
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Wirtschaftsinformatik (I 17)

Prof. Dr. Helmut Krcmar

Automatic Extraction and Selection
of Workload Specifications for Load

Testing and Model-Based
Performance Prediction

Christian Vögele, M.Sc.

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Wirtschaftsinformatik (I 17)

Prof. Dr. Helmut Krcmar

Automatic Extraction and Selection
of Workload Specifications for Load

Testing and Model-Based
Performance Prediction

Christian Vögele, M.Sc.

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Bichler

Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar

2. Prof. Dr. Alexander Pretschner

Die Dissertation wurde am 04.10.2017 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 23.04.2018 angenommen.

Acknowledgement

The present thesis arose during my six years as research associate at the performance
management group at fortiss. Initially, I would like to take this opportunity to thank
everybody who supported me finishing this dissertation.

First of all, I would like to thank Prof. Dr. Helmut Krcmar for the fact that he gave me
the opportunity to finish my dissertation under his supervision. His questions, feedback,
and suggestions helped me to continuously improve my dissertation. I also wish to thank
Prof. Dr. Alexander Pretschner as second examiner and Prof. Dr. Martin Bichler for
taking the chair of the examination board.

My thanks also goes to my former and current colleagues of the performance manage-
ment group at the fortiss institute for their valuable advices, exchanges of experiences,
suggestions and discussions around the topic of my dissertation.

My special thank goes to Dr. André van Hoorn from the University of Stuttgart (Insti-
tute of Software Technology - Reliable Software Systems (RSS)). The cooperation in the
development of the Wessbas approach was very productive. He was always available to
discuss and realize new ideas and practical implementations.

Finally, my biggest thank goes to my wonderful wife Verena and my family. My family
constantly supported me during my education and my personal development. Thus, I
could complete my studies and start with the doctoral studies. Particularly, I admire
the patience and support of my wife during the preparation of my thesis. She helped me
throughout all my ups and downs. Without her support this work would have not been
possible.

Munich, Germany, June 2018 Christian Vögele

Abstract

Problem To ensure that application systems are able to meet performance objectives,
such as given throughputs, response times, and resource-utilization levels, load testing is
an important and required testing procedure. Based on these objectives, one of the main
challenges in this area is to derive workload specifications that are either representative
compared to the real workload or are able to detect performance problems under load.
In case a workload specifications is not specified in a way that it is able to test if given
performance objectives are met the testing results are useless or the tests must be repeated.
Moreover, the manual creation of workload specifications is difficult, time consuming, and
error-prone. In response to these challenges, the goal of this dissertation is to propose an
approach that supports the automatic extraction of workload specifications that match
given performance objectives using measurement and model-based performance evaluation
techniques.

Research Method In order to achieve the research goal this dissertation follows a
design-science oriented strategy with the aim to create new and innovative artifacts for
workload extraction. This strategy is based on existing research in the field of software
performance and continuously develops, evaluates, and refines new software artifacts. The
evaluation of these artifacts is conducted with the evaluation methods literature review,
prototyping, controlled experiments, and scenarios.

Results In a first step, an approach is developed that enables the automatic extraction
of representative and probabilistic workload specifications. A domain-specific language is
introduced allowing tool- and system independent workload specification. Instances of this
language are automatically extracted from system logs. During the extraction process user
groups showing similar usage patterns are identified with clustering techniques. Based on
these instances executable workload specifications of load testing tools are automatically
generated. Furthermore, we transform instances of the domain-specific language into
workload specification of architecture-level performance models.

To enable the selection of workload specifications following given performance objectives
we define a multi-objective optimization process. This process derives workload specifi-
cations from performance models that are extracted in the previous step. A performance
engineer can specify which performance objectives should be considered during the se-
lection process. We defined a set of common performance objectives that comprise goals
for resource-utilization levels, response times, throughput, number of test cases, system
coverage, and representativeness. For each selected objective it can be defined if it should
be maximized/minimized or if a predefined threshold value should be reached. Afterward,
different workload alternatives are encoded into performance models and are simulated

and assessed based on these objectives. A multi-objective optimization using an evolu-
tionary algorithm is applied to evaluate these alternatives. The resulting candidates are
presented to the performance engineer to make trade-off decisions. Finally, executable
load test scripts are generated based on the selected solution(s).

Research Implications The selection of workload specifications that follow given per-
formance objectives has been a research topic for several decades. Research in this area
mainly focuses on extracting either representative workloads or on extracting workloads
that are able to detect performance problems under load. There is no approach that ad-
dresses both goals. This dissertation addresses this gap by proposing the first automatic
approach that derives workload specifications from performance models following mul-
tiple performance goals using a multi-objective optimization approach. The introduced
domain-specific language is extracted from runtime data and can be used as intermediate
language to generate executable load tests and workload specifications for model-based
performance predictions. We extract the workloads in a way that probabilistic user behav-
ior models are derived while ensuring that valid sequences of user requests are generated.
As a result, we enable to extract system and tool-agnostic workload models as well as to
integrate workload modeling for measurement and model-based prediction approaches.

Practical Implications The ability to automatically generate load test scripts and
workload specifications of performance models significantly reduces the effort to specify
workloads that fulfill given performance objectives. Moreover, the application of existing
model-based performance evaluation techniques in practice is simplified. The approach
is applicable for all session-based application systems and requires no detailed knowledge
about workload extraction.

Limitations There are several limitations that must be considered. The main limita-
tion of the multi-objective optimization process is that no global optimization criterion
exists to which this approach can be compared. As a result, it cannot be guaranteed that
the best workloads are found. Moreover, the time it takes to conduct the optimization
might take a lot of time and is quite resource intensive.

All artifacts developed during this thesis are evaluated using an industry benchmark.
However, to assess the practicality in practice the evaluation with real world applications
is required. Moreover, we only evaluated the developed artifacts using Java Enterprise Edi-
tion (EE) applications. This comes from the fact that we used an evaluated performance
model generator that is able to model the system-specific parts of Java EE applications.
Since not for all application systems a performance model generator is available it might
be required to model the system-specific parts of the performance models manually, which
can be rather time consuming.

Zusammenfassung

Problem Die Durchführung von Lasttests ist ein wichtiger und notwendiger Bestandteil
in der Softwarequalitätssicherung um sicherzustellen, dass Anwendungssysteme vorgege-
bene Performance-Ziele, beispielsweise Antwortzeiten und Ressourcennutzung, einhalten
können. Eine der größten Herausforderungen in diesem Bereich ist es, basierend auf diesen
Performance-Zielen, Lasttests zu entwerfen (Lasttestdesigns), die entweder repräsenta-
tiv zum produktiven Workload sind oder Performance-Probleme unter Last identifizieren
können. Falls Lasttests nicht in der Lage sind diese Ziele zu berücksichtigen, sind sie Er-
gebnisse oftmals unbrauchbar und die Tests müssen wiederholt werden. Zudem kann die
manuelle Erstellung von Lasttests schwierig, fehleranfällig, und zeitaufwändig sein. Um
diesen Herausforderungen zu begegnen, ist das Ziel dieser Dissertation einen Ansatz zu
entwickeln, der die automatische Extraktion von Lasttestdesigns für messbasierte- und
modellbasierte Performance-Evaluations-Verfahren innerhalb vorgegebener Performance-
Ziele, ermöglicht.

Forschungsmethode Diese Dissertation folgt einer designorientierten Forschungsstra-
tegie, welche zum Ziel hat, neue und innovative Artefakte für die Extraktion von Workloads
zu erstellen. Diese Strategie basiert auf Forschung im Bereich Software-Performance und
entwickelt, evaluiert und verfeinert kontinuierlich neue Softwareartefakte. Die Evaluati-
on dieser Artefakte wird mit den Evaluationsmethoden Literaturrecherche, Prototyping,
kontrollierte Experimente und Szenarios durchgeführt.

Ergebnisse Im ersten Schritt dieser Dissertation wurde einen Ansatz entwickelt, der die
automatische Extraktion von repräsentativen und probabilistischen Workload-
Spezifikationen ermöglicht. Hierfür wurde eine domänenspezifische Sprache vorgestellt,
die eine werkzeug- und systemunabhängige Spezifikation von Workloads ermöglicht. In-
stanzen dieser Sprache können automatisch aus Laufzeitdaten (z.B. Systemlogs) extra-
hiert werden. Während des Extraktionsprozesses werden zudem Nutzergruppen mit ähn-
lichen Verhaltensmustern mithilfe von Clustering-Techniken identifiziert. Basierend auf
diesen Instanzen werden automatisch ausführbare Workload-Spezifikationen für Lasttest-
Tools generiert. Darüber hinaus können Instanzen der domänenspezifischen Sprache in
Workload-Spezifikationen von Performance-Modellen transformiert werden.

Im Rahmen dieser Arbeit wird zudem ein mehrkriterieller Optimierungsprozess vorge-
stellt, der die Auswahl von Lasttest-Designs innerhalb vorgegebener Ziele ermöglicht.
Dieser Prozess leitet Lasttestdesigns aus Performance-Modellen ab, die im vorherigen
Schritt extrahiert wurden. Ein Performance-Experte kann in diesem Prozess als erstes
festlegen, welche Performance-Ziele bei der Auswahl berücksichtigt werden sollen. Hierfür
wurde eine Reihe von üblichen Performance-Zielen definiert, die Ziele für Ressourcennut-

vii

zung, Antwortzeiten, Durchsatz, Anzahl der Testfälle, Systemabdeckung und Repräsenta-
tivität umfassen. Für jedes ausgewählte Performance-Ziel kann vorgegeben werden, ob es
maximiert/minimiert werden soll oder ob ein vorgegebener Schwellwert erreicht werden
soll. Anschließend werden verschiedene Workload-Alternativen in Performance-Modelle
codiert, simuliert und anhand dieser Ziele bewertet. Zur Bewertung dieser Alternativen
wird eine mehrkriterielle Optimierung mithilfe eines evolutionären Algorithmus verwen-
det. Basierend auf den daraus resultierenden Kandidaten kann der Performance-Experte
sich für ein Lasttestdesign entscheiden. Abschließend werden ausführbare Lasttest-Skripte
aus der ausgewählten Lösung erzeugt.

Beitrag zur Forschung Die Erstellung von Lasttest-Designs, die vorgegebene
Performance-Ziele einhalten können, ist seit Jahrzehnten ein Forschungsthema. Die For-
schung in diesem Bereich konzentriert sich entweder auf die Extraktion von repräsenta-
tiven Workloads oder auf Workloads, die in der Lage sind, Performance-Probleme unter
Last zu erkennen. Es gibt aktuell keinen Ansatz der beide Ziele verfolgt. Diese Dissertation
versucht diese Lücke zu schließen. Hierfür wird der erste (semi-)automatische Ansatz vor-
geschlagen, der unter Verwendung eines mehrkriteriellen Optimierungsansatzes Lasttest-
Designs aus Performance-Modellen ableitet. Die entwickelte domänenspezifische Sprache
wird aus Laufzeitdaten extrahiert und kann verwendet werden, um sowohl ausführbare
Lasttests als auch Workload-Spezifikationen für modellbasierte Performance-Vorhersagen
zu generieren. Die extrahierten Workloads können probabilistisches Nutzerverhaltensmo-
del abbilden, stellen aber gleichzeitig sicher, dass gültige Sequenzen von Nutzerrequests
generiert werden. Somit können werkzeug- und systemunabhängige Workloadmodelle ex-
trahieren werden. Zudem wird die Workload-Modellierung für mess- und modellbasierte
Vorhersageansätze integriert.

Beitrag zur Praxis Die Möglichkeit Lasttestskripte und Workload-Spezifikationen
für Performance-Modelle automatisch zu generieren kann den Aufwand des Performance-
Testens erheblich reduzieren. Darüber hinaus wird der Einsatz modellbasierter Performance-
Vorhersagen in der Praxis vereinfacht. Der Ansatz ist für alle Session-basierten Anwen-
dungssysteme einsetzbar und erfordert keine detaillierte Kenntnis der Workload-Extraktion.

Limitationen Die größte Limitation des mehrkriterieller Optimierungsprozesses be-
steht darin, dass kein globales Optimierungskriterium existiert, mit dem dieser Ansatz
verglichen werden kann. Somit kann nicht garantiert werden, dass die besten Lasttestde-
signs gefunden werden. Darüber hinaus kann die Optimierung zum aktuellen Zeitpunkt
viel Zeit in Anspruch nehmen und ist ressourcenintensiv.

Alle Artefakte, die während dieser Arbeit entwickelt wurden, wurden mit einem Industrie-
Benchmark evaluiert. Um die praktische Anwendbarkeit in der Praxis zu beurteilen, ist
zudem die Evaluation mit realen Anwendungen erforderlich. Darüber hinaus haben wir
die entwickelten Artefakte ausschließlich mit Java Enterprise Edition (EE) Anwendungen
evaluiert. Dies ergibt sich aus der Tatsache, dass wir einen Performance-Modell-Generator
verwendet haben, der in der Lage ist, die systemspezifischen Teile von Java EE Anwen-
dungen zu modellieren. Da nicht für alle Anwendungssysteme ein Performance-Modell-
Generator zur Verfügung steht, kann es erforderlich sein, die systemspezifischen Teile der
Performance-Modelle manuell zu modellieren, was zeitaufwendig sein kann.

Contents

Acknowledgement . iii
Abstract . iv
Zusammenfassung . vi
Contents . viii
List of Figures . xii
List of Tables . xiv
List of Abbreviations and Acronyms . xv

Part A 1

1 Introduction 2
1.1 Problem Statement and Motivation . 2
1.2 Research Goal and Research Questions . 3
1.3 Thesis Structure . 5

2 Conceptual Background 7
2.1 Load Testing . 7

2.1.1 Load Test Objectives . 9
2.1.2 Load Test Design . 10
2.1.3 Load Test Execution . 10
2.1.4 Load Test Analysis . 11

2.2 Model-based Performance Evaluation . 12
2.2.1 Analytical Performance Models . 14
2.2.2 Architecture-Level Performance Models 15
2.2.3 Palladio Component Model . 16
2.2.4 Automatic Extraction of Performance Models 17

2.3 Evolutionary Optimization . 18
2.3.1 Multi-objective Optimization Problems 18
2.3.2 Basic Concepts of Evolutionary Optimization 20

3 Research Methodology 21
3.1 Research Design . 21
3.2 Research Methods . 22
3.3 Publications . 23

Part B 27

4 Automatic Extraction of Probabilistic Workload Specifications for Load
Testing Session-Based Application Systems 28
4.1 Introduction . 29

viii

Contents ix

4.2 Background and Related Work . 30
4.3 WESSBAS-DSL . 31
4.4 Extracting WESSBAS-DSL Instances . 34

4.4.1 Clustering-Based Behavior Mix Extraction 34
4.4.2 Generating WESSBAS-DSL Instances 35

4.5 Generating JMeter Test Plans . 36
4.6 Evaluation . 37

4.6.1 Evaluation Methodology . 37
4.6.2 SPECjEnterprise2010 Deployment 38

4.6.2.1 Workload Description . 39
4.6.2.2 Benchmark Execution and Monitoring 39

4.6.3 Accuracy of Clustering . 40
4.6.4 Accuracy of Workload Characteristics 41

4.6.4.1 Session Length and Distinct Sessions 42
4.6.4.2 Request Counts . 42

4.7 Conclusion and Future Work . 43

5 Using Performance Models to Support Load Testing in a Large SOA
Environment 45
5.1 Introduction . 46
5.2 Using Performance Models to Support Load Testing 47

5.2.1 Extracting Usage Scenarios . 47
5.2.2 Transforming Performance Models 47
5.2.3 Analyzing Prediction Results . 48

5.3 Conclusion and Future Work . 48

6 Automatic Extraction of Session-Based Workload Specifications for Ar-
chitecture Level Performance Models 49
6.1 Introduction . 50
6.2 Related Work . 51
6.3 Transforming WESSBAS-DSL Instances into PCM 51

6.3.1 Wessbas Approach . 51
6.3.2 Palladio Component Model . 53
6.3.3 Transformation . 53

6.4 Evaluation . 55
6.5 Conclusion and Future Work . 56

7 WESSBAS: Extraction of Probabilistic Workload Specifications for Load
Testing and Performance Prediction - A Model-Driven Approach for
Session-Based Application Systems 58
7.1 Introduction . 59
7.2 Related Work . 62

7.2.1 User Behavior Modeling . 62
7.2.2 Workload Intensity . 64
7.2.3 Workload Extraction . 64
7.2.4 Workload Modeling for Performance Models 64

7.3 Workload Specification . 65
7.3.1 Workload Specification Formalism 65

Contents x

7.3.1.1 Application Model . 66
7.3.1.2 Behavior Models . 67
7.3.1.3 Behavior Mix . 67
7.3.1.4 Workload Intensity . 68
7.3.1.5 Workload Generation Process 68

7.3.2 WESSBAS-DSL . 69
7.4 Extracting WESSBAS-DSL Instances . 71

7.4.1 Monitoring and Session Log Generation 71
7.4.2 Clustering-Based Behavior Mix Extraction 73
7.4.3 Workload Intensity Extraction . 75
7.4.4 Automatic Learning of Guards and Actions 75
7.4.5 Calculation of Conditional Probabilities 78
7.4.6 Generating WESSBAS-DSL Instances 80

7.5 Generating JMeter Test Plans . 81
7.6 Transformation to Performance Models . 84

7.6.1 Palladio Component Model . 84
7.6.2 Generation of Performance Models 84
7.6.3 Transformation . 85

7.7 Evaluation . 88
7.7.1 Research Questions and Methodology 88
7.7.2 Fifa World Cup 1998 Access Logs 90
7.7.3 SPECjEnterprise2010 Deployment 90

7.7.3.1 Hardware Infrastructure 91
7.7.3.2 Workload Description . 91
7.7.3.3 Benchmark Execution and Monitoring 93

7.7.4 Evaluation Results . 94
7.7.4.1 Accuracy of Clustering . 94
7.7.4.2 Accuracy of World Cup 1998 Workload Characteristics . . 95
7.7.4.3 Accuracy of SPECjEnterprise2010 Workload Characteris-

tics . 98
7.7.4.4 Accuracy of Performance Metrics 101
7.7.4.5 Accuracy of Changing Workload Settings 103
7.7.4.6 Impact of Guards and Actions 105

7.7.5 Threats to Validity . 111
7.7.6 Assumptions and Limitations . 112

7.8 Conclusion and Future Work . 113
7.9 Appendix . 115

8 Modeling Complex User Behavior with the Palladio Component Model116
8.1 Introduction . 117
8.2 Limitations of PCM Usage Model . 117
8.3 Extension of PCM Usage Model . 119
8.4 Evaluation . 120
8.5 Related Work . 121
8.6 Conclusion and Future Work . 122

Contents xi

9 Multi-Objective Optimization of Load Test Designs using Performance
Models 123
9.1 Introduction . 124
9.2 Related Work . 127

9.2.1 Feedback-based Load Generation Techniques 127
9.2.2 Genetic Algorithm Techniques . 128
9.2.3 Architecture Optimization Techniques using Performance Models . 129

9.3 Workload Specifications for Load Testing and Model-based Performance
Prediction . 129
9.3.1 Workload Specification . 130
9.3.2 WESSBAS-DSL . 132
9.3.3 Transformation to Performance Models 132
9.3.4 Generating JMeter Test Plans . 133
9.3.5 Example . 133

9.4 Load Test Design Selector . 134
9.4.1 Configuration of Optimization Process 135

9.4.1.1 Workload Design Options 136
9.4.1.2 Performance Objectives 136
9.4.1.3 Stop Criteria . 138

9.4.2 Evolutionary Optimization Process 139
9.4.2.1 Fitness Functions . 139
9.4.2.2 Evolutionary Optimization 140
9.4.2.3 Results Presentation . 143

9.4.3 Automatic Generation of Load Test Scripts 143
9.5 Evaluation . 143

9.5.1 Research Questions and Evaluation Methodology 143
9.5.2 SPECjEnterprise2010 Deployment 144

9.5.2.1 Hardware Infrastructure 145
9.5.2.2 Workload Description . 145
9.5.2.3 Benchmark Execution and Monitoring 147

9.5.3 Results of Optimization Process . 147
9.5.4 Prediction Accuracy of Selected Test Design Candidates 152

9.6 Assumptions and Limitations . 154
9.7 Threats to Validity . 155
9.8 Conclusions and Future Work . 156

Part C 157

10 Discussion 158
10.1 Summary of Findings . 158
10.2 Limitations . 162
10.3 Contribution to Research . 162
10.4 Contribution to Practice . 163
10.5 Future Research . 163

References 164

List of Figures

1.1 Structure of this dissertation . 6

2.1 Load testing process based on Jiang/Hassan (2015) 8
2.2 Load testing setup . 9
2.3 Model-based performance evaluation (Brunnert et al. (2015)) 13
2.4 PCM models and their relationships . 17
2.5 Exemplary multi-objective optimization problem with two objective func-

tions that should be minimized . 19

4.1 Overview of the Wessbas approach . 30
4.2 Overview of the Wessbas-DSL . 33
4.3 SPECjEnterprise2010 transactions as Behavior Models 38
4.4 Session length statistics for the original workload (Orig.) and the synthetic

workloads (ED-2, NED-3, NED-4) . 41
4.5 Request count statistics . 43

6.1 Overview of Wessbas approach and its extension (bold rectangle), adapted
from van Hoorn et al. (2014) . 52

6.2 Generated RDSEFF example . 55

7.1 Overview of the Wessbas approach . 60
7.2 Exemplary Workload Model (without think times in the Behavior Models) 66
7.3 Wessbas-DSL classes and relationships 69
7.4 Example of a Wessbas-DSL model with a violated constraint (no Behav-

ior Mix frequency sum of 1.0), opened in an EMF Form Editor. 70
7.5 Example HTTP log (recorded with Kieker) and resulting session log 72
7.6 Exemplary translation rule in the Session Log Generator 73
7.7 Exemplary translation of temporal invariants to Guards and Actions 77
7.8 An exemplary Behavior Model with measured probabilities and with con-

ditional probabilities . 78
7.9 Example mapping of Wessbas-DSL instances to (Markov4)JMeter Test

Plan elements . 82
7.10 Exemplary transformation to PCM . 86
7.11 Hardware and software infrastructure . 91
7.12 SPECjEnterprise2010 transactions Browse, Manage, and Purchase as Be-

havior Models. The transaction Modified Purchase is used for the evalu-
ation of RQ 5 (see Section 7.7.4.6). The probabilities are rounded to two
decimal places and the mean and standard deviation of the think times to
one decimal place. 92

xii

List of Figures xiii

7.13 800U-50B/25P/25M: Session length and duration statistics for the original
workload (Orig.) and the synthetic workloads (ED-2, NED-3, NED-4) . . . 99

7.14 800U-50B/25P/25M: Request count statistics 100
7.15 800U-50B/25P/25M: CPU utilization statistics 101
7.16 800U-50B/25P/25M: Server-side response time statistics 102
7.17 800U-50B/25P/25M: Memory usage statistics (with Faban initialization) . 103
7.18 1200U 50B 25P 25M: CPU utilization statistics 104
7.19 1200U-50B/25P/25M: Server-side response time statistics 105
7.20 1200U-34B/33P/33M: . 106
7.21 1200U-34B/33P/33M: Request count statistics 107
7.22 1200U-34B/33P/33M: CPU utilization statistics 107
7.23 800U-0B/100MP/0M: Session length statistics for withGAA compared to

withoutGAA . 109
7.24 800U-0B/100MP/0M: CPU utilization statistics 110
7.25 800U-0B/100MP/0M: Server-side response time statistics 111

8.1 Probabilistic representation of the SPECjEnterprise2010 purchase transac-
tion type . 118

8.2 Extended PCM Usage Model meta-model 119

9.1 Load Test Design Selector integrated into the Wessbas approach (based
on Vögele et al. (2016)) . 126

9.2 Exemplary Workload Model (without think times in the Behavior Models)
Vögele et al. (2016) . 131

9.3 Simplified PCM example without think times and Guards and Actions . . 135
9.4 Exemplary fitness function of the CPU utilization using the threshold range

40% to 50%. 141
9.5 Evolutionary Optimization Approach (based on Koziolek et al. (2011) . . . 142
9.6 Hardware and software infrastructure . 145
9.7 SPECjEnterprise2010 transactions Browse, Manage, and Purchase as Be-

havior Models. 146
9.8 Coverage criterion C of the Pareto front per iteration compared to the

Pareto front of the previous iteration . 149
9.9 3-D Pareto front throughput‘ vs. representativeness error vs. number of

test cases . 149
9.10 Number of test cases vs. representativeness error 150
9.11 3-D Pareto front coverage vs. representativeness error vs. number of test

cases . 151
9.12 Number of test cases vs representativeness error 151
9.13 Number of test cases vs. coverage . 152

List of Tables

3.1 Publications embedded in this thesis . 25
3.2 Further publications during the work on this dissertation 26

4.1 Bibliographic details for P1 . 28
4.2 Mapping of Wessbas-DSL concepts to (Markov4)JMeter elements 36
4.3 Clustering Results . 39

5.1 Bibliographic details for P2 . 45

6.1 Bibliographic details for P3 . 49
6.2 Mapping of Wessbas-DSL concepts to PCM model elements 53
6.3 Evaluation Results . 56

7.1 Bibliographic details for P4 . 58
7.2 Probabilities and think times of a Behavior Model (see Figure 7.2) 82
7.3 Mapping of Wessbas-DSL concepts to (Markov4)JMeter elements 83
7.4 Mapping of Wessbas-DSL concepts to PCM Model elements 85
7.5 Clustering results . 93
7.6 World Cup 1998 Logs: Relative frequency of each request category per cluster 96
7.7 Summary statistics of session lengths . 96
7.8 Absolute and relative (Rel.) request counts 97
7.9 800U-0B/100MP/0M: Request count statistics (JMeter) 109
7.10 Resulting Guards and Actions . 115

8.1 Bibliographic details for P5 . 116
8.2 Evaluation Results . 121

9.1 Bibliographic details for P6 . 123
9.2 Exemplary PCM Prediction Results . 134
9.3 Exemplary calculation of representativeness error 138
9.4 Two configuration setting used for the evaluation of RQ 1 148
9.5 Comparison of prediction metrics from resulting workload candidates with

measurement results . 153
9.6 Representativeness error of workload candidates 153

10.1 Key results of embedded publications . 161

xiv

List of Abbreviations and Acronyms

ACM Association for Computing Machinery. .22

APM Application Performance Management . 3

BISE Business & Information Systems Engineering. .23

CBMG Customer Behavior Model Graph . 63

CPU Central Processing Unit. .39

CRM Customer Relationship Management . 38

DML Descartes Modeling Language . 15

DS Design Space . 136

DSL Domain-specific Language . 59

EA Evolutionary Algorithm . 5

ED Euclidean Distance . 40

EFSM Extended Finite State Machine . 52

EJB Enterprise Java Bean . 17

EMF Eclipse Modeling Framework . 69

EVOP Evolutionary Operator . 20

FCFS First Come, First Served . 14

FSM Finite State Machine. .63

GaAs Guards and Actions. .59

HDD Hard Disk Drive . 15

HTTP Hypertext Transfer Protocol . 31

ICPE International Conference on Performance Engineering 25

JSP Java Server Pages .84

LIMBO Load Intensity Modeling Tool . 64

LQN Layered Queuing Network . 14

LT International Workshop on Large-Scale Testing.26

LTS Labeled Transition System. 128

MARTE UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems . 15

MC Percentage of Misclassified . 40

MOP Multi-objective Optimization Problem . 18

MRC Measured Request Count . 56

NED Normalized Euclidean Distance . 40

OCL Object Constraint Language . 69

List of Abbreviations and Acronyms xvi

PCM Palladio Component Model . 15

PE Prediction Error . 56

QN Queuing Network . 14

QPN Queuing Petri Net . 14

RDSEFF Resource Demanding Service Effect Specification 16

RQ Research Question . 4

SCM Supply Chain Management . 38

SEFF Service Effect Specification . 138

SLA Service-level Agreement . 9

SOA Service-oriented Architecture. .24

SPE Software Performance Engineering . 25

SRC Simulated Request Count . 56

SSE Sum of Squared Error . 138

SUT System Under Test. .3

T Transaction Type . 40

TM Transaction Mix . 40

UML Unified Modeling Language . 46

UML-SPT UML Profile for Schedulability, Performance and Time 15

VALUETOOLS International Conference on Performance Evaluation Methodologies
and Tools . 23

Part A

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Nowadays, many session-based application systems, i.e., systems that are used by users in
time-bounded sessions of interrelated requests and think times between these requests, are
often accessed by a very large amount of users. It is very important that these systems are
able to scale to this demand. Studies in the field of software performance show that there is
a strong correlation between revenue and the performance of these systems. Especially for
web-based e-commerce systems, performance is a crucial success factor, as slow websites
decrease the website usage and sales are reduced1. As a result, these systems have to
meet non-functional performance objectives like given throughput and response times.
To validate whether these objectives can be met, load testing is a commonly used testing
procedure in addition to functional testing (e.g., unit testing and integration testing).
With load testing the performance is evaluated before the software goes into production
to detect potential performance bottlenecks and architectural weaknesses.

Several established load generation tools exist that enable the execution of load tests
under various workload conditions such as the variation of the number of users. However,
they do not support to design load tests (also referred to as workload specification within
this work). The design of a load test defines the load that is executed on the system
during testing (Jiang/Hassan, 2015). These tests are designed by specifying test cases
and input parameters derived from usage scenarios. Furthermore, the proportion by
which each test case is executed as well as the workload intensity defined as the number
of expected users executing requests has to be specified. The load is selected based on
the test objectives such as detecting functional and performance problems under load. In
case the workload is not specified in a way that it is able to test if the given performance
objective(s) are fulfilled the testing results are useless or the tests must be repeated.
However, the execution of multiple load tests can be very time consuming and costly.
Testing environments that represent the production system are also often not available or
are used by other departments as well. In addition, there is an increasing demand that
software systems are developed in faster release cycles (Brunnert et al., 2015). Thus, the
time that is available to specify and conduct load tests decreases.

1http://www.carbon60.com/milliseconds-are-money-how-much-performance-matters-in-the-cloud/

2

1.2. Research Goal and Research Questions 3

Especially for new systems or new software features workload modeling is difficult, as there
is little or no information about the expected user behavior. Business domain experts
of the operational units can support in determining these workloads, as they know the
business process very well. But this knowledge is often not documented in a way, that
software experts can use this information to specify workloads. In case the system or
parts of the system are already implemented the load can be characterized based on
recorded system logs. However, as many different application systems, log formats, and
load testing tools exist the extraction of workloads based on these recorded system logs
is a cumbersome task. Furthermore, deriving workloads that cause load related problems
can be very difficult. The number of possible load test design alternatives that must be
evaluated to determine performance problems under load is too huge.

1.2 Research Goal and Research Questions

Many approaches can be found in literature that follow one of the following goals when
load tests are designed (Jiang/Hassan, 2015):

� Designing the workload in a way that it is representative compared to the real
workload in the field (Feitelson, 2002).

� Designing the workload in a way that it causes load related problems. During the
design of the tests optimization and reduction techniques can be applied.

The goal of this dissertation is to fill the gap between these goals by proposing an approach
that enables the selection of both representative workloads and workloads that can lead
to load related problems. In order to achieve this goal, this approach enables to specify
performance objectives that should be tested during the load testing process. Based
on these objectives suitable load test designs are derived automatically. This approach
automatically extracts, selects and generates load test designs for performance evaluations
with measurement-based and model-based performance evaluation techniques.

First, with support of measurement-based approaches (Jain, 1991) like common Application
Performance Management (APM) tools (van Hoorn/Waller/Hasselbring, 2012), workload
specifications are extracted based on recorded system logs. In case the system is already
in production these logs can be easily derived. For newly developed features and appli-
cations these logs can be derived during functional testing or by conducting friendly user
tests. These systems records are then transformed into workload specifications for load
testing tools.

Second, these specifications are used for the generation of workload specifications for
model-based performance techniques. These techniques, named performance models, rep-
resent performance-relevant aspects of these systems and allow predicting performance
characteristics of application systems like response times, throughput and resource uti-
lization. With support of performance models the impact of different load test design
alternatives on the System Under Test (SUT) can be evaluated before the load is even
executed on the real system.

1.2. Research Goal and Research Questions 4

The following Research Questions (RQs) are answered in this dissertation to address the
aforementioned challenges and to achieve the research goal:

Research Question 1: How can representative workload specifications for load testing
session-based application systems be automatically extracted?

The question addresses how representativeness and probabilistic workload specifications
can be derived from system records in an automatic way. Based on these specifications
executable load tests should be derived independent of the used system and the used load
testing tool. As the extraction and specification of workloads strongly depends on the used
workload generation tool the challenge is to specify a tool and system-agnostic workload
specification that covers all aspects needed to generate representative and executable load
tests. The advantage of this extraction approach is that the effort to generate load tests
that represent the real workload as accurately as possible is considerably reduced.

The outcome of this research question is an evaluated prototype for the automatic speci-
fication and extraction of probabilistic and representative workload specification.

Research Question 2: How can the extraction of workload specifications for load testing
be integrated with the extraction of workload specifications for performance models?

Workload modeling and generation/simulation are essential to systematically and ac-
curately evaluate performance properties of software systems for both load testing and
model-based performance evaluation (e.g., prediction). Workload specifications are there-
fore also tightly integrated in formalisms and approaches for model-based performance
evaluation, including analytic and simulative techniques. Only few approaches for sharing
workload specifications between the model-based and the measurement-based worlds exist.
This research question examines how the workload specification from Research Question
1 can be used for model-based performance prediction approaches as well. Furthermore,
we will examine if the used performance models are capable to model representative and
complex workloads.

This integration comes with several advantages. First, with the use of performance mod-
els, workload design options can be evaluated without executing the load test on the real
system. Second, to validate the prediction accuracy of performance models with real
measurements it is important that both workload specifications show the same workload
characteristics.

The outcome of this research question is an evaluated prototype for the generation of
workload specifications for performance prediction approaches that is integrated with the
prototype from Research Question 1.

Research Question 3: How can performance models be used to select load test designs
fulfilling given performance objectives applying multi-objective optimization techniques?

Load tests for session-based application systems are designed by selecting and varying
usage scenarios and workload intensities. In Research Question 1 and Research Question
2 the goal is to extract workload specifications in a way that they represent the measured

1.3. Thesis Structure 5

workloads as accurately as possible. Like described before the selection of workloads that
lead to load related problems is also a common goal of load testing. Therefore, in this
research question we examine how workload specifications can be derived with support of
performance models fulfilling given performance objectives. The resulting workloads are
not necessarily representative to the measured workload. Objectives can be load related
such as which workloads stress the CPU of the system to a predefined level. Moreover,
also performance objectives should be evaluated that are not directly load related. As
an example, the number of resulting test cases can be relevant to reduce load testing
efforts and structural metrics like test coverage should be considered as well (Woodside/
Franks/Petriu, 2007). With the use of multi-objective optimization techniques solved by
a Evolutionary Algorithm (EA) these workload design candidates are derived. We use
the extracted performance models from Research Question 2 and encode different load
test designs into these models. These candidates are simulated and assessed based on the
given objectives.

As the design space is very huge the performance engineer cannot assess all possible
combinations. Thus, the performance of the systems is difficult to assess without using
model-based prediction results as otherwise a lot of different load test design alternatives
must be executed on a test system.

The outcome of this research question is an evaluated prototype for the selection of load
test designs using performance models based on given performance objectives.

1.3 Thesis Structure

The structure of this dissertation is shown in Figure 1.1. The thesis is structured in three
parts (Part A, Part B, Part C).

Part A describes the introduction, the conceptual background and the used research
methodology. Within the introduction (chapter 1) the problem statement and motiva-
tion of this dissertation and the derived research questions are explained. In the chapter
conceptual background (chapter 2) preliminaries about load testing, model-based per-
formance predictions and evolutionary optimization techniques are given. The research
methodology (chapter 3) contains sections that explain the research design, the research
methods and the embedded publications.

Part B contains the six embedded publications P1 to P6 (chapter 4-9). These publications
resulted from research done by the author as part of this dissertation. A short summary
of the content of the publications can be found in Section 3.3.

Part C concludes this dissertation with a discussion (chapter 10). First, the findings of
the publications are summarized. Afterward, limitations and the contribution to research
and practice are given. Finally, future research opportunities are explained.

1.3. Thesis Structure 6

RQ1

RQ2

RQ3

PART A

1. Introduction

1.1. Problem Statement and
Motivation

1.2. Research Goal and
Research Questions

1.3. Thesis Structure

2. Conceptual Background

2.1. Load Testing
2.2. Model-based

Performance Evaluation
2.3. Evolutionary

Optimization

3. Research Methodology

3.1. Research Design 3.2. Research Methods 3.3. Publications

PART B

5. Using Performance Models to Support Load Testing in a Large SOA Environment

PART C

4. Automatic Extraction of Probabilistic Workload Specifications for Load Testing Session-Based Application Systems

6. Automatic Extraction of Session-Based Workload Specifications for Architecture Level Performance Models

7. WESSBAS: Extraction of Probabilistic Workload Specifications for Load Testing and Performance Prediction -
 A Model-Driven Approach for Session-Based Application Systems

8. Modeling Complex User Behavior with the Palladio Component Model

9. Multi-Objective Optimization of Load Test Designs using Performance Models

10. Discussion

10.1. Summary of Findings 10.2. Limitations 10.3. Contribution to Research

10.4. Contribution to Practice 10.5. Future Research

Figure 1.1: Structure of this dissertation

Chapter 2

Conceptual Background

This work is based on research in the field of load testing, model-based performance
evaluation, and evolutionary optimization approaches. In the following the basic principles
and the relations between these are presented that are required to understand the concepts
of this dissertation.

