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A Tactile-based Framework for Active Object
Learning and Discrimination using Multi-modal
Robotic Skin

Mohsen Kaboli !, Di Feng!, Kunpeng Yao', Pablo Lanillos!, Gordon Cheng'

Abstract—In this paper, we propose a complete probabilis-
tic tactile-based framework to enable robots to autonomously
explore unknown workspaces and recognize objects based on
their physical properties. Our framework consists of three
components: (1) an active pre-touch strategy to efficiently explore
unknown workspaces; (2) an active touch learning method to
learn about unknown objects based on their physical properties
(surface texture, stiffness, and thermal conductivity) with the
least number of training samples; and (3) an active touch
algorithm for object discrimination, which selects the most infor-
mative exploratory action to apply to the object, so that the robot
can efficiently distinguish between objects with a few number of
actions. Our proposed framework was experimentally evaluated
using a robotic arm equipped with multimodal artificial skin. The
robot with the active pre-touch method reduced the uncertainty
of the workspace up to 30% and 70% compared to uniform
and random strategies, respectively. By means of the active
touch learning algorithm, the robot used 50% fewer samples to
achieve the same learning accuracy than the baseline methods.
By taking advantage of the prior knowledge obtained during the
learning process, the robot actively discriminated objects with
an improvement of 10% recognition accuracy compare to the
random action selection approach.

Index Terms—Active tactile learning, tactile object recognition,
force and tactile sensing, artificial robotic skin.

I. INTRODUCTION AND RELATED WORK

UMANS use the sense of touch to actively explore

environment and objects through their various physical
properties such as surface texture, stiffness, shape, and thermal
conductivity. To this end, we strategically select the tactile
exploratory actions to efficiently learn about objects and
discriminate among them [1]. For instance, sliding to sense
the textural properties, pressing to estimate the stiffness, and
static contact to measure the thermal conductivity.

Tactile sensing in robotics has been investigated for several
decades and current tactile sensors can provide rich and direct
tactile feedback to the robotic systems [2]. A robot with the
sense of touch can explore the environment and perceive
valuable information which cannot be acquired through, for
instance, visual feedback [3]-[6]. Previous researchers have
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Fig. 1. Experimental setup. The UR10 robotic arm mounted with the multi-
modal artificial skin on its end-effector.

used various robotic system with different tactile sensors
to passively explore objects and discriminate among them
through their physical properties [7]-[14]. In these works, the
exploratory movements have been predefined. Therefore, the
autonomy of the robot is limited. In this sense, active tactile
exploration has shown great potential for enabling the robotic
system with more natural and human-like strategies for the
task of object discrimination. In order to actively discriminate
among objects, Xu ef al. used the index finger of the Shadow
Hand with the BioTac sensor to collect training data by
executing three different exploratory actions five times on
each experimental object [15]. They constructed and employed
observation models to discriminate among objects through a
sequence of different exploratory movements. However, the
base and wrist of the dexterous robotic hand were fixed on a
table, and all joints in the hand and wrist were deactivated
(except two joints of the index finger). Therefore, these
physical constraints result in a method which is highly likely
unscalable for robotic tactile exploration.

In [16], a biomimetic fingertip was controlled to slide on 10
different surfaces to perceive their textural properties. In order
to actively discriminate among the surfaces, the observation
models were built offline with uniformly sampled training data
of each surface texture under a range of contact depths. In all
the above mentioned work and other similar studies in [17]-
[20], the location and orientation of the experimental objects
in the workspace were known. Moreover, the training samples
were collected offline in order to construct the observation
models for each object. To increase the autonomy of a robotic
system during the tactile-based object recognition, the robot
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Fig. 2. Proposed Tactile-based Framework.

should be able to autonomously explore unknown workspace,
actively detect the number of objects as well as estimate their
positions in the workspace. Moreover, the informativeness of
training data obtained with each object is different. Some
objects have discriminant tactile properties that make them
easily to be identified from the others. Therefore, collecting
too many training samples with these objects is redundant,
whereas for objects, which are easily confused with each
other due to their similar properties, it is necessary to collect
sufficient samples to construct reliable and robust observation
models. Furthermore, to efficiently discriminate among objects
the autonomous robot should strategically select and execute
the exploratory actions that provide the robotic system with
the maximum informativeness.

