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1 Introduction

The determination of global dynamic ocean topography (DOT) is of funda-
mental importance for ocean and climate research. The idea to derive it from
the combination of satellite altimetry and precise geoid models is already
discussed in the famous Williamstown Report [Kaula, 1970]. Since then this
idea has been a strong argument for the development of more and more so-
phisticated satellite altimetry and more and more refined geoid models.

The concept has been analyzed in depth in a fundamental paper by [Wunsch
and Gaposchkin, 1980]. The realisation of this concept was one of the ba-
sic motivations which led to the development and realization of the current
gravity field satellite missions CHAMP, GRACE and GOCE.

For the preparation of the GRACE and GOCE missions, a number of ocea-
nographic simulation studies have been carried out [Ganachaud et al., 1997,
Le Grand and Minster, 1999, Le Provost et al., 1999, Le Grand, 2001, Schroter
et al., 2002]. They investigated the complete processing chain from the com-
bination of geoid and altimetric sea surface height via the assimilation into
circulation models to the determination of oceanic transports, based on vari-
ous assumptions for the geoid accuracy and spatial resolution. The studies
demonstrated that the new satellite geoid models will allow the determina-
tion of geostrophic surface velocities with an accuracy of a few cm/s. GOCE
with its expected high spatial resolution should allow the recovery of details
down the spatial scales of about 100 km.

In order to be of relevance for ocean modelling the combination of altimetry
and geoid model must be achieved with highest possible precision and spa-
tial resolution. In principle the basic relationship is very simple, it is

C=h-N (D

where C is assumed to be the steady-state DOT, h is the altimetric height
above an adopted reference ellipsoid and corrected for all short time vari-
able effects such as tides and N are the geoid heights referred to the same
reference ellipsoid. However, thereby the problem rises that the geoid model
is usually provided as a truncated spherical harmonic series, i.e. in a band-
limited global spectral representation on a sphere, while altimetric meas-
urements are given as point values, or more accurately as weighted mean
values over the footprint of the radar signal, along the ground track of the
spacecraft. Their sample rate is very high along the track and rather coarse
in cross track direction.

For the determination of DOT the two representations have to be made spec-
trally consistent, i.e. both the geoid model and altimetry signals have to cov-
er the same spectral range. Since altimetry measurements contain informa-
tion with higher spatial resolution than is included in the geoid model, these
short scale features are to be removed by filtering.

In constructing a geoid model, one truncates its spectrum at a certain maxi-
mum degree L. For all degrees less or equal to L one has the coefficients of the
model together with their error (commission error). The signal for degrees
greater than L is not modelled, but its expected average size is identified as
omitted signal (omission error). Different models exist for the omission er-
ror and it can be large depending on the cut-off degree L. The scales that are
suppressed by filtering become “omission” and must be taken in account




GEQTOP

Altimetry data pre-processing

in the total error budget. Previous research, [Losch et al., 2002], has shown
that a portion of the omission error can leak into the commission error of
the filtered signal, if several systems of base functions are involved. Why is
this consistency so important? Geoid heights truncated at L are missing the
signal part above L; it has been omitted. Subtracting such geoid heights from
the altimetric sea surface heights means that a part missing in the geoid sig-
nal is not removed from the altimetric heights. It causes a non-random error
that would be mis-interpreted as a part of the DOT.

Furthermore the DOT determined in this way needs to be spectrally consist-
ent with the ocean circulation model (OCM) into which the dynamic ocean
topography is to be assimilated. While the former aspect is discussed, e.g.
in [Ganachaud et al., 1997, Losch and Schroter, 2004, Wunsch and Gapo-
schkin, 1980, Wunsch and Stammer, 1998], the latter question has not been
addressed so far in the literature.

What does spectral consistency mean? It depends, because the combination
of geoid model and altimetry can be done employing various spectral repre-
sentations, such as along profiles (1D-Fourier model), in boxes (2D-Fourier
model), on the sphere and globally (SH-analysis), using principal compo-
nent analysis over ocean basins, wavelets, a.s.0. The outcome may therefore
depend on the chosen representation.

Now one may argue, why not simply apply the same filters to the geoid
model and to altimetry (either 1D, 2D or on a sphere). This may look like
a reasonable idea at first sight, but one should realize that each filter has to
meet certain mathematical conditions, e.g. to be periodic for 1D-FFT, and if
these conditions are not met certain distortions will enter the data.

An obvious difficulty in this respect is the fact that the geoid models are
given globally while altimetry profiles are limited to the oceans. As coastal
areas are of particular importance for the understanding of ocean dynamics,
any processing of DOT should try to avoid mathematical distortions to enter
there.

A concise definition of the posed problem is as follows: how to optimally
combine a global data set which possesses a certain (low) spectral resolution
with a regional (or not-global) data set with much higher spectral resolu-
tion?

2 Altimetry data pre-processing

During the past few decades, satellite altimetry has been developed to a
powerful technique to precisely observe the ocean surface and to monitor
the sea level variations. State-of-the-art altimeter systems allow deriving sea
surface heights with a precision of a few centimetres.

However, every mission has inherent sampling problems: first the lifetime
of satellites is usually designed for a period of 3 — 5 years such that data
from a single mission is not sufficient to provide a representative long-term
mean on the ocean surface (the 13 years lifetime of TOPEX is an exception).
Second, due to orbit dynamics the ground track configuration must solve the
trade-off between high spatial and high temporal resolution. For example,
with a ten day repeat cycle TOPEX priority was on a high temporal reso-
lution and de-aliasing of ocean tides — at the cost of an equatorial ground
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track spacing of more than 300 km. Finally, the pulse limited radar altimeter
systems are essentially observing profiles and leave large diamond shaped
areas unobserved. All this strongly suggests a combination of consecutive
altimeter missions or of missions with different, complementary sampling
characteristics.

Such a combination requires three pre-processing steps: upgrading, harmo-
nization and cross-calibration. DGFI has access to all data from ERS-1, ERS-
2, TOPEX/Poseidon, ENVISAT, GFO, Jason-1, and other missions. All data is
administrated in a mission independent format with parameter values split
into individual files. This allows an easy replacement of single record param-
eters without the need to change the complete data base. This way, upgrad-
ing of new orbits (for the ESA missions), time tag corrections (for ERS-1/2)
and improved correction models for the microwave radiometer (TOPEX) has
been accomplished (compare Table 1). Harmonization implies to use as far
as possible the same models for geophysical corrections to avoid that model
differences are wrongly interpreted as apparent sea level variations. There-
fore, for all missions the inverted barometer correction was replaced by the
dynamic atmospheric corrections (DAC) produced by CLS Space Oceanog-
raphy Division using the MOG2D model from LEGOS [Carrere and Lyard,
2003]. Moreover, the ocean tide corrections for all missions were based on
the FES2004 [Lyard et al., 2006] — a de-facto standard in satellite altimetry
and gravity field modelling. Table 2.1 summarizes all efforts to upgrade and
harmonize the altimeter data. Finally, a cross calibration was performed by
a global crossover analysis based on nearly simultaneous single- and dual
satellite crossover differences performed between all altimeter systems oper-
ating contemporaneously. This crossover analysis captures not only relative
range biases, but also systematic inconsistencies in the center-of-origin reali-
zation and geographically correlated errors. Through this cross calibration
the radial errors of all satellites became available for the complete TOPEX
lifetime. It is straightforward to estimate an empirical error covariance func-
tion using the complete history of radial errors. The error covariance func-
tion, derived from the time series of radial errors is valuable information for
the error propagation discussed in section 6.2 below. Details of this multi-
mission cross calibration are described in [Bosch and Savcenko, 2006].

Further enhancements of the altimeter data are possible. In deep ocean
the ocean tides are assumed to be known to within 2 cm root-mean-square
(RMS) uncertainty at wavelengths of 50 km [Shum et al. 2001]. However,
over continental shelves and in polar oceans much larger deficiencies for
ocean tides are well known — even for the most recent models like FES2004.
Using the pre-processed altimeter data, DGFI performed a global empiri-
cal tide analysis and found significant residual ocean tide signals relative
to FES2004 [Savcenko and Bosch, 2007, Bosch et al., 2008]. In shallow water

Table 2.1 Altimeter mission data and replacements for upgrading and harmonization

Mission (Phase) Cycles Period Source Replacements
TOPEX/Poseidon 001-481 1992/09/23-2005/10/08 MGDR-C AVISO Chambers SSB correction, FES2004
Jason1 001-135 2002/01/15-2005/09/14 GDR-B PODACC FES2004

083-101 1992/04/14-1993/12/20

ERS-1 (C&G) 144-155 1995/03/24-1996/04/28 OPR-V6 CERSAT DEOS orbits, FES2004, pole tide, 1.5ms time bias
ERS-1 (D,E &F) 102-143 1993/12/25-1995/03/21 OPR-V3 CERSAT DEOS orbits, FES2004, pole tide, 1.5ms time bias
ERS-2 000-085 1995/04/29-2003/07/02 OPR-V6 CERSAT DEOS orbits, FES2004, pole tide, 1.3ms time bias
ENVISAT 009-040 2002/09/24-2005/09/19 GDR ESA/CNES FES2004
GFO 037-159 2000/01/07-2005/10/04 GDR NOAA FES2004




GEQOTOP Altimetry data pre-processing

90°

60°

30°

-30°

-60°

-90°

areas the M2 and S2 constituents show numerous extended patterns with
residuals taking amplitudes of up to 15 cm. Other major constituents and
the non-linear shallow water tide M4 hit residual amplitudes up to 5 cm.
The results have been used to set up a new global ocean tide model, EOT08a
[Savcenko and Bosch, 2008]. The new tide model will be applied as soon as
the evaluation is completed.

