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Abstract

The nervous system of the human body represents the main control network and thus needs to 

supervise numerous body functions. Since this system must react to fine external and internal 

stimuli, already marginal changes within this sensitive network can cause major interruptions, 

damages or even loss of function. As of today, there are more than 600 different diseases and 

pathological processes are currently described in literature, which are directly related to nervous 

system disruption as e.g. genetic disorders (Huntington’s disease, muscular dystrophy, etc.), 

neuro-degenerative diseases (Alzheimer’s disease, Parkinson’s disease, etc.), injuries of the spi-

nal cord and brain (traumatic brain injury), cancer (brain tumors) or infections (e.g. meningitis). 

Normally, with the occurrence of symptoms, the underlying disease has already greatly pro-

gressed, so that progress inversion or even healing represents a “Mission Impossible”. Today, 

physicians are still very limited with their treatment opportunities, so that as only action the tie or 

slow-down of the pathological process remains. Nonetheless, once the disease has vastly pro-

gressed, even the tie of the underlying process is not enough to help a patient. The key part in 

these scenarios is the earliest possible detection of the onset of such a disease to prevent a 

manifestation of such disease.

In this thesis, the scope lays within the development and application of proteomic methods for the 

discovery of novel biomarkers of neurological conditions. The discovery of novel biomarker mol-

ecules normally requests the parallel analysis of many samples in only little time. At best, those 

samples are also prepared simultaneously. Conventional proteomic sample preparation methods 

make use of the 96-well plate format to allow for the simultaneous preparation of 96 samples or 

multiples there-of, at a time. Nonetheless, these methods require several hours to be completed. 

Here, a novel sample-preparation method was developed and further optimized for specialized 

application with human urine, cerebrospinal fluid or plasma. This method specifically exploits the 

naturally occurring hydrophobic interactions between a protein’s inner core and a polyvinylidene 

fluoride membrane, as well as the larger pores of PVDF, which in turn on one hand allows for 

sample digestion and clean-up directly on the membrane and on the other hand allows for the 

omittance of prolonging centrifugation steps. Thus, several hours of preparation time can be 

saved compared to the widely adopted and applied “filter-aided sample preparation” method.

In particular, the aforementioned developed method is employed to analyze the urine of young 

adolescent after sustaining a concussion. In this context, a concussion is considered a mild-trau-

matic brain injury which can, especially after multiple occurrences, lead to an inevitable neuro-

degenerative disease. Yet, there are no objective measures available that allow physicians to 

directly diagnose a concussion. Hence, the urinary proteome was specifically investigated within 

this scope, especially in the regard of discovering urinary biomarker candidates for objectively 

diagnosing a concussion. Additionally, the associated sample cohort featured dedicated positive 

controls, suffering a severe traumatic brain injury, which are represented by patients suffering 

from an intracranial bleed. Later on these samples allowed the initiation of a discovery step for 

urinary biomarker candidates for intracranial bleeds. However, identified potential candidates, in 
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the milt-traumatic brain injury as well as in the severe traumatic brain injury study, could yet not 

be qualified in an enhanced follow-up study.

Besides the investigation of the urinary proteome, also the proteome of urinary exosomes was 

investigated in the context of mild-traumatic brain injury. Exosomes are small extracellular vesi-

cles (< 100 nm) which are secreted into urine. In particular, exosomes can also feature a signaling 

function and can transmit messages from one organ to another. Additionally, the urinary proteome 

consists to a certain extend out of the proteins stored in exosomes. Especially in this context, it

was postulated that these nanovesicles can contain valuable information stored as protein pat-

tern, which led consequently led to the investigation via exosome enrichment and proteomic anal-

ysis. In the here described analysis, certain proteins in the exosome proteome were found that 

allowed a certain prediction. In addition, these proteins could directly be linked to various neuro-

logical processes. However, the featured specificity and selectivity might not satisfy nowadays 

clinical standards.

Urine is considered the waste-fluid of the human body. Its main function lays within the evacuation 

of unwanted metabolites, proteins or other products. Nevertheless, urine is first stored for several 

hours, in the bladder, before its evacuation through the ureter. During this time or at any time of 

a proteins’ lifetime, endogenous proteases can attack and cut the proteins’ backbone. Here, the 

hypothesis that reoccurrences of specific non-tryptic cleavages within a proteins backbone can 

trace back to targeted degradation or deactivation processes in the context of mild-traumatic and 

severe-traumatic brain injuries, was investigated. In the investigated sample cohort 22 peptides 

for mild-traumatic and 20 peptides for intracranial bleed were discovered. However, a direct link-

age between the occurrence of such a specific non-tryptic peptide and the diagnosis of one of the 

mentioned neurological condition could not be established.

Lastly, cerebrospinal fluid of patients with various neurodegenerative diseases (e.g. Alzheimer’s 

Disease, Parkinson’s Disease, or progressive supranuclear palsy) were investigated in the regard 

of the discovery of disease specific diagnostic or stratification biomarker candidates. In this case, 

cerebrospinal fluid features special importance as it is produced by ventricles in the brain and 

circulates within the scull and spinal cord. Furthermore, cerebrospinal fluid can be sampled via a 

semi-invasive procedure (lumbar puncture). Due to its adjacencies to the brain, this body fluid is 

considered a valuable resource for the discovery of neurodegenerative diseases. The qualitative 

and quantitative analysis of the cerebrospinal fluid proteome in this thesis did reveal certain rela-

tions between proteins and the underlying diagnosis, which also allows for a certain degree of 

stratification. Even though, the calculated probability of entering clinical trials for potential candi-

dates in this thesis is low, the discovered biomarker candidate molecules for Alzheimer’s disease, 

Parkinson’s disease, progressive supranuclear palsy and corticobasal degeneration can provide 

insightful information for either reconfirmation of previously identified biomarkers or disease spe-

cific processes. Furthermore, these findings might not only be a proof of concept but might provide 

the gateway for larger scaled studies.
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Zusammenfassung

Das menschliche Nervensystem stellt das Hauptkontrollnetzwerk dar und muss aus diesem 

Grund sehr viele Körperfunktionen überwachen. Da dieses System auf jegliche noch so feinen, 

externen, wie auch internen Stimuli reagieren muss, können bereits geringe Veränderungen an 

diesem sensitiven Netzwerk wesentliche Einschränkungen, Beschädigungen oder sogar bis hin 

zum Verlust der Kontrollfunktion, hervorrufen. Nach heutigem Stand sind mehr als 600 verschie-

dene Krankheiten und pathologische Prozesse in der aktuellen Literatur beschrieben, welche im 

Besonderen direkt mit der Zerrüttung des Nervensystems assoziiert sind, so z.B. genetische Er-

krankungen (Corea Huntington, muskuläre Dystrophie, etc.), neurodegenerative Krankheiten 

(z.B. Morbus Alzheimer, Morbus Parkinson, etc.), Verletzungen des Rückenmarks und / oder Ge-

hirns (traumatische Gehirnverletzung, intrakranielle Blutung), Krebs (Gehirn-tumor) oder Infekti-

onen (z.B. Meningitis). Jedoch ist die zugrundeliegende Erkrankung mit dem Auftreten erster 

Symptome bereits so weit vorangeschritten, sodass der Krankheitsfortschritt nicht umgekehrt, 

geschweige denn geheilt werden kann. Heutzutage stehen nur geringe Behandlungsoptionen den 

Ärzten zur Verfügung, so, dass die einzige Möglichkeit darin besteht, den pathologischen Prozess 

zu stoppen oder gar nur zu verlangsamen. Einst, dass die Krankheit sehr weit vorangeschritten 

ist, reicht es allerdings meinst nicht immer aus nur den Prozess zu stoppen, um einen Patienten 

zu helfen. Das Schlüsselereignis dieses Szenarios ist die früh-möglichste Erkennung der Krank-

heit, sodass eine Manifestation des pathologischen Prozesses und somit der Krankheit verhindert 

werden kann.

Der Fokus dieser Arbeit liegt auf der Entwicklung und Anwendung von proteomischen Methoden 

zur Entdeckung von neuen Biomarkern von neurologischen Erkrankungen. Besonders die Ent-

deckung von neuartigen Biomarkermolekülen erfordert normalerweise die parallele Analyse von 

vielen biologischen Proben in kurzer Zeit. Am Besten werden alle benötigten Proben simultan 

und somit unter gleichen Bedingungen präpariert. Gerade in deisem Fall behelfen sich konventi-

onelle proteomische Präparationstechniken des 96-well Platten Formats, welches es erlaubt 96 

Proben, oder ein Vielfaches davon, simultan zu präparieren. Nichtsdestotrotz benötigen diese 

Methoden mehrere Stunden zum Durchlaufen, da sie mehrfach Zentrifugationsschritte benötigen, 

die umgekehrt mehrere Stunden in Anspruch nehmen. Diese Thesis befasst sich im Besonderen 

mit der Entwicklung sowie Optimierung einer neuartigen Probenaufbereitungsmethode für die 

spezielle Anwendbarkeit auf humanen Urin, Rückenmarksflüssigkeit oder Blut-Plasma. Die ge-

nannte Methode nützt speziell die natürlich vorhandenen hydrophoben Wechselwirkungen zwi-

schen dem inneren Kern eines denaturierten Proteins und der hydrophoben Oberfläche wie z.B: 

polyvinylidene Fluroide (PVDF) aus, um diese direkt an der Membranoberfläche aufzureinigen 

und tryptisch zu verdauen. Im Besonderen kamen hier die sehr großen Poren der PVDF Membran

zur Geltung, die es erlauben einen Flüssigkeitstransfer durchzuführen, ohne jedoch zu zentrifu-

gieren. Hierbei wird das zentrifugieren gänzlich unnötig, was wiederum es erlaubt, mehrere Stun-

den an Präparationszeit einzusparen – besonders im Vergleich der weithin verbreiteten und be-

kannten „filter-aided sample preparation“ Methode (FASP).
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Im Weiteren wird diese oben genannte, neuentwickelte Methode verwendet, zur Analyse des 

Urins junger Erwachsener, nach Erleiden einer Gehirnerschütterung. In diesem Zusammenhang 

wird die Gehirnerschütterung als milde Form der traumatischen Gehirnverletzung gesehen, wel-

che besonders nach häufigem Auftreten, unausweichlich zu einer Erkrankung an einer neurode-

generativen Krankheit führt. Bis heute gibt es allerdings noch keine objektive Bemessungsgrund-

lage, die es Ärzten erlaubt direkt und unzweifelhaft eine Gehirnerschütterung zu diagnostizieren. 

Daher wurde in dieser Arbeit spezifisch das Urinproteom untersucht im Besonderen Hinblick auf 

die Entdeckung neuer Biomarkern zur objektiven Diagnose einer Gehirnerschütterung – im Bes-

ten Fall durch einen Urintest. Hierbei wurde besonderen Wert auf das Design der Probenkohorte 

gelegt und ein Teil „positiver“ Proben, in Form von Urin von Patienten mit intrakranieller Blutung, 

mit einbezogen. Im weiteren Verlauf der Analyse erlaubte es die Menge an Proben sowohl die 

Untersuchung zur Entdeckung von Biomarkern, speziell für intrakranielle Blutungen. Dennoch 

konnten die gefundenen Kandidatenmoleküle sowohl für die milde Form der traumatischen als 

auch der schweren Form der traumatischen Gehirnverletzung nicht weiter, wie auch in einer er-

weiterten Nachverfolgungsanalyse, qualifiziert werden.

Neben der Untersuchung des Proteoms im Urin von Patienten, die an einer Gehirnerschütterung 

erkrankt sind, wurde auch gesondert das Proteom der urinösen Exosomen untersucht. Exosomen 

sind winzige extrazelluläre Partikel (< 100 nm), welche speziell in den Urin sekretiert werden. Im 

Besonderen können Exosomen eine signalgebende Funktion übernehmen und ermöglichen es 

daher ein Signal von einem Organ zum anderen zu transportieren. Zudem besteht das urinäre 

Proteom zu einem bestimmten Prozentsatz aus den Proteinen, die in diesen Exosomen gespei-

chert sind. Gerade in diesem Zusammenhang wurde postuliert, dass diese Nanovesikel einen 

bestimmten Informationsgehalt in einem Proteinmengenmuster speichern. Daher wurde bei die-

ser Analyse die Exosomen spezifisch angereichert und proteomisch analysiert. In der hier be-

schriebenen Untersuchung wurden gewisse Proteine, bzw. Proteinmuster identifiziert, die eine

gewisse Prognose erlauben. Zusätzlich ist es möglich an Hand dieser Muster gewisse neurologi-

sche Prozesse zuzuordnen. Allerdings entspricht die hier gesehene Selektivität und Spezifität 

nicht den heute geforderten klinischen Standards.

Urin wird als solches als das Abwasser des menschlichen Körpers bezeichnet. Die Hauptaufgabe 

liegt darin, ungewollte Metaboliten, Proteine und andere Produkte aus dem Körper zu transpor-

tieren. Nichtsdestotrotz wird der Urin erst in der Blase für mehrere Stunden gespeichert, bis er 

über den Harnleiter abtransportiert wird. Die entsprechenden Umgebungsbedingungen stellen 

beim genaueren Hinsehen die perfekten Bedingungen für endogene Proteasen dar. Daher kann 

es in dieser Zeit- oder auch zu jeder Zeit während der Lebensdauer eines Proteins dazu kommt 

von einer solchen Protease angegriffen zu werden. Dies führt nun unweigerlich zu einem entspri-

chenden Schnitt im Backbone. Hier wurde die Hypothese, dass das Wiederauftreten von spezifi-

schen nicht-tryptischen Schnittstellen innerhalb des Proteinbackbones ein Hinweis auf eine ge-

richtete Degeneration oder Deaktivierung des Proteins im Kontext der milden sowie schweren 

traumatischen Gehirnverletzung gibt. Die Analyse des Urins der eingeschriebenen Patienten 

führte zur Identifikation von 22 solcher Schnittstellenhypothesen für die mild-traumatische und 20 
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Schnittstellhypothesen für die intrakranielle Blutung, die einen speziellen Hinweis auf das Vor-

handensein der Erkrankung liefert. Jedoch konnte eine direkte Verknüpfung zwischen dem Auf-

treten der Schnittstelle und der jeweiligen Diagnose nicht hergestellt werden.

Zuletzt wurde die Rückenmarksflüssigkeiit von Patienten mit verschiedenen neurodegenerativen 

Erkrankungen (z.B. Morbus Alzheimer, Morbus Parkinson oder Progressive supranukleäre Blick-

parese) im Hinblick auf die Entdeckung diagnostischer oder stratifizierenden krankheitsspezifi-

schen Biomarkerkandidaten. In diesem Fall stellt die Rückenmarksflüssigkeit eine zentrale Pro-

benart dar, da es von den Ventrikeln im Gehirn gebildet wird und innerhalb des Schädels und 

dem Rückenmark zirkuliert. Zudem kann diese Körperflüssigkeit vergleichsweise einfach und 

semi-invasiv (Lumbalpunktion) entnommen werden. Durch die direkte Nachbarschaft zum Ge-

hirngewebe stelle diese Flüssigkeit die zentrale Rolle als Probe zur Entdeckung von Biomarkern 

neurodegenerativen Erkrankungen dar, da Gehirngewebe nicht zur weiteren Analyse entnommen 

werden muss. Die qualitative sowie quantitative Analyse des Rückenmarksflüssigkeitsproteom in 

dieser Arbeit, erlaubte die Entdeckung von bestimmten Beziehungen zwischen dem Auftreten 

verschiedener Proteinkonzentrationen und der zugrundeliegenden Erkrankung, welche umge-

kehrt auch einen gewissen Grad an Stratifizierung erlaubt. Obwohl die berechnete Wahrschein-

lichkeit zum Eintritt der in dieser Arbeit gefundenen Biomarkerkandidaten für Morbus Alzheimer, 

Morbus Parkinson, Progressive supranukleäre Blickparese und Kortikobasale Degeneration wert-

volle Informationen entweder zur Rekonformierung bereits gefundener Biomarker kiefern oder 

Hinweise zu Krankheitsbildern geben. Des Weiteren, mögen die hier beschriebenen Ergebnisse 

nicht nur ein Beweis der Methodenfunktionalität sein, sondern auch die Möglichkeit bieten, größer 

angelegte Studien anzuregen.
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1. Introduction

1.1 Mass spectrometry based proteomics

Traditionally, the term “Proteomics” has been associated with the large-scale determination of 

gene function by biochemical methods 1-3. The rise of proteomics can be dated to the late 1970s,

when researchers started cataloguing and building databases of two dimensional gel electropho-

resis outcomes 2, 4-7. However, researchers had to overcome many challenges with these exper-

iments, such as high complexity of cellular proteomes as well as the low abundance of proteins. 

This in turn presented the necessity for highly sensitive analytical methods1, 8. By the 1990s Mass 

Spectrometry (MS) had already emerged in the biological research arena, as it overcame many 

limitations of protein analysis, as e.g. sensitivity 2, 9, 10. Mass spectrometry has thus far evolved 

into an indispensable tool for protein analysis and is clearly the method of choice regarding the 

analysis of complex protein samples. Due to this recent development in the proteomics technol-

ogy, the analysis of single proteins (hypothesis driven) via classical biochemistry approaches has 

evolved into a more holistic, i.e. systematic-driven analysis type, as researches nowadays have 

the ability to study the whole proteome at a time instead of a single gene product 3, 11, 12. With this 

highly sensitive technology at hand, the proteomic analysis is not only focused on the identification 

of gene products or cellular functions, but also on post-translational modifications (PTMs), protein 

structure, protein function, protein-protein interactions and abundance level changes 1-3, 8, 12.

Based on the scope of a proteomic study, the applied approach can be classified as one of three 

different approaches: top-down 13, middle-down 14 and bottom-up 15.

Figure 1.1: Proteomic Workflows. Schematic illustration of the different proteomic workflows. Bottom-Up (left), Middle-

Down (middle) and Top-Down (right) represent the most frequently used approaches. Figure was rebuilt in dependence 

of Moradian et al. (2014) 16.

Protein(s)

Bottom-Up Middle-Down Top-Down

Trypsin digestion Glu-C digestion Intact protein

Data Acquisition

Bioinformatics
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In all three cases, the starting material is a complex protein mixture obtained from a biological 

sample (e.g. tissue extract) or clinical sample (e.g. body fluid). The main characteristic for the top-

down approach is the analysis of intact proteins by MS. In this regard, the protein mixture is first 

separated by chromatographic methods, e.g. 2D - electrophoresis, to select for individual proteins 

for further MS analysis and protein identification 13. In contrast hereto, the bottom-up as well as 

the middle-down approach apply proteolytic digestion directly to the whole complex protein mix-

tures. Consequently, the generated peptide mixture has to be extensively chromatographically 

separated and analyzed by MS. Here, the length of proteolytic peptides differentiates between

the two approaches. While the bottom-up approach mainly relies on protein digestion via e.g. 

Trypsin, generated peptides feature a size in the rage of 0.5 to 3.5 kDa 17. In direct comparison, 

the middle-down approach relies on proteases that generate peptides at least twice the size (> 

6.5 kDa) of those generated by e.g. Trypsin 14. However, the bottom-up approach, like the middle-

down approach, can’t provide full protein sequence information either and hence, suffer from the 

fact that parent gene products are generally indistinguishable in the absence from additional in-

formation, especially since the de novo sequencing problem by MS has not yet been fully solved 

1, 15, 18.
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1.1.1 Mass Spectrometry

By definition, MS measures the mass to charge ratio of an ionized analyte in the gas phase and 

reports the result in a mass-to-charge (m/z) ratio 19. Additionally, a Mass Spectrometer can be 

subdivided into an ion source, a mass analyzer and a detector. In many proteomic setups, but 

particularly those based on the complexity of the protein mixture to be analyzed and the employed 

ionization technique, the MS system is online coupled with a preceding separating liquid chroma-

tographic (LC) system (LC-MS) 1, 19.

1.1.1.1 Liquid chromatography based peptide separation

The proteolytic digestion of a complex protein mixture with the assistance of proteolytic enzymes 

(e.g. Trypsin) leads to an even higher complex peptide mixture. Theoretically, many peptide spe-

cies can share the same mass even though they 

do not share the same progenitor protein they 

originate from. Consequently, a single acquired 

mass spectrum of this highly complex peptide 

mixture will not correctly represent all present 

peptide species. Hence, peptide separation,

based on other chemical or physical properties

than its mass, is inevitable. Due to the nature of 

proteomic samples (small sample volume and 

low abundant peptide species), liquid chroma-

tography is usually performed on a nano scale 

(ultra-)high performance liquid chromatog-

raphy system (nano-UHLPC; nano-HPLC) 20.

This, on the other hand, allows the detection of 

peptides in the femtomole (fmol) region 19, 21.

The separation occurs through interaction be-

tween the analyte, the stationary phase and 

the mobile phase (cf. Figure 1.2). In most pro-

teomic cases an etherified C-18 silica gel is 

chosen and hence the separation is based on 

hydrophobic interactions between the peptide 

side chains and the stationary phase. By add-

ing ion-pair reagents as trifluroacetic acid 

(TFA) or formic acid (FA) hydrophilic side 

chains can also interact with the embedded 

amphiphiles in the stationary phase. Based on 

these characteristics, the frequently employed 

Stationary Mobile
Phase Phase

Figure 1.2: Interaction Triangle. The retention time for 

each analyte is characterized by three interactions: An-

alyte with Mobile Phase (purple), Stationary Phase with 

Mobile Phase (green) and Anaylte with Stationary Phase 

(orange).

Figure 1.3: van Deemter plot. Combined effect (theoret-

ical plate height, black) for adsorption (grey), Eddy-Diffu-

sion (red) and mass exchange (green). The smaller the 

theoretical plate hight (black) the better the separation ef-

fect. Equation: H – plate height (black); A – Eddy-Diffu-

sion (red); B/u – Diffusion (green); C – mass exchange

(grey); u – mobile phase velocity (X - Axis); HETP –

Height equivalent of theoretical plate. Figure adopted 

from:

http://chemwiki.ucdavis.edu
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separation is called “ion pair reversed phase” liquid chromatography (IP-RP-HPLC). In order to 

elute the analyte off the stationary phase and achieve a separation, the hydrophobic character of 

the mobile phase is gradually increased by enhancing the content of a hydrophobic solvent, as 

e.g. acetonitrile (ACN). Once the hydrophobic character reaches a certain level, the analyte inter-

acts preferably with the mobile phase and is no longer retained by the stationary phase. Never-

theless, to achieve an optimal peptide separation and hence a small plate height, the velocity of 

the mobile phase also has to be tuned for each setting, based on van Deemter et al. (1995) 22. In 

this context, the estimation of the flowrate of the mobile phase (cf. Figure 1.3) not only considers 

the velocity itself, but also the diffusion of the analyte along the column material in consideration 

of the package of the column (Eddy-Diffusion), the regular diffusion due to concentration differ-

ence along the column (Diffusion) and the actual interdependency between analyte and stationary 

phase (Adsorption/Desorption).

1.1.1.2 Ionization Techniques

The development of two soft ionization techniques, namely electrospray ionization (ESI) by Fenn 

et al. in 1989 23 and matrix-assisted laser desorption ionization (MALDI) by Karas et al. in 1988 

24, revolutionized mass spectrometric protein and peptide analysis. These two techniques have

demonstrated the exemplary ability of ionizing peptides or proteins 19 and remain the most com-

monly used ionization techniques in the field of proteomics to this day.

Besides ESI and MALDI, further soft ionization methods as “Fast Atom Bombardment” (FAB) 25,

26 and “Plasma Desorption” (PDMS)27 are available to scientists for protein analysis. These ion 

techniques are classified as particle bombardment (PB) and are closely related to “Secondary Ion 

Mass Spectrometry” (SIMS). Due to the high complexity of the aforementioned ionization tech-

niques, only ESI and MALDI are further explained in the following:

Electrospray Ionization

ESI is the ionization method of choice, once the LC is online-coupled to the MS (LC-MS). Addi-

tionally, this technique produces ions with multiple charges. For a successful electro spray, a high 

voltage (> 1.8 kV) is applied between the end of the fused silica capillary (emitter tip) post the 

separation column and the ion inlet of the MS. The voltage and hence the potential difference 

causes the formation of a “Taylor Cone” (cf. Figure 1.4) from which charged parent droplets are 

emitted.Due to extensive heat or a uniform gas flow (zero-air) applied along the capillary, residual 

solvent evaporates from the parent droplet. Consequently, the super-charged droplet undergoes 

“Coulomb fission” leading to smaller highly charged droplets, containing single analyte molecules. 

The consequent process of analyte charging is further described by two hypotheses 28. On the 

one hand, the passive process of “Charged Residue Model” postulates that the small charged 

progenitor droplet has further losses of solvent through evaporation until the analyte remains na-

ked. Consequently, the charge is consigned to the analyte. On the other hand, the active process 

of “Ion Evaporation Model” implies that the analyte is ionized by direct evaporation out of the 

droplet and hence, drags charges off the droplets surface which in turn ionizes the analyte itself 

28.
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Figure 1.4: Schematic illustration of electrospray ionization. The application of a high voltage (> 1.8 kV) between the 

emitting end of the fused silica capillary (emitter tip, left) and the ion source of the MS (right) leads to the formation of a

“Taylor Cone”. Due to extensive heat or gas flow, the solvent evaporates. The supercharged solvent bubble hence un-

dergoes “Coulomb fission” so that the charge gets transferred to the analyte and a naked charged analyte enters the MS. 

Figure was adopted from Banerjee et al. (2012) 29.

Matrix-Assisted Laser Desorption Ionization

The MALDI ionization technique was developed and introduced by Karas & Hillenkamp in 1988 

24. One of the main characteristic is the applicability to larger biomolecules, i.e. from larger pep-

tides to intact proteins. However, this soft ionization technique is not directly applicable for online 

coupling to a MS. Here, the sample first has to be prepared on a proper sample plate before it 

can be used for MS analysis 30, 31. In this case, the desired sample (low complex) is mixed with a

1,000 to 10,000-fold molar excess of a laser wavelength absorbing matrix (small organic mole-

cules, cf. Table 1.1) directly on the sample plate. After evaporation of the solvent, the analyte co-

crystallizes with the matrix and is fully embedded in the matrix crystal structure 28. For ionization, 

the matrix-analyte crystal is consequently exposed to laser impulses for few nanoseconds. In the 

case of the laser energy being set too high, the larger analytes (e.g. proteins) will be destroyed 

immediately. Appropriate lasers are e.g., Nitrogen, Yttrium-Aluminum Garnet, Excited Dimer (Ex-

cimer) or Carbondioxide (CO2). When exposed to radiation, the matrix molecules adsorb the UV 

radiation which is consequently released into the crystal lattice and causes a lattice disruption 

and expansion. Hence, the matrix surface gets disrupted and matrix molecules, such as analyte 

molecules translate into the gas phase. Ultimately, the analyte is ionized due to photo-ionized and 

radical matrix molecules and hence by their induced proton transfer 28.

Table 1.1: Exemplary list of appropriate matrices for MALDI ionization. Matrices serve the function of laser energy 

desorption, protecting the analyte from thermal decomposition and ionizing the embedded analyte by proton transfer in 

the gas phase 11, 28.

Matrix Molecule Type of Analyte

Sinapinic acid Proteins

Nicotinic acid Proteins

Ferulic acid Proteins



Introduction

6

2-(4-Hydroxyphenylazo)benzoic acid (HABA) Proteins, Peptides

2,3-Dihydroxybenzoic acid (DHB) Proteins, Peptides

Succinic acid Proteins, Peptides

-Cyano-4-hydroxycinnamic acid Peptides

3-Hydroxy picolinic acid Oligonucleotides

1.1.1.3 Mass Analyzer

The mass analyzer represents the central part of MS and particularly in the field of proteomics, 

the mass analyzer requires the following key-features: sensitivity (defines the ability to detect an 

ion at a certain abundance), mass resolution (defines the ability to distinguish two peaks of slightly 

different m/z), mass accuracy (defines the error between the measured and true ion mass) and 

the ability to generate fragmentation spectra of precursor ions (tandem MS or MS/MS; cf. Section

1.1.1.4). There are four mass analyzers commonly used in MS-based proteomics, namely i) ion 

traps, ii) quadrupoles, iii) time-of-flight (TOF) and iiii) Fourier transform ion cyclotron resonance 

(FT-ICR). Each of these mass analyzers can be coupled with different ion sources. Commonly 

used combinations are e.g. MALDI-TOF, ESI-TOF or ESI-FTICR. Each analyzer varies in design 

and performance, however each features its own set of strengths and weaknesses. Each analyzer 

can be used on a stand-alone basis, or in a coupled arrangement so that the strengths of each

can be taken advantage of 1, 2, 32, 33. Due to the complexity of the underlying facts, only two of the 

aforementioned mass analyzers (TOF & Orbitrap) will be introduced briefly.

Figure 1.5 Schematic illustration of a time-of-flight mass analyzer. After ESI ionization, the ion beam is condensed 

through the ion optics. After passing the Quadrupole and fragmentation cell, the ions are quickly captured in a Faraday-

cup and then pulsed into the TOF tube. After reflection, the time of flight in the tube is measured by impact on the detector. 

EA = Energy of analyte; Ek = Kinetic energy; q = Charge; U = Voltage; v = Velocity; m = Mass of analyte; d = Distance; t = 

Time; k = Constant of proportionality. Figure taken from http://www.agilent.com.

Reflectron

Ion Optics

Mass Filter
(Quadrupole)

Fragmentation
Cell

Source
(ESI)

with 

Detector



Introduction

7

Time-of-Flight (TOF)

As already defined by its name, the “time-of-flight” mass analyzer determines the mass-to-charge 

ratio of a charged ion by the time needed to drift between a set start and end point (detector). In 

short, after ionization the charged analytes undergo a kinetic acceleration by traversing an elec-

trical potential. The adsorbed energy equals the product of applied voltage (U) and the charge (z) 

of the ion (E = U × z). Hence, based on the relation of energy and velocity (cf. Figure 1.5) the 

time required to drift along a predefined path within the analyzer is proportional to the square root 

of the mass-to-charge ratio. Besides other types, the TOF is not a mass filter, which in turn means 

that all ions are measured simultaneously. Hence, the necessity for discontinued mass range 

scanning is omitted which allows a very fast mass spectra acquisition (theoretically up to thou-

sands per second). Cutting edge TOF instruments can achieve measurements with an accuracy 

error of 2 ppm and a resolution of up to 30,000. Nevertheless, such high mass resolution can be 

achieved by specifically extending the flight path of the ions. Here, the elongation is technically 

realized by slowing the ions down at the end of the first leg by applying a voltage between parallel-

arranged metal plates, which in turn is inverted in comparison to the actual flight path. Conse-

quently, entering ions into either a linear or staged electrical field are first slowed down and then

re-accelerated in the opposite direction. Ions behave like “light” in this context and hence can 

undergo specific flight path manipulations, so that the ions are specifically directed towards the 

detector. Here, the specific arrangement of metal plates is also called “Reflectron”, especially 

based on the reflecting potential as ion mirror 28, 34-36.

Orbitrap Mass Analyzer

In the year 2000, Alexander Makarov introduced the new technology of the Orbitap analyzer 37.

This technology was consequently adopted by Thermo Fisher Scientific (http://www.ther-

mofisher.com) and made commercially available to the community five years later as part of a 

hybrid instrument 38. Different types of Orbitrap analyzers have thus far evolved and are built into 

different models or hybrids (e.g. Orbitrap Fusion, QExactive, Velos, Elite, etc.) based on their 

strengths.

The Orbitrap mass analyzer consists of an inner and outer electrode, while the inner electrode 

features a spindle-like shape (cf. Figure 1.6 (a)). For the measurement of the m/z ratio, an ion 

package consisting of different mass species is injected into the electric field (between inner and 

outer electrode) of the Orbitrap from an upstream-embedded so-called “c-trap”. Right after the 

ions enter the Orbitrap’s electric field, the ions start moving in three different directions:

i) oscillation between inner and outer electrode, ii) oscillation along the inner electrode and iii) 

rotation around the inner electrode ( . After reaching a “steady state”, different ion species os-

cillate as an orbit along the z-axis of the inner electrode. Finally, the different ion rings are detected 

by the image current caused in the outer electrode by passing rings. The characteristic spectrum 

is achieved by deconvolution of the acquired image current by Fourier transformation. A higher 

mass resolution can easily be achieved by either strengthening the electric field within the Orbitrap 

or by prolonging the acquisition time. The Orbitrap data acquisition is directly comparable to the 

FTICR technique, while the difference is solely based on the absence of a magnetic field 37, 39-41.
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Figure 1.6: The Orbitrap mass analyzer. The m/z ratio is measured by acquiring the image current of the frequency of 

ion packages oscillating. (a) Schematic illustration of an Orbitrap mass analyzer. After injection of ions from the c-trap into 

the Orbitrap (orange), ion form orbitals that move (b) Schematic built-up of a 

Thermo Fisher Scientific QExactive Orbitrap Instrument. After ionization by an ESI source, a condensed ion beam is 

formed by leading ions through the S-lens and a bended quadrupole. The embedded quadrupole functions as mass filter 

for specific precursor fragmentation in the HCD fragmentation cell. The c-trap functions either as a transfer electrode or 

as injector to the Orbitrap.