2.1 Load Testing

Various definition and interpretations of test types exists in literature. These types have
similarities but also their own focuses. We summarize the most important test types in
the following based on Meier et al. (2007) and Jiang/Hassan (2015):

Performance tests measure performance related aspects (throughput, response times,
resource utilization levels) of a software system. These performance characteristics can
be tested with or without load. For example, the test of the performance of a single
algorithm is not load testing.

Load tests verify application behavior under normal and/or peak load conditions. This
type of test detects problems that only occur during load. The load can have the goal
to test the performance, scalability, and/or stability of the SUT as it occurs in the field
(cf. operational load (Avritzer/Weyuker, 1995)). Moreover, the load can have the goal
to stress the system. This type of test should reveal bottlenecks in the system and test if
users of the system will be satisfied with the performance characteristics. Examples are
concurrency issues, load balancer configurations, and race conditions.

Stress tests determine or validate the behavior of an application when it is pushed
beyond normal or peak load conditions (Zhang/Elbaum/Dwyer, 2011). With this type
of test the boundaries of the system related to performance can be detected. It can be
determined how robust the system is in case unexpected load conditions occur.

Capacity tests determine the limits of the system for different hardware and software
configurations. The goal is to estimate the required hardware and software configuration
that is able to fulfill the performance requirements under the expected load conditions.

7

2.1. Load Testing 8

Failover tests analyze the behavior of the system when different system components
under load fail to detect the reaction of the system. For example when one of two data
centers has a blackout.

Long-term load tests determine the performance in a long and continuous load test.
Some types of performance problems only occur when the system is running for a long
time. Examples of these problems are that caches or databases fill up or that memory
leaks occur.

During this dissertation all types of tests are relevant when concurrent users (this includes
other systems as well) generate requests to the SUT. Primarily, this includes load testing
but also stress testing and performance testing under load. The type of chosen test is
based on the testing objectives. For example, in case the goal is to derive a load test design
that is representative to the real system load testing using operational load is applied. In
case load related problems should be identified stress testing is a commonly used method.

We use the following definition of load testing within this dissertation (Jiang/Hassan,
2015):

”
Load testing is the process of assessing the behavior of a system under load in order to

detect load-related problems“.

The load is defined as the rate at which different service requests are submitted to the
SUT. It is typically executed on a running system in a separate test environment. In the
best case the setup of the test environment is identical to the setup of the production en-
vironment. According to Jiang/Hassan (2015) load testing consists of three main process
steps: load test design, load test execution and load test analysis (Figure 2.1). Based on
load testing objectives a suitable load test design is derived. In the load test design pro-
cess step workload specifications are designed that define the key characteristics of user
interactions with the system. This testing load is the input for the load test execution
step. After the load test execution, recorded system logs representing the behavior of
the system are available. In the load test analysis step this information is used in order
to analyze the behavior of the system under load and to identify potential performance
problems and the root causes of these problems.

Load Test
Objectives

Testing Load
Recorded System

Behavior
Testing ResultsLoad Test

Design
Load Test
Execution

Load Test
Analysis

Figure 2.1: Load testing process based on Jiang/Hassan (2015)

The typical setup of a load test is depicted in Figure 2.2. A load test design is the input to
the load test controller. The controller possibly distributes the load to several workload
agents used during the load test to send requests to the system under test. During load
testing several agents are often used as the execution of the load might require a lot of
computing resources. To prevent that the agents are not able to generate the specified
load, several agents are required. During load testing the SUT and the agents collect

2.1. Load Testing 9

Load Test
Design Controller

Agent 1

Agent 2

Agent n

SUT
Recorded

System
Behavior

Workload Generator

Figure 2.2: Load testing setup

relevant metrics about the behavior of the system. Load testing tools are often only
able to collect metrics that can be derived from a black box view of the SUT such as
response times and throughput. Therefore, also the additional usage of APM tools (e.g.,
Dynatrace (2016) and Kieker van Hoorn/Waller/Hasselbring (2012)) is recommended to
derive insights of the system. The measured data is collected and used to generate load
testing reports.

2.1.1 Load Test Objectives

In the load test design phase the load that will be executed on the SUT is designed based
on given load testing objectives. The testing objectives are defined based on change,
potential risks, and opportunities for improvement of the SUT (Meier et al., 2007). These
objectives are the starting point of any performance validation and verification effort.
These objectives should be refined periodically as enterprise systems evolves over time.
Meier et al. (2007) defines performance objectives as:

”
Performance objectives are usually specified in terms of response times, throughput (trans-

actions per second), and resource-utilization levels and typically focus on metrics that can
be directly related to user satisfaction.“

Examples of common objectives include but are not limited to:

� Test if the SUT is able to fulfill contracts, regulations, and Service-level Agreements
(SLAs) with the expected load (Meier et al., 2007)

� Detect performance problems under load (bottlenecks) (Jiang/Hassan, 2015)

� Evaluate performance characteristics of different configuration settings (Meier et al.,
2007)

� Deliver sizing estimates of hardware architecture that is capable to fulfill require-
ments for the predicted workload (Grinshpan, 2012)

In the following the three main load testing process steps are described in more detail.

2.1. Load Testing 10

2.1.2 Load Test Design

Basically, two different approaches exit to design realistic load (Jiang/Hassan, 2015):
aggregated workloads and scenarios. Aggregated workloads are specified with a workload
intensity and a behavior mix. The workload intensity defines the rate of incoming requests
or the number of concurrent users that execute requests on the system. The behavior mix
defines the percentage each request type is executed. For example, an application has
two request types and the expected number of users accessing the application is 100. The
first request type is executed in 30% of case and the second type in 70% of cases.

The scenario-based approach extends the concept of the aggregate workload. It generates
requests for each user in a sequence of interrelated requests. The sequence of requests can
be defined in a static way. In this case, always the same sequence is executed for each
scenario. Scenarios can also be defined with a workload model using graph-based notations
(e.g. Markov chains) with probabilities and think times between the subsequent requests.
Then for each execution the sequence of requests is different for each user. This type of
workload specification is able to simulate the behavior of real users. In the scenario-based
approach the number of concurrent users is named the workload intensity as well. The
behavior mix is the ratio for which each scenario is executed. In this case a scenario is
also named behavior model in the remainder of this thesis (van Hoorn/Rohr/Hasselbring,
2008).

Scenarios can be derived in different ways. They can be derived from the production
(operational profile load) in order to define a realistic workload. This process of extracting
and representing the operational profile load as realistic as possible compared to the field
workload is also called Workload Characterization. Scenarios can also be estimated based
on similar applications when the application is still under development or by interviewing
domain experts. Another approach is to derive workloads that stress the system or specific
parts of the system to identify performance problems under load. In this case it is not
the goal to execute a load that is representative to the real workload.

In-depth information about the workload specification formalism used within this thesis
can be found in Section 7.3.1.

2.1.3 Load Test Execution

In the load test execution phase several different approaches exist. The most common
approaches are (i.) live-users to manually generate load and (ii.) using load drivers to
automatically generate load (Jiang/Hassan, 2015).

Load tests conducted with live-users have the goal to test realistic user behavior (Kim/
Kim/Shin, 2013). Conducting tests with real users has the advantage that real user feed-
back on the acceptable performance can be directly collected. Furthermore, information
about the functional correctness which is otherwise difficult to access can be provided.
The reason why this type of load test execution is not very popular is that is very hard to

2.1. Load Testing 11

scale as many users are required to generate enough load. Additionally, the tests cannot
be reproduced or repeated exactly as they occurred.

The second very popular load test execution approach is the usage of load drivers to
automatically generate the required load. Using load drivers the load can easily be scaled
to many million requests and it is also easy to reproduce the load. Due to these advantages,
we solely use load drivers for load test execution in this dissertation. In contrast to the
live-user based testing load drivers setup and configuration effort is required. Existing load
testing tools allow easy record and replay functionality by recording sequences of actions
and replay them (Rodrigues et al., 2014). The load testing tools also evolve over time and
tools are introduced enabling model-based testing (van Hoorn/Rohr/Hasselbring, 2008).

2.1.4 Load Test Analysis

The system behavior data (e.g., execution logs and performance counters) recorded during
the test execution phase needs to be analyzed to determine if there are any functional or
non-functional load-related problems. Besides key mathematical principles (e.g., median,
percentiles, and mean values) to calculate and interpret performance data (Meier et al.,
2007) the following methods can be applied:

Verifying Against Threshold Values

Often load test results are compared against predefined threshold values. A very popular
way is to compare the results against agreed SLAs between service provider and con-
sumer. During the load tests it must be evaluated if these contracts can be satisfied. An
example of such an agreement is that x% of the requests are below a certain response
time threshold. We primarily use this type of analysis, as we can easily compare given
performance objectives, such as given response times with prediction values derived from
performance model simulations.

Detecting Known Problems Using Patterns

Another load test analysis method is to compare the load test results against known
problems. Especially problems that cannot be identified using simple threshold values
are of interest. Examples of know problems are pattern in the memory utilizations, (e.g.,
memory leak detection), patterns in the CPU utilizations, (e.g., deadlocks), or patterns
in the logs like special error keywords (e.g., failure).

2.2. Model-based Performance Evaluation 12

Automated Detection of Anomalous Behavior

As not all patterns can be specified and detected automatically the automated detection
of anomalous behavior is an important research topic in the field of load testing. The goal
is to systematically analyze the system behavior to uncover anomalous behavior (Jiang/
Hassan, 2015; Foo et al., 2010). These methods have the goal to differentiate between
normal and anomalous behavior.

2.2 Model-based Performance Evaluation

Model-based performance evaluation approaches in combination with analytical solvers
or simulation engines enable to predict performance characteristics like response times,
throughput and resource utilization. Using these models can reduce the load testing
effort as it is not required to build test environments similar to the production environ-
ment. These approaches model performance relevant characteristics of the SUT. These
characteristics include:

1. Software architecture

2. Hardware infrastructure

3. Workload specification

The software architecture and the hardware infrastructure represent the system-specific
details of the SUT. The software architecture describes the components, the methods of
the components and the relationships between these. Furthermore, the resource demands
of the components need to be represented. Resource demands are defined as the demand
from a hardware resource (e.g. CPU) for each unit of work (e.g. a request). For example
the number of milliseconds the CPU has to calculate for a specific user request. The
hardware environment specifies the most important parts of the used hardware of the SUT
like the number of servers and the number of cores per server. The workload specification
defines the load that is tested on the modeled system.

An overview of model-based performance evaluation can be found in Figure 2.3. In
this example the structure of an architecture-level performance model is illustrated. An
application server (hardware infrastructure) is accessed by business administrators and by
customers (workload specification). The components (e.g., Parser or Administration) that
are deployed on the server and the behavior of interface operations of these components
(software architecture) are modeled as well. This model can be simulated directly to
derive prediction metrics like response times or resource utilizations. There is also the
possibility to automatically translate it into analytical models and then be processed by
respective solvers to derive prediction metrics.

Performance models are able to support various use cases throughout the complete soft-
ware life cycle (Brosig/Huber/Kounev, 2011; Krcmar, 2015). In the system development

2.2. Model-based Performance Evaluation 13

<<Architectural Performance Model>>
Application Server

Parser

Data Access

Data Processor

Administration Database
Business

Administration

Customer

<<InternalAction>>

CPU demand = 150 ms

<<ExternalCallAction>>

Execute Query

<<InternalAction>>

CPU demand = 250 ms

<<SEFF>>
process

Response Time

Utilization

CPU HDD
λ0 λ1 λ2

<<Analytical Performance Model>>

Performance Model
Transformation

Performance
Model Solver

Performance
Model Simulator

<<Performance Prediction/Simulation Results>>

Structure of System

Behavior and Resource
Demands of Interface Operation

Figure 2.3: Model-based performance evaluation (Brunnert et al. (2015))

phase these models are able to predict the performance of early-stage prototypes. Fur-
thermore, continuous change detection between the prediction of two builds in continuous
integration process (Brunnert/Krcmar, 2014) is enabled. During system deployment the
required software and hardware capacity of the system can be determined. Finally, dur-
ing operations these performance models can be used for continuous performance-aware
resource management (Calinescu et al., 2011).

Basically, there are two different types of performance models: architecture-level perfor-
mance models and analytical models. Architecture-level performance models represent
key performance characteristics of a system and enable to model the system architecture,
execution environment, and workload specification separately from each other (Brosig/
Huber/Kounev, 2011). In contrast analytical models do not provide this separation and
models the system in only one single model.

In order to determine the resource demands of a system two different approaches can
be applied: direct measurements or resource demand estimation. Direct measurements
can be conducted using APM tools and profiling tools. These tools use fine-grained
code instrumentation or statistical sampling. Furthermore, facilities of operating sys-
tems provide the possibility to track the consumed resource consumptions. On the other
side approaches for resource demand estimation are based on a combination of statistics
about aggregate resource usage (e.g., CPU utilization) and coarse-grained application
statistics (e.g., end-to-end application response times or throughput) (Brunnert et al.,
2015). Using these approaches fine grained instrumentation of the application is not re-

2.2. Model-based Performance Evaluation 14

quired. Common examples for these approaches are response time approximation (Brosig/
Kounev/Krogmann, 2009), Kalman Filter (Wang et al., 2012) or optimization techniques
(Menascé, 2008). A Library for Resource Demand Estimation (LibReDE) (Spinner et al.,
2014) offers the implementation of several estimation approaches.

2.2.1 Analytical Performance Models

Classical performance models are analytical models. The main focus of these models is the
accurate modeling of system resources. Examples for these types of models are Queuing
Networks (QNs), Queuing Petri Nets (QPNs), or Layered Queuing Networks (LQNs)
(Balsamo et al., 2004; Ardagna et al., 2014).

The basis of analytical performance models is queuing theory (Jain, 1991). As in computer
systems many jobs share the same system resources (e.g., CPU, Disks) only one job can
use the resource at the same time. Thus, the other jobs must wait until they are allowed
to use the resource. These jobs are waiting in so called queues. The time each job acquires
the resource and the time the jobs are waiting in the queue is the response time. With
support of the queuing theory the time that jobs spend in (possibly multiple) queues is
determined. In order to analyze a queuing system, the following characteristics of the
system should be specified (Jain, 1991):

1. Arrival Rate Is defined as the time distribution between the arrival of new requests
that arrive at the system.

2. Service Time Distribution Is defined as the distribution each request acquires a
resource.

3. Number of Servers Defines the number of identical service stations such as CPU,
disks, etc.

4. System Capacity Defines the capacity of the queues. This contains both waiting
requests and requests that are served.

5. Population Size Defines the maximum number of the population potentially enters
the system.

6. Service Discipline Defines the order in which the requests are served. The most
common discipline in computer systems research are First Come, First Served
(FCFS), processor sharing or round robin.

These six characteristics of a queuing system can be defined using the Kendall-Notation.
An example of this notation is a G/G/1/1000/1000/FCFS system. In this case the arrival
rate is generally distributed meaning the queuing results are valid for all distributions of
inter-arrival times. The service time distribution is generally distributed as well. The
number of servers is 1, the system capacity and the population size is 1000, and the
service discipline is FCFS. In case the system capacity, the population size and the
service discipline is not specified the queues are defined as having infinite buffer capacity,

2.2. Model-based Performance Evaluation 15

infinite population size, and an FCFS service discipline. In this case only the first three
parameters must be specified as G/G/1.

In case more than one queue is in the system and requests can be processed by multiple
queues a model is called QN. An example of a QN as analytical performance model
can be found in Figure 2.3. In this example two service stations (CPU and Hard Disk
Drive (HDD)) each having a queue is depicted. λ0 and λ1 define the arrival rates whereby
these values are the same in this example as the requests cannot leave the system after
being processed by the CPU. These types of models can be solved by corresponding solvers
in order to derive prediction results.

An advancement of QN are LQN. The QN can only use one resource at a time. This makes
the modeling and simulation of common use case very difficult or even not feasible. For
example, when a server is calling another server and waits for the response (Franks et al.,
2009). Thus, in contrast to QN the LQN allow for simultaneous use of resources. These
models have a hierarchical structure and are solved with analytical solvers based on Mean-
Value Analysis (MVA) for LQNs (Rolia/Sevcik, 1995).

2.2.2 Architecture-Level Performance Models

The goal of architecture-level performance models is to create designer friendly mod-
eling notations. Examples of architecture-level performance models are Palladio Com-
ponent Model (PCM) (Becker/Koziolek/Reussner, 2009), the Descartes Modeling Lan-
guage (DML) (Kounev/Brosig/Huber, 2014), the UML Profile for Schedulability, Perfor-
mance and Time (UML-SPT) (Object Management Group, Inc., 2005), and the UML
Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) (Ob-
ject Management Group, Inc., 2013). PCM and DML are performance models focusing
on the prediction for component-based software systems like modern software systems.
According to Koziolek (2010) the most important factors that influence the performance
of component-based software systems are:

1. Component Implementation The implementation of the functionality specified
by an interface.

2. Required Services The execution time of a component is dependent on the exe-
cution time of the required services.

3. Deployment Platform Different software (e.g., component container, virtual ma-
chine, operating system, etc.) and hardware layer (e.g., processor, storage device,
network, etc.) provide different response times.

4. Resource Contention As a software component is not executed as a single pro-
cess, waiting times for accessing limited resources occur. These waiting times are
additional to the execution times of a software component.

5. Usage Profile The invocation of the component can occur with different input
parameters and varying invocation frequency.

2.2. Model-based Performance Evaluation 16

In order to derive prediction results these models must be simulated or solved. To solve
these models they must be first transfered to analytical models and then be processed
by respective solvers. For each performance model suitable solvers or simulation engines
are available. For example, for PCM transformations to analytical performance models
such as LQNs (Koziolek/Reussner, 2008) or stochastic regular expressions and different
simulation engines (Becker/Koziolek/Reussner, 2009; Merkle/Henss, 2011) exist.

The advantages of solvers are that the prediction results are very precise and are de-
rived very fast (Becker/Koziolek/Reussner, 2009). However, they do not support G/G/n
queues and support only single user scenarios. On the other side simulation engines allow
to simulate G/G/n queues and also multiple user scenarios. But the results are only
approximated and are derived slower and require more computing capacity.

In this dissertation we focus on architecture-level performance models in combination with
simulation engines. These types of models enable us to model and adjust the workload
specification separately from the system specification. Furthermore, as the simulation of
multiple user scenarios is required only simulation techniques are used to derive prediction
results.

2.2.3 Palladio Component Model

In this dissertation the architecture-level performance model PCM is used and is therefore
explained in more detail. This performance model is a domain-specific modeling language
and is composed of five different model types (see Figure 2.4): repository model, system
model, resource environment model, allocation model and usage model. The first four
model types define the system-specific parts of the system and the usage model defines
the workload specification. The repository model models the software components, com-
ponent operations, and the relations between them using provided and required interfaces.
The component operations are modeled in so called Resource Demanding Service Effect
Specifications (RDSEFFs). These specifications represent probabilistic abstractions of
the control flow. They also enable to specify the resource demand per activity and the
dependencies of transition probabilities and resource demands on the formal parameters
of the service. In the system model the modeled components are assembled to the sys-
tem which also define the system boundaries. The resources of the system (e.g., servers,
switches) are modeled in the resource environment model. For each resource container
the available resources are modeled and performance specifications (e.g., CPU speed) are
provided. In the allocation model the system components are allocated to the resource
container. Finally, the usage model defines the workload of the system.

We use the simulation approach SimuCom (Becker/Koziolek/Reussner, 2009) within this
work to derive prediction results. First, a PCM instance is transformed into Java source
code by a model-2-code transformation. Afterward, the resulting Java code is executed
in an OSGi runtime to start a simulation. SimuCom is a process-oriented simulation and
starts a new thread for each simulated user. As a result it needs more resources than the
event-driven simulation EventSim (Merkle/Henss, 2011). However, as SimuCom supports
all features of PCM we use it to derive to required prediction results.

2.2. Model-based Performance Evaluation 17

Figure 2.4: PCM models and their relationships

2.2.4 Automatic Extraction of Performance Models

As manual modeling of performance models often outweighs the advantage of using these
types of models automatic extraction is required. Due to this, several approaches were
proposed that extract performance models from running systems in an automatic way.

Approaches that extract analytical performance models (LQN) are proposed by Mizan/
Franks (2012) and Israr et al. (2005). This work demonstrates the generation of LQN
performance models through the analysis of trace information from a live system. These
models can then be solved to locate bottlenecks in both the hardware and software.

There are several approaches that extract PCM models. In Brunnert/Vögele/Krcmar
(2013) servlet filter and Enterprise Java Bean (EJB) interceptors are used to derive mea-
sures that are needed to identify the components, the relationships between these compo-
nents, the control flow of requests and the resource demands within a Java EE system. We
use this performance model generator during this thesis to generate the system-specific

2.3. Evolutionary Optimization 18

parts of the performance model. In Willnecker et al. (2015) this approach is extended in a
way that it also enabled to generate performance models based on Dynatrace recordings
(Dynatrace, 2016). Brosig/Huber/Kounev (2011) proposes a semi-automatic approach
based on monitoring data of a WebLogic Application Server collected at run-time. How-
ever, using this approach the identification of an appropriate granularity level for modeling
the components must be specified manually by the user. The calculation of the resource
demand must also be conducted in a manual way.

Another approach that extracts PCM models from measurements is proposed by Walter2.
Using this approach log files measured by APM tool (e.g., Kieker (van Hoorn/Waller/
Hasselbring, 2012)) are the basis to derive all required aspects of PCM.

Furthermore, Brebner (2016) developed an approach that automatically builds and pa-
rameterize performance models from APM data. In their paper the authors present an
industry experience report about the usage of performance models in different industry
projects.

2.3 Evolutionary Optimization

Having extracted a performance model with a representative workload specification there
is the opportunity to question these models specific what-if questions. A what-if question
is a specific workload, design or architectural decision like:

”
What happens if the number

of users accessing the system increase to twice the expected amount?“. A lot of approaches
exist having the goal to automatically improve a software architecture for performance
(Aleti et al., 2013). For this purpose, single or multiple optimization functions are specified
and based on predicted metrics (e.g., mean response times) from different performance
model instances these functions are optimized. Examples for these functions are response
times, costs, reliability, and resource utilization. In our work we do not focus on optimizing
the software architecture. We have the goal the derive load test designs that are able
to fulfill a given set of predefined performance objectives without changing the system-
specific parts.

2.3.1 Multi-objective Optimization Problems

A single objective optimization has the goal to maximize or minimize a objective function
f(p) (Brunnert et al., 2015). The predicted metric of interest p is derived from the solving
or simulation of a performance model. As for many what-if questions multiple performance
objectives are of interest, Multi-objective Optimization Problems (MOPs) are relevant.
A MOP is defined as (Coello/Lamont/Van Veldhuisen, 2007):

”
A vector of decision variables which satisfies constraints and optimizes a vector function

whose elements represent the objective functions. These functions form a mathematical
description of performance criteria which are usually in conflict with each other. Hence,

2http://se.informatik.uni-wuerzburg.de/tools/pmx/

2.3. Evolutionary Optimization 19

Objective function 1

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 2

min max

m
in

m
ax

Pareto front

Figure 2.5: Exemplary multi-objective optimization problem with two objective functions
that should be minimized

the term “optimize” means finding such a solution which would give the values of all the
objective functions acceptable to the decision maker.“

Thus, in a MOP multiple optimization functions are involved. The goal is to optimize k
objective functions simultaneously. These functions can be minimized, maximized or a
combination of maximization and minimization is applied. A general MOP is defined as
minimizing (or maximizing) (Coello/Lamont/Van Veldhuisen, 2007)

F (x) = [f1(c), f2(c), ..., fk(c)] (2.1)

where k is the number of objectives and x is a n-dimensional decision variable vector
x = (x1, ..., xn) from some universe Ω. Each decision variable of the vector can be mapped
to a design decision of the performance model such as the number of used servers or the
population size (workload intensity).

The nature of these MOPs is to have not only one solution but a set of solutions. Pareto
optimality theory (Ehrgott, 2006) is used to derive this set. A solution is defined as Pareto-
optimal, if it is not possible to find another solution that is better or at least equal with
respect to all objective functions. In Figure 2.5 a Pareto-front with two objective functions
that should both be minimized is illustrated. For example, objective function one is the
cost of a hardware infrastructure and objective function two the average response time of
this system. When the costs of the infrastructure should be reduced than the response
times will increase (and vice versa). Due to that reason, all optimal solution are on the
Pareto-front or also trade-off surface.

2.3. Evolutionary Optimization 20

2.3.2 Basic Concepts of Evolutionary Optimization

The aforementioned MOP can be solved with EA as these are suitable to handle multiple
solutions simultaneously. An EA manipulates with a set of operators a population of
encoded solutions (individuals) in order to evaluate predefined fitness functions.

The data structure used in EAs are based on biological concepts. An individual candidate
that is evaluated is encoded to some problem and corresponds to a biological genotype. In
our case a vector of performance design options is called the genotype. These genotypes
are then decoded into a phenotype. In our case into a concrete instance of a performance
model representing the genotype. A genotype consists of one to many chromosomes.
These chromosomes are again composed of genes defining a specific value from a predefined
alphabet. A genotype contains one or more chromosome instances which are called the
population. The number of possible chromosomes is defined as the design space of the
MOP.

Using this data structure the EA basically iterates through three phases which is called a
generation or EA iteration: reproduction, competition and selection. The members of the
current generation are called parent individuals and the members of the next generation
the children individuals. Using this approach constantly new candidates are created,
evaluated and selected until a predefined stop criterion occurs.

Reproduction Phase In order to find solutions that fulfill the objectives in an optimal
way Evolutionary Operators (EVOPs) are used. Two EVOPs are used with EAs and are
recombination and mutation:

1. Recombination The most popular form of recombination is crossover. Crossover
mixes the genes of the selected candidates and creates new candidates. With
crossover new solutions are derived within the design space to prevent local op-
tima. Using crossover, parts of the genes of one parent are mixed with parts of
another parent to create new children for the next generation.

2. Mutation The values of variables within parent are randomly changed and new
children are created. Mutation is often executed after the recombination. Thus, the
design space of possible solution is scanned continuously.

In the Competition Phase each candidate is evaluated. In our case that means that
each performance model instance is simulated and the prediction metrics are derived.

During the Selection Phase the genes with higher fitness values are selected to contribute
to one or more children in the succeeding generation. For example, candidates which are
considered to be Pareto-optimal are selected and the others are removed.

Chapter 3

Research Methodology

3.1 Research Design

In order to answer the research questions this dissertation follows the design-science
paradigm (Simon, 1996). Design-science in the field of information systems research is
a problem solving paradigm with the goal to create new and innovative artifacts (Den-
ning, 1997). The goal of this type of research is to create new

”
things that serve human

purposes“ (March/Smith, 1995).

Based on the work from Hevner et al. (2004), Peffers et al. (2007) proposes the design
science process which consists of six steps:

1. Identify problem and motivate In this phase the problem is identified and the
benefits of a solution presented. Furthermore, existing research and solutions for
this problem must be analyzed and presented.

2. Define objectives of the solution Based on the understanding of the problem
the goal(s) of the research is/are derived.

3. Design and development In this phase artifact(s) are designed and developed in
order to fulfill the goals. This is accomplished with support of existing theories and
knowledge.

4. Demonstration The efficacy of the artifact to solve the problem must be demon-
strated. The demonstration could include experimentation, simulation, case studies,
or other appropriate activities.

5. Evaluation The goal of this phase is to evaluate (observe and measure) the results
of the artifacts. For this purpose Hevner et al. (2004) proposes several evaluation
methods. The results of the evaluations decide if the artifacts are able to solve the
problems or if the design, development and the evaluation has to be repeated.

6. Communication In case the usefulness is proven, the artifact and the evaluation
results should be presented to researchers and practitioners.

21

3.2. Research Methods 22

This thesis is based on this process. In Section 1.1 the problem and motivation of the
research is explained. Section 1.2 describes the objectives of this thesis and the research
questions to achieve them. The phases design and development, demonstration and eval-
uation are conducted and described in the publications (Part B of this dissertation) which
also fulfill the requirements to communicate the findings to the relevant audience.

3.2 Research Methods

The used methods controlled experiments and scenarios to evaluate the developed solu-
tions are derived from Hevner et al. (2004) and are enhanced with the research methods
literature review and prototyping. The used methods to evaluate the findings and artifacts
are explained in the following:

Literature Review In the first step of conducting research the design science process
(Peffers et al., 2007) demands a literature review (Webster/Watson, 2002). The literature
review identifies publications that are relevant to understand the problem and the existing
solutions. Based on this knowledge research questions and a research methodology can
be designed. Furthermore, the danger that a solution to the problem already exists is
reduced.

During the work on each publication a literature review is conducted to find related
work and already available solutions. Based on suitable keywords scholarly databases are
searched. The main approaches that are used during the search are forward and backward
searches (Levy/Ellis, 2006). First, the references of the publications that are identified
by the keyword search are further analyzed for relevant references (backward search).
Second, publications are considered that cite the identified publications (forward search).
The relevance of the identified publications was rated based on the titles, keywords, and
abstracts. The used keywords are load testing, load test design, workload specification, per-
formance prediction, performance models, selection of test cases, evolutionary algorithms,
multi-objective optimization and various combinations and modifications.

The most important online scholarly databases that were considered during this thesis
are:

1. Association for Computing Machinery (ACM)3

2. IEEE4

3. Springer5

The main focus of the literature review are publications in the field that are published in
the following workshops, conference, and journals:

3http://dl.acm.org/
4http://ieeexplore.ieee.org/Xplore/home.jsp
5http://www.springer.com/de/

3.3. Publications 23

1. European Performance Engineering Workshop (EPEW)

2. International Conference on Performance Engineering (ICPE)

3. International Conference on the Quality of Software Architecture (QoSA)

4. International Conference on Autonomic Computing (ICAC)

5. International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS)

6. International Journal on Software and Systems Modeling (SoSyM)

7. Journal of Systems and Software (JSS)

8. ACM Transactions on Internet Technology (ACM TOIT)

9. ACM Transactions on Modeling and Performance Evaluation of Computing Systems
(TOMPECS)

10. IEEE Transactions on Software Engineering

11. Business & Information Systems Engineering (BISE)

Prototyping Prototyping is a popular method to create software artifacts in infor-
mation systems development and evaluate them for usefulness (Alavi, 1984). The devel-
opment of software prototypes is a core method during this dissertation. Prototyping is
especially suitable when

”
there is a need for experimentation and learning before commit-

ment of resources to development of a full-scale system“ (Alavi, 1984). Prototypes can
iteratively be evaluated, refined and adjusted in order to reach the research goals.

Controlled Experiments According to Sjoeberg et al. (2005) a controlled experiment
in software engineering is defined as a:

”
randomized experiment or a quasi-experiment

in which individuals or teams (the experimental units) conduct one or more software
engineering tasks for the sake of comparing different populations, processes, methods,
techniques, languages, or tools (the treatments).“ We use these experiments in order to
evaluate in a comparable and reproducible setup. Therefore, we use an industry standard
benchmark or publicly available datasets.

Scenarios In order to demonstrate the applicability of the developed artifacts detailed
scenarios are constructed Hevner et al. (2004). As we explained we use a controlled
experiments setup in a lab environment and not real world applications to guarantee a
comparable and reproducible setup. Thus, we defined different scenarios derived from
real world problems to discuss the applicability and the plausibility of the results.

3.3 Publications

As explained in the introduction, Part B of this dissertation is composed of six publications
of the author (Table 3.1). Further publications that have been coauthored during the
research are given in Table 3.2. Both tables include a publication number, the authors,

3.3. Publications 24

the title and the outlet of each publication. Publications listed in Table 3.1 (P1-P6) are
included in Part B with permission of the corresponding publishers.

In the following a brief summary for each embedded publication is given:

P1 gives answers to the first research question: How can representative workload spec-
ifications for load testing session-based application systems be automatically extracted?.
In P1 the Wessbas approach is introduced. In this paper the challenge is addressed
that workloads which represent the real workload as accurately as possible are difficult
to specify. Thus, an approach for the modeling and automatic extraction of probabilistic
workload specifications for load testing session-based application systems is introduced.

Publications P2 to P5 gives answers to the second research question: How can the extrac-
tion of workload specifications for load testing be integrated with the extraction of workload
specifications for performance models?. P2 introduces the concept of using performance
models and simulation techniques to support load testing. This paper address the chal-
lenges applied to load testing in a large Service-oriented Architecture (SOA) environment.
It proposes to use performance models to select usage scenarios and to predict the number
of resulting requests for newly developed services. With the number of predicted requests
the services provider are able to scale the services before for the load test starts.

The Wessbas approach introduced in P1 is extended in P3 by the capability of trans-
forming Wessbas-DSL instances into workload specifications of architecture-level perfor-
mance models. This paper demonstrates that the Wessbas-DSL can also be used as an
intermediate language between workload specifications for load testing and the generation
of required inputs for performance evaluation approaches.

Publication P4 integrates the work of P1 and P3. It contains considerable extensions of
the Wessbas approach and tooling support (modeling language, extraction, generation)
which allow to (close to) fully automatically extract and generate executable load tests
and model-based performance predictions. Only minor manual refinements are required
for the load test scripts. This was not yet possible with the status of the approach as of
van Hoorn et al. (2014) and Vögele/van Hoorn/Krcmar (2015).

In P5 the limitations of modeling complex workloads using the current PCM usage model
implementation are addressed by extending this meta-model. Furthermore, we integrated
the extended PCM usage model into the Wessbas approach. The Wessbas-DSL in-
stances can also be transformed into the extended PCM usage model.

The third research question (How can performance models be used to select load test
designs fulfilling given performance objectives applying multi-objective optimization tech-
niques?) will be answered in P6. This publication demonstrates that performance models
in combination with evolutionary algorithms can be used to derive workloads that achieve
given performance objectives before load test execution.

3.3. Publications 25

No. Authors Title Outlet

P1 van Hoorn, Vögele,
Schulz, Hasselbring,
Krcmar

Automatic Extraction of Probabilistic
Workload Specifications for Load Test-
ing Session-Based Application Systems

International Confer-
ence on Performance
Evaluation Methodolo-
gies and Tools 2014

P2 Vögele, Brunnert,
Danciu, Tertilt, Krcmar

Using Performance Models to Support
Load Testing in a Large SOA Environ-
ment

International Workshop
on Large-Scale Testing
(LT) 2014

P3 Vögele, van Hoorn,
Krcmar

Automatic Extraction of Session-Based
Workload Specifications for Architec-
ture Level Performance Models

International Workshop
on Large-Scale Testing
(LT) 2015

P4 Vögele, van Hoorn,
Schulz, Hasselbring,
Krcmar

WESSBAS: Extraction of Probabilis-
tic Workload Specifications for Load
Testing and Performance Prediction -
A Model-Driven Approach for Session-
Based Application Systems

International Jour-
nal on Software and
Systems Modeling
(SoSyM) 6 2016

P5 Vögele, Heinrich,
Heilein, van Hoorn,
Krcmar

Modeling Complex User Behavior with
the Palladio Component Model

Symposium on Software
Performance (SOSP)
2015

P6 Vögele, Krcmar Multi-Objective Optimization of Load
Test Designs using Performance Mod-
els

ACM Transactions on
Modeling and Perfor-
mance Evaluation of
Computing Systems
(TOMPECS)

Table 3.1: Publications embedded in this thesis

Additionally to the embedded publications, the author contributes as coauthor to several
further publications related to the topic of this dissertation.

In P7 an approach is presented that translated performance measurements from running
Java EE applications into the architecture level performance models PCM. The approach
is evaluated by applying a prototype of the approach to an industry standard benchmark.
The approach is also used in P3, P5 and P6 to generate the system specific parts of the
performance model.

In P8 and P9 the challenges of applying model-based performance evaluation in industry
are examined. The challenges of integrating model-based performance evaluation methods
into the software development process of an industry project are outlined in P8. Whereby
P9 outlines the challenges of integrating Software Performance Engineering (SPE) and
APM activities to continuously evaluate the performance of enterprise applications.

P10 presents a systematic literature review of papers published in the proceedings of
the International Conference on Performance Engineering (ICPE) and its predecessors
(Danciu et al., 2015). The topics, evaluation methods, and types of systems that are
presented at this conference are analyzed over time and are enriched with geographical
and organizational information.

6Impact factor, 2 years: 0.990, 5 years: 1.497, http://www.sosym.org/, (accessed: 28th May 2017)

3.3. Publications 26

The focus of P11 is to outline existing performance management activities that are com-
mon in development (Dev) and operations (Ops) phases. Furthermore, performance man-
agement activities that enable a tight integration between both phases as well as open
research challenges in this area are outlined.

P12 represents the proceedings of the International Workshop on Large-Scale Testing
(LT) 2015 co-organized by the author that addresses the challenge of large-scale testing7.

Finally, in P13 a scalable simulation service for the Palladio Component Model (PCM)
workbench based on a headless Eclipse instance and a Java EE application server is
introduced. With this simulation service multiple simulation runs can be executed in
parallel. This simulation service is used in P6 to simulate multiple workload candidates
concurrently.

