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Abstract: Complete conformance testing is a model-based test technique for programmable
controllers. It checks whether an implementation conforms to its specifications with regard to
all possible combinations of input signals, which is useful for small scale and safety critical
systems. However, the state space explosion issue limits its application to large scale systems.
This paper presents a method for reducing state space in generation of test cases by utilizing
not only specification models but also features extracted from plant models. The application on
a benchmark case study shows that the number of test cases is reduced significantly.
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1. INTRODUCTION

Industrial automation systems such as manufacturing are
facing challenges of rising complexity and flexibility. This
fact leads to an urgent demand of qualitative testing with
convincing reliability and high efficiency (Rösch et al.
(2015)). Controllers are key parts in an automation system
as they make orders to actuators based on the signals
received from sensors. An important task in testing of an
industrial automation system is therefore the testing of its
controllers.

Programmable controllers with cyclic execution mode are
widely used in industry since they are robust enough
to endure in industrial environment, have standard pro-
gramming languages, and meet the ‘hard’ real-time re-
quirement. In the design phase, specifications are made
according to users’ requirements. Then, based on the
specifications, executable programs are implemented on
programmable controllers. In the execution phase, when
a programmable controller is turned on, it runs in cycles:
reading values of input signals, executing implemented
programs, updating values of output signals.

Conformance testing is a model-based test technique that
aims to check whether an implementation performs the
same behavior with regard to its specifications (Provost
et al. (2014)). It is recommended by a series of interna-
tional certification standards such as IEC 61850-10 and
IEC 60880. Conformance testing on a programmable con-
troller consists of three phases: test case generation, test
execution, and result verdict.

In the classic strategy, a complete set of test cases is
generated from specification models directly and considers
all possible combinations of input signals (Provost et al.
(2011)). It is worth noting that plant behaviors are usually
not considered because they often do not even exist. The
few exceptions are: Supervisory control theory (Ramadge

and Wonham (1987)), which is unfortunately not receiving
the expected attention in the industry up to now; formal
verification techniques, some of which use plant models
when checking logical properties (Frey and Litz (2000),
Machado et al. (2006)); and hardware-in-the-loop test
benches (Gu et al. (2007)), which permits to simulate the
future plant in a test bench during test execution. Yet,
to the best of our knowledge, plant models have not been
considered for the generation of test sequences.

Complete conformance testing is advantageous for a sys-
tem under test (SUT) that is safety critical, since it, by
design, covers the whole behavior defined by the specifica-
tion. However, it suffers two issues.

The first issue occurs during test execution and result
verdict: erroneous test verdicts might happen due to in-
correct detection of synchronous input changes by a pro-
grammable controller under test. This has been formally
described as single-input-change (SIC) testability issue in
Provost et al. (2014). To fulfill the requirement of full SIC-
testability in testing programmable controllers, a design-
to-test (DTT) approach was proposed in Ma and Provost
(2015), which also improves controllability and observ-
ability performance in testing additionally. In brief, the
DTT approach modifies specification models to improve
the testability of their implementations with limited de-
sign and testing overhead. For more details, a software
toolbox has been developed for the DTT approach (Ma
and Provost (2016)).

The second issue is the state space explosion issue. With
complete testing, the number of test cases grows exponen-
tially with the number of inputs of a SUT, which severely
restricts its application to large scale systems.

The method proposed in this paper aims to solve this
second issue. The core idea is to use not only specification
but also plant models in generation a smaller set of test



cases. With additional information from plant models
as well as interactions between specification and plant
models, the reduced test cases focus mainly on the nominal
behavior of the system, which is more realistic for large
scale systems. Moreover, testing the nominal behavior of a
SUT is a prerequisite to the test of its faulty behavior; if its
nominal behavior is not correct, testing its faulty behavior
would be meaningless. Also, for large scale systems, only
a subset of the whole behavior is critical and requires a
complete testing.

A big advantage of the proposed method is that it does
not necessarily require highly detailed or full plant mod-
els. Any piece of plant knowledge can contribute to the
reduction of test cases. Therefore, in practice, the obstacle
of the state space explosion issue in conformance testing
can be diminished.

The paper is structured as follows: Section 2 presents the
formalism of finite state machines used in specification
and plant models. Section 3 presents different description
methods of signal relations and the utilization of plant
models in test case generation. A benchmark case study is
illustrated in section 4. Finally, a discussion of this work
is given in the last section.

2. BACKGROUND

2.1 Specification model: Communicating Moore machine
with Boolean signals

In this paper, specifications of a system are modeled as
a set of Moore machines, a type of finite state machine
(FSM), which can communicate with each other via inter-
nal variables, adapted from Lee et al. (1996).