A. Contribution

To tackle the aforementioned problems, we propose a prob-
abilistic pre-touch and touch based framework (see Fig. 2)
to enable robotic systems to autonomously explore unknown
workspace, actively learn about objects’ properties, and to
efficiently discriminate among objects by means of their
physical properties. Our contribution is three fold: 1) An
active pre-touch approach to enable the robotic systems to
autonomously and efficiently explore the unknown workspace
in order to calculate the number of objects, find their location,
and estimate their orientation (see Fig. 2-A); 2) An active
touch method to learn the physical properties of objects
(surface textures, stiffness, and thermal conductivity) with
the least possible number of training samples in order to
construct reliable objects’ observation models (see Fig. 2-B);
3) An active touch method to efficiently discriminate among
objects with a smaller number of exploratory actions (sliding,
pressing, and static contact) (see Fig. 2-C).

II. SYSTEM DESCRIPTION
A. Multi-modal Artificial Skin

In order to emulate a human sense of touch, we have
designed and manufactured multi-modal artificial skin [21] to
provide robotic systems with the ability of pre-touch and sense

of touch. Each skin cell has one micro controller and a set of
multi-modal tactile sensors, including one proximity sensor
(pre-touch), one three-axis accelerometer, one temperature
sensor, and three normal-force sensors (see Table I). All the
skin cells are directly connected with each other via bendable
and stretchable inter-connectors.

TABLE I
THE MULTI-MODAL ROBOTIC SKIN CHARACTERISTICS.

Modality Acceleration Force Proximity = Temperature
Per Cell 1 3 1 1
Range +2g >0—-10N 1-200mm —40—150°C
Bandwidth 0—1kHz 0—-33kHz 0—250Hz 0—-7Hz

B. Robotic System

We mounted one skin patch on the end-effector of the 6-
DoF industrial robot called UR10 (Universal Robots). The skin
patch consists of 7 skin cells including: 7 proximity sensors,
7 three-axis accelerometer sensors, 7 temperature sensors, and
21 normal-force sensors (see Fig. 1).

III. ACTIVE PRE-TOUCH FOR WORKSPACE
EXPLORATION

We propose an active pre-touch probabilistic approach for
robotic systems with the proximity sensors to efficiently
explore an unknown workspace. This method reduces the
number of exploratory movements and measurements required
to localize objects in the workspace. Then, the robot is able to
estimate the number of objects, their poses, and their geometric
centroids.

A. Problem Definition

The workspace Wyyz is defined as a discretized 3D grid
bounded by the reaching capabilities of the robot (see Fig. 3).
The artificial skin of the robot has an array of N, proximity
sensors with known locations /., with respect to the end-
effector position /" at each observation n. The sensor array
outputs a set of measurements zj,, . To take into account
the non-linearities and the uncertainty associated with those
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Fig. 3. An illustration of active pre-touch process.
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measurements, we compute the distance d" between the skin
cells and the object as the probability p(d”"|z}™",1'") (for ith
proximity sensor given all previous measurements).

Finally, we define p(W¢,,) as the probability of the pres-
ence of an object in every cell of the workspace at the nth
observation. The initial p(Wy),) is a uniform distribution that
will be updated using the new measurements. We assume that
the robot’s end-effector is horizontal to the X-Y plane of the
workspace.