No. Authors Title Outlet

P7 Brunnert, Vögele,
Krcmar

Automatic Performance Model Gener-
ation for Java Enterprise Edition (EE)
Applications

European Workshop on
Performance Engineer-
ing (EPEW) 2013

P8 Brunnert, Danciu,
Vögele, Tertilt, Krcmar

Integrating the Palladio-Bench into the
Software Development Process of a
SOA Project

Symposium on Software
Performance (SOSP)
2013

P9 Brunnert, Vögele,
Danciu, Pfaff, Mayer,
Krcmar

Performance Management Work Business & Information
Systems Engineering8

2014, Wirtschaftsinfor-
matik (WI) 10 2014

P10 Danciu, Kroß, Brunnert,
Willnecker, Vögele,
Kapadia, Krcmar

Landscaping Performance Research at
the ICPE and its Predecessors: A Sys-
tematic Literature Review

International Confer-
ence on Performance
Engineering (ICPE)
2015

P11 Brunnert, van Hoorn,
Willnecker, Danciu,
Hasselbring, Heger,
Herbst, Jamshidi, Jung,
von Kistowski, Koziolek,
Kroß, Spinner, Vögele,
Walter, Wert

Performance-oriented DevOps: A Re-
search Agenda

Technical Report,
SPEC Research Group
– DevOps Performance
Working Group 2015

P12 Jiang, Vögele LT 2016: The Fifths International
Workshop on Large-Scale Testing

International Workshop
on Large-Scale Testing
(LT) 2016

P13 Willnecker, Vögele,
Krcmar

SiaaS: Simulation as a Service Symposium on Software
Performance (SOSP)
2016

Table 3.2: Further publications during the work on this dissertation

7http://lt2016.eecs.yorku.ca/
8Ranked A according to WKWI list (WKWI, 2008)

Part B

Chapter 4

Automatic Extraction of Probabilistic Workload Specifications
for Load Testing Session-Based Application Systems

Authors van Hoorn, André1 (andre.van.hoorn@acm.org)
Vögele, Christian2 (voegele@fortiss.org)
Schulz, Eike3 (esc@informatik.uni-kiel.de)
Hasselbring, Wilhelm3 (wha@informatik.uni-kiel.de)
Krcmar, Helmut4 (krcmar@in.tum.de)
1Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
2fortiss GmbH, Munich, Germany
3Department of Computer Science, Kiel University, Kiel, Germany
4Chair for Information Systems, Technical University of Munich (TUM),

Garching, Germany

Outlet Proceedings of the 8th International Conference on Performance Evaluation

Methodologies and Tools 2014 (VALUETOOLS)

Status Accepted

Individual
Contribution

Problem and scope definition, construction of the conceptual approach, pro-
totype development, experiment design, execution and result analysis, paper

writing, paper editing

Table 4.1: Bibliographic details for P1

Abstract Workload generation is essential to systematically evaluate performance prop-
erties of application systems under controlled conditions, e.g., in load tests or benchmarks.
The definition of workload specifications that represent the real workload as accurately as
possible is one of the biggest challenges in this area. This paper presents our approach for
the modeling and automatic extraction of probabilistic workload specifications for load
testing session-based application systems. The approach, called Wessbas, comprises
(i.) a domain-specific language (DSL) enabling layered modeling of workload specifica-
tions as well as support for (ii.) automatically extracting instances of the DSL from
recorded sessions logs and (iii.) transforming instances of the DSL to workload specifi-
cations of existing load testing tools. During the extraction process, different groups of
customers with similar navigational patterns are identified using clustering techniques.
We developed corresponding tool support including a transformation to probabilistic test
scripts for the Apache JMeter load testing tool. The evaluation of the proposed approach
using the industry standard benchmark SPECjEnterprise2010 demonstrates its applica-
bility and the representativeness of the extracted workloads.

28

4.1. Introduction 29

4.1 Introduction

For essentially any measurement-based software performance evaluation activity—e.g.,
load, stress, and regression testing, or benchmarking—it is necessary to expose the sys-
tem under test (SUT) to synthetic workload (Brunnert et al., 2014; Jain, 1991; Krishna-
murthy/Rolia/Majumdar, 2006; Menascé, 2002), i.e., automatically generating requests to
system-provided services. Workload generation tools—also called workload drivers—are
used to emulate a multitude of concurrent system users based on workload specifications,
ranging from manually defined scenarios over recorded traces to analytical models (Bar-
ford/Crovella, 1998). This paper focuses on analytical model-based workload generation
for session-based systems, i.e., systems that are used by users in time-bounded sessions of
interrelated requests and think times between subsequent requests (Menascé et al., 1999).

Approaches have been proposed for specifying and generating workloads for this type
of systems (e.g., (Krishnamurthy/Rolia/Majumdar, 2006; Menascé, 2002; Menascé et al.,
1999). However, one of the biggest challenges is how to obtain workload specifications
that produce workload characteristics similar to a system’s production usage profile, e.g.,
arrival rates of sessions and requests to system-provided services. Further, the extraction
and specification of workloads strongly depends on the used workload generation tool.
Because of that the workload must be extracted for each tool and specified into a specific
structure.

In response to these challenges, this paper presents our Wessbas9 approach for specifying
and extracting probabilistic workloads for session-based application systems. A domain-
specific language (DSL), called Wessbas-DSL, is introduced which enables the system-
and tool-agnostic modeling of these workload specifications. Recorded session logs from
the systems are used as basis for the automatic extraction of Wessbas-DSL instances.
Different groups of customers showing similar navigational patterns are identified during
the creation of these instances. Wessbas-DSL instances are transformed to workload
specifications for load generation tools. Finally, a transformation to the common load
testing tool Apache JMeter, including the Markov4JMeter extension developed in our
previous work (van Hoorn/Rohr/Hasselbring, 2008), is presented in this paper. Figure 4.1
provides an overview of the Wessbas approach.

To summarize, the contribution of this paper is our Wessbas approach for automatic
extraction of probabilistic workload specifications of session-based application systems,
comprising (i.) a DSL for modeling session-based probabilistic workload specifications,
(ii.) an automatic extraction of DSL instances from recorded sessions logs including the
clustering of navigational patterns, (iii.) transformations from DSL instances to JMeter
Test Plans, and (iv.) tool support for this approach. The tool support serves as an
extensible implementation of the approach, including the DSL, the extraction, as well as
a proof-of-concept transformation from the DSL to JMeter Test Plans. Supplementary
material for this paper, including the developed tools, models, and experimental results,
is publicly available online.10

9WESSBAS is an acronym for Workload Extraction and Specification for Session-Based Application
Systems

10http://markov4jmeter.sf.net/valuetools14/

4.2. Background and Related Work 30

Test+Plan
JMeter

<<conformsTo>>

MonitoringSUT

Transformation

JMeter+API

Markov4JMeter

Behavior
Models

Workload
Intensity

K+Clustering

DSL
WESSBAS-

DSL-Instance
WESSBAS

Behavior
Models

<<uses>>

Behavior+Mix

Session
Log

Extraction

Transformation

Test Plan Generator

WESSBAS-DSL Model Generator

Behavior Model Extractor

Monitoring

<<conformsTo>>

e.g.,+Kieker

Figure 4.1: Overview of the Wessbas approach

4.2 Background and Related Work

The approach described in this paper builds on our previous work on generating proba-
bilistic and intensity-varying workloads (Schulz et al., 2014; van Hoorn/Rohr/Hasselbring,
2008) for session-based systems—particularly the workload modeling formalism that ex-
tends the work by Menascé et al. (1999) and Krishnamurthy/Rolia/Majumdar (2006).
This section introduces the concepts needed for the remainder of this paper, including a
brief discussion of related work.

The workload modeling formalism (Workload Model) comprises two different types of
models, which will be detailed below (van Hoorn/Rohr/Hasselbring, 2008): (i.) an Appli-
cation Model, specifying allowed sequences of service invocations and SUT-specific details
for generating valid requests; and (ii.) a weighted set of Behavior Models, each provid-
ing a probabilistic representation of user sessions in terms of invoked services and think
times among subsequent invocations. Additionally, the Workload Model includes a func-
tion specifying the number of active sessions during the workload generation execution.
We developed a publicly available extension, called Markov4JMeter (van Hoorn/Rohr/

4.3. WESSBAS-DSL 31

Hasselbring, 2008), for the well-known load generator Apache JMeter, allowing to define
and execute these Workload Models.

The Application Model is a two-layered hierarchical finite state machine (FSM), consist-
ing of a Session Layer and a Protocol Layer. Inspired by the work by Krishnamurthy/
Rolia/Majumdar (2006), the Session Layer is a finite state machine, in which states refer
to system-provided services and allowed transitions among these–possibly labeled with
guards and actions. A guard is a boolean expression, defining the condition under which
the related application transition fires. An action is a list of statements to be executed,
in case the related application transition fires. For each Session Layer state, the Protocol
Layer contains an associated FSM, which models the sequence of protocol-level requests
to be executed when the Session Layer state is executed.

A Behavior Model roughly corresponds to the Customer Behavior Model Graphs (CB-
MGs) introduced by Menascé et al. (1999). A Behavior Model BA is defined as a tuple
(S ∪ {$}, P, z0, ftt). S specifies the set of states contained in the Behavior Model with
initial state z0 ∈ S and exit state $. P = [pi,j] is an n × n-matrix of transition proba-
bilities, with n = |S ∪ {$}|. A matrix entry pi,j defines the probability for a transition
from state i to state j. The distribution function ftt specifies the think time associated
with a transition. Think times can, for instance, be modeled by using random values.
The Behavior Mix is a set {(B0, r0), . . . , (Bm−1, rm−1)}, which assigns a relative frequency
ri to the Behavior Model Bi. A tuple (Bi, ri) indicates that sessions that correspond to
the Behavior Model Bi are generated with a relative frequency of ri ∈ [0, 1]. During the
workload generation process to a SUT, the Behavior Mix determines the user type to
be emulated next by selecting the corresponding Behavior Model based on the assigned
relative frequencies.

In the proposed approach, workload specifications representing the measured usage pro-
files of session-based systems are extracted. A similar approach, yet focusing on the afore-
mentioned CBMGs, has been proposed by Menascé (2002) and Menascé et al. (1999). The
authors extract CBMGs from Hypertext Transfer Protocol (HTTP) server logs, including
K-means clustering to identify CMBGs for similar types of users. In contrast, in our work
an advancement of the K-means algorithm, called X-means is applied.

Our approach focuses on the specification of the behavior of users and offers basic support
for modeling workload intensities. An approach focusing on the definition of the workload
intensities can be found in v. Kistowski/Herbst/Kounev (2014). It allows a DSL-based
definition of variable and dynamic load profiles and workload scenarios over time.

4.3 WESSBAS-DSL

The Wessbas domain-specific language (DSL), referred to as Wessbas-DSL, follows
the Markov4JMeter workload modeling formalism (van Hoorn/Rohr/Hasselbring, 2008)
introduced in the previous section and therewith denotes a language for expressing such
models. In our approach, the Wessbas-DSL is used as an intermediate language be-
tween the construction of SUT-specific but tool-agnostic workload models on the one

4.3. WESSBAS-DSL 32

side, and the generation of corresponding inputs to load testing tools on the other side.
The Wessbas-DSL is implemented as an Ecore-based meta-model, using the benefits
and tool support of the widely spread Eclipse Modeling Framework (EMF).11 The meta-
model is enriched with a comprehensive amount of constraints (specified in the common
Object Constraint Language, OCL), for checking the validity of model instances. The
Wessbas-DSL structure offers a high degree of flexibility and extensibility. The remain-
der of this section introduces the core concepts of the Wessbas-DSL. Details are also
provided by Schulz (2014).

As a language for the Markov4JMeter workload modeling formalism, the Wessbas-DSL
includes the essential components of that model, in particular the Application Model, the
(Behavior) Mix of Behavior Models, and the workload intensity, as introduced in Section
4.2. Figure 4.2(a) gives an overview of the Wessbas-DSL class structure.

The representation of the Application Model corresponds to the two-layered structure
of that component, including FSMs for the Session Layer and the Protocol Layer as
well. States of the Session Layer FSM, shortly referred to as Application States, are
associated with services and Protocol Layer FSMs. States of the Protocol Layer FSMs
are associated with protocol-specific requests, which might be of type HTTP, Java, JUnit,
BeanShell, SOAP, etc.; the set of currently supported request types can be extended easily
by deriving additional subclasses from the common base class. Mention should be made
of the difference between properties and parameters of a request: properties correspond
to the information which is required for sending a request, e.g., domain, path, or port
number of a targeted server; parameters denote values to be sent with the request, e.g.,
input data for a web form. Behavior Models are modeled as FSMs, with (Markov) States
being associated with services. Figure 4.2(b) illustrates the class structure of Behavior
Models.

Transitions are labeled with probabilities and think times, whereas think times follow a
certain type. Currently supported think times are of type Gaussian, that is, they underlie
a normal distribution, indicating mean and (standard) deviation values as parameters.
Exit states are modeled explicitly, as they are—in contrast to Markov States—not asso-
ciated with services. Each Behavior Model is associated with a relative frequency, stored
as a double value in a dedicated class. These frequencies are contained in the Behavior
Mix, whose corresponding class denotes a further component of the workload model. Ses-
sion Layer and Protocol Layer FSMs are modeled analogous to Behavior Models, with
transitions being labeled with guards and actions. The formula for the workload intensity
is stored as a string attribute in a dedicated class that also serves as a base class for all
types of workload intensity. This facilitates a simple installation of according formulas,
which might be provided by appropriate tools, e.g., (v. Kistowski/Herbst/Kounev, 2014).

Even though the Wessbas-DSL is independent of specific testing tools, it includes
all core information required for generating workload specifications that build on the
Markov4JMeter workload modeling formalism. In this paper, we exemplify this by gen-
erating JMeter Test Plans through passing Wessbas-DSL models as input to a trans-
formation tool. This will be further discussed in Section 4.5. The implementation of

11http://www.eclipse.org/modeling/emf/

4.3. WESSBAS-DSL 33

WorkloadModel

ApplicationModel

-name0:0EString
-filename0:0EString

BehaviorModelSessionLayerEFSMProtocolLayerEFSM

-name0:0EString

Service

ProtocolState ApplicationState

-value0:0EDouble

RelativeFrequency

BehaviorMix

MarkovState

HTTPRequest

-formula0:0EString

<<abstract>>
WorkloadIntensity

-numberOfSessions0:0EInt

ConstantWorkloadIntensity

-name0:0EString
-value0:0EString

Parameter

-patternToTest0:0EString

Assertion

-key0:0EString
-value0:0EString

Property

<<abstract>>
Request

JavaRequest

JUnitRequest

1

1

1

1

0..L0..L

1

1..L

1

1

1..L

1

1

1

0..L

1

relativeFrequencies

protocol-

behavior-
.H.H.

.H.H.

.H.H. .H.H.

workload- behaviorMix

sessionLayerEFSM

applicationModel

behaviorModel

Details

Intensity

assertions propertiesparameters

service service

request

Models

(a) Wessbas-DSL classes and relationships

-name0:0EString
-filename0:0EString

BehaviorModel

MarkovState

-probability0:0EDouble

Transition <<abstract>>
ThinkTime

-mean0:0EDouble
-deviation0:0EDouble

NormallyDistributedThinkTime<<abstract>>
BehaviorModelState

BehaviorModelExitState

1

1

markov-

1..* 0..*
1

1

1

1

exitState

targetState

thinkTime
outgoing-

initial-
States

State

Transitions

(b) Details on the Behavior Model

Figure 4.2: Overview of the Wessbas-DSL

the Wessbas-DSL as an Ecore meta-model offers the benefits of EMF tools such as
EMF Form Editors or serialization support. In particular, Wessbas-DSL instances can
be viewed, validated, and modified in an editor, before being passed as input to any
transformation process. The EMF Form Editor offers a constraint Live-Validation op-
tion, which facilitates the maintenance of Wessbas-DSL models. The extensibility of
the Wessbas-DSL is given through its class structure: additional types of workload
intensity, requests, or think times can be simply implemented by deriving appropriate
subclasses from the related base classes.

4.4. Extracting WESSBAS-DSL Instances 34

4.4 Extracting WESSBAS-DSL Instances

The extraction of Wessbas-DSL instances is based on so-called session logs obtained
from raw session information, recorded from a running application system. Raw session
information is usually provided by a request log generated by monitoring facilities, com-
prising the associated requests to system-provided services with a session identifier and
timestamps for the request and completion time. A typical example is the HTTP re-
quest log provided by common web servers (Menascé et al., 1999), or tracing information
obtained from application-level monitoring tools (van Hoorn/Waller/Hasselbring, 2012).
The session log groups the requests by the session identifier, giving access to the sequence
and timing information of subsequent service requests within a session. We will not detail
the process of obtaining session logs from request logs any further but refer to existing
works (Menascé et al., 1999) and assume that a session log in the Wessbas format is
available. The remainder of this section details the two-step procedure to obtain a Wess-
bas-DSL instance, comprising the (i.) clustering-based extraction of the Behavior Mix
(Section 4.4.1), and the (ii.) generation of a complete Wessbas-DSL instance from the
Behavior Mix (Section 4.4.2).

4.4.1 Clustering-Based Behavior Mix Extraction

During the transformation of a session log to a Wessbas-DSL instance, the Behavior
Mix is determined by identifying different groups of customers with similar navigational
patterns. As proposed in Menascé et al. (1999), clustering methods can be used to support
this task. The identification of different customer groups has several advantages. First,
the system can be optimized upon these navigational patterns. Further, the impact of
different Behavior Mixes on the performance can be evaluated, e.g., investigating the
performance impact of an increased fraction of heavy buyers. To reduce the complexity
and to increase the comprehensibility of the resulting Behavior Mix, the goal of the
clustering is to obtain a relative small number of clusters.

In this paper, we focus on clustering with the centroid-based X-means algorithm, which is
an advancement of the well-known K-means algorithm (Pelleg et al., 2000). The advantage
of X-means over K-means is, that it is not mandatory to specify the number of clusters K
in advance by the user. The user provides a minimum and a maximum number of resulting
clusters and the algorithm determines how many clusters are best suited. The evaluation
of K-means clustering is very costly as the results of the K-means must repeatedly be
evaluated with different numbers of K (Berkhin, 2006). Further, the X-means algorithm
scales better and the risk of finding local minima is lower. The X-means clustering algo-
rithm is integrated into our proposed approach using the data mining framework Weka
(Hall et al., 2009). Other algorithms can be integrated accordingly.

Input instances for the clustering are absolute Behavior Models, each representing a n×n-
matrix of absolute transition frequencies of one user session. Think times are not part
of the clustering as they have no impact on the navigational patterns. Each matrix is
transformed into a vector, as Weka cannot handle matrices as clustering input. Therefore,

4.4. Extracting WESSBAS-DSL Instances 35

the values of a matrix is transformed into a vector by concatenating the rows of the matrix.
In a first step, a central vector, called centroid, is determined randomly for each cluster.
Each centroid represents a cluster and is the mean of the instances in that cluster. Then,
the clustering algorithm iterates several times over the dataset and assigns instances to
the nearest cluster centroid, until no instance changes the cluster anymore.

The distance between the instances is calculated using the Euclidean distance metric.
During the calculation of a distance, the attributes of the instances can be normalized
to a value between zero and one. Without data normalization, attributes with highest
variance are driving the clustering. That means in our case, that high transition counts
have a high influence on the clustering. In order to figure out the best settings, both the
normalized and the non-normalized Euclidean distance will be evaluated in Section 4.6.3.

Having executed the clustering, each attribute of a centroid represents the mean of the
respective attribute values of all instances within this cluster. As a result, the centroids
represent the absolute Behavior Model of the corresponding cluster. Think times per
cluster centroid are determined by calculating the sum of the think times per transition
of the respective cluster instances. Finally, the resulting Behavior Mix is calculated like
proposed in Menascé et al. (1999). It consists of the (relative) Behavior Models, the mean
think times per transition and the relative frequencies of the Behavior Models.

4.4.2 Generating WESSBAS-DSL Instances

The next task is to transform the extracted Behavior Models and the determined Behavior
Mix to a valid Wessbas-DSL instance, which can be further transformed to any test
script format. Therefore, our dedicated Java-based implementation, namely Wessbas-
DSL Model Generator (Figure 4.1), performs the following three steps: (i.) construction of
an Application Model, based on SUT-specific states and transitions, (ii.) integration of the
determined Behavior Mix including the extracted Behavior Models, and (iii.) integration
of the workload intensity definition.

The construction of an Application Model builds on SUT-specific information, particularly
validness of service execution sequences for the Session Layer FSM and protocol-specific
information for the Protocol Layer FSMs. The range of such information differs as well as
the format it might be provided in; consequently, extensions might be necessary. In our
approach, the Behavior Model Extractor tool (Figure 4.1) outputs a list of all available
services associated with any states of Behavior Models. (Note that SUT-specific Behavior
Models are defined on a common set of services.) A small script converts this list into a
format that can be processed by the Wessbas-DSL Model Generator. This information
can be enriched with transition specifications; currently, our script generates all possible
transitions between services, assuming all sequences of service executions are valid. In
particular, neither transition guards nor actions are considered.

After reading the appropriately-formatted input data, the Wessbas-DSL Model Gener-
ator builds a corresponding Session Layer FSM and assigns Protocol Layer FSMs to the
Markov States. Assuming that a (virtual) user provides valid input only, the structure of

4.5. Generating JMeter Test Plans 36

Table 4.2: Mapping of Wessbas-DSL concepts to (Markov4)JMeter elements

Wessbas-DSL Markov4JMeter Elements

Session Layer FSM Markov States (+ outgoing transitions)
Protocol Layer FSMs JMeter Elements (Markov State children)
Workload Intensity MSC (Session Arrival Controller)
Behavior Mix MSC (frequency table)

Behavior Models MSC (frequency table) → CSV-files

MSC = Markov Session Controller

our Protocol Layer FSMs remains trivial with exactly one Protocol State per FSM, indi-
cating exactly one request being sent in a Markov State. A DSL that allows the definition
of more complex, protocol-specific FSMs, e.g., failed user logins, denotes a future work
issue.

The integration of Behavior Mix and Behavior Models includes the construction of cor-
responding Wessbas-DSL fragments. As the Application Layer includes all available
services, corresponding Behavior Models can be derived, to be equipped with probabili-
ties and think times provided by the extracted Behavior Models. Finally, the workload
intensity is read as a formula string from a properties file, to be included into the resulting
model. For further processing, the resulting Wessbas-DSL model is serialized to an XMI
file, using dedicated Ecore techniques. That file can be loaded into an EMF Form Editor
to be validated and analyzed, before being passed to the next transformation module.

4.5 Generating JMeter Test Plans

The final task of the extraction process is to transform a given Wessbas-DSL instance
into a corresponding JMeter Test Plan. Our Java-based implementation, namely Test
Plan Generator (Figure 4.1), reads a serialized Wessbas-DSL instance from file and
constructs a further XMI structure, which can be processed by the JMeter tool. The XMI
output is generated via the JMeter API and denotes a JMeter-typical tree structure of Test
Plan elements, including Markov4JMeter-specific elements, namely Markov States and
Markov Session Controller, that are provided by the Markov4JMeter add-on for JMeter.
The core transformation process builds on a mapping between Wessbas-DSL concepts
and (Markov4)JMeter Test Plan elements. An overview of the underlying mappings is
given in Table 4.2.

A Session Layer FSM in the Wessbas-DSL is mapped to a corresponding set of Markov
States in JMeter. Each Markov State includes its individual set of outgoing transitions
with guards and actions, for defining the validity of state execution sequences. The name
of a Markov State in the resulting JMeter Test Plan corresponds to the name of the state’s
associated service in the Wessbas-DSL instance. Protocol Layer FSMs are modeled as
child elements of Markov States in the tree-structured result. They are constructed with
the use of JMeter controllers and samplers as well, according to their related Wessbas-
DSL structure. The workload intensity is stored as a formula string in the Session
Arrival Controller sub-component of a Test Plan’s (unique) Markov Session Controller.
That controller additionally includes a table for Behavior Mix frequencies, to be filled

4.6. Evaluation 37

with according values of the input Wessbas-DSL instance. Behavior Models are stored
separately—indicated by a separation line in Table 4.2—in CSV-files, which are referred
by the frequency table of the Markov Session Controller.

Besides the Test Plan elements that result from the core transformation process for a
given Wessbas-DSL instance, several JMeter elements are added to a generated Test
Plan by default. This step is required for making a Test Plan’s structure accessible
for the JMeter tool and providing additional functionality, such as handling of HTTP
session cookies. Currently, the Test Plan structure is predefined, targeting HTTP-based
tests only; an appropriate mechanism for specifying alternative structures, particularly
for different types of requests, denotes a future work issue.

4.6 Evaluation

In this evaluation, we apply our proposed extraction approach and tooling to the industry-
standard benchmark SPECjEnterprise2010. This serves as an investigation of (i.) the
practicality of the approach and tooling support and (ii.) the representativeness of the
extracted workload specifications. With respect to (ii.) we particularly investigate the
following two research questions: (RQ 1) How accurately do the clustering results match
the input Behavior Mix? and (RQ 2) What is the impact of the clustering results on the
workload characteristics? Section 4.6.1 describes the experimental setting. The SPEC-
jEnterprise2010 deployment is explained in Section 4.6.2. The results for RQ 1 and RQ 2
are detailed in Sections 4.6.3 and 4.6.4.

4.6.1 Evaluation Methodology

An instrumented version of SPECjEnterprise201012 is executed with three different Be-
havior Mixes to obtain a session log, from which instances of the Wessbas-DSL are
extracted and transformed into JMeter Test Plans. For the Behavior Model extraction
we applied different configurations of the X-means clustering. A basic Application Model
is automatically generated from the obtained Behavior Models. Its Session Layer com-
prises the superset of all states from the Behavior Models, assuming that all transitions
between all states are allowed (no guards and actions). The Protocol Layer comprises a
mockup HTTP request per state. The transformation from the instances to JMeter Test
Plans is performed according to Section 4.4. In order to measure the characteristics of ex-
tracted workload models, we developed a web application that is instrumented according
to the SPECjEnterprise2010. Hence, the same session log analysis infrastructure can be
applied to both the session information obtained from the SPECjEnterprise2010 runs and
the JMeter runs for the synthetic workloads of the extracted workload specifications. The
reason why we do not execute the extracted workload against the SPECjEnterprise2010
is that currently input parameters for the workload are not extracted automatically.

12SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

4.6. Evaluation 38

login

view
items

add to
cart

shopping
-cart

clear cart

remove

defer
order

purchase
cart

home

logout

0.67

0.11

0.120.10

0.66

0.34
0.61

0.18 0.21

login

inventory

cancel
order

sell
inventory

home

logout

0.48

0.02

0.5

0.23

0.77

login

view
items

home

logout

0.93

0.07

purchasemanagebrowse

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.0

Figure 4.3: SPECjEnterprise2010 transactions as Behavior Models

The accuracy of the clustering (RQ 1) is evaluated based on the fraction of misclassified
sessions over all classifications of the clustering for a benchmark run. The impact of the
clustering on the workload characteristics (RQ 2) is evaluated based on (i.) two session-
based metrics, session length as number of requests per sessions and number of distinct
session types, as well as (ii.) a request-based metric, namely the relative invocation fre-
quency of all request types. Note that due to the nature of the SPECjEnterprise2010
workload we do not consider timing-related metrics such as think times or arrival rates,
even though they are correctly extracted and executed by our approach. Conclusions
about the arrival rates of requests can be drawn by looking at the invocation frequencies
of requests.

4.6.2 SPECjEnterprise2010 Deployment

SPECjEnterprise2010 is a Java EE application representing a business case that combines
Customer Relationship Management (CRM), Supply Chain Management (SCM), and
manufacturing. It includes a workload specification and a dataset needed for the execution
of load tests. The workload is generated by the Faban Harness and Benchmark Driver.13

The benchmark consists of three different application domains, namely Orders domain
(CRM), Manufacturing domain, and Supplier domain (SCM). In this work we consider
only the Orders domain, which represents a typical web-based application that provides e-
commerce functionality to the customers—in this case automobile dealers. The customers
are able to purchase and sell cars, to manage their accounts and dealership inventory, and
to browse the catalogue of cars. The Orders domain represents the SUT.

13http://java.net/projects/faban/

4.6. Evaluation 39

4.6.2.1 Workload Description

SPECjEnterprise2010 defines three different transaction types which are executed by au-
tomobile dealers: Browse (B), Manage (M), and Purchase (P). Within Browse, the bench-
mark driver navigates to the catalogue of available cars and browses the catalogue for a
constant number of times. Manage describes a scenario where open orders are canceled
and vehicles are sold. In the more complex transaction type Purchase, orders are placed
and immediately purchased or deferred. The shopping cart is either cleared or items
are removed one by one until only one item remains. Each of these transaction types
is a sequence of HTTP requests. In total, 13 different HTTP request types are defined.
Within the transactions, no think times are defined, i.e., each HTTP action is executed
directly after its previous request has been completed. Therefore, the evaluation of think
times extraction is out of scope for this paper. Figure 4.3 depicts the structure of the
three transaction types as Behavior Models obtained by applying our Wessbas extraction
approach.

In the original benchmark workload, automobile dealers log in to the system, execute
multiple instances of the three transactions types, and log out. Each of the three trans-
action types is executed with a specified probability. The standard transaction mix is
50% Browse, 25% Manage, and 25% Purchase. We modified the dealer driver such that
each transaction starts with a login and ends with a logout. This way each transaction
corresponds to a unique session, and the transaction mix corresponds to the Behavior
Mix.

4.6.2.2 Benchmark Execution and Monitoring

Three different transaction mixes are used to evaluate the proposed approach. For each
mix, one of the transaction types is executed with a probability of 50% and the other two
with 25% each. A load of 800 concurrent users is executed, resulting in a moderate Central
Processing Unit (CPU) utilization of the SUT of approximately 40%. Each benchmark
run is executed for ten minutes after a four minute ramp-up phase and before a four
minute ramp-down phase.

Table 4.3: Clustering Results

X-means (min 3 cluster, max 3 cluster) X-means (min 2 cluster, max 20 cluster)

ED NED ED NED

TM T C1 C2 C3 MC C1 C2 C3 MC C1 C2 MC C1 C2 C3 C4 MC N

50 B 0 0 31,060

2.91%

0 31,060 0

0%

0 31,060

24.62%

0 0 0 31,060

1.03% 61,50025 M 15,298 0 0 15,298 0 0 15,298 0 632 14,666 0 0

25 P 1,789 13,353 0 0 0 15,142 15,142 0 0 0 15,142 0

25 B 15,091 0 0

15.98%

15,091 0 0

0%

0 15,091

24.96%

0 15,091 0 0

15.30% 60,08925 M 0 0 15,000 0 15,000 0 15,000 0 0 0 707 14,293

50 P 0 20,397 9,601 0 0 29,998 29,998 0 21,513 8,485 0 0

25 B 0 15,231 0

2.99%

15,231 0 0

0%

0 15,231

25.16%

0 0 0 15,231

1.86% 61,11850 M 30,510 0 0 0 30,510 0 30,510 0 29,375 1,135 0 0

25 P 1,824 0 13,553 0 0 15,377 15,377 0 0 0 15,377 0

4.6. Evaluation 40

In order to obtain the raw session information, the SUT was instrumented using Kieker
(van Hoorn/Waller/Hasselbring, 2012). For each request the requested URL, the query
string, the session ID, and the server-side entry and exit timestamp are recorded. After-
wards, the raw log data is transformed to a session log. During the transformation, the
sessions within the ramp-up and ramp-down phase are not taken into account. In order
to be able to evaluate the clustering results of the transaction types, the name of the
transaction type is added as additional parameter to the login HTTP action.

4.6.3 Accuracy of Clustering

The evaluation of clustering accuracy (RQ 1) is split into two steps. In the first step,
the accuracy of the clustering is determined based on the assumption that the number of
resulting clusters is known in advance. For this reason, the number of resulting clusters
is fixed to three. As the number of clusters is usually not known in advance, we let the
X-means algorithm determine the number of clusters in a second step. As the seed value
for the random selection of the initial centroids can have a high impact on the clustering
results, multiple clustering runs with different seed values between one and twelve are
executed. Afterwards, the run with the lowest sum of squared error value (Pelleg et al.,
2000) is selected.

The results of the clustering are presented in Table 4.3. For each Transaction Mix (TM),
the clustering shows for each Transaction Type (T) the cluster (Cx) where a transaction
is assigned to, and the Percentage of Misclassified (MC) transactions. The left side shows
the results of exactly three predefined clusters (step one); the right side shows the results
letting X-means determine the number of clusters between two and twenty (step 2). The
number of transactions (N) clustered for each transaction mix is around 61, 000.

The results using exactly three clusters indicate that the clustering using Normalized
Euclidean Distance (NED) is able to cluster all transactions correctly (100%) resulting in
the Behavior Models shown in Figure 4.3. The clustering using Euclidean Distance (ED)
without normalization classifies the transactions Browse and Manage correctly, whereas a
fraction of transactions of type Purchase is assigned mistakenly to the same cluster as the
Manage transactions. In the second transaction mix, the fraction of Purchase transactions
is higher than in the other mixes. Hence, the percentage of misclassified transactions is
with 15.98% relatively high.

The clustering without predefining the correct number of clusters, results in two clusters
using ED and four clusters using NED. As clustering with ED always merges transactions
of type Purchase and Manage, the percentage of misclassified transactions is around 25%
for all mixes. It is assumed that the transaction type with the lower number of instances
merged within one cluster count as missclassified. The clustering using NED always
correctly classifies Browse transactions. Manage transactions are always split into two
clusters whereas Purchase is only split into two clusters in the second transaction mix.
Hence, the percentage of misclassified transactions is again relatively high (15.3%) in the
second transaction mix.

4.6. Evaluation 41

Transactions of type Browse seem to be homogeneous in a way that they were clustered
correctly among all clustering runs. This can be explained as Browse transactions are
executed with a constant number of actions without probabilistic behavior. NED is better
suited to cluster the different transaction types than the non-normalized version. The
normalization has the effect that high transaction counts and therefore also the length of
the sessions has a lower impact on the clustering. Thus, the structure of the transactions
in terms of the number of different HTTP requests grows in significance. As each of the
three transaction types consist of different HTTP request types (except for login, home
and logout), the clustering results are significantly better.

4.6.4 Accuracy of Workload Characteristics

To evaluate the accuracy of the extracted workload specifications (RQ 2), we compare
the server-side session-based and request-based metrics mentioned in Section 4.6.1 for the
original measurements with the corresponding metrics obtained by executing extracted
workload specifications using JMeter. Due to space limitations, we present only the results
of the original benchmark Behavior Mix (25% P, 50% B, and 25% M), using the X-means
clustering algorithms results with 2 (ED), 3 (NED), and 4 (NED) clusters (entries for the
bottom TM in Table 4.3). The original workload includes 61, 500 sessions and 847, 927
HTTP requests. These numbers served as an approximate stopping criteria during the
execution of the synthetic workload with JMeter (cf. Figure 4.4(b) and Figure 4.5(b)).

0 50 100 150

O
rig

.
E

D
−

2
N

E
D

−
3

N
E

D
−

4

●

●

●

●

Session length

(a) Violin plot (combination of box and density plot)

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Orig. 4 10 17 14.23 [14.19,14.26] 17 26 61,500
ED-2 4 7 10 14.24 [14.15,14.33] 18 147 60,957
NED-3 4 7 10 14.24 [14.15,14.33] 18 130 62,054
NED-4 4 7 10 14.26 [14.17,14.35] 18 166 59,971

(b) Summary statistics

Figure 4.4: Session length statistics for the original workload (Orig.) and the synthetic
workloads (ED-2, NED-3, NED-4)

4.6. Evaluation 42

4.6.4.1 Session Length and Distinct Sessions

Statistics about the session length distributions of the original and the three synthetic
workloads are listed in Figure 4.4. Looking only at the mean values and the 0.95 confidence
interval (Figure 4.4(b)), one may conclude that the session length distributions of the three
synthetic workloads exactly match the distribution of the original workload. However,
particularly the violin plot (Figure 4.4(a)) indicates that the synthetic distributions are
similar but differ considerably from the original workload. The quartile-based statistics
in Table 4.4(b) confirm this observation.

It can be observed that for the synthetic workloads, very long sessions are generated.
While for the original workload the longest sessions comprise 26 requests, the synthetic
sessions reach maximums of 147, 130, and 166. Looking at the individual session lengths,
11% of the synthetic sessions are longer than the longest sessions of the original workload.

In the original workload, we identified 78 distinct sessions. The number of distinct sessions
in the synthetic workloads is considerably higher, namely 2, 126 (2 clusters), 2, 144 (3 clus-
ters), 1, 996 (4 clusters). The relatively low number of distinct session types is caused by
the fact that the original SPECjEnterprise2010 workload contains only few probabilistic
elements, which are all bounded in the number of maximum iterations. Hence, the maxi-
mum number of possible distinct sessions is countable. After having described the session
length distributions of the synthetic workloads, the high number of distinct sessions is not
surprising. Inspecting the structure of the synthetic sessions, we observed the following
recurring patterns: (i.) sell inventory+, (ii.) inventory+, (iii.) view items+, (iv.) (view
items, add to cart)+, (v.) (view items, add to cart, shopping cart, clear cart)+. These
patterns can be explained by the corresponding transitions with high probabilities already
indicated by the probabilities of the original workload depicted in Figure 4.3.

Considering the setting for SPECjEnterprise2010, the following conclusions can be drawn
about the impact of the clustering results on the session-based metrics session length
and number of distinct session types. No statistically significant differences between the
synthetic workloads for 2, 3, and 4 clusters can be observed. Both the session length
distributions and the number of distinct sessions deviate from the characteristics of the
original workload. The deviation of the session length distributions is mainly caused by
a number of synthetic long sessions. The mean value shows no statistically significant
difference.