1.1.1.4 Tandem Mass Spectrometry

The acquisition of peptide mass fingerprints might allow for the identification of their originating

protein. However, no sequence-specific information can be gathered. Here, peptides can share 

the same composition of amino acids and are therefore equiponderate, but the difference in their 

amino acid order let them originate from completely different parent proteins. Hence, protein iden-

tification from a complex or even highly complex protein mixture, simply based on the acquired 

peptide mass fingerprint will turn out quite inaccurately. Additionally, in regard of PTM analysis, 

knowing from which amino acid the modification originates or which sequence tag has been mod-

ified is indispensable in tracing back to biological functions 1, 8, 18, 19.

The principal idea of tandem MS, i.e. MS/MS is the acquisition of a mass spectra of a fragmented 

precursor ion. Therefore, a regular mass spectra of a present peptide species is acquired (MS1). 

Based on the ion intensities in the acquired MS1, a preset number of intense ions is selected for 

fragmentation (e.g. TOP 10, the 10 most intense ions are selected for successive fragmentation). 

Consequently, the embedded mass filter (“quadrupole”) selects for only one specific mass spe-

cies at a time. After passing the mass filter, the ion package is transferred into a “Collision cell”.

After fragmentation, the generated ion fragments enter the mass analyzer and a second mass 

spectra is acquired (MS2). Based on the nature of the ion fragments, the mass difference between 

monoisotopic mass peaks allows for the determination of amino acid residues. By following the 

mass difference and hence the progression of amino acid residues from light to heavy ions, the 

peptide sequence can be determined 1, 28, 33, 42.

There are various different ways of ion fragmentation in the gas phase, but for proteomic samples, 

collision induced dissociation (CID) 43, higher-energy collisional dissociation (HCD) 44 and electron 

transfer dissociation (ETD) 45, 46 are most commonly used.

Using the CID method, preselected ions are further accelerated by an electric field after passing 

the mass filter. Consequently, ions enter a fragmentation cell (quadrupole or octopole) filled with 

neutral inert gas (Nitrogen, Helium or Neon). Within this cell, the analyte ions collides with the gas 

Quadrupole

ESI
source

Orbitrap

C-trap

HCD Cell

S-lens

(a) (b)
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molecules. Upon collision, the kinetic energy of the analyte ion is converted into vibrational en-

ergy, resulting in backbone breakage and ion fragmentation 47.

The HCD fragmentation method in principal, is identical to the CID method. Nevertheless, the 

HCD method is only used in orbitrap mass spectrometers. Hence, the HCD method is also syn-

onymously called higher-energy C-trap dissociation. Here, the analyte ions are transferred 

through the C-trap (cf. Figure 1.6) into the collision cell. After fragmentation, the fragments are 

again transferred back to the C-trap for injection into the orbitrap. Here, due to the higher energies

used, a higher fragmentation rate can be achieved as well as the detection of ions in a lower m/z 

range compared to CID 44.

Besides collision-induced fragmentation (CID/HCD) peptide ions can also be fragmented by 

transfer of an electron. Hereby, analyte ions are transferred into a fragmentation cell (quadru-

pole/octopole) and a chemical ionized reactive anion radical is consequently introduced (anthra-

cene [C14H10]; fluroanthene [C16H10]) into the fragmentation cell. Finally, after the transfer of an 

electron to a positively charged peptide ion causes breakage along the backbone 46, 48.

Based on the nomenclature for peptide fragment ions (cf. Figure 1.7) 49 CID and HCD fragmen-

tation methods preferably generate bn and yn ions. Otherwise, the ETD fragmentation method 

preferably produces cn and zn ions 50. For de-novo sequencing of peptides by MS2 spectra an 

assumption of present ion types is essential.

Figure 1.7: MS-based peptide backbone fragmentation. Fragmentation causes a peptide backbone breakage. Based 

on which fragmentation technique was used, different fragments are generated according to preference. The ions are 

consequently defined by the position on which the charge resides after fragmentation. An amino acid sequence can be 

easily determined by bn and yn ion series. Here, the charge resides either on the N- or C-term of a peptide fragment. The 

figure was adopted from http://www.alchemistmatt.com.
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1.1.1.5 Protein Identification

An important step for protein mass spectrometry is the identification of proteins out of the acquired 

data. There are two different ways for protein identification: i) Peptide Mass Fingerprinting or ii) 

De Novo Peptide Sequencing.

Peptide Mass Fingerprinting

Here, the acquired peptide masses (MS1) function as input for this identification approach. Con-

sequently, the acquired MS1 masses of e.g. tryptic peptides are compared to in silico generated 

tryptic peptides originating from a protein sequence database. A protein can be considered “iden-

tified” once a significant number of experimental masses matche the computed reference masses. 

Nevertheless, for better and accurate matching of experimental and reference masses, protein 

purification represents an inevitable step and limits its use for higher throughput approaches. 

Peptide Mass Fingerprinting is hence widely used for protein identification with preceding diges-

tion within top-down proteomic approaches 51.

De Novo Peptide Sequencing

The acquisition of MS2 spectra of peptide species allows for the determination of the underlying

peptide sequence (cf. Section 1.1.1.4). Hereby, the occurring mass difference between peptide 

fragments in the MS2 spectra is used, to directly associate a specific amino acid at the given 

sequence position. Given the consecutive mass differences, the peptide sequence can be devi-

ated. Based on the found sequence, the identified peptide can consequently be assigned to either 

a parent protein or protein group. In some cases, the determined sequence is shared amongst 

multiple proteins. The corresponding peptide is thus considered a “shared peptide”. In turn, pep-

tides that demonstrate a sequence which is unique for only a single protein is thus called “unique 

peptide” 1, 33. In theory, a protein can be considered “identified” once a corresponding unique 

peptide has been detected. Nevertheless, a “two peptide” rule is widely applied 52.

An accompanying challenge with the search of mass spectra or tandem mass spectra against a 

reference database, imposes the identification of “false-positive” hits. This effect can be specifi-

cally avoided, i.e. addressed by an estimation of a “false discovery rate” (FDR) for each acquired 

dataset 52-54. This in turn, allows for filtering and minimizing the occurrence of such false positive 

hits. The FDR is estimated by searching the acquired mass spectra against a database containing 

original target protein sequences as well as decoy sequences (e.g. scrambled or reversed protein 

sequences) 55, 56.
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1.1.2 Quantitative Mass Spectrometry

Besides only providing a list of identified proteins, mass spectrometric data can also provide more 

specific information about the abundance of identified features. In this regard, the signal intensity,

which a certain peptide ion or fragment ion causes, gives rise to its biological abundance in the 

actual biological system the sample originates from 57-59. There are two approaches which are 

generally used to quantify proteins or peptides by MS: label-free and label-based quantification.

Figure 1.8: Quantitative proteomic workflows. MS quantification occurs on a relative basis. The earlier two different 

conditions can be combined for analysis, the better the comparability between LC-MS runs. Label-based quantification 

workflows (Metabolic labeling, Chemical labeling and Spiked peptides) allow for combination either already on the sample, 

protein or peptide level. Despite this, label-free approaches only allow for combination on the MS data level. Figure 

adapted from Bantscheff et al. (2007) 57.

1.1.2.1 Label-based Quantification

Ideally, each sample is processed identically to be comparable to each other. Hence, the best 

way to technically realize this scenario is to combine samples at the earliest possible stage in the 

workflow, so that only one sample has to be either processed and/or analyzed which in turn leads 

to the fact that an introduced error affects each individual sample equally.

In this context, labeling proteins or peptides allows for the combination of samples at their earliest 

intercept but especially with the ability to retrieve quantitative information individually for each 

pooled sample on the MS-data level.

The label-based quantitative mass spectrometry approach makes use of a specifically introduced 

mass drift of identical peptide or protein species by the incorporation of isotopically different amino 

acids. Here, isotopes do change the actual mass of a protein or peptide but does not influence 
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any chemical properties associated with it. Hence, isotopically labeled proteins and peptides can 

be seen in the same mass spectra simultaneously with either its normal or other labeled specie. 

However, the actual mass spectra interpretability will suffer from a higher complexity as identical 

protein or peptide species are represented by multiple peak clusters. Nevertheless, based on the 

aforementioned mass shift, the peak clusters can be mapped exactly back to each sample which 

was pooled prior to analysis. A distinction is generally made between three different methods for 

labeling protein/peptides: (i) metabolic (protein level) (ii) chemically (protein or peptide level) (iii) 

spike-in (peptide level).

Metabolic labeling

The metabolic labeling approach describes the incorporation of isotopes into proteins during cell 

growth/division in vitro (cell culture) but also in vivo (animal model). Human samples, or clinical 

samples in particular, cannot be metabolically labeled due to ethical discrepancies, unless sam-

ples can be further cultivated in vitro and labeled there.

Incorporation of isotopes into the whole proteome is realized by either culturing cells in a medium 

with isotopic nutrition (e.g. 15N) for multiple cell cycles or by already providing “stable isotope 

labeled amino acids” (SILAC) in the medium. By providing isotopically labeled substrates already 

on the metabolic level, the incorporation of such isotopes theoretically occurs with the whole pro-

teome and each protein should appear with the specific mass drift. After MS analysis, proteins 

and peptides can be quantitatively compared by relatively linking the MS1 spectra signal intensi-

ties.

Chemical labeling

Besides incorporation of isotopes into the whole proteome by metabolic processes, proteins and 

peptides can also be chemically or enzymatically labeled, even after extraction out of its original 

environment. Hence, this type of protein/peptide labeling approach is also considered as post-

biosynthesis labeling.

An elegant way to introduce isotopes into proteomic samples via an enzymatic reaction is by 

exploiting the catalysis of the oxygen exchange reaction by class-2 proteases (e.g. trypsin) 60-62.

The incubation of tryptic peptides with immobilized trypsin and water with an isotopic oxygen, i.e. 

H216O leads to an exchange of two oxygen atoms at the C-terminal carboxyl group and in turn 

leads to a mass shift of 4 Da 62, but more importantly to no changes of any chemical preference.

Apart from enzymatically labeling peptides, there are multiple options to chemically label proteins 

or peptides for mass spectrometric quantification. 

Firstly, Gygi et al. proposed a method in 1999 63 to specifically derivatize cysteine residues with 

an agent containing either no or up to eight deuterium ions. Nevertheless, after an initial success, 

it turned out that the method might not be as suitable for peptide/protein quantification as thought, 

as cysteine residues might either be missing or only be represented by a few residues 57, 63.

Secondly, proteins and peptides are commonly quantified by using isobaric labelling tags, namely 

either “Tandem Mass Tags” (TMT) or “isobaric tags for relative and absolute quantification”

(iTRAQ). This method uses N-hydroxysuccinimid (NHS) chemistry to specifically derivatize the 
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N-terminus of a protein or peptide but also both lysine and tyrosine (only iTRAQ) side chain resi-

dues. These tags do not cause a mass shift for each sample specie they are covalently bound. 

Hence, the MS1 spectra does not suffer from any further complexity. During the fragmentation 

step in the mass spectrometer, the ”reporter group” of the attached and mass balanced tag is split 

away and can be acquired as specific ion in the corresponding reporter region in the tandem mass 

spectra (MS2): 125 to 132 m/z for TMT (6-plex), 126 to 131 m/z for 10-plex TMT and 112 to 122 

m/z for iTRAQ (8-plex). For quantitative analysis between the pooled samples, the acquired ion 

intensities of the corresponding reporter ions (1 Da mass shift between each reporter ion) can be 

compared relatively. While the TMT tag (6 reporter ions at 126, 127, 128, 129, 130 and 131 m/z) 

allows for up to 6 concurrent samples being pooled, the use of iTRAQ (8 reporter ions at 113, 

114, 115, 116, 117, 118, 119 and 121 m/z) tags allows for up to 8 simultaneous samples.

Lastly, the N-terminus as well as the lysine side chain residues of proteins or peptides can also 

be derivatized with dimethyl groups in diverse mass configurations. This technique allows for 

pooling three different samples/conditions (light [+28 Da], intermediate [+32 Da] and heavy [+34 

Da]) by exchanging both hydrogen residues with deuterium and the carbon residue with heavy 

carbon (13C). Signal intensities are consequently extracted from the three different peak clusters 

in the acquired MS1 spectrum.

Spiked peptides

Quantification via the aforementioned techniques occurs on a relative basis. Hence, the result 

reflects only the relation between the pooled and simultaneously analyzed samples/conditions. 

However, in some cases, the absolute concentration of an analyte has to be descried. An absolute 

quantity estimation is technically realized by spiking an internal standard into the MS-ready sam-

ple (peptide level) in a known concentration. Here, either stable isotope-labeled standard pep-

tides, i.e. natural occurring peptides with heavy amino acids or in some cases even artificial pep-

tides are used. Artificial peptides have the advantage over labeled natural peptides in that they 

can be specifically detectable and also can’t interfere with their natural occurring counterpart. 

After all, the comparison of the signal intensity between target feature and standard peptide allows 

the absolute concentration estimation and hence for absolute quantification (AQUA). Neverthe-

less, comparing either spiked peptide intensities for AQUA between separate MS analyses or 

calculated absolute quantities between runs, remain a critical endeavor.

1.1.2.2 Label-free Quantification

Apart from labeled and pooled samples, non-labeled and individual MS analyses can also be 

used for quantification. Here, the relative comparison between MS runs can only be performed 

on the MS-data level (cf. Figure 1.8). This also imposes the latest point of possible combination. 

Due to the fact that samples are processed and analyzed separately from each other, many inter-

run variances can be introduced simply by different sample handling or altered LC conditions due 

to column impurities from previous runs. These technical changes can in turn cause statistical 

significant changes within the acquired signal intensities. Therefore, stringent intensity normali-
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zation has to occur before a relative quantitative comparison between label-free MS-runs be-

comes feasible. At present, there are three widely used label-free quantification strategies: (i) 

spectral counting, (ii) intensity-based label-free quantification and (iii) data-independent acquisi-

tion.

Spectral counting

As mentioned before, the regular data acquisition (data-dependent acquisition; DDA) acquires 

MS1 spectra out of which a specific number of precursor ions are selected for consecutive frag-

mentation (CID/HCD) and MS2 spectra acquisition. The MS2 spectra, which are acquired, are 

searched accordingly against a database containing target and/or decoy sequences via e.g. 

MaxQuant, Mascot, ProteinPilot, MSGF+, etc. This in turn allows for peptide sequence identifica-

tion for every such MS2 spectrum submitted and consequently leads to protein or protein group 

assignment. Each spectrum that can be uniquely assigned to a protein is hence “counted” 

amongst its abundance. Spectra that represent a shared sequence should however be excluded 

for consideration. Consequently, spectral counting can only be used for protein quantification 

whereas the quantitative value is represented by an integer number of assigned MS2 spectra with 

an identified unique peptide sequence of the parent protein. Nevertheless, the acquisition of MS2

spectra is based on a stochastic event, which might bias the quantitative outcome especially at 

low abundant proteins as peptide ions might not be selected for fragmentation and MS2 acquisi-

tion by the mass spectrometer algorithm because of constant ion ranking below the set intensity 

threshold.

Intensity-based label-free quantification

In contrast to spectral counting, the intensity-based label-free quantification approach makes use 

of the acquired signal intensities in the MS1 spectrum. After identification of a peptide sequence 

through MS2 spectrum analysis, the signal intensity is integrated along the extracted ion chroma-

togram (XIC) of the according precursor mass specie. In short, the signal intensity is summed

across the corresponding peptide elution peak. Using this approach and hence considering the 

signal intensity of the corresponding peptide specie not only proteins, but also single peptide 

species can be easily quantified.

Particularly for protein quantification, either only the signal intensities for each unique peptide can 

be summed or the “intensity based absolute quantification” (iBAQ) approach can be applied. 

While the regular label-free intensity based approach considers only the sum of peptide signal 

intensities across their elution peak, the iBAQ strategy also normalizes the number of peptides 

used for quantification (i.e. only non-shared peptides).

Data-independent acquisition

The aforementioned label-free quantification strategies are performed on the DDA data level al-

ready acquired. The data-independent acquisition (DIA) strategy however, describes a novel ac-

quisition routine, which is programmed for the fragmentation of all precursor ions and the acqui-
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sition of a consecutive MS2 mass spectrum. In short, the whole desired mass range is consecu-

tively covered with extraction windows while in some cases the window size is set to a fixed size 

(e.g. 25 Da) in other cases the windows size can be variably set along the mass range. Conse-

quently, all precursor ions detected in the MS1 and those which fall into one extraction window will 

be simultaneously fragmented and one MS2 spectrum is acquired which then represents one par-

ticular extraction window at a given retention time.

Nevertheless, the actual data analysis and hence peptide or protein quantification requires previ-

ously acquired DDA data from the same sample type, to be able to correctly identify each frag-

mented precursor. Particularly with complex samples, multiple precursors are fragmented within 

one extraction window and their fragment ions are then acquired in a single MS2 spectra. Given 

this situation, a simple database search of this MS2 spectrum to correctly identify the involved 

peptide precursor remains nearly impossible. Only with extensive extrapolations and specialized 

software (e.g. DIAUmpire) approximated and simplified MS2 spectra can be searched against a 

protein sequence database.

To avoid extensive extrapolations and eventual deconvolutions, the identification results originat-

ing from data acquired in the DDA style are stored in so called “ion libraries”. These libraries allow

the analyzing software to re-identify the fragmented precursor species in the DIA MS2 spectrum 

based on mapping retention time and peak patterns with identified features and hence similar 

preferences.

This quantification approach calculates the sum of MS2 signal intensities across acquisition cycles 

for quantification. The MS2 intensities are considered more stable against technical interferences 

and hence can be compared better across multiple LC-MS analyses when using this described 

acquisition technique.

Figure 1.9: Data-Independent Acquisition. Instead of selecting precursors for fragmentation by their respective abun-

dance, while running within data-independent mode, the completely defined mass range is consecutively selected for 

fragmentation within e.g. 25 Da windows. Consequently, the acquired MS2 spectra might be of fragments originating from 

multiple precursor ions. Previously acquired and identified MS2 spectra (i.e. data-dependent acquired MS2 spectra) can 

then be matched to specifically identify involved precursor ions. Figure taken from http://www.researchgate.net.
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By definition, a biomarker is “a naturally occurring characteristic (e.g. metabolites, gene, gene 

transcript, proteins, etc.) or a molecule which is obviously measureable and evaluated as an in-

dicator of normal biological, pathogenic or pharmacological processes”. Biomarkers are espe-

cially used in clinical settings to objectively assess the health of human beings. Here, blood pres-

sure or the cholesterol level in the blood of a patient is used for objective assessment. Neverthe-

less, the use of biomarkers has already been known for centuries. Since antiquity, doctors or

healers used occurring discrepancies of certain characteristics (e.g. mucus consistency) for diag-

nosing diseases. During this time, healers actually investigated a patient’s urine for changes in 

taste, smell or color. Any deviation from their known “healthy” state led to the association of an 

irregular incident as well as to treatment with methods that were known then. To this day, urine 

and its analysis still represent a valuable source for diagnosing diseases or biological conditions. 

One of the best known examples is the test for presence of hCG (human Chorion Gonadotropin) 

in female urine and the consequent diagnosis of a possible consistent pregnancy. Additionally, 

the analysis for the presence of biologically secreted glucose in the urine and its correlation to the 

assumption that the patient suffers from diabetes mellitus, imposes another important example 

for the use of biomarkers in a clinical setting.

Table 1.2: Exemplary biomarkers used in the clinical setting. Abbreviations used: HbA1C - Glycated hemoglobin; IgG 

– -GT - Gamma-glutamyl transferase; LDL – low density lipoprotein; HDL – high density lipoprotein; 

T3/T4 – Thyroid hormones; TSH – Thyreotropin. Table after Bracht (2009).

Disease Clinically applied biomarkers

Diabetes mellitus (DM) Glucose, Ketone, HbA1C, Insulin

Multiple Sclerosis (ED) IgG, Myelin

AIDS (HIV) CD4 cells, Virus hull proteins, RNA particles

Kidney dysfunction Creatinine, Urea, Electrolytes (Na+, K+, Cl-)

Liver dysfunction Bilirubin, -GT, LDL / HDL ratio, Hepatitis virus particles

Thyroid dysfunction T3/T4, TSH

Osteoporosis Calcium, Phosphate, Alkaline phosphatase

Rheumatoid Arthritis Rheumatism factor, ESR, C-reactive protein (CRP)

Nevertheless, biomarkers are not only coupled with a binary event (e.g. present vs. absent) but 

also to general concentration/abundance variations in particular, and thus based on statistical 

significant quantitative changes. Quantitative changes (higher-than-normal or lower-than-normal) 

of such biomarker substances are generally investigated in either body fluids (e.g. blood, urine,

CSF, etc.) or tissue biopsies, especially in medical settings. In this context, biomarker molecules 

are represented by single nucleotide polymorphisms (SNPs), DNA methylation patterns, RNA or 

mRNA changes, but proteins or metabolites also demonstrate abundance variations. Ideally, body 
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fluids that contain the desired biomarker candidate should be easily accessible via non-invasive 

(e.g. urine, saliva or tears). Nevertheless, some biomarkers require semi-invasive procedures 

(blood, CSF, amniotic fluid) or even tissue biopsies to be accessible for analysis. The clinical 

applicability of biomarkers requires high sensitivity (detectability of changes also at very low bio-

logical concentrations) as well as specificity (observed changes are truly related to the diseased 

state).

Based on the medical background or clinical application, biomarkers can be classified into five 

different groups: i) diagnostic, ii) prognostic, iii) predictive, iv) stratification and v) risk factor as-

sessment biomarker. Here, “predictive” and “prognostic” biomarkers can be used interchangea-

bly. This is based on the fact that out of a given prognosis, a certain predication can be deviated 

and vice versa.

Diagnostic biomarker

This type of biomarker is used to either rule-in or rule-out a certain disease the marker is associ-

ated with, based on its quantitative state. Hence, the detection of this kind of biomarker at a certain 

abundance level only allows for the diagnosis. Since the biological samples are “screened”, these 

types of biomarker can also be called “screening biomarker”. Additionally, screening for sets of 

biomarker for a single disease or biological state guarantees higher precision and substantiates 

the associated diagnosis. One of the most prominent examples of a diagnostic biomarker is the 

over-the-counter available pregnancy test. Simply by verifying the existence (at a certain biologi-

cal availability in the urine) of hCG in a female’s urine, a pregnancy can be indicated.

Prognostic biomarker

Apart from diagnostic biomarkers, which help to determine the answer to a binary question 

(healthy or diseased state), prognos-

tic biomarkers provide profound in-

formation on the likely course of the 

present disease in an untreated pa-

tient. Prognostic markers can display 

the risk for metastasis formation and 

further scattering into adjacent tis-

sue, especially for cancer. Types of 

breast cancer demonstrating abnor-

mally high levels of HER2/neu are 

considered highly aggressive and if untreated will easily form metastasis and consequently lead 

to an early death of the diseased patient.

Figure 1.9: Illustration of “prognostic“ and “predictive“ bi-

omarkers. Figure in style of Brünner (2009).

Prognosis Prediction
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Predictive biomarker

As already mentioned, the term “prognostic” and “predictive” biomarker can be used interchange-

ably in certain cases. Nevertheless, “predictive” biomarkers are most frequently used to identify 

subpopulations of patients for whom a positive response to a given therapy can be predicted. 

Since these markers are used to predict a successful therapy, these markers are also the first 

step towards personalized healthcare. A good example for the interchangeability of prognostic 

and predictive function imposes HER2/neu positive breast cancer biopsies. On one hand the 

HER2/neu marker describes the predominant aggressiveness, but on the other hand it predicts a 

positive patient’s response while applying a “Herceptin” (monoclonal antibody [mAB] against 

HER2/neu) therapy.

Stratification biomarker

The stratification biomarker could be considered a group or set of biomarkers. Its function is de-

fined as classifying or grouping patients based on characteristics of diseases which are in com-

mon. Based on the information, the best outcome in terms of prevention and therapy success can 

be estimated. Hence, stratification biomarkers specifically share informational content with prog-

nostic and predictive biomarkers.

Risk factor assessment

Besides only assessing disease-specific characteristics, biomarkers can also be used to estimate 

the predisposition of a patient to a particular disease. Additionally, risk factor assessment helps 

to detect the early onset of diseases and hence can support prevention. However, not only can 

the disease prevention be supported, but the assessment of symptoms which have already oc-

curred can also be correlated with the early onset of a disease.

For decades, the discovery of biomarkers have increasingly moved into the scope of biomedical 

research. Due to technological advancements and high-throughput technologies, comprehensive 

analysis of genes, transcripts, proteins, metabolites or other disease related molecules is possible 

nowadays. In this context, MS-based proteomics methods feature a special promise for the dis-

covery of biomarkers, particularly in their ability to identify thousands of proteins and peptides 

within a biological sample such as tissue, serum/plasma, urine or CSF.

The search for, or the discovery of biomarkers can be generalized into two basic approaches: i) 

hypothesis-driven or ii) discovery-based. The hypothesis-driven approach uses the existent 

knowledge of diseases and its underlying biological processes to deviate hypotheses, which have 

to be proven by the conducted experiments. For example, knowledge about Diabetes mellitus 

and its related high blood-glucose levels, led to the discovery of glycosylated hemoglobin as bi-

omarker (HbA1C). In contrast, the discovery-based approach focuses on the identification of 

changes in the abundance of molecules which in turn are closely related to the disease state. In 

this regard, quantitative shotgun-proteomics imposes a useful and valuable tool as thousands of 

features can be profiled simultaneously.
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Nonetheless, the study design also imposes a crucial step within the whole process of biomarker 

discovery. In general, biomarkers, or characteristic differences that define the state of a disease 

can be discovered by comparing a “healthy” state (i.e. control) with a diseased state (i.e. case). 

However, by simply comparing only a healthy state with a diseased state, a biomarker for only a

certain symptom associated with the disease can be found, instead of an actual disease-related 

biomarker. For example, by only comparing the CSF of patients suffering from Alzheimer’s dis-

ease (AD) with the CSF of healthy patients, the biomarker candidate found might only reflect the 

presence of dementia, which for example, also occurs while suffering from Parkinson’s disease 

(PD), but not the specific underlying disease. Hence, the selection of appropriate controls for a 

biomarker discovery study imposes a crucial step in the whole process and has to be clarified 

upfront. The general workflow can then be divided into four distant sections: i) Discovery, ii) Qual-

ification, iii) Verification and iv) Validation (cf. Figure 1.10). Here, during the discovery phase an 

unbiased approach is applied and hence, thousands of possible candidates are screened. While 

changing the methodology from an unbiased procedure to a targeted approach, the number of 

analytes narrows down each further step. Besides narrowing down the number of possible bi-

omarker candidates, the sample size, which in turn represents the future target population, is 

steadily increased. Finally, only a few candidates will then enter a clinical validation. Only if the 

biomarker candidate or the panel of biomarkers proof specificity and sensitivity in a representable 

cohort during the clinical validation, the candidates receive U.S. Food and Drug Administration 

(FDA) approval and can be used as a commercial tool.

Figure 1.10: Illustration of the proteomic biomarker discovery workflow. The process of biomarker discovery can be 

divided into four distinct sub-processes: discovery, qualification, verification and validation phase. While the discovery 

phase has to be performed unbiased, all consecutive steps are performed on a target approach. Besides changing meth-

odology per phase, also, the number of analytes decreases while the number of samples to be analyzed increases. The 

whole process of biomarker discovery can be summarized as “finding a needle in a haystack”. Figure was adopted from 

Del Campo et al. (2015) 64
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The human nervous system can be divided into two functional categories: i) central nervous sys-

tem (CNS) and ii) peripheral nervous system (PNS). The CNS is represented by the brain and its 

related cell types as well as the spinal cord, while the PNS describes nerves, which connect parts 

distant parts of the body with the CNS through their long-reaching axons 65, 66. Based on the flow 

of information, nerves or what is known on a cellular level as neurons, are categorized as either 

sensory (information from PNS to CNS) or motor neurons (movement stimuli from CNS to PNS).

The most recent estimation concluded that the human brain consists of close to 100 billion neu-

ronal cells. This in turn gives rise to the assumption that a typical adult brain features between 

100 to 500 trillion synaptic connections. Nevertheless, the function of each present brain cell might 

be understood, but the way in which millions of cells can cooperate simultaneously still remains 

an unknown 67-69. However, any malicious change or malfunction in this highly complex network 

will inevitably lead to a functional disruption. As the brain is seen as the control center of the 

human body, a disruption to its network and intra-connections will consequently lead to a loss of 

body control functionality. These underlying malfunctions are normally caused by loss of neuronal 

activity or even neuronal cell loss by induced cell death due to genetic defects, traumatic injury 

(physical force to the head), toxic influence, infection or simply by aging. Nonetheless, these 

causes can be generalized as either: i) Acquired Brain Injury (ABI) or ii) Neurodegenerative dis-

order (ND) 70-72.

Figure 1.11: The brain and its functional areas. The brain imposes the central control center of the human body. Each 

bodily function is coordinated in a different section of the brain: frontal lobe (red), parietal lobe (orange), temporal lobe

(green), occipital lobe (ocher) and cerebellum (blue). Injuries to the brain will affect the bodily functions which are associ-

ated to the region the injury occurs. Figure adopted from https://askabiologist.asu.edu.
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The ABI describes neuronal injuries to the brain by either traumatic events (traumatic brain injury; 

TBI) or non-traumatic injuries caused by internal or external sources which can be describes as 

a stroke, tumors, intoxication, substance abuse, hypoxia, encephalopathy or infections. Addition-

ally, the ABI term excludes any congenital or post-natal acquired neurodegenerative disorders

(cf. Figure 1.12) 73, 74.

Since non-traumatic neuronal injuries are mainly related to other clinical pictures and are rather 

considered as secondary injuries due to other underlying pathological effects or disorders, here, 

the emphasis lies on TBIs.

Figure 1.12: Schematic explanation of “Acquired Brain Injury” (ABI). The term “Acquired Brain Injury” describes on 

the one hand “Non-Traumatic Injuries” which can occur as secondary events due to stroke, hypoxia, brain tumors, sub-

stance abuse, infections or encephalopathies. On the other hand, “traumatic brain injuries” which can occur as an “open 

brain injury” when the skull or brain tissue is actively pierced or as “closed brain injury” as the injury is caused by internal 

skull pressure or shearing of brain tissue without piercing, are also considered as ABI. Figure after “Brain Injury Associa-

tion of Massachusetts” (2011; http://www.biama.org/braininjury).

In this regard, a closed brain injury is caused by either a sudden and violent blow to the head with

an object or by the head hitting an object at a fast pace. Additionally, in certain instances, the 

object which hits the head might have enough force to pierce the skin and skull and hence pri-

marily damage the brain tissue. In this case, the TBI is called an open brain injury. Nonetheless, 

TBIs are not only limited to accidental events, but might also occur during sporting activities like 

soccer, boxing, etc. It is estimated that each year approximately 1.7 million people in the United 

States of America alone, sustain a TBI 75. Nonetheless, each TBI is different as symptoms can 

vary from mild (mTBI), moderate or severe. Each clinical picture or i.e. the occurrence of symp-

toms consequently depends on the extent of the brain injury. While the actual neuronal injury is 

mainly caused at the time of impact (e.g. fracture, bleeding, etc.), secondary neuronal injuries 

also state a significant cause of brain damage (intracranial pressure, brain swelling, etc.). Typi-

cally occurring symptoms for TBIs can be found in Table 1.3 76-79.
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Table 1.3: Exemplary list of symptoms for traumatic brain injuries.

Unconsciousness Confusion Disorientation Headache

Nausea Vomiting Drowsiness Constant sleeping

Weakness Seizures Pupil dilatation Depression

Anxiousness Slurred speech Coma Sensitivity to light

Loss of concentration

Traumatic brain injuries are currently diagnosed by physicians and the combination of patients’

reports, general state of health and brain scans (CT or MRI scans). Nonetheless, mTBIs in par-

ticular do not show any injury-specific features in the brain scans, as physicians then only rely on 

the patients’ reports and symptoms, which have already occurred. Additionally, physicians have 

limited options for treating TBIs. Since very little can be done to reverse the initial injury or impact, 

physicians focus on the stabilization of the patient and the prevention of any further brain injury. 

Hence, the best treatment for mild traumatic brain injuries lies within the prevention 79-82.

In about half of the moderate or severe cases, patients need operations to repair or remove con-

tusions (bruised brain tissue) and/or the hematomas (ruptured blood vessels) to assure further 

proper oxygen supply for the remaining and adjacent brain tissue as well as avoiding any further 

brain damage. Regardless of the treatment success, patients can suffer from disabilities such as 

cognition impairments (memory, thinking and reasoning), sensory processing disabilities (sight, 

hear, touch, taste and smell), reduced communication abilities, behavioral or mental health im-

pairments (anxiety, depression, aggression, etc.) according to the severity of the injury. In very 

serious cases, patients even fall into a persistent vegetative state (PVS) and demonstrate no 

neurological function or activity 83-86.

The term “neurodegenerative disorders” is an umbrella term for a range of conditions and pro-

cesses which primarily affect neuronal cells in the human brain. In contrast to ABIs, NDs can be 

of a congenital nature, be caused by aging (mitochondrial DNA mutation or oxidative stress) or 

even occur as a consequential event of ABIs. Additionally, NDs are considered incurable which 

results in an inexorably progressive neuronal degeneration or cell death of neurons. It appears

that many disorders can be related to each other on a sub-cellular level 87-89. These similarities 

give hope to be able to cure or treat different diseases simultaneously with the same therapy. 