B. Methodology

First, the robot starts the exploration from a fixed location
corresponding to a grid edge. Then, it generates a set of
potential next end-effector locations ["*! € L"*! ie., the
centre of each neighbouring grid cell. Afterwards, it selects
the one that maximizes the probability of detecting an object.
The robot performs the next movement and uses the new
sensor measurements zj,y to update p(W¢y ). This process
will be iteratively executed until the robot is certain about the
workspace, e.g., the entropy of p(W¢, ) is below 1%. In order
to fuse the measurements taken from all sensors of the array
we assume that their readings are independent of each other.
The joint probability distribution is given by:

(dn 11\/711" (xnp ! |ln dn) (dl'lfl'Zl:nfl’llinfl) (1)

Where p(z}'|I",d") is the likelihood of having measurement 7"
given that the object is at distance d" and the end-effector is at
[". This is obtained experimentally (see VII-B1). As the end-
effector is moving on X-Y plane, d" corresponds to the cells
of Wx,y;z,,,, where i and j are defined by the end-effector’s
location [" and Z;.,, are the cells below [" (m is the number
of cells in Z direction, the orange colored cells in Fig. 3).

1) Next Exploratory Location: In order to compute the
next best location [*"+! of the end-effector, we employ a
method based on [22], [23] proposed for air vehicles with
radar, which in this study we modified it to be used with an
array of proximity sensors. Considering that the end-effector
is moving on X-Y plane, we define the current estimate of the
2D workspace as p(Wyy ). The best next end-effector location

I*"+1 is the one that maximizes the probability of detecting an
object in the workspace:

s+l _ +1 _ +1 +1
I =arg 1n+r1nEaL)§z+1 ZP iy, = DI Wiy )p(Wyy) (2)
where p(z’l”jrv1 D|I" Wit s the probability of detecting

an object given the next location ["*!| which for every
proximity sensor i (for the skin patch i =1,...,7) is modelled
using the following exponential function:

" =wg .y |l
()
P( n+1 D‘ln+1 Wn+1) :Pmax e (3)

where ||| is the Euclidean distance and Wy,y, defines the
center position of each grid cell in X-Y plane. P4, € (0,1) (in
this study P, = 0.9) is the maximum probability of detecting
an object with the proximity sensor, and dyax (dpax = 5 cm)
and ¢ (0 = 0.6) shape the maximum coverage of the sensor
cone in the workspace grid (green cone in Fig. 3). In order to
update p(W)?Y), via recursive Bayesian estimation, we assume
that the observations zj, are non-object detection (Fig. 3).

2) Objects clustering and centroid estimation: First, the
final p(Wyy,) is thresholded (e.g. 0.9 probabilty) obtaining a
binary 3D matrix where 0 is a no-object and 1 is an object.
Then, we estimate the number of objects k using a three
dimensional connected-labeling algorithm and removing the
small clusters (one grid cell) that are unconnected regions of
objects. The cells are considered connected if they are adjacent
following the 26-connected neighborhood pattern. In order to
include all the occupied regions and not only the connected
ones, the number of objects found is used to initialize the k-
means algorithm that computes the 3D bounding box of each
object. Finally, the pose and the geometric centroid of each
object are extracted by means of its bounding box.

x e
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Fig. 4. Exploratory actions: pressing, sliding, and static contact

V. OBJECT PHYSICAL PROPERTIES PERCEPTION

A robotic system with the sense of touch needs to execute
various exploratory actions on the objects to perceive their
physical properties as a human does. For instance, a robot
slides its sensitive area on the object’s surface to sense its
textural property, presses on an object to measure its stiffness,
and performs static contact with an object to estimate its
thermal conductivity.

Stiffness: The robot measures the stiffness of an object
by pressing on the object (see Fig. 4). To do this, UR10
with artificial skin on its end-effector first establishes a light
contact with the objects. The light contact is detected as
soon as the measured normal force averaged over all sensors
F, ): 1 ):nrl ey €xceeds a threshold f, i.e. Fp> fe

av=N.N. Nr
(N. =17 1is the number of skin cell and N,=3 is the number
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of normal force sensors in each skin cell). Afterwards, the
URI10 with its sensitive end-effector presses the top surface
of the object. For all normal force sensors Fy,_,., the differ-
ence between the forces recorded before and after pressing
(AF,, ,) is used as an indication of the stiffness on the local
contact area. The averaged difference value over all force
sensors serves as a measurement of stiffness of the object