Due to simplicity reason and a wide range of applications,
Boolean signals are used as inputs and outputs in the
illustration of the proposed method. However, the method
can also be applicable to general digital signals with a few
adaptations.

An important thing to keep in mind is that, compared to
event based models, signal based models do not restrict
only one change of input values at once (Provost et al.
(2011)).

A communicating Moore machine extended with Boolean
signals is defined by a 7-tuple (S, sinit, I, C,O, δ, λ), where:

• S is a finite set of states
• sinit is the initial state, sinit ∈ S
• I is a finite set of Boolean input signals
• C is a finite set of internal Boolean communicating

variables
• O is a finite set of Boolean output signals
• δ : S×2I+C → S is the transition function that maps

the current state and Boolean expression, which is
made up of input signals and communicating vari-
ables, to the next state
• λ : S → 2O is the output function that maps the

states to their corresponding output signals

A Boolean expression used in a transition is denoted as
a ‘transition guard’. A transition is fired when its source
state is active and its guard is evaluated as ‘1’ (i.e. True).

Moore machines are also represented in graphical form in
this paper. A simple example is given in Fig. 1.
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Fig. 1. A simple example of a Moore machine with Boolean
signals

A state s is drawn as a circle or a rounded rectangle.
A transition δ is represented by an oriented arc with its
guard, e.g. ¬a ∧ b for the transition from S1 to S2.

A state can either have an externally observable action,
e.g. O2 in S2, or no observable action, e.g. ∅ in S1.
Additionally, a state can also be given an internal com-
municating variable, e.g. XS6 in S6, which can be used
in Boolean transition guards. For example, when the state
S6 is activated, XS6 is then assigned the value ‘1’. If S2
is active at the same time, then the transition from S2 to
S3 can be fired.

In hierarchical modeling, a state can contain other states
which are called sub-states (Girault et al. (1999)).

2.2 Synchronous composition of individual specification
models

When modeling a complex industrial process, it is con-
venient to build several simple individual models and
compose them, instead of directly constructing a large
monolithic model.

For composition of FSM models, a significant number of
theory research has been done since many years. Practical
tools such as Teloco (Provost et al. (2011)) are available
to obtain a composed model from individual models.

The formalism of a composed machine is similar to an
individual Moore machine. The main differences are:

• In a composed model, a location represents a combi-
nation of states from the individual models.
• A transition function between locations is named an

‘evolution’.

It is worth mentioning that with Teloco, the composed
model contains only stable locations, i.e. locations where
only a change in the input values can trigger a change of
locations (Provost et al. (2011)).

2.3 Plant model as finite state machine

In this paper, plants can also be modeled as finite state
machines with Boolean signals to describe dependency
relations between signals.

The formalism of a plant model is similar to a specification
model except two terms:

• λ : S → 2I : inputs of specification models are used as
outputs in plant models



• δ : S × 2I+O → S: both inputs and outputs of
specification models can be used in the guards in plant
models

A simple example of a plant model is given in Fig. 2, which
interacts with the second specification model in Fig. 1.
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Fig. 2. A simple example of a plant model as FSM

The signal c cannot be True until O4 is activated. A
similar relation exists between a and O5. In addition, a
and c cannot be True at the same time according to this
plant model.

3. PLANT MODEL IN TEST CASE GENERATION

3.1 Complete vs. reduced testing case generation

As presented in the both figures of Fig. 3, a conformance
testing unit consists of three phases: test case generation,
test execution, and result verdict.

Test cases made up of input and output sequences are
generated from specification models. In each single cycle
of the test execution, a programmable controller under test
is solicited with the input sequence; after execution of the
implemented program, the controller updates its output
sequence.

The output sequence observed from the controller is then
compared with the expected output sequence from speci-
fications. This is the verdict phase.

Considering Fig. 3(a), a complete set of test cases should
contain all the possible combinations of input signals from
all states derived from specification models, which grows
exponentially with the number of inputs of a SUT. A
complete testing is necessary and computable for critical
systems with limited inputs. However, it is intractable for
large scale systems, as explained in Sec. 1.

The goal of the proposed method in this paper is to reduce
the state space in generating test sequences by utilizing
features extracted from plant models. Its framework is
presented in Fig. 3(b). The consistency of a combination
of input values is then checked according to plant model
before being generated as a test case. For example, in a
container in case a sensor of high level gives a value True
and a sensor of low level gives a value False, this is an
inconsistent combination because it cannot happen in a
nominal model. Thus, this combination is removed from
the set of test cases.