Neurodegeneration is generally found in many different levels of the neuronal interconnection 

which ranges from molecular to systemic. In the following, the two most common neurodegener-

ative diseases are briefly described.
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Table 1.4: Chart of in ND involved mechanisms.

Mechanism Target molecule Disease

Genetic Polyglutamine (PolyQ) Huntington’s disease (HD) 90

Protein misfolding -Synuclein Parkinson’s disease (PD) 91, 92

Tau Alzheimer’s disease (AD) 93

-Amyloid AD 94

Prion Transmissible spongiforme 

Enzephalopathie (TSE) 95

Protein degradation -Amyloid AD, PD, HD

Membrane damage -Synuclein PD

Mitochond. dysfunction Oxidative species (multiple)

Pathogenic cell death Programmed cell death (multiple)

Alzheimer’s disease

Morbus Alzheimer or Alzheimer’s disease (AD) describes the most common neurodegenerative 

disease with a prevalence of 60 to 70% of dementia cases. Early symptoms include short-term 

memory loss and dementia like symptoms and with the progression of the disease, the following 

symptoms will also occur: problems with language, disorientation, mood swings, loss of motiva-

tion, no self-care and behavioral impairments 96. The progression of the disease depends on the 

patient’s conditions but the loss of bodily functions will consequently lead to death within three to 

nine years after diagnosis, yet the actual cause of the disease remains unknown 97. Nonetheless, 

on the molecular level, AD has been classified as a protein misfolding disease (proteopathy). 

-Amyloid (A ) and/or tau protein accumulate in the brain and cause neuron de-

generation. The A accumulation is caused by the aggregation of A peptides with a length of 39 

to 43 amino acids. Here, the A peptides originate from the “amyloid precursor protein” (APP) 

which in turn is a transmembrane protein of neurons and triggers neuronal growth, survival and 

post-injury repairs, under its regular biological condition. -secretase and 

-secretase are jointly digesting the APP protein while one of the proteolysis products, A , in 

particular, forms the characteristic senile plaques 98-101.

Nonetheless, AD can also be considered as taupathy. Here, the microtubule-associated protein 

“tau” is hyper-phosphorylated which leads to pairing with other threads and the formation of neu-

rofibrillary tangles which then disintegrates the neuron’s transport system. In a healthy state neu-

ron, tau is singly phosphorylated and stabilizes the formation of microtubules, which act like 

transport paths for nutrition and molecules from the neuron cell body to the end of the axon 102.
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Table 1.5: Exemplary list of neurodegenerative disease classifications. List adopted from Mackenzie et al. (2010) 72

Classification Associated Disease

Tauopathy Alzheimers’s disease

Progressive supranuclear palsy (PSP)

Corticobasal degeneration (CBD)

Synucleinopathy Parkinson’s disease

Dementia with Lewy bodies (LBD)

Trinucleotide repeat disorder Chorea Huntington (HD)

Friedreich's ataxia

Motor neuron disorders Amyotrophic lateral sclerosis (ALS)

Spinal muscular atrophy (SMA)

Transmissible spongiform encephalopathy Creutzfeldt–Jakob disease (CJD)

Gerstmann–Sträussler–Scheinker syndrome

Parkinson’s disease

Morbus Parkinson or Parkinson’s Disease (PD) represents the second most common neuro-

degenerative disease with a prevalence that ranges between 300,000 and 400,000 people in 

Germany alone 103. In the early stages, symptoms are commonly describes as shaking, rigidity, 

slowness of movement and difficulty with walking. Once the disease progresses, dementia can 

also occur as an additional symptom. Additionally, the aforementioned symptoms can be accom-

panied by sensory, sleep and emotional problems 104, 105.

On a molecular level, PD is described as proteopathy and is hence comparable to some extend 

to the molecular processes involved in AD: one hypothesis indicates the abnormal accumulation 

-Synuclein which in turn is bound to ubiquitin. The insoluble protein aggregates in the cytosol 

of neurons and forms inclusion bodies which are called “Lewy Bodies”. These Lewy bodies are 

consequently unable to be directed correctly to the proteasome. However, the formation of Lewy 

bodies might not be necessarily causing cell death but can provide protective function to the af-

fected neurons. Recent research revealed that the death of dopaminergic neurons -Synuclein 

is caused by a defect in the transport machinery of proteins between the endoplasmic reticulum 

(ER) and the Golgi apparatus. It is further hypothesized that proteosomal and lysosomal system 

dysfunctions as well as reduced mitochondrial activity can cause cell death in PD. Nonetheless, 

the mechanism is not yet fully understood 106-108.
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Mass spectrometry (MS)-based proteomics is moving increasingly into the translational and clin-

ical research arena, where robust and efficient sample processing is of particular importance. The 

conventional sample processing methods in proteomics, namely SDS-PAGE- or in-solution-

based sample processing, are slow and laborious, and thus do not easily provide the reproduci-

bility and throughput to meet current demands. A paradigm shift was the introduction of filter-

aided sample processing method (FASP), which were initially described by Manza et al. (2005) 

109 and then fully realized in practice by Wisniewski et al. (2009) 110. These filter-aided methods 

make use of ultrafiltration membranes with molecular weight cut offs (MWCO) in the 10 to 30 kDa 

range to efficiently remove small molecules and salts, and to capture denatured proteins on a 

cellulose filter even if the molecular weight of the protein is much smaller than the nominal MWCO 

of the ultrafiltration membrane. Thus, the denaturation step is crucial to ensure that proteins much 

smaller than the nominal MWCO are efficiently retained by e.g. a 10 kDa MWCO filter.

In translational and clinical proteomics, which normally include large cohorts, the multi titer-well 

plate is the preferred format for sample processing and storage. Although the application of FASP 

in the 96-wellplate format has been described 111, 112, the major limitation of FASP in the 96-well 

plate is the much slower speed at which the 96-well plates have to be centrifuged, while a single 

ultrafiltration unit withstands up to 14,000×g, the 96-well plate format can only be centrifuged at 

g-forces of up to 2,200×g. This significantly lower g-force for 96-well plates results in a slow liquid 

transfer, which in turn considerably prolongs the required centrifugation times to hours instead of 

tens of minutes for the three to four necessary centrifugation steps i) for the initial loading, reduc-

tion and alkylation, ii) for the different washing steps, and iii) for the elution 111.

Independent of the format FASP is performed in, the conventional FASP also requires relativly

large volumes of high salt concentration for efficient elution of the tryptic peptides. Hence, re-

versed phase-based desalting of the samples is a prerequisite for subsequent LC/MS experi-

ments. Apart from prolonging the entire FASP procedure, the numerous additional handling steps 

are also potentially associated with peptide losses 113.

In this study, a description is given of novel sample processing workflow for MS-based proteomics 

that utilizes the strengths of filter-aided sample processing methods and at the same time over-

comes their major limitations, without compromising the results, i.e. significantly reducing the 

number of identified peptides and/or proteins. The result is a significantly improved throughput as 

96 samples (or multiples there-of) can be completely processed within a single workday.
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Human cervical cancer cells (HeLa) were propagated in Dulbecco’s modified Eagle’s medium 

(DMEM; 11965; Life technologies). Upon achieving 85-90% confluence, the growth media was 

aspirated and the cells were washed three times with 5ml ice-cold PBS. One ml of modified RIPA 

buffer (150 mM NaCl, 50 mM Tris/HCl pH 7.4, 1% NP-40, 0.1% sodium deoxycholate, 1 mM 

EDTA) supplemented with 1x Roche Complete protease inhibitors, was added to each plate of 

cells and incubated for 30 min on ice. Cells were scraped with a cell scraper, collected in Eppen-

dorf tubes and vortexed for 1 min. Cellular debris and other particulate matter was pelleted by 

centrifugation at 20,000×g at 4°C; the supernatant was recovered for further use.

Urine samples were collected from consenting patients visiting the Emergency Department at 

Boston Children's Hospital. The study was reviewed and approved by Boston Children's Hospi-

tal's Internal Review Board (Protocol Number X06-10-0493).

Protein concentration was determined by using the Bradford Assay 114 (Bio-Rad DC™ Protein 

Assay) following the manufacturer’s protocol. The standard curve was established using a stock 

solution of 20 mg/ml bovine serum albumin (BSA) and final concentrations of 0.25 mg/ml, 0.5 

mg/ml, 1 mg/ml, 1.5 mg/ml and 2.0 mg/ml. After incubation at room temperature (RT) the final 

measurement was performed in a micro plate spectrophotometer (Bio-Rad Model 680) at a wave-

length of 595 nm.

a and 

cubated for 20 min at 27°C and 1100 

rpm in a thermo mixer. Reduced cysteine side chains were alkylated with 50 mM iodoacetamide 

(IAA; final concentration) and incubation for 20 min in the dark at 27°C and 750 rpm.

The hydrophobic PVDF membrane in a 96-well plate format (MSIPS4510, Millipore) was pre-

wetted with 150 l of 70% ethanol and equilibrated with 300 l urea supernatant (~8.3 M urea). 

These and all subsequent liquid transfers were carried out using a fitted 96-well microplate vac-

uum manifold (MAVM0960R, Millipore).

Each sample was transferred three times through the PVDF membrane by applying a vacuum. 

The addition of Ca2+ was also tested, which had been described as beneficial for the protein bind-

ing onto PVDF membranes 115, but were not able to notice a benefit. After protein adsorption of 

the proteins onto the membrane, it was washed twice with 50 mM ABC.
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Protein digestion was performed with sequencing grade trypsin (V5111, Promega) at a nominal 

enzyme to substrate ratio of 1:15. To this end, 100 l digestion buffer (5% acetonitrile (ACN; v/v), 

50 mM ABC and trypsin) were added to each well. 

After incubation for 2 hours at 37°C in a humidified incubator, the remaining digestion buffer was 

evacuated. Resulting peptides were eluted twice with 150 l of 40% ACN (v/v)/0.1% (v/v) formic 

acid (FA) each. Upon pooling, the peptide solutions were dried in a vacuum concentrator. Lyoph-

ilized samples were stored at -20°C until further analysis.

Note: different batches of filter-plates were tested and no batch dependent performance differ-

ences were observed.

The filter assisted sample preparation method was carried out as previously described 110. In 

short, proteins were first denatured and reduced by adding 100 l sample to 100 g urea supple-

mented with 20 l DTT. For the different sample types, namely urine, CSF and HeLa lysate a 

nominal protein content of 15 g, 10 g and 10 g, respectively were used for analysis. After 

alkylation of reduced cysteine side chains with 50 mM IAA (final concentration), denatured pro-

teins were captured on a 10 kDa MWCO spin filter (MRCPRT010, Millipore) and washed twice 

with 50 mM ABC. Protein digestion was performed with sequencing grade trypsin (V5111, 

Promega) at a nominal enzyme to substrate ratio of 1:50. After incubation over night with 100 l

digestion buffer (trypsin in 50 mM ABC), resulting peptides were eluted with 300 l 0.5 M NaCl. 

Peptide elutes were desalted with reversed phase-based TARGA C-18 spin tips (SEMSS18R, 

Nest Group) prior to LC-MS/MS analysis. Lyophilized samples were stored at -20°C for further 

analysis.

Peptides were reconstituted in loading buffer (5% ACN (v/v), 5% FA (v/v)). LC-MS/MS analysis 

was performed on a microfluidic chip system (EK425) coupled to a TripleToF 5600+ mass spec-

trometer (both Sciex). Tryptic digests (~1 µg) were loaded onto a trap column (ReproSil-Pur C18-

AQ, 200 m x 0.5 mm, 3 m) and subsequently separated on a ReproSil-Pur C18-AQ analytical 

column chip (75 m x 15 cm, 3 m) at a flow rate of 300 nl/min. A linear gradient from 95% to 

65% buffer A (0.2% FA in HPLC water; buffer B: 0.2% FA in ACN) within 60 min was applied. 

Samples were ionized applying 2.3 kV to the spray emitter. Analysis was carried out in a data-

dependent mode. Survey MS1 scans were acquired for 200 ms. The quadrupole resolution was 

set to ‘UNIT’ for MS2 experiments, which were acquired for 50 ms in ‘high sensitivity’ mode. Fol-

lowing switch criteria were used: charge: 2+ to 4+; minimum intensity: 100 counts per second 

(cps). Up to 35 ions were selected for fragmentation after each survey scan. Dynamic exclusion 

was set to 17 s.

Samples for the ovarian cyst biomarker study were analyzed using the same LC-chip system 

-Pur C18-

x 15 cm ReproSil-Pur C18- ve mass spectrometer (Thermo 
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Fisher Scientific). Peptides (4 µl of digest) were separated by a linear gradient from 93% buffer A 

(0.2% FA in HPLC water) / 7% buffer B (0.2% FA in ACN) to 75% buffer A / 25% buffer B within 

75 min. The MS was operated in data-dependent TOP10 mode with the following settings: reso-

lution for MS1 scan 70,000 @ 200 Th; lock mass: 445.120025 Th; resolution for MS2 scan 17,500 

@ 200 Th; isolation width 1.6 m/z; Normalized Collision Energy (NCE) 27; underfill ratio 1%; 

charge state exclusion: unassigned, 1, >6; dynamic exclusion 30 s.

Acquired MS raw files (WIFF) were analyzed using ProteinPilot (version 4.5.1, revision 2768; 

Paragon™ Algorithm 4.5.1.0, 2765; Sciex) using the human UniProtKB database (Homo sapiens, 

~20,300 sequences, version 06-2014). The ‘thorough’ search mode was used. The digestive en-

zyme was set to trypsin. It is noteworthy that ProteinPilot does not require the definition of an 

allowable number of missed cleavages, modifications or mass tolerances. Commonly occurring 

laboratory contamination protein sequences (cRAP, version 2012.01.01) were added to the da-

tabase.

For the label free quantification, the precursor intensities was extracted from the Spectrum Sum-

maries generated by ProteinPilot. Intensity-based absolute protein quantitation (iBAQ) 116 for dy-

namic range analysis, MaxQuant 117 (version 1.5.1) was used. In short, the acquired WIFF files 

were loaded into MaxQuant and searched against the human UniProtKB database (Homo sapi-

ens, ~20,300 sequences, version 06-2014). For quantification, the ‘iBAQ’ and ‘label-free quantifi-

cation’ (LFQ) were selected. Variable Modifications were set to: oxidation(M), deamidation(NQ) 

and phospho(STY). For fixed modifications only carbamidomethyl(C) was used. Peptides that 

showed the aforementioned modifications were allowed for quantification, however counter pep-

tides were not rejected. As digesting enzyme ’trypsin‘ was specified. Otherwise default settings 

(by MaxQuant) were used for the analysis: trypsin with up to two missed cleavages; mass toler-

ance for the first search: 0.07 Da; main search: 0.006 Da

For Gene Ontology (GO) annotations-specific isoforms were merged to their parent protein. Sam-

ples related to the ovarian cyst biomarker study have been analyzed within MaxQuant 1.5.2.8 and 

searched against the human UniProtKB database (Homo sapiens, ~20,300 sequences, version 

10-2014). The following settings were applied: trypsin with up to two missed cleavages; mass 

tolerance for the first search: 20 ppm; main search: 4.5 ppm; fixed modification: carbamidomethyl 

(C); variable modification: oxidation (M), otherwise default settings were used. The iBAQ ap-

proach 116 was employed for quantification. Prior to the statistical analysis, samples with less than 

200 identified proteins were removed from the dataset (5/89 samples, i.e. 5.6% of the samples). 

Subsequently, a two-tailored student’s t-test was applied to identify the significantly changed pro-

teins. Bonferroni correction was applied to account for multiple testing.

GO annotations were established by FunRich (http://www.funrich.org). Venn diagrams were gen-

erated using the available online tool, Venny (http://bioinfogp.cnb.csic.es/tools/venny/). For the 

calculation of chemical and physical properties an in-house R-script (v3.15) as well as the online 

tool “GRAVY Calculator” (http://www.gravy-calculator.de) were used. Boxplots and Receiver-Op-

erating Characteristics (ROC) were generated in SPSS v21 (IBM).
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All mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium 118

via the PRIDE partner repository: Urinary biomarker study (Ident: PXD002549) and MStern Blot 

vs. FASP comparison (Ident: PXD002572). Annotated spectra for the biomarker study are also 

accessible through MS Viewer 119 (SearchKey: “sd9zoqvsoo”).
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Filter-based sample processing, in particular, FASP, have established themselves as a widely 

used proteomics sample processing/digestion method due to their improved sensitivity and 

throughput when compared to gel-based digestion methods, and due to their improved compati-

bility with salts, detergents and other denaturants in comparison to conventional solution-based 

processing methods. Despite a multitude of advantages, FASP or FASP-like methods have the 

drawback of not being readily compatible with 96well plate formats because of the small pore size 

of the cellulose-based ultrafiltration membranes. This gives rise to very long centrifugation times 

when used in the 96-well plate format due to the limited g-force 96-well plates can withstand: 

2,200 ×g for 96-well plates vs. 14,000 ×g for individual ultrafiltration units. Cellulose ultrafiltration 

membranes that are used for the 

FASP approach feature a pore 

size of 1-3 nm (10 to 30 kDa 

MWCO) giving rise to this signifi-

cant flow restriction.

It was reasoned that switching to 

large pore hydrophobic PVDF 

membranes, which have a proven 

high affinity for proteins that is uti-

lized in Western blots on a daily 

basis, would overcome the prob-

lem of slow liquid transfer through 

the membrane. These hydropho-

bic PVDF membranes are used for 

sterilization and/or filtration feature 

pores in the size range of 220 to 

450 nm (cf. Figure 2.1a), which is 

100 times larger than the pores 

found in the 10 or 30 kDa MWCO 

ultrafiltration cellulose membranes 

used for e.g. FASP. The capacity 

of PVDF-based protein processing 

2 120), which is 

lower than in cellulose membrane-

based filtration units. Given the 

sensitivities of current LC/MS sys-

tems, this amount is still plentiful 

Figure 2.1: FASP vs. MStern Blot. a) Comparison of the physical prop-

erties of the ultrafiltration membrane used for FASP and the membrane 

used for MStern Blot. FASP uses physical retention whilst in MStern blot-

ting proteins are adsorbed onto the hydrophobic membrane surface. b)

Time advantage of MStern blotting (blue curve) vs. FASP (yellow curve) 

without considering potentially different digestion times. Major timesavers 

are the fast liquid transfer steps (1 min vs. 100 min; red) and the omission 

of any desalting (green).
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whe

membrane and PVDF for membrane-based proteomics sample processing, is the mode of protein 

retention: while ultrafiltration cellulose membranes retain the proteins by size-based filtration, 

PVDF retains the proteins by efficiently adsorbing them onto its large hydrophobic surface, which 

is widely exploited in e.g. Western blotting, giving rise to the name suggested in this study, ‘MStern 

blotting’.

After establishing an initial protocol for MStern blotting, it was evaluated whether the theoretical 

processing speed advantage can be realized in practice. Indeed, the use of low-grade (e.g. 

house) vacuum was sufficient for the liquid transfer through the PVDF membrane in 10 seconds 

to 2 minutes (depending on the numbers of wells used). In contrast, the centrifugation-based 

liquid transfer through ultrafiltration cellulose membranes in the 96-well plate format, which re-

quires swinging-bucket rotors, requires 1 to 2 hours 111, 112 for each liquid transfer step. In sum-

mary, the fast liquid transfers through the PVDF membrane can be realized in practice and is the 

major source of time-savings for the MStern blotting sample processing in comparison to FASP 

(cf. Figure 2.1b).

Besides a faster liquid transfer through the membrane, further time-savings are realized by the 

post digestion peptide elution, which uses a simple mixture of acetonitrile and formic acid instead 

of concentrated salt solutions as in the case of FASP. While the residual amount of ammonium 

bicarbonate salts are further reduced by the subsequent quick vacuum centrifugation, such that 

the samples are ready for LC/MS analysis once they have been evaporated to dryness. In con-

trast, FASP requires a prolonged vacuum centrifugation and subsequent lengthy and expensive 

reversed phase-based desalting of the digests. Together with the faster liquid transfers, all time 

savings add up to more than 9.5 hours when processing samples with MStern blotting instead of 

FASP. In addition, the use of vacuum manifolds also allows for easier automation when compared 

to FASP, which requires centrifugation.

After establishing that using hydrophobic PVDF for membrane-based proteomic sample pro-

cessing instead of hydrophilic regenerated cellulose as in the case of FASP results in significant 

time-savings, the compatibility of adsorption of complex protein mixtures with tryptic digestion was

investigated. The digestion of individual proteins adsorbed onto PVDF membranes has been de-

scribed before 121-124. However, these previous publications used electroblotting to transfer pro-

teins out of an SDS-PAGE onto the PVDF membrane prior to proteolysis and mass spectrometric 

analysis. Thus, it was not evident that proteins from complex protein mixtures could be quickly 

adsorbed onto PVDF membrane by forcing dilute protein solutions through the membrane within 

seconds or minutes using vacuum instead of electroblotting which operates in the hour timescale 

124. To test whether fast adsorption of proteins to hydrophobic PVDF is a compatible with proteo-

mic studies on complex protein mixtures, three different types of samples were used that are 

either considered a good source for biomarker (neat urine and neat cerebrospinal fluid (CSF)) as 

well as a highly complex unfractionated whole (HeLa) cell lysate.
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The initial digestion optimization resulted in conditions which match or exceed the performance 

of FASP; thus, it was expected that a more thorough optimization would provide even better re-

sults (for details, see 2.2 Experimental Procedures). Four aliquots were processed for each 

sample type and analyzed tryptic digests of the different samples types by LC-MS/MS using a 1-

hour gradient. These analyses identify 497 ± 58, 2,733 ± 160, and 676 ± 143 proteins form neat 

CSF, HeLa cell lysate and neat urine, respectively (cf. Figure 2.2a). The FASP-based processing 

of 4 aliquots of the same samples resulted in 561 ± 40, 2,473 ± 89, and 622 ± 133 proteins for 

neat CSF, HeLa cell lysate and neat urine, respectively. Also the dynamic ranges of the identified 

proteins as determined using the iBAQ method 116 was similar for both sample processing meth-

ods: ~5 orders of magnitude of the two neat body fluids and ~6 orders of magnitude for the HeLa 

cell lysate (cf. Figure 2.2b). These numbers clearly showed that the MStern blotting approach 

gives protein identification rates at least as good as FASP, irrespective of the nature and com-

plexity of the sample.

Next, the loading capacity of the PVDF membrane was tested. To this end, 5, 10, 15 and 30 g

of HeLa cell lysate was loaded into individual wells of the 96-well plate with the hydrophobic PVDF 

Figure 2.2: Performance Comparison MStern Blot vs. FASP. a) Comparison of proteins identified from CSF, HeLa 

lysate and urine after loading approx. 10 ug, 10 ug, and 15 ug, respectively. Each sample type was processed in quad-

ruplicate. b) Testing the loading capacity of the PVDF membrane used for MStern blotting based on proteins identified 

adsorbed by the PVDF membrane (i.e. MStern blotting, blue curve) and the respective flow through processed by FASP 

(red curve), in comparison to standard FASP of the same sample (yellow curve). A HeLa lysate was used. Values shown 

demonstrate average protein identifications. c) Comparison of the dynamic range in three different biological samples 

(CSF, HeLa lysate and urine); MaxQuant-based iBAQ intensities are marked blue (MStern blotting) and yellow (FASP).
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membrane at the bottom of each well. The flow-throughs of the loading and washing solutions 

were collected and subsequently processed using FASP. In parallel, identical amounts of protein 

were directly processed with FASP (cf. Figure 2.2c).

In summary, FASP and MStern blotting resulted in a similar number of identified proteins (while 

MStern consistently identified more than FASP as already shown in Figure 2.2a), irrespective of 

the amount of protein processed. In contrast, the number of proteins identified in the flow through 

of the MStern blot-based processing steadily increases such that at a nominal loading of 30 g, 

as many proteins are identified in the flow-through as in adsorbed fraction. Based on these num-

bers, it was concluded that the optimal loading capacity is in the 10 to 15 g per well, plenty of 

material for today’s LC/MS instrumentation. These amounts of proteins correspond to e.g. 150 l

of urine or 15 l of CSF, which are easily available from primary body fluids. Thus, additional 

experiments to test the lower loading limits of MStern blotting were not performed.

Since MStern blotting and FASP have very different modes of retention, it was reasoned that both 

methods would exhibit different preferences for protein identification. To look into this issue, the 

identification overlap was compared from the combined search results of the four MStern blot and 

four FASP preparations of neat urine, HeLa cell lysate and neat CSF, which were used to gener-

ate Figure 2.2a. The Venn diagrams clearly show that 2/3 to 3/4 of the identified proteins are 

shared between the MStern blot and the FASP method, while 1/4 to 1/3 of the proteins are unique 

to either MStern blotting or FASP (cf. Figure 2.3a-c). The commonalities and differences at the 

peptide level were also compared. Here, specific peptides were in the 50 to 60% range such that 

only as little as 40% of the observed peptides were in common.

For the subsequent GO annotation of the method-specific proteins the funrich.org tool was used,

which uses more broadly defined ontologies to make comparisons more generalizable. Figure 

2.3 shows the results of these comparative protein localizations, where only the 12 most popu-

lated GO terms are listed. For neat urine and HeLa cell lysates, only minor differences are ob-

servable for the major GO terms. Slightly bigger differences are observable for the neat CSF, 

such as MStern blotting’s biases against plasma membrane and extracellular proteins, and pref-

erences nucleolar, mitochondrial and/or cytosolic proteins. However, a clear trend is not obvious.

To better understand the process-specific differences in the identified proteins and peptides, a

closer look at the physicochemical properties of the unique and shared proteins and peptides was 

taken (cf. Figure 2.4 – the graphs for the HeLa cell lysates are shown; the graphs for CSF and 

neat urine can be found in the Appendix 8.1 MStern Blotting). In particular, the molecular weight, 

the pI and the hydrophobicity/GRAVY score was compared. For reference purposes, the theoret-

ical distribution of all human proteins found in SwissProt was also shown. Comparing the plots for 

the proteins (cf. Figure 2.4a), it is apparent that FASP is biasing in favor of small (low molecular 

weight), charged (higher and lower pI) and more hydrophilic (lower GRAVY score) proteins. In 

contrast, MStern blot has a slight preference for larger and less charged proteins. These observed 



MStern Blotting

34

dissimilarities match the differences in the binding modes used for the two sample processing 

strategies.

Figure 2.3: Comparison of the Properties of Identified Proteins. Venn diagram of the proteins and peptides identified 

from CSF (a), HeLa lysate (b) and urine (c). On the bottom, GO annotations (cellular compartment) of the method specific 

proteins, namely MStern blotting (blue) or FASP (yellow).

Comparing the physicochemical properties of the peptides (cf. Figure 2.4b) identified a major 

shift of the molecular weight of the MStern blot specific peptides. The MStern blot-specific pep-

tides also showed a shift away from lower pI-values in favor of higher pI values above a pI of 6.8, 

and a minor shift towards less hydrophilic peptides. The latter was unexpected, as larger peptides 

are generally assumed to more hydrophobic. For reference purposes, the distributions for the 

theoretical tryptic peptides from all human proteins found in SwissProt are shown, assuming no 

missed cleavage or two missed cleavages.

Investigating the major shift in the molecular weight distributions of the observed process-specific 

peptides revealed an increase in peptides with missed cleavages from 12.5% to 37.4% for the 

MStern blot vs. FASP. Attempts to modulate the degree of missed cleavages by varying the con-

tent of organic solvent 125 and/or the digestion time had only minor effects, which might indicate 

that the adsorption of the proteins seem to interfere with the trypsinization.
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Figure 2.4: Physical-chemical Properties. a) Comparison of three different properties: Molecular Weight (top), isoelec-

tric pH (middle) and GRAVY score (bottom) at protein level for MStern blotting-specific proteins (blue trace), FASP-specific 

proteins (yellow trace), shared proteins (green trace) and theoretical distribution of the entire human proteome (dashed 

grey trace). b) Comparison of physic-chemical property changes at peptide level: Molecular Weight (top), isoelectric pH 

(middle) and GRAVY score (bottom) for MStern blotting-specific peptides (blue trace), FASP-specific peptides (yellow 

trace), shared peptides (green trace) and theoretical distribution upon tryptically digesting the entire human proteome 

assuming no missed cleavages (0 MC; dashed dark grey trace) or 2 missed cleavages (2 MC; dashed light grey trace).

Since this degree of missed cleavages will affect the quantification of individual peptides that are 

affected by being missed cleaved, the effect on the quantification of proteins was investigated,

which normally uses the combined information from numerous peptides. To this end, two tech-

nical repeats of the HeLa cell lysates, neat urine and neat CSF digested using the MStern blotting 

and the FASP process (cf. Figure 2.5) were examined more closely.
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Figure 2.5: Correlation of FASP- and MStern Blotting-based Protein Quantifications. Correlation of the ProteinPilot-

derived signal intensities of the proteins identified in CSF, HeLa lysate and urine (see Figure 2): MStern blot vs. MStern 

blot (left), FASP vs. FASP (middle) and MStern blot vs. FASP (right).

Next, the peptide ion signal intensity for each protein was extracted, prior to correlating the inten-

sities for MStern blotting vs. MStern blotting (blue), for FASP vs. FASP (yellow) and for FASP vs. 

MStern blotting (green). The correlations for MStern vs. MStern and FASP vs. FASP were very 

tight with R2-values ranged from 0.85 to 1.0. The lower correlation for the HeLa lysate had to be 

expected given the complex nature of the samples, which results in undersampling, highlighting 

the negative effect of the stochastic nature of unbiased data-dependent acquisition routines on 

protein quantification, which is particularly limiting in the case of low abundant proteins. However, 

this limitation is independent of the sample processing, but can probably be improved when using 

non-stochastic data-independent acquisition routines for example.

The correlation of MStern vs. FASP showed a slightly broadened scatter with R2-values ranging 

from 0.92 to 0.99 for urine and CSF and 0.67 for the HeLa cell lysate. Such slight reduction in 

correlation is expected when comparing two independent sample processing method; neverthe-

less, the good to excellent correlations of the MStern vs. FASP-based quantification clearly shows 

that the increase in missed cleavage sides as observed for MStern blot-based processing still 

provides solid quantitative information comparable to and compatible with FASP-based pro-

cessing.
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Using this newly developed MStern blotting strategy, 89 individual urine samples were processed

, which were collected from pediatric patients of the Emergency Department at 

Boston Children's Hospital seen for abdominal pain with the aim to identify urinary markers for 

the different causes of abdominal pain. In this particular study, we were looking for urinary mark-

ers for ovarian cysts. While ovarian cysts in children and adolescent are common, normally 

asymptomatic, and easily detected by ultrasound, it is crucial to differentiate ovarian cysts from 

other conditions that require surgical intervention in a timely fashion, such as appendicitis or ovar-

ian torsion. Thus, other means than slow imaging to quickly differentiate non-surgical conditions 

such as ovarian cysts from surgical conditions are highly desirable. To this end, neat urine sam-

ples, i.e. samples without any preprocessing and/or protein concentrations determination were 

processed using our MStern blotting strategy. The entire processing from the neat urine sample 

to the LC/MS ready sample took less than a workday (cf. Figure 2.1). 

After analyzing these 89 samples with a 75 min gradient using a Q-Exactive mass spectrometer, 

the data were searched with MaxQuant 117 and quantified using the iBAQ approach 116. Before 

further analysis, 5 samples (3 ovarian cyst samples) were excluded in which less than 200 pro-

teins were identified, probably due to low urinary protein concentrations. Of the remaining 84 urine 

samples, 10 were associated with ovarian cysts and 74 with alternative causes of abdominal pain. 

In total, 2,070 urinary proteins were identified in this sample set. The following statistical analysis 

(t-test) identified 11 proteins, which indicated statistical significance even after extremely con-

servative Bonferroni correction for multiple testing.

Figure 2.6: Statistical Analysis of Serpin B3 and 4 iBAQ intensities in urine. a) Box plot diagrams of the normalized 

iBAQ intensities of urinary serpin B3 and B4; listed p-values are Bonferroni corrected. b) Receiver operating characteristic 

(ROC) curves for urine serpin B3 and B4 based on 10 ovarian cyst cases and 74 abdominal pain controls.
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Amongst these proteins that showed statistical significant abundance differences were two re-

lated serpins, namely serpin B3 and B4, also known as squamous cell carcinoma antigen 1 and 

2 (cf. Figure 2.6a). Although serpins, in particular serpin E1, have been associated with e.g. 

polycystic ovary syndrome 126, 127, serpin B3 and 4 have thus far only been described in cystic 

teratomas of the ovary 128. Further studies beyond the scope of this work will be necessary to 

understand the biological and biomedical implications of this finding. However, further analysis of 

the ROC curves and box plots (AUROC SPB3 = 0.920, SPB4 = 0.928; Figure 2.6b) might indicate 

a promising application of these proteins as a rule-out test of ovarian cysts in pediatric patients.

