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Key points

e New systematic experiments reveal behaviour of spherical harmonic series near the Moon’s
topography as function of resolution and altitude

e Gravity from degree-180 models free of divergence, degree-360 models partially divergent and
degree-2160 models severely divergent

e New hypothesis: Local minimum in potential degree variances foreshadows series divergence
inside the Brillouin-sphere

Abstract

Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are
guaranteed to converge outside the Brillouin-sphere enclosing all field-generating masses. Inside that
sphere, the series may be convergent or may be divergent. The series convergence behaviour is a
highly unstable quantity that is little studied for high-resolution mass distributions.

Here we shed light on the behaviour of SH series expansions of the gravitational potential of the
Moon. We present a set of systematic numerical experiments where the gravity field generated by
the topographic masses is forward-modelled in spherical harmonics and with numerical integration
techniques at various heights and different levels of resolution, increasing from harmonic degree 90
to 2160 (~61 to 2.5 km scales). The numerical integration is free from any divergence issues and,
therefore, suitable to reliably assess convergence vs. divergence of the SH series.

Our experiments provide unprecedented detailed insights into the divergence issue. We show that
the SH gravity field of degree-180 topography is convergent anywhere in free space. When the
resolution of the topographic mass model is increased to degree 360, divergence starts to affect very
high degree gravity signals over regions deep inside the Brillouin-sphere. For degree-2160
topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits
accurate gravity modelling over most of the topography.

As a key result, we formulate a new hypothesis to predict divergence: If the potential degree
variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin-
sphere, and modelling of the internal potential becomes relevant.

Index terms 5417 Gravitational fields (1221)
6250 Moon (1221)
3255 Spectral analysis (3205, 3280, 4319)
1214 Geopotential theory and determination (0903)
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Introduction

In planetary sciences, spherical harmonic (SH) series expansions are commonly used to model the
exterior gravitational potential of Moon, Earth, and other terrestrial planets [e.g., Blakeley, 1996;
Balmino et al., 2012; Konopliv et al., 2014; Lemoine et al., 2014; Wieczorek, 2015]. The coefficients of
the SH series expansions can be either determined from field observations (e.g., measured gravity
accelerations or satellite orbit perturbations), cf. Pavlis [2014], or with forward modelling techniques
[e.g., Rexer et al., 2016]. In the latter case, a model of the planetary mass distribution (e.g., surface
topography model together with mass-density assumptions) is used to derive the coefficients of the
implied gravitational field [e.g., Rummel et al. 1988; Hirt and Kuhn, 2014].

In either case, the SH series of the gravitational potential or functionals thereof (e.g., radial or
horizontal derivatives) converge outside a sphere encompassing all field-generating mass, centered
to the origin of the spherical coordinate system [Hu and Jekeli, 2015]. In the literature, this sphere is
known as Brillouin sphere [e.g., Moritz, 1980]. Inside the Brillouin sphere, however, the convergence
of the SH series is not guaranteed. They may converge or diverge, i.e., produce invalid numerical
values of gravity field functionals [e.g., Jekeli, 1983]. Near or at the surface of the masses, series
convergence must be considered an unstable property [Krarup, 1969], whereby “an arbitrarily small
change” of the mass-distribution may “change convergence to divergence” [Moritz, 1978, p19].
Generally, divergence is thought to occur more likely, the higher the spectral resolution of the
gravitational model, the more irregular the planetary body and the deeper the evaluation points are
located inside the Brillouin sphere [Wang, 1997; Lowes and Winch, 2012; Hu and Jekeli, 2015].

In recent time, the divergence behaviour of low-degree harmonic series expansions of gravity field
functionals has been intensively studied for irregularly-shaped bodies such as the Martian moons
Deimos and Phobos [Hu and Jekeli, 2015], asteroids, e.g., 433 Eros [Hu, 2012], Castalia and Bennu
[Takahashi et al., 2013; Takahashi and Scheeres, 2014] and comets, e.g., 67P/Churyumov-
Gerasimenko [Reimond and Baur, 2016]. All studies demonstrated substantial divergence for
evaluation points inside the Brillouin sphere, occurring already at low spectral resolution, showing
the SH series unable to model the near-surface exterior gravity field of irregularly-shaped bodies with
adequate precision and detail.

Interestingly, the convergence/divergence issue associated with the synthesis of SH gravitational
fields of terrestrial planets in general and the Moon in particular has not received much attention
recently. Compared to asteroids and other such objects, the Moon and the terrestrial planets are
much more regular in shape, and reasonably well approximated through rotationally-symmetric
bodies such as a sphere (e.g., Moon) or ellipsoid (e.g., Earth). As a consequence of the more regular
shape compared to asteroids and other oddly shaped bodies, the free space inside the Brillouin
sphere is reduced [Hu and Jekeli, 2015]. As a result, the SH gravity models of Moon and planets tend
to be less prone to divergence, at least at lower resolution (also see Werner and Scheeres [1997],
p314, “in planetary applications, the divergence may not exist or may be ignored as the body will be
nearly spherical”). However, the situation is completely different with high-resolution gravity models,
as we show in this study for the Moon.

While the gravitational field of the Moon is now routinely modelled with higher-degree SH series
expansions — particularly as a result of the GRAIL gravity field mission [Zuber et al., 2013; Lemoine et
al., 2014; Konopliv et al., 2014] — surprisingly little is known about if and where inside the Brillouin
sphere these series actually converge or diverge. In some cases, series convergence is taken for
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granted even when the evaluation points are located inside the Brillouin sphere of the Moon
[Goossens et al., 2011; Hirt and Featherstone, 2012; Featherstone et al., 2013; Konopliv et al., 2014].
However, divergence in the SH series of gravity field functionals may be a critical factor in high-
resolution planetary gravity modelling, as demonstrated in this contribution.

The goal of the present paper is to shed new light on the convergence vs. divergence behaviour of SH
series inside the Brillouin sphere, exemplified here for the external gravitational field of the Moon.
We present and analyse a set of systematically designed and conducted numerical experiments
where the gravity field of the topographic masses is forward-modelled in SH, and with numerical
integration (NI) techniques at different levels of resolution, increasing from degree 90 to 2160. The
Nl is free from any divergence issues and, therefore, suitable to reliably assess the convergence vs.
divergence behaviour of the SH models, that are evaluated here at different altitudes (height levels)
inside and outside the Brillouin sphere. High-performance computing is deployed to reduce
discretisation errors in the NI on the one hand. Spectral forward modelling with multiple band-widths
ensures rigorous spectral consistency between the NI and the SH forward gravity model on the other
hand.

Because of their widespread application in planetary sciences, the present study focuses on exterior
spherical harmonic series, in our case, of gravity values. We acknowledge that some studies discuss
spheroidal (ellipsoidal) instead of spherical harmonics to improve the convergence region of the
gravity field series expansions [Hu and Jekeli, 2015; Reimond and Baur, 2016]. The ellipsoidal
approach, however, does not appear promising for the Moon, given its negligible flattening.

Internal (interior) spherical harmonic series might be an alternative that avoid divergence associated
with the widely used exterior series. In local applications, interior harmonics are sometimes used
because they guarantee convergence in a sphere exterior and tangent to the planetary surface
[Takahashi and Scheeres, 2014, p171). However, also a combination of interior with exterior
harmonics (that is, the 2-potential method) can be a suitable means to obtain gravity values free of
divergence, not only locally, but globally. In this approach, widely used for electrostatic field
modelling [Jackson, 1962], but not yet so much for gravitational potential fields, there are two series
expansions evaluated when the computation point resides inside the Brillouin-sphere. The mass
below the computation point generates the external potential, and the mass above the computation
point produces the internal potential [also see Takahashi et al. 2013, Fig. 4 ibid]. The correct gravity
value is obtained as sum of both potentials, and convergence issues disappear (Bruce Bills, pers.
comm. 2017), see also discussion in Sect. 4.

