Plausibilität des stochastischen Modells wird erläutert. Es

wird gezeigt, dass Modell- und Messfehler sowohl durch die Prior-Verteilung als auch durch

die Likelihood Funktion ausgedrückt werden können. Die berechnete Plausibilität hängt

hiervon nicht ab, wohl aber der zur Lösung des Problems nötige Rechenaufwand.

Weiterhin wird die Interpretation von Unsicherheiten diskutiert und ein probabilistisches

Grundgerüst für die Quantifizierung von Unsicherheiten erarbeitet. Der persönliche As-

pekt der Unsicherheiten wird hervorgehoben und es wird sich gegen eine Klassifizierung von

Unsicherheiten als entweder subjektiv oder objektiv ausgesprochen. Das eingeführte proba-

bilistische Grundgerüst ist als Basis für sowohl einfache stochastische Analysen als auch für

Bayes’sche Inferenzen gedacht.
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Nomenclature

Terms, symbols and abbreviations are generally explained when first introduced.

List of Terms

Expression Description

Bayesian . . . . . . framework/probability refers to the Cox-Jaynes interpretation

of probability.

conditional on “Statement A” being conditional on “Statement B” means that

“Statement A” holds if “Statement B” is imposed as true.

model is an approximate representation of a real system. In this work,

model refers to the “tool” that is used to approximate the re-

sponse of the true underlying system. In the simplest case a

model is an explicit mathematical function that approximates

the system. For more general cases, the model is a numerical ap-

proximate of the system response conditional on uncertain model

parameters.

Probability Theory refers to the Cox-Jaynes interpretation of probability.

proposition is a statement that is either true or false

random variable denotes a quantity that is uncertain.

stochastic variable refers to a quantity that is fixed in reality, but whose value we

are uncertain about.

Note: The term stochastic variable is more specific than the ex-

pression random variable.

system refers to an actual system in the real-world. In this context, the

response of a system can never be represented exactly, but can

only be approximated by a model. Examples for systems are:

a tunnel to be constructed, an existing bridge, a hydrological

catchment, . . . .



List of Symbols

Latin characters

Symbol Description

cv,X [g(X)] coefficient of variation (C.o.V.) of function g : RM → R with respect to

random variable X ∈ RM .

Cov(A,B) covariance between random variables A and B

D observed data/information

EX [g(X)] expectation of function g : RM → R with respect to random variable

X ∈ RM .

f model input; observed as s

Ig(X) indicator function:

Ig(X) =

1 if g(X) ≤ 0

0 otherwise

with g : RM → R.

L(θ|D) Likelihood function in Bayesian inference

Lmax maximum value that the likelihood function can take

M number of random/stochastic variables in a problem

M information/knowledge available a-priori in a Bayesian framework. M is

referred to as a stochastic model class.

Note: all propositions are either implicitly or explicitly conditioned on π.

M set that contains m stochastic model classes; i.e., M =

{M1,M2, . . . ,Mm}
m number of stochastic model classes in a set M of stochastic model classes.

P[A] This notation is used to express the probability of event A if probability

is not quantified according to Cox-Jaynes interpretation of probability.

Pf probability of failure in reliability analysis

pf estimate for the probability of failure Pf

pX(·) probability density function (PDF) of X

PX(·) cumulative distribution function (CDF) of X

Pr[A|π] probability that proposition A is true conditional on proposition π.

Probability is quantified according to Cox-Jaynes interpretation of proba-

bility.

q output of a model that approximates the response of a system

r output generated by the “real” system; approximated by the model output

q and observed as z.

s observation of the model input f .

S(D|M) self-information in observation D conditional on the chosen probabilistic

model M



Symbol Description

U vector of M independent standard Normal random variables

u realization of U

VarX [g(X)] variance of function g : RM → R with respect to random variable X ∈ RM .

v output prediction-error that describes the relation between q and r.

w observation-error that describes the relation between z and r.

X one-dimensional random variable

X M -dimensional random variable

x a realization of random vector X

xi the ith component of vector x

Y vector of M possibly correlated standard Normal random variables

y realization of Y

z observed output of a system; observation of r.



Greek characters

Symbol Description

Γ support of a stochastic quantity

Ω failure domain of the reliability problem in the BUS approach; a sample

from the prior distribution of the associated Bayesian inference problem

that falls in this domain is a sample that follows the posterior distribution.

ϕ(·) PDF of the univariate standard Normal distribution

ϕM (u) joint PDF of the M -dimensional vector u of independent standard Normal

random variables

Φ(·) CDF of the univariate standard Normal distribution

π auxiliary random variable in the BUS approach

θ one-dimensional stochastic variable

θ M -dimensional stochastic variable

The symbol θ is used to denote both the realization and the random vari-

able/vector. If a distinction between the actual realization and the random

variable/vector is important, θ is used for the realization, and Θ to denote

the random variable/vector.

υ denotes both the realization and the random variable with underlying uni-

form distribution on support [0, 1].



other Mathematical operators and symbols

Symbol Description

b|a proposition b conditional on proposition a.

Note: As proposition a is only conditionally asserted, it does not mean

that a must be true in reality.

a ∧ b is true if and only if both proposition a and b are true.

a ∨ b is true if and only if either proposition a or b is true.

b is true if and only if proposition b is false.

a ≤ b the vector inequality is true if and only if ai ≤ bi ∀ i ∈M ; a,b ∈ RM .

The operators <, >, ≥ are defined accordingly.



Abbreviations

Abbreviation Description

BUS Bayesian Updating using Structural reliability methods

C.o.V. coefficient of variation

CDF cumulative distribution function

CS Conditional Sampling in standard Normal space MCMC

ESJD expected squared jumping distance

MCMC Markov chain Monte Carlo

MCS Monte Carlo simulation

MH Metropolis-Hastings MCMC

MEP . . . Maximum Entropy probability . . .

PDF probability density function

SuS Subset Simulation

TMCMC Transitional Markov chain Monte Carlo
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Chapter 1

Introduction

1.1 Motivation

Numerical models are used in many industries to assess and predict the behavior of a real

system. Engineers use numerical models to assess the safety and serviceability of structural

designs, or to investigate how existing structures can be improved or repaired. In meteo-

rology, weather forecasts are obtained by numerical models that are so complex that only

supercomputers can handle them in time. In biology, numerical models provide the means to

study complex phenomena and processes that are too expensive or too dangerous to study in

an experimental setting. Numerical models are employed by the financial industry to predict

future behavior of the stock market, by space agencies to perform a detailed simulation of

the anticipated voyage of any spacecraft before it leaves earth, by authorities for emergency

planning to simulate the evacuation of sport stadiums or subway stations, and so forth.

Increasing computing capacity of modern processors facilitates the use of computationally

more and more complex models. However, no matter how complex our models become,

any model is necessarily approximate in its representation of the real system of interest.

This has mainly to be attributed to our limited knowledge and imprecise understanding of

the real world and limited computational power. In this regard, it has to be acknowledged

that any model-based assessment and prediction is – to a certain degree – uncertain. The

input of the model, the parameters of the model, the error in the modeled system response

and the error in the measured system response are quantities that cannot be specified with

absolute certainty. In engineering, this lack of knowledge is usually compensated implicitly

by means of safety factors; i.e., structural safety and serviceability are demonstrated on a

consciously selected conservative deterministic model. Such an implicit representation of

uncertainty is adopted for computational reasons, and because it is easier to understand

by practical engineers. If uncertainty is explicitly taken into account, the computational

demand required to process the model increases significantly. Besides reduced computational
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requirements, the use of standardized safety factors in engineering is comprehensible and

ensures that structures of similar type possess similar reliability – even if the anticipated

reliability is not quantified directly. Contrary to that, the intellectual challenge of setting

up an appropriate probabilistic model (a model that takes the uncertainties explicitly into

account) is substantial. Inappropriate assumptions in the stochastic modeling of uncertainties

can be hard to detect and may have severe consequences. If an engineering structure is,

however, not covered by technical standards, if the uncertainties in the model response are

the target quantity of interest, or if measured or observed data should be used to identify

and learn the model, relevant uncertainties at hand should be explicitly taken into account.

One can principally distinguish between two stochastic analysis categories: (i) stochastic

forward analysis and (ii) Bayesian analysis. In both categories, initially, the available in-

formation/knowledge is used to formulate the uncertainties and set up the model. In the

first category, the considered uncertainties are propagated through the model. In the second

category, measured or observed data is used to reduce the uncertainties considered in the

stochastic model by means of an inverse analysis. Except for a few special cases, in both

categories, the problem has typically to be solved numerically. Most numerical methods re-

quire multiple evaluations of the model with all uncertain parameters conditionally fixed.

This is why a stochastic analysis entails a larger computational demand than a deterministic

analysis. In this context, the numerical efficiency of stochastic analysis methods is usually

assessed in terms of the required number of model evaluations.

In Bayesian analysis the aim is to identify the posterior distribution of the model parameters

conditional on data and observations. Desired requirements for numerical Bayesian inference

methods are: (i) An approximation of the posterior distribution, or samples of the posterior

distribution should be returned. (ii) The evidence is ideally evaluated as a by-product of

the method, where the evidence is a number that quantifies the plausibility of the employed

stochastic model. (iii) The involved computational cost should be reasonable; i.e., the re-

quired number of model evaluations should not be too large. (iv) There should be a standard

configuration of the method that works efficiently for a large variety of inference problems; i.e.,

the user should not have to worry about specifying configuration parameters of the method.

(v) Moreover, the user should not have to worry about convergence of the generated samples

to the posterior. (vi) The method should perform well for stochastic models with large as

well as with small a numbers of uncertain parameters. (vii) The inference approach should

be non-intrusive; i.e., for conditionally fixed model parameters, the underlying deterministic

model is utilized as a “black box”.

Markov chain Monte Carlo (MCMC) methods constitute a popular class of methods to sam-

ple from the posterior distribution [Gilks et al., 1996; Gelman et al., 2004a]. However, one

problem of MCMC methods is that after an initial burn-in phase the samples may not yet

have reached the stationary distribution of the Markov chain [Plummer et al., 2006]. That is,
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finding an appropriate burn-in period in MCMC is often a non-trivial problem. Moreover, an

estimate for the evidence of the stochastic model is not a direct by-product of MCMC meth-

ods. Another issue is that standard MCMC algorithms usually cannot be applied efficiently

for problems with many uncertain parameters. Some specialized MCMC algorithms [Haario

et al., 2005; Robert and Tweedie, 1996; Neal, 2011; Cheung and Beck, 2009] can cope with

such high dimensional problems, they require however additional evaluations of the likelihood

function or its gradient for each generated sample. Advanced methods based on MCMC sam-

pling that try to overcome the afore mentioned issues include particle filter methods [Chopin,

2002] (e.g., the Transitional Markov Chain Monte Carlo (TMCMC) method [Ching and Chen,

2007]), the nested sampling approach (see e.g., [Skilling et al., 2006]) and Bayesian updating

with structural reliability methods (BUS) [Straub and Papaioannou, 2015]. These meth-

ods essentially differ in how samples starting from the prior distribution propagate to the

posterior distribution. An advantage of the BUS approach is that existing methods from

structural reliability can be employed to solve the Bayesian inference problem. A partic-

ularly interesting combination is the use of Subset Simulation within BUS. By considering

different resolutions of the underlying deterministic model, the overall computational cost

can be reduced [Koutsourelakis, 2009a,b]. The numerical Bayesian analysis is started on the

coarse mesh and the mesh resolution is gradually improved as the samples propagate to the

posterior distribution. Approximate Bayesian computation (ABC) approaches [Beaumont

et al., 2009; Csilléry et al., 2010; Turner and Van Zandt, 2012; Chiachio et al., 2014] are an

alternative that bypass the direct evaluation of the likelihood function. Apart from sampling

based methods, the posterior distribution can also be approximated directly. Methods in

this category include the Laplace approximation [Laplace, 1986], variational Bayes theory

[MacKay, 1995; Neal and Hinton, 1998], and sparse variational Bayes algorithms [Franck and

Koutsourelakis, 2016].

Setting up a stochastic model for a Bayesian analysis is more involved than for a forward anal-

ysis. In a forward analysis, the impact of assumptions and probabilistic modeling choices on

the stochastic response can be assessed by reasoning how they propagate through the model.

In a Bayesian inference, uncertainties are reduced by means of a inverse analysis. In this case,

the consequences of assumptions are more difficult to trace as the learning process is often

not intuitively understand. Loosely speaking, learning in a Bayesian framework is mainly

motivated by surprises. The more an observation surprises us in terms of model behavior,

the more we can learn from it. However, all assumptions inevitably increase our uncertainty

about the model and, thus, lead to surprises when comparing the model response to observed

data. The crux of a Bayesian analysis is that we can make any assumptions, approximations

or simplifications in our model as long as we are realistic about the modeling uncertainties

that emerge from it. This is especially difficult for deliberately conservative assumptions, be-

cause the introduced bias needs to be corrected within the chosen probabilistic error model.

Moreover, this is also one of the reasons why complex models in a Bayesian setting are not
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always better than simpler models: For complex models, modeling uncertainties are typically

much more difficult to quantify than for simple models.

If the modeling uncertainties are quantified inappropriately (e.g., with a too large or too

small spread, with the wrong mean, or with an unfit dependency model), the learning effect

is increased when comparing the model response to the observed system response due to

larger surprises. On its own, this is generally not a problem as more has indeed to be learned

under unrealistic assumptions. On a higher level, inappropriate models can be identified by

comparing different probabilistic models with each other through their evidence (assuming

that there are any “good” probabilistic models in the set). However, on the level of the

affected model, unrealistic assumptions cannot be identified, as the Bayesian framework is

formulated mathematically consistent, conditional on the assumptions made. Thus, within

the Bayesian framework, the probabilistic model has to somehow cope with unrealistic mod-

eling choices. This has the following consequences: (i) The posterior of uncertain parameters

can be estimated with too much confidence due to large surprises in learning. (ii) Some

uncertain parameters might change their interpretation to account for unexpected behavior

of the observed response. If the model to be learned is used later merely for prediction of

the system response, only the first point is of relevance. If, however, the uncertain model

parameters are the target of interest, the second point is crucial.

For example, consider an engineering model that predicts displacements and has the Young’s

modulus as an uncertain parameter. The target of interest is the probabilistic description of

the Young’s modulus, which can be improved through observed displacements. Let us assume

that the predicted displacements are on average too large because of a poor model and this is

not accounted for in the probabilistic model error. Thus, the observed system response will

possibly be smaller than what the model expects. On the one hand, if the observed system

response is indeed smaller than expected, the stochastic model will artificially increase the

value of the Young’s modulus to account for the “surprisingly” small observed displacement.

On the other hand, if the observed system response is close to what is expected, the mean of

the Young’s modulus will not change much in the inference; whereas knowing about the model

deficiencies suggests that the value of the Young’s modulus should actually be decreased. In

both cases, the uncertain model parameter does not represent the actual Young’s modulus,

but the uncertainty about an artificial Young’s modulus that additionally incorporates global

modeling errors.
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1.2 Scope of the thesis

This work focuses on the reduction of uncertainties through measured or observed data within

a Bayesian framework. The scope of this thesis is twofold:

numerical methods Non-intrusive methods for numerical Bayesian inference are discussed.

The focus is on methods that generate samples from the posterior and provide an es-

timate of the evidence. Only approaches that have the potential to perform well for

a large number of uncertain model parameters are investigated. Methods based on

asymptotic approximations or approximate Bayesian computation are not considered.

The selected Bayesian inference methods are BUS, TMCMC and nested sampling. Em-

phasis is put on the combination of BUS with Subset Simulation (BUS-SuS), and a

modified variant of this approach is proposed. In this context, also Subset Simulation

needs close attention, as it is the cornerstone of BUS-SuS.

probabilistic framework Requirements for a Bayesian framework that performs reason-

ably are introduced and discussed. Within this context, the philosophical standpoint

about uncertainty and probability theory needs to be defined. The Cox-Jaynes inter-

pretation of probability is adopted, and it is argued that uncertainty should be regarded

as neither subjective nor objective, but as personal. The influence of assumptions in

prior and likelihood is studied.

1.3 Outline

Chapter 2 starts with a discussion of the meaning of uncertainty. In Section 2.1 different

views on uncertainty are discussed: objective vs. subjective, aleatory vs. epistemic, fre-

quency, design, level of confidence. The inevitable personal aspect in the interpretation of

uncertainty is emphasized. Section 2.2 continues the discussion on a more mathematical

level. The fundamentals of Probability Theory are presented adopting the Cox-Jaynes inter-

pretation of probability. The axioms of probability logic derived by [Cox, 1946] are stated,

and compared to the Kolmogorov axioms. Cox-Jaynes probability theory is linked to the

Bayesian interpretation of probability. Furthermore, alternative interpretations of probabil-

ity are briefly discussed. The section finishes with extending Probability Theory to continuous

probability spaces. Section 2.3 is about modeling of uncertainty. The theory and notion of

stochastic/random variables, vectors of stochastic variables and stochastic processes/fields is

presented. Section 2.4 provides a short overview of information theory; terms like entropy

and Kullback–Leibler divergence are introduced.

Chapter 3 is about generating samples of a distribution. The Rosenblatt transformation,

the Nataf transformation, rejection sampling and Markov chain Monte Carlo (MCMC) are
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presented in Sections 3.1 – 3.4. Section 3.5 looks in more detail at MCMC sampling focusing

on target distributions arising in structural reliability. The following MCMC algorithms are

presented in Sections 3.5.4 – 3.5.7: component-wise Metropolis-Hastings (cwMH), conditional

Metropolis-Hastings (CMH), conditional sampling in standard Normal space (CS), and di-

rectional conditional sampling (DCS). Example problems studied throughout this thesis are

introduced in Section 3.5.3. By means of these numerical examples, it is demonstrated in

Section 3.5.8 that the CS algorithm proposed in [Papaioannou et al., 2015] is a convenient

choice for this type of problems. Mathematical reasons why this algorithm is an excellent

choice for problems with many uncertain parameters are given in Section 3.5.6.2. The chap-

ter concludes with a discussion of adaptive learning of the spread of the MCMC proposal

distribution in Section 3.5.9.

Chapter 4 deals with probabilistic modeling based solely on prior knowledge – without includ-

ing measurement/observations in the analysis. Such models are referred to as probabilistic

forward models. The concept of a stochastic model class is introduced in Section 4.1. There-

after, a simple Monte Carlo based approach to simulate the probabilistic model response

is presented (Section 4.2), and the difference between credible and confidence intervals is

discussed (Section 4.3). Section 4.4 provides an overview of reliability analysis.

Chapter 5 presents selected numerical methods for reliability analysis. First, an overview

of commonly used reliability methods is given and the merits of working in an underlying

standard Normal space are explained in Section 5.1. Next, in Section 5.2, Monte Carlo

simulation is presented and a Bayesian post-processing strategy for Monte Carlo simulation

is introduced. Section 5.3 is dedicated to Subset Simulation (SuS). A general overview of

SuS is given and the implementation of the method is discussed. Thereafter, the uncertainty

about the estimated probability of failure is investigated in detail by means of numerical

examples.

Chapter 6 introduces and discusses the theory behind Bayesian analysis. Section 6.1 presents

the problem that is to be solved in a Bayesian analysis. Section 6.2 discusses the meaning and

interpretation of the evidence in a Bayesian framework. Bayesian model class selection and

model averaging is presented in Section 6.3. The Bayesian modeling framework is comprehen-

sively discussed in Section 6.4. The section starts with discussing the interpretation of data.

Next, the concept of a stochastic model class previously introduced in Chapter 4 is extended.

Thereafter, the objectivity of the likelihood function is briefly discussed. This is followed by

a discussion of probabilistic modeling approaches for the prior. Hierarchic stochastic models

are presented subsequently. Probabilistic models for error structures are investigated. Sec-

tion 6.5 concludes the chapter with an overview of different ways to formulate the likelihood

function.

Chapter 7 investigates numerical methods for Bayesian inference. The focus is on methods

that generate samples from the posterior distribution and provide simultaneously an estimate
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for the evidence. First, the investigated numerical examples are presented in Section 7.2.

Section 7.3 discusses the BUS approach. A numerically more beneficial variant of the BUS

approach is suggested. Furthermore, a post-processing step is proposed to correct the results

of BUS simulations when the scaling constant c−1 is selected too small. In Section 7.4

a modified variant of the BUS approach, referred to as aBUS, is proposed that does not

require the scaling constant c−1 as input. The nested sampling method is presented in

Section 7.5, similarities between nested sampling and Subset Simulation are highlighted, and

a modification of nested sampling is proposed. Section 7.6 introduces the original variant of

the TMCMC moethod and proposes a modified TMCMC variant.

Chapter 8 gives concluding remarks, lists the main contributions of this thesis, and provides

an outlook.

In Appendix A numerical descriptors of random variables are defined. In Appendix B some

common probability distributions are introduced. In Appendix C some continuous maximum

entropy probability distributions are listed. Appendix D theory of stochastic fields and ran-

dom field discretization is introduced. Appendix E some proofs are given that where omitted

in the main part of the thesis. In Appendix F selected parts of statistical data analysis are

presented.
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Chapter 2

Representation of Uncertainties

2.1 The concept of uncertainty

This section informally discusses the notion of uncertainty. The viewpoint taken in this

section serves as basis to formally introduce Cox-Jaynes interpretation of probability in Sec-

tion 2.2. A short overview of alternative approaches to quantifying uncertainty is given in

Section 2.2.7.

2.1.1 Introduction

The mass of an object or the distance between two points are properties attached to the

world, the universe - as is the speed of light or gravity. We might disagree about their exact

value, but this has to be attributed to our imprecise measurement devices: In the real world

the mentioned quantities are fixed, they are said to be deterministic.2 We are just uncertain

about their true value. Uncertainty, however, is not a property attached to the universe3.

Uncertainty relates our imprecise state of knowledge to the universe (see e.g., [Lindley, 1975]),

it expresses our level of confidence.

For example, we can measure the mass of an object, but we know that if we repeat the

measurement, or if we use a different measuring device, we might measure a different value.

Moreover, our measuring devices have only finite precision. Thus, we are uncertain about the

real mass of the investigated object. Somebody else could have measured the same object

using the same or a different measuring device. Even if they measured exactly the same

number, their belief in the accuracy of the measurement might be different from ours. Es-

sentially, their uncertainty about the mass of the object will very likely be different from our

2This statement does not hold at the level of quantum mechanics. However, in engineering we are typically
interested in much larger scales and can, thus, consider such quantities as fixed.

3Again, this statement does not hold at the level of quantum mechanics.
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uncertainty about its mass. We are both uncertain, but to a varying degree. Alternatively,

somebody else might have done the measurement for us. In this case we might judge the qual-

ity of the measurement differently than the one performing the measurement. We even could

have asked more than one person to measure the mass of the object for us. Consequently,

uncertainty relates to the observer and his state of knowledge.

The observer can be any person: you, your neighbor, your colleague, your boss, your medical

advisor, or anybody else. Moreover, the observer can also be a company, an institution, or

the government. They all see the world with different eyes. However, uncertainty does not

only depend on the observer alone, it also depends on the state of knowledge of the observer;

i.e., his level of confidence. Knowledge in this context stands for information and data that

is available to the observer, as well as past experiences that he or she has made. Uncertainty

can be reduced by an increase in knowledge: by learning.

All in all, it is important to highlight the personal aspect of uncertainty. Unlike mass or

length that are properties of the real world, uncertainty describes our link to the real world.

Uncertainty expresses our beliefs. Uncertainty is personal. For an extensive treatise on the

meaning of uncertainty that uses only a bare minimum of mathematics, the easy-to-read book

of [Lindley, 2006] is recommended.

2.1.2 Classification of uncertainties

2.1.2.1 Objective vs. subjective

In literature (this in particular includes statisticians arguing against the Bayesian point of

view), much effort is dedicated to whether an approach to quantify uncertainty is objective or

subjective. However, such a discussion is often misleading (see Section 2.2.5): (i) A unique ob-

jective approach does not exist – multiple approaches can be considered objective. (ii) Taking

a subjective approach still requires one to follow rationality and consistency – both can be

interpreted as applying objective rules conditional on the imposed subjective point of view.

[Lindley, 2006] advocates the term personal instead of differentiating between subjective and

objective.

2.1.2.2 Aleatory and epistemic

Uncertainties are often characterized as either aleatory or epistemic (see [Der Kiureghian and

Ditlevsen, 2009] for a discussion of this topic). An epistemic uncertainty can be reduced by

additional information, whereas an aleatory uncertainty cannot be reduced. Such a classi-

fication is only meaningful if done for each analysis individually: Uncertainties considered

aleatory in one analysis might be classified as epistemic in another. The classification depends



2.1. The concept of uncertainty 11

on what data we believe can (actually) be gathered to reduce the identified uncertainties.

For example, such a classification depends on whether a bridge that is to be constructed is

assessed, or a bridge that has already been constructed is assessed. For a completed bridge,

one can simply go out and take measurements of its material properties. Thus, uncertainties

about the material properties can be reduced in this case, and are classified as epistemic. If

the bridge has not yet been constructed, obtaining data about its material properties is more

involved. Consequently, in this case uncertainties about the material properties of the future

bridge are typically classified as aleatory.

However, if we know in which factory the concrete will be made, then this information could,

in principle, reduce our uncertainties about the material properties of the future bridge.

Therefore, the classification depends on the data that one expects to become available – and

not solely on what uncertainties could, in principle, be reduced. After all, all uncertainties

are essentially due to a lack of knowledge (see Section 2.1.1).

The characterization into aleatory and epistemic can be meaningful. However, in the experi-

ence of the author, it is also the cause of unnecessary confusion. Moreover, within a Bayesian

framework, only the data and the model decide what uncertainties can actually be reduced.

2.1.2.3 Frequency, design and level of confidence

In Section 2.1.1 it is argued that uncertainty is personal and relates to imprecise knowledge

or lack of information. A seemingly valid counter-argument is that the uncertainty associated

with the following actions is usually not considered to be personal: throw the dice, toss a

coin, participate in the lottery, play the slot machine. Indeed, many people would agree that

if a six sided dice with sides labeled 1,2,3,4,5,6 is thrown, we will observe a 5 in one out of

six cases on average. The same can be said about tossing a coin: we usually agree that each

side of the coin is equally likely to face upwards after it is thrown. Can we thus conclude

that in these cases, uncertainty should be viewed as a universal property attached to the

respective action?

In order to answer the question above, let us first look at a classification used in [Gigerenzer,

2013]: Uncertainty originates either from frequency, design or level of confidence.

Frequency means that we look at events occurring repeatedly, and count how often a spec-

ified event occurs in a certain number of cases. The aim is to determine the long run

frequency of an event. Quantification of uncertainty in terms of frequency is discussed

in Section 2.2.6.

For example, the number of days with an average temperature below zero degrees

Celsius divided by the total number of days observed gives a frequency. The data that

we have can stem from a single year, two years, ten years, 50 years or even from a
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longer period. This estimated frequency can then be used to express our uncertainty

about how many days in the coming year will have an average temperature below zero.

However, the use of frequencies is not free of personal beliefs:

• Is the frequency measured in the past applicable for the future?

For example: How about global warming? Is the frequency of recorded past flood

events a good estimate to quantify the frequency of future floods?

It clearly is a (personal) assumption to regard the underlying frequency as sta-

tionary.

• Is the measured frequency the true underlying frequency? (Assuming that such a

true underlying frequency even exists at all.)

For example: Two different observation periods of the same length will very likely

not result in the same outcome.

As we do not know the underlying frequency, but only an estimate of it, employing

either the measured frequency or a different frequency is an assumption.

Consequently, the way we handle information about the observed frequency has a per-

sonal component attached to it: We make assumptions that we deem justified by what

we believe. The observed frequencies serve as a basis to quantify our uncertainty.

Design means that something is specifically made/designed to behave randomly. This in-

cludes dice, roulette, and slot machines.

Let us look at a single dice and assume that it is actually perfect – which is hard to

achieve in practice. Knowing about who is going to throw the dice and what throwing

technique will be used might change our belief about the outcome. Assigning equal

probability to each side of the dice should usually be a good approximation (if no ev-

idence is available that suggests otherwise), but it is only an assumption and not a

property associated with the dice. Similar arguments can be applied for roulette, and

also the outcome of a coin toss depends on how the coin is thrown [Jaynes, 2003, Chap-

ter 10.3].

The slot machine is a slightly different case: A pseudo random number generator

(PRNG) is employed by the machine. Thus, knowing the source code and the seed

value of the PRNG as well as the starting time and the time-interval at which the

numbers are generated, the behavior of the machine is actually deterministic.

Level of confidence This case is discussed in Section 2.1.1.
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Table 2.1: Fatality rates with respect to distance. (The numbers are subjected to uncertainty.)

event description rate base reference

road deaths (total) 5.8 · 10−9 km (in the EU, 2014) [Adminaite et al., 2015]
by car on road 7 · 10−9 km (in the EU, 2001/2002) [ETSC, 2003]
by bus on road 7 · 10−10 km (in the EU, 2001/2002) [ETSC, 2003]
by motorcycle/moped on road 1.4 · 10−7 km (in the EU, 2001/2002) [ETSC, 2003]
by cycle on road 5.4 · 10−8 km (in the EU, 2001/2002) [ETSC, 2003]
by foot on road 6.4 · 10−8 km (in the EU, 2001/2002) [ETSC, 2003]
railway 3.5 · 10−10 km (in the EU, 2001/2002) [ETSC, 2003]
airplane (within EU) 3.5 · 10−10 km (in the EU, 2001/2002) [ETSC, 2003]

2.1.3 Uncertainties related to individuals vs. populations

2.1.3.1 Statistical analysis of the behavior of a population

The behavior of a specified population within a given time-interval (for which data is avail-

able) can be assessed by means of statistical data analysis. Exemplary questions to be

answered are: What is the average probability of a European citizen to die in a car accident?

What is the average probability of a citizen to die at the age of 30? What is the average

probability that an industrially manufactured device is defective?

Assessing the average behavior associated with an entire population can often be tackled well

by means of standard statistical techniques in an objective manner, provided that sufficient

data to capture the quantities of interest is available. For example, if the goal is to assess

the fatality risk of traveling, one can count the total number of fatalities within a certain

time-interval and divide this number by the total distance traveled by the entire reference

population. Selected fatality risks with respect to traveled distance are listed in Table 2.1. We

can also assess the average fatality risk of performing a certain action for a specified duration.

Selected fatality rates with respect to time are listed in Table 2.2. Note that the fatality rates

listed in Tables 2.1 and 2.2 are based on a certain population and time-interval. This means:

(i) The fatality rates can (and do) change over time. (ii) The fatality rates depend on the

underlying population. For example, in Fig. 2.1 the death rates (per year) of German males

and females are listed as a function of the age. To compare the different fatality rates listed

in Table 2.2, the hourly rates should be converted to annual fatality rates by multiplying the

hourly fatality rate with the yearly exposure; i.e., the average time in hours per year that an

individual is performing (or, exposed to) the indicated action. Annual fatality rates that are

typically accepted are around 10−5 [Melchers, 1999, Table 2.6, Broad indicators of tolerable

risk]. Events with annual fatality rates below 10−6 are not of great concern to an average

individual [Melchers, 1999, Table 2.6, Broad indicators of tolerable risk].

It is important to highlight that if we perform an analysis based on data from an entire
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Table 2.2: Fatality rates with respect to time. (The numbers are subject to uncertainty.)

event description rate base reference

lowest death rate females (age 10) 7.3 · 10−5 a (in DE, 2010/12) [DESTATIS, 2015]
lowest death rate population (age 10) 8.4 · 10−5 a (in USA, 2011) [Arias, 2011]
lowest death rate males (age 9) 9.1 · 10−5 a (in DE, 2010/12) [DESTATIS, 2015]
lowest death rate in population 1 · 10−4 a (in NL, around 1990)

(girls age 10 to 14) [Paté-Cornell, 1994; Ale, 1991]
death rate infant (1st year) 3.4 · 10−3 a (in DE, 2010/12) [DESTATIS, 2015]
due to structural failure 2 · 10−11 a [Melchers, 1999, Table 2.5]
at work 7 · 10−9 h (in EU, 2001/02) [ETSC, 2003]
railway 2 · 10−8 h (in EU, 2001/02) [ETSC, 2003]
by bus on road 2 · 10−8 h (in EU, 2001/02) [ETSC, 2003]
at home 2.3 · 10−8 h (in EU, 2001/02) [ETSC, 2003]
hiking: via ferrata 1 · 10−7 h (DAV, 2013) [DAV, 2014]
airplane (within EU) 1.6 · 10−7 h (in EU, 2001/02) [ETSC, 2003]
hiking: mountaineering 2 · 10−7 h (DAV, 2013) [DAV, 2014]
by car on road 2.5 · 10−7 h (in EU, 2001/02) [ETSC, 2003]
by foot on road 2.5 · 10−7 h (in EU, 2001/02) [ETSC, 2003]
road deaths (total) 2.8 · 10−7 h (in EU, 2001/02) [ETSC, 2003]
hiking: high-altitude mountain tours 4 · 10−7 h (DAV, 2013) [DAV, 2014]
ski hiking (backcountry skiing) 4 · 10−7 h (DAV, 2013) [DAV, 2014]
by cycle on road 7.5 · 10−7 h (in EU, 2001/02) [ETSC, 2003]
alpine climbing 1.4 · 10−6 h (DAV, 2013) [DAV, 2014]
by motorcycle/moped on road 4.4 · 10−6 h (in EU, 2001/02) [ETSC, 2003]
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Figure 2.1: Death rates per year in 2010/12 of males and females for different age in Germany. Data
taken from [DESTATIS, 2015].
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population, the results are conditional to the entire population – which does not necessarily

hold for a specific individual member of that group.

2.1.3.2 Stochastic assessment of individuals

Assessing the uncertainties associated with an individual1 is more involved than looking at

the statistics of an entire population. The main reason is that there is usually informa-

tion available which distinguishes the individual from the “average” population. Exemplary

questions to be answered are:

• What is the probability that Jane Doe dies within the next year?

The probability depends on the age, gender, country of residence, social state, job,

lifestyle, hobbies, . . . of Jane Doe. Reliable statistical data that exactly fits to Jane

Doe is not available. The more we know about Jane Doe, the more involved the task

becomes.

The associated event will happen at most once: Either she dies within the next year,

or she does not die. As a sufficient data-basis is not available, the assessment will be

highly personal: If you ask this question to different people, you will very likely get

quite diverse answers.

• What is the probability of John Doe to be involved in a car accident on his way to work

tomorrow?

Similar to the previous question, we cannot answer this question based on an available

data-basis: Where does he live and work? What car does he drive? What is his driving

experience? Which mood is he in? Is he sober? How long did he sleep the previous

night(s)?

• What is the probability that the new building on Main Street will become unusable within

the next 50 years?

What is the building used for? What is the structure of the building? Where is the

building located? What live-load is acting on the structure? What material was used

for construction? What are the environmental conditions that have an influence?

For this type of problems, the outcome of the analysis will be based on the state of knowledge

and experience of the person conducting the analysis.

1 “Individual” in this context is not restricted to people, but can be any particular member out of a larger
group/population; e.g., an engineering structure, a machine, a hydrological catchment.
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2.2 Probability Theory

2.2.1 Introduction

The Cox-Jaynes interpretation of probability [Cox, 1946; Jaynes, 2003] (in the following re-

ferred to as Probability Theory) provides a rigorous foundation for stochastic modeling and

Bayesian updating [Beck, 2010]. Probability Theory extents Boolean algebra for quantifica-

tion of plausible reasoning under incomplete information. Probability Theory is also referred

to as probability logic. The underlying axioms of the theory were stated by [Cox, 1946]. The

work of [Jaynes, 2003] is a treatise on the theory that is illustrated by applications. Moreover,

[Jaynes, 2003] comprehensively compares Probability Theory to the frequentist point of view

and resolves published paradoxes related to the axioms derived by [Cox, 1946]. Another note-

worthy contribution that influenced me when writing this chapter is the work of [Beck, 2010]:

It briefly summarizes the work of [Cox, 1946] and [Jaynes, 2003], and introduces terminology

useful for Bayesian system identification.

The key idea of Probability Theory is to interpret the probability Pr[b|a] as the plausibility

of proposition1 b based on the information in proposition a. Note that Pr[b|a] does not mean

that proposition a has to be true, since it is only conditionally asserted.

Besides Pr[b|a] the following notation is used:

• Pr[b|a] denotes the probability that proposition b is false given the information in

proposition a.

• Pr[b ∧ c|a] denotes the probability that both proposition b and proposition c are true

given the information in proposition a.

• Pr[b ∨ c|a] denotes the probability that at least proposition b or proposition c is true

given the information in proposition a.

2.2.2 Axioms of probability logic

Probability Pr[b|a] is a measure to quantify the plausibility of proposition b being true con-

ditional on proposition a being true. As there is no natural scale for probability, arbitrary

measures can be used to quantify plausibility [Beck, 2010; Cox, 1946]. Typically, a linear

relation is used to relate plausibility and probability: e.g., if b|a is as likely as b|a, then

Pr[b|a] = 0.5; if b|a is twice as likely as b|a, then Pr[b|a] = 2/3; if b|a is three times as likely

as b|a, then Pr[b|a] = 0.75. For alternative measures of plausibility, see Section 2.2.3.

1proposition in this context refers to a statement that is either true or false.



2.2. Probability Theory 17

For the linear relation between plausibility and probability, the axioms of probability logic

derived by [Cox, 1946] are [Beck, 2010]:

(P1) Pr[b|a] ≥ 0 (by convention)

(P2) Pr[b|a] = 1− Pr[b|a] (negation function)

(P3) Pr[b ∧ c|a] = Pr[c|b ∧ a] Pr[b|a] (conjunction function)

Based on (P1)-(P3), the following relations can be derived [Beck, 2010, 2008; Cox, 1946]:

(P4a) Pr[b|b ∧ a] = 1

(P4b) Pr[b|b ∧ a] = 0

(P4c) Pr[b|a] ∈ [0, 1]

(P5a) Pr[c|(c⇒ b) ∧ a] ≤ Pr[b|(c⇒ b) ∧ a]

where (c⇒ b) is used to denote that c is contained in b.

(P5b) Pr[c|(c⇔ b) ∧ a] = Pr[b|(c⇔ b) ∧ a]

where c⇔ b means that c is equivalent to b.

(P6) Pr[b ∨ c|a] = Pr[b|a] + Pr[c|a]− Pr[b ∧ c|a]

Let proposition a state that propositions b1, . . . , bN are mutually exclusive and collectively

exhaustive (i.e., one and only one of propositions b1, . . . , bN can be true), then:

(P7a) Pr[c|a] =
∑N

n=1 P [c ∧ bn|a] (marginalization theorem)

(P7b) Pr[c|a] =
∑N

k=1 Pr[c|bk ∧ a] Pr[bk|a] (total probability theorem)

(P7c) Pr[bk|c ∧ a] = Pr[c|bk∧a] Pr[bk|a]∑N
n=1 Pr[c|bn∧a] Pr[bn|a]

(Bayes’ theorem1)

for k = 1, . . . , N .

In a “Bayesian” context, Pr[bk|a] is referred to as the prior, Pr[c|bk ∧ a] is the likelihood, and

Pr[bk|c ∧ a] is the posterior.

Note that Probability Theory can be viewed as an extension of Boolean algebra [Beck, 2010]:

Whereas Boolean algebra requires complete information (we have to assign a value of ei-

ther true or false to the involved propositions), Probability Theory can handle incomplete

information (we are “merely” required to specify a plausibility that a specific proposition is

true).

Derivations of axioms (P4a) to (P7c) are given in Appendix E.1.

1 Bayes’ theorem is named after Thomas Bayes. More information about Thomas Bayes is presented in
Section 2.2.5.



18 2. Representation of Uncertainties

2.2.3 Quantifying plausibility

In [Cox, 1946], Cox derives the axioms of probability logic without making strong assumptions

about the scale of probability. Let P[b|a] = B if proposition b is certain1 given a; and let

P[b|a] = 0 if proposition b is impossible given a, where B ∈ {x ∈ R|x > 0}. [Cox, 1946]

assumes that functions C : [0, B]× [0, B]→ [0, B] and N : [0, B]→ [0, B] exist such that

P[b ∧ c|a] = C (P[c|b ∧ a],P[b|a]) (2.1)

P[b|a] = N (P[b|a]) (2.2)

[Cox, 1946] shows that C and N must have the form:

C(u, v) = φ−1

(
φ(u)φ(v)

D

)
(2.3)

N(u) = φ−1 (D − φ(u)) (2.4)

where φ(·) is a continuous and strictly increasing function with φ(0) = 0 and φ(B) = D

(compare [Beck, 2010]), φ−1(·) is the inverse function of φ(·) and u, v ∈ [0, B]. If φ(u) = u,

B = 1 and D = φ(B) = 1, then we get the axioms (P1)-(P3) presented in Section 2.2.2.

Example 2.1. Exponential relation for plausibility calculation:

Let φ(u) = exp(u)− exp(0), B > 0 and D = φ(B) = exp(B)− exp(0).

The inverse function of φ(·) is:

φ−1(φ) = ln [φ+ exp(0)]

The negation function takes the form:

N(u) = ln [D − φ(u) + exp(0)]

= ln [exp(B)− exp(u) + exp(0)]

The validity of the negation function can be verified by:

N(N(u)) = ln [exp(B)− (exp(B)− exp(u) + exp(0)) + exp(0)]

= ln [exp(u)] = u

The conjunction function takes the form:

C(u, v) = ln

[
(exp(u)− exp(0)) (exp(v)− exp(0))

D
+ exp(0)

]
It is trivial to show that if u = 0 or v = 0, then C(u, v) = ln[exp(0)] = 0. Moreover, for v = B:

C(u,B) = u.

1 To highlight this ambiguity in quantifying plausibility, the notation P[b|a] is used in this section to denote
a measure for the plausibility of proposition b being true conditional on proposition a being true.
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For such a measure of plausibility, the axioms of probability theory are:

(P1*) P[b|a] ≥ 0 (by convention)

(P2*) P[b|a] = ln [exp(B)− exp(P[b|a]) + exp(0)] (negation function)

(P3*) P[b ∧ c|a] = ln
[

(exp(P[c|b∧a])−exp(0))(exp(P[b|a])−exp(0))
D + exp(0)

]
(conjunction function)

2.2.4 Kolmogorov axioms

Instead of using the Cox-Jaynes interpretation of probability (Section 2.2.2), the foundation of

probability theory is commonly defined in terms of Kolmogorov axioms [Kolmogorov, 1933].

Unlike Cox-Jaynes interpretation of probability, the Kolmogorov axioms are neutral on how

to interpret probability [Beck, 2010].

2.2.4.1 Definition

Let (Ω, S, P ) be a so-called probability space, where Ω denotes the sample space which con-

tains all possible outcomes of a model1, S is a set of events that contains zero or more

outcomes (S is also referred to as σ-algebra), and P is a probability measure2 that assigns

probabilities to the events A ∈ S. The probability function P obeys the following rules

(known as Kolmogorov axioms):

(K1) P[A] ≥ 0 (non-negativity)

(K2) P[Ω] = 1 (normalization)

(K3) P[A1 ∨A2 ∨ . . .] =
∑

P(Ai) (countable additivity)

if A1, A2, . . . are mutually exclusive.

Note the difference between an event and a proposition: A proposition is a statement that

is either true or false; probability in this context is the plausibility that we assign to the

statement being true. An event is defined as a set of outcomes of a model; i.e., a subset of

the sample space. For example, the case “the proposition is true”, can be interpreted as an

event. However, the notion of an event is more general than the term proposition. Contrary

to a proposition, an event is – in principle – repeatable.

1The term model can refer to any type of model. In this contribution, the term model is usually employed to
refer to a model of a real-world system. In mathematical and statistical literature, often the term experiment
is used instead, when introducing the notion of a probability space.

2The notion P(A) is used instead of Pr(A) to highlight the difference to Cox-Jaynes interpretation of
probability. In Cox-Jaynes interpretation of probability (Section 2.2.2), probability is always defined conditional
on a proposition.
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2.2.4.2 Kolmogorov axioms in terms of Probability Theory

In this contribution, Cox-Jaynes interpretation of probability is preferred over Kolmogorov’s

probability theory. [Cox, 1946] defines all probabilities conditional on a proposition a that

represents the information, knowledge and assumptions behind the probabilistic model. This

interpretation is helpful for uncertainty quantification in combination with engineering models

and for Bayesian inference. Contrary to that, Kolmogorov’s probability theory requires the

mathematical construct of a probability space (Ω, S, P ) that does not explicitly1 condition

all probabilities on proposition a.

[Beck, 2010] shows that the Kolmogorov axioms can be deduced from the axioms of probability

theory introduced by [Cox, 1946]: Let x denote a stochastic variable2 that can take values in

X. Furthermore, let A be a subset of X. The probability P(A) in Kolmogorov’s probability

theory can be expressed as Pr [x ∈ A|M] using Cox-Jaynes interpretation of probability. Here

proposition M states that x ∈ X, and contains the probability model used to represent x.

The first axiom (K1) directly follows from (P1). The second axiom (K2) is obtained through

(P2) with P (X) = Pr[x ∈ X|M] = 1. The third axiom (K3) follows from (P6), requiring

the events to be mutually exclusive3. A discussion of the Kolmogorov axioms in light of

Cox-Jaynes interpretation of probability can be found in [Jaynes, 2003, Appendix A].

2.2.4.3 Conditional probability

In Kolmogorov’s approach, conditional probability P[A|B] is defined as:

P[A|B] =
P[A ∧B]

P[B]
(2.5)

for P[B] > 0. Contrary to that, in Cox-Jaynes interpretation of probability all probabilities

are interpreted as conditional probabilities. Consequently, the definition in Eq. (2.5) appears

directly as axiom (P3) in Cox-Jaynes interpretation of probability [Beck, 2010].

1One can argue that the probability space (Ω, S, P ) incorporates proposition a; i.e., that the elements of
(Ω, S, P ) take the available information, knowledge and all assumptions into account. However, Cox-Jaynes
interpretation of probability and in particular the notation introduced in Section 2.2.2 makes this dependency
explicit. This is especially helpful if different competing probabilistic models are compared.

2The term stochastic variable is introduced in Section 2.3.1.
3Actually, from (P6) we get only finite additivity, and not countable additivity as required by (K3). Note

that finite additivity is more general (i.e., less restrictive) than countable additivity and, thus, more complex to
handle. The issue whether finite additivity or countable additivity should be required is controversial (see e.g.,
[Bingham, 2010; Easwaran, 2013; De Finetti, 2008]). From a theoretical (mathematical) point of view, it is
indeed important to distinguish between finite and countable additivity. Problems with the weaker assumption
of finite additivity can arise in combination with infinite sets. However, as [Jaynes, 2003] points out, such
problems arise because Cox-Jaynes interpretation of probability is violated; e.g., by the use of improper prior
distributions in Bayesian inference. As long as we adhere to Cox-Jaynes interpretation of probability, the
discussion about finite additivity or countable additivity is dispensable. This is especially true for typical
problems of practical relevance.
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2.2.5 Bayesian interpretation of probability

In Bayesian probability theory, probability represents a degree of belief in a proposition1 [Beck,

2010]. Consequently, probabilities appear as conditional probabilities; i.e., probabilities are

viewed as conditional on a proposition. In this regard, Cox-Jaynes interpretation of probability

is consistent with the Bayesian point of view.

Bayesian probability theory is named after the English mathematician and Presbyterian

minister Thomas Bayes (1701-1761)2 [Bellhouse, 2005]. Thomas Bayes wrote a manuscript

that discusses a special case3 of what later became known as Bayes’ theorem. This manuscript

[Bayes and Price, 1763] was edited and published posthumously by Richard Price4 [Bellhouse,

2005]. Pierre-Simon Laplace (1749–1827) independently generalized the theorem proposed in

[Bayes and Price, 1763], and established the foundation for what is referred to as Bayesian

probability theory today [Stigler, 1986; Beck, 2014].

The name Bayesian probability theory is due to the many ways Bayes’ theorem can be applied

if probability is interpreted as degree of belief. Compared to classical statistics, Bayes’ the-

orem plays a major role in Bayesian probability theory (see Chapter 6). However, Bayesian

probability theory is a particular interpretation of the concept of probability and does not

necessarily require application of Bayes’ theorem; this is why e.g., [Edwards et al., 1963]

considers the nomenclature somewhat inadequate.

There is no clear consensus on how exactly the Bayesian interpretation of probability is

defined. Typically, the philosophy of Bayesian probability theory is classified in two main

branches: objective and subjective Bayesian probability. (i) In the so-called objective view,

probability is interpreted as a reasonable belief: Everyone with the same knowledge would

come to the same conclusion. However, within this category there is no clear consensus on

what it actually means to be objective. Most discussions are about how to formulate prior

information in an objective manner. Some (e.g., [Jeffreys, 1946, 1998; Hartigan, 2012]) suggest

the use of weakly-informative or uninformative priors, which can lead to problems (theoretical

as well as numerical) – especially in combination with improper5 prior distributions. Others

advocate prior distributions selected based on the Principle of Maximum Information Entropy

1 The term proposition is introduced in Section 2.2.1.
2 It is most likely that Thomas Bayes was born in 1701, however, in general all that is known is that he

was born between July 1701 and April 1702 [Bellhouse, 2005]. He died on April 7, 1961, at the age of 59
[Bellhouse, 1988].

3 Thomas Bayes considered the case where prior and posterior follow a Beta distribution and the data
comes from Bernoulli trials.

4 Richard Price (1723-1791) was a British pastor, political philosopher and mathematician, and a friend
of Thomas Bayes [Bellhouse, 2005]. He is also considered an intimate friend of Benjamin Franklin, and was
visited by other Founding Fathers of the United States such as John Adams, Thomas Jefferson, and Thomas
Paine. His most famous achievement was a pamphlet that he published in 1776, supporting British North
America in the American War of Independence. This pamphlet is said to have contributed to the Americans
declaring their independence in 1776. [Richard Price. (n.d.). In Wikipedia. Retrieved June 7, 2016, from
https://en.wikipedia.org/wiki/Richard_Price]

5An improper prior distribution integrates to infinity.

https://en.wikipedia.org/wiki/Richard_Price
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[Jaynes, 1957, 2003], which depends on the chosen parametrization of the problem. Seemingly

objective choices (for both the prior and the likelihood) will be discussed in Chapter 6. (ii) In

the subjective view, probability is regarded as a personal belief: Probability is constrained

by rationality and coherence, but can vary within those constraints. Here, probabilities are

typically expressed and interpreted in terms of betting odds. The subjective point of view

is usually based on the work of [De Finetti, 1964; Ramsey, 1931; De Finetti, 2008]. For an

introduction to subjective Bayesian probability theory, see [Kadane, 2011].

[Lindley, 2006] notes that the discussion about subjective or objective Bayesian probabilities is

often not helpful and can be potentially misleading; he suggests to use the expression personal

instead. Such an interpretation of uncertainty1 goes hand-in-hand with Cox-Jaynes interpre-

tation of probability2. The angle on Bayesian probability theory taken in this contribution is:

We have to admit that there is not a single objective approach to interpreting probability, as

objectivity depends on information and experience (i.e., knowledge). People with different

states of knowledge will inevitably consider different approaches to be objective3. However,

conditional on our knowledge, we should aim to remain objective in our choices. As thus, the

personal aspect of probability is central in the Bayesian point of view. Such an interpretation

of Bayesian probability theory is in accordance with e.g., [Beck, 2008, 2010; Vanik et al., 2000;

Beck and Yuen, 2004; Muto and Beck, 2008; Cheung and Beck, 2009, 2010; Zuev et al., 2012;

Beck, 2014].

2.2.6 The frequentist interpretation of probability

The frequentist interpretation of probability associates probability P[A] with the long run

average (i.e., the frequency) that event A occurs:

P[A] = lim
N→∞

H

N
(2.6)

where N denotes the number of trials, and H is the number of times event A occurred in N

trials. One problem of this interpretation is that the exact frequency of event A cannot be

observed as N will always be finite in practice. Note that a strict association of frequentism

with limiting frequencies is considered outdated by [Bingham, 2010].

1see Section 2.1
2 Cox-Jaynes interpretation of probability is sometimes considered to be in the category of objective Bayesian

probability. However, it should more appropriately be regarded as in between the objective and subjective point
of view; as it accentuates the personal aspect of probability besides advocating objectivity. Moreover, note that
improper prior distributions (that are considered as an objective Bayesian approach) are not in accordance
with Cox-Jaynes interpretation of probability.

3 Consider, for example, a scientist. It is commonly believed that scientists needs to be objective when
doing research. However, his work is conditional on the underlying theory that he employs. If a flaw in the
employed theory is detected, the strategy that is to be considered objective might change conditional on the
new information. Nevertheless, his approach has to be considered objective, conditional on the knowledge he
had at the time conducting the research.
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The main differences between the frequentist interpretation and the view on probability

introduced in Section 2.2.2 are:

• The frequentist interpretation postulates that the event A can be repeated arbitrarily

often. If event A is unrepeatable or if no data is available to assign a frequency to event

A, the probability of A cannot be specified.

• In frequentism, probability is regarded as a property of the universe1 that can be

measured only imprecisely from a finite number of observations.

See also [Beck, 2014] for critical remarks regarding the frequentist interpretation from a

Bayesian perspective. From a Bayesian perspective, observed frequencies should be used in

a Bayesian framework to express our knowledge conditional on this information – and not to

directly associate probabilities with frequencies.

2.2.7 Overview: different interpretations of probability/uncertainty

The two most widely spread and discussed views on the interpretation of probability are

the frequentist and the Bayesian point of view. An overview of different interpretations of

probability is presented in [Hájek, 2012]. In the following, some interpretations of probabili-

ty/uncertainty are briefly presented:

Bayesian point of view In this work, uncertainty is quantified according to Cox-Jaynes

interpretation of probability (see Sections 2.2.1 and 2.2.2). This interpretation takes a

Bayesian viewpoint on uncertainties (see Section 2.2.5): Probabilities represent a degree

of belief in a proposition. Within the category of Bayesian probability interpretations,

typically two classes are distinguished: the objective and the subjective Bayesian ap-

proach. In Section 2.2.5, it is suggested that regarding probabilities as personal (instead

of as objective or subjective) can be more appropriate with respect to Cox-Jaynes in-

terpretation of probability.

Frequentist point of view In Section 2.2.6, the frequentist interpretation of probability is

presented, where probability is interpreted as the frequency of an event. This approach

has problems with events that are unrepeatable.

Propensity probability Probability is interpreted as a physical property (propensity) [Pop-

per, 1957]. Long run frequencies are viewed as the result of a concatenation of single-case

probabilities (known as propensities). This interpretation of probability is motivated

by problems arising in quantum mechanics.

1 see discussion in Section 2.1.1.
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Fuzzy logic Fuzzy logic [Zadeh, 1965] does not use probability to represent uncertainty.

Fuzzy logic is an extension of many valued logic1 where an object can belong to multiple

classes. From a Bayesian viewpoint, a proposition is either true or false, and probability

represents our belief about the actual state of the proposition. Contrary to that, fuzzy

logic expresses how much a quantity is in a certain set.

2.2.8 Continuous probability spaces

2.2.8.1 Introduction

Let X ∈ R be a continuous quantity of interest; X is interpreted as a fixed2 quantity that we

do not know. Let the proposition F be defined as x ≤ X, were x ∈ R. The probability that

proposition F is true is denoted as

PX|M(x|M) = Pr(x ≤ X|M) = Pr(F |M) (2.7)

where M represents the available information/knowledge. PX|M(·|M) is referred to as cu-

mulative distribution function (CDF) for3X. Furthermore, let proposition W be defined as

a ≤ X < b, with a ≤ b. It is straight-forward to show that Pr(W |M) = PX|M(b|M) −
PX|M(a|M). If PX|M(·|M) is continuous and differentiable, we can write

Pr(W |M) =

∫ b

a
pX|M(x|M) dx = PX|M(b|M)− PX|M(a|M) (2.8)

with

pX|M(x|M) =
dPX|M(x|M)

dx
(2.9)

pX|M(x|M) is referred to as the probability density function (PDF) for4 X.

2.2.8.2 Continuous one-dimensional prior

Let proposition A state that x ≤ X < x+ dx, where dx represents an infinitely small change

in x. Thus, Pr(A|M) = pX|M(x|M) · dx. Based on this, the total probability theorem (rule

1Contrary to boolean logic where only two states exist (e.g., true and false), there can be more than two
possible states in many valued logic.

2Note that X is not random/varying in reality, only our knowledge about X is uncertain. This distinction
is important (compare [Jaynes, 2003, Chapter 4]).

3Often, the expressions “CDF for X” and “CDF of X” are used interchangeably. [Jaynes, 2003, Chapter 4]
suggests to use “CDF for X”, as quantity X is not uncertain – only our knowledge about X is uncertain.
[Jaynes, 2003, Chapter 4] states that not distinguishing between “of” and “for” has let to paradoxes.

4As in case of the CDF, “PDF for X” and “PDF of X” are often used interchangeably. [Jaynes, 2003,
Chapter 4] suggests to avoid the use of “PDF of X” – as as quantity X itself is not uncertain.
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(P7b) in Section 2.2.2) can be transformed as:

Pr(D|M) =

∫
R

Pr(D|A ∧M) · Pr(A|M)

Pr(D|M) =

∫
R

Pr(D|(X = x) ∧M) · pX|M(x|M) dx (2.10)

Equivalently, Bayes theorem (rule (P7c) in Section 2.2.2) becomes:

Pr(A|D ∧M) =
Pr(D|A ∧M) · Pr(A|M)

Pr(D|M)

Pr(A|D ∧M) =
Pr(D|A ∧M) · pX|M(x|M)

Pr(D|M)
dx (2.11)

From Eq. (2.11) it follows that
∫
R Pr(A|D ∧M) = 1. Thus, we can write Pr(A|D ∧M) =

pX|D,M(x|D,M) dx. Consequently, Eq. (2.11) becomes:

pX|D,M(x|D,M) =
Pr(D|A ∧M) · pX|M(x|M)

Pr(D|M)
(2.12)

2.2.8.3 Continuous one-dimensional prior and likelihood

Let proposition D state that h ≤ f(X) < h+ dh, where f : R → R. Thus, Pr(D|A ∧M) =

pH|X,M(h|x,M) · dh, with H = f(X). Starting from Eq. (2.10), the total probability theorem

can then be transformed as:

Pr(D|M) =

(∫
R
pH|X,M(h|x,M) · pX|M(x|M) dx

)
dh (2.13)

The integration of Eq. (2.13) over R with respect to h gives by definition 1. Consequently,

we can write Pr(D|M) = pH|M(h|M) · dh; and, Eq. (2.13) becomes:

pH|M(h|M) =

∫
R
pH|X,M(h|x,M) · pX|M(x|M) dx (2.14)

Bayes theorem (Eq. (2.12)) can be written as:

pX|H,M(x|h,M) =
pH|X,M(h|x,M) · pX|M(x|M)

pH|M(h|M)
(2.15)
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2.2.8.4 Multi-dimensional problems

Consider the case where X ∈ RM is a M -dimensional vector. The multivariate CDF

PX|M(x|M) for X is then defined as1:

PX|M(x|M) = Pr(x ≤ X|M) (2.16)

The multivariate PDF pX|M(x|M) for X is defined through proposition W : a ≤ X < b,

with a,b ∈ RM and a ≤ b:

Pr(W |M) =

∫ b1

a1

. . .

∫ bM

aM

pX|M(x|M) dx1 . . . dxM = PX|M(b|M)− PX|M(a|M) (2.17)

Eqs. (2.14) and (2.15) can be extended to multi-dimensional problems:

pH|M(h|M) =

∫
RM

pH|X,M(h|x,M) · pX|M(x|M) dx (2.18)

pX|H,M(x|h,M) =
pH|X,M(h|x,M) · pX|M(x|M)

pH|M(h|M)
(2.19)

2.2.8.5 Paradoxes and infinite sets

The axioms of Probability Theory (Section 2.2.2) are stated in terms of finite sets. In this

section (Section 2.2.8), Probability Theory is extended to continuous quantities X on RM ;

i.e., the support of X is a subset of RM and, thus, an infinite set. For problems that typically

arise in engineering, the extension of Probability Theory to infinite dimensional spaces is

straight-forward (see Sections 2.2.8.1 – 2.2.8.4).

However, in general, care must be taken when working with conditional PDFs, as conditioning

on a continuous quantity requires an infinite amount of information [Beck, 2014]. In principal,

such a case should be approached as limit of a case with finite information [Beck, 2014].

Working directly with infinite sets in more general settings is the cause for many paradoxes

[Jaynes, 2003, Chapter 4]. The problem is often a neglect in specifying how the limit dx→ 0

is approached [Jaynes, 2003, Chapter 4].

1The vector inequality x ≤ X is defined as xi ≤ Xi ∀ i ∈M .
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2.3 Modeling of uncertainty

2.3.1 Stochastic variables / random variables

2.3.1.1 Notation

The term stochastic variable was introduced by [Beck, 2010] to refer to a variable with

uncertain value. The uncertainty associated with a stochastic variable is quantified by means

of a probabilistic model. [Beck, 2010] uses the notion of a stochastic variable instead of the

more commonly used notion of a random variable to highlight that the actual value of the

underlying quantity is not necessarily random – only our knowledge about the value of the

underling quantity is uncertain.