As previously mentioned, the newly developed MStern Blot approach demonstrates enhanced 

numbers of missed cleaved peptides. A thorough analysis of the raw data, especially for CSF 

digests, revealed the acquisition MS2 spectra of highly charged (> 3+ charges) precursors. The 

occurrence of the highly charged precursor ions was additionally accompanied by high-intensity

elution peaks in the higher organic region (>15% ACN) of the applied chromatographic gradient. 

These adverse occurrences gave rise to an incomplete digestion, particularly in case of CSF 

digestions. The initial experiments involved prolonged incubation times and increased organic 

content (up to 40% ACN) during digestion, which however did not prove a proper digestion of 

CSF.

As already described by Dickhut et al. (2014) 125, the prolonged duration of incubation is not nec-

essarily beneficial for digestion efficiency, but rather the enhancement of organic content. Dickhut 

et al. introduced the usage of Trifluroethanol (TFE) as additional organic content during digestion 

to enhance the efficiency. They demonstrated the usefulness of TFE as an additive during diges-

tion to circumvent barred cleavages due to phosphorylation at to trypsin adjacent amino acid 

residues. Here, the impact of TFE was investigated as a digestion additive on the overall digestion 

performance.

Figure 2.7: Impact of TFE on CSF protein identification. Different organic content compositions were tested during 

digestion: Acetonitrile (0 to 15%) with or without Trifluroethanol (0 to 15%). Compositions exceeding a total organic content 

of 20% (e.g. 15% ACN with 5% TFE) have been omitted. The number of identified CSF proteins is illustrated.
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Here, 12 different compositions of acetonitrile and trifluroethanol were investigated as additive 

during digestion. Compositions that exceeded a total organic content of 20% (e.g. 10% ACN and 

15% TFE) were omitted as the risk of PVDF membrane disintegration increases proportional to 

the amount of organic content the membrane is exposed to. As measurement of digestion effi-

ciency, the number of identified proteins out of the identical and simultaneously processed CSF 

sample was used. Results for the diverse compositions are listed in Table 2.1.

Table 2.1: Number of identified proteins per applied organic content composition

Org. Content 0% TFE 5% TFE 10% TFE 15% TFE

0% ACN 290 ± 19 242 ± 38 261 ± 16 294 ± 22

5% ACN 258 ± 38 330 ± 36 278 ± 55 n/a

10% ACN 270 ± 57 306 ± 49 317 ± 25 n/a

15% ACN 318 ± 29 283 ± 67 n/a n/a

As demonstrated in Figure 2.7, the best digestion conditions are achieved by supplementing the 

original digestion buffer (5% ACN) with 5% TFE. Hence, a total organic content of 10% (i.e. 5% 

ACN with 5% TFE) in the digestion buffer benefits the digestion of CSF within two hours, so that

in average 330 ± 36 proteins were identified. Nonetheless, further applicable compositions have 

been observed. The digestion with either solely 15% ACN or 10% ACN with 10% TFE resulted in 

318 ± 29 or 317 ± 25 identified proteins, respectively. These altered digestion conditions have 

also been tested for urine as sample. However, neither an improvement nor a debasement in 

protein identifications has been observed. Hence, it is postulated that these altered conditions are 

especially useful and should be applied while tryptically digesting CSF and/or plasma/serum with 

MStern Blot.
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Exploiting the high protein binding capacity of hydrophobic PVDF, which is also commercially 

available in the form of 96-well filtration plates, a 96-well plate-based sample processing method

was derived, which allows for the complete processing of multiples of 96 samples in a workday 

or less. The major time advantages compared to e.g. FASP-based protocols are the fast liquid 

transfers and the omission of the need for desalting digests prior to loading onto LC/MS system. 

The former is the result of the pores which are 100 times larger than ultrafiltration membranes 

with appropriate molecular weight cut-offs. The latter was enabled by the efficient elution with 

organic solvents instead of high salt concentrations. This accelerated sample processing allows 

for the generation of LC/MS-ready peptide samples, starting from ~150 µl of neat urine, i.e. ~15 

µg of protein, in a workday or less. Although no more than 15 µg of protein should be processed 

in a single well, this amount is easily sufficient for modern LC/MS systems, onto which less than 

1 µg is normally injected for each run. 

The direct comparison with FASP-based processing shows that our MStern blot processing re-

sults in at least as many proteins as FASP, with an overlap of identified proteins in the 65-75% 

range, although both methods show some process-specific biases. Although MStern blot results 

in an increase in missed cleaved peptides, which will alter the quantification of peptides affected 

by the missed cleavages, it can clearly be shown that the quantification of proteins, which is a 

composite value based on numerous peptides, is not affected by this increase in missed cleaved 

peptides. Another major advantage of the MStern blot method is the easy compatibility with liquid 

handling systems as liquid transfer is achieved using a vacuum manifold instead of a centrifuge 

which is necessary for FASP-based or other sample processing protocols for example129.

An example application of the MStern blotting strategy is presented, in which 89 urine samples 

were processed within a single workday. The subsequent analysis of these urine samples identi-

fied two serpins as potential biomarker candidates for ovarian cysts based on their highly signifi-

cant differential abundance in urine from ovarian cyst patients vs. abdominal pain controls.

In summary, MStern blotting is an ideal method to process dilute samples such as neat urine for 

downstream proteomic analysis, which lends itself to easy automation. Even though a particularly 

advantageous application for diluting samples such as urine has been noted, MStern is applicable 

to a wide range of samples without sacrificing analytical depth or quantitative nature of the data.
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The “MStern Blotting” technique was published in “Molecular Cellular Proteomics” as “Technolog-

ical Innovations and Resources” article in October 2015 and has the following digital object iden-

tifier (doi):10.1074/mcp.O115.049650. Since the 1st of October 2016, the article has been availa-

ble as open access resource article at “PubMed Central” with the PubMed Central ID (PMCID): 

PMC4597154.
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Each year, in the United States alone, traumatic brain injuries (TBI) account for approximately 2.2 

million emergency department (ED) visits, more than 250,000 hospitalizations and 50,000 deaths 

130. While ED visits for TBI continue to rise each year 131, these numbers do not completely reflect 

the disease burden of mild TBI (mTBI) or concussion, which often remains undiagnosed or unre-

ported 132-134. Indeed, The Centers for Disease Control and Prevention (CDC) have described 

mTBI as reaching epidemic proportions, with an estimated 3.6 million sports-related traumatic

brain injuries that occur each year in the United States 135, 136. Initial concussion management 

assessments can be critical, especially for school-aged children and athletes, as premature “re-

turn-to-play” decisions may increase the risk of worsened concussion symptoms or a second 

impact syndrome 136. However, post injury management is based largely on subjective symptom 

reporting, which can be challenging for clinicians to interpret and act upon, leading to wide prac-

tice variation in recommendations for activity cessation and specialized follow up. In fact, both 

pediatric and emergency care pro-

viders, who are most likely to diag-

nose and manage pediatric patients 

with sports-related concussion, have 

cited inadequate knowledge as a 

barrier to diagnosing and treating 

children with concussion 82. A recent 

study in a pediatric tertiary care cen-

ter demonstrated that nearly 60% of 

children who met diagnostic criteria 

for concussion were not diagnosed 

as such84. Objective measures of in-

jury and recovery after pediatric 

mTBI are sorely needed.

Potential diagnostic and prognostic 

biomarker candidates for acute mild 

traumatic brain injury have already 

been reported in prior studies by in-

vestigating different body fluids 137-

141. Body fluids that have been inves-

tigated as source of biomarker for 

concussion include cerebrospinal fluid (CSF), blood/plasma/serum, and saliva 138, 142. Although it 

has been argued that only CSF and/or blood are acceptable sources of biomarkers for mTBI, 

since too many barriers have to be crossed to make other fluids clinically viable 138, it remains 

unclear why crossing the blood-brain-barrier is clinically acceptable, but crossing the glomerular 

barrier in the kidney, for example, is not.

Figure 3.1: Causes of Traumatic Brain Injury. More than a quarter 

(28%) of all TBI cases are caused by falls. TBIs though accidents with 

motor vehicles (MV) and strucks demonstrate an incident of ~20%. As-

saults account for about 11%, bicycle accidents for about 3% and sui-

cide attempts for about 1% of observed TBIs. Approximately 16% re-

main unknown. Figure after http://wikimedia.org
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Urine is the one product of ultrafiltration of plasma in the kidney. Under normal physiological con-

ditions large volume of plasma (350-400 ml/100g tissue/min) flows into the kidney, generating 

large amounts of ultra-filtrate (150/180 l/day) while urine output numbers only 1.5 l/day 143-145. In 

short, urine as source of biomarkers for mTBI has the advantage of being non-invasively and 

readily obtainable in large volumes. Thus, any urine-based test is easily used by a PCP, a walk-

in clinic, a primary health center, or even at home, in the sports facilities or on the battlefield. The 

effectiveness of urine tests in clinical care can be seen in the urine tests for drugs of abuse, 

pregnancy and glucose that have become standards of care in EDs throughout the United States.
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Urine samples were collected from consenting patients presenting to the ED at Boston Children’s 

Hospital within 24 hours after concussive injury. After collection, the sample were directly trans-

ferred to the research facility by the associated research coordinators. Upon receipt the samples 

were aliquoted (depending on sample volume: 10x 2 ml; 1x 15 ml; 1x 25 ml and residual urine 

into 50 ml aliquots) and then frozen at -80°C. This study was reviewed and approved by the 

Institutional Review Board (IRB) at Boston Children’s Hospital.

Appropriate urine sample (e.g. 2 ml aliquote) was thawed and the 

Tris/HCl pH 8.5). The resulting solution was incubated for 20 min at 27°C and 1100 rpm in a 

thermo mixer. Reduced cysteine side chains were alkylated with 50 mM iodoacetamide (IAA; final 

concentration) and incubation for 20 min in the dark at 27°C and 750 rpm.

The hydrophobic PVDF membrane in a 96-well plate format (MSIPS4510, Millipore) was pre-

These and all subsequent liquid transfers were carried out using a fitted 96-well micro-plate vac-

uum manifold (MAVM0960R, Millipore).

Each sample was transferred three times through the PVDF membrane by applying vacuum. After 

protein adsorption onto the membrane, it was washed twice with 50 mM ABC. Protein digestion 

was performed with sequencing grade trypsin (V5111, Promega) at a nominal enzyme to sub-

and trypsin) were added to each well. 

After incubation for 2 hours at 37°C in a humidified incubator, the remaining digestion buffer was 

acid (FA) each. Upon pooling, the peptide solutions were dried in a vacuum concentrator. Lyoph-

ilized samples were stored at -20°C for further analysis.

Table 3.1: Vendor specific entitlements for acquisition modes.

Acquisition Mode Vendor Entitlement

Data-dependent acquisition

(DDA)
Thermo Fisher

Data dependent MS/MS frag-

mentation (ddMS2)

Sciex
Information dependent acqui-

sition (IDA)

Data-independent acquisition

(DIA)
Thermo Fisher

Data independent acquisition 

(DIA)
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Sciex

Sequential Windowed Acqui-

sition of All Theoretical MS 

(SWATH)

Samples were dedicated for quantitative mass spectrometric data analysis. Here, “Data-Inde-

pendent Acquisition” (cf. Section 1.1.2.2) was selected as the quantitative mass spectrometric 

method of choice. As described before, the quantification via DIA requires a comprehensive ion 

library via prior acquired DDA data files. DDA as well as DIA modes are entitled differently by 

each vendor and are further explained in Table 3.1.

Peptides were reconstituted in loading buffer (5% ACN (v/v), 5% FA (v/v)). LC-MS/MS analysis 

was performed on a microfluidic chip system (EK425) coupled to a TripleToF 5600+ mass spec-

trometer (both Sciex). Tryptic digests (~1 µg) were loaded onto a trap column (ReproSil-Pur C18-

-Pur C18-AQ analytical 

) at a flow rate of 300 nl/min. A linear gradient from 95% to 

65% buffer A (0.2% FA in HPLC water; buffer B: 0.2% FA in ACN) within 60 min was applied. 

Samples were ionized applying 2.3 kV to the spray emitter. Analysis was carried out in a data-

dependent mode. Survey MS1 scans were acquired for 200 ms. The quadrupole resolution was 

set to ‘UNIT’ for MS2 experiments, which were acquired for 50 ms in ‘high sensitivity’ mode. The 

following switch criteria were used: charge: 2+ to 4+; minimum intensity: 100 counts per second 

(cps). Up to 35 ions were selected for fragmentation after each sur-vey scan. Dynamic exclusion 

was set to 17 s.

Peptides were reconstituted in loading buffer (5% ACN (v/v); 5% FA (v/v)) and pooled based on 

their group affiliation. Samples originating from concussive samples were pooled into 6 LC-MS 

ready samples. Four control peptide mixtures were pooled into three samples to be analyzed and 

four intracranial bleed (IBD) samples resulting in three LC-MS ready samples. Pooled tryptic di-

gests (~1.2 µg) were directly injected onto a PicoChip (NewObjective, ReproSil-

buffer A (0.2 % FA in HPLC water; buffer B: 0.2 % FA in ACN) to 70 % within 55 min and from 70 

% to 65 % buffer A within 5 min. Analytes were ionized and sprayed into the mass spectrometer 

(Q Exactive, Thermo Fisher) by applying 2.2 kV to the spray emitter. The mass spectrometer was 

operated in data-dependent TOP10 mode with the following settings: mass range 375 – 1400 Th; 

resolution for MS1 scan 70 000 @ 200 Th; lock mass: 445.120025 Th; resolution for MS2 scan 

17 500 @ 200 Th; max. injection time (IT)120 ms; isolation width 1.6 Th; Normalized Collision 

Energy (NCE) 27; underfill ratio 2.0 %; charge state exclusion: unassigned, 1, >6; dynamic exclu-

sion 30 s.
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Peptides were reconstituted in loading buffer (5% ACN (v/v), 5% FA (v/v)). Peptide content for 

NanoDrop 2000). LC-MS/MS analysis was performed on a microfluidic chip system (EK425) cou-

pled to a TripleToF 5600+ mass spectrometer (both Sciex). In short, Tryptic digests, normalized 

for peptide content (~1.2 µg), were loaded onto a trap column (ReproSil-Pur C18-

quently separated on a ReproSil-Pur C18-AQ analytical column chip 

e of 300 nl/min. A linear gradient from 95% to 65% buffer A 

(0.2% FA in HPLC water; buffer B: 0.2% FA in ACN) within 60 min was applied. Samples were 

ionized applying 2.3 kV to the spray emitter. Analysis was carried out in data-independent mode

(SWATH). Each DIA cycle contains one full MS scan and 24 consecutive DIA scans covering a 

mass range of 400 to 1000 Th covering 97% of peptides 146 in a urinary sample. All fragmentation 

windows featured a fixed window size of 25 Da with an overlap of 1 Da with the previous window.

The MS1 scan was setup to scan all masses between 400 m/z and 1250 m/z within 250 ms. 

Consecutive MS2 spectra, containing fragment ions from all precursors falling into the dedicated 

precursor mass range (25 Da), were acquired along a 250 m/z to 1500 m/z mass range for a 

duration of 125 ms in “High Sensitivity” mode. Resolution for all MS2 spectra were set to “UNIT”. 

The collision energy applied for each fragmentation window was calculated on-the-fly by an im-

plemented algorithm designed by Sciex. Collision energy algorithm was applied with default val-

ues specified by Sciex.

Peptides were reconstituted in loading buffer (5% ACN (v/v); 5% FA (v/v)) and concentrations 

normalized by spectroscopically (NanoDrop 2000) determined peptide content. Required normal-

ization peptides (HRM Calibration Kit; Biognosys, Switzerland) were spiked in a 1:30 ratio. Tryptic 

peptide mixtures (~1.2 µg) were directly injected onto a PicoChip (NewObjective, ReproSil-Pur 

98 % buffer A (0.2 % FA in HPLC water; buffer B: 0.2 % FA in ACN) to 70 % within 55 min and 

from 70 % to 65 % buffer A within 5 min. Analytes were ionized and sprayed into the mass spec-

trometer (Q Exactive, Thermo Fisher) by applying 2.2 kV to the spray emitter. Each DIA cycle 

contained one full scan (MS1) and 15 consecutive parallel reaction monitoring (PRM) scans cov-

ering a mass range of 400 – 1180 Th. The full scan resolution was set to 35,000 @ 200 Th; AGC 

120 ms; mass range 400 – 1,200 Th; followed by DIA scans with resolu-

tion 35,000 @ 200 Th; variable window size was applied used; NCE 27; AGC target value 1e6, 

max. IT 120 ms.

Table 3.2: Variable extraction windows used in DIA experiments.

Window No. Window size

1 52 Da @ 405 m/z

2 42 Da @ 450 m/z
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3 to 8 32 Da @ 485, 515, 545, 575, 605 and 635 m/z

9 and10 37 Da @ 687.5 and 702.5 m/z

11 42 Da @ 740 m/z

12 47 Da @ 782.5 m/z

13 57 Da @ 832.5 m/z

14 82 Da @ 900 m/z

15 162 Da @ 1020 m/z

The generated DDA files (*.wiff) (cf. 3.2.3.1 Information Dependent Acquisition for Biomarker 

discovery) were loaded collectively into ProteinPilot™ (version 4.5.1, revision 2768; Paragon™ 

Algorithm 4.5.1.0, 2765; Sciex) and searched using the human UniProtKB database (Homo sapi-

ens, ~20,300 sequences, version 06-2014) as reference. The ‘thorough’ search mode was used 

with the following settings: Cys Alkylation – Iodoacetamide; Digestion – Trypsin; Instrument –

TripleTOF5600; Special Factors – Urea Denaturation; Species – None; FDR analysis requested. 

Commonly occurring laboratory contamination protein sequences (cRAP, version 2012.01.01) 

were added to the database. In further steps, the generated database search result file (*.group) 

was used as ion library for the analysis of DIA files.

The quantitative analysis of DIA files was performed via “MS/MS(ALL) with SWATH™ Acquisition 

MicroApp” (Sciex, v.1.0) plugin in PeakView™ (Sciex, v.1.2). In short, the according DDA search 

result file (*.group) was loaded into the PeakView™ MicroApp as spectral library. As the maximal 

number of proteins to be imported for analysis, the number of identified proteins at 1% global FDR 

out of the automatically generated FDR analysis result file (byproduct of the ProteinPilot™ search 

algorithm), was specified. For a more stringent analysis, shared peptides were excluded and 

based on the experiment design, “unlabeled” proteins were specified. After spectral library gen-

eration, the corresponding DIA files were loaded into the PeakView™ MicroApp. The DIA files 

were processed with default settings, the “Peptide Confidence Threshold” was adjusted according 

to the findings in the FDR analysis. The protein quantitation result file (*.mrkvw) was opened in 

MarkerView™ (v.1.2.1, Sciex) and values copied for downstream analysis.

Statistical analysis was performed either in R, SPSS v21 (IBM) or EXCEL with a “Real Statistics 

Resource Pack” plugin. The significance of protein abundance changes was calculated using the 

nonparametric Mann–Whitney u-test with Benjamini-Hochberg multiple testing correction. Data 

manipulation as imputation was avoided. Before statistical analysis, the dataset was sample sum 

average normalized to avoid an impact of LC-MS run specific intensity variations on the calculated 

p-values.
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Urinary samples for the biomarker qualification (extended sample cohort) was analyzed on a 

Thermo Fisher QExactive. Generated Thermo Fisher generic data files (*.raw) were analyzed 

differently, as PeakView™ and the corresponding plugin (both Sciex) do not support the analysis 

of mass spectrometric data files originating from other vendors.

For ion library generation, the corresponding ten pooled DDA analysis files (*.raw) were loaded 

into MaxQuant 117 (v.1.5.2.8) and consequently searched against a reference protein sequence 

database, here the human UniProtKB database (Homo sapiens, ~20,300 sequences, version 06-

2014) was used with commonly occurring laboratory contamination protein sequences (cRAP, 

version 2012.01.01) added. Variable Modifications were set to: Acetyl(Protein N-Term), Oxida-

tion(M), Deamidation(NQ) and Phospho(STY). For fixed modifications only Carbamidomethyl(C) 

was used. The digestion mode was set to “Semispecific” and the digesting enzyme to ’Trypsin/P‘. 

Otherwise default settings (by MaxQuant) were used for the analysis: trypsin with up to three

missed cleavages; mass tolerance for the first search: 20 ppm; main search: 4.5 ppm.

DIA files (*.raw), which belong to the analysis of the larger cohort for biomarker qualification, were 

processed and analyzed in Spectronaut 147 (v.9.0.1 (Collins); Biognosys). At first, the search re-

sults from the aforementioned MaxQuant search of the corresponding DDA acquisition were 

loaded into Spectronaut to generate an ion library, which in turn was saved within the program’s

data-structure. The data ion library import was performed via the default settings, proposed by 

Sprectronaut. Nonetheless, peptide and protein grouping was kept on the results by the Androm-

eda search engine (MaxQuant). Hence, the “Protein Inference” option was deactivated for ion 

library generation. After generating the ion library, corresponding DIA files were loaded into Spec-

tronaut and the aforementioned ion library was specified as a reference identification database. 

The following custom settings were applied in Spectronaut: Calibration Mode: Forced; Protein 

Quantity: Sum Precursor Quantity; Data Filtering: Either QValue or QValue Sparse. All results 

were filtered by a Q value of 0.01 (equals a FDR of 1% on peptide level). The output report was 

adjusted to contain all quantification-related values. All other settings were set to default. For 

further analysis, the peptide-based result file was chosen.

Statistical analysis was performed either in R, SPSS v21 (IBM) or EXCEL with “Real Statistics 

Resource Pack” plugin. Significance of protein abundance changes was calculated using the non-

parametric Mann–Whitney u-test with Benjamini-Hochberg multiple testing correction. Data ma-

nipulation as imputation was avoided. Before analysis, the dataset was sample sum average nor-

malized to avoid an impact of LC-MS run specific intensity variations on the calculated p-values.
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In this study, it is evaluated whether or not potential biomarker targets can be found in the urine 

of children and adolescents between 11 and 22 years of age, presenting to the ED within 24 hours 

after concussive injury. Concussion subjects were defined as patients who sustained a blunt injury 

to the head resulting in either i) alteration in mental status (including loss of consciousness, diso-

rientation, or amnesia) or ii) any of the following symptoms that started within 4 hours of the injury 

(and not present before the injury): headache, nausea, vomiting, dizziness/balance problems, 

fatigue, drowsiness, blurred vision, memory difficulty or difficulty concentrating 148. Subjects were 

excluded for the following criteria: intracranial hemorrhage noted on advanced imaging, Glasgow 

Coma Scale (GCS) less than 13, co-existing orthopedic fracture, co-existing intra-abdominal or 

intra-thoracic trauma, or spinal cord injury. Control patients were obtained from the same source 

population and included subjects with non-concussive minor head trauma (e.g. laceration or con-

tusion, with no clinical signs of concussion) and subjects with isolated orthopedic injury (e.g. long 

bone fracture).

Biomarker Discovery Cohort

In the Biomarker Discovery study, a total of 22 patients was enrolled, belonging to three distinct 

patient groups: 8 concussion cases, 6 patients with minor head trauma (HI control), 6 patients 

with orthopedic trauma (FR controls) and 2 patients with intracranial bleeding (no specific sub-

type) as advanced/positive control. No particular focus was set onto the timeframe between initial 

injury and time of urine sampling. Additionally, concussive patients were not selectively chosen 

as sportive mTBI. In this initial study, all sorts of accidental mTBIs and TBIs were allowed for this 

study.

Biomarker Qualification Cohort

For the qualification of discovered biomarker candidates, the initial “Biomarker Discovery Cohort” 

was extended by a total of 27 samples. Here, 14 additional patients were enrolled who were

suffering from concussion, 6 additional control samples (without any further stratification) and 7 

supplemental patients for the positive control or i.e. intracranial bleed subgroup. These additional 

samples were provided with supplemental information in regard of “Time of Injury” and “Time of 

Urine Collection”: samples originating from concussive patients were sampled in between Tmin =

1 hr 50 mins and Tmax = 13 hrs. Control samples featured similar sample times with Tmin = 1hr 50 

mins and Tmax = 9 hrs 50 mins. The timeframe for samples originating from patients with intracra-

nial bleed was comparably the longest with Tmin = 4 hrs and Tmax = 20 hrs.
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In total, 22 DDA files, acquired on the TripleTOF 5600 were searched with ProteinPilot™ which 

resulted in 1236 identified proteins at 1% global FDR. Furthermore, ProteinPilot™ identified and 

matched 239,523 acquired spectra (1% global FDR; sum across all submitted files) to a peptide 

sequence, present in the specified reference sequence database. This number of identified spec-

tra can be summarized into roughly 25,000 distinct peptide species, whereas a different modifi-

cation or modification combination is counted separately even by identical underlying peptide se-

quence. This identification information is consequently loaded into the ion library for matching 

SWATH MS2 spectra peak patterns to those of already identified spectra.

The DIA dataset features a total of 672 uniformly quantified proteins. The SWATH processing 

algorithm is programmed to only report proteins which could be quantified in all imported samples. 

Hence, the dataset does not feature any missing values. This particularly allows for the usage of 

the dataset as it is acquired and does not require any further manipulation for imputation or han-

dling of missing values. However, this approach limits the extent of the screening depth as only 

rather high abundant proteins are reported as they are easily detected and identified in all samples 

149.

Figure 3.2: Q-Q-Plots for samples analyzed by SWATH. Sample quantiles are plotted against theoretical quantiles with 

an underlying normal distribution. Once data points form a diagonal, normal distribution for the sample has been proven. 

Any other graphical distribution provides evidence for non-parametric distribution. Sample abbreviations: mTBI – case 

samples for mTBI; Ctrl – control samples; ICB – positive control samples (intracranial bleeding).
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After sum normalization (normalized to the average of the summed sample intensity), the data 

distribution was tested while illustrating the data with Q-Q-Plots (cf. Figure 3.2). Here, no evi-

dence in any samples was found that gives rise for a normal data distribution. Hence, for any 

further analysis, a non-parametric test was chosen. As the first analysis step, the protein abun-

dance changes between “Control” and “mTBI” group where tested for statistical significance by 

applying the non-parametric Mann-Whitney u test 150. A total of 21 proteins were identified with a 

statistical significant (p-value < 0.05) protein abundance change (cf. Table 3.3).

Table 3.3: Observed proteins with significantly different protein abundance.-Accession are based on the UniProt 

terminology. Marked p-values refers to different types: * refers to “original” values -Hochberg 151

multiple-testing corrected p-values.

Accession Protein Name p-value * p-value 

P08138 Tumor necrosis factor receptor superfamily mem-
ber 16

0.00547855 0.9570165

P00738 Haptoglobin 0.00547855 0.9570165

Q06828 Fibromodulin 0.00871191 0.9570165

P20160 Azurocidin 0.01089635 0.9570165

Q9HD89 Resistin 0.01677046 0.9570165

P04180 Phosphatidylcholine-sterol acyltransferase 0.01677046 0.9570165

O43505
N-acetyllactosaminide beta-1,3-N-acetylglucosami-
nyltransferase

0.02526030 0.9570165

P80188 Neutrophil gelatinase-associated lipocalin 0.02526030 0.9570165

P05154 Plasma serine protease inhibitor 0.03075356 0.9570165

Q86T13 C-type lectin domain family 14 member A 0.03724254 0.9570165

P01611 Ig kappa chain V-I region Wes 0.03724254 0.9570165

O14773 Tripeptidyl-peptidase 1 0.03724254 0.9570165

P06889 Ig lambda chain V-IV region MOL 0.03724254 0.9570165

P26927 Hepatocyte growth factor-like protein 0.03724254 0.9570165

P04217 Alpha-1B-glycoprotein 0.04486227 0.9570165

Q99969 Retinoic acid receptor responder protein 2 0.04486227 0.9570165

P02753 Retinol-binding protein 4 0.04486227 0.9570165

O75882 Isoform 2 of Attractin 0.04486227 0.9570165

Q6P531 Gamma-glutamyltransferase 6 0.04486227 0.9570165

P48061 Stromal cell-derived factor 1 0.04486227 0.9570165

P54793 Arylsulfatase F 0.04486227 0.9570165



Urinary mTBI Biomarker Discovery

52

The whole list of proteins tested contained a total of 672 proteins. Corresponding p-values for the 

statistical significance of abundance change were consequently corrected for multiple testing by 

“Benjamini-Hochberg” 151 multiple testing correction. Based on the multiple-testing corrected p-

values, none of the previously identified proteins features a p-value < 0.05. Based on the fact that 

urine features high inter-personal variances 152 and p-values itself are highly discussed in the 

context of biomarker discovery 153-155, corrected p-values were disregarded for this biomarker dis-

covery study.

Figure 3.3: Principal Component Analysis for all quantified proteins. Principal Component 1 (17.2%), Principal Com-

ponent 2 (12.1%) and Principal Component 3 (8.8%) account for a total of 38.2% of the overall variance in the dataset. 

No clear visual separation or clustering between “positive control” (ICB; blue), negative control (Control; green) and cases 

(mTBI; red) is apparent.

In the first candidate identification step, the whole list of quantified proteins was used for a “Prin-

ciple Component Analysis” (PCA). Here, variations are combined into “components” with the 

same variation effect. Hence, the dimensions of possible variations are condensed into “principal 

components” (PC) and help to understand data variation effects and its related effect strength. In 

this context, PC 1 accounts for 17.2%, PC 2 for 12.1% and PC 3 for 8.78% of the whole dataset 

variation. Here, the top three components (PC 1, PC 2 and PC 3) collectively account for 38.2% 

of the whole dataset variation. Nonetheless, any linear combination (cf. Figure 3.3 and Appendix 

8.2) of each of those components (PCA plot) lead to no clear grouping, or i.e. group-based clus-

tering. As a consequence, only proteins with a significantly different protein abundance (not mul-

tiple testing corrected; p < 0.05) were entered into the PCA, to evaluate any diagnosing tendency 

for these proteins. The consequent PCA plot for either PC1 and PC2 (cf. Appendix 8.2) or PC1 

and PC3 (cf. Figure 3.4) demonstrates a clear group-based separation. This leads to the as-

sumption that the proteins that have been found with a significant abundance change (non-cor-

rected, p < 0.05) feature a certain diagnostic ability for concussion in urine.
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Figure 3.4: PCA Bi-Plot (PC1 and PC3) for significantly different abundant proteins. PCA Plot demonstrates PC1 

(26.2% x-axis) and PC3 (11.6%; y-axis) of the PC analysis for significantly different abundance observation between 

Controls (green) and Cases (red). Principal components account for 37.8% of the total variance within the significant 

different abundant proteins. Black arrows demonstrate variance features and its effect strength and direction. Clear sep-

aration of cases (red and blue) and controls to one side of the plot (red dotted bar).

Amongst the identified proteins, three distinct proteins: i) Tumor Necrosis Factor Receptor Super-

family Member 16 (TNR16, p75NTR) 156-158, ii) Retinol-binding protein 4 (RBP4, RET4) 159 and iii) 

Neutrophil gelatinase-associated lipocalin (NGAL, Lcn2) 160, have already been studied in the 

context of traumatic brain injury.

Previous studies 156-158, 161, have shown, that TNR16, or i.e. Nerve Growth Factor Receptor 

(NGFR, p75NTR) signaling is involved directly after brain injury. After severe impact to the head, 

neurotrophins bind to NGFR located on neurons, signaling the cells to induce apoptosis and 

hence neuron degeneration and secondary brain damage. Additionally, p75NTR is significantly 

overexpressed in neurons after brain injury and thus actually promoting neuron degeneration and 

secondary brain damage, which in turn promotes the usage of this particular protein as a prog-

nostic tool of TBI.

Hergenroeder et al. (2008) 159 conducted a proteomic serum biomarker discovery study in brain-

injured adults. Here, they established a connection between altered RET4 (RBP4) levels in serum 

and brain injury. Furthermore, they found that RET4 might also have a predicting ability of intra-

cranial pressure (ICP) after sever traumatic brain injury, which in turn is a major contributor to 

death and disability.

Jeon et al. (2013) 160 used an Lcn2 (NGAL) deficient mouse strain to investigate the role of NGAL 

after spared nerve injury (SNI). In this study, they found that Lcn2 mRNA levels were elevated in 

the spinal cord and NGAL was localized in the spinal neuron after SNI. Based on these findings, 

NGAL

TNR16

RET4
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they concluded that Lcn2, i.e. NGAL, plays a crucial role in the spinal cord for the development 

of neuropathic pain following a peripheral nerve injury.

Figure 3.5: Evaluation of possible biomarker candidates. a) Boxplots are based on the observed protein abundance 

acquired by SWATH. The corresponding p-values are based on non-corrected Mann-Whitney u testing between mTBI 

and Control samples. Intracranial bleed samples are excluded in this consideration as the cohort is represented by an 

incomprehensive number of cases (2). b) ROC curves for diagnosing ability based on single proteins: TNR16 (yellow), 

NGAL (red), RBP4 (blue). c) Scatter plot of SWATH intensities for TNR16 (x-axis) and NGAL (y-axis). Distinct group-

based clustering of samples belonging to either mTBI (red) or Control (green). Only a single sample (arrow) clusters with 

the opposite group. d) ROC analysis of the combined diagnosing ability of TNR16 and NGAL. Combined effect achieves 

an AUROC of 0.958 ± 0.045. Almost perfect biomarker panel (AUROC = 1), alleviated due to sample clustering with 

opposing group.
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As the three aforementioned proteins (TNR16, NGAL and RBP4) have already successfully been 

described in various contexts of mTBI and TBI, the applicability of these proteins as possible 

urinary biomarker candidates for concussion is further evaluated. The direct comparison between 

“Control” and “mTBI” group revealed a larger spread of mTBI cases, which in turn indicates that 

a clinical applicability might be compromised and a distinct group classification by a single protein 

cannot be achieved. For further evaluation for the use of single proteins for diagnosing mTBI in 

urine, the ROC curves were analyzed (cf. Figure 3.5b). For each protein alone, an area under 

the ROC curve (AUROC) of > 0.5 was achieved: 0.857 ± 0.103, 0.723 ± 0.113 and 0.768 ± 0.133 

for TNR16, NGAL and RBP4, respectively.

