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Real-Time Path Planning in Unknown Environments
for Bipedal Robots

Arne-Christoph Hildebrandt, Moritz Klischat, Daniel Wahrmann, Robert Wittmann,
Felix Sygulla, Philipp Seiwald, Daniel Rixen and Thomas Buschmann'

Abstract—Autonomous navigation in dynamic and unknown
environments requires real-time path planning. Solving the path
planning problem for bipedal locomotion quickly and robustly
is one of the main challenges in making humanoid robots
competitive against mobile platforms. In this paper, we propose
strategies to use mobile platform planners for improving the
navigation of bipedal robots. These strategies combine advan-
tageously continuous 2D paths with conventional step planners
for humanoid robots. We introduce a mobile platform planner
suitable for real-time navigation. It searches for multiple 2D
paths which makes the path planning more robust against limited
calculation time and changing scenarios. It is combined with a
step planner and integrated in the framework for autonomous
navigation of our robot Lola. We evaluate different strategies in
simulation and validate them in experiments in unknown dynamic
environments.

Index Terms—Humanoid and Bipedal Locomotion, Reactive
and Sensor-Based Planning, Motion and Path Planning, Visual-
Based Navigation

I. INTRODUCTION

EGGED robots are suited to be employed in diverse and

complex scenarios. Due to their kinematic capabilities,
they can outperform wheeled robots in cluttered environments.
We expect robots to be able to react to dynamically changing
real-world scenarios. Therefore, motion planning for legged
robots has to solve the high dimensional motion problem
quickly and reliably. Most current humanoid control frame-
works follow a hierarchical approach, which allows, up to a
certain level, to separate the navigation problem in complex
environments from the walking pattern generation to achieve
real-time bipedal walking [1]-[3]. The navigation problem
can then be reduced to the search of consecutive footholds
which are executed by the robot. In contrast to a continuous
2D path planning problem (e.g. cars) path planning methods
for biped locomotion have to consider the partially discrete
character of bipedal locomotion. On the one hand, the discrete
character of the consecutive footholds complicates the motion
planning problem, since the search space is largely augmented.
On the other hand, consequently, it gives the biped robot
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more possibilities to navigate in complex environments, for
example by traversing obstacles. In environments that include
non-traversable obstacles, the search for discrete consecutive
footholds gets complex and time-consuming ([4], [5]). There-
fore, it seems to be reasonable to consider the environment at
different detail levels in order to improve the performance of
the step planner.

In this paper, we introduce a mobile platform planner which is
used for 2D Pre-Planning in a reduced environment represen-
tation to accelerate a more detailed step planner. In contrast to
commonly used mobile platform planners, our does not only
provide one 2D path, but multiple 2D paths. This is especially
important for exploiting the capacities of bipedal walking in
cluttered environments.

Furthermore, we focus on the combination of the mobile
platform planner and the step planner. Different possibilities
are proposed and evaluated. These coupling methods can be
applied in conjunction with any 2D path to accelerate step
planning.

Using the proposed method, the robot’s reactivity in dynami-
cally changing environments is significantly improved.

The paper is organized as follows: In Section II, we present
related work. Section III provides an overview of the exper-
imental platform used in this work — the robot Lola — and
its framework for real-time motion generation. In Section IV,
we then present our approach for 2D Pre-Planning for legged
robots. The method is analyzed in simulation and validated in
successfully conducted experiments. The results are presented
in Section V. Finally, Section VI is devoted to the conclusion
and comments on future work.

II. LITERATURE REVIEW

In humanoid robotics, the path planning problem is often
solved by first discretizing the set of the robot’s kinematically
reachable footholds (action set). Based on this fixed set of
discrete footholds, implicit graph search algorithms like A*—
Search (e.g. [2]) are applied to find an executable step se-
quence. In real-world scenarios with dynamically changing
environments computation time plays a crucial role. The
heuristics used in search algorithms to guide the search to the
goal are major keys to reduce planning time. In [6] the authors
evaluate the influence of the heuristics to improve the speed of
an A*-Search based step planner. They propose to dynamically
adapt the weighting factor of the heuristic based on the
Euclidean distance to the goal. Nevertheless, a poorly chosen
heuristic could still lead the search in wrong directions. In [5],
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Fig. 1: Photo and kinematic structure of the humanoid robot
Lola. Joint distribution and used world coordinate system are
shown on the right side [4].