In this work, the term stochastic variable is used to explicitly denote a quantity whose value

we are uncertain about, but that is fixed in the real world. Most of the uncertainties that

arise in engineering can be represented by means of stochastic variables. The term random

variable is used more general as a mathematical construct to denote both quantities that are

unknown but fixed, and quantities that are fluctuating.

The focus in this thesis is primarily on real-valued uncertain quantities that are continuous

(and not discrete).

2.3.1.2 Definition

A real-valued stochastic (or random) variable θ is pragmatically defined as θ ∈ Γ, where

Γ ⊆ R is referred to as the support of θ. The probabilistic model behind θ is contained in

the stochastic model class M, which will be formally introduced in Section 4.1. The entire

analysis is always (either explicitly or implicitly) conditional on M. Let W = [a, b] with

a, b ∈ R and a ≤ b represent an arbitrary subset of R. The probabilistic model of θ contained

inM assigns each W a probability that θ ∈W ; i.e., Pr [θ ∈W |M]. For W = R, by definition

Pr [θ ∈ R|M] = 1. The support Γ is formally defined as

Γ =

{
a ∈ R

∣∣ lim
da→0

Pr [a ≤ θ < a+ da|M]

da
> 0

}
(2.20)

Note: The above definition is different from the classical definition of a random variable

in Kolmogorov’s probability theory. Classically, a real-valued random variable is defined as:

Let (Ω, S, P ) be a so-called probability space (see Section 2.2.4). A random variable X is

defined as the function X : Ω→ R that maps elements of the sample space Ω to a real-valued

quantity.

Interpreting a stochastic variable θ as a real-valued quantity and not as a mapping is in
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accordance with regarding the value of a stochastic variable as uncertain, but fixed in the

real world.

2.3.1.3 Cumulative distribution function (CDF)

The cumulative distribution function (CDF) for random variable X is defined as (see also

Section 2.2.8):

PX|M(x|M) = Pr(x ≤ X|M) (2.21)

The CDF of X has the following properties:

• Any CDF is a non-decreasing and right-continuous1 function.

• The CDF is zero at minx∈Γ(x); i.e.,:

lim
x→−∞

PX|M(x|M) = 0 (2.22)

• The CDF is one at maxx∈Γ(x); i.e.,:

lim
x→∞

PX|M(x|M) = 1 (2.23)

2.3.1.4 Probability density function (PDF)

The probability density function (PDF) for random variable X is defined as:

PX|M(b|M)− PX|M(a|M) =

∫ b

a
pX|M(x|M) dx (2.24)

pX|M(x|M) is equal to the derivative of PX|M(x|M) almost everywhere.

2.3.1.5 Quantile function

The quantile function for X is the inverse function of the CDF for X.

x = P−1
X|M(p) (2.25)

where p ∈ [0, 1].

The x that is associated with a certain p is referred to as the p-quantile for X.

1right-continuous: Loosely speaking, in a right-continuous functions no jump occurs if the limit is ap-
proached from the right.
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As the quantile function P−1
X (·) is the inverse function of PX(·), the derivative of the quantile

function is:
dP−1

X (p)

dp
=

1
dPX(P−1

X (p))
dx

=
1

pX
(
P−1
X (p)

) (2.26)

To keep the notation simple, the conditional dependency onM is omitted in above equations.

2.3.1.6 Transformation of random variables

A transformation of random variable X to random variable Z is a function Z = T(X). The

corresponding inverse transformation is usually denoted as: X = T−1(Z). If the distributions

of both X and Z are known, one can express the transformation T : X → Z as:

T(x) = P−1
Z (PX(x)) (2.27)

which holds if the CDF of X and Z is strictly increasing. Equivalently, the inverse transfor-

mation T−1 : Z → X can be written as:

T−1(z) = P−1
X (PZ(z)) (2.28)

The derivative of the transformation is:

dz

dx
=

pX(x)

pZ (T(x))
=
pX(x)

pZ (z)
(2.29)

Proof 2.1. The proof is based on the chain rule:

dz

dx
=

dT(x)

dx
=

dP−1
Z (PX(x))

dx
=

1

pZ
(
P−1
Z (PX(x))

) · pX(x) =
pX(x)

pZ (T(x))

2.3.2 Numerical descriptors of random variables

Properties of random variables are typically quantified by means of numerical descriptors

(e.g., expectation, variance). Some numerical descriptors for random variables are listed in

Appendix A.
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2.3.3 Probability distributions

Usually uncertainties are expressed in terms of probability distributions that are of a stan-

dardized type. Some common types of discrete and continuous probability distributions are

listed in Appendix B.

2.3.4 Vectors of stochastic variables

2.3.4.1 Definition

The clustering of stochastic variables θi, i = 1, . . . ,M in a vector is referred to as stochastic

vector θ ∈ RM . The joint CDF of θ is defined as:

Pθ|M(t|M) = Pr(θ1 ≤ t1 ∧ . . . ∧ θM ≤ tM |M), t ∈ RM (2.30)

The joint PDF is the derivative of the joint CDF:

pθ|M(θ|M) =
∂MPθ|M(θ|M)

∂θ1 . . . ∂θM
(2.31)

The marginal density of component θi is:

pθi|M(θi|M) =

∫
RM−1

pθ|M(θ|M) dθ−i (2.32)

with dθ−i = dθ1 . . . dθi−1dθi+1 . . . dθM .

2.3.4.2 Vector of two correlated Normal random variables

Let θ = [θ1, θ2]T, where θ1 and θ2 are Normal random variables with mean µ1 and µ2, and

standard deviation σ1 and σ2, respectively. The covariance between θ1 and θ2 is Cov[θ1, θ2] =

σ1σ2ρ, where ρ ∈ [−1, 1] is the coefficient of linear correlation between θ1 and θ2. Furthermore,

let Z = θ1 + θ2.

2.3.4.2.1 Joint PDF of θ

The joint PDF of θ is:

pθ1,θ2(θ1, θ2) =
1

2πσ1σ2

√
1− ρ2

· exp

[
− 1

2(1− ρ2)

(
(θ1 − µ1)2

σ2
1

+
(θ2 − µ2)2

σ2
2

− 2ρ(θ1 − µ1)(θ2 − µ2)

σ1σ2

)]
(2.33)
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2.3.4.2.2 Distribution of θ1|θ2

The distribution of θ1|θ2 is Normal with mean µ1|2 and standard deviation σ1|2.

µ1|2 = µ1 +
σ1

σ2
ρ (θ2 − µ2) (2.34)

σ1|2 = σ1

√
1− ρ2 (2.35)

2.3.4.2.3 Distribution of the sum Z

The sum of two correlated Normal random variables follows a Normal distribution with mean

µZ = µ1 + µ2 and standard deviation σZ =
√
σ2

1 + σ2
2 + 2ρσ1σ2. Thus, the distribution of Z

can be stated as:

pZ(Z) =
1√

σ2
1 + σ2

2 + 2ρσ1σ2

√
2π

exp

(
−1

2

(Z − µ1 − µ2)2

σ2
1 + σ2

2 + 2ρσ1σ2

)
(2.36)

2.3.4.2.4 Distribution of θ1|Z

The distribution pθ1|Z(θ1|Z) is a Normal distribution with mean µ∗ and standard deviation

σ∗.

µ∗ =
µ1σ

2
2 + (Z − µ2)σ2

1 + ρσ1σ2(Z − µ2 + µ1)

σ2
1 + σ2

2 + 2ρσ1σ2
(2.37)

σ∗ =
σ1σ2

√
1− ρ2√

σ2
1 + σ2

2 + 2ρσ1σ2

(2.38)

A proof for Eqs. (2.37) and (2.38) is given in Appendix E.2 (Proof E.10).

2.3.4.3 Vectors of independent standard Normal random variables

Let u = [u1, . . . , uM ]T be a M -dimensional vector, where each component ui, i ∈ {1, . . . ,M},
of u is a standard Normal random variable that is independent of all other components of u.

Let R denote the length of u, i.e., R = ‖u‖ is the Euclidean norm of u. Thus, the squared

length of u is R2; i.e., R2 =
∑M

i=1 u
2
i .

2.3.4.3.1 Joint PDF

The joint PDF of random vector u is

p(u) =

M∏
i=1

ϕ(ui) (2.39)
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Figure 2.2: Selected quantiles of R2/M for increasing values of M .

where ϕ(·) denotes the PDF of the standard Normal distribution. In terms of numerical

performance, Eq. (2.39) can be expressed more efficiently as

p(u) =

(
1√
2π

)N
exp

(
−1

2
R2

)
(2.40)

The log-transform of the joint PDF of u is:

ln [p(u)] = −1

2

[
N · ln (2π) +R2

]
(2.41)

2.3.4.3.2 Distribution of the squared length R2

The squared length R2 of a M -dimensional vector of independent standard Normal variables

follows a chi-squared distribution with M degrees of freedom. Thus, the mean and standard

deviation of R2 is M and
√

2M , respectively. For increasing M , the coefficient of variation

cv,R2 of R2 decreases:

cv,R2 =

√
2

M
(2.42)

Thus, cv,R2 → 0 as M → ∞. Consequently, for large M , the points u are located on the

surface of a M -dimensional hypersphere that has radius
√
M . Selected quantiles of R2/M

for increasing values of M are depicted in Fig. 2.2.

2.3.4.3.3 Distribution of the angle between two independent vectors

Let v be an arbitrary M -dimensional vector. The angle between u and v is denoted as ω.

We can, without loss of generality, assume that v = [1, 0, 0, . . .]. In this case, the cosine of ω

can be expressed as:

cosω =
u1

‖u‖ (2.43)
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Squaring both sides in Eq. (2.43), we get:

cos2 ω =
u2

1

R2
=

u2
1

u2
1 +

∑M
i=2 u

2
i

(2.44)

The quantity u2
1 follows a chi-squared distribution with a single degree of freedom, and the

quantity
∑M

i=2 u
2
i follows a chi-squared distribution with M−1 degrees of freedom. Moreover,

u2
1 and

∑M
i=2 u

2
i are independent. Thus, cos2 ω defined in Eq. (2.44) is beta-distributed with

shape parameters α = 0.5 and β = (M − 1)/2.

Based on the beta-distributed cos2 ω, the density of ω can be derived as

p(ω) =
|sinω|M−2

2 ·B
(

1
2 ,

M−1
2

) (2.45)

where the support of ω is [−π, π] and B(·, ·) denotes the beta function. The density p(ω) is

depicted in Fig. 2.3 for different M . Selected quantiles of |ω| for increasing values of M are

depicted in Fig. 2.4. Note that as M →∞, we have |ω| → π
2 .

A proof for Eq. (2.45) is given in Appendix E.2 (Proof E.11).
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2.3.5 Stochastic processes

2.3.5.1 Overview

Let T ⊆ R be a discrete or continuous set of real numbers1. A stochastic process X is a

collection {Xt : t ∈ T}, where each Xt is a random variable. The quantity t is usually

referred to as time. If T is discrete, the process is called discrete time stochastic process; if

T is continuous, the process is referred to as continuous time stochastic process. The space

of possible values that Xt, with t ∈ T , can take is called the state space of the process. It is

typically distinguished between discrete and continuous state spaces. In the following, if not

mentioned otherwise, the discrete cases are regarded as special cases of the continuous case.

Stationary stochastic processes A stochastic process is said to be stationary if its joint

probability distribution is invariant to a shift in time: Let pX(Xt1 , . . . , Xtk) be the

PDF of the joint distribution of {Xt} at times t1, . . . , tk. The stochastic process is

called stationary, if for all t1, . . . , tk:

pX(Xt1 , . . . , Xtk) = pX(Xt1+τ , . . . , Xtk+τ ) , (2.46)

independent of τ ∈ R.

Second-order stochastic process A second-order stochastic process is completely defined

by its mean function µX(t) = E[Xt] and its auto-covariance function CX(t1, t2) =

Cov[Xt1 , Xt2 ], with t, t1, t2 ∈ T . The auto-covariance function can be expressed in terms

of the standard deviation function σX(t) and the auto-correlation coefficient function

1In general, the set T is not restricted to R, but can be any totally ordered set. However, in the context of
this work we limit ourselves to T ⊆ R. Note that typically the elements of totally ordered sets can be mapped
to numerical values such that the ordering is preserved.



2.3. Modeling of uncertainty 35

ρX(t1, t2):

CX(t1, t2) = σX(t1) · σX(t2) · ρX(t1, t2) (2.47)

Mean stationary stochastic process The stochastic process is said to be mean station-

ary, if its mean function does not depend on time: µX(t) = µX ; i.e., is constant.

Weak-sense stationary stochastic process A stochastic process is called weak-sense sta-

tionary (or second-order stationary) if its mean function µX(t) and auto-covariance

function CX(t1, t2) are invariant to a shift in time; i.e., µX(t) = µX(t + τ) = µX and

CX(t, t + τ) = CX(0, τ) = CX(τ), independent of t ∈ T and τ ∈ R. In this case, the

auto-correlation coefficient function is also expressed in terms of τ :

ρX(τ) =
CX(τ)

σX2
(2.48)

Markov process A Markov process satisfies the Markov property ; i.e.,

pX(Xti+1 , . . . , Xtk |Xt1 , . . . , Xti) = pX(Xti+1 , . . . , Xtk |Xti) , k > i (2.49)

Power spectral density The power spectral density SX(ω) of a second-order stationary

stochastic process is linked to the auto-covariance function CX(τ) through a Fourier

transform as:

SX(ω) =
1

2π

∫ ∞
−∞

CX(τ)e−iωτ dτ , (2.50)

with i2 = −1. The power spectral density is a real-valued function that is symmetric

SX(ω) = SX(−ω) and non-negative SX(ω) ≥ 0. For a given power spectral density, the

variance of the underlying stochastic process can be evaluated as

σX
2 = CX(0) =

∫ ∞
−∞

SX(ω) dω (2.51)

The auto-covariance function can be obtained from the power spectral density by an

inverse Fourier transform:

CX(τ) =
1

2π

∫ ∞
−∞

SX(ω)eiωτ dω (2.52)

White noise process In a white noise stochastic process all random variables are indepen-

dent of each other, have zero mean and finite variance; i.e., the power spectral density

is constant. The joint PDF can be expressed as:

pX(Xt1 , . . . , Xtk) =
k∏
i=1

pXi(Xi) (2.53)
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Gaussian stochastic process A stochastic process whose joint distribution of {Xt} at

times t1, . . . , tk is a multivariate Normal distribution for all t1, . . . , tk, is called a Gaus-

sian stochastic process. One property of Gaussian stochastic processes is: the marginal

PDF of Xt at time t, denoted pXt(Xt), is also Gaussian.

2.3.5.2 Autoregressive models

Autoregressive models are used to represent discrete time stochastic processes. An autore-

gressive model is typically denoted by AR(m), where m ∈ {0, 1, . . .} is referred to as the order

of the process. The order m defines the number of past states that the process remembers.

The current state Xt, with t ∈ T ⊆ Z, of a discrete time stochastic process X is expressed

based on the m previous states {Xt−1, . . . , Xt−m}:

Xt = c+
m∑
i=1

ai ·Xt−i + bt , (2.54)

where bt denotes white noise that has a standard deviation of σb, and a1, . . . , am, c, σb are the

parameters of the model.

Special case: AR(1) process

The AR(1) process is a Markov process, because only the present state is needed to generate

future states of the process:

Xt = c+ a ·Xt−1 + bt (2.55)

For |a| < 1 the AR(1) model describes a weak-sense stationary stochastic process. If a = 1,

the process has infinite variance. In the following, we will restrict ourselves to the case |a| < 1.

The mean µX , standard deviation σX and auto-correlation coefficient function ρX(τ) =

ρ(t2 − t1) of the stationary stochastic process are (see Proof E.12):

µX =
c

1− a (2.56)

σX =
σb√

1− a2
(2.57)

ρX(τ) = a|τ | (2.58)

The auto-correlation coefficient function given in Eq. (2.58) can also be written as:

ρX(τ) = exp

(
−|τ |
l

)
, (2.59)

where l = − 1
ln(a) , for a > 0. Thus, the auto-correlation coefficient function of the AR(1)

process has an exponential correlation structure if a ∈ (0, 1). Reversely, a second-order
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stationary stochastic process with exponential auto-correlation coefficient function can be

represented as a AR(1) process. For a given mean µX , standard deviation σX and correlation

length l, the parameters of the AR(1) process can be obtained as:

a = exp

(
−1

l

)
(2.60)

σb = σX ·
√

1− a2 (2.61)

c = µX · (1− a) (2.62)

A proof of Eq. (2.56), Eq. (2.57) and Eq. (2.58) is given in Appendix E.3 (Proof E.12).

2.3.6 Stochastic fields

An overview of stochastic fields and their numerical treatment can be found in Appendix D.

2.4 Information theory and entropy

2.4.1 Introduction

Information theory studies the . . .

quantification: e.g., what is the information content actually contained in a message?

storage: e.g., how can information be stored such that it is optimally compressed?

communication: e.g., how can information be made redundant such that it can be trans-

mitted safely across noisy channels?

. . . of information. A detailed introduction to information theory can be found in e.g.,

[MacKay, 2003] or [Cover and Thomas, 2006].

2.4.2 Self-information

Self-information S(D|M) measures how surprising it is to observe D conditional on the

chosen probabilistic model M:

S(D|M) = − ln (Pr(D|M)) (2.63)

where S(D|M) is measured in nats, as the natural logarithm is used. If the logarithm with

base two is used instead in Eq. (2.63), the unit is bits.
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Example 2.2. Throwing a fair die and a fair coin :

The probability of observing “three” when throwing a fair die is 1/6. Consequently, the self-

information of this observation is 1.79.

The probability of observing “heads” when flipping a fair coin is 1/2. Consequently, the self-

information of this observation is 0.69. Thus, we are less surprised to observed “heads” when

flipping a coin than observing “three” when throwing a die.

If we flip a coin and throw a die and observe the joint outcome, the self-information of observing

“three” and “heads” is 1.79 + 0.69 = 2.48.

2.4.3 Entropy

Entropy is a key quantity in information theory. Entropy is a measure to quantify the amount

of uncertainty about the state of a stochastic variable or stochastic process. The larger the

uncertainty about the state of a system, the larger the associated entropy.

Let X be a discrete stochastic variable with N possible states xi, and i ∈ N . Entropy

H[X|M] is defined as the expected value of the self-information of the states of X:

H[X|M] = E [S(X|M)] = E [− ln(Pr(X|M))] (2.64)

=
N∑
i=1

− ln (Pr(xi|M)) · Pr(xi|M)

which is measured in nats. If the logarithm with base two is used instead in Eq. (2.64), the

entropy is referred to as Shannon entropy and measured in bits.

2.4.4 Differential entropy

Differential entropy is a generalization of the notion of entropy to continuous quantities.

However, from a mathematical point of view, differential entropy cannot be associated with

entropy (as defined in Section 2.4.3). Differential entropy for random variable X is defined

as:

h [X|M] = −
∫
R

ln (pX(x|M)) · pX(x|M) dx (2.65)

Contrary to entropy, differential entropy can become negative.

2.4.5 Kullback–Leibler divergence

The Kullback-Leibler divergence DKL(B‖A) is a measure for the information gain of going

from the probabilistic model underlying A to the probabilistic model underlying B, where A
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and B are stochastic variables.

If A and B are discrete and have N states, the Kullback-Leibler divergence is defined as:

DKL(B‖A) =
N∑
i=1

ln

(
Pr(bi)

Pr(ai)

)
· Pr(bi) (2.66)

where ai and bi denotes the ith state of A and B, respectively. DKL(B‖A) requires that

Pr(ai) = 0 implies Pr(bi) = 0. Moreover, DKL(B‖A) is defined to be zero if Pr(bi) = 0.

If A and B are continuous, DKL(B‖A) is defined as:

DKL(B‖A) = EB

[
ln

(
pB(x)

pA(x)

)]
=

∫
R

ln

(
pB(x)

pA(x)

)
· pB(x) dx (2.67)

where DKL(B‖A) is also referred to as the relative entropy. The quantity DKL(B‖A) is non-

negative. Furthermore, DKL(B‖A) is zero if and only if pA(·) is equivalent to pB(·) almost

everywhere.
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Chapter 3

Generating samples of a

distribution

3.1 Overview

Let Θ be a M -dimensional vector of stochastic variables, and let θ be a realization of Θ. If

an explicit distinction between Θ and θ is not necessary, the symbol θ is used to denote both

the realization and the stochastic variable. Commonly, we have to distinguish between two

different situations:

We can directly generate independent samples θ from the specified target distri-

bution:

The joint probability density function pΘ(θ) for Θ is given. If the individual components

θi, i = 1, . . . ,M are independent, a realization θ can be obtained by sampling the com-

ponents θi separately from the one-dimensional marginal densities pΘi(θi). However, when

implementing stochastic analysis techniques in numerical codes, the following strategy is often

advantageous instead of directly generating samples θ:

1. Generate a realization u of a M -dimensional vector of independent standard Normal

random variables.

2. If the values of θ are explicitly required: Transform this underlying vector u of inde-

pendent standard Normal random variables to vector θ that is a realization of Θ. The

transformation from u to θ is denoted by T−1 : u→ θ.

This strategy is particularly helpful if stochastic variables in Θ are dependent. Moreover,

transforming the problem to the independent standard Normal space normalizes the joint
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PDF of the the stochastic variables of the problem. This allows us to set-up importance

sampling densities or Markov chain proposal distributions that achieve an acceptable perfor-

mance for a wide range of problems – independent of the variance of the stochastic variables

in Θ.

Sampling methods based on this principle are referred to as transformation methods and are

discussed in Section 3.2.

It is not feasible/desirable to directly generate samples θ from the specified target

distribution:

This is, for example, the case if (i) the joint PDF for Θ is only known up to a normalizing

constant, or (ii) the joint distribution of Θ is not known explicitly. In this case, realizations

θ of Θ can be generated by means of rejection sampling (see Section 3.3) or Markov chain

Monte Carlo simulation (see Section 3.4).

3.2 Transformation methods

Transformation methods generate samples θ of Θ by (i) first generating a sample u from

the independent standard Normal distribution, and (ii) thereafter applying transformation

T−1 : u→ θ to obtain the desired realization θ.

Widely used transformation methods presented in this section are the Rosenblatt transfor-

mation (Section 3.2.1) and the Nataf transformation (Section 3.2.2).

3.2.1 Rosenblatt transformation

The Rosenblatt transformation [Rosenblatt, 1952; Hohenbichler and Rackwitz, 1981] can

be used for the mapping T−1 if the joint PDF pΘ(θ) is known and can be written as

pΘ(θ) = pΘ1(θ1) · pΘ2|Θ1
(θ2|θ1) · . . . · pΘN |Θ1,Θ2,...,ΘM−1

(θM |θ1, θ2, . . . , θM−1). In this case,

Θi can be expressed as: Θi = P−1
Θi|Θ1,...,Θi−1

(Φ(Ui)), where P−1
Θi|θ1,...,θi−1

(·) is the inverse CDF

of stochastic variable Θi given the states of Θ1, . . . ,Θi−1, and Φ(·) is the CDF of the stan-

dard Normal distribution. It is straight-forward to apply the Rosenblatt transformation in

numerical codes to express the mapping T−1 if the inverse CDF P−1
Θi|Θ1,...,Θi−1

(·) of all Θi in

Θ are known.

Example 3.1. Modeling two correlated Normal random variables conditional on their sum:

Let θ = [θ1, θ2], where θ1 and θ2 are Normal random variables with mean µ and standard

deviation σ. The theory behind problems of this type is given in Section 2.3.4.2. θ1 and θ2
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are correlated with coefficient of linear correlation ρ. Furthermore, let Z = θ1 + θ2. Thus, Z

follows a Normal distribution with mean µZ = 2µ and standard deviation σZ = σ
√

2(1 + ρ).

The objective in this example is to model θ1 and θ2 conditional on realizations of Z.

The Rosenblatt transformation can be set-up as follows:

1. Generate a realization of Z, from a Normal distribution with mean µZ and standard

deviation σZ .

2. Generate a realization of θ1, from a Normal distribution with mean µ∗ and standard

deviation σ∗, according to Eqs. (2.37) and (2.38).

3. θ2 can be expressed conveniently as θ2 = Z − θ1. Note that θ2|θ1, Z is not an uncertain

quantity.

3.2.2 Nataf transformation

If components of θ are modeled as dependent, the joint PDF pΘ(θ) can sometimes not be

expressed explicitly, because of incomplete dependence information. Instead, the dependent

variables in θ are assumed to be given in terms of their marginal distributions and the

dependency structure is represented in terms of correlation coefficients. In this case, the

Nataf distribution [Der Kiureghian and Liu, 1986] can be used to model the joint density

pΘ(θ).

3.2.2.1 The Nataf distribution

Let RΘ be the given linear correlation matrix of stochastic vector θ. The Nataf distribution

expresses pΘ(θ) as [Ditlevsen and Madsen, 2007]:

pΘ(θ) =
pΘ1(θ1) · . . . · pΘM

(θM )

ϕ(y1) · . . . · ϕ(yN )
· ϕN (y|RY) (3.1)

where y ∈ RM is a vector of correlated standard Normal variables, pΘi(·) is the marginal

PDF of the ith component of θ, and ϕM (y|RY) is the multivariate standard Normal PDF

that has correlation matrix RY. The relation between y and θ is: θi = P−1
i (Φ(yi)), where

P−1
i (·) is the inverse of the CDF of the ith marginal distribution and Φ(·) is the CDF of the

standard Normal distribution.

Let the components of RX and RY be denoted by ρn,m and ρ′n,m, respectively. The relation

between ρn,m and ρ′n,m is [Der Kiureghian and Liu, 1986]:

ρn,m =

∫ ∞
−∞

∫ ∞
−∞

θ′nθ
′
m ϕ2(yn, ym, ρ

′
n,m) dyn dym (3.2)

where θ′n = (θn − E[θn])/
√

Var[θn], and ϕ2(yn, ym, ρ
′
n,m) is the PDF of the bivariate Normal
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distribution of yn and ym with correlation coefficient ρ′n,m. The values of θn and θm can be

obtained from yn and ym by the mapping T−1.

3.2.2.2 The mapping T−1

The transformation from u to θ is done as follows:

1. First, the vector of independent standard Normal variables u is transformed to the

vector of correlated standard Normal variables y with correlation matrix RY. Let A

be the Cholesky decomposition of RY; i.e., RY = AAT. The transformation can then

be performed by y = Au.

2. Second, the Θi are computed from the yi by means of Θi = T−1(yi) = P−1
i (Φ(yi)),

where P−1
i (·) is the inverse of the CDF of the ith marginal distribution, and yi is the

ith coefficient of y.

3.2.2.3 Nataf transformation and Gaussian copulas

The Nataf transformation corresponds essentially to choosing a Gaussian copula to represent

the dependency structure of θ [Lebrun and Dutfoy, 2009], where the copula is parametrized

using the linear correlation matrix RΘ. Consequently, in the Nataf transformation, the joint

distribution of θ is modeled using a Gaussian copula.

3.2.2.4 Pitfalls of the Nataf transformation

1. Finding a ρ′n,m that belongs to a specified ρn,m is not a trivial task, due to the double

integral in Eq. (3.2). If the marginal distributions are Normal or log-normal, then an

analytical relation between ρ′n,m and ρn,m can be established [Ditlevsen and Madsen,

2007, Appendix 2]. Approximate relations for some marginal distributions and corre-

lation coefficients ρn,m are given in [Der Kiureghian and Liu, 1986]. In general, the

ρ′n,m that belongs to a given ρn,m can be found by constructing the inverse function of

Eq. (3.2) numerically.

2. Not for all ρn,m a corresponding ρ′n,m does exist [Der Kiureghian and Liu, 1986] (this

issue is illustrated in Section 3.2.2.5). This holds in particular if ρn,m is close to 1 or

−1 [Ditlevsen and Madsen, 2007, Chapter 7]. Based on the relations derived for the

two examples in Section 3.2.2.5, it seems likely that such constraints are imposed by

the physics of the problem. Thus, if for a specific ρn,m a corresponding ρ′n,m cannot be

found, the correlation ρn,m cannot be achieved with the imposed marginal distributions.
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3. Moreover, even if all components ρ′n,m of RY are found, there is not guarantee that

RY is positive definite [Ditlevsen and Madsen, 2007; Lebrun and Dutfoy, 2009] (such

that the Cholesky decomposition can be applied). This problem arises in particular if

the dimension of θ is large [Lebrun and Dutfoy, 2009].

4. It is difficult to assemble the linear correlation matrix RΘ based on expert judgment, as

a consequence of (2) and (3): The expert would have to take the marginal distributions

of θ into account, to guarantee that a suitable transformation can be found [Lebrun

and Dutfoy, 2009].

5. Sensitivity studies employing different marginal distributions and threshold exceedance

studies can run into problems due to (2) and (3) [Lebrun and Dutfoy, 2009].

6. With the Gaussian copula that underlies the Nataf transformation, it is not possible to

represent a positive tail dependence [Lebrun and Dutfoy, 2009].

3.2.2.5 Examples

The examples investigated in this section are:

Example 3.2 Minimum and maximum correlation coefficients ρmin and ρmax are derived for

two correlated random variables with log-normal marginal distributions.

Example 3.3 The minimum correlation coefficient ρmin is derived for two correlated Bernoulli

distributed random variables. The relation between ρ and ρ′ is illustrated for different

parameter combinations.

Example 3.2. Modeling two correlated log-normal random variables with the Nataf distribution:

Let θ1 and θ2 be log-normal random variables that have coefficient of variation δ1 and δ2,

respectively. The linear correlation coefficient between between θ1 and θ2 is denoted by ρ.

For two correlated log-normal random variables, the correlation coefficient ρ′ of the underlying

standard Normal distributed random variables can be expressed explicitly as a function of ρ

[Ditlevsen and Madsen, 2007, Appendix 2]:

ρ′ =
ln (1 + ρδ1δ2)√

ln (1 + δ2
1) (1 + δ2

2)
(3.3)

The maximum and minimum allowable ρ such that −1 ≤ ρ′ ≤ 1 is maintained is denoted as

ρmax and ρmin, respectively. Based on Eq. (3.3), the equations for ρmax and ρmin can be derived
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Figure 3.1: Two correlated log-normal random variables with correlation coefficient ρ. Upper
bounds ρmax and lower bounds ρmin for ρ are depicted such that −1 ≤ ρ′ ≤ 1
is maintained. The bounds are shown as contour lines for different coefficients of
variation δ1 and δ2 of the log-normal random variables. (Example 3.2)

as:

ρmax =
exp

(√
ln (1 + δ2

1) ln (1 + δ2
2)
)
− 1

δ1δ2
(3.4)

ρmin =
exp

(
−
√

ln (1 + δ2
1) ln (1 + δ2

2)
)
− 1

δ1δ2
(3.5)

The two bounds ρmax and ρmin are shown in Fig. 3.1 for different coefficients of variation δ1 and

δ2. For ρ > 0, a full correlation (ρ = 1) of θ1 and θ2 can only be achieved if the two random

variables exhibit the same coefficient of variation. For ρ < 0, a ρ = −1 cannot be achieved with

the Nataf model.

Note that the relation between ρ and ρ′ stated in Eq. (3.3) is based on the theory of the problem;

it can be derived from Eq. (B.29). Consequently, the two bounds ρmax and ρmin are imposed

by theoretical constraints.

Example 3.3. Modeling two correlated Bernoulli distributed random variables with the Nataf

distribution:

Let θ1 and θ2 be Bernoulli distributed random variables that can take states 1 and 0 and have

common parameter p. In this case, the mapping T−1 is:

θi = T−1(yi) =

1 if Φ(yi) ≤ p
0 if Φ(yi) > p

(3.6)

where i ∈ {1, 2} and Φ(·) is the CDF of the standard Normal distribution. Based on the discrete
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nature of θ1 and θ2, Eq. (3.2) can be expressed as:

ρ =
1− p
p

∫ Φ−1(p)

−∞

∫ Φ−1(p)

−∞
ϕ2(y1, y2, ρ

′) dy1 dy2

+
p

1− p

∫ ∞
Φ−1(p)

∫ ∞
Φ−1(p)

ϕ2(y1, y2, ρ
′) dy1 dy2

− 2

∫ ∞
Φ−1(p)

∫ Φ−1(p)

−∞
ϕ2(y1, y2, ρ

′) dy1 dy2 (3.7)

The double integral in the equation above can be reduced to a single integral:

ρ =
1− p
p

1√
2π

∫ Φ−1(p)

−∞
exp

(
−y

2

2

)
· Φ

Φ−1(p)− y · ρ′√
1− (ρ′)2

 dy

+
p

1− p
1√
2π

∫ Φ−1(p)

−∞
exp

(
−y

2

2

)
· Φ

y · ρ′ − Φ−1(p)√
1− (ρ′)2

 dy

− 2
1√
2π

∫ ∞
Φ−1(p)

exp

(
−y

2

2

)
· Φ

Φ−1(p)− y · ρ′√
1− (ρ′)2

 dy (3.8)

The relation between ρ and ρ′ is illustrated in Fig. 3.2 for different values of p. Let ρ′(ρ) :

[ρmin, 1]→ [−1, 1], where ρmin denotes the smallest value of ρ for which a corresponding ρ′ can

be found. Only for p = 0.5 we have ρmin = −1; otherwise, we have ρmin > −1. If the value of p

approaches 0 or 1, ρmin becomes 0.

Note that ρmin > −1 for p different from 0.5 is a limitation that comes from the physics of

the problem – and is not a limitation due to the Nataf distribution: For the specified marginal

distribution, the two random variables cannot exhibit a correlation coefficient smaller than ρmin.

For example, let the mean of the Bernoulli distributed random variables be p = 0.1. A ρ = −1

can only be achieved if the mean of the second Bernoulli distributed random variable is 0.9 (and

not 0.1).

The equation for ρmin as a function of p can be derived explicitly based on the definition of the

correlation coefficient. For the case of two Bernoulli distributed random variables with common

parameter p, the correlation coefficient is defined as:

ρ =
E[θ1θ2]− p2

p(1− p) (3.9)

Note that for p ≤ 0.5, the expectation E[θ1θ2] cannot be smaller than 0; and for p ≥ 0.5,

the expectation E[X1X2] cannot be smaller than 2p − 1. The proof is omitted; it is based on

assuming that with probability q we have θ2 = 1 − θ1, and with probability 1 − q the random

variable θ2 is a Bernoulli trial with rate r (while maintaining E[θ2] = p independent of q, which

gives q = (p− r)/(1− r − p)). The smallest value that ρ can take for a given p is thus:

ρmin =

−
p

1−p if p ≤ 0.5

− 1−p
p if p > 0.5

(3.10)
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Figure 3.2: Relation between ρ and ρ′ for different values of p, where p is the parameter of the
Bernoulli distributed random variables (both random variables use the same p), ρ is the
correlation between the Bernoulli distributed random variables, and ρ′ is the correlation
of the underlying standard Normal random variables. ρmin denotes the smallest value of
ρ for which a corresponding ρ′ can be found; we have ρ′ = −1 for ρmin. (Example 3.3)
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3.3 Rejection sampling

Rejection sampling can generate independent samples of any distribution that is defined

through its density, even if the density is not normalized or not known explicitly. Let the

possibly unnormalized target density be f(θ); with pΘ(θ) ∝ f(θ), where pΘ(θ) denotes the

normalized target density, and θ ∈ RM . Furthermore, let h(θ) be a normalized density such

that independent samples following this density can be generated directly; h(θ) is referred

to as proposal density.

Rejection sampling postulates that we can pick a scaling factor c ∈ R>0 such that

c · h(θ) ≥ f(θ) ∀ θ ∈ RM (3.11)

The algorithm to generate an independent sample from target density pΘ(θ) is:

Algorithm 3.1. Rejection sampling algorithm:

This algorithm requires as input: (i) the possibly unnormalized target density f(θ), (ii) a proposal

density h(θ), (iii) and a scaling factor c maintaining Eq. (3.11).

The algorithm returns an independent sample θ from the target distribution.

1. Generate an independent sample ξ from density h(·).

2. Generate realization Γ from the uniform distribution with support [0, 1].

3. Evaluate the ratio

r =
f(ξ)

c · h(ξ)
(3.12)

4. If r ≤ Γ, set θ = ξ; otherwise, go back to (1).

The average computational costs to generate an independent sample from the target distri-

bution are proportional to 1/E[r], where r is the ratio defined in Eq. (3.12). Thus, for small

E[r], the computational costs to generate independent samples from the target distribution

can be large, rendering the rejection sampling algorithm inefficient.

3.4 Markov chain Monte Carlo

In the previous section, rejection sampling was introduced: It can generate independent

samples from the target distribution at potentially large computational costs. Contrary to

that, Markov chain Monte Carlo generates dependent samples from the target distribution

at often considerably smaller computational costs.
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Let pΘ(θ) be a distribution that we cannot sample from directly. Markov chain Monte Carlo

(MCMC) is a technique that allows us to asymptotically generate dependent samples from

pΘ(θ). The sampling process is called Markovian, as the next generated sample depends

only on the current sample; all samples that were generated previously have no influence.

Consequently, a Markov chain is memoryless. For a comprehensive introduction to MCMC,

the reader is referred to [Gilks et al., 1996; Gelman et al., 2004a; Robert and Casella, 2004].

3.4.1 Formal introduction

Let v0,v1, . . . ,vk be a sequence of samples, where vk ∈ RM for all k ∈ {0, 1, . . .}, and M is

the dimension of the vectors vk. The sequence v0,v1, . . . ,vk is called a Markov chain if the

following rule holds for the joint PDF of any vk with k ≥ 1: p(vk|vk−1, . . . ,v0) = p(vk|vk−1).

The conditional PDF p(vk|vk−1) is referred to as the transition PDF of the Markov chain.

A Markov chain is defined through its transition PDF p(vk|vk−1) and the PDF of the initial

state p0(v0).

We define the following properties that a Markov chain can have:

homogeneous A Markov chain is called homogeneous if the transition PDF is independent

of the step k, i.e.: p(vk|vk−1) = p(vk+1|vk) for all k ≥ 1.

stationary distribution If ps(v) =
∫
p(v|w)ps(w) dw, then the density ps(·) is termed a

stationary PDF of a homogeneous Markov chain with transition PDF p(v|w). The

stationary distribution is often also referred to as invariant distribution. Note that if

we start a Markov chain with a sample from the stationary distribution, the chain will

return a sample from the stationary distribution.

limiting distribution If the Markov chain converges to its stationary distribution indepen-

dent of the starting point, the stationary distribution is called limiting distribution. If

the chain has a limiting distribution, it has only one stationary distribution.

burn-in The number of steps until the Markov chain approximately reached its stationary

distribution is called the burn-in period. Usually, it is virtually impossible to ensure

that a chain has reached its stationary distribution [Tierney, 1994; Gilks et al., 1996,

Section 1.4.6]. Different strategies to assess convergence are discussed in [Cowles and

Carlin, 1996]. Another discussion can be found in [Robert and Casella, 2004, Section 12].

perfect sampling If the initial distribution is chosen as the stationary distribution: p0(v0) =

ps(v0), no burn-in is required. This case is referred to as perfect sampling. A discussion

of the concept of perfect sampling can be found in, e.g., [Robert and Casella, 2004,

Section 13].
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detailed balance The following equation is called detailed balance condition or reversibility

condition:

p(v|w)ps(w) = p(w|v)ps(v) ∀ w,v ∈ RM (3.13)

If this condition hold, ps(·) is a stationary distribution of the Markov chain. Moreover,

if detailed balance hold, the chain is called reversible.

irreducible The chain is said to be irreducible if vk can be in any subset of RM that has

non-zero probability in a finite number of steps, independent of the initial state v0 of

the chain.

recurrent Recurrence is an extension of irreducibility: A chain is recurrent if any subset of

RM that has non-zero probability can be reached infinitely often for (almost) all starting

points. The chain is said to be positive recurrent if it has a stationary distribution; and

null recurrent otherwise.

aperiodic If there are portions of the state space that the chain can only visit in certain

regularly spaced steps, the Markov chain is said to be periodic [Tierney, 1994]. If

a Markov chain is not periodic, it is called aperiodic. A Markov chain is said to be

strongly aperiodic if there is a non-zero probability that vk = vk+1. If a chain is

strongly aperiodic, it implies that it is aperiodic.

If a Markov chain has stationary distribution ps(·) and is irreducible, then: [Gilks et al., 1996,

Section 4.3]

• ps(·) is the unique invariant distribution of the chain.

• The chain is positive recurrent.

• One can prove asymptotical convergence in the average transition kernel and in sample

path averages.

If, additional to that, the Markov chain is also aperiodic, then:

• One can prove asymptotical convergence of the transition kernel.

[Gilks et al., 1996, Section 4.3] point out that proving aperiodicity is usually of little impor-

tance, because we are typically interested only in convergence with respect to sample path

averages.

3.4.2 Efficiency of MCMC sampling

Samples produced with MCMC are not independent, and thus the efficiency of MCMC sam-

pling is reduced compared to independent samples generated directly from the target dis-
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tribution. Loosely speaking, the efficiency of MCMC sampling decreases as the degree of

dependency of the samples in the Markov chain increases. The degree of dependency of the

samples in the Markov chain is determined by the choice of the transition PDF. All MCMC

algorithms differ essentially in their choice of the transition PDF.

There is no unique measure to quantify the efficiency of MCMC sampling strategies (see [Gel-

man et al., 1996; Roberts et al., 1997, 2001]). For example, the efficiency measure defined in

Eq. (F.15) can be employed. Similar to the measure defined in Eq. (F.15), the reciprocal of

the asymptotic variance of the sample mean can be used to quantify the efficiency of MCMC

sampling [Gelman et al., 1996]. However, both measures are ambiguous for problems with

more than a single random variable. Another measure to quantify the MCMC efficiency is the

expected squared jumping distance (ESJD). Maximizing the ESJD is equivalent to minimizing

the first-order autocorrelation coefficient of the Markov chain [Thiéry, 2010]. The ESJD max-

imizes the MCMC efficiency if the higher order autocorrelation coefficients are monotonically

increasing with respect to the first-order autocorrelation coefficient [Pasarica and Gelman,

2010]. The ESJD is monitored e.g. in [Beskos et al., 2009; Roberts and Rosenthal, 2009].

In general it is, however, difficult to directly optimize the efficiency of a MCMC sampling

approach based on a moderate number of MCMC samples.

3.4.3 Metropolis-Hastings algorithm

A well-known MCMC algorithm is the Metropolis-Hastings algorithm [Metropolis et al., 1953;

Hastings, 1970]. The algorithm can be used to sample from any specified target PDF ps(·). In

fact, the Metropolis-Hastings algorithm does not require the target distribution to be normal-

ized. This is of particular relevance in Bayesian updating, because the posterior distribution

is usually only known up to a scaling constant.

Algorithm 3.2. Metropolis-Hastings algorithm:

This algorithm requires as input: (i) the possibly unnormalized target density ps(·), and (ii) a proposal

density q(·|·).

The algorithm generates state vk from the previous state vk−1 of the Markov chain for any k ≥ 1 as

follows:

1. Draw a sample ξ from proposal distribution q(ξ|vk−1).

2. Evaluate the ratio

rvk−1
(ξ) =

ps(ξ)

ps(vk−1)
· q(vk−1|ξ)

q(ξ|vk−1)
(3.14)

3. Draw sample Γ ∈ [0; 1] from the uniform distribution.
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4. Set

vk =

ξ if rvk−1
(ξ) < Γ

vk−1 otherwise
(3.15)

Note that in the above algorithm, the density ps(·) does not necessarily have to be normalized,

because only its ratio appears in Eq. (3.14).

Acceptance rate Let quantity avk−1
(ξ) be defined as avk−1

(ξ) = min
(
rvk−1

(ξ), 1
)
, with

rvk−1
(ξ) according to Eq. (3.14). The acceptance rate pacr is the long-run average of avk−1

(ξ).

The acceptance rate is often closely coupled to the efficiency of the Metropolis-Hastings

algorithm (see Section 3.5.8).

Transition PDF of going from state w to state v can be written as:

p(v|w) = q(v|w) · r∗w(v) + δw(v) ·
∫

(1− r∗w(ξ)) q(ξ|w) dξ (3.16)

where δw(v) is the Dirac mass at w, and r∗w(v) is the acceptance ratio for going from w to

v defined as

r∗w(v) = min (1, rw(v)) = min

(
1,
ps(v)

ps(w)
· q(w|v)

q(v|w)

)
(3.17)

where rw(v) is defined according to Eq. (3.14).

Proofs related to the transition PDF of the Metropolis-Hastings algorithm are given in Ap-

pendix E.4.

Metropolis algorithm: The Metropolis-Hastings algorithm is a generalization of the Metropo-

lis algorithm [Metropolis et al., 1953]: In the Metropolis algorithm, the proposal distribution

is assumed to be symmetric, and, thus, the acceptance ratio given in Eq. (3.14) reduces to:

r(ξ|vk−1) =
ps(ξ)

ps(vk−1)
(3.18)

This “variant” of the Metropolis-Hastings algorithm is also referred to as symmetric random

walk Metropolis (RWM) algorithm.

Choice of the proposal distribution: The efficiency of the Metropolis-Hastings algo-

rithm is closely coupled to the choice of the proposal distribution. In general, there are two

primary choices to be made when selecting the proposal distribution: (i) The type of the

proposal distribution and (ii) the spread of the proposal distribution have to be chosen. Here

spread is to be understood as a measure of dispersion; e.g., standard deviation or variance.
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The influence of the proposal distribution on the efficiency of the MCMC sampling is discussed

in Section 3.5.8.

3.5 MCMC sampling with focus on a special category of tar-

get distributions

In reliability analysis (see Section 4.4) and in combination with the BUS approach for

Bayesian inference (see Chapter 6), special types of target distributions arise (see Sec-

tion 3.5.1). This section introduces MCMC algorithms specifically designed to tackle target

distributions in reliability analysis and in the BUS approach.

3.5.1 Type of target distributions focused on

3.5.1.1 Definition

The focus in this thesis is on target densities pg(·) that are proportional to:

pg(θ) ∝ Ig(θ) · pΘ (θ) (3.19)

where pΘ (·) is a joint probability density function, and Ig(θ) is the indicator function defined

as

Ig(θ) =

1 if g(θ) ≤ 0

0 otherwise
(3.20)

where g(·) is a function that defines the support of the target distribution; i.e., the support of

the target distribution is the region in which g(·) ≤ 0. The sample θ is expressed through M -

dimensional vector u of independent standard Normal random variables and transformation

T−1 : u→ θ; i.e., θ = T−1(u) (see Section 3.2). Thus, Eq. (3.19) can be rewritten as:

pG(u)(u) ∝ IG(u) ·
M∏
i=1

ϕ (ui) (3.21)

where G(u) = g (θ) = g
(
T−1(u)

)
, ϕ(·) denotes the PDF of the standard Normal distribution,

and IG(u) denotes the indicator function defined as

IG(u) =

1 if G(u) ≤ 0

0 otherwise
(3.22)
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3.5.1.2 Nomenclature

Following the nomenclature employed in reliability analysis1, the following expressions are

used:

g(·) is referred to as limit-state function.

G(·) is referred to as limit-state function in standard Normal space.

Pf = EΦ (IG(u)) is the expectation of the indicator function where the problem is expressed

in terms of the underlying independent standard Normal distribution. The quantity Pf

is called the probability of failure.

{u|G(u) ≤ 0} is referred to as the support domain or failure domain.

u∗ is the point in the support domain Uf = {u|G(u) ≤ 0} that is closest to the origin; i.e.,

u∗ = arg minu∈Uf
(‖u‖). This point is referred to as design point in standard Normal

space.

θ∗ is defined as T−1 : u∗ → θ∗, and called the design point.

3.5.2 Two-stage approach for MCMC

For the special type of target densities pg(θ) introduced in Section 3.5.1, a sample θ from

pg(θ) can be generated using the following two-stage approach:

Algorithm 3.3. Two-stage approach for MCMC in reliability analysis:

As input, the algorithm requires the current state of the Markov chain. The algorithm returns the

next state of the Markov chain.

1. A (dependent2) sample y from the multivariate independent standard Normal distribu-

tion is generated using one of the investigated MCMC algorithms; e.g., by means of

Algorithm (3.5.6). The generated sample is then transformed3 as T−1 : y → v, where v

is a sample from the joint density pΘ (v) used in Eq. (3.19).

2. The generated sample v is accepted if g(v) ≤ 0 and rejected otherwise, where g(v) is the

limit-state function that belongs to target density pg(θ) (see Eq. (3.19)). If v is rejected,

the sample from the previous MCMC step is re-used.

1The theory of reliability analysis is presented in Section 4.4.
2The generated sample y is conditional on the current state of the Markov chain.
3The transformation is performed according to Section 3.2.
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The MCMC algorithms introduced in Section 3.5 are specialized MCMC variants that are

particularly efficient in generating dependent samples y form the multivariate independent

standard Normal distribution. The subsequent transformation T−1 : y→ v (see Section 3.2)

and the acceptance/rejection step based on g(v) ≤ 0 are standard steps that are equivalent

for all MCMC variants discussed in Section 3.5.

Typically, the computationally demanding step is to evaluate the limit-state function g(v)

for the proposed sample v. Therefore, the objective is to find a MCMC strategy that – for

a fixed number of MCMC steps – maximizes the number of effectively independent1 samples

that follow density pg(θ).

Remark: If the target density pΘ (·) can be written as the product of one-dimensional den-

sities pi (·); i.e., as pΘ (v) =
∏M
i=1 pi (vi), then sample v in the first stage of the two-stage

approach can, in principle, be generated directly – without first generating an underlying

standard Normal sample. This can be achieved by the MCMC algorithms presented in Sec-

tion 3.5.4 and Section 3.5.5. However, typically it is numerically more convenient to work in

the underlying standard Normal space and to perform transformation T−1 subsequently (see

also Section 3.1).

3.5.3 Exemplary target distributions studied

Based on the type of target distributions introduced in the Section 3.5.1, in this section

exemplary target distributions are defined that are studied throughout this thesis. The target

distributions presented in the following differ essentially with respect to their associated limit-

state function (see Section 3.5.1).

3.5.3.1 Linear Gaussian

The probability that the sum of standard Normal random variables (i.e., u = θ) is larger

than a specified threshold is assessed:

g1(θ) = G1(u) = β1 −
1√
M

M∑
i=1

ui (3.23)

where the θi = ui are standard Normal random variables, M is the dimension of the problem,

and β1 = Φ−1(−Pf,1) with Pf,1 as the target probability of failure. The shape of the failure

domain is illustrated in Fig. 3.3a. The design point θ∗ of the problem is located at θ∗1 =

. . . = θ∗M = β1√
M

.

1The number of effectively independent samples is an ambiguous measure. One measure based on the
sample variance is introduced in Section F.1.2.4. The performance of different MCMC strategies is discussed
in Section 3.5.8 for different efficiency measures.
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Figure 3.3: Shape of the support domains of target densities pg1(·), pg2(·), pg3(·), pg4(·) and pg5(·).
The type of the associated target distributions is described in Section 3.5.1. The sup-
port domains are illustrated in standard Normal space (i.e., the functions G1(·), G2(·),
G3(·), G4(·) and G5(·) are illustrated) for two random variables (i.e., M = 2). For limit-
state functions g1, g2, g4 and g5, the problem can directly be formulated in standard
Normal space. In case of g3, the limit-state function is linear in the original random
variable space, but non-linear in standard Normal space. Limit-state functions g2 and
g5 are shown for κ = 10 and m = 0, respectively. The depicted failure domains cor-
respond to probabilities of failure 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6. The failure
domain corresponding to a target probability of failure Pf = 10−1 is colored gray. (see
Section 3.5.3)
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The target density that employs limit-state function g1 is denoted by pg1(θ).

3.5.3.2 Gaussian with quadratic term

Extending the previously introduced limit-state function, a quadratic term is added to the

sum of standard Normal variables [Papaioannou et al., 2015]:

g2(θ) = G2(u) = α2 −
1√
M

M∑
i=1

ui +
κ

4
(u1 − u2)2 (3.24)

where the θi = ui are standard Normal stochastic variables, M ≥ 2 is the dimension of the

problem, κ is the principal curvature at the design point, and α2 denotes the distance of the

design point to the origin. The design point θ∗ of the problem is located at θ∗1 = . . . = θ∗M =
α2√
M

. The target probability of failure Pf,2 is linked to α2 and κ as:

Pf,2 =

∫ −α2

y=−∞

∫ ∞
z=−∞

ϕ

(
−y +

1

2
κz2

)
· ϕ (z) dz dy (3.25)

The shape of the failure domain is illustrated in Fig. 3.3b for κ = 10. For κ = 0, the

limit-state function g2 is equivalent to g1. For large κ, the problem reduces essentially to a

two-dimensional problem of u1 and u2.

The target density that employs limit-state function g2 is denoted by pg2(θ).

3.5.3.3 Sum of exponentials

Another limit-state function that has an analytical solution is the sum of stochastic variables

with an exponential distribution:

g3(θ) = α3 −
1√
M

M∑
i=1

θi (3.26)

where θi are exponential stochastic variables with a mean of one, and target probability of

failure Pf,3 is linked to α3 through the CDF of the gamma distribution as:

Pf,3 =
γ(N,α3)

Γ(N)
(3.27)

where γ(·, ·) is the lower incomplete gamma function γ(w, z) =
∫ z

0 ν
w−1e−ν dν, and Γ(·)

denotes the gamma function Γ(w) = γ(w,∞). The shape of the failure domain is illustrated

in Fig. 3.3c.

The target density that employs limit-state function g3 is denoted by pg3(θ).
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3.5.3.4 Limit-state function with two design points

The following two-dimensional limit-state function has two design points:

g4(θ) = G4(u) =
α4

|u2|
− u1 (3.28)

where the u1 = θ1 and u2 = θ2 are standard Normal random variables, and α4 is a positive

scalar constant. The target probability of failure is:

Pf,4 = 2 ·
∫ ∞

0
Φ
(
−α4

u

)
· ϕ (u) du (3.29)

The two design points of limit-state function g4 are located at u∗,11 = u∗,12 =
√
α4 and

at u∗,21 = −u∗,22 =
√
α4. For example, with α4 = 10, we have Pf,4 = 5.42 · 10−6 and

u∗1 = ±u∗2 =
√

10 ≈ 3.16. The shape of the failure domain is illustrated in Fig. 3.3d.

The target density that employs limit-state function g4 is denoted by pg4(θ).

3.5.3.5 Points outside of hypersphere

Let θ = u be a M -dimensional vector of independent standard Normal random variables.

The failure domain is defined as all points u located outside of a hypersphere that has radius

r ∈ R>0 (see Fig. 3.3e). The following limit-state function is used to represent the failure

domain:

g5(θ) = G5(u) = 1− ‖u‖
2

r2
− u1

r
· 1− (‖u‖/r)m

1 + (‖u‖/r)m (3.30)

where for m ∈ [0, 4] the failure region1 G5(u) ≤ 0 is independent of m. The coefficient m

modifies the gradient of the limit-state function in u1-direction. The shape of G5 is depicted

in Fig. 3.4 for different values of m, with M = 2 and Pf,5 = 10−6. The parameter m will

be modified to assess the performance of Subset Simulation2. In case m = 0, the limit-state

function reduces to g5(θ) = G5(u) = 1− ‖u‖2/r2.

The sum of squared independent standard Normal random variables follows a chi-squared dis-

tribution. Therefore, the analytical solution of the probability of failure Pf,5 can be expressed

by means of the CDF of a chi-squared distribution:

Pf,5 = 1− γ
(
M/2, r2/2

)
Γ (M/2)

=
Γ
(
M/2, r2/2

)
Γ (M/2)

(3.31)

where γ(·, ·) is the lower incomplete gamma function γ(w, z) =
∫ z

0 ν
w−1e−ν dν, Γ(·, ·) is the

1m = 4 is the largest integer number for which the shape of the failure region does not depend on m.
2Subset Simulation is a method to approximately estimate the probability of failure in a reliability problem.

Subset Simulation is properly introduced in Section 5.3.
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Figure 3.4: The shape of limit-state function g5 is depicted for a two-dimensional problem and dif-
ferent values of m. The target probability of failure Pf,5 is set to 10−6. The parameter r
in g5 can be evaluated based on Pf,5 as the inverse of the upper regularized incom-
plete gamma function; i.e., r(Pf,5 = 10−6) = 5.26. Let Θt = {θ ∈ Θ|g5(θ) ≤ t},
where t is chosen based on a value p such that Pr(g5 ≤ t) = p. Additional to
the final failure domain, the contour lines associated with domains Θt are shown for
p = {10−1, 10−2, 10−3, 10−4, 10−5}.

upper incomplete gamma function Γ(w, z) =
∫∞
z νw−1e−ν dν, and Γ(·) denotes the gamma

function Γ(w) = γ(w,∞).

The target density that employs limit-state function g5 is denoted by pg5(θ).

3.5.4 Component-wise Metropolis-Hastings

Au and Beck [Au and Beck, 2001] observed and proved that the standard Metropolis-Hastings

algorithm rejects almost all samples if the dimension M of u is large; i.e., the acceptance

rate decreases with increasing M , for a fixed spread sq of the proposal. This renders the

algorithm inapplicable for moderate to large M [Au and Beck, 2001; Au and Wang, 2014].

For target distributions where the PDF pΘ(θ) can be expressed as pΘ(θ) ∝ ∏M
i=1 pΘi (θi),

[Au and Beck, 2001] propose to apply the Metropolis-Hastings algorithm separately to each
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component1. This algorithm is referred to as component-wise Metropolis-Hastings (cwMH).

In the cwMH algorithm, the Markov chain moves on if a proposed sample in at least one

component is accepted. Let a1 be the average probability that a proposed sample in a

component is accepted. As long a a1 > 0, the probability a = 1 − (1 − a1)M that the chain

moves on converges asymptotically to one as M →∞ (even if a1 is small). Consequently, the

performance of the component-wise Metropolis-Hastings algorithm is (nearly) independent

of the dimension M of the problem. Therefore, this family of MCMC algorithms is efficient

for application in Subset Simulation [Au and Beck, 2001] (see Section 5.3).

Algorithm 3.4. Component-wise Metropolis-Hastings (cwMH) algorithm:

This algorithm requires as input: (i) the current state w of the Markov chain, and (ii) the one-

dimensional proposal density2 q(·|·), and (iii) the possibly unnormalized one-dimensional target den-

sities pΘi(·).

The algorithm returns v, the next state of the Markov chain.

1. For each i in {1, . . . ,M} do:

(a) Propose sample ξ from proposal distribution q(ξ|wi).
(b) Calculate

r =
pΘi(ξ)

pΘi(wi)
· q(wi|ξ)
q(ξ|wi)

(3.32)

(c) Draw sample Γ ∈ [0; 1] from the uniform distribution.

(d) Set vi = ξ if Γ ≤ r; otherwise set vi = wi.

Usually, the one-dimensional proposal distribution q(ξ|wi) in the cwMH algorithm is chosen

to be symmetric, i.e.: q(ξ|wi) = q(wi|ξ). Au and Beck [Au and Beck, 2001] noted that the

type of the symmetric proposal distribution does not have a large influence on the efficiency of

the algorithm. However, the spread (e.g., the standard deviation) of the proposal distribution

does. One could for example choose the Normal distribution as proposal distribution:

q(ξ|wi) = ϕ

(
ξ − wi
sq

)
(3.33)

where sq > 0 denotes the spread.

1In this contribution the algorithm is specifically applied to generate dependent samples from the multivari-
ate independent standard Normal distribution; i.e., for target distributions that can be written as

∏M
i=1 ϕ(θi),

where ϕ(·) denotes the PDF of the standard Normal distribution.
2In general, for each of the M components of w, denoted wi, a separate proposal distribution can be

specified. To keep the problem simple, the same proposal distribution is used in Algorithm (3.4) for each
component of w. However, in general, it is straight-forward to extent Algorithm (3.4) to proposal distributions
that depend on the index i = 1, . . . ,M of the respective component wi of vector w.
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3.5.5 Conditional Metropolis-Hastings

If the joint target distribution of θ, denoted ps, is known explicitly and has the form ps(θ) =

pΘ(θ) ∝ ∏M
i=1 pΘi (θi) (i.e., i.e., the components of θ are required to be independent), we

can construct a Metropolis-Hastings proposal distribution that leads to an acceptance rate

of one. This particular variant of Metropolis-Hastings is referred to as CMH in the following

(for conditional Metropolis-Hastings). The CMH algorithm is a generalized variant of the CS

algorithm (see Section 3.5.6).

Let w and v be M -dimensional random vectors that follow distribution ps. Note that the

components wi, i = 1, . . . ,M of w are independent – as are the components vi of v. Fur-

thermore, let z and y be the standard Normal transformations of w and v, respectively.

Consequently, the components zi of z can be expressed as zi = Φ−1 (Ps (wi)), where Ps(·) is

the CDF of the target distribution, and Φ−1(·) is the inverse CDF of the standard Normal

distribution. The components vi of v can be expressed as vi = P−1
s (Φ( yi )), where P−1

s (·)
is the inverse CDF of the target distribution. The random vectors w and v are dependent.

The dependency is specified using the Nataf model: The dependency between w and v is

expressed in terms of an equivalent correlation between z and y.

In a Markov chain that moves from state w to the next state v, the state w is conditionally

fixed. Describing the correlation between the corresponding vectors z and y in terms of

a single correlation coefficient ρ, the state y can be sampled from a conditional Normal

distribution that has mean ρ · z and isotropic standard deviation
√

1− ρ2.