1 NL'
NNy ch:] AF"L‘ nye

Textural Properties: To perceive textural properties of
objects, the robotic system equipped with the artificial skin
slides its sensitive part on the surface of objects. In this
study, the vibrations generated during the sliding movement
are measured by the three-axis accelerometer in each skin
cell. To extract tactile feature from the output of each axis
of accelerometer sensors (aﬁc, af,c, afll_), we proposed in [24],
[25] a set of tactile feature descriptors. Our proposed tactile
descriptors represent the statistical properties of the tactile
signals in the time domains (see Table II). A(s,) is the total
power of a signal. M(s,) is the square root of the ratio of
the variance of the first derivative of the signal to that of the
signal. C(s,) is the second derivative of the variance and shows
how the shape of the signal is similar to a pure sine wave.
L(sp,vn) is the linear correlations between each axis of the
accelerometer. In this study, the proposed tactile descriptors for
N, number of skin cells are defined as A;sq1, Myorar, and Cypzar,
and L, in Table II. In all equations, s, and v, are the output
of each axis of the accelerator. The final proposed tactile
descriptor (TD) is the concatenation of the all descriptors,
which can be written as: TD = [Avorat; Miotats Crorals Liotal-

n*l

TABLE 11
TACTILE FEATURE DESCRIPTORS

A(sy) = %ZHN 1(5n*5_)2
1/2

Ms) = (A(%2) /A1)
Clsn) = M(52)/M(s,)
L(sn,vn) _):fzv 1 (50 =3) (v =)/ (50) 0 (V)
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Thermal Conductivity: A robotic system with tactile
sensing can identify objects through thermal cues by ap-
plying static contact on them. When measuring the ob-
ject’s thermal conductivity, the robot contacts its sensi-
tive part with the object surface for a certain time period
teontacts during which the average temperature time series
of the contacted area is recorded by temperature sensors:
TmmF{ﬁNT Z,,( 12,” 1 Doy }ieomaet where Nr is the number
of temperature sensors in each skin cell, and 7, ,, represents
the recordings of a temperature sensor. The final thermal fea-
ture (TF) is the combination of the average temperature time
series and its gradient at each time step TF = [Tioa1, ATioral]-

V. ACTIVE TOUCH FOR LEARNING PHYSICAL
PROPERTIES (AT-LPP)

In this section, we describe our proposed probabilistic
method for active tactile object learning. Our proposed al-
gorithm enables a robotic system to efficiently learn about
objects via their physical properties and to correspondingly
construct the observation models of the objects. We start
with formalizing the active tactile learning problem. Then, we
describe in detail our proposed algorithm called Active Touch
for Learning Physical Properties (AT-LPP).

A. Problem Definition

Suppose that there are N objects (¢ = {¢;}Y ) in the
workspace with the known poses. We denote the physical
properties of objects by J# = {kj}le. These objects may
have similar physical properties, for instance similar surface
textures, while some might have quite different properties, for
example different stiffness and thermal conductivity. In this
scenario, the task of the robot is to efficiently learn about ob-
jects by means of their physical properties with as few training
samples as possible and to efficiently construct the reliable
observation models of the objects. Since the objects with the
similar properties cannot be easily distinguished from each
other, the robot should autonomously collect more training
samples with these objects. The active tactile learning problem
is formulated as a standard supervised learning problem for
multi-class classification, where each object is regarded as
a class; for each tactile property, a probabilistic classifier is
efficiently constructed by iteratively selecting the next object
to explore and the next physical property to learn, in order
to collect the next training sample. In our proposed active
learning algorithm the one versus all (OVA) Gaussian Process
Classifier (GPC) is employed to construct observation models

of objects. GPC trains the function 2~ EN 2 , Wwhere 2 is the
observation set and ¢ is the target set which contains integers
indicating the labels of the input data, % = {1,2,3,...,N}.
Given a new sample *, the observation probability of a class
p(y|x*) can be estimated by f(a*). In this paper we used RBF
[26] as the covariance function and its hyper-parameters are
selected through cross-validation.