[7], [8] hierarchical path planning methods are proposed. Their
common idea is to combine a simplified global mobile platform
planner with a detailed local step planner. The mobile platform
planner calculates a 2D path in an simplified environment
representation which is used to guide the local step planner
search. [5] presents an hierarchical path planning approach for
branched buildings, which uses three levels of detail: On the
top-level, a global 2D path is divided into sub-goals. An A*-
based mobile platform planner searches backwards from the
sub-goal to provide the low-level step planner a heuristic. [7]
proposes to first plan a global 2D path using an A*-Search, as
well. Then sub-goals are generated from the 2D path. The local
step planner first constructs a path from line segments which
is subsequently used for geometrically generating the foothold
positions. This allows for real-time capability. However, the
robot’s kinematic capacities such as stepping over obstacles are
not fully exploited, nor is the solution’s optimality explicitly
considered. [8] proposes to use a combination of a mobile
platform planner and a detailed step planner. In contrast to
previous authors, they propose to switch between a mobile
platform planner in regions without obstacles and to use a
more sophisticated step planner in cluttered regions which
allows for stepping over obstacles. This method’s performance
relies heavily on the availability of obstacle-free space. [9]
uses a simplified approach designed for finding multiple paths
which resembles the principle of visibility graphs. Sub-goals
are placed next to the edges of obstacles and connected by
straight step sequences. Since a relatively simple step planner
is used, the resultant paths are not optimal. They are restricted
to rather simple environments, even though small obstacles can
be traversed. Unlike the work described above, the authors of
[10] do not use a global map, but they propose to directly test a
set of 2D tentacles on image data from a stereo vision camera
whether or not they are viable. These pre-defined tentacles
do not take a specific goal into account. This enables safe
and reactive robot movements in an unknown environment
using only on-board sensing. This system, however, does not
allow the robot to step onto or over objects. Furthermore,

[5] discusses the benefit of a heuristic provided by a mobile
platform planner. It is shown that the use of that heuristic,
which is adapted to the environment, helps to significantly
accelerate the A*-based step planner. Nevertheless, when using
the mobile platform planner, the ability of the robot to step
over obstacles or onto obstacles is neglected in [5]. Similar
to the cited publications, we want to exploit the possibility
to accelerate the step planner by providing a continuous
guideline calculated by a mobile platform planner. However,
our approach differs from the previous ones:

(1) different levels of environment details are used for both
planners which exploits the kinematic capabilities of bipedal
robots (see Subsection IV-A).

(2) we do not use sub-goals as presented in [5], [7], [9]. Such
sub-goals are intermediate targets that can be used to guide
the A*—search by including the Euclidian distance to those
sub-goals in the cost evaluation. In contrast, we propose and
analyze different strategies to integrate a continuous 2D path
in the A*-Search. Nevertheless, sub-goals do not contradict
our method, but could easily be integrated in our approach.
This would be particularly beneficial in large and complex
environments like branched buildings, as an additional level-of-
detail. Note however that, sub-goals guide the search only via
heuristics. A continuous 2D path allows for further coupling
methods, which will be discussed in the following sections.

(3) in contrast to [5], [7], [8] we do not search for one
final 2D path, but for different candidates instead. The set of
2D paths guides multiple searches of the detailed step planner.
This approach is necessary as the mobile platform planner only
uses a reduced map. Therefore, the quality of the provided 2D
paths greatly depends on the presence of traversable obstacles
or stairs not considered in the pre-planning. This approach is
mainly suitable for real-time applications such as navigation
in unknown areas - the robot has to react quickly to the newly
discovered environment without global knowledge about the
environment (in contrast to [7], [9]). The effectiveness of our
methods are moreover validated on a real humanoid robot.

III. HARDWARE AND CONTROL ARCHITECTURE

We validate our strategies on our humanoid robot Lola (see
Fig. 1). In the following, we present the hardware and the
integration of our navigation module in the overall control
architecture. In [1] more details on the mechanical design and
the control architecture are given. Furthermore, we give an
insight into the previous implementation of our step planner

[4].