The proposed method contains not only models of spec-
ifications, but also models of plants in the generation of
test cases. Thus, it differs from ‘Simulation in the loop
testing’, which only involves specification models (Jeon
et al. (2010), Lee and Drury (2013)).

It is worth noting that any piece of information of signal
relations contributes to the reduction; the method does
not necessarily require full knowledge of the plant, which
makes the method more practical in industry.
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Fig. 3. Two conformance testing frameworks for pro-
grammable controllers

3.2 Description of signal relations

Signal relations can be expressed through different formal
and informal languages. In the following parts three meth-
ods are used to describe two basic types of signal relations
that are presented in Fig. 4: a− b and c− d.

Cyclic inputs scanning

a
b
c
d

Fig. 4. Two basic types of signal relations

Natural language With natural language, the two
types of signal relations can be organized as follows:

• Signal b can only be True, when a is True, i.e. a is
premise of b
• Signal c and d are mutually exclusive, i.e. at the same

time, only one of c and d can be True

Temporal logic Linear temporal logic (LTL) and com-
putation tree logic (CTL) are two popular forms of tem-
poral logic, a formal verification language. They can also
be applied to depict the signal relations:

• LTL: G(¬a→ ¬b)
CTL: AG(¬a→ ¬b)
• LTL: G¬(c ∧ d)

CTL: AG¬(c ∧ d)



Finite state machine The modeling language FSM
can also be used to formalize the signal relations, as
presented in Fig. 5.
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Fig. 5. Representation of the premise relation and mutual
exclusion of signals with FSM 1

In fact, the two basic types of signal relations, premise and
mutual exclusion, can be combined to construct complex
signal relations when involving several signals.

For example, signals in a system can have such behavior:
if a is True and remains True, and b becomes True, then
c can be True; once a becomes False, c turns to False as
well. With CTL the signal relations can be expressed as:
AG

(
(¬a→ ¬c)∧(a∧b→ AFc)

)
. The same signal relations

can be modeled as FSM, as presented in Fig. 6.
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Fig. 6. A simple example of multiple signal relations

In brief, natural language is well capable to handle small
scale systems with a limited number of signals. For large
scale systems, it is recommended to use one of the formal
methods, i.e. temporal logic and/or finite state machines.

3.3 Composition of the specification and plant models

After extracting the signal features, the next step is to
compose the specification and plant models.

For FSM form of plant models, methods of synchronous
composition introduced in Sec. 2.2 can be applied.

For plant models as temporal logic, methods have been de-
veloped to transform the formulas to finite state machines
(Bloem et al. (2012)). Thus, the specification and plant
models can also be composed.

For plant models as natural languages, patterns could be
used to help users transform them into formal languages
(Fantechi et al. (1994), Campos et al. (2008)).

1 Signals values can be freely assigned if they do not appear in
the initial state, i.e. the output of S1-1 can either be (a, b) or
(a,¬b). Once set, the value of a signal remains unchanged until it
is deliberately modified, i.e. the explicit output of S2-1 is (c,¬d).

4. APPLICATION ON A CASE STUDY

4.1 Benchmark case study

In this paper, an automatic weighing-mixing system
adapted from IEC 60848 (2011) is used as a benchmark
to illustrate the proposed method. Formally defined re-
quirements of the benchmark have been transformed into
FSM (Ma and Provost (2015)), some of which are used in
this paper.

The system sketch is presented in Fig. 7. Its input and
output signals are listed in Tab. 1, respectively.
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Fig. 7. Case study: an automatic weighing-mixing system

Table 1. Table of inputs & outputs

Input Description

CS True when a cycle starts

TD True when a brick is detected

a True when fluid weight A is reached

b True when fluid weight A + B is reached

z True when fluid is emptied

S0 True when Mixer is up

S1 True when Mixer is down

v True when preset viscosity is reached

Output Description

BM turn on Belt Motor

MR turn on Mixer Rotation Motor

TMp Tipping Motor tips down

TMm Tipping Motor tips up

VA open Valve A

VB open Valve B

VC open Valve C

In each work cycle, two products are weighed and poured
into a mixer. Meanwhile two bricks are transported into
the mixer through a feed belt. The mixer mixes all the
products and tips off the mixture after a preset viscosity
is detected.



In total, 6 FSM models haven been made for the speci-
fications. As examples, the two models for weighing and
tipping processes are presented in Fig. 8, respectively.
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Fig. 8. Two out of six specification models

4.2 Complete test case generation

A complete test considers all evolutions originating from
all locations and for all possible combinations of input
signals.