4.6.4.2 Request Counts

Figure 4.5 depicts statistics about the frequency of invoked requests. Based on the abso-
lute numbers of requests to the 13 SPECjEnterprise2010 request types. We computed the
relative frequencies for the original workload and the three synthetic workloads. An exact
match of the relative frequencies could be observed. That is, the deviation, e.g., in form
of the sum of squared errors, is zero. Hence, from the server-perspective, the synthetic
workloads provide representative workloads in terms of the distributions of requests. A
barplot, which looks the same for each of the four workloads, is shown in Figure 4.5(a).

4.7. Conclusion and Future Work 43

home

remove

defer order

view items

clear cart

cancel order

shopping cart

add to cart

logout

inventory

login

sell inventory

purchase cart

0.0 0.1 0.2 0.3 0.4 0.5

(a) Relative counts (common to all workloads)

Request Orig. ED-2 NED-3 NED-4 Rel.

1 add to cart 63,761 63,316 64,250 61,838 0.07
2 cancel order 632 607 634 591 0.00
3 clear cart 6,047 5,941 6,140 5,843 0.01
4 defer order 6,782 6,799 6,863 6,651 0.01
5 home 59,934 60,957 62,054 59,971 0.07
6 inventory 30,596 30,212 31,378 29,808 0.03
7 login 61,500 60,957 62,054 59,971 0.07
8 logout 59,934 60,957 62,054 59,971 0.07
9 purchase cart 8,360 8,328 8,351 8,139 0.01

10 remove 3,027 2,993 3,044 3,064 0.00
11 sell inventory 66,679 65,413 67,691 64,794 0.08
12 shopping cart 9,074 8,934 9,184 8,907 0.01
13 view items 498,601 492,675 499,983 485,611 0.57∑

874,927 868,089 883,680 855,159 1.00
(b) Absolute and relative counts

Figure 4.5: Request count statistics

4.7 Conclusion and Future Work

In this paper, we presented our Wessbas approach for the systematic extraction and spec-
ification of probabilistic workloads for session-based systems including a transformation
to the load testing tool Apache JMeter. To address the challenge of specifying workloads
for different workload tools, we first introduced a domain-specific language that describes
the structure of a workload in a generalized way. Additionally, we demonstrated how
groups of customers with similar behavioral patterns can be identified using clustering
algorithms. Finally, the evaluation with the standard industry benchmark SPECjEnter-
prise2010 demonstrated the practicality and high accuracy of the proposed approach.

4.7. Conclusion and Future Work 44

As future work, we plan to further automate the generation of Application Models, in-
cluding Protocol Layer and test data, as well as automatic learning of guards and actions
(Shams/Krishnamurthy/Far, 2006). We want to extend the set of supported logging for-
mats and load testing tools. The measurement-based approach will be combined with
model-based performance evaluation approaches (Vögele et al., 2014) by generating work-
load specifications of performance models from Wessbas-DSL instances. Moreover, the
evaluation of other clustering algorithms and the integration of approaches for the gener-
ation of varying workload intensities (v. Kistowski/Herbst/Kounev (2014)) will be inves-
tigated.

Chapter 5

Using Performance Models to Support Load Testing in a Large
SOA Environment

Authors Vögele, Christian1 (voegele@fortiss.org)
Brunnert, Andreas1 (brunnert@fortiss.org)
Danciu, Alexandru1 (danciu@fortiss.org)
Tertilt, Daniel1 (tertilt@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)
1fortiss GmbH, Munich, Germany
2Chair for Information Systems, Technical University of Munich (TUM),

Garching, Germany

Outlet International Workshop on Large Scale Testing 2014 (LT 2014)

Status Accepted

Individual
Contribution

Problem and scope definition, construction of the conceptual approach, pro-

totype development, paper writing, paper editing

Table 5.1: Bibliographic details for P2

Abstract Load testing in large SOA environments is especially challenging when services
are under the control of different teams. It gets even more difficult if the capacity of
services, which are part of a load test, need to be scaled before the test starts. It is
thus important to know which service operations will be called and how many requests
arrive at each service while executing a load test. We propose the use of performance
models to derive this information for SOA-based applications before executing load tests.
Additionally, we use these models to select usage scenarios on which load test scripts can
be based. To evaluate the service workload of the selected usage scenarios, these models
are transformed in a way that each scenario can be simulated separately from each other.
Predictions based on these transformed models allow to gather the required information
about the service call frequency.

45

5.1. Introduction 46

5.1 Introduction

This paper describes an approach to support load testing in a large service-oriented ar-
chitecture (SOA) environment using performance models. The approach is developed and
applied in an ongoing project that transforms an IT landscape to a SOA14. The SOA
paradigm describes how loosely coupled software components offer services in a distributed
environment (Liu/Gorton/Zhu, 2007). SOA enables the integration of legacy applications
and aims at increasing the flexibility of enterprise IT environments. However, the trans-
formation into a SOA is associated with technical challenges. One of the key challenges is
to ensure that given performance requirements (i.e. response times for a given workload)
are met by enterprise applications in such an environment. Applications that need to be
integrated into a SOA are often not designed for this type of interaction. New access
patterns and additional software layers lead to different performance characteristics.

Especially for enterprise applications that extensively reuse existing services, it is impor-
tant to evaluate the performance before they are rolled out to a production environment
(Liu/Gorton/Zhu, 2007). Planning and executing load tests to evaluate their performance
is a cumbersome task. Often several teams are involved in this process and the services
provided by these teams are not yet in production. The IT environment in our project
context comprises more than twenty complex information systems maintained by several
teams in the organization. These information systems provide more than seventy different
services in the SOA environment. It is thus required to not only estimate the workload
for the enterprise applications but also for the services used during a test. Estimating
this information is necessary so that a test environment can be set up correctly for the
expected load. Otherwise, the performance evaluation results might be interesting for
the service providers but not for the enterprise application consuming these services. We
propose an approach to support these tasks using performance models.

The applications we are evaluating are used by 10,000 users in a pilot phase whereas
100,000 users are expected once they are in production. These applications are devel-
oped using a model-driven development approach and are modeled as Unified Modeling
Language (UML) activity diagrams. These diagrams contain the application control flow
including information about which service operations are called. Additionally, data about
the expected user behavior represented as user think times and call probabilities is in-
tegrated into the UML activity diagrams. This information is collected by interviewing
domain experts.

In the next section, we describe how performance models derived from these UML activity
diagrams can be used to support load testing. First, we explain how usage scenarios are
extracted from performance models. These usage scenarios build the foundation for the
creation of load test scripts. Afterwards, we describe how performance model predictions
help to estimate the service workloads for selected usage scenarios.

14Project details can be found in our previous work (Brunnert et al., 2013)

5.2. Using Performance Models to Support Load Testing 47

5.2 Using Performance Models to Support Load Testing

In order to reduce the modeling effort, UML activity diagrams are automatically trans-
formed into performance models. The PCM (Becker/Koziolek/Reussner, 2009) is used as
meta-model for the performance models. The PCM modeling notation is closely aligned
with the UML notation and is thus easily comprehensible for technical staff in an organi-
zation. A detailed description of the transformation process from UML activity diagrams
to PCM models can be found in Brunnert et al. (2013). The next section describes
how usage scenarios which serve as basis for load test scripts can be extracted from the
performance models.

5.2.1 Extracting Usage Scenarios

A usage scenario is defined as a path from a specified start element to one of the specified
end elements of a PCM model. Parameterizable control flow elements like probabilis-
tic branches and loops describe the sequence of the modeled user actions within these
paths and represent the information collected from the domain experts (Becker/Koziolek/
Reussner, 2009).

To detect all possible scenarios, the generated PCM models are traversed recursively using
a depth-first search. While traversing the PCM models, the call probability for each
scenario is calculated by multiplying the probabilities of all branch transitions within a
specific path. User defined thresholds for the minimum likelihood of execution and the
minimum (and/or maximum) number of user actions within a scenario can be defined.
These thresholds help to avoid that too many scenarios are extracted and that endless
loops occur.

The result of the depth-first search is a set of usage scenarios including their probability
of being called. Additionally, the number of user actions and the services (and their op-
erations) called during a usage scenario is provided as a result. Based on this information
test experts can select a set of scenarios for the load test which match their test goals.
Afterwards, load test scripts for each of these scenarios are created manually.

5.2.2 Transforming Performance Models

The PCM models generated based on the UML activity diagrams are modeled in a way
that all usage scenarios are represented by one graph. Thus, it is not possible to eval-
uate only selected usage scenarios as they are not modeled separately from each other.
Therefore, we transform the PCM models again. The PCM models resulting from this
transformation represent the usage scenarios independently from each other. Thus, single
usage scenarios can be excluded or included for the following analysis phase by adjusting
their probabilities manually. To exclude single usage scenarios their call probability can
be set to zero. The probability of the remaining usage scenarios must then be extrapolated
to one.

5.3. Conclusion and Future Work 48

Additionally, the PCM models are enhanced with information about worst case response
times for specific services and their operations as specified in service level agreements. Us-
ing these transformed models as input for a simulation engine allows to derive predictions
for selected usage scenarios and given workloads.

5.2.3 Analyzing Prediction Results

The prediction results show how many requests arrive on each service operation for a
given workload. Additionally, the expected throughput for the given usage scenarios can
be derived from these results. The simulation time should be chosen according to the
planned execution time of the load tests to simplify the analysis.

The number of simulated users can be varied to assess the impact of different user counts.
This is especially important if services involved in a load test need to be scaled in an
integration or pre-production environment before a test starts. Therefore, the prediction
results should be communicated to each service development team. These teams can then
ensure that given service level agreements can be met for the expected workload on the
service.

5.3 Conclusion and Future Work

As shown in this paper, predictions based on performance models can greatly benefit load
test planning and execution in a SOA project. Future work for the proposed approach
includes automatic load test script generation for selected usage scenarios. Additionally,
we investigate the use of machine learning to prioritize usage scenarios based on the
test goals automatically, e.g. using scenarios that are most likely, that include the most
service calls or which lead to the highest resource utilization. Capacity planning using
performance models enhanced with resource demand information as shown in Brunnert/
Vögele/Krcmar (2013) is another area to pursue in the future.

Chapter 6

Automatic Extraction of Session-Based Workload Specifications
for Architecture Level Performance Models

Authors Vögele, Christian1 (voegele@fortiss.org)
van Hoorn, André2 (andre.van.hoorn@acm.org)
Krcmar, Helmut3 (krcmar@in.tum.de)
1fortiss GmbH, Munich, Germany
2Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
3Chair for Information Systems, Technical University of Munich (TUM),

Garching, Germany

Outlet International Workshop on Large Scale Testing 2015 (LT 2015)

Status Accepted

Individual
Contribution

Problem and scope definition, construction of the conceptual approach, pro-
totype development, experiment design, execution and result analysis, paper

writing, paper editing

Table 6.1: Bibliographic details for P3

Abstract Workload specifications are required in order to accurately evaluate perfor-
mance properties of session-based application systems. These properties can be evaluated
using measurement-based approaches such as load tests and model-based approaches,
e.g., based on architecture-level performance models. Workload specifications for both
approaches are created separately from each other which may result in different workload
characteristics. To overcome this challenge, this paper extends our existing Wessbas
approach which defines a domain-specific language (Wessbas-DSL) enabling the layered
modeling and automatic extraction of workload specifications, as well as the transfor-
mation into load test scripts. In this paper, we extend Wessbas by the capability of
transforming Wessbas-DSL instances into workload specifications of architecture-level
performance models. The transformation demonstrates that the Wessbas-DSL can be
used as an intermediate language between system-specific workload specifications on the
one side and the generation of required inputs for performance evaluation approaches
on the other side. The evaluation using the standard industry benchmark SPECjEn-
terprise2010 shows that workload characteristics of the simulated workload match the
measured workload with high accuracy.

49

6.1. Introduction 50

6.1 Introduction

In order to validate whether non-functional performance requirements like given response
times of application systems can be met, measurement- and model-based performance
evaluation approaches are applied (Woodside/Franks/Petriu, 2007). Workload specifi-
cations are required for both approaches. Workload specifications serve as input for
measurement-based approaches in order to generate synthetic workload to the system un-
der test (SUT), i.e., executing a set of consecutive and related customer requests within
a session (Krishnamurthy/Rolia/Majumdar, 2006; Menascé et al., 1999). Additionally,
these specifications are taken into account in formalisms for model-based approaches to
predict performance properties early in the software development cycle (Becker/Koziolek/
Reussner, 2009; Koziolek, 2010; Woodside/Franks/Petriu, 2007).

To ensure that the measured and predicted performance characteristics of the SUT are
similar, corresponding workload specifications must be used. However, there is a lack
of approaches enabling the common automatic extraction and specification of workloads
for both approaches. The extraction and specification of workloads is done separately
for each approach and each tool. This results in additional specification and maintenance
effort. The reasons for this are, that these approaches are not integrated and that workload
specifications are defined on different levels of detail. Measurement-based approaches need
detailed system-specific information like protocol data, whereas model-based approaches
are specified on a more abstract level.

In response to these challenges, this paper extends our Wessbas approach15 (van Hoorn/
Rohr/Hasselbring, 2008; van Hoorn et al., 2014), originally developed to automatically ex-
tract probabilistic workload specifications for load testing session-based application sys-
tems. So far, Wessbas comprises a (i) domain-specific language (Wessbas-DSL), in-
tended to be a system- and tool agnostic intermediate modeling language for workload
specifications, and (ii) a transformation to load test scripts. The contribution of this pa-
per is the extension of the Wessbas approach for model-based performance evaluation.
Therefore, we propose a transformation of the Wessbas-DSL into workload specifications
of the PCM (Becker/Koziolek/Reussner, 2009), representing an architecture-level perfor-
mance modeling language. Along with the existing Wessbas-DSL extraction, this trans-
formation can be exploited by model-based approaches. We focus on architecture-level
performance models as they allow to model system architecture, execution environment,
and workload specification separately from each other (Brosig/Huber/Kounev, 2011). We
evaluate the approach using the SPECjEnterprise2010 benchmark. The developed tools,
models, and results of this paper are publicly available online.16

15Wessbas is an acronym for Workload Extraction and Specification for Session-Based Application
Systems

16http://markov4jmeter.sf.net/lt15

6.2. Related Work 51

6.2 Related Work

In order to automate the extraction of workload specifications for session-based appli-
cations systems, several measurement-based approaches (Arlitt/Krishnamurthy/Rolia,
2001; Barford/Crovella, 1998; Menascé et al., 1999) were introduced. These approaches
generate workload specifications in tool-specific formats which are not envisaged for
model-based approaches.

To evaluate performance properties with architecture-level performance models several
approaches were introduced enabling the automatic generation of these models (Brosig/
Huber/Kounev, 2011; Brunnert/Vögele/Krcmar, 2013). These approaches focus on the
automatic extraction of the system-specific details of the SUT, like the system com-
ponents, the relationship between the components, the component allocations, and the
resource demands. However, the workload specifications must still be modeled manually,
which requires a lot of effort for the performance expert.

To reduce the complexity of generating different kinds of analytical performance mod-
els from architecture-level performance models several intermediate languages such as
PUMA (Woodside et al., 2005) or Klaper (Ciancone et al., 2011) were introduced. These
approaches only focus on model-based performance evaluations and do not support the
definition of workload specifications for session-based software systems.

6.3 Transforming WESSBAS-DSL Instances into PCM

Before describing the transformation from Wessbas-DSL instances into PCM workload
specifications (Section 6.3.3), we introduce the required concepts of the Wessbas ap-
proach (Section 6.3.1) and PCM (Section 6.3.2).

6.3.1 Wessbas Approach

The Wessbas approach, depicted in Figure 6.1, introduces a (i) domain-specific lan-
guage (DSL) for layered modeling of workload specifications, (ii) an automatic extraction
of Wessbas-DSL instances from session logs, and (iii) a transformation from these in-
stances into load test scripts (van Hoorn et al., 2014). The performance model generation
process, which is the contribution of this paper, is detailed in Section 6.3.3. The Wessbas-
DSL represents a modeling language for workload specifications of session-based systems.
The specification is based on our previous work on the definition and extraction of prob-
abilistic workload specifications (van Hoorn/Rohr/Hasselbring, 2008; van Hoorn et al.,
2014) for session-based systems. It describes a formalism of workload specifications based
on Menascé et al. (1999) and Krishnamurthy/Rolia/Majumdar (2006). The advantage of
using this DSL is that it defines the structure of valid workload specifications for session-
based systems.

6.3. Transforming WESSBAS-DSL Instances into PCM 52

SUT

Session
logs

WESSBAS
DSL-Instance

JMeter Test
Plan

WESSBAS-
DSL

<<conformsTo>>

Monitoring Performance Model
Generator

Test Plan Generator
WESSBAS-DSL Model
Generator

Monitoring

<<conformsTo>>

PCM Meta-
Model

<<conformsTo>>

PCM (Workload
Specification)

PCM (System
Specification)

Behavior
Model(s)

Workload
Intensity

Behavior
Mix

Behavior Model
Extractor

Extraction

Transformation

Transformation

Transformation

Extraction

JMeter API

Markov4JMeter

Figure 6.1: Overview of Wessbas approach and its extension (bold rectangle), adapted
from van Hoorn et al. (2014)

The Wessbas-DSL enables the modeling of all aspects of a workload model for session-
based systems: Workload Intensity, Application Model, Behavior Models, and Behavior
Mix (van Hoorn/Rohr/Hasselbring, 2008; van Hoorn et al., 2014). The Workload Inten-
sity defines the arrival rates of new sessions as a function over time. The Application
Model includes a Session Layer and a Protocol Layer. The Session Layer specifies the al-
lowed sequences of service invocations and SUT-specific details to generate valid requests
as Extended Finite State Machine (EFSM). The Protocol Layer models the sequence of
protocol-level requests to be executed on the real system. Behavior Models are a proba-
bilistic representation of user sessions in terms of invoked services, associated with Markov
States. Transitions between Markov States are labeled with think times and call proba-
bilities. The Behavior Mix specifies the relative frequencies of different Behavior Models
representing different customer groups, e.g., Behavior Models for heavy users and/or oc-
casional buyers. These customer groups are identified in the Wessbas approach using
clustering algorithms.

Wessbas-DSL instances are extracted from recorded session logs of the SUT. From
these instances, the test plan generator generates load test scripts for the common load
testing tool Apache JMeter17 including the extension Markov4JMeter (van Hoorn/Rohr/
Hasselbring, 2008). Further details on the Wessbas approach can be found in (van
Hoorn et al., 2014).

17http://jmeter.apache.org/

6.3. Transforming WESSBAS-DSL Instances into PCM 53

Table 6.2: Mapping of Wessbas-DSL concepts to PCM model elements

Wessbas-DSL PCM Model Elements

Behavior Models Repository Model (Basic Component, RDSEFF)
Session Layer FSMs not required
Protocol Layer FSMs not required
Workload Intensity Usage Model (Closed Workload)
Behavior Mix Usage Model (Branch)

6.3.2 Palladio Component Model

PCM is a modeling language enabling the prediction of quality-of-service attributes (QoS)
like response times, utilization, and throughput (Becker/Koziolek/Reussner, 2009). PCM
is composed of five complementary model types. The central model type is the Repository
Model. It models the software components, component operations, and the relations be-
tween them. The modeled components are then assembled in a System Model to represent
the application system. Resource containers (e.g., servers) and their associated hardware
resources are modeled in the Resource Environment Model, whereas the Allocation Model
defines the allocation of assembled components to the resource container. The Usage
Model defines the workload of the system.

As our proposed approach focuses on the generation of PCM workload specifications, the
system-specific parts of the model must be created in a separate step. As manual modeling
requires too much effort, approaches which automatically extract PCM instance from de-
sign specification or running applications, e.g., (Brosig/Huber/Kounev, 2011; Brunnert/
Vögele/Krcmar, 2013) can be used to generate the system-specific part of the SUT.

6.3.3 Transformation

The PCM Usage Model offers only basic support for modeling complex workloads. For
example, they grow in complexity for larger workloads due to the lack of reuse concepts.
Consequently, we cannot transform the Wessbas-DSL solely to the usage model. As
the Repository Model offers this kind of structuring, we generate parts of the workload
specification into the Repository Model (cf. Vögele et al. (2014)). This violates the
clear separation of the PCM models but reduces the complexity of the transformation
considerably. Further, this way we do not need to extend the PCM meta-model.

The transformation maps elements of the Wessbas-DSL to elements of PCM as de-
scribed in Table 6.2. First, the existing PCM Repository Model is loaded and for each
Behavior Model of the Wessbas-DSL a component with a corresponding interface used
to represent the relationships between the components is generated. For each Markov
State of a Behavior Model a component operation, represented as RDSEFF (Becker/
Koziolek/Reussner, 2009), is created. RDSEFFs describe the behavior of component op-
erations in a way similar to the Unified Modeling Language. Within each RDSEFF, the
transitions of the current Markov State to the next states are represented. This way, the
allowed sequence of service invocations is controlled by the Markov States themselves. An

6.3. Transforming WESSBAS-DSL Instances into PCM 54

example can be found in Figure 6.2. The RDSEFF for the View Items Markov State of
the generated Behavior Model component gen behavior model3 has a probability branch
with two branch transitions, each representing a transition to the next Markov State. The
left and the right transitions have a call probability of 92.9 % and 7.1 % respectively. This
branch transition specifies the call probability and contains three different actions:

� First, the think time of this transition is modeled as specified in the Wessbas-DSL
using an InternalAction either as mean value or as normal distribution with mean
and deviation. In our example, the think time is specified with a mean value of one
time unit for both transitions.

� Second, the matching system operation of the modeled SUT is called as an Exter-
nalCallAction. This call models a request to the system, e.g., clicking a link of a
web page. To identify the corresponding system operation we use a name map-
ping between the name of the system operation and the name of the Markov State.
Only the operations of components providing external system calls will be matched
with the Markov State names. In the left transition of our example the operation
View Items of the system component with the name app is called as it has the
same name as the next Markov State.

� Third, the RDSEFF of this Behavior Model component representing the next Markov
State is called as ExternalCallAction; in the left transition of our example, the
View Items state is called again and in the right transition the state home is called.
In this way, each Behavior Model component calls itself until a RDSEFF with-
out successor is reached. In this case no further call is modeled and the sequence
terminates.

Having created the Behavior Model components in the Repository Model, each newly
created component is allocated to the System Model and correspondingly to the Allocation
Model. A new Usage Model is generated with one probabilistic branch representing the
Behavior Mix. For each Behavior Model, a branch transition with the relative frequency as
call probability is created. Within this transition the initial Markov State of the Behavior
Model is called. Finally, the workload intensity is modeled as closed workload with (i) the
population representing the number of active sessions and (ii) the think time between the
end and the start of a new session. The generation of open workloads will be examined
in the future.

The Session and the Protocol Layer are not mapped to PCM elements. The Session
Layer could be modeled as an additional abstraction layer to the SUT. However, this
would increase the complexity of the model and has no impact on the simulation results
as the allowed sequences of service invocations are already specified in the representation
of the Behavior Models. The Protocol Layer is not used in performance models.

6.4. Evaluation 55

Figure 6.2: Generated RDSEFF example

6.4 Evaluation

In this section, the practicality and the prediction accuracy of transformed workload
specifications will be examined. First, the SPECjEnterprise201018 benchmark is briefly
explained and then the accuracy of transformed workload specifications is summarized.

SPECjEnterprise2010 represents a Java EE industry application of an automobile manu-
facturer whose main users are automobile dealers. This benchmark contains a workload
specification and a dataset required for load test executions. In this work, we use the
Orders domain of the benchmark as the SUT. The Orders domain represents a web-based
e-commerce application. SPECjEnterprise2010 defines three different transaction types
and in total 13 different HTTP request types. It enables customers purchasing and sell-
ing cars (Purchase), managing their accounts and inventory (Manage), and browsing the
catalogue of available cars (Browse).

To evaluate the accuracy of the extracted workload specification we employ the evaluation
methodology used in our previous paper (van Hoorn et al., 2014). The number of simulated
requests for the different HTTP request types are compared with the originally measured
request counts to the SUT. In our previous work we extracted (van Hoorn et al., 2014)
Wessbas-DSL instances from session logs of a SPECjEnterprise2010 benchmark run with
800 users, a duration of ten minutes (600 seconds), and the original benchmark Behavior
Mix (25 % Purchase, 50 % Browse, and 25 % Manage). Afterwards, we selected three
different Wessbas-DSL instances for that evaluation; one with two, one with three, and
one with four Behavior Models. These instance were extracted using different clustering
settings; however the resulting workload characteristics are the same (van Hoorn et al.,
2014). To ensure the comparability with workload specifications of performance models,
we evaluate whether the same results can be achieved. We generate a PCM instance

18SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010/.

6.5. Conclusion and Future Work 56

Table 6.3: Evaluation Results

Orig. 2 Behavior Models 3 Behavior Models 4 Behavior Models
Request MRC SRC PE% SRC PE% SRC PE%

1 add to cart 63,761 64,943 1.82% 61,812 3.15% 60,986 4.55%
2 cancel order 632 609 3.78% 661 4.39% 625 1.12%
3 clear cart 6,047 6,178 2.12% 5,927 2.02% 5,846 3.44%
4 defer order 6,782 6,873 1.32% 6,524 3.95% 6,606 2.66%
5 home 59,934 61,146 1.98% 58,747 2.02% 58,744 2.03%
6 inventory 30,596 30,539 0.19% 29,574 3.46% 29,405 4.05%
7 login 61,500 61,156 0.56% 58,747 4.69% 58,745 4.69%
8 logout 59,934 61,146 1.98% 58,747 2.02% 58,744 2.03%
9 purchase cart 8,360 8,388 0.33% 7,976 4.81% 7,836 6.69%

10 remove 3,027 2,986 1.37% 2,876 5.25% 2,949 2.64%
11 sell inventory 66,679 66,131 0.83% 63,185 5.53% 63,914 4.33%
12 shopping cart 9,074 9,164 0.98% 8,803 3.08% 8,795 3.17%
13 view items 498,601 491,812 1.38% 470,392 6.00% 475,000 4.97%∑

874,927 871,071 0.44% 833,971 4.91% 838,195 4.38%

representing the SPECjEnterprise2010 system using the approach proposed by Brunnert/
Vögele/Krcmar (2013). Then, each of the three instances is transformed into this PCM
instance. This PCM instance is then simulated for 600 time units corresponding to the
ten minutes of the original benchmark run.

The results of the Measured Request Count (MRC) and Simulated Request Count (SRC)
per HTTP action can be found in Table 6.3. In addition, for each simulation run the
relative Prediction Error (PE) compared to the measured data is given. The original
workload includes 61,500 sessions and in total 874,927 HTTP requests. The relative
counts of the request types are very similar for all predicted workloads. Further, the PE
of the request types are at maximum 6.69% for purchase cart with four Behavior Models.
Thus, from the server-side perspective the SRCs are representative compared to the MRC.
As this was the case for load tests extracted from Wessbas-DSL instances as well (van
Hoorn et al., 2014), the suitability of the Wessbas-DSL as intermediate language for
workload specifications could be demonstrated.

6.5 Conclusion and Future Work

Several authors describe the need to integrate measurement and model-based approaches
to evaluate the performance of software systems (Smith, 2007; Woodside/Franks/Petriu,
2007). To close this gap for workload specification, our Wessbas approach
(van Hoorn et al., 2014) is extended. In this paper, the existing Wessbas-DSL is used as
an intermediate language for the transformation to workload specifications of architecture-
level performance models. The evaluation using Wessbas-DSL instances extracted from
the Java EE benchmark SPECjEnterprise2010 demonstrates that representative PCM
workload specifications compared to the original workload can be generated. To the best
of our knowledge no other approach generates model-based workload specifications for
session-based systems from extracted data.

In our future work, we plan to investigate the impact of the extracted workload specifica-
tion on the measured and on the predicted performance. Furthermore, we plan to evaluate

6.5. Conclusion and Future Work 57

the proposed approach by transforming the Wessbas-DSL into other architecture-level
performance models such as the Descartes Modeling Language (Kounev/Brosig/Huber,
2014). The prioritization of load test cases using the generated performance models will
be investigated (Vögele et al., 2014). Moreover, we plan to implement the transformation
between the Wessbas-DSL and PCM in a bidirectional way. The advantage is when the
test cases are analyzed and prioritized within PCM corresponding load test scripts can
be generated using the Wessbas-DSL.

Chapter 7

WESSBAS: Extraction of Probabilistic Workload Specifications
for Load Testing and Performance Prediction - A Model-Driven
Approach for Session-Based Application Systems

Authors Vögele, Christian1 (voegele@fortiss.org)
van Hoorn, André2 (andre.van.hoorn@acm.org)
Schulz, Eike3 (esc@informatik.uni-kiel.de)
Hasselbring, Wilhelm3 (wha@informatik.uni-kiel.de)
Krcmar, Helmut4 (krcmar@in.tum.de)
1fortiss GmbH, Munich, Germany
2Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
3Department of Computer Science, Kiel University, Kiel, Germany
4Chair for Information Systems, Technical University of Munich (TUM),

Garching, Germany

Outlet International Journal on Software and Systems Modeling

Status Accepted

Individual
Contribution

Problem and scope definition, construction of the conceptual approach, pro-
totype development, experiment design, execution and result analysis, paper

writing, paper editing

Table 7.1: Bibliographic details for P4

Abstract The specification of workloads is required in order to evaluate performance
characteristics of application systems using load testing and model-based performance
prediction. Defining workload specifications that represent the real workload as accurately
as possible is one of the biggest challenges in both areas. To overcome this challenge, this
paper presents an approach that aims to automate the extraction and transformation
of workload specifications for load testing and model-based performance prediction of
session-based application systems. The approach (Wessbas) comprises three main com-
ponents. First, a system and tool agnostic domain-specific language (DSL) allows the
layered modeling of workload specifications of session-based systems. Second, instances
of this DSL are automatically extracted from recorded session logs of production systems.
Third, these instances are transformed into executable workload specifications of load
generation tools and model-based performance evaluation tools. We present transforma-
tions to the common load testing tool Apache JMeter and to the Palladio Component
Model. Our approach is evaluated using the industry-standard benchmark SPECjEnter-
prise2010 and the World Cup 1998 access logs. Workload-specific characteristics (e.g.,
session lengths and arrival rates) and performance characteristics (e.g., response times
and CPU utilizations) show that the extracted workloads match the measured workloads
with high accuracy.

58

7.1. Introduction 59

7.1 Introduction

The specification and execution of workloads is essential for evaluating performance prop-
erties of application systems. In order to assess whether non-functional performance re-
quirements of these systems can be met, load testing and model-based performance eval-
uation approaches are applied (Brunnert et al., 2014; Woodside/Franks/Petriu, 2007).
Workload specifications serve as input for load testing to generate synthetic workload to
the SUT, i.e., executing a set of customer requests (Goševa-Popstojanova et al., 2006; Kr-
ishnamurthy/Rolia/Majumdar, 2006; Menascé et al., 1999). Additionally, several spec-
ifications are taken into account in formalisms for model-based performance evaluation
approaches, to predict performance properties early in the software development cycle
(Becker/Koziolek/Reussner, 2009; Koziolek, 2010; Woodside/Franks/Petriu, 2007).

In session-based application systems, especially Web-based systems, different types of
users interact with the system in a sequence of interdependent requests. The complex-
ity of these interactions makes the workload specification a difficult task (Menascé et al.,
2000). Thus, the manual creation of these workload specifications is time consuming
(Avritzer et al., 2002) and error prone (Shams/Krishnamurthy/Far, 2006). One of the
main challenges is to ensure that these specifications are representative compared to the
real workload (Draheim et al., 2006). This is a key requirement for both load testing
and model-based performance prediction approaches. To ensure that the measured and
the predicted performance characteristics of the SUT are comparable, similar workload
specifications must be used. However, there is a lack of approaches enabling the common
automatic extraction and specification of workloads for both approaches. The extraction
and specification of workloads is done separately for each approach and each tool which re-
sults in additional specification and maintenance effort. The reasons for this development
are that these approaches are not integrated and that workload specifications are defined
on different levels of detail. Measurement-based approaches need detailed system-specific
information like protocol data, whereas model-based approaches are often specified on a
more abstract level.

In response to these challenges, this paper presents our Wessbas19 approach for speci-
fying and extracting representative workloads for session-based application systems. We
introduce a Domain-specific Language (DSL), called Wessbas-DSL, which enables the
system- and tool-agnostic modeling of these workload specifications. Recorded session
logs are used as a basis for the automatic extraction of Wessbas-DSL instances. Dif-
ferent groups of customers showing similar navigational patterns are identified during
the creation of these instances. Additionally, inter-request dependencies (Guards and
Actions (GaAs)) among the execution of requests are automatically learned. These de-
pendencies come from the fact that the execution of requests often depends on the result
of previous requests. The combination of probabilities and GaAs requires the calcula-
tion of conditional probabilities, which are also determined in an automatic way. Finally,
protocol information required to generate executable load tests are integrated.

19Wessbas is an acronym for Workload Extraction and Specification for Session-Based Application
Systems

7.1. Introduction 60

Load Driver

<<conformsTo>>

Monitoring

Behavior

Models

+ Clustering

DSL

WESSBAS-

DSL-Instance

WESSBAS

Behavior Mix

Request
Logs

Extraction

Transformation

Test Plan GeneratorWESSBAS-DSL

Behavior Mix

Monitoring

e.g., Kieker

Extractor

Performance Model Generator

P
er

fo
rm

an
c

e
M

o
d

el

Transformation

Performance
ture-Level

Model Generator

<<conformsTo>>

Transformation

Extraction

System

Specification

Workload

Specification Architec-

Model

Production
System /

SUT

WESSBAS Activity

External Activity

Transformation

Session
Log

- manual process

- automatic process

Session Log
Generator

Extractor
Workload Intensity

Extraction

Intensity
Workload

+ Guards and
Actions

+ Conditional
Probabilities

Figure 7.1: Overview of the Wessbas approach

As an example, the resulting Wessbas-DSL instances are then transformed to executable
workload specifications for the common load testing tool Apache JMeter, including the
Markov4JMeter extension developed in our previous work (van Hoorn/Rohr/Hasselbring,
2008). Furthermore, the DSL instances are transformed into workload specifications
of the Palladio Component Model (Becker/Koziolek/Reussner, 2009) representing an
architecture-level performance modeling language. We focus on architecture-level per-
formance models as they permit to model system architecture, execution environment,
and workload specification separately from each other (Brosig/Huber/Kounev, 2011).
Figure 7.1 provides an overview of the Wessbas approach.

The sharing of a common workload model has several key benefits for both approaches
during the system life cycle. During development time for example, system specifica-
tions (e.g., UML diagrams) or information from expert interviews are available in order
to derive estimates about the workload profile. This knowledge can be encoded in the
Wessbas-DSL and then transformed to a performance model to conduct early perfor-
mance predictions. Once the application system is running and load tests should be
executed, parts of the load test (e.g., user scenarios and workload intensity) can be gen-
erated based on the Wessbas-DSL. Thus, the workload only needs to be created once
for both approaches.

7.1. Introduction 61

In order to evaluate the performance characteristics of new releases, load tests are often
conducted on test systems. The workload used during these tests should be comparable to
the workload of the production systems. This has the advantage that bottlenecks which
also occur in production systems can be found with a higher probability. Thus, extracting
the workload from the production system and transforming it to load tests and workload
specifications of performance models comes with several benefits. The first benefit is that
the effort to create and specify load tests and performance models is reduced. Because
production workloads can change over time, the latest workload can be extracted again
in an easy way to reduce maintenance effort. The second benefit is that the integration
of software development and operations (DevOps) is supported (Brunnert et al., 2015).
The extracted workload during operations can be used for measurement-based (Bulej/
Kalibera/Tůma, 2005) and model-based (Brunnert/Krcmar, 2014) continuous integration
approaches to detect performance regressions during development.

The Wessbas approach is also useful to validate performance models. To validate the
correctness of a performance model, the simulation results are compared with measure-
ment results derived from the system. For the comparability of these results, it must be
ensured that the simulation results and the measurements are derived by applying the
same workload specification.

To summarize, the contribution of this paper is our Wessbas approach for automatic
extraction of probabilistic workload specifications of session-based application systems
comprising the following elements:

1. A DSL for modeling session-based probabilistic workload specifications.

2. An automatic extraction of DSL instances from recorded system logs including the
clustering of navigational patterns.

3. Transformations from DSL instances to executable JMeter Test Plans and to work-
load specifications of the PCM.

4. Tool support for this approach.

To the best of our knowledge Wessbas is the first approach to enable the process from
runtime data to executable load tests and performance prediction approaches. The tool
support serves as an extensible implementation of the approach, including the DSL, the
extraction, as well as a proof-of-concept transformation from the DSL to JMeter Test
Plans and workload specifications of PCM. The developed tools20, and the models and
results of this paper (Vögele et al., 2016) are publicly available online.

This paper builds on our previous work (van Hoorn/Rohr/Hasselbring, 2008; van Hoorn et al.,
2014; Vögele/van Hoorn/Krcmar, 2015) on the extraction and specification of workload
specifications and contains the following major improvements and extensions:

1. Tool support for the transformation of arbitrary system logs to the required session
log format.

20Wessbas tool support: https://github.com/Wessbas

7.2. Related Work 62

2. Automatic learning of GaAs and the calculation of conditional probabilities.

3. Generation of executable load tests (this includes the extraction and integration of
protocol information).

4. Comprehensive evaluation of workload characteristics (e.g., session lengths and ac-
tion counts) and performance characteristics (e.g., response times and CPU uti-
lizations) against the industry-standard benchmark SPECjEnterprise2010 and the
World Cup 1998 access logs.