A number of studies discuss or encounter the topic of series convergence vs. divergence in the
context of Earth’s gravity field [e.g., Moritz, 1961; 1978; 1980; Sjéberg, 1980; Jekeli, 1983; Wang,
1997; Shen, 2009; Hirt et al., 2016]. However, most of these focus on gravity modelling with lower
resolution than considered here. Also given the markedly different surface topographies and shape
of Earth and Moon, previous results for Earth are not necessarily indicative for the Moon, and this
statement is corroborated in the present paper.

2. Data and methods
2.1 Topographic mass models

Topographic mass models are the input data for the gravity forward modelling. They have two
components, one is the geometry and the other the density of the mass-distribution. In our work,
they are constructed based on high-resolution shape maps from the Lunar Orbiter Laser Altimeter
(LOLA) instrument [Smith et al., 2010] along with a mass-density value derived from GRAIL gravity
mission results [Zuber et al., 2013]. We use the degree-2600 MoonTopo2600pa.shape model of the
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Moon (Wieczorek [2015], file available via http://markwieczorek.github.io/web) that is a SH
expansion of the LOLA 1/64° global grid (file LDEM_64_PA.IMG of March 15, 2013 from the Planetary
Data System, http://pds-geosciences.wustl.edu). The shape model is given in the principal axis (PA)
coordinate system that is consistent with that of GRAIL gravity field models (also see explanations
given in the meta-data file LDEM_64_PA.LBL). Planetary radii Ry are computed from shape model’s
fully-normalized SHCs (Cp, Spm) Via

T
Nmax n

Ry = Z z (Cpm cos mA + Sy, SinMA) Py, (sin @) (1)

n=0 m=0

where P,,, are the fully-normalized Associated Legendre Functions (ALFs) of harmonic degree n and
order m, (¢, 1) denote the selenocentric latitude and longitude in the PA system and NI ;. is the
maximum degree in the series expansion. The differences H = Ry - R describe the surface
topography of the Moon relative to a reference mass-sphere of mean radius R. In all computations,
avalue of R = 1,738,000 m is used, in agreement with the reference radius of the GRAIL gravity field
by Lemoine et al. [2014] and Konopliv et al. [2014].

Our study uses six mass models, with the spectral resolution NI ,,. of topographic masses increasing
from degree and order 90 (~61 km spatial scales) to 2160 (~2.5 km spatial scales), cf. Table 1. The
resolution of the topographic mass models are even multiples of the lowest resolution (N[, = 90);
subsequent resolution levels mostly differ by a factor of 2 (cf. Table 1). The band-widths of the mass
models were chosen such that divergence issues or numerical problems can be narrowed down as a
function of resolution, ranging from ~61 to ~2.5 km.

The surface topography is assigned a uniform mass density value py of 2500 kg m=. A mean density
value of 2550 kg m for the lunar crust was determined by Wieczorek et al. [2013] through inversion
of GRAIL gravity data. A value of 2450 kg m™ was used by Konopliv et al. [2014] in the computation of
the topographic reduction of the GRAIL data, while Lemoine et al. [2014] assumed a density of 2500
kg m3in their calculation of Bouguer gravity anomalies. As such, our adopted mass-density value pr
is the average value used in three recent studies relying on the GRAIL mission and should be a good
density approximation for the lunar topography. We note that a constant mass-density value will not
affect the behaviour of the SH series expansions, given the density acts as a “scale factor” (Eq. 2).

2.2 Gravity forward modelling
2.2.1 General remarks

In our study, we apply two independent techniques to compute gravitational effects (short: gravity)
from topographic mass models (short: topography).

e The first technique is forward modelling in the spectral domain whereby the gravitational
potential generated by the topography is expanded into spherical harmonic (SH) series of
integer powers of the topography [e.g., Chao and Rubincam, 1989; Wieczorek and Phillips,
1998; Hirt and Kuhn, 2012], see Sect. 2.2.3.

e The second is numerical integration (NI) in the spatial domain, also known as Newtonian
integration [e.g., Werner and Scheeres, 1997; Kuhn et al., 2009; Hirt and Kuhn, 2014], see
Sect. 2.2.4.

We apply both techniques with the strategies detailed in Hirt and Kuhn [2014] to reach pGal-level
consistency for the gravity values when divergence is absent. Both forward modelling techniques use
the same topographic mass model in a rigorous, mutually consistent manner. This allows us to study
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the convergence vs. divergence behaviour in the evaluation of the SH series expansion of gravity
values [cf. Eq. (4)], in a straightforward way from cross-comparisons of forward-modelled gravity
from both techniques. While the topography mass models are strictly band-limited to the NI ;.
values reported in Table 1, the topography-implied gravity contains signals at harmonic degrees
much larger than N;Lax [Hirt and Kuhn, 2014]. To ensure spectral consistency among gravity values
from both techniques, the additional spectral energy must be explicitly modelled in the SH approach
(Sect. 2.2.3), while it is implicitly accounted for in the NI (Sect. 2.2.4).

Table 1. Characteristics of the six experiments: Resolution of the topography model, oversampling in

the Newton integration and maximum degrees NS ., and maximum powers P, modelled in the
spectral domain

Topography model Newton integration Spectral gravity modelling
NE o Spatial Spectral Oversampling factor of NG ox N 4 required Pmax
Resolution Resolution topography signal modelled (02> 10725) Modelled (needed)
(km) (min)
90 60.6 120 240 900 400 15(7)
180 30.3 60 120 1800 900 25 (12)
360 15.2 30 60 3600 3,600 50 (40)
720 7.6 15 30 3600 >3,600 70 (50)
1080 5.1 10 20 3600 >3,600 70 (50)
2160 2.5 5 10 3600 >3,600 70 (50)

2.2.2 Spatial arrangement of evaluation points

In all cases, gravity is computed in terms of regularly-spaced latitude ¢ / longitude A grid nodes with
5 arc-min resolution (2160 x 4320 nodes). Regarding the radii r (vertical location) of the computation
points, we use four different cases for each of the six NI ;.. topography mass model, as follows:

e Case 1: Surface of the topography (Hsur). Evaluation points strictly reside at the surface of the
topography r = Ry. About ~50% of points have a radius smaller than R, so are located inside
the reference sphere.

e Case 2: Positive topographic heights (Hpos). Evaluation points reside at the surface of the
topography only when outside R, otherwise evaluation takes place at R. About ~50 % of points
are therefore airborne, e.g., above deep depressions such as the Apollo basin, or over most of
the lunar maria.

e Case 3: Brillouin-sphere (H11km). We use a constant altitude of 11 km above R = 1,738 km as
safe-side approximation for the different Brillouin spheres radii Rg associated with the various
N . resolution levels, and thus evaluate at 7 = Rz = 1,749 km = R + 11km. The chosen
sphere safely encompasses all mass of the Moon. This also holds at high resolution,
considering the highest peaks are ~10.8 km above R).

e Case 4: GRAIL-sphere (H23km). As additional evaluation level, the average altitude of the
GRAIL satellites during the extended mission phase of 23 km above R = 1,738 km is used, so
r = R; = R + 23 km. This places the evaluation points farther outside the field-generating
masses than in case 3, giving some insights into strengths of the forward-modelled signals at
GRAIL radius R; = 1,761 km.
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The four cases encompass scenarios where convergence may not be guaranteed for increasing
spectral resolution (inside Brillouin-sphere, cases 1 and 2), and those where convergence can be
expected (outside Brillouin-sphere, cases 3 and 4), e.g., Hu and Jekeli [2015].