Besides evaluating the diagnosing efficiency of single proteins for diagnosing mTBI in urine, here, 

combinations of proteins and hence biomarker candidate panels were also evaluated for distinct 

diagnosing ability. As RBP4 (Retinol binding protein 4) has only been described briefly as being 

involved in mTBI 159 (increased ICP) as well as being only a possible indicator for a particular 

secondary mTBI condition, this protein has been excluded from being under consideration as a

possible member of the diagnostic biomarker panel for mTBI.

Here, the more detailed analysis of the biomarker candidates identified in the current study that 

by combining the information of proteins, cases separate from the control samples. Particularly in 

the case of combining the protein abundance information of TNR16 and NGAL, all but one con-

cussion case showed a strong separation from all controls in a 2D scatter plot (cf. Figure 3.5c). 

The resulting ROC analysis resulted in a strong area under the ROC curve of 0.958 (cf. Figure 

3.5d). Ultimately, the combination of all three previously described proteins (TNR16, NGAL and 

RBP4) demonstrates perfect biomarker conditions with an AUROC of 1.

In summary, the above-described results underscore the notion that it might be possible to “ob-

jectively” diagnose concussion, based on concussion-specific changes in the urinary proteome 

composition. These biomarker candidates however, still need to be validated.

In contrast to the previous “biomarker discovery” (cf. Section 3.3.1), the ion library for the bi-

omarker qualification is based on an extended cohort. Besides the cohort extension, this data 

was also acquired on a different instrumentation (QExactive). Due especially to the use of different 

instrumentation and vendor specific data restriction, the data analysis software needs to be ad-

justed. In this regard, the previously acquired ion library (cf. Section 3.3.2.1) as well as the un-

derlying DDA files are no longer applicable. Here, a new set of DDA analysis files had to be 

acquired, spiked with retention time calibration peptides (iRT Kit 162, Biognosys, Switzerland). As 

mentioned previously, the ion library used for biomarker candidate discovery was established by

a single DDA file for each sample. Hence, each sample was acquired once by a DDA acquisition 

routine and then in DIA mode. Consequently, a sample-by-sample acquisition within this cohort 

would require the acquisition of about 50 samples, which would then last multiple days. In order 

to minimize instrument usage as well as information redundancy, samples were pooled according 
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to their grouping. The pooled samples were consequently acquired on a QExactive (Thermo 

Fisher) mass spectrometer and analyzed by MaxQuant.

The import of the MaxQuant search results into Spectronaut was carried out without their built-in 

inference algorithm. It was observed, that by using this approach, duplicate search hits can occur 

with different quantification values, leaving the op-

portunity for biasing the outcome. Here, the ion li-

brary featured 979 unfiltered protein groups, which 

account for a total of 1187 unique proteins. Based 

on the search results, 119 proteins or protein 

groups are only based on a single precursor ion. 

However, ions were filtered based on their as-

signed PSM FDR of 1% through MaxQuant. The 

assignment of this ion library to the workflow allows 

for tracing of 9432 precursors out of a total of 9462 

identified precursors in MaxQuant.

The direct comparison of both ion libraries re-

vealed that 58.2% of all protein identifications are 

shared between both libraries (cf. Figure 3.6). The 

initial ion library used for quantification of SWATH 

data originating from a TToF 5600 system had 405 

(29,5%) additional entries, which is unique for this 

cohort. In contrast, the ion library used to quantify 

DIA data originating from a Thermo Fisher QExac-

tive mass spectrometer had 170 unique additional entries. Here, the coverage of the initial dis-

covery cohort through the follow-up cohort at 58.2 % is sufficient to compare protein quantitation.

The protein quantification in the biomarker qualification study is based on the sum of the total MS2

peak area for each assigned peptide. This method of quantification, however, allows missing val-

ues so that certain proteins feature “zero” abundance in certain samples. At first, protein quantities 

were sum normalized across the dataset to account for technically introduced quantity changes. 

Thereafter, the two most abundant proteins, namely Uromodulin (P07911) and Albumin (P02768)

were removed from the protein list and hence from any further consideration. Additionally, any 

other specifically identified contaminants (CON) were also removed from the list and consequent 

statistical analysis. After protein filtering the list of quantified proteins consisted of 967 protein 

groups while each sample featured an average of 840 ± 64 quantified protein groups. This in turn 

characterizes each sample with an average of 15.8 % of missing values. Nonetheless, missing

values represent the cases where the corresponding protein was either “not present” in this sam-

ple or the abundance was lower than the actual detection limit of the instrumentation. In further 

analyses, missing values were not further imputed and was kept as-is.

Figure 3.6: Venn diagram of used ion libraries.

Comparison of ion libraries used for protein quantifi-

cation via DIA data. Given numbers represent the 

number of previously identified protein groups. After 

manual filtering of protein entries, the ion library used 

for SWATH quantification (yellow) features 1204 pro-

tein groups. In contrast, the QExactive (blue) ion li-

brary has 969 entries. A total of 799 proteins (58.2%; 

green) is shared between both libraries.

405 799 170

TToF 5600 QExactive
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Figure 3.7: Q-Q plot for all 50 DIA analyzed samples. Sample quantiles are plotted against theoretical quantiles with 

an underlying normal distribution. Once data points form a diagonal, normal distribution for the sample has been proven. 

Any other graphical distribution provides evidence for non-parametric distribution. Highly abundant proteins as Uromodulin 

and Serum albumin have been removed from consideration in this analysis. Sample label based on group affiliation – no 

specific order. 
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After filtering (such as e.g. removing “reversed” and “cRAP” entries) the list of reported proteins, 

the protein quantification was characterized via Q-Q-plot estimation. Even though this data was 

acquired on a different instrumental setup, there was no observable evidence for an existing nor-

mal distribution (cf. Figure 3.7). Hence, protein quantifications have to be handled under consid-

eration of non-parametric distributions. This in particular, allows for the use of the Mann-Whitney 

u test for investigation of statistical significant protein abundance changes.

In the initial dataset, three diagnostic biomarker candidate proteins were discovered in the context 

of mild traumatic brain injury. This extended dataset was specifically used to investigate the pro-

tein abundance pattern of these three proteins in particular. Nonetheless, the dataset was ac-

quired on a different instrument which can lead to a different protein abundance pattern. However,

all of the aforementioned possible biomarker candidates were identified as well as quantified in 

this dataset. Out of the previously discovered three candidates, only one protein, namely RBP4 

(Retinol-binding protein 4) demonstrated a significant abundance change (p < 0.05) while com-

paring the acquired protein abundances between mTBI cases and the corresponding controls (cf. 

Table 3.4).

Table 3.4: List of observed p-values in the extended cohort. Different p-values are given: ¥ - mTBI samples compared 

to only controls (ICB excluded); £ - – mTBI samples 

compared to only ICB samples (ICB explicitly).

Protein Accession Gene code p-value ¥ p-value £ p-value 

P08138 (TNR16) NGFR 0.294677 0.584217 0.731068

P80188 (NGAL) LCN2 0.681314 1.000000 0.579751

P02753 (RET4) RBP4 0.027166 0.113405 0.908787

Figure 3.8: ROC curve analysis for identified biomarker candidates. Three different ROC curves for TNR16 (yellow), 

NGAL (red) and RBP4 (blue) are shown. Ties cause diagonal curve-segments. The corresponding area under the curve 

(AUROC) demonstrates the diagnostic efficiency for each protein: TNR16 – 0.545; NGAL – 0.5; RBP4 – 0.631. AUROC 

values in the range of demonstrate indecisive results.
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Additionally, the acquired protein abundances were entered into a ROC analysis to estimate the 

diagnostic efficiency of these markers in the present dataset. Here, TNR16 scored an AUROC of 

0.545, NGAL an AUROC of 0.500 and RBP4 an AUROC of 0.631 (cf. Figure 3.8). By taking the 

combined diagnostic effect of all three candidates at the same time (binary logistic regression) an 

AUROC of 0.503 was achieved. Given these results, it can be concluded that the previously dis-

covered biomarker candidates for mTBI could not be reconfirmed in this extended sample cohort.

Hence, these biomarker candidates were rejected, but can still be considered as possible bi-

omarker candidates, which however need further extensive validation.

The DIA acquisition routine can be considered a semi-targeted acquisition methodology. Instead 

of particularly focusing on one specific precursor ion and its consequent transitions, all precursors

out of a specific extraction window are fragmented and the resulting fragment ions are acquired 

in a MS2 spectra. Instead of ignoring valuable information during acquisition, i.e. non-acquired 

information due to targeted acquisition, the DIA routine allows for the acquisition of additional 

information of other proteins and still featuring the same information as gained through targeted 

acquisition. Hence, even though this extended sample cohort was dedicated for the evaluation of 

the discovered biomarker candidates, the additional information acquired can be exploited for a 

secondary biomarker discovery investigation.

At first, the protein group abundances were tested for statistical significant changes. Hereto, the 

abundances of mTBI samples were directly compared to control samples via the Mann-Whitney 

u test, as non-parametric conditions have to be assumed (cf. Section 3.3.3.2). This comparison 

revealed 35 proteins with a p-value of < 0.05. Based on the objective of discovery, multiple testing 

correction was waived. Besides the comparison of mTBI samples with control samples, mTBI 

samples were also statistically compared to control samples with ICB samples included. In turn, 

the second comparison revealed a total of 26 significantly different abundant proteins (p < 0.05). 

Here, only eight protein groups (15.1%) showed significant protein abundance changes in both 

comparisons (cf. Figure 3.9).

In this context and through the specifically 

chosen sample cohort, an ideal bi-

omarker candidate should be able to dis-

tinguish between a healthy state and a 

concussion, but should also be able to 

signal once a concussion has already 

progressed to an intracranial bleed (ICB). 

Hence, the 26 significantly different abun-

dant proteins which were observed within 

the comparison of mTBI samples to con-

trols and ICB samples will be further eval-

uated as potential biomarker candidates 

in this secondary discovery study.

Figure 3.9: Venn diagram for identified candidates. The com-

parison between mTBI and Controls (Ctrl; blue) demonstrates 35 

significant proteins, while the comparison between mTBI and 

Controls with ICB samples features 26 significant proteins. Eight 

proteins showed significant changes within both comparisons

mTBI vs All

18

mTBI vs Ctrl

278
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Consequently, as a first investigation, all protein groups were entered into a PCA analysis. None-

theless, no clear or even segregation pattern could be deviated from the corresponding PCA plots

(cf. Appendix – Section 8.2.2). In this PCA analysis, the first three principal components (PC1, 

PC2 and PC3) inherit the majority of the variation of these identified proteins. However, even in a 

three-dimensional PCA plot, which further accounts for 63.9 % of the variation within the signifi-

cant proteins, no segregation pattern can be deviated.

Figure 3.10: 3D PCA plot for the identified 26 significant protein groups. The Top 3 principal components (PC 1 –

37.9 %; PC 2 – 15.6 % and PC 3 – 10.4 %) account for a total dataset variation of 63.9 % within the identified significant 

protein groups. No sample separation can be deviated 

Accordingly, all 26 proteins were entered into a ROC analysis. Here, all proteins featured an 

AUROC of greater than 0.6. The overall highest 

scored AUROC was 0.735 for HV313 (P01766, 

Immunoglobulin heavy variable 3-13). Based on 

these findings, the top four proteins with the high-

est AUROC were combined via regression and 

their combined effect tested for diagnosing ability. 

Nonetheless, here an AUROC of only 0.849 was 

scored, which in turn does not represent ideal bi-

omarker conditions (AUROC of 1). Additionally, the 

parallel use of four proteins to diagnose mTBI, i.e. 

to segregate cases from controls, but not achieving 

a fully clear segregation leads to the consequent 

rejection of the corresponding candidate panel

from further consideration.

Figure 3.11: ROC of biomarker candidate panel.

Analysis of the diagnostic efficiency of the chosen bi-

omarker panel. Area under the ROC curve is 0.849. 

Perfect condition given with an AUROC of 1. 
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Based on the aforementioned observations, it can be concluded that statistical significant protein 

abundance changes can be observed in urine. However, these abundance changes do not nec-

essarily correlate to the existence of a concussion and hence might rather be based on strong 

interpersonal variances (cf. Appendix 8.2.3).

In the initial biomarker discovery study, two patients suffering from intracranial bleed (ICB) were 

entered into the study as positive control. Nonetheless, two samples do not form a representative 

basis leading to the exclusion of those samples from further consideration in the initial discovery 

study. However, in the present extended sample cohort, intracranial bleed cases are represented 

by 11 samples. This indeed forms a representative basis in this study, which in turns allows for 

the effort of biomarker discovery in the regard of ICB. Hence, instead of mTBI samples being set 

as “case” samples, now patients suffering from an intracranial bleed were considered as “case” 

condition.

In general, ICBs can be easily observed and diagnosed through CT or MRI. Nonetheless, the 

requested time between admission to an ER and the final diagnosis is fairly prolonged, which can 

hinder first response therapy attempts and hence prolong the patients’ recovery. Thus, it is also 

of significance to discover urinary based biomarkers for ICB, to quickly, easily and non-invasively 

determine if a patient is suffering from brain bleedings. 

Firstly, the protein abundances of ICB samples were statistically compared (Mann-Whitney u test) 

to only control samples alone. Here, a total of 124 protein groups were observed with p < 0.05. 

This particular list furthermore features three proteins, that demonstrate a p-value of < 0.001

(Q8IUK5, Plexin domain-containing pro-

tein 1; Q8IYS5, Osteoclast-associated 

immunoglobulin-like receptor; P00167,

Cytochrome b5) even featured a p-value 

of < 0.001. Consequently, the mTBI 

samples were incorporated into the con-

trol group and hence the extended “con-

trol group” compared to the ICB group. 

This comparison revealed a list of 94

proteins demonstrating a statistically

significant protein abundance change (p 

< 0.05). Here as well, three samples

showed significance of p < 0.001. In this 

case, two proteins are identical to the 

former comparison: Q8IYS5, Q8IUK5.

Nonetheless, also for this comparison a 

multiple testing correction was waived. 

Even so it was hypothesized that an ideal biomarker candidate should be able to distinguish be-

tween either control alone or also between control and mTBI. Hence, for further analysis only 

Figure 3.12: 3-way Venn-diagram for all comparisons. Diagram 

is based on protein groups observed with statistical significant pro-

tein groups. The absolute intersection features 32 protein groups that 

shows significance (p < 0.05) in all three comparisons: ICB samples

vs. all control samples (green), ICB samples vs. only negative con-

trols (blue) and ICB samples vs. only mTBI samples (red)

ICB vs. Ctrl.

4932

ICB vs. All

4

ICB vs. All

14
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proteins demonstrating a significant protein abundance change in both comparisons were cho-

sen. The resulting intersection between both comparisons consists of 75 proteins. Additionally, 

the comparison of ICB sample directly to mTBI samples, revealed 61 protein groups, which 

showed significance of p < 0.05. The 3-way Venn-diagram intersection features a total of 32 pro-

tein groups, which consequently feature a significant (p < 0.05) protein abundance change in all 

three comparisons.

In this discovery study, proteins do not necessarily feature a significant protein abundance change 

while comparing ICB samples vs mTBI samples. Hence, as a consequent analysis, all 75 proteins 

within the intersection of the comparisons of ICB samples vs. all control samples (negative con-

trols and mTBI samples) and ICB samples vs. only negative control samples were entered into a 

PCA analysis. In this analysis, the first principal component (PC1) already accounts for 55.2 % of 

the variance of the entered proteins. Further components (PC2 and PC3) account for only either 

7.51 % or 6.22 %, respectively (cf. Figure 3.13). Based on this fact, only component combinations 

with PC1 are considered valuable (cf. Appendix 8.2.4). Nonetheless, a clear group-wise segre-

gation of controls with mTBI samples and ICB samples was not achieved. However, a certain 

segregation pattern can be deviated. Here, ICB samples tend to collectively segregate towards 

the right end of the corresponding PCA plots. Furthermore, based on the consequent PCA Bi-

plots, no feature was detected that actually causes the ICB-specific segregation effect. It appears 

that ICB samples simply behave in a reciprocal proportional manner to the corresponding control 

samples.

Figure 3.13: 3D PCA plot for all 75 significant protein groups. PCA plot considers the first three principal components: 

PC 1, PC 2 and PC 3. The plot accounts for a total of 69 % of the dataset variation. Here, the first component (PC 1) 

already accounts for 55.2 % of the variation. Consequently, PC 2 accounts for 7.51 % and PC 3 for 6.22 % of the variance. 

The plot shows no group-specific segregation.
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Since no feature, or i.e. protein, causes an ICB specific segregation tendency, all previously men-

tioned 75 proteins were further investigated in the regard of ROC curve analysis and its corre-

sponding area under the curve (AUROC). Each protein alone scored This 

indeed signals that there is a diagnosing tendency for ICB, however, the diagnosing effect of 

ultimately a single protein is not present. The overall highest AUROC (0.853) was scored by 

O75339 (Cartilage intermediate layer protein 1) which also demonstrates one of the lower p-val-

ues (p < 0.01) in both comparisons. In turn, the aforementioned protein demonstrated the lowest 

p-value in the comparison of ICB samples vs. all control samples (negative controls and mTBI 

samples). Consequently, all proteins with an AUROC of 0.8 were combined into a biomarker 

candidate panel and also tested for diagnosing efficiency.

Figure 3.14: ROC curves for ICB diagnosing efficiency analysis. The analysis of single proteins revealed CILP1 

(P30622; orange) with the highest AUROC of 0.853. Furthermore, the top three AUROC scoring proteins were combined 

into a biomarker panel (yellow) and tested for diagnostic efficiency. An AUROC of 0.886 was scored. Lastly, all proteins 

his resulted in an AUROC of 0.916.

Here, a total of two different combinations was tested: the top 3 proteins only (O75339, Q8IY55 

and Q8IVK5) and Top 6 (O75339, Q8IY55, Q8IVK5, Q9UBD6, O60494, P11047 and P16035). 

With the combination of the top six 

considered for a possible assignment to the biomarker panel (cf. Figure 3.14). Nonetheless, no 

clear diagnostic event was achieved even by combining 10 proteins into the panel. Here, the 

AUROC was optimized until it reached 0.916 but could not be improved any further. The corre-

sponding usage of these six proteins, allows for an 88 % correct prediction of the patients’ state

(cf. Appendix - Figure 8.2.9).

Given the rather low percentage of correct prediction and the insignificant abundance changes 

after a multiple testing correction (e.g. Benjamini-Hochberg or Bonferroni) it can be deviated that 

the diagnosing tendencies for ICB in this dataset may rely on a random event and thus won’t be 

able to be reconfirmed in a follow-up study. Hence, it can be concluded that ICB cannot be pre-

dicted simply by protein abundance changes in the urine of injured patients.
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Concussion (mTBI) or Intracranial bleed (ICB) are imposing mild to severe brain injuries. In this 

regard, a quick diagnosis is inalienable to initiate an early therapy, particularly in the prevention

prolonged recovery or secondary brain damage. Nonetheless, to this day there is no objective 

measurable molecule or biomarker that allows the diagnosis of concussion. Furthermore, intra-

cranial bleeds can only be diagnosed after CT or MRI and a brain lesion hereby observed. Con-

sequently, physicians are in desperate need of quick, objectively and non-invasively measurable 

events to diagnose these diseases.

Urine itself is produced by the kidneys and so, is based on the filtration of the blood stream in the 

glomeruli. By its definition, urine is considered the waste fluid of the body and can be obtained 

easily, in vigorous amounts and without any invasive methodology. Hence, urine portrays the 

perfect body fluid for the use of diagnosis. In this study, the scope was on the discovery of neu-

ronal damage related processes and hence biomarkers in urine. However, a potential biomarker 

or biomarkers would first need to pass the blood-brain barrier to reach the glomeruli to then be 

filtered and secreted into the urine. It is also discussed, that urine and/or saliva as well as tears 

might not be the body fluid of choice for the discovery of neuronal associated diseases, as they 

are considered too far away from the scene of where disease-specific processes are taking place 

138. Additionally, kidney-related processes and their corresponding by-products can cover the ac-

tual low-abundant neuronal biomarkers. Hence, it can be concluded that there still might be bi-

omarkers in urine with regard to neuronal damage, but that these markers are locked in the ex-

tensive dynamic range of proteins in urine and cannot yet be revealed by current technological 

equipment.
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Urine is considered a waste fluid of the human body 163. It is a by-product of the kidneys and is 

specifically used to secrete useless metabolites and other undesirable substances. A healthy hu-

man individual secrets approximately 1.2 l per day, which can vary between 0.6 to 2.4 l based on 

hydration, activity level, environmental factors and weight 164. Even though urine is considered

waste fluid, it is increasingly making its way into the scope of research as valuable information, 

especially regarding kidney and systemic malfunctions can be non-invasively obtained 165-167.

The kidneys filter the blood and rejects unwanted molecules and substances which have no ad-

ditional benefit or may even harm the human body into urine to be secreted. In this context, renal 

epithelial cells in particular, secrete nanovesicles (40 -100 nm) with endocytotic origin, into urine,

especially when a multivesicular body (MVB) fuses with the apical plasma membrane 168, 169.

These secreted nanovesicles are hence also called “exosomes”.

Urinary exosomes account for approx. 3% of the whole urinary proteome 170, 171 and can provide 

a particular insight into the renal physiology 172. Nonetheless, exosomes, per se, can also inherit 

a signaling function and hence can change a recipient’s proteome via its signaling feature. Since 

these nanovesicles are non-invasively sustainable and contain not only proteins, but also RNA 

and metabolites 172, exosomes are of particular interest 173.

These facts make exosomes a very interesting research target and might help to explain certain 

disease-related processes or even in the discovery of new disease-related biomarkers. However,

due to the extended preparation and purifying process, the actual clinical applicability still has to 

be proven, as well as the clinical information content remaining questionable 169.

In this study, exclusively the urinary exosome proteome is further investigated with the scope of 

discovering processes or proteins, which are then related to sustaining a concussion or intracra-

nial bleed.
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Urine samples were collected from consenting patients presenting to the ED at Boston Children’s 

Hospital within 24 hours after concussive injury. After collection, the sample was directly trans-

ferred to the research facility by the associated research coordinators. Upon receipt the samples 

were aliquoted (depending on sample volume: 10x 2 ml; 1x 15 ml; 1x 25 ml and residual urine 

into 50 ml aliquots) and consequently frozen at -80°C. This study was reviewed and approved by 

the Institutional Review Board (IRB) at Boston Children’s Hospital. Only samples with sufficient 

sample volume (i.e. at least one 25 ml aliquot) were entered into this exosome study.

Firstly, urine (5 or 10 ml) was thawed in a standardized water bath at 25°C and kept in bath no

longer than 15 minutes. Samples which were not completely thawed were kept on RT until being 

completely liquid. For further processing, samples were kept on ice to avoid any spontaneous 

degradation. Cellular debris and other solid impurities were removed by pelleting at 4,000 rpm for 

10 min. Supernatant was carefully removed, not to disrupt the pellet’s integrity and transferred to 

an ultra-centrifugation (UC) tube (max. vol. 10 ml). Depending on the extraction volume used (5 

or 10 ml), the absolute volume (10 ml) needed was achieved by adding water (HPLC grade). 

Imbalance was avoided by balancing the weight for each centrifugation tube. UC was performed 

via a swing-bucket rotor (SW 41 Ti, Beckmann Coulter) in a vacuumed chamber ultra-centrifuge 

(Optima L-90K, Beckmann Coulter) at 40,500 rpm (approx. 200,000×g) for 1 h. Supernatant was 

carefully removed so not to disrupt the pellets integrity and consequently stored at -20°C. Exo-

somes were washed by re-suspending the pellet in 5 ml 1x Phosphate-buffered saline (PBS, pH 

7.4) and consequently re-pelleted by UC at approx. 200,000×g (70,000 rpm) for 1 h in a TLA-

100.3 rotor (Beckmann Coulter) and Optima™ MAX-E Ultracentrifuge (Beckmann Coulter). Su-

pernatant was removed and discarded. The residual exosome pellet (slightly yellow but clear) 

was submerged in urea supernatant (~8.3 M urea solution) and incubated for an hour at RT on a 

Petri dish shaker (OrbiShaker, Benchmark) with max. speed settings.

The urea-exosome suspension (cf. Section 4.2.2) was supplemented with 30 µl DTT (100 mM 

DTT in 1 M Tris/HCl pH 8.5), transferred to low protein adsorbing microcentrifugation tubes 

(LoBind, Eppendorf) and incubated for 20 min at 27°C and 1100 rpm in a thermo mixer. Reduced 

cysteine side chains were alkylated with 50 mM IAA (final concentration) and incubation for 20 

min in the dark at 27°C and 750 rpm. Fully denatured proteins were captured on a 10 kDa MWCO

spin filter (MRCPRT010, Millipore) and washed twice with 50 mM ABC. Protein digestion was 

performed with sequencing grade trypsin (V5111, Promega) by adding 1 µg total trypsin in 100 µl 

50 mM ABC to each sample and overnight incubation at 37°C in a humidified incubator. Resulting 

peptide species were eluted with 300 µl 0.5 M NaCl. For further analysis, peptide eluate was 

divided into two equal aliquots.
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One aliquot was desalted with reversed phase-based TARGA C-18 spin tips (SEMSS18R, Nest 

Group) for DIA based LC-MS/MS analysis. Lyophilized samples were stored at -20°C for further 

analysis. The other aliquot was either directly fractionated (5 ml cohort) or pooled (10 ml cohort),

according to its sample group affiliation, desalted and consequently fractionated via reversed 

phase-based graphite carbon spin tips (TT2CAR, GlySci) for high ion library depth and hence 

DDA based LC-MS/MS analysis.

FASP-based peptide eluate pools (cf. Section 4.2.3) were acidified with 50 µl 20% trifluoroacetic 

acid (TFA) and quickly vortexed to achieve a homogenous acidification. Graphite carbon tips were 

primed by applying 200 µl of 95% ACN with 0.1% TFA and pressurizing the tip via in-house pres-

surized air supply. This step was repeated once. Consequently, the tip was preconditioned twice 

by applying 200 µl 0.1% TFA in HPLC grade H2O. This step also was repeated once. Each flow-

through was discarded. Acidified sample (~200 µl) was applied and pushed through the graphite

carbon bed. For enhanced binding efficiency, the sample binding step was repeated once with 

corresponding flow-through. The sample was consequently desalted by applying thrice 200 µl of 

0.1% TFA in HPLC grade H2O. The flow-through was discarded. For fractionation, peptides were 

stepwise eluted by increasing the acetonitrile content in the elution buffer. Here, a total of 8 frac-

tions was achieved: 20, 25, 30, 35, 40, 60 and 95% ACN. Enhanced fractionation efficiency was 

achieved by eluting twice with ACN containing buffer and once with 0.1% TFA. All correlating 

flow-throughs were combined in one microcentrifugation tube. Based on the reversed phase-

based fractionation mode as well to shorten needed DDA acquisition time, four fractions were 

combined: 20 % fraction with 95 % and 25 % with the 60 % fraction. Samples were lyophilized 

and stored at -20°C until further analysis.

The six peptide factions were reconstituted in loading buffer (5% ACN (v/v); 5% FA (v/v)) and iRT 

calibration peptides spiked in a 1:30 ratio (1µl peptide stock in 29 µl sample). Tryptic digests (~1.2 

µg; NanoDrop normalized) were directly injected onto an in-house packed (ReproSil-Pur C18 3 

, Dr. Maisch GmbH; 15 cm) fused silica column 300 mm, New Objective) and peptides 

were consequently separated by a linear gradient from 93 % buffer A (0.2 % FA in HPLC water; 

buffer B: 0.2 % FA in ACN) to 70 % within 60 min. Analytes were ionized and sprayed into the 

mass spectrometer (Q Exactive, Thermo Fisher) by applying 2.2 kV to the spray emitter. The 

mass spectrometer was operated in data-dependent TOP10 mode with the following settings: 

mass range 250 – 1800 Th; resolution for MS1 scan 70 000 @ 200 Th; lock mass: 445.120025 

Th; resolution for MS2 scan 17 500 @ 200 Th; max. injection time (IT)120 ms; isolation width 1.6 

Th; Normalized Collision Energy (NCE) 27; underfill ratio 1.0 %; charge state exclusion: unas-

signed, 1, >6; dynamic exclusion 30 s.
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Lyophilized sample peptide mixtures were reconstituted in loading buffer (5% ACN (v/v); 5% FA 

(v/v)) and peptides for hyper-reaction monitoring (HRM) calibration peptides were spiked-in with 

a 1:30 ratio (1µl peptide stock in 29 µl sample). Tryptic digests (~1.2 µg; NanoDrop normalized)

were directly injected onto an in-house packed (ReproSil- , Dr. Maisch GmbH; 15 

cm) fused silica column 300 mm, New Objective). Peptide mixtures were separated by 

a linear gradient from 93 % buffer A (0.2 % FA in HPLC water; buffer B: 0.2 % FA in ACN) to 70 

% buffer A within 60 min. Analytes were ionized and sprayed into the mass spectrometer (Q 

Exactive, Thermo Fisher) by applying 2.2 kV to the spray emitter. DIA cycle contained one full 

scan (MS1) and 17 consecutive parallel reaction monitoring (PRM) scans covering a mass range 

of 400 – 1040 mal 

IT 120 ms; mass range 400 – 1,200 Th; followed by DIA scans with resolution 35,000 @ 200 Th; 

variable window size was applied; NCE 27; AGC target value 1e6, max. IT 120 ms. Extraction 

windows are given in Tabel 4.1.

Table 4.1: Extraction windows applied for DIA analysis.

Window No. Window size

1 26 Da @ 413 m/z

2 to 8 27 Da @ 437.5, 462.5, 487.5, 512.5, 537.5, 562.5 and 587.5 m/z

9 to 12 32 Da @ 615, 645, 675 and 705 m/z

13 to 16 52 Da @ 745, 795, 845 and 895 m/z

17 81 Da @ 959 m/z

The fLib was generated with MaxQuant 117 (v.1.5.3.30) via the implemented Andromeda algo-

rithm. The acquired pooled and fractionated DDA files (*.raw) were loaded into MaxQuant and 

consequently searched against a reference protein sequence database, here, the human Uni-

ProtKB database (Homo sapiens, ~20,300 sequences, version 06-2014) was used with “Com-

monly occurring laboratory contamination protein” sequences (cRAP, version 2012.01.01) added. 

Variable Modifications were set to: Acetyl(Protein N-Term), Oxidation(M), Deamidation(NQ) and 

Phospho(STY). For fixed modifications only Carbamidomethyl(C) was used. The digestion mode 

was set to “Semispecific” and the digesting enzyme to “Trypsin”. Feature matching across runs 

was activated with a 0.7 min matching window and a 20 min alignment window, as acquired files 

are based on fractionated samples. Otherwise default settings (by MaxQuant) were used for the 

analysis: trypsin with up to three missed cleavages; mass tolerance for the first search: 20 ppm; 

main search: 4.5 ppm.

Corresponding DIA files (*.raw) were fully processed and analyzed in Spectronaut 147 (v.9.0.1 

(Collins); Biognosys). At first, the search results from the aforementioned MaxQuant search of 



Exosomal mTBI Biomarker Discovery in Urine

69

the corresponding DDA acquisition were loaded into Spectronaut to import the ions for the fLib,

which in turn was saved within the program’s data-structure. The ion library import was performed 

via the default settings, proposed by Sprectronaut. Nonetheless, peptide and protein grouping 

was kept in the results by the Andromeda search engine (MaxQuant). Hence, the “Protein Infer-

ence” option was deactivated for ion library generation. After generating the ion library, corre-

sponding DIA files were loaded into Spectronaut and the aforementioned ion library was assigned 

for analysis. The following custom settings were applied in Spectronaut: Calibration Mode: 

Forced; Protein Quantity: Sum Precursor Quantity; Data Filtering: Either QValue or QValue 

Sparse. All results were filtered by a Q value of 0.01 (equals a FDR of 1% on peptide level). The 

output report was adjusted to contain all quantification related values. All other settings were kept 

on default.

The Spectronaut™ output was statistically analyzed with either SPSS v23 (IBM) or EXCEL with 

“Real Statistics Resource Pack” plugin. Further statistical analysis was performed with the prote-

omics data analysis tool: Inferno (v.1.1.6044) 174 from http:// .
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The extraction of urinary exosomes out of high-volume samples has already been described 170, 

175-177. Samples used in this study are however limited in quantity. Furthermore, the exosomes 

correlating to one particular sample and patient were dedicated for investigation and not as a 

previously described pooled sample. Here, two sample cohorts were used to investigate urinary 

exosomes. The data of the initial dataset is based on exosomes, extracted out of 5 ml sample 

urine. The follow-up exosome study is based on exosomes extracted out of 10 ml of urine.