A. Hardware

Lola weights approximately 60kg and is 180cm tall. It
has 24 position-controlled joints. The redundant kinematic
configuration (see right side of Fig. 1) gives Lola a large
action radius and allows the execution of complex motions.
For environment recognition we use an Asus Xtion PRO LIVE
RGB-D camera'. The vision processing software runs on an

ITASUS Xtion PRO LIVE, see http://www.asus.com/Multimedia/Xtion_
PRO_LIVE/
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Fig. 2: Lola’s real-time walking control system.

on-board computer with an Intel Core i7-4770S @ 3.1 GHz
(4x) processor and 8GB RAM on a Linux OS. The control
software runs on a computer with the same specification, but
on a QNX-RTOS. Both computers communicate via Ethernet
using TCP.

B. Control Architecture

Our walking control system as depicted in Fig. 2 follows
a hierarchical approach. The Vision System approximates the
environment with swept-sphere volumes (SSV), which are used
throughout our control approach for distance calculations. It
only uses an on-board RGB-D sensor which works with a
sampling time of 30 ms. This makes it possible to track moving
obstacles while the robot is walking [11]. The navigation
module [4], labeled as A*-based Step Planner, is part of the
planning unit, which is called once every walking step. The
step time 1., varies between 0.6 and 1.2s. It gets desired
step parameters, like the step length, desired goal positions, or
a desired velocity vector, from the user input. Due to a cycle
time of Ty, it is very reactive to changes in the environment
or in the user’s input. Based on this information the navigation
module calculates a sequence of parameter sets describing the
walking pattern. Using the parameter set as an initial solution,
the Parameter Optimization & Walking Pattern Generation-
module ([12]) optimizes the parameter set and calculates kine-
matically feasible, collision-free, and dynamically executable
trajectories. These trajectories are adapted according to sensor
feedback in the Feedback Control unit with a cycle time of
1 ms and executed by the robot.

C. A*-based Step Planner

Step sequences are calculated by an A*-search based
step planner [4]. Based on a discretization of the robot’s
kinematically reachable footholds, a search tree is implicitly
constructed. An A*—search is applied to search for the optimal
step sequence in terms of path costs.

In each search tree expansion the set of foothold suggestions
is checked for their viability. Instead of checking in a binary

Lola with Vision System

Lola’s Collision Model

1 2D paths

large obstacle

step sequence ——— =1

®
small obstacles ———— @&®

Fig. 3: Real-world scenario: static environment with small and
large obstacles, Lola with on-board vision system, SSV ap-
proximation of Lola and of obstacles currently in the camera’s
field of view, calculated 2D paths and calculated step sequence.

way on a grid based map for collisions, we use our SSV-
representations for collisions checks. That way, we can analyze
the step suggestions in 3D applying a robot model which
approximates the kinematic movement of the robot.
Furthermore, the set of foothold suggestions is rated by costs
c¢. It includes traveled path length c,, costs of the current
step c¢s and remaining path length to the goal estimated by a
heuristic ¢y,:

ct=cCp+cs+cp (D

The subsequent foothold to be expanded is then chosen by
the lowest costs ¢; of all steps which have not been analyzed
yet. By including a goal heuristic, the A*—search is directed
towards the goal. So far, the Euclidean distance was used as
a heuristic. Since each step is linked to its predecessor, a
valid step sequence can be retrieved at any time by tracing
the predecessors of the currently best-rated step suggestion.
This makes it suitable for real-time application. The search
tree is constructed until the goal is reached, a desired number
of steps is found, or a time limit is reached. 2

IV. PROPOSED METHOD

Step planners as the one described in Subsection III-C
have performance limitations. The goal heuristic based on
the Euclidean distance helps to accelerate the search in the
goal direction. If the path following the Euclidean distance is
non-traversable (e.g. it is blocked by large obstacles or non-
steppable platforms) the search is slowed down. The major
reason for the increasing calculation time is the Euclidean
heuristic, which does not consider the robot’s environment.
As a consequence, the remaining goal distance may be greatly
underestimated. The search tends to explore irrelevant areas
and a large number of irrelevant step suggestions are evaluated.
This requires a lengthy computational time and the step planner

2A video showing public experiments with the current step planner in
different environments, inluding platforms, and the performance of the overall
system is available under https://youtu.be/g6UACMHgt20.
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becomes impracticable for real-time applications.

We introduce an additional pre-planning procedure before the
detailed step planner. The 2D Pre-Planning searches for a
continuous 2D path. Considering the environment, the 2D path
represents the remaining distance to the goal more realistically
than the uninformed Euclidean distance.