2.2.3 Gravity from spherical harmonic series

In the external SH approach, the topographic potential V is computed as series expansion of integer
powers p of the topography [e.g., Chao and Rubincam, 1989; Wieczorek, 2015]

@ _ AmRPp I (n—i+4) )

o 2n+ 1M pl(n+3) Hrm )
Pmax

Vam = ) ) 3)
p=1

where p is the adopted mass-density value for the topography, M is the total mass of the Moon, R is
the radius of the reference sphere, p;,qx IS the maximum power considered in the series, Hr(f,’,)l =
(HC®) HS®)) denotes the SHCs of the function (H/R)P where H = Ry — R are the topographic
heights, V,;, = (Cpm» Spm) are the potential SHCs evaluated to p,y,4y , and Vn(,z:l) = (¢c®) S_,(lz,’,b are

nm’
the potential SHCs implied by the individual integer powers p (1 < p < Pnqx) Of the function
(H/R)?. The Vn(,z,’l) can be thought of as contribution of the p-th power of the topography to the total
potential V;,,,,. The convergence of the SH series with parameter p is elaborated in detail in Sect. 3.1
for the topographic potential models of various resolution levels.

The (H/R)P functions, computed in terms of Gauss-Legendre (GL) grids, are harmonically analysed
with the GL quadrature (GLQ), e.g., Sneeuw [1994]. Raising the function H /R, that is band-limited
from degree 0 to N, ,,., to integer power p gives rise to additional short-scale signals with spectral
energy in band of degree N% ., + 1to pN.% ., [Hirt and Kuhn, 2014].

For each power p, the grid resolution dx (constant in longitudinal direction, but variable in latitude
direction, cf. Sneeuw [1994]) is chosen such that full recovery of these additional harmonics is
possible: dx = 180°/(pN, ,,). For instance, dx = 2° (91 x 181 nodes) is used for NJ ,,, = 90,p =1,
while dx = 30" for NI, = 90 and p = 4. This is not only required to generate a largely complete
SH model of the topographic potential (cf. Hirt and Kuhn 2014), but also to avoid aliases that would
come into play if the grid resolution dx was chosen smaller than 180°/(pN.] ;).

The maximum grid resolution used in the SHA is 1’, corresponding to degree 10,800. The GLQ
algorithm used is based on the SHTools package [Wieczorek, 2015] and software extensions as
described in Rexer and Hirt [2015]. Their extension of the GLQ algorithm utilizes the Fukushima
(2012) routines for stable computation of ALFs to ultra-high-degree, along with parallel processing
capability.

Gravity values §g (defined here as radial derivatives of the potential V') are computed via
N¢ n
GM R\" _ _ _ ] 4
6g = 7 Z n+1) (;) Z (Cpm cosmA + Sy, sSinmA) Py, (sin @) (4)
n=0 m=0

where GM is the product of universal gravitational constant G ~ 6.67384 x 10 m3kg's2and M =~
7.346304 x 10?? kg, r is the radius of evaluation (as defined in Sect. 2.2.2), and N is the maximum
harmonic degree in the synthesis of gravity values, and NS, is the maximum degree of the V,,,,,
potential coefficients (N <NG ...
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When the radius of evaluation is constant (cases 3 and 4), software based on the GrafLab package
[Bucha and Jandk, 2013] was used, while for the cases with varying radii  across the lunar surface
(cases 1 and 2) a modification of the isGrafLab software [Bucha and Jandk, 2014] was used that
deploys a Taylor series approach [Hirt, 2012] for the efficient computation of §g at the irregular
lunar topographic surface. Both the GrafLab and isGrafLab software utilize the Fukushima [2012]
routines for stable syntheses to ultra-high degree (e.g., 10,800).

2.2.4 Gravity from numerical integration

The NI technique evaluates Newton’s integral [e.g., Blakely, 1996; Tenzer, 2005] in the spatial
domain. In this approach, the complexly-shaped topography is discretized through an ensemble of
regularly-shaped mass elements (e.g., prisms and tesseroids, cf. Heck and Seitz [2007], or polyhedra,
cf. Tsoulis [2012]), and analytical expressions are used to accurately forward-model the gravity field
of the mass elements. The gravitational effect of the complete topographic mass model is obtained
through addition (superposition) of the gravity effects implied by all mass elements.

To describe the geometry of the input topographic mass model, topographic radii [Eqg. (1)] are
synthesized in terms of regularly-spaced latitude-longitude grids with a very high spatial resolution of
30” (21,600 x 43,200 nodes). With the chosen resolution, the topography signal is massively
oversampled, e.g., by a factor of 240 (NI, ,,, = 90) and still a reasonable oversampling of factor 10 is
achieved for NI ;. = 2160. The oversampling improves the spatial-domain representation of the
topography signal (e.g., at least 240 nodes to represent a half wave-cycle when N, ,,.= 90), much
reducing the impact of discretisation errors on the computed gravity values. Different to the spectral
technique (section 2.2.3), there is no need to explicitly model short-scale gravity signals (beyond the
resolution of the input topography model N ,,) because these are “inherently” delivered by the NI
approach.

For practical evaluation we use the highest grid resolution in the vicinity of each computation point
and lower the grid resolution for remote masses. At each field (=computation) point, the numerical
integration uses 30-arc-sec resolution within a 2 degree radius, 1-arc-min resolution within 5 degree
radius, 3-arc-min resolution within a 15 degree radius and a 15-arc-min grid resolution for all grid
points within 15 to 180 degree spherical distance to the computation point. This results in the
evaluation of about 1.25 M mass elements for each computation point, and ensures that the lunar
topographic masses are completely considered in our (full-scale) numerical integration. The use of
lower resolutions at some distance from the computation point is permissible considering the
guadratic attenuation of gravity with distance ( e.g. Forsberg 1984). Importantly, the selected
resolutions result in approximation errors that are at most at the microGal level when applied to the
extreme case of a spherical shell with a thickness of 10 km.

We deployed Curtin University’s in-house Newton integrator (as described in, e.g., Kuhn and Hirt
[2016]) that uses a combination of prisms (near the computation point) and tesseroids (for distant
masses), along with the concept of residual spherical shell integration [Kuhn et al., 2009] to limit the
vertical extension of mass elements near the computation points. For the NI, advanced
computational resources (made available by Western Australia’s iVEC supercomputing facility) were
utilized and a total of ~150,000 CPU hours used. Gravity values were computed at 5’ resolution from
each of the six topographic mass distributions (Table 1) at the four different levels of evaluation
heights defined in Sect. 2.2.2. Importantly, the numerical values of the constants (G, R, p) used in
the NI are the same as in the SH modelling, ensuring consistency among both methods.

3. Numerical study

3.1 Spectral analyses
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This section provides insight into the spectral constituents and characteristics of the six SH
topographic potential models (Table 1). To investigate the spectral characteristics, we use
dimensionless potential degree variances (e.g. Rapp 1989)

n

ot=) (it Sin) )
m=

which are a measure of the spectral energy of the forward-modelled potential at a given harmonic

degree n. Accordingly, degree variances are computed for the individual potential contributions
C,Sf,z, 51(53 with Eq. 5. Given there is no dependency on the radii of the field points, all potential
coefficients from Eq. 2 and 3 and their power spectra from Eq. 5 refer to the reference sphere with

the adopted reference radius R = 1738,000 m.