Within the first exosome extraction, only seven samples out of the concussion group were used 

for extraction. Additionally, nine samples out of the control group and five samples from intracra-

nial bleed patients could be entered into the study. Retrospectively, only one concussion sample, 

three control samples and one intracranial bleed case had to be excluded due to insufficient sam-

ple urine. In total, exosomes from 21 samples were extracted, lysed and analyzed with mass 

spectrometry.

Subsequently, the exosome proteome was reviewed by an extended sample cohort and using 

twice as much starting material as in the former study. Here, a total of 34 samples were entered 

into the study; 12 concussion samples, 15 control samples and 7 intracranial bleed samples were 

included in this study.

The ion library, or fractionated ion library (fLib) to be specific, is based on sample specific frac-

tionated peptide mixtures for the initial cohort (5 ml sample volume). Samples for fractionation 

were selected based on their group affiliation (4 x concussion; 3 x control and 4 x ICB), however, 

the group-specific samples were chosen randomly. After import of the MaxQuant search results 

into Spectronaut, the ion library featured 2079 unique protein groups, which in turn account for 

2370 unique proteins. Here, 568 protein groups 

were only based on a single peptide precursor. 

These “single hit” protein groups represent critical

features as their quantitative value might be com-

promised due to incorrect peak assignments. 

Nonetheless, single hits were not excluded for 

this analysis.

In contrast, the ion library for the extended sam-

ple cohort is based on fractionated samples which 

in turn originate from pooling. Here, samples were 

pooled group-wise into two samples representing 

each group. Fractionation was performed as for 

the previous cohort. The import of the search re-

sults from MaxQuant resulted in an fLib featuring 

1660 unique protein groups, accounting for 1965 

Initial Ion Library Pooled Ion Library

Figure 4.1: Ion Library Comparison. The initial ion 

library (blue) is based on fractionated single samples, 

while the pooled ion library (yellow) is based on sam-

ples which are pooled and then fractionated. More 

than the half (54.8%) of the identified proteins is pre-

sent in both libraries.

755
(31.3%)

1324
(54.8%)

336
(13.9%)
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unique proteins. Compared to the previous generated ion library, only 186 proteins are repre-

sented here by only one peptide precursor, as well as single hits not being excluded for the quan-

titative analysis.

In comparison, 54.8% of all protein identifications are shared in-between both ion libraries. Fur-

thermore, the initial ion library (fractionated single samples) features additional 755 proteins 

(31.3% of the protein identifications), while the pooled and fractionated ion library features 336 

(13.9%) additional unique protein identifications (cf. Figure 4.1). Gene Ontology (GO) annotation 

for cellular compartments of all protein accessions in the ion libraries revealed that in both cases 

more than 50% (52.84 % of the initial ion library and 63.66% of protein accessions in the pooled 

ion library) are affiliated with exosomal vesicles (exosomes). As protein accessions can be affili-

ated to more than one category, the overall percentage exceeds 100% (cf. Figure 4.2). Based on 

this annotation, it can be concluded, that the exosome extraction via ultra-centrifugation (UC) was 

successful. The annotation was performed with the open-source available tool “FunRich” 178 which 

uses the online available ExoCarta compendium for exosomal vesicle annotation. Here, research-

ers can upload their generated data sets based on exosomal studies to allow for a full exosomal 

mapping. However, in this regard contaminating and highly abundant proteins (e.g. uromodulin 

and albumin) are also listed as “exosomal proteins”. Nonetheless, samples were additionally in-

vestigated for the presence of specific exosome surface markers.

Figure 4.2: GO Annotation for both ion libraries. Gene ontology (GO) annotation for cellular compartments (CC) of the 

protein accessions identified in each ion library. The pooled ion library features ~10% more protein identifications which 

are associated with exosomes. In this context, contaminating proteins, which originate from the regular urinary proteome, 

can compromise the percentage. GO annotation was performed via FunRich 178 and the underlying ExoCarta Exosomal 

Protein Database 179-181.

Across all analyzed 21 sample DIA files, a total of 1707 protein groups were quantified out of 

2079 identified protein groups in the ion library. This in turn, means that 82.1% of the ion library 

was identified in the DIA files. On average 804 ± 228 proteins were quantified per sample. A

maximum of 1257 proteins were quantified in one sample, while a minimum of only 332 proteins 

were quantified. Non-quantified proteins consequently result in “missing values”, which can im-

pact on statistical analysis. In this dataset, each sample featured on average is 47.2 ± 13.3 % of 
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missing values. In one case the number of missing values even rose above 80%. Nonetheless, 

samples with an even higher number of missing values were not excluded. In Figure 4.3 the 

missing value distribution is demonstrated.

Figure 4.3: Extend of missing values per sample. Missing values can inherit a negative impact on the statistical anal-

ysis. In this dataset, the amount of missing values varies between 26.4 and 80.5%. Samples were not excluded from 

analysis solely based on missing values.

After sum normalization the first PCA was performed. Here, the PCA plot does not demonstrate 

any clear group-based separation. Nonetheless, it was observed that one sample (520-120; ICB) 

always demonstrated outlier characteristics. In turn, this sample also demonstrated the most 

missing values in this dataset. Based on the assumption that the amount of missing values cor-

relates with an unsuccessful exosome extraction, this sample was excluded from further consid-

erations. However, the exclusion did not change the outcome of a PCA and still, no obvious group-

specific separation was observed (cf. Appendix 8.3.1 ff.).

For a subsequent statistical analysis for significant protein abundance changes, the sample spe-

cific quantitative values were first tested for normal distribution via Q-Q-plots. Nonetheless, a 

normal distribution was not confirmed as no Q-Q-plot demonstrated a diagonal line (cf. Appendix 

8.3.1). Normal distribution was not confirmed for any sample, which requires non-parametric data 

handling for further analysis. Consequently, protein abundance values were compared according 

to their grouping for statistical significance via Mann-Whitney u test. Based on the study setup, 

three distinct groups are available: Concussion group (mTBI), Control group (CT) and intracranial 

bleed group (ICB). The comparison was performed by either comparing mTBI versus Control and 

ICB group or mTBI versus only Control group. The comparison between mTBI and CT with ICB,

a total of 21 proteins demonstrated statistical significant (p < 0.05) abundance variations. The 

comparison of mTBI vs. only Controls, featured a total of 16 significant proteins. Here, the scope 

of research laid within the discovery of diagnostic biomarkers. Hence, the abundance changes of 

proteins should be significant for both comparison: mTBI vs. both CT and ICB as well as mTBI 

vs. only CT.
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Figure 4.4: PCA plot of proteins with significantly different protein abundance. Group-based clustering of mTBI 

cases (red circle). Clear separation and classification of mTBI cases from control and ICB samples. Proteins entered into 

PCA demonstrate classification ability and might function as biomarker candidates.

After filtering proteins based on their statistical significance for protein abundance (p < 0.05) 

changes, another PCA was performed, but due to too many missing, the PCA failed. Circumvent-

ing this issue, missing values where then imputed by assigning half of the actual minimal observed 

abundance (half minimum; HM) 182 level. The corresponding PCA plot (cf. Figure 4.4) features 

clear separation between mTBI and Control as well as to ICB samples. This outcome confirms 

that these exosomal proteins might feature diagnosing power for mTBI with their abundance 

change in urinary exosomes.

Table 4.2: List of filtered proteins with significant abundance changes.

ID Accession Protein Name p-value

1 Q16560 U11/U12 small nuclear ribonucleoprotein 0.002281

2 A6H8Y1 Transcription factor TFIIIB component B'' homolog 0.003823

3 Q15286 Ras-related protein Rab-35 0.005545

4 O75363 Breast carcinoma-amplified sequence 1 0.012554

5 Q9NR99 Matrix-remodeling-associated protein 5 0.012554

6 Q9Y520 Protein PRRC2C 0.012554

7 Q92896 Golgi apparatus protein 1 0.012554

8 Q969S3 Zinc finger protein 622 0.015652
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9 P22033 Methylmalonyl-CoA mutase, mitochondrial 0.023919

10 Q9H190 Syntenin-2 0.023919

11 Q3SXY8 ADP-ribosylation factor-like protein 13B 0.043311

12 Q8WZ75 Roundabout homolog 4 0.047583

As final evaluation, the AUROC was determined for each significantly different observed protein 

alone. In this regard, the ROC curve was calculated by either focusing on detection of mTBI (rule-

in) but also on detecting controls (rule-out) amongst controls. Perfect biomarker conditions are 

given once a single protein scores an AUROC of 1. Additionally, an AUROC of 0.5 reflects a 50% 

chance of achieving a true positive diagnosis. Hence, in this analysis, AUROCs of > 0.7 were

considered possible biomarker candidates. On the one hand, while focusing on identifying rule-in 

markers for mTBI via AUROC, three proteins demonstrated an AUROC of > 0.7, namely, Q9H190

(0.912), P22033 (0.813) and O75363 (0.769). On the other hand, three proteins also featured an 

AUROC of > 0.7 while investigating options for rule-out markers: A6H8Y1 (0.846), Q9Y520

(0.780) and Q8WZ75 (0.703). 

Nonetheless, a biomarker is not necessarily represented by only a single feature, i.e. protein. The 

diagnosing power can also be shared between multiple features which consequently form a bi-

omarker panel 183. In this context, which combination of features can simulate perfect biomarker 

conditions was evaluated. To minimize the combinations to be tested, only those proteins which

demonstrated the same effect were combined (rule-in or rule-out). Here, one combination was 

identified, which featured an AUROC of 1. Combining the protein abundance information in uri-

nary exosomes of Q9H190 and P22033 led to an 100% correct group prediction, simply by con-

sidering the protein abundance of those two proteins. Even though a perfect combination of pro-

teins in the urinary exosome proteome has been identified, which is in turn able to objectively 

diagnose mTBI based on their protein abundance level, it is wise not to extensively filter possible 

biomarker candidates before entering the qualification step.

Table. 4.3: List of protein combinations and resulting AUROC.

No. Protein Accession AUROC

1 Q9H190 and P22033 1.000

2 Q9H190 and O75363 0.912

3 P22033 and O75363 0.835

4 Q9H190, P22033 and O75363 0.835

5 A6H8Y1 and Q9Y520 0.901

6 A6H8Y1 and Q8WZ75 0.824

7 Q9Y520 and Q8WZ75 0.802

8 A6H8Y1, Q9Y520 and Q8WZ75 0.901
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The extended qualification cohort consists of 34 samples which were acquired via DIA. Out of the 

1660 protein groups which are stored in the ion library a total of 1642 proteins were quantified 

across all samples. On average, 1127 ± 240 proteins were quantified per sample. A maximum of 

1560 proteins and a minimum 514 proteins were quantified per sample. After sum normalization, 

the data set was analyzed regarding the type of distribution. Here, Q-Q-plots were drawn for each 

sample independently (cf. Appendix 8.3.2). The plots allowed for the conclusion that the present 

data does not feature a normal distribution.

As the first step, observed protein abundance was tested for statistical significant changes via the 

Mann-Whitney u test by comparing the clinical groups (mTBI, Controls and ICB) as used in the 

discovery study (cf. Chapter 4.3.4): mTBI vs. Controls and ICB sampes; mTBI vs. only Control 

samples. Within the first group-wise comparison, only seven proteins with a statistical significant 

(p < 0.05) protein abundance change were observed. Respectively, the second group (comparing 

only mTBI to Controls) revealed 17 protein groups with significant abundance changes. The in-

tersection between these two comparisons featured only three protein groups, namely, P30740

(Leukocyte elastase inhibitor), P06702 (Protein S100-A9) and P12273 (Prolactin-inducible pro-

tein).

Table 4.4: List of dual significant protein groups.

No. Protein Accession p-value (mTBI vs. rest) p-value (mTBI vs. CT)

1 P30740 (SERPINB1) 0.010513244 0.020379874

2 P06702 (S100A9) 0.019408045 0.008913398

3 P12273 (PIP) 0.034283299 0.000551833

The direct comparison of protein groups found with a statistically significant abundance change 

from this analysis and those protein groups found within the discovery cohort (cf. Section 4.3.3), 

no accordance was found. None of the previously possible biomarker candidates could be verified 

in this follow-up and extended cohort. Additionally, in this second study, the list of significantly 

abundant protein groups is much shorter than in the previous one. Given these results, the list of 

identified biomarker candidates might then reflect abundance changes introduced through the 

sample processing process. Any further validation process of the previously identified biomarker 

candidates appears to be obsolete. Furthermore, any multiple testing correction or false-discovery 

correction of this newly identified three biomarker candidates in the context of a total 1642 quan-

tified proteins does denominate these candidates as false positive. Hence, it appears that urinary 

exosomes might not feature exploitable information to discover objectively measurable features 

to diagnose mTBI.

Nevertheless, proteins of the S100 protein family are discussed in the literature as potential bi-

omarker 184-186. These studies however, describe their findings in the peripheral blood or cerebro-

spinal fluid (CSF) and correlate their findings to the fact that S100-
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found in astrocytes and hence that the occurrence of this specific monomer in blood or CSF indi-

cates astrocyte disrupter and in turn also concussion. Here, also a member of the S100 family 

has been observed with statistical significant (p < 0.05) abundance variations between mTBI sam-

ples and Contols as well as to ICB samples. It can be hypothecated that the monomers are filtered 

in the glomeruli (kidney) and hence end up in the urine or in exosomes within the urine. However,

S100A9 in particular, has already been described as a key-player in the renal functions 187-189.

Hence, these statistically significant protein group abundance changes could rather be correlated 

to interpersonal renal function alterations than to an actual existent mild traumatic brain injury. 

Exosomes can perform signaling functions between different tissues as they can be transported 

via different body fluids to distant parts of the body. Here, besides the initial hypothesis to discover 

mTBI-related biomarker candidates in urinary exosomes, it is also hypothecated that exosomes 

originating from traumatic brain injuries are filtered into urine and alter the urinary exosome pro-

teome.

Here, after sum normalization, the protein abundances were also tested for statistical significant 

abundance changes between, ICB and control with mTBI samples as well as between ICB and 

control samples alone. Already within the initial sample cohort (21 DIA samples), 31 protein 

groups were observed with significant abundance change not only within the first comparison set 

but in both. Nonetheless, the PCA plots generated, based on all quantified protein groups did not 

indicate any ICB group-based clustering. Additionally, in the extended sample cohort, a total of 

80 protein groups demonstrated significant (p < 0.05) abundance changes. The contrasting jux-

taposition of initial and extended sample cohort revealed an overlap of three protein groups (cf.

Table 4.5). Here, Q9Y2A7 (Nck-associated protein 1), Q16348 (Solute carrier family 15 member 

2) and Q96F07 (Cytoplasmic FMR1-interacting protein 2) were identified in both cohorts with sig-

nificantly different protein abundance (p < 0.05).

Table 4.5: List of protein groups observed as significantly different in both cohorts.

No. Protein Accession p-value (1st Cohort) p-value (2nd Cohort)

1 Q9Y2A7 (NCKAP1) 0.037635314 0.025347319

2 Q16348 (SLC15A2) 0.037635314 0.013499121

3 Q96F07 (CYFIP2) 0.047220904 0.031485322

In this context, Q9Y2A7 as well as Q96F07, feature functions that can be related to processes

involved in TBIs or secondary brain injuries. The GO annotation revealed that the Nck-associated 

protein 1 (Q9Y2A7) is associated with inducing apoptotic processes while modulating actin reor-

ganization processes via the WAVE protein complex. Additionally, a possible relation to Alz-

heimer’s disease (AD) has also already been described 190-192. In this regard, AD is recognized 

as a neurodegenerative disease, which involves neuronal cell death due to various involved dis-

ease mechanisms. Nevertheless, brain injury can be counted as secondary injury in this context 
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of AD which consequently leads to the assumption that NCKAP1 occurrence in urinary exosomes 

relates to an existing brain bleed in patients. Besides the involvement of NCKAP1 in neurological 

apoptosis process, the GO annotation of Cytoplasmic FMR1-interacting protein 2 (Q96F07) re-

vealed that this protein is involved in the T-cell adhesion and p53/TP53-dependent induction of 

apoptosis 193-195. Additionally, due to its high similarity to Q5SQX6 (CYFP2_MOUSE), the identical 

protein in mice, it is deviated that this protein is highly expressed in the perinuclear region and 

enriched in synaptosomes 196.

Figure 4.5: Statistical analysis of Q9Y2A7 and Q96F07. a) 2D-scatterplots of Q9Y2A7 and Q96F07 for initial and ex-

tended sample cohort. Scatter-plot features a spread while for the extended cohort, ICB samples cluster at the origin of 

the scatter plot. b) ROC curve for the linear regression of Q9Y2A7 and Q96F07 based on either the initial discovery cohort 

(purple) and the extended sample cohort for qualification (green). AUROC for both curves is > 0.8. 

Further, the diagnosing applicability of these proteins in the context of intracranial bleed was in-

vestigated. At first, the AUROC for each protein alone was identified. Here, each protein featured 

an AUROC of > 0.7 in both investigated cohorts. In addition to the investigation for each protein 

alone, the linear combination of the two neuronal proteins was also tested for biomarker applica-

bility. Corresponding AURCO values are given in Table 4.6.

Table 4.6: List of calculated AUROC values. ROC curves for the linear combination can be found in Figure 4.5.

Accessions Discovery Cohort Qualification Cohort

Q9Y2A7 0.844 0.778

Q16348 0.844 0.807

Q96F07 0.828 0.815

Q9Y2A7 and Q96F07 0.906 0.825

For both cohorts, the linear combination of the neurological proteins (Q9Y2A7 and Q96F07) the 

AUROC was enhanced compared to their single counterpart. Nonetheless, perfect biomarker 

conditions (AUROC of 1) were not reached. For both cohorts the linear combination was visual-

ized via 2D scatterplot (cf. Figure 4.5). For the initial cohort, ICB samples are spread across 

higher protein values, while the control and mTBI samples are found closer to the origin of the 

plot. In contrast, ICB samples from the qualification cohort cluster closer to the origin, while control 

AUROC:
Purple – 0.906
Green – 0.825
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and mTBI samples spread towards higher abundance levels. Based on the associated biological 

process (BP) and the sub-cellular location of the protein itself, a higher protein abundance ap-

pears logical. Nonetheless, the effect causing the statistical significance is inverted between the 

initial and qualification cohort. Besides the fact that these proteins appear with statistically signif-

icant protein abundance changes and their statistical usability for objectively diagnosing intracra-

nial bleeds, the occurrence of effect inversion definitely compromises the applicability of these 

proteins as clinical biomarker for diagnosing intracranial bleed via urinary exosomes.

Finally, the association of protein groups with significant abundant changes to certain disease or 

function specific pathways was investigated. The scope of this investigation was the identification 

of processes which are specifically involved in neuronal damage, neurodegeneration or any other 

neurological impairments, which give rise to the presence of an intracranial bleed. Nonetheless, 

for a biomarker it is not theoretically an essential event to be correlated to a disease-specific

pathway 197, however, in the case of a link being found, the actual marker might be additionally 

exploited as a drug target. Here, the association of proteins to disease and function-specific pro-

cesses help to identify proteins or protein groups which are involved in the actual neurological 

injury process due to intracranial bleed.

The analysis of the protein list originating from the initial sample cohort did feature certain involve-

ments in neurological disease pathways. Here, the key protein was SOD1 (P00441; Superoxide 

dismutase [Cu-Zn]). This protein is described as an enzyme specifically destroying radicals which 

are normally produced within the cells and which are toxic to biological systems. Besides SOD1 

also the aforementioned NCKAP1 (Q9Y2A7 has been associated with the differentiation of corti-

cal neurons. Otherwise, no further involvements in neurological pathological pathways or general 

neurological process was found.

In contrast, the extended sample cohort features 16 protein groups which were associated with 

neurological impairments. Many noted impairments (cf. Appendix 8.3.3) refer to abnormal mor-

phology of neuronal components, as e.g. abnormal morphology of brain. Here, the top three as-

sociations with neuronal dysfunctions are abnormal morphology of cerebellum, abnormal mor-

phology of fourth cerebral ventricle and abnormal morphology of brainstem with p-values of > 7E-

4. Surprisingly, none of the aforementioned and further investigated biomarker candidate mole-

cules was assigned to any neurological mechanism.

Figure 4.6: Screenshot of Ingenuity® IPA® summary page. On the summary page, “Neurological Diseases” already 

stands out as a top three match of the uploaded protein entries. The corresponding p-values for identified processes lies 

within ~5 to 2 E-4. A total of 16 protein groups ID was able to be assigned to this functional and disease group.
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Exosomes represent a highly valuable research target for the discovery of novel biomarkers for 

certain diseases. The experiments conducted have shown that processes from even very distant 

body parts can be verified in urinary exosomes. Furthermore, exosomes allow insights into cellu-

lar processes and give rise to certain signaling attempts.

Here, biomarker candidates for mild traumatic brain injury were identified in the first sample co-

hort, but could not be validated in the admitted qualification cohort. On one hand this can be 

explained by either the rather small cohort size and hence interpersonal difference can be picked 

up as statistical significance. On the other hand, the Tamm-Horsfall protein (Uromodulin; P07911)

imposes a giant adversary for the exosome extraction 175. This highly abundant protein in urine 

can co-complex certain urinary proteins which consequently co-sediments with the exosomes 

during ultra-centrifugation. However, even extensive washing of the exosome pellets might not 

abolish these uromodulin-clusters. Furthermore, exosomes might even be enclosed in these clus-

ters 175. Here, the expansion of the sample cohort to specifically discover biomarker candidates 

for mTBI appear to be necessary. Furthermore, the data has shown that the proteome within 

exosomes might not be altered due to sustain a concussion.

Besides the attempt to discover mTBI-related biomarker candidates in urinary exosomes, this 

study setup also allowed the investigation for biomarker candidates for intracranial bleed. Here, 

a panel of biomarker candidates was discovered that allowed for objectively diagnosing the pres-

ence of an intracranial bleed. Furthermore, the candidate molecules were observed within two 

independent sample cohorts. Nonetheless, further evaluation via other methodology (e.g. West-

ern Blot or ELISA) is required before any advancements can be undertaken. Furthermore, many 

associations of proteins with neuronal pathological processes were found. However, a biomarker 

candidate could not be deviated as these proteins feature rather poor clinical satisfaction with

regard to sensitivity and/or specificity. Nonetheless, intracranial bleeds can be divided into four 

different types: intracerebral (parenchymal; within the brain matter), epidural, subdural and sub-

arachnoid 198-200. Yet, it is not known to what extend the certain types of intracranial bleed can 

further alter the proteome network. Hence, further research has to be conducted to fully under-

stand the impact of intracranial bleed type and proteome composition. Ideally, the exosome pro-

teome can help to stratify amongst the mentioned types of ICB. Both sample cohorts for this 

investigation were lacking any ICB classification, leaving meta-information in a binary state (bleed 

or not).

Over the few past years, exosomes have receive an increasing amount of attention as a research 

target, especially regarding the discovery of novel biomarkers. Furthermore, the clinical applica-

bility of biomarkers found in exosomes has been extensively discussed and is expected, espe-

cially since technological advancements allow for reliable and cost-effective exosome extraction 

201, 202. Nonetheless, it appears that the clinical applicability of exosomal mTBI biomarker is com-

promised, especially by the time factor. Clinicians or healthcare provider need almost instant re-

sults to adjust their therapeutic approach. Hence, diagnostic exosomal mTBI biomarkers will pro-

vide no benefit. Additionally, intracranial bleeds need to be ruled-in or ruled-out immediately,
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which can be easily achieved by imaging technologies like CT or MRI. However, urinary exo-

somes, due to their non-invasive recovery have gained a special status and can provide insightful 

information as well as provide valuable biomarkers. Lastly, exosomal biomarker in the context of 

time-sensitive injuries as mTBI or intracranial bleed, appear not to be an obvious research area.
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exosome extraction. Furthermore, I want to thank Dr. Judith Steen and Dr. Hanno Steen for in-

sightful discussions and scientific support. Last but not least, I want to thank Dr. Rebekah Mannix 
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coordinators for the collection of urine samples in the Emergency Medicine Department at Boston 
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The bottom-up proteomics approach describes the specific digestion of proteins or even protein 

mixtures with specific proteases. Resulting peptides hence feature specific N- or C-termini which 

are specifically used to identify proteolytic peptides and thus to identify proteins based on the 

peptide sequence snippet. In this context, generic and spontaneous protein degradation is mainly 

avoided by storing proteins at sub-zero temperatures and especially working with protein solu-

tions at low temperatures (e.g. 4°C). Here, it is desirable to avoid any falsely introduced protein 

degradation or cleavage through external proteases. In this context, proteomic search algorithms 

can be specifically set by the user to ignore any peptide which does not feature designated cleav-

age sites originating from the digestive enzyme used.

Proteins, which circulate throughout the body, are steadily exposed to temperatures, proteases, 

pH conditions or pathogens like bacteria or viruses which can cause spontaneous protein degra-

dation. However, it is widely known that pathogens can specifically degrade, or i.e. cleave host 

related immune proteins by secreted proteases 203-208 to evade the hosts’ immune defense. Addi-

tionally, endogenous occurring proteases (e.g. metalloproteases) can also cleave useful proteins

just by recognizing its characteristic cleavage pattern. Nonetheless, uncontrolled proteolysis re-

actions are sometimes part of certain diseases such as Synucleinopathies 209, 210 or cancer 210-212.

Urine is the by-product of filtering plasma through the glomeruli in the kidneys 213, 214. Here, un-

wanted and unnecessary molecules such as metabolites, proteins, etc., are expelled from the 

blood and later excreted via urination. Urine is not constantly excreted but stored for a certain 

time in the bladder. Under certain circumstances, urine is stored for several hours in the bladder, 

where it is technically “incubated” at 37°C, body temperature. Practically, this imposes ideal work-

ing conditions for proteases to cleave proteins. In this context it was hypothecated that due to 

either disease-specific or due to endogenous protein degradation, peptides with altered N- or C-

termini, apart from termini established through the employed digestive enzyme for sample prep-

aration, can be identified and further quantified 215. Based on the scope of research, semi-specific 

peptides and their altered termini, the terminology “Terminomics” was deviated.

In this study, semi-tryptic peptides are identified and then quantified to discover disease-specific 

proteolytic events which in turn could provide diagnostic and/or other biomarker-like indications.
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For this study, no extra urine samples were acquired. The basis for this analysis forms the quali-

tative (DDA) and quantitative (DIA) data from the aforementioned mTBI urine biomarker qualifi-

cation study (cf. Section 3.3.3).

After the quantification process of the 50 DIA files was completed (cf. Section 3.2.4.2), the list of 

quantified peptides was specifically filtered for peptides, which demonstrated either a non-tryptic 

N- or C- terminus. Hereto, an in-house PHP script was employed, which directly compared the 

identified peptide sequence with the corresponding protein sequence.

In short, the quantitative output report features one line for each quantified peptide, or precursor. 

Here, the assigned protein group or protein accession to which the precursor has been assigned, 

is also given. Hence, after parsing the list of peptides into an associated array, the corresponding 

protein sequence, based on the given protein accession by the search algorithm, was directly 

loaded from the UniProt database by using their provided application programming interface 

(API). Consequently, the peptide sequence was matched to the protein sequence. After obtaining 

the position of the first peptide amino acid within the protein sequence, the N-terminus cleavage 

site was analyzed for trypsin specificity by testing the (n-1) position for presence of R (Argenine) 

or K (Lysine). Consequently, the C-terminus of the peptide was tested for trypsin specificity by 

again testing for presence of K or R. Based on this classification, either the peptide was deleted 

out of the associated array (fully tryptic) or a classification string was added to the peptide array. 

Finally, the associated array was written out as tap-separated text file for further analysis.

The filtered peptide file was further modified, allowing for statistical group-wise comparison. Here, 

each peptide was re-assigned to its parent protein. In short, after loading the filtered peptide out-

put file was loaded into EXCEL (Microsoft, USA), the data was condensed using the built-in “Pivot 

Table” options. Here, peptides could easily be remapped to their parent protein, allowing for pep-

tide quantification within the assigned protein group.

Quantitative values were statistically analyzed with either SPSS v23 (IBM) or EXCEL with “Real 

Statistics Resource Pack” plugin. Further statistical analysis was performed with the proteomics 

data analysis tool: InfernoRDN (v.1.1.6044) 174 from http://omics.pnl.gov (U.S. Department of En-

ergy).



Terminomal Biomarker Discovery in Urine

83

In the dataset a total of 787 non-specific, i.e. semi-specific peptides were identified. Peptides 

associated with general laboratory proteins were deleted from the target list prior to peptide anal-

ysis. Out of the proteins identified, 227 peptides related to peptides featuring a non-tryptic cleav-

age at the C-terminus and 560 peptides with a semi-specific N-terminus. During the filtration pro-

cess for semi-tryptic peptides, N-terminal or C-terminal peptides were also specifically excluded 

from consideration by a special implemented screening algorithm. Consequent peptide quantita-

tion was conducted by summing the “MS2PeakArea” for each peptide. Consequently, the data 

distribution was tested via Q-Q-plots. Here, normal distribution was ruled out, as no diagonal line 

was observed in any sample-based plots (graphs not displayed). Hence, for any further analysis,

non-parametric conditions were presumed.

At first, peptide quantities originating from the mTBI group were statistically compared to those

originating from Controls and ICB group. For this first comparison, Controls as well as ICB sam-

ples were both considered control samples. In this first analysis a total of 39 peptides were iden-

tified with a p-value < 0.05. In this discovery step, p-values were acknowledged as is, and were 

not further corrected by multiple-testing (e.g. Bonferroni or Benjamini-Hochberg). Secondly, ICB 

samples were removed from the “Control” group and hence, mTBI samples were compared only 

to controls. Within this comparison a total of 32 peptides was identified with a p-value of less than 

0.05. Nonetheless, no peptide featured a significance lower than p = 0.001.

Figure 5.1: 3D PCA plot for significant observed terminomal peptides. PCA loadings based on significantly observed 

quantity variation of peptides with semi-specific cleavage. The plot accounts for 57.5% of the dataset variation, whereas 

PC1 accounts for 35.7%, PC2 for 12.6% and PC3 for 9.2% variation. No clear group wise clustering observable.
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As consequent investigation, the intersection between the first statistical group comparison and 

the second was estimated. Here, 22 peptides (cf. Appendix - Table 8.4.1) showed significance 

(p < 0.05) in both comparisons. The peptides that were filtered  here were entered into a PCA (cf. 

Figure 5.1) to identify clustering tendencies in the peptide quantities. The corresponding three-

dimensional PCA plots (PC1, PC2 and PC3) accounts for a total of 57.5% of the data variation. 

Additionally, PC1 accounts for 35.7%, PC2 for 12.6% and PC3 for 9.2%. Nonetheless, no clear 

or obvious group-based clustering and separation was observed in the PCA plot.

Figure 5.2: Supervised PCA Bi-Plot for mTBI biomarker discovery. All significantly observed peptides entered into 

PC analysis. There is no peptide specific separation of clinical groups. While Controls (green) rather spread along PC 2, 

mTBI (red) samples spread across PC 1. PCA blot accounts for a total of 48.3 % of the dataset variance.

Furthermore, the identified and significantly different peptides that were observed, were traced 

back to their parent protein. Protein accessions were used to further identify pathways or biolog-

ical processes that could have been compromised or specifically regulated by protein degrada-

tion. Out of the 22 previously identified peptides, 18 proteins and their corresponding accessions 

where deviated. Here, amongst the results of the Ingenuity® IPA® pathway analysis, pathways 

listed with the most significant p-values are: LXR/RXR activation (1.4E-8), FXR/RXR activation 

(1.7E-8) and Acute Phase Response Signaling (4.9E-5). Furthermore, “Immune Response” was 

listed as possible “Disease or Disorder” with a p-value range of 4.41E-2 to 6.35E-5. However, no 

specific pathway for neurological processes was discovered amongst the submitted protein ac-

cessions.
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Besides the analysis for the discovery of mTBI based processed, here an analysis for ICB-based 

processes was also performed. Initially, the peptide quantities of ICB sample were statistically 

compared to mTBI as well as control samples via Mann-Whitney u test. In this first comparison, 

mTBI and controls were jointly considered one group. Here, a total of 39 peptides were identified 

demonstrating a significance level of p < 0.05. For discovery purposes, p-values were not yet 

corrected for multiple testing. Consequently, ICB-related peptide quantities were only compared 

to control samples. This comparison revealed 40 peptides with p < 0.05. No additional multiple 

testing correction was applied here for discovery purposes. Consequently, the intersection of both 

comparisons was assessed. In total, 20 peptides were observed with significant peptide quantity 

changes in both non-parametric group-wise comparisons (cf. Appendix - Table 8.4.2).

The aforementioned 20 peptides were entered into a PC analysis to estimate their diagnostic 

value. Here, the first principal component (PC1) accounts for a total variance of 39.8%, while PC2 

accounts for 12.7%. The third principal component (PC3) describes another 9% of the dataset 

variations. Hence, a 2D-PCA plot (PC1 & PC2; cf. Appendix 8.4) displays a total of 52.6% of the 

dataset variation, while the combined 3D-PCA plot (PC1, PC2 & PC3) accounts for 61.5% (cf.