A. 2D Pre-Planning

Mobile platform planners plan continuous paths and, there-
fore, do not take into account the robot’s capability to step over
obstacles. The bipedal robot could traverse obstacles which the
continuous mobile platform planner would avoid. Following a
continuous path with a bipedal robot could unnecessarily lead
the robot walk a long way around. The concept of the 2D
Pre-Planning is summarized in Algorithm 1.

Algorithm 1 2D Pre-Planning

1: procedure 2D Pre-Planning(ReducedM ap, Goal, n)
2 for i < n do

3 path(i) < INITIALPATH(i, Goal)

4 while collision = true do

5: path(i) < POTENTIALADAPTION(path(i))
6 collision < CHECKCOLLISION(path(7))

7 SelectedPaths < SEPERATEPATHS(path)

8 for i <n do

9 if SelectedPaths(i) = true then

10: path(i) « ELASTICBANDOPT(path(i))

Environment Modeling: In order to preserve the robot’s
ability to traverse obstacles, only non-traversable obstacles are
taken into account during 2D Pre-Planning. Since obstacles are
clustered and approximated by combinations of SSV objects,
this is efficiently implemented by checking for the obstacle’s
dimensions. In the subsequent detailed step planning, the full
map is used in turn (see Fig. 4).

Robot Modeling: We simplify the robot’s approximation for
2D Pre-Planning. The mobile platform planner searches for
continuous paths. Therefore, the robot is represented by a point
model with an additional safety margin. This further simplifies
collision checking and detection.

Reduced Map: Standard path planning algorithms for mo-
bile platforms ([13], [14]) search for one continuous 2D path.
The reduced environment map, used by the 2D Pre-Planning,

Goal ¢ o Goal

[
\ traversable
. %, obstacles . Te

"
|
(a) Full map (b) Reduced map

Fig. 4: Reduction of the environment map.

induces an uncertainty regarding the resultant costs of the

subsequent step sequence. The optimal path which is found by
the mobile platform planner could turn out to be sub-optimal
when planning the step sequence and using the full map (see
Fig. 5). In the presence of multiple small objects on the 2D—
path, the optimal path could even not be traversable. For this
reason, the proposed mobile platform planner is designed to
find various path variants.

Goal

L/

(a) Path options (b) Chosen path

Fig. 5: Several continuous 2D—paths in presence of obstacles.
Grey obstacle is non-traversable by bipedal robot. Orange
obstacles are traversable.

Initial Paths: The initial paths are generated by a set of 1,
parabolas which connect start and goal position (see Fig. 6).
The parabolas are parameterized with the parameter s which
defines the distance perpendicular to the direct connection
between start and goal position. The direction is defined by
the unit vector n. n;,;; and s are predefined by the user and
determine the discretization of the area.> Using parabolas at
this stage is not paramount for the success of the procedure.
The key point is that we use curves which covers the area
in which the robot has to navigate with a set of initial and
different solutions. Each parabola g is discretized with ng 4
supporting points x, 4; lying on the initial parabolas. The
supporting points are connected via splines.

Goal

wmax

e Goal

n
<<

I 4—1 Start

(a) Initial set of 2D paths (b) Parametrization of
initial paths

Fig. 6: Discretization - Generating initial solutions.

Collision-free Paths: Up to this point, s, ; are created
based on the set of parabolas without knowledge of the obsta-
cles. In the next step, & 4; which lie in obstacles are shifted
iteratively to become collision-free. For generating collision-
free paths, we use a potential approach widely applied in path
planning [15]. We present this approach for one exemplary
path, but the method is used simultaneously for all paths

31n this work, vectors are represented as a € R2 and scalars as a.
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generated from the initial set of parabolas. Each obstacle j
is modeled by an artificial potential ¢; as

k k
¢j(ws,g,i) =1In (Tj (:Bs,g,i)) (2)
with the shortest distance 7; (w’jgl) between an obstacle j

and a given point w’j g.i In iteration step k. Note: We use the
same library for distance calculation as used in our methods
for collision avoidance [16]. Superposition of source terms of

all n,ps obstacles results in the potential equation

Nobs

ok, ) => In(rj(xh, ) 3)
j=1

For shifting each supporting point ¢, we calculate numerically
the derivative Vngf)(a:’; g’i) with respect to n using the pertur-
bation :