B. Methodology

The robot starts the learning process by building a training
dataset with a small number of samples (7 = {%/} +_|» where
k; represents a physical property of objects). Then the robot
iteratively collects new training data. At each iteration, AT-LPP
algorithm updates GPCs with the training data set collected
thus far, and estimates the uncertainty in the constructed ob-
servation models (classification competence estimation) which
guide to next round of tactile data collection. Using AT-LPP
the robot enlarges the training dataset by greedily sampling
the next object and the next property which may bring the
largest improvement to the performance of GPCs. The learning
process is repeated until a target criteria is reached, in our
case, when there is no improvement of the uncertainty of
GPCs. Finally, the robotic system constructs reliable obser-
vation models of the objects by using the efficiently collected



KABOLI et al.: A TACTILE-BASED FRAMEWORK FOR ACTIVE OBJECT LEARNING AND DISCRIMINATION USING MULTI-MODAL ROBOTIC SKIN 5

training dataset. Fig. 2 shows the entire process of the AT-LPP
algorithm.

1) Classification Competence Estimation: In order to es-
timate the GPCs competence, AT-LPP measures the Shan-
non entropy of each training sample t € J: (c|t) =
—Y e plc|t)log(p(c|t)). Then the training dataset of one
property 7 will be divided into categories 7 = { Z’f N
in which Z¥ contains N* number of samples. The GPCs
competence ¥(c,k) is estimated as the mean value of the
Shannon entropy:

1
¥ (e.k) = 5 k%ff(clt’é) )
¢ tke gk

The higher the ¥(c, k) is, the more uncertain the robot is about
the object.

2) Next Object and Next Physical Property Selection:
Let us define the object-property pair, ¢t(c,k) as a function
of the object ¢ (¢ = {c; f\': ) and physical property k €
{texture, stiffness, thermal conductivity} (7 = {fkj}izl).
After selecting a(c,k), the robot moves to the object ¢ and
executes the corresponding exploratory action to perceive the
physical property k. In order to learn about objects efficiently,
the robot can greedily sample the next object and the next
property which maximize ¥(c,k) of GPCs (exploitation). In
order to avoid being trapped in the local maxima, we add an
exploration rate so that the robot can randomly select a(c,k)
by following the uniform distribution (exploration). We denote
D as a probability, which is uniformly generated with % (0, 1)
at each iteration in the AT-LPP. Then the next object ¢* and
next physical property s* is determined by:

arg max ¥(c;,k;), if po > &g
% C,'E%J(_,’E,}g
o' (c,k) =
Cc= %{CI,CQ, ...CN}‘7 k= 02/{](17](27](3}, 0.W.
(5)

where €&, is the parameter to control the exploration-
exploitation trade-off.

VI. ACTIVE TOUCH FOR OBJECT DISCRIMINATION
(AT-OD)

A. Problem Definition

The task of the robot is to perform a sequence of ex-
ploratory actions (& = {a;}X_)) to efficiently discriminate
among objects which have already been learned. However, in
this scenario, the objects can have various positions and ori-
entations in the unknown workspace. First the robot explores
the workspace using our proposed active pre-touch approach
(Sec. IIT). Then it exploits the objects’ prior knowledge (the
observation models and training dataset of objects), efficiently
constructed by our proposed active tactile object learning
strategy (Sec. V), to iteratively apply exploratory actions on
objects. We propose a method to enable the robotic system
to determine the most informative action at each step, such
that the objects can be distinguished with the fewest actions
possible.