Time series analysis of altimeter data is important, as it allows identifying
and quantifying the sea level variability. High sea level variability compli-
cates the reliable determination of the mean sea level and the estimation of
a steady-state DOT. Moreover, the sea level variability must be known in
order to design and apply filter which make the altimeter data consistent
with the properties of the numerical model used to assimilate the sea level
data. In order to facilitate the analysis of altimeter time series, the complete
altimetry data base was re-organized. The sequential file structure (mission
=> 1:n => cycle) is not well suited as repeated measurements at neighbour-
ing locations are distributed over all cycles. Therefore the data structure was
reverted by defining small cells ( so called BINs) along the nominal ground
track and assembling all observations to those BINs whose centres are clos-
est to the measurement locations (the locations of repeated observations do
not exactly coincide). The along-track extension of these BINs is only some 7
km, such that the set of data within a BIN can be taken to estimate the mean,
the variance, sea level trends or amplitudes and phases of seasonal periods
or alias periods of tides.

From such time series analyses a few important information can be derived:
Figure 2.1 shows the standard deviations for estimating a linear drift of sea
level anomalies (SLA), the differences between instantaneous sea surface
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Fig. 2.1 The RMS values of sea level anomalies (differences between instantaneous sea surface heights and the CLS01 mean

sea surface) can be taken as a measure of sea level variability.
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Fig. 2.2 The first two, most dominant modes of a Principal Component Analysis of the TOPEX sea level anomalies capture

together abour 22% of the total variance of global sea level variations. The associated Principal Components ( u7pper panels)

exhibit for both modes a pronounced annual periodicity. The very first mode (left) explains the dominant annual sea level os-
cillation between northern and southern hemisphere.

heights and the CLS01 mean sea surface. These standard deviations are a
good measure for the sea level variability. Fig 2.1 clearly shows the Western
boundary currents and the Antarctic Circumpolar Current as areas of high-
est variability.

Figure 2.2 shows the seasonal variability. A time series of monthly mean val-
ues of the sea level anomalies were taken to perform a Principal Component
Analysis(PCA). PCA identifies the most dominant pattern of sea level vari-
ability and shows by the principal components how these pattern change
with time. Fig 2.2 shows the first two, most dominant modes. Together they
capture about 22% of the total variability with a significant annual periodic-
ity indicated by the associated Principal Components (top panels).
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3 Geoid status

The Earth’s gravitational potential is usually expressed [Heiskanen and
Moritz, 1967] in terms of fully normalized spherical harmonic functions

Ylm ((p’ }\‘) :

GM (R I+
V(T, 0, 7") = T (7) Z ylm.Ylm ((pa 7\’) (3 1)
1=0 m=-1 :

where [ is the degree of the spherical harmonic, m is the order, and y,  is the
corresponding spherical harmonic coefficient. G is the gravitational constant,
M the mass of the Earth and R the mean radius of the Earth; the latitude and
the longitude of the considered point are ¢ and A.

The spherical harmonic functions are defined as

Y, =P

m " lm

_ COS MA m=0
? sinfm/h ~ m<0 (3.2)

with the fully normalized associated Legendre functions E‘m‘ .

The series coefficients allow the determination of geoid heights, above an
adopted reference ellipsoid, with:

o0 l
N(@,2) =R D" 1, Y5 (0.1) (3.3)
1=0 m=-1 '

The signal power density is expressed in terms of degree variances c, de-
fined as

-0m -60m -30m Om 30m 60 m 90 m
Fig. 3.1 Geoid undulations computed with the gravity field model EGMOS.
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1
_ 2
Cl - n;l ylm (3'4)

or in terms of their square roots, the root-mean-square (RMS) value per de-
gree. It can be shown that on the Earth’s surface the degree variances follow
the rule of thumb, according to [Kaula, 1966]

10—10
P (3.5)

When a geopotential model is given, the set of the coefficients y, up to a cer-
tain maximum degree L is available. The use of the coefficients to a maximum
degree, L, causes an omission error (i.e. the effect of neglected higher degree
coefficients) in the computed undulation, while the errors in the potential
coefficients create a commission error in the computed geoid undulations.

¢, =16

Together with the finite set of harmonic coefficients there must be given their
variance-covariance matrix with dimension equal to (L+1)*(L+1)%. This cov-
ariance matrix is a full matrix, but with a block-diagonal predominance. It
contains the error variance o, of each coefficienty, and all its error covari-
ances cov{y, , y_} with the others coefficients.

Disregarding the correlations, in a simplified scheme, for each degree I, we
define the error degree variances as

1
2
g =) O©,
l mzz : (3.6)

In Fig.3.1 are shown the geoid undulations computed with the recently pub-
lishes ultra-high resolution gravity field model EGMO0S, [Pavlis et al., 2008].
The model is available up to degree and order 2160 (corresponding to a spa-
tial resolution of 5'x5”) and was generated by combining a satellite only grav-
ity field and surface gravity data.

In the following we consider these geopotential models:

1) EGMY6. It is a model consisting of spherical harmonic coefficients
complete to degree and order 360, computed by National Imagery and
Mapping Agency, the NASA Goddard Space Flight Center and the
Ohio State University. The model incorporates surface gravity data,
satellite tracking data and satellite altimetric observations.

2) EIGEN-GRACEO02s. It is a satellite only gravity model complete to
degree and order 150 from GRACE, realised in 2005 by GFZ Potsdam,
[Reigber et al., 2005].

3) GOCE. Itis a geopotential model derived from a simulation study of
the next satellite gravity mission GOCE. In this case the observable
is the measurement of gravity gradient based on differential
accelerometry. This concept allows high resolution determination of
the gravity field with homogeneous accuracy. The expected degree
resolution is about degree 200 to 250.

In Fig. 3.2 are shown the error degree variances of the EGM96, GRACE and
(simulated) GOCE models compared with the signal power density of the
Kaula rule (3.5). The points of intersection between the degree error curves
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and the Kaula’s line define the resolution of the geopotential model.

In order to see how the error ¢, accumulates over the degree I, we define the
cumulative commission error in a certain bandwidth as:

L
CUM, = €
' 122: : 3.7)

-12 1 1 1 1 1

0 50 100 150 200 250 300 350
spherical harmonic degree

Figure 3.2 RMS of the degree errors for the geopotential models: EGM96, EIGEN and
GOCE together with the signal RMS from eq. (3.5).

Geoid Commission Error [m]
Ll il N VN

10" : :

——— EIGEN
- GOCE

| | | | |
0 50 100 150 200 250
spherical harmonic degree

w
S
S

Figure 3.3: The cumulated commission ervor for geoid undulations computed from EIGEN and
GOCE geopotential models.
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Figure 3.4: Omission error for the geoid undulations as function of the cut-off degree L, computed using Kaula’s rule.

that, for the geoid undulation, becomes:

(3.8)

In Fig. 3.3 are shown the cumulative geoid commission errors for EIGEN and
GOCE models.

However we have to consider the second part of the error due to the limita-
tion in the harmonic expansion. The real field is composed by infinite terms,
while the estimated model must to be finite and therefore it has a cut-off
degree L.

Fig. 3.5 Omission error for a cut-off at degree 45, estimated from the ultra high resolution gravity field model EGMO08
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We can write the eq. (3.3) as

N@)=RY S 1, Y @) +RS S v, ¥, (0.2)

1=0 m=-1 I=L+1 m=-1

We define as omission error the expected signal power that has not been
modelled:

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 100
spherical harmonic degree

Figure 3.6: Cumulative commission error (blue line) for the GOCE model and omission error (red
line) for the geoid undulation.

50 100 150 200 250 300 350
spherical harmonic degree

Figure 3.7: Cumulative commission error (blue line) for the GOCE model, omission error (red line)
and global error (green line) in terms of the geoid undulation.

10
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-0.02
0

OM, = c
" \/z;ﬂ (3.9)

To compute this error we have to know the degree variances up to infinite
degrees, but, because of the rapid decrease of the signal degree variances, we
can use, for instance, Kaula’s rule (representing the expected signal size) up
to [ =1000. Fig. 3.4 shows how the omission error varies when the degree L
is varying in (3.9).

In Fig. 3.5 the spatial representation of the omission error is shown, com-
puted using the ultra high resolution gravity field model EGMO08. In this case
the cut-off is at harmonic degree 45.

Fig. 3.6 shows the cumulative commission error, eq. (3.7) for the GOCE geo-
potential model, and the omission error, eq. (3.9), in terms of geoid undu-
lations. We can observe that the omission error is dominant around up to
degree L = 265. After this degree the cumulative commission error is greater
than the omission component.

In Fig. 3.7 both the errors (commission and omission) are reported and their
sum that represents the global error. With this simulation of the GOCE grav-
ity field, the minimum of the global error is at L =215.

So far the commission and omission errors are defined in the spectral do-
main, as functions of spherical harmonic degree. The same concepts can be
defined in the spatial domain. We define the covariance function between

—— Lmin =2, Lmax =70

—— Lmin =2, Lmax =100

—— Lmin =2, Lmax =150

5 10 15
spherical distance [degree]

Figure 3.8: Covariance functions of the geoid undulation (EIGEN model) computed for different maximum degrees.

11
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two points P and Q at spherical distance 1\ as

L
Clw) = 2 ¢, B(cosy)
; t (3.10)
where c, are the degree variances of the degree | and P, are the Legendre
polynomials.