(b(wf,g,i +e- n) - d)(xf,g,i)
e

k
vn¢(ws7g7i) = (4)
The translation increment is computed using a scaling param-
eter Cirans

A%th’i =M Ctrans * Vn¢(ml:7g7i)- (5)

T 4. is updated as follows (see Fig. 7 (a))

k+1 _ _k
5,98 — Ls,gii

+ AzF (6)

£ $,9,1°

If a supporting point is located inside an obstacle, no potential
is defined, since obstacles may consist of more than one SSV.
In this case, the increment Amf’g’i is set to the maximal
Az, ; in direction n from both neighboring supporting
points | and o which are still collision-free (see Fig. 7 (b)).

The iterative translation is terminated when either all paths

(a) Outside obstacles

(b) Inside obstacles

Fig. 7: Generating collision-free paths — updating of supporting
points.

are collision-free or a maximal number of iterations has been
reached.

Separating Paths: In a subsequent step, we optimize the
paths to obtain not only collision-free, but optimal paths with
respect to the path length. To reduce computational effort, we
only consider collision-free paths which tend to converge to
different final paths. This happens when there is at least one
obstacle between two paths (see Fig. 5). We first identify each
subset of collision-free paths which are not separated by an
obstacle. Then we select the shortest path of each subset for
further optimization.

Optimizing Paths: In order to ensure optimality and smooth
paths, the selected collision-free paths are optimized seper-
ately. We use the elastic band method, which simulates a
contracting force acting in an elastic band. It is described in
[17].

B. Coupling with Step Planner

The 2D paths are passed to the A*-based step planner
(compare Subsection III-C). The methods presented here are
applied to our A*-based step planner, but they can be combined
with any node-based search algorithm for bipedal locomotion.
Overall, we propose three different methods to use the 2D path
for accelerating the search. These can be applied independently
from each other as well as in combination:

Heuristic: In this approach the Euclidean distance to the
goal used in the cost evaluation is replaced by the distance
along the 2D path. That way, the heuristic can better estimate
the remaining path costs. This accelerates the A*-search
significantly (see [5]). The heuristic costs c;, are computed by
orthogonally projecting the position x,,, of a step suggestion
onto the 2D path. Integrating the arc length from the projection
Tsug,1 to the goal yields the remaining path length [,. To
prevent the A*—search from deviating too much from the 2D
path, the lateral distance from the path weighted by a factor
w, 1is incorporated in the heuristic as well:

ch =lg +wi|Tsug — Toug, L] (7

For computing the projection and the remaining length a linear
spline representation is used for connecting the supporting
points and approximating the 2D path.

Restriction of Search Area: It is assumed that the optimal
step sequence is located within the immediate vicinity of the
2D path. Therefore, the search area S of the A*—search can
be restricted to a maximal distance d,,q, from the 2D path.
All step suggestions which lie outside the search area are
omitted, since they are considered to lead to sub-optimal step
sequences:

”msug - CCsug,LH < dmax- (8)

Consequently, the number of investigated step suggestions will
be reduced. Choosing a sufficiently large value dq, still
allows the step planner to react to small obstacles which were
ignored during 2D Pre-Planning.

Reduction of Search Space Dimension: Due to the tree
structure of the A*—search graph, a reduction of the search
space dimension tends to decrease the number of investigated
step suggestions exponentially. As described in [4], the state of
each node consists of the relative displacement x,,, and the
orientation ¢ of each foot. By orienting the angle ¢ relative to
the 2D path we no longer consider ¢ in the search space S of
the A*—search. That way, the search space is reduced by one
dimension. This greatly accelerates the search. ¢ is computed
as the tangent’s angle ¢; of the projection x4, 1 on the 2D
path of xg.
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C. Real-Time Implementation