For each of the six models, Fig. 1 displays the degree variances g2 for the individual contributions

Vn(f;) of the integer power p (various colors) to the (total) topographic potential V,,,, (black lines). For
instance, Fig. 1a shows that potential implied by the NI ,,, = 90 topography was computed through
summation of the contributions made by the first 15 integer powers (Eq. 3) up to a maximum degree
NG . = 900. According to the contribution scheme described in Hirt and Kuhn [2014], power p = 1
contributes to NI, = 90, power p = 2 up to 2N,J,,,, = 180, and p = 15 to degree 1350. Any
spectral power at degrees > N\ ., originates from raising the topography to integer powers p > 2,
and it is these “extra” short-scale energies that must be explicitly modelled in the SH approach if
consistency with Nl-based forward modelling is sought.

For a comparatively low NI . value of 90, Fig. 1a supports the postulation made in Wieczorek [2015]
that the contribution made by “each succeeding term is smaller than the previous”. Fig. 1a reveals for
the degree-90 model fast convergence of the series expansion (Eq. 3) with increasing p. For instance,
the potential contribution of p = 5 does not exceed a degree variance g2 = 1072%, and for p > 10
the spectral power is negligibly small (62 < 1073%), compared to the gravity signal associated with
the linear term (p = 1) that contributes the bulk of spectral energy (2 > 107'%) to V/,,,,. Assuming
that potential contributions with an associated signal strength 62 < 10725 are rather insignificant for
the forward modelling (e.g., Hirt and Kuhn 2012), Fig. 1a shows that series convergence is reached
for pax = 7 and N& 4, = 400, with a monotonic decline of o2 with harmonic degree n visible over
the whole spectrum.

When the spectral resolution N,I ,,. of the input topography model is increased, the convergence
behaviour of the SH series (Egs. 2, 3) changes considerably. For instance the computation of the
implied potential from a NI, ,, = 180 model requires p,,q ~ 12 and NS, = 900 to converge (Fig.
1b). Further doubling to N ,,, = 360 (Fig. 1c) results in a much slowed-down convergence, with
several integer powers to pqx = 40 required to converge over the band-width considered (here

NG .= 3600, corresponding to the first ten multiples of the input band-width NI ;). The spectral
energy of the potential generated by N\, ,,, = 360 is seen to steadily, but very slowly decline beyond
degree 360, with an energy level of 62 = 10720 reached near n =~ 1300, and 6> = 10722 nearn ~
3,600 (black curve in Fig. 1c).

From N .,.= 360 (Fig. 1c) to N ., = 720 (Fig. 1d), the spectral characteristics of the potential
models change substantially. Instead of monotonically decreasing energy, the potential generated by
the NI ;. = 720 topography shows a decrease to n = 1300, followed by a monotonic increase in
spectral energy for degrees n > ~1300 (cf. Fig. 1d). For the potential spectra of the N} ,,, =

1080 (2160) topography models, the increase in spectral energy enters at lower degree (n = 800)
and is even more pronounced (Figs. 1e, 1f). Given that gravity signal strengths are generally expected
to decay with resolution [e.g., Rapp, 1989], this behaviour is surprising. It may foreshadow
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divergence associated with the short-scale constituents of potential model in the spatial domain
inside the Brillouin-sphere (Sect. 3.2). As another explanation for this observation, the spectral-
domain technique [Egs. (2), (3)] extremely amplifies the short-scale potential constituents (at the
chosen reference sphere with R the spectra in Fig. 1 refer to), such that they attenuate “correctly”
when gravity signals are computed outside the Brillouin sphere. Evidence supporting both
hypotheses are obtained from our spatial-domain analyses in Sect 3.2.

A detailed look at the spectral energy associated with the various integer powers of the topography
shows that

e for NI, >360, the largest potential contribution at short scales (e.g., n = 3,600) is being
made by higher-order powers, e.g., p 35 when NI ,,, = 360, and p =25 when N\, ,,, =
2160 (cf. Figs. 1c and 1f), and

e the degree variances of 1},,,, may exceed those of any of the single contributions Vn(,fl) by two
orders of magnitude at high harmonic degrees (e.g., n = 2,000), which is a result of the
summation of several individual p —contributions of similar spectral power (compare black
vs. colour lines in Figs. 1c to 1f).

Figure 1 also suggests that at any given degree n, the 1},,,, coefficients are spectrally completely
modelled when the degree variance associated with the p,,,,-th contribution is at least 7-8 orders of
magnitude below the maximum contribution. Using this criterion for the convergence of the
summation over powers p (Eq. 2), the V,,,, coefficients are completely modelled for any

0 <n <3600, when p;,4,= 50. Note that coefficients beyond n > 3600 are not further taken into
account in our work because (i) they would possibly require very large integer powers p which might
be swamped by under/overflow errors in a double-precision computation environment (M. Rexer,
pers. comm. 2016), and (ii) they don’t seem to influence the series behaviour in a general sense.

As a side note, Fig. 1 suggests that postulations made in Wieczorek [2015] that “each succeeding
term is smaller than the previous” and similarly in Wieczorek and Phillips [1998] that “the magnitude
of each successive term [...] is smaller than the previous one” hold only up to some certain harmonic
degree. When the potential models reach or exceed a certain level of detail, the energy of several
succeeding terms is larger than of the previous at high degrees as is seen from the spectral
composition of the higher-degree models (Figs. 1c to 1f). As a result, there is an (apparent) increase
in short-scale energy visible in the power spectra. We emphasize that all power spectra shown in Fig.
1 refer to the reference sphere, so are not representative for the spectrum of, e.g., gravity values
evaluated outside the Brillouin-sphere, that would be declining with increasing harmonic degree. We
note that in the context of ultra-high resolution Earth gravity modelling, the study by Balmino et al.
[2012] made similar observations regarding the contributions of the higher-order powers to Earth’s
topographic potential.

Fig. 2 finally shows the spectra of the six topographic potential models, as computed with Eq. (3)
together with the degree variances of the GRAIL gravity model GRGM900C [Lemoine et al., 2014].
Given (i) our forward-modelling constants R, G, M (Section 2.3) were adopted based on the constants
of the GRGM900C model, (ii) the average mass-density of the Moon’s crust well approximated by our
adopted density value (cf. Section 2.2) and (iii) the majority of the GRAIL-measured gravity signals is
well explained through gravity from topography [e.g., Zuber et al., 2013], the spectra of the forward
models and GRAIL model are — as would be expected — in reasonably close agreement (Fig. 2). See
e.g., Lemoine et al. [2014] for a more detailed analysis of differences between observed and
modelled gravity.
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381

382 Figure 1. Contributions to the topographic potential made by the integer powers p of the topography
383 (various colors) and (total) topographic potential (black), obtained as sum of the single contributions.
384  Panel a: degree-90 input topography, panel b: degree-180, panel c: degree-360, panel d: degree-720,
385 panel e: degree-1080, panel f: degree-2160 input topography. All panels show dimensionless

386 potential degree variances (cf. Eq. 5). All spectra refer to the reference sphere with R =1738,000 m.