The error degree variances are the spectral representation of the errors of
the gravity field. In the spatial domain they define the error covariance func-
tions:

L
C.(¥) =& P(cosy) .
1=0 (3.11)
The complete geoid error height covariance function between two points at a
distance 1 is the sum of the commission and omission components

CH(y) = RC,(y)+R* Y c2P(cosy)
I=L+1 (3.12)
Also in this case it is appropriate to use the Kaula’s rule to compute the omis-
sion error component.

In Fig. 3.8 three examples of commission error covariance functions (for the
EIGEN geopotential model) for different maximum degrees L are shown.

We can observe that the length of correlation (i.e. the value of 1 for which
C(}) has decreased to half of its value at 1} = 0) decreases with increasing
maximum degree, while the variance (i.e. the value of the covariance func-
tion in the origin) increases, see Table 3.1.

Lmin = 70, Lmax = 1000
04 = = -
020 ;\\ . |
\;\~;
o T —— o
02 | \ \ \ \
05 1 15 25 3
0.15
— Lmin = 150, Lmax = 1000
01 _
e 005 ~ —
T~
—~ -
o T SR -
R s
005 | i i i i
0 05 1 15 2 25 3
0.03
——— Lmin = 300, Lmax = 1000
0.02 E
e 001 —
ol T T DU — |
e o
001 \ i i i i
0 05 1 15 2 25 3
spherical distance [degree]
Figure 3.9: Covariance functions of the omission error for the geoid undulation computed for different maximum degrees
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Table 3.1: Variance, RMS and length of correlation computed considering the covariance
function of the EIGEN model, with different maximum degree.

variance (m?>) RMS (m) length correlation (°)

L=70 4.88:10¢ 0.0022 1.35
L=100 2.46:10* 0.0157 0.90
L=150 0.0291 0.1707 0.65

Using the Kaula rule it is possible to compute the covariance function of the
omission error. In Fig. 3.9 the omission error covariance functions are shown
for different minimum degree L. Table 3.2 shows how in this case the vari-
ance decreases with increasing L. This corresponds to the fact that knowing
the model with high resolution (up to high degree L), the un-modelled signal
becomes smaller.

Table 3.2: Variance, RMS and length of correlation of the omission error
for different minimum degree.

variance (m?>) RMS (m) length correlation (°)

L=70 0.42 0.64 0.75
L=150 0.09 0.30 0.45
L =300 0.02 0.14 0.25

In the omission error covariance function, harmonic degrees from L to 1000
are contained. This approximately means that wavelengths corresponding
to a spherical distance shorter than 1°=360°/L are considered. This explains
why the length of correlation decreases when L increases.

In all these considerations we assume a simplified situation, because we are
consider the errors to be homogeneous and isotropic without taking into ac-
count the correlations between coefficients.

13
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4 Filtering

The absolute sea surface topography ( is the difference between the sea sur-
face height (SSH) h relative to a reference ellipsoid (measured by satellite
altimetry) and the geoid height N referred to the same ellipsoid:

{=h-N

The geoid undulation is given as an expansion into spherical harmonic func-
tions, (3.3).

The SSH h is derived from satellite altimetry. The measurements are given
as point values profile-wise along foot-prints of the satellite tracks. By now a
huge set of data from several altimetric missions is available, that constitutes
the basis of the computation the SSH with high accuracy and precision.

The two components i and N have different resolutions. For the geoid the
resolution is defined by the maximum degree L of the harmonic expansion
(3.3). For the altimetric data the resolution is defined by the sample pattern
in along-track and cross-track direction. We assume the geoid resolution al-
ways to be the limiting factor. For this reason we will remove all small scales
from the altimetric data that are not resolved by the geoid. This synchroniza-
tion of resolution may be achieved by applying the same low-pass filter to
the altimetric data and to geoid undulation.

The concept of resolution is strictly related to the concept of mathematical
representation of the data. For example, if we consider the geoid height and
we use a spherical harmonic representation, it is easy to identify its different
spectral components with the spherical harmonic degree and order. But for
the sea surface height the spherical harmonic expansion is a priori not a suit-
able representation, because the data are confined to ocean areas.

The geoid undulation is a global quantity and it is naturally represented by
spherical harmonic functions, that are also global, while the SSH is defined
only in ocean areas and its spectral content is much higher.

Here we will analyze three approaches to solve this spectral inconsistency.

The first proposal is to expand the altimetric sea surface into the land areas.
In this way the geoid and the sea surface have the same type of global spec-
tral representation and they can be processed into a compatible form.

The second approach consists in the analysis in a local region, in which the
data are considered disregarding their global characteristics.

The third approach consists in an analysis of the data along the profiles of
the altimetric tracks (see chapter 5).

To remove the short wavelengths from the SSH, a low pass filter is needed.
In this article we will analyze various types of filters for the global as well as
for the local approach.

To check the accuracy of the proposed filters, we defined, for both approach-
es, a general procedure of simulation which is shown in Table 4.1. The dif-
ferences between estimate and simulated surface give an indication of the
properties of the filtering procedure.

In the follow we use the EIGEN model [1] up to degree L=180 to simulate the
SSH on the oceans and we consider the threshold of the filter corresponding
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to k,=60.

The results of the global and the local approach will be compared in a limited
box. The chosen area (pe [-45°,-65°], Ae [40°W,20°E]) is compatible with the
Atlantic sector of the Antarctic Circumpolar Current (ACC), see Fig. 4.1. We
decided to consider this area because the ACC is an important feature of the
deep ocean circulation; it transports and exchanges deep and intermediate
water between the Atlantic, Indian and Pacific Ocean, and it contributes to
the deep circulation in all basins. This current is a fundamental component
in the models for the global climate of the Earth.

Table 4.1: Scheme of the simulation to check the accuracy of the filtering.

1. | Construction of a simulated SSH, with known spectral content, using geoid heights
synthesized from a gravity model to a certain maximum degree L.

2. | Application of a filter (with threshold ) on this surface function obtaining, if the filter
works correctly, a filtered surface with spectral content, up to k, <L.

3. | Comparison between this filtered surface with the same surface obtained by direct

spherical harmonic synthesis, using the same a-priori model up to k.

latitude [deg]

=

-150 -100 -50 0 50 100 150
longitude [deg]
Figure 4.1: The area selected for this study.

4.1 From ocean only to global

Starting from the altimetric data, available only over the oceans, we want to
derive from these ocean data a global altimetric sea surface that can be made
compatible with the geoid surface.

The global altimetric sea surface will then be represented using spherical
harmonic functions, (3.3). Then geoid and sea surface are given in the same
type of spectral representation, i.e. spherical harmonics, and they can be
processed (filtered) into a compatible form.

This procedure was developed in [Wang, 2007], where the following ap-
proaches of expanding and filtering the sea surface heights are tested over
all oceanic surfaces.
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In order to be able to expand altimetric data into a series of spherical har-
monics, all land areas (and ocean data gaps) have to be filled with data as
well.

We will illustrate different methods to achieve this. Then we analyze the
performance of the different filters.

The simplest way to achieve a global surface is to complement the altimetric
sea surface data by zero values on land. It is well known that the drawback
will be very “unnatural” oscillations (Gibbs phenomenon) in the spherical
harmonic representation along the borderline from altimetric data to zero
values due to the sharp sea-to-land edge.

In order to reduce the strong discontinuity along the coastlines we fill the
land with another geoid, namely EGM96, again up to degree L=180. We call
this reconstructed global surface S, . Of course, also in this case, a discontinu-
ity along the coastlines is still present but much smaller.

It is necessary to reduce this discontinuity further, to make the input signal
smooth enough for a spherical harmonic representation. The general idea
is to generate a “transition zone” along the coastlines, on the land side in
which a smooth transition to the ocean and land function will be attempted.
Through interpolation there will be mixed data in the interpolation zone
based on both ocean and land data. The global data set will then be divided
into three parts (see Fig. 4.2): the geoid heights from EIGEN model on the
ocean representing the altimetric surface (N'*_ ), the geoid heights from
EGMY96 on land (N'®_ ) and the interpolated data in the transition zone.

The transition zone is generated expanding the coastline polynomial towards
the land direction. The size of the transition zone is arbitrarily fixed equal to
1.25°, but other choices may be considered as well.

latitude

1
0 50 100 150 200 250 300 350
Figure 4.2: The division of the Earth’s surface: ocean (white), land (grey) and transition zone along the coastline (black).

The data on the ocean and on land will be used to interpolate the data in the
transition zone and the values in the interpolation zone will be replaced by
the predictions.
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To predict the values in the transition zone three methods will be tested:
- 2D polynomial interpolation;

- prediction by least squares collocation;

- iterative procedure.

After the prediction we have three surfaces that differ only in the transition
area.

2D polynomial interpolation

The prediction in the transition zone is made using a 2D cubic interpolator
(standard Matlab routine), based on the Delauny triangulation of the data.
With this method all the data points are connected with triangles in such
way that all the data are located at the corners of each triangle. If the point
to be predicted is inside a triangle, the values at the three corners are used to
compute the prediction value. If it is not inside any triangle, it is linked to the
nearest triangle and then linearly interpolated.

We call the global surface reconstructed by polynomial interpolation S, .

Interpolation by least squares collocation

An alternative method to perform the interpolation in the transition zone
is the use of least squares collocation, [Moritz, 1980]. In this case, instead of
simple polynomials, Legendre polynomials that are mathematically close to
the global representation of the data in terms of associated spherical har-
monics are used.