Algorithm 3.5. Conditional Metropolis-Hastings (CMH) algorithm:

This algorithm requires as input: (i) the current state w of the Markov chain, and (ii) the correlation

coefficient ρ ∈ [0; 1) that specifies the correlation between the transformed standard Normal states of

the Markov chain, and (ii) the CDF Ps(·) of the target distribution and its inverse P−1
s (·).

The algorithm returns v, the next state of the Markov chain.

1. Transform w to standard Normal space:

zi = Φ−1 (Ps (wi)) , for each i ∈ {1, . . . ,M} (3.34)

2. Obtain a realization of y conditionally on the state of z:

y = ρ · z +
√

1− ρ2 · u (3.35)

where u is a realization of a M -dimensional vector of independent standard Normal

random variables.
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3. Transform y to v:

vi = P−1
s (Φ( yi )) , for each i ∈ {1, . . . ,M} (3.36)

where v is the next state of the Markov chain.

Note that in the algorithm above, Pr (v = w) = 0. Thus, in each MCMC step, a state

different from the current state is generated – which means that the CMH algorithm does

not reject any sample and has an acceptance rate of one. However, this holds only for the

first stage of the two-stage approach explained in Section 3.5.2; the overall acceptance rate is

smaller than one due to the acceptance/rejection step based on g(v) ≤ 0 in the second stage.

Proof 3.1. Algorithm (3.5) can be interpreted as a Metropolis-Hastings algorithm with

an acceptance rate of one. As the components of both w and v are assumed to be

independent, the joint PDF p(·) of both w and v can be expressed as the product of the

probability densities of the individual components. Therefore, it is sufficient to conduct

the proof for the special case of M = 1.

The PDF of y is:

pY |Z(y|z) = ϕ

(
y − ρ · z√

1− ρ2

)
where ϕ(·) denotes the PDF of the standard Normal distribution. The conditional PDF

of the proposal distribution pV |W (v|w) can be derived based on pY |Z(y|z) and the relation

between y and v:

pV |w(v|w) = ϕ

(
y − ρ · z√

1− ρ2

)
·
∣∣∣∣dΦ−1 (Ps(v))

dv

∣∣∣∣
=

1√
2π

exp

−1

2

(
y − ρ · z√

1− ρ2

)2
 · ∣∣∣∣dΦ−1 (Ps(v))

dPs(v)
· dPs(v)

dv

∣∣∣∣
=

1√
2π

exp

(
− (y − ρ · z)2

2 · (1− ρ2)

)
·
∣∣∣∣ dy

dΦ(y)
· ps(v)

∣∣∣∣
=

1√
2π

exp

(
−y

2 − 2ρyz + ρ2z2

2 · (1− ρ2)

)
· ps(v)

ϕ(y)

= exp

(
−y

2 − 2ρyz + ρ2z2

2 · (1− ρ2)
+
y2

2

)
· ps(v)

= exp

(
−ρ

2y2 − 2ρyz + ρ2z2

2 · (1− ρ2)

)
· ps(v)

The Metropolis-Hastings acceptance ratio can be expressed as:

r (v|w) =
ps(v) · pW |v(w|v)

ps(w) · pV |w(v|w)

= exp

(
−ρ

2y2 − 2ρyz + ρ2z2

2 · (1− ρ2)
+
ρ2y2 − 2ρyz + ρ2z2

2 · (1− ρ2)

)
= exp(0)
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= 1

Consequently, the acceptance ratio r is one, independent of ρ.

3.5.6 Conditional sampling in standard Normal space

3.5.6.1 Algorithm

The conditional sampling in standard Normal space (CS) algorithm was proposed in [Pa-

paioannou et al., 2015; Au and Patelli, 2016; Au, 2016] to generate MCMC samples from an

independent standard Normal target distribution. The CS algorithm is an efficient MCMC

algorithm for application in Subset Simulation (see Section 5.3).

Let the target distribution take the form ps(θ) = pΘ(θ) ∝ ∏M
i=1 ϕ (θi), where ϕ(·) denotes

the PDF of the standard Normal distribution. In this special case, the CMH algorithm

(Algorithm (3.5)) reduces to the CS algorithm:

Algorithm 3.6. Conditional sampling in standard Normal space (CS) algorithm:

This algorithm requires as input: (i) the current state z of the Markov chain, and (ii) the correlation

coefficient ρ ∈ [0; 1) that specifies the correlation between the proposed sample and the seed. The

algorithm returns y, the next state of the Markov chain.

1. Sample random vector u as a realization of a M -dimensional vector of independent stan-

dard Normal random variables.

2. Obtain a realization of y conditionally on the state of z:

y = ρ · z +
√

1− ρ2 · u (3.37)

The parameter ρ in Algorithm (3.6) is linked to the spread sq of the proposal distribution as

sq =
√

1− ρ2. From a numerical point of view, Algorithm (3.6) should ideally directly be

implemented using parameter sq to control the spread of the proposal, instead of employing

ρ; i.e., Eq. (3.37) is expressed as

y =
√

1− s2
q · z + sq · u (3.38)

Eq. (3.38) is less prone to floating-point errors than Eq. (3.37) if the value of sq is small.
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3.5.6.2 Efficiency of CS in high-dimensional problems

Note: The relations derived in the following are only valid as M →∞.

For large M , the samples y and z are essentially located on the surface of a hypersphere

with radius
√
M (see Section 2.3.4.3.2). Moreover, based on Section 2.3.4.3.3, u · z → 0 as

M →∞, i.e., u is orthogonal to z for large M . Thus, based on Eq. (3.37), we can deduce: (i)

The scalar projection1 of y on z is ρ
√
M . (ii) The scalar rejection2 of y on z is

√
(1− ρ2)M .

(iii) The angle ω between y and z is ω = cos−1(ρ). (iv) The distance between y and z

is
√

2M(1− ρ). Consequently, for ρ < 1, the samples y are located on the “ring” that is

obtained by intersecting the hypersphere that has radius
√

(1− ρ2)M and is centered around

ρy with the hypersphere that has radius
√
M and is centered around the origin.

Moreover, for very large M , the parameter ρ does effectively represent the cosine of the angle

between y and z. This behavior is particularly interesting, as in high dimensions the prior

samples in independent standard Normal space are asymptotically located on the hypersphere

with radius
√
M centered around the origin.

3.5.6.3 Generalized CS variant

In Algorithm (3.6), the same ρ is used for each of the M components; i.e., the covariance

matrix of the proposal distribution is a diagonal matrix with diagonal entries 1 − ρ2. A

generalized variant of the CS algorithm in which general covariance matrices can be specified,

is proposed in [Papaioannou et al., 2015]. Especially for low-dimensional problems (i.e., small

M), the generalized CS algorithm can outperform the standard isotropic CS algorithm. The

generalized CS variant is difficult to apply in the following situations:

• Typically, the covariance matrix of the proposal distribution is estimated from samples

of the target distribution. However, for problems with many random variables (i.e.,

if M is large), it is difficult to estimate the covariance matrix based on a reasonable

number of samples. If the number of samples is not chosen large enough, the estimated

covariance matrix might not be positive definite.

• If the shape of the target distribution on support domain {u|G(u) ≤ 0} cannot be

described well by means of a linear dependency structure.

1The scalar projection is defined as yz/‖z‖.
2The scalar rejection is defined as

√
‖y‖2 − (yz/‖z‖)2.
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3.5.7 Directional conditional sampling

The Metropolis-Hastings strategy proposed in the following requires the target distribution

to be proportional to the multivariate independent standard Normal distribution.

3.5.7.1 Background

Let u be a M -dimensional vector of independent standard Normal random variables. The

standard way to generate a realization of u is to independently generate a standard Normal

sample for each component of u. Alternatively, a realization of u can also be obtained using

the following strategy (see e.g. [Katafygiotis and Zuev, 2008]):

Algorithm 3.7. One viable strategy to generate a M -dimensional vector of independent standard

Normal random variables.:

1. Assign to l2 the realization of a chi-squared distribution with M degrees of freedom.

2. Generate realizations of two M -dimensional vectors d1 and d2 of independent standard

Normal random variables – by independently generating a standard Normal sample for

each component of d1 and d2.1

3. Scale d1 and d2 such that they have a length of one.

4. Ensure that |d1 · d2| < 1; otherwise2 go back to step (2).

5. In the hyperplane spanned by d1 and d2, select vector d3 such that d1 · d3 = 0; i.e.:

d3 = d2 − (d1 · d2) · d1

6. Scale the length of d3 to one.

7. Assign to φ the realization of a uniform distribution with support [0, 2π].

8. Set u =
√
l2 · (d1 cosφ+ d3 sinφ)

The above algorithm can be split in three principal steps:

1. Sample the length l of vector u.

1This step might seem tautologous: Two M -dimensional vectors of independent standard Normal random
variables are required in order to generate a single M -dimensional vector of independent standard Normal
random variables. However, the appeal of this approach will become apparent in the remainder of this section.

2i.e., if d1 and d1 are parallel
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2. Sample the orientation of a hyperplane that contains the origin.

3. Generate a sample uniformly distributed on the circle obtained by intersection of the

obtained hyperplane with the surface of a hypersphere around the origin that has radius

l.

If the goal is to obtain a sample u that depends on the state of w (where both u and w follow

a multivariate independent standard Normal distribution), the dependency between u and

w can be modeled separately in each of the three principal steps. This allows a finer control

over the dependency structure compared to using a single parameter ρ in the CS algorithm

(Section 3.5.5).

3.5.7.2 Algorithm

Algorithm 3.8. Directional conditional sampling (DCS).:

This algorithm requires as input (i) the current state w of the Markov chain, (ii) correlation coefficient

ρr that controls the dependency between the length of the proposed sample vector and the length of

the seed sample vector, and (iii) correlation coefficient ρω that controls the angle between the seed

and the proposed sample vector.

The algorithm generates the next state v of the Markov chain.

1. Let l2s denote the squared length of w; i.e., l2s = ‖w‖2. Note that l2s follows a chi-squared

distribution with M degrees of freedom. Apply the CMH algorithm (Algorithm (3.5)) to

generate sample l2, where l2s is the current state of the chain, ρr is the required correlation

coefficient, and Ps(·) in Algorithm (3.5) is the CDF of the chi-squared distribution with

M degrees of freedom.

2. Generate random vector z, where each component of z is a standard Normal random

variable.

3. Ensure that wz < ‖w‖ · ‖z‖ and ‖z‖ > 0; otherwise, go back to the previous step.

4. Modify vector z as follows:

z = z− z ·w
l2s
·w

Note that z is now perpendicular to w.

5. Normalize vector z:

z =
1

‖z‖ · z

6. Propose angle ω using the CMH algorithm (Algorithm (3.5)):
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(a) Generate u as a sample from the standard Normal distribution.

(b) Transform u to ω:

ω = erf

(
u ·
√

1− ρ2
ω√

2

)
· π

7. Generate the next state v of the Markov chain as:

v = sin (ω) · z +
cos (ω)

l2s
·w

3.5.7.3 Practical applicability

The cwMH, CMH and the CS algorithm require only a single parameter to control the spread

of the proposal distribution. In contrast, two parameters (ρr and ρω) are used to control the

spread in the DCS algorithm (Algorithm (3.8)). On the one hand, two parameter allow finer

control over the spread of the proposal distribution. On the other hand, finding appropriate

values for two parameters is more challenging than tuning the spread with respect to only a

single parameter.

For some low-dimensional problems, application of the DCS algorithm can be appealing.

For example, for target distribution defined in terms of of limit-state function g5(·) (see

Section 3.5.3.5) with m = 0, the optimal spread is controlled through parameter ρr, and the

parameter ρω is ideally set to 0. In this example, the DCS algorithm reduces the problem to

a one-dimensional problem and performs rather efficiently.

For general high dimensional problems (i.e., for large M), the CS algorithm (Section 3.5.6)

is more appealing than the DCS algorithm: In high-dimensions the samples are efficiently

located on the surface of a hypersphere (see Section 2.3.4.3.2). Thus, the influence of the

parameter ρr diminishes as M increases. As a consequence, the DCS is similar to the CS

algorithm for large M .

3.5.8 Numerical performance investigations

3.5.8.1 Overview

In the Metropolis-Hastings algorithm, the efficiency of MCMC sampling is often closely cou-

pled to the acceptance rate [Roberts et al., 2001]. For example, for a one-dimensional Normal

target distribution and a symmetric proposal distribution, the optimal spread is 0.44 [Gelman

et al., 1996]. For problems with many random variables, a often near-optimal acceptance rate

is 1/4 under quite general conditions [Roberts et al., 1997].
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Instead of optimizing a measure for the efficiency of the MCMC sampling, it is often simpler

to tune the acceptance rate to a specified target acceptance rate (see e.g., [Roberts and

Rosenthal, 2009; Papaioannou et al., 2015]).

3.5.8.2 Numerical investigations

In this section, the efficiency of the CS and cwMH Metropolis-Hastings algorithms is investi-

gated for different proposal spreads and different target distributions by means of numerical

examples. The type of the investigated target density is selected according to Eq. (3.19) in

Section 3.5.1.

The following efficiency measures are used to assess the MCMC performance:

effMH,1 =
ESJD

ESJDopt
(3.39)

effMH,2 = effγ,IG1
(θ) (3.40)

effMH,3 = effγ,IG2
(θ) (3.41)

effMH,4 = eff 1
M

∑M
i=1 θi

(3.42)

effMH,5 = effθ1 (3.43)

where ESJDopt is the ESJD in case of independent samples from the target distribution,

M denotes the number of random variables in the problem, and θi is the ith component

(out of M) of sample θ. The efficiency measures employed in Eqs. (3.42) and (3.43) are

defined according to Eq. (F.15). The efficiency measure effγ,IGk
(θ) employed in Eqs. (3.40)

and (3.41) is defined according to Eq. (F.20). With IGk
(θ) the indicator function of function

Gk(θ) = G(θ) − tk. The coefficients t1 and t2 are chosen such that E [IGk
(θ)] equals 10%

and 50%, respectively.

The following MCMC algorithms are investigated: (a) CMH in standard Normal space (Sec-

tion 3.5.5) – which is in this special case equivalent to the CS algorithm proposed in [Pa-

paioannou et al., 2015], (b) cwMH with a standard Normal proposal distribution, and (c)

cwMH with a uniform proposal distribution. For all three proposal distributions, the spread s

is interpreted as the standard deviation.

The MCMC sampling in the examples is done as follows: A Markov chain of length 100

is run repeatedly for each investigated algorithm, starting from a seed that already follows

the target distribution. Based on a large number of such chains, the efficiency measures

introduced in Eqs. (3.39) – (3.43) are evaluated.

The examples investigated in this section are:

Example 3.4 The performance of the CS algorithm and two cwMH algorithms is investi-
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gated for two truncated standard Normal distributions (that have different support) as

target distributions.

Example 3.5 The optimal performance of the CS algorithm is investigated for a one-dimensional

truncated standard Normal distribution with decreasing support [t,∞).

Example 3.6 The performance of the CS algorithm and two cwMH algorithms is inves-

tigated for a 10-dimensional truncated standard Normal distribution. The surface of

the domain of support has a non-linear shape. The employed target density is of type

pg2(θ), defined according to Eqs. (3.19) and (3.24).

Example 3.7 The optimal performance of the CS algorithm and two cwMH algorithms is

investigated for a 10-dimensional truncated standard Normal distribution with decreas-

ing support [t,∞). The surface of the domain of support has a non-linear shape. The

employed target density is of type pg2(θ), defined according to Eqs. (3.19) and (3.24).

The maximum efficiencies obtained with the three investigated Metropolis-Hastings

algorithms are compared.

Example 3.8 The acceptance rate of the CS algorithm that leads to the best performance is

investigated. The target distribution is chosen as a truncated standard Normal domain,

where the surface of the domain of support has non-linear shape. The employed target

density is of type pg2(θ), defined according to Eqs. (3.19) and (3.24). The dimension

M of the target distribution and the domain of support of the target distribution are

modified.

Example 3.9 Same as Example 3.8 with one exception: The surface of the domain of sup-

port of the target distribution is linear. The employed target density is of type pg1(θ),

defined according to Eqs. (3.19) and (3.23).

Example 3.10 Same as Example 3.8 and Example 3.9, with yet another shape of the domain

of support of the target distribution. The employed target density is of type pg3(θ),

defined according to Eqs. (3.19) and (3.26).

Example 3.4. MCMC sampling of a one-dimensional truncated Normal distribution:

A truncated Normal distribution that has support [β1;∞) is investigated, where the underlying

Normal distribution is a standard Normal distribution. Thus, the employed target density is of

type pg1(θ), defined according to Eqs. (3.19) and (3.23), with G1(u) = β1 − u. Two cases are

considered: β1 = 9 and β1 = 3. The performance of the MCMC algorithms CS, cwMH with

normal proposal, and cwMH with uniform proposal is investigated for proposal spreads between

zero and one.

The performance of the investigated Metropolis-Hastings algorithms with respect to the effi-

ciency measures Eqs. (3.39) – (3.43) is illustrated in Fig. 3.5 for β1 = 9 and in Fig. 3.6 for β1 = 3
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Figure 3.5: MCMC samples that follow a one-dimensional truncated standard Normal distri-
bution (u ≥ 9) are generated using different Metropolis-Hastings algorithms. The
performance of different efficiency measures is monitored for proposal spreads be-
tween zero and one. (Example 3.4)
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Figure 3.6: MCMC samples that follow a one-dimensional truncated standard Normal distri-
bution (u ≥ 3) are generated using different Metropolis-Hastings algorithms. The
performance of different efficiency measures is monitored for proposal spreads be-
tween zero and one. (Example 3.4)
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as a function of the proposal spread. The acceptance rates and proposal spreads that are op-

timal with respect to the monitored efficiency measures are indicated. The efficiency measure

effMH,5 is not shown in the plots, as it coincides with effMH,4 for one-dimensional problems.

The CS algorithm clearly outperforms the two investigated cwMH algorithms: The optima

of all efficiency measures are largest in the CS algorithm (this holds for β1 = 9 as well as

for β1 = 3). For all three investigated MCMC algorithms and for the two cases β1 = 9 and

β1 = 3, the acceptance rates that optimize the efficiency measures are approximately the same

for efficiency measures effMH,1, effMH,2 and effMH,4. The corresponding optimal acceptance rate

is around 0.4 for CS, and around 0.3 for the two cwMH algorithms, for both β1 = 9 and β1 = 3.

However, the acceptance rate that optimizes measure effMH,3 is larger for both β1 = 9 and

β1 = 3.

Example 3.5. MCMC sampling of a one-dimensional truncated Normal distribution (cont’d):

As in Example 3.4, a truncated standard Normal distribution on support [β1;∞) is investigated;

i.e., the employed target density is of type pg1(θ), defined according to Eqs. (3.19) and (3.23),

with G1(u) = β1−u. The optimal spread is identified for the CS algorithm and different values

of β1. The acceptance rate and the efficiency corresponding to the identified optimal spread are

shown in Fig. 3.7a and Fig. 3.7b, respectively.

In accordance with Example 3.4, efficiency measures effMH,1, effMH,2 and effMH,4 become op-

timal for similar acceptance rates: For Pr (G1(u) ≤ 0) < 10−2, the optimal acceptance rate is

around 0.4 in this example. In case of efficiency measure effMH,3, the optimal acceptance rate is

close to 0.6, independent of Pr (G1(u) ≤ 0). Note that for β1 =∞, the CS algorithm generates

independent samples from the target distribution if the proposal spread is set to one. Thus, the

optimal acceptance rate is one, independent of the employed efficiency measure. The maximum

efficiency of all investigated efficiency measures decreases with decreasing Pr (G1(u) ≤ 0). The

decrease in efficiency is steeper for larger Pr (G1(u) ≤ 0).

Example 3.6. MCMC sampling of a 10-dimensional truncated Normal distribution:

The employed target density in this example has type pg2(θ), defined according to Eqs. (3.19)

and (3.24). The parameters in Eq. (3.24) are selected as: α2 = 3.09, M = 10 and κ = 10; i.e.,

Pr (G2(u) ≤ 0) ≈ 10−3. As in the previous example, the performance of the MCMC algorithms

CS, cwMH with normal proposal, and cwMH with uniform proposal is investigated for proposal

spreads between zero and one. Again, performance is measured in terms of the efficiency

measures Eqs. (3.39) – (3.43).

The results are depicted in Fig. 3.8. Contrary to Example 3.4, the optimal acceptance rates

that correspond to the different investigated efficiency measures do not coincide well: Optimal

acceptance rates vary between 0.2 and 0.5. Looking at individual efficiency measures, there

is no distinct best MCMC algorithm for this example: At least two out of the three inves-

tigated MCMC algorithms exhibit a similar optimal performance (effMH,1: CS and normal

cwMH; effMH,2: all three algorithms have similar optimal performance; effMH,3: CS and nor-

mal cwMH; effMH,4: all three algorithms have similar optimal performance; effMH,5: CS and
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Figure 3.7: The underlying target distribution is a one-dimensional truncated standard Nor-
mal distribution. The support [β1,∞) is modified by changing β1. Pr (G(u) ≤ 0)
denotes the probability that an independent standard Normal sample will be in
[β1,∞). The optimal acceptance rates and the corresponding efficiencies are shown
that maximize the efficiency measures Eqs. (3.39) – (3.43) in the conditional sam-
pling (CS) algorithm. (Example 3.5)
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Figure 3.8: MCMC samples that follow a 10-dimensional truncated standard Normal distri-
bution (target density has type pg2(θ)) are generated using different Metropolis-
Hastings algorithms. The performance of different efficiency measures is moni-
tored for proposal spreads between zero and one. (Example 3.6)
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uniform cwMH). However, the CS algorithm performs most stable in all investigated efficiency

measures.

As in Example 3.4, the optimal effMH,3 / effMH,1 exhibits the largest / smallest acceptance rate

among the investigated efficiency measures, respectively.

Example 3.7. optimal MCMC spread (10-dimensional truncated Normal distribution):

Again, we take target density pg2(θ) defined according to Eqs. (3.19) and (3.24) with M = 10

and κ = 10. The spreads that maximize the efficiency measures Eqs. (3.39) – (3.43) are

determined conditional on α2. The parameter α2 is varied and the corresponding Pr (G2(u) ≤ 0)

is calculated. The optimal performance of the MCMC algorithms CS, cwMH with normal

proposal, and cwMH with uniform proposal is assessed.

The optimal acceptance rates corresponding to the spreads that maximize efficiency measures

Eqs. (3.39) – (3.43) are shown in Fig. 3.9 for the three investigated Metropolis-Hastings al-

gorithms. CS algorithm: The optimal acceptance rate of efficiency measures effMH,1, effMH,2

and effMH,5 is approximately independent of Pr (G2(u) ≤ 0). For efficiency measures effMH,1

and effMH,5, the optimal acceptance rate is approximately 0.2. For efficiency measure effMH,2,

the optimal acceptance rate is close to 0.35. The optimal acceptance rate of both efficiency

measures effMH,3 and effMH,4 increases with decreasing Pr (G2(u) ≤ 0). For efficiency measure

effMH,3, the optimal acceptance rate increases from 0.25 at Pr (G2(u) ≤ 0) ≈ 0.1 to 0.35 at

Pr (G2(u) ≤ 0) ≈ 10−5. For efficiency measure effMH,4, the optimal acceptance rate increases

from 0.4 at Pr (G2(u) ≤ 0) ≈ 0.1 to 0.5 at Pr (G2(u) ≤ 0) ≈ 10−5. cwMH with Normal proposal:

The optimal acceptance rates of all investigated efficiency measures depend on Pr (G2(u) ≤ 0).

At Pr (G2(u) ≤ 0) = 0.14, the optimal acceptance rate is 0.42 for all investigated efficiency

measures. For efficiency measures effMH,1, effMH,2, effMH,4 and effMH,5, the optimal accep-

tance rate decreases with decreasing Pr (G2(u) ≤ 0); where for Pr (G2(u) ≤ 0) < 5 · 10−3, the

optimal acceptance rate remains constant. For efficiency measure effMH,3, the optimal ac-

ceptance rate increases with decreasing Pr (G2(u) ≤ 0). cwMH with uniform proposal: For

Pr (G2(u) ≤ 0) > 5 · 10−2, the efficiency measures effMH,1, effMH,2 and effMH,5 seem to depend

on Pr (G2(u) ≤ 0). However, for Pr (G2(u) ≤ 0) < 5 · 10−2, all investigated efficiency measures

are approximately independent of Pr (G2(u) ≤ 0).

For all three investigated Metropolis-Hastings algorithms, the optimal acceptance rate of effi-

ciency measure effMH,1 is the smallest optimal acceptance rate among all investigated efficiency

measures; whereas efficiency measure effMH,3 has the largest optimal acceptance rate.

The maximum efficiencies obtained with the three investigated Metropolis-Hastings algorithms

are compared in Fig. 3.10 as a function of Pr (G2(u) ≤ 0). The efficiency of the CS algorithm

is always at least as large as the efficiency of the two investigated cwMH algorithms. For

efficiency measures effMH,2, effMH,3 and effMH,4, the optimal efficiency is almost independent

of Pr (G2(u) ≤ 0). For efficiency measures effMH,1 and effMH,5, the optimal efficiency decreases

with decreasing Pr (G2(u) ≤ 0).

In the previous MCMC examples, the CS algorithm exhibited the most stable performance.

The remaining examples in this section will focus on the CS algorithm.



3.5. MCMC sampling with focus on a special category of target distributions 77

10−410−310−210−1

Pr (G2(u) ≤ 0)

0.0

0.2

0.4

0.6

0.8

1.0
ac

ce
p
ta

n
ce

ra
te

effMH,1 effMH,2 effMH,3 effMH,4 effMH,5

(a) Conditional sampling in standard Normal space (standard deviation s)
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Figure 3.9: Optimal acceptance rates as a function of Pr (G2(u) ≤ 0) for three different
Metropolis-Hastings algorithms. The underlying target distribution is a 10-
dimensional truncated standard Normal distribution that has type pg2(θ). (Ex-
ample 3.7)
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Figure 3.10: Maximum efficiencies for MCMC proposal spreads in [0, 1] and target densities
of type pg2(θ) with M = 10 and κ = 10. The bold lines correspond to the CS
Metropolis-Hastings algorithm. The thin lines in lighter shades correspond to
cwMH with a Normal and uniform proposal distribution. (Example 3.7)

Example 3.8. optimal MCMC spread (M -dimensional truncated Normal distribution):

The previous example (Example 3.7) is slightly modified: Instead of investigating different

Metropolis-Hastings algorithms for a fixed dimension (M = 10), only the CS algorithm is

investigated for different dimensions M . The employed type of the target density is once more

pg2(θ) defined according to Eqs. (3.19) and (3.24) with κ = 10.

The optimal acceptance rates that lead to the largest efficiency of the CS algorithm are il-

lustrated in Fig. 3.11 for different M as functions of Pr (G2(u) ≤ 0). For M = 2, the optimal

acceptance rates of all efficiency measures except effMH,3 are close together – the optimal accep-

tance rate is 0.3. The optimal acceptance rate for efficiency measure effMH,3 increases slightly

for decreasing Pr (G2(u) ≤ 0) and varies between 0.4 and 0.5. For all M with M ≥ 5, the be-

havior of the optimal acceptance rate for different Pr (G2(u) ≤ 0) does not depend on M . The

optimal acceptance rate of efficiency measure effMH,3 is largest among all investigated efficiency

measures – the optimal acceptance rate of effMH,3 increases for decreasing Pr (G2(u) ≤ 0) from

0.4 to 0.5. The optimal acceptance rate of efficiency measures effMH,1 and effMH,5 is smallest

among all investigated efficiency measures; the optimal acceptance rate is slightly smaller than

0.2, independent of Pr (G2(u) ≤ 0). The optimal acceptance rate of efficiency measures effMH,2

and effMH,4 varies between 0.25 and 0.35.

Example 3.9. optimal MCMC spread (M -dimensional truncated Normal distribution):

The same study as in Example 3.8 is performed, however, the shape of the target distribution

is chosen as pg1(θ) according to Eqs. (3.19) and (3.23).

The optimal acceptance rates that lead to the largest efficiency of the CS algorithm are il-
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Figure 3.11: Optimal acceptance rates as a function of Pr (G2(u) ≤ 0) for the M -dimensional
truncated standard Normal distribution of type pg2(θ). The CS algorithm is
employed to generate MCMC samples. (Example 3.8)
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lustrated in Fig. 3.12 for different M as functions of Pr (G1(u) ≤ 0). Except for M = 1, the

optimal acceptance rates can be considered independent of M . However, contrary to Exam-

ple 3.8, the optimal acceptance rates of the different efficiency measures are not constant for

different Pr (G1(u) ≤ 0). The optimal acceptance rates decrease for decreasing Pr (G1(u) ≤ 0).

For Pr (G1(u) ≤ 0) < 10−3, the optimal acceptance rates remain approximately constant. The

optimal acceptance rates of efficiency measures effMH,1 and effMH,5 behave similar: The opti-

mal acceptance rate of both efficiency measures converges to a value between 0.25 and 0.3. The

optimal acceptance rates of effMH,1 and effMH,5 are the smallest acceptance rates among all

investigated efficienciey measures. Contrary to that, the optimal acceptance rate of effMH,3 is

the largest among all investigated efficiency measures. The optimal acceptance rate of effMH,3 is

slightly smaller than 0.6. The optimal acceptance rate of measures effMH,2 and effMH,4 converges

to a value slightly larger than 0.4.

Example 3.10. optimal MCMC spread (M -dimensional truncated Normal distribution):

The same study as in Example 3.8 and in Example 3.9 is performed, but with yet another

shape of the domain of the truncated standard Normal distribution: The shape of the target

distribution is chosen as pg3(θ), defined according to Eqs. (3.19) and (3.26).

The optimal acceptance rates that lead to the largest efficiency of the CS algorithm are il-

lustrated in Fig. 3.13 for different M as functions of Pr (G3(u) ≤ 0). The behavior of all in-

vestigated efficiency measures can be considered as independent of M . Efficiency measures

effMH,1 and effMH,5 behave similar and exhibit the smallest optimal acceptance rate: For

Pr (G3(u) ≤ 0) < 10−1, the optimal acceptance rate is approximately 0.25 and can be consid-

ered independent of Pr (G3(u) ≤ 0). Efficiency measure effMH,3 has clearly the largest optimal

acceptance rate with a value slightly smaller than 0.6. For efficiency measures effMH,2 and

effMH,4, the optimal acceptance rate decreases with decreasing Pr (G3(u) ≤ 0). The optimal ac-

ceptance rate of measure effMH,2 converges to 0.4, and the optimal acceptance rate of measure

effMH,4 converges to a value around 0.3.

3.5.8.3 Summary

The performance of the CS algorithm and the cwMH algorithm with uniform and Normal

proposal distribution was investigated for different example problems. The performance

was evaluated with respect to different efficiency measures. For the investigated example

problems, spread values in the neighborhood of the optimal spread1 yield chain efficiencies

close to the maximum chain efficiency; i.e., the peak of the optimum was found to be flat.

The average acceptance rate that is optimal2 is different for each efficiency measure. In all

investigated example problems, the acceptance rate that maximizes efficiency measure effMH,1

was smallest and the acceptance rate that maximizes efficiency measure effMH,3 was largest.

1The optimal spread is the spread that optimizes the corresponding efficiency measure.
2The optimal acceptance rate is the acceptance rate for which the chain efficiency is maximized.
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Figure 3.12: Optimal acceptance rates as a function of Pr (G1(u) ≤ 0) for the M -dimensional
truncated standard Normal distribution of type pg1(θ). The CS algorithm is
employed to generate MCMC samples. (Example 3.9)
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Figure 3.13: Optimal acceptance rates as a function of Pr (G3(u) ≤ 0) for the M -dimensional
truncated standard Normal distribution of type pg3(θ). The CS algorithm is
employed to generate MCMC samples. (Example 3.10)
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In Examples 3.4 – 3.7, the CS algorithm performed at least as good as the cwMH algorithm

with uniform and Normal proposal distribution. In Examples 3.8 – 3.10, only the perfor-

mance of the CS algorithm was assessed. For all investigated example problems, the optimal

acceptance rate does not decrease with increasing dimension M .

3.5.9 Adaptive learning of the spread of the proposal

As is shown in Section 3.5.8, the spread of the proposal distribution influences the efficiency

of MCMC sampling. On the one hand, if the spread is too large, the proposed sample v will

relatively often be outside of the support domain, i.e. g(v) > 0, and the proposed sample

must be rejected often. On the other hand, if the spread is too small, the proposed sample

v is in the vicinity of the current state of the Markov chain and is, thus, very likely inside

the support domain, i.e. g(v) ≤ 0; which means the proposed sample is accepted often. In

both cases the Markov chain produces highly dependent samples, and the efficiency of the

chain is decreased. The efficiency of the MCMC sampling can be optimized by choosing

the spread sq of the proposal distribution such that the dependency between the generated

samples is minimized. However, it is difficult to find proposal spreads sq that lead to a

minimal dependency of the generated samples from just a few Markov chains. Finding optimal

proposal spreads is challenging, because:

1. There is no unique measure to quantify the efficiency of MCMC sampling (see Sec-

tion 3.4.2). For different target quantities, different efficiency measures can be decisive.

For example: (i) The average behavior of samples θ might be of interest. (ii) The

behavior with respect to a specific component θi of samples vector θ might be relevant.

(iii) The performance in terms of function h(θ) is of interest.

2. Even if the relevant efficiency measure can be formulated, it is difficult to find the

spread that maximizes this efficiency measure, based on a few MCMC samples: (i) Most

efficiency measures cannot reliably be estimated from just a few MCMC steps. (ii) The

chain efficiency for the current spread is estimated based on the generated samples,

thus, the spread that optimizes the efficiency can only be approximated conditional on

the generated samples.

As a consequence, suboptimal adaption of the proposal spread through a proxy is usually

employed instead [Papaioannou et al., 2015]. Two such proxies are investigated: The expected

acceptance rate (Section 3.5.9.1) and the expected squared jumping distance (Section 3.5.9.2).

Some care is needed when designing algorithms to adaptively learn the spread of the proposal

distribution. This algorithms use information from past chains to adapt the spread of future

chains. Strictly speaking, this violates the Markovian property (not within a single chain,

but looking at all the chains generated). The algorithms presented in the following try to



84 3. Generating samples of a distribution

avoid the problem by adapting the spread primarily in the beginning, and by reducing the

adaption rate the longer the simulation runs.

3.5.9.1 Adaption based on the acceptance rate

The key idea is to adapt the proposal spread such that a pre-specified target acceptance rate

tacr is maintained. The acceptance rate pacr is defined as the average probability that the

proposed state v of a Markov chain is accepted; i.e., Pr [g(v ≤ 0)]. This quantity can be easily

estimated even from a small number of MCMC steps: pacr is approximated as the number of

proposed candidates accepted divided by the total number of candidates proposed.

As the shape of the chain efficiency as a function of the proposal spread is flat around the

optimal efficiency, it is not crucial to exactly know the target acceptance rate tacr that results

in the optimal proposal spread. Instead, it is sufficient to work with target acceptance rates

tacr that lead to proposal spreads close to the optimal value. [Zuev et al., 2012] recommend

to select the spread of the proposal distribution such that pacr is between 30% and 50% in

order to minimize the dependency of the Markov chain samples. [Papaioannou et al., 2015]

propose to select the spread such that pacr ≈ 0.44 is maintained; i.e., tacr = 0.44.

An algorithm to learn a near-optimal spread of the proposal distribution adaptively during

Subset Simulation is proposed in [Papaioannou et al., 2015]:

Algorithm 3.9. Adaptive learning of the spread of the proposal [Papaioannou et al., 2015]:

The algorithm requires as input (i) the target acceptance rate tacr, (ii) the initial spread of the proposal

distribution (e.g., sq = 1), and (iii) the required number of samples Nq between modifying the spread

adaptively (e.g., Nq = 100).

The algorithm modifies the spread sq of the proposal distribution.

At the beginning of the MCMC sampling procedure, set Nadpt = 1.

After each Markov chain1, perform the following algorithm:

1. Denote the number of samples since the spread was last modified by n. Proceed only if

n ≥ Nq.
2. Compute an estimate for the average acceptance rate pacr of the MCMC sampling as

the number of proposed candidates accepted divided by the total number of candidates

proposed so far.

3. Only if cwMH is used2:

1This algorithms assumes that the length of the individual Markov chains is short; e.g., the length is 10.
This is a relevant setting for MCMC in Subset Simulation (Section 5.3). Note: It is important not to modify
the spread within a Markov chain. Modifying the spread within a Markov chain based on samples from the
chain would violate the Markov property of the chain.

2This step is only relevant if M is small.
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(a) Compute an estimate pacr,1 for the probability that a single component of the sam-

ple vector is accepted in the first stage of the two-stage approach presented in

Section 3.5.2.

(b) If pacr,1 < pacr and pacr,1 < tacr, then set pacr = pacr,1.

4. Compute coefficient

cq =
pacr − tacr√

Nadpt

(3.44)

5. Adapt the spread as: sq = exp(cq) · sq.

6. Increase Nadpt by one.

Some notes regarding Algorithm (3.9):

• In [Papaioannou et al., 2015], the above algorithm was specifically proposed in combi-

nation with the CS algorithm (Section 3.5.6). However, the algorithm can directly be

used to adopt the spread of arbitrary proposal distributions.

• Algorithm (3.9) does not destroy the Markovian property as the spread of the proposal

distribution is adopted only between different Markov chains [Zuev et al., 2012]; i.e.,

within a single Markov chain, the spread is fixed.

• The performance of Algorithm (3.9) is independent of the dimension M of the target

distribution.

3.5.9.2 Adaption based on the ESJD

The expected squared jumping distance (ESJD) (see section Section 3.4.2) can be easily es-

timated from previous MCMC steps: It is the sum of the squared jumping distances1 of all

previous MCMC steps divided by the total number of MCMC steps. Maximizing the ESJD

minimizes the first-order autocorrelation of the chain [Thiéry, 2010].

3.5.9.2.1 Importance sampling strategy

[Pasarica and Gelman, 2010] propose to select the spread based on importance weights such

that the ESJD is maximized. By successively increasing the number of MCMC steps while

simultaneously adapting the spread of the proposal, the importance sampling estimate of the

spread that maximizes the ESJD improves gradually. As MCMC steps with different spreads2

1The jumping distance is defined as the Euclidean distance between the current state of the Markov chain
and the previous state of the Markov chain. The jumping distance is zero, if the proposed state of the Markov
chain is rejected.

2Note that for a single Markov chain, the spread is kept constant.
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are employed in the importance sampling estimate, [Pasarica and Gelman, 2010] propose to

apply multiple importance sampling [Hesterberg, 1995]. In multiple importance sampling, a

mixture distribution is employed as importance sampling distribution.

This strategy to optimize the proposal spread can be applied relatively straight-forward in

combination with the CS algorithm (Section 3.5.6). In the CS algorithm, the multivariate

proposal density is given explicitly. Thus, the importance weights can be evaluated easily.

For the cwMH algorithm (Section 3.5.4), the procedure is more involved, as the multivariate

proposal density is not stated explicitly.

The adaptive optimization of the proposal spread was implemented in combination with the

CS algorithm. The following observations were made:

• The optimization of the ESJD is performed using importance sampling. The impor-

tance sampling distribution is based on the previously employed spreads. Especially for

a small number of MCMC steps, the estimated spread for which the ESJD is approxi-

mately maximized can fluctuate considerably.

• The quality of the importance sampling approximation decreases the farther away the

spread of interest is from the previously employed spread(s). Especially for spread

values close to zero or one, the quality of the approximation can be poor. One can

try to stabilize the approximation by incorporating the information that the ESJD is

bound to be zero if the spread is one, and close to zero for a spread of zero and small

failure probabilities.

• Even though the ESJD is to be maximized, it can be helpful to monitor the associated

acceptance rate. Especially for few previous MCMC steps, the initially estimated max-

imum can be in regions where the associated acceptance rate is rather small. To avoid

that the sampling gets stuck because of too large spreads, it can be beneficial to specify

a bound for the smallest allowable acceptance rate.

• Such an importance sampling based strategy cannot work for large M . This can be

easily demonstrated by specifically looking at the CS algorithm: For large M , the

proposed samples lie effectively on the surface of a hypersphere with radius sq ·
√
M

centered around
√

1− s2
q · w, where sq is the employed proposal spread and w is the

current state of the chain. For a proposal spread s different from sq (for s = sq, the

importance ratio is one), the importance ratios converge asymptotically to zero as

M →∞.

3.5.9.2.2 Curve fitting

The previously presented importance sampling strategy has problems if M is large. As an

alternative, a curve fitting can be performed to approximate the ESJD as a function of
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the proposal spread. The data used to learn the best fit is increased successively during

the simulation: The data consists of estimated acceptance rates from the already simulated

Markov chains with the previously employed spreads. For the curve fitting, appropriate

function types can be selected based on the plots shown in Examples 3.4 – 3.7.

In the opinion of the author, such an adaptive variant has potential; however, it has not yet

been implemented and tested at the time of writing this report.

3.5.9.3 Adaptive directional conditional sampling

The directional conditional sampling (DCS) Metropolis-Hastings algorithm (Algorithm (3.8))

requires two parameters to control the spread of the proposal distribution: ρr and ρω. In

principal, an importance sampling based strategy similar to Section 3.5.9.2 can be applied

also in this case. However, in this case a two-dimensional instead of a one-dimensional

optimization must be solved. This means that the problems with the importance sampling

approach listed in Section 3.5.9.2 are amplified, and the practical applicability is limited.





89

Chapter 4

Forward Analysis

In forward analysis we perform a stochastic analysis conditional on our current state of knowl-

edge. This is contrary to Bayesian Analysis (Chapter 6), where the goal is to incorporate new

information into the stochastic analysis. The probabilistic model employed in forward analy-

sis becomes the prior probability model for Bayesian analysis if new observations/information

about the system of interest become available.

4.1 Stochastic Model Class

4.1.1 Introduction

Let θ ∈ Γ, Γ ⊆ RM be a M -dimensional stochastic vector of model parameters that are un-

certain in the analysis. Furthermore, we introduceM as a class that contains all assumptions

made either explicitly or implicitly (also the ones that we are not aware of). In the follow-

ing we will refer to M as the underlying stochastic model class of the performed stochastic

analysis.

4.1.2 Definition of a stochastic model class

The concept of a stochastic model class was introduced by [Beck, 2010] to emphasize that no

deterministic model can make perfect predictions of a real system. In a forward analysis, a

stochastic model class M is composed of the following fundamental probability models:

(1) A prior probability model that assigns a relative plausibility to each state of the parameter

vector θ, i.e. p(θ|M).

(2) A stochastic forward model p(r|f ,θ,M) that expresses our belief in the plausibility that
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the real system generates output r, conditioned on a given vector of model parameters θ and

on a given model input f . The system output r can for example be the outflow of water from

the hydrological catchment, the inter-story accelerations of the building excited by ground

motion, or the occurring settlements at the geotechnical site. Examples for the model input

f are: the precipitation and evapotranspiration in the catchment area, the seismic ground

motion, or the loading conditions at the geotechnical site. Model parameters can be curve

number and soil moisture for the hydrological model, stiffness, mass and damping matrices

for the structural model, Young’s modulus, Poisson’s ratio and cohesion for the geotechnical

model.

(3) Additionally, if the model input f is uncertain, a stochastic input model p(f |s,θf,M) is

required to quantify our belief in the input uncertainty, where θf is the parameter vector of

the input model and s comprises the information available about the model input (θf is a

vector that contains selected components of θ).

Note that the probability models that define the stochastic model classM represent the state

of plausible knowledge about the system conditional on the available (incomplete) informa-

tion, and, thus, they are not inherent properties of the system [Beck, 2014]. All predictions

are conditional on the selected stochastic model class M. Consequently, the quality of the

predictions with respect to the real system is also conditional onM, and, thus, the predictions

can only be as good as the validity of the assumptions in M.

4.1.3 Stochastic embedding

The system of interest can, for example, be a structure (e.g., a building, a bridge or a tunnel),

a machine (e.g., a car, a plane or a ship) or a part of a machine, or an environmental system

(e.g., a hydrological catchment or an ecosystem). Commonly, we cannot directly express

the response of the targeted system. In such cases, the system of interest is represented by

a model. Typically, a parametrized deterministic model is available that approximates the

behavior of the real system. As deterministic model, often a numerical model (e.g., a finite

element model) is employed in the forward analysis.

A parametrized deterministic model can be used as a basis to derive a stochastic model

class; a procedure that is referred to as stochastic embedding [Beck, 2010]: The stochastic

forward model p(r|f ,θ,M) is expressed as: r = q(f ,θq) + v, where r is the (unknown)

real system output, q(f ,θq) denotes the output of the deterministic model with θq as the

parameter vector of the deterministic model (θq contains selected components of θ) and f

as the model input, and v is the output prediction-error that is uncertain. Thus, the PDF

of the stochastic forward model can be expressed as p(r|q(f ,θq),θv,M), where θv is the

parameter vector of the prediction-error model. Alternatively, instead of the additive error

structure, a multiplicative error structure could be selected, i.e., r = q(f ,θq) · v. The output
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Figure 4.1: Assumed dependency structure in a stochastic model class (as discussed in Section 4.1)
represented as a Bayesian network. The dependencies are represented as arrows. The
gray arrows denote dependencies that exist in the real world but that are usually not
considered explicitly in modeling. The nodes with a continuous border denote random
variables. The nodes with a dashed border can be computed deterministically if all
input quantities are conditionally fixed. The parameter vector θ is composed of θ =[
θq

ᵀ,θf
ᵀ,θv

ᵀ]ᵀ, where θq is the vector of uncertain parameters of the deterministic
model, θf is the parameter vector of the input model, and θv is the parameter vector of
the prediction-error model.

prediction-error v quantifies the inability of the deterministic model to predict the response

of the true system perfectly; it rates how plausible a particular response r of the true system

is given model output q(f ,θq).

An exemplary dependency structure of a stochastic forward model is represented as a Bayesian

network in Fig. 4.1.

4.1.4 Imperfect models

No deterministic model produces a perfect representation of reality. The mismatch between

the model output and the actual system response is referred to as the output prediction-error

(see Section 4.1.3). The smaller this error, the better the model can predict the response of

the actual underlying real-world system. An exact probabilistic quantification of this error

is, however, virtually impossible: (i) It depends on the history of actual system inputs (which

can usually not be observed exactly) and on the considered model inputs (even system input

regarded as negligible influences the modeling error). (ii) It is coupled to a specific system/-

model and cannot directly be transferred to similar systems/models. (iii) It has to consider all

assumptions and simplifications of the model (even the ones that were not done on purpose).

(iv) It is tightly linked to a specific output quantity of interest. Consequently, different output

quantities of interest have different output prediction-errors. (v) The probabilistic structure

depends on both time and space.
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4.1.5 Unknown unknowns

The stochastic model classM contains all underlying assumptions and is based on our knowl-

edge and expertise. Naturally, uncertainties that we are not aware of or deemed negligible,

are not incorporated in the model and are, thus, not considered. It is important to keep

in mind: The stochastic model class M represents our uncertainty about the state of the

represented system, and, as such, is not immune to human error.

In this context, one typically speaks of Black Swan events that are defined as follows [Taleb,

2007]: (i) It is an event that could not have been expected based on past experiences (rarity).

(ii) The event has an extreme impact. (iii) In retrospective we can come up with reasons

that make it explainable and predictable. It is important to understand that also Black

Swan events are conditional on our current state of knowledge. For somebody else, such a

surprising event of large impact might not be that surprising after all. A discussion of Black

Swan events can be found e.g., in [Taleb, 2007; Aven, 2014].

4.2 Simulating the probabilistic model response

Typically, in forward analysis, independent samples θ of the stochastic vector of model pa-

rameters can be generated. This allows the use of Monte Carlo simulation to generate samples

r of the system output:

Algorithm 4.1. Monte Carlo Simulation to probabilistically simulate the model response:

This algorithm generate N samples {ri}i=1,...,N of the system output.

For i = 1, . . . , N , do:

1. Generate an independent sample θi of the stochastic vector of model parameters.

2. If the model input f is uncertain, generate an independent realization fi of f (conditional

on θi).

3. Evaluate the response of the model qi = q(fi,θqi
) conditional on θi and fi.

4. Generate a sample vi of the output prediction-error conditional on θi, qi and fi.

5. A sample of the system response is: ri = qi + vi

Note that samples of the system response ri represent our belief about the potential (true)

system response.

Based on the generated N samples {ri}i=1,...,N the e.g., mean, variance and quantiles of the

response can be estimated.
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On the one hand, Monte Carlo simulation is a simple and robust method to generate inde-

pendent and unweighted samples in forward analysis. On the other hand, if higher moments

or very small/large quantiles are to be estimate, many samples are needed to get a good

estimate. If the number of required samples becomes large, Monte Carlo simulation be-

comes inefficient: Typically, it is computationally demanding to evaluate the model response

q(fi,θqi). In such cases, more advanced sampling methods might be more efficient; e.g.,

importance sampling, which generates weighted samples based on a proposal distribution.

4.3 Credible intervals

4.3.1 Definition

Let X be the stochastic quantity of interest. X can be for example a stochastic model

parameter of interest, the response of the forward model, or a function that depends on the

response of the forward model. Furthermore, let p = Pr (a ≤ X ≤ b|M), with a ≤ b. If X is

a scalar quantity, [a, b] is referred to as the p credible interval for X. If X is a vector quantity,

[a, b] is referred to as the p credible region for X.

The p credible interval (or region) [a, b] for X states that conditional onM, the true value of

X is with probability p within [a, b]. Note that there is not one unique p credible interval [a, b]

for X: For a fixed p, the relation p = Pr (a ≤ X ≤ b|M) can be met with different intervals

[a, b]. Commonly, one of the following p credible intervals is used:

equal-tailed interval The equal-tailed p credible interval [a, b] is defined as a = P−1
X (1−p

2 )

and b = P−1
X (1− 1−p

2 ), where P−1
X (·) is the inverse CDF for X. This credible interval is used

most-often, as it is straight-forward to compute, given P−1
X (·).

lower tail interval The p credible interval (−∞, b] for the lower tail is defined as b =

P−1
X (p). This credible interval is employed to state that conditional on M, the true value of

X is with probability p not larger than b.

upper tail interval The p credible interval [a,∞) for the upper tail is defined as a =

P−1
X (1−p). This credible interval is employed to state that conditional onM, the true value

of X is with probability p not smaller than a.

highest density interval Amongst all viable p credible intervals, the interval that contains

the highest density values. For univariate unimodal densities, it is the interval for which the

length b− a is minimized.
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Table 4.1: Ambiguity of p credible intervals (see Example 4.1).

p credible interval
p = 95% p = 90% p = 50%

equal-tailed interval [0.14, 3.62] [0.18, 2.78] [0.40, 1.24]
lower-tail interval (0, 2.78] (0, 2.06] (0, 0.71]
upper-tail interval [0.18,∞) [0.24,∞) [0.71,∞)
highest density interval [0.04, 2.79] [0.06, 2.07] [0.16, 0.77]

Example 4.1. Ambiguity of p credible intervals.:

Let X be a log-Normal stochastic variable that has mean one and standard deviation one.

Different 95%, 90% and 50% credible intervals are given in Table 4.1.

4.3.2 Comparison to confidence intervals

In frequentist statistics, typically confidence intervals are employed; whereas in a Bayesian

framework, credible intervals are used. For some simple problems, credible and confidence

intervals can coincide. However, the meaning of credible and confidence intervals is funda-

mentally different:

A p credible interval [a, b] for stochastic quantity X states that the unknown true value of

X will be with probability p within the specified interval. This statement is meaningful

for a single simulation (e.g., N generated samples in a forward analysis). It quantifies the

uncertainty about X based on the available information.

A p confidence interval [a, b] for stochastic quantity X states that if a simulation (e.g., N

generated samples in a forward analysis) is repeated many times and each time the confidence

interval [a, b] is evaluated anew, the true value will lie in p · 100% of the obtained intervals.

This implicitly assumes that the simulation can be repeated arbitrarily often: The confidence

interval is varying in each simulation, the frequency of the true value being inside of [a, b] is

p.

For a discussion of credible and confidence intervals see [Jaynes and Kempthorne, 1976].

4.4 Reliability analysis

4.4.1 Introduction

Reliability analysis aims at evaluating the probability of failure of a system of interest. In

this context, failure is defined as the system being in an undesired state, e.g.: admissible
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Figure 4.2: Failure domain and safe domain for demand S (Normal, µ = 8, σ = 2) and capacity R
(Normal, µ = 12, σ = 1). Performance of the system is expressed in terms of limit-state
function g(R,S) = R− S.

stresses are exceeded, the stability of a structure is no longer maintained, or water levels in

a river that exceed a certain threshold will result in a flood event. Let such an undesired

system response be denoted as proposition F , where the probability of failure Pf is defined as

the probability that F occurs, i.e., Pf = Pr(F|M). Note that the outcome of the reliability

analysis is conditional on the stochastic model class M.

For a comprehensive treatise on structural reliability, the reader is referred to [Ditlevsen and

Madsen, 2007; Melchers, 1999].

4.4.2 Limit-state function – formulation of the reliability problem

Let g(θ) be a function such that g(θ) ≤ 0 if and only if the system is in an undesired state,

and g(θ) > 0 otherwise, where θ is the stochastic vector of uncertain model parameters. The

function g(θ) is known as limit-state function or performance function in the literature. The

probability of failure Pf can then be expressed as:

Pf = Pr [g(θ) ≤ 0] =

∫
Γf

p(θ|M) dθ (4.1)

where Γf is the failure domain defined as Γf = {θ ∈ Γ|g(θ) ≤ 0}.

The exact state of vector θ is uncertain, due to our imperfect knowledge/understanding of the

real world. The task of the person conducting the reliability analysis is to assign a plausibility
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to each state of θ by means of the joint probability density function p(θ|M).

The formulation of the limit-state function in case demand and capacity of the investigated

system can be separated is discussed in Section 4.4.5.

For the definition of the undesired system response, one typically distinguishes between the

ultimate, damage and the serviceability limit-state [Melchers, 1999], where ultimate refers to

at least partial collapse of the structure, and serviceability means disruption of normal use.

4.4.3 Reliability index

The probability of failure Pf is a measure for the degree of safety (i.e., the reliability) of the

investigated structure. The smaller the probability of failure, the larger is the reliability. The

probability of failure Pf usually ranges from 10−1 to 10−7 [Kiureghian, 1989]1. An often more

convenient measure to express the reliability of the investigated structure is provided by the

reliability index. The generalized reliability index β is defined as [Ditlevsen, 1979; Ditlevsen

and Madsen, 2007, Chapter 6]:

β = −Φ−1 (Pf ) (4.2)

where Φ−1 is the inverse of the CDF of the standard Normal distribution. The reliability

index β increases with decreasing probability of failure; i.e., the larger β the larger is the

reliability of the investigated structure. For Pf = 10−1 the reliability index is approximately

1, and for Pf = 10−7 the reliability index is approximately 5. The relation between the

reliability index β and the probability of failure Pf is illustrated in Fig. 4.3.

4.4.4 Design point

The design point θ∗ is the point in the failure domain Γf = {θ ∈ Γ|g(θ) ≤ 0} that has the

smallest distance to the origin in standard Normal space2; i.e.,

θ∗ = arg min
θ∈Γf

(‖T (θ) ‖) (4.3)

1In [Kiureghian, 1989], the uncertainty in estimating the reliability index is discussed. Different formula-
tions for the reliability index are presented. However, the interpretation of uncertainty taken in [Kiureghian,
1989] is different from the one adopted in this thesis. [Kiureghian, 1989] consider the probability of failure
and the reliability index as actual properties of the investigated system. [Kiureghian, 1989] impose that under
a perfect state of knowledge, this quantities can be estimated directly. For practical problems, the state of
knowledge is, however, invariably imperfect [Kiureghian, 1989]. Thus, the true probability of failure and the
true reliability index can only be estimated under uncertainty.

In the view adopted in this thesis, a perfect state of knowledge would result in a probability of failure of
either zero or one. Under a perfect state of knowledge, there is no intrinsic uncertainty anymore.

2The concept of the underlying standard Normal space is explained in Section 3.2.
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Figure 4.3: Relation between the reliability index β and the probability of failure Pf .

which can equivalently be expressed as

u∗ = arg min
u∈Uf

(‖u‖) (4.4)

with θ∗ = T−1 (u∗), and Uf = {u ∈ RN |g∗(u) ≤ 0}.

4.4.5 Formulation of the limit-state function in terms of demand and ca-

pacity

For some problems the limit-state function can be expressed in terms of demand S and

capacity R of the system of interest. Failure occurs if the demand exceeds the capacity, i.e.:

g(θ) = R(θ)− S(θ) (4.5)

The difference R−S is also referred to as safety margin. If the distribution of both R and S

is known, the reliability problem stated in Eq. (4.1) can equivalently be expressed as:

Pf = Pr [g(θ) ≤ 0] =

∫
Γ
PR(θ) · pS(θ) dθ (4.6)

Different ways to express the limit-state function in terms of R and S are shown in [Melchers,

1999, Section 1.4.2].

For some systems, a separation of demand and capacity is usually not feasible (e.g., due to

soil-structure interaction in tunneling). If demand and capacity cannot be separated easily,
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the limit-state function is often defined as the difference between some threshold value and

the corresponding model output; e.g., the displacement at the tip of a cantilever beam versus

the maximum allowed displacement for that system.

Example 4.2. Demand and capacity follow a Normal distribution:

If both the demand S and capacity R in Eq. (4.5) follow a Normal distribution, g(θ) is a random

variable that follows a Normal distribution as well. Let µS and σS be the mean and standard

deviation of S, µR and σR be the mean and standard deviation of R. The mean and standard

deviation of g(θ), denoted µg and σg, is µg = µR − µS and σg =
√
σ2
R + σ2

S if R and S are

independent. In this special case, the probability of failure can be expressed explicitly:

Pf = Pr (g(θ) ≤ 0) = Φ

(
µS − µR√
σ2
R + σ2

S

)
(4.7)

where Φ(·) denotes the CDF of the standard Normal distribution (Section B.2.1). The associated

reliability index is:

β =
µR − µS√
σ2
R + σ2

S

(4.8)

Example 4.3. Demand and capacity follow a log-normal distribution:

If both the demand S and capacity R in Eq. (4.5) follow a log-normal distribution and are

independent, g(θ) can be expressed as g(θ) = R(θ)/S(θ) − 1. In this case we can write

ln(g+ 1) = ln(R)− ln(S), where ln(g+ 1) clearly follows a Normal distribution. Let λS and ζS

be the parameters of S, and λR and ζR be the parameters of R (compare Section B.2.4). Note

that R/S has a log-normal distribution with parameters λ = λR − λS and ζ =
√
ζ2
R + ζ2

S . In

this special case, the probability of failure can be expressed explicitly:

Pf = Φ

(
λS − λR√
ζ2
R + ζ2

S

)
(4.9)

where Φ(·) denotes the CDF of the standard Normal distribution (Section B.2.1). The associated

reliability index is:

β =
λR − λS√
ζ2
R + ζ2

S

(4.10)

4.4.6 Reference time period

The probability of failure Pf and the associated reliability index β are always in reference

to a period of time. Often an annual reference frame is picked. However, also a 50- or 100-

year reference frame could be chosen. When formulating the uncertain model parameters,

it is important to be clear about the reference period. The chosen reference period is most

important for the parameters describing the uncertainties about the applied loading. It makes
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a difference whether the uncertainty is expressed in terms of the largest annual load or in

terms of the maximum load within a 50-year reference period.

If independence between the individual years is assumed, one can compute the reliability

index β1,independence in an annual reference frame from the reliability index β50 in a 50-year

reference period:

β1,independence = Φ−1
[
(Φ(β50))

1
50

]
(4.11)

where Φ(·) denotes the CDF of the standard Normal distribution, and Φ−1 its inverse function.

Typically it can be assumed that the maximum annual loads are statistically independent.

However, for the resistance model, it is typically implicit assumed that the resistance does

not change during service life.

Eq. (4.11) is valid if the coefficient of variation of the uncertainties in the resistance model

is small compared to the coefficient of variation of the uncertainties about the loading; i.e.,

β1 = β1,independence. If the uncertainties in the resistance model are not small, then β1 <

β1,independence, where in general β1 is bounded by β50 ≤ β1 ≤ β1,independence. This is why

the required target reliability index1 β1,target can be set a bit larger than β1,independence,target

obtained from the required target reliability index β50,target. Required target reliability indices

for an annual and a 50-year reference period are specified in [Eurocode 0, 2015, Annex B] for

different reliability classes2.

4.4.7 Imperfect models

Due to the output prediction-error (see Section 4.1), if the state of the model is considered

acceptable, it does not necessarily mean that the system is actually in a desirable state – and

vice versa. A viable strategy to probabilistically resolve this issue is to take the (uncertain)

output prediction-error v explicitly into account. However, it is far from trivial to express

this error probabilistically: Our information about the accuracy of the employed models is

commonly very limited.

For example, for civil engineering structures, [Eurocode 0, 2015] requires that modeling uncer-

1Target reliability index refers to the reliability index that must at least be maintained for a structure to
be considered safe.