387

388



389
390
391
392
393
394
395
396

397

398
399
400

401

402

403
404

405
406
407
408
409
410

Importantly, Fig. 2 reveals for all six topographic potential models the spectral power beyond the
(nominal) resolution NI . of the input topography, that is, in spectral band [N, + 1 ... NS,,]. For
the six levels of resolution, these “tails” can be thought of as a set of curves with systematic upward-
bending behaviour (Fig. 2). While for lower NI, the tails quickly drop (showing a rapid decay in
short-scale energy), there is a slow decay for NI ., = 360, and for larger N, ,,., there is an apparent
increase in spectral energy observed with increasing n. Additionally, the tails tend to be the more
upward-curved, the larger NI ,,., and this behaviour might be an indicator for severe divergence of
the series in the spatial domain (Section 3.3).

10° ¢

107 - nN=90 topographic potential

' n=180 topographic potential

— N=360 topographic potential

10k - =720 topographic potential
n=1080 topographic potential
n=2160 topographic potential

== GRAIL gggrx 0900c model

0 500 1000 1500 2000 2500 3000 3500
Harmonic degree

Potential degree variance

Figure 2. Comparison of potential degree variances of GRAIL GGRX 0900c (model of the observed
gravitational potential) with the topographic potential implied by degree-90, 180, 360, 720, 1080 and
2160 topography models developed in this work

3.2 Spatial analyses
Gravity values §g from both forward modelling techniques,

e the spherical harmonic series (Sect. 2.2.3) and
e the discretized numerical integration (Sect. 2.2.4)

were compared (a) as a function of the input topography resolution NI ., (Table 1), (b) as a function
of the maximum harmonic degree N in the gravity syntheses (Eq. 4) and (c) for the four different
vertical arrangements of computation points (cases 1-4, Section 2.2.2). The descriptive statistics of
the gravity values §g from both techniques, computed at 5 arc-min resolution (2160 x 4320 grid
nodes covering the whole of the Moon), are reported in Table 2, and the statistics of differences Adg
between gravity from both techniques are given in Table 3.



411  Table 2. Descriptive statistics of the gravity disturbances from NI and SH modelling as a function of the
412 location of evaluation points, the resolution of the topography model N, All statistics based on 5
413  arc-min global grids, unit is mGal in all cases.

Case description Newtonian integration Spectral modelling with multiples
Location Input Min Max RMS Output Min Max RMS
Nr?zax Nr(r;lax
Hsur 90 -1072.3 893.1 332.4 630 -1072.3 893.1 332.4
180 -1179.7 917.0 339.2 1260 -1179.7 917.0 339.2
360 -1190.1 1000.5 343.2 3600 -4.6E+04 4.1E+04 390.9
720 -1173.3 1025.0 345.1 3600 -1.1E+09 1.4E+09 6.6E+06
1080 -1244.6 1032.4 345.8 3600 -4.3E+11 7.1E+11 1.2E+09
2160 -1283.5 1024.4 346.3 3600 -2.6E+13 1.1E+13 2.7E+10
Hpos 90 -948.5 893.1 328.3 630 -948.5 893.1 328.3
180 -1003.6 917.0 3325 1260 -1003.6 917.0 3325
360 -972.2 1000.5 334.4 3600 -972.2 1000.5 334.4
720 -976.4 1025.0 334.8 3600 -3.0E+04 3.2E+04 384.5
1080 -976.2 1032.4 334.8 3600 -5.5E+05 5.4E+05 2.4E+03
2160 -976.3 1024.4 334.8 3600 -5.1E+06 5.2E+6 2.3E+04
H11lkm 90 -859.4 866.3 317.2 630 -859.4 866.3 317.2
180 -881.4 878.3 318.2 1260 -881.4 878.3 318.2
360 -874.1 958.5 318.4 3600 -874.1 958.5 318.4
720 -874.6 985.6 318.4 3600 -874.6 985.7 318.4
1080 -874.6 991.0 318.4 3600 -874.6 991.0 318.4
2160 -874.6 983.8 318.4 3600 -874.6 983.8 318.4
H23km 90 -796.1 770.1 306.9 630 -796.1 770.1 306.9
180 -806.6 755.0 307.1 1260 -806.6 755.0 307.1
360 -806.5 766.9 307.1 3600 -806.5 766.9 307.1
720 -806.5 768.2 307.1 3600 -806.5 768.2 307.1
1080 -806.5 768.2 307.1 3600 -806.6 768.2 307.1
2160 -806.5 768.2 307.1 3600 -806.6 768.2 307.1

414

415 Maximum absolute differences, defined as max (|Adg |) and root-mean-square (RMS) values of Adg
416  are shown in Fig. 3 for a total of 140 permutations over the three parameters N, N¢ and

417 evaluation heights. From top to bottom, the panels are arranged in terms of the increasing

418 evaluation heights (Hsur, Hpos, H11km, H23km, as defined in Sect 2.2.2), and each panel shows the
419  convergence/divergence behaviour for the six topography resolutions NI .. (different colors) as a
420  function of N¢ (maximum degree in the gravity syntheses). In most cases, the N¢ were chosen such
421 that NJ <N =kN} ,,.< NS ., where kN .. are integer multiples of N1 ,,.. The black solid line in
422  all panels of Fig. 3 marks the 1 mGal threshold that indicates sufficiently accurate representation of
423 gravity through spectral gravity modelling with external harmonics.

424  As the key result of our work, Fig. 3 gives unprecedented detailed insight into the divergence vs.
425 convergence behaviour of the SH series of the Moon’s topographic potential, exemplified here via
426  gravity disturbances [cf. Eq. (4)].

427
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Table 3. Descriptive statistics of the gravity differences “SH minus NI”, as a function of the location of
evaluation points, the resolution of the topography model N, and of the resolution of the SH
modelling NS ,,. All statistics based on 5 arcmin- global grids, unit is mGal in all cases.

Case description Truncated spectral modelling Spectral modelling with multiples
Location Input Output Min Max RMS Output Min Max RMS
NrYr;ax Nr?lax NnG’Lax
Hsur 90 90 -46.535  31.277  2.6425 630 -0.007 0.006  0.0006
180 180 -79.455 54772  4.8322 1260  -0.028 0.022  0.0016
360 360 -130.168 91.242  6.0685 3600 -4.5E+04  4.2E+04 2.0E+02
720 720  -309.528 254.367 9.4200 3600 -1.1E+09  1.4E+09 7.0E+06
1080 1080 -3.1E+03 2.6E+03 38.197 3600 -4.3E+11  7.1E+11 1.2E+09
2160 2160 -2.6E+07 3.3E+07 1.2E+05 3600 -2.6E+13  1.1E+13 2.7E+10
Hpos 90 90 -34.652  31.277  2.3980 630 -0.027 0.037  0.0006
180 180 -70.373  54.772  4.0004 1260  -0.072 0.188  0.0019
360 360 -108.713 71.849 4.4135 3600 -0.655 0.724  0.0059
720 720  -218.709 115.775 4.6511 3600 -3.0E+04  3.3E+04 2.0E+02
1080 1080 -401.508 343.723 5.8322 3600 -5.4E+05  5.4E+05 2.4E+03
2160 2160 -1.7E+04 1.8E+04 1.1E+02 3600 -5.1E+06  5.2E+06 2.3E+04
H1lkm 90 90 -20.984  15.220 1.2658 630 -0.014 0.004  0.0007
180 180 -23.645 13.976  1.1787 1260  -0.018 0.013  0.0015
360 360 -20.977  13.179 0.4664 3600 -0.030 0.031  0.0029
720 720 -9.291 8.975 0.0918 3600 -0.068 0.042  0.0048
1080 1080 -5.507 5.338  0.0254 3600 -0.145 0.181  0.0063
2160 2160 -0.750 1.071 0.0075 3600 -0.172 0.260 0.0074
H23km 90 90 -9.159 6.688  0.6024 630 -0.019 0.005  0.0008
180 180 -4.716 3.241 0.2860 1260  -0.021 0.005 0.0014
360 360 -0.993 0.685 0.0313 3600 -0.024 0.005  0.0026
720 720 -0.041 0.043 0.0045 3600 -0.029 0.005 0.0044
1080 1080 -0.031 0.011 0.0053 3600 -0.031 0.011  0.0053
2160 2160 -0.034 0.010 0.0063 3600 -0.034 0.011  0.0063