For computational reasons, we consider for each interpolation point Q of the
transition zone a window with size 10°x10° and we use for the prediction all
data (N™_  and N'®__ ) inside this window.

Using the prediction formula we can write for the interpolated value:

ocean

180

] T -1 Nun
Ny =C"(ypo)-(C(y;)+D) {Nfgo" 4.1)

ocean

where C is the isotropic, global covariance matrix of the geoid heights:

180

C(\VPQ) = RZZCZPI(COS \VPQ) (4.2)
=2

depending only on the spherical distance ., ; ¢, are the degree variances of
an a-priori gravity model, namely

1
=D Y 4.3)
m=-1

and P, are the Legendre polynomials. D is the covariance matrix of the meas-
urement errors and, in this preliminary study, it is assumed D = 0.

Eq. (4.1) contains the inversion of a full matrix. The dimensions of this matrix
depend on the number of points used in the prediction. As consequence, it
is necessary to consider only a limited area around each point of prediction.
If for each prediction we consider (r+1)(r+1) points, we must invert a full
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matrix with size (r+1)? (r+1)% To determine the quantity r we can look at the
behaviour of the covariance function involved in (4.1). In Fig.4.3 are shown
the theoretical covariance functions computed using different minimum de-
grees.

—— Lmin =2
——— Lmin =6
08| : — Lmin=10
——Lmin=15
06 R
04t R
02r i
0 L i
_02 - 4
_0-4 Il Il Il Il Il Il
0 10 20 30 40 50 60 70

spherical distance [degree]

Figure 4.3: Normalized covariance functions computed using EGM9G6 with different minimum degrees.

If we consider a model starting from the minimum degree L . =2, the length
of correlation is 35°, while using L . =10 we have a length of correlation of
5°. This means that, if we use for the prediction a model starting from L . =
2, we must consider at least an area 35° x 35° around each point of the transi-
tion zone. Then it is necessary to invert a full matrix (1296 x 1296) for each
point of prediction (for a grid with sampling of 1°) and this could be numeri-
cally heavy. We decided to choose the minimum degree equal to 10 and the

corresponding local grid will be composed of 11 x 11 points.

To make the data compatible with this hypothesis, the synthesized values on
land and ocean are computed using the corresponding geo-potential model
with the same minimum degree (L, =10). This is equivalent to assume that
the a priori model is known up to this degree. This assumption could be rea-
sonable for the first simulations.

Summarizing, the interpolation procedure works locally, using a window of
11 x 11 points moving over the complete area. We denote the obtained sur-
face using the prediction by least squares collocation S..

Iterative approach

The last of our methods is based on a different approach, namely an iterative
procedure.

The idea is proposed in [Gruber, 2000]. We start using initially the geoid to
degree and order 180 on land from the EGM96 model ( N'**_ ) and the EI-
GEN geoid to the same degree and order on ocean ( N'® ) simulating the
altimetric surface, without considering the transition zone.

Next we perform a global spherical harmonics analysis to get harmonic coef-
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ficients and then perform a synthesis to come back to the geoid. After this
process, we get a new “mixed geoid” on the globe. We keep the original
EIGEN geoid to degree and order 180 on ocean, but on land we replace the
EGM96 geoid by the derived “mixed geoid”. Then we repeat this process.
Because this “mixed geoid” on land is also affected by data from ocean, it
will assimilate the ocean and land data so that the edge between land and
ocean will become smaller and smaller. In this case, there is not a transition
zone like in the previous paragraphs.

We call the surface obtained with this approach S, .

4.1.1 Filtering in the global approach

Summarizing we have now four global surfaces, see Table 4.2, that can be
represented with a spherical harmonic expansion and then filtered up to the
selected harmonic degree.

Table 4.2: Different considered global surfaces.

surface ocean transition zone land
S, EIGEN -- EGM96
S, EIGEN polynomial interpolation EGM96
S, EIGEN prediction by least squares collocation EGM96
S, EIGEN - mixed geoid
(smooth transition)

The filtering process in the spectral domain is a multiplication of the spheri-
cal harmonic coefficients with a spectral weight W, :

L 1
N(PP)=R}. Y Wy,Y,,(P) (4.4)

1=2 m=-1

The spherical harmonic coefficients are weighted by W, which can be calcu-
lated through

W, = ij(oc)Pl(cos a)sina do (4.5)

where W(a) is an isotropic weighting function on the sphere that is only
dependent on the spherical distance a.

To filter the high frequencies (from k+1 to L) of our surfaces we propose two
filters: the direct cut-off and the “Gauss” shape filter.

Direct cut-off filter. The direct cut-off filter up to k,, or ideal low pass filter,
consists in choosing as maximum degree L = k, in (4.4). An ideal low-pass
filter completely eliminates all spectral content above the cut-off degree. The
coefficients below will pass unchanged.

Starting from a global surface S, by spherical harmonic analysis, it is possible
to compute the corresponding spherical harmonic coefficients y, up to a
certain harmonic degree related to the grid size.

To obtain the surface containing the frequencies up to k, we consider:
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N5(P)=RY Y ,,Y,,(P)

1=2 m=-1
that corresponds to spectral weights
1 [<k,
W, =
0 I>k,

in (4.4).

Gauss shape filter. An alternative is to consider a Gauss filter. The Gauss
filter corresponds to a Gaussian function

K4y’

2
626

Cxy) = 2ne’

with a similar shape in space and spectral domain, with the standard devia-
tion of the distribution ¢ related to the threshold of the filter. The Gauss filter
corresponds to a cap with a certain spherical radius o, in the space domain.

The formula for the weighting function W, for the Gauss filter is defined in
[Jekeli, 1981] and improved by [Wahr et al., 1998]. It can be computed by
recursive formulas:

1+e™ 1 211

(4.6)
where
b In(2)
l-cosa, .
The radius o._is empirically related to the degree k, [Zenner, 2006]:
1.45-10*
o =—
k, (4.7)

The maximum degree 60 corresponds roughly to a_=250 km.

Also quite different from the ideal low-pass filter at degree and order 60,
the Gauss filter will take, with low weight, coefficients up to degree and or-
der 120 [Zenner, 2006]. Each degree and order will be weighted correspond-

ingly.

4.1.2 Results of the global approach

Following the scheme of Table 4.1, we compare the~differences between the
simulated (N*’) and the filtered geoid undulation (N° ) over all oceanic sur-
faces and in the considered ocean box (pe [-45°,-65°], Ae [40°W,20°E]).

Fig. 4.4 and Fig. 4.5 show the results for the four surfaces described in the
previous section on the oceans, considering the direct cut-off filter (Fig. 4.4)
and the Gauss filter (4.5).

In both cases the stronger deviations occur near the coastlines. The direct
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cut-off filtering produces a clearer ringing effect as compared to the “Gauss”
filter.

The statistics of the differences over all the oceans are reported in Table 4.3.

Table 4.3: Statistics of the differences between simulated (N*) and filtered (N*) geoid undulation on the oceans. The units

are meters.

Mean st.dev. max min
S, cut-off +0.0260 0.1173 2.8681 -1.3279
S, cut-off +0.1320 0.1308 2.4232 -2.2833
S, cut-off —0.0029 0.1684 3.1237 —1.3821
S, cut-off 5.3-10* 0.0865 2.3606 -1.2132
S, Gauss 0.0023 0.0476 1.2994 -0.7129
S, Gauss 0.0106 0.0684 1.0699 —1.1493
S, Gauss —0.0025 0.0709 1.4202 —0.7000
S, Gauss —6.6-10° 0.0330 1.0444 —0.5798
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-0.10m -0.05m 0.00 m 0.05 m 010m

Figure 4.4-a: Differences between simulated (N*) and direct cut-off filtered (N*) geoid undulations on the oceans. The sur-

Jace S, is considered in the upper panel and S, in the lower one. The units are meters.

22



GEQTOP From ocean only to global

-0.10m -0.05m 0.00 m 0.05m 010 m

-0.10m ~0.05m 0.00 m 0.05m 0.10m

Figure 4.4-b: Differences between simulated (N®) and direct cut-off filtered ( N*) geoid undulations on the oceans. The sur-

face S, is considered in the upper panel and S, in the lower one. The units are meters.

23



GEOTOP From ocean only to global

-0.10m -0.05m 0.00m 0.05m 0.10m

Figure 4.5-a: Differences between simulated (N*) and “Gauss” filtered ( N*) geoid undulations on the oceans. The surface S ,

is considered in the upper panel and S, in the lower one. The units are meters.
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Figure 4.5-b: Differences between simulated (N*) and “Gauss” filtered (N*) geoid undulations on the oceans. The surface S,

is considered in the upper panel and S, in the lower one. The units are meters.

As expected the results obtained with the Gauss filter are better than the
results of the direct cut-off filtering.

The filtering of the surface S,, corresponding to the prediction in the transi-
tion zone made by least squares collocation, shows biggest residuals when
compared to the others surfaces. This could be due to the limited window
used for the prediction. The data are well distributed around each prediction
point, but obviously not sufficiently distant. This needs further investiga-
tions.

Another disappointing result is that the analysis using the surface S, is more
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accurate than the analysis using the surface S,. As is shown in [Wang, 2007]
the simple polynomial interpolation in the transition zone is not able to re-
duce the discontinuities along the coastline and this can also introduce fur-
ther discontinuities instead of reducing it.

The smoothing of the discontinuities along the coastline made by the itera-
tive procedure (surface S,) allows a filtering procedure with a global accu-
racy of only 3 cm.