The proposed methods are implemented for real-time ap-
plications. Fig. 3 depicts a real-world scenario with small
and large obstacles, the approximations of Lola and of the
obstacles as SSV elements, calculated 2D paths and the
step sequence. To ensure reactive planning to environmental
changes or changes in the user input, the map is updated after
each physical step of the robot. Both 2D Pre-Planning and
step planning replan before executing the next step. Due to the
real-time constraints, the step planning is implemented such,
that it can be aborted at any given time. The resulting step
sequence would be sub-optimal, but executable by the robot.
Our vision system, as most on-board vision systems, has a
restricted field of view. Furthermore, the level-of-detail of our
environment approximation is distance-dependent to account
for sensor noise and to reduce computational efforts [11].
Therefore, in experiments, planning for the entire path to the
goal is hardly practical and is not necessarily advantageous.
Therefore the planning is only performed for a predetermined
number of steps: we abort the search after neyp qes steps are
found [4]. If no feasible step sequence can be found during the
set time limit (approx. 400ms) and using the shortest 2D path,
the step planner searches for a valid sequence to walk on the
spot. Since we obtain multiple 2D paths after 2D Pre-Planning
the step planner could ideally be parallelized on a multi-core
processor in order to compare step sequences for different 2D
paths. However, we have not parallelized the calculations yet,
since it has not been necessary so far in our experiments.

V. RESULTS

We evaluated the proposed methods in simulation [1] and
validated the real-time character in experiments.

A. Simulation

In the following we compare the step planner with and
without 2D Pre-Planning and the different methods presented
in Subsection IV-B. The test cases presented here are chosen
to discuss and illustrate different aspects of our methods. We
show longer step sequences than in real experiments, which
may result in uncommonly-long calculation times. The first
test case represents a simple environment similar to Fig. 9.
The results are summarized in Tab. I. Using the method
denomination mentioned in the legend of Tab. I, we can state
the following: When using only (none) or (2) the path planning
was not able to find a result in the set time limit. The results for
the combination of (1) and (2) are nearly the same as for (1)
alone, since the heuristic already guides the search close to the
2D path in this particular example. Results for (2) combined
with (3) range in between those for (3) alone and all methods
activated. Step planning with all methods combined yields the
shortest search time even though the costs of the resulting
step sequence are slightly higher. This is mainly due to the
combination of (1) and (3) as confirmed by the result of this
combination. All analyzed environments show similar results.
For navigation in unknown environment we accepted slightly
raised costs in favor of a significantly reduced search time.
Therefore in the following all methods are activated.

TABLE I: Results for different methods: (none) Euclidean
distance as heuristic, (1) 2D path heuristic, (2) restriction
of search area, (3) reduced search space, (1,2,3) all methods
combined.

Coupling methods none 1 2 3 1,2,3
goal reached in time no yes no yes yes
2D—path length [m] - 5.62 5.62 5.62 5.62
costs - 5.990 - 7.151 | 6.900
number of steps 12 14 14 18 18
distance calculations | 324428| 403710| 401942| 131446| 13596
search time [s] 60.016 | 16.607 | 60.001 | 7.151 0.169
1&2 | 1&3 | 2&3
goal reached in time yes yes yes
2D-path length [m] 5.62 5.62 5.62
costs 5990 | 6.900 | 6.841
number of steps 14 18 18
distance calculations 403710| 13596 | 41230
search time [s] 16.607 | 0.169 4.347
6
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(a) Results of 2D Pre-Planning. (b) Step sequence for shortest path.

Fig. 8: Results of pre-planning and final step sequence for
complex environment. Large obstacles in dark grey, safety
zones (different for step planner and mobile platform planner)
in light grey, shortest path in green, and other paths in blue.

The next test environment is depicted in Fig. 8b. Even in this
complex environment our 2D Pre-Planning was able to find
multiple path variants (see Fig. 8a). The final step sequence
for the shortest path is depicted in Fig. 8b. To investigate
the benefit of finding multiple path variants, another test case
with small obstacles is presented. The 2D Pre-Planning finds
two possible path variants and corresponding step sequences
as shown in Fig. 9. The results are summarized in Tab. II.
When comparing the path costs the right solution yields higher
costs even though its 2D path is shorter than the left one. This
increase is caused by the presence of small obstacles, which
result in more expensive steps.

TABLE II: Results of a test case with two alternative solutions
for step sequences (see Fig. 9).

Solution 1 (left)  Solution 2 (right)
length of 2D—path [m] 5,647 6,036
costs 6,213 6,337
number of steps 17 11
distance calculations 1557 170810
search time step—planner(s] 0,0415 24,99

B. Validation in Experiments

We validated our methods in multiple experiments with the
bipedal robot Lola. The experiments includes non-traversable
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Fig. 9: Step sequences for two different 2D—paths.