To start the discrimination process, the object priors p(c)
are set to be uniformly distributed. After applying an ex-
ploratory movement on the object, the robot perceives a new
observation z, and updates the object priors through Bayesian
inference with the observation probability p(z|c) calculated
by GPCs: p(c|z) = p(z|c) - p(c). The next exploratory action
is then selected and executed, which in turn generates a new
observation. This iterative process proceeds until the maximum
a posterior (MAP) of the object has reached the expected
probability; or the robot has already applied the target number
of exploratory actions. The class of the object is determined
by the MAP.

B. Optimal Exploratory Action Selection

Intuitively, when the robot applies an exploratory action
on an object and perceives its discriminant tactile property,
the robot can easily distinguish the object from the others
made of different materials. However, if an exploratory action
results in confusing observations between objects, it is less
useful. Therefore, the advantage of selecting a particular
exploratory action can be inferred by how much confusion
the action results in. To do this, we measure the confusion
of an exploratory action by calculating the objects’ similarity,
and use it to guide the next action selection. Similar work has
been done by Fishel et al [27]. However, their method suffered
from the curse of dimensionality. In contrast, our proposed
method is unrestricted by the feature dimensions, and thus
can be applied to high dimensional features, such as surface
texture property and thermal conductivity.

1) Objects’ Similarity Measurement: In order to measure
the similarity of object pairs, we exploit the constructed ob-
servation models and the efficiently collected training dataset
during the active tactile learning process. We denote the simi-
larity between object ¢; and c¢; when perceiving tactile property
k by sf.‘j. The similarity between objects can be estimated by
the mean value of observation probability p(c ,\t’gi) averaged
over training samples:

1
si=wnr L Plejlte) (©6)

with Nfi being the number of training samples from the object
¢; and the physical property k. sf-‘j ranges between 0 (dissimilar)
to 1 (similar).

2) Next Action Selection: To select the next exploratory
action which produces most discriminant tactile feedback, the
similarity (J,, q,) between an object ¢; and the others after the
robot applies the exploratory action ag; is computed by:
ch-e%ﬂc_/#c,- p(Cj|Z)S£~<j

Yoee plei2)sh

with z being the observation perceived by the robot.

The confusion of the exploratory action a; is then esti-
mated by the expected similarity among all objects: E(J,,) =
Y ,cv P(cilz)Jc; q- Finally, the next best exploratory action
a* which provides the lowest confusion is selected: a* =

argmin E(J,, )%. The discount factor 7 is used to control the
kek
exploration-exploitation trade-off. It is proportional to 1/ny,

)

Jeia =
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Fig. 5. Experimental objects. The physical properties are evaluated subjectively by human subjects and are indicated in the panel to the upper right of each
object (S: stiffness, T: roughness of surface textures, C: thermal conductivity. ++: very high; +: high; O: middle; -:low; — very low).

with n; denoting the times the exploratory action a; has been
applied on the object.

VII. EXPERIMENTAL RESULTS

In order to evaluate in real time the performance of our
proposed framework which consists of active pre-touch and
active touch, we designed two experimental scenarios. In the
first scenario, the robotic system was asked to autonomously
and efficiently learn about the experimental objects based
on their physical properties (stiffness, surface textures, and
thermal conductivity). In the second scenario, the task of
the robot was to actively discriminate among objects, taking
advantage of the prior knowledge of the objects obtained
during the active learning process. In both scenarios, the
workspace was unknown, and the robot had no knowledge
about the number of objects and their positions in it. It is
noteworthy to mention that we arbitrarily changed the light
intensity when conducting the experiments, in order to show
that our framework works well under different light conditions
(please watch the video to this study).

A. Properties of Test Objects

To assess our proposed framework, we deliberately selected
nine objects with different materials (glass, metal, cardboard,
and plastic) with regular and irregular textures, and various
shapes (triangular, rectangular, cross, and heart shape) (Fig. 5).
The physical properties of the objects varied from relatively
similar to quite different.

B. Active Learning about Objects’ Physical Properties

In the first scenario, the robotic system used our proposed
active pre-touch method to efficiently explore the unknown
workspace. Then, it actively learned about objects by means
of their physical properties.