The results are essentially the same as those obtained in [Wang, 2007].

The selected ocean box (e [45°-65°], Ae [40°W,20°E]) is sufficiently far
from the coastlines. Thus here the results are better for both filtering proce-
dures, as is shown in Fig. 4.6 and Fig. 4.7. In Fig. 4.6 (direct cut-off filtering)
Gibbs effects are visible, while in Fig. 4.7 (Gauss filtering) they are success-
fully reduced.

In Table 4.4 the statistics of these differences between simulated and filtered
surfaces are shown considering only the points of the ocean box.

The iterative procedure (surface S,) gives definitely better results compared
to the interpolation (surfaces S, and §)), reaching high accuracy.

In [Albertella and Rummel, 2008] the effects of the extension of the sea sur-
face to the land areas are studied by means a one-dimensional example. Here
it is shown that the introduced discontinuity produces errors localized near
the discontinuity itself and that they quickly decrease with growing distance
from this point.

The results obtained with the surfaces S, and S, (that do not involve the
transition zone) are the same for different grid samplings (like for example
0.25°x0.25° instead of 1°x1°).

For the surfaces S, and S, on the contrary, the situation is different. If we
change the grid resolution from 0.25°x0.25° to 1°x1° (as it is necessary for S,
for numerical computation reasons) we also have to enlarge the transition
zone. In this way, the grid resolution and the transition zone become compa-
rable. Therefore for the surface S,, we considered a 1°x1° grid and a transi-
tion zone 5 units wide, that means a distance of about 5°.

Tables 4.3 and 4.4 report the results corresponding to these cases. If we con-
sider the same grid (1°x1°) and the same transition zone (~5°), also in the
computation of surface S, we obtain a clear deterioration of the results. As
is emphasized in [Wang, 2007] the Matlab polynomial interpolator does not
work correctly and it introduces new discontinuities along the coastlines,
instead of reducing them. This behaviour is getting worse when the ratio
between the prediction and data points increases.

We can conclude that the global approach of filtering gives excellent results
in case of the Gauss filtering when a global surface is created using the itera-
tive procedure. In any case it must be observed that the results are good only
at sufficient distance from the coastal areas.
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Figure 4.6: Differences between simulated (N*) and direct cut-off filtered ( N*) geoid undulation in the box (e [-45°,~
65°], Ae [40°W,20°E)), considering the different global surfaces of Table 4.2. The units are meters.
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Figure 4.7: Differences between simulated (N®°) and “Gauss” filtered (N* ) geoid undulation in the box
(e [-45°,-65°], Le [40°W,20°E]), considering the different global surfaces of Table 4.2. The units are meters.

Table 4.4: Statistics of the differences between simulated (N®) and filtered (N*) geoid undulation in the box
(pe [-45°,-65°], Le [40°W,20°E]). The units are meters.

mean st.dev. max min
S, cut-off 9.7-10° 0.0731 0.3515 -0.2746
S, cut-off +0.0200 0.0712 0.3940 -0.2560
S, cut-off -0.0040 0.0764 0.3300 -0.2908
S, cut-off +0.0013 0.0665 0.3275 -0.2525
S, Gauss -0.0011 7.9-10* 8.6:10* -0.0028
S, Gauss 0.0171 0.0020 0.0223 -0.0131
S. Gauss -0.0040 0.0092 0.0175 -0.0303
S, Gauss -5.6:10* 1.4-10* -2.4:10* -9.4-10*
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4.2 From global to local

An opposite point of view is to consider the issue of spectral compatibility as
a local problem. In this case we consider an area on the ocean, in which we
filter the SSH, using a local representation of the data.

In a limited area, a common spectral representation is a 2D Fourier represen-
tation, not only because it is adaptable to a limited area, but also because of
its simplicity of the filtering operation in the spectral domain. Obviously we
are assuming implicitly that the data are periodically continued in the area
around our box.

In this section the use of the least squares collocation to estimate the low
spectral components is studied as well.

4.2.1 Local 2D Fourier analysis

We consider the simulated SSH at the discrete points of the regular grid de-
fined in our test area (pe [-45°,-65°], Le [40°W,20°E]). The sampling inter-
vals are 6¢=0.5°, 6A = 0.5° and M, N are the number of points along ¢ and
A-direction.

This function can be represented as a finite linear combination:

M-1N-1 )
F(@1) = ; 2. F(u,, vj)exp[2m (ul.(pk +UA, )} 1)
where
1 M-1N-1
Fu,0) =3 2o 2 (0 k) esp[ -2 (1 +01) “9)

Eqg. (4.9) is the 2D Discrete Fourier Transform F of the discrete function f, u,
and v, represent the longitudinal and the latitudinal component of the fre-
quency and ¢, and A, are the sampling points. In the following, with a simpli-
fied notation we put (u,0)=(u,v) and (,1)=(¢, 1)

It is well known, any filtering by convolution in the spatial domain, corre-
sponds to a multiplication between the 2D Fourier Transform and the filter
H in the spectral domain:

F(@.0) = f(0,\) ®h(¢p,1) < F(u,v) = F(u,v)- H(u,v) (4.10)

To check the filtering procedure we follow the scheme of simulation de-
scribed in Table 4.1.

Again we apply first the ideal 2D low-pass filter (see Fig. 4.8 upper panel),
that is defined for the cut-off frequency k,, as:

1 Vu+0° <k,
0 ~Nu'+v'>k,

The well known drawback of this filter function is a ringing effect which oc-
curs along the edges of the filtered real domain function.

H(u,v)=

Better results can be achieved with a 2D Butterworth low-pass filter, (Fig. 4.8
lower panel). The advantage is that the Butterworth filter has the same shape
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in space and frequency domain and therefore the ringing effect is reduced.
It is defined as:

1

SEEBN

where the index n controls the smoothing of the transition from 1 to 0 (see
Fig. 4.8 (c)).

H(u,v)=

0 S ]

Figure 4.8: Ideal low-pass filter (top) and Busterworth low-pass filter (down) in the frequency domain. (a) 3D view; (b) view

of the filters from top; (c) cross sections.

The two quantities a and b, semi-axis of the filter, are related to the cut off
degree k, and to the dimensions of the box containing the data (A, AL):

a:koﬂ, b:koA—kcoscpm (4.12)
T 2n

where ¢ is the mean latitude of our test area: ¢ =-55°.

This filter is anisotropic. The axis b depends on the latitude of the considered
area and the shape of the spectrum depends on the geographical position.

Fig. 4.9 shows the spectra of the same function N* (geoid heights synthe-
sized up to degree 60) in a box with fixed dimensions (Ap=20° AA=60°), but
centred at different latitudes. One semi-axis is not varying, the second one is
varying like cos¢_.

Starting from the simulated SSH (N'¥), containing all the frequencies up to
degree 180, we want to recover only the components with low spectral con-
tent (N®).
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Figure 4.9: 2D Fourier spectra of the geoids heights (up degree 60) in different geographical positions. The longitude is constant
AN=[40°W,20°E] . The latitude is varying. The semi-axis b, the axis along the direction of the m index, varies as COSQ, .

Inspecting the shape of the Fourier spectra of the functions N**” and N (up-
per panel of Fig. 4.10) one observes that a simple low pass filter it is not
adequate to reconstruct N* with sufficient precision. In fact, the spectrum of
N after the threshold corresponding to 60 (dashed line in the Fig. 4.10) does
not drop to zero immediately but with a smoothed behaviour.

The problem could be solved by adding to the filtered spectrum a compo-
nent computed using an a-priori model, for example the model EGM96. In
this way the behaviour of the filtered function is made really close to the
target function, (as is shown in the lower panel of Fig. 4.10).

The filtered function N is obtained as:

N=h,®N"™ +h,, QN® (4.13)
where:
- h,, is the 2D low-pass Butterworth filter, with threshold 60;
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Figure 4.10: Sections of the spectra of N (a) and N (b) compared with the shape of the filter (dashed line). In the lower
panel the scheme of the ﬁlterin‘gfrofedure is shown: the low pass filter applied to N'® (¢) is not adequate; it is necessary to add
)

a component (d) computed using an a-priori model, in order to obtain an optimal result (e).
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- h,, isthe 2D high-pass Butterworth filter, with threshold 60;

HP

- N'™is the geoid undulation synthesized up to 180 (which plays here
the role of the SST);

- N®is the geoid undulation synthesized up to 60 (taken from an a
priori model).

First, the values of geoid undulations are generated on a spherical equian-
gular grid with coordinates pe [-75°-35°], L€ [70°W,50°E]. Over these data
a filter (Tukey window) is applied. The larger area is introduced in order to
smooth the values along the boundaries, as is shown in Fig. 4.11.

The area in which the filter is evaluated corresponds only to the inner part:
Qe [-65°,-45°], Le [40°W,20°E].

Following the scheme of Table 4.1 in each point of the grid the geoid undu-
lation is simulated using the EIGEN gravity model up to degree 180. Filter
(4.13) is applied in the larger area and the resulting values N are compared

in the inner area with the geoid undulations N* synthesized (always using
the EIGEN model) on the same grid up to degree 60.

In Table 4.5 the statistics of the differences d = N — N* are reported. The pre-
cision of the filtering operation is around 3 cm.