Test cases are generated from the composed model. In this
case study, the composed model is obtained by applying
Teloco (Provost et al. (2011)) and contains 19 locations
and 50 evolutions. Its structure is presented in Fig. 9.

l-1

l-2

l-3 BM, VBl-4

l-6 BM, VBl-5 BM, VCl-8

l-11 l-7 BM, VCl-9 l-14

l-12 l-10 l-15

l-13 l-16

l-17 l-18

l-19

Evolution guards of l-4 :

l-4 → l-5 : TD ∧ (a ∨ ¬b ∨ z)

l-4 → l-8 : ¬TD∧¬a∧b∧¬z

l-4 → l-9 : TD ∧ ¬a ∧ b ∧ ¬z

l-4 → l-4 : rest of all

Fig. 9. The composed model of all specifications

In the following part, the location l-4 and its evolutions
(marked red in Fig. 9) are used to illustrate the differences
between the existing and proposed methods for test case
generation. The actions of locations l-4, l-5, l-8 and l-9,
and the evolution guards originating from l-4 are presented
in Fig. 9. More details on the composed model can be
found in Ma and Provost (2015).

With 8 Boolean input signals, if the classic method is
applied, then 256 (= 28) test cases are generated for each
location. Thus, a complete test set of the whole system is
made up of 4864 (= 19 ∗ 256) test cases.

4.3 Test case reduction with plant models

Applying the proposed method, plant models are con-
structed to help reduce the test cases. For the case study,
5 plant models are made. Two of them, the weighing and
tipping process, are presented in the paper.

With natural language, the following signal dependencies
can be found for l-4 :

Weighing process:

• The inputs z, a, and b in the weighing process can be
True only when CS is activated.
• The input z is True before the actuator VA or VB is

turned on.
• When VA or VB keeps turning on, a and b can become

True one after the other.
• After VC is turned on, b, a, and z change their values

conversely.

Tipping process:

• The inputs S0 and S1 in the tipping process can be
True only when CS is activated.
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VA ∨ VB VC

VA ∨ VB
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Fig. 10. Two out of five plant models 2

The same models can be expressed with temporal logic
(CTL as an example) as follows:

Weighing process:

• AG(¬CS → (¬z∧¬a∧¬b))∧AG¬(z∧a)∧AG¬(a∧
b) ∧AG¬(b ∧ z)

Tipping process:

• AG(¬CS → (¬S0 ∧ ¬S1)) ∧AG¬(S0 ∧ S1)

In Fig. 10, the signal relations are presented in the form
of FSM.
2 Plant models are used to describe discrete signal relations among
sensors and actuators. The signal lasting effect between two discrete
states is a continuous process and is therefore not considered.



When combining the plant and specification models, in the
scope of l-4, the tipping process stays in its initial state,
i.e. S0. Thus, S1 is always False during the testing of l-4.

After composing all the 6 specification and 5 plant models,
the number of nominal test cases for l-4 is reduced from
256 to 9. The results are listed in Tab. 2.

Table 2. Test cases for evolutions from l-4

Inputs
(CS, TD, a, b, z, S0, S1, v)

Evolution under test

1 0 1 0 0 1 0 0 l-4 → l-4

1 0 0 0 0 1 0 0 l-4 → l-4

1 0 0 0 1 1 0 0 l-4 → l-4

1 1 0 0 0 1 0 0 l-4 → l-5

1 1 0 0 1 1 0 0 l-4 → l-5

1 1 1 0 0 1 0 0 l-4 → l-5

1 0 0 1 0 1 0 0 l-4 → l-8

1 1 0 1 0 1 0 0 l-4 → l-9

0 0 0 0 0 0 0 0 l-4 → l-4

For the whole system, the total number of test cases is
reduced from 4864 to 158.

5. CONCLUSION

Complete conformance testing provides a best guarantee
that a programmable controller will work properly accord-
ing to its specifications in industrial automation systems.
However, it is not widely applied owing to the huge number
of test cases generated directly from specification models.

For large scale systems where only some subparts are
critical, an efficient testing strategy is to consider only
nominal behavior of a system under test with regard
to physical constraints. This paper reaches this goal by
utilizing features extracted from plant models. With the
proposed method, plant models can be constructed with
natural language, finite state machine or temporal logic
formalisms. A smaller set of test cases which contains
mainly nominal test cases can be obtained after composing
specification and plant models. The result on a benchmark
case study shows that the number of test cases is reduced
significantly.

It is also worth mentioning that the framework does not
require a detailed or full plant model. Any piece of plant
knowledge can contribute to the test cases reduction. For
future work, we plan to extend this method to faulty plant
models where different types of faults can occur. A formal
framework will be established to handle and sort the faults
in testing and applied on a larger scale case study.
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