Figure 5.3) of the variance. In both plots, a tendency of ICB sample clustering can be observed.

Figure 5.3: 3D PCA plot for the discovery of ICB specific clustering. PCA plots for the top three principal components: 

PC1 representing 39.8 % variance, PC2 accounting for 12.7 % variance and PC3 featuring ~9% dataset variance. ICB 

samples tend to cluster in the top left corner while one ICB sample is rather centric. PCA plots demonstrates a total of

61.5% of the dataset variance.

All but one of the samples (bld2) are clustered to the top left corner of the plot. Nonetheless, an 

absolutely clear separation of ICB samples from all others is not achieved. The corresponding 

PCA Bi-plot (cf. Figure 5.4) reveals that only a peptide with the sequence “GDEELLRFSN”
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causes the clustering of ICB samples into the top left corner: the corresponding AUROC numbers 

0.718 (ROC plot not shown). Furthermore, based on the peptide sequence, it was reciprocal as-

sociated with the AMBP protein (P02760). This protein consists of 352 amino acids and features 

a total molecular weight of 40 kDa, as well as the protein exhibiting different interaction sides. 

Binding sites occur within the head of the protein (amino acid #53 to #149) chromophore. Towards 

the end of the polypeptide chain, this particular protein features a trypsin-specific inhibitory func-

tional side. In this context, the peptide of interest was originating from a C-terminal cleavage of 

“Proline” at position #340 in the amino acid chain. The trypsin inhibitor region however, is indi-

cated to range from #297 to #298.

Figure 5.4: PCA Bi-Plot of significantly observed terminomal peptides in ICB. The plot is based on two principal 

components: PC1 and PC2. Components account for a total of 52.8% dataset variance. Components account for either 

39.8% (PC1) or 12.7 % (PC2) of the dataset variance. Single peptide “GDEELLRFSN” causes a cluster of ICB samples 

towards upper left corner.

Apart from the PCA analysis, peptide information was also entered into a pathway-centered anal-

ysis. Here, the statistically significant peptides originated from 17 proteins (cf. Appendix -Table 

8.4.2). Consequently, the protein accessions were fed into the Ingenutiy® IPA® pathway analysis 

algorithm. Here, a total of six proteins were non-exclusively associated with neurological disor-

ders. Via KNG1 (P01042), a particular link to “damage of blood-brain barrier” with a p-value of 

5.55E-3 was found. Furthermore, Kininogen-1 was represented in the dataset with 13 semi-spe-

cific tryptic peptides. However, only one peptide demonstrated significance across both applied 

comparisons.
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The proteome is always tightly controlled by processes in the body. Post-translational modifica-

tions add extra layers of control to this system. Nonetheless, proteolysis probably imposes the 

most effective mode of control 215. Proteomic studies mainly focus on the identification of tryptic 

peptides, which should ideally not feature any cleavage alterations. Nonetheless, the search for 

semi-specific peptides and their consequent identification would cause a higher peptide coverage, 

which additionally enables the identification of more proteins in complex samples 216. However, 

computational processing times are massively increased due to the enhanced possible peptide 

precursors. Here, the proteolytic proteome control process is exploited to possibly deviate dis-

ease-related diagnostic information from proteins that feature specific cleavages from endoge-

nous proteases other than the uniformly used trypsin during sample preparation for mass spec-

trometric analysis.

In this study, various semi-specific peptides have been identified and in this context, the question 

remains of whether the detected non-tryptic cleavage was caused by spontaneous protein deg-

radation or just randomly, or whether it actually originates from directed protein cleavage through 

endogenous proteases. Nonetheless, the acquisition of a mass spectrometric signal (actual peak) 

of a particular precursor is based on a high number of identical ion species which have to be 

present in the sample. Based on this fact that semi-specific peptides which were acquired with a 

signal higher than the noise level are only based on spontaneous protein degradation as too many 

identical ion species are present to entitle the process as random event, can be excluded.

The abundance comparison of semi-tryptic peptides between mTBI samples and controls as well 

as ICB samples lead to a list of possible diagnostic target molecules. Nonetheless, a valuable 

diagnostic performance could not be deviated. Whether or not the PCA analysis demonstrated 

diagnosing tendencies, the reciprocal pathway analysis did not reveal any neurological related 

pathways or disease processes.

In contrast, within the ICB samples it was observed that these samples collectively share a semi-

specific peptide that inherited classification tendencies. The analysis of this peptide revealed a N-

term based cleavage after (c-terminally) Prolin. Trypsin per se, features tendencies to also rec-

ognize Prolin as a cleavage site. If in this case, the cleavage was caused by trypsin, the prolin 

amino acid would be part of the observed peptide, as trypsin cleaves N-term specific on prolin217.

However, also shown here in the PCA plot, no clear separation could be achieved. In this context, 

the satisfactory clinical expectations were not achieved by simply basing the diagnosis on this 

single peptide. Additionally, the deviation of a clinical valuable diagnosis based on a single semi-

specific peptide appeared too vague, which lead to the consequent refusal of this lead.

Thus far, the analysis of semi-specific peptides in the context of clinically usable diagnosing in-

formation has not revealed any useful insights. Nonetheless, this type of investigation might con-

tain insightful information in the context of diseases other than neurological disorders.
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Every year the mean age of the world population increases which in turn, also influences the 

incidences of age-related disorders 218. Amongst these disorders, neurodegenerative diseases 

have drawn lots of attention as their progress is mostly irreversible, they feature a lack of effective 

treatment options as well as being heavily associated with social and economic burdens 219. None-

theless, neurodegenerative diseases feature different clinical patterns, which can however over-

lap to a great extent. Common symptoms of neurodegenerative diseases can be described as: 

paralysis, tremors, muscle weakness, poor coordination, dementia, loss of sensation, confusion 

or altered levels of consciousness.

On the cellular level, neurodegenerative diseases (ND) are described as the progressive loss of 

neuronal cells in the brain. With the increased disappearance brain cells, the aforementioned 

symptoms also worsen or further symptoms can manifest in the clinical picture. Furthermore, on

the molecular level, NDs are mainly described as proteopathies, as the diseases are caused 

through misfolded proteins which cause the consequent cell death. However, misfolded proteins 

are not the only cause of the onset of neurodegenerative disorders. On the molecular level, dif-

ferent reasons, such as genetic impairments 89, 220, mitochondrial dysfunction 221, 222 or activation 

of programmed cell death 223 are widely discussed. Even though causes are known, diseases 

remain incurable once they have been diagnosed. Hence, the major goal of research lies within 

the discovery of methodological approaches or biomarkers, that in turn allow for the early detec-

tion of neurodegenerative diseases as well as the presymptomatic detection of neuronal dysfunc-

tion 224.

The brain features a certain fluidic layer between the skull and the cortex. This fluidic layer is 

furthermore defined as cerebrospinal fluid (CSF) which hence provides a mechanical and immu-

nological protection for the brain. Additionally, the brain is fully submerged in CSF, which also 

reaches further down into the spinal cord 225. Besides the protective function of CSF for the brain, 

CSF also adopts the function of the waste management of the brain tissue. Waste products or 

toxic molecules can hence easily be removed by the regular flow of CSF in the skull. Here, CSF 

can demonstrate a certain “sink” function, which allows the further transport of waste into the 

bloodstream and hence beyond the blood-brain barrier. Due to its close proximity to the central 

nervous system (CNS) as well as to affected brain regions by degenerative diseases, CSF im-

poses a valuable body fluid for researchers in the context of neurodegenerative diseases. In par-

ticular, CSF can reflect metabolic processes as well as the biochemical state of the brain.

In this study the CSF of patients suffering from four different neurodegenerative disorders, namely 

corticobasal degeneration (CBD), Parkinson’s disease (PD), Alzheimer’s disease (AD) and pro-

gressive supranuclear palsy (PSP), were analyzed. Patients displaying “healthy” conditions are 

enrolled as control samples. Consequently, samples were analyzed with the aim of the discovery 

of diagnostic as well as stratification biomarkers. 
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Samples were collected at the University of California San Francisco (UCSF), USA. After collec-

tion, samples were entered into the specimen bank at the UCSF Memory and Aging Center. The 

sample cohort was retrieved as part of a collaborative project. Corresponding sample tubes con-

tained about 1 ml of neat cerebrospinal fluid (CSF) each. Signed consent was obtained before 

sample collection. Cohort acquisition was under the supervision of the Institutional Review Board

(IRB) at UCSF.

The CSF sample was thawed on ice and the neat sample (12 2 diluted 

in 138 µl 50 mM ABC. Hereafter, the diluted sample (150 µl sample volume) was added to a 

. The result-

ing solution was incubated for 20 min at 27°C and 1100 rpm in a thermo mixer. Reduced cysteine 

side chains were alkylated with 50 mM IAA (final concentration) and incubated for 20 min in the 

dark at 27°C and 750 rpm.

The hydrophobic PVDF membrane in a 96-well plate format (MSIPS4510, Millipore) was pre-

These and all subsequent liquid transfers were carried out using a fitted 96-well micro-plate vac-

uum manifold (MAVM0960R, Millipore).

Each sample was drawn three times through the PVDF membrane by applying a vacuum. After 

protein adsorption onto the membrane, it was washed twice with 50 mM ABC. Protein digestion 

was performed with sequencing grade trypsin (V5111, Promega) at a nominal enzyme to sub-

and trypsin) were added to each well. 

After incubation for 2 hours at 37°C in a humidified incubator, the remaining digestion buffer was 

acid (FA) each. Upon pooling, the peptide solutions were dried in a vacuum concentrator. Lyoph-

ilized samples were stored at -20°C for further analysis.

Dried peptide mixtures were reconstituted in 30 µl sample buffer (5% ACN / 5% TFA) and needed 

calibration peptides (HRM Calibration Kit; Biognosys, Switzerland) were spiked-in with a 1:30 ratio

(1 µl peptides per sample). Tryptic digests (~1.2 µg; 3 µl sample) were directly injected onto a 

PicoChip (NewObjective, ReproSil-

quently separated by a linear gradient from 93 % buffer A (0.2 % FA in HPLC water; buffer B: 0.2 

% FA in ACN) to 70 % within 120 min. Analytes were ionized and sprayed into the mass spec-
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trometer (Q Exactive, Thermo Fisher) by applying 2.2 kV to the spray emitter. The mass spec-

trometer was operated in data-dependent TOP10 mode with the following settings: mass range 

375 – 1400 Th; resolution for MS1 scan 70 000 @ 200 Th; lock mass: 445.120025 Th; resolution 

for MS2 scan 17 500 @ 200 Th; max. injection time (IT)120 ms; isolation width 1.6 Th; Normalized

Collision Energy (NCE) 27; underfill ratio 2.0 %; charge state exclusion: unassigned, 1, >6; dy-

namic exclusion 30 s.

The same samples as in Section 6.2.3.1 were used for quantitative analysis. Tryptic peptide 

mixtures (~1.2 µg) were directly injected onto a PicoChip (NewObjec-tive, ReproSil-Pur C18 3 

3 % 

buffer A (0.2 % FA in HPLC water; buffer B: 0.2 % FA in ACN) to 70 % within 120 min. Analytes 

were ionized and sprayed into the mass spectrometer (Q Exactive, Thermo Fisher) by applying 

2.2 kV to the spray emitter. Each DIA cycle contained one full scan (MS1) and 17 consecutive 

target MS2 (t-MS2) scans covering a mass range of 400 – 1000 Th. The full scan resolution was 

– 1,000 Th; 

followed by DIA scans with resolution 35,000 @ 200 Th; variable window size was applied used; 

NCE 27; AGC target value 1e6, max. IT 120 ms.

Table 6.1: Variable extraction windows used in DIA experiments.

Window No. Window size

1 26 Da @ 413 m/z

2 to 8 27 Da @ 437.5, 462.5, 487.5, 512.5, 537.5, 562.5 and 587.5 m/z

9 to 12 32 Da @ 615, 645, 675 and 705 m/z

13 to 16 52 Da @ 745, 795, 845 and 895 m/z

17 81 Da @ 959 m/z

For ion library generation, all corresponding DDA analysis files (*.raw) were loaded into MaxQuant 

117 (v.1.5.2.8) and consequently searched against a reference protein sequence database, here, 

the human UniProtKB database (Homo sapiens, ~20,300 sequences, version 06-2014) was used 

with commonly occurring laboratory contamination protein sequences (cRAP, version 

2012.01.01) added. Variable Modifications were set to: Acetyl(Protein N-Term), Oxidation(M), 

Deamidation(NQ) and Phospho(STY). For fixed modifications only Carbamidomethyl(C) was 

used. The digestion mode was set to “Specific” and the digesting enzyme to “Trypsin”. Otherwise 

default settings (by MaxQuant) were used for the analysis: trypsin with up to two missed cleav-

ages; mass tolerance for the first search: 20 ppm; main search: 4.5 ppm.

DIA files (*.raw), which belong to the analysis of the larger cohort for biomarker qualification, were 

processed and analyzed in Spectronaut 147 (v.7.0.8065; Biognosys, Switzerland). At first, the 

search results from the aforementioned MaxQuant search of the corresponding DDA acquisition 
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were loaded into Spectronaut to generate an ion library, which in turn was saved within the pro-

gram’s data-structure. The data ion library import was performed via the default settings proposed 

by Sprectronaut. After importing the ion library through the search results, corresponding DIA files 

were loaded into Spectronaut and the aforementioned ion library was specified as reference iden-

tification database. The following custom settings were applied in Spectronaut: Calibration Mode: 

Forced. All results were filtered by a Q value of 0.01 (equals a FDR of 1% on peptide level). The 

output report was adjusted to contain all quantification related values. All other settings were set 

to default (by Spectronaut).

Quantitative values were statistically analyzed with either SPSS v23 (IBM) or EXCEL with “Real 

Statistics Resource Pack” plugin. Further statistical analysis was performed with the proteomics 

data analysis tool: InfernoRDN (v.1.1.6044) 174 from http://omics.pnl.gov (U.S. Department of En-

ergy).
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This sample cohort consists of a total of 36 samples which in turn can be divided into five distinct 

clinical distinctive groups: healthy controls, i.e. normal conditions and 4 different neurodegenera-

tive diseases. Here, six samples represent the healthy state or normal physiological and psycho-

logical conditions. Furthermore, the neurodegenerative disease “progressive supranuclear palsy“ 

(PSP) is represented by six samples. Morbus Parkinson or Parkinson’s Disease (PD) as well as 

Morbus Alzheimer or Alzheimer’s Disease (AD) are both represented by six samples each. Addi-

tionally, the progressive neurodegenerative disease “Corticobasal Degeneration” (CBD) is repre-

sented by a total of 12 samples. Due to inconsistency within the metadata in relation to the sample

IDs, one sample that “apparently” belongs to the CBD group was however excluded from any 

data analysis. The focus of this study was the discovery of possible biomarker candidates for 

each of the neurodegenerative diseases. As some diseases feature overlapping molecular events 

as the cause of the diseases, this setup also allows for the discovery of stratifying biomarker 

candidates in cerebrospinal fluid (CSF). 

For the ion library a total of 36 DDA files was analyzed via MaxQuant and its implemented An-

dromeda search algorithm. Hereby, feature matching was activated so that all possible precursor 

ions would be listed in the results file. After search result import, the ion library featured a total of 

359 protein groups. This number correlates to 421 single proteins. Furthermore, 2329 peptides 

were saved in this ion library, which in turn were represented by 2791 precursors. Across the 

dataset an average of 344 ± 4 proteins was quantified per sample. However, in 2014, Guldbran-

sen et al. 226 published a comprehensive analysis of CSF with different techniques and claimed 

that CSF in general features about 3000 different proteins. In comparison, this study hence only

maps about 10% of the whole CSF proteome via mass spectrometry. Furthermore, it maintains 

the opinion that biomarker candidates might rather be found within low abundant proteins, which 

in turn are only observable after depletion of high abundant proteins 227-230. However, depletion of 

highly abundant proteins in CSF was waved for this study. Nonetheless, here, the protein “Serum 

Albumin” (P02768) was excluded from the analysis and hence removed from the list of quantified 

proteins before statistical analysis was applied. Especially in CSF, Albumin is considered the most 

abundant protein 231 for this sample type. Nonetheless, corresponding Q-Q-plots for all samples 

(cf. Figure 8.5.1) showed that the assumption of an existent normal distribution can be rejected,

as none of the plots featured a diagonal line as graphical outcome.
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The cause of PSP is not yet fully understood. It its postulated that the establishment of the pro-

gressive supranuclear palsy disease involves the microtubule associated protein tau (P10636). 

In this context, the inherited genes which are passed on by the parents and are encoding for this 

protein appear to be affected.

Here, after quantifying proteins in CSF of healthy as well as PSP diagnosed patients a first inves-

tigation was a PC (principal component) analysis. Hereto, all proteins, which were previously 

quantified were used as input. Consequently, the initial PCA plot (cf. Appendix - Figure 8.5.2),

including PC1 (43.3%) and PC2 (14.7%), accounted for 58% of the dataset variance. Also, the

first trend of group-based separation was apparent as PSP samples spread along PC1 while 

healthy patients spread along PC2. However, an absolute clear separation was not achieved.

Consequently, proteins with significant protein abundance changes were identified by comparing 

the protein abundance of PSP samples to Controls (healthy patients). Here, a total of 11 proteins 

were identified, featuring a p-value (non-parametric; Mann-Whitney u test) less than 0.05

0.05). At this stage, a multiple testing correction was waived. Entering only these proteins into an 

according PCA analysis revealed a clear group-wise sample separation (cf. Figure 6.1). Further-

more, the corresponding PCA Bi-Plot demonstrates that the following two proteins are causing 

the disease specific spread of samples in this plot: Alpha-1-antichymotrypsin (P01011) and Com-

plement component C9 (P02748).

Figure 6.1: PCA Bi-Plot for significantly observed proteins (Controls vs. PSP). The first two principal components: 

PC1 (64.3 %) and PC2 (12.2 %) account for a total dataset variance of 76.4 %. Clear group-wise separation is apparent 

along PC1. The two features P01011 and P02748 particularly cause PSP separation.



Neurodegenerative Disorder Biomarker Discovery in CSF

95

In the context of neurodegeneration, both proteins were previously described as being involved 

in molecular process which lead to neurodegeneration or neuronal inflammation processes. Here, 

Alpha-1-antichymotrypsin is described as either being a key player of tau-phosphorylation in AD 

232-234 or was already found as a possible bi-

omarker candidate for neurodegeneration 235, 

236. Furthermore, the Complement Component 

C9 protein is described as one of those proteins 

leading to complement activation and hence 

neuro-inflammation in AD 237-239. The described 

involvements however, are only in relation to 

Alzheimer’s Disease and not PSP. Hence, 

these molecules might be of particular interest 

for the detection of general neurodegeneration 

in CSF.

Here, both proteins were further evaluated in 

terms of their diseased state predictability (rule-

in). Therefore, the abundance information was 

entered into the calculation of a Receiver-Oper-

ator Characteristic curve (cf. Figure 6.2). For 

evaluation of their predictability the AUROC 

was deviated by ROC curve integration. Both 

discovered proteins featured an AUROC of > 

0.75. P02748 (Complement Component C9) featured 0.917, while P01011 (Alpha-1-antichymo-

trypsin) only scored 0.861. Nonetheless, the linear combination (binary regression) of both pro-

teins and hence the addition of the predictability of these proteins featured the best AUROC of 

0.944.

Figure 6.3: ROC curve for healthy biomarker candidates. Both proteins P01742 (blue) and P01743 (yellow) were 

tested for the diagnosing efficiency of a healthy state. In both cases the AUROC is greater than 0.9. Furthermore the 

linear combination of both (green) features an AUROC of 0.944. The linear combination did not achieve perfect biomarker 

panel conditions with an AUROC of 1.

Figure 6.2: ROC curve for disease biomarker. Both 

proteins were tested for their state predictability. Com-

plement component C9 (P02748) achieved an AUROC 

of 0.917 while Alpha-1-antichymotrypsin (P01011) only 

achieved 0.861. The linear combination of both achieved 

an AUROC of 0.944. Perfect biomarker conditions are 

represented by an AUROC of 1.
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In contrast to specifically diagnose the diseased state (rule-in), also the healthy state can be 

defined and hence diagnosed (rule-out). In this investigation, nine proteins (cf. Figure 6.1) show 

tendency to feature the ability to define the healthy state. Consequently, these proteins were an-

alyze regarding their solely diagnosing ability (ROC analysis). This analysis revealed that two 

proteins, namely P01742 (Immunoglobulin heavy variable 1-69) and P01743 (Immunoglobulin 

heavy variable 1-46), featured an AUROC of > 0.9 and hence can inherit diagnosing ability for 

the healthy state (cf. Figure 6.3). Additionally to the analysis of the proteins alone, also the linear 

combination of these was tested in regard of a ROC curve. Here, the AUROC numbers at 0.944. 

This however does also not represent perfect biomarker panel conditions with an AUROC of 1.

Figure 6.4: PCA plot of linear combined biomarker panel. PCA plots is based on the four identified proteins, which 

showed either diseases related or healthy state related segregation tendencies. The ROC analysis featured an AUROC 

of 1 while in the PCA plot one PSP sample (arrow) clusters very closely to healthy stated samples. Nonetheless, diagnosis 

can be easily deviated.

Ultimately, the identified four potential biomarker candidates (P01742, P01743, P02748 and 

P01011) were combined by linear regression. This linear regression allows for the combination of 

the diagnostic efficiency of all proteins at the same time. In this regard, the combined efficiency 

scored an AUROC of 1, which in turn represents perfect biomarker panel conditions. Additionally, 

in the PCA analysis while only these four proteins are considered, a clear separation was 

achieved (cf. Figure 6.4). Only one sample clustered closely with healthy stated samples.

Given these results, it can be concluded that the discovered proteins in this analysis are valuable 

biomarker candidates in the context of diagnosing neurodegeneration and PSP in particular. How-

ever, these biomarker candidates first need further validation, especially by methodologies other 

than mass spectrometry, such as Western Blot or ELISA, before future applications of these pro-

teins as biomarker panel can be discussed. 
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As mentioned before, there are four different neurodegenerative diseases represented in this da-

taset. Instead of simply investigating the dataset for diagnostic biomarkers, stratification-driven 

analyses can also be performed. Hence, instead of only comparing PSP diseases CSF samples 

with those samples originating from healthy individuals, here, PSP samples are also compared to 

those samples from the other three neurodegenerative diseases.

The calculation of the statistically significant abundance differences revealed a total of seven

proteins, which demonstrated a p-value of < 0.05. The corresponding PCA plot (cf. Figure 6.5),

which in turn is only based on the previously discovered significant proteins demonstrates a 

group-wise separation. Here, all but one PSP sample separated from the other diseased samples.

Figure 6.5: PCA plot for stratification. PCA plot for proteins with significant abundance changes while comparing PSP 

to other neurodegenerative diseases. The first two principal components account for 60 % of the dataset variance. All but 

one PSP sample separate from the other diseased CSF samples.

The corresponding PCA Bi-plot (cf. Figure 8.5.3) demonstrates, that the group-specific spreading 

is caused by a single protein: Q66K66 (Transmembrane protein 198). Furthermore, this protein 

has been described as being involved in the Wnt signaling pathway. Hereto, it is postulated that 

the transmembrane protein 198 causes LRP6 phosphorylation and also plays a role in the self-

aggregation of LRP6. However, no link to neurodegenerative diseases could be found in the cur-

rent literature. Hence, the transmembrane protein 198 (Q66K66) can be considered a possible 

stratification biomarker candidate, however further validation is needed.
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Parkinson’s Disease (PD) is characterized as the neuronal degeneration of dopaminergic neurons 

in the substantia nigra 104. Consequently, through the stalling of dopaminergic neurons the move-

ment of affected patients is impaired and shows disease-specific symptoms such as shaking, 

rigidity, slowness of movement, and difficulty with walking 105.

Figure 6.6: PCA plot for diagnosing PD in CSF. PCA plot, based on significantly different abundant proteins in CSF. 

First two principal components: PC1 (X – axis: 63.2 %) and PC2 (Y – axis: 15.9%) account for a total dataset variance of 

79.1 %. One PD sample clusters closely to the Control samples (arrow). Segregation pattern can be deviated.

The direct comparison of diseased samples versus healthy patients revealed a total of five pro-

teins that showed statistical significant abundance changes (p < 0.05). Here, multiple testing cor-

rection was waived. Based on the identified proteins a consecutive PCA analysis was performed. 

In this corresponding plot a group-wise separation is apparent. Nonetheless, one PD sample 

clusters very close to the cluster of control samples (cf. Figure 6.6).

Table 6.2: List of proteins observed with significant abundance changes.

Accession Gen Tag AUROC p-Value

O00533 CHL1 0.917 0.0163091

P01023 A2M 0.889 0.0249746

O95025 SEMA3D 0.861 0.0373729

P08123 COL1A2 0.861 0.0373729

P13521 SCG2 0.861 0.0373729
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As additional analysis, the discovered proteins 

with statistical significant protein abundance (p 

< 0.05) were entered into a ROC analysis. 

Here, all of the proteins featured an AUROC of 

greater than 0.85 (cf. Table 6.2). This in turn 

allows the assumption that all five proteins 

might be considered as possible biomarker 

candidates. Furthermore, two proteins, namely 

O00533 (Neural cell adhesion molecule L1-like 

protein) and P01023 (Alpha-2-macroglobulin)

demonstrated the highest AUROC (AUROC > 

0.88) amongst all tested. Based on the PCA Bi-

plot (cf. Figure 8.5.4) these two proteins show 

no identical segregation potential. Hence, the 

feature effects were combined, here, through 

binary logistic regression and their combined 

effect tested again for predictability. In this 

case, perfect biomarker conditions are represented by a nominal AUROC of 1 and a clear group-

wise separation in a 2D-scatterplot (cf. Figure 6.7). Nonetheless, similar conditions via linear 

regression of other features could not be achieved. Hence, it can be concluded, that the proteins 

O00533 and P01023 inherit biomarker panel potential. Nonetheless, further validation, as through 

Western Blot or an extended sample cohort is necessary before further conclusions can be stated.

The discovery of stratification biomarker candidates is again based on the statistical investigation 

for proteins that show significant abundance differences (p < 0.05) while comparing correspond-

ing protein abundances on a group-wise basis. For stratification, protein abundances are directly 

compared to other neurodegenerative diseases implemented in this study.

The aforementioned comparison lead to the discovery of four proteins, which featured the re-

quired statistical significance. Nonetheless, multiple testing correction was waived in this context. 

Consequently, the observed proteins were entered into a PCA to observe the clustering ability in 

the context for stratification. In the corresponding plot, a certain clustering pattern could be devi-

ated. However, perfect clustering conditions could not be achieved. Further, out of the mentioned 

PCA Bi-plot it was deviated that major parts of the PD-based clustering is based on two proteins: 

Q12888 (Tumor suppressor p53-binding protein 1) and P52701 (DNA mismatch repair protein 

Msh6). Based on these findings, the previously-discovered proteins were further investigated via 

ROC analysis.

In the ROC analysis, both proteins featured an AUROC of > 0.75. In particular, the Tumor sup-

pressor p53-binding protein 1 (Q12888) scored a AUROC of 0.764 and DNA mismatch repair 

protein Msh6 (P52701) achieved 0.806 out of a total of 1. As apparent out of the previous PCA 

Bi-plot (cf. Figure 6.8), the effect vector for both proteins is pointing into the same direction. 

Figure 6.7: 2D scatter plot for PD and Controls. Plotted 

are observed protein abundances for O00533 (x-axis) and 

P01023 (y-axis). Simply the protein abundance of these two 

proteins allows for correct diagnosis (indicated by red 

dashed line).
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Hence, the stratification ability was further investigated for the combined vector (Linar Binary Re-

gression). Nonetheless, although both effect vectors were combined, considering both protein 

vectors at the same time only scored an AUROC of 0.833. These results indicate that these pro-

teins feature a certain stratification tendency, but furthermore, don’t feature the full potential to 

clearly differentiate between PD and other neurodegenerative diseases.

Figure 6.8: PCA Bi-Plot for biomarker candidates for PD stratification. The plot accounts for 74 % of the underlying 

dataset variance. Black arrows indicate PCA loadings. PD samples segregate along the Q12888 and P52701 vectors. No 

clear PD stratification can be deviated.

Based on the biological standpoint, both proteins are closely involved in the DNA repair mecha-

nism. While Q12888 is especially involved in the binding of TP53 and the corresponding DNA 

damage signaling 240, P52701 is described as part of the post-replicative DNA mismatch repair 

system (MMR) 241, 242. Most notably based on the fact that biomarkers are not necessarily directly 

associable with disease-specific pathway or biological processes 243, here, both proteins were 

already described as being in the context of neurodegenerative diseases. In short, TP53BP1 

(Q12888) was described as co-localizing with senataxin, especially in the context of ataxia. Yuce 

& West (2003) 244 described the co-localization of these proteins and their signaling in DNA dam-

age. Furthermore, Kulkarni & Wilson (2008) 245 describe that the oxidative stress as pathological 

process in neurodegenerative disease leads to DNA damage and hence disease associated pro-

cess can be classified for DNA repair.

Given these results, it can be concluded that two possible biomarker candidates have been dis-

covered, as these proteins showed statistical significance as well as having already been de-

scribed in literature as being involved in neurological diseases. Nonetheless, this approach is 

limited by sample numbers, which in turn might result in rejection as a candidate in larger or other 

sample cohorts. Nonetheless, further validation of the here identified proteins as biomarker can-

didates or biomarker panel is inevitably necessary.
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Morbus Alzheimer or Alzheimer’s disease (AD) describes the most common neurodegenerative 

disease with a prevalence of 60 to 70% of dementia cases. The specific target here, is the iden-

tification of biomarker candidates, which hold diagnostic value to particularly detect the early on-

sets of this disease.

Here, the protein abundances in CSF samples originating form patients suffering from Alzheimer’s 

disease (AD) were statistically compared to those protein abundances originating from patients 

in a healthy (normal) state. This statistical comparison revealed a total of two proteins that showed 

significant (p < 0.05) changes. In particular, P01011 (Alpha-1-antichymotrypsin) and A6NNM8

(Tubulin polyglutamylase TTLL13P). In this context, Alpha-1-antichymotrypsin has already been 

identified with statistically significant protein abundance changes with the comparison of PSP 

samples with healthy state samples (cf. Section 6.3.3.1).

The two identified proteins cannot be entered in a 

PCA analysis as too few features are available to 

calculate the corresponding principal components. 

Nonetheless, a group-wise separation can be de-

viated by displaying the proteins in a 2D scatter 

plot (cf. Figure 6.9). In this context, Alpha-1-anti-

chymotrypsin is widely described as a possible 

marker in the context of Alzheimer’s Disease 232, 

246, 247. Furthermore, it is mentioned in the patho-

physiology of AD that patients suffering from AD 

feature decreased levels of -tubulin. Additionally, 

-tubulin is particularly post-

translational modified. Here, the molecular func-

tion of Tubulin polyglutamylase (A6NNM8) is de-

scribed as the transfer of “polyglutamyl” groups 

onto tubulin. This process has been described in the context of AD itself, but also as part of the 

neuronal system in general 248-250.

Given these results, it can be concluded that valuable biomarker candidates in CSF for the diag-

nosis of Alzheimer’s Disease has been discovered. Nonetheless, further qualification and valida-

tion is inevitably required before further conclusions can be drawn. Also, given the small sample 

size (six versus six), the waived multiple testing correction, the chance of the outcome being

biased and hence further, either unbiased or targeted validation is recommended.

Figure 6.9: 2D scatter plot for AD diagnosis. The plot 

is based on the protein abundance observed for 

P01011 (x-.axis) and A6NNM8 (y-axis). Seperation ten-

dency between AD and controls is indicated by a 

dashed red line
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The discovery of proteins for the diagnosing AD in CSF was previously described. Nonetheless, 

besides the strong need of diagnosing AD at the early onset of this disease, it is also important 

to be able to stratify between different neurological disorders. Hence, besides the comparison of 

CSF of AD patients with CSF samples of healthy patients, the acquired protein abundances were 

also compared to those of different neurological disorders (e.g. PSP, PD and CBD). This direct 

comparison, based on their diseased group affiliation, a total of seven proteins were identified 

that showed significant protein abundance changes (p < 0.05). Here, the multiple testing correc-

tion was also waived.

Figure 6.10: PCA plot for AD stratification. The PCA plot is based on the identified seven significantly different proteins. 

Here, the first two principal components account for 65.5 % of the dataset variance. Here, a slight segregation tendency 

can be deviated.