The remainder of this paper is structured as follows: Section 7.2 provides an overview of
related work. In Section 7.3, the used workload formalism required to understand the pa-
per is introduced. The extraction of Wessbas-DSL instances is presented in Section 7.4.
The description of the JMeter Test Plan generation process in Section 7.5 is followed by
the illustration of the transformation of workload specifications to performance models
in Section 7.6. The evaluation of the proposed approach can be found in Section 7.7.
Finally, Section 7.8 details conclusions of our work and presents suggestions for future
work.

7.2 Related Work

Workload specification (also referred to as workload characterization) is defined by the pro-
cess of first analyzing key characteristics of user interactions (this includes other systems
as well) with an application system and modeling these characteristics into a workload
model (Jain, 1991; Calzarossa/Massari/Tessera, 2016). The key workload characteris-
tics of session-based systems can be divided into intra-session and inter-session metrics
(Goševa-Popstojanova et al., 2006). Intra-session metrics characterize single sessions and
include the session length, number of requests per session, and think times between the
executions of the requests. They also describe the behavior of the user as a sequence
of executed requests. In contrast, the inter-session metrics characterize the number of
sessions per user and the number of active sessions over time (also referred to as workload
intensity).

We group the related work on workload characterization into user behavior modeling and
workload intensity. Related work on the extraction of workloads and workload modeling
for performance models are also introduced.

7.2.1 User Behavior Modeling

User behavior is either specified script-based or it is specified using analytical models.
Scripts representing single user scenarios with a fixed sequence of user requests are exe-
cuted by a number of concurrent load generator threads. These scripts are quite easy to
record and execute. However, they provide little opportunity to vary workload character-
istics, such as different navigational patterns, and therefore are often not as representative

7.2. Related Work 63

as the real workload (Draheim et al., 2006; Lutteroth/Weber, 2008). Furthermore, as ex-
amined by Rodrigues et al. (2014), the effort to generate capture and replay scripts is
higher with these scripts than the effort using analytical models with increasing complex-
ity of the software system.

In order to model the user behavior in a more representative way, analytical models were
introduced. A popular way to model user behavior, especially user behavior related to Web
sites, are Markov Chains (Zhao/Tian, 2003). An approach similar to our approach was
proposed by Menascé (2002) and Menascé et al. (1999). These authors extract so-called
Customer Behavior Model Graphs (CBMGs) from HTTP server logs, which are based on
Markov Chains. They apply K-means clustering to identify CBMGs for similar types of
users. In contrast, in our work, an advancement of the K-means algorithm, called X-means
is applied. Another approach using the CBMGs to generate representative workloads is
presented by Ruffo et al. (2004). First, CBMGs are automatically extracted from Web
application log files, and then representative user behavior traces are generated from these
CBMGs. Based on these traces, a modified version of the performance testing tool httperf
(Mosberger/Jin, 1998) is used to generate the Web traffic. In both approaches, Markov
States represent the user interaction with the system. Transitions between these states
are annotated with user think times and probabilities.

Zhao/Tian (2003) have proven that these models can be used for workload generation.
However, one of their limitations is that they are not able to handle the aforementioned
inter-request dependencies. In an inter-request dependency an item can only be removed
from a shopping cart if items have already been added to that shopping cart. To over-
come these limitations, Shams/Krishnamurthy/Far (2006) proposed a workload modeling
formalism based on EFSMs. EFSMs allow a description of valid sequences of user re-
quests within a session. In contrast to the approaches based on Markov Chains, the
transitions are labeled with GaAs based on predefined state variables and not with prob-
abilities. Valid sessions are obtained by simulating the EFSMs. Additionally, inter- and
intra-session characteristics, such as think times and session length distributions and a
workload mix defining the relative frequency of request types, can be specified. Our work
combines the modeling approaches based on CBMGs and EFSMs (van Hoorn/Rohr/
Hasselbring, 2008). Thus, probabilistic user behavior modeling is enabled while ensuring
that valid sequences of user requests are generated.

Other approaches exist that use analytical formalisms to define workload models. Ex-
amples include stochastic form-oriented models (Draheim et al., 2006; Lutteroth/Weber,
2008), probabilistic timed automata (Abbors et al., 2012) or context-based sequential ac-
tion models (Junzan/Bo/Shanping, 2014).

One limitation of the proposed approaches is the need for manual specification of GaAs
as they are not extracted automatically from log files. To overcome this challenge, sev-
eral approaches exist for extracting behavior models from system logs in the form of
Finite State Machines (FSMs) (Beschastnikh et al., 2011; Ohmann et al., 2014) or EFSMs
(Walkinshaw/Taylor/Derrick, 2013). We extend the work of Beschastnikh et al. (2011)
to automatically derive the GaAs for the application model, based on temporal invariants
mined from the session log files (explained in detail in Section 7.4.4).

7.2. Related Work 64

7.2.2 Workload Intensity

An approach focusing on the definition of workload intensities can be found in the work
by v. Kistowski/Herbst/Kounev (2014). Their Load Intensity Modeling Tool (LIMBO)
approach allows a DSL-based definition and extraction of variable and dynamic load
profiles and workload scenarios over time including seasonal patterns, long term trends,
bursts, and a certain degree of noise. The work proposed by Herbst et al. (2013) offers
an approach to forecast workload intensities in which suitable forecasting methods are
chosen, based on a decision tree and feedback cycles to improve the forecast accuracy.
Wessbas focuses on the specification of the behavior of users and offers basic support
for modeling workload intensities (see Section 7.4.3).

7.2.3 Workload Extraction

The extraction of workloads is usually based on request logs (Menascé et al., 1999; van
Hoorn et al., 2014), design specifications such as UML diagrams (da Silveira et al., 2011),
or expert knowledge (Barber, 2004).

An approach similar to ours, introducing an abstract intermediate model that defines
workload specification independent from the used technology, is defined by Costa et al.
(2012). These authors focus on the separation of technology details from the test scenar-
ios. UML diagrams are used as input for creating abstract intermediate models. These
model instances are transformed to the load test tools Visual Studio Load Test and HP
Loadrunner. As UML diagrams are often not available or not detailed enough, we propose
to extract the intermediate language Wessbas-DSL from log files taking also protocol
information and inter-request dependencies into account.

7.2.4 Workload Modeling for Performance Models

Architecture-level performance models (Becker/Koziolek/Reussner, 2009; Kounev/Brosig/
Huber, 2014; Object Management Group, Inc., 2013) allow the modeling of usage behav-
ior, e.g., based on UML formalisms. These models also allow the specification of the
Workload Intensity. The effort to create performance models in a manual way signifi-
cantly reduces any benefit to be gained. Thus, approaches for the automatic performance
model generation have been proposed (Brosig/Huber/Kounev, 2011; Brunnert/Vögele/
Krcmar, 2013). These approaches focus on the automatic extraction of the system-specific
details of the SUT, like the system components, the relationship between the components,
the component allocations, and the resource demands. However, the workload specifica-
tions must still be modeled manually, which requires a lot of effort on the part of the
performance expert.

To reduce the complexity of generating different kinds of analytical performance mod-
els from architecture-level performance models, several intermediate languages such as
PUMA (Woodside et al., 2005) or Klaper (Ciancone et al., 2011) were introduced. These

7.3. Workload Specification 65

approaches only focus on model-based performance evaluation and do not support the
definition of workload specifications for session-based application systems.

An approach that combines model-based performance testing with load testing for
Web-based systems is introduced by Barna/Litoiu/Ghanbari (2011b) and Barna/Litoiu/
Ghanbari (2011a). In their approach, the SUT is modeled as a two-layer queuing model.
Then, workload mixes and workload intensities are derived from the model under which
software and hardware bottlenecks are saturated. Finally, the test cases are derived and
executed on the SUT. The model is automatically tuned, based on feedback loops from
the SUT. In contrast to Wessbas, the user behavior is aggregated on transactional level,
e.g. a buy transaction, and not on single user interactions.

7.3 Workload Specification

An overview of the workload specification formalism required to understand the paper
is given in Section 7.3.1. The Wessbas-DSL, which is based on this specification, is
introduced in Section 7.3.2.

7.3.1 Workload Specification Formalism

The approach described in this paper builds on our previous work on generating proba-
bilistic and intensity-varying workloads for session-based systems (Schulz et al., 2014; van
Hoorn/Rohr/Hasselbring, 2008); particularly, the workload modeling formalism that ex-
tends the work by Menascé et al. (1999) and Krishnamurthy/Rolia/Majumdar (2006).
This section introduces the concepts needed to support the remainder of this paper.

The workload specification formalism (Workload Model) consists of the following compo-
nents, which are detailed below and illustrated in Figure 7.2:

� An Application Model, specifying allowed sequences of service invocations and SUT-
specific details for generating valid requests.

� A set of Behavior Models, each providing a probabilistic representation of user ses-
sions in terms of invoked services and think times between subsequent invocations
as Markov chains.

� A Behavior Mix, specified as probabilities for the individual Behavior Models to
occur during workload generation.

� A Workload Intensity that includes a function which specifies the (possibly varying)
number of concurrent users during the workload generation execution.

7.3. Workload Specification 66

add2cart

...

view items

...

0.7

Behavior Model(s)

Application Model

Behavior Mix (%)

<<conformsTo>>

 login

 view items

 add2cart

0.2

0.3

0.4

0.3 0.4 0.5 0.3

0.6
0.1

Protocol Layer

 login

 view items

 add2cart

remove

Session Layer

/login.shtml

[accept=1]

/welcome.shtml

1 0

login

n = number of items

remove

G: n > 0

A: n++

/delete.shtml

/confirm.shtml

remove

A: n++

A: n++

A: n--

G: n > 0
A: n--

0.2

 $

G = Guard
A = Action

 $

Workload Intensity

active

time

sessions

load

Figure 7.2: Exemplary Workload Model (without think times in the Behavior Models)

7.3.1.1 Application Model

The Application Model is a two-layered hierarchical EFSM, consisting of a Session Layer
and a Protocol Layer. Inspired by the work of Krishnamurthy/Rolia/Majumdar (2006)
and Shams/Krishnamurthy/Far (2006), the Session Layer is an EFSM in which states
refer to system-provided services and allowed transitions among these states/services.
These transitions are possibly labeled with GaAs. The EFSM is defined as a 6-tuple
(Kalaji/Hierons/Swift, 2009) (S ∪ {$}, s0, V, I, O, T) where S ∪ {$} specifies the set of
states contained in the application model and s0 ∈ S the initial state; V is a finite set of
variables; I is a set of input symbols; O is the set of output symbols; and T is a set of
possible transitions.

A directed transition t ∈ T is represented by the 5-tuple (ss, i, gs,e, as,e, se) in which ss
is the source state of t; i is the input where i ∈ I and i may have associated input

7.3. Workload Specification 67

parameters; gs,e is the guard condition which validates if the transition can be executed
according to the current variable values; as,e defines a function on the variable values
called action statement, in case the related application transition fires; and finally, se is
the target state of t.

For each state of the Session Layer, the Protocol Layer contains an associated EFSM,
(possibly labeled with GaAs as well) that models the sequence of protocol-level requests
to be executed when the Session Layer state is executed.

7.3.1.2 Behavior Models

A Workload Model includes one or more Behavior Models. Each Behavior Model defines
probabilistic behavior and think times. Furthermore, each Behavior Model is specified
as a Markov Chain and roughly corresponds to the CBMGs introduced by Menascé et al.
(1999). Each Behavior Model B is defined as the tuple (MS ∪ {$},ms0, P,
TT, ftt, BT). MS specifies the set of Markov States contained in the Behavior Model
with initial Markov State ms0 ∈ MS and exit state $. Each Markov State is associated
with exactly one Application State of the Application Model. P = [ps,e] is a n×n-matrix
of transition probabilities, with n = |MS ∪ {$}|. Think times are specified as an n × n-
matrix TT = [tts,e], with n = |MS ∪ {$}|. The distribution function ftt specifies the
probability distribution of the think times. For instance, the think times may be specified
using a Gaussian distribution. BT is a set of transitions in the Behavior Model.

A transition in a Behavior Model bt ∈ BT is represented by the 4-tuple (mss, ps,e, tts,e,mse)
in which mss is the source Markov State of bt. A matrix entry ps,e ∈ P defines the proba-
bility for a transition from Markov State mss to Markov State mse. When the probability
of ps,e = 0 then the transition cannot be executed. A matrix entry tts,e ∈ TT defines the
think time for a transition from state mss to state mse. Finally mse is the end Markov
State of the transition bt.

The Behavior Models can also be defined as absolute Behavior Models AB represented as
the tuple (MS ∪{$},ms0, A, STT,BT, ftt). Then, the matrix A = [as,e] specifies a n×n-
matrix of absolute transition counts. Furthermore, the matrix STT = [stts,e] represents
a n× n-matrix of accumulated think times of the transitions.

The advantage of separating the Application Model and the Behavior Models is that the
Protocol Layer and the GaAs for the transitions of the Session Layer have to be specified
only once. Otherwise, this information would need to be added to each Behavior Model.

7.3.1.3 Behavior Mix

The Behavior Mix is a set {(B0, r0), . . . , (Bm−1, rm−1)}, which assigns a relative frequency
ri to the Behavior Model Bi. A tuple (Bi, ri) indicates that sessions which correspond
to the Behavior Model Bi are generated with a relative frequency of ri ∈ [0, 1]. That is,

7.3. Workload Specification 68

each ri denotes a probability value and the sum of all values must be 1, corresponding to
100%.

7.3.1.4 Workload Intensity

The Workload Intensity for an experiment is specified in terms of the number of active
sessions, i.e., the number of virtual users being simulated concurrently. A generated
session is considered active while the workload generator submits requests based on the
corresponding probabilistic session model (the exit state of the Behavior Model has not
been reached). A function n : R≥0 → N specifies this number n(t) of active sessions
relative to the elapsed experiment time t. Particularly, this allows for generating a varying
workload intensity profile, e.g., based on measured workload data.

7.3.1.5 Workload Generation Process

During the workload generation process for a SUT, the model is used as follows (see
Figure 7.2):

The Workload Intensity specifies the number of active sessions. For each newly created
session, the Behavior Mix determines the user type to be emulated next by selecting the
corresponding Behavior Model Bi based on the assigned relative frequencies ri. In the
selected Behavior Model, a probabilistic sequence of services is generated according to the
transition probabilities specified in the related Markov Chain. Furthermore, the GaAs of
the Session Layer are taken into account in order to generate valid sequences.

Assume that the Behavior Model Bi is currently in the Markov state view items
(view items ∈ MS) and the current variable n (n ∈ V) has the value one. First, based
on the transitions T modeled in the Session Layer from application state view items
(view items ∈ S) to the following states, it is validated which guard conditions are
satisfied—in the example, the transition from view items to add2Cart and remove. As
the number of items n is one, the guard G : n > 0 to transition remove is true. The
transition to add2Cart has no guard and can therefore always be executed. Second, based
on the probabilities specified in the matrix P , the next transition is chosen—40% of cases
to add2Cart and 60% to remove. Third, the action(s) on the variable value(s) will be
executed. When remove is chosen, the value of n is decreased by one; when add2Cart
is chosen, the value is increased by one. Finally, the think time is taken from the think
time matrix TT for this transition. After the think time has elapsed, the Behavior Model
moves to the next state and the service is executed according to the specified EFSM of
the Protocol Layer.

7.3. Workload Specification 69

ApplicationState

guard : EString

<<abstract>>

ApplicationExitState
1

1

application-

1..*

0..*

1

1

1

exitState

targetState

outgoing-

initial-

States

State

Transitions

action : EString

SessionLayerEFSM

SessionLayerEFSMState

ApplicationTransition

ProtocolState

guard : EString

<<abstract>>

ProtocolExitState
1

1

protocol-

1..*

0..*

1

1

1

exitState

targetState

outgoing-

initial-

States

State

Transitions

action : EString

ProtocolLayerEFSM

ProtocolLayerEFSMState

ProtocolTransition

protocolDetails

name : EString

BehaviorModel

MarkovState

Transition

<<abstract>>
ThinkTime

mean : EDouble
deviation : EDouble

NormallyDistributedThinkTime

<<abstract>>
BehaviorModelState

BehaviorModelExitState

1

1

markov-

1..*

0..*

1

1

1

exitState

targetState

thinkTime

outgoing-

initial-

States

State

Transitions

WorkloadModel

ApplicationModel
value : EDouble

RelativeFrequency

BehaviorMix

formula : EString

WorkloadIntensity

numberOfSessions : EInt

ConstantWorkloadIntensity

1

1

1

1 1..*

1

1

relativeFrequencies

workloadIntensity
behaviorMix

sessionLayerEFSM

applicationModel

behaviorModel

name : EString

Service

HTTPRequestname : EString
value : EString

Parameter

patternToTest:EString

Assertion

key : EString
value : EString

Property

<<abstract>>
Request

JavaRequest

1

0..*0..*

1

1

1

0..* . . .

assertions propertiesparameters

service service

request

behaviorModels

1..*

1

. . .

probability:EDouble

...

. . .

...

Figure 7.3: Wessbas-DSL classes and relationships

7.3.2 WESSBAS-DSL

The Wessbas-DSL follows the workload modeling formalism introduced in the previous
section and denotes a language for expressing such models. In our approach, the Wess-
bas-DSL is used as an intermediate language between the construction of SUT-specific
but tool-agnostic workload models on the one side, and the generation of corresponding
inputs to load testing tools and performance models on the other side. Wessbas is imple-
mented as an Ecore-based meta-model using the benefits and tool support of the Eclipse
Modeling Framework (EMF) (Steinberg et al., 2009). The meta-model is enriched with
constraints (specified in the common Object Constraint Language (OCL)), for checking
the validity of model instances. The DSL structure offers a high degree of flexibility and
extensibility. The remainder of this section introduces the core concepts.

An overview of the Wessbas-DSL classes and relationships as a language for the in-
troduced workload specification is presented in Figure 7.3. The parent class Workload
Model consists of the Application Model, the Workload Intensity, the Behavior Mix, and
Behavior Models.

The representation of the Application Model corresponds to the two-layered structure
of that component, including EFSMs for both the Session Layer and the Protocol Layer.
States of the Session Layer EFSM, shortly referred to as Application States, are associated
with services and with a Protocol Layer EFSM. Services are use cases, e.g., signing on to a
system or adding an item to the shopping cart (see Figure 7.2). The states of the Protocol
Layer EFSM are associated with specific requests, which might be of type HTTP, Java,
BeanShell, SOAP, etc.; the set of currently supported request types can be extended easily
by deriving additional subclasses from the common base class. Mention should be made
of the difference between properties and parameters of a request: properties correspond to
the information that is required for sending a request (e.g., domain, path, or port number

7.3. Workload Specification 70

Figure 7.4: Example of a Wessbas-DSL model with a violated constraint (no Behavior
Mix frequency sum of 1.0), opened in an EMF Form Editor.

of a targeted server); parameters denote values to be sent with the request (e.g., input
data for a Web form). The transitions in the Session Layer and Protocol Layer EFSMs
can be labeled with GaAs. An example can be seen in Figure 7.2. The user action remove
can only be called when the number of items is greater than zero.

Behavior Models are modeled as Markov Chain, with each (Markov) State also being
associated with one service. Thus, each Markov State is assigned exactly to one Appli-
cation State of the Session Layer. Transitions of the Behavior Models are labeled with
probabilities and think times. Currently supported think times are of type Gaussian,
that is, they follow a normal distribution, indicating mean and (standard) deviation val-
ues as parameters. Other think time implementations can be integrated easily by using
the abstract class ThinkTime. Exit states are modeled explicitly, and are—in contrast to
Markov States—not associated with services as they do not provide a service to the user.
Each Behavior Model is associated with a relative frequency to define the Behavior Mix
and it is stored as a double value in a dedicated class. These frequencies are contained in
the Behavior Mix. The Workload Intensity is stored as a string attribute in the dedicated
class WorkloadIntensity that also serves as a base class for all types of workload intensi-
ties. The Workload Intensity can be specified as a formula to define varying workloads or
as a fixed number for constant workloads.

Even though the Wessbas-DSL is independent of specific performance evaluation tools,
it includes all core information required for generating workload specifications that build
on the described workload modeling formalism. The implementation of the Wessbas-
DSL as an Ecore meta-model offers the benefits of EMF tools such as EMF Form Editors
or serialization support. In particular, Wessbas-DSL instances can be viewed, validated,
and modified in an editor, before being passed as input to any transformation process.
For the validation, OCL constraints have been defined with the use of EMF OCLinEcore
tools. An example of a violated constraint is shown in Figure 7.4.

These constraints ensure that, for example, attributes such as probabilities are valid, state
names are unique, and transitions of Behavior Models correspond to those of the Session
Layer EFSM. An overview of all implemented OCL constraints is given in Schulz (2014).

7.4. Extracting WESSBAS-DSL Instances 71

7.4 Extracting WESSBAS-DSL Instances

As the manual creation of workload models requires much effort, this section presents the
process for extracting Wessbas-DSL instances automatically based on recorded system
logs.

The remainder of this section details the six-step procedure to obtain a Wessbas-DSL
instance, comprising (i.) the extraction of a session log from the production system
(Section 7.4.1), (ii.) the clustering-based extraction of the Behavior Mix (Section 7.4.2),
(iii.) the extraction of the Workload Intensity (Section 7.4.3), (iv.) learning of GaAs
(Section 7.4.4), (v.) calculation of conditional probabilities (Section 7.4.5), and (vi.) the
generation of a complete Wessbas-DSL instance from the Behavior Mix (Section 7.4.6).

7.4.1 Monitoring and Session Log Generation

The extraction of Wessbas-DSL instances is based on a so-called session log obtained
from raw session information, recorded from a running application system. Raw session
information is usually provided by request logs generated by monitoring facilities, com-
prising the associated requests to system-provided services with a session identifier and
timestamps for the request and completion time. A typical example is the HTTP re-
quest log provided by common web servers (Menascé et al., 1999),or tracing information
obtained from application-level monitoring tools (van Hoorn/Waller/Hasselbring, 2012).

For each HTTP request, the following information is mandatory to create Wessbas-DSL
instances (example see Figure 7.5): “session identifier”, “request start time”, “request end
time”, and “request URL”. In order to further create the Protocol Layer for the generation
of executable load tests, the following request information are required as well: “host
IP”, “port”,“method” (GET/POST), “protocol”, “parameter with parameter values”,
and “encoding”. These Protocol Layer information is not required for the creation of
PCM models.

The request information will be transformed to a session log, which can be processed in
the next step by the Behavior Mix Extractor. During the transformation, the requests
are grouped by the specified session identifier (e.g., session identifier, client IP, or user
ID), giving access to the sequence and timing information of subsequent service requests
within a session (see Figure 7.5). In each line, the leading number denotes a unique session
identifier followed by the sequence of extracted services. A service execution is identified
by its assigned name in quotes followed by its start time and end time, and the protocol
information.

A service defines a specific user interaction with the system, like clicking a link on a
Web page. Each service will later be translated to a service of the Wessbas-DSL (see
Figure 7.3). Thus, the services also represent the states in the Session Layer and the
Markov States of the Behavior Models. As the identification of the services is dependent
on the respective application, its translation must be specified manually. The user can

7.4. Extracting WESSBAS-DSL Instances 72

 firJJ4aitgnEab-S4bzeHeUk.undefined;"sellinventory":1435142971890912579;1435142971894280281:/specj-web/
app:192.168.22.141:8080:HTTP/1.1:GET:vehicleToSell=617031&total=31604.77&action=sellinventory:<no-
encoding>;"home":1435142971891001543;1435142971891023461:/specj-web/app:192.168.22.141:8080:HTTP/
1.1:GET:action=home;<no-encoding>;

firJJ4aitgnEab-S4bzeHeUk.undefined;1435142971890912579;1435142971894280281;/specj-web/app;192.168.22.141;8080;
HTTP/1.1;GET;vehicleToSell=617031&total=31604.77&action=sellinventory;<no-encoding>
firJJ4aitgnEab-S4bzeHeUk.undefined;1435142971891001543;1435142971891023461;/specj-web/app;192.168.22.141;8080;
HTTP/1.1;GET;action=home;<no-encoding>

HTTP Request logs entries

Session log entry
Session Log Generator

Figure 7.5: Example HTTP log (recorded with Kieker) and resulting session log

specify that each distinct requested URL is a service. However, there are applications
where different URLs represent the same service. In other applications, the same base
URL is used and the services can only be distinguished based on submitted parameters.
The translation can be defined using the URLs, the parameter names, or corresponding
parameter values of the request. For instance, a HTTP request parameter called action
has the values sellinventory or home (see Figure 7.5); the values of this parameter can
then be used to distinguish the two services.

As each monitoring facility can generate different log formats (e.g., different delimiters or
date and time formats), the Wessbas approach provides tool support for transforming
the raw logs to the session log, named the Session Log Generator. The tool enables
the user to specify the input raw logs files and then to manually define how the required
session data is extracted from the raw logs to the session log. Our approach is independent
from specific monitoring solutions, so using the Session Log Generator is advantageous.
Furthermore, these rules must only be configured once and can then be reused each time
new session logs in the same format are available.

With this tool, the translation of the request data to the service names can be defined.
We integrated the Java Expression Language (JEXL)21 to enable the user to define these
translation rules. An example of how to use the Session Log Generator to define a trans-
lation rule can be found in Figure 7.6. A HTTP access log is read in by the Session
Log Generator. This log consists of session identifiers, time stamps, request URLs, and
request parameters for each request. To specify the service name of the resulting session
log, the value of the parameter “action” will be identified. For the second row of the log
the value “login” is identified.

As users can exit their sessions at any time or can have long inactivity periods, the deter-
mination of service requests belonging to a session is required as well. The determination
depends on the available session identifier within the raw logs. In case an identifier gen-
erated by a Web server is used, no further information has to be specified. Because a
session time out is configured in each web server, users with a long inactivity period are
automatically assigned to a new session identifier. If client IP addresses or user IDs are
used, a threshold for the maximum allowed time between two user requests can be spec-

21https://commons.apache.org/proper/commons-jexl/

7.4. Extracting WESSBAS-DSL Instances 73

Figure 7.6: Exemplary translation rule in the Session Log Generator

ified (Menascé et al., 1999). In case this threshold is exceeded, the current sequence of
service requests is split. Then, the following requests are considered to belong to a new
session with a unique session identifier. This threshold can also be defined in the Session
Log Generator.

7.4.2 Clustering-Based Behavior Mix Extraction

The Behavior Mix Extractor extracts the Behavior Mix and the corresponding Behavior
Models based on the created session log. The Behavior Mix is determined by identi-
fying different groups of customers with similar navigational patterns. As proposed by
Menascé et al. (1999), clustering methods can be used to support this task. The iden-
tification of different customer groups has several advantages. For example, the system
can be optimized upon these navigational patterns. Furthermore, the impact of different
Behavior Mixes on the performance can be evaluated, e.g., investigating the performance
impact of an increased fraction of a customer group. Lastly, the goal of the clustering is
to obtain a relatively small number of clusters to reduce the complexity and to increase
the comprehensibility of the resulting Behavior Mix.

In this paper, we focus on clustering with the centroid-based X-means algorithm, which
is an improved version of the well-known K-means algorithm (Pelleg et al., 2000). The
advantage of X-means over K-means is that it is not mandatory to specify the number of
clusters K in advance by the user. The user provides a minimum and a maximum number
of resulting clusters and the algorithm determines how many clusters are best suited. The
evaluation of K-means clustering is very costly because the results of the K-means must
repeatedly be evaluated with different numbers of K (Berkhin, 2006). Furthermore, the

7.4. Extracting WESSBAS-DSL Instances 74

X-means algorithm scales better and the risk of finding local minima is lower. The X-
means clustering algorithm is integrated into our proposed approach using the data mining
framework Weka (Hall et al., 2009). Other algorithms can be integrated accordingly.

The Behavior Mix Extractor reads the session log file and first transforms each session
entry into an absolute Behavior Model. This model is composed of a n × n-matrix A
defining the transition counts and of a n×n-matrix STT defining the accumulated think
times. We remind that we use the workload specification introduced in Section 7.3.1.2.
Because Weka cannot handle matrices as clustering input, each matrix A of each absolute
Behavior Model is transformed into a vector V = v1, ..., vn by mapping each value as,e to
a value of the vector by:

as,e → v(e+((s−1)·n)) (7.1)

Think times are not part of the clustering as they have no impact on the navigational
patterns. As future work, it could be of interest that the Behavior Models are also
clustered using the think times. During the clustering in the first step, a central vector
V ′, called centroid, is determined randomly for each cluster. Each centroid represents a
cluster and is the mean of the instances (in our case, sessions represented as transition
counts matrices of the absolute Behavior Models) ABm = [Am],m = 1, ...,M in that
cluster. Then, the clustering algorithm iterates several times over the dataset and assigns
instances to the nearest cluster centroid until no instance no longer changes the cluster.
After each iteration, each centroid V ′ is recalculated by:

v′i =

m∑
i=1

vi

m
(7.2)

The distance between the instances is calculated using the Euclidean distance metric.
During the calculation of a distance, the attributes of the instances (represented as a
vector) can be normalized to a value between zero and one. Without data normalization,
the attributes with the highest variance drive the clustering. That means, in our case,
high transition counts have a high influence on the clustering. In order to figure out the
best settings, both the normalized and the non-normalized Euclidean distances will be
evaluated in Section 7.7.4.1. Other distance metrics like Manhattan distance or Chebyshev
distance could be used as well.

The relative Behavior Models are calculated as proposed by Menascé et al. (1999). First,
each centroid vector V ′ is transformed back to a matrix A′. Then the corresponding think
time matrix STT ′ is calculated by accumulating the think times of the single absolute
Behavior Model instances ABm within each cluster:

stt′s,e =
m∑
i=1

sttis,e (7.3)

7.4. Extracting WESSBAS-DSL Instances 75

As a result, the centroids represent the absolute Behavior Model of the corresponding
cluster. Afterwards, these absolute transition count matrices A′ are transformed to rela-
tive n×n-matrices P , defining the transition probabilities. Furthermore, the matrix STT ′

will be transformed to the matrix TT representing the mean think time per transition.

ps,e =
a′s,e
n∑

i=1

a′s,i

(7.4)

tts,e =
stt′s,e
a′s,e

(7.5)

Finally, the relative frequency r of each Behavior Model is calculated by dividing the
number of instances m within each cluster by the overall number of session instances in
the session log.

7.4.3 Workload Intensity Extraction

The Workload Intensity is automatically analyzed based on the session log and included
into the resulting model. The maximum and the average number of concurrent sessions
are determined. The user can configure which of these values should be included into
the Wessbas instance. During test execution, this number represents the number of
concurrent threads, each starting a new session after the previous session is finished (Bar-
ford/Crovella, 1998). Testing the SUT with peak or average loads is sufficient for many
application systems.

In order to be able to integrate varying load intensities, for example to test dynamic
resource allocations used in virtualized data centers and cloud computing, the LIMBO
approach proposed by v. Kistowski/Herbst/Kounev (2014) could be integrated in Wess-
bas. The LIMBO approach generates a load intensity model from log files describing
the session arrival rate over time using mathematical functions. This meta-model is also
implemented using EMF tools and can be combined with the Wessbas-DSL workload
intensity definition. Furthermore, there are already available extensions for JMeter22 and
PCM (Lehrig/Becker, 2014).

7.4.4 Automatic Learning of Guards and Actions

As stated in the previous section, transitions of the Application Layer are optionally
labeled with GaAs. As workload specifications might generate invalid paths using solely
probabilistic transitions, an important task to be considered is the identification of GaAs.
This leads to the fact that errors might occur or that less demand is generated on the

22http://se.informatik.uni-wuerzburg.de/tools/limbo/

7.4. Extracting WESSBAS-DSL Instances 76

system resources during load testing, as the user behavior is incorrectly represented. The
generated load on the system could be incorrect and performance characteristics, such as
CPU utilization or response times, might be different than using correct user behavior
(Shams/Krishnamurthy/Far, 2006).

We build on the approach introduced by Beschastnikh et al. (2011), called Synoptic, to
learn the GaAs automatically. Beschastnikh et al. define three different kinds of so-called
temporal invariants representing relationships between event types (in our case service
invocations) that are true over all input traces. Their approach was easily integrated
into our Wessbas framework as the temporal invariants can also be extracted from
the same session log file. Three different kinds of invariants are defined and extracted
(Beschastnikh et al., 2011):

� a Always Followed by b (AFby): Whenever the event type a appears, the event
type b always appears later in the same session trace.

� a Never Followed by b (NFby): Whenever the event type a appears, the event type
b never appears later in the same session trace.

� a Always Precedes b (AP): Whenever the event type b appears, the event type a
always appears before b in the same session trace.

In our approach, we need to identify guards which must be true to execute the associated
application transition. This identification is important in order to generate valid user
navigations as some user actions can only be executed after other specific user actions
have been executed.

We are not only interested in the sequence of user actions, but it is also important to
specify how often an user action is executed before another. For instance, the removal of
items in a shopping cart is dependent on the number of items added previously to the
shopping cart. The user can only execute the user action remove as often as there are
items in the shopping cart. Therefore, we introduce a new type of temporal invariant,
which is a subset of the AP invariant:

� Count a Greater or Equal as Count b (CntGE): For each AP invariant the number
of executions of a is always greater or equal compared to the number of executions
of b in the same session trace. Additionally, the minimal difference between the
execution of a and b is determined.

Figure 7.7 illustrates a simple example of how the temporal invariants are translated
to GaAs. The simple logfile contains four sequences of user actions, each representing a
session. From these sessions, 21 temporal invariants are extracted and translated to GaAs
of the Session Layer.

Of the four invariant types, AFby cannot be used. The condition AFby does not mean that
a must always be executed before b as seen in the example (see Figure 7.7). The invariant
add2Cart AFby shoppingcart cannot be used as guard as the user action shoppingcart

7.4. Extracting WESSBAS-DSL Instances 77

view items

shopping-

cart

remove

add2cart

buy

$

A: view_items = true

A: view_items_remove+1

A: view_items_buy+1

G: remove = false

A: add2cart_remove+1

A: add2cart_buy+1

G: view_items = true

A: shoppingcart_remove+1

G: remove = false

G: view_items_remove>1

G: add2cart_remove>1

G: shoppingcart_remove>1

A: remove = true

A: view_items_remove-1

A: add2cart_remove-1

A: shoppingcart_remove-1

G: add2cart_buy>0

G: view_items_buy>1

A: view_items_buy-1

A: add2cart_buy-1

Invariants
view items AP shoppingcart (TR1)

view items CntGE add2Cart (FR1)

view items CntGE remove (TR3)

view items CntGE buy (TR3)

shoppingcart CntGE remove (TR3)

shoppingcart CntGE buy (FR1)

add2Cart CntGE remove (TR3)

add2Cart CntGE buy (TR3)

remove NFby view items (TR2)

remove NFby add2Cart (TR2)

remove NFby remove (TR2)

buy NFby view items (FR2)

buy NFby shoppingcart (FR2)

buy NFby add2Cart (FR2)

buy NFby remove (FR2)

buy NFby buy (FR2)

view items AFby shoppingcart

add2Cart AFby shoppingcart

add2Cart AFby buy

remove AFby shoppingcart

remove AFby buy

Logfile
view items

shoppingcart

view items

shoppingcart

--

view items

shoppingcart

view items

add2Cart

shoppingcart

buy

--

view items

add2Cart

shoppingcart

view items

add2Cart

shoppingcart

remove

shoppingcart

buy

--

view items

add2cart

shoppingcart

buy

Session Layer

G: view_items = true

A: shoppingcart_remove+1

G: view_items = true

A: shoppingcart_remove+1

G: remove = false

A: view_items = true

A: view_items_remove+1

A: view_items_buy+1

Figure 7.7: Exemplary translation of temporal invariants to Guards and Actions

can also be called from the state view items. Thus, the user action add2cart is not a
prerequisite to executing the user action shoppingcart.

Not all of the remaining temporal invariants are required to generate valid user behavior.
Furthermore, the translation of all resulting invariants into GaAs would make the work-
load specification quite complex. Therefore, we use the following filter rules to check if
each temporal invariant is required:

� Filter rule 1 (FR1): Assuming a temporal invariant a to b exists. If state a and
state b are directly connected and state b has only one incoming transition from
state a and the minimal difference is zero, then the guard is not required. In this
case state a, is always called before state b. Furthermore, state b cannot be called
more frequently than state a. For instance, shoppingcart CntEG remove does not
need to be considered, as remove can only be called when shoppingcart is called.

� Filter rule 2 (FR2): A path from a to b exists. This filter rule is important for the
NFby invariant, as Synoptic does not check if a can be followed by b.

For the remaining invariants, we define the following translation rules. The invariants
NFby and AP are translated into Boolean state variables whereas the new invariant
CntGE is translated to a numeric state variable.

� Translation rule 1 (TR1): Boolean variable a for AP

– Action: If event a is executed, the variable a is set to true.

– Guard: Each transition to event b validates if a is true.

� Translation rule 2 (TR2): Boolean variable a for NFby

7.4. Extracting WESSBAS-DSL Instances 78

view_items

add2cartshoppingcart

0.30.7 (ps,e) (ps,e)

$

c1(pgs,e=0.5)

(a) Measured probabilities

view_items

add2cartshoppingcart

c1(pgs,e=0.5)

0.4 0.6 (cps,e) (cps,e)

$

(b) Conditional probabilities

Figure 7.8: An exemplary Behavior Model with measured probabilities and with condi-
tional probabilities

– Action: If event a is executed, the variable a is set to true.

– Guard: If a path from a to b exists, then each transition to event b checks if a
is false.