Note on the terminology convergence and divergence as used in this study

Here we refer to the term convergence when the residuals between numerical integration and SH
series expansions (illustrated in Figure 3) show a steady decrease with increasing maximum spherical
harmonic degree. Conversely, we refer to divergence when the residuals start to grow for increasing
spherical harmonic degrees. We acknowledge that this interpretation does not relate to
convergence or divergence of a series in a purely mathematical sense; it rather indicates the ability of
the external spherical harmonic series [Eq. (4)] to accurately represent gravity in the space domain.
In this case, the residuals fall below a given threshold (e.g. 1 mGal in Fig. 3). On the other hand,
technique limitations are clearly indicated by residuals increasing with harmonic degree or failure to
reach a given threshold (Fig. 3), showing the inability of the external harmonic series expansion
approach to adequately model near-surface gravity. While the indicators may point towards
convergence or divergences, we cannot —in a rigorous mathematical sense - guarantee series
convergence or divergence when extending the harmonic series to infinity. This is because we work
with truncated series expansions [that is, no evaluation takes place beyond degree NS ., in Eq. (2)
and (4)], as is a usual restriction when working with spherical harmonics.
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448 Figure 3. Comparison of gravity from SH and NI as a function of (i) the evaluation height (from top to
449 bottom), of (ii) the resolution of the input topography model (various colors), of (iii) the maximum SH
450  degree considered in the spectral modelling. Left column: absolute maximum of the differences SH
451 minus NI, Right column: RMS (root-mean-square) of the differences. Comparisons based on 5 arc-min
452  global grids; unit on the vertical axis is mGal. The figure shows how convergence and divergence
453 depend on evaluation height and spectral resolution.
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3.2.1 Degree-90 and degree-180 topographies

For our lowest-resolution topography model (N%,,, = 90), Fig. 4a shows the gravity values §g from
the numerical integration at 2160 x 4320 grid points across the Moon and Fig. 4b the gravity
differences Adg between the two techniques, whereby the SH series (Eq. 4) was truncated to N¢ =
N[ ., and all computation points reside at the topographic surface with NI ... = 90. Fig. 4b shows
the spectral inconsistency between gravity from NI and SH when the latter is deliberately truncated
to NI 4, in the synthesis. It is the short-scale signal produced by the higher-order powers (p > 2) of

the topography H,S’,’,i at harmonic degrees N> NT .. thatis reflected by the differences in Fig. 4b. In
the present case, these short-scale signals may exceed ~10 mGal amplitudes (cf. Fig. 4b and Table 3,
“truncated spectral modelling”). When the spectral modelling is extended to N = 7N .. = 630,
the short-scale signals are fully modelled and the agreement between both techniques dramatically
improves by ~4 orders of magnitude to the level of ~1 uGal (Fig. 4c and Table 3, “spectral modelling
with multiples”).

Fig. 4c reveals excellent agreement which we interpret here as full convergence of the SH series
anywhere across the surface of the Moon. The differences in Fig. 4c reflect residual errors in the
numerical integration which —if it was necessary — could be further reduced by increasing the
oversampling (Sect. 2.2.4). However, these residuals are entirely uncritical for this study, given their
very small uGal-level amplitudes. Importantly, the excellent agreement of gravity values computed
with two independent techniques from the same topographic mass distribution demonstrates the
correct and consistent application of the two techniques, and serves as a baseline (“best-case
scenario”) for all further comparisons (Table 3).

Fig. 4c also reveals that — probably in contrast to common belief — SH models can be accurately
evaluated even deep inside the reference sphere (about 50 % of the lunar surface is inside the
reference sphere of radius R), provided that the resolution of the field-generating mass model is low
enough. For points inside the reference sphere, that is, r < R, the factor (R/r)™ — commonly
referred to as attenuation or dampening factor in Eq. 4 — reverses it purpose and acts instead as
amplification factor. If the gravity signals were not correctly amplified for evaluation points inside R,
the agreement between the two methods would not have been as good as shown in Fig 4c. The
duality of the amplification vs. attenuation mechanism is not very widely addressed in the literature.

Table 3 reports the descriptive statistics for the comparisons of gravity from our N,f, ., = 90

and N ., = 180 topography models at for the four different altitudes, and Fig. 3 shows the detailed
convergence behaviour of the spherical harmonic solution against the integration solution as a
function of N¢ (blue line for NI, = 90, green line for N\, .. = 180). In all cases — irrespective of
the point location inside or outside the Brillouin-sphere — the spherical harmonic series fully and
accurately converge, which is seen from the Adg values being always smaller than 40 puGal for our
complete spectral models (Table 3, “Spectral modelling with multiples”). Thus, our experiments
suggest that the spherical harmonic gravity models converge anywhere outside the lunar
topographic masses when the topography resolution is limited to scales of ~30 km (N, ,,, < 180).
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Figure 4. Forward modelling results using the degree-90 topography model. Panel a: Gravity
disturbances from NI, Panel b: Gravity differences “SH modelling to degree 90 minus NI”, Panel c:
Gravity differences “SH modelling to degree 630 minus NI””. All gravity values computed at the
topographic surface Hsur. The figure shows the importance of modelling short-scale gravity signals,
beyond the resolution of the input model, to achieve excellent agreement between both techniques
at the microgal level (panel c). Units in mGal.
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3.2.2 Degree-360 and degree-720 topographies

Compared to degree-90 and 180 comparisons, the increase to degree-360 resolution marks the
“turning point” where the speed of convergence is not only reduced, but divergence starts to
become relevant. This is seen from the slowly decreasing discrepancies in Fig. 3b, which do not drop
below the ~0.7 mGal level when the N ,,, = 360 model is evaluated to N = N&,, = 3,600 at the
topography but not inside R (case Hpos, Table 3).

When the evaluation points reside at the topography (case Hsur), maximum absolute difference do
not fall below ~70 mGal (see the local minimum in the red curve at N¢ =720in Fig. 3a) and rise

with increasing N¢ beyond the level of 10* mGal (Fig. 3). We interpret this behaviour as a clear sign
of divergence of the spherical harmonic series attributable to the multiples of the input band-width.

At the topographic surface (Hsur) At the positive topographic surface (Hpos)

) |
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Figure 5. Forward modelling results using the degree-360 topography model. Panel a: Gravity from
SH modelling computed at Hsur (positive and negative heights), panel b: same but computed at Hpos
(no negative heights), Panel c: Gravity differences “SH minus NI” at Hsur, Panel d: same but at Hpos.
Maximum degree in the SH modelling is 2520. The left column shows divergence for computation
points in the deep Apollo Basin, while convergence is reached when avoiding negative heights (i.e.,
lifting the computation points to zero where H<0). Units in mGal.