Table 4.5: Statistics of differences between (N®) and ( N 60), filtered using the 2D Butterworth filter. The units are metres.

n° points mean st.dev. max min
4800 0.0016 0.0274 0.0826 | —0.962

lalitude [deg)

longituds [deg|

Figure 4.11: Geoid undulations up to degree 180 after the application of the Tukey filter to smooth the transition on the
oundaries of the test area.
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4.2.2 Local least squares prediction (collocation approach)

An alternative approach of selection of the low part of the spectrum is the
use of the method of least squares collocation. If the covariance function is
known, starting from observations of some functional of the gravity field,
collocation can be used to predict the same functional in a different set of
points.

We have
Ng=C"(Wpo)-(C(yp)+D) "N, (4.14)

where P are the grid points where the geoid undulation N, is observed, Q are
the points in which we want to compute it, C(y,,) is the covariance function
of the geoid undulation (4.2) depending only on the distance between P and

Q.

In [Brajovic, 2005] it is proposed the use of this method to separate the contri-
bution of the low (L) and high (H) degrees in the same function. The covari-
ance function (4.2) can be divided in two components:

kO Lmax
Cy(w)=C'+C" =R*> ¢, B(cosy)+R* > ¢, B(cosy) (4.15)
1=2 I=kg+1
Starting from a set of geoid heights N, using (4.15) we can write
N, =N"+N" =(C"+C")' -(C+D)"-N, =
=(C""-(C+D)"-N,+([C")' -(C+D)"-N,

The estimated N* contains only the frequencies up to k, and N’ contains only
the frequencies from k+1to L ; this is exactly a definition of a low (or high)
pass filter.

(4.16)

In this first analysis the noise is not considered (D=0) and for computational
reasons, we consider a sampling interval equal to 1°.

The estimate of the components containing only the frequencies up to k=60
is

N’60(1:)i) — (CL)T . (CL +CH)71 'NISO(R) (417)

where P, are the points of our considered grid.
The quantity N*(P) is compared with N®(P)

n

N®P)=R>, > ¥, Y, (P)

n=2 m=-n
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latitude

longitude

-06 -04 -02 0 02 04 06

Figure 4.12: Differences between simulated N®(P) and filtered, by least squares collocation, N*(P)  geoid undulations in
the box pe [-65°,-45°], Le [40°W,20°E] ; units are meters. The differences range from +60 to -40 centimetres.

In Fig. 4.12 we show the differences I\~I60(Pi) - N®(P) in our test area. We
can observe something similar to a Gibbs effect with deterioration near the
boundaries of the box.

It is clear that, for data in a limited area, this filter is not able to select ad-
equately the frequencies up to k,.

4.3 Summary of the results

The detailed analysis of the filtering procedures is necessary to take into
account the different resolution of the geoid and the altimetric sea surface
height. To get altimetric data and geoid spectrally consistent by filtering the
altimetric data, it is necessary to find a common representation.

We studied two different approaches. The first (global) consists of the exten-
sion of the altimetric sea surface height as to cover all the Earth’s surface and
then in the representation of the data with the spherical harmonic functions.
The second (local) consists of the study of the data considering a limited area
like an ocean box. Here it is possible to use the 2D-Fourier representation
and to apply a suitable low-pass filter.

The local approach has an accuracy of 3 cm. These results are obtained with
the application of an anisotropic 2DButterworth low-pass filter on the data
in the limited ocean box.

The results are better using the global approach. In order to be able to expand
altimetric data into a series of spherical harmonics, all land areas (and ocean
data gaps) have to be filled with data as well. We showed that the best results
are obtained using a Jekeli-Wahr filter over a complete surface obtained with
the “iterative procedure”. In this case the accuracy of the filtering procedure
is of 3 cm on all ocean surface and less than 1 mm over our ocean box.
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5 The profile approach

5.1 Gridding — an undesirable filtering

Radar altimetry performs observations along profiles: The basic pulse rep-
etition frequency for the range measurements is about 1KHz. Onboard soft-
ware performs an averaging to 10Hz (TOPEX) or 20Hz (ESA missions) ob-
servations which are transmitted to the ground segment, where a further
post-processing generates one second mean values for the altimeter range.
The 1Hz range values are usually taken for any follow-on processing.

According to their mean ground velocity altimeter satellites provide every
6.5 — 7 km a one second mean value of the range measurements. This along-
track resolution is in contrast to the rather large spacing of neighbouring
ground tracks. For TOPEX the equatorial distance of neighbouring ground
tracks is more than 300 km; ESAs altimetry missions (ERS-2 and ENVISAT)
have a ground track spacing of about 80 km. In both cases there are large
unobserved diamond shaped areas in between the profiles.

Gridding is a process to estimate from irregular distributed data parameter
values on the nodes of a regular equally spaced grid. For satellite altimetry
this gridding is of particular difficulty: first, the interpolated values at grid
nodes in the centre of any non-observed diamond shaped area will be a mean
of all measurements available on the surrounding profiles. Second, the sur-
rounding profiles are observed at different times such that the interpolated
value is also a temporal mean. Thus gridded data is already smoothed in
space and time and the degree of smoothing depends on the distance to the
observed profiles and on the actual observation times of the surrounding
profiles (in general, the latter is not at all taken into account).

To circumvent this spatio-temporal fuzziness an approach has been devel-
oped to avoid any initial gridding, to stay as long as possible on the pro-
files and to perform necessary computations with the high resolution profile
data. The procedure is further on called “profile approach”.

5.2 Striping pattern of GRACE - filtering required

GRACE gravity fields realize essential improvements over previous esti-
mates of the Earth gravity field and justify to recover the dynamic ocean
topography (DOT) by subtracting geoid heights N from sea surface heights
h , recall the basic equation

C=h-N ey

However, even the latest GRACE satellite-only gravity fields (e.g. ITG03S)
exhibit a meridional striping, an artifact of GRACE processing which does
not represent geophysical signals. This is illustrated in Figure 5.1, top pan-
el.

The cause of these striping pattern is not yet completely understood. There
are some high frequent mass movements in the Earth system, like ocean tides
or the variations in the Earth atmosphere. Their gravitational effect has to be
reduced from the precise GRACE observations. However, for a fixed point
on Earth GRACE samples these processes only very seldom, such that severe
alias effects arise: The high frequent signal appears only with a rather long
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alias period. For some of these effect the alias period is much longer than the
period used for estimating gravity fields (typically a month). Any error in
the modelling of the high frequency signal will consequently cause a (more
or less) constant error in the gravity field.

Another cause for the striping pattern may be the sensitivity of the GRACE
K-band range rate observation, taken between the twin satellites. This type
of observation provides extremely precise along-track information but has
no sensitivity across-track. Finally, due to the decaying orbit there is also a
changing ground track pattern.

-900m -60m -30m Om 30 m 60 m 90 m

-900m -60m -30m Om 30 m 60 m 90 m

Figure 5.1 Geoid of ITGO3S, one of the latest GRACE-only gravity field models. The top panel highlights the striping pattern
by showing the geoid as an artificially relief, illuminated from the left. The bottom panel show the geoid after filtering the
spectrum by a Gauss-type filter with 200 km filter radius.
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Anyway, in order to remove the artificial striping a smoothing has to be ap-
plied. The investigations described in the previous section 4 have shown that
the Gauss-type filter seems to provide the most reasonable results. Therefore
the Gauss-type filter of Jekeli-Wahr (JW) has been applied to remove the
artifical striping (see Equation (4.6) and (4.7) of section 4.1.1). As the grav-
ity field models are provided by spherical harmonics (SH) the JW-filter can
be applied in the spectral domain. In order to keep as much geoid signal as
possible, but to filter strong enough to remove the striping pattern, a filter
radius of o =200 km (according to Equation (4.7) this correspond to degree
k,=72) was found to be the most appropriate choice. The result of the filter-
ing is shown in Figure 5.1, bottom panel.

5.3 Discrepancies between 2D- and 1D-filtering

This filter operation, indicated by the notation 2D, [*] should be consist-
ently applied to both quantities of Eqn 1, the sea surface heights h and the
Geoid undulations N

C=h~N=2D,,[h~N]=2D,[k] - 2D,,[N] (5.1)

The altimeter profiles, however, are only available in the spatial domain. A
spectral representation of the sea surface heights is not available and difficult
to construct as sea surface heights are not defined over land. Thus the equiv-
alent spatial representation of the JW filter should be applied to the altimeter
profiles in order to consistently filter both quantities, geoid and sea surface.
The JW-filter is an isotropic, two-dimensional filter and can be applied to
data distributed only along the profiles. Thereby the two dimensional filter
2D, [] reduces itself to a one dimensional filter, indicated in thefollowing
by 1D;,[*] (c.f. Figure 5.2).

f\\
(=)
~—

Fig. 5.2 The shape of the two dimensional Gauss-type filter (blue surface) and the effective filter if applied to one-dimensional

profile data.
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However, the 1D filtering of the altimetry profiles is not equivalent to a 2D
filtering of laminar distributed data. Considering e.g. any mean sea surface
in a neighbourhood of a trench, then the 2D filtering along a profile follow-
ing this trench will raise the filtered sea surface heights due to the higher
sea surface sidewards of the trench while the 1D filtering along the profile
preserves the low sea surface heights along the grounding line of the trench.
Figure 5.3 illustrates these conditions in detail.

40m

35m

30m

25m

20m

~ »" -5m

-10m
-35 -30 -25 -20 -15

0 10 20 30 40 50 60

Fig. 5.3 Case study for the impact of 1D filtering of sea surface height profiles neighbouring a trench area. The left panel shows
an ascending TOPEX-EM track close to the Kermadec and Tonga trenches North-East of New Zealand. The upper right panel
shows the ofservm’ sea surface height profile (b (Jasonl), blue dotted line), the 1D filtered sea surface height profile (1D(hi),

light blue solid line), and the geoid undulation ZDJW(N ) (black solid line) computed from the spectrally smoothed GRACE-

only model ITGO3S. The lower right panel shows in ved the differences 1D(h) - 2D fW(N > in green the filter correction, and
in blue the final estimate of the DOT profile.