2This is about [Eurocode 0, 2015, Table B2]:

reliability class RC1 β50,target = 3.3 ⇒ β1,independence,target = 4.3 > β1,target = 4.2. Thus, there is some
kind of dependency assumed; possibly due to the uncertainties in the resistance model. However, if the
underlying β50,target is actually between 3.25 and 3.27, this could also be attributed to round-off errors.

reliability class RC2 β50,target = 3.8 ⇒ β1,independence,target = β1,target = 4.7. This means that statistical
independence is assumed between different years. Possibly because the uncertainties in the loading are
assumed to dominate compared to the uncertainties about the resistance for models in this class.

reliability class RC3 β50,target = 4.3 ⇒ β1,independence,target = 5.1 < β1,target = 5.2. According to theoreti-
cal considerations, β1,target should not be larger than 5.1. It is not clear why a value of 5.2 was specified.
It seems unlikely that this can be attributed to round-off errors.
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tainties are considered in the analysis. If the modeling uncertainty is smaller than the degree

of conservativeness of the model (a conservative model has a larger probability of failure than

the underlying system; i.e., a conservative model represent the state of the actual system on

the safe side), modeling uncertainties could be neglected. However, careful interpretation is

required if the reliability of such a model is compared with the reliability of other models.

A discussion of modeling uncertainties in the context of structural reliability can also be

found in [Ditlevsen and Madsen, 2007, Chapter 3]. In general, probabilistic modeling is

difficult in reliability analysis, because the behavior in the tails of the distributions employed

to represent our uncertainty about θ has a considerable influence on the reliability of the

investigated problem.

4.4.8 Interpretation of the probability of failure and the reliability index

The probability of failure Pf is conditional on the assumed stochastic model class M. The

quantity Pf should not be viewed as the actual probability of failure of the system of interest.

This is also pointed out in [Eurocode 0, 2015, Annex C]. During it’s service live, a structure

will either fail or it wont fail. The quantity Pf expresses our belief about the failure event

based on the knowledge we have. Obviously, unimaginable events, also known as Black

Swan events (see Section 4.1.5), are not considered in the analysis. Also gross human errors

can usually not reasonably be quantified [Melchers, 1999]. This is why it has been noted

that referring to Pf as the nominal/notional probability of failure instead would be more

appropriate [Melchers, 1999; Kulhawy et al., 1983].

As Pf might easily get misinterpreted as an actual probability of failure, instead of as a

notional quantity, the reliability index β is often a more appropriate measure to communicate

the anticipated level of safety of a structure.
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Chapter 5

Numerical Methods for Reliability

Analysis

Reliability Analysis belongs to the category of forward analysis (Chapter 4) and is discussed

in Section 4.4. This entire chapter is devoted to numerical methods for reliability analysis

(known as reliability methods), because reliability methods are used as a basis to derive

efficient algorithms for Bayesian inference in Chapter 7.

5.1 Introduction

5.1.1 Reliability methods – an overview

The integral in Eq. (4.1) can often not be evaluated directly, because the failure domain Γf =

{θ ∈ Γ|g(θ) ≤ 0} is not known explicitly. Instead, Eq. (4.1) is usually solved numerically.

The probabilities that we are dealing with in reliability analysis are typically rather small;

i.e., Pf � 10−2. This renders the numerical treatment of the integral in Eq. (4.1) difficult,

because the failure domain Γf constitutes only a small part of the total domain Γ.

The class of numerical methods specifically designed to solve Eq. (4.1) are referred to as

reliability methods. The various reliability methods differ in their treatment of the reliability

integral Eq. (4.1). The most straight-forward (and simplest) method to solve Eq. (4.1) is

Monte Carlo simulation (MCS), which is discussed in Section 5.2. However, for small failure

probabilities, MCS requires a considerable number of limit-state function evaluations. Most

reliability methods aim at minimizing the number of required limit-state function calls. This is

because in structural reliability, the limit-state function is commonly expressed as a function

that depends on the outcome of a finite element analysis. Consequently, for every limit-

state function evaluation, a finite element analysis must be performed – which renders the
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reliability analysis of large finite element systems computationally expensive.

Besides MCS, other well-known reliability methods are the First Order Reliability Method

(FORM) [Hasofer and Lind, 1974; Rackwitz and Flessler, 1978], the Second Order Reliability

Method (SORM) [Breitung, 1984], importance sampling methods including line sampling [Ho-

henbichler and Rackwitz, 1988; Koutsourelakis et al., 2004; Rackwitz, 2001] and directional

importance sampling [Bjerager, 1988; Ditlevsen et al., 1990], and Subset Simulation (SuS)

[Au and Beck, 2001].

5.1.2 Transformation to standard Normal space

For many reliability methods, it is convenient to express Eq. (4.1) in terms of a stochastic

vector u ∈ RM whose coefficients are independent standard Normal variables, instead of a

vector θ of possibly dependent and arbitrary distributed stochastic variables [Ditlevsen and

Madsen, 2007; Melchers, 1999]. For FORM and SORM, such a transformation is compulsory.

The transformation requires a mapping T−1 : u → θ (for more details see Section 3.2). Let

the limit-state function in terms of the independent standard Normal random variables be

defined as G(u) = g
(
T−1(u)

)
. The reliability problem in standard Normal space can then

be expressed as

Pf =

∫
G(u)≤0

ϕM (u) du (5.1)

with ϕM (u) = ϕ(u1) ·ϕ(u2) · . . . ·ϕ(uM ), where ϕ(·) denotes the probability density function

(PDF) of the standard Normal distribution.

For most problems of practical relevance, the transformation T−1 can be readily established.

The two most-commonly employed transformation methods are the Rosenblatt transformation

(Section 3.2.1) and the Nataf transformation (Section 3.2.2). Note: The limit-state function

G(u) in underlying standard Normal space is not explicitly required (see Algorithm (5.1)).

Algorithm 5.1. Generation of samples θ based on an underlying independent standard Normal sam-

ple u:

1. Generate sample u from the independent multivariate standard Normal distribution; u

and θ have the same dimension M .

2. Transform sample u to θ. Often either the Rosenblatt transformation (Section 3.2.1) or

the Nataf transformation (Section 3.2.2) are employed.

3. Evaluate limit-state function g(θ).

On the one hand, when implementing a reliability method in a software code, the transforma-
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tion to independent standard Normal space adds an additional layer of complexity. One the

other hand, transforming the problem to the independent standard Normal space normalizes

the joint PDF of the the stochastic variables of the problem. This allows us to set-up impor-

tance sampling densities or Markov chain proposal distributions that achieve an acceptable

performance for a wide range of problems – independent of the variance of the stochastic

variables in θ.

The inverse mapping of T−1 is denoted as T : θ → u. However, most reliability methods

require only the mapping T−1. An exception is FORM, which in some cases can require both

mappings, T−1 as well as T.

5.2 Monte Carlo simulation

5.2.1 Interpretation of the reliability problem in Monte Carlo simulation

For Monte Carlo simulation (MCS), a so-called indicator function is introduced in order to

rewrite the integral in Eq. (4.1) or Eq. (5.1). The indicator function is by definition one if

failure occurs and zero otherwise. The integral over the failure region can then be expressed

as an integral over RM . For the problem formulated in independent standard Normal space,

Eq. (5.1) becomes:

Pf =

∫
RM

I(u) · ϕM (u) du (5.2)

where I(u) denotes the indicator function defined as

I(u) =

1 if G(u) ≤ 0

0 otherwise
(5.3)

MCS approximates the integral in Eq. (5.2) as a sum over K samples u(k), k = 1, . . . ,K,

where u(k) are samples of probability distribution ϕM (u):

Pf = EY [I(u)] ≈ pf,MCS =
1

K

K∑
i=1

I
(
u(k)

)
(5.4)

Essentially, the estimator pf,MCS is obtained from the number of occurred failures H =∑K
i=1 I(u(k)) divided by the total number of samples K used. The estimator pf,MCS gives an

unbiased estimate for the probability of failure.

Proof 5.1. The estimate of the probability of failure obtained with pf,MCS is unbiased.

E[pf,MCS] = E

[
1

K

K∑
i=1

I
(
u(k)

)]
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Figure 5.1: Number of samples K required to reach different coefficients of variation δMCS.

=
1

K

(
K∑
i=1

E
[
I
(
u(k)

)])

=
1

K

(
K∑
i=1

Pf

)
=

1

K
·K · Pf

= Pf

5.2.2 Variability of the estimated probability of failure

The estimator pf,MCS itself is a stochastic variable whose coefficient of variation depends

on the (unknown) underlying Pf and the total number of samples K. Furthermore, the

I(u(k)), k = 1, . . . ,K can be perceived as a Bernoulli process that has a mean equal to

Pf . Consequently, for a certain Pf , the number of observed failures H in K trials follows a

binomial distribution. Thus, the variance of the estimator pf,MCS is:

Var [pf,MCS] =
Pf (1− Pf )

K
(5.5)

The coefficient of variation of the estimator pf,MCS for a fixed number of samples K can

consequently be written as:

δMCS =

√
1− Pf
PfK

(5.6)
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The required number K of samples to maintain a specific target coefficient of variation δMCS

for a given Pf is illustrated in Fig. 5.1. The relation in Fig. 5.1 can also be expressed explicitly:

We need K to be at least as large as (1−Pf )/(Pf ·δ2
MCS) to maintain a coefficient of variation

of δMCS. Even though δMCS depends on the (unknown) underlying Pf , Eq. (5.6) highlights

the major strength and weakness of Monte Carlo simulation: On the one hand, the weakness

is that for small Pf the total number of samples K must be large to achieve a reasonable

coefficient of variation of the estimate. On the other hand, the strength of MCS is that δMCS

does not depend on the number of stochastic variables N , i.e., the dimension of θ and u.

Moreover, MCS can be considered a very robust method: It is the only reliability method

whose performance solely depends on the targeted probability of failure – and not on the

shape of the limit-state function or on the shape of the failure domain.

Note that both Eqs. (5.5) and (5.6) assume that the actual probability of failure Pf of the

problem at hand is known. Both estimators are not valid if the estimated probability of

failure pf,MCS is used instead of Pf . To assess the uncertainty in the estimated probability of

failure pf,MCS, the use of a Bayesian strategy (as is explained in the next section) is strongly

recommended.

5.2.3 Quantification of the uncertainty about the probability of failure

5.2.3.1 Bayesian interpretation

The number of failures H that occur in K trials follows a binomial distribution with param-

eter pf (see Section 5.2.2). Thus, having observed a certain number H of failures in K trials,

the likelihood of pf can be expressed as:

L(pf |H,K) =

(
K

H

)
(pf )H(1− pf )K−H (5.7)

For the problem at hand, the beta distribution acts as conjugate prior for the problem. Con-

sequently, for a beta distribution as prior, the posterior distribution is also a beta distribution.

Using the parameterization Hp and Kp −Hp, the prior can be written as:

p(pf ) =
p
Hp−1
f · (1− pf )Kp−Hp−1

B(Hp,Kp −Hp)
(5.8)

where B(·, ·) denotes the beta function defined as B(α, β) =
∫ 1

0 t
α−1 (1−t)β−1 dt with α, β > 0.

Consequently, having observed a certain number H of failures in K trails, the uncertainty

about the true value of pf can be quantified by means of Bayes’ theorem as ([Zuev et al.,
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Figure 5.2: Common prior distributions for pf .

2012; MacKay, 2003; Brown et al., 2001]):

p(pf |H,K) =
pf
H+Hp−1 · (1− pf )K−H+Kp−Hp−1

B(H +Hp,K −H +Kp −Hp)
(5.9)

where p(pf |H,K) denotes the PDF of pf being the true Pf conditioned on H and K.

5.2.3.2 Discussion of prior distributions for pf

The parameters Hp and Kp control the shape of the prior distribution. In the following, we

discuss three potential prior distributions for pf that differ in the choice of Hp and Kp:

Maximum entropy prior If nothing is known about pf in advance except that pf ∈ [0, 1],

then Hp and Kp could be selected as Hp = 1, Kp = 2 [Zuev et al., 2012] in accordance

with the Principle of Maximum Information Entropy [Jaynes, 2003, 1957]. For Hp = 1,

Kp = 2, the prior distribution is a uniform distribution on the interval [0, 1].

Jeffreys’ prior Selecting Hp = 0.5 and Kp = 1 gives the so-called Jeffreys’ prior [Jeffreys,

1998, 1946] for the problem at hand [Brown et al., 2001]. The Jeffreys prior is an

uninformative prior that is invariant under reparameterization.

Haldane’s prior Haldane [Haldane, 1932] proposed to select a beta-distribution with Hp =

Kp = 0 as prior. This choice results in an improper prior, where the prior pf is either

zero or one with equal probability.

The shape of the prior distributions listed above is illustrated in Fig. 5.2. Fig. 5.3 plots the

probability that the real probability of failure Pf is actually contained inside the estimated

posterior credible intervals. Two-sided credible intervals as well as credible intervals for the
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Figure 5.3: The plots show the probability that the real probability of failure Pf is actually contained
inside the posterior credible intervals. The study is preformed for different K · Pf ; the
plot is valid for Pf < 1%. The performance of different prior choices is compared
to the confidence interval obtained with a primitive standard Normal approximation.
The upper three plots investigate the two-sided equal-tailed credible intervals – the
probability of pf being below is as likely as being above the interval. The lower three
plots investigate the credible interval [0, a], where pf being smaller or equal than a is
either 95% or 90%.
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upper bound are shown. Haldane’s prior is clearly not giving conservative credible intervals

– especially with respect to the credible interval for the upper bound. A similar performance

is obtained using a primitive standard Normal approximation; i.e., the confidence intervals of

a Normal distribution centered at pf,MCS with variance according to Eq. (5.5). Rather good

credible intervals that tend to be on the conservative side are obtained with the maximum

entropy prior. Note that E[pf |H,K] = (H+Hp)/(K+Kp) is biased for virtually all Hp,Kp 6=
0. However, the Haldane’s prior (Hp = Kp = 0) is usually not a good choice to express our

uncertainty about pf , as is shown in Fig. 5.3.

5.2.3.3 Maximum entropy prior

In the following, we consider only the prior based on the Principle of Maximum Information

Entropy; i.e., Hp = 1, Kp = 2. In this case, Eq. (5.9) reduces to:

p(pf |H,K) =
pf
H · (1− pf )K−H

B(H + 1,K −H + 1)
(5.10)

Thus, the posterior uncertainty about the probability of failure follows a beta distribution

with parameters H + 1 and K −H + 1. The expectation of Eq. (5.10) is:

E [pf |H,K] =
H + 1

K + 2
(5.11)

The variance of the distribution in Eq. (5.10) can be derived as:

Var [pf |H,K] =
(H + 1) · (K −H + 1)

(K + 2)2 · (K + 3)
(5.12)

The coefficient of variation of the distribution in Eq. (5.10) can be derived as:

δpf |H,K =

√
K −H + 1

(K + 3) · (H + 1)
(5.13)

Note that if applied to failure probabilities (i.e., Pf � 1), then E[pf |H,K] > E[pf,MCS] = Pf ,

and Var[pf |H,K] > Var[pf,MCS] on average – which can be considered as conservative. How-

ever, the reverse is true for the coefficient of variation, i.e., C.o.V.[pf |H,K] < C.o.V.[pf,MCS]

on average. For this reason, the interpretation of the coefficient of variation of distribution

Eq. (5.10) should be handled with care.
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Figure 5.4: The basic idea behind Subset Simulation is illustrated using limit-state function g4 and
α4 = 10. The initial domain Z0 covers the entire parameter space of θ1 and θ2. The
intermediate domains Z1 to Z5 are chosen such that Pr(Zi|Zi−1) = 10%, i = 1, . . . , 5;
i.e., h1 = 6.01, h2 = 3.33, h3 = 1.95, h4 = 0.97 and h5 = 0.16. Domain Z6 is equivalent
to the failure domain Γf , i.e. h6 = 0, and Pr(Z6|Z5) = 0.542. Consequently, the
probability of failure can be evaluated as Pf = 0.15 · 0.542 = 5.42 · 10−6.

5.3 Subset Simulation

5.3.1 Overview

Subset Simulation (SuS) was proposed by Au and Beck in [Au and Beck, 2001] and is an adap-

tive Monte Carlo method that is efficient for estimating small probabilities in high dimensional

problems. The method represents the probability of failure as a product of larger conditional

probabilities. This is done by expressing the failure domain Γf = {u ∈ RM |G(u) ≤ 0} as the

intersection of N intermediate nested domains Zi, where Z0 = RM ⊃ Z1 ⊃ · · · ⊃ ZN = Γf .

The domains Zi are defined as the sets {G(u) ≤ hi}, where hi are positive coefficients such

that h0 =∞ > h1 > h2 > · · · > hN = 0 holds. The probability of failure can then be written

as:

Pf = Pr(Γf ) =
N∏
i=1

Pr(Zi|Zi−1) (5.14)

Note that the joint PDF of samples in Zi is:

ϕN (u|Zi) =

ϕN (u)/Pr(Zi) if u ∈ Zi
0 otherwise

(5.15)

where Pr(Zi) =
∏i
j=1 Pr(Zj |Zj−1). The idea behind Subset Simulation is illustrated in

Fig. 5.4.
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The first conditional probability Pr(Z1|Z0) can directly be estimated by means of Monte

Carlo simulation, because ϕM (u|Z0) = ϕM (u). Let K1 be the number of samples used, and

H1 be the number of samples that were observed to be in domain Z1. An unbiased estimator

for the probability Pr(Z1|Z0) is given by the ratio p1 = H1/K1 (see Section 5.2).

For all other conditional probabilities Pr(Zi|Zi−1), i > 1, samples from ϕM (u|Zi) cannot

be generated directly. In Subset Simulation, Markov chain Monte Carlo (MCMC) methods

[Liu, 2001; Neal, 1993; Robert and Casella, 2004] are applied to generate samples in Zi−1. For

each sample that was found to be in Zi−1 when estimating Pr(Zi−1|Zi−2), a Markov chain is

started using that sample as seed. In order to generate Ki samples of Zi−1, the length of the

individual chains needs to be Ki/Hi−1. Note that in this case the Markov chains do not suffer

from a burn-in, since the seeds of the chains already follow the target distribution [Au and

Beck, 2001]. An estimator for the probability Pr(Zi|Zi−1) is given by the ratio pi = Hi/Ki,

where Hi is the number of samples observed to be part of Zi. An estimator for the probability

of failure using Subset Simulation is:

Pf ≈ pf,SuS =
N∏
i=1

pi (5.16)

The intermediate threshold values hi should ideally be selected such that the conditional

probabilities are approximately the same. However, for typical limit-state functions neither

the probability of failure of the problem nor the shape of the limit-state function are known.

Consequently, the hi cannot efficiently be selected in advance. Instead, the hi are typically

selected adaptively during the simulation such that the conditional probabilities match a

predefined probability, denoted pt [Au and Beck, 2001].

An exemplary run of Subset Simulation is illustrated in Fig. 5.5.

5.3.2 MCMC algorithms for Subset Simulation

For SuS working in independent standard Normal space (see Section 5.1.2), the distribu-

tion ϕM (u|Zi) defined in Eq. (5.15) is sampled by means of MCMC simulation (see Sec-

tions 3.4 and 3.5), for i ≥ 1. Algorithm (3.3) provides the general framework for SuS-based

MCMC sampling in standard Normal space. Different MCMC algorithms proposed for Sub-

set Simulation are discussed in [Papaioannou et al., 2015]. In this contribution, we will focus

on the CS (conditional sampling in standard Normal space) algorithm (Algorithm (3.5.6))

proposed by [Papaioannou et al., 2015] (see Section 3.5.6). Some alternative MCMC algo-

rithms for Subset Simulation are presented in Section 3.5. The most commonly used MCMC

algorithm for SuS is the cwMH algorithm proposed in [Au and Beck, 2001] (see Section 3.5.4).

To improve the efficiency of MCMC in SuS, the spread of the proposal distribution can be
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Figure 5.5: Subset Simulation is performed for limit-state function g4 with 103 samples per level.
The parameter α4 of limit-state function g4 is set to 10, which gives a target probability
of failure of 5.42 · 10−6.
Samples at the intermediate levels i (i.e., samples in domain Zi) of Subset Simulation are
shown. The blue samples are located in domain Zi \ Zi+1. The orange points indicate
samples from Zi that are also in domain Zi+1. The samples highlighted green are the
seeds used to initiate the Markov chains to generate samples in domain Zi. Note that
the seeds (i.e., the green samples) correspond to the orange samples from the previous
level of Subset Simulation. The area of the illustrated samples is an indicator for how
often the corresponding sample appears in the set of samples at level i; repeated samples
are due to the accept/reject step in MCMC.
At the ith level of Subset Simulation, i ∈ {0, . . . , N}, the coefficients hi+1 that define
domain Zi+1 are selected such that 10% of the samples in domain Zi fall also in domain
Zi+1. Note that hi+1 depends on the samples at level i, and, thus, the coefficients hi
differ in each run of Subset Simulation. Consequently, the intermediate domains Zi
depicted in sub-figures (a)-(f) do not correspond exactly to the intermediate domains
shown in Fig. 5.4.
The iteration is stopped if the number of samples in Zi that also fall in the actual
failure domain Γf exceeds 10% of the total number of samples generated at each level
of Subset Simulation. In the example at hand, the final level is shown in sub-plot (f),
it is level 5. In the final level of Subset Simulation, 636 samples fall into the actual
failure domain Γf . Thus, an estimate for the probability of failure can be evaluated as:
pf,SuS = 0.15 · 636

103 = 6.4 · 10−6.
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improved adaptively [Papaioannou et al., 2015]. Adaptive MCMC strategies are discussed

in Section 3.5.9. In this contribution, Algorithm (3.9) is employed to adaptively modify the

MCMC proposal spread.

5.3.3 Implementation of Subset Simulation

In the following the algorithm for Subset Simulation with adaptive learning of the spread of

the proposal distribution is described:

Algorithm 5.2. Subset Simulation:

Define values for pt, and Ki (e.g.: pt = 10%, Ki = 1000). The Ki should be selected such that pt ·Ki

is an integer value. Typically, the same value is assigned to all Ki. Moreover, set i = 1.

The algorithm evaluates an estimate for the probability of failure Pf of the reliability problem at

hand.

1. Perform the initial Monte Carlo sampling:

(a) Draw K1 samples u
(1)
j , j = 1, . . . ,K1, from distribution ϕM (u).

(b) Transform all u
(1)
j to θ

(1)
j : θ

(1)
j = T−1(u

(1)
j )

(c) For each sample θ
(1)
j evaluate g

(1)
j = g

(
θ

(1)
j

)
.

2. Find the threshold hi:

(a) Sort the Ki values of g
(i)
j and the corresponding u

(i)
j in an increasing order with

respect to the value of g
(i)
j .

(b) Set integer m = pt ·Ki.

(c) If g
(i)
m = g

(i)
m+1 then increase m until g

(i)
m 6= g

(i)
m+1.

(d) If g
(i)
m ≤ 0 then increase m until g

(i)
m+1 > 0.

(e) If g
(i)
m > 0, then set the threshold hi = 1

2

(
g

(i)
m + g

(i)
m+1

)
. Otherwise, set hi = 0.

(f) Compute pi = Hi/Ki, where Hi = m.

3. If hi = 0, then go to (9.).

4. For j = 1, . . . ,Hi: Shuffle the u
(i)
j and the corresponding g

(i)
j randomly. This step is

required because an ordered sequence of u
(i)
j and g

(i)
j will increase the bias of the SuS

estimate if the spread of the proposal distribution is learned adaptively (e.g., by means

of Algorithm (3.9)).

5. Increase i by one: i = i+ 1.

6. Determine the length of the individual chains for MCMC sampling:

(a) Set m as the first integer smaller or equal than Ki/Hi−1.

(b) Set l
(i)
k = m with k = 1, . . . ,Hi−1.
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(c) For all l
(i)
k with k ≤ Ki−m ·Hi−1 do: l

(i)
k = l

(i)
k + 1. This ensures that

∑Hi−1

k=1 l
(i)
k =

Ki.

7. Draw samples from ϕM (u|Zi−1) by means of MCMC sampling:

(a) Set j = 1 and k = 1.

(b) If l
(i)
k = 0 go to (i).

(c) Set u
(i)
j = u

(i−1)
k , g

(i)
j = g

(i−1)
k , and m = 1.

(d) Perform Algorithm (3.9) to learn the spread of the proposal distribution adaptively.

(e) Increase both m and j: m = m+ 1 and j = j + 1.

(f) If m > l
(i)
k go to (i).

(g) Draw sample u
(i)
j based on sample u

(i)
j−1 using MCMC by means of Algorithm (3.3).

(h) Go back to (e).

(i) Increase k by one: k = k + 1.

(j) If k ≤ Hi−1 go back to (b).

8. Go back to (2.).

9. Evaluate pf,SuS = p1 · . . . · pi.

For large Ki the efficiency of the described algorithm can be improved if samples u
(i)
j are not re-

ordered and shuffled directly, but the re-ordering and shuffling is done on an index-vector that points

to the corresponding u
(i)
j .

5.3.4 Assessing the uncertainty from sampling in SuS

5.3.4.1 Coefficient of variation of the pi

The samples employed to estimate Pr(Zi|Zi−1) for i > 1 are dependent since they are gener-

ated by means of MCMC. Au and Beck [Au and Beck, 2001] proposed to regard the coefficient

of variation δi of the estimator pi as equal to the coefficient of variation of a MCS with a

reduced number of samples, denoted Ki,eff:

Ki,eff =
1

1 + γi
Ki (5.17)

where γi ≥ 0 is a factor that accounts for the dependency of the samples used to estimate

Pr(Zi|Zi−1). The larger γi, the larger is the dependency between the samples. For γi = 0, the

samples are independent. Based on the effective number of samples introduced in Eq. (5.17),

the coefficient of variation δi of the estimator pi can be approximated as [Au and Beck, 2001]:

δi ≈
√

1− pi
piKi

(1 + γi) (5.18)
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Note that both Eqs. (5.17) and (5.18) are valid only if the individual chains are considered

independent. Thus, only the correlation of the samples within the individual chains (referred

to as chain correlation) can be taken into account.

In practice, a conservative and reliable estimation of δi is difficult, because chain correlation

as well as the influence of correlated seeds increase the sampling uncertainty about the value

of pi. An estimate that neglects the influence of correlated seeds is proposed in [Au and

Beck, 2001]. Note that seed correlation is not present when estimating Pr(Z2|Z1), because

the seeds come from a perfect Monte Carlo simulation. Thus, only chain correlation needs

to be considered in δ2. However, for i > 2, the influence of correlated seeds increases the

coefficient of variation δi.

Zuev et al. [Zuev et al., 2012] proposed an approximation for the PDF of the estimator pi:

They assumed the MCMC samples to be independent and used the distribution specified

in Eq. (5.10). In this case, the PDF of pi can be approximated by a beta distribution.

However, this approach under-represents the true uncertainty about pi, as both seed and

chain correlation increase the coefficient of variation δi of the estimate.

5.3.4.2 Assessing the uncertainty in the estimator pf,SuS

The coefficient of variation of the estimator pf,SuS from Eq. (5.16) cannot be computed in a

straightforward manner, because the p̂i are dependent. The dependency is due to employing

samples from ϕN (u|Zi−1) that fall into domain Zi as seeds to trigger the Markov chains

that are used to draw samples from ϕN (u|Zi). An upper and lower bound for the coefficient

of variation of the estimator pf,SuS was derived in [Au and Beck, 2001]. The lower bound

assumes that the pi are uncorrelated. It can be computed as:

δSuS,low =

√√√√ M∑
i=1

δ2
i (5.19)

The upper bound can be derived by assuming that the pi are fully correlated:

δSuS,up =

√√√√ M∑
i=1

M∑
j=1

δiδj (5.20)

Note that Eq. (5.20) tends to underestimate the value of the actual upper bound, if the

influence of correlated seeds is neglected in the estimate of the δi. This effect is illustrated in

Fig. 5.6 (see Example 5.1).

Furthermore, as the uncertainty about pf,SuS cannot be quantified using a standard distribu-

tion model (contrary to MCS, the pf,SuS is not beta-distributed). Moreover, the distribution
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of pf,SuS can be considerably skewed as will be demonstrated by means of numerical exam-

ples in the following. Consequently, the coefficient of variation should not be used to derive

credible intervals (based on a Normal approximation).

Example 5.1. Average and estimated coefficient of variation in SuS:

This example demonstrates that the estimate for the upper bound of the coefficient of variation

(C.o.V.) defined in Eq. (5.20) is not conservative if the influence of correlated seeds is neglected

in the δi.

The average C.o.V. of the SuS estimate and the estimated C.o.V. obtained with SuS by means

of Eqs. (5.19) and (5.20) as a function of Pf are shown for different limit-state functions (g1 to

g5 defined in Section 3.5.3), different number of samples K (103 and 104) and different target

acceptance rates tacr (0.3 and 0.44) in Fig. 5.6. The upper bound of the C.o.V. is approximated,

neglecting the influence of correlated seeds. Limit-state functions g1, g2, g3 and g5 are analyzed

for M = 10 and limit-state function g4 is analyzed for M = 2. For limit-state function g2, the

parameter κ is set to 10. For limit-state function g5, the parameter m is set to 4. The results

shown in Fig. 5.6 are obtained by at least 5 · 105 (5 · 104 for K = 104) repeated runs of SuS.

Contrary to Monte Carlo simulation, for fixed Pf , the C.o.V. of the estimated probability of

failure pf,SuS in SuS depends on the underlying limit-state function. This is due to the MCMC

sampling employed in the intermediate levels of SuS: The samples generated with MCMC are

dependent; the degree of dependency of the generated samples depends on the underlying limit-

state function.

The estimate for the upper bound of the C.o.V. is clearly not conservative for small Pf when

the influence of correlated seeds is neglected. For K = 103 and g1 to g4, the C.o.V. for small

Pf is smaller for tacr = 0.3 than for tacr = 0.44.

Example 5.2. Quantiles of the SuS estimate pf,SuS:

This example investigates the bias in the mean and median of the estimated pf,SuS, as well

as the 1%, 5%, 95% and 99% quantiles of the estimated pf,SuS. The mentioned quantities are

plotted in Fig. 5.7 for different limit-state functions, different number of samples K (103 and

104) and different target acceptance rates tacr (0.3 and 0.44). Limit-state functions g1, g2, g3

and g5 (defined in Section 3.5.3) are analyzed for M = 10 and limit-state function g4 is analyzed

for M = 2. For limit-state function g2, the parameter κ is set to 10. For limit-state function

g5, the parameter m is set to 4. The results shown in Fig. 5.7 are obtained by at least 5 · 105

(5 · 104 for K = 104) repeated runs of SuS.

The bias in the estimated pf,SuS is negligible compared to the spread of pf,SuS. Looking at

the quantiles and the median in relation to the mean, the distribution of pf,SuS is increasingly

right-skewed (positive skewness) for decreasing Pf . Especially for limit-state functions g2 and

g5, the distribution of pf,SuS is highly skewed. The median indicates that with decreasing Pf

it becomes more and more likely to observe a pf,SuS < Pf than pf,SuS > Pf . The uncertainty

about pf,SuS depends on the formulation of the limit-state function. The shape of the final and
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Figure 5.6: Average coefficient of variation (C.o.V.) of SuS (plotted in blue) for limit-state functions
g1 to g5 and different number of samples K and target acceptance rates tacr. The
mean of the SuS estimate for the lower and upper bound of the C.o.V. computed with
Eqs. (5.19) and (5.20) is represented by the dashed green and orange line, respectively.
The highlighted areas represent the 90% confidence intervals. (Example 5.1)



5.3. Subset Simulation 117

the intermediate failure domains has a strong influence on the uncertainty about pf,SuS (this is

further investigate in Example 5.5). This is due to the MCMC sampling employed to generate

samples conditional on the selected intermediate failure domain.

Example 5.3. Q-Q plots of the SuS estimate pf,SuS:

This example compares the quantiles of the SuS estimate pf,SuS with respect to a log-Normal

and beta approximation by means of a Q-Q plot. The log-Normal and beta distribution are

selected such that the mean is equal to E[pf,SuS/Pf ] and the variance is Var[pf,SuS/Pf ]; i.e., the

distribution used to approximate the data has the same mean and standard deviation as the

data.

Fig. 5.8 shows Q-Q plots of different limit-state functions and different Pf for K = 103 and

tacr = 0.33. Fig. 5.9 shows Q-Q plots of different limit-state functions and different Pf for

K = 103 and tacr = 0.44. Fig. 5.10 shows Q-Q plots of different limit-state functions and

different Pf for K = 104 and tacr = 0.44. Limit-state functions g1, g2, g3 and g5 (defined in

Section 3.5.3) are analyzed for M = 10 and limit-state function g4 is analyzed for M = 2. For

limit-state function g2, the parameter κ is set to 10. For limit-state function g5, the parameter

m is set to 4. The results shown in Fig. 5.8 and Fig. 5.9 are obtained by at least 5 ·105 repeated

runs of SuS; the results in Fig. 5.10 are obtained by at least 5 · 104 repeated runs of SuS.

Using a log-Normal distribution to approximate the statistics of pf,SuS is clearly better than

employing a beta distribution. This is to be expected, as pf,SuS is the product of intermediate

probabilities pi. For a large number of SuS levels (and a weak dependence of the pi), the

distribution of pf,SuS should converge to a log-Normal distribution by means of the central limit

theorem. However, the log-Normal approximation is not perfect, as the number of levels in SuS

is typically not very large and (especially for higher levels) the intermediate pi are dependent

and not identically distributed. The quality of the log-Normal approximation depends on the

type of the limit-state function: The log-Normal approximation is good for g1 and g3. For

g2 and g5, the quality of the log-Normal approximation decreases with decreasing Pf . Note

that the quality of the log-Normal approximation decreases with an increasing skewness of the

underlying distribution in log-scale (compare Example 5.2), as a log-Normal distribution is

symmetric in log-scale.

A maximum likelihood based fit might give better results than fitting for the mean and standard

deviation. However, this investigation is left for future studies.

Example 5.4. Sampling strategies in Subset Simulation:

This example compares two sampling strategies: (1) Subset Simulation is performed successively

10 times with K = 103; the probability of failure is estimated as the average of the 10 runs.

(2) Subset Simulation is performed once with K = 104. The two sampling strategies have

similar computational costs. The target acceptance rate is set to tacr = 0.44.

The bias in the mean and median of the estimated pf,SuS, as well as the 1%, 5%, 95% and

99% quantiles of the estimated pf,SuS are investigated for the two sampling strategies. The
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Figure 5.7: The mean of pf,SuS/Pf is represented by the continuous line. The bias in the SuS
estimate E[pf,SuS] is zero, if E[pf,SuS]/Pf = 1. The highlighted area shows the 90%
confidence interval of pf,SuS/Pf , defined in terms of the 5% and 95% quantiles. The
dashed lines represent the 1% and 99% quantiles. The dotted line shows the median of
pf,SuS/Pf .
The study is performed for limit-state functions g1 to g5 and different number of sam-
ples K and target acceptance rates tacr. The results are obtained by at least 5 · 105

(5 · 104 for K = 104) repeated runs of SuS. (Example 5.2)
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Figure 5.8: Q-Q plots of pf,SuS/Pf for limit-state functions g1 to g5 and different Pf . The number of
samples per level and the target acceptance rate of SuS is fixed to K = 103 and tacr = 0.3,
respectively. The orange line compares the fit with respect to a beta distribution, and the
green line compares the fit with respect to a log-Normal distribution. Both distributions
are fitted such that the mean and variance is equal to E[pf,SuS/Pf ] and Var[pf,SuS/Pf ].
The large points in the plot indicate the deciles (i.e., the 10%, 20%, . . . , 90% quantiles).
The crosses indicates the 1% and 99% quantiles. (Example 5.3)
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Figure 5.9: Q-Q plots of pf,SuS/Pf for limit-state functions g1 to g5 and different Pf . The number
of samples per level and the target acceptance rate of SuS is fixed to K = 103 and tacr =
0.44, respectively. The orange line compares the fit with respect to a beta distribution,
and the green line compares the fit with respect to a log-Normal distribution. Both
distributions are fitted such that the mean and variance is equal to E[pf,SuS/Pf ] and
Var[pf,SuS/Pf ]. The large points in the plot indicate the deciles (i.e., the 10%, 20%, . . . ,
90% quantiles). The crosses indicates the 1% and 99% quantiles. (Example 5.3)
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Figure 5.10: Q-Q plots of pf,SuS/Pf for limit-state functions g1 to g5 and different Pf . The number
of samples per level and the target acceptance rate of SuS is fixed to K = 104 and tacr =
0.44, respectively. The orange line compares the fit with respect to a beta distribution,
and the green line compares the fit with respect to a log-Normal distribution. Both
distributions are fitted such that the mean and variance is equal to E[pf,SuS/Pf ] and
Var[pf,SuS/Pf ]. The large points in the plot indicate the deciles (i.e., the 10%, 20%,
. . . , 90% quantiles). The crosses indicates the 1% and 99% quantiles. (Example 5.3)
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Figure 5.11: The mean of pf,SuS/Pf is represented by the continuous line. The bias in the SuS
estimate E[pf,SuS] is zero, if E[pf,SuS]/Pf = 1. The highlighted area shows the 90%
confidence interval of pf,SuS/Pf , defined in terms of the 5% and 95% quantiles. The
dashed lines represent the 1% and 99% quantiles. The dotted line shows the median
of pf,SuS/Pf .
Two sampling strategies are investigated: (1) 10 SuS runs with K = 103; the estimated
pf,SuS is taken as the average of the 10 runs. (2) A single SuS run with K = 104 is
performed. The study is performed for limit-state functions g1 to g5. The target
acceptance rate is set to tacr = 0.44. The results are obtained by at least 104 repeated
runs of the simulation. (Example 5.4)
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results are shown in Fig. 5.11 for limit-state functions g1 to g5 (as defined in Section 3.5.3). For

limit-state function g2, the parameter κ is set to 10. For limit-state function g5, the parameter

m is set to 4.

The plots in Fig. 5.11 suggest that a single run of Subset Simulation with a large number

K of samples is slightly better than multiple smaller runs of SuS with a reduced number of

samples. However, multiple smaller runs of SuS are more helpful to quantify the uncertainty in

the estimated pf,SuS than a single large run of SuS.

Example 5.5. Subset Simulation: influence of the shape of intermediate failure domains:

This example investigates limit-state function g5 for different parameter valuesm ∈ {0, 1, 2, 3, 4}.
The shape of the actual failure domain does not depend on m. However, the shape of the inter-

mediate failure domains is influenced by m. For m = 0, the intermediate failure domains have

an optimal shape. For m = 4, the intermediate failure domains have an unfavorable shape.

The number of uncertain model parameters is set to 10. The target acceptance rate is set to

tacr = 0.3. The bias in the mean and median of the estimated pf,SuS, as well as the 1%, 5%,

95% and 99% quantiles of the estimated pf,SuS are investigated for limit-state function g5 and

different m. The results are shown in Fig. 5.12.

Even though the shape of the actual failure domain does not depend on m, the uncertainty

in the estimated pf,SuS depends considerably on m. The skewness increases strongly with

increasing m and decreasing Pf . For m = 0, the distribution of pf,SuS is only slightly skewed.

For m = 4 and Pf < 10−6, the median deviates significantly from the mean. This has to

be attributed to the MCMC sampling used to generate samples conditional on the selected

intermediate failure domains. If the shape of the final or the intermediate failure domains is not

optimal for the selected MCMC sampling strategy, the uncertainty about pf,SuS increases. This

is a disadvantage of Subset Simulation compared to Monte Carlo simulation: In Monte Carlo

integration, the estimated probability of failure depends only on Pf , but not the formulation of

the limit-state function and not on the shape of the final failure domain.

Next we look at the confidence interval spanned by the 1% and 99% quantiles of Subset Simu-

lation and Monte Carlo simulation. For Monte Carlo simulation, the number of samples is set

equal to the average number of limit-state function calls needed in the corresponding Subset

Simulation run. The confidence intervals of Monte Carlo simulation can be evaluated explic-

itly for a given number of samples and known Pf : Then number of samples that fall in the

failure domain follows a binomial distribution, and pf,MCS is obtained by dividing the number

of samples in the failure domain by the total number of samples. For up to two subset levels,

the Monte Carlo simulation returns a more narrow confidence interval than Subset Simulation.

However, generally this is of little practical relevance, as reliabilities in this magnitude can be

approximated well with both methods.

Example 5.6. Q-Q plots of the average pf,SuS from multiple runs of Subset Simulation:

In this example, Q-Q plots of the average pf,SuS of A ∈ {10, 100, 103, 104} independent runs of

Subset simulation are generated for limit-state function g5 with m = 4. The studied reference
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Figure 5.12: The performance of limit-state function g5 is investigated for different parameter values
m ∈ {0, 1, 2, 3, 4}. The number of samples per subset level is set to K = 103, and the
target acceptance rate is set to tacr = 0.44. The mean of pf,SuS/Pf is represented by the
continuous line. The bias in the SuS estimate E[pf,SuS] is zero, if E[pf,SuS]/Pf = 1. The
highlighted area shows the 90% confidence interval of pf,SuS/Pf , defined in terms of the
5% and 95% quantiles. The dashed blue lines represent the 1% and 99% quantiles. The
dashed orange lines represent the 1% and 99% quantiles that one would obtain with
Monte Carlo simulation and the number of samples set equal to the average number of
required limit-state function calls in the corresponding SuS run. The dotted line shows
the median of pf,SuS/Pf . (Example 5.5)
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probabilities of failure are chosen as Pf ∈ {10−3, 10−9, 10−20}. The number of uncertain model

parameters is set to 10. The target acceptance rate is set to tacr = 0.3. The Normal and the log-

Normal distribution are selected such that the mean is equal to E[pf,SuS/Pf ], and the variance

is equal to Var[pf,SuS/Pf ]/
√
A, where Var[pf,SuS/Pf ] refers to the variance obtained from a

single run of Subset Simulation. According to the central limit theorem, the distribution of the

average pf,SuS converges for increasing A asymptotically to the employed Normal distribution.

The Q-Q plots are shown in Fig. 5.13.

For Pf = 10−3, the Normal and log-Normal distribution provide a reasonable fit already for A =

10, where the log-Normal distribution exhibits a slightly better fit than the Normal distribution.

However, for Pf = 10−9 and Pf = 10−20, the Normal and the log-Normal distribution no longer

describe the distribution of the average pf,SuS well. Even the average estimated probability of

failure from 104 independent runs of Subset Simulation is not approximated well by a Normal

distribution. Consequently, also the coefficient of variation of the average pf,SuS is not a good

measure to quantify the uncertainty about the average pf,SuS, as the underlying distribution is

still asymmetric even for a large number of repeated SuS runs.

For Pf = 10−9 and Pf = 10−20 the Normal distribution associates too much probability weight

with too small pf,SuS. For the investigate limit-state function g5 with m = 4, the 99% quantile of

the Normal distribution is comparatively close to the true value. However, for larger quantiles,

the Normal distribution puts not enough weight to large pf,SuS. The log-Normal distribution

is also not an appropriate probabilistic model, however it provides a slightly better fit than the

Normal distribution.
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Figure 5.13: Q-Q plots of the average pf,SuS/Pf of A independent SuS runs. Limit-state function
function g5 with m = 4 is investigate for different Pf . The number of samples per level
and the target acceptance rate of SuS is fixed to K = 103 and tacr = 0.3, respectively.
The blue line compares the fit with respect to a bNormal distribution, and the green
line compares the fit with respect to a log-Normal distribution. Both distributions
are fitted such that the mean corresponds to E[pf,SuS/Pf ], and the variance is equal to

Var[pf,SuS/Pf ]/
√
A. The large points in the plot indicate the deciles (i.e., the 10%, 20%,

. . . , 90% quantiles). The crosses indicates the 1% and 99% quantiles. (Example 5.6)
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Chapter 6

Bayesian Analysis

6.1 Introduction

Let θ denote the vector of uncertain model parameters, and let M denote the associated

stochastic model class introduced in Section 4.1. In Bayesian inference, two fundamentally

different types of information related to θ are combined:

Prior information: Information about θ that we already acquired in the past and/or that

expresses our initial belief. The plausibilities of different realizations of the parame-

ter vector θ are expressed in terms of a probability density function (PDF), denoted

p(θ|M). The probabilistic model associated with p(θ|M) is referred to as prior dis-

tribution. Probabilistic modeling approaches for the prior distribution are discussed in

Section 6.4.4.

Data: Information that becomes available to us in form of measurements or observations,

denoted D. The data D is embedded in the Bayesian inference through the likelihood

function L(θ|D,M). The likelihood expresses the plausibility of observing D given a

certain θ, i.e., L(θ|D,M) ∝ p(D|θ,M).

The posterior belief emanates from combining the prior information and the data (see

Fig. 6.1). The PDF of the posterior is denoted by p(θ|D,M). The learning process in

Bayesian inference is formalized through Bayes’ theorem as:

p(θ|D,M) = cE|M
−1 · L(θ|D,M) · p(θ|M) . (6.1)

The constant cE|M in Eq. (6.1) acts as a normalizing scalar and is defined as:

cE|M =

∫
θ

L(θ|D,M) · p(θ|M) dθ (6.2)
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Figure 6.1: Information from the prior p(θ|M) and the data L(θ|D,M) is combined to a posterior
belief p(θ|D,M).

Note that the posterior is conditional on M. Consequently, if the assumptions contained in

M are invalid or improper, the corresponding posterior plausibilities can be misleading (see

also Sections 4.1.2 and 6.4.2).

Example 6.1. rate of vehicles on a street :

We are interested in the number of vehicles passing in front of a gymnasium in the rush hour on

weekdays between 4pm and 7pm. It is assumed that the number of vehicles passing in any fixed

time interval of length ∆t follows a Poisson distribution with a constant mean λ ·∆t, where λ

denotes the rate of vehicles.

We quantify our prior belief about the value of λ as follows: With a probability of 5%, the

value of λ is larger than 2 per minute, and with a probability of 95%, the value of λ is smaller

than 20 per minute. Additionally, we choose the Gamma distribution as prior distribution for

λ. Based on this assumptions, the mean and standard deviation of the Gamma distribution

that represents our uncertainty about λ can be evaluated as 8.96 and 5.74 cars per minute,

respectively.

In order to reduce our uncertainty about λ, we hire a student that counts at five different

days for an hour the number of cars passing in front of a gymnasium. After performing the

measurements, the students submits the following report:

day 1: Counted 358 cars in 60 minutes.

day 2: Counted 277 cars in 50 minutes.

day 3: Sat there for 80 minutes. However, fell asleep at some point – don’t know how long.

Counted 283 cars in the time not asleep.

day 4: Counted for 60 minutes. The number of cars that passed is either 352 or 353.

day 5: Counted 195 cars in 30 minutes.

Based on the report we can formulate the likelihood functions of the five days as (where λ has

unit one car per minute):
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Figure 6.2: Prior and posterior PDF for λ. (Example 6.1)

day 1: L1 = (λ · 60)358 · exp(−λ · 60)/(358!)

day 2: L2 = (λ · 50)277 · exp(−λ · 50)/(277!)

day 3: L3 = 1− exp(−λ · 80) ·∑282
i=0(λ · 80)i/(i!)

day 4: L4 = 1
2

[
(λ · 60)352 · exp(−λ · 60)/(352!) + (λ · 60)353 · exp(−λ · 60)/(353!)

]
day 5: L5 = (λ · 30)195 · exp(−λ · 30)/(195!)

Non-overlapping observations of a Poisson process are independent. Thus, the individual like-

lihood functions can be multiplied to get the combined likelihood function:

L =

5∏
j=1

Li (6.3)

The posterior is defined in Eq. (6.1); i.e., the product of prior density and likelihood function

is proportional to the posterior density function. The prior and the posterior distribution are

illustrated in Fig. 6.2. The mean and standard deviation of the posterior is 5.92 and 0.17 cars

per minute, respectively.

Note that the data the student submitted is incomplete: One day he fell asleep, the other day

he was not exactly sure if 352 or 353 cars passed. Nonetheless, such incomplete observations

can be considered within a Bayesian inference. The example could even be modified slightly to

infer how long the student was asleep on day 3.

6.2 Evidence of a stochastic model class

6.2.1 Definition and interpretation

cE|M defined in Eq. (6.2) is a measure for the plausibility of the investigated model classM;

i.e., cE|M ∝ p(D|M). In the Bayesian community cE|M is usually referred to as the evidence

of the assumed model class [Beck and Yuen, 2004], however, cE|M is also known as marginal

likelihood or integrated likelihood. The evidence is essentially the expectation of the likelihood
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with respect to the prior distribution, i.e.:

cE|M = Eθ|M [L(θ|D,M)] (6.4)

Except for special cases it is usually a non-trivial task to evaluate the evidence associated

with stochastic model class M.

If
∫
D L(θ|D,M) dD = 1 or, equivalently, L(θ|D,M) = p(D|θ,M), then cE|M = p(D|M).

If not explicitly mentioned otherwise, in the following it is assumed that L(θ|D,M) =

p(D|θ,M). Note that in a general setting, a likelihood function is, unlike a probability

density function, not necessarily normalized.

The log-evidence can be expressed by the following difference [Muto and Beck, 2008; Cover

and Thomas, 2006]:

ln p(D|M) = Eθ|D,M [ln p(D|θ,M)]

− Eθ|D,M

[
ln
p(θ|D,M)

p(θ|M)

]
(6.5)

where the expectations are taken with respect to the posterior distribution. The first term

in Eq. (6.5) is a measure for the average data-fit of the stochastic model class [Beck, 2010]

with respect to the employed likelihood function. The second term in Eq. (6.5) represents

the relative entropy or Kullback–Leibler divergence, denoted DKL (p(θ|D,M)‖p(θ|M)); it

measures the information gain of the posterior relative to the prior (see Section 2.4.5).

The relative entropy serves as a penalty-term in Eq. (6.5), since it is always non-negative: If

two model classes have the same data-fit, the stochastic model for which observation D is less

surprising has the larger plausibility. This behavior is called Bayesian Ockham razor [Beck,

2010, 2014]. In other words: A good model should have a good data-fit, and at the same

time should have a posterior that is similar to the prior. The plausibility of the stochastic

model class decreases if either the data fit decreases, or if the difference between the posterior

and the prior (i.e., the relative entropy) increases. Note that the evidence cE|M is, therefore,

influenced by both the likelihood and the prior.

Example 6.2. rate of vehicles on a street (cont’d) :

Continuing Example 6.1, the evidence of the problem can be evaluated as 2.57 ·10−9. Thus, the

log-evidence is −19.78. The associated average data-fit is −16.97, and the relative entropy is

2.81. For this simple example, the mentioned quantities were computed by means of numerical

integration.

Example 6.3. M -dimensional independent Normal prior and likelihood :
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Let the prior distribution be p(θ) =
∏M
i=1 ϕ (θi), where M is the dimension of the problem (i.e.,

number of uncertain parameters). The likelihood is defined as L(θ|D) = σ−Ml ·∏M
i=1 ϕ

(
θi−µl
σl

)
,

where µl ∈ R is the mean of the likelihood function and σl ∈ R>0 is the standard deviation of

the likelihood function.

The maximum value the likelihood can take is

Lmax (σl,M) =
(
2π · σ2

l

)−M2 (6.6)

The posterior of each compontent θi is an independent Normal distribution with mean and

standard deviation:

µθi|D =
µl

σ2
l + 1

(6.7)

σθi|D =
σl√
σ2
l + 1

(6.8)

The evidence and log-evidence can be derived as:

cE|M =
(
σ2
l + 1

)−M2 · [ϕ( µl√
σ2
l + 1

)]M
(6.9)

ln
(
cE|M

)
= −M

2
·
[
ln(σ2

l + 1) +
µ2
l

σ2
l + 1

+ ln(2π)

]
(6.10)

Note: The following results are derived, because they are required at a later point.

We are interested in the distribution L|D of likelihood values for samples θ|D that follow the

posterior distribution. To simplify the notation, we introduce:

dµ =

√√√√ M∑
i=1

(
µl − µθ|D

)2
=
√
M · µl ·

(
1− 1

σ2
l + 1

)
, with dµ ≥ 0 (6.11)

as well as the distance RL between sample θ and the center of the likelihood function:

RL =

√√√√ M∑
i=1

(θi − µl)2
(6.12)

Note that all samples θ with the same RL have the same likelihood value L ∈ [0, Lmax]. Thus,

the likelihood function can be expressed in terms of RL as:

L(RL) =
(
2π · σ2

l

)−M2 · exp

(
− R

2
L

2σ2
l

)
(6.13)

The inverse function RL(L) of L(RL) is:

RL(L) = σl ·
√
−2 · ln

[
L · (2π · σ2

l )
M
2

]
(6.14)

Furthermore, the distance between sample θ and the center of the posterior distribution is
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denoted as:

R =

√√√√ M∑
i=1

(
θi − µθ|D

)2
(6.15)

It can be shown that the probability Pr [L(θ) ≥ L(RL)|R,RL,D] that sample θ|R,D with R

conditionally fixed has a likelihood value larger than L(RL) is:

• If R > dµ +RL then Pr [L(θ) ≥ L(RL)|R,RL,D] = 0.

• If R < dµ −RL then Pr [L(θ) ≥ L(RL)|R,RL,D] = 0.

• If R ≤ RL − dµ then Pr [L(θ) ≥ L(RL)|R,RL,D] = 1.

• Otherwise, Pr [L(θ) ≥ L(RL)|R,RL,D] is equal to the probability that the angle between

a M -dimensional Normal vector and an arbitrarily selected vector is smaller than angle

2ω, where angle ω is defined as follows: Lets assume a triangle with sides of length R, RL

and dµ. The angle between sides R and RL is denoted as ω, with

cos (ω) =
R2 + d2

µ −R2
L

2 ·R · dµ
(6.16)

with cos (ω) = 0 if R = 0. In Section 2.3.4.3.3 it is shown that the quantity cos2(ω)

is beta-distributed with shape parameters α = 0.5 and β = (M − 1)/2. Consequently,

1 − cos2(ω) is also beta-distributed with shape parameters α = (M − 1)/2 and β = 0.5.

Thus,

Pr [L(θ) ≥ L(RL)|R,RL,D] =
1

2
·
(
1− sign (cosω) · Pbeta, α=0.5, β=(M−1)/2(cos2(ω))

)
(6.17)

where Pbeta, α, β(·) denotes the CDF of the beta distribution.

In order to get the probability that a posterior sample has a likelihood value larger than L(RL),

R must be integrated out by means of the total probability theorem. As R follows a chi

distribution with M degrees of freedom:

Pr [L(θ) ≥ L(RL)|RL,D] =

∫ dµ+RL

max(0,dµ−RL)

Pr [L(θ) ≥ L(RL)|R,RL,D] · 1

σl
· pchi,M

(
R

σl

)
dR

(6.18)

where pchi,M (·) is the PDF of a chi distribution with M degrees of freedom.

6.2.2 Uniqueness of the evidence of M

The evidence is a unique property of the selected stochastic model class M and invariant to

a transformation (Section 2.3.1.6) of the underlying probabilistic description. Let T : Z→ θ

be the transformation of random variable Z to θ. The evidence can then be written as:

cE|M =

∫
Z
L(T(Z)|D,M) · p(Z|M) dZ = EZ|M [L (T(Z)|D,M)] (6.19)

This follows directly from inserting Eq. (6.4) in Eq. (A.7).
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6.3 Bayesian model class selection and model averaging

6.3.1 Bayesian model class selection

For a set M ofm competing stochastic model classesM1,M2, . . . ,Mm, the evidence p(D|Mi), i ∈
{1, . . . ,m} allows us to evaluate the posterior probabilities Pr(Mi|D,M) of the individual

stochastic model classes:

Pr(Mi|D,M) =
p(D|Mi) · Pr(Mi|M)∑m
j=1 p(D|Mj) · Pr(Mj |M)

(6.20)

where Pr(Mi|M) is the prior probability of the ith model class. The posterior probabilities

Pr(Mi|D,M) are required for Bayesian model class selection and Bayesian model averag-

ing [MacKay, 1992a; Wasserman, 2000].

Note that Pr(Mi|D,M) is the posterior plausibility of model class Mi with respect to all

model classes contained in M, and not the posterior probability that model class Mi is the

true model. It is not implicitly assumed that M contains the perfect model (there is no such

thing as a perfect model). This distinction is crucial for a correct interpretation of Bayesian

model class selection and model averaging: If all models contained in M are insufficient or

inadequate, it will not become apparent that none of the models produces good results by

just looking at the posterior plausibilities of the individual model classes. The best models

in M set the standard to which all model classes are compared.

Therefore, it can be considered good practice to include at least one model in M that is

known to be relatively simplistic. If the posterior plausibility of the simple model is not

small compared to the model classes with the largest posterior plausibilities, this might be

an indicator that the overall performance of the considered model classes could be poor.

Example 6.4. M -dimensional independent Normal prior and likelihood (cont’d):

This example continues Example 6.3. Now, we assume that the parameters µl and σl are not

known. We try to find the values of µl and σl that maximize the evidence cE|M for fixed M .

For fixed cE|M, M and σl, the mean of the likelihood can be derived as:

µl =
√
σ2
l + 1 ·

√
− 2

M
· ln
(
cE|M

)
− ln(σ2

l + 1)− ln(2π) (6.21)

The above expression is only defined if σl is selected between:

0 < σl ≤
√

1

cE|M
2
M · 2π

− 1 (6.22)

The upper bound in Eq. (6.22) requires that either M ≤ −2 ln(cE|M)

ln(2π) or cE|M ≤
(

1
2π

)M/2
. Thus,
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the most plausible likelihood model under the specified constraints must have evidence equal

to cE|M =
(

1
2π

)M/2
. For which σl = 0 and µl = 0.

Example 6.5. Tensile test on timber specimens:

We are given data1 of a tensile test on 50 timber specimens. The measured tensile strengths

are (in N/mm2):

37.1 36.9 40.5 46.8 37.6 30.0 29.0 27.5 30.7 43.9 29.2 28.7 18.3 34.3 35.0 58.0

20.9 26.8 18.4 34.0 28.4 35.2 27.1 38.0 28.0 30.3 54.9 55.4 32.8 39.5 19.3 54.2

23.1 50.3 66.5 32.7 35.7 36.2 26.4 54.8 27.5 25.3 48.3 47.7 52.9 29.9 42.4 24.8

28.9 26.0

In this example, we are interested in the distribution underlying the test specimens. The

procedure is as follows:

(A) First, we select the investigated models. The following distributions are assessed as candi-

dates for the distribution underlying the test specimens:

model 1 : log-Normal distribution,

model 2 : Gamma distribution,

model 3 : truncated Normal distribution with support [0,∞).

Additionally, we add a model that we expect to perform worse than the other three models

(because we expect the mode of the underlying distribution to be larger than zero):

model 4 : exponential distribution.

If none of the first three models clearly outperforms model 4, we should better scrutinize the

validity of the investigated models and our prior assumptions. The mean µi, i ∈ {1, . . . , 4} and

standard deviation σi, i ∈ {1, . . . , 3} of the investigated distributions are considered uncertain;

i.e., are treated as uncertain model parameters.

(B) Next, we select the likelihood that quantifies the plausibility of the data conditional on

the uncertain model parameters. To keep the example simple, measurement uncertainties are

neglected. In this case, the likelihood function Li(θi|D,Mi) can be expressed as:

Li(θi|D,Mi) = p(D|θi,Mi) =

50∏
j=1

pi(dj |µi, σi,Mi) (6.23)

where D represents the 50 measured tensile strengths, dj denotes the jth measured tensile

strength, θi is the vector of uncertain model parameters (θi = [µi, σi]), and pi(dj |µi, σi,Mi) is

the PDF of the distribution associated with the ith model (i.e., log-Normal for model 1, Gamma

for model 2, truncated Normal for model 3, and exponential for model 4 ).

(C) Now, we need to select prior distributions for the µi, i ∈ {1, . . . , 4} and σi, i ∈ {1, . . . , 3}.
It is assumed that all µi have the same distribution and all σi have the same distribution.

1The data is taken from the lecture Risk Analysis of Prof. Straub at Technische Universität München and
was originally provided by Lehrstuhl für Holzbau und Baukonstruktion at Technische Universität München.
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Table 6.1: Results of the Bayesian inference: data from a tensile test on timber specimens (see
Example 6.5).

stoch. model class Pr(Mi|M) p(D|Mi) Pr(Mi|D,M) data-fit rel. entropy

M1 40% 9.7 · 10−85 69% −189.6 3.9
M2 30% 5.4 · 10−85 30% −190.2 3.9
M3 25% 2.6 · 10−86 1% −193 4
M4 5% 1.0 · 10−100 0% −229.3 0.97

The uncertainty in the µi is modeled with a log-Normal distribution that has mean 50 and

standard deviation 30. The uncertainty about the value of σi is described by a log-Normal

distribution that has mean 0.2 · µi and standard deviation 0.1 · µi. The assumptions in model,

likelihood and prior are comprised in the stochastic model classes Mi, i ∈ {1, . . . , 4}, and

M = {M1,M2,M3,M4} is the set containing all investigated stochastic model classes.

Furthermore, for stochastic model class selection, prior plausibilities Pr(Mi|M) for each of

the four stochastic model classes Mi need to be selected. Based on our initial belief, we

assign the following probabilities: Pr(M1|M) = 40%, Pr(M2|M) = 30%, Pr(M3|M) = 25%,

Pr(M5|M) = 5%.