The spatial distribution of evaluation points subject to divergence is displayed in Fig. 5. Divergence
primarily occurs over the deep Apollo basin, where the surface topography points are located deep
(up to ~17 km) inside the Brillouin-sphere (Fig. 5a, 5c). Raising these deep evaluation points to R
(points become airborne over, e.g., the Apollo basin) eliminates the divergence problem for the

NE ... = 360 topography model (Fig. 5b, 5d). This clearly illustrates the dependence of divergence on
the depth of evaluation points inside Rg, and, more specifically, on r < R, where the (R/r)™ factor
amplifies the spectral energy.

For our NI, = 720 input topography model, the divergence in the spherical harmonic series is
seen to exacerbate. For evaluation inside the Brillouin-sphere (cases Hpos and Hsur), maximum
absolute differences between gravity from both techniques always exceed 100 mGal (Fig. 3a, 3c). A
monotonic increase of the errors with the number of multiples considered in the gravity synthesis is
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attributable to divergence in the SH method (Fig. 3a). For N¢ = NT .., the gravity differences reflect
certainly (i) spectral inconsistency, and possibly (ii) emerging divergence, but discrimination between
both effects is difficult.

For degrees of evaluation N¢ > NT . = 720, the discrepancies among both methods surge beyond
10° mGal (Table 3) and are present over most of the lunar surface (Fig. 6a, 6¢). For evaluation points
at the topography, but not inside R, divergence effects are smaller but still exceed the 10* mGal level
(Fig. 6b, 6d). The comparisons between gravity from NI and SH reveal that divergence may originate
over moderately undulating topography of the Moon’s near-side and “radiate” from what we call
here a seed-point over large parts of the planetary surface (Fig. 6d). As a result, gravity values over
large surface areas appear to become “contaminated” by divergence, the spatial patterns of which
elude their prediction. As the central result of Fig. 6, the SH technique is subject to severe divergence
when applied to completely model the NI, = 720 topographic gravity field at the surface of the
Moon.

At the topographic surface (Hsur) b At the positive topographic surface (Hpos)
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Figure 6. Forward modelling results using the degree-720 topography model. Panel a: Gravity from
SH modelling computed at Hsur (positive and negative heights) panel b: same but at Hpos (no
negative heights). Panel c: Gravity differences “SH minus NI” at Hsur, Panel d: same but at Hpos.
Maximum degree in the SH modelling is 2880. The left column shows severe divergence for most
computation points at the topographic surface except at higher elevations.. For Hpos, the right
column shows a seed-point near the centre of the near-side with divergence radiating over several
1000 kms. The central meridian in panels ¢ and d has been choosen such that the spatial patterns of
divergence become better visible. Units in mGal.

3.2.3 Degree-1080 and degree-2160 topographies

Gravity computed from the NT ,,, = 1080 (2160) topographies is severely affected by divergence
when the spectral method is applied at computation points residing at the topography (Hsur). From
Table 3, the maximum discrepancies exceed 3,000 mGal (N¢ = NI ,,, = 1080) and 3.3 x 107 mGal
(N¢ = NT ., = 2160). Modelling of degrees N®> N ., worsens the disagreement with NI (see
Table 3 and black/orange curves in Fig. 3a, 3b).
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558  Figure 7. Forward modelling results using the degree-2160 topography model. Panel a: Gravity from
559 NI, panel b: Gravity from SH (evaluated to degree 2160) minus NI at the topographic surface, unit in
560 mGal.
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562  Figure 8. Forward modelling results using the degree-2160 topography model. Panel a: Gravity from
563 NI, panel b: Gravity from SH (evaluated to degree 2160) at the topographic surface, shown over the
564 far-side highlands, unit in mGal.
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For N, = 2160 and computation points residing at the topography, Fig. 7a shows gravity from NI
and Fig. 7b gravity differences between NI and SH modelling (N¢ = 2160). From Fig. 7b, the
majority of computation points are severely affected by series divergence. Detailed views are given in
Fig. 8 over the far-side highlands, one of the — in a relative sense — lesser affected areas. Gravity from
the spectral modelling is seen to provide grossly incorrect values inside craters (compare Fig. 8a with
Fig. 8b). A characteristic feature of series divergence are extreme short-scale oscillations between
large positive and negative values in craters that render the spectral technique inapplicable at such
high spectral resolution over rough topography.

When the computation points are outside the Brillouin-sphere (Figs. 3e — 3h), the agreement
between the two gravity modelling techniques is better or much better than the mGal level,
corroborating that both techniques deliver correct values that are accurate enough from a practical
point of view. For H = 11 km and N} ,,, = 1080, the maximum difference is below 0.2 mGal when
N¢ = 3600, and below 0.3 mGal for N[, = 2160 (cf. Table 3). The maximum differences could
possibly be further reduced if the modelling was extended beyond degree 3600. However, this was
not attempted in this work (see reasons in Sect. 3.1).

3.2.4 Convergence inside vs. outside Brillouin-sphere

From top to bottom, Fig. 3 gives detailed insight into the convergence behaviour of spherical
harmonic gravity models as a function of the evaluation height. For evaluation points inside the
Brillouin-sphere, our experiments (Fig. 3a and 3c) demonstrate that the spherical harmonic series
may converge or may diverge. Convergence is guaranteed for low spatial resolutions only (in our
study up to NI ,,, = 180), while with higher-resolution mass/gravity models, convergent series turn
into divergent ones, and, as a result, invalid gravity values are obtained. The divergence effect is seen
to be the stronger, the deeper the computation points reside inside the Brillouin-sphere, and the
finer the resolution of the gravity modelling (see Fig. 3a and 3c).

However, for evaluation points at Rp (Brillouin-sphere, 11 km above R) or at GRAIL-altitude R (23
km above R) all SH series expansions are consistently seen to converge toward the NI solutions (Fig.
3e and 3g). This is evident from the very good mutual agreement among the gravity values. The
maximum absolute differences are always smaller than ~0.3 mGal (Table 3), and convergence for
gravity from the NI, = 360 topography is reached at degree N6 = 1440 at Rg and N¢ =720 at
R;. This is seen from the fairly horizontal graphs beyond the reported N€ values.

For gravity from the N ,,, = 720 model, there is no need to evaluate gravity at Ry beyond N¢ =
2,160, while this value is lower at GRAIL altitude R (NG = 1,440) because the points are even
farther away from the mass distribution, so short-scale signals are more attenuated as a
consequence of Newton’s law of gravitation.

Thus, outside the Brillouin sphere, the series expansions converge against the independent NI
solution in any case (Fig. 3c and 3d), irrespective of the gravity model resolution or location of points
outside that sphere. As such the outcome of our experiments fully support the theory of external
spherical harmonics [Moritz, 1980; Takahashi and Scheeres, 2014; Hu and Jekeli, 2015].

3.3 The relation between degree variances and divergence inside the Brillouin-sphere — a new
hypothesis

Generally, convergence of exterior spherical harmonics inside the Brillouin-sphere is rightly
considered a highly “unstable phenomenon” [see Hu and Jekeli, 2015], and divergence behaviour can
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be considered difficult to predict. However, a cross comparison between the degree variances of the
topographic potential models (Fig. 2) and the behaviour of the spherical harmonic series expansions
inside the Brillouin sphere (Fig. 3a, 3b) suggests that the power spectra possibly contain valuable
clues as to whether the series might be subject to divergence in free-space bounded by the surface
of the mass-distribution and the Brillouin-sphere. Relating Fig. 2 with Fig. 3a (3c) shows for
topographic potential models of the Moon

e convergence anywhere at or outside the topographic surface if the spectral energy of the
potential quickly decays with N¢ (blue and green line, N ... = 90 and 180),

e the possibility of divergence at points deep within the Brillouin-sphere if the spectral energy
shows very slow decay with harmonic degree N¢ (red line, resolution N,f, ., = 360), and

e certainly occurring divergence somewhere inside the Brillouin-sphere if the spectral energy
associated with the input-bandwidth or multiples thereof rises for high harmonic degrees
(e.g., purple line (N5, = 720), beyond N¢ = 1200; light blue line (N, ,, = 2160), beyond
NG = 800).