� Translation rule 3 (TR3): Numeric variable a b for CntGE

– Action: If event a is executed, the value of a variable called a b is increased
by one.

– Guard: Each transition to event b first checks whether variable a b is greater
than the minimal difference between the execution of a and b. If yes and the
transition is executed, a b is decreased by one.

In our example we identified nine relevant invariants which are translated into GaAs.
The precondition for a transition to be executed is that all guards must be true (logical
conjunction). A good example is the temporal invariant add2Cart CntGE remove. The
user action remove can only be called when the user has previously added an item to
the shopping cart. Thus, the transition from shoppingcart to remove is only executable
when the condition add2Cart remove is greater than one. In this case, the condition
must be greater than one, as the minimal difference of request counts between add2cart
and remove is one. We represent the guard as a numeric variable for this type of rela-
tionship. When the previously required user action add2Cart is executed, the variable
add2Cart remove is increased by one. Later, the transition from shoppingcart to remove
validates whether this condition is true or not. If this condition is true, the transition is
fired and add2Cart remove is decreased by one.

7.4.5 Calculation of Conditional Probabilities

Because we combine GaAs with probabilities, the calculation of conditional probabilities
may be required. The conditional probability is the probability that a transition will be
executed given that the corresponding guard condition is true. The conditional probability

7.4. Extracting WESSBAS-DSL Instances 79

can be considerably different from the probability ps,e (see Section 7.3.1.2) that we have
extracted in the Behavior Mix Extractor for each Behavior Model (see Section 7.4.2).

To exemplify this, assume we have extracted a simple Behavior Model from a session log
(see Figure 7.8(a)). This model consists of a transition from view items to add2cart that
is executed in 30% of cases and of a transition from view items to shoppingcart executed
in 70% of cases. We assume that the probability that the guard condition c1 is true is
50%. When we execute or simulate this Behavior Model, the transition from view items
to add2cart would be executed in only 15% (i.e., 50% · 30%) of cases and the transition
from view items to shoppingcart in 85% of cases. As this result is different from the
initially measured transition probabilities, the request counts of the extracted workload
specification would be different from the request count of the original workload. In the
remainder of this section, we propose a heuristic to calculate the conditional probabilities.
As future work, we will examine other approaches like Bayesian networks as well.

In the first step, in order to calculate the conditional probability, we have to obtain the
probability for each transition that the respective guard condition is true. Let pgs,e be
the probability that the guard g from state ss to state se is true.

Based on the session log we can calculate this value by computing the relative frequency
of each transition that the corresponding guard conditions is true: from the measured
session log we take the sessions belonging to a Behavior Model B, as obtained by the
clustering. Then, we interpret each session by iterating the transitions according to the
measured state sequence. Within each state, we determine the potential transitions to the
next states, according to the Behavior Model. Afterwards, for each transition the value
of the guard condition identified in the previous step (see Section 7.4.4) is determined.
Then, the next state is chosen according to the state sequence and the corresponding
action is executed. This way, we calculate the value of pgs,e for each transition by:

pgs,e =
Count gs,e is true

Count gs,e is evaluated
(7.6)

For example, we have 100 sessions for the exemplary Behavior Model of Figure 7.8. Within
these sessions, the state view items occurs 100 times. Each time the state view items is
examined, we evaluate the guard conditions of the potential transitions to add2cart and
to shoppingcart. Assume that in 50 cases the condition of the transition to add2cart was
true and in 100 cases the condition of the transition to shoppingcart was true. Then, pg
for the transition to add2cart is 50% (i.e., 50/100) and to shoppingcart it is 100% (i.e.,
100/100).

In the second step, we calculate the conditional probabilities of all transitions where the
probability that the guard condition is smaller than one, as in these cases the probability
must be increased. For each transition bt of a Behavior Model B we calculate the transition
probability cps,e under the condition that the corresponding guard is true according to
Kolmogorov (1950) by:

7.4. Extracting WESSBAS-DSL Instances 80

cps,e =
ps,e
pgs,e

,∀{bt | 0 < pgs,e < 1} (7.7)

In our example, the conditional probability cps,e for the transition view items to add2cart
would be adjusted to 60% (i.e., 30%/50%) as 0 < pgs,e < 1 (see Figure 7.8(b)).

In the third step, to ensure that the sum of the conditional probabilities from one state to
the following states is again 100%, we have to adjust the probabilities of the transitions
where pgs,e = 1. All transitions from state s to the following states E = e1, ..., eN are
identified and adjusted by:

cps,e = ps,e ·
1−

n∑
i=1

cps,ei

n∑
i=1

ps,ei

,∀{bt | pgs,e = 1} (7.8)

In our example, the percentage of transitions from view items to shoppingcart is 70%
and the conditional probability of view items to add2cart is 60% (see previous step).
Therefore, we adjust the probability to 40% (i.e., 70% · (100% - 60%) / (70%)).

If all guard conditions pgs,e from one state to the following states are smaller than one,
we have to adjust the probabilities by:

cps,e = cps,e ·
1

n∑
i=1

cps,ei

(7.9)

The originally calculated probabilities within the Behavior Models are adjusted accord-
ing to the conditional probabilities. Thus, during the transformation to performance
evaluation tools only the calculated conditional probabilities are taken into account.

7.4.6 Generating WESSBAS-DSL Instances

The next task is to transform the extracted Behavior Models, the Behavior Mix, the
Workload Intensity, and the GaAs to a valid Wessbas-DSL instance, which can be
further transformed to load generation tools and performance models. Therefore, the
Wessbas-DSL Model Generator (Figure 7.1), performs the following steps automatically:

1. Construction of an Application Model, based on SUT-specific states and transitions,

2. integration of the Behavior Mix including the extracted Behavior Models,

3. integration of the Workload Intensity definition,

7.5. Generating JMeter Test Plans 81

4. integration of Guards and Actions and conditional probabilities, and

5. extraction and integration of input parameters.

The Wessbas-DSL Model Generator reads the resulting Behavior Models, builds a cor-
responding Session Layer EFSM, and assigns a Protocol Layer EFSM to each Application
State. The transitions of the Session Layer EFSM are set according to the Behavior Mod-
els. A transition from service a to service b is set, when in one of the Behavior Models a
corresponding transition with probability greater than zero exists. From each service, a
transition to the final state is set, as each session can be canceled by the user at any time.

The structure of our Protocol Layer EFSMs has one Protocol State per EFSM, providing
exactly one request being sent in an Application State. A DSL that allows the definition
of more complex, protocol-specific EFSMs, e.g., failed user logins, denotes a future work
issue. In our case, we extract HTTP requests from the SUT. For other request types,
e.g., Java requests, further extensions need to be developed. For each Protocol State, we
integrate the information required to create executable load tests (see Section 7.4.1), like
the “host IP” and the “port”, and add this information as property to the request type of
the Protocol State. We also integrate the used parameters with the associated parameter
values. For each parameter of a Protocol State, all parameter values are stored as a list
and can later be reused by load test generators.

The integration of Behavior Mix and Behavior Models includes the construction of cor-
responding Wessbas-DSL elements (see Figure 7.3). Each Behavior Model is created
based on the Behavior Models extracted in the previous step. Each available service is
mapped exactly to a Markov State. Finally, the transitions are created for all transitions
within the Behavior Models with probability greater than zero.

7.5 Generating JMeter Test Plans

A given Wessbas-DSL instance can be transformed into a corresponding JMeter Test
Plan. We developed a publicly available extension, called Markov4JMeter (van Hoorn/
Rohr/Hasselbring, 2008), for the well-known load generator Apache JMeter, which allows
us to define and execute these workload specifications. JMeter supports the generation
of workloads of various types of systems, not limited to Web-based systems.

The Test Plan Generator (Figure 7.1), reads a serialized Wessbas-DSL instance, as
described in Section 7.4.6, from file and constructs a further XMI structure, which can
be processed by the JMeter tool. The XMI output is generated via the JMeter API and
denotes a JMeter-typical tree structure of Test Plan elements, including Markov4JMe-
ter-specific elements, namely Markov States and a Markov Session Controller, which are
provided by the Markov4JMeter add-on for JMeter (van Hoorn/Rohr/Hasselbring, 2008).

The probabilities and think times of the Behavior Models are defined in external comma-
separated value CSV files. These CSV files are read by the Markov-4JMeter extension
and consist of the transition probabilities and the think times between the Markov States

7.5. Generating JMeter Test Plans 82

Figure 7.9: Example mapping of Wessbas-DSL instances to (Markov4)JMeter Test
Plan elements

Table 7.2: Probabilities and think times of a Behavior Model (see Figure 7.2)

login* view items add2cart remove $

login* 0.0; n(0 0) 0.3; n(3 0.3) 0.3; n(3 0.2) 0.4; n(5 0.9) 0.0; n(0 0)

view items 0.0; n(0 0) 0.0; n(0 0) 0.4; n(4 0.4) 0.6; n(2 0.8) 0.0; n(0 0)

add2cart 0.0; n(0 0) 0.5; n(5 0.8) 0.1; n(4 0.1) 0.2; n(4 0.2) 0.2; n(7 0.9)

remove 0.0; n(0 0) 0.3; n(2 0.5) 0.0; n(0 0) 0.0; n(0 0) 0.7; n(5 1.0)

represented as a matrix (see Table 7.2). For instance, the probability of the transition
add2cart to remove is 20% with a mean think time of 4 seconds and a standard deviation
of 0.2 seconds. As the normal distributed think times can be below zero, Markov4JMeter
automatically handles negative values as zero. These files were also automatically created
by the JMeter Test Plan Generator.

On start of the transformation process, Wessbas-DSL input models are validated with
respect to the OCL constraints discussed in Section 7.3.2. The core transformation process
builds on a mapping between Wessbas-DSL concepts and (Markov4)JMeter Test Plan
elements. An overview of the underlying mappings is given in Table 7.3.

A Session Layer EFSM in the Wessbas-DSL is mapped to a corresponding set of Markov
States in JMeter. Each Markov State includes its individual set of outgoing transitions

7.5. Generating JMeter Test Plans 83

with GaAs, for defining the validity of state execution sequences. For each guard and
action parameter, a so-called User Parameter is created. In contrast to User Defined
Variables, User Parameters are specific for each thread. User Parameter and User De-
fined Variables are Test Plan elements which are provided by JMeter. The name of a
Markov State in the resulting JMeter Test Plan corresponds to the name of the state’s
associated service in the Wessbas-DSL instance. Protocol Layer FSMs are modeled
as child elements of Markov States in the tree-structured result and they are constructed
with the use of JMeter controllers and samplers according to their related Wessbas-DSL
structure.

The values of each request parameter are created as a User Defined Variable with the
parameter name and a list of the measured parameter values. As default setting, the
parameter values are randomly chosen during load execution. However, there are also
parameter values which cannot be reused (e.g., identifiers generated during load test
execution). A limitation of the JMeter Test Plan Generation process is that the values of
these parameters cannot be generated automatically. Thus, these parameter values must
be identified and specified manually by the load tester. For instance, when it is necessary
to specify an item for a delete request on the protocol level. These identifiers can either
be generated randomly or extracted using regular expressions or XPath extractors. In
case Web site are tested these IDs can be extracted from the HTML code.

The Workload Intensity is stored as a formula string in the Session Arrival Controller
sub-component of a Test Plan’s (unique) Markov Session Controller. That controller
additionally includes a table for Behavior Mix frequencies, to be filled with appropriate
values of the input Wessbas-DSL instance. Behavior Models are stored separately in
CSV files, which are referred by the frequency table of the Markov Session Controller. In
addition to the Test Plan elements that result from the core transformation process for
a given Wessbas-DSL instance, several JMeter elements are added to a generated Test
Plan by default. This step is required for making a Test Plan’s structure accessible for
the JMeter tool and providing additional functionality, such as handling of HTTP session
cookies. Figure 7.9 shows the mapping of Wessbas-DSL instances to JMeter Test Plan
elements. Currently, the Test Plan structure is predefined, targeting HTTP-based tests
only; an appropriate mechanism for specifying alternative structures, particularly for
different types of requests, denotes a future work issue.

Table 7.3: Mapping of Wessbas-DSL concepts to (Markov4)JMeter elements

Wessbas-DSL Markov4JMeter Elements

Session Layer FSM Markov States (+ outgoing transitions)
Protocol Layer FSMs JMeter Elements (Markov State children)
Workload Intensity MSC (Session Arrival Controller)
Behavior Models MSC (frequency table) → CSV-files
Behavior Mix MSC (frequency table)
Input Parameter User Defined Variables
Guards and Actions User Parameters

MSC = Markov Session Controller

7.6. Transformation to Performance Models 84

7.6 Transformation to Performance Models

This section explains the proof-of-concept transformation of Wessbas-DSL instances
to workload specifications of the Palladio Component Model (PCM). First, Section 7.6.1
gives a short overview of PCM, followed by the description of how the system-specific parts
of performance model are generated (see Section 7.6.2). Finally, Section 7.6.3 depicts how
Wessbas-DSL instances are transformed to workload specifications of PCM.

7.6.1 Palladio Component Model

PCM is a domain-specific modeling language that allows the prediction of acQoS like
response times, utilization, and throughput (Becker/Koziolek/Reussner, 2009). It is com-
posed of five complementary model types. The central model type is the Repository
Model, which models the software components, component operations, and the relations
between them. The components can provide an interface to offer operations to other
components or require interfaces to access operations from other components. The mod-
eled components are assembled in a System Model to represent the application system.
Resource containers (e.g., servers) and their associated hardware resources are modeled in
the Resource Environment Model, whereas the Allocation Model defines the allocation of
assembled components to the resource container. The Usage Model defines the workload
of the system.

7.6.2 Generation of Performance Models

As our proposed approach focuses on the generation of PCM workload specifications, the
system-specific parts of the model need to be created in a separate step. Since man-
ual modeling requires too much effort, approaches that automatically extract PCM in-
stance from design specification or running applications, e.g., (Brosig/Huber/Kounev,
2011; Brunnert/Vögele/Krcmar, 2013) can be used to generate the system-specific part
of the SUT.

We use the approach proposed by Brunnert/Vögele/Krcmar (2013) to generate the system-
specific parts of the performance model. A Java EE Servlet filter is used to collect data
about the requests to Web components (i.e. Servlets, Java Server Pages (JSP)). The data
includes the component invocations, the relations between them, and CPU resource de-
mands for each request. Afterwards, the performance model is created and the mean CPU
demand per component invocation is integrated. We create the performance model on the
level of requests to the web components only and do not split further into other compo-
nents like EJBs. Thus, the resulting model is very simple. For each simulated request the
average measured CPU time will be used for the performance prediction. Further details
on the performance model generation approach are presented in Brunnert/Vögele/Krcmar
(2013).

7.6. Transformation to Performance Models 85

7.6.3 Transformation

The PCM Usage Model offers only basic support for modeling complex workloads: that is
the Usage Model does not allow the modeling of arbitrary usage flows. Each element can
only have one incoming and one outgoing edge. Branches can be modeled with branch
actions composed of multiple branch transitions, but it is not possible to interconnect
elements of different branch transitions with each other. Thus, control flows like nested
loops or connections between elements of one branch transition with elements of other
branch transition cannot be modeled. Furthermore, the Usage Models grow in complexity
for larger workloads, due to the lack of concepts enabling reuse. Consequently, we cannot
transform the Wessbas-DSL solely to the Usage Model. We generate parts of the work-
load specification into the Repository Model (cf. (Vögele et al., 2014)) as it does offer this
kind of structuring. This violates the clear separation of the PCM models but reduces
the complexity of the transformation considerably. Furthermore, using this approach we
do not need to extend the PCM meta-model.

During the transformation, elements of the Wessbas-DSL are mapped to elements of
PCM as summarized in Table 7.4. The Protocol Layer and the input parameter cannot
be modeled in PCM; this information is only required for load generators.

The GaAs and the probabilities cannot be modeled independently from each other in
PCM. Therefore, the Behavior Models and the Session Layer are combined by modeling
the GaAs of the Session Layer transitions to the transitions of the Behavior Model.

First, the PCM Repository Model generated by the performance model generator in the
previous step is loaded and for each Behavior Model of the Wessbas-DSL a new com-
ponent with a corresponding interface used to represent the relationships between the
components is generated. Furthermore, for each Markov State of a Behavior Model,
a component operation as RDSEFF (Becker/Koziolek/Reussner, 2009) is created. An
RDSEFF describes the performance relevant behavior of component operation in a way
similar to UML activity diagrams. The values of the guard conditions are passed using
input parameter.

An example, can be found in Figure 7.10. The Workload Model in Figure 7.10(a) will be
first transformed to the PCM repository model (see Figure 7.10(b)). Component1 with
the operations view items and home is a component of the SUT already generated by the
performance model generator. For behaviorModel1, a new component and an interface

Table 7.4: Mapping of Wessbas-DSL concepts to PCM Model elements

Wessbas-DSL PCM Model Elements

Session Layer FSMs Repository Model (Basic Component, RDSEFF)
Protocol Layer FSMs not required
Workload Intensity Usage Model (Open / Closed Workload)
Behavior Models Repository Model (Basic Component, RDSEFF)
Behavior Mix Usage Model (Branch)
Input Parameters not required
Guards and Actions Parameter

RDSEFF = Resource Demanding Service Effect Specification

7.6. Transformation to Performance Models 86

view

items

home

G: g1 = true

A: g1 = false

view items

home

G: g1==true

A: g1=false

G: g2>1

A: g2:=g2+1

Session Layer

view items

0.8, n (8; 0.8)

0.2;n (9; 0.9)

behaviorModel 2
behaviorModel 1

behaviorModel N

Behavior Models

Protocol Layer

Application Model

$

home

$

(a) Workload Model example

(b) PCM Repository Model example

(c) RDSEFF of behaviorModel1.view items

Figure 7.10: Exemplary transformation to PCM

are created with the RDSEFFs view items and home. The Behavior Model component
requires the interface of component1 as this component provides the system operations,
that are called during the transitions. Furthermore, behaviorModel1 requires its own
interface, as operations from the Behavior Models call themselves.

7.6. Transformation to Performance Models 87

The transitions of the current Markov State to its successors are represented within each
RDSEFF. In this way, the allowed sequence of service invocations is controlled by the
Markov States themselves. Each RDSEFF consists of one branch. Within this branch,
guards (if existing) represented as input parameters are first evaluated using guarded
branch transitions. Afterwards, for each guarded branch transition, a branch with prob-
abilistic branch transitions to the next Markov States is modeled. In case a guarded
branch transition is false, the probability of the remaining transitions must be adjusted
to 100%. As PCM cannot recalculate the probabilities based on the results of the condi-
tions dynamically, all possible guard combination outcomes are calculated first for each
RDSEFF. We exclude the case where all conditions are false, as in this case, no transition
can be chosen and the execution terminates. Since no overlapping branching conditions
are allowed in PCM, we ensure that only one of the conditions is true.

An RDSEFF example can be found in Figure 7.10. As depicted in this figure, the RDSEFF
for the Markov State view items of the generated Behavior Model component behavior-
Model1 has three guarded branch transitions representing the possible guard combination.
Assuming both guard conditions are true, the branch transition to view items has a prob-
ability of 80% and the branch transition to home has a probability of 20%. In cases where
guard g2 > 1 is false, the transition to home cannot be executed. As a result, the prob-
ability of the transition to view items is increased to 100% (respectively for transition
to view items).

Each resulting branch transition specifies the call probability and contains three different
actions:

1. The think time of this transition is modeled as specified in the Wessbas-DSL
using an InternalAction as a normal distribution with mean and deviation. In
our example, the think time is specified as a normal distribution with mean and
deviation. The normal think time can be less than zero as we use normal distributed
think times. Therefore, zero is used when the value is negative.

2. The matching operation of the modeled system components is called as an External-
CallAction. To identify the corresponding system operation, we use name mapping
between the name of the system operation and the name of the Markov State. Only
the operations of components that provide external system calls will be matched
with the Markov State names. In the transition to view items of our example the
operation view items of component1 is called as it has the same name as the next
Markov State view items.

3. The RDSEFF of this Behavior Model component representing the next Markov State
is called as ExternalCallAction. The values of the guard conditions are adapted ac-
cording to the corresponding action; in the to view items transition of our example,
the view items state is called again and the value of g1 is set to true. In the
to home transition, the state home is called and the value of g2 is increased by one.
In this way, the RDSEFFs of the Behavior Model component call themselves until
a RDSEFF without successor is reached. Then, no further call is modeled, and the
sequence terminates. In our example, home does not have a successor as there is
only a transition to the exit state.

7.7. Evaluation 88

After creating the Behavior Model components in the Repository Model, each newly
created component is allocated to the System Model and correspondingly to the Allocation
Model. A new Usage Model is generated with one probabilistic branch representing the
Behavior Mix. For each created Behavior Model component, a branch transition with the
relative frequency as call probability is created. The initial Markov State of the Behavior
Model is called within this transition. Finally, the Workload Intensity is modeled as closed
workload with (i.) the population representing the number of active sessions and (ii.) the
think time between the end and the start of a new session.

7.7 Evaluation

During evaluation, we apply our proposed extraction approach and tooling to the industry-
standard benchmark SPECjEnterprise201023 and to the World Cup 1998 access logs (Labs,
1998). This serves as an investigation of (i.) the representativeness of the extracted work-
load specifications (quantitative) and (ii.) the practicality of the approach and tooling
support (qualitative).

7.7.1 Research Questions and Methodology

We particularly investigate the following five research questions in order to evaluate our
proposed approach:

� RQ 1: How accurately do the clustering results match the input Behavior Mix?

The accuracy of the clustering is evaluated based on the fraction of misclassified
sessions over all classifications of the clustering for benchmark runs using different
Behavior Mix settings (see Section 7.7.4.1). To answer this question, classified
sessions are required.

� RQ 2: What is the impact of the clustering results on the workload characteristics
of the executed and predicted workload?

First, JMeter and PCM instances are extracted. The JMeter test plans are exe-
cuted on the SUT and the PCM instances are simulated. Afterwards, the impact
of the clustering on the workload characteristics is evaluated based on: (i.) three
session-based metrics namely, session length distribution (as number of requests per
sessions), session duration, and number of distinct session types; (ii.) a request-
based metric, namely the relative invocation frequency of all request types. Conclu-
sions about the arrival rates of requests can be drawn by looking at the invocation
frequencies of requests (see Section 7.7.4.2 and Section 7.7.4.3).

23SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official Web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

7.7. Evaluation 89

� RQ 3: How accurately do the performance characteristics of the production sys-
tem / SUT match the performance characteristics using the generated and predicted
workload?

The accuracy of the performance characteristics using the generated and predicted
workload is evaluated based on CPU utilization, response times, and heap usage.
The heap usage is only evaluated for the measured and extracted workload, as it
cannot be modeled and predicted using PCM (see Section 7.7.4.4).

� RQ 4: How accurately do the workload and performance characteristics match when
applying different workload settings to the extracted workload?

In test environments, it is often of interest to evaluate the impact of different
workload settings like increasing workload intensity or different Behavior Mixes.
Therefore, we evaluate workload and performance characteristics when these two
workload settings are changed. We use the extracted workload from RQ 2 and
RQ 3 and change the Workload Intensity and mix. The results will then be again
compared with measured characteristics extracted from the original workload (see
Section 7.7.4.5).

� RQ 5: What is the impact of GaAs on the workload and performance characteristics?

The impact of the GaAs will be evaluated by executing workloads with and without
the use of GaAs (see Section 7.7.4.6).

Ideally, these questions should be answered using logs of a real-world system to obtain
production workloads with corresponding performance measurements and a test environ-
ment for load testing. Some non-synthetic logs of real-world system are publicly available
and have been used by researchers. However, we do not have performance measurements
of these systems as well. Furthermore, we have no access to test environments of these
systems to evaluate the extracted JMeter Test Plans. Thus, we can use these publicly
available logs only to evaluate RQ2. Using synthetic logs imposes a threat to external
validity and performance measurements would also be not available. As a result, lab ex-
periments under controlled conditions is the best option for us, as we are able to evaluate
all RQs. Therefore, we select an industry standard benchmark that includes a represen-
tative workload profile.

To evaluate the approach with non-synthetic logs, we use the World Cup 1998 access
logs. As the sessions of these logs are not classified and as we do not have access to the
Web application to analyze performance characteristics, we can use these logs only for the
evaluation of RQ 2. We extract a Wessbas-DSL instance from the logs and transform it
to a JMeter Test Plan and to a PCM instance. As the World Cup Web site is no longer
available, we developed and instrumented a mock-up Website that has no functionality
and accepts all kinds of requests. We execute the extracted JMeter Test Plan on this Web
site, which enables us to measure the workload characteristics of the extracted JMeter
Test Plan. The system-specific part of the PCM Model is modeled manually and consists
of one system component and default resource demands (see Figure 7.10).

An instrumented version of SPECjEnterprise2010 is used for the evaluation of all five RQs.
Using this application we are able to measure workload and performance characteristics.

7.7. Evaluation 90

We executed the application with four different Behavior Mixes to obtain session logs.
Based on these logs, the clustering is executed and evaluated. For the Behavior Mix
extraction we applied different configurations of the X-means clustering. Afterwards, a
Wessbas-DSL instance is automatically generated from the obtained Behavior Models
as described in Section 7.4.6. The resulting GaAs are shown in the Appendix (Table 7.10).
The transformation from the instances to JMeter Test Plans is performed according to
Section 7.5. The transformation to workload specifications of PCM is applied as described
in Section 7.6. The extracted workload is executed on the same SPECjEnterprise2010
deployment in order to evaluate the workload and performance characteristics. Hence,
the same session log analysis infrastructure as used for measuring the workload can be
applied.

7.7.2 Fifa World Cup 1998 Access Logs

In order to evaluate RQ 2 with non-synthetic access logs, we used the World Cup 98 Web
site logs (Arlitt/Jin, 2000; Labs, 1998). The logs were recorded by a typical web server
over a period of about three months. Each log entry contains a unique client identifier
which may also be a proxy. To identify client sessions, we used a common timeout value
of 30 minutes (Filieri/Grunske/Leva, 2015) as threshold between two user requests (see
Section 7.4.1). During a session, the clients move from one page to another following
navigation links. The URLs of the Web site follow the form “/language/category/sub-
category/page name” where category and subcategory are not always used. For instance
“/english/competition/statistics.htm”, “/english/index. html”, and “/english/history/-
past cups/uruguay30.html” are typical URLs.

The application consists of over 32,000 pages (Filieri/Grunske/Leva, 2015). We grouped
the links into the categories and subcategories resulting in 25 groups each of which cor-
responds to a service. When no category and subcategory is used (e.g., “/english/in-
dex.html”) we use the term “mainLevel” as category.

7.7.3 SPECjEnterprise2010 Deployment

The SPECjEnterprise2010 industry benchmark deployment is used for the evaluation of
the proposed approach. SPECjEnterprise2010 is a Java EE application representing a
business case combining customer relationship management (CRM), supply chain man-
agement (SCM), and manufacturing. It includes a workload specification and a dataset
which is needed for the execution of load tests. The workload is generated by the Faban
Harness and Benchmark Driver.24 The benchmark consists of three different application
domains; namely, Orders domain (CRM), Manufacturing domain, and Supplier domain
(SCM). The Orders domain (CRM) provides a Web-based user interface representing a
standard e-commerce application with product information and a shopping cart. It drives
the demand to the Manufacturing domain, which simulates production across different
manufacturing plants. The task of the Supplier domain (SCM) is to order new parts for

24http://java.net/projects/faban/

7.7. Evaluation 91

Production System / SUT

VMware ESXi Hypervisor

Apache

Derby DB

Load Driver

1 Gbit/s

Faban Harness

 JMeter incl. Markov4JMeter

IBM System X3755M3

Virtual Machine

HotSpot JVM

JBoss AS

SPECjEnterprise2010

4 AMD Opteron 6172 processors

12 cores and 2,1 GHz

256 GB RAM

Vers. 5.1

6 vCPU and 16 GB RAM

openSuse Vers. 12.3

64 bit, Vers. 1.7.0

Vers. 7.1.1, 6 GB Heap

VMware ESXi Hypervisor

IBM System X3755M3

Virtual Machine

HotSpot JVM

4 AMD Opteron 6172 processors

12 cores and 2,1 GHz

256 GB RAM

Vers. 5.1

8 vCPU and 16 GB RAM

openSuse Vers. 12.3

64 bit, Vers. 1.7.0

Vers. 2.9.Vers. 1.03.

Figure 7.11: Hardware and software infrastructure

the Manufacturing domain. In this work, we consider only the Orders domain, which rep-
resents a typical Web-based application providing e-commerce functionality to customers;
in this case automobile dealers. Using this application, customers are able to purchase
and sell cars, to manage their accounts and dealership inventory, and to browse the cat-
alogue of cars. The Orders domain runs independently from the other two domains, as
they are mainly intended to be used as (Web-)service by other applications. It represents
the production system / SUT.

7.7.3.1 Hardware Infrastructure

The SUT and the Dealer Driver are deployed on separate virtual machines (VM), linked by
a 1 GBit/s network (see Figure 7.11). The SUT is deployed on an IBM System X3755M3
server with 6 virtual CPUs and 16 GB RAM. The Dealer Drivers also run on an IBM
System X3755M3 server VM with 8 virtual CPUs and 16 GB RAM. For the JMeter load
test, we used 3 VMs (800 User) and 4 VMs (1200 User). The application server is JBoss
7.1.1. using the Java EE 6 full profile with 6 GB heap allocated. As persistence layer,
an Apache Derby DB is used running in the same JVM as the JBoss application server.
Both systems use openSUSE operating system in version 12.3 and are executed on a 64-bit
OpenJDK 1.7.0 Server Java VM in version 1.7.0.

7.7.3.2 Workload Description

SPECjEnterprise2010 defines three different transaction types which are executed by auto-
mobile dealers: Browse (B), Manage (M), and Purchase (P). Within the transaction type
Browse, the benchmark driver navigates to the catalogue of available cars and browses the
catalogue for a constant number of thirteen times. Manage describes a scenario during
which open orders are canceled and vehicles are sold. In the more complex transaction
type Purchase, orders are placed and immediately purchased or deferred. The shopping
cart is either cleared or items are removed one by one until only one item remains. Each

7.7. Evaluation 92

login

view

items quantity

add to cart

shoppingcart

clear cart

remove

defer

order

purchase

cart

home

logout

0.67; n (1.5; 0.2)

0.11; n (4.0; 0.3)

0.1;

n (4.0; 0.3)

0.12;

n (4.0; 0.3)

0.68;

n (1.0; 0.1)

0.32;

n (1.5; 0.2)
0.58;

n (2.3; 0.2)

0.22;

n (2.3; 0.2)

0.2;

n (2.3; 0.2)

login

inventory

cancel

order

sell inventory

home

logout

0.48; n (2.0; 0.2)

0.02;

n (2.0; 0.2)

0.5; n (2.5; 0.3)

0.23; n (4.0; 0.4)

0.77;n (4.0; 0.4)

login

view

items

home

logout

0.93; n (1.6; 0.5)

0.07; n (1.5; 0.2)

purchasemanagebrowse

1.0; n (2.3; 0.2)

1.0; n (1.0; 0.1)

1.0; n (1.5; 0.2)

1.0 ; n (4.0; 0.4)

1.0; n (2.7; 0.3)
1.0; n (2.0; 0.2)

1.0; n (2.0; 0.2)

1.0; n (3.4; 0.4)

1.0; n (2.8; 0.3)

1.0; n (3.5; 0.4)

1.0 ; n (2.8; 0.3)
p: probability

n: normal think time distribution

m: mean

sd: standard deviation

p;n (m; sd)

login

view

items quantity

add to cart

shoppingcart

clear cart

remove

defer

order

purchase

cart

home

logout

0.65; n (1.5; 0.2)

0.11; n (4.0; 0.3)

0.11;

n (4.0; 0.3)0.13;

n (4.0; 0.3)

0.07; n (1.0; 0.1)

0.01;

n (1.5; 0.2)
0.54;

n (2.3; 0.2)

0.33;

n (2.3; 0.2)

0.13;

n (2.3; 0.2)

modified purchase

1.0; n (1.5; 0.2)
1.0; n (2.0; 0.2)

0.69; n (2.0; 0.2)

1.0; n (3.4; 0.4)

1.0; n (2.8; 0.3) 1.0 ; n (2.8; 0.3)

0.73;

n (5.5; 0.3)

0.2;

n (5.5; 0.3)

0.31; n (2.0; 0.2)

Figure 7.12: SPECjEnterprise2010 transactions Browse, Manage, and Purchase as Be-
havior Models. The transaction Modified Purchase is used for the evalu-
ation of RQ 5 (see Section 7.7.4.6). The probabilities are rounded to two
decimal places and the mean and standard deviation of the think times to
one decimal place.

of these transaction types corresponds to a sequence of HTTP requests. The workload in
the Faban dealer driver is not defined in a probabilistic way and only a few of the HTTP
requests are generated in a probabilistic way.

SPECjEnterprise2010 defines a total of 13 different HTTP request types, using a request
parameter called action. We additionally split the request type called View Items into
two different request types as it executes two different use cases resulting in different
resource demands; one request type is View Items and the other is View Items Quantity.
In the first use case, View Items is called to browse the catalogue of available cars. In
the second use case, only one specific item of the catalogue is selected.

Within the original dealer driver, no think times are defined between the execution of
the HTTP actions, i.e., each HTTP action is executed directly after its previous request
has been completed. Therefore, we added think times between these actions as Gaussian
distribution with mean and standard deviation. The think times are randomly specified
between mean values of one to four seconds. Figure 7.12 depicts the structure of the three
transaction types as Behavior Models, obtained by applying our Wessbas extraction
approach including the transition probabilities and the specified think times.

In the original benchmark workload, automobile dealers log in to the system, execute
multiple instances of the three transactions types, and log out. Each of the three trans-
action types is executed with a specified probability. The standard transaction mix is
50% Browse, 25% Manage, and 25% Purchase. We modified the dealer driver such that
each transaction starts with a login and ends with a logout. In this way, each transaction
corresponds to a unique session and the transaction mix corresponds to the Behavior Mix.
As a result, the transaction types define the different navigational patterns.

7.7. Evaluation 93

Table 7.5: Clustering results

X-means (min 3 cluster, max 3 cluster) X-means (min 2 cluster, max 20 cluster)

ED NED ED NED

TM T C1 C2 C3 MC C1 C2 C3 MC C1 C2 MC C1 C2 C3 C4 MC N

50 B 10,346 0 0

3.03%

10,346 0 0

0%

10,346 0

24.64%

0 10,346 0 0

0.96% 19,89025 M 0 0 5,230 0 0 5,230 0 5,230 0 0 199 5,031

25 P 0 4,468 625 0 5,093 0 0 5,093 5,093 0 0 0

25 B 0 0 5,077

16.48%

5,077 0 0

0%

0 5,077

24.91%

0 0 0 5,077

0.89% 20,39525 M 0 5,081 0 0 0 5,081 5,081 0 182 4,899 0 0

50 P 6,875 3,362 0 0 10,237 0 10,237 0 0 0 10,237 0

25 B 0 5,092 0

2.99%

5,092 0 0

0%

5,092 0

24.72%

0 0 0 5,092

1.62% 20,12550 M 10,058 0 0 0 0 10,058 0 10,058 326 9,732 0 0

25 P 586 0 4,389 0 4,975 0 0 4,975 0 0 4,975 0

34 B 0 0 6,917

4.1%

0 0 6,917

0%

0 6,917

32.9%

0 0 0 6,917

1.16% 20,47033 M 6,818 0 0 6,818 0 0 6,818 0 6,581 237 0 0

33 P 840 5,895 0 0 6,735 0 6,735 0 0 0 6,735 0

7.7.3.3 Benchmark Execution and Monitoring

Four different transaction mixes are used to evaluate the proposed approach. For each
mix, one of the transaction types is executed with a probability of 50% and the other two
with 25% each. Additionally, a mix is chosen where the proportions of the transaction
types are equal. A load of 800 concurrent users is executed, resulting in a moderate
CPU utilization of the SUT of approximately 30%. Each benchmark run is executed for
twelve minutes after a three minute ramp-up phase and before a three minute ramp-down
phase. We extract the system-specific parts of the performance model (as described in
Section 7.6.2) using the original workload mix once. This part of the performance model
will be reused during the evaluation.

The SUT is instrumented using Kieker (van Hoorn/Waller/Hasselbring, 2012) to obtain
the raw session information. Each request is recorded and afterwards transformed to a
session log (see Section 7.4.1). During the transformation, we only take complete sessions
during steady state into account; meaning, sessions starting with a login request after
the ramp-up phase and ending with a logout request before the ramp down phase. Thus,
incomplete sessions are removed. In order to be able to evaluate the clustering results
of the transaction types, the name of the transaction type is added as an additional
parameter to the login HTTP action.

We use the same procedure to predict the performance with PCM. However, as PCM
does not provide a unique session identifier for interrelated requests, we cannot remove
incomplete sessions during steady state. As a result, the predicted request counts are a
little bit higher than the measured ones.

7.7. Evaluation 94

7.7.4 Evaluation Results

7.7.4.1 Accuracy of Clustering

The evaluation of clustering accuracy (RQ 1) is split into two steps. In the first step,
the accuracy of the clustering is determined based on the assumption that the number of
resulting clusters is known in advance. For this reason, the number of resulting clusters
is fixed to three. As the number of clusters is usually not known in advance, we let the
X-means algorithm determine that number in a second step. Since the seed value for the
random selection of the initial centroids can have a high impact on the clustering results,
multiple clustering runs are executed with different seed values between one and twelve.
Afterwards, the run with the lowest sum of squared error value (Pelleg et al., 2000) is
selected.