Fig. 10: Experiments: (1) Static environment with large ob-
stacle, (2) Dynamic environment with moving human, (3)
Dynamic environment with moving human and multiple large
obstacles.

traversable obstacles (see Fig. 3). Furthermore, we successfully
conducted experiments in dynamic environments with a mov-
ing human and multiple static obstacles. A sequence of snap-
shots of our experiments is depicted in Fig. 3 and Fig. 10. * The
experiments validated the real-time capability of our methods:
the environment in the experiments is completely unknown
and dynamic. It is modeled using our on-board vision system.
Fig. 11 shows the result of the mobile platform planner and the
step planner for three different steps of the experiment with a
dynamic environment with a moving human and multiple large
obstacles. Since the field of view is limited, Lola perceives
a new part of the environment with each step. Furthermore,
Lola has to react to a human dynamically stepping in its way.
This is clearly visible in the differences of the environment
of snapshots 1 — 3 in Fig. 11. The mobile platform planner
adapts to the changing environment and determines executable
2D paths. The step planner uses these 2D paths as a guideline
and calculates step sequences. Fig. 11 emphasizes the real-time
character of the step planner. It is aborted after negp, dges Steps
are calculated or the time limit is reached.

VI. DISCUSSION, SUMMARY AND OUTLOOK
A. Discussion

The presented methods influence the A*—search and may
jeopardize the optimality character of the A*—search. If we
assume that the 2D Pre-Planning finds all possible 2D paths,

4A video of our experiments is available online https://youtu.be/
-VvxzFg9ATU.

Fig. 11: Experiment in dynamic environment with moving
human and multiple large obstacles (refer to Fig. 10-(3)):
calculated step sequences and environment approximation at
three different instances.

including the shortest path, in the reduced map: (1) using the
shortest 2D path as initial estimate will always underestimate
the distance of the path subsequently optimized by the step
planner and will therefore not influence the optimality of
the result of the A*-search. Furthermore, the shortest path
approximates the remaining path costs better than a Euclidean
distance. Therefore, it accelerates the search, but will always
underestimate the remaining costs. (2) Limiting the search area
of the A*—search and reducing the analyzed step suggestions
influences the optimality of the A*-search. It will still find
an optimal solution, but only in the reduced search area.
Since, the search space is limited, it is important that the
2D Pre-Planning determines more than one solution. In the
presence of multiple obstacles not considered in the reduced
map, a 2D path may not be walkable. Searches following
different 2D paths significantly increase the probability to find
an executable step sequence. (3) Calculating ¢ based on the
2D paths reduces the dimension of the search space by one.
Therefore, the quality of the calculated step sequence will
always be inferior to the solution of the search in a higher
dimensional search space.

In conclusion, only the integration of the 2D path as a
heuristic in the A*-search does not decrease the solution’s
optimality. For real-time application, we gain the advantage
of significantly faster calculation times in the case of sub-
optimal solutions when limiting the search space or reducing
the dimension of the search space. With the application of
legged robots in interaction with human users in mind, the
method’s evaluation has another facet. A robot trying to follow
a 2D path instead of executing an internally calculated and
optimal step sequence may help a user to predict the robot’s
behavior and interact with it. Applying the methods presented
in Subsection IV-B, the search for an optimal step sequence
could not only be improved, but a user has another option to
guide a robot, for example by a 2D path as input.

B. Summary and Outlook

In this paper, we propose strategies to use a novel mobile
platform planner for improving navigation of bipedal robots.
We reduce the full map of the environment to a map including
only obstacles the robot is not able to traverse. We introduce a
mobile platform planner which is able to find a set of solutions
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instead of only one path. This is important for our application
for two reasons: (1) A 2D path may not be traversable or
sub-optimal because of the decreased information value of the
reduced map. (2) For real-time application, it is advantageous
to search for multiple paths at the same time on different cores.
With a limited processing power, having multiple possibilities
to choose from makes navigation in real-environments more
robust. Moreover, we present three different methods to com-
bine 2D paths with an A*-based step planner. They may use the
result of any mobile platform planner. On the one hand, these
methods accelerate significantly the search for step sequences
in the presence of non-traversable areas. On the other hand, it
is possible for a user to interact with the robot. The user could
provide a 2D path the robot would follow. We analyzed our
methods in simulation and validated their real-time character in
experiments with our robot Lola. In future projects, we plan to
parallelize multiple A*-searches and to evaluate their strength
in more difficult environments.
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