Based on these observations, we formulate a new hypothesis to predict divergence of the spherical
harmonic series, solely from the spectral-domain behaviour:

A minimum in the degree variances of an external potential model foreshadows divergence of the
spherical harmonic series expansions at points inside the Brillouin-sphere.

This hypothesis is supported by all of our numerical experiments, so is valid for the gravity fields
implied by our topographic mass models and the six levels of resolution investigated. However, for
planetary gravity fields of bodies other than the Moon, further numerical tests are needed to
in/validate our hypothesis.

One could be tempted to argue that the harmonic degrees N¢ with ascending spectral power
beyond the local minimum (Fig. 2) should not be included in the gravity synthesis. However, for
computation points outside the Brillouin-sphere, our numerical study has demonstrated the validity
and importance of — at least some of — these harmonics for the computation of correct gravity
values. For instance, SH gravity from the NI ,,-1080 topography differs from NI by up to 5.6 mGal
when evaluated to N¢ = 1,080 at the Brillouin-sphere, while the maximum discrepancies are less
than 0.2 mGal when N¢ = 3,600 (Table 3).

4 Discussion and conclusions

The present study offers new detailed insights into the matter of divergence vs. convergence of
spherical harmonic series expansions of the gravitational potential, by using forward-modelled
gravity of Earth’s Moon as example. A set of topographic mass models of varying resolution (from 61
to 2.5 km detail) was constructed and the implied gravitational fields were computed at four sets of
heights with spherical harmonic series and numerical integration, whereby the latter technique is not
subject to the divergence problem. The numerical experiments considered the current state-of-the-
art for technique comparisons (Sect. 2), including very short-scale signal modelling in spherical
harmonics and highly-oversampled numerical integration to reach mutual consistency at the micro-
Gal level. For all models and levels of resolution, spherical harmonic series of the gravitational
potential were shown to be convergent outside the Brillouin-sphere, as expected from the theory.

Our numerical study has shown the spherical harmonic series of the gravitational potential to fully
converge in free-space inside the Brillouin-sphere to ~30 km resolution (degree-180) of the field-
generating topographic mass model. Thus, gravity functionals from exterior gravitational potential
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models with similar resolution and characteristics can be adequately modelled with spherical
harmonic series down to the lunar surface.

For mass models of degree-360 or higher resolution, divergence was shown to become relevant. For
degree-360 models, the spherical harmonic diverge for evaluation points that are deepest inside the
Brillouin-sphere when the implied gravity field is computed with full detail, i.e., also short-scale
gravity signals beyond the degree-360 resolution are considered. For degree-720 resolution mass
models, divergence prevents complete gravity modelling with spherical harmonics for the majority of
surface topography points, and this exacerbates for degree-1080 and degree-2160 topography
models used in the forward-modelling. In case of the degree-2160 topography model divergence is
evidently present when gravity is synthesized to degree-2160 at the lunar topography (Fig. 7 and 8),
preventing the use of the spherical harmonic technique — as described in Sect. 2 — from applications,
such as prediction of gravity values at the lunar topography resolved to ~2.5 km. This finding is
important, e.g., if degree-2160 spherical harmonic gravity models (with the high degrees predicted
from topography) were to be used to compute gravity along spacecraft landing trajectories near the
lunar surface.

For the degree-720 and degree-1080 resolution levels — which are commensurate to the resolution of
GRAIL gravity field models — our study suggests that series convergence at the lunar topography
should be considered doubtful. While our numerical experiments unambiguously reveal divergence
occurring when the multiples of the input-band width are evaluated, divergence cannot be excluded
when the resolution of the implied gravity field model is truncated to those of the topography model.

Drawing an analogy between spectral gravity forward modelling for Earth and Moon using degree-
2160 topography models, the dependency of series divergence on the ruggedness of topography
becomes clear. For Earth, spherical harmonic series were shown to sufficiently converge at the
surface of the topography (heights above zero) for degree-2160 topographic gravity models [Hirt et
al., 2016], while for the Moon severe series divergence is evident for the gravity models of the same
resolution class. This different behaviour of the series for Earth and Moon needs further investigation
in a follow-up study.

In order to exclude numerical accuracy problems as cause for the high-frequency behaviour of the
spectra shown in Fig. 1 and the numerical results (Fig. 3 — 8, Tab. 2 and 3), we have performed
numerous tests for both the spectral domain approach (Egs. 2 to 4) and the numerical integration
technique. These included closed-loop tests for the former and comparison to analytical solutions for
the gravitational effect of a spherical shell for the latter technique. Our tests conclusively showed
that numerical problems cannot explain the results of this study. Furthermore, our results are in line
with other studies on the divergence problem [e.g., Hu and Jekeli, 2015; Reimond and Baur, 2016]
that attribute series divergence as cause for invalid values produced by the spectral technique inside
the Brillouin-sphere.

As a central result of this study, a new hypothesis was formulated that relates the spectral-domain
behaviour of the gravity models to divergence in the spatial domain. Following our hypothesis, if the
potential degree variances show a minimum, then the spherical harmonic series expansions diverge
somewhere inside the Brillouin-sphere. The hypothesis is fully supported by our numerical study for
the Moon, but its generalisation requires further modelling experiments for other planetary bodies,
e.g., Mars and Earth.

In summary, by comparing the external potential series expansions (Sect. 2.2.3) with numerical
integration (Sect. 2.2.4) for a set of topographic mass models with increasing level of detail (Sect.
2.1), our numerical study (Sect. 3) shows the cases in which
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e the use of external potential series is good enough to accurately model the topographic
potential, and, conversely,

e the external potential series diverge, which is exactly when the internal potential cannot be
neglected anymore in case the spectral modelling techniques are applied inside the Brillouin-
sphere.

The divergence is most likely the result of modelling the gravitational effect of masses above the
computation point with external spherical harmonics, showing the importance of the internal
potential in those cases.

Therefore, this paper has shown the limitations of the popular and widely used external potential
expansions when used to model the near-surface gravity field implied by planetary topography
beyond a certain level of resolution. To avoid divergence issues in such cases, either Newtonian
integration (as done in our study) or the 2-potential-method (Bruce Bills, pers. comm. 2017) can be
used as alternatives. However, the combination of interior with exterior potential expansions, as
done in the 2-potential-method, is radius-dependent (as noted in Takahashi et al. [2013], p 364),
potentially requiring several 100s of coefficient sets to describe the gravity field implied by planetary
topography. As such, both the 2-potential-method and Newtonian integration are computationally
rather intensive and do not deliver solid spherical harmonic coefficients without further
transformations (e.g., downward-continuation of surface gravity). While our study showed the
limitations of external harmonics near rough topography, it also indicates the level of resolution (in
case of the Moon: degree ~180 or somewhat higher), when external potential modelling only is free
of divergence, as measured by small differences to the Newtonian integration, such that the internal
potential can be safely neglected. As future work, the 2-potential-method should be further
explored and systematically compared with Newtonian integration.
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