Consequently, all seven previously identified proteins were entered into a supervised PCA anal-

ysis. Nonetheless, no absolute clear group-based clustering or separation is apparent in the cor-

responding PCA plot (cf. Figure 6.10). However, a certain segregation pattern can be observed 

in the congruent PCA Bi-plot (cf. Figure 8.5.5). Here, the AD samples segregate themselves from 

the other ND samples along three particular proteins: Q96RW7 (Hemicentin-1), P02765 (Alpha-

2-HS-glycoprotein) and P29622 (Kallistatin). These proteins are particularly deviated by the con-

sideration of only the first two principal components (PC1 and PC2) which in turn account for 65.5 

% of the significant protein dataset variation. The expansion of this consideration by the third 

component (PC3), out of the PCA Bi-plot considering PC1 and PC3, it can be deviated that 

Q9Y5Y7 (Lymphatic vessel endothelial hyaluronic acid receptor 1) also contributes to the stratifi-

cation effect.
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Figure 6.11: Extended PCA Bi-Plot for AD stratification. Instead of displaying PC1 and PC2, this PCA Bi-plot features 

the first (PC 1) and third (PC 3) principal component. The plot accounts for 59.4 % of the variance in the dataset of the 

previously identified seven proteins. Here, PC 3 accounts for 18.6 % variance.

A consequent literature review revealed that Alpha-2-Heremans-Schmid glycoprotein (AHSG) 

and Kallistatin/SERPINA4 had already been briefly described as a possible biomarker in the con-

text of Alzheimer’s Disease. In short, Geroldi et al. (2005) 251 investigates AHSG in the context of 

late onset Alzheimer’s patients and the specific correlation to the genetic allele distribution. Their 

study found a notable correlation between allelic distribution and late onset of AD. Furthermore,

Heit et al. (2013) 252 reports that serpins can generally influence protein aggregation. Additionally, 

it was mentioned in this context that SERPINI1 has been particularly correlated with dementia 253,

SERPINA5 being present in plaques in Multiple Sclerosis 254 and SERPINA3 polymerization being 

an indicator for accelerated onset as well as severe progression of AD 255. Furthermore, in a 

broader sense, the “Lymphatic vessel endothelial hyaluronic acid receptor 1” (LYVE-1) protein is 

used as a positive control for the presence of lymphatic tissue. In this regard and CSF is also 

considered as a lymphatic fluid and hence LYVE-1 is broadly used as control marker for CSF 256,

257.

As further analysis, all proteins were entered into ROC analysis. Here, all seven proteins scored 

an AUROC of greater than 0.7. In theory, based on this outcome, all seven proteins qualify as 

possible stratification biomarker candidates. Nonetheless, four proteins out of the initial seven 

proteins, namely Hemicentin-1 (Q96RW7), Jouberin (Q8N157), Kallistatin/SERPINA4 (P29622)

and Alpha-2-HS-glycoprotein (P02765) demonstrated an AUROC of greater than 0.8. Here, the 

protein information of these proteins were combined via binary logistic regression and further 

tested by ROC analysis. The combined protein information achieved a total AUROC of 1 which 

equals perfect biomarker conditions.
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Table 6.3: List of the identified seven stratification biomarker candidates.

Accession Gene Tag AUROC p-Value

Q96RW7 HMCN1 0.854 0.008187

Q8N157 AHI1 0.847 0.009531

P29622 SERPINA4 0.840 0.011068

P02765 AHSG 0.833 0.012821

P02042 HBD 0.785 0.033524

P35527 KRT9 0.778 0.038088

Q9Y5Y7 LYVE1 0.771 0.043171

As previously mentioned, the following proteins were already described as possible biomarker 

candidates or marker in the context of CSF: P02765 (Alpha-2-HS-glycoprotein), P29622 (Kal-

listatin/SERPINA4) and Q9Y5Y7 (Lymphatic vessel endothelial hyaluronic acid receptor 1). For 

comparison these three proteins were also entered into the binary logistic regression to analyze 

their combined stratification potential. Nonetheless, only an AUROC of 0.910 was achieved. This 

value lies below perfect biomarker conditions but might be a valuable biomarker panel for the 

stratification of AD from other neurodegenerative diseases.

Given what has been previously described and discussed, these results demonstrate that valua-

ble biomarker candidates or biomarker panels have been discovered in this sample cohort. None-

theless, further extensive validation is necessary prior to be able to undertake further steps to-

wards verification.
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Corticobasal degeneration (CBD) is a rare progressive neurodegenerative disease which affects 

the cerebral cortex and basal ganglia. Like many neurodegenerative diseases, CBD also shares 

symptoms amongst major neurodegenerative diseases. Due to the various clinical presentations, 

CBD can only be finally diagnosed by neuropathological examination 258, 259. Hence, the discovery 

of biomarkers for either diagnosis or stratification remains a need that is yet unmet.

Besides the aforementioned discovery studies, here the CBD group is represented with a total of 

12 samples. This is then twice as much as for the other neurodegenerative diseases. The group-

wise comparison for statistically significant protein abundance changes revealed a list of 118 pro-

teins with p < 0.05. As previously mentioned, multiple testing correction was also waived here.

Firstly, an unsupervised PCA analysis was performed to observe possible underlying segregation 

tendencies. In this corresponding PCA plot, a CBD-based group-wise segregation can already be 

observed. All but two samples do cluster together, based on their group association. Here, the 

first principal component (PC1) already accounts for 40.3 % of the whole dataset variation. It is 

along this component that the disease-related segregation takes place (cf. Figure 8.5.6). The 

addition of further components (PC2 and PC3) adds to the total amount of dataset variance con-

sidered in a certain plot, however, it does not further contribute to any segregation process.

Figure 6.12: Supervised PCA plot for CBD biomarker discovery. This plot is based on the mentioned 118 significantly 

different proteins that were observed in the quantitative analysis. In this supervised PCA plot, the first component (PC 1) 

already accounts for 72% of the variation in this truncated dataset.
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Furthermore, a supervised PCA analysis was performed to investigate the segregation efficiency 

of the different abundant proteins observed. Here, the aforementioned 118 proteins demonstrat-

ing a p-Value of less than 0.05 were entered into this analysis. The corresponding PCA plot 

demonstrates a clear group-wise segregation. Here, the two samples which did not cluster with 

the CBD group within the unsupervised analysis, are now perfectly separated from the control 

samples. Again, most of the group-wise segregation occurs across PC1, which in turn accounts

for the majority of the variations observed (72 %). The previously falsely clustered CBD samples 

are further segregating along PC2, which respectively accounts for 5.2 % of the dataset variance 

and allow for the CBD samples to cluster beneath the control samples (cf. Figure 6.12)..

Based on the corresponding PCA Bi-plot, only three distinct proteins cause the group-wise seg-

regation effect. Here, only one feature (P00734, Prothrombin) demonstrates a strong effect 

strength along PC1 while the remainder (P01009, Alpha-1-antitrypsin and P01011, Alpha-1-anti-

chymotrypsin) show major effect along PC2 (cf. Figure 8.5.7). As previously mentioned, certain 

Serpins (Serine proteases inhibitors) are considered biomarker candidates in the context of neu-

rodegenerative diseases 252-254, 260. In this context, Alpha-1-antitrypsin (SERPINA1) and Alpha-1-

antichymotrypsin (SERPINA3) are members of the Serpin family. Furthermore, SERPINA1 has

already been confirmed a valuable biomarker candidate in the context of PD 261.

Table 6.4: List of the top three biomarker candidates for CBD.

Accession Gene Tag AUROC p-Value

P00734 F2 0.889 0.0087302

P01011 SERPINA3 1.000 0.00074703

P01009 SERPINA1 0.806 0.0393518

Furthermore, the three previously identified proteins were evaluated regarding their diagnosing 

capability in the regard of Corticobasal degeneration. At first, the ROC curve for each protein was 

calculated alone. In general, each protein scored an AUROC of greater than 0.8. Alpha-1-anti-

chymotrypsin (SERPINA3) scored an AUROC of 1, which in turn demonstrate perfect biomarker 

conditions. Besides SERPINA3, the linear combination out of two serpins that were found was 

also investigated regarding the predictability. The AUROC of latter linear combination also scored 

1. Ultimately, the linear regression of all three proteins was investigated with a ROC analysis.

This in turn also scored an AUROC of 1. Given these results, it can be concluded that SERPINA1, 

SERPINA3 and Prothrombin demonstrate valuable biomarker candidate proteins.

In contrast to the Diagnostic Biomarker Discovery, the discovery of stratification biomarkers aims 

for the detection of proteins that help to differentiate between different neurodegenerative dis-

eases based on the protein abundance changes. The discovery stage here, can be described as 

comparing of CSF protein abundances of variously diseased patients (AD, PD or PSP) versus 

those proteins abundances derived from those patients specifically suffering from CBD.
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Based on the apparent non-normal distribution (i.e. non-parametric) of protein abundances across 

all examined patients the Mann-Whitney u test was used to compare the estimated protein abun-

dances. With the application of this test to the existent dataset, a total of seven proteins that 

demonstrated a significant (p < 0.05) protein abundance change between the actual CBD and 

other neurodegenerative diseases were identified. Nonetheless, the CBD group here also fea-

tures twice as many samples as those groups representing either AD, PD or PSP. A multiple 

testing correction of the calculated p-values was also waived here due to the small sample and 

protein list.

Figure 6.13: Supervised PCA plot for the discovery of stratification biomarker candidates. PCA plot is based on 

the seven identified significantly different abundant proteins. No absolute clear separation achieved. A certain cluster 

pattern can be deviated: CBD samples (purple) majorly group to the top right corner. PC1 (39.9 %) and PC2 (22.2 %) 

are plotted. A total dataset variance of 62.1 % is indicated in this plot.

Consequently, the identified significant proteins were entered into a PCA analysis (cf. Figure 

6.13), which in turn reports the stratification capability of these proteins via group-wise clustering 

tendencies in the corresponding PCA plot. Here, no clear group-wise clustering was observed in 

the PCA plot. Nonetheless, a certain tendency was deviated, as CBD samples specifically accu-

mulate in the top right corner of the plot (PC1 & PC2). Here, with the combination of PC1 and 

PC2, the plot accounts for 62.1% of the variation based on the seven aforementioned proteins. 

The alteration of the principal component combination, e.g. PC1 and PC3 or PC2 and PC3 (cf. 

Appendix – Figure 8.5.8 ff.), also didn’t feature any absolute clear group-wise segregation. All 

plots only showed a certain tendency of segregation. Based on the PCA Bi-plots, which feature 

the certain feature loadings and hence allow for the detection of those feature causing the segre-

gation, it could be deviated that CBD-based samples segregate across P06331 (Immunoglobulin 

heavy variable 4-34) and Q96RW7 (Hemicentin-1) in all three PC combinations, but also showed 
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segregation tendencies for Q66K66 (Transmembrane protein 198) in the PC1/PC3 plot. Since no 

clear clustering of CBD samples was achieved, all seven proteins were further evaluated.

After evaluation of the significantly different proteins in the PCA analysis, all of these proteins 

were consequently entered into the ROC analysis. Overall, all proteins demonstrated an AUROC 

of greater than 0.7, which however does immediately not qualify them as stratification biomarker 

candidates. Besides the investigation of the classification capability of proteins alone, certain pro-

tein combinations were also tested.

Table 6.5: List of the identified seven significant proteins.

Accession Protein Name (Gene Tag) AUROC

IgGFc-binding protein (FCGBP) 0.796

Follistatin-related protein 1 (FSTL1) 0.773

Transmembrane protein 198 (TMEM198) 0.759

Keratin, type I cytoskeletal 16 (KRT16) 0.738

Immunoglobulin heavy variable 4-34

(IGHV4-34)
0.736

Hemicentin-1 (HMCN1) 0.731

Actin, cytoplasmic 2 (ACTG1) 0.718

In particular, the combination of P06331, Q96RW7 and Q66K66 was further investigated, as these 

proteins demonstrated the segregation tendencies in the PCA analysis. Here, this combination 

achieved an AUROC of 0.861, which clearly demonstrates better stratification conditions, how-

ever they are still not perfect conditions which would feature an AUROC of 1. Additionally, the 

combinations of the top two and top three scoring proteins in the single protein comparison were 

investigated. As result, the top two protein combination (Q9Y6R7 and Q12841) scored an AUROC 

of 0.808 while the top three protein combination (Q9Y6R7, Q12841 and Q66K66) scored an AU-

ROC of 0.880. As already seen in the PCA analysis, non-perfect conditions were also only ob-

served here within the ROC analysis (AUROC < 1).

A consequent thorough literature search for involvements of the seven discovered proteins how-

ever, did not provide any link or association with neurodegenerative processes or diseases. Fur-

thermore, given the previously described results, it can be concluded that CBD might not be able 

to be further determined based on protein abundance changes in CSF of patients. Nonetheless, 

further qualification and/or validation has to be performed to deviate an eligible conclusion.
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Neurodegenerative disorders are mainly described by the loss of neuronal function or neuronal 

cell death. Symptoms mostly occur once the disease-specific processes are already running and 

neuronal degeneration has taken place to a certain extend. At the point of diagnosis of such a 

neurodegenerative disorder, the disease has most often progressed enormously, leaving the pa-

tients in an incurable state or with the only option being to try and slow down the degeneration 

process.

The aim for diagnostic biomarkers in the context of neurodegenerative diseases is the detection

of a diseases at its earliest onset. In this study, for the discovery of diagnostic biomarker candi-

dates, CSF samples from healthy or non-diseased patients was compared to those CSF samples 

from patients who already obviously suffer from a specific neurodegenerative disorder. Hence, 

the observed biomarker candidates can already be correlated to disease-specific processes and 

thus allow for specific diagnosis. However, available samples which can clearly be assigned to a 

neurodegenerative disorder might not necessarily allow for the detection of “early onset” markers, 

which in turn are needed unconditionally. In this context, diagnostic markers should allow for the 

detection of the early onset, as well as for the specific classification of the disease. In this context, 

the limiting factor for a comprehensive discovery study depicts the availability as well as the extent 

of samples.

Besides diagnostic biomarkers which should help to detect the early onset of a certain disease, 

the stratification also imposes an important feature. In some cases, a final diagnosis can be given 

after pathophysiological examination of brain tissue. However, it is desirable to be able to easily 

differentiate between neurodegenerative disorders, especially since symptoms or symptom pat-

terns can overlap with other diseases. Nonetheless, besides similar symptoms, the underlying 

processes can also easily overlap and hence leave the disease indistinguishable from others.

In this study, quantitative acquisition technologies were used for the discovery of diagnostic or 

stratification biomarker candidates. Indeed, valuable biomarker candidates were either newly dis-

covered or confirmed through the data. All findings in this study are nevertheless based on a 

rather smaller cohort size (N = 6 or 12). Hence, the biomarker candidates found need further 

evaluation as well as verification in a much more comprehensive sample cohort than the present 

study. In this context, Skates et al. (2013) 262 postulates that given a sample in the type of a body 

fluid with a corresponding cohort size of 10 samples per group (i.e. 10 controls vs. 10 cases) and 

20 markers planned for verification, each marker must be present in 80 % of the investigated 

samples with an SD difference of five-times to have an 80 % chance of actually reaching the final 

step of clinical verification. The extrapolation of this theory to this study implies that the biomarker 

candidates discovered here have a 1 - 8 % chance of entering clinical verification. Even though

the biomarker candidates discovered here only have a low chance of entering clinical verification, 

they could confirm previously discovered biomarkers as well as provide insightful information 

about predominant molecular processes active with certain neurodegenerative diseases and thus 

help for stratification. Nonetheless, preliminary as well as pilot studies featuring a low number 

cohorts are an essential tool and are further required for further funding of large-scale studies.
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Figure 8.1.1: Physico-chemical Properties (CSF). a) Comparison of three different properties: Molecular Weight (top), 

isoelectric pH (middle) and GRAVY score (bottom) at protein level for MStern blotting-specific proteins (blue trace), FASP-

specific proteins (yellow trace), shared proteins (green trace) and theoretical distribution of the entire human proteome 

(dashed grey trace). b) Comparison of physic-chemical property changes at peptide level: Molecular Weight (top), isoe-

lectric pH (middle) and GRAVY score (bottom) for MStern blotting-specific peptides (blue trace), FASP-specific peptides 

(yellow trace), shared peptides (green trace) and theoretical distribution upon tryptically digesting the entire human pro-

teome assuming no missed cleavages (0 MC; dashed dark grey trace) or 2 missed cleavages (2 MC; dashed light grey 

trace).
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Figure 8.1.2: Physico-chemical Properties (Urine). a) Comparison of three different properties: Molecular Weight (top), 

isoelectric pH (middle) and GRAVY score (bottom) at protein level for MStern blotting-specific proteins (blue trace), FASP-

specific proteins (yellow trace), shared proteins (green trace) and theoretical distribution of the entire human proteome 

(dashed grey trace). b) Comparison of physic-chemical property changes at peptide level: Molecular Weight (top), isoe-

lectric pH (middle) and GRAVY score (bottom) for MStern blotting-specific peptides (blue trace), FASP-specific peptides 

(yellow trace), shared peptides (green trace) and theoretical distribution upon tryptically digesting the entire human pro-

teome assuming no missed cleavages (0 MC; dashed dark grey trace) or 2 missed cleavages (2 MC; dashed light grey 

trace).
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Figure 8.2.1: Unsupervised mTBI PCA Plot (1). All quantified proteins entered for PCA analysis. Plot accounts for a 

total of 29.4 % of the dataset variance. PC 1 (17.2 %; X – axis) and PC 2 (12.1 %; Y – axis) are shown. No clear separation 

of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) and ICB (blue).

Figure 8.2.2: Unsupervised mTBI PCA Plot (2). All quantified proteins entered for PCA analysis. Plot accounts for a 

total of 26 % of the dataset variance. PC 1 (17.2 %; X – axis) and PC 3 (8.8 %; Y – axis) are shown. No clear separation 

of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) and ICB (blue).
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Figure 8.2.3: Unsupervised mTBI PCA Plot (3). All quantified proteins entered for PCA analysis. Plot accounts for a 

total of ~ 21 % of the dataset variance. PC 2 (12.1 % - X - axis) and PC 3 (8.8 % - Y – axis) are shown. No clear separation 

of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) and ICB (blue).
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Figure 8.2.4: Unsupervised mTBI PCA Plot for secondary discovery (1). All quantified proteins entered for PCA anal-

ysis. Plot accounts for a total of 37.3 % of the dataset variance. PC 1 (21.5 % - X - axis) and PC 2 (15.7 % - Y – axis) are

shown. No clear separation of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) 

and ICB (blue).

Figure 8.2.5: Unsupervised mTBI PCA Plot for secondary discovery (2). All quantified proteins entered for PCA anal-

ysis. Plot accounts for a total of ~32 % of the dataset variance. PC 1 (21.5 % - X - axis) and PC 2 (10.3 % - Y – axis) are 

shown. No clear separation of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) 

and ICB (blue).
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Figure 8.2.6: Unsupervised mTBI PCA Plot for secondary discovery (3). All quantified proteins entered for PCA anal-

ysis. Plot accounts for a total of 29.4 % of the dataset variance. PC 2 (15.7 % - X - axis) and PC 3 (10.3 % - Y – axis) are 

shown. No clear separation of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) 

and ICB (blue).
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Table 8.2.1: List of identified proteins with significant abundance changes (2nd discovery study). Three different p-

values based on the type of comparison, are given: ¥ - mTBI samples vs. all control samples (i.e. incl. ICB samples); £ -

mTBI vs. negative controls (i.e. excl. ICB samples – mTBI samples vs. only ICB samples.

Protein Accession Gene Code p-Value¥ p-Value£ p-Value

P01766 (HV305) IGHV3-13 0.004598 0.044340 0.004713

P15144 (AMPN) ANPEP 0.005516 0.013739 0.035692

Q9H1C7 (CYTM1) CYSTM1 0.006034 0.069892 0.003484

P12821 (ACE) ACE 0.012362 0.074377 0.013053

O75264 (SIM24) SMIM24 0.017108 0.054117 0.039186

O75339 (CILP1) CILP 0.019012 0.533228 0.000182

P29972 (AQP1) AQP1 0.019012 0.041431 0.066789

P04431 (KV123) IGKV1-39 0.021651 0.016068 0.214548

P08779 (K1C16) KRT16 0.022216 0.174001 0.008412

P21926 (CD9) CD9 0.023383 0.202489 0.006699

P16444 (DPEP1) DPEP1 0.024604 0.094721 0.032467

Q96DG6 (CMBL) CMBL 0.025234 0.008798 0.400814

P01743 (HV102) IGHV1-46 0.025879 0.089258 0.039186

P22732 (GTR5) SLC2A5 0.026538 0.169560 0.013053

O43895 (XPP2) XPNPEP2 0.033146 0.057752 0.108723

P55017 (S12A3) SLC12A3 0.034793 0.174001 0.021942

Q9Y696 (CLIC4) CLIC4 0.034793 0.023466 0.284932

P01601 (KV109) IGKV1D-16 0.036509 0.395513 0.003276

P10768 (ESTD) ESD 0.038296 0.003532 0.908787

P07195 (LDHB) LDHB 0.038296 0.007761 0.646756

P04004 (VTNC) VTN 0.040157 0.112731 0.061306

O00182 (LEG9) LGALS9 0.046207 0.126167 0.066789

P04216 (THY1) THY1 0.046207 0.084052 0.117403

P31944 (CASPE) CASP14 0.046207 0.050675 0.207578

P08473 (NEP) MME 0.048387 0.165204 0.047050

Q9BXJ7 (AMNLS) AMN 0.048387 0.072106 0.152114
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Figure 8.2.7: Unsupervised ICB PCA Plot (1). All quantified proteins entered for PCA analysis. Plot accounts for a total 

of 29.4 % of the dataset variance. PC 1 (17.2 %; x - axis) and PC 2 (12.1 %; y – axis) are shown. No clear separation of 

clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) and ICB (blue).

Figure 8.2.8: Unsupervised mTBI PCA Plot (1). All quantified proteins entered for PCA analysis. Plot accounts for a 

total of 29.4 % of the dataset variance. PC 1 (17.2 %; x - axis) and PC 2 (12.1 %; y – axis) are shown. No clear separation 

of clinical groups can be deviated. Clinical groups defined as: mTBI (red), Controls (green) and ICB (blue).
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Figure 8.2.9: Supervised PCA plot for ICB biomarker. This plot features only the six most prominent proteins of the 

AUROC analysis. A total of 79.6 % of the variance (within the 6 analyzed proteins) is displayed. A spread along PC 1 

(accounting for 61.4% of variance) is more prominent than the spread of mTBI samples along PC 2 (18.2 %). No clear 

and no defining clustering tendency can be deviated.
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Figure 8.3.1: Unsupervised PCA plot sample clustering. All identified and quantified proteins were entered into this 

analysis. This plot accounts for a total of 43.3 % variance of the dataset. The first principal component (PC 1) accounts 

for 28.9% while PC 2 accounts for 14.4 %. Hence, there is a broader spread across PC 1 than PC2. Nonetheless, no 

group-based separation can be deviated.

Figure 8.3.2: Unsupervised PCA plot sample clustering. All identified and quantified proteins were entered into this 

analysis. This plot accounts for a total of 40.7 % variance of the dataset. The first principal component (PC 1) accounts 

for 28.9% while PC 3 accounts for 11.8 %. Hence, there is a broader spread across PC 1, almost none for PC 3. Massive 

outlier represented by sample with ID 520-120.

520-120
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Figure 8.3.3: Semi-Supervised PCA plot. Sample with massive outlier tendencies (520-120) was removed from further 

consideration. PCA plot accounts for a total of 46.4 % dataset variance with PC 1 of 31.6 % and PC 2 of 14.8 %. The 

removal of the outlier could not confirm an underlying group-based clustering tendency.

Figure 8.3.4: Semi-Supervised PCA plot. Sample with massive outlier tendencies (520-120) was removed from further 

consideration. PCA plot accounts for a total of 40.9 % dataset variance with PC 1 of 31.6 % and PC 2 of 9.28 %. The 

removal of the outlier did not reveal any underlying segregation tendencies.
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Figure 8.3.5: Q-Q-Plots for exosomal proteome sample data. Sample data origins from exosomes extracted from 

sample urine and analyzed via LC-MS in DIA mode. Sample identifiers are given. A diagonal line in a Q-Q-plot represents 

normal distribution. Any other graphical representation requires “non-parametric” data handling.

Figure 8.3.6: PCA Bi-Plot for filtered exosomal proteins. The principal components used for the plot (PC1 – 39.9% 

and PC2 – 14.3%) account for a total of 54.2% of the dataset variation. Data reflects group-wise separation between mTBI 

and controls as well as ICB samples. Arrows reflect protein-based added variance to the dataset and the length of the 

arrow the corresponding effect strength.
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Figure 8.3.7: Q-Q-Plots of samples from the extended qualification sample cohort. Sample quantiles are plotted 

against theoretically calculated quantiles that represent normal distribution. Once, a diagonal line is visible (correlation 

between theoretical and real quantiles) normal distribution rules apply. Otherwise (non-diagonal line), non-parametric 

statistical principles need to be used.
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Table 8.3.1: List of associated “Diseases and Functions”. List retrieved from Ingenuity® IPA® software. Given are 

the names of the corresponding process, the associated p-value of relevance and the molecules (from the input list) which 

were associated with the disease or function.

Annotation p-value Molecules

abnormal morphology of cerebellum 2.01E-04 AXL,CNTN1,CP,GLB1,MYH10

abnormal morphology of fourth cerebral 

ventricle
6.47E-04 CP,MYH10

abnormal morphology of brainstem 6.67E-04 CP,GLB1,MYH10

abnormal morphology of Purkinje's layer of 

cerebellum
1.33E-03 CNTN1,CP,MYH10

Movement Disorders 1.45E-03
ACP1,APOD,CNTN1,CP,GLB1,HSPA1A/HSPA1B,

HSPA8,PPP1CB

disorder of basal ganglia 1.76E-03 ACP1,APOD,HSPA8,KNG1,PPP1CB

edema of brain 2.19E-03 KNG1,PROCR

GM1 gangliosidosis 3.49E-03 GLB1

abnormal morphology of Golgi interneurons 3.49E-03 CNTN1

abnormal morphology of brain 3.92E-03 AXL,B4GALT1,CNTN1,CP,CSPG4,GLB1,MYH10

Huntington's Disease 6.12E-03 ACP1,APOD,HSPA8,PPP1CB

abnormal morphology of Purkinje cells 1.17E-02 CNTN1,CP

abnormal morphology of granule cell layer 1.22E-02 CNTN1,CP

neuritic dystrophy 1.39E-02 CLU

gait disturbance 1.61E-02 CNTN1,CP,GLB1

abnormal morphology of dendrites 1.64E-02 CNTN1,MYH10

abnormal morphology of neurites 2.06E-02 CNTN1,MYH10,PTPN13

damage of blood-brain barrier 2.08E-02 KNG1

abnormal morphology of nervous system 2.44E-02
AXL,B4GALT1,CNTN1,CP,CSPG4,GLB1,MYH10,P

TPN13

neurodegeneration of hippocampal CA3 re-

gion
2.76E-02 GLB1

abnormal morphology of cerebral aqueduct 3.10E-02 MYH10

abnormal morphology of dilated third cere-

bral ventricle
4.78E-02 MYH10

abnormal morphology of retinal ganglion 

cells
4.78E-02 PTPN13

infarction of brain 4.78E-02 PROCR

demyelination 4.95E-02 CP,GLB1
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Table 8.4.1: Terminomal peptides of interest for diagnosing mTBI. Sequence is the observed semi-specific peptide 

sequence. The p-Value originates from the initial abundance comparison between mTBI and Controls jointly with ICB 

samples. Accession is the corresponding UniProt accession number, the peptide is associated with.

Sequence p-Value Assoc. Accession

FLQHKDDNPNLPR 0.00419376 P02768

VKVVVNFAPTIQE 0.00551578 Q7Z3B1

TCEPIQSVFFFSGDKYYR 0.01236189 P04004

NPPVQENFDVNK 0.01306114 P05090

DSENVCQERDADPDTFFAK 0.01496447 P43652

YLNWYQQKPGK 0.01665896 P04431

LQGTLLGYR 0.01710804 P30530

EYCGVPGDGDEELLRFS 0.01710804 P02760

DYSVVLLLR 0.02221585 P02768

ADICTLSEKER 0.02398678 P02768

GKDTFYSLGSSLDITFR 0.02587886 O00187

VGHEALPLAFTQK 0.02587886 P01876

LVQPGGSLR 0.02721078 P01764

SVFPLAPSSK 0.02860144 P01857

SHGQDYLVGNK 0.03479291 Q16772

ASSLQSGVPSR 0.03479291 P01601

TQSPSSLSASVGDR 0.03650868 P01601

ASSYLSLTPEQWK 0.03921724 P0CG05

IPAVPPPTDLR 0.04111622 P02751

SALEVDETYVPK 0.04209456 P02768

WSGHCCLWDASVQVK 0.04209456 P07911

SLDGGFVYIAGK 0.04411042 P02787



Appendix

143

Table 8.4.2: Terminomal peptides of interest for diagnosing ICB. Sequence is the observed semi-specific peptide 

sequence. The p-Value originates from the initial abundance comparison between ICB and Controls jointly with mTBI

samples. Accession is the corresponding UniProt accession number, the peptide is associated with.

Sequence p-Value Assoc. Accession

KETCFAEEGKK 0.00014143 P02768

FGDEEERR 0.00060147 Q9ULV1

DSENVCQER 0.00100033 P43652

TLGDNTAANNVR 0.00551667 Q7Z5L0

SPSGCGGTLYGDR 0.00902067 O60494

KIYPTVNCQPLGMIS 0.00965769 P01042

KESNEELTESCETK 0.01535423 P01042

YTSQEDLVEKK 0.01858982 P05156

PAQGNPNEEVAR 0.01858982 P15328

TGECTATVGKR 0.02106503 P01042

GSEAINAPGDN 0.02240697 Q9NZP8

AVLHVHGGG 0.02382262 P98160

KGGLIAYR 0.02531521 P49441

LQGSMLKPSSL 0.02688806 P01133

LAQELPQQLTSPGYPEPYGK 0.02770565 Q9NZP8

HQTVPQNTGGKNPD 0.02854458 P02787

GDEELLRFSN 0.02854458 P02760

TNPEDIYPSN 0.03028826 P16070

LWPWPQNFQTSDQR 0.03307506 P06865

FQLFGSPSGQKDLLF 0.04524561 P02788
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Figure 8.5.1: Q-Q-Plots for CSF samples analyzed by DIA. In this analysis, the theoretical quantiles (based on normal 

distribution) are plotted against the sample specific quantiles. With a strong correlation between the theoretical and the 

sample quantiles (diagonal line), an underlying normal distribution is evident. Here, none of the plots features a correlation

that proves normal distribution. Non-parametric conditions apply.
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Figure 8.5.2: PCA plot of all proteins for PSP and Control samples. PCA plot is based on all quantified protein entries. 

Here, the combination of PC1 (43.3 %) and PC2 (14.7 %) account for a total of 58 % of the dataset variation. A first group-

based separation (Controls [red] vs PSP [blue]) can be visually deviated.

Figure 8.5.3: PCA Bi-Plot for PSP sample stratification. Basis for the PCA plot calculation are significantly differently 

abundant proteins, discovered by comparing PSP samples to the other neurodegenerative CSF samples. First two PCs 

account for 60 % of the dataset variance. Protein Q66K66 singly causes the spread of PSP samples away from the others.
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Figure 8.5.4: PCA Bi-plot for PD biomarker discovery. Basis of this PCA analysis demonstrate observed significantly 

different abundant proteins (p < 0.05). PCA loadings are shown via black arrows. PCA plot accounts for 79.1 % of the 

entered data variance, while PC 1 already accounts for 63.2 %. Segregation pattern can be segregated.

Figure 8.5.5: PCA Bi-plot for AD stratification. Arrows indicate PCA loadings. The plot is based on the seven identified 

significantly different proteins. AD samples start segregating along the vectors of three proteins.
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Figure 8.5.6: Unsupervised PCA Plot for CBD biomarker discovery. The basis for this PCA plot is the whole protein 

list. This list features 118 proteins that show CBD based significant protein abundance changes. The first principal com-

ponent PC 1 accounts for 40.3 % of the whole dataset. All but two CBD samples segregate and form a group-based 

cluster.

Figure 8.5.7: Supervised PCA Bi-plot for CBD biomarker discovery. The basis for this plot are 118 proteins observed 

with a significantly different protein abundance between control samples and CBD samples. Arrows indicate the PCA 

loadings and clearly show three proteins that cause the CBD related segregation.
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Figure 8.5.8: Stratification PCA Bi-Plot CBD vs NDs (1). This plot is based on PC1 (39.9 %; x – axis) and PC2 (22.2 

%; y – axis). BiPlot accounts for a total of 62.1 % of the dataset variance. For stratification the control samples were not 

considered in this analysis. A certain CBD-based segregation tendency can be seen, nonetheless a clear segregation is 

not present.

Figure 8.5.9: Stratification PCA Bi-Plot CBD vs NDs (2). The plot is based on the PC1 (39.9 %; x – axis) and PC3 (16.5 

%; y –axis). A total of 56.4 % of the dataset variance is plotted via the present principal component combination. Control 

samples are disregarded in this type of analysis. Segregation pattern of CBD samples can be deviated, however does not 

demonstrate clear character. Major segregation strength along two vectors.
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Figure 8.5.10: Stratification Bi-Plot CBD vs ND (3). The plot is based on the combination of PC2 (22.2 %; x – axis) and

PC3 (16.5 %; y – axis). In total, a dataset variance of 38.7 % is plotted. A spread-out of two CBD samples is observable. 

Otherwise, rather PSP samples spread along one vector. CBD samples cluster together close to the origin. No specific 

segregation pattern can be deviated.
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