(D) Based on the prior and the likelihood, the evidence p(D|Mi) can be evaluated for each

stochastic model class Mi in M. In this simple example, the evidence is evaluated by means

of numerical integration of Eq. (6.2). Based on the evidence of all stochastic model classes, the

posterior probability Pr(Mi|D,M) of each stochastic model class can be calculated by means

of Eq. (6.20). The results of the analysis are listed in Table 6.1. The most plausible stochastic

model class is M1, followed by M2. The posterior plausibility of stochastic model class M3 is

small compared to M1 and M2, and the posterior plausibility of M4 is negligible. M4 has a

considerably smaller data-fit than the other three model classes. The relative entropy of M4

is comparatively small, as M4 is modeled by a single uncertain parameter (µ4). However, the

small relative entropy does not significantly alleviate the degradation due to the data-fit term.

This example is continued as Example 6.6 in Section 6.3.2.

6.3.2 Bayesian model averaging

The posterior probabilities Pr(Mi|D,M) of the individual stochastic model classes can be

employed in the total probability theorem to formulate the posterior distribution of θ condi-

tional on M; i.e., p(θ|D,M):

p(θ|D,M) =

m∑
i=1

p(θ|D,Mi) · Pr(Mi|D,M) (6.24)

Note that θ comprises the joint set of uncertain parameters used in at least one of the m

stochastic model classes.

Similarly, the prior distribution of the entire set M of stochastic model classes can be ex-
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Figure 6.3: Prior and posterior PDF of the set of stochastic model classes M obtained with
Bayesian model averaging. (Example 6.5)

pressed:

p(θ|M) =
m∑
i=1

p(θ|Mi) · Pr(Mi|M) (6.25)

Example 6.6. Tensile test on timber specimens (cont’d):

This example continues Example 6.5; the distribution underlying the test specimens is derived

conditional on the set of stochastic model classes M and Bayesian model averaging.

Our prior belief about the distribution of the tensile strength d of the test specimen can be

expressed as:

p(d|M) =

4∑
i=1

∫ ∞
0

∫ ∞
0

pi(d|µi, σi,Mi) · p(µi, σi|Mi) dσi dµi · Pr(Mi|M) (6.26)

where p(µi, σi|Mi) is the prior distribution of µi and σi.

The posterior belief about the distribution of the tensile strength d of the test specimen can be

expressed as:

p(d|D,M) =

4∑
i=1

∫ ∞
0

∫ ∞
0

pi(d|µi, σi,Mi) · p(µi, σi|D,Mi) dσi dµi · Pr(Mi|D,M) (6.27)

where p(µi, σi|D,Mi) is the posterior distribution of µi and σi (see Example 6.5).

The prior and posterior PDF of the set of stochastic model classes M evaluated with Eqs. (6.26)

and (6.27) are shown in Fig. 6.3.
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6.4 The Bayesian modeling framework

6.4.1 Formal representation of data D in Bayesian inference

Within a Bayesian framework, a major objective is to learn the uncertain parameters θ of a

model that approximates the behavior of a real system: Our uncertainty about the state of

the parameters θ is reduced based on the information D. Typically, the real system produces

some output and is driven by its input conditions. In Bayesian inference, the data D contains

observations/measurements of the system output. However, D can also contain information

about the system input. Thus, the available information D for the Bayesian learning process

is composed of the observed output states z and the available information s about the system

input, i.e., D = [zᵀ, sᵀ]ᵀ.

To increase clarity, it is often helpful to use a notation that represents the observed output

z and input s separately. Directly employing this notation in Bayes’ theorem as stated in

Eq. (6.1) gives:

p(θ|z, s,M) =

∫
Γf
p(z|θ, f ,M) · p(s|f ,θf,M) · p(f |θf,M) · p(θ|M) df

p(z, s|M)
. (6.28)

where p(f |θ,M) is the probabilistic description of the model input, and p(s|f ,θ) represents

the observation-error of the model input. The quantities z (observed system output), s

(observed model input) and f (actual model input) are defined according to Section 4.1.

However, the formulation of Bayes’ theorem as stated in Eq. (6.28) is often not convenient.

Usually, it is more appropriate to represent Bayes’ theorem as:

p(θ|z, s,M) =

∫
Γf
p(z|θ, f ,M) · p(f |s,θf,M) · p(θ|s,M) df

p(z|s,M)
. (6.29)

Contrary to Eq. (6.28), all elements in Eq. (6.29) are conditional on s. This holds also for

the evidence: The evidence p(z|s,M) is expressed as the plausibility of observing output z

conditional on having observed input s.

Note that Eq. (6.28) can be transformed to Eq. (6.29) as follows:

p(θ|z, s,M) =

∫
Γf
p(z|θ, f ,M) · p(s|f ,θf,M) · p(f |θf,M) · p(θ|M) df

p(z, s|M)

=

∫
Γf
p(z|θ, f ,M) · p(s|f ,θf,M) · p(f |θf,M) · p(θ|M) df

p(z|s,M) · p(s|M)

=

∫
Γf
p(z|θ, f ,M) · p(f |s,θf,M) · p(θ|s,M) df

p(z|s,M)

if it is loosely assumed that p(θ|M) can be replaced with p(θ|s,M). In this case, Eq. (6.28)
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can be viewed as consisting of two concatenated inference problems: Assessing (i) the proba-

bilistic model of the model input, and (ii) the probabilistic model of the system response. In

contrast, Eq. (6.29) assesses only the probabilistic model of the system response. Note that

the inference problem that assesses the probabilistic model of the model input, i.e.,

p(f |s,θf,M) =
p(s|f ,θf,M) · p(f |θf,M)

p(s|M)
(6.30)

can be solved separately prior to the inference problem specified in Eq. (6.29). When assessing

the performance of a stochastic model class by means of Bayesian model class selection and

model averaging, we are typically interested only in the performance of the probabilistic

model of the system response; i.e., in the inference problem specified in Eq. (6.29).

In addition to that, consider for example the following scenarios that highlight the difference

between Eqs. (6.28) and (6.29):

• A bridge is loaded with heavy trucks to induce a test load. The response of the bridge

under the test load is measured. Before the trucks enter the bridge, they are weighed.

However, measurement uncertainty about the actual weight applied remains.

In this case, the number and weight of the trucks is pre-specified; the analysis is condi-

tional on the applied test load. Thus, the uncertainty about the actual load applied is

most conveniently directly modeled by means of density p(f |s,θf,M).

Moreover, for Bayesian model class selection and model averaging, we are typically in-

terested in the evidence p(z|s,M) instead of p(z, s|M): The plausibility of observing

the response z conditional on the applied test load s.

• In a hydrological catchment, precipitation and discharge are observed for a certain time

period. The data is used to reduce the uncertainty about the parameters of a model

that approximates the hydrological system.

In Eq. (6.28), the probabilistic model p(s|f ,θf,M) · p(f |θ,M) needs to be formulated

explicitly, whereas Eq. (6.29) directly requires p(f |s,θf,M). In this case it is much

simpler and more straight-forward to directly assume p(f |s,θf,M) known, instead of

representing it through Eq. (6.30).

6.4.2 Stochastic model class

In Section 4.1, the concept of a stochastic model class was introduced for forward analysis

(Chapter 4). The stochastic model class is also the central element that bundles all our

modeling assumptions in Bayesian analysis. The definition in Section 4.1 needs, however,

the following extension:

Additional to the
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Figure 6.4: Assumed dependency structure in a stochastic model class (as discussed in Sec-
tions 4.1 and 6.4.2) represented as a Bayesian network. The figure is an extended
variation of Fig. 4.1. The dependencies are represented as arrows. The gray arrows
denote dependencies that exist in the real world but that are usually not considered ex-
plicitly in modeling. The nodes with a continuous border denote random variables. The
nodes with a dashed border can be computed deterministically if all input quantities are
conditionally fixed. The gray nodes denote the observed system input and output. The
parameter vector θ is composed of θ =

[
θq

ᵀ,θf
ᵀ,θv

ᵀ,θw
ᵀ]ᵀ, where θq is the vector of

uncertain parameters of the deterministic model, θf is the parameter vector of the input
model, θv is the parameter vector of the prediction-error model, and θw is the parameter
vector of the observation-error model.

(1) prior probability model p(θ|M), the

(2) stochastic forward model p(r|f ,θ,M), and the

(3) stochastic input model p(f |s,θf,M),

the (4) stochastic observation-error model p(z|r,θw,M) is needed, if the observed output

states z of the system are contaminated with measurement errors or relate to imperfect

observations. The stochastic observation-error model p(z|r,θw,M) quantifies our belief in

the measurement uncertainty, where θw is the parameter vector of the observation-error

model. The stochastic observation-error model p(z|r,θw,M) is usually expressed explicitly

as z = r + w, where w is the uncertain observation-error. Instead of the additive error

structure, also a multiplicative error structure could be selected, i.e., z = r ·w.

A particular example where large observation errors can occur is the observation of runoff

from a hydrological catchment: Typically, only water levels are observed directly and so-called

rating curves are used to transform water levels to discharges.

Note that strictly we should denote the actually observed output as ẑ, that is a particular

realization of stochastic variable z. However, if an explicit distinction is not required, we will

use z to denote both the actual observation and the stochastic variable.

Note: In applications of Bayesian inference, the output prediction-error is usually the predom-

inant link between the observed system response and the model output. Observation errors
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(e.g., measurement errors) contribute as well, however, they are often small compared to the

output prediction-error. Therefore, the probabilistic description of the output prediction-error

has a considerable influence on the learning process in Bayesian inference. This is a delicate

issue, as the output prediction-error cannot be quantified exactly (see Section 4.1.4).

The assumed dependency structure of a stochastic modeling class for Bayesian analysis is

depicted in Fig. 6.4.

6.4.3 Objectivity of the likelihood function

Contrary to the prior, the likelihood is often considered the objective element of the Bayesian

analysis, because it contains the data D. This point of view can, however, be misleading:

It is true that the data can be usually regarded as objective – even though D can also

contain subjective assessment. What is often not considered when the likelihood is called

objective is that modeling and observation errors – if present – constitute a fundamental part

of the likelihood. However, the probabilistic description of errors is usually far from objective

(consider also the discussion in Section 2.2.5). Thus, it is important to acknowledge that the

likelihood is – as is the prior – conditional on M.

6.4.4 Probabilistic modeling approaches for the prior

6.4.4.1 Overview

Typically, the probability models of v, w, f , and θ are not known explicitly. Sometimes we

can express our prior knowledge only in terms of constraints (e.g., unbiased, given variance

structure, non-negative) that come either from reasonable assumptions or are imposed by the

physics of the problem. In this case, our uncertainty is not only about the specific value of e.g.

the first and second moment, but the type of the underlying distribution itself is uncertain.

For example, consider the Young’s modulus, a typical parameter of structural engineering

models: This quantity can take only positive values. If we additionally assume that its mean

and standard deviation are – at least conditionally – given, there exist many distributions

that can be picked to represent our uncertainty associated with this parameter. This includes

the often used log-Normal distribution, but also the Gamma, Weibull or truncated Normal

distribution.

In this section we discuss probabilistic modeling approaches for prior distributions. Rec-

ommendations for modeling of prior distributions in engineering problems are provided in

the summary at the end of the section. For specific guidelines on how to select adequate

probability models of error structures see Section 6.4.6.
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6.4.4.2 Weakly-informative priors

If no prior knowledge is available or if the available prior information is sparse, weakly-

informative priors can be used. The underlying assumption is that the posterior is dominated

by the data (i.e., by the likelihood function) and the influence of the prior model is negligible.

Therefore, the prior distribution is chosen such that it contains nearly no information.

6.4.4.2.1 Uninformative or vague priors

Uninformative or vague priors are often modeled as constant, spanning the entire range

of a parameter. If the parameter space is unbounded, the use of constant prior densities

spanning the entire parameter space leads to improper prior distributions [Berger et al.,

2006]. The use of improper priors needs careful handling and is often better avoided in

engineering models because of the following reasons: (i) The resulting posterior distribution

is often a proper distribution, but is not guaranteed to be proper. Especially if the problem is

solved numerically, identification of improper posterior distributions is difficult [Berger et al.,

2006]. (ii) Engineering models are typically driven by many parameters. Even if all uncertain

parameters have a proper posterior distribution, the posterior distribution of some parameters

can still be quite vague despite a large number of observations. For these parameters, it is

not proper to assume an uninformative prior distribution as the prior has a considerable

influence on the posterior [Kass and Wasserman, 1996]. Typically, in engineering models

the parameters have a physical basis and even if the available prior information is sparse, we

typically know that some parameter values are more plausible than others. (iii) Models based

on improper priors are typically not fit for Bayesian model class selection and model averaging,

because the evidence of the associated stochastic model class is zero – and, consequently, the

evidence looses its significance. Moreover, priors that are proper but overly diffuse should

also be avoided in Bayesian model class assessment, because they enforce a strong preference

toward simpler models [Cheung and Beck, 2010].

6.4.4.2.2 Uninformative prior on truncated parameter space

To avoid the problem of unbounded parameter ranges and to simplify the numerical solution

of the Bayesian inference problem, the parameter space is sometimes truncated. The bounds

are selected such that they contain the assumed relevant posterior range. For physical models,

this approach is unsatisfactory because the imposed bounds and in particular the probability

jumps at the bounds are unphysical. Additionally, as for uninformative or vague priors, this

approach is not fit for Bayesian model class selection and model averaging: The evidence of

the associated stochastic model class depends on the chosen bounds. Moreover, this approach

should not be used to compensate for improper posterior distributions, because in this case

the resulting posterior distribution will also depend on the chosen bounds.
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6.4.4.2.3 Other weakly-informative approaches

The Jeffreys prior [Jeffreys, 1946, 1998] is a special weakly-informative prior distribution

that is invariant under re-parameterization of the parameter vector. In the so-called refer-

ence prior approach [Bernardo, 1979; Berger and Bernardo, 1992; Berger et al., 2009] the

prior is chosen such that the model-averaged information gain between the prior and the

posterior is maximized in an asymptotic sense. For multiparameter problems this approach

is often advantageous compared to the Jeffreys prior. A disadvantage of the reference prior

approach is that for complex engineering models it is not straightforward to obtain the prior

distribution. A literature review of weakly-informative approaches is provided by [Kass and

Wasserman, 1996].

6.4.4.3 Principle of Maximum Information Entropy

If prior knowledge is available, it is a subjective choice to neglect the available prior informa-

tion. Therefore, the argument that weakly informative priors are ”objective” is misguided.

One way to incorporate the available prior information is to choose the probability model

amongst all feasible models that includes the least amount of information given the imposed

constraints [Beck, 2010]; i.e., the Principle of Maximum Information Entropy [Jaynes, 1983,

2003] is applied to infer the probability model. This approach offers an objective technique

to pick a probability model, given a set of (possibly subjective) constraints.

For example, consider an uncertain parameter that can take only positive values, and whose

mean and standard deviation are (assumed) given (e.g., the Young’s modulus or hydraulic

conductivity). In this case, the maximum entropy probability (MEP) model is the truncated

Normal distribution. However, the MEP model is only one out of many feasible probability

models. For the stated example, also e.g. the log-Normal, Gamma or Weibull distribution

could be picked instead of the MEP model.

6.4.4.4 Informative priors

Another way to select the respective probability model is to choose the probability model that

appears most adequate given the imposed constraints. Selected probability distributions are

listed in Table 6.2, ordered according to their range of support. If more than one probabilistic

model is deemed appropriate, different stochastic model classes can be considered: Together

with our belief about the prior plausibilities of the considered model classes, the evidence of

the stochastic model classes provides a measure for their posterior plausibilities.

This approach is sometimes accused of being subjective, because no formal rule is used

to select the prior distribution. However, if multiple alternative probabilistic models are

investigated, the objectivity of the approach is at least partially recovered, because the most
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Table 6.2: List of selected continuous probability distributions ordered according to their support.
Npara denotes the number of parameters required for the definition of the distribution.
Parameters defining the support of the distribution are not considered in Npara.
Note that by truncation, shifting and other transformations, the support of the listed
distributions can be adopted.

support distribution Npara support distribution Npara

(−∞,∞) (0,∞)
Normal 2 log-Normal 2
Gumbel 2 Gamma 2
Cauchy 2 Exponential 1
Student’s t (standard) 1 Weibull 2
Student’s t (generalized) 3 Fréchet 2
Laplace 2 Rayleigh 1
Logistic 2 Chi-squared 1

Chi 1
[a, b] Fisher’s F 2

uniform 0 inverse Gaussian 2
Beta 2 log-Logistic 2
truncated Normal 2
trapezoidal 2

Table 6.3: Results of the simple toy-example discussed in Example 6.7. The flat prior does not
maintain the specified constraints for the prior distribution, it is added for illustratory
purposes only. The value in each row that is considered advantageous (conservative) com-
pared to the other entries is highlighted in blue. The value in each row that is considered
disadvantageous compared to the other entries is highlighted in orange. (Example 6.7)

MEP prior log-Normal prior Gamma prior flat prior

entropy of the prior −0.884 −0.891 −0.887 ∞
entropy of the posterior −1.23 −1.07 −1.12 −0.884
evidence 5.4 · 10−3 9.6 · 10−3 7.9 · 10−3 0
relative entropy 3.22 3.54 3.44 ∞
data fit −1.99 −1.11 −1.40 0.884
mean of posterior 1.25 1.29 1.28 1.5
std. dev. of posterior 7.1 · 10−2 8.3 · 10−2 7.9 · 10−2 10 · 10−2

plausible model in the set will be favored. In Example 6.7, the MEP prior is compared to

alternative prior distributions that also maintain the imposed constraints.

Example 6.7. Informative prior distributions:

We consider the following simple toy-example that incorporates prior information: The knowl-

edge about parameter θ is to be updated. All that is a-priori known about θ is the mean

m = 1.0, the standard deviation s = 0.1 and the support θ ∈ [0,∞). For simplicity, the likeli-

hood function is given explicitly as a Normal distribution with mean 1.5 and standard deviation
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0.1. The MEP prior for the example at hand is the truncated Normal distribution - which is in

this case essentially equivalent to a Normal distribution, since the coefficient of variation of θ is

only 10%. We compare the MEP prior with a log-Normal prior and a Gamma prior that also

maintain the specified constraints

The results are shown in Table 6.3. For illustratory reasons, also the results for a flat prior

spanning the entire positive real line are given. As expected, the entropy of the MEP prior is

larger than the entropy of the log-Normal or Gamma prior (the flat prior does not maintain

the specified constraints for the prior distribution). However, the model utilizing a log-Normal

prior has a larger posterior entropy, a larger evidence and a larger posterior standard deviation

compared to the model with the MEP prior. Consequently, the log-Normal prior is preferred

over the MEP prior for the example at hand. The only “drawback” of the model with the

log-Normal prior is that it is the one surprising us more. However, this disadvantage is more

than outweighed by a larger data-fit compared to the model with the MEP prior.

Summarizing the results of Example 6.7: The MEP model can be regarded as an objective

choice that incorporates the least amount of prior information. However, the MEP model

should not be considered a conservative choice or as a choice that retains the largest uncer-

tainty in the posterior distribution.

6.4.4.5 Summary

This section attempts to give a short overview for modeling of prior distributions in engi-

neering problems:

(1) Typically, parameters in engineering problems are related to physical quantities. For this

type of parameters, certain subsets of parameter values can often be identified to be more

plausible than parameter values in other subsets. For example, stiffness values are usually

neither very close to zero nor are they unreasonably large. Moreover, it is also not a good

idea to simply prescribe bounds for reasonable parameter values and to consider all values

inside the bounds as equally plausible, because the bounds impose incomprehensible jumps

in the plausibilities. Instead, rational reasoning suggests that the plausibilities should only

vary gradually. As a consequence, weakly-informative priors are often not an appropriate

choice. Thus, MEP priors that maintain the imposed constraints and other informative prior

distributions are often a better choice.

(2) If the choice of a distribution for which only constraints are given is expected to have

a considerable influence on the posterior results, we recommend to investigate multiple al-

ternative probability models – and not only the MEP prior. In this case a robust posterior

distribution is obtained through Bayesian model class selection or model averaging – provided

that the involved computational costs remain manageable. If the choice of the distribution

is not considered to have a large influence on the posterior or if the computational costs of a

more detailed analysis are too large, the MEP prior is a simple and objective choice.
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Figure 6.5: Example of a parameter vector θ represented by a hierarchic structure. By means of
a hierarchic probabilistic model, the uncertainties can be represented in an intuitive
fashion.

6.4.5 Hierarchical stochastic models

Sometimes it can be appropriate to further parameterize the components of the uncertain

parameter vector θ. In this case the stochastic model class is said to be hierarchical. An ex-

emplary illustration of a hierarchic representation for parameter vector θ is given in Fig. 6.5.

A hierarchic model structure offers an intuitive and visual way of representing existing un-

certainties, and can simplify the probabilistic modeling.

A scenario where it is appropriate to further parameterize the probability model is: Assume

we have the following information about an uncertain parameter: (i) The parameter can only

take positive values. (ii) The prior mean is known. (iii) For the prior standard deviation

we have some incomplete knowledge; i.e., we cannot directly specify a fixed value for the

standard deviation. In this case we can first find a reasonable distribution conditional on a

fixed standard deviation (e.g., the MEP model) and, in a second step, express the standard

deviation itself as an uncertain parameter. The distribution of the uncertain standard de-

viation is either specified directly using the available information, or is itself based on e.g.

the Principle of Maximum Information Entropy if the available information only allows us to

impose constraints for the standard deviation.

Example 6.8. Hierarchic prior distributions:

We continue and extend the simple toy-example presented in Example 6.7, in which the knowl-

edge about parameter θ is updated. Again, we assume that a-priori the (conditional) mean m

of θ is known. However, contrary to Example 6.7, for the standard deviation s of θ we presume

that only incomplete knowledge is available: The standard deviation s is treated as a hyper-

parameter with a coefficient of variation of δs = 30%. Consequently, the prior can be expressed

as p(θ, s) = p(θ|s) · p(s). The prior distribution of p(θ|s) is considered fixed: It is a log-Normal

distribution that has conditional mean m and standard deviation s. For the distribution p(s)
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Figure 6.6: Hierarchic prior probabilistic model used in Example 6.8 – represented as a
Bayesian network. The white nodes denote the parameters that are considered
uncertain, the gray nodes are the parameters whose value is fixed. (Example 6.8)

Table 6.4: Results of the simple toy-example discussed as Example 6.8 in Section 6.4.5: Comparison
of three hyper-prior models for the standard deviation s of parameter θ. The value in
each row that is considered advantageous (conservative) compared to the other entries is
highlighted in blue. The value in each row that is considered disadvantageous compared
to the other entries is highlighted in orange. The last three columns that are printed in
grey list the results of the Bayesian analysis for fixed values of s; the underlying models
do not maintain the a-priori prescribed constraints for s and are added for illustratory
purposes only. The column s = 0.10 repeats the results of Example 6.7 listed in Table 6.3
for the log-Normal prior. A value of s = 0.40 maximizes the evidence amongst all feasible
models with fixed s ∈ (0,∞); and s = 0.29 maximizes the evidence weighted with the
PDF of the log-Normal hyper-prior. (Example 6.8)

MEP log-Normal Gamma fixed s
hyper-prior hyper-prior hyper-prior s = 0.10 s = 0.40 s = 0.29

mean of marginal prior θ 1.000 1.000 1.000 1.000 1.000 1.000
std. dev. of marginal prior θ 0.100 0.100 0.100 0.1 0.4 0.29
entropy of marginal prior θ 0.182 0.180 0.181 −0.891 0.391 0.120
entropy of prior −0.88 −0.93 −0.90 −0.891 0.391 0.120
entropy of posterior −2.03 −1.99 −1.99 −1.07 −0.890 −0.899
entropy of marginal posterior θ −0.884 −0.886 −0.885 −1.07 −0.890 −0.899
evidence 0.268 0.270 0.269 0.010 0.329 0.295
relative entropy 2.12 2.11 2.11 3.53 1.96 2.03
data fit 0.802 0.798 0.799 −1.11 0.852 0.810
mean of posterior θ 1.46 1.46 1.46 1.29 1.47 1.46
std. dev. of posterior θ 0.100 0.100 0.100 0.083 0.099 0.099
mean of posterior s 0.326 0.320 0.322 0.1 0.4 0.29
std. dev. of posterior s 0.078 0.087 0.084 − − −

that has mean ms and coefficient of variation δs, different alternative hyper-prior models are

compared: the MEP hyper-prior (a truncated Normal distribution), a log-Normal hyper-prior

and a Gamma hyper-prior. The probabilistic model of the prior is illustrated in Fig. 6.6.

The likelihood function is adopted without modification from Example 6.7: It is a Normal dis-

tribution with mean 1.5 and standard deviation 0.1. To maintain comparability to Example 6.7,

the conditional mean m of θ as well as the mean ms of s are selected such that the mean and

standard deviation of the marginal prior of θ are 1.0 and 0.1 – in accordance with Example 6.7.

This results in m = 1.0001 and ms = 0.3031.

The results are listed in Table 6.4. The model employing the MEP hyper-prior has the prior
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and marginal prior of θ with the largest entropy. Also the entropy of the posterior is maximized

for the MEP hyper-prior compared to the other investigated hyper-prior models. However, the

same cannot be said about the entropy of the marginal posterior of θ. The largest evidence

is produced by the model class employing the log-Normal hyper-prior. However, there is no

considerable difference in the evidence of all three investigated hyper-prior models. The model

class with the MEP hyper-prior has the best data-fit, but also a larger relative entropy compared

to the other hyper-prior models. All three hyper-prior models have the same posterior mean

and standard deviation for parameter θ.

Comparing the models investigated in this example (Example 6.8) with the models investigated

in Example 6.7, the models in this example clearly have a larger evidence. Note that the

constraints on θ are the same in Example 6.7 and Example 6.8. Therefore, the models in

Example 6.8 can be considered more appropriate than the models in Example 6.7. The larger

evidence is a consequence of (i) a larger data-fit of the models in Example 6.8, but also of a

(ii) smaller relative entropy of the models in Example 6.8. Remember that relative entropy can

be interpreted as a measure for model complexity – a larger relative entropy acts as a penalty

term for more complex models. Therefore, at a first glance, it is surprising that the models in

Example 6.8 have a smaller relative entropy than the models in Example 6.7, because the models

in Example 6.8 employ a larger number of parameters (i.e., two parameters) than the models

in Example 6.7 (which have only one parameter). However, in this context, model complexity

cannot be interpreted as a simple function of the number of parameters in a stochastic model

class: The prior uncertainty that is associated with the respective model parameters has a

considerable influence.

The last three columns in Table 6.4 investigate a partial hierarchic modeling approach. Instead

of describing the uncertainty about parameter s explicitly, the value of s is fixed at a particular ŝ.

This columns are added for illustratory purposes only, because they do not maintain the a-priori

specified constraints for s. The column ŝ = 0.10 repeats the results listed in Table 6.3 for the

log-Normal prior (Example 6.7). Remember that the three hyper-prior models can be directly

compared to the models listed in Table 6.3, because all models maintain the prior constraints

imposed on θ. The value ŝ = 0.40 is selected such that the evidence of the underlying non-

hierarchic stochastic model class is maximized (compared to all other feasible values for s). In

this case, no prior information about s is taken into account – and the results deviate clearly

from the results obtained employing a full hierarchic modeling approach. Results that are

closer to the hierarchic approach can be obtained with ŝ = 0.29, which maximizes the evidence

weighted with the PDF of the log-Normal hyper-prior at location s. This approach takes prior

information about s into account, but selects only the model class belonging to a particular s

that appears most plausible.

As Example 6.7, Example 6.8 demonstrates that the MEP prior is a feasible choice, but

should be considered as one viable prior model out of many. Wherever feasible, a Bayesian

analysis should take different alternative prior modeling strategies into account. The evidence

of the associated stochastic model classes can be used to obtain posterior plausibilities of the

investigated model classes.
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6.4.6 Probability models for error structures

This section is manly written with respect to output prediction-errors, as they are usually the

largest errors in the analysis. However, the following discussion can be directly transfered to

other error structures; e.g., observation errors or input errors.

6.4.6.1 Quantities that influence the output prediction-error

The probability model of the output prediction-error v should – in theory – depend on q, θq

and f . This dependency can be illustrated by the example of a frame structure that is modeled

using linear-elastic beam elements: In this case f represents the loading of the structure, θq

represents its stiffness, and q are the computed displacements; the displacements of the real

structure are r. If the loading f of the structure is large compared to the stiffness θq of

the structure, the material behaves no longer elastic and the response r of the real structure

becomes non-linear. Similarly, if the displacements q of the model become large, it is to be

expected that geometrical non-linearities have to be considered to represent the response r of

the real structure. As the model at hand is a linear-elastic one and is based on the assumption

of small displacements, the modeling errors clearly depend on q, θq and f .

In practice, this dependency is typically not modeled explicitly (see Fig. 6.4). Sometimes,

the dependency is implicitly assumed by choosing either an additive or a multiplicative error

structure for v. If the investigated system is always exposed to similar input conditions, the

stochastic model class can very likely cope with the inadequate assumptions about the error

structure. However, if the investigated system is exposed to different (sometimes possibly

extreme) input conditions, the inadequate1 error structure will tend to underestimate the

uncertainties in the model2. Such an undesired behavior clearly confines the prediction

capabilities of the selected stochastic model class.

As one of the purposes of Bayesian inference is often to predict the response of a system

under extreme conditions, neglecting the dependency of the output prediction-error v on q,

θq and f can be a considerable source for errors. For many models a reasonable (and still

feasible) strategy can be to formulate the standard deviation of v as a function of the model

response q. For example, in case of the previously mentioned linear model, the standard

deviation of v can be gradually increased if q exceeds a specified threshold. In this example,

a bias in the model output for large q can be implemented as well, by setting the mean of

v to a value different from zero, in order to approximately represents non-linear effects for

large displacements.

1By “inadequate”, an error structure is meant that underestimates the errors on average.
2The uncertainties tend to be underestimated, because inadequate assumptions mean that the available

data is less likely to have been observed; i.e., is more surprising. This means that the information gain of the
posterior relative to the prior is large. Thus, the posterior tends to be over-confident.
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6.4.6.2 Representation of the error mean

Apart from representing prediction-errors for “extreme” scenarios that the model was not

designed for (see previous section), it is typically appropriate to assume that the prediction-

error and observation-error are unbiased – even if in reality there will probably be a bias.

This assumptions needs to be made, because modeling a biased error structure is equivalent to

increasing the complexity of the underlying model. If information is available that indicates

a (possibly a priori uncertain) biased error structure, we could, therefore, parametrize the

expected bias and consider it as part of the engineering model. For an additive error structure,

assuming unbiasedness corresponds to setting the mean to zero. For a multiplicative error

structure, the mean has to be set to one to get an unbiased response (if the error is considered

independent of the response).

6.4.6.3 Representation of the error variance

It is often also safe to assume that the variance of the error structure is - at least conditionally

within a hierarchic framework - known (see discussion in Section 6.4.6.1). Assuming the

variance conditionally known has the advantage that (i) the uncertainty in the variance can

be quantified and modeled separately (e.g., conditional on the model response) of the actual

error structure, and that (ii) the complexity of the probabilistic error model decreases by

assuming the variance conditionally fixed (see Section 6.4.5). If there is reason to believe the

variance structure to be inhomogeneous, one could attempt to parametrize (and learn) the

variance in the context of the hierarchic model structure.

Another issue to consider is whether the size of errors and the shape of the error distribution

are bounded by physical constraints. This is for example the case if observed or predicted

quantities cannot become negative. In such a case it may be more convenient to work with a

multiplicative instead of an additive error structure. However, working with a multiplicative

error structure, it is important to ensure that for model responses close to zero, the expected

errors of the model are not underestimated (as the standard deviation is assumed proportional

to the response).

6.4.6.4 Dependence structure of the errors

If the mean and variance of the error structure are conditionally asserted and if the size of

errors is not bound by physical constraints, the maximum entropy PDF is Normal in the

absence of any other limiting constraints. The handling of uncertainties in the correlation

structure of (e.g.) a Normal process is more complex than handling uncertainties in the

variance or in the mean. Typically, no specific information about the particular correlation

structure is available. Therefore, the errors are usually considered to be uncorrelated, in
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accordance with the Principle of Maximum Information Entropy.

However, based on the physics of the problem, we often know that especially prediction-

errors tend to exhibit a positive dependence structure in time and/or space. Neglecting

this knowledge and modeling the errors as uncorrelated does not necessarily lead to more

conservative results [Simoen et al., 2013]. Instead of working with uncorrelated errors, it

is therefore recommended to explicitly model the correlation structure as uncertain [Simoen

et al., 2013].

This holds in particular for model responses that exhibit a temporal or spatial structure.

The errors of such a type of model response are typically dependent, where the dependency

decreases with increasing time/distance between two elements. Usually, in engineering, the

time-step size is not large enough to consider the output prediction-errors of two adjacent

time-steps (or grid elements) as uncorrelated. The modeling issue is often the unknown

dependence structure of the errors. However, especially for long observation histories, the

dependence structure can have a considerable influence on the posterior results. Therefore,

it is advisable to work with different dependence structures specified in separate modeling

classes, and to consider the dependence parameter (e.g., the correlation length) as uncertain

– provided that such an approach is computationally feasible. Dependence structures are

commonly expressed in terms of the exponential or exponential squared auto-correlation

coefficient function, or as a auto-regressive or moving-average model. Note that the process

modeled with an exponential auto-correlation coefficient function is equivalent to a first-

order auto-regressive model. This type of dependence structure is often preferred in practice,

because it renders the process Markovian.

Example 6.9. Correlated error structure:

Let the observed data D be generated by a standard Normal stochastic process with exponential

correlation structure; i.e. the auto-correlation coefficient function of the stochastic process is

ρD(di, dj) = exp
(
|i−j|
ldata

)
, where ldata > 0 is the correlation length, and i, j ∈ {1, . . . , Ndata}, with

Ndata the number of observed data points. In the following, it is assumed that the properties

of the process generating the data D are not fully known.

The observed data D is approximated by a Normal stochastic process that has zero mean,

standard deviation σ, and exponential correlation structure with correlation length l. Our

knowledge about σ and l is considered uncertain. Consequently, the likelihood function L(σ, l|D)

can be expressed as the PDF of a N -dimensional multivariate Normal distribution that has zero

mean and covariance matrix Σ, where the coefficients (Σ)i,j of Σ are defined as (Σ)i,j =

σ2 · exp
(
|i−j|
l

)
.

In this example, the shape of the average likelihood function is assessed. The average likelihood

function is computed as follows: 103 different realizations of the data set D are generated,

the likelihood function of each data set is evaluated, and the average over all such likelihood

functions is labeled the average likelihood function. The average likelihood function is depicted
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Figure 6.7: The contour lines depict the shape of the average likelihood function; i.e., the average of
the likelihood functions of 103 randomly generated data sets. Each contour line indicates
a decrease of the likelihood by a factor of 10 compared to the preceding contour line
(or to the absolute maximum for the first contour line). The blue marker indicates the
maximum of the average likelihood function. The orange markers indicate the maxima
of the 103 likelihood functions that were used to obtain the average likelihood function.
The plots differ in the properties of the stochastic process generating the data. Different
correlation length ldata and size Ndata of the data sets are investigated. (Example 6.9)

in Fig. 6.7 for different ldata and Ndata.

The shapes of the depicted likelihood functions indicate that for large correlation length ldata

used to generate the data sets, the assumed uncertain standard deviation σ and the correlation

length l cannot be reliably estimated from the data – even if Ndata is relatively large. Thus,

the prior distribution of σ and l will have a considerable influence on the posterior distribution,

and the posterior distribution of σ and l is not guaranteed to be centered in the neighborhood

of the postulated true values σdata and ldata. Moreover, assuming the prior standard deviation

of the errors conservatively (i.e., too large), will limit the prediction capabilities of the model,

as both the posterior standard deviation and the posterior correlation length of the errors are

over-estimated.

6.5 Formulation of the likelihood function

The evidence of the stochastic model class is defined as the plausibility of observing output

z conditional on having observed input s and on the stochastic model class M, i.e., cE|M =
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p(z|s,M). The evidence can be evaluated as:

cE|M =

∫
θ

∫
f

∫
r
p(z|r,θw,M) · p(r|q(f ,θq),θv,M)

· p(f |s,θf,M) · p(θ|M) dr df dθ , (6.31)

where θq, θf, θv and θw are part of θ.

Contrary to the evidence that is a unique property of the selected stochastic model class M
and the observed data D, the formulation of the Bayesian inference process itself is ambiguous.

Some variants to formulate the Bayesian inference process are stated in the following.

Variant (1)

The first variant merges the prediction-error and the observation-error. The likelihood is

expressed as the plausibility of observing z conditional on the model output q(f ,θq):

p(z|q(f ,θq),θ,M) =

∫
r
p(z|r,θw,M) · p(r|q(f ,θq),θv,M) dr (6.32)

In case of an additive error structure we have z = q + v + w, and, thus, we can write the

likelihood as:

p(z = ẑ|q(f ,θq),θ,M) = p(v + w = ẑ− q(f ,θq)|θv,θw,M) (6.33)

The convolution integral appearing in Eq. (6.32), and implicitly also in Eq. (6.33), is an

inconvenience. If both v and w are Normal, the integral can be solved analytically, because

v + w is also Normal. With likelihood p(z|q(f ,θq),θ,M) and prior p(f |s,θf,M) · p(θ|M),

the Bayesian inference process can be written as:

p(f ,θ|z, s,M) = cE|M
−1 · p(z|q(f ,θq),θv,M) · p(f |s,θf,M) · p(θ|M) (6.34)

Consequently, we directly learn the posterior parameter vector θ and the posterior model

input f . In order to obtain the joint posterior PDF that additionally includes the system

output r = q(f ,θq) + v, a post-processing step is required:

p(v, f ,θ|z, s,M) = p(v|v + w = z− q(f ,θq), z,q(f ,θq),θ,M) · p(f ,θ|z, s,M) (6.35)

where p(v|v + w = z − q(f ,θq), z,q(f ,θq),θ,M) can be readily obtained as a conditional

Normal distribution, if both v and w are Normal.



6.5. Formulation of the likelihood function 153

Variant (2a)

This variant expresses the likelihood directly in terms of the observation-error : p(z|r,θw,M),

and the stochastic forward model r = q(f ,θq) + v is represented explicitly as part of the

model. For an additive error structure z = r + w, the likelihood is p(z = ẑ|r,θw,M) =

p(w = ẑ− r|θw,M). The Bayesian inference process is formulated as:

p(r, f ,θ|z, s,M) = cE|M
−1 · p(z|r,θw,M)

· p(r|q(f ,θq),θv,M) · p(f |s,θf,M) · p(θ|M) (6.36)

Contrary to Variant (1), we directly learn the joint posterior PDF of r, f , and θ. Con-

sequently, posterior samples of the marginal PDF p(r|z, s,M) are readily available, corre-

sponding to samples from the robust posterior predictive PDF for the system output history

conditioned on the observed input. Therefore, this variant directly provides a filter not only

for parameter estimation, but also for the system output. However, this advantage has a price:

The peakedness of the likelihood function is more pronounced than in Variant (1), because,

the uncertainty in the observation-errors is typically much smaller than the uncertainty in

the prediction-errors.

Variant (2b)

Instead of expressing the likelihood in terms of the observation-error, the likelihood can often

also be stated exclusively in terms of the prediction-error. In this case, the observation-error

w is represented explicitly, and we introduce the stochastic variable r̂ that is linked to the

observed output ẑ through w as r̂ = ẑ −w. The likelihood is then given as the plausibility

of observing r = r̂ given w, q(f ,θq) and M i.e., p(r = r̂|ẑ,w,q(f ,θq),θv,M) = p(v =

ẑ−w − q(f ,θq)|θv,M). This leads to the following Bayesian inference process:

p(w, f ,θ|ẑ, s,M) = cE|M
−1 · p(r = r̂|ẑ,w,q(f ,θq),θv,M)

· p(w|,θw,M) · p(f |s,θf,M) · p(θ|M) (6.37)

In this variant we explicitly learn the structure of the posterior observation-error. We can

obtain posterior realizations of the system output r by using the relation r = ẑ − w and

inserting posterior samples of the observation-error w.

Variant (3)

In the third variant all errors are modeled explicitly and the likelihood is given as p(z =

ẑ|w,v,q(f ,θq),M) = δz(ẑ), where δz(·) denotes the Dirac mass at z = q(f ,θq) + v + w.
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The Bayesian inference process then writes:

p(w,v, f ,θ|ẑ, s,M) = cE|M
−1

· p(q(f ,θq) + v + w = ẑ|w,v,q(f ,θq),M)

· p(w|,θw,M) · p(v|,θv,M)

· p(f |s,θf,M) · p(θ|M) (6.38)

Eq. (6.38) can usually not be solved analytically; and a direct numerical treatment of Eq. (6.38)

is infeasible, if the space of z is not finite. The problem in Eq. (6.38) can be tackled approx-

imately by means of Approximate Bayesian Computation [Tavaré et al., 1997; Beaumont

et al., 2009].

The posterior distributions as well as the value of the evidence are invariant to how the

likelihood in the Bayesian inference process is formulated. Nevertheless, if the Bayesian

inference is performed numerically, it does matter which of the above variants is used to set-

up the problem. Loosely speaking, for most Markov Chain Mote Carlo (MCMC) [Gilks et al.,

1996; Gelman et al., 2004a] based algorithms, the computational complexity of generating

posterior samples increases as the peakedness of the likelihood function increases. This holds

in particular for the BUS approach [Straub and Papaioannou, 2015] and the TMCMC method

[Ching and Chen, 2007]. Ordering the above variants with respect to an increasing peakedness

we get the sequence: Variant (1), Variant (2b), Variant (2a), Variant (3), where Variant (1)

has the flattest likelihood. Variant (2b) is listed before Variant (2a), because typically the

uncertainty in the prediction-error is larger than the uncertainty in the observation-error.

The formulation given in Variant (1) is to be preferred if the Bayesian inference process

is performed numerically, since it has the flattest likelihood. However, if the convolution

integral in Eq. (6.32) cannot be solved analytically, it is recommended to use Variant (2b).

Variant (2a) is only recommended if the uncertainty in the observation-error is larger than

the uncertainty in the prediction-error. Variant (3) constitutes an extreme case, that can

only be tackled numerically through Approximate Bayesian Computation, since it includes

the Dirac function.
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Chapter 7

Numerical Methods for Bayesian

Analysis

7.1 Introduction

In a Bayesian analysis, typically two main problems can be identified:

1. generate posterior samples:

Except for very simple models, the posterior distribution can usually not be derived

analytically. Even if the shape of the posterior distribution is known explicitly, it does

often not follow any conventional type. Consequently, samples from the posterior can

in most cases only be generated numerically.

If the underlying model requires low computational costs, Markov chain Monte Carlo

(MCMC) methods (see Section 3.4) constitute a popular class of methods to sample

from the posterior distribution [Gilks et al., 1996; Gelman et al., 2004a]. However, one

problem of MCMC methods is that after an initial burn-in phase the samples may not

yet have reached the stationary distribution of the Markov chain [Plummer et al., 2006].

That is, finding an appropriate burn-in period in MCMC is often a non-trivial problem.

Another issue is that standard MCMC algorithms usually cannot be applied efficiently

for problems with many uncertain parameters. Some specialized MCMC algorithms

[Haario et al., 2005; Robert and Tweedie, 1996; Neal, 2011; Cheung and Beck, 2009] can

cope with such high dimensional problems, they require however additional evaluations

of the likelihood function or its gradient for each generated sample.

2. evaluate the evidence cE|M:

It is typically challenging to compute the evidence cE|M, because of the multi-dimensional

integral in Eq. (6.2). If the system is globally identifiable [Beck and Katafygiotis, 1991,

1998], asymptotic approximations [Beck and Yuen, 2004; MacKay, 1992b] can be ap-
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plied to estimate the evidence. Otherwise, the evidence is usually evaluated numerically.

Some methods to compute the evidence cE|M are discussed in [Cheung and Beck, 2010].

In Bayesian inference with engineering problems, the likelihood function is typically coupled

to an engineering model that approximates the response of the actual system of interest. For

each evaluation of the likelihood function, the engineering model needs to be computed for the

inquired parameter vector θ. As many engineering models are computationally demanding,

the efficiency of Bayesian inference methods is often associated with the required number of

likelihood function calls.

This chapter focuses on numerical methods that generate samples from the posterior distri-

bution and provide simultaneously an estimate for the evidence. The BUS appraoch (Sec-

tion 7.3), an adpative variant of the BUS approach (Section 7.4), nested sampling (Section 7.5)

and the TMCMC method (Section 7.6) are presented.

7.2 Investigated example problems for numerical Bayesian in-

ference

The example problems listed in the following are investigated in this chapter. This section uses

quantity c that is a positive constant that typically needs to be chosen such that c·L(θ|D) ≤ 1

is maintained for all θ. The constant c is properly introduced in Section 7.3.

– Example problem 1a: A one dimensional problem with a standard Normal prior. The

uncertain parameter is denoted by θ. The likelihood is a Normal distribution that has

mean µl = 3 and standard deviation σl = 0.3. This problem has an analytical solution:

The posterior distribution is Normal with posterior mean and standard deviation of

µl/
(
σ2
l + 1

)
= 2.75 and 1/

√
1 + σ−2

l = 0.287, respectively. The maximum of the

likelihood is Lmax = 1/
(
σl
√

2π
)

= 1.33. The evidence of the example problem is cE,ref =

ϕ
(
µl/
√

1 + σ2
l

)
/
√

1 + σ2
l = 6.16 ·10−3, where ϕ(·) is the PDF of the standard Normal

distribution. Consequently, pΩ,ref of the rejection sampling algorithm is 4.63 · 10−3, if

c = 1/Lmax.

– Example problem 1b: The formulation of this problem is equivalent to Example prob-

lem 1a, with the only difference being that the likelihood function has mean µl = 5 and

standard deviation σl = 0.2. The posterior mean and standard deviation is 4.81 and

0.196, respectively. The evidence for this problem is cE,ref = 2.36 · 10−6. Consequently,

pΩ,ref of the rejection sampling algorithm is 1.18 · 10−6, if c = 1/Lmax and Lmax = 1.99.

– Example problem 2: A 12-dimensional problem with prior
∏12
i=1 ϕ (θi), where ϕ(·) de-

notes the standard Normal PDF and θi is the ith component of the 12-dimensional
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parameter vector θ. The likelihood function of the problem is
∏12
i=1 ϕ

(
θi−µl
σl

)
/σl, with

σl = 0.6. The value µl is chosen such that the evidence cE,ref becomes 10−6; i.e.,

µl = 0.462. The posterior mean and standard deviation of each component of θ is 0.34

and 0.51, respectively. The theoretical maximum that the likelihood function can take

is Lmax =
(
0.6 ·

√
2π
)−12

= 7.47 ·10−3. Thus, pΩ,ref of the rejection sampling algorithm

is 1.34 · 10−4, if c = 1/Lmax.

– Example problem 3: A two-story frame structure represented as a two-degree-of-freedom

shear building model is investigated. This example problem was originally discussed

in [Beck and Au, 2002]. BUS is applied in [Straub and Papaioannou, 2015; DiazDe-

laO et al., 2017] to solve this problem. The two stiffness coefficients k1 (first story)

and k2 (second story) of the model are considered uncertain. The uncertainty in k1

and k2 is expressed as k1 = θ1 · kn and k2 = θ2 · kn, where θ1 and θ2 are uncertain

parameters and kn = 29.7 · 106N/m. The prior distributions of θ1 and θ2 are mod-

eled as independent log-Normal distributions with modes 1.3 and 0.8 and standard

deviation 1.0. The lumped story masses m1 (first story) and m2 (second story) are

considered deterministic and have masses m1 = 16.5 · 103kg and m2 = 16.1 · 103kg.

The influence of damping is neglected. Bayesian updating is performed based on the

measured first two eigen-frequencies of the system: f̃1 = 3.13Hz and f̃2 = 9.83Hz.

The likelihood of the problem is expressed as L(θ) = exp
(
−0.5 · J(θ)/σ2

ε

)
, where

σε = 1/16 and J(θ) =
∑2

j=1 λ
2
j

(
f2
j (θ)

f̃2
j

− 1

)2

with λ1 = λ2 = 1 and fj(θ) as the jth

eigen-frequency predicted by the model. The posterior distribution of this problem is

bimodal [Beck and Au, 2002; Straub and Papaioannou, 2015]. The reference solution

is: cE,ref = pΩ,ref = 1.52 · 10−3 (since Lmax = 1), E[k1|D] = 1.12 and σ[k1|D] = 0.66.

The following quantities are introduced for the discussion of the example problems:

– b acts as a normalized version of c−1: Let b ∈ (0, 1] be defined as b = Lmax/c
−1; i.e.,

b = 1 ⇔ c−1 = Lmax and b = 0 ⇔ c−1 = 0. The performance of the investigated

algorithm is assessed for different values of b.

– b103,max represents the largest observed likelihood multiplied with c in a set of 103

independent posterior samples. Note that b103,max is a stochastic quantity.

– cE,ref denotes the actual value of the evidence of the example problem. The quantity

pΩ,ref is defined as pΩ,ref = cE,ref/Lmax.

– ĉE,K is the evidence estimated by the investigated algorithm based on K posterior

samples.

– aK and sK denote the estimated mean and standard deviation of the first component

of the parameter vector in a set of K posterior samples. Note that aK and sK are
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Table 7.1: Reference solution of the investigated example problems.

Example problem
1a 1b 2 3

cE,ref 6.16 · 10−3 2.36 · 10−6 1.00 · 10−6 1.52 · 10−3

Lmax 1.33 1.99 7.47 · 10−3 1.00
pΩ,ref 4.63 · 10−3 1.18 · 10−6 1.34 · 10−4 1.52 · 10−3

E[θ1|D] 2.75 4.81 0.34 1.12
σ[θ1|D] 0.287 0.196 0.51 0.66
E[b103,max] 1 1 0.46 0.999
Pr
[
b103,max > 0.8

]
1 1 1 · 10−4 1

Pr
[
b103,max < 0.99

]
10−37 10−32 1 1 · 10−4

Pr
[
b103,max < 0.999

]
5 · 10−12 1 · 10−10 1 0.38

random variables for finite K. If the investigated algorithm produces posterior samples,

we have E[aK ] = E[θ1|D] and E[sK ] = σ[θ1|D]. If the generated posterior samples are

independent, then σ[aK ] = 1√
K
·σ[θ1|D]. For dependent samples, σ[aK ] can be expressed

as

σ[aK ] =

√
1 + γ

K
· σ[θ1|D] (7.1)

where γ ≥ 0 quantifies the dependency of the generated samples.

- Neff: the number of effectively independent samples in the generated set of K posterior

samples (of the first component θ1). This quantity specifies how many truly independent

posterior samples of θ1 would give the same variance in the sample mean as Var[aK ]

obtained by aBUS.

Neff =

(
E [sK ]

σ [aK ]

)2

=
K

1 + γ
(7.2)

Note that Neff can be interpreted as a measure for the dependency of the generated

posterior samples; the smaller Neff the stronger the dependency.

– nK is the total number of prior samples needed to generate K posterior samples in

Algorithm (7.3).

– θ̂1 represents a posterior sample obtained with the investigated algorithm.

The reference solutions of the presented example problems are summarized in Table 7.1.

Additional to the quantities cE,ref, Lmax, pΩ,ref , E[θ1|D] and σ[θ1|D], the statistics of quantity

b103,max are listed in the last four rows. It is obvious that Example problem 2 differs from the

other problems with respect to the statistics of b103,max: For Example problems 1a, 1b and 3,

the expectation of b103,max is very close to one: E[b103,max] = 1 and Pr
[
b103,max < 0.999

]
=

5 · 10−12 for Example problem 1a, E[b103,max] = 1 and Pr
[
b103,max < 0.999

]
= 1 · 10−10 for

Example problem 1b, and E[b103,max] = 1 and Pr
[
b103,max < 0.99

]
= 1 · 10−4 for Example

problem 3. However, for Example problem 2, E[b103,max] = 0.46 and Pr
[
b103,max > 0.8

]
=



7.3. Bayesian updating with structural reliability methods (BUS) 159

1 · 10−4. Consequently, it is extremely unlikely that a b103,max close to one will be observed

in a set of 103 posterior samples.

7.3 Bayesian updating with structural reliability methods (BUS)

This section contains material originally published in [Betz et al., 2017].

Some passages and figures are directly taken from the mentioned reference.

7.3.1 Introduction

BUS [Straub and Papaioannou, 2015] is a recently introduced accept/reject sampling method

for Bayesian updating that converts sampling from the posterior into sampling from the failure

domain of a structural reliability problem. In structural reliability, probabilities of rare events

are estimated [Ditlevsen and Madsen, 2007; Melchers, 1999; Straub, 2014] (see Section 4.4).

By interpreting the Bayesian updating problem as a structural reliability problem, existing

structural reliability methods can be used to perform the Bayesian analysis. Moreover, an

estimate for the evidence cE|M is obtained as a by-product of BUS.

An often employed reliability method to tackle the BUS problem is Subset Simulation (SuS)

introduced in Section 5.3. The use of SuS in BUS is referred to as BUS-SuS in the following

and explained in detail in Section 7.3.8.

7.3.2 The idea behind BUS

Straub and Papaioannou show in [Straub and Papaioannou, 2015] that a Bayesian updating

problem can be interpreted as a structural reliability problem. The principal idea behind BUS

(Bayesian Updating with Structural reliability methods) is to add an additional uniformly

distributed random variable π with support [0, 1] to the space of random variables spanned

by θ. The updating problem is then expressed as a structural reliability problem in the

so-obtained augmented random variable space spanned by the compound vector [θ, π]. The

”failure” domain Ω of this reliability problem is defined as:

Ω = {π ≤ c · L(θ|D)} (7.3)

where c is a positive constant chosen such that c · L(θ|D) ≤ 1 is maintained for all θ. The

domain Ω is exemplified in Fig. 7.1. Note that Ω is used to denote both the failure domain and

the corresponding event. The link between the domain Ω and the actual Bayesian updating

problem is: Samples from the prior distribution of θ that are contained in Ω follow the
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posterior distribution [Straub and Papaioannou, 2015]. The limit-state function of the BUS

problem is defined such that it is g(θ, π) ≤ 0 if [θ, π] ∈ Ω; and g(θ, π) > 0 if [θ, π] is outside

of Ω (see Fig. 7.1). The limit-state function g(θ, π) that describes the ”failure” domain Ω

defined in Eq. (7.3) can be expressed as:

g(θ, π) = π − c · L(θ|D) (7.4)

Optimally, the constant c should be chosen as the reciprocal of the maximum of the likelihood

function, denoted Lmax [Straub and Papaioannou, 2015]. However, Lmax is not always known

in advance. In such cases, it is difficult to select c appropriately. The implications of choosing

c too large or too small are discussed in Section 7.3.9. An efficient strategy based on BUS-SuS

that renders a prior selection of c unnecessary is developed in Section 7.4.

7.3.3 Structural reliability methods in BUS

BUS employs structural reliability methods to perform Bayesian updating. The most straight-

forward (and simplest) application of BUS is rejection sampling – which corresponds to

crude Monte Carlo simulation in the context of structural reliability. Rejection sampling

within BUS is explained in detail in Section 7.3.7. However, as was pointed out in [Straub

and Papaioannou, 2015], other structural reliability methods can be used instead of the

simple rejection sampling algorithm (i.e., instead of a Monte Carlo simulation). Typically,

BUS is combined with Subset Simulation (see for example [Straub and Papaioannou, 2015;

DiazDelaO et al., 2017; Betz et al., 2014b; Papaioannou et al., 2013; Betz et al., 2014a]),

because it is efficient for very small failure probabilities and its performance does not depend

on the dimension M of the vector of uncertain model parameters θ. The combination of BUS

and SuS (BUS-SuS ) is explained in detail in Section 7.3.8.1. Apart from rejection sampling

and SuS, the BUS approach has already been combined with the first order reliability method

(FORM) and line sampling in [Straub et al., 2016]. FORM solves the reliability problem only

approximately by linearizing the limit-state function at the most probable point of failure

[Hasofer and Lind, 1974; Rackwitz and Flessler, 1978]. The line sampling method computes a

correction factor for the linearized solution by performing a specified number of line searches

perpendicular to a linear approximation of the failure surface [Hohenbichler and Rackwitz,

1988; Koutsourelakis et al., 2004; Rackwitz, 2001].

To generate realizations of the posterior, an additional post-processing step is required: Be-

sides computing the probability of failure, samples located in Ω have to be returned. In Monte

Carlo simulation and Subset Simulation, samples located in Ω are directly generated during

the reliability analysis – and simply have to be stored. Importance sampling based reliability

methods require an additional re-sampling step based on the importance weights associated

with the ”failed” samples to produce equal weighted samples. In case of FORM or line sam-
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pling, samples of the approximated ”failure” domain can be easily generated. Samples from

the posterior distribution can be further used for posterior prediction of quantities of interest.

A special application is the use of BUS for updating the probability of rare events based on

observed system response: As the target quantity of interest is the posterior probability of

failure, no posterior samples have to be generated and the updating problem can be directly

solved by structural reliability methods [Straub, 2011; Straub et al., 2016].

7.3.4 Estimating the evidence in BUS

An estimate for the evidence cE|M is obtained as a by-product of BUS. Let pΩ be the proba-

bility that samples [θ, π] from the prior distribution fall into Ω, i.e.:

pΩ = Pr [Ω] = Pr [g(θ, π) ≤ 0] (7.5)

pΩ is the target quantity of interest in a reliability analysis and referred to as the probability of

failure. In BUS, pΩ is directly linked to the evidence cE|M through c [Straub and Papaioannou,

2015]:

cE|M =
pΩ

c
(7.6)

Note that some reliability methods allow us to evaluate uncertainty bounds for the estimate of

pΩ. In this case, the statistical uncertainty in the estimated evidence cE|M can be quantified

directly, as the evidence is directly proportional to pΩ.

7.3.5 Outline of a simple proof of BUS

A simple proof that demonstrates the validity of BUS is [Straub and Papaioannou, 2015]:

The product cL(θ|D) can be expressed as:

cL(θ|D) =

∫
π≤cL(θ|D)

dπ (7.7)

Consequently, L(θ|D) · p(θ) can be stated as:

L(θ|D) · p(θ) =
1

c

∫
π≤cL(θ|D)

p(θ) dπ (7.8)

By inserting Eq. (7.8) into Eq. (6.2) we can easily prove the validity of Eq. (7.6).



162 7. Numerical Methods for Bayesian Analysis

7.3.6 BUS in standard Normal space

For some reliability methods it is convenient to transform the reliability problem to the

so-called underlying standard Normal space (see Section 5.1.2). In the BUS approach, the

random variable space of θ is augmented by the uniform random variable π. Thus, the

transformation must be performed in the augmented random variable space. Let u(θ) be

a M -dimensional vector whose M components are independent standard Normal random

variables. The transformation of u(θ) to θ is denoted as: T−1
θ : u(θ) → θ. Furthermore, let u

be a (M + 1)-dimensional vector that extends u(θ) by one dimension. The last component of

u, denoted uM+1, is transformed as: π = Φ (uM+1), where Φ(·) is the CDF of the standard

Normal distribution; i.e. uM+1 also follows a standard Normal distribution. Thus, the limit-

state function g(θ, π) defined in Eq. (7.4) can then be equivalently expressed as

g(θ, π) = G(u) = Φ (uM+1)− c · L
(

T−1
θ (u(θ))|D

)
(7.9)

Note that the prior distribution of u is described by p(u) =
∏M+1
i=1 ϕ(ui), where ϕ(·) is the

PDF of the standard Normal distribution.

7.3.7 BUS with rejection sampling

The most trivial application of the BUS idea is the rejection sampling algorithm1 [Smith

and Gelfand, 1992; Straub and Papaioannou, 2015]: This algorithm repeatedly proposes a

sample [θ̃, π̃] from the prior distribution and accepts the sample if it is located in the ”failure”

domain; i.e., if [θ̃, π̃] ∈ Ω. The accepted sample θ̃ is a sample from the posterior distribution.

The algorithm is repeated until K posterior samples are generated. The posterior samples

resulting from the rejection sampling algorithm are statistically independent.

The quantity pΩ is the probability that a proposed sample is accepted; pΩ is also referred to

as the acceptance probability. An unbiased estimate p̂Ω of pΩ is [Haldane, 1945]:

pΩ ≈ p̂Ω =
K − 1

n− 1
(7.10)

where n is the total number of prior samples that were proposed to generate K posterior

samples. Note that contrary to p̂Ω, the estimator K/n produces a biased estimate for pΩ

[Haldane, 1945]. An unbiased estimate of the variance of p̂Ω is [Finney, 1949]:

Var [p̂Ω] ≈ (1− p̂Ω) p̂Ω

n− 2
(7.11)

The estimates given in Eqs. (7.10) and (7.11) are frequentist estimates. To appropriately

1Standard rejection sampling is explained in Section 3.3.
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quantify the uncertainty about pΩ based on the outcome of a particular run of rejection

sampling, a Bayesian approach is recommended. The number n of prior samples needed to

generate K posterior samples in the rejection sampling algorithm follows a negative binomial

distribution. Thus, having observed a certain n for a given K, the likelihood of pΩ is:

L(pΩ|n,K) =

(
n− 1

K − 1

)
(pΩ)K(1− pΩ)n−K (7.12)

where
(
n−1
K−1

)
denotes the binomial coefficient. The beta distribution acts as conjugate prior

for the problem at hand. If the beta distribution is selected as prior distribution of pΩ, and

the shape parameters of the distribution are selected based on the Principle of Maximum

Information Entropy [Jaynes, 1983, 2003], the resulting prior distribution1 is the uniform

distribution on [0, 1]. In this case, the posterior is also a beta distribution and can be

expressed as:

p(pΩ|K,n) =
pΩ

K · (1− pΩ)n−K

B(K + 1, n−K + 1)
(7.13)

where B denotes the beta function. The expectation of Eq. (7.13) is:

E [pΩ|K,n] =
K + 1

n+ 2
(7.14)

The variance of the distribution in Eq. (7.13) can be derived as:

Var [pΩ|K,n] =
(K + 1) · (n−K + 1)

(n+ 2)2 · (n+ 3)
(7.15)

For increasing K and n, Eqs. (7.10) and (7.14) as well as Eqs. (7.11) and (7.15) converge to

the same value.