5.4 The filter correction

In order to compensate these systematic differences between a 2D filtering of
laminar data and the 1D filtering of profile data a filter correction has been
developed in the following way: The identity

2D, [1] = 1D, [l] + (2D, [] - 1D, [h]) (5.2)

provides a relationship between 2D- and 1D-filtering and at the same time
identifies the right hand term in round brackets as the necessary correction.
This correction term can be approximated by a filter operations applied to a
global continuous surface with a similar spatial resolution as the sea surface.
A high resolution geoid, represented by a spherical harmonic series N, is
such a proxy for the sea surface. It is first sampled along the altimeter pro-
files at those points N, where altimeter measurements are available. Then,
the geoid is filtered twice: once along the profiles using the 1D spatial repre-
sentation of the JW filter, giving 1D, [N] and second by applying the same
JW filter on the spherical harmonic representation N, of the geoid, giving
2D, [Ny, ]. If the last quantity is evaluated at those points where altimeter
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measurements are available, notated as 2D, [N, ], then the difference

2D, [N, Ji - 1D,,,[N] (5.3)

JW

defines the desired filter correction. Inserting Eqn (5.3) into Eqn (5.2) gives
2D, [h] = 1D, [h] + (2D, [Ny, Ji = 1D, [N]), (5.4)

a recipe to approximate the desired 2D-filtering of sea surface heights by a
1D-filtering performed along the profiles.

Initially, the EIGEN-GLO04c (a hybrid model, developed up to degree/order
360 by combining GRACE and Laser observations with high resolution sur-
face gravity data) was used to derive the filter correction. With EGMO08 [Pav-
lis et al. 2008] an ultra high resolution gravity field, developed up to degree
and order 2160, became available. Formally, EGMO08 resolves spatial struc-
tures of 5" extension which corresponds to 9 km on the Earth surface. Thus
the spatial resolution of EGMOS is rather consistent with the along-track res-
olution provided by the 1Hz altimeter data. Therefore the latest version of
the filter correction is based on EGMO08. Figure 5.4 shows the global pattern
of the filter correction, computed for the ground tracks of a common cycle of
Jasonl and TOPEX-EM (shifted ground tracks).

-100 cm =50 cm 0Ocm 50 cm 100 cm

Fig. 5.4 The filter correction compensating the systematic differences between 1D filtering along profiles and 2D filtering in
the spectral domain. The correction was derived with the ultra-high resolution gravity field EGMO8 and is shown for the com-

mon 10-day ground track pattern of Jason-1 and TOPEX-EM (with shifted ground tracks)
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5.5 The final approach

The filter correction, Eqn. (5.3) and the recipe, Eqn (5.4), developed above
can now be applied to Eqn (5.1) such that

C=1D,,,[h] - 2D,,[N] + (2D, [Ny, li - 1D, [N}]) (5.5)

completes the final strategy to estimate the DOT along altimeter profiles and
to apply consistent filter oprations on both, sea surface heights and the geoid
undulations.

The approach consist in following steps

1. decide on a filter radius a_keeping as much geoid information as
possible, but large enough to remove the undesirable striping pattern

2. compute a filter correction according to Eqn (5.3) using a high
resolution geoid as a global surface providing at the same a proxy for
the high resolution sea surface

3. apply the 2D-filter on the spectrum of a satellite-only gravity field,
compute and sample the geoid at altimeter measurement points

4.  apply the 1D-filter on the sea surface heights along the altimter
profiles

5. Compose everything according to Equation (5.5)

Figure 5.5 provides a “snapshot” of the DOT estimated with the altimeter
profiles acquired during a 10-day period.approach. A yearly mean DOT, es-
timated by the profile approach is shown in section 6.1 below.

30°

-30°

-1.2m -0.8 m -04m 0.0m 0.4 m 0.8 m 1.2m

Fig. 5.5 Snapshot of DOT for a common 10-day cycle of TOPEX-EM and Jason-1, estimated with the ‘profile approach’. It
is remarkable that already data from a 10-day period is able to recover the large scale pattern of the DOT that are to be ex-
pected from oceanographic results
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6 Examples of DOT

In this section different DOT estimates are shown and compared with each
other. Section 6.1 gives two examples of DOT estimates, resulting from this
study. Section 6.2 shows external estimates of the DOT and section 6.3 per-
forms some comparisons

6.1 DOT estimates of this study

-1.5m -1.0m -0.5m 0.0m 0.5m

Fig. 6.1 DOT estimate derived with the “global approach” described in section 4.1 Land areas are filled using the iterative
procedure described in 4.1 and the mean sea surface CLSOI are considered on the oceans. A cut-off filter up to degree 60 is
applied to the spherical harmonics coefficients derived from the “complete” surface.

-1.5m -1.0m -0.5m 0.0m 0.5m

Fig. 6.2 DOT estimate derived with the “global approach” described in section 4.1 Land areas are filled using the iterative
procedure described in 4.1 and the mean sea surface CLSO1 are considered on the oceans. A Gauss filter with radius of 250
km is applied to the spherical harmonics coefficients derived from the ‘complete” surface.
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-1.0m -0.5m 0.0m 0.5m 1.0m

Fig. 6.3 Mean DOT for year 2004, derived with the ‘profile approach” described in section 5. Data from the ground tracks
of Jasonl and TOPEX-EM (shifted ground tracks) has been used.

6.2 Non-geodetic estimates of the DOT

0.0m 0.5m 1.0m 1.5m 20m 25m

Fig 6.4 DOT of Rio [2005]. Rio05 is computed over the 1993-1999 period, with a multi-variate analysis using hydrographic

data, surface drifter velocities and altimetry. The guess used is based on both the CLS01 MSS - EIGEN-GRACE 03S geoid

and the Levitus ,98 climatology (veferenced to 1500 dbar). Note, the colour scale is not centered to zero in order to make the
DOT pattern comparable to the plots of the geodetic estimates (Fig. 6.1 and 6.2).
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-1.5m -1.0m -0.5m 0.0m 0.5m

Fig. 6.5 DOT of Maximenko & Niiler. Note, the colour scale is not centered to zero in order to make the DOT pattern com-
parable to the geodetic estimates (Fig. 6.1, 6.2, and 6.3)

6.3 Comparisons

60
f-: T
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-8cm -4cm Ocm 4cm

-20 cm -10 cm O0cm 10 cm 20 cm

Fig. 6.6 Differences between the DOT shown in Fig. 6.1 and the DOT estimate of Maximenko ¢ Niiler (Fig. 6.5). The
lateral mean of the differences is shown in the panels on the right.
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Fig. 6.7 Differences between the DOT shown in Fig. 6.2 and the DOT estimate of Maximenko & Niiler (Fig. 6.5). The lat-

eral mean of the differences is shown in the right panel.

90 °

30°

vv,v
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30 cm 35cm 40 cm 45 cm 50 cm 55 cm 60 cm

Fig. 6.8 Differences between the 2004 DOT shown in Fig. 6.3 and the DOT estimate of Maximenko ¢ Niiler (Fig. 6.5). The
lateral mean of the differences is shown in the right panel. Note, there is an offset of abour +46 cm. Note also, the geodetic
DOT is a mean for the year 2004 only while the averaging periods of the Maximenko & Niiler DOT is 1993-1999.
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-130cm -125cm -120cm -115cm -110cm -105cm =100 cm
Fig. 6.9 Differences between the 2004 DOT shown in Fig. 6.3 and the DOT estimate of Rio (Fig. 6.4) . The lateral mean
of the differences is shown in the right panel. Note, there is an offsets of about -115 cm. Note also, that the geodetic DOT is
a mean for the year 2004 only while the averaging periods of Rio05 is 1993-1999.
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7 Error propagation

7.1 Geoid errors

The recent models of the geopotential gravity field are available together
with the complete statistical information. If the complete variance-covari-
ance matrix is given, it is possible to derive not only the accuracy of each
spherical harmonic coefficient (main diagonal of the matrix) but also all the
correlations existing between the coefficients of the model.

In case of linear dependency, the law of covariance propagation is simple.
Given a variable x, with its variance-covariance matrix C_ known, the vari-
ance-covariance matrix of the variable y = Ax+b is given by

C, =AC.A" (7.1)

Our problem is to derive the full variance-covariance matrix C, , of the geoid
undulations in a given area, starting from the knowledge of the full vari-
ance-covariance matrix C_ of a selected geopotential model. This is a linear
problem and in matrix form it can be written as:

N=AT (7.2)
Applying (7.1) we obtain:
Cawv = ACTTAT (7.3)

To build the matrix A it is necessary to establish the explicit relation between

the spherical harmonic coefficients Y, ~and the geoid undulations N(¢,2) in

the selected area ( @, € [(pmm, Q. ]; A ;€ [kmin Y ]):

L !
N((pi’xj) = RZ z yémY(m((PiJ}\’j)
=2 m=—t (7.4)
The geopotential model is considered up to the maximum degree L = 60,
that means 3717 coefficients are to be considered. The geoid undulations are
computed in the selected ocean box = [-45°, -65°; 40°W, 20° E]. For a sam-
pling equal to 1°, this corresponds to 1281 points.