1) Active Pre-touch for Workspace Exploration:
Fig. 6(a) illustrates the workspace, which is a cuboid
of 110cm x 64cm x 10cm (L x W x H). A corresponding
Cartesian coordinate frame (world coordinate frame)
was defined along its length edge (X-axis), width edge
(Y-axis), and height edge (Z-axis). This workspace was
discretized into 27 x 24 x 10 grid cells. The likelihood
of the proximity sensors p(z!|l",d") was modelled as
a Gaussian distribution 4 (u,0) at each discretized
distance d = [5,4,3,2,1.5,1,0.8,0.5,0.2,0]cm, in which yu =
[0.008,0.015,0.028,0.065,0.11,0.25,0.38,0.76,0.93,0.98]

and o = [0.03,0.04,0.06,0.1,0.28,0.7,1.2,1.6,0.18,0.09]- 10~

During the exploration, the sensor array (the end-effector of
the robot) was held at the maximum height of the workspace
and horizontal to the X-Y plane. The performance of our

proposed active pre-touch method was compared with the
random and uniform strategies which served as baselines.
Using the random pre-touch exploration strategy, at each
exploration step, the robot randomly selects the next location
by following the uniform distribution. We calculated the grid
entropy to measure the uncertainty of the workspace during the
exploration. To perform the statistical study, each strategy was
repeated 10 times. In each experiment the maximum number
of robot movements was set to 600. Fig. 6(e) illustrates that
using the proposed active pre-touch strategy, the robot reduced
its uncertainty about the workspace significantly compared to
random and uniform approaches. This is due to the fact that
with our proposed method, the robot explored the locations
with the higher probability of observing an object. Fig. 6(d)-
6(b) illustrates the results of workspace exploration after
300 steps. Fig. 6(b) shows that using our active pre-touch
strategy, all of the nine objects were successfully clustered
and localized, whereas random and uniform strategies suffered
from insufficient exploration of the workspace, yielding either
wrong determination of the objects’ number or wrong geom-
etry estimation (Fig. 6(d) and 6(c)).

2) Active Touch for Learning Physical Properties:

Test Data Collection: We evaluated our proposed active
learning algorithm with a test database, which was constructed
automatically by the robot by performing the three exploratory
movements 20 times on each object (pressing, sliding, and
static contact). The robot started each exploratory action with
light contact with the objects, with the minimum stable contact
force that can be measured by the artificial skin (F,, = 0.05N).
The pressing movement consisted of pressing the end-effector
with skin cells 2mm on the surface of the objects and mea-
suring the total normal force for 3s. For sliding, the robot
slid its artificial skin on the surface of the objects with the
constant velocity of lem/s for 3cm. To measure the thermal
conductivity of objects, the robot made a static contact with
the objects, including a light contact and pressing its sensitive
part lmm on the the surface for 15s. Then robot raised its
end-effector for 30s in order to restore the sensors to ambient
temperature. In this way the artificial skin had a similar initial
temperature condition in all trials.

Active Learning about Objects via Three Physical Prop-
erties: To initialize the active learning process, the robot
collected small training samples by performing each of three
exploratory actions once on each object. Each step when
the robot sampled a new training instance, the recognition
accuracy of GPCs was measured with the test dataset. The
performance of AT-LPP was compared with the random and
uniform strategy. In this regard, the entire experiment was re-
peated 30 times using each approach. Fig. 7(d) shows that AT-
LPP consistently outperforms the other methods by obtaining
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Similarity matrix for thermal conductivity. (d): Evolution of the object MAP during object discrimination process. The active object discrimination method

was compared with random method. The horizontal axis shows the number of exploratory movements applied on the objects, and the vertical axis shows the

object MAP.

the same recognition accuracy with fewer training samples. For
instance, the robot had in average 50% fewer training samples
compared to the other methods, when the recognition accuracy
reached 55% (Fig. 7(d)). Therefore, the robot following AT-
LPP method can construct reliable observation models of
objects with efficient training samples.