Algorithm 7.1. Rejection sampling algorithm for BUS:

As input the algorithm requires:

– K, the total number of samples to draw from the posterior distribution.

– c, selected such that c−1 ≥ Lmax.

The algorithm evaluates the evidence cE|M and returns K unweighted and statistically independent

posterior samples θ(k) with k = 1, . . . ,K.

1. Initialize counters k = 0 and n = 0.

2. while (k < K) do:

(a) Propose sample [θ̃, π̃]:

1For a related discussion of a Bayesian interpretation of the probability of failure obtained with Monte
Carlo simulation, see Section 5.2.3.1
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prior p(θ)

likelihood L(θ|D)
uniform random variable π/c

Ω
1
/
c
≥

m
a
x
.

li
k
el

ih
o
o
d

Figure 7.1: Illustration of the principle of the rejection sampling algorithm – Algorithm (7.1). The
highlighted region is the domain Ω defined in Eq. (7.3). The limit-state function g(θ, π)
introduced in Eq. (7.4) is smaller or equal than zero within Ω (it is zero at the boundary
of Ω), and larger than zero outside of Ω. Samples ”below” the likelihood (i.e., the
samples contained in Ω) are independent samples from the posterior distribution. In
this example, 43 out of 104 samples are accepted.

i. Draw θ̃ from the prior distribution p(θ).

ii. Draw π̃ from the uniform distribution that has support [0, 1].

(b) if
(
g(θ̃, π̃) ≤ 0

)
then:

i. Increase the counter k = k + 1.

ii. Accept the proposed sample θ̃ as a posterior sample, i.e.:

set θ(k) = θ̃.

(c) Increase the counter n = n+ 1.

3. Estimate pΩ by means of Eq. (7.10) or Eq. (7.13).

4. Evaluate the evidence cE|M = pΩ/c

Algorithm (7.1) is an extended variant of Algorithm (3.1), specifically designed for BUS.

On average, the algorithm requires K/pΩ samples from the prior distribution to generate K

samples from the posterior distribution. The principle of the rejection sampling algorithm is

illustrated in Fig. 7.1. Note that Algorithm (7.1) is similar to a Monte Carlo simulation for

solving the structural reliability problem that has limit-state function g(θ, π) and random

variables [θ, π]. The difference is that in a Monte Carlo simulation typically the total number

of samples n is fixed whereas in Algorithm (7.1) the number K of samples to be generated

in the domain Ω is specified.

The main advantage of rejection sampling is that it produces independent samples from

the posterior distribution. However, if the posterior distribution does not match the prior

distribution well, pΩ becomes small which renders the rejection sampling algorithm inefficient.
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As a consequence, rejection sampling is often inefficient in the BUS framework and typically

more advanced reliability methods are employed – see Section 7.3.3.

7.3.8 BUS-SuS: BUS with Subset Simulation

The Subset Simulation (SuS) algorithm [Au and Beck, 2001] (see Section 5.3) is a struc-

tural reliability method that is particularly well suited for BUS: (i) SuS can efficiently handle

problems with many uncertain parameters; (ii) SuS can efficiently estimate very small prob-

abilities that arise within BUS when the scalar cE|M and the constant c are small. Hence,

the combination of BUS and SuS (referred to as BUS-SuS ) is well suited for problems where

it is computationally demanding to evaluate the likelihood function.

7.3.8.1 Formulation of the limit-state function

The standard limit-state function of the BUS problem is given in Eqs. (7.4) and (7.9) for

the original parameter space [θ, π] and the standard Normal space u, respectively. However,

the particular format of the limit-state function of the BUS problem is not uniquely defined:

Any limit-state function that has the same probability of failure pΩ and the same limit-state

surface (the surface were the limit-state function equals zero) as g(θ, π) for a given c is a

valid limit-state function for the respective BUS problem.

For rejection sampling, the performance of the method does not depend on the particular

choice of the limit-state function, because the method checks only if a sample is inside or

outside of the failure domain. However, for BUS with Subset Simulation, the formulation

of the limit-state function has an impact. This is related to the fact that Subset Simula-

tion introduces intermediate failure events. This intermediate failure events are defined as

g(θ, π) ≤ hi, where hi is a positive constant (see Section 5.3.1). The particular shapes of the

intermediate failure levels depend on the selected limit-state function. Loosely speaking, a

smooth transition of the intermediate failure levels has a positive influence on the performance

of Subset Simulation.

From a numerical point of view, the limit-state function defined in Eq. (7.4) and Eq. (7.9)

is not optimal, because samples with small values of π are preferred over samples with large

values of π in the initial levels of Subset Simulation (especially if prior realizations of the like-

lihood are small compared to c−1). An alternative representation of the limit-state function

that has a more appropriate shape is:

gl(θ, π) = ln (π)− ln (c · L (θ|D)) (7.16)

where ln(·) denotes the natural logarithm. gl(θ, π) is obtained by applying the natural loga-

rithm to each of the terms in Eq. (7.4). The transformation of the BUS limit-state function
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given in Eq. (7.16) was first used in [DiazDelaO et al., 2017] to propose a variant of the BUS

approach. By comparing Eq. (7.16) with Eq. (7.4) it is obvious that both functions have the

same failure domain. For enhanced numerical stability, it is usually of advantage to work

with the log-transform of the likelihood, denoted lnL(θ|D) = ln (L(θ|D)), instead of using

the likelihood directly. Eq. (7.16) can then be expressed as:

gl(θ, π) = ln (π) + `− lnL (θ|D) (7.17)

where ` = − ln(c). Based on Eq. (7.16), the intermediate failure domains can be stated as:

Zi =
{
θ ∈ RM

∣∣ ln (π)− ln (c · L (θ|D)) ≤ hi
}

=
{
θ ∈ RM

∣∣ ln (π) ≤ ln (c · L (θ|D)) + hi
}

=
{
θ ∈ RM

∣∣π ≤ c · L (θ|D) · exp (hi)
}

(7.18)

The transition of the intermediate failure levels is illustrated in Fig. 7.2 and Fig. 7.3 for

limit-state function g(θ, π) and gl(θ, π), respectively. Limit-state function gl(θ, π) (shown in

Fig. 7.3) clearly is more appropriate than g(θ, π) (shown in Fig. 7.2), because the intermedi-

ate failure domains obtained with gl(θ, π) converge smoothly to the final failure domain Ω.

Another viable representation of the limit-state function that ensures a smooth transition of

the intermediate failure domains is [Straub and Papaioannou, 2015]:

gn(θ, π) = Φ−1 (π)− Φ−1 (c · L (θ|D)) (7.19)

where Φ−1(·) is the inverse of the CDF of the standard normal distribution.

In this contribution, we exclusively use limit-state function gl(θ, π) as defined in Eq. (7.17),

because it has particular advantages if the scaling parameter c of BUS-SuS is learned adap-

tively (see Section 7.4).

7.3.8.2 BUS-SuS algorithm

The standard Subset Simulation algorithm is explained in detail in Section 5.3. In the BUS

problem, the intermediate failure domains Zi are defined according to Eq. (7.18); where Zi

is used interchangeably to denote both the domain and the event. Samples conditional on Zi

are denoted [θ(i,k), π(i,k)], for k ∈ {1, . . . ,K}.

The BUS-SuS algorithm is a slightly extended version of Algorithm (5.2):

Algorithm 7.2. BUS-SuS algorithm (Subset Simulation algorithm for BUS):

As input the algorithm requires:
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1st intermediate failure domain

2nd intermediate
failure domain

Figure 7.2: Shape of the intermediate failure domains if the original BUS-limit-state function defined
in Eq. (7.4) is employed in BUS-SuS. The intermediate failure domains obtained with
this limit-state function do not exhibit a smooth transition to the final failure domain Ω.
Therefore, this particular formulation of the limit-state function should not be used in
combination with BUS-SuS. Instead, we recommend to use limit-state function gl(θ, π)
defined in Eqs. (7.16) and (7.17) (see Fig. 7.3).
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Figure 7.3: Illustration of the principle of the BUS-SuS algorithm – Algorithm (7.2). The interme-
diate failure domains obtained with limit-state function gl(θ, π) defined in Eq. (7.17) are
highlighted. The innermost region is the domain Ω defined in Eq. (7.3); samples within
this region follow the posterior distribution. The black samples are the initial samples
from the prior distribution (K = 500 samples were used per Subset level). The large
black dots indicate the 10% ·K samples that are located in the first intermediate failure
domain Z1. These samples are used as seed values to generate samples in Z1 by means
of MCMC. The generated samples in Z1 are highlighted in red. Note that only the black
samples are independent; the red samples are dependent, because they are obtained by
means of MCMC. The large red dots indicate the 10% ·K samples that are located in
the second intermediate failure domain Z2. The number of Subset levels in this example
is N = 3.
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– K, the total number of samples to draw from the posterior distribution.

– pt, the probability of the intermediate subsets. pt needs to be selected such that pt · K is an

integer number.

– c, selected such that c−1 ≥ Lmax.

The algorithm evaluates the evidence cE|M and returns K unweighted but dependent posterior samples

θ(k) with k = 1, . . . ,K.

1. Draw K samples [θ(0,k), π(0,k)], with k = 1, . . . ,K, from the prior distribution.

2. Initialize i = 0 and h0 =∞.

3. while (hi > 0) do:

(a) Increase counter i by one: i = i+ 1.

(b) Select the threshold level hi:

i. Sort theK samples
{

[θ(i−1,k), π(i−1,k)]
}K
k=1

with respect to the value of gl(θ(i−1,k), π(i−1,k))

in ascending order.

ii. Set hi =
gl(θ(i−1,pt·K))+gl(θ(i−1,pt·K+1))

2 ; i.e., set hi as the pt-percentile of the ordered

set.

iii. Select n as the number of samples in
{

[θ(i−1,k), π(i−1,k)]
}K
k=1

with gl(θ(i−1,k), π(i−1,k)) ≤
max(hi, 0).

iv. if (hi < 0) then: Set hi = 0, and pi = n
K .

else: Set pi = pt.

(c) Generate samples conditional on domain Zi:

i. Randomize the ordering of the samples in the set
{

[θ(i−1,k), π(i−1,k)]
}n
k=1

; i.e., there-

after, the n samples are no longer ordered.

ii. Generate the samples [θ(i,k), π(i,k)] by means of n Markov chains; e.g., by means of

the CS algorithm (Algorithm (3.6)) applied inside Algorithm (3.3). The n samples{
[θ(i−1,k), π(i−1,k)]

}n
k=1

are already within Zi and are used as seeds for the n Markov

chains. The length of each Markov chain is K/n. Thus, the total number of MCMC

samples generated in one level is K − n.

Algorithm (3.9) is applied during the MCMC sampling to adopt the spread of the

MCMC proposal distribution.

4. Set N = i

5. Estimate pΩ =
∏m
i=1 pi

6. Evaluate the evidence cE|M = pΩ/c

Note that we actually perform the generation of samples by means of MCMC in step 3c(ii) of

Algorithm (7.2) in the underlying standard Normal space. Thus, the standard Normal trans-

form u of each generated sample [θ, π] is ideally stored as well. For the sake of convenience,
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this is not explicitly explained in Algorithm (7.2); the procedure in standard Normal space is

explained in more detail in Algorithm (5.2). Furthermore, note that MCMC sampling needs

to be performed in the M + 1-dimensional augmented parameter space.

The principle behind Algorithm (7.2) is exemplified in Fig. 7.3. Note that step 3c(i) in Algo-

rithm (7.2) is not a standard step in Subset Simulation; step 3c(i) corresponds to step 4 in

Algorithm (5.2). This step is introduced to tune the spread of the MCMC proposal distribu-

tion during the MCMC sampling – see Algorithm (3.9). Without this step, Algorithm (3.9)

would possibly introduce a bias.

Algorithm (7.2) is presented so that the employed number of samples per level is equivalent

to the number K of samples in the final level of Subset Simulation. In general, the number

of samples in the final level of BUS-SuS can be chosen larger than the number of samples

in the intermediate levels, simply by generating more MCMC samples if the threshold level

hi in SuS becomes zero. However, in this contribution we only investigate the case where

the number of samples in each level of SuS is the same as the final number K of posterior

samples generated.

7.3.9 Correcting the results of BUS simulations with c−1 selected too small

7.3.9.1 The constant c in BUS

An appropriate selection of the constant c is crucial in BUS: On the one hand, if c−1 is selected

larger than the maximum Lmax of the likelihood function, the efficiency of the approach

decreases; the acceptance probability pΩ of BUS decreases linearly with c. On the other

hand, if c−1 is selected smaller than the maximum Lmax of the likelihood function, BUS

does not produce samples that follow the posterior distribution. Instead, in such case BUS

produces samples that follow distribution p
(c)
trunc:

p
(c)
trunc(θ|D) =

L
(c)
trunc(θ|D) · p(θ)

cE|M(c)
=
c · L(c)

trunc(θ|D) · p(θ)

p
(c)
Ω

(7.20)

where cE|M(c) = p
(c)
Ω /c and p

(c)
Ω is the associated evidence and acceptance probability that

belongs to the selected c−1 < Lmax, respectively. Furthermore, L
(c)
trunc(θ|D) is defined as:

L
(c)
trunc(θ|D) = min

(
L(θ|D), c−1

)
(7.21)

Let w(c) be a correction factor such that

cE|M = w(c) · cE|M(c) (7.22)
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The correction factor w(c) can be expanded as:

w(c) =
cE|M
cE|M(c)

(7.23)

=

∫
θ L(θ|D) p(θ) dθ

cE|M(c)
(7.24)

=

∫
θ

L(θ|D)

L
(c)
trunc(θ|D)

· L
(c)
trunc(θ|D) · p(θ)

cE|M(c)
dθ (7.25)

=

∫
θ

L(θ|D)

L
(c)
trunc(θ|D)

· p(c)
trunc(θ|D) dθ (7.26)

The quantities involved in Eq. (7.26) can be easily estimated based on the samples {θ(c)
(k)}k=1,...,K ,

generated with BUS and c−1 < Lmax that follow distribution p
(c)
trunc(θ|D):

w(c) ≈ 1

K

K∑
k=1

L(θ
(c)
(k)|D)

L
(c)
trunc(θ

(c)
(k)|D)

(7.27)

Using Eq. (7.22) and the estimate for w(c) given in Eq. (7.27), we can correct the evidence

computed with c−1 < Lmax. Let pΩ be the probability of Eq. (7.5) for a choice of c = 1/Lmax.

From Eq. (7.23) it follows that

pΩ = p
(c)
Ω · w(c) · c

−1

Lmax
(7.28)

where cE|M(c) = p
(c)
Ω /c and cE|M = pΩ · Lmax is used (Eq. (7.6) does not hold if c−1 < Lmax).

Note that for c−1 ≤ Lmax, we have pΩ ≤ p(c)
Ω , as the relative size of the failure domain increases

with decreasing c−1 (for c−1 → 0 we have p
(c)
Ω → 1). For c−1 > Lmax, we have pΩ > p

(c)
Ω , as

pΩ = p
(c)
Ω · c−1/Lmax. Moreover, L(θ

(c)
(k)|D) ≥ L

(c)
trunc(θ

(c)
(k)|D) clearly holds independent of c,

due to Eq. (7.21). Thus, the values that w(c) can take are bounded: 1 ≤ w(c) ≤ Lmax/c
−1.

For c−1 ≥ Lmax the correction factor is one. For c−1 ≤ Lmax the correction factor must

be smaller than Lmax/c
−1 in order to maintain pΩ ≤ p

(c)
Ω (see Eq. (7.28)). Additionally, it

becomes clear that cE|M(c) underestimates the actual evidence cE|M.

The relative error in the evidence associated with selecting c−1 too small (i.e., c−1 < Lmax)

can be expressed as:

ε(c)
cE|M = 1− 1

w(c)
= 1−

cE|M(c)

cE|M
= 1− p

(c)
Ω

pΩ

c−1

Lmax
(7.29)

= 1−
∫
θ

L
(c)
trunc(θ|D)

L(θ|D)
· L(θ|D) · p(θ)

cE|M
dθ (7.30)

= 1− Eθ|D

[
L

(c)
trunc(θ|D)

L(θ|D)

]
(7.31)
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For c−1 = 0, the error is ε
(∞)
cE|M = 1 and the generated samples follow the prior distribution.

For c−1 = Lmax, we have ε
(1/Lmax)
cE|M = 0 and the samples follow the posterior distribution.

7.3.9.2 Post-processing step to correct the posterior distribution

As was discussed in the previous section, BUS does not return samples from the posterior

distribution if the constant c−1 is selected smaller than Lmax. Employing Eq. (7.27), the

evidence of the investigated problem can be estimated even if c is not selected properly.

Additional to that, the distribution of the generated samples needs to be corrected: The

samples produced by BUS if c−1 < Lmax follow distribution p
(c)
trunc(θ|D). However, the aim is

to obtain samples from the posterior distribution. The posterior distribution can be corrected

by one of the following two strategies:

1. The (equal weighted) posterior samples obtained with c−1 selected too small, are cor-

rected by means of importance weights. The kth, k ∈ {1, . . . ,K}, posterior sample is

associated with importance weight:

w
(c)
(k) =

1

w(c) ·K ·
L(θ

(c)
(k)|D)

L
(c)
trunc(θ

(c)
(k)|D)

(7.32)

Thus, with this approach, weighted samples of the posterior distribution are obtained.

2. A Metropolis-Hastings [Metropolis et al., 1953; Hastings, 1970] step is added after the

BUS simulation with c−1 selected too small, to ensure that the generated samples follow

the desired posterior distribution. The proposed Metropolis-Hastings post-processing

step (Algorithm (7.3)) is based on the algorithm presented in [Tierney, 1994].

In general, the strategy listed first should be more efficient compared to the second one: In the

re-sampling required for the second strategy, samples with comparatively large weights are

likely to appear more often in the list of generated posterior samples, whereas samples with

small weights are prone to be repudiated. Nevertheless, in this chapter (Chapter 7), focus is

put on sampling methods that produce posterior samples with equal weighs. Therefore, only

the second strategy is considered in the following.

Algorithm 7.3. M-H rejection sampling:

As input the algorithm requires:

– The K samples θ
(c)
(k), k ∈ {1, . . . ,K} generated with BUS that follow distribution p

(c)
trunc(θ|D).

– Scaling constant c employed in BUS, where c−1 may be selected smaller than Lmax.
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The algorithm evaluates the evidence cE|M and returns K unweighted but dependent posterior samples

θ(k) with k = 1, . . . ,K.

1. Evaluate the evidence cE|M

(a) Estimate p
(c)
Ω by means of Eq. (7.10) or Eq. (7.13).

(b) Evaluate the quantity w(c), defined in Eq. (7.27).

(c) An estimate ĉE,K of cE|M is obtained through Eq. (7.22).

2. Pick sample θ(1):

(a) Draw index i randomly from the list {1, . . . ,K} where the jth element of the list is

associated with probability
L(θ

(c)

(j)
|D)

L
(c)
trunc(θ

(c)

(j)
|D)

/
(
w(c) ·K

)
.

(b) swap θ
(c)
(i) with θ

(c)
(1)

(c) Set θ(1) = θ
(c)
(1)

(d) Set k = 2

3. while (k ≤ K) do:

(a) Draw a sample u randomly from a uniform distribution with support [0, 1].

(b) Evaluate the accept/reject-ratio rk:

rk = min

(
1,

max
(
L
(
θ

(c)

(k)

∣∣D),c−1
)

L
(
θ(k−1)

∣∣D)
)

(c) if (u ≤ rk) then accept the candidate sample:

Set θ(k) = θ
(c)
(k)

else; i.e., if (u > rk) then reject the candidate sample:

Set θ(k) = θ(k−1).

(d) Increase the counter k = k + 1.

In the first step of Algorithm (7.3), the evidence is computed based on the correction factor

w(c) derived in Section 7.3.9.1. In the second step, an initial seed is selected to initiate the

Metropolis-Hastings algorithm. This seed is selected through a re-sampling step such that it

asymptotically follows the posterior distribution. Finally, in the last step, the distribution of

the samples is corrected by means of MCMC: The Metropolis-Hastings algorithm proposed

in [Tierney, 1994] is employed.

The validity of the accept/reject-ratio rk employed in Algorithm (7.3) can be demonstrated

as follows: As samples generated with BUS are used as candidate samples of the MCMC

algorithm, the employed proposal distribution is p
(c)
trunc(θ|D). The accept/reject-ratio of the

kth candidate samples is:

rk = min

1,
max

(
L
(
θ

(c)
(k)

∣∣D) , c−1
)

L
(
θ(k−1)

∣∣D)
 (7.33)
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where k ∈ {2, . . . ,K}. The candidate sample is accepted, with probability rk and rejected

with probability 1 − rk. This Metropolis-Hastings algorithm has stationary distribution

p(θ|D) and, thus, the generated samples asymptotically follow the posterior distribution.

To show that the stationary distribution actually is p(θ|D), it is sufficient to show that the

following equation holds:

rk = min

1,
p
(
θ

(c)
(k)|D

)
p
(
θ(k−1)|D

) · p(c)
trunc

(
θ(k−1)|D

)
p

(c)
trunc

(
θ

(c)
(k)|D

)
 (7.34)

= min

1,
L
(
θ

(c)
(k)

∣∣D)
L
(
θ(k−1)

∣∣D) · L
(c)
trunc

(
θ(k−1)

∣∣D)
L

(c)
trunc

(
θ

(c)
(k)

∣∣D)
 (7.35)

Four different cases can be distinguished:

Case (1): L
(
θ

(c)
(k)

∣∣D) ≤ c−1 and L
(
θ(k−1)

∣∣D) ≤ c−1

We have L (θ|D) = L
(c)
trunc (θ|D) and, consequently, both Eq. (7.33) and Eq. (7.35)

become one.

Case (2): L
(
θ

(c)
(k)

∣∣D) > c−1 and L
(
θ(k−1)

∣∣D) ≤ c−1

As in the previous case, Eqs. (7.33) and (7.35) become one.

Case (3): L
(
θ

(c)
(k)

∣∣D) ≤ c−1 and L
(
θ(k−1)

∣∣D) > c−1

Eqs. (7.33) and (7.35) evaluate to c−1/L
(
θ(k−1)

∣∣D).
Case (4): L

(
θ

(c)
(k)

∣∣D) > c−1 and L
(
θ(k−1)

∣∣D) > c−1

We have L
(c)
trunc (θ|D) = c−1. Thus, both Eq. (7.33) and Eq. (7.35) transform to

min
(

1, L
(
θ

(c)
(k)

∣∣D)/L (θ(k−1)

∣∣D)).

Consequently, Eqs. (7.33) and (7.34) are indeed equivalent and, thus, the posterior distribu-

tion is the stationary distribution of the Markov chain.

The burn-in period of the Markov chain in step (3) can be considered negligible for reasonably

large K, as the initial seed asymptotically follows the stationary distribution of the chain.

Note that the likelihood function needs to be evaluated only in the actual BUS simulation.

Consequently, if the evaluation of the model behind the likelihood is computationally demand-

ing, the computational overhead of the post-processing step presented as Algorithm (7.3) is

negligible.

The principle of Algorithm (7.3) combined with rejection sampling (Algorithm (7.1)) is illus-

trated in Fig. 7.4. Contrary to plain rejection sampling, this algorithm does not produce K

independent samples. Instead, the K generated posterior samples are dependent, because of

the acceptance/rejection step in the Metropolis-Hastings algorithm (steps (3b) and (3c) in
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Figure 7.4: Illustration of the principle of M-H rejection sampling algorithm – Algorithm (7.3) com-
bined with rejection sampling (Algorithm (7.1)). Note that only the black samples are
independent; the red samples introduce a dependency (at least one black sample has the
same θ as a red sample) that decreases the efficiency of the sampling algorithm. For
clarity, the ordinate of a sample θ in Ω is selected randomly between zero and L(θ|D).

Algorithm (7.3)). The smaller the corresponding acceptance rate, the larger is the induced

dependency. A particular advantage of Algorithm (7.3) compared to Algorithm (7.1) is that

Algorithm (7.3) can be applied without knowing Lmax. However, the selected c still has a

considerable influence on the efficiency of the algorithm.

7.3.9.3 Numerical investigation

The performance of the example problems introduced in Section 7.2 is assessed for Al-

gorithm (7.3) combined with rejection sampling (Algorithm (7.1)) and different values of

b ∈ (0, 1]. The combination of Algorithm (7.3) with rejection sampling (Algorithm (7.1)) is

referred to as MH-RS algorithm in the following (MH-RS stands for Metropolis-Hastings re-

jection sampling). The number of posterior samples generated per updating run is K = 103.

The smallest value of b investigated in the studies is 10−4. The results are presented in

Figs. 7.5 – 7.7. Fig. 7.5 shows the statistics of the estimated evidence, Fig. 7.6 shows the

statistics of the generated posterior samples of θ1, and Fig. 7.7 shows the statistics of both

E[n103 ] and σ[a103 ]. The data used to plot Figs. 7.5 – 7.7 was generated by solving the up-

dating problem repeatedly, generating K = 103 posterior samples in each run. The number

of times the problem was solved is 2 · 105, 400, 9 · 103 and 8 · 104 for Example problems 1a,

1b, 2 and 3, respectively. Note that some of the notation used in this section is introduced

in Section 7.2.

First, we look at the statistics of the estimated evidence ĉE,103 as a function of b, presented
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Figure 7.5: Statistics of the estimated evidence ĉE,103 divided by the reference value of the evidence
cE,ref for different values of b = Lmax · c and limit-state functions 1a, 1b, 2 and 3. The
thick black line represents the average obtained with the MH-RS algorithm – as the
average is 1.0 with good approximation, the estimate ĉE,103 can be considered unbiased.
The highlighted area shows the 90% confidence interval of the estimated ĉE,103/cE,ref

computed with the MH-RS algorithm. The dashed red line shows the average obtained
with standard rejection sampling; the bias in the estimated evidence clearly increases
for decreasing b. The underlying data was generated by solving the updating problem
repeatedly, generating K = 103 posterior samples in each run.
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Figure 7.6: Statistics of the estimated posterior samples θ̂1 divided by the reference mean of θ1 for
different values of b = Lmax · c and limit-state functions 1a, 1b, 2 and 3. The thick
black line represents the average obtained with the MH-RS algorithm – as the average
is 1.0 with good approximation, the sample mean can be considered unbiased. The
highlighted area shows the 90% confidence interval obtained with the MH-RS algorithm.
The dashed red lines show the average and confidence intervals obtained with standard
rejection sampling. The underlying data was generated by solving the updating problem
repeatedly, generating K = 103 posterior samples in each run.

in Fig. 7.5. Independent of the value of b, a bias in the estimate of the evidence cannot be

observed. Additional to the mean, the 90% confidence interval of ĉE,103/cE,ref is shown. For

b ∈ [0.5, 1], the influence of b on the interval can be considered negligible, independent of

the example problem. However, this does not imply that it is irrelevant whether the analysis

is performed with b = 1 or, for example, with b = 0.5. The reason is that although the

discussed confidence interval remains stable, the computational cost decreases with b. The

computational cost is expressed in terms of the average number of prior samples E[n103 ]

required to perform the analysis (see left part of Fig. 7.7). For b ∈ [0.5, 1] the value of

E[n103 ] is – with good approximation – proportional to b. Additional to the mean and

90% confidence interval of quantity ĉE,103/cE,ref obtained by means of the MH-RS algorithm,

the mean of ĉ
(c)
E,103/cE,ref computed with standard rejection sampling (Algorithm (7.1)) and

c−1 < Lmax is shown in Fig. 7.5, where ĉ
(c)
E,K denotes the evidence estimated with standard

rejection sampling and scaling constant c. The results clearly show that the estimate of the

evidence ĉ
(c)
E,103 obtained with standard rejection sampling and c−1 < Lmax underestimates

the true evidence cE,ref of the example problem.

Fig. 7.6 shows that the estimates of both the mean and the 90% confidence interval of the

posterior samples θ̂1 obtained with the MH-RS algorithm are unbiased, independent of the

choice of b. The same cannot be said about standard rejection sampling and c−1 < Lmax.

In this case, the bias in the mean and the deviation from the 90% confidence interval of the
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Figure 7.7: The average number of model calls (left side of plot, x-axis) and the standard deviation
of the estimate a103 (right side of plot, x-axis) are shown for b ∈ [0, 1] (y-axis of sub-plots)
and the MH-RS algorithm. The quantity b is plotted on the y-axis of the sub-plots and
ranges from zero to one. In horizontal direction, the figure is split in two parts: (left-
part) On the left-hand side of the figure the average number E[n103 ] of prior samples
required to solve the problem is divided by the average number of prior samples needed
in standard rejection sampling; i.e., by 103/pΩ. For b ∈ [0, 1], this quantity is within
[0, 1]; it measures how many prior samples were needed to solve the problem compared
to standard rejection sampling. (right-part) On the right-hand side of the figure the
effective number of independent posterior samples (Neff) divided by the total number
(103) of posterior samples is shown.

samples θ1 generated with the MH-RS algorithm increases with decreasing b. This effect is

more dominant in Example problems 1a and 1b than in Example problems 2 and 3.

The samples produced by the standard rejection sampling are independent, whereas the

samples generated with Algorithm (7.3) and b < 1 are dependent. The dependency of the

samples increases with decreasing b. This effect is illustrated in the right part of Fig. 7.7:

The effective number of independent posterior samples decreases with b. Thus, the efficiency

of Algorithm (7.3) with respect to the generated posterior samples decreases with decreasing

b. However, the computational cost to generate 103 (dependent) posterior samples decreases

also with decreasing b – see left part of Fig. 7.7.
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7.4 aBUS – adaptive BUS-SuS

This section contains material originally published in [Betz et al., 2017].

Some passages and figures are directly taken from the mentioned reference.

7.4.1 Introduction

Contrary to the standard BUS algorithm presented in Section 7.3.8.2, an algorithm is pro-

posed that does not require the constant c as input. The proposed algorithm is based on the

BUS variant originally proposed in [Betz et al., 2014b] that adaptively learns the constant c.

The idea from [Betz et al., 2014b] is extended to improve the efficiency of the method. Due to

the particular formulation of the limit-state function of the BUS problem given in Eq. (7.17),

the method can be considerably simplified, as it requires only minimal modifications of the

original BUS-SuS algorithm. The proposed method is termed aBUS, in accordance with

[Betz et al., 2014b].

For the limit-state function introduced in Eq. (7.16) we have: The ith intermediate failure

domain Zi can be expressed as the set of all θ and π for which the following inequality holds

(see Eq. (7.18)):

π ≤ c · L(θ|D) · exp(hi) (7.36)

The particular advantage of this limit-state formulation is as follows. The inequality in

Eq. (7.36) can be equivalently stated as:

π ≤ L(θ|D) · exp(hi + δ)

c−1 · exp(δ)
(7.37)

where δ ∈ R is an arbitrary scalar value. From Eq. (7.37) it follows that the intermediate

failure domain Zi associated with scaling constant c and threshold level hi can be equivalently

expressed by scaling constant c∗ and threshold level h∗ if h∗ is chosen as:

h∗ = hi + ln
( c
c∗

)
= hi − `+ `∗ (7.38)

where ` = − ln(c) and `∗ = − ln(c∗). Consequently, if we always modify the current threshold

value of Subset Simulation after changing the value of c or `, the change in c or ` does not

affect the distribution of the current samples (i.e., the samples that are in domain Zi).
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7.4.2 Proposed modifications to the basic BUS-SuS algorithm

The first step of the adaptive algorithm is the same as the one of standard BUS-SuS ; i.e.,

it consists in drawing K samples from the prior distribution. The likelihood of each sample

is evaluated and stored. However, before the value of the first threshold level hi can be

selected, a value has to be assigned to the BUS scaling constant c: The constant c−1 is set

equal to the value of the largest likelihood within the generated set of samples. Thereafter,

each iteration is performed in accordance with BUS-SuS : The value of each intermediate

threshold is selected based on the limit-state function realizations, and MCMC sampling is

performed to generate samples conditional on the current intermediate failure domain. At

the end of a Subset level, it is checked whether a likelihood larger than the current value of

c−1 was observed. If so, the current value of c−1 is adapted such that it matches the largest

likelihood observed and the value of hi is modified according to Eq. (7.38). Note that c−1

can only increase and, thus, the threshold hi increases as well. The iteration over the subset

levels is performed until the current threshold value hi is zero at the end of a subset level.

The thus obtained intermediate failure domains are clearly nested – which is a prerequisite

for the application of SuS. The evidence is estimated based on the last value of c−1 at the end

of Subset Simulation according to Eq. (7.6); i.e. with c−1 equal to the value of the largest

likelihood observed during the simulation.

The general structure of the proposed algorithm is given in the following – changes compared

to Algorithm (7.2) are highlighted. The following algorithm employs the log-transform of the

likelihood lnL(θ|D), which is beneficial from a numerical point of view compared to working

with the likelihood function directly.

Algorithm 7.4. aBUS – adaptive BUS-SuS:

As input the algorithm requires:

– K, the total number of samples to draw from the posterior distribution.

– pt, the probability of the intermediate subsets. pt needs to be selected such that pt · K is an

integer number.

The algorithm evaluates the evidence cE|M and returns K unweighted but dependent posterior samples

θ(k) with k = 1, . . . ,K.

1. Draw K samples [θ(0,k), π(0,k)], with k = 1, . . . ,K, from the prior distribution.

2. Initialize i = 0 and h0 =∞.

3. Set ` = max
({

lnL
(
θ(0,k)

∣∣D)}K
k=1

)
, where ` is defined as in Eq. (7.17).

4. while (hi > 0) do:

(a) Increase counter i by one: i = i+ 1.
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(b) Select the threshold level hi:

i. Sort theK samples
{

[θ(i−1,k), π(i−1,k)]
}K
k=1

with respect to the value of gl(θ(i−1,k), π(i−1,k))

in ascending order.

Note that gl(·, ·) as defined in Eq. (7.17) is used.

ii. Set hi =
gl(θ(i−1,pt·K))+gl(θ(i−1,pt·K+1))

2 ; i.e., set hi as the pt-percentile of the ordered

set.

iii. Select n as the number of samples in
{

[θ(i−1,k), π(i−1,k)]
}K
k=1

with gl(θ(i−1,k), π(i−1,k)) ≤
max(hi, 0).

iv. if (hi < 0) then: Set hi = 0, and pi = n
K .

else: Set pi = pt.

(c) Generate samples conditional on domain Zi:

i. Randomize the ordering of the samples in the set
{

[θ(i−1,k), π(i−1,k)]
}n
k=1

; i.e., there-

after, the n samples are no longer ordered.

ii. Generate the samples [θ(i,k), π(i,k)] by means of n Markov chains; e.g., by means of

the CS algorithm (Algorithm (3.6)) applied inside Algorithm (3.3). The n samples{
[θ(i−1,k), π(i−1,k)]

}n
k=1

are already within Zi and are used as seeds for the n Markov

chains. The length of each Markov chain is K/n. Thus, the total number of MCMC

samples generated in one level is K − n.

Algorithm (3.9) is applied during the MCMC sampling to adopt the spread of the

MCMC proposal distribution.

(d) Update the value of the scaling constant:

i. Set `new = max
(
`,
{

lnL
(
θ(i,k)

∣∣D)}K
k=1

)
.

ii. Modify hi = hi − `+ `new.

iii. Set ` = `new.

(e) Decrease dependence of the K samples:

For (k = 1, . . . ,K) do:

i. Draw π̃ as a sample from a uniform distribution with support[
0,min

(
1, exp

(
lnL(θ(i,k)|D)− `+ hi

))]
.

ii. Set [θ(i,k), π(i,k)] = [θ(i,k), π̃]

5. Set N = i

6. Estimate pΩ =
∏m
i=1 pi

7. Evaluate the evidence cE|M = pΩ · exp (`)

In a conventional reliability problem, we typically have very limited knowledge about the

shape of the failure domain. Contrary to that, in reliability problems that stem from BUS,

we know that for a sample [θ, π] with associated likelihood L(θ|D) each π that is smaller or

equal than cL(θ|D) means that the sample [θ, π] is a posterior sample and is located within

the failure domain – and vice versa. In addition to that, we know that for fixed θ, all π

that maintain π ≤ cL(θ|D) are distributed uniformly on the interval [0, cL(θ|D)]. At the
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intermediate levels of SuS, a sample [θ, π] is in domain Zi if π ≤ cL(θ|D) exp(hi). Thus, we

can easily modify the component π of sample [θ, π]. This is what is done in Step 4(e) of

Algorithm (7.4).

Step 4(e) in Algorithm (7.4) is a re-sampling strategy that comes at – practically – no

additional cost (because it does not involve additional evaluations of the likelihood function).

Its particular appeal is: In the MCMC sampling procedure each sample that is rejected means

that an existing sample is duplicated. For example, with a target acceptance rate of αopt =

0.44 we aim at rejecting 56% percent of all proposed samples. Thus, a considerable number

of the generated samples will not be unique. Step 4(e) distributes the π-components of all

samples with the same θ uniformly on the interval
[
0,min

(
1, c · L(θ(i,k)|D) · exp(hi)

)]
. This

step is added to decrease the dependency of the generated MCMC samples and, consequently,

to increase the overall performance of SuS.

7.4.3 Comments on the final value of c−1 in aBUS and Lmax

The final value of c−1 = exp (`) in aBUS, corresponds to the largest likelihood observed during

the simulation. Consequently, we have exp (`) ≤ Lmax. Asymptotically, exp (`) approaches

Lmax for large K. However, for finite K, exp (`) is very likely smaller than Lmax. Therefore,

aBUS works with values of c−1 that are on average smaller than Lmax. However, this does not

prevent aBUS from producing samples that follow the posterior distribution, as is explained

in the following.

The difference to rejection sampling (and BUS approaches in general) performed with c−1 ≤
Lmax is that rejection sampling works with a prespecified fixed c−1, whereas aBUS does not

work with a fixed c−1. The final c−1 = exp (`) in aBUS varies; it is a stochastic quantity

that is equivalent to the largest likelihood value observed during the entire simulation. Let

PL (L(θ)|D) denote the cumulative distribution function of likelihood values evaluated for

samples of the posterior distribution. If aBUS produces posterior samples, the quantity c−1

is a realization from a distribution that has CDF Pc−1(c−1|D) =
(
PL
(
c−1|D

))K
.

In the following, we show that the CDF PL (L(θ)|D) can be approximated well with posterior

samples generated with aBUS. This is demonstrated numerically by means of Example prob-

lem 2 defined in Section 7.2: In this example problem, the probability that we will observe a

likelihood larger than 0.8 ·Lmax in a set of 103 independent posterior samples is 1 · 10−4 (see

Table 7.1). Therefore, it is unlikely that the value of c−1 in aBUS is close to the theoretical

Lmax for 103 generated samples.

The decisive parameter in aBUS is the number K of samples employed in each level of SuS.

For the method to generate posterior samples, K must be selected large enough such that the

final K samples can propagate in the entire domain Ω. The bulk of the generated posterior



182 7. Numerical Methods for Bayesian Analysis

0.0 0.2 0.4 0.6 0.8 1.0
b

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

P
r
[L
(θ
|d
)/
L
m
ax
≥
b]

rejection sampling

aBUS with K = 103

aBUS with K = 104

aBUS with K = 102

Figure 7.8: The posterior probability Pr [L(θ|D)/Lmax ≥ b] is plotted for different values of b (for
Example problem 2 ). Results are shown for posterior samples obtained by means of
repeated runs of aBUS with K = 102, K = 103 and K = 104, where K denotes the
number of samples used in each level of Subset Simulation. The reference solution
is evaluated numerically by means of 109 statistically independent posterior samples
obtained with rejection sampling.

samples will be in the ”high probability region” of the posterior distribution – which does

not necessarily mean that many samples will fall in the region that has large likelihood.

We investigate the distribution of likelihood values associated with the generated posterior

samples for Example problem 2. The Bayesian inference problem is solved with aBUS for

K = 102, K = 103 and K = 104 samples per subset level. The reference distribution

was obtained by means of rejection sampling and c = L−1
max. The posterior probability

Pr [L(θ|D)/Lmax ≥ b] obtained with aBUS and rejection sampling is depicted in Fig. 7.8 for

different values of b and K; the definition of b is according to Section 7.2. For K = 102, the

resulting posterior distribution of the likelihood values deviates from the reference solution.

However, already for K = 103, the resulting posterior distribution matches the reference

solution well. Therefore, even if aBUS selects c−1 for this example problem on average

considerably smaller than Lmax: The distribution of the likelihood values associated with the

generated posterior samples is not biased – provided that K is selected large enough. The

performance of aBUS with respect to K is investigated in detail in Section 7.4.4.

Note that the average number of likelihood function calls in aBUS is at most as large as in

standard BUS-SuS. This is because c−1
N ≤ Lmax in aBUS, whereas for BUS-SuS c−1 ≥ Lmax

is required. Thus, as pΩ is proportional to c−1, the average total number of subset levels

required to solve the inference problem with aBUS is at most as large as the one of BUS-SuS.

Additional to that, if the limit-state formulation given in Eq. (7.16) is used, the distribution

of samples produced at the intermediate levels of SuS is invariant to the selected c – compare

Section 7.4.1 and Eq. (7.37) in particular. As a consequence, the aBUS algorithm should be

preferred over standard BUS-SuS even if the theoretical maximum of the likelihood function
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is known in advance.

7.4.4 Numerical investigation of the performance of aBUS

7.4.4.1 Some notes on the notation employed

The notation introduced in Section 7.2 is used. Additional to that, the following quantitative

measures are defined:

- bias [ĉE,K ]: the bias in the estimated evidence.

bias [ĉE,K ] =

∣∣∣∣∣E [ĉE,K ]− cE|M
cE|M

∣∣∣∣∣ (7.39)

- CoV [ĉE,K ]: the coefficient of variation of the estimated evidence.

CoV [ĉE,K ] =
σ [ĉE,K ]

E [ĉE,K ]
(7.40)

- bias [aK ]: the bias in the estimated posterior mean of θ1.

bias [aK ] =

∣∣∣∣∣E [aK ]− E[θ1|D]

E[θ1|D]

∣∣∣∣∣ (7.41)

- bias [sK ]: the bias in the estimated posterior standard deviation of θ1.

bias [sK ] =

∣∣∣∣∣E [sK ]− σ[θ1|D]

σ[θ1|D]

∣∣∣∣∣ (7.42)

7.4.4.2 Performance of aBUS for different pt and K

The performance of aBUS is assessed for different pt and K. The probability of the inter-

mediate subsets pt is analyzed for values within [1%, 50%]. The number K of samples per

level is modified between 102 and 105. The four example problems already introduced in

Section 7.2 are investigated. The aim is to determine which values of pt lead to a (near-

)optimal performance for the investigated example problems, where optimality is measured

with respect to the number NM of total required model calls; i.e. NM is the total number of

likelihood evaluations in Subset Simulation. For the MCMC sampling in the subset levels,

the CS algorithm (Algorithm (3.6) applied inside Algorithm (3.3)) is employed. The spread

of the proposal distribution is modified during the simulation as described in Algorithm (3.9),

with a target acceptance rate of αopt = 0.44.
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(b) Example problem 1b
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(c) Example problem 2
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(d) Example problem 3

Figure 7.9: Bias in the evidence estimated with aBUS for different pt and K.

First, we look at the bias in the evidence estimated with aBUS (by means of measure

bias [ĉE,K ] introduced in Eq. (7.39)). The results for the four example problems are shown

in Fig. 7.9. The bias in the evidence decreases with an increasing number of samples per

level in all investigated example problems. We observe that pt = 10% is clearly not an

optimal choice. Especially for K < 103, the bias is smaller for large pt than for small pt.

An intermediate probability pt between 20% and 40% is a good choice for all investigated

problems. Among all investigated example problems, the largest bias is observed in Example

problem 1b; the smallest bias is observed in Example problem 1a. This suggests that the bias

in the evidence computed with aBUS (and probably BUS-SuS in general) increases with an

increasing number of subset levels.

Overall, the bias in the estimated evidence of aBUS is, however, negligible compared to

the coefficient of variation of the estimate. The coefficient of variation CoV [ĉE,K ] in the

estimated evidence is depicted in Fig. 7.10. The CoV [ĉE,K ] decreases with an increasing

number of samples per level. For pt between 10% and 30%, aBUS performs robustly with

respect to a fixed number NM of total model calls in all investigated example problems.

Next, we look at the mean and standard deviation of the posterior samples produced with

aBUS. The bias in the estimated posterior mean and standard deviation is depicted in

Fig. 7.11 and Fig. 7.12, respectively. For K ≥ 5 · 102, the bias in both mean and stan-

dard deviation is smaller than 0.5% and is, thus, considered negligible.
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(b) Example problem 1b
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(c) Example problem 2
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(d) Example problem 3

Figure 7.10: Coefficient of variation of the evidence estimated with aBUS for different pt and K.
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(a) Example problem 1a
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(b) Example problem 1b
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(c) Example problem 2
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Figure 7.11: Bias in the mean of posterior samples generated with aBUS for different pt and K.
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(a) Example problem 1a
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(b) Example problem 1b
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(c) Example problem 2
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(d) Example problem 3

Figure 7.12: Bias in the standard deviation of posterior samples generated with aBUS for different
pt and K.
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(b) Example problem 1b
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(c) Example problem 2
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(d) Example problem 3

Figure 7.13: Number Neff of effectively independent samples obtained with aBUS for different pt

and K.
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Finally, we look at the number Neff of effectively independent samples in the generated set of

K posterior samples. The results are shown in Fig. 7.13 for the four example problems. Neff

increases with increasing K. For a fixed number NM of total model calls, aBUS exhibits the

best performance for pt = 10%. However, Neff is always considerably smaller than K: For

K = 103 and pt = 10% we obtain only 210, 150, 70 and 20 efficiently independent posterior

samples in Example problem 1a, 1b, 2 and 3, respectively. In particular, Neff ≈ 20 in Example

problem 3 is a relatively small value. The poor performance in this example problem can

be attributed to the bimodal shape of the posterior distribution: The standard deviation

of quantity aK that governs Neff (see Eq. (7.2)) is relatively large in this example problem,

because it is difficult for the intermediate samples in Subset Simulation to alternate between

the two modes. If the fraction of samples in the separate modes at initial subset levels is

amiss, this error will most probably propagate at the higher levels of Subset Simulation.

However, Example problem 3 demonstrates also the flexibility of BUS-SuS based approaches:

They are able to produce posterior samples even if the target distribution is multi-modal.

To summarize the findings obtained in this section: The potential bias in the evidence es-

timated with aBUS is negligible compared to the variability of the estimate. Furthermore,

the bias in the mean and standard deviation of posterior samples produced with aBUS is

insignificant for reasonable sample sizes. For the investigated example problems, K ≥ 5 · 102

was large enough. However, as a general rule of thumb, it is recommended to use at least

103 samples per level in Subset Simulation. Therefore, the parameter pt of SuS should be se-

lected such that for a given number K of posterior samples, Neff is maximized and CoV [ĉE,K ]

is minimized. For the investigated example problems, a near-optimal performance can be

achieved with pt = 10%.

7.4.4.3 Performance of aBUS for different αopt and K

In this study, the target acceptance rate αopt of aBUS and the number K of samples per

level is modified: αopt is changed between 0.04 and 0.80, and K is modified between 102 and

105. As the bias of aBUS in the estimated evidence, the posterior mean and the posterior

standard deviation was found to be negligible in the previous study (Section 7.4.4.2), we only

investigate the performance in terms of CoV [ĉE,K ] and Neff . Again, we assess the performance

of aBUS for combinations of αopt and K that result in the same number NM of total likelihood

evaluations during Subset Simulation. In this study, the total number of required likelihood

evaluations is approximately proportional to K. The probability of the intermediate subsets

pt is kept constant; pt is set to 10%.

The coefficient of variation of the evidence estimated with aBUS is shown in Fig. 7.14 for

different αopt and K. For fixed NM, a comparatively good performance is achieved for all

investigated example problems if αopt is selected between 0.4 and 0.6; where Example problem
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(a) Example problem 1a
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(b) Example problem 1b
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(c) Example problem 2

102 103 104 105

K: samples per level

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α
o
p
t:

ac
ce

pt
an

ce
ra

te

5e+
02 1e

+
03

2e
+

03

5e
+

03

1e
+

04

2e
+

04

5e+
04 1e

+
05

2e
+

05

NM: total model calls

1 · 10−2

2 · 10−2

5 · 10−2

1 · 10−1

2 · 10−1

5 · 10−1

1 · 100
2 · 100
5 · 100

C
oV

[ĉ
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(d) Example problem 3

Figure 7.14: Coefficient of variation of the evidence estimated with aBUS for different αopt and K.

1b favors slightly smaller αopt for large K and Example problem 3 favors slightly larger αopt.

For Example problem 1b that has the smallest pΩ amongst all investigated example problems,

the dependency of CoV [ĉE,K ] on αopt is more pronounced than in the other problems.

The number Neff of effectively independent posterior samples in the generated set of K

posterior samples is depicted in Fig. 7.15. For Example problems 1a, 1b and 2, aBUS exhibits

a near-optimal performance for 0.3 ≤ αopt ≤ 0.5 (with respect to NM fixed). For Example

problem 3, a slightly better performance is achieved for larger values of αopt; i.e. for αopt

selected around 0.6. Again, it is evident that for Example problem 3, aBUS produces a

relatively small Neff .

In a nutshell, the choice of αopt = 0.44 proposed in [Papaioannou et al., 2015] for Subset

Simulation works reasonably well for aBUS. The number Neff of effectively independent pos-

terior samples in the generated set of K posterior samples depends strongly on the problem

at hand.

7.4.4.4 Comparison of aBUS with cBUS

An alternative BUS-based approach, referred to as cBUS, that does not require the scaling

constant c as input is proposed in [DiazDelaO et al., 2017]: The structural reliability problem
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(b) Example problem 1b
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(c) Example problem 2

102 103 104 105

K: samples per level

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α
o
p
t:

ac
ce
pt
an

ce
ra
te

5e+
02 1e

+
03

2e
+

03

5e
+

03

1e
+

04

2e
+

04

5e+
04 1e

+
05

2e
+

05

NM: total model calls

1 · 101

5 · 101

1 · 102

5 · 102

1 · 103

5 · 103

1 · 104

5 · 104

N
eff
:
eff

ec
ti
ve

nu
m
be

r
of

sa
m
pl
es

(d) Example problem 3

Figure 7.15: Effective number Neff of independent samples obtained with aBUS for different αopt

and K.

is rephrased as

Ω =

{
− ln(c) ≤ ln

(
L(θ|D)

π

)}
. (7.43)

If Eq. (7.43) is tackled by means of Subset Simulation, in this approach, only the stopping

criterion of SuS depends on c, but not the intermediate failure domains. For threshold levels

smaller than − ln(c), the algorithm produces samples that follow the posterior distribution.

By stopping the algorithm if the logarithm of the failure probability displays a slope of −1,

the constant c is not required anymore. To this end, subset levels with associated thresholds

smaller than − ln(c) need to be generated in order to assess whether the stopping criterion

is met.

As a consequence, cBUS requires more evaluations of the likelihood function than aBUS. This

can be demonstrated by means of Example problem 3, which is also investigated in [DiazDelaO

et al., 2017]: aBUS requires on average m = 3 subset levels, because pΩ = 1.52 · 10−3 and

E
[
b103,max

]
= 0.999. With cBUS two additional subset levels are required to verify that the

stopping criterion is maintained [DiazDelaO et al., 2017]. After verifying that the stopping

criterion is met, it is suggested to use the samples produced in level three [DiazDelaO et al.,

2017], because (1) all subset levels larger or equal than three produce posterior samples and

(2) the samples at level three are less dependent than the samples produced at higher subset

levels [DiazDelaO et al., 2017]. This means that for the same inference problem, cBUS

requires more evaluations of the likelihood function than aBUS.
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Additional to that, for Example problem 2, the logarithm of the failure probability associated

with the individual levels of Subset Simulation in cBUS will exhibit a slope that is practically

−1 already for threshold levels larger than − ln(c). The reason is: It is unlikely that likelihood

values close to Lmax are observed, as Pr
[
b103,max > 0.8

]
= 10−4 (see also Fig. 7.8). Thus, the

stopping rule employed in cBUS does not guarantee that the threshold of the final subset

level is smaller than − ln(c).

7.5 Nested sampling

7.5.1 Introduction

Nested sampling [Skilling et al., 2006] is a Bayesian inference method whose “prime target”

is to compute the evidence cE|M. As by-product, the method produces a set of weighted

samples from the posterior distribution.

In nested sampling, the integral in Eq. (6.2) is re-written as:

cE|M =

∫ 1

0
L(X) dX (7.44)

where X ∈ [0, 1] is defined as:

X(λ) = Prθ|M [L(θ|D,M) ≥ λ|D,M]

=

∫
L(θ|D,M)≥λ

p(θ|M) dθ (7.45)

and L(X) is the inverse function of X(λ); i.e., L(X(λ)) ≡ λ; i.e., L ∈ [0, Lmax].

The evidence cE|M is estimated based on Eq. (7.44) as the weighted sum of values L(Xi),

where the Xi are an ordered sequence 1 = X0 > X1 > X2 > . . . > XN > XN+1 = 0, with

L(X0) = 0 and L(XN+1) = Lmax. For example, with a trapezoidal integration rule, the

evidence is approximated as:

cE|M ≈
N+1∑
i=1

(Xi −Xi−1) · 1

2
· (L(Xi) + L(Xi−1)) (7.46)

The difficulty in numerical Nested sampling is to estimate the quantities Xi, i = 1, . . . , N

that belong to the values Li of the likelihood function.
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7.5.2 Nested Sampling and Subset Simulation

Nested sampling works on shrinking intermediate subsets of the prior domain that are nested.

At the ith intermediate level, samples θ from the prior distribution need to be generated that

are conditional on L(θ|D,M) ≥ Li, where Li is a likelihood threshold. The Li are picked

adaptively such that the probability of θ being in the ith nested subset is approximately pt,

conditional on θ being in the i − 1th nested subset. The Xi belonging to the selected Li is

estimated as Xi = pt ·Xi−1.

Nested sampling has considerable similarities with Subset Simulation. Most notably, sampling

is performed by means of nested subsets, starting from the prior distribution. The limit-state

function employed is g(θ) = Li − L(θ|D,M). The main difference between nested sampling

and Subset Simulation is: In nested sampling the intermediate probabilities are used as

weighting factors to approximate the integral in Eq. (7.45). In Subset Simulation the target

quantity of interest is the product of the intermediate conditional probabilities.

Another method for Bayesian inference that is based on Subset Simulation is BUS-SuS (Sec-

tion 7.3.8). The main difference between nested Sampling and BUS-SuS is: (i) The evidence

in BUS-SuS is computed as the scaled product of the intermediate probabilities in SuS,

whereas the evidence in nested sampling is computed as the sum of functions that depend

on the intermediate probabilities. (ii) BUS-SuS works in a (M + 1)-dimensional augmented

space of random variable, whereas nested sampling directly operates in the space spanned by

the uncertain parameter vector θ.

Specialized MCMC algorithms are available for Subset Simulation (in particular for Subset

Simulation formulated in standard Normal space [Papaioannou et al., 2015]) whose efficiency

is independent of the number of random variables in the problem. As mentioned above, the

problem solved in nested sampling can be interpreted as a reliability problem with limit-state

function g(θ) = Li − L(θ|D,M). Moreover, it is typically straight-forward to transform

the uncertain parameter vector θ to an underlying independent standard Normal space (see

Section 3.2). Therefore, the efficient MCMC algorithms available for Subset Simulation can

directly be employed within nested sampling.

7.5.3 Standard nested sampling algorithm

There is no single method that can be uniquely identified as nested sampling, as different

algorithms based on the original variant [Skilling et al., 2006] have been proposed under the

term nested sampling. The implementation given as Algorithm (7.5) is based on [Skilling

et al., 2006] and [Skilling, 2012]; it was modified compared to standard implementations of

nested sampling to accentuate the similarities to Subset Simulation.
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Algorithm 7.5. Nested sampling:

As input, the algorithm requires:

• K, the number of samples to propagate.

• pt, the target multiplier for the Xi; i.e., Xi = pt · Xi−1. [Skilling et al., 2006] propose to set

pt = K−1. pt should ideally be selected such that (1− pt) ·K is a positive integer number.

• ε, a quantity that controls the termination of the nested sampling iteration; e.g., ε = 10−4. The

smaller ε, the longer the iteration continues.

The algorithm returns an estimate Z for the evidence cE|M and a weighted set of samples that follow

the posterior distribution. The weighted samples are denoted as θi, the associated weights as wi,

where i ∈ {1, . . . , n}, and n denotes the total number of weighted samples generated by the algorithm.

1. Generate K samples θ
(p)
j , with j = 1, . . . ,K, from the prior distribution, and set L

(p)
j =

L(θ
(p)
j |D,M).

2. Initialize Z = 0, i = 0, X0 = 1, n = 0.

3. while
(
Xi · 1

K

∑K
j=1 L

(p)
j > ε · Z

)
do:

(a) Sort the K likelihood values L
(p)
j and the associated samples θ

(p)
j according to the

value of L
(p)
j in descending order.

(b) Increase i by one: i = i+ 1.

(c) Set Xi = pt ·Xi−1.

(d) Set k = pt ·K.

(e) Set Li = 1
2

(
L

(p)
k + L

(p)
k+1

)
(f) Set Z = Z + (Xi−1 −Xi) · 1

K−k ·
∑K
j=k+1 L

(p)
j

(g) for j = k + 1 to K do:

i. Increase n by one; i.e., n = n+ 1.

ii. Set θn = θ
(p)
j and wn = (Xi−1 −Xi) · 1

K−k · L
(p)
j .

iii. Generate integer number l randomly from the set {1, . . . , k} with equal prob-

ability.

iv. Use sample θ
(p)
l as seed to generate a realization of θ

(p)
j by means of MCMC

sampling. The target distribution is proportional to the prior distribution, and

conditional on L
(
θ

(p)
j |D,M

)
≥ Li. As MCMC algorithm, e.g., the CS algo-

rithm (Algorithm (3.6)) can be applied inside Algorithm (3.3). To adopt the

spread of the MCMC proposal distribution, Algorithm (3.9) can be used. Note

that the samples θ
(p)
l with l ∈ {1, . . . , k} already follow the target distribution.

v. Set L
(p)
j = L

(
θ

(p)
j |D,M

)
4. Set Z = Z +Xi · 1

K ·
∑K
j=1 L

(p)
j .

5. for j = 1 to K do:

(a) Increase n by one; i.e., n = n+ 1.
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(b) Set θn = θ
(p)
j and wn = Xi · 1

K−k · L
(p)
j .

The following steps where modified in Algorithm (7.5) compared to standard nested sampling

as in [Skilling et al., 2006; Skilling, 2012]:

– Termination condition in step 3 :

There is no clear stopping criterion in nested sampling. The employed stopping criterion

terminates the iteration if the expected pending contribution to Z is smaller than a

specified fraction ε of the preliminaryZ ([Keeton, 2011]).

– Estimation of the intermediate probabilities in step 3(c):

The given estimate is based on the one typically employed in SuS. In [Skilling et al.,

2006], the Xi are estimated assuming that the distribution quantifying our uncertainty

about the actual value of pt is known. The distribution for pt is modeled by a likelihood

and a prior. As likelihood for pt, the observation “pt · K out of K” samples can be

interpreted as an observation from a Binomial process (this is similar to what is done

in Section 5.2.3.1). As prior for pt, [Skilling et al., 2006; Skilling, 2012] assume Jeffrey’s

prior (see Section 5.2.3.2). Based on such assumptions, the distribution for pt is a beta

distribution.

[Skilling et al., 2006; Skilling, 2012] suggest to either sample realizations from the thus

obtained distribution for pt, or to compute the Xi based on the expectation of the

log-transform of the product of the individual pt that contribute to the Xi.

– MCMC sampling in step 3(g)(iv):

The same algorithms that are efficient for SuS should also perform well for nested

sampling. To the best of our knowledge, MCMC algorithms specifically designed for

Subset Simulation have not yet been applied in nested sampling.