Therefore the dimension of the matrix A is (1281 x 3717), the dimension of
C,y is (1281 x 1281) and of C_ (3717 x 3717).

The matrix A is the matrix that, multiplied with the vector of the harmonic
coefficients, gives us the geoid undulations in the selected area. Each row
corresponds to a point of our box and each column corresponds to one of
spherical harmonic coefficients. The definition of the matrix A is not unique,
but depends on the order chosen of the spherical harmonic coefficients and
of the point of the grid.

An example is:
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AT =R

P,y (¢,)cos O,

B, (¢,)cos i,
P, (¢))cosIn,

B, (@)sinlh,
P, (9,)sinl,

| B (p))sin LA,

P,y (9,)cosOr, P, (¢,)cosOL; ---

B, (¢;)coslh,
P, (¢,)cosln,

B (¢)sinl},
P, (9,)sinlh,

B (@)sinLA,

_1300((p1)00507\‘1 By(®)cosOr, By(@)cosOr; -+ By(p,)cosO, By (@,)cosOr, --- By(o,)cos 0)“1_
Bo(@)cosOr,  Py(@)cosOr, By(p)cosOr; -+ B(¢p,)cosOh, ) RO((pI)COSO}“]
P,y (¢,)cos 02,

. PZO((pl)COS()?\.,

(7.5)

We compute the full variance propagation considering three geopotential
models:

e  CHAMP: the model is derived from the data of the CHAMP mission,
computed at the Technische Universitat of Miinchen [Gerlach et al.,
2003, Foldvary et al., 2005]. For this model the full variance-covariance
matrix up to the degree 60 is available.

*  GRACE: the static gravity field model ITG-Grace03s is computed at
the University of Bonn [Mayer-Giirr et al., 2006, Mayer-Giirr, 2006].
In this case the full variance-covariance matrix up to degree 180 is
available.

*  GOCE: the geopotential model computed in the HPF project, using
simulated data of the next GOCE mission [Gruber et al., 2007]. In this
case the full variance-covariance up degree 200 is available.

In our computation each model is considered only to the maximum degree
60 and each matrix is ordered following the order established by the matrix
A, like in (7.5).

Fig. 7.1 shows the full variance-covariance matrices C_ M, C_CRACE and
C,,°°F of the CHAMP, GRACE and GOCE models, reduced up to the maxi-
mum degree 60 and order like in (7.5).

The main diagonal of each matrix contains the variances of all the coefficients.
These variances can be reorganized obtaining the usual representation of the
accuracy of the geopotential model. Fig. 7.2 shows the standard deviation of
the coefficients of the CHAMP, GRACE and GOCE model, respectively.

Given the three matrices C M, C ORACE C_©OF and the matrix A it is
easy to perform the variance propagation to the geoid undulation in our
ocean box applying eq. (7.3).

In this way we obtain the three matrices C,,“#M", C, ORACE, C | CO°E shown
in Fig. 7.3. The k-th row (and the k-th column) of each matrix represents the
correlation between the k-th point with all the others points of the grid. The
diagonal of each matrix represents the variances of the points of the grid. The
standard deviations of the geoid undulations resulting from the propagation
are shown in Fig. 7.4.

In all three cases the accuracy is higher for low latitudes and we can observe
that, as expected, the order of magnitude of the results is completely differ-
ent. In this bandwidth (from 2 to 60) the GRACE model gives the best solu-
tion (~ 2-10* m), then there is the GOCE solution (~ 2-10® m) and finally the
CHAMP solution (~ 10 cm).
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From the same matrices we can also compute the correlations between each
point of the box and all the other points. The correlation between the central
point of the grid P =[-55°, -10°] and all the other points are shown in the Fig. 7.5.

The three considered models show completely different patterns.

In the case of the CHAMP solution, the correlations have a clear central sym-
metry, which is probably related to the method used for the computation of
the geopotential model: the energy integral approach.

In the case of the GRACE solution there is a longitudinal symmetry, which
is related to the design of the GRACE mission: two satellites following each
other and flying in an almost polar orbit.

Finally, in the case of the GOCE solution it is possible to observe a strong
anti-correlation in latitude direction and a moderate correlation in longitude
direction. This particular shape of the correlation is probably related again
to the geometry of the problem (gradiometer instead of accelerometers) and
to the particular solution adopted for the computation of the geopotential
model.

The behaviour of the correlations remains the same also when other points
of the grid are considered, instead of the central point.
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Figure 7.1 Full variance-covariance matrix of the geopotential model derived from CHAMP (top left), GRACE (top right)
and GOCE (bottom) data. The harmonic coefficients are ordered by order, within each order they are sorted by degree with

cosine and sine coefficients alternating.
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CHAMP GRACE
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60—50 0 50

order

Figure 7.2 Standard deviation of the spherical harmonic coefficients of the geopotential model derived from CHAMP (rop
left), GRACE (top right) and GOCE (bottom)(direct solution) data. For the GRACE data we can observe a degradation ro-

wards the sectorial terms.
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Figure 7.3 Full variance-covariance matrix of the geoid undulations in the ocean box = [-45°, -65°% 40°W, 20° EJ, obtained
Sfrom the CHAMP (top left), GRACE (top right) and GOCE (bottom) models. The absolute values of the elements of the ma-
trix ([m?]) are represented in logarithmic scale.
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Figure 7.4 Standard deviations of the geoid undulations in the ocean box = [-45° -65°% 40°W, 20° EJ, obtained from the
CHAMPE GRACE and GOCE models (respectively from top to bottom). The units are metres.
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Figure 7.5 Correlations between the central point, P=[-55° -10°] of the selected box, and the other points of the grid, 0b-
tained from the CHAMPE GRACE and GOCE models (vespectively from top to bottom). The units are meter x meter.
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The knowledge of the full stochastic model of the geoid undulation, together
with the variance-covariance information on the sea surface height, repre-
sents the complete statistical information of the absolute sea surface topog-
raphy. In this way we can apply rigorous error propagation without approxi-
mations.

A further step will be the assimilation of the geodetic SST into an ocean mod-
el. The stochastic model of the ocean model will be combined with altimetry
and geoid errors. Also in this case it is important to have a complete statisti-
cal knowledge of the data involved.

7.2 Autocovariance function for altimetry

For the sea surface heights a reliable error estimate is required as well. How-
ever, sea surface heights are not a result of a least squares estimation and
therefore there is no corresponding variance-covariance matrix available. In-
stead sea surface heights are basically obtained by subtracting the altimeter
range measurement, corrected for a considerable number of geophysical and
environmental effects, from the satellite height which in turn has been deter-
mined by a dynamic, reduced dynamic or a kinematic orbit determination
process. Consequently the error budget of the sea surface heights depends
on many components, the precision of the range measurement, the accuracy
of the models taken to correct the altimeter range, and the error of the radial
component of the orbit. It is difficult to get a realistic overall error budget.

Altimetry itself provides a powerful tool that allows to estimate the overall
accuracy of sea surface heights: The ground tracks, composed of ascending
and descending passes, result in crossings, such that the sea surface height
at those crossovers can be derived twice. This redundancy can be used to
estimate the radial component of the altimetric errors. The difference be-
tween the two realizations of sea surface heights, called crossover differ-
ences, should vanish under the assumption, that there are no errors and no
variations in sea level. In fact, even the crossover differences derived from
measurements very close in time (thereby excluding any sea level variation),
do not vanish and can be used to estimate by least squares the parameters of
a model describing the radial error component. This process is called crosso-
ver analysis. Without describing more details it should be emphasized that
the error estimate is a good indication of the overall error budget, as all error
components are projected to the crossover differences.

In the context of this study, a rather ambitious crossover analysis has been
performed. A discrete crossover analysis [Bosch, 2007] is used for the com-
mon estimation of relative range biases and radial errors of all contempora-
neous altimeter systems. The cross-calibration is performed globally for up
to five altimeter satellites operating simultaneously (TOPEX, ERS-1, ERS-2,
Jason1, ENVISAT, and GFO). The total set of single- and dual-satellite cross-
over differences, performed in all combinations and with a maximum time
difference of three days, creates a strong network with high redundancy. It
enables a reliable and dense sampling of the radial errors of all satellites.
Details of this multi-mission crossover analysis are described in Bosch [2005]
and Bosch and Savcenko [2007]. As a result of this analysis complete time
series of radial errors of all satellites are obtained for the whole mission
lifetime. It is then straightforward to estimate an empirical auto-covariance
function for every satellite. This is shown in Figure 7.6
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Fig 7.6 Empirical auto-covariance function for altimeter missions cross-calibrated by a multi-mission crossover analysis. The

Sigures on left give the square root of the variances.

From Figure 7.6 it is clearly visible that the altimeter systems have different
accuracy. TOPEX, Jasonl, and ERS-2 perform best and have a radial error of
15 and 16 mm respectively. The accuracy of ENVISAT and GFO is degraded.
For ENVISAT this is due to the so-called S-band anomaly which is not prop-
erly flagged in the mission data (meanwhile the S-band anomaly has been
correctly edited). GFO suffers from the spare laser tracking and a poor orbit
quality as the orbits are not yet based on one of the new GRACE gravity field
models. The fact that the auto-covariance function increases again after ap-
proximately one revolution, is a clear indication that the radial error is still
plagued by systematic, so called geographically correlated errors.

The empirical auto-covariance function is considered as the most reliable er-
ror characterization of the altimeter data. Any follow on-process (gridding
or direct assimilation into a numerical model) has to use this function for a
rigorous error propagation.
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