Active Learning about Objects via One Physical Property:
In order to assess further the performance of the AT-LPP
algorithm, the robot was additionally asked to learn about
objects via one of the three tactile properties individually.
Fig. 7(a), 7(b), and 7(c) indicate that the learning progress was
dependent on the distributions of the extracted features of the
physical properties. Fig. 7(a) shows that learning about objects
via their stiffness is more difficult, whereas the learning pro-
cess for object surface texture and thermal conductivity were
faster and resulted in higher recognition accuracy (Fig 7(b)

and 7(c)). In all three cases, AT-LPP performs better than
random and uniform methods. It can be concluded that using
our proposed method (AT-LPP), the robot can efficiently learn
about objects even with one modality of its artificial skin.

C. Active Object Discrimination

In this experiment, we evaluated our proposed active touch
strategy for object discrimination based on the objects’ prior
knowledge constructed efficiently in the previous scenario.
Before discriminating among objects, the robot actively ex-
plored the unknown workspace to localize objects as well
as estimate their geometric information, by following the
same procedure as described in Section VII-B1. Fig. 8(a),
8(b), and 8(c) illustrates the probabilistic similarity matrices
of nine objects for the three tactile properties respectively.
The results show that the measured object similarity was
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well correlated with the evaluation from human subjects (see
Fig. 5). For example, sponge, soft sponge, and toy block
were easily distinguished from other objects via their sig-
nificantly different stiffness (Fig. 8(a)). Conversely, toolbox
and tableware detergent were easily confused via their textural
properties (Fig. 8(b)), because both of their surface textures
are smooth. In general, when discriminating among the exper-
imental objects, the pressing action was less informative as
the objects shared similar stiffness (Fig. 8(a)). In contrast, the
objects were quite dissimilar based on their textural property
and thermal conductivity. Therefore, by applying sliding and
static contact, the objects could be more easily recognized.
We conducted the experiment to evaluate the performance of
our proposed active object discrimination strategy compared
with random action selection method. Each approach was
repeated 30 trials. In each trial, the robot distinguished each of
the nine experimental objects by performing sequentially five
exploratory actions on each object. The initial object priors
p(c) were first set to be uniformly distributed. After applying
each exploratory action, the posterior of an object p(c|z) was
updated and the object class, which was determined by the
MAP, was compared to the true object class. Fig. 8(d) shows
the evolution of MAP with growing number of exploratory
movements applied on objects. The recognition performance
of the proposed AT-OD method is higher than 94% in average
with only two exploratory movements. The robotic system
using the AT-OD consistently identified objects with higher
confidence than selecting random exploratory movements.

VIII. CONCLUSION

In this study, we proposed a probabilistic tactile-based
framework consisting of active pre-touch and active touch
methods for robotic systems with multi-modal artificial skin.
Using our proposed framework, the robot performed a
complete series of tasks, i.e. the exploration of unknown
workspaces based on active pre-touch approach, active touch
based learning of object’s physical properties, and the active
object discrimination task. The effectiveness of our proposed
framework was evaluated through online experiments and sta-
tistical analysis. Results shows that the framework outperforms
baseline uniform and random strategies in all the tasks. The ac-
tive pre-touch strategy presents a maximum entropy reduction
of 30% and 70% compare to uniform and random respectively,
as well as achieving better estimation of the objects poses. The
active touch learning provides high recognition accuracy with
fewer samples, reaching 50% of less samples than the baseline
strategies. Finally, results show that, by taking advantage of
the learned prior knowledge, the autonomous robot efficiently
discriminated objects with 10% improvement of recognition
accuracy compare to the random action selection approach.

Due to the low spacial resolution provided by the proximity
sensors on the artificial skin array, objects which are close
to each other in the workspace can hardly be clustered after
the exploration. In order to tackle this problem, the spacial
resolution of the sensor array can be increased by fusing the
proximity information and force signals while contacting the
objects.
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