7.5.4 Proposed modifications to the nested sampling algorithm

As in Subset Simulation, in standard nested sampling, the target conditional probability pt

is kept constant during the simulation. In BUS-SuS, the evidence is estimated as the scaled

product of the intermediate conditional probabilities. Working with the same target pt is

a reasonable choice if one assumes the same coefficient of variation for each estimated con-

ditional probability. However, contrary to BUS-SuS, the evidence in nested sampling is

estimated based on the weighted sum of likelihood values of the samples that do not fall in

the next conditional failure domain. Thus, each subset contributes differently to the integral

that describes the evidence.

Working with larger pt in regions that contribute most to the estimate Z, and with smaller
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pt in regions that contribute little to Z seems a reasonable choice. Such a strategy can be

easily integrated in Algorithm (7.5). For example, the pt can be chosen prior to step 3(c)

such that the portion added to Z in step 3(f) will be approximately pe · Ẑ, where Ẑ is an

estimate for the final value of Z and pe is the fraction of Ẑ to cover in each subset level; i.e.,

the targeted total number of subset levels is 1/pe. The quantity Ẑ can be computed in the

beginning of step 3 as:

Ẑ = Z +Xi ·
1

K
·
K∑
j=1

L
(p)
j (7.47)

As an additional requirement, the value of pe can be selected such that the conditional

probability pt is bounded; e.g., pt ∈ [5%, 95%].

In this work only the idea of how the standard nested sampling algorithm could be enhanced

is presented. Numerical performance investigations have not yet been conducted.

7.6 Transitional Markov chain Monte Carlo (TMCMC)

This section contains material originally published in [Betz et al., 2016b,a].

Some passages and figures are directly taken from the mentioned reference.

7.6.1 Introduction

The Transitional Markov Chain Monte Carlo (TMCMC) method, proposed by [Ching and

Chen, 2007], belongs to the class of sequential particle filter methods [Chopin, 2002] and is

based on MCMC sampling. The method tries to overcome the issues of MCMC mentioned

in Section 7.1 by gradually pushing the samples from the prior to the posterior distribution.

The method has become popular in both research and practice: recent contributions include

[Zheng and Chen, 2014], [Jensen et al., 2014], [Ortiz et al., 2015], [Hadjidoukas et al., 2015],

[Angelikopoulos et al., 2015]. In addition to the posterior samples generated by TMCMC,

the method returns an estimate of the evidence of the Bayesian model class, which is needed

for Bayesian model class selection and Bayesian model averaging (Section 6.3).

In this section, properties of the TMCMC method are discussed and potential improvements

are identified. In particular, it is observed that the TMCMC method tends to produce

estimates of the evidence that contain a considerable bias. Three potential modifications

to the TMCMC method are proposed: (1) Adjusting the sample weights after each MCMC

step tends to improve the performance of the method and reduces the bias in the estimated

evidence. (2) A burn-in period in the MCMC sampling step can improve the posterior

approximation. (3) The scale of the proposal distribution can be adjusted adaptively such
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that the MCMC algorithm maintains a specified near-optimal acceptance rate.

7.6.2 The principle behind TMCMC

The TMCMC method starts with independent samples from the prior distribution. In sub-

sequent steps, the sampling distribution is gradually transformed such that it approaches the

posterior distribution. For this purpose, Eq. (6.1) is modified to:

pj(θ) ∝ p(θ) · L(θ|D)qj (7.48)

where j = 0, . . . ,m denotes the level, and the qj ∈ [0, 1] are chosen such that q0 = 0 < q1 <

· · · < qm = 1. Consequently, for j = 0, p0(θ) is equal to the prior distribution p(θ); and for

j = m, pm(x) matches the posterior distribution p(θ|D).

The principle behind the TMCMC method is to gradually push the samples from the prior

distribution to the posterior distribution. The speed of this gradual transition is controlled

by the coefficients qj . [Ching and Chen, 2007] proposed to select qj+1 based on qj such that

the coefficient of variation of L(θ|D)qj+1−qj approximately equals vt, where vt = 100% was

suggested. The value of qj+1 can then be determined based on the samples of the previous

level as:

qj+1 = arg min
q

(∣∣CVj(q)− vt

∣∣) (7.49)

where CVj(q) with q ∈ (qj , 1] is the sample coefficient of variation of the set
{
L(θ(j,k)|d)q−qj

}K
k=1

,

K is the number of samples generated at each level, θ(j,k) denotes the kth sample at level j,

and L(θ(j,k)|D) is the likelihood value that is associated with θ(j,k).

The evidence of the stochastic model class cE|M Eq. (6.2) can be rewritten as follows:

cE|M =

∫
x
p(θ) ·

m∏
j=1

L(θ|D)qj−qj−1 dθ (7.50)

=
m∏
j=1

∫
θ

L(θ|D)qj−qj−1 · pj−1(θ) dθ (7.51)

=

m∏
j=1

Epj−1(θ)

[
L(θ|D)qj−qj−1

]
(7.52)

where Epj−1(θ) [·] denotes the expectation with respect to distribution pj−1, which can be

estimated based on the generated samples:

Epj(θ)

[
L(θ|D)qj+1−qj] ≈ 1

K

K∑
k=1

L(θ(j,k)|d)qj+1−qj (7.53)
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7.6.3 The TMCMC algorithm

The TMCMC algorithm can be summarized as follows:

Algorithm 7.6. TMCMC algorithm:

For the initial j = 0, all K samples θ(0,1), . . . ,θ(0,K) are drawn from the prior distribution, and j is

set to one thereafter. For all j > 0, [Ching and Chen, 2007] propose the following scheme:

1. Find qj through solving Eq. (7.49). If qj > 1, then set qj = 1.

2. For all samples k = 1, . . . ,K compute a weighting coefficient w(j,k):

w(j,k) =
(
L(θ(j−1,k)|D)

)qj−qj−1
(7.54)

3. Compute the mean of the weighting coefficients:

Sj =
1

K

K∑
k=1

w(j,k) (7.55)

4. Compute the covariance matrix of the Normal proposal distribution:

Σj = β2 ·
K∑
k=1

[
w(j,k)

Sj ·K
·
(
θ(j−1,k) − θj

)
·
(
θ(j−1,k) − θj

)T]
(7.56)

with

θj =

∑K
l=1 w(j,l) · θ(j−1,l)∑K

l=1 w(j,l)

(7.57)

The coefficient β scales the proposal distribution. [Ching and Chen, 2007] suggest to set β = 0.2.

5. For each l in {1, . . . ,K} set: θc
(j,l) = θ(j−1,l). Thereafter, for k = 1, . . . ,K do:

• Select index l from the set {1, . . . ,K} at random, where each l is assigned probability
w(j,l)∑K
n=1 w(j,n)

.

• Propose a new sample: draw θc from a Normal distribution that is centered at θc
(j,l) and

has covariance matrix Σj .

• Generate a sample r from a uniform distribution on [0, 1].

• If r ≤ pj(θ
c)

pj(θc
(j,l)

) then set θc
(j,l) = θc, otherwise do nothing.

• Set θ(j,k) = θc
(j,l).

6. If qj = 1 then stop the iteration, otherwise set j = j + 1 and continue with 1.

An estimate for the evidence of the assumed model class that is based on Eq. (7.52) is:

ĉE, =
m∏
j=1

Sj (7.58)
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with Sj defined according to Eq. (7.55).

7.6.4 Observations and potential improvements

7.6.4.1 Observation 1: sample weights

At each level j in the TMCMC method, samples {θ(j,1), . . . ,θ(j,K)} are generated that (ap-

proximately) follow distribution pj based on samples {θ(j−1,1), . . . ,θ(j−1,K)} that follow dis-

tribution pj−1. To each sample a weight is attached according to Eq. (7.54). Instead of

performing only a simple resampling step based on the weights, the weighted sampling is

combined with a MCMC step: In an iterative process, one randomly picks a sample accord-

ing to its weight, uses the selected sample as seed to perform a MCMC step with stationary

distribution pj , and replaces the randomly picked sample with the sample that the MCMC

step produced. The principle is that the samples that the MCMC step produced already

follow (asymptotically) the target distribution pj , because the seeds of the MCMC step are

picked according to their importance weights.

If the proposed sample is accepted, the chain moves on. Therefore, the absolute weight of the

current chain should change. This is not taken into account by the original TMCMC method.

Asymptotically, the samples of the individual Markov chains that initially follow distribution

pj−1 approach the target distribution pj , and the weights of all chains should asymptotically

equalize. However, in practice the intermediate distributions of the transition are difficult

to obtain. Therefore, the original TMCMC method assumes that for the finite number of

samples that are drawn from a single chain, no transition takes place. Consequently, the

absolute weight of a Markov chain can be updated after each accepted sample by means of

Eq. (7.54). To consider the transition to the target distribution when updating the weights

remains an area of future research.

7.6.4.2 Proposed modification (1):

In the original TMCMC method, the weights w(j,k) attached to each Markov chain are com-

puted at the beginning of each TMCMC level (see Eq. (7.54)) and then kept constant. We

propose to adapt the weight of a Markov chain each time the chain moves on. In order to do

so, step (5) in the TMCMC algorithm given above needs to be modified as follows:

5. For each l in {1, . . . ,K} set: θc
(j,l) = θ(j−1,l). Thereafter, for k = 1, . . . ,K do:

• . . .

• Set θ(j,k) = θc
(j,l).

• Set w(j,l) =
(
L(θc

(j,l)|d)
)qj−qj−1
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Note that Sj and Σj are computed only once at the beginning of each level.

As we will demonstrate by means of numerical examples, this modification considerably

reduces the average bias in the estimate of the evidence. The statistics of the posterior

samples is improved marginally by the modification.

7.6.4.3 Observation 2: burn-in

In the TMCMC method one uses samples from distribution pj−1 to generate samples that

asymptotically follow distribution pj . The sampling is based on MCMC, where weighted

samples of distribution pj−1 are taken as seeds. The weighted samples follow distribution

pj only asymptotically. Therefore, the MCMC sampling performed in the TMCMC method

does not possess the property of perfect sampling [Cheung and Beck, 2009], where perfect

sampling implies that the initial distribution of the seeds equals the stationary distribution

of the Markov chains [Robert and Casella, 2004].

For practical applications, this is usually not an issue, as is demonstrated by means of numer-

ical examples in Section 7.6.5. Consequently, the TMCMC method does not usually require

a burn-in period. However, one should be cautious if TMCMC is used with only a small

number of samples per level: In this case a burn-in period might actually be required for the

Markov chains to converge.

7.6.4.4 Proposed modification (2):

It is straight-forward to introduce a burn-in period of length Nb to the MCMC sampling of

each TMCMC level. Again, only step (5) in the TMCMC algorithm has to be modified:

5. For each l in {1, . . . ,K} set: θc
(j,l) = θ(j−1,l). Thereafter, for k = 1, . . . , (K +Nb) do:

• . . .

• If r ≤ L(θc|d)
L(θc

(j,l)|d) then set θc
(j,l) = θc, otherwise do nothing.

• If k > Nb then set θ(j,k−Nb) = θc
(j,l), otherwise do nothing.

• Set w(j,l) =
(
L(θc

(j,l)|d)
)qj−qj−1

However, our numerical investigations demonstrate that Nb can usually be set to zero.

7.6.4.5 Observation 3: scaling of the proposal

The optimal value of the constant β that is used to scale the proposal distribution depends

considerably on the problem at hand. On the one hand, a β that is selected too small leads to
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a proposal distribution that accepts many samples; however, subsequent samples in a Markov

chain are close to each other. Thus, the correlation in the chain is large and the produced

samples will not properly propagate into the relevant domain for reasonable K. On the other

hand, a β that is selected too large leads to many rejected samples and, thus, also results in

a large chain correlation. The larger the correlation in a Markov chain, the less efficient is

the sampling procedure, because the effective number of independent samples in the chain is

reduced and, thus, the variance of applied estimators is bound to increase.

Setting β = 0.2 as proposed in [Ching and Chen, 2007] works well for some problems, but is,

in our experience, far from optimal for other problems.

7.6.4.6 Proposed modification (3):

In the original TMCMC algorithm, the proposal distribution is set-up in the space spanned

by θ: The proposal is a multivariate Normal distribution that is centered at the current state

of the Markov chain and whose variance is defined according to Eq. (7.56).

Without loss of generality, we propose to represent the joint prior PDF of the uncertain

parameter vector θ in terms of an underlying vector u ∈ RM of independent standard Normal

random variables. If the components of θ are a-priori independent, then the transformation

ui → θi of the ith component of the uncertain parameter vector is given as: θi = F−1
θi

(Φ(ui)),

where F−1
θi

(·) denotes the inverse CDF of the prior distribution of the ith component of θ,

and Φ(·) denotes the CDF of the standard Normal distribution. If the components of θ are

dependent, the marginal transformation based on the Nataf model [Der Kiureghian and Liu,

1986] or the Rosenblatt transformation [Hohenbichler and Rackwitz, 1981] can be used.

The updating problem is then solved in terms of u. Performing the Bayesian inference in

an underlying standard Normal space has numerical advantages: (1) The uncertainty in ui

is normalized, whereas the uncertainty in θi is usually not. (2) The support of θ may be

bounded, whereas the support of u is not bounded.

Based on this, the proposal is then set-up in the space spanned by u: it is a multivariate

Normal distribution that is centered at the current state of the Markov chain and whose

covariance matrix is defined as the sample covariance in terms of u (and not in terms of θ).

We propose to select the initial scaling factor β of the thus obtained proposal distribution

as: β = 2.4/
√
M based on [Gelman et al., 2004b; Andrieu and Thoms, 2008].

Additionally, the performance of the MCMC algorithm can be enhanced, by adjusting the

scaling factor β adaptively during the simulation. Often the scaling factor β is tuned such

that the average acceptance probability of the MCMC algorithm approaches a specified tar-

get acceptance-rate tacr [Andrieu and Thoms, 2008; Papaioannou et al., 2015]. We suggest to

adaptively modify β such that the monitored average acceptance-rate approaches the follow-
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ing target acceptance-rate tacr = 0.21/M + 0.23, i.e., tacr = 0.44 for M = 1, tacr = 0.27 for

M = 5 and tacr = 0.23 for large M . This rule is based on the findings published in [Roberts

et al., 1997, 2001].

The algorithm to adaptively update β is as follows: At the initial sampling level set β(old) =

2.4/
√
M ; in all other levels use the last value of β(old) from the previous sampling level. At

the beginning of each sampling level, set Nadapt = 1. Perform Na MCMC steps. Thereafter,

evaluate the coefficient ca = (pacr − tacr) /
√
Nadapt, where pacr is the mean acceptance-rate

of the last Na MCMC steps (i.e., the number of accepted samples divided by Na), and

tacr denotes the target acceptance-rate. Modify β based on the value of ca: set β(new) =

β(old) · exp(ca). Increase the value of Nadapt by one, set β(old) = β(new), perform another Na

MCMC steps and evaluate ca again. Repeat this until the required number of samples is

generated. We suggest to set Na = 100.

Note: In principle, the algorithm to choose the scaling factor β adaptively works also if the

problem is solved directly in the space spanned by θ. However, for the following reasons,

we expect a reduced efficiency in this case: On the one hand, working in the underlying

u-space facilitates the choice of an initial scaling factor that leads to a robust behavior of

the algorithm for a large variety of problems. Moreover, if the support of θ is bounded and

a Normal proposal distribution is used, some proposed samples have to be rejected simply

because the proposed sample is not within the support of θ. On the other hand, solving

the updating problem in terms of u adds an additional layer of complexity. Working in the

underlying standard normal space, the transformed target distribution is more likely to obey

the conditions for which the suggested target acceptance rate tacr = 0.21/M + 0.23 is the

optimal one [Roberts et al., 1997]. This is especially the case in the initial sampling levels

of iTMCMC where the exponent of the likelihood is small and hence the transformed target

density is closer to the independent standard normal prior.

7.6.4.7 iTMCMC algorithm

The TMCMC algorithm that takes the first and the third proposed modification into account

is referred to as iTMCMC and presented in the following.

Algorithm 7.7. iTMCMC algorithm:

Initially, set j = 0 and β = 2.4/
√
M , where M denotes the dimension of vector θ. Furthermore, set

tacr = 0.21/M + 0.23 and Na = 100, where Na denotes the number of MCMC steps after which the

value of β is modified Additionally, set Nadapt = 1.

For the initial j = 0, all K samples u(0,1), . . . ,u(0,K) are drawn from the M -dimensional independent

standard normal distribution. For k = 1, . . . ,K, the standard normal samples u(0,k) are transformed

to samples θ(0,k) in the original parameter space, using e.g. the Nataf transformation or the Rosenblatt
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transformation. Note that the samples u(0,k) follow the prior distribution. Thereafter, j is set to one.

For all j > 0, the following scheme is applied:

1. Find qj through solving the minimization problem

qj+1 = arg min
q

(∣∣CVj(q)− vt

∣∣) (7.59)

where CVj(q) with q ∈ (qj , 1] is the sample coefficient of variation of the current samples, and

vt is the target coefficient of variation (typically set to vt = 100%). If qj > 1, then set qj = 1.

2. For all samples k = 1, . . . ,K compute a weighting coefficient w(j,k):

w(j,k) =
(
L(θ(j−1,k)|D)

)qj−qj−1
(7.60)

3. Compute the mean of the weighting coefficients:

Sj =
1

K

K∑
k=1

w(j,k) (7.61)

4. Compute the sample covariance matrix of the Normal proposal distribution:

Σsample,j =

K∑
k=1

[
w(j,k)

Sj ·K
·
(
u(j−1,k) − uj

)
·
(
u(j−1,k) − uj

)T]
(7.62)

with

uj =

∑K
l=1 w(j,l) · u(j−1,l)∑K

l=1 w(j,l)

(7.63)

5. For k = 1, . . . ,K, set: uc
(j,k) = u(j−1,k) and θc

(j,k) = θ(j−1,k).

6. Set na = 0 and acr = 0.

7. For k = 1, . . . ,K do:

(a) Select index l from the set {1, . . . ,K} at random, where each index i ∈ {1, . . . ,K} of the

set is assigned probability
w(j,i)∑K
n=1 w(j,n)

(7.64)

(b) Propose a new sample: draw u∗ from a normal distribution that is centered at uc
(j,l) and

has covariance matrix Σj = β2 ·Σsample,j .

(c) Transform the sample u∗ to sample θ∗ in original parameter space.

(d) Generate a sample r from a uniform distribution on [0, 1].

(e) If r ≤ pj(θ
∗)

pj(θc
(j,l)

) then set uc
(j,l) = u∗, θc

(j,l) = θ∗ and acr = acr + 1, otherwise do nothing.

(f) Set u(j,k) = uc
(j,l) and θ(j,k) = θc

(j,l).

(g) Set w(j,l) =
(
L(θc

(j,l)|D)
)qj−qj−1

(h) Increase na by one; i.e., na = na + 1.
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(i) If na ≥ Na, then

• Compute the average acceptance-rate pacr of the last Na MCMC steps; i.e., pacr =

acr/Na

• Evaluate coefficient ca = (pacr − tacr) /
√
Nadapt.

• Update the value of β = β · exp(ca).

• Set na = 0, Nadapt = Nadapt + 1 and acr = 0.

8. If qj = 1 then stop the iteration, otherwise set j = j + 1 and continue with 1.

Remark: iTMCMC proposes an adaptive choice of the scaling factor β in contrast to the

use of a fixed β suggested in [Ching and Chen, 2007]. If the sought posterior distribution

has certain known properties, it is possible to theoretically derive a fixed optimal scaling

factor. In particular, if the target distribution has iid components and obeys certain regularity

conditions, the optimal scaling factor is 2.38/
√
M · F , where M is the dimension and F is

a Fisher’s information measure of the component target density with F = 1 for the Normal

case [Gelman et al., 1996; Roberts et al., 1997]. The corresponding optimal acceptance rate

of the candidate sample is 0.23 for sufficiently large M . For such situations, β should be

directly selected as the optimal value. However, the crux is that in most real applications,

these conditions are not met and the optimal β cannot be found directly. Ching & Wang

[Ching and Wang, 2016] deal with this situation by postulating a fixed value of β that works

well in a variety of cases, whereas iTMCMC determines a near-optimal β case-specifically in

an adaptive manner.

7.6.5 Numerical Investigations

Numerical investigations of the proposed modifications to the TMCMC algorithm are per-

formed in [Betz et al., 2016b] by means of three example problems. Additional performance

studies are conducted in [Ching and Wang, 2016; Betz et al., 2016a].
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Chapter 8

Conclusions and Outlook

8.1 Concluding remarks

Uncertainty is best viewed as being personal, and not as either subjective or objective. Cox-

Jaynes interpretation of probability provides a basis for Probability Theory that is more ap-

propriate for uncertainty quantification in engineering models than an interpretation based on

the Kolmogorov axioms, as all probabilities are viewed as conditional probabilities. Within

a Bayesian framework, all probabilities are conditional on the stochastic model class that

contains the assumptions made.

Within a Bayesian analysis, the evidence is a quantitative measure for the plausibility of a

stochastic model class. The evidence can be used to compare competing stochastic model

classes. The use of weakly- or non-informative prior distributions in stochastic engineering

models is best avoided, as the evidence is rendered meaningless and the posterior distribution

might be improper. Uncertain parameters of engineering models are frequently represented

through uniform prior distributions. Typically, this modeling choice is made out of conve-

nience, and such an assumption should be scrutinized critically. Prior distributions based on

the principle of maximum information entropy are a simple and objective choice. However,

other distribution choices can be more appropriate depending on the problem at hand. Ne-

glecting the dependence in error structures and assuming statistical independence based on

the principle of maximum information entropy is often an inappropriate assumption for engi-

neering models. The efficiency of numerical inference methods depends on how the likelihood

is expressed in terms of prediction- and observation-errors.

Bayesian updating using structural reliability methods (BUS) [Straub and Papaioannou, 2015]

converts sampling from the posterior into sampling from the failure domain of a structural

reliability problem. The use of Subset Simulation within BUS, referred to as BUS-SuS, is

a particularly interesting strategy for Bayesian inference. BUS-SuS can handle inference
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problems with many uncertain parameters, and efficiently generates posterior samples even

if the posterior differs considerably from the prior. In order to apply the BUS approach,

the maximum that the likelihood function can take must be known. The proposed adaptive

variant of BUS-SuS, referred to as aBUS, does not require the maximum of the likelihood to

be known, in order to generate samples that follow the posterior distribution and provide an

unbiased estimate of the evidence.

Both aBUS and BUS-SuS employ Subset Simulation (SuS) as reliability method. Within

SuS, conditional samples are generated by means of Markov chain Monte Carlo (MCMC)

simulation. In this context, the conditional sampling in standard Normal space algorithm

proposed in [Papaioannou et al., 2015] is an efficient and easy to implement MCMC algorithms

that works well in problems with many uncertain parameters. The uncertainty about the

estimated probability of failure in SuS depends on the formulation of the limit-state function;

i.e., on the shape of the final and the intermediate failure domains. For unfavorable limit-

state functions and small probabilities of failure, the distribution describing the uncertainty

about the estimated probability of failure can be considerably right-skewed.

8.2 Main contributions of this thesis

New developments and finding that emerged from this thesis are:

1. A modified variant of the BUS approach combined with Subset Simulation, referred

to as aBUS, is proposed that does not require the scaling constant c−1 as input (see

Section 7.4). It is argued that aBUS is computationally at least as efficient as standard

BUS-SuS.

2. Contributions to the BUS approach:

(a) A numerically more beneficial variant of the BUS limit-state function is suggested

in Section 7.3.8.1. The suggested limit-state function is based on a log-transform

that was first used in [DiazDelaO et al., 2017] to propose a variant of the BUS

approach.

(b) A post-processing step is proposed to correct the posterior distribution and the

estimated evidence if BUS was performed with the constant c−1 selected smaller

than the maximum of the likelihood function, denoted Lmax (see Section 7.3.9.1).

3. Observations regarding Subset Simulation (SuS) made: The probability of failure in the

estimated probability of failure in Subset simulation is denoted by pf,SuS. The actual

underlying (possibly unknown) probability of failure is denoted by Pf .

(a) It is shown that the distribution of the estimated pf,SuS can be considerably right-

skewed (positive skewness) for small Pf (Example 5.4). The distribution of the
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log-transformed pf,SuS exhibits a strong skewness as well. A consequence of this

strongly asymmetric distribution of pf,SuS for small Pf is that the coefficient of

variation is not a good measure to quantify the uncertainty about the probability

of failure estimated obtained with Subset Simulation.

(b) Moreover, the estimate for the upper bound of the coefficient of variation of pf,SuS

proposed in [Au and Beck, 2001] neglects the influence of correlated seeds. This

can result in the actual coefficient of variation being above the estimated upper

bound for small Pf . This effect is demonstrated by means of numerical examples

(Example 5.1) in Section 5.3.4.2.

(c) The beta distribution is not a good choice in describing the uncertainty about

pf,SuS. The log-Normal distribution is usually a better choice. However, also the

log-Normal distribution is not optimal in quantifying the uncertainty about pf,SuS

(see Example 5.3 in Section 5.3.4.2).

(d) The bias in the estimated pf,SuS is negligible compared to the spread of pf,SuS in

all investigated example problems (Section 5.3.4.2).

(e) The median of pf,SuS tends to be smaller than Pf for small Pf . This is especially

true if the shape of the final or the intermediate failure domains is not optimal for

the selected MCMC sampling strategy in Subset Simulation. As a consequence,

for small Pf , Subset Simulation returns an estimate pf,SuS that is in the majority

of cases smaller than Pf .

(f) The statistics of pf,SuS estimated by means of a large number of samples per level

is slightly better than performing Subset Simulation repeatedly with a smaller

number of samples per level at a comparable number of total limit-state func-

tion calls. However, by performing Subset Simulation repeatedly (with a smaller

number of samples per level), the uncertainty about the estimated probability of

failure can be quantified (at least approximately)1. Contrary to that, a satisfying

and conservative measure to quantify the uncertainty about pf,SuS from a single

run of Subset Simulation does not exist at present. The main reason is that the

uncertainty about pf,SuS depends to a large degree on the formulation of the limit-

state function; i.e., the shape of the final and the intermediate failure domains (see

e.g. Example 5.5).

(g) By performing multiple independent runs of Subset Simulation, the average of the

estimated probability of failure can be evaluated. The distribution of the average

converges asymptotically to a Normal distribution for an increasing number of

repeated SuS runs, according to the central limit theorem. However, it is demon-

strated that even for a large number of repeated SuS runs (104), the uncertainty

about the estimated average cannot be approximated well by a Normal distribution

if Pf is small (Example 5.6).
1It is recommended to use at least 103 samples per subset level to keep the bias in pf,SuS small.
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4. Mathematical reasoning is given as to why the MCMC algorithm conditional sampling

in standard Normal space (CS) proposed in [Papaioannou et al., 2015] is very efficient for

problems with many uncertain parameters (Section 3.5.6.2). In the standard version,

the CS algorithm has a single parameter that can be expressed as the correlation ρ

between the current state of the Markov chain and the proposed sample. Let M denote

the number of uncertain parameters in the problem. It is shown that for M →∞, the

parameter ρ is essentially equal to the cosine of the angle between the proposed sample

and the current state, and the distance between the proposed sample and the current

state is
√

2M(1− ρ).

5. A MCMC algorithm is proposed in Section 3.5.7 that is specifically designed to generate

samples from standard Normal target distributions. The proposed algorithm is called

directional conditional sampling (DCS). However, it is found that CS is more efficient

than DCS.

6. A modified variant of the TMCMC method is proposed that reduces the bias in the

estimate of the evidence (Section 7.6.4).

7. Similarities between nested sampling and Subset Simulation are highlighted. Based

on the experiences with Subset Simulation, a modified version of nested sampling that

works with different “intermediate threshold probabilities” is suggested.

8. Choosing prior distributions based on the principle of maximum information entropy

(MEP) represents an objective probabilistic modeling approach, if some probabilistic

constraints can be specified and the associated distribution is unknown. However, it

is found that MEP priors do not guarantee conservative posterior results (e.g., a large

posterior spread in the uncertain model parameters, or a large posterior probability

of failure). Other probabilistic models that also maintain the specified constraints can

have a larger associated evidence, and at the same time be more conservative with

respect to the posterior results (Example 6.7).

9. Different ways to formulate the likelihood function in terms of prediction- and observation-

error are shown and rated with respect to their computational complexity (Section 6.5).

10. It is shown that the expansion optimal linear estimation (EOLE) method proposed in

[Li and Der Kiureghian, 1993] constitutes (under rather general conditions) a special

case of the Nyström method and, thus, the EOLE method numerically approximates the

Karhunen–Loève expansion of random fields (see [Betz et al., 2014c] and Section D.7).
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8.3 Outlook

8.3.1 Models of different resolution in combination with aBUS

In this work, numerical Bayesian inference schemes based on an underlying fixed deterministic

“black box” model are investigated. Alternatively, the system of interest could be represented

by models of different mesh resolution (see e.g., [Koutsourelakis, 2009a,b]). By combining

e.g. aBUS with deterministic models that have different mesh resolutions – by starting with

a coarse mesh resolution and by successively refining the mesh, an additional computational

speed-up can be achieved. Especially for computational demanding models, this appears to

be a promising strategy. For aBUS and BUS-SuS, the main difficulty is to account for non-

nested subsets when modifying the mesh resolution (see [Ullmann and Papaioannou, 2015]).

The fact that the intermediate failure levels in aBUS are flexible might prove helpful in this

context.

Other potential improvements regarding aBUS and BUS-SuS are mainly coupled to improve-

ments in Subset Simulation. This is discussed in the following.

8.3.2 Uncertainty in the estimated probability of failure in Subset Simu-

lation

For some (favorable) problems and large Pf , the distribution of the estimated probability

of failure pf,SuS in Subset Simulation can be almost symmetric. For other (unfavorable)

problems and small Pf , the distribution of pf,SuS can be considerably skewed, such that

the median is much smaller than the mean and Pf . Therefore, quantifying the uncertainty

about pf,SuS in terms of the coefficient of variation or in terms of a Normal approximation

is generally not a good choice. The uncertainty about the average pf,SuS is best expressed

in terms of credible intervals1. However, this is difficult, as the distribution of pf,SuS can

not be described well through a standard distribution model. The beta distribution is an

inappropriate choice (Example 5.3). The log-Normal distribution describes the uncertainties

about pf,SuS better, but is still not an optimal choice.

Some future research should be dedicated to quantifying the uncertainty about pf,SuS, as no

satisfying and conservative measure has yet been proposed. Ideally, the uncertainty about

pf,SuS is expressed through a Bayesian post-processing step. This quest can be approached

by two fundamentally different strategies:

1When expressing pf,SuS in terms of credible intervals for very small Pf and a relatively small number of
samples per level, one hast to be careful: The mean of pf,SuS can be well above the 95% confidence interval
of pf,SuS. Nevertheless, the use of credible intervals is still better than the use of the coefficient of variation,
which can – in this context – be misinterpreted very easily.
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Strategy 1 The uncertainty about pf,SuS is quantified based on a single run of Subset Sim-

ulation.

This approach is rather difficult, as the potential dependency of MCMC seeds has to

be quantified and its influence on pf,SuS must be assessed. At present, no technique

to account for the influence of correlated seeds has been proposed. The main diffi-

culty is that the uncertainty about pf,SuS can depend strongly on the formulation of

the limit-state function; namely the shape of the final and the intermediate failure do-

mains. Moreover, how the limit-state formulation performs in SuS, is conditional on

the employed MCMC algorithm.

Existing approaches tend to underestimate the uncertainty about pf,SuS: In [Au and

Beck, 2001], an estimate for the upper bound of the coefficient of variation of pf,SuS is

given, assuming that the influence of correlated MCMC seeds is negligible. In [Zuev

et al., 2012], the uncertainty about pf,SuS is expressed based on a beta distribution, also

assuming that the influence of correlated MCMC seeds is negligible.

The author of this thesis tried to express the uncertainty about pf,SuS through the

product of the conditional failure probabilities pi, where the pi were assumed to fol-

low a beta distribution. The correlation of the Markov chains was taken into account

by estimating an efficient number of samples according to [Au and Beck, 2001]. The

correlation of the MCMC seeds was approximated by employing the Nataf distribution

and setting up a correlation matrix for the individual beta-distributed pi. The corre-

sponding correlation coefficients where estimated based on monitoring the history of the

samples used as seeds during the preceding SuS levels. The uncertainty about pf,SuS

was quantified by generating a large number of samples from the Nataf distribution

model and by computing pf,SuS as the product of the individual sampled pi. However,

so far an appropriate and conservative measure could not be obtained. Moreover, the

algorithms to monitor seed dependencies tend to become rather complex.

An alternative strategy could be to set up the previously mentioned correlation matrix

through approximate relations based on the effective number of samples in a single SuS

level. The relation could somehow be learned by means of a Bayesian approach and a

large number of exemplary reliability problems.

Strategy 2 The uncertainty about pf,SuS is quantified based on the average of multiple runs

of Subset Simulation (with a possibly small number of samples per level).

Compared to the previous strategy, it is much easier to repeatedly perform Subset

Simulation multiple times, and to quantify the uncertainty about the average pf,SuS

based on the obtained outcomes of pf,SuS. The estimates from the individual SuS runs

are statistically independent. However, it is usually not valid to assume that the average

pf,SuS follows a Normal distribution due to the central limit theorem, because of the

potentially highly skewed shape of the distribution of pf,SuS.
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Based on the estimated outcomes of pf,SuS in n performed SuS runs, the CDF of pf,SuS

can be approximated. The statistical uncertainty due to a finite number of repeated

runs should ideally be accounted for when setting up the CDF. Using this approximated

CDF, the CDF of the average probability of failure estimated from n repeated SuS runs

can be computed. Form this, credible intervals for the value of Pf can be obtained.

Instead of approximating the CDF for pf,SuS entirely based on sample statistics, an

appropriate distribution model could be sought and fitted. Instead of fitting with

respect to sample mean and sample standard deviation, a fit based on a maximum

likelihood or on a Bayesian approach could be investigated. The log-Normal distribution

is a good starting point. However, possibly different distribution models might have to

be combined to achieve a good fit also in the tails. The challenge is to come up with a

distribution that provides a good fit for a large variety of example problems, and can

be fitted well already with only a small number of repeated SuS runs.

8.3.3 Efficiency of MCMC in Subest Simulation

If independent samples conditional on the intermediate failure domains could be generated,

the performance of Subset Simulation would, as the performance of Monte Carlo simula-

tion, depend only on the target probability of failure1. Moreover, the statistical uncertainty

about the estimated probability of failure could be expressed through the product of beta dis-

tributed random variables. However, we cannot generated independent samples conditional

on the intermediate failure domains, and commonly use MCMC simulation instead. MCMC

introduces the dependency of the performance of SuS on the shape of the intermediate failure

domain.

As a consequence, if the performance of SuS is to be improved also for unfavorably formu-

lated limit-state functions, one needs to enhance the performance of the employed MCMC

sampling strategy. The difficulty is that the chosen MCMC strategy should perform also well

for problems with many uncertain parameters. With the MCMC algorithm proposed in [Pa-

paioannou et al., 2015], an efficient and elegant sampling technique is available that does not

depend on the number of uncertain parameters in the problem. However, MCMC is such a

critical part in SuS that future research would be desirable. Especially the adaptive learning

of the spread of the MCMC proposal distribution offers potential for further investigations,

either in terms of the acceptance rate, or based on alternative performance measures like the

expected squared jumping distance (ESJD).

1In the entire paragraph it is neglected that in practice, the intermediate failure domains are estimated
conditional on fixed pi, and not the probabilities pi for fixed limit-state thresholds.
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8.3.4 Computational challenges

Increasing speedup of computer cores by increasing the clock rate of computer cores causes

considerable technical problems. Therefore, processors with multiple cores are used in modern

hardware instead of a processor with a single but very powerful core. As a consequence,

software that can run in parallel on multiple cores is on the advance.

One has typically limited potential to influence the software of the models that one works

with – often they are so-called black box models. However, the numerical algorithms that

one works with could be adopted to work in parallel. Moreover, simulation methods are

usually embarrassingly parallel1. For example Monte Carlo simulation: One can start the

simulation on different machines/cores. In the end, all one needs to do is to count the total

number of samples generated and the number of samples that were in the failure domain.

The same is in principle true when looking at the individual levels of Subset Simulation. If,

however, the spread of the proposal distribution is learned adaptively, then communication

between different jobs becomes a bit more important – but the problem is still considered

embarrassingly parallel. Some research on how to learn the spread adaptively when SuS is

run in parallel could improve the practical applicability of the method. A very promising

alternative is to have independent runs of SuS on the different cores. As mentioned previously,

this allows to quantify the uncertainty in the estimated probability of failure.

All such research attempts should investigate challenging limit-state functions; e.g., limit-

state function g5 with m = 4. For the commonly employed limit-state functions, most

MCMC methods for SuS behave similar. Also the optimal acceptance rate and the opti-

mal intermediate probabilities could be studied especially for very challenging limit-state

functions.

8.3.5 Conservative assumptions in engineering models

It is the task of engineers to design structures such that they are reliable. The employed

engineering models used to approximate the response of the system of interest are inevitably

simplified compared to reality. Simplifying assumptions are commonly made such that the

model predicts the response on the conservative/unfavorable side; i.e., the model tends to

predict displacements, stresses, discharges too large. Consequently, engineering models are

often deliberately selected such that they are biased to the conservative side.

In a forward model, this is not an issue, as conservative modeling assumptions result usu-

ally in conservative estimates. However, if uncertainties in modeling parameters are to be

reduced based on observed data, such conservative modeling assumptions are better avoided.

1Embarrassingly parallel means that the problem can easily be split in smaller tasks that can be computed
almost independently of each other. The obtainable speedup is essentially the number of cores available.
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Observed data comprises larger surprises in conservative models than in realistic models. The

larger the surprises in the data, the stronger the learning effect, and the more uncertainties

can be reduced. Thus, the posterior uncertainty in a conservative model can possibly be

smaller than in a more realistic model. Moreover, such conservative assumptions can result

in an artificial shift of the mean of posterior quantities to the “unconservative” side. For

example, assume a model that tends to predict displacements on average too large. If an

observed displacement is used to learn the Young’s modulus of the structure, the value of

the Young’s modulus needs to be artificially increased in order to compensate for the model

predicting displacements too large.

The influence of such assumptions has not been thoroughly investigated so far. Uniform prior

distributions in engineering models are most often motivated by conservative assumptions.

Also modeling and observation errors are often considered as independent, as this maximizes

the entropy and is viewed as a conservative modeling approach. Studies performed in this

thesis indicated that his can be a very critical assumption. A proper analysis of this relations

should be the scope of future research.

8.3.6 Requirements for future engineering standards

At present, most of engineering design is based on partial safety factors; and so are the relevant

technical standards. This is, for example, the case in civil engineering. [Eurocode 0, 2015]

allows for a probabilistic design approach, but specific recommendations for distributions

and parameters to select are missing in existing standards. This means that the probabilistic

modeling choices have all to be made on an individual basis.

Materials that are used and loads that are applied on the structures are all described in

technical standards. The decision on how to model the associated uncertainties should not

be put in the hand of the individual engineer. The problem is less that the engineer might

not be expert enough to quantify this uncertainties probabilistically. The problem is more

that the so performed reliability analyses lack comparability.

Future engineering standards should specify distributions and the parameters of the distri-

butions that represent the uncertainties about different material properties and the applied

loads. They do not have to “exactly” represent the uncertainties at hand (such a thing does

not exist), because the analysis is conditional on the assumption. A first attempt on a prob-

abilistic model code is made in [JCSS, 2001–2015]. However, such an approach should be

intrinsic to every technical standard.
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Appendix A

Numerical descriptors of random

variables

In the following, some numerical descriptors for random variables X with density pX(x)

are listed. This includes location parameters like the mean, median and mode, as well as

dispersion parameters like the variance, standard deviation and interquartile range.

Note: The definitions are given with respect to continuous probability distributions. However,

the transformation in case of discrete probability distributions should be straight-forward.

A.1 Expectation

The expectation of random variable X is defined as:

µX = EX [X] =

∫ ∞
−∞

x · pX(x) dx (A.1)

The expectation of X is also called the mean or first moment of X. It describes the central

tendency of a distribution – loosely speaking, the long-run average of X. More generally, the

expectation of an arbitrary function of X, h(X), is defined as:

EX [h(X)] =

∫ ∞
−∞

h(x) · pX(x) dx (A.2)

The X in EX [·] denotes that the expectation is taken with respect to X. If it is clear that

the expectation is to be taken with respect to e.g. X, the notation can be simplified to E[·].

In the following, some properties of the expectation operator E[·] are listed:

Expectation of constants The expectation of a constant c ∈ R is c; i.e., E[c] = c.
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Proof A.1.

E[c] = c ·
∫ ∞
−∞

pX(x) dx = c

Linear operator The expectation E(·) is a linear operator, because:

E[aX + bY ] = aE[X] + bE[Y ] (A.3)

where a, b ∈ R are constants and X, Y are random variables.

Proof A.2. Let pX,Y (x, y) be the joint probability density function of X and Y ,

and pX(x), pY (y) be the respective marginal densities. In this case we can write:

E[aX + bY ] =

∫ ∞
−∞

∫ ∞
−∞

(aX + bY ) · pX,Y (x, y) dx dy

= a

∫ ∞
−∞

X

∫ ∞
−∞

pX,Y (x, y) dy dx+ b

∫ ∞
−∞

Y

∫ ∞
−∞

pX,Y (x, y) dxdy

= a

∫ ∞
−∞

X · pX(x) dx+ b

∫ ∞
−∞

Y · pY (y) dy

= aE[X] + bE[Y ]

From Eq. (A.3) it follows that:

E[aX + b] = aE[X] + b (A.4)

Iterated expectation

E [E [X|Y ]] = E[X] (A.5)

Proof A.3. With pX,Y (x, y) = pX|Y (x|y) · pY (y) we can write:

E [E [X|Y ]] =

∫ ∞
−∞

∫ ∞
−∞

X · pX|Y (x|y) dx pY (y) dy

=

∫ ∞
−∞

∫ ∞
−∞

X · pX|Y (x|y) · pY (y) dx dy

=

∫ ∞
−∞

X · pX(x) dx

= E[X]

Non-multiplicativity In general, E[XY ] 6= E[X] ·E[Y ] for random variables X and Y ; the

difference is by definition the covariance between X and Y (see Section ??). However,

if X and Y are independent, then E[XY ] = E[X] · E[Y ].
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Proof A.4. If X and Y are independent, we can write pX,Y (x, y) = pX(x) · pY (y),

and, thus:

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

XY · pX(x) · pY (y) dx dy

=

∫ ∞
−∞

X · pX(x) dx ·
∫ ∞
−∞

Y · pY (y) dy

= E[X] · E[Y ]

Expectation of a matrix If X is a m× n matrix whose coefficients are random variables,

then the expectation of X is defined as:

E [X] = E



x1,1 · · · X1,n

x2,1 · · · X2,n

...
. . .

...

xm,1 · · · Xm,n


 =


E(X1,1) · · · E(X1,n)

E(X2,1) · · · E(X2,n)
...

. . .
...

E(Xm,1) · · · E(Xm,n)

 (A.6)

Transformation of the probabilistic basis Let T : Z → X be the transformation of ran-

dom variable Z to random variable X, and let T−1 : X → Z be the corresponding

inverse transformation. We can write:

EX [h(X)] = EZ [h(T (Z))] (A.7)

The proof makes use of integration by substitution.

Proof A.5. Let ΓX = [aX , bX ] be the support of X, and ΓZ = [aZ , bZ ] be the

support of Z.

EX [h(X)] =

∫ bX

aX

h(x) · pX(x) dx

=

∫ T−1(bX)

T−1(aX)

h(T(z)) · pX(T(z)) · pZ (z)

pX(T(z))
dz

=

∫ T−1(bX)

T−1(aX)

h(T(z)) · pZ (z) dz

A.2 Variance

The variance of random variable X is defined as:

σX
2 = Var[X] = E

[
(X − E[X])2

]
=

∫ ∞
−∞

(x− µX)2 · pX(x) dx (A.8)
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The variance of X is sometimes also referred to as the second central moment of X. It

describes how dispersed the distribution of X is; the larger the variance the more dispersed

it is.

In the following some properties of the variance are given. Let X be a random variable, and

c ∈ R denote a constant. Then, we can write:

• Var[X] = E[X2]− (E[X])2

Proof A.6.

Var[X] = E
[
(X − E[X])

2
]

= E
[
X2 − 2 ·X · E[X] + (E[X])

2
]

= E[X2]− 2 · (E[X])
2

+ (E[X])
2

= E[X2]− (E[X])
2

• Var[c] = 0

Proof A.7.

Var[c] = E[c2]− (E[c])
2

= 0

• Var[X + c] = Var[X]

Proof A.8.

Var[X + c] = E[(X + c)2]− (E[X + c])
2

= E[X2 + 2 · c ·X + c2]− (E[X] + c)
2

= E[X2] + 2 · c · E[X] + c2 − (E[X])
2 − 2 · c · E[X]− c2

= E[X2]− (E[X])
2

= Var[X]

• Var[cX] = c2 Var[X]

Proof A.9.

Var[cX] = E[(cX)2]− (E[cX])
2

= c2 E[X2]− c2 (E[X])
2

= c
(

E[X2]− (E[X])
2
)

= c2 Var[X]
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Furthermore, if random variables X and Y are independent, we can write:

• Var[X + Y ] = Var[X] + Var[Y ]

Proof A.10. For independent X and Y :

Var[X + Y ] = E[(X + Y )2]− (E[X + Y ])
2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y ])
2

= E[X2] + E[Y 2] + 2 E[XY ]− 2 E[X] E[Y ]− (E[X])
2 − (E[Y ])

2

= E[X2]− (E[X])
2

+ E[Y 2]− (E[Y ])
2

= Var[X] + Var[Y ]

• Var[XY ] = E[X]2 Var[Y ] + E[Y ]2 Var[X] + Var[X] Var[Y ]

Proof A.11. For independent X and Y :

Var[XY ] = E[(XY − E[X] E[Y ])2]

= E[X2Y 2]− 2 E[X]2 E[Y ]2 + E[X]2 E[Y ]2

= E[X2Y 2]− E[X]2 E[Y ]2

= E[X2] Var[Y ]

=
(
Var[X] + E[X]2

)
Var[Y ]

= E[X]2 Var[Y ] + E[Y ]2 Var[X] + Var[X] Var[Y ]

A.3 Standard deviation

The square root of the variance of random variable X is its standard deviation σX :

σX =
√

Var[X] (A.9)

As is the variance, the standard deviation is a measure for the variability of X. A small

standard deviation indicates that realizations of X tend to be close to the mean of X; whereas

a large standard deviation indicates that realizations of X have a large variability around the

mean. Compared to the variance, the physical meaning of the standard deviation is often

more intuitively interpretable, because the units of σX are the same as the units of X.
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A.4 Coefficient of variation

The coefficient of variation cv is defined as:

cv,X =
σX
|µX |

(A.10)

It is a normalized measure for the dispersion of the distribution of X. Note that Eq. (A.10)

is only defined for µX 6= 0, and is particularly useful if all outcomes of X have the same sign.

A.5 Moments about zero

The nth moment of X about zero is defined as, for n ∈ {1, 2, . . .}:

E[Xn] =

∫ ∞
−∞

x · pX(x) dx (A.11)

Note that the first moment about zero is the mean (see A.1). The second moment about zero

is called the mean square.

A.6 Central moments

The nth central moment of X is defined as, for n ∈ {1, 2, . . .}:

E [(X − E[X])n] =

∫ ∞
−∞

(x− E[X])2 · pX(x) dx (A.12)

Central moments are also referred to as moments about the mean; they are usually more

interesting than the moments about zero: central moments can be used as measures for the

dispersion of a distribution. Note: The first central moment is zero; the second central

moment is called the variance (see A.2).

A.7 Normalized central moments

The normalized nth central moment of X is the nth central moment of X divided by (σX)n,

where σX is the standard deviation of X:

E [(X − E[X])n]

(σX)n
(A.13)
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The normalized central moments are dimensionless quantities that are invariant to any linear

change of scale. Note that the normalized first central moment is zero, and the normalized

second central moment is one (if E[X] and Var[X] are defined for random variable X).

A.8 Skewness

The skewness γX of random variable X that has mean µX and standard deviation σX is often

defined as the normalized 3rd central moment:

γX =
E
[
(X − µX)3

]
(σX)3 =

E[X3]− 3 · µX · σX2 − µX3

σX3
(A.14)

The skewness measures the asymmetry of a probability distribution. Loosely speaking, for

unimodal distributions: If the left tail is longer, the skewness is negative. If the right tail is

longer, the skewness is positive. However, if the other tail is heavy, this rule of thumb might

not hold. For symmetric distributions, the skewness is zero; the reverse, however, is not true:

zero skewness does not imply that the distribution is symmetric.

A.9 Kurtosis

The excess kurtosis κX of random variable X that has mean µX and standard deviation σX

is defined as:

κX =
E
[
(X − µX)4

]
(σX)4 − 3 (A.15)

The −3 is used to set the kurtosis of the Normal distribution to zero. Loosely speaking,

kurtosis measures the peakedness or tail weight of a distribution.

A.10 Percentile

The p-percentile of random variable X is the value Xp for which p (percent) of the outcomes

of X are smaller or equal than Xp. The 10%, 20%, . . . , 90%-percentiles are called the deciles.
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Appendix B

Probability distributions

B.1 Common discrete probability distributions

B.1.1 Bernoulli distribution

The Bernoulli distribution is a discrete probability distribution. A Bernoulli distributed

random variable is also referred to as Bernoulli trial. The realization of a Bernoulli trial can

have exactly two states: 1 or 0, success or failure, yes or no, . . . .

Let p be the parameter of a Bernoulli distribution; it specifies the probability that the outcome

of a Bernoulli trial is in the first state (e.g., the outcome is 1 or success or yes).

Properties

parameter p ∈ (0, 1)

support k ∈ {1, 0}

mean = p

standard deviation =
√
p · (1− p)

entropy = −p ln(p)− (1− p) ln(1− p)

PMF

Pr(k) =

p if k = 1

(1− p) if k = 0
(B.1)
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B.1.2 Binomial distribution

Suppose we have a Bernoulli trial with success rate p (see Section B.1.1). The number K of

successes in N independent homogeneous Bernoulli trials follows a binomial distribution.

Properties

parameters p ∈ (0, 1), N ∈ N

support k ∈ {0, . . . , N}
mean = p ·N
standard deviation =

√
N · p · (1− p)

coefficient of variation =
√

1−p
Np

2nd moment about zero E[K2] = Np ((N − 1)p+ 1)

skewness = 1/
√
λ

excess kurtosis = 1/λ

PMF

Pr(k) =

(
N

k

)
pk(1− p)N−k (B.2)

where
(
N
k

)
is the binomial coefficient. For the PMF of the Binomial distribution, the

following property holds:

Pr(k|N, p) = Pr(N − k|N, 1− p) (B.3)

Relation to other distributions

Bernoulli distribution For N = 1 the binomial distribution becomes a Bernoulli

distribution.

Normal approximation A Normal distribution with mean Np and standard devia-

tion
√
Np(1− p) can be used to approximate the binomial distribution. However,

this approximation is only reasonable if N is large enough and p is not close to

0 or 1. If p is close to either 0 or 1, the distribution can be highly skewed even

for large N , and the Normal approximation might be not sufficient [Brown et al.,

2001].

Poisson distribution The N goes to infinity and the expected number of successes

remains fixed, the Poisson distribution with parameter λ = Np can be derived as

limiting case to the binomial distribution. If N > 100 and Np ≤ 10 the quality of

the approximation can typically be considered very good.
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B.1.3 Negative binomial distribution

Suppose we have a Bernoulli trial with success rate p (see Section B.1.1). The required

number N of independent homogeneous Bernoulli trials until K successes are reached follows

a negative binomial distribution. When K = 1, the distribution becomes the Geometric

distribution.

Properties

parameters p ∈ (0, 1), K ∈ {1, 2, . . .}
support n ∈ {K,K + 1, . . .}
mean = K

p

standard deviation =

√
K(1−p)
p

coefficient of variation =
√

1−p
K

PMF

Pr(n) =

(
n− 1

K − 1

)
pK(1− p)n−K (B.4)

where
(·
·
)

is the binomial coefficient.

B.1.4 Poisson distribution

Suppose there are events which occur with a known average rate and the occurrence of

an event is independent of the time since the last occurrence. The Poisson distribution is

a discrete probability distribution that expresses the probability of a number K of events

occurring in a specified period of time. The notion of time is arbitrary in this context; the

number of events in other measures such as distance, area or volume can also be modeled by

the Poisson distribution.

The Poisson distribution is described by a single parameter λ, where λ ∈ R+ equals the

expected number of occurrences during the given interval. For example, if an event occurs

on average 5 times per hour, and we are interested in the probability of the event occurring

k times within 4 hours, the corresponding Poisson distribution has parameter λ = 5 · 4 = 20.

Properties

parameter λ ∈ R+
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support k ∈ N0

mean = λ

standard deviation =
√
λ

skewness = 1−2p√
np(1−p)

excess kurtosis = 1−6p(1−p)
np(1−p)

PMF

Pr(k) =
λke−λ

k!
(B.5)

If λ is sufficiently large, the Poisson distribution can be approximated by a Normal distri-

bution that has mean λ and standard deviation
√
λ. For λ > 1000, the approximation can

typically be considered very good; and for λ > 10 the approximation is decent. The probabil-

ity that K is smaller or equal than k can be approximated based on the CDF of the standard

Normal distribution as:

Pr(K ≤ k) ≈ Φ

(
k + 0.5− λ√

λ

)
(B.6)

where k + 0.5 is used instead of k as continuity correction.

B.2 Common continuous probability distributions

B.2.1 Standard Normal distribution

The standard Normal distribution is a symmetric continuous probability distribution and a

special case of the Normal distribution (Section B.2.2): it has a mean of zero and a standard

deviation of one.

In the following, let U be a random variable that follows a standard Normal distribution,

and let u denote a particular outcome of U . The letter U is often used to denote a standard

Normal random variable.

Properties

notation U ∼ N (0, 1)

support u ∈ R

mean µU = 0

standard deviation σU = 1

median = 0
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Figure B.1: PDF ϕU (u) and CDF ΦU (u) of the standard Normal distribution.

mode = 0

skewness = 0

excess kurtosis = 0

entropy = 1
2 ln (2πe)

PDF

The PDF of the standard Normal distribution is commonly denoted by the Greek letter

ϕ:

ϕU (u) =
1√
2π
e−

1
2
u2

(B.7)

The density has its maximum at ϕU (0) ≈ 0.4; its inflection points are ϕU (±1) ≈ 0.24.

CDF

The CDF of the standard Normal distribution is commonly denoted by the Greek letter

Φ:

ΦU (u) =

∫ u

−∞
ϕU (t) dt =

1

2

[
1 + erf

(
u√
2

)]
(B.8)

Here erf(·) denotes the error function. The standard Normal has the following property:

• ΦU (−u) = 1− ΦU (u)
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Figure B.2: Sample PDFs and CDFs of the Normal distribution.

Quantile function

The quantile function of the standard Normal distribution is expressed in terms of the

inverse error function erf−1(·):

Φ−1
U (p) =

√
2 · erf−1 (2p− 1) , p ∈ (0, 1) (B.9)

The PDF and CDF of the standard Normal distribution are illustrated in Fig. B.1.

B.2.2 Normal distribution

The Normal (or Gaussian) distribution is a widely used symmetric continuous probability

distribution.

In the following, let X be a random variable that follows a Normal distribution with mean

µX and standard deviation σX , and let x denote a particular outcome of X.

Properties

notation X ∼ N (µX , σX)
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parameters µX ∈ R, σX ∈ (0,∞)

support x ∈ R

mean µX

standard deviation σX

median = µX

mode = µX

skewness = 0

excess kurtosis = 0

entropy = 1
2 ln

(
2πeσX

2
)

PDF

The PDF fX(x) of the Normal distribution is commonly expressed in terms of the PDF

of the standard Normal distribution ϕ(·):

fX(x) =
1

σX
· ϕ
(
x− µX
σX

)
(B.10)

The PDF of a Normal distribution can also be expressed as:

fX(x) = c · exp
(
−λ1x− λ2x

2
)

(B.11)

where the mean, standard deviation and scaling constant are:

µ = − λ1

2λ2
λ1 = − µ

σ2

σ =
1√
2λ2

λ2 =
1

2σ2

c =

√
λ2

π
· exp

(
− λ2

1

4λ2

)
From the equations above it follows that λ2 must be positive.

CDF

The CDF PX(x) of the Normal distribution is typically expressed in terms of the CDF

of the standard Normal distribution Φ(·):

PX(x) = Φ

(
x− µX
σX

)
(B.12)

Quantile function

The quantile function of the Normal distribution is:

P−1
X (p) = µX + σX · Φ−1(p) , p ∈ (0, 1) (B.13)
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where Φ−1(·) is the quantile function of the standard Normal distribution.

Standardizing Normal random variables The Normal random variableX can be trans-

formed to a standard Normal random variable Y through:

Y =
X − µX
σX

(B.14)

Conversely, a Normal random variable X with mean µX and standard deviation σX

can be generated from a standard Normal variable as:

X = µX + σX · Y (B.15)

Some PDFs and CDFs of the Normal distribution are shown in Fig. B.2.

Example B.1. Normalized percentile range cp as a function of the coefficient of variation δX :

We are interested in the range cp that is spanned by the 1 − p/2 and the p/2 percentile of X

and that is normalized by µX = E[X]. Consequently, cp is defined as:

cp =
P−1
X (1− p/2)− P−1

X (p/2)

µX

=
σX · Φ−1 (1− p/2)− σX · Φ−1 (p/2)

µX

= δX ·
[
Φ−1 (1− p/2)− Φ−1 (p/2)

]
(B.16)

where δX denotes the coefficient of variation of normal random variable X, and p is the proba-

bility contained in the normalized range spanned by the 1− p/2 and p/2 percentile of X. The

above expression of cp does not depend on µX . Moreover, the dependence between cp and δX

is linear conditionally on fixed p. Eq. (B.16) can be stated as:

cp = δX · cp,1(p) (B.17)

with

cp,1(p) = Φ−1 (1− p/2)− Φ−1 (p/2) (B.18)

The relation cp,1(p) is shown in Fig. B.3; some selected values of cp,1(p) are listed in Table B.1.

B.2.3 Truncated Normal distribution

The truncated Normal distribution is a Normal distribution whose support does not span the

entire real line R.

In the following, let X be a random variable that follows a truncated Normal distribution

with parameters m and s, and support [a, b]. Furthermore, let x denote a particular outcome
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Figure B.3: Plot of Eq. (B.18). (Example B.1)

Table B.1: Values of cp,1(p) for selected values of p. (Example B.1)

p cp,1(p)

10% 0.25
25% 0.64
50% 1.3
75% 2.3
90% 3.3
95% 3.9
99% 5.2
99.9% 6.6
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of X. We will use α = a−m
s , β = b−m

s , ξ = x−m
s , and q = Φ(β)−Φ(α) to shorten the following

equations.

Properties

parameters m ∈ R, s ∈ (0,∞), −∞ ≤ a < b ≤ ∞
support a ≤ x ≤ b
mean µX = m+ ϕ(α)−ϕ(β)

q · s

standard deviation σX = s ·
√

1 + αϕ(α)−βϕ(β)
q −

(
ϕ(α)−ϕ(β)

q

)2

mode =


a if m < a

m if a ≤ m ≤ b
b if m > b

entropy = ln
(√

2πesq
)

+ αϕ(α)−βϕ(β)
2q

PDF

The PDF fX(x) of the truncated Normal distribution is conveniently expressed in terms

of the PDF of the standard Normal distribution ϕ(·):

fX(x) =
1

sq
· ϕ (ξ) (B.19)

CDF

The CDF FX(x) of the truncated Normal distribution is conveniently expressed in terms

of the CDF of the standard Normal distribution Φ(·):

FX(x) =
Φ (ξ)− Φ (α)

q
(B.20)

Parametrization in terms of µX and σX If the mean and standard deviation are given

besides the support, the parameters m and s cannot be evaluated in a straight-forward

manner: The values of m and s can be found solving an optimization problem.

The truncated Normal distribution approaches the Normal distribution if a approaches −∞
and b approaches ∞.

B.2.4 Log-normal distribution

Taking the exponential of a Normal random variable with mean λ and standard deviation ζ

gives a log-normal random variable; i.e. the natural logarithm of the random variable follows

a Normal distribution.
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Figure B.4: Sample PDFs and CDFs of the log-normal distribution.

In the following, let X be a random variable that follows a log-normal distribution with

parameters λ and ζ, and let x denote a particular outcome of X. If the distribution of X is

shifted by parameter ε, the distribution is referred to as shifted log-normal distribution (If

not mentioned explicitly, this parameter equals zero).