The results of the clustering are presented in Table 7.5. For each TM, the clustering
shows for each T the cluster (Cx) to which a transaction is assigned, and the percentage
of misclassified (MC) transactions. The left side of the table shows the results of exactly
three predefined clusters (step one); the right side shows the results of letting X-means
determine the number of clusters between two and twenty (step 2). The number of
transactions (N) clustered for each transaction mix is around 20, 000.

The results of using exactly three clusters indicate that the clustering with use of NED is
able to cluster all transactions correctly (100%), resulting in the Behavior Models shown
in Figure 7.12. The clustering using ED without normalization classifies the transac-
tions Browse and Manage correctly, whereas a fraction of transactions of type Purchase
is assigned mistakenly to the same cluster as the Manage transactions. In the second
transaction mix, the fraction of Purchase transactions is higher than in the other mixes.
Hence, the percentage of misclassified transactions is high (16.48%). As a result, the clus-
tering using ED is not able to cluster all transactions correctly, although each transaction
comprises unique states.

The clustering without predefining the correct number of clusters always results in two
clusters using ED and four clusters using NED. As clustering with ED always merges
transactions of type Purchase and Manage, the percentage of misclassified transactions is
between 25% and 33%. It is assumed that the transaction type with the lower number
of instances merged within one cluster counts as misclassified. The clustering using NED
always correctly classifies Browse and Purchase transactions whereas Manage transactions
are always split into two clusters. Hence, the percentage of misclassified transactions is
very low (around 1%) for all transaction mixes.

Transactions of type Browse seem to be homogeneous in a way that they are clustered
correctly among all clustering runs. This can be explained as Browse transactions are
executed with a constant number of actions without probabilistic behavior. NED is better
suited for clustering the different transaction types than the non-normalized version. The
normalization has the effect that high transaction counts, and therefore also the session
lengths, have a lower impact on the clustering. Thus, the structure of the transactions
in terms of the number of different HTTP requests grows in significance. As each of the

7.7. Evaluation 95

three transaction types consists of different HTTP request types (except for login, home
and logout), the clustering results are significantly better.

7.7.4.2 Accuracy of World Cup 1998 Workload Characteristics

We investigate research question RQ 2, by analyzing the impact of the clustering results
on server-side session-based and request-based metrics (mentioned in Section 7.7.1) for the
original measurements with the corresponding metrics obtained by executing extracted
workload specifications using JMeter and PCM. In this section we present the results of
the non-synthetic World Cup 1998 logs. In Section 7.7.4.3 the accuracy of the workload
characteristics of SPECjEnterprise2010 is presented.

We analyzed the logs of day 42 of the World Cup in English language. We identified
53,644 sessions and in total 511,824 page requests. The logs are analyzed as described in
Section 7.7.2 and a Wessbas instance is created. During the transformation no GaAs
could be identified, as the Website is created in way that each Web site can be accessed
by all other Web sites. We clustered the logs using X-means clustering with a minimum
of 2 clusters and a maximum of 20 clusters with NED distance metric resulting in four
clusters. The relative frequency of each request type per cluster can be found in Table 7.6.

The average session lengths within the cluster range from 7.58 (C4) to 13.28 (C2) re-
quests and the number of sessions per cluster range from 3,447 (C3) to 21,205 (C2). The
clusters differentiate primarily in the four request groups mainlevel, /teams, /news, and
/competition, which make up 86% of all requests.

The users of the first cluster search mainly for teams and navigate less on the main
level. In the second cluster, the users navigate on the main level and on teams’ pages.
In the third cluster, the users request news pages and fewer on pages from the request
type teams. The fourth cluster contains mainly users browsing on the main level and on
pages of category competition. Users of the fourth cluster have the lowest session length.
Overall, we can see that the clustering is able to identify different kinds of user groups.

The Wessbas instance is then transformed into a JMeter Test Plan and executed against
the mock-up Web site (see Section 7.7.1) to measure the workload characteristics. More-
over, a PCM instance will be generated and simulated. The results are presented in the
following.

Session-Based Metrics.

The session-based statistics are only compared against JMeter metrics as PCM does not
generate unique identifiers for interrelated user actions. The evaluated session statistics
can be found in Table 7.7.

The mean values and the 0.95 confidence interval indicate that both distributions are
very similar. The number of distinct sessions of the extracted workload is with 27,548
also similar to 22,605 of the original workload. The difference in the number of distinct

7.7. Evaluation 96

Table 7.6: World Cup 1998 Logs: Relative frequency of each request category per cluster

Category C1 C2 C3 C4

mainlevel 11.08% 31.79% 35.22% 55.67%
/teams 60.96% 48.10% 14.56% 11.68%
/news 14.03% 8.22% 18.07% 8.26%

/competition 5.34% 5.81% 8.02% 16.11%
/enfetes 0.96% 1.28% 3.05% 1.43%
/playing 0.98% 0.76% 3.27% 1.11%

/playing/download 0.61% 0.35% 2.77% 0.59%
/history/past 1.00% 0.52% 2.46% 0.62%

/tickets 0.71% 0.50% 2.29% 0.79%
/playing/mascot 0.52% 0.46% 2.14% 0.66%

/venues 0.39% 0.30% 1.31% 0.49%
/venues/cities 0.82% 0.32% 1.15% 0.36%

/history 0.38% 0.28% 1.00% 0.33%
/help 0.24% 0.23% 0.74% 0.37%

/hosts/cfo 0.23% 0.18% 0.77% 0.28%
/member 0.16% 0.21% 0.63% 0.34%

/hosts/suppliers 0.49% 0.07% 0.66% 0.34%
/venues/venues 0.46% 0.23% 0.59% 0.23%

/history/history 0.19% 0.14% 0.51% 0.16%
/individuals 0.31% 0.16% 0.29% 0.05%

/hosts/fifa 0.02% 0.05% 0.16% 0.05%
/hosts/sponsors 0.04% 0.02% 0.15% 0.04%

/history/reading 0.02% 0.02% 0.10% 0.03%
/hosts/fff 0.02% 0.01% 0.06% 0.02%

/playing/rules 0.01% 0.00% 0.01% 0.00%

sessions 3,447 8,492 21,205 20,500
avg session length 8.43 13.28 10.12 7.58

Table 7.7: Summary statistics of session lengths

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Orig. 1 4 6 9.54 [9.37, 9.72] 11 1,972 53,644

NED-4 1 3 7 9.51 [9.43, 9.58] 13 91 53,326

7.7. Evaluation 97

sessions comes from the fact that within the original workload, sessions with a very high
number of user requests have been measured; at maximum 1,972 in the original workload
compared to 91 in the extracted workload. This can be explained as the unique client
identifier in the original non-synthetic access logs could also include requests from a proxy
comprising multiple users. In contrast, in the extracted workload the session lengths is
evenly distributed.

Summarizing, the session-based metrics are similar and differentiate mainly by the fact
that the original workload contains very long sessions caused by proxies.

Request Counts.

In Table 7.8, the request counts of the measured (Orig.) are compared to the request
counts of the executed (JMeter) and simulated (PCM) workloads. For the request counts,
an almost exact match can be found for the 25 request groups. The deviation in the form
of the sum of squared errors is zero. Thus, the server-side request counts are representative
compared to the original workload.

Table 7.8: Absolute and relative (Rel.) request counts

Category Orig. JMeter PCM Rel.

mainlevel 201,167 199,569 199,165 0.39
/teams 121,354 120,043 119,871 0.24
/news 64,966 64,151 64,006 0.13

/competition 50,354 50,134 49,135 0.10
/enfetes 10,503 10,249 10,256 0.02
/playing 9,875 10,043 9,866 0.02

/playing/download 7,429 7,449 7,265 0.01
/history/past 7,096 7,066 6,813 0.01

/tickets 6,922 6,708 6,791 0.01
/playing/mascot 6,299 6,134 6,495 0.01

/venues 4,014 3,928 3,929 0.01
/venues/cities 3,633 3,661 3,726 0.01

/history 3,088 2,983 3,081 0.01
/help 2,505 2,381 2,449 0.00

/hosts/cfo 2,340 2,333 2,296 0.00
/member 2,165 2,174 2,203 0.00

/hosts/suppliers 2,164 2,168 2,061 0.00
/venues/venues 2,008 2,063 2,009 0.00

/history/history 1,557 1,400 1,633 0.00
/individuals 950 863 974 0.00

/hosts/fifa 489 509 471 0.00
/hosts/sponsors 428 458 394 0.00

/history/reading 288 264 301 0.00
/hosts/fff 189 222 153 0.00

/playing/rules 41 49 31 0.00

sum 511,824 507,002 505,374 1.00

7.7. Evaluation 98

7.7.4.3 Accuracy of SPECjEnterprise2010 Workload Characteristics

In this section, we also evaluate RQ 2, but this time with the synthetic logs generated
by SPECjEnterprise2010 which serves to increase the external validity. The session-based
statistics are again compared only against JMeter metrics (see Section Section 7.7.4.2).
We present the results of the original benchmark Behavior Mix (25% P, 50% B, and 25%
M), using the X-means clustering algorithms results with 2 (ED), 3 (NED), and 4 (NED)
clusters (entries for the bottom TM in Table 7.5).

Session-Based Metrics.

Statistics about the session length distributions of the original and the three synthetic
workloads are shown in Figure 7.13. Figure 7.13(a) depicts the four distributions as violin
plots. Looking only at the mean values and the 0.95 confidence interval (Figure 7.13(b)),
one may conclude that the session length distributions of the three synthetic workloads
exactly match the distribution of the original workload. However, particularly the vio-
lin plot (Figure 7.13(a)) indicates that the synthetic distributions are similar but differ
considerably from the original workload.

The quartile-based statistics in Figure 7.13(b) confirm this observation. The same obser-
vation can be made for the distribution of session durations in seconds (Figure 7.13(c)
and Figure 7.13(d)). Very long sessions for the synthetic workloads are generated. While
for the original workload the longest sessions comprise 26 requests, the synthetic sessions
reach maximums of 112, 107, and 129.

In the original workload, we identified 78 distinct sessions. The number of distinct sessions
in the synthetic workloads is considerably higher, namely 1056 (2 clusters), 1004 (3 clus-
ters), 960 (4 clusters). The relatively low number of distinct session types is caused by the
fact that the original SPECjEnterprise2010 workload contains few probabilistic elements,
which are all bounded in the number of maximum iterations (cf. Section 7.7.3.2). For
instance, the view items request in the browse transaction is executed exactly thirteen
times. Hence, the maximum number of possible distinct sessions is countable. In our pre-
vious work (van Hoorn et al., 2014) the number of distinct sessions is around 2, 000. The
number of distinct sessions is lower in this paper as GaAs reduce the number of invalid
sessions.

The described session length distributions of the synthetic workloads imply the high
number of distinct sessions. Inspecting the structure of the synthetic sessions, we observed
the following recurring patterns: (i.) sell inventory+, (ii.) inventory+, (iii.) view items+,
(iv.) (view items quantity, add to cart)+, (v.) (view items quantity, add to cart, shopping
cart, clear cart)+. These patterns can be explained by the corresponding transitions
with high probabilities already indicated by the probabilities of the original workload
depicted in Figure 7.12.

Considering the setting for SPECjEnterprise2010, the following conclusions can be drawn
about the impact of the clustering results on the session-based metrics session length and
number of distinct session types. Firstly, no statistically significant differences between

7.7. Evaluation 99

0 20 40 60 80 100 120

O
rig

.
E

D
−

2
N

E
D

−
3

N
E

D
−

4

●

●

●

●

Session length (number of requests)

(a) Violin plot of session lengths

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Orig. 4 10 17 14.18 [14.12, 14.24] 17 26 19,890
ED-2 4 7 10 13.96 [13.81, 14.11] 17 112 20,119

NED-3 4 7 10 13.88 [13.73, 14.02] 17 107 20,358
NED-4 4 7 10 13.96 [13.82, 14.11] 17 129 20,299

(b) Summary statistics of session lengths

0 50 100 150 200

O
rig

.
E

D
−

2
N

E
D

−
3

N
E

D
−

4

●

●

●

●

Session duration (seconds)

(c) Violin plot of session durations

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Orig. 6.40 25.09 26.20 27.05 [26.95, 27.14] 27.56 57.08 19,890
ED-2 4.05 14.23 21.74 26.97 [26.71, 27.24] 34.29 177.90 20,119

NED-3 3.87 14.03 21.43 26.63 [26.37, 26.89] 33.64 177.60 20,358
NED-4 3.88 14.03 21.50 26.79 [26.53, 27.05] 34.13 206 20,299

(d) Summary statistics of session durations (in seconds)

Figure 7.13: 800U-50B/25P/25M: Session length and duration statistics for the original
workload (Orig.) and the synthetic workloads (ED-2, NED-3, NED-4)

7.7. Evaluation 100

Request Orig. ED-2 NED-3 NED-4 Rel.

1 add to cart 20,625 21,474 21,129 21,217 0.07
2 cancel order 191 198 176 168 0.00
3 clear cart 1,932 21,29 2,011 1,976 0.01
4 defer order 2,236 2,228 2,218 2,312 0.01
5 home 19,371 20,119 20,358 20,299 0.07
6 inventory 10,034 10,273 10,136 10,064 0.04
7 login 19,890 20,119 20,358 20,299 0.07
8 logout 19,372 20,119 20,358 20,299 0.07
9 purchase cart 2,682 2,780 2,873 2,795 0.01
10 remove 923 660 675 723 0.00
11 sell inventory 21,949 22,703 21,854 21,653 0.08
12 shopping cart 2,855 2,789 2,686 2,699 0.01
13 view items 139,370 133,766 136,529 137,723 0.49
14 view items quantity 20,625 21,474 21,129 21,217 0.07

(a) Absolute and relative (Rel.) counts (JMeter)

Request Orig. ED-2 NED-3 NED-4 Rel.

1 add to cart 20,625 22,416 22,466 21,936 0.07
2 cancel order 191 217 165 208 0.00
3 clear cart 1,932 2,094 2,222 2,062 0.01
4 defer order 2,236 2,425 2,379 2,275 0.01
5 home 19,371 21,131 21,190 20,990 0.07
6 inventory 10,034 10,703 10,656 10,932 0.04
7 login 19,890 21,128 21,190 20,997 0.07
8 logout 19,372 21,128 21,190 20,997 0.07
9 purchase cart 2,682 2,806 2,919 2,840 0.01
10 remove 923 711 713 692 0.00
11 sell inventory 21,949 23,867 23,552 23,807 0.08
12 shopping cart 2,855 2,808 2,939 2,755 0.01
13 view items 139,370 146,637 146,903 148,698 0.49
14 view items quantity 20,625 22,425 22,472 21,930 0.07

(b) Absolute and relative (Rel.) counts (PCM)

Figure 7.14: 800U-50B/25P/25M: Request count statistics

the synthetic workloads for two, three, and four clusters in the summary statistics from
Figure 7.13 can be observed. Secondly, both the session length distributions and the num-
ber of distinct sessions deviate from the characteristics of the original workload. Thirdly,
the deviation of the session length distributions is mainly caused by a number of synthetic
long sessions. Lastly, the mean value shows no statistically significant difference.

Request Counts.

Figure 7.14 depicts statistics about the frequency of invoked requests using JMeter and
PCM, based on the absolute numbers of requests to the 14 SPECjEnterprise2010 request
types. We compared the request counts of the original workload with the request counts
of the three different clustering settings executed with JMeter and simulated with PCM.

As in Section 7.7.4.2, an almost exact match of the relative frequencies could be observed.
Hence, from the server-perspective, the synthetic SPECjEnterprise2010 is representative
in terms of the distributions of requests.

7.7. Evaluation 101

0
10

20
30

40
50

60

Faban JMeter PCM

● ●
●

● ●

●

●

1−idle
user

C
P

U
 U

til
iz

at
io

n
in

 %

(a) Violin plots

Mean ± CI0.95 Std. dev. Median N

Faban (1-idle) 33.67 ± 0.22 0.92 33.62 72

Faban (user) 31.06 ± 0.21 0.89 31.02 72
JMeter (1-idle) 33.99 ± 0.38 1.63 33.66 72

JMeter (user) 31.36 ± 0.37 1.60 31.01 72

PCM 29.84 ± 0.10 0.41 29.80 72

(b) Summary Statistics

Figure 7.15: 800U-50B/25P/25M: CPU utilization statistics

7.7.4.4 Accuracy of Performance Metrics

In this section, performance characteristics of the SUT using the original workload are
compared with resulting performance characteristics using the extracted and simulated
workload (RQ 3). We analyze the resulting CPU utilization, server-side response times
per request type and the heap usage (only Faban compared to JMeter). The results using
the original benchmark Behavior Mix (50% B, 25% P, and 25% M) with 3 (NED) clusters
are presented.

CPU Utilization.

Figure 7.15(a) illustrates the resulting CPU utilization using Faban Harness, JMeter, and
PCM as violin plots. We measured the CPU utilization every 10 seconds using the Linux
command line tool System Activity Reporter (SAR)25. The CPU utilization for the load
driver is split into overall CPU utilization (1-idle) and user CPU utilization. As illustrated
in Figure 7.15(b), the original workload using Faban resulted in a mean CPU utilization of
33.67% (1-idle) and 31.06% (user). The mean CPU utilization of JMeter is almost similar
with 33.99% (1-idle) and 31.36% (user). However, the standard deviation using JMeter
is higher. The predicted CPU utilization using PCM is 29.84%. This is a prediction
error of 11.4% in relation to the overall utilization and of 3.92% compared to the user
CPU utilization. The difference can be explained by the fact that the used performance
model generator (Brunnert/Vögele/Krcmar, 2013) neglects the system utilization. The
deviation of the predicted CPU demands is very low.

25http://linux.die.net/man/1/sar

7.7. Evaluation 102

Server-side Response Times.

The resulting server-side response times in milliseconds per request type can be found in
Figure 7.16. The predicted mean response times using PCM are similar to the response
times using Faban, but indicate very low response time deviations. As the generated
performance model simulates average CPU demands per request type, the low deviation
was expected (compare Section 7.6.2).

Comparing the response times of Faban with JMeter, the mean response times and the
deviation are similar except for purchase cart and cancel order. The mean response times
of purchase cart requests is with 16.85 ms considerably higher than the mean response
times using the original workload (10.21 ms). Furthermore, the deviation is higher because
the number of purchased items using JMeter can be considerably higher than in the
original workload. In the original workload, a maximum of five items is purchased. As
the extracted workloads are generated in a probabilistic way, the number of add to cart
executions before the purchase cart request is not limited.

The reason why the mean response time of the cancel order requests is lower is similar.
Before the request is executed, the original workload checks if open orders exist. As
JMeter generates these requests in a probabilistic way, it is possible that no open orders
exist. Thus, the response times and the deviation are lower. This could be manually fixed
by adding an additional guard condition into JMeter, which checks if open orders exist.
However, this kind of conditions cannot be extracted in an automatic way.

0 5 10 15 20 25 30

view items quantity

view items

shopping cart

sell inventory

remove

purchase cart

logout

login

inventory

home

defer order

clear cart

cancel order

add to cart

0 5 10 15 20 25 300 5 10 15 20 25 30

PCM

JMeter

Faban

Response time (milliseconds)

Figure 7.16: 800U-50B/25P/25M: Server-side response time statistics

7.7. Evaluation 103

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

Elapsed time (seconds)

H
ea

p
U

sa
ge

 in
 G

ig
ab

yt
es

Faban
JMeter
regression
max heap

(a) Usage over time

Mean ± CI0.95 Stddev. Median N

Faban 2.35 ± 0.15 0.64 2.35 72

JMeter 2.23 ± 0.16 0.66 2.23 72

(b) Summary Statistics

Figure 7.17: 800U-50B/25P/25M: Memory usage statistics (with Faban initialization)

Heap Usage.

We additionally analyzed the heap usage of the original workload compared to the ex-
tracted workload (see Figure 7.17). As the Faban benchmark driver executes several read
and write operations on the database (Faban initialization) before the ramp-up phase,
the heap usage increases by approximately one gigabyte. In order to make the heap usage
comparable, we also executed the Faban initialization phase before we started JMeter.
As shown in Figure 7.17(b) the resulting mean heap usage of Faban (2.35 GByte) and
JMeter (2.23 GByte) are very similar. Additionally, the regression lines run in parallel
(see Figure 7.17(a)) on the same level.

7.7.4.5 Accuracy of Changing Workload Settings

In this section we describe scenarios in which the settings of the extracted workloads
are changed (RQ 4). These workloads are executed (respectively simulated) and then
again compared with the workload and performance characteristics from a Faban run.
In this way, we evaluate the accuracy of the extracted workload models under changed
settings. In the first scenario we increase the Workload Intensity only and in the second
we increase the intensity and change the workload mix. In the following we present the
relevant analysis.

Increasing Workload Intensity.

For the first scenario, we conducted the same experiment as before (standard benchmark
mix, 3 (NED) clustering) but increased the Workload Intensity from 800 users to 1200
users. We first analyzed the workload characteristics. As the session-based and request-

7.7. Evaluation 104

0
10

20
30

40
50

60

Faban JMeter PCM

●
●

●

● ●

●

●

1−idle
user

C
P

U
 U

til
iz

at
io

n
in

 %

(a) Violin plots

Mean ± CI0.95 Stddev. Median N

Faban (1-idle) 48.39 ± 0.29 1.22 48.18 72

Faban (user) 44.48 ± 0.27 1.13 44.36 72
JMeter (1-idle) 47.77 ± 0.24 1.04 47.74 72

JMeter (user) 43.35 ± 0.23 0.98 43.43 72

PCM 44.85 ± 0.14 0.58 44.84 72

(b) Summary Statistics

Figure 7.18: 1200U 50B 25P 25M: CPU utilization statistics

based metrics are almost identical to the run with 800 users (except for the higher number
of sessions and requests) we will not present these metrics here.

The CPU utilizations increased by approximately 15% compared to the run with 800 users
(Figure 7.18). The statistics show that the mean CPU utilizations of Faban (48.39%) and
JMeter (47.77%) are again quite similar. The relative prediction error of PCM compared
to the overall utilization of Faban is 7.3% and 0.01% for the user CPU utilization. Thus,
the prediction error decreases compared to the run with 800 users.

The resulting server-side response times of Faban and JMeter increase by approximately
30% (Figure 7.19). Again, the response times are similar except for cancel order and
purchase cart. The relative error for purchase cart requests is increased to 94% compared
to Faban. The predicted response times are only increased by approximately 2% and are
somewhat lower than the response times caused by the Faban load driver.

Increasing Workload Intensity and Changing Behavior Mix.

In the second scenario, we additionally changed the Behavior Mix in a way that the
proportion of the transaction types are of almost equal size (34% B, 33% P, and 33% M).

Figure 7.20 shows that the mean session length decreases slightly to a mean of 13.30
compared to the original workload mix (14.18). In contrast, the mean session duration
increases slightly from 27.05 to 27.26 seconds. Again, metrics generated by Faban and
JMeter are very similar. By comparing the request count statistics (Figure 7.21) it can

7.7. Evaluation 105

0 5 10 15 20 25 30

view items quantity

view items

shopping cart

sell inventory

remove

purchase cart

logout

login

inventory

home

defer order

clear cart

cancel order

add to cart

0 5 10 15 20 25 300 5 10 15 20 25 30

PCM

JMeter

Faban

Response time (milliseconds)

Figure 7.19: 1200U-50B/25P/25M: Server-side response time statistics

be seen that the relative error compared to the overall number of requests is again zero.
This can be seen as the same bars are used for Faban, JMeter, and PCM.

The CPU utilization using the extracted workload decreases to 41.17% (1-idle) compared
to the first scenario. The CPU utilization is very similar to the original workload 42.28%
(see Figure 7.22). The prediction error of PCM increases to 12.7% compared to the
overall utilization and 4.1% compared to the user CPU utilization. The response times
are almost the same as in the first scenario and are therefore not shown (but are included
in the supplementary material).

As a result, we can see that the workload and performance characteristics of the ex-
tracted workload and the simulated workload are comparable to the original workload
when settings are changed in terms of Workload Intensity and Behavior Mix.

7.7.4.6 Impact of Guards and Actions

In the previous experiments the GaAs do not have a high impact on the workload char-
acteristics. This results from the fact that the transactions of SPECjEnterprise2010 are
designed in a way that no invalid user sequences are allowed. The only invalid user se-
quence can occur in the Purchase transaction. In this transaction, more items can be

7.7. Evaluation 106

0 50 100 150

Fa
ba

n
JM

et
er

●

●

Session length (number of requests)

(a) Violin plot

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Faban 4 10 13 13.30 [13.25, 13.36] 17 26 29,558
JMeter 4 7 10 13.20 [13.08, 13.31] 16 154 29,746

(b) Summary statistics

0 50 100 150 200 250

Fa
ba

n
JM

et
er

●

●

Session duration (seconds)

(c) Violin plot

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Faban 6.58 23.62 26.28 27.26 [27.17, 27.35] 29.55 62.55 29,558
JMeter 3.88 14.95 22.33 27.40 [27.19, 27.60] 34.32 256.20 29,746

(d) Summary statistics

Figure 7.20: 1200U-34B/33P/33M:

7.7. Evaluation 107

view items quantity

view items

shopping cart

sell inventory

remove

purchase cart

logout

login

inventory

home

defer order

clear cart

cancel order

add to cart

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

(a) Relative counts (common to JMeter, Faban and PCM)

Figure 7.21: 1200U-34B/33P/33M: Request count statistics

0
10

20
30

40
50

60

Faban JMeter PCM

●
● ●

●
●

●

●

1−idle
user

C
P

U
 U

til
iz

at
io

n
in

 %

(a) Violin plots

Mean ± CI0.95 Stddev. Median N

Faban (1-idle) 42.28 ± 0.27 1.16 42.12 72
Faban (user) 38.49 ± 0.22 0.92 38.42 72

JMeter (1-idle) 41.17 ± 0.27 1.16 40.91 72
JMeter (user) 37.46 ± 0.24 1.04 37.28 72

PCM 36.91 ± 0.15 0.64 36.95 72

(b) Summary Statistics

Figure 7.22: 1200U-34B/33P/33M: CPU utilization statistics

7.7. Evaluation 108

removed from the shopping cart than items have previously been added to the shopping
cart.

Thus, we manually modify the Purchase transaction in a way that it represents a more
challenging scenario. In order to achieve this, we added artificial sessions to the session
log extracted with 800 users (50% B, 25% M, 25% P). These sessions contain adapted
sequences of user requests. During these user requests the purchase cart request is never
called when the shoppingcart is empty. These sessions comprise three new transitions:
from view item quantity to shoppingcart, from shoppingcart to purchase cart, and from
shoppingcart to defer order. Afterwards, we generated a new Wessbas-DSL instance,
again including the learning of GaAs and the calculation of the conditional probabilities
(see Section 7.4.5). The resulting Modified Purchase (MP) transaction can be found in
Figure 7.12. As the GaAs do not have any impact on the Browse and Manage transactions,
we set the proportion of Modified Purchase to 100%. Afterwards, a new JMeter Test Plan
is generated.

To validate the impact of the automatically learned GaAs, we execute two experiments
with JMeter:

1. withGAA: The workload is executed with the new settings using GaAs and calcu-
lated conditional probabilities (see Section 7.4.5).

2. withoutGAA: The guards and action are removed and the originally measured tran-
sition probabilities are included. Then, the experiment is executed again.

Request Counts.

The request counts of the experiments are depicted in Table 7.9. The relative frequencies
of the requests are almost exactly the same for the two experiments withGAA and with-
outGAA. This indicates that the combination of GaAs and conditional probabilities lead
to the same request count distribution.

We also included the request counts that would result when experiment withGAA is exe-
cuted using the originally measured transition probabilities (withGAA (OP)) and not the
conditional probabilities. In this case, the request counts would be considerable different
from the originally measured request counts. Especially, the proportion of requests to
add to cart is with 21.9% considerably different from the originally measured proportion
(16.2%). The results of this experiment emphasize that the calculation of conditional
probabilities is required.

Session-Based Metrics.

As we can see in Figure 7.23, the mean session length of withGAA match with 7.92 exactly
the mean session length of withoutGAA. The main difference is the number of distinct
sessions. The experiment withGAA resulted in 182 distinct sessions and withoutGAA
resulted in 333. This can be explained because in withoutGAA invalid sequences like
login, view items quantity, shopping cart, purchase cart occur quite often. The GaAs
prevent that a purchase cart request is called without having called add to cart before.

7.7. Evaluation 109

Table 7.9: 800U-0B/100MP/0M: Request count statistics (JMeter)

Request withGAA withoutGAA withGAA (OP)

1 add to cart 38,596 0.162 38,720 0.162 57,762 0.219

2 clear cart 1,188 0.005 1,224 0.005 946 0.004

3 defer order 8,571 0.036 8,582 0.036 9,682 0.037

4 home 30,079 0.126 30,251 0.126 30,048 0.114

5 login 30,079 0.126 30,251 0.126 30,048 0.114

6 logout 30,079 0.126 30,251 0.126 30,048 0.114

7 purchase cart 21,508 0.090 22,137 0.092 20,212 0.077

8 remove 155 0.001 168 0.001 122 0.000

9 shopping cart 21,923 0.092 21,669 0.090 17,064 0.065

10 view items quantity 56,191 0.236 56,328 0.235 68,629 0.260

10 20 30 40

w
ith

G
A

A
w

ith
ou

tG
A

A

●

●

Session length (number of requests)

(a) Violin plots for session lengths

Min. Q1 Med. Mean CI0.95 Q3 Max. N

withoutGAA 6 6 7 7.92 [7.89, 7.95] 9 34 30,251
withGAA 6 7 8 7.92 [7.90, 7.95] 8 45 30,079

(b) Summary statistics of session lengths

Figure 7.23: 800U-0B/100MP/0M: Session length statistics for withGAA compared to
withoutGAA

7.7. Evaluation 110

10
15

20
25

30

●

●

●

●

withGAA withoutGAA

●

●

1−idle
user

C
P

U
 U

til
iz

at
io

n
in

 %

(a) Violin plots

Mean ± CI0.95 Stddev. Median N

withGAA

JMeter (1-idle) 20.26 ± 0.30 1.26 19.82 72
JMeter (user) 16.81 ± 0.27 1.13 16.43 72

withoutGAA

JMeter (1-idle) 18.40 ± 0.28 1.18 18.14 72
JMeter (user) 15.42 ± 0.26 1.09 15.26 72

(b) Summary Statistics

Figure 7.24: 800U-0B/100MP/0M: CPU utilization statistics

CPU Utilization.

Figure 7.24 illustrates that the mean overall CPU utilization of withoutGAA generated
by JMeter decreases by 9.18% from 20.26% withGAA to 18.40%. This can be explained
as in the experiment withoutGAA the action purchase cart is often called when no items
are in the shopping cart.

Server-side Response Times.

The results of the server-side response times (see Figure 7.25) confirm the results so
far. The response times of the request type defer order and purchase cart are higher in
the experiment withGAA. Especially, the mean response time of purchase cart increased
significantly from 10.5 ms withGAA to 14.7 ms withoutGAA.

To summarize, the GaAs can have a high impact on performance evaluation results,
depending on the control flow of the user actions. Using the conditional probabilities
in combination with the GaAs the workload characteristics are similar to the originally
measured workload characteristics. Only the number of distinct sessions is lower as invalid
user sequences are not possible. We evaluated the impact of the GaAs only against JMeter
as the performance model generator only uses average CPU values per request type and
does not consider parametric dependencies like the number of items in the shopping
cart. This results in the fact that the simulated CPU demands are the same regardless
of whether items are in the shopping cart or not. Therefore, using a PCM model that
considers this parametric dependencies, would result in similar results.

7.7. Evaluation 111

view items quantity

shopping cart

remove

purchase cart

logout

login

home

defer order

clear cart

add to cart

0 5 10 15 200 5 10 15 20

withoutGAA

withGAA

Response time (milliseconds)

Figure 7.25: 800U-0B/100MP/0M: Server-side response time statistics

7.7.5 Threats to Validity

A threat to external validity (Wohlin et al., 2012) is that we only selected one common load
generator tool and one architecture-level performance evaluation tool for the evaluation.
We claim that we can use the Wessbas-DSL for other performance evaluation tools as
well, which enable the specification of probabilistic workloads and GaAs. It might be that
extensions of these tools are required, as described in the case of JMeter. In our future
work, we will evaluate the use of other tools as well.

Another threat to validity is that we modified the dealer driver of SPECjEnterprise2010
whereby we assigned (see Section 7.7.3.2), exactly one session to a transaction. In real
world applications, users will usually not behave in this way. Instead, users will execute
multiple transactions in one session, they will leave sessions without logging out of the
system, or they take long breaks between user actions and reach session time outs. How-
ever, the way we split the transactions into sessions, we are able to evaluate the impact
of different clustering settings on the accuracy of the results. This way we found out that
X-means is easier to use than K-means and that NED is better suited to identify different
transactions than ED. To overcome this threat, we also applied the clustering setting with
the lowest classification error to the non-synthetic access logs of the World Cup 1998 Web
site. Hence, we could show that the Wessbas approach can also be applied to real world
application.

7.7. Evaluation 112

A threat to construct validity is that our selected workload settings do not drive the SUT
in overload situations. We chose moderate CPU utilization between 30% and 50% as in
many production systems CPU utilizations are often in this moderate load situation.

To ensure conclusion validity we used multiple statistical metrics like absolute counts,
relative proportions, means, medians, and standard deviations. Furthermore, we used
violin and bar plots to visualize the distribution of the measurement results. As in the
example in Figure 7.13(c), the mean values can be similar but the deviations significantly
differ from each other.

As we introduced the concept of GaAs in the workload model, the memoryless property
of the Markov chains is lost. Therefore, to ensure that the average behavior extracted
from the session logs is kept, we calculated and added conditional probabilities to the
Behavior Models. In the evaluation of Section 7.7.4.6 we demonstrated that this behavior
can be preserved for the SPECjEnterprise2010 workload. However, in future work it must
be evaluated if this is generally applicable for all workload types.

7.7.6 Assumptions and Limitations

During our experiments a performance model generator is used (Brunnert/Vögele/Krcmar,
2013) to create the system-specific parts of the performance model in an automated way.
We were able to use this generator as it is designed for generating performance models for
Java EE applications. Furthermore, the prediction accuracy of the generated model has
previously been evaluated. This type of generator is not available for all session-based
systems and performance models. Alternatively, the system-specific part must be modeled
manually.

Within the Workload Model we assume that the loop counts follow a geometric distribu-
tion whenever a loop in a session is modeled using a memoryless loop exit transition (such
as the number of view items requests in the Browse transaction type (see Figure 7.12)).
Therefore, the distribution does not necessarily match to the distribution measured in
the log files. Alternatively, for each possible loop within a Behavior Model the distribu-
tion would need to be determined and integrated into the Workload Model. This would
improve the accuracy of the Workload Model but would make it more complex as there
can be many different loops within a Behavior Model. It is also much more complex to
consider the distribution for each loop during the transformation to performance eval-
uation tools. These tools must be able to handle different distributions. Furthermore,
when distributions other than the geometric distribution should be used, these must be
modeled explicitly. As future work, the effect of different distributions for loop counts on
the workload and performance characteristics would be interesting to investigate.

One limitation of our approach is that still manual effort is needed to create the Wessbas-
DSL instances and executable load tests (see Figure 7.1). This includes the identification
of use cases during session log creation (Section 7.4.1), the handling of generated param-
eter values during the test case creation (Section 7.5), and, if required, the examination
of preconditions (Section 7.7.4.4) to prevent inaccurate user behavior. However, using

7.8. Conclusion and Future Work 113

our approach, the effort to extract workload specifications and to generate load tests is
significantly reduced. In the example of SPECjEnterprise2010 we only needed to add
five regular expression extractors to the JMeter Test Plan to extract required parameter
values generated during load generation. Furthermore, we had to create a mechanism to
store the items added to the shopping cart in order to know which items can be removed
in the remove action.

The effort for a user to adopt our approach is low when the performance evaluation tools
Apache JMeter or PCM are used. The required log files can be also extracted using
common monitoring tools or HTTP request logs from web servers. When other tools are
used first new transformations of the Wessbas-DSL to these tools must be implemented.

Another limitation of our approach is that the order of events and the minimum and
maximum number of executions is not controlled using probabilistic workloads. As we
can see in Section 7.7.4.4, the number of items in the shopping cart has a high impact on
the response times of the purchase cart action.

7.8 Conclusion and Future Work

The specification and generation of representative workloads is a core task for many per-
formance evaluation activities. However, obtaining representative workload specifications
is still a big challenge. In response to this challenge, we present our Wessbas approach
for the systematic extraction and specification of probabilistic workloads for session-based
systems. We also include transformations to the load testing tool Apache JMeter and to
the performance model PCM. To address the challenge of specifying workloads for dif-
ferent performance evaluation tools, we first introduced a domain-specific language that
describes the structure of a workload in a generalized way. We demonstrated how groups
of customers with similar behavioral patterns can be identified using clustering algorithms.
Furthermore, inter-request dependencies are learned in an automatic way and conditional
probabilities are calculated. This is the first approach to present a holistic process from
runtime data to the executable load tests and performance predictions.

The evaluation with the industry-standard benchmark SPECjEnterprise2010 and the
World Cup 1998 access logs demonstrated the practicality and high accuracy of the pro-
posed approach. The session-based characteristics, like session length and the number of
distinct sessions, deviate from the measured logs in case of SPECjEnterprise2010. How-
ever, using the non-synthetic World Cup logs, the session-based characteristics are similar
as well. The invocation frequencies for requests match with almost 100%. Furthermore,
performance characteristics in terms of CPU utilization, response times and heap us-
age are, with a few minor exceptions, similar to the original executed workload. The
approach is applicable for all session-based systems and requires no detailed knowledge
about workload extraction.