Properties

notation X ∼ lnN (λ, ζ, ε) = exp [N (λ, ζ)] + ε

parameters λ ∈ R, ζ ∈ (0,∞), ε ∈ R

support x ∈ (ε,∞)

mean µX = exp
(
λ+ ζ2

2

)
+ ε

standard deviation σX =
√

exp (ζ2)− 1 · exp
(
λ+ ζ2

2

)
median = exp (λ) + ε

mode = exp
(
λ− ζ2

)
+ ε

skewness =
(
exp

(
ζ2
)

+ 2
)
·
√

exp (ζ2)− 1

excess kurtosis = exp
(
4ζ2
)

+ 2 exp
(
3ζ2
)

+ 3 exp
(
2ζ2
)
− 6
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entropy = 1
2 + 1

2 ln
(
2πζ2

)
+ λ

PDF

The PDF fX(x) of the log-normal distribution is:

fX(x) =
1

(x− ε) · ζ ·
√

2π
· exp

[
−1

2

(
ln(x− ε)− λ

ζ

)2
]

(B.21)

The PDF fX(x) can also be expressed in terms of the PDF of the standard Normal

distribution ϕ(·):
fX(x) =

1

(x− ε) · ζ · ϕ
(

ln(x− ε)− λ
ζ

)
(B.22)

CDF

The CDF FX(x) of the log-normal distribution is defined as:

FX(x) = Φ

(
ln(x− ε)− λ

ζ

)
(B.23)

where Φ(·) is the CDF of the standard Normal distribution.

Quantile function

The quantile function of the log-normal distribution is:

F−1
X (p) = exp

(
λ+ ζ · Φ−1(p)

)
+ ε , p ∈ (0, 1) (B.24)

where Φ−1(·) is the quantile function of the standard Normal distribution.

Standardizing log-normal random variables

A log-normal random variable X can be transformed to a standard Normal random

variable Y through:

Y =
ln(X − ε)− λ

ζ
(B.25)

Conversely, a log-normal random variable X with parameters λ and ζ can be generated

from a standard Normal variable as:

X = exp (λ+ ζ · Y ) + ε (B.26)

Parametrization in terms of µX and σX

If the mean and standard deviation are given, the parameters λ and ζ can be derived

as:

λ = ln (µX − ε)−
1

2
ln

(
σ2
X

(µX − ε)2
+ 1

)
(B.27)

ζ =

√
ln

(
σ2
X

(µX − ε)2
+ 1

)
(B.28)
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Covariance of two correlated log-normal random variables

The correlation coefficient ρ between two correlated log-normal random variables X1

and X2 is

ρ =
Cov(X1, X2)

σ1σ2
=

exp
(
ρ′
√

ln(δ2
1 + 1) ln(δ2

2 + 1)
)
− 1

δ1δ2
(B.29)

where δ1 and δ2 is the coefficient of variation of X1 and X2, respectively; ρ′ is the

correlation coefficient of the underlying standard Normal random variables.

Some PDFs and CDFs of the log-normal distribution are shown in Fig. B.4.

B.2.5 Uniform distribution

The PDF of the uniform distribution is constant on the interval [a, b], where a and b denote

the lower and upper bound of plausible values, respectively.

In the following, let X be a random variable that follows a uniform distribution with param-

eters a and b, and let x denote a particular outcome of X.

Properties

notation X ∼ U(a, b)

parameters −∞ < a < b <∞

support x ∈ [a, b]

mean µX = 1
2(a+ b)

standard deviation σX = 1√
12

(b− a)

median = µX

mode = µX

skewness = 0

excess kurtosis = −6
5

entropy = ln(b− a)

PDF

The PDF fX(x) of the uniform distribution is:

fX(x) =
1

b− a , a ≤ x ≤ b (B.30)
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CDF

The CDF FX(x) of the uniform distribution is defined as:

FX(x) =
x− a
b− a (B.31)

Quantile function

The quantile function of the uniform distribution is:

F−1
X (p) = p · (b− a) + a , p ∈ (0, 1) (B.32)

Parametrization in terms of µX and σX

If the mean and standard deviation are given, the parameters a and b can be derived

as:

a = µX − σX
√

3 (B.33)

b = µX + σX
√

3 (B.34)

B.2.6 Beta distribution

In the following, let X be a random variable that follows a beta distribution with shape

parameters α and β. The support of X is (a, b). A particular outcome of X is denoted as x.

Properties

parameters α ∈ (0,∞), β ∈ (0,∞)

support x ∈ [a, b]

mean µX = α
α+β · (b− a) + a

standard deviation σX =
√

αβ
(α+β)2(α+β+1)

· (b− a);

mode = α−1
α+β−2 for α and β larger than one

PDF

The PDF fX(x) of the beta distribution is:

fX(x) =
wα−1(1− w)β−1

B(α, β) · (b− a)
, a ≤ x ≤ b (B.35)

where w is defined as w = x−a
b−a .

CDF

The CDF FX(x) of the beta distribution is defined as:

FX(x) = Iw (α, β) (B.36)
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Figure B.5: Sample PDFs and CDFs of the beta distribution.

where Iw(α, β) denotes the regularized incomplete beta function, and w = x−a
b−a .

Some PDFs and CDFs of the beta distribution are shown in Fig. B.5. For α = β = 1, the

beta distribution is equivalent to the uniform distribution.

B.2.7 Extreme value distributions

B.2.7.1 Introduction

Let {X1, . . . , XN} denote a set of random variables. Furthermore, the smallest and largest

value within this set is denoted as Y1 and YN , respectively:

Y1 = min (X1, . . . , XN ) (B.37)

YN = max (X1, . . . , XN ) (B.38)
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B.2.7.2 Maxima

If the individual Xi, i ∈ {1, . . . , N} are independent and identically distributed, the CDF for

YN , denoted PYN (·) can be derived analytically:

PYN (y) = [PX(y)]N (B.39)

where PX denotes the CDF of the Xi. For the more general case that the joint distribution

of the set {X1, . . . , XN} is known, PYN (·) can be expressed as:

PYN (y) = PX1(y) · PX2|X1
(y) · . . . · PXN |X1,...,XN−1

(y) (B.40)

To derive asymptotic extreme value distributions, a standardization of the Yn is required (as

YN →∞ if the support of the Xi is unbounded for the upper tail):

ZN =
YN − bN
aN

(B.41)

where aN > 0 is referred to as a scale parameter and bN is a location parameter. A distribution

for X with CDF PX is referred to as extreme value distribution, if the distribution of its

maxima YN (for independent and identically distributed samples) has the same type with

different location and scale parameters:

PYN (y) = [PX(y)]N = PX

(
y − bN
aN

)
(B.42)

This statement is known as stability postulate. It can be shown that only three general

types of asymptotic extreme value distributions exist: Gumbel distribution (Type I), Frechet

distribution (Type II), Weibull distribution (Type III). The upper tail of the underlying

distribution for the Xi determines to which of the three types YN converges asymptotically.

B.2.7.3 Minima

For the minima Y1, the same relations as for the maxima can be derived. For independent

and identically distributed Xi, the CDF PY1(·) for Y1 can be derived as:

PY1(y) = [1− PX(y)]N (B.43)

In analogy to YN , three general forms of extreme value distributions can be derived for Y1.

The distribution types are directly related to the types for maxima:

PY1(y) = 1− PY ′N (−y). (B.44)
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where Y ′N is defined as the maxima of the set {X ′1, . . . , X ′N}, with X ′i = −X ′i.

B.2.8 Gumbel distribution (Type I extreme value distribution for maxima)

The maxima of random variables that have an upper tail with exponential decay converges to

the Gumbel distribution. This is the case for the Normal, log-Normal, exponential, gamma,

logistic, Weibull and Gumbel disribution [Straub, 2016].

In the following, let X be a random variable that follows a Gumbel distribution with scale

parameter aN and location parameter bN , and let x denote a particular outcome of X.

Properties

parameters scale: aN ∈ (0,∞), location: bN ∈ R

support x ∈ R

mean bN + aN · γ

standard deviation σX = π√
6
· aN

median = bN − aN · ln (ln (2))

mode = bN

entropy = ln(aN ) + γ + 1

where γ = 0.577 . . . is the Euler-Mascheroni constant.

PDF

The PDF fX(x) of the Gumbel distribution is:

fX(x) =
1

aN
exp

(
−x− bN

aN
− exp

(
−x− bN

aN

))
(B.45)

CDF

The CDF FX(x) of the Gumbel distribution is defined as:

FX(x) = exp

(
− exp

(
−x− bN

aN

))
(B.46)

Quantile function

The quantile function of the Gumbel distribution is:

F−1
X (p) = bN − aN · ln (− ln (p)) , p ∈ (0, 1) (B.47)
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Parametrization in terms of µX and σX

If the mean and standard deviation are given, the parameters aN and bN can be derived

as:

aN =
σX ·

√
6

π
(B.48)

bN = µX −
σX · γ ·

√
6

π
(B.49)

Distribution of maximum of N iid Gumbel distributed random variables

Let Xi, i ∈ {1, . . . , N} be N independent and identically distributed Gumbel random

variables with scale parameter a and location parameter b. The distribution of the

maximum is also a Gumbel distributed random variable with parameters:

aN = a (B.50)

bN = b+ a · ln (N) (B.51)

B.2.9 Weibull distribution (Type III extreme value distribution for min-

ima)

The minimum of random variables with a lower bound converges to the Weibull distribution.

In the following, let X be a random variable that follows a Weibull distribution with scale

parameter aN and shape parameter k, and let x denote a particular outcome of X.

Properties

parameters scale: aN ∈ (0,∞), shape: k ∈ (0,∞)

support x ∈ (0,∞)

mean aN · Γ (1 + 1/k)

standard deviation σX = aN ·
√

Γ (1 + 2/k)− (Γ (1 + 1/k))2

median = aN (ln(2))1/k

entropy = γ · (1− 1/k) + ln(aN/k) + 1

where γ = 0.577 . . . is the Euler-Mascheroni constant, and Γ(·) is the Gamma function.

PDF

The PDF fX(x) of the Weibull distribution is:

fX(x) =
k

aN

(
x

aN

)k−1

exp

[
−
(
x

aN

)k]
(B.52)
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CDF

The CDF FX(x) of the Weibull distribution is defined as:

FX(x) = 1− exp

[
−
(
x

aN

)k]
(B.53)

Quantile function

The quantile function of the Weibull distribution is:

F−1
X (p) = aN · [− ln (1− p)] 1

k , p ∈ (0, 1) (B.54)

Distribution of maximum of N iid Weibull distributed random variables

Let Xi, i ∈ {1, . . . , N} be N independent and identically distributed Weibull random

variables with scale parameter a and shape parameter k. The distribution of the max-

imum is also a Weibull distributed random variable with parameters:

aN =
a

N
1
k

(B.55)

kN = k (B.56)
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Appendix C

Maximum entropy probability

distributions – continuous case

C.1 Introduction

In the following, probability distributions are introduce for which the differential entropy

(Section 2.4.4) is maximized given specified constraints.

Let X ∈ R be a stochastic variable. Furthermore, let hi be n functions of X, where the

expectations of the hi are given as auxiliary conditions, i.e., EX [hi] = ki for all i = 1, . . . , n.

Furthermore, let Γ denote the support of random variable X, where Γ is a closed subset

of R. The maximum entropy probability distribution g(x) for X that is positive everywhere

in Γ can be found using variational calculus [Boltzmann, 1877]: The following Lagrangian

function with n+ 1 Lagrange multipliers is defined:

L =

∫
Γ
g(x) ln g(x) dx+ λ0

(∫
Γ
g(x) dx− 1

)
+

n∑
i=1

λi (EX [hi]− ki) (C.1)

The maximum entropy probability distribution g(x) fulfills the Euler-Lagrange equation:

∂H

∂g
− d

dx

∂H

∂g′
= 0 (C.2)

where H(x) can be formulated based on Eq. (C.1) as:

H(x) = g(x) ln g(x) + λ0 (g(x)− 1) +
n∑
i=1

λi (hi(x)− ki) (C.3)
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This leads to

∂H

∂g
= ln g(x) + 1 + λ0 +

n∑
i=1

λihi(x) (C.4)

∂H

∂g′
= 0 (C.5)

Thus, to maintain Eq. (C.2), g(x) must be:

g(x) = c · exp

(
−

n∑
i=1

λihi(x)

)
(C.6)

where the constant c = exp (−1− λ0) ensures that
∫

Γ g(x) dx = 1. The value of the λi can

be obtained from the specified auxiliary conditions.

C.2 Specified bounds

If only the support of the distribution is given, but no additional auxiliary conditions, it

is easy to deduce from Eq. (C.6) that the maximum entropy probability distribution is the

uniform distribution; i.e., g(x) = c, with c = 1
b−a .

C.3 Specified mean and bounds

We search the maximum entropy probability distribution for a distribution g(x) that has

given mean µ and support x ∈ [a, b], where a < b and a, b ∈ R.

The distribution g(x) is subjected to the constraint EX [X] = µ. Thus, g(x) has shape:

g(x) = c · exp (−λ1x) (C.7)

The constant c can be derived from the condition:∫ b

a
g(x) dx = 1 (C.8)

. . . which leads to . . . :

c =
λ1

exp (−λ1a)− exp (−λ1b)
(C.9)

µ =
(λ1a+ 1) exp(−λ1a)− (λ1b+ 1) exp(−λ1b)

λ1 (exp (−λ1a)− exp (−λ1b))
(C.10)
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Figure C.1: Maximum entropy probability distribution for mean 2 and support [0, 3]. (Exam-
ple C.2)

Example C.1. Positive and given mean:

For support S = [0,∞), the distribution becomes the exponential distribution:

g(x) =
1

µ
exp

(
−x
µ

)
(C.11)

Example C.2. Support [0, 3] and mean 2:

If the mean of the distribution is fixed to 2, and the support is [0, 3], λ1 evaluates to approx-

imately 0.72. The corresponding maximum entropy probability distribution g(x) is shown in

Fig. C.1.

C.4 Specified mean, standard deviation and bounds

We search the maximum entropy probability distribution for a distribution g(x) that has

given mean µ and standard deviation σ. The support of g(x) is [a, b], where a < b and

a, b ∈ R.

The distribution g(x) is subjected to the constraints E[X] = µ and E[X2] = σ2 + µ2. Conse-

quently, g(x) has shape:

g(x) = c · exp
(
−λ1x− λ2x

2
)

(C.12)

The distribution g(x) stated in Eq. (C.12) is a truncated Normal distribution that can be

rewritten as:

g(x) =
1

sq
· ϕ (ξ) (C.13)

where s = 1√
2λ2

, ξ = x−m
s , m = − λ1

2λ2
, q = Φ(β)− Φ(α), α = a−m

s and β = b−m
s .
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Figure C.2: Maximum entropy probability distribution for mean 2 and standard deviations
0.1, 0.5 and 0.75 on bounded support [0, 3]. (Example C.3)

Example C.3. Support [0, 3], mean 2 and varying standard deviation:

We set the support to [0, 3] and fix the mean to 2. The maximum entropy probability distribu-

tions for standard deviations 0.1, 0.5 and 0.75 are illustrated in Fig. C.2.

C.5 Positive and specified mean and standard deviation

The maximum entropy probability distribution for given mean and standard deviation on a

positive support is a special case of Section C.4: It is a truncated Normal distribution.

Example C.4. Positive support, mean 1 and varying standard deviation:

We restrict the support to positive values and fix the mean to 1. The maximum entropy

probability distributions for standard deviations 1, 0.75 and 0.5 are illustrated in Fig. C.3.
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Figure C.3: Maximum entropy probability distribution for mean 1 and standard deviations 1,
0.75 and 0.5 on support [0,−∞). (Example C.4)
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C.6 Specified mean, standard deviation

The maximum entropy probability distribution for given mean and standard deviation on

support (−∞,∞) can be easily deduced from Eq. (C.12): It is a Normal distribution.
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Appendix D

Stochastic fields

This section contains material originally published in [Betz et al., 2014c].

Some passages and figures are directly taken from the mentioned reference.

D.1 General introduction

A stochastic field (or random field) is the extension of a stochastic process to dimensions

larger one. A univariate continuous stochastic field Xt may be loosely defined as a stochastic

function that describes a stochastic variable at each point t ∈ Ω of a continuous domain

Ω ⊂ RN . The dimension N ∈ N>0 of a stochastic field is the dimension of its topological

space Ω. If the stochastic field Xt describes a stochastic vector at each point t in Ω, the field

is called multivariate.

The field is said to be Gaussian if the distribution of (Xt1 , . . . , Xtn) is jointly Gaussian for

any (t1, . . . , tn) ∈ Ω and any n ∈ N>0. A Gaussian field is completely defined by its mean

function µ : Ω → R and autocovariance function Cov : Ω × Ω → R. The autocovariance

function can be expressed as Cov(t1, t2) = σ(t1) · σ(t2) · ρ(t1, t2), where σ : ω → R is the

standard deviation function of the stochastic field and ρ : Ω × Ω → R is its autocorrelation

coefficient function.

D.2 Random field discretization

A continuous stochastic field represents a stochastic quantity at each point of a continuous

domain, and, thus, consists of an infinite number of stochastic variables. For computational

purposes, the stochastic field has to be expressed using a finite number of stochastic variables.

The approximation Ĥ(·) of a continuous random field H(·) by a finite set of random variables



248 D. Stochastic fields

{χi, i = 1, . . . ,M} with M ∈ N>0 is referred to as random field discretization. Efficient

methods to discretize stochastic fields on potentially complicated domains are discussed in

[Betz et al., 2014c].

The approximation error εH(t) of the random field discretization is defined as the difference

between the original field and its approximation, i.e., εH(t) = H(t)− Ĥ(t). The expectation

of the squared approximation error is called the mean square error. Integration of the mean

square error over the domain Ω gives the global mean square error [Ghanem and Spanos,

1991]:

ε2
H =

∫
Ω

E
[
(εH(t))2

]
dt (D.1)

An alternative error measure for random field discretization is the normalized variance of the

approximation error, denoted εσ(t) [Li and Der Kiureghian, 1993]:

εσ(t) =
Var

[
H(t)− Ĥ(t)

]
Var [H(t)]

(D.2)

εσ(t) is called error variance in literature. The corresponding global error measure, namely

the mean error variance, is defined as the weighted integral [Sudret and Der Kiureghian,

2000]:

εσ =
1

|Ω|

∫
Ω
εσ(t) dt (D.3)

where |Ω| =
∫

Ω dt.

It is convenient to assume that the mean of the random field can be represented exactly.

In this case, the expectation of the approximation error is zero, and the expectation of

the squared approximation error is equivalent to the variance of the approximation error,

i.e., E
[
(εH(t))2

]
= Var [εH(t)]. Consequently, the error variance is proportional to the

mean square error. If the standard deviation of the field is constant on the domain Ω, i.e.,

σ = σ(t) ∀ t ∈ Ω, the global mean square error can be expressed in terms of the mean error

variance as:

ε2
H = |Ω| · σ2 · εσ (D.4)

D.3 Karhunen–Loève expansion of random fields

The Karhunen–Loève (KL) expansion is a series expansion method for the representation of

the random field. The expansion is based on a spectral decomposition of the autocovariance

function of the field. It states that a second-order random field H(t) can be represented
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exactly by the following expansion [Karhunen, 1947; Loève, 1948]:

H(t) = µ(t) +

∞∑
i=1

√
λi ϕi(t) ξi (D.5)

where µ(t) is the mean function of the field, ξi are standard uncorrelated random variables,

and λi ∈ [0,∞), ϕi : Ω → R are the eigenvalues and eigenfunctions of the autocovariance

kernel obtained from solving the homogeneous Fredholm integral equation of the second kind:∫
Ω

Cov(t, t′)ϕi(t′) dt′ = λiϕi(t) (D.6)

In this context, the autocovariance function Cov(t, t′) is also referred to as kernel function.

Any valid covariance function is a bounded, symmetric and positive semi-definite kernel

[Vanmarcke, 2010]. Moreover, a continuous kernel function is assumed. Note that the ker-

nel does not have to be stationary. According to Mercer’s theorem, the eigenvalues λi are

nonnegative, the eigenfunctions corresponding to positive eigenvalues are continuous and

orthogonal to each other, and the kernel function can be written as the uniformly conver-

gent expansion Cov(t, t′) =
∑∞

i=1 λi ϕi(t)ϕi(t
′), where the eigenfunctions in the expression

are normalized. Consequently, the eigenfunctions must be orthonormal to each other, i.e.,∫
Ω ϕi(t)ϕj(t) dt = δij , where δij is one if i = j and zero otherwise. Moreover, they form a

complete basis of the space L2(Ω) of square integrable functions on Ω.

If the random field H(t) is Gaussian, then ξi are independent standard normal random

variables [Ghanem and Spanos, 1991]. In any other case, the joint distribution of ξi is almost

impossible to obtain. Hence, the KL expansion is mainly applicable to the discretization of

Gaussian fields.

The direct modeling of non-Gaussian random fields by means of the KL expansion was dis-

cussed by Phoon et al. [Phoon et al., 2002]. The authors proposed an iterative framework

to simulate non-stationary non-Gaussian processes. The procedure was refined in [Phoon

et al., 2005] for highly skewed non-Gaussian processes. Moreover, non-Gaussian fields are

commonly modeled by combining the KL expansion with the polynomial chaos expansion.

Ghanem [Ghanem, 1999] proposed a general framework in which the non-Gaussian field is

projected onto an orthogonal polynomial basis with argument an underlying Gaussian field

that is then discretized by the KL expansion. Matthies and Keese [Matthies and Keese,

2005] proposed to perform the KL expansion of the non-Gaussian field and project the ran-

dom variables involved in the expansion to an underlying independent Gaussian random

variable space. In Section D.8, we discuss the treatment of a special case of non-Gaussian

random fields within the context of the KL expansion.

Analytical solutions of the IEVP can be obtained only for specific types of autocovariance

functions defined on rectangular domains. For random fields with arbitrary autocovariance
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functions defined on domains of complex geometrical shape, the solution of the IEVP needs

to be approximated numerically. An overview of the numerical solution of Fredholm integral

equations is given in [Atkinson, 1997].

D.4 Truncated KL expansion

The KL expansion can be approximated by sorting the eigenvalues λi and the corresponding

eigenfunctions ϕi(t) in a descending order and truncating the expansion after M terms:

H̃(t) = µ(t) +

M∑
i=1

√
λi ϕi(t) ξi (D.7)

For fixedM , the resulting random field approximation H̃(t) is optimal among series expansion

methods with respect to the global mean square error (Eq. (D.1)) [Ghanem and Spanos, 1991].

The variance of H̃(t) is given as

Var
[
H̃(t)

]
=

M∑
i=1

λi ϕ
2
i (t) (D.8)

In case of the truncated KL expansion, the error variance introduced in Eq. (D.2) can be

expressed as [Sudret and Der Kiureghian, 2000]:

εσ,KL(t) = 1−
∑M

i=1 λi ϕ
2
i (t)

σ2(t)
(D.9)

wherein the numerator in the fraction represents the variance of the truncated field. Eq. (D.9)

can be derived by expressing H(t) by its KL expansion and using the orthonormality of the

random variables ξi. From Eq. (D.9) it can be deduced that the truncated KL expansion

always underestimates the true variability of the original random field. This property of the

KL expansion was also discussed in [Sudret and Der Kiureghian, 2000]. Moreover, as pointed

out in [Stefanou and Papadrakakis, 2007], the truncated KL expansion of homogeneous ran-

dom fields is only approximately homogeneous, since the standard deviation function of the

truncated field will always vary in space. The mean error variance is given as:

εσ,KL = 1− 1

|Ω|
M∑
i=1

λi

∫
Ω

ϕ2
i (t)

σ2(t)
dt (D.10)

The equation of the mean square error can be transformed to E
[
(εH(t))2

]
= σ2(t) −∑M

i=1 λi ϕ
2
i (t) using the orthonormality of the random variables ξi. The global mean square
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error reads [Sudret and Der Kiureghian, 2000]:

ε2
H,KL =

∫
Ω
σ2(t) dt−

M∑
i=1

λi (D.11)

If the standard deviation of the field is constant, the equation for the mean error variance,

Eq. (D.10), reduces to [Sudret and Der Kiureghian, 2000]:

εσ,KL = 1− 1

|Ω|
1

σ2

M∑
i=1

λi (D.12)

For this special case, the truncated KL expansion is also optimal with respect to the mean

error variance.

D.5 Numerical solution of the KL expansion

Integral eigenvalue problems of the type given in Eq. (D.6) are difficult to solve analytically

except for a few autocovariance functions defined on domains Ω of simple geometric shape.

Analytical solutions for exponential and triangular kernels are discussed in [Ghanem and

Spanos, 1991] for one-dimensional domains. Extensions to multidimensional rectangular do-

mains can be derived assuming a separable covariance structure (e.g., see [Sudret and Der

Kiureghian, 2000]). In general, the integral eigenvalue problem is solved numerically. The

random field approximation of the truncated KL expansion given in Eq. (D.7) is approximated

as:

Ĥ(t) = µ(t) +

M∑
i=1

√
λ̂i ϕ̂i(t) ξ̂i (D.13)

where λ̂i and ϕ̂i are approximations to the true eigenvalues λi and eigenfunctions ϕi. ξ̂i are

standard uncorrelated random variables, i.e., E
[
ξ̂i ξ̂j

]
= δij ∀ i, j ≤M . Note that due to the

approximate character of the numerical solution, the random variables ξ̂i are not necessarily

orthogonal to the random variables ξi used in the representation of Eq. (D.5). This means

that the expression for the error variance given in Eq. (D.9) cannot be derived from Eq. (D.2)

for the numerical approximation of the KL expansion. Therefore, the error measures listed in

section D.4 are not strictly valid for the approximated truncated KL expansion. Moreover, it

is important to note that the random field approximation given in Eq. (D.13) does no longer

possess the optimality property of the truncated analytical KL expansion.

Numerical algorithms for the solution of Fredholm integral eigenvalue problems approximate
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the eigenfunctions by a set of functions hj : Ω→ R as:

ϕi(t) ≈ ϕ̂i(t) =
N∑
j=1

dij hj(t) (D.14)

where the coefficients dij ∈ R have to be determined. In general, all algorithms can be

categorized into three main categories: degenerate kernel methods, Nyström methods, and

projection methods. Projection methods can be further subdivided into collocation methods

and Galerkin methods. An overview of this methods can be found in [Betz et al., 2014c].

D.6 Nyström method

The presentation of the Nyström method is given specifically in the following, as it has a

close connection to the EOLE method (see Section D.7).

In the Nyström method [Atkinson, 1997], the integral in the eigenvalue problem of Eq. (D.6)

is approximated by a numerical integration scheme. Applications to integral eigenvalue prob-

lems published in literature include [Hurtado, 2002; Wan and Karniadakis, 2006; Zhu et al.,

2007]. Numerical algorithms are discussed in [Press et al., 1993; Atkinson and Shampine,

2008]. The problem is approximated as:

N∑
j=1

wj Cov(t, tj) ϕ̂i(tj) = λ̂iϕ̂i(t) (D.15)

where tj ∈ Ω with j ∈ {1, . . . , N} , N ∈ N represent a finite set of integration points, and

wj is the integration weight associated with each tj . For a given N , the distribution of

the integration points tj and the value of the integration weights wj depend on the applied

numerical integration scheme. Special integration techniques exist for kernels that are non-

differentiable on the diagonal, see [Press et al., 1993; Atkinson and Shampine, 2008]. It

is assumed that for the applied numerical integration scheme, the solution of Eq. (D.15)

converges against the analytical solution with increasing N .

In the Nyström method, Eq. (D.15) is solved at the integration points, i.e.:

N∑
j=1

wj Cov(tn, tj) ϕ̂i(tj) = λ̂iϕ̂i(tn), n = 1, . . . , N (D.16)

The above system of equations can be formulated in matrix notation as

CWyi = λ̂iyi (D.17)
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where C is a symmetric positive semi-definite N ×N matrix with elements cnj = Cov(tn, tj),

W is a diagonal matrix of size N with nonnegative diagonal entries Wjj = wj , and yi is

a N -dimensional vector whose nth entry is yi,n = ϕ̂i(tn). Since the integration weights wj

are nonnegative, the matrix W is symmetric and positive semi-definite. The problem in

Eq. (D.17) is a matrix eigenvalue problem. This matrix eigenvalue problem can be reformu-

lated to an equivalent matrix eigenvalue problem By∗i = λ̂iy
∗
i , where the matrix B is defined

as B = W
1
2 CW

1
2 , where W

1
2 is a diagonal matrix with entries

(
W

1
2

)
jj

=
√
wj . The matrix

B is a symmetric positive semi-definite matrix and, thus, the eigenvalues λ̂i are nonnegative

real numbers and the eigenvectors y∗i are orthogonal to each other. The eigenvectors yi can

be obtain as yi = W− 1
2 y∗i , where W− 1

2 denotes the inverse of the matrix W
1
2 .

Solving Eq. (D.15) for ϕ̂i(t), we obtain the so-called Nyström interpolation formula of the

eigenfunction ϕ̂i(t). Taking into account that ϕ̂i(tj) = 1√
wj
y∗i,j , this results in:

ϕ̂i(t) =
1

λ̂i

N∑
j=1

√
wj y

∗
i,j Cov(t, tj) (D.18)

where y∗i,j is the jth element of the eigenvector y∗i .

The eigenfunctions have to be normalized such that
∫

Ω (ϕ̂i(t))2 dt = 1. Applying a nu-

merical integration scheme, the inner product
∫

Ω ϕ̂i(t) ϕ̂j(t) dt can be approximated as∑N
n=1wn ϕ̂i(tn) ϕ̂j(tn). Using the same integration points and integration weights as the ones

used in Eq. (D.16), the approximation of the inner product can be simplified to
∫

Ω ϕ̂i(t) ϕ̂j(t) dt ≈
(y∗i )

T y∗j . Therefore, the approximate eigenfunctions are orthonormal if and only if the eigen-

vectors are orthonormal.

D.7 Equivalence of the EOLE method with the Nyström method

The connection between the EOLE method and the Nyström method was first published in

[Betz et al., 2014c], and is repeated in the following.

The expansion optimal linear estimation (EOLE) method is a series expansion method for

discretization of random fields that was developed in [Li and Der Kiureghian, 1993] based on

linear estimation theory. Here we show that the EOLE method with a uniform distribution

of points over the domain can be considered a special case of the Nyström method.

Assume that points tj , j = 1, . . . , N uniformly distributed over the domain Ω are available.

The points tj can be chosen either at random by sampling the uniform distribution over Ω or

by application of the rectangle quadrature using the nodes of an equispaced structured grid.

If the domain Ω does not have a simple shape, the integration procedure can be performed on

a geometrically simpler domain Ω∗ that contain Ω, i.e., Ω ⊆ Ω∗. In this case, points outside
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of Ω are not taken into account. If the points tj , j = 1, . . . , N are selected with one of the

above procedures, then all the integration weights wj in the integration scheme in Eq. (D.15)

will be the same, i.e., wj = w ∀ j = 1, . . . , N . Consequently, matrix W in Eq. (D.17) can be

written as W = wI, where I is the identity matrix and w = |Ω|/N . In this special case, the

matrix eigenvalue problem of Eq. (D.17) can be reformulated as:

Cyi = λ̂∗iyi (D.19)

where λ̂∗i is related to λ̂i in Eq. (D.17) as λ̂∗i = N
|Ω| λ̂i. λ̂∗i and yi are the eigenvalues and

eigenfunctions of the covariance matrix C, respectively. Assuming normalized eigenvectors

yi, i.e., ‖yi‖ = 1 for all i, gives after some algebra the following approximate truncated KL

expansion:

Ĥ(t) = µ(t) +
M∑
i=1

ξ̂i√
λ̂∗i

N∑
j=1

yi,j Cov(t, tj) (D.20)

where yi,j is the jth element of yi.

The matrix eigenvalue problem of Eq. (D.19) is the problem that needs to be solved for

the EOLE method, and the expansion in Eq. (D.20) is equivalent to the one obtained in

the EOLE method. Consequently, the EOLE method is equivalent to an approximate KL

expansion, whereby the integral eigenvalue problem is solved by the Nyström method with a

uniform distribution of integration points.

D.8 Non-Gaussian translation random fields

General non-Gaussian random fields are not suitable to be expressed by means of Gaussian

random fields. If a non-Gaussian random field belongs to the class of translation fields, it can

be expressed in terms of a Gaussian random field through a nonlinear mapping of the form

Htransl.(t) = g(H(t)), where Htransl.(t) represents the non-Gaussian random field defined in

terms of the Gaussian field H(t) and the strictly increasing nonlinear mapping g : R → R
[Grigoriu, 1984]. Discretization of the field Htransl.(t) is achieved by replacing H(t) by its KL

expansion H̃(t) and applying H̃transl.(t) = g(H̃(t)). However, it cannot be confirmed that the

transformed field H̃transl.(t) inherits the optimality property that the Gaussian random field

approximation H̃(t) may possess [Li and Der Kiureghian, 1993]. All random field models used

in reliability analysis and probabilistic mechanics belong essentially to the class of translation

fields.

A subclass of translation random fields constitute fields where the Nataf multivariate distri-

bution (see Section 3.2.2) is applied to perform the nonlinear mapping g(·). For this class

of translation random fields, the underlying Gaussian field has zero mean and unit variance.

Its autocorrelation coefficient function ρ(t, t′) is linked to the target autocorrelation coeffi-
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cient function ρtransl.(t, t
′) of the desired non-Gaussian field through an integral equation [Li

and Der Kiureghian, 1993]. However, not for all ρtransl.(t, t
′) a corresponding ρ(t, t′) can be

found [Grigoriu, 1998]. Moreover, it is computationally demanding to evaluate a ρ(t, t′) that

is associated with a given ρtransl.(t, t
′), because of their implicit relationship in form of an

integral equation. Therefore, it is often simpler to estimate the autocorrelation coefficient

function of the underlying Gaussian random field ρ(t, t′) directly. This can be achieved by

transforming available data to Gaussian data using the inverse mapping g−1 : R → R. It

should be noted that a direct estimation of ρ(t, t′) will result in a different autocorrelation

function of H(t) than the one arising from the solution of the integral equation equation

according to translation field theory. However, such a direct estimation will overcome the

problem that often occurs when the solution of the integral equation does not result in an

autocorrelation function that is nonnegative definite.
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Appendix E

Proofs

E.1 Proofs from Section 2.2.2

In this section, the axioms (P4a) to (P7c) of Probability Theory stated in Appendix E.1 are

presented.

Proof E.1. (P4a):

Starting from (P3), we get:

Pr[b ∧ b|a] = Pr[b|b ∧ a] Pr[b|a]

Pr[b|a] = Pr[b|b ∧ a] Pr[b|a]

which holds for general cases if and only if Pr[b|b ∧ a] = 1.

Proof E.2. (P4b):

(P4b) follows directly from combining (P4a) with (P2).

Proof E.3. (P4c):

(P4c) follows directly from (P2) and (P1).

Proof E.4. (P5a):

Defining d = (c⇒ b) ∧ a, we use (P3) to state:

Pr[b ∧ c|d] = Pr[c|b ∧ d] Pr[b|d]

As (c⇒ b), we have Pr[b ∧ c|d] = Pr[c|d]. Thus, we can write:

Pr[c|d] = Pr[c|b ∧ d] Pr[b|d]

Since Pr[c|b ∧ d] ≤ 1 (see (P4c)):

Pr[c|d] ≤ Pr[b|d]
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Proof E.5. (P5b):

Using the results derived in Proof E.4, and noting that Pr[c|b ∧ d] = 1 we get

Pr[c|d] = Pr[b|d]

Proof E.6. (P6):

Based on De Morgan’s law1, we can write:

Pr[b ∨ c|a] = Pr
[
b ∧ c|a

]
= 1− Pr

[
c|b ∧ a

]
Pr
[
b|a
]

= 1−
(
1− Pr

[
c|b ∧ a

])
(1− Pr [b|a])

= Pr
[
c|b ∧ a

]
+ Pr [b|a]− Pr

[
c|b ∧ a

]
Pr [b|a]

= Pr
[
c|b ∧ a

]
(1− Pr [b|a]) + Pr [b|a]

=
Pr
[
b ∧ c|a

]
Pr
[
b|a
] (1− Pr [b|a]) + Pr [b|a]

= Pr
[
b ∧ c|a

]
+ Pr [b|a]

= Pr
[
b|c ∧ a

]
Pr [c|a] + Pr [b|a]

= (1− Pr [b|c ∧ a]) Pr [c|a] + Pr [b|a]

= Pr [b|a] + Pr [c|a]− Pr [b|c ∧ a] Pr [c|a]

= Pr [b|a] + Pr [c|a]− Pr [b ∧ c|a]

Proof E.7. (P7a):

Let b = b1 ∨ b2 ∨ . . . ∨ bN . Clearly, b|a always occurs and Pr [b|a] = 1, as a states that

the propositions bi are mutually exclusive and collectively exhaustive.

Pr[c|a] = Pr [c ∧ b|a]

= Pr [c ∧ (b1 ∨ b2 ∨ . . . ∨ bN ) |a]

= Pr [(c ∧ b1) ∨ . . . ∨ (c ∧ bN )|a]

=

N∑
i=1

Pr [c ∧ bi|a] (taking into account that Pr[bi ∧ bj ] = 0 for i 6= j)

Proof E.8. (P7b):

Continuing Proof E.7, we can write:

Pr[c|a] =

N∑
i=1

Pr [c ∧ bi|a]

1De Morgan’s law: b ∨ c = b ∧ c
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=

N∑
i=1

Pr [c|bi ∧ a] · Pr[bi|a]

Proof E.9. (P7c):

Pr[bk|c ∧ a] =
Pr[bk ∧ c|a]

Pr[c|a]

=
Pr[c|bk ∧ a] · Pr[bk|a]

Pr[c|a]

E.2 Proofs from Section 2.3.4

Proof E.10. The distribution of θ1|Z is Normal with mean µ∗ and standard deviation σ∗
according to Eqs. (2.37) and (2.38):

The joint distribution of Z and θ1 is:

pθ1,Z(θ1, Z) =

exp

[
−

(θ1−µ1)2

σ21
+

(Z−θ1−µ2)2

σ22
− 2ρ(θ1−µ1)(Z−θ1−µ2)

σ1σ2

2(1−ρ2)

]
2πσ1σ2

√
1− ρ2

=

√
σ2

1 + σ2
2 + 2ρσ1σ2

σ1σ2

√
1− ρ2

√
2π

· exp

− (θ1−µ1)2

σ2
1

+ (Z−θ1−µ2)2

σ2
2

− (1−ρ2)(Z−µ1−µ2)2

σ2
1+σ2

2+2ρσ1σ2
− 2ρ(θ1−µ1)(Z−θ1−µ2)

σ1σ2

2(1− ρ2)


· pZ(Z)

=
1

σ∗
√

2π
exp

[
−1

2

(θ1 − µ∗)2

σ2∗

]
· pZ(Z)

=pθ1,Z(θ1, Z) · pZ(Z)

Thus, pθ1,Z(θ1, Z) is:

pθ1,Z(θ1, Z) =
1

σ∗
√

2π
exp

[
−1

2

(θ1 − µ∗)2

σ2∗

]

with

µ∗ =
µ1σ

2
2 + (Z − µ2)σ2

1 + ρσ1σ2(Z − µ2 + µ1)

σ2
1 + σ2

2 + 2ρσ1σ2

σ∗ =
σ1σ2

√
1− ρ2√

σ2
1 + σ2

2 + 2ρσ1σ2
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Proof E.11. Derivation of p(ω) given in Eq. (2.45) based on the beta-distributed cos2 ω:

p(ω) =
1

2
|sin (ω) cos (ω)| ·

(
cos2 ω

)− 1
2
(
1− cos2 ω

)M−3
2

B
(

1
2 ,

M−1
2

)
=
|sin (ω) cos (ω)|

2 |cosω| · |sinω|
M−3

B
(

1
2 ,

M−1
2

)
=

|sinω|M−2

2 ·B
(

1
2 ,

M−1
2

)

E.3 Proofs from Section 2.3.5

Proof E.12. The mean, standard deviation and auto-correlation coefficient function of

an AR(1) model is given by Eq. (2.56), Eq. (2.57) and Eq. (2.58), respectively.

E[Xt] = c+ a · E[Xt−1] + E[bt] ,

where bt is white noise and, consequently, E[bt] = 0. Assuming stationarity of the mean,

we have E[Xt] = E[Xt−1] = µX .

µX = c+ a · µX
µX =

c

1− a

The variance of Xt is defined as:

E
[
(Xt − µX)2

]
= E

[
(c+ a ·Xt−1 + bt − c− aµX)

2
]

= a2 E
[
(Xt−1 − µX)

2
]

+ E
[
bt

2
]

+ 2aE [Xt−1 · bt]

= a2 E
[
(Xt−1 − µX)

2
]

+ σb
2

For a weak-sense stationary stochastic process we have:

σX
2 = a2σX

2 + σb
2

σX =
σb

1− a2

Let Ut = Xt − µX = a · Ut−1 + bt be a stationary process that has zero mean. The

covariance between Xt1 and Xt2 can be expressed as (assuming without loss of generality

that t2 > t1):

Cov [Xt1 , Xt2 ] = E [Ut1 · Ut2 ] = at2−t1 · σX2
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Thus, the auto-correlation coefficient function is:

ρX(τ) = a|τ |

with τ = t2 − t1.

E.4 Proofs from Section 3.4.3

This section contains proofs related to the transition PDF of the Metropolis-Hastings algo-

rithm.

Proof E.13. The transition PDF defined in Eq. (3.16) integrates to one:∫
p(v|w) dv =

∫
r∗w(v) · q(v|w) dv +

∫
δw(v) dv ·

∫
(1− r∗w(ξ)) q(ξ|w) dξ

=

∫
r∗w(v) · q(v|w) dv +

∫
(1− r∗w(ξ)) q(ξ|w) dξ

=

∫
q(v|w) dv = 1

Proof E.14. The Metropolis-Hastings algorithm fulfills detailed balance:

Let w be the current state of the chain (i.e., the seed), and v is the next state of the

chain. We need to show that the algorithm maintains detailed balance Eq. (3.13). Let

us distinguish the following two cases:

Case 1: v = w

If the next state of the chain equals the current state, it is obvious that the re-

versibility condition holds.

Case 2: v 6= w

We can express the transition PDF in this case as:

p(v|w) = q(v|w) ·min

(
1,
ps(v)

ps(w)
· q(w|v)

q(v|w)

)
(E.1)

Correspondingly:

p(w|v) = q(w|v) ·min

(
1,
ps(w)

ps(v)
· q(v|w)

q(w|v)

)
(E.2)

Using the relation min
(
1, ab

)
= min

(
1, ba

)
a
b for all positive real numbers a and b,

we can rewrite Eq. (E.2) as:

p(w|v) = q(v|w) ·min

(
1,
ps(v)

ps(w)
· q(w|v)

q(v|w)

)
· ps(w)

ps(v)
(E.3)
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Which is equivalent to:

min

(
1,
ps(v)

ps(w)
· q(w|v)

q(v|w)

)
=
p(w|v)

q(v|w)
· ps(v)

ps(w)
(E.4)

Putting Eq. (E.4) into Eq. (E.1) we get:

p(v|w) · ps(w) = p(w|v) · ps(v) (E.5)
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Appendix F

Statistical data analysis –

Descriptive statistics

F.1 Numerical descriptors of data

Numerical descriptors are used to quantify an entire data set by a few representative numbers.

F.1.1 Univariate analysis - independent samples

Let xi ∈ R, i = 1, . . . , N denote a set of samples. Furthermore, it is assumed that the xi are

independent realizations of a random variable X whose distribution is usually unknown.

F.1.1.1 Sample mean

The average over all samples xi is called the sample mean x and is defined as:

x =
1

N

N∑
i=1

xi (F.1)

The sample mean is an unbiased estimator and, consequently, E[x] = E[X]. The variance of

the estimator is given as Var[x] = 1
N Var[X]. For large N , the distribution of x can often be

regarded as approximately normal, due to the central limit theorem.

Proof F.1. Eq. (F.1) is an unbiased estimator for E[X]:

E[x] =
1

N
E

[
N∑
i=1

xi

]
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=
1

N

N∑
i=1

E[X]

= E[X]

Note that the samples do not have to be independent for the estimator to be unbiased.

F.1.1.2 Sample variance

The sample variance s2 is an estimator for the variance of X. The unbiased estimator (i.e.,

E[s2] = Var[X]) is defined as:

s2 =
1

N − 1

N∑
i=1

(xi − x)2 (F.2)

=
1

N − 1

((
N∑
i=1

x2
i

)
−N · x2

)
(F.3)

The advantage of Eq. (F.3) over Eq. (F.2) is that for Eq. (F.3) the sums
∑N

i=1 xi and
∑N

i=1 x
2
i

can be evaluated simultaneously within a single loop, whereas in Eq. (F.2) the sample mean

x must be evaluated before the sum
∑N

i=1 (xi − x)2. However, the sum
∑N

i=1 x
2
i is critical in

terms of floating-point arithmetic, as is the difference
(∑N

i=1 x
2
i

)
−N ·x2, especially if |E[X]|

is considerably larger than zero and Var[X] is also large.

Proof F.2. Eqs. (F.2) and (F.3) give an unbiased estimator for Var[X]:

E[s2] =
1

N − 1
E

[
N∑
i=1

x2
i −N · x2

]

=
1

N − 1

(
N∑
i=1

E
[
x2
i

]
−N · E

[
x2
])

=
1

N − 1

[
N ·

(
E [X]

2
+ Var[X]

)
−
(
N · E[X]2 + Var[X]

)]
= Var[X]

Proof F.3. In Proof F.2 we used E
[
x2
]

= E[X]2 + 1
N Var[X], this relation can be derived

as:

E
[
x2
]

=
1

N2
E

[
N∑
k=1

N∑
i=1

xixk

]

=
1

N2

N∑
k=1

N∑
i=1

E [xixk]
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=
1

N

(
E [X]

2
+ Var [X]

)
+
N − 1

N

(
E [X]

2
)

= E[X]2 +
1

N
Var[X]

Note that this relation only holds for independent samples.

F.1.1.3 Distribution of the mean (for Normal population)

N statistically independent outcomes X1, . . . , XN of random quantity X have been observed.

It is assumed that the mean µX and standard deviation σX of X is not known. Furthermore,

it is implicitly assumed that the distribution of X is Normal. However, for large N , the

derived results will hold for general types of distribution of X; this is a consequence of the

central limit theorem, which states that for large N the distribution of x approaches a Normal

distribution.

The sample mean x and standard deviation s of X can be estimated by means of Eqs. (F.1)

and (F.3), respectively. The statistical uncertainty about the unknown true mean µX can be

expressed as:

µX = x+
s√
N
· TN−1 (F.4)

where TN−1 is a random variable that has the Student’s t-distribution with N − 1 degrees of

freedom. Thus, the probability that µx ≤ b is:

Pr (µx ≤ b) = Pr

(
x+

s√
N
· TN−1 ≤ b

)
(F.5)

= Pr

[
TN−1 ≤ (b− x) ·

√
N

s

]
(F.6)

where Eq. (F.6) is essentially the CDF of a N − 1 degree of freedom Student’s t-distribution

evaluated at (b− x) ·
√
N
s .

F.1.2 Univariate analysis - chain-dependent samples

Let xj,i ∈ R, j = 1, . . . ,M, i = 1, . . . , N denote M sets of samples, where each set contains

N samples. It is assumed that all samples xj,i are realizations of random variable X. Sam-

ples of different sets are not dependend. However, samples within any set j = 1, . . . ,M ,

xj,1, . . . , xj,N , are dependent, where the specific dependence structure is unknown. An exam-

ple for such a setting is given by M Markov chains of length N whose seeds are independent

and distributed according to the target distribution.
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F.1.2.1 Sample mean

The sample mean of the jth set can be computed as:

xj =
1

N

N∑
i=1

xj,i (F.7)

The sample mean of all samples is:

x =
1

M

M∑
j=1

xj (F.8)

Both xj and x are unbiased estimators for the mean of X (compare Proof F.1).

The estimates x1, . . . , xj , . . . , xM are independent, since samples of different sets are indepen-

dent. Consequently, the variance of the estimates xj , denoted Var
[
Xj

]
, can be estimated by

means of Eq. (F.3):

r =
1

M − 1

 M∑
j=1

(xj)
2

−M · (x)2

 (F.9)

where r is an unbiased estimator for Var
[
Xj

]
, i.e., E [r] = Var

[
Xj

]
. (compare Proof F.2).

Here we implicitly assume that the dependence structure of samples xj,1 . . . , xj,N is the same

independent of j, and, thus, xj,1 . . . , xj,N are independent and identical distributed real-

izations of a random variable denoted Xj . Note that contrary to the case of independent

samples described in Section F.1.1, we have Var
[
Xj

]
6= 1

N Var[X] in general. However, for

the variance of the estimate x we can write Var
[
X
]

= 1
M Var

[
Xj

]
.

F.1.2.2 Sample variance (using samples from a single set)

The sample variance s2
j of the samples in the jth set can be estimated as:

s2
j =

1

N − 1

((
N∑
i=1

(xj,i)
2

)
−N · (xj)2

)
(F.10)

with xj according to Eq. (F.7). However, the estimate s2
j is biased (i.e., E

[
s2
j

]
6= Var [X]),

because the samples xj,1, . . . , xj,N are dependent:

Proof F.4. Eq. (F.10) gives a biased estimate:

First we investigate E
[
(xj)

2
]

(compare Proof F.3 for independent samples):

E
[
(xj)

2
]

=
1

N2

N∑
k=1

N∑
i=1

E [xj,i · xj,k]
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=
1

N

(
E [X]

2
+ Var [X]

)
+
N − 1

N

(
E [X]

2
)

+
1

N2

N∑
k=1

∑
∀i 6=k

Cov [xj,i, xj,k]

= E[X]2 +
1

N
Var[X] +

1

N2

N∑
k=1

∑
∀i 6=k

Cov [xj,i, xj,k]

Using this result, we can express E[s2
j ] as follows:

E[s2
j ] =

1

N − 1

(
N∑
i=1

E
[
(xj,i)

2
]
−N · E

[
(xj)

2
])

=
1

N − 1

N · (E [X]
2

+ Var[X]
)
−

N · E[X]2 + Var[X] +
1

N

N∑
k=1

∑
∀i 6=k

Cov [xj,i, xj,k]


= Var[X]− 1

N(N − 1)

N∑
k=1

∑
∀i 6=k

Cov [xj,i, xj,k]

Consequently, E[s2
j ] 6= Var[X].

From Proof F.4 it also follows that s2
j underestimates the true Var[X] on average for samples

xj,1 . . . , xj,N that exhibit a positive dependence structure; because in this case
∑N

k=1

∑
∀i 6=k Cov [xj,i, xj,k] >

0.

The estimate s2
j defined in Eq. (F.10) is asymptotically unbiased as N → ∞ if two samples

xj,i and xj,k can be considered independent in case i and k are far apart.

F.1.2.3 Sample variance (using all samples)

An unbiased estimator for the variance of X is [Gelman and Rubin, 1992; Gelman et al.,

2004a]:

s2 =
N − 1

N
· q + r (F.11)

where r is the sample variance of the sample means defined in Eq. (F.9), and q is the average

of the M sample variances s2
j . The quantity q is defined as:

q =
1

M

M∑
j=1

s2
j (F.12)

with s2
j according to Eq. (F.10).

Proof F.5. Eq. (F.11) is an unbiased estimate for the variance of X:

E[s2] =
N − 1

N
· E[q] + E[r]

=
1

NM

M∑
j=1

(
N∑
i=1

E
[
(xj,i)

2
]
−N · E

[
(xj)

2
])

+ Var
[
Xj

]
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= E
[
X2
]
− E

[
(Xj)

2
]

+ Var
[
Xj

]
= Var [X] + E [X]

2 − E
[
(Xj)

]2
= Var [X]

In the proof we use the relations:

• E [r] = Var
[
Xj

]
,

• E
[
X2
]

= Var [X] + E [X]
2
,

• E
[
(Xj)

2
]
−Var

[
Xj

]
= E

[
(Xj)

]2
• and E

[
(Xj)

]
= E [X] (see Proof F.1).

Note that the proof holds only if samples of different sets are actually independent.

F.1.2.4 Effective number of samples

In the above discussion of the estimators for the sample mean, we have noted that in

general Var
[
Xj

]
6= 1

N Var[X]. Whereas for independent samples xj,1 . . . , xj,N we have

Var
[
Xj

]
= 1

N Var[X]. If the samples xj,1 . . . , xj,N exhibit a positive dependence struc-

ture, we can write Var
[
Xj

]
> 1

N Var[X]. Let us now introduce a quantity neff,X,j for which

Var
[
Xj

]
= 1

neff,X,j
Var[X]. The quantity neff,X,j is referred to as effective number of inde-

pendent samples in the set xj,1 . . . , xj,N . The value of neff,X,j can be estimated as [Gelman

et al., 2004a]:

neff,X,j =
Var[X]

Var
[
Xj

] ≈ s2

r
(F.13)

with s2 and r according to Eq. (F.11) and Eq. (F.9), respectively. The effective number of

independent samples in the set consisting of all M ·N samples xj,i is:

neff,X = M · neff,X,j (F.14)

The efficiency of the sampling procedure can be expressed as:

effX =
neff,X

N ·M =
neff,X,j

N
(F.15)

The meaning of this quantity can be loosely interpreted as follows: K ∈ [1, N ] samples in the

set consisting of N dependend samples contribute as much to the analysis as effX ·K truly

independent samples would contribute.

Example F.1. Efficiency of correlated samples that follow the Normal distribution:

We investigate the influence of correlation on the efficiency of the sampling procedure for an
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Figure F.1: Efficiency of the sampling procedure for an increasing number of samples N and
different correlation length lc. (Example F.1)

increasing N (the size of the sets of correlated samples). The sample used follow the standard

Normal distribution (i.e., Var[X] = 1). The correlation of the ith sample with the kth sample

in a set is:

ρ(i, k) = exp

(
−|k − i|

lc

)
where lc is a factor that controls how fast the correlation decreases with an increasing distance

|k − i|. The variance of the sample average Var
[
Xj

]
can be derived analytically as:

Var
[
Xj

]
=

Var [X]

N

(
1 +

2

N
·
N∑
i=1

N∑
k=i+1

ρ(i, k)

)

With the analytical expressions for Var [X] and Var
[
Xj

]
available, the efficiency of the sampling

procedure can be expressed as eff = Var [X] /
(
N ·Var

[
Xj

])
. Consequently, eff does not depend

on the number of sets M .

The relation between eff and N is plotted in Fig. F.1 for different lc. An increase of lc, i.e.

an increase of the correlatetness of the samples, decreases the efficient number of independent

samples. Moreover, as the number N of correlated samples is increased, the fraction of the

equivalent number of independent samples also decreases and (for large N) converges to a

threshold that depends on lc.

F.1.2.5 Special case: chain-dependent Bernoulli trials

Sample variance

Let the xj,i ∈ {0, 1} be Bernoulli trials, with E [xj,i] = p. Moreover, let p̃ = x denote the

sample mean defined in Eq. (F.8). The variance of p̃ can be computed as [Au and Beck,

2001]:

Var [p̃] =
p · (1− p)
M ·N · (1 + γ) (F.16)
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where γ is defined as:

γ = 2 ·
N−1∑
k=1

(
1− k

N

)
· ρ(k) (F.17)

with ρ(k) = R(k)/R(0) and R(k) as

R(k) = E [xj,1 · xj,1+k]− p2 with k ∈ {0, . . . , N − 1} (F.18)

The expectation in Eq. (F.18) can be estimated as:

E [xj,1 · xj,1+k] ≈
1

M · (N − k)

M∑
j=1

N−k∑
i=1

xj,i · xj,i+k (F.19)

The value of p can be approximated using the sample mean p̃.

Efficiency

The factor (1 + γ) determines by how much the variance of the sample mean of M · N
independent Bernoulli trials needs to be increased to get Var [p̃]. The quantity neff,γ,X =

M · N/(1 + γ) can be interpreted as an effective number of independent samples [Au and

Beck, 2001]. A measure for the efficiency of the sampling procedure is:

effγ,X =
1

1 + γ
(F.20)

where effγ,X equals one if the Bernoulli trials are independent.
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Glossary

binomial coefficient The binomial coefficient is a positive integer that can be computed

as: (
n

k

)
=

n!

k!(n− k)!
for 0 ≤ k ≤ n (F.21)

where k and n are both nonnegative integers, and n! denotes the factorial of n. For

k > n, the binomial coefficient is zero. The following properties hold for the binomial

coefficient: (
n

k

)
=

(
n

n− k

)
for 0 ≤ k ≤ n (F.22)(

n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for 1 ≤ k ≤ n (F.23)

The binomial coefficient is an important quantity in combinatorics. For example, the

following questions can be answered by means of the binomial coefficient:

• How many ways exist to choose k elements from a set of n elements (if the already

picked elements are not replaced)? (
n

k

)
(F.24)

This is the reason why the binomial coefficient is often read as: “n choose k”.

• How many ways exist to choose k elements from a set of n elements if the picked

elements are replaced? (
n+ k − 1

k

)
(F.25)

• How many different ways are there to represent a sequence of length n that consists

of k ones and n zeros? (
n+ k

k

)
(F.26)

• Same question as the previous one; with the additional restriction that at least



272 F. Statistical data analysis – Descriptive statistics

one zero must separate two ones? (
n+ 1

k

)
(F.27)

bounded set Loosely speaking, a subset of a metric space is bounded if it is of finite size.

For example, the real line R equipped with the Euclidean topology:

• R is unbounded.

• (0, 1) as well as [0, 1] and (0, 1] is bounded.

• (−∞, 0] is unbounded.

closed and open sets Loosely speaking, a set is called open if it does not contain any of its

boundary points. A closed set is a set whose complement is an open set. In a topological

space, a set is closed if and only if it coincides with its closure.

For example, the real line R equipped with the Euclidean topology:

• R is open and closed : The entire space is by definition open. Its complement is

the empty set, which is by definition also open.

• (0, 1) is open but not closed.

• (−∞, 0] ∪ [1,∞) is closed but not open.

• [0, 1] is closed but not open.

• (0, 1] is neither open nor closed.

closure Let S be a subset in a topological space. The closure of S consists of all points in

S plus the limit points.

Cholesky decomposition Let R be a real symmetric matrix that is positive definite. The

Cholesky decomposition of R has the following form:

R = AAT (F.28)

where A is a lower triangular matrix that has positive diagonal entries.

An example application is the generation of correlated standard Normal random vari-

ables: Let u be a vector of independent standard Normal random variables. A vector

y that has correlation matrix R can be obtained by the transformation:

y = Au (F.29)

where A is the Cholesky decomposition of R.

Euler-Mascheroni constant The Euler-Mascheroni constant is typically denoted by γ.

The value of this mathematical constant is 0.57721566490153286060 . . ..
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finite and infinite sets A set is called finite if the number of elements in the set is a natural

number. The number of elements in the set is referred to as the cardinality of the set.

A set is said to be infinite if it is not finite.

Matrix eigenvalue problem

eigenvector: An eigenvector v of matrix a N ×N A must satisfy

Av = λv (F.30)

where v is a non-zero vector and the scalar λ is referred to as eigenvalue corresponding

to eigenvector v of matrix A.

characteristic polynomial: Eigenvalues of matrix A are the roots of the following equa-

tion:

p(λ) := det (A− λI) = 0 (F.31)

where p(λ) is the characteristic polynomial of A which can be factorized as:

p(λ) = (λ− λ1)n1 · (λ− λ2)n2 · . . . · (λ− λK)nK = 0 (F.32)

where λ1, . . . , λK are the K eigenvalues of matrix A. The integers nk with k = 1, . . . ,K

are called the algebraic multiplicity of eigenvalue λk. We have:

K∑
k=1

nk = N (F.33)

Each eigenvalue λk has an associated eigenvalue equation:

(A− λkI) v = 0 (F.34)

which has mk ∈ 1, . . . , nk linearly independent solutions; where the integer mk is called

the geometric multiplicity of eigenvalue λk.

eigendecomposition: For a N ×N matrix A with N linearly independent eigenvectors

vi, matrix A can be expressed as:

A = VΛV−1 (F.35)

where V is a N ×N matrix whose ith column is eigenvector vi. Λ is a diagonal matrix

whose diagonal elements Λii are eigenvalues λi.

eigendecomposition of the inverse: If matrix A has an eigendecomposition and if all

eigenvalues are non-zero, the inverse of A is:

A−1 = VΛ−1V−1 (F.36)
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Consequently, the eigenvalues of A−1 are 1
λi

. Note that all eigenvectors are real.

real symmetric matrices: For a N × N real symmetric matrix A, the eigenvectors

are orthogonal. Assuming that they are additionally scaled such that they become

orthonormal, we can write:

A = VΛVᵀ (F.37)

Thus, V is an orthogonal matrix.

generalized matrix eigenvalue problem:

Av = λBv (F.38)

v, λ is called the generalized eigenvector, eigenvalue of A and B, respectively. The

eigenvalue λ satisfy

det (A− λB) = 0 (F.39)

If A and B areN×N matrices and the problem hasN linearly independent eigenvectors,

matrix A can be written as:

A = BVΛV−1 (F.40)

Furthermore, if both A and B are symmetric and if B is additionally positive-definite,

then the eigenvalues are all real, and the eigenvectors obey the following equation:

VᵀBV = F (F.41)

where F is a diagonal matrix with positive entries.

support of a function Let f : X → R be a real-valued function, where we restrict ourselves

to X being a topological space. Furthermore, let S be a subset of X such that f is

non-zero for points in S and zero for points not in S. The support of function f is the

closure of the subset S. On topological spaces this is also referred to as closed support.

Function f is said to have a compact support if the support is a compact subset of X.

totally ordered If a set X is totally ordered, then the following statements hold for any a,

b and c in X:

1. antisymmetry: if a ≤ b and b ≤ a then a = b;

2. transitivity: if a ≤ b and b ≤ c then a ≤ c;
3. totality: a ≤ b or b ≤ a.
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