In our future work, we will investigate the prioritization and selection of load test cases
using the generated performance models (Vögele et al., 2014). Moreover, we plan to im-
plement the transformation between the Wessbas-DSL instances and PCM in a bidirec-

7.8. Conclusion and Future Work 114

tional way. The advantage of testing Wessbas-DSL instances and PCM in a bidirectional
way is that the test cases are analyzed and selected within PCM and corresponding load
test scripts can be generated using the Wessbas-DSL. Furthermore, we plan to imple-
ment the transformation from Wessbas to PCM in a transformation language such as
Henshin26, as it additionally provides tools to verify the transformation correctness. More-
over, we plan to integrate approaches for the generation of varying workload intensities
(v. Kistowski/Herbst/Kounev, 2014).

26http://www.eclipse.org/henshin

7.9. Appendix 115

7.9 Appendix

Table 7.10: Resulting Guards and Actions

F
ro

m
S

ta
te

T
o

S
ta

te
G

u
a
rd

s
A

ct
io

n
s

lo
gi

n
V

ie
w

it
em

s
lo

gi
n

N
/A

lo
gi

n
in

ve
n
to

ry
lo

gi
n

in
ve

n
to

ry
=

tr
u

e

lo
gi

n
V

ie
w

it
em

s
q
u

an
ti

ty
lo

gi
n

V
ie

w
It

em
s

q
u

an
ti

ty
d

ef
er

or
d

er
+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t

+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
cl

ea
rc

ar
t

+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
re

m
ov

e
+

1

V
ie

w
it

em
s

q
u

an
ti

ty
A

d
d

to
C

ar
t

N
/A

A
d

d
to

C
ar

td
ef

er
or

d
er

+
1;

A
d

d
to

C
ar

tp
u

rc
h

as
ec

ar
t

+
1;

A
d

d
to

C
ar

ts
h

op
p

in
gc

ar
t

+
1;

A
d

d
to

C
ar

tc
le

ar
ca

rt
+

1;
A

d
d

to
C

ar
tr

em
ov

e
+

1

A
d

d
to

C
ar

t
d

ef
er

or
d

er
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
d

ef
er

or
d

er
>

0
&

&
A

d
d

to
C

ar
td

ef
er

or
d

er
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
d

ef
er

or
d

er
-1

;
A

d
d

to
C

ar
td

ef
er

or
d

er
-1

A
d

d
to

C
ar

t
p

u
rc

h
as

ec
ar

t
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
>

0
&

&
A

d
d

to
C

ar
tp

u
rc

h
as

ec
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
-1

;
A

d
d

to
C

ar
tp

u
rc

h
as

ec
ar

t
-1

A
d

d
to

C
ar

t
sh

op
p

in
gc

ar
t

lo
gi

n
&

&
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t
>

0
&

&
A

d
d

to
C

ar
ts

h
op

p
in

gc
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t

-1
;

A
d

d
to

C
ar

ts
h

op
p

in
gc

ar
t

-1
;

A
d

d
to

C
ar

t
V

ie
w

it
em

s
q
u

an
ti

ty
lo

gi
n

V
ie

w
It

em
s

q
u

an
ti

ty
d

ef
er

or
d

er
+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t

+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
cl

ea
rc

ar
t

+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
re

m
ov

e
+

1

sh
op

p
in

gc
ar

t
cl

ea
rc

ar
t

lo
gi

n
&

&
V

ie
w

It
em

s
q
u

an
ti

ty
cl

ea
rc

ar
t
>

0
&

&
A

d
d

to
C

ar
tc

le
ar

ca
rt
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
cl

ea
rc

ar
t

-1
;

A
d

d
to

C
ar

tc
le

ar
ca

rt
-1

sh
op

p
in

gc
ar

t
re

m
ov

e
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
re

m
ov

e
>

1
&

&
A

d
d

to
C

ar
tr

em
ov

e
>

1
V

ie
w

It
em

s
q
u

an
ti

ty
re

m
ov

e
-1

;
A

d
d

to
C

ar
tr

em
ov

e
-1

re
m

ov
e

d
ef

er
or

d
er

lo
gi

n
&

&
V

ie
w

It
em

s
q
u

an
ti

ty
d

ef
er

or
d

er
>

0
&

&
A

d
d

to
C

ar
td

ef
er

or
d

er
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
d

ef
er

or
d

er
-1

;
A

d
d

to
C

ar
td

ef
er

or
d

er
-1

re
m

ov
e

p
u

rc
h

as
ec

ar
t

lo
gi

n
&

&
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
>

0
&

&
A

d
d

to
C

ar
tp

u
rc

h
as

ec
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
-1

;
A

d
d

to
C

ar
tp

u
rc

h
as

ec
ar

t
-1

re
m

ov
e

sh
op

p
in

gc
ar

t
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
sh

op
p

in
gc

ar
t
>

0
&

&
A

d
d

to
C

ar
ts

h
op

p
in

gc
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t

-1
;

A
d

d
to

C
ar

ts
h

op
p

in
gc

ar
t

-1

cl
ea

rc
ar

t
V

ie
w

it
em

s
q
u

an
ti

ty
N

/A
V

ie
w

It
em

s
q
u

an
ti

ty
d

ef
er

or
d

er
+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
sh

op
p

in
gc

ar
t+

1;
V

ie
w

It
em

s
q
u

an
ti

ty
cl

ea
rc

ar
t

+
1;

V
ie

w
It

em
s

q
u

an
ti

ty
re

m
ov

e
+

1

in
ve

n
to

ry
se

ll
in

ve
n
to

ry
lo

gi
n

&
&

in
ve

n
to

ry
N

/A

in
ve

n
to

ry
ca

n
ce

lo
rd

er
lo

gi
n

N
/A

in
ve

n
to

ry
in

ve
n
to

ry
lo

gi
n

in
ve

n
to

ry
=

tr
u

e

ca
n

ce
lo

rd
er

in
ve

n
to

ry
N

/A
in

ve
n
to

ry
=

tr
u

e

se
ll

in
ve

n
to

ry
h

om
e

lo
gi

n
N

/A

se
ll

in
ve

n
to

ry
se

ll
in

ve
n
to

ry
lo

gi
n

&
&

in
ve

n
to

ry
N

/A

V
ie

w
it

em
s

h
om

e
lo

gi
n

N
/A

V
ie

w
it

em
s

V
ie

w
it

em
s

lo
gi

n
N

/A

A
d

d
it

io
n

a
ll

y
fo

r
R

Q
5

V
ie

w
it

em
s

q
u

an
ti

ty
sh

op
p

in
gc

ar
t

lo
gi

n
&

&
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t
>

0
&

&
A

d
d

to
C

ar
ts

h
op

p
in

gc
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
sh

op
p

in
gc

ar
t-

1;
A

d
d

to
C

ar
ts

h
op

p
in

gc
ar

t-
1

sh
op

p
in

gc
ar

t
p

u
rc

h
as

ec
ar

t
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t
>

0
&

&
A

d
d

to
C

ar
tp

u
rc

h
as

ec
ar

t
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
p

u
rc

h
as

ec
ar

t-
1;

A
d

d
to

C
ar

tp
u

rc
h

as
ec

ar
t-

1

sh
op

p
in

gc
ar

t
d

ef
er

or
d

er
lo

gi
n

&
&

V
ie

w
It

em
s

q
u

an
ti

ty
d

ef
er

or
d

er
>

0
&

&
A

d
d

to
C

ar
td

ef
er

or
d

er
>

0
V

ie
w

It
em

s
q
u

an
ti

ty
d

ef
er

or
d

er
-1

;A
d

d
to

C
ar

td
ef

er
or

d
er

-1

Chapter 8

Modeling Complex User Behavior with the Palladio Component
Model

Authors Vögele, Christian1 (voegele@fortiss.org)
Heinrich, Robert2 (robert.heinrich@kit.edu)
Heilein, Robert4 (heilein@in.tum.de)
van Hoorn, André3 (andre.van.hoorn@acm.org)
Krcmar, Helmut4 (krcmar@in.tum.de)
1fortiss GmbH, Munich, Germany
2Karlsruhe Institute of Technology, Karlsruhe, Germany
3Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
4Chair for Information Systems, Technical University of Munich (TUM),

Garching, Germany

Outlet Symposium zur Software-Performance 2015 (SSP 2015)

Status Accepted

Individual
Contribution

Problem and scope definition, construction of the conceptual approach, exper-

iment design, execution and result analysis, paper writing, paper editing

Table 8.1: Bibliographic details for P5

Abstract The specification of workloads is required in order to evaluate performance
characteristics of application systems using performance prediction approaches like the
Palladio Component Model (PCM). One of the biggest challenges in workload modeling
is to ensure that the modeled user behavior adequately resembles the real user behavior.
However, PCM offers limited support to model such complex user behavior. Furthermore,
reusing modeled activities is not possible. To overcome these limitations, workarounds
are required. In order to avoid these workarounds, we extend the meta-model of the PCM
Usage Model. We evaluate the extended PCM Usage Model by integrating it into our
previous work on automatic extraction of workload specifications. Based on HTTP web
logs, recorded from the standard industry benchmark SPECjEnterprise2010, instances
of a domain-specific language (DSL) for modeling workload specifications are extracted.
Afterwards, these instances are transformed to the extended PCM Usage Model. The
evaluation shows that workload characteristics of the simulated workload match the mea-
sured workload with high accuracy.

116

8.1. Introduction 117

8.1 Introduction

In order to evaluate the performance of application systems using model-based prediction
approaches like the Palladio Component Model (PCM)(Becker/Koziolek/Reussner, 2009),
the modeling of workloads is required. Workloads describe the user behavior and workload
intensities in terms of the number of requests to the system under test (SUT) (Goševa-
Popstojanova et al., 2006). One of the biggest challenges in workload modeling is, that
these models must be representative compared to the real workload (Feitelson, 2015).
This is especially important to ensure that the predicted performance in terms of response
times, resource utilization, and throughput using performance models match the measured
performance with high accuracy.

Within PCM, workloads are modeled with the Usage Model. The Usage Model is a
domain- specific modeling language allowing to specify workload intensities (i.e., the num-
ber of concurrent users), user behavior (i.e., the control flow graph of user system calls),
and parameters passed with the system calls (Becker/Koziolek/Reussner, 2009). However,
modeling complex user scenarios with the Usage Model has limitations, which makes the
workload modeling often difficult or even unfeasible. In response to these limitations we
extend the Usage Model.

These extensions result in several advantages. First, the modeling of realistic and com-
plex user behavior is possible. Thus, all kind or usage flows extracted from running
applications can be modeled without using workarounds like applied in van Hoorn et al.
(2014). Second, modeling of business processes (BP) is enabled. BPs are a set of one
or more linked activities where each activity itself is composed of one ore more linked
steps (WFMC Terminology, 1999). Steps are either performed completely by a human
actor or performed completely by an information system (IS) (Heinrich et al., 2015). By
introducing reusability concepts, BP activities must only be modeled once and can then
be reused by other activities.

To summarize, the contribution of our proposed approach comprising the following el-
ements: (i.) The extension of the PCM Usage Model, including (ii.) the evaluation
using the WESSBAS approach (van Hoorn et al., 2014; Vögele/van Hoorn/Krcmar, 2015)
against the industry-standard benchmark SPECjEnterprise2010. WESSBAS introduces
a domain-specific language (DSL) for modeling workload specifications, an automatic ex-
traction of DSL instances from session logs and a transformation from this DSL into load
test scripts and performance models.

8.2 Limitations of PCM Usage Model

The Usage Model meta-model (PCM Version 3.4.1) can be found in Figure 8.2. The
dashed rectangles represent the new elements and are explained in the next section. We
use the example of the SPECjEnterprise2010 purchase transaction (see Figure 8.1) to ex-
plain the limitations. SPECjEnterprise2010 is a Java EE industry benchmark representing
an application of an automobile manufacturer whose main users are automobile dealers.

8.2. Limitations of PCM Usage Model 118

login

view items
quantity

add to
cart

shopping
-cart

clear cart

remove

defer
order

purchase
cart

home

logout

1.0
1.0

0.11

1.01.0

1.0
1.0

0.67

0.66

0.34

0.12

0.10

0.61

0.21

0.18

Figure 8.1: Probabilistic representation of the SPECjEnterprise2010 purchase transac-
tion type

The Orders domain of this benchmark represents a web-based e-commerce application
and enables customers purchasing and selling cars (Purchase), managing their accounts
and inventory (Manage), and browsing the catalogue of available cars (Browse). Within
the purchase transaction, orders are placed and immediately purchased or deferred. The
shopping cart is either cleared or items are removed one by one.

The following limitations can be observed. First, an AbstractUserAction can only have
zero or one successor and zero or one predecessor (see Figure 8.2). This prevents the
modeling of usage behavior, which is representative compared to the real usage behavior.
(i.) There is no possibility to model backward-edges like from view items quantity to
add to cart. (ii.) Loops can be modeled using the Loop element. A Loop element is a
container, within the elements are looped as often as specified. However, when more than
one edge leaves the loop, the Loop element cannot be used. For instance, the loop view
items quantity, add to cart, shoppingcart, clear cart cannot be modeled using this Loop
element, as more than one option is available to leave the loop, e.g., from add to cart to
purchase cart and from shoppingcart to remove. (iii.) Branches are containers as well
comprising of multiple BranchTransitions. Elements from one BranchTransition cannot
be linked to elements of another BranchTransition. For example, the transitions from the
user action remove to purchase cart or defer order cannot be modeled as these actions
reside in different branches.

Second, a UsageScenario cannot be called by another UsageScenario. Within a Usage
Model, multiple UserScenarios can be modeled. However, there is no possibility that
a UserScenario calls another UserScenario as they are running independent from each
other, specifying their own workloads. Therefore, usage flows (c.f. activities) cannot be
modeled once and reused by other activities, which is especially important in BP modeling.

Third, only probabilistic BranchTransitions can be specified. Thus, the concept of guards
and actions (GaA) to control the usage flow cannot be applied. A guard is a condition
which must hold true in order to enable a transition. If the transition is executed, an action
can change the value of a guard variable (Shams/Krishnamurthy/Far, 2006). GaA can
have an impact on the length of a simulated user session or on the number of simulated
requests. For example, a purchase action can only be executed when items are added
to the shopping cart before. Thus, the concept of probabilistic conditions, which is a
combination of probabilistic and guarded BranchTransitions, must be introduced.

8.3. Extension of PCM Usage Model 119

AbstractUserAction

EntryLevelSystemCall

-priority: EInt

Stop

Start

Delay

MergeBranch

VariableEvaluation

-expression: EString
-variableName: EString

Extended Elements

DecisionBranchTransition

-probability: EDouble
-expression: EString

Loop

ScenarioBehaviour

ScenarioBehaviourCall

Branch

BranchTransition

-branchProbability:
EDouble

0..*

1..1

UsageScenarioPart

 1..1
1..1

UsageScenario

AbstractUsageScenario

0..1

VariableContainer0..*

VariableDefinition

-name: EString
-dataType: EDataType
-initialValue: EString

EDataType

-INTEGER
-BOOLEAN
-STRING

1..1

UsageModel

0..*

1..1

OpenWorkload

ClosedWorkload

Workload

DecisionBranch

Existing Elements

1..1
+predecessor

+successor

0..1
0..1

0..*

Figure 8.2: Extended PCM Usage Model meta-model

8.3 Extension of PCM Usage Model

In this section, the proposed new elements of the PCM Usage Model (dashed rectangles)
are explained.

Modeling Complex User Behavior: In order to model representative user behav-
ior the limitation of having only one successor and respectively one predecessor must be
overcome. Therefore, we introduce two new AbstractUserActions : MergeBranch and Deci-
sionBranch. A MergeBranch has one or many incoming edges and only one outgoing edge.
Whereas a DecisionBranch has one incoming edge and one or many outgoing edges. Using
these new elements, the AbstractUserActions Branch and Loop are not required anymore.

Reusability: To enable the modeling of reusable activities, we introduce the elements
UsageScenarioPart and ScenarioBehaviourCall. A UsageModel can have multiple Us-

8.4. Evaluation 120

ageScenarioParts which are similar to UsageScenarios, except that they have no workload
definition. Both inherit from AbstractUsageScenario. Due to the fact that a UsageSce-
narioPart is a reusable scenario it can be called by other UsageScenarios and therefore
does not need a workload definition. The UsageScenarioPart can be called with support
of the new element ScenarioBehaviourCall. When a ScenarioBehaviourCall is called, it
executes the linked UsageScenarioPart until a Stop action is reached. Afterwards, it
continues with the superior UsageScenario.

Probabilistic Conditions: To model probabilities and GaA, each outgoing edge from
the DecisionBranch has a new superordinate element called DecisionBranchTransition.
Within this element a probability must be set. Additionally, a guard condition can be
specified. In case the guard is false the edge will be ignored and the probabilities of the
other edges are extrapolated to one. Thus, the probabilities are dynamically calculated
during runtime. To set an action, the VariableEvaluation element must be integrated
into the usage flow. The expression will be evaluated and the result is written to the
variable defined in the field variableName. These variables must be defined in the Vari-
ableContainer, which is a container for variables used within a UsageScenario. Within
the VariableContainer, multiple variables can be specified with the VariableDefinition
element. This element defines variables with the attributes name, dataType (Integer,
Boolean or String), and initialValue.

8.4 Evaluation

In this section, the accuracy of the extended Usage Model is evaluated. We first extracted
standard HTTP web logs from a running SPECjEnterprise201027 deployment. The bench-
mark run was executed with 800 users, a duration of twelve minutes (720 seconds), three
minutes ramp up and ramp down phase, and the original benchmark transaction mix
(25 % Purchase, 50 % Browse, and 25 % Manage). Afterwards, we used the WESSBAS
approach to generate instances of a domain-specific language (DSL) for modeling work-
load specifications based on these web logs (van Hoorn et al., 2014). Then, we modified
the transformation explained in (Vögele/van Hoorn/Krcmar, 2015) to generate workload
specifications using the extended PCM Usage Model. We generated the Usage Model
once with and once without GaA.

The accuracy of the extracted workload specification are evaluated by comparing the
number of simulated requests for the different HTTP request types with the originally
measured request counts to the SUT. The result of the measured request counts (MRC)
and simulated request counts (SRC) per HTTP action can be found in Table 8.2. Further,
for each simulation run the relative prediction error (PE) of the SRC compared to the
MRC is given.

27SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

8.5. Related Work 121

Table 8.2: Evaluation Results

Orig. without GaA with GaA
Request MRC SRC PE% SRC PE%

1 add to cart 21,376 20,766 2.94% 21,490 0.53%
2 cancel order 342 350 2.29% 285 20.00%
3 clear cart 2,043 2,005 1.90% 2,194 6.88%
4 defer order 2,273 2,237 1.61% 2,249 1.07%
5 home 19,409 19,039 1.94% 19,009 2.10%
6 inventory 19,960 19,452 2.61% 19,609 1.79%
7 login 19,913 19,514 2.04% 19,527 1.98%
8 logout 19,194 18,838 1.89% 18,812 2.03%
9 purchase cart 2,811 2,716 3.50% 2,728 3.04%

10 remove 947 901 5.11% 736 28.67%
11 sell inventory 43,375 42,741 1.48% 42,089 3.06%
12 shopping cart 2,991 2,906 2.92% 2,932 2.01%
13 view items quantity 21,300 20,706 2.87% 21,408 0.50%
14 view items 67,886 66,518 2.06% 65,112 4.26%∑

243,820 238,689 2.15% 238,180 2.37%

The evaluation shows that the simulated request counts match the measured request
counts with high accuracy. The maximum prediction error without GaA is 5.11% for the
request type remove. With GaA the prediction errors are slightly higher. The maximum
prediction error is again for the request type remove with 28.67%. This was expected as
GaA do not allow the execution of remove when there are no items in the shopping cart
anymore.

8.5 Related Work

We group the related work into approaches for modeling complex user behavior and into
approaches for the extraction of workload specifications based on system traces. Due to
space limitations we give representative examples.

Modeling complex user behavior: An approach for modeling complex user behavior
from a business process perspective is proposed by Heinrich et al. (2015). The PCM
Usage Model meta-model has been extended by user behaviors from a business process
perspective. These behaviors can also be none system interactions, like e.g. a user mixing
chemicals. In contrast, the proposed meta-model extension in this paper puts focus on
modeling complex usage flows.

Extraction of workload specifications based on system traces: The iObserve
approach exploits observed method traces for generating the states and transitions of
behavioral models and the corresponding usage intensity (Heinrich et al., 2014). Further,
another approach for the automatic generation of PCM workload specifications from log
files can be found in Vögele/van Hoorn/Krcmar (2015). Due to the limitations of the
Usage Model (see Section 8.2) large parts of the workload specification are modeled within
the PCM Repository Model. The evaluation of this approach showed, that the prediction

8.6. Conclusion and Future Work 122

results match the measured workload with high accuracy. However, the clear separation
of concerns of PCM is violated.

8.6 Conclusion and Future Work

This paper presents an extension of the PCM Usage Model in order to model complex
user behavior. Additionally, we introduce a concept to reuse activities, which is a key re-
quirement for business process modeling. The evaluation using Wessbas-DSL instances
extracted from standard HTTP web logs of the Java EE benchmark SPECjEnterprise2010
demonstrates, that PCM workload specifications can be generated, which match the mea-
sured workload with high accuracy. As future work, we plan to enable the modeling of
asynchronous communications and session abandonments.

Chapter 9

Multi-Objective Optimization of Load Test Designs using
Performance Models

Authors Vögele, Christian1 (voegele@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)
1fortiss GmbH, Munich, Germany
2Chair for Information Systems, Technical University of Munich

(TUM), Garching, Germany

Outlet ACM Transactions on Modeling and Performance Evaluation of

Computing Systems (TOMPECS)

Status Submitted

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 9.1: Bibliographic details for P6

Abstract Load tests are designed by selecting workloads that validate if given perfor-
mance objectives are met. Only after the execution and analysis of load test results it can
be assessed if the given load test design is able to fulfill the objectives. This process often
requires several iterations as a large number of different workload alternatives exists. This
results in high costs and a high duration of the load testing process. In response to this
challenge, this work proposes the use of performance models before load test execution to
derive suitable workloads that achieve (possibly multiple) given performance objectives.
First, workload specifications are extracted in an automatic way from an application sys-
tem and transformed into a performance model. Second, workload design options and
performance objectives are configured by a performance engineer. Third, different work-
load alternatives are simulated and assessed based on these objectives. A multi-objective
optimization using an evolutionary algorithm is applied to evaluate these alternatives.
The resulting candidates are presented to the performance engineer to make trade-off de-
cisions. Finally, executable load test scripts are generated based on the selected solution.
The feasibility of the approach is validated in a case study using the industry Java EE
benchmark SPECjEnterprise2010.

123

9.1. Introduction 124

9.1 Introduction

Due to the fact that an increasing amount of business transactions are supported by
application systems the development of fast and reliable systems is required. These ap-
plications have to satisfy non-functional performance requirements like given throughput
and response times. To validate whether these requirements can be met, the performance
must be continuously evaluated.

Load testing is a commonly used method to evaluate the performance of applications
systems (Avritzer et al., 2002). Many tools exist which enable load generation. However,
these tools do not support the selection of appropriate load test designs. Load tests are
designed by selecting test cases and input parameter derived from usage scenarios, the
proportion by which each test case is executed as well as the number of expected users
executing requests. In current practice, test experts derive test designs manually by for
instance selecting a set of the most probable test cases and by estimating the workload
intensity (Meier et al., 2007). This approach is time consuming and error prone (Shams/
Krishnamurthy/Far, 2006) and can lead to totally useless load testing results.

Many tools exist which enable load execution. However, these tools do not support the
selection of appropriate load test designs. Load tests are designed by selecting test cases
and input parameter derived from usage scenarios, the proportion by which each test
case is executed as well as the number of expected users executing requests. In current
practice, test experts derive test designs manually by for instance selecting a set of the
most probable test cases and by estimating the workload intensity (Meier et al., 2007).
This approach is time consuming and error prone (Shams/Krishnamurthy/Far, 2006) and
can lead to totally useless load testing results.

Mainly two different goals are followed when load tests are designed Jiang/Hassan (2015):
(i.) designing the workload in a way that it is representative compared to the real workload
in the field or (ii.) designing the workload in a way that it causes load related problems.
The Wessbas1 approach introduced in our previous work Vögele et al. (2016) enables
to extract representative workloads. However, this approach has no mechanism to select
load tests based on given performance objectives. There can be many different perfor-
mance objectives depending on the type of system under test. One common performance
objective is to detect workloads that lead to load related performance problems like high
response times. Further objectives can be to reduce the number of needed test cases or
to generate workloads that saturates the system to predefined utilization levels. Before
the execution of load tests and the analysis of the testing results it is difficult to verify
whether the selected test design is able to satisfy given testing objectives. It becomes even
harder, when multiple testing objectives should be considered at the same time which are
conflicting. For example, in a highly distributed software system the data dependencies
can be very complex. Therefore, the number of test cases should be reduced as the provi-
sioning of test data for many test cases causes a lot of effort. However, at the same time
the chosen test design should represent the real workload as accurately as possible. Such
conflicting trade-off decisions are very difficult to solve manually.

1Wessbas is an acronym for Workload Extraction and Specification for Session-Based Application
Systems

9.1. Introduction 125

Performance models are a promising solution to support the selection of load test designs
before the execution of load tests (Woodside/Franks/Petriu, 2007). Performance models
in combination with a simulation engine allow to derive performance predictions for a given
workload (Koziolek, 2010), e.g. response times or resource utilization. Thus, the impact of
different workloads (respectively load test designs) on the system can be analyzed before
load test execution. As the number of possible workload settings to be evaluated is very
high and multiple performance objectives should be met simultaneously, we propose the
use of a multi-objective genetic algorithm.

The selection of load test designs using performance models comes with several advan-
tages. First, the integration of software development and operations (cf. DevOps) is sup-
ported (Brunnert et al., 2015). The extracted workload during operations can be used for
measurement-based (Bulej/Kalibera/Tůma, 2005) and model-based (Brunnert/Krcmar,
2014) continuous integration approaches in order to detect performance regressions dur-
ing development. Furthermore, the approach can be used to continuously select suitable
test designs. Using the same test design for each load test can lead to the effect that al-
ways the same parts of the system are saturated (Woodside/Franks/Petriu, 2007). Thus,
there is the danger that new bottlenecks are not identified. Another advantage is that
this approach can be combined with architecture optimization approaches (Koziolek et
al., 2011). Architecture solutions that are derived using these approaches can be further
evaluated using different workloads. Finally, using our proposed approach performance
engineers save time and effort as test designs are derived in an automatic way.

As starting point for the optimization we use a performance model instance modeled with
the PCM (Becker/Koziolek/Reussner, 2009). Using PCM allows the generation of differ-
ent workload candidates in an easy way. We use an architecture-level performance models
as it permits to model system architecture, execution environment, and workload specifi-
cation separately from each other (Brosig/Huber/Kounev, 2011). The performance model
instance is automatically extracted from the system under test (SUT) (Brunnert/Vögele/
Krcmar, 2013). Furthermore, the workload specification of the performance model will be
generated using the Wessbas29 approach introduced in our previous work (Vögele et al.,
2016). The performance engineer can configure how the workload design can be varied
and which performance objectives should be achieved. Afterwards, the multi-objective
optimization will identify workload candidates fitting best to the configured objectives
until a stop criterion is fulfilled. These candidates are presented to the performance engi-
neer who can choose the candidate fitting best to his performance requirements. Finally,
based on the selected candidate executable load test scripts are generated. Figure 9.1
gives an overview of the proposed approach, called Load Test Design Selector (within
dashed lines), integrated into the Wessbas approach. Details on the Wessbas approach
are explained in Section 9.3.

29Wessbas is an acronym for Workload Extraction and Specification for Session-Based Application
Systems

9.1. Introduction 126

Load Driver

<<conformsTo>>

Monitoring

Behavior

Models

+ Clustering

DSL

WESSBAS-

DSL-Instance

WESSBAS

Behavior Mix

Request
Logs

Extraction

Transformation

Test Plan Generator

WESSBAS-DSL

Behavior Mix

Monitoring

e.g., Kieker

Extractor

Performance Model Generator

P
er

fo
rm

an
c

e
M

o
d

el

Performance
ture-Level

Model Generator

<<conformsTo>>

System

Specification

Workload

Specification Architec-

Model

Production
System /

SUT

WESSBAS Activity

External Activity

- manual process

- automatic process

Session Log
Generator

Extractor
Workload Intensity

Extraction

Intensity
Workload

+ Guards and
Actions

+ Conditional
Probabilities

<<conformsTo>>

JMeter
Markov4-

3) Stop Criteria
2) Performance Objectives
1) Workload Design Options

Load Test Design Selector

Transformation

Request
Logs

Evolutionary Optimization

Results Presentation

Objective Functions

Transformation

Initial

Transformation

Extraction

Transformation

Configuration

Performance Engineer

Candidate

Measurement-based activities Model-based activities

Figure 9.1: Load Test Design Selector integrated into the Wessbas approach (based on
Vögele et al. (2016))

To summarize, the contribution of this paper comprises the following elements:

1. Approach for automatically deriving load test designs from performance models that
optimized for (possibly conflicting) performance objectives using multi-objective
optimization techniques..

9.2. Related Work 127

2. Integration with the Wessbas approach to automatically deriving performance
models and executable load tests from the chosen test design.

3. Comprehensive evaluation against the industry-standard benchmark SPECjEnter-
prise2010.

To the best of our knowledge this is the first approach that derives executable load
tests from runtime data that are optimized to achieve multiple given performance ob-
jectives. The developed tools, models, and results of this paper are publicly available
online (Vögele/Krcmar, 2016).

The remainder of this paper is structured as follows: Section 9.2 provides an overview
of related work. In Section 9.3, the used workload formalism required to understand the
paper is introduced. Furthermore, the transformation of these workload specifications to
performance models and to load testing tools is presented in this section. The description
of the load test design selection process is depicted in Section 9.4. The evaluation of the
proposed approach can be found in Section 9.5. Section 9.6 summaries limitations and
assumptions of our approach and is followed by the illustration of the threads to validity in
Section 9.7. Finally, Section 9.8 details conclusions of our work and presents suggestions
for future work.

9.2 Related Work

Performance evaluation (Koziolek, 2010; Becker/Koziolek/Reussner, 2009), load testing
(Jiang/Hassan, 2015; Avritzer et al., 2002) and multi-objective metaheuristic optimiza-
tion (Coello/Lamont/Van Veldhuisen, 2007) are the primary topics of our work. Based on
these topics we group related approaches into (i.) feedback-based load generation tech-
niques (ii.) genetic algorithm techniques, and (iii.) architecture optimization techniques
using performance models.

9.2.1 Feedback-based Load Generation Techniques

Feedback-based load generation techniques adapt the workload generation dynamically
based on the system feedback in order to achieve a given performance objective.

An similar approach to ours that combines performance prediction with load testing is in-
troduced by Barna/Litoiu/Ghanbari (2011a) and Barna/Litoiu/Ghanbari (2011b). This
approach first models an application systems as a two-layered queuing model. Then based
on this model workload mixes and workload intensities are identified that saturates hard-
ware and software bottlenecks. Bottlenecks are defined as resources where the requests are
queued and delayed because the processing capacity limits of that resource. The approach
implements a feedback loop by using the results of the executed load test to calibrate the
performance model.

9.2. Related Work 128

FOREPOST (Grechanik/Chen/Xie, 2012) is an approach that uses machine learning
techniques to support load testing. It utilizes online monitoring of test executions to
classify system inputs by learning from test execution logs. These classes are then used
for generating further test inputs that lead to intensive computations. This way the
number of test cases is reduced to those tests that are meaningful for the detection of
performance problems.

Another approach that used feedback-based learning is proposed by Bayan/Cangussu
(2008) and Bayan/Cangussu (2006). A set of inputs is identified which drives the system
to the desired level of stress. When the goal is to detect memory leaks important pa-
rameters that impact the memory usage are identified. While these approaches focus on
the selection of system inputs our approach selects suitable test cases with performance
models.

Zhang/Cheung (2002) present an approach that generates test cases for stress testing
of multimedia systems. The authors first model the multimedia systems with petri nets.
Based on that model all possible user action sequences are generated by conducting reach-
ability analysis. Linear programming is used to identify the sequences of user actions,
which can trigger performance problems.

Segall/Tzoref-Brill (2015) propose an approach that uses a combinatorial testing engine
in order to generate combinations of levels of resource utilization on the subcomponent of
cloud environments. Based on data gathered during test execution of these systems the
combinatorial testing engine adjusts the tests cases.

An approach that uses models to find suitable workload candidates for testing elastic-
ity properties of cloud system is proposed by Gambi/Filieri/Dustdar (2013). First, the
behavior of the system is modeled as a Labeled Transition System (LTS) where states
capture the current resources allocation and transition labels describe the frequency of
transitions occurrence during the execution of the test suite. The models are used to find
workload candidates that are likely violating the elasticity properties of the system. The
LTS are continually extracted and refined based on execution logs.

In contrast, our proposed approach enables to optimize against multiple performance
objectives simultaneously using performance models. Also new objectives like the test
coverage and the number of used test cases is taken into account. Furthermore, the used
performance models and workloads are extracted automatically by combining it with the
Wessbas approach (Vögele/van Hoorn/Krcmar, 2015).

9.2.2 Genetic Algorithm Techniques

Genetic Algorithms are search algorithms that mimic the process of natural evolution for
locating optimal solutions towards a specific goal.

Di Penta et al. (2007) use genetic algorithm techniques to derive loads that causes SLA or
QoS (Quality of Service) requirement violations in service-oriented systems. The authors

9.3. Workload Specification 129

use a genetic algorithm that is proposed by Canfora et al. (2005), in order to identify
risky workflows within a service. The response time for the risky workflows should be as
close to the SLA (high response time) as possible.

Briand/Labiche/Shousha (2005) propose to develop a methodology that helps to identify
performance scenarios that stress the system in order to force performance failures or
SLA violations. It combines the use of external aperiodic events (ones that are part of
the interface of the software system under test, i.e., triggered by events from users, other
software systems or sensors) and internally generated system events (events triggered by
external events and hidden to the outside of the software system) with a genetic algorithm.
These approaches derive workloads by direct measurements on real systems and are not
using performance models.

9.2.3 Architecture Optimization Techniques using Performance Models

Aleti et al. (2013) provide a comprehensive review on software architecture optimiza-
tion methods. Several approaches exist that optimize the architecture of a system using
performance models, e.g. (Litoiu/Barna, 2013; Koziolek et al., 2011).

An architecture optimization approach which is similar to our approach is presented by
Koziolek et al. (2011). The approach searches the design space of possible architecture
candidates based on software architectures modeled with the Palladio Component Model.
Pareto-optimal candidates are identified against the criteria performance, reliability and
cost.

Another approach similar to our approach is presented by Willnecker/Krcmar (2016).
The authors propose to use performance models and evolutionary algorithms to find
optimal deployment topologies either to minimize response times or to maximize resource
utilization. In contrast to our approach we keep the system architecture as it is and
evaluate workload candidates.

9.3 Workload Specifications for Load Testing and
Model-based Performance Prediction

As manual modeling and specification of workload specifications is very time consuming we
integrate the Load Test Design Selector with the Wessbas approach. Thus, we are able
to automate the workload specification and extraction for load testing and performance
prediction (see Figure 9.1). In the following we briefly introduce the required concepts
of the Wessbas approach needed to support the remainder of this paper. We explain
the used workload specifications formalism (Section 9.3.1), the extraction and generation
of Wessbas-DSL instances (Section 9.3.2), the transformation to performance models
(Section 9.3.3), and the generation of executable load tests (Section 9.3.4).

9.3. Workload Specification 130

The Wessbas approach specifies and extracts representative workloads for session-based
application systems. Based on a DSL, called Wessbas-DSL, system- and tool-agnostic
modeling of these workload specifications is enabled. Recorded session logs are used as a
basis for the automatic extraction of Wessbas-DSL instances. Different groups of cus-
tomers showing similar navigational patterns are identified during the creation of these
instances using clustering algorithms. Additionally, inter-request dependencies (GaAs)
among the execution of requests are automatically learned. These dependencies come
from the fact that the execution of requests often depends on the result of previous re-
quests. The combination of probabilities and GaAs requires the calculation of conditional
probabilities, which are also determined in an automatic way. Finally, protocol informa-
tion required to generate executable load tests are integrated into the Wessbas-DSL.
Further details on the Wessbas approach can be found in (Vögele et al., 2016; Vögele/
van Hoorn/Krcmar, 2015; van Hoorn et al., 2014).

9.3.1 Workload Specification

The workload formalism used in the Wessbas approach builds on work on the generation
of probabilistic and intensity-varying workloads for session-based systems (Schulz et al.,
2014; van Hoorn/Rohr/Hasselbring, 2008); particularly, the workload modeling formalism
that extends the work by Menascé et al. (1999) and (Krishnamurthy/Rolia/Majumdar,
2006). The workload specification (Workload Model) consists of the following components:

� An Application Model, specifying allowed sequences of service invocations and SUT-
specific details for generating valid requests. The Application Model includes a
Session Layer and a Protocol Layer. The Session Layer specifies the allowed se-
quences of service invocations and SUT-specific details to generate valid requests as
extended finite state machine (EFSM). The Protocol Layer models the sequence of
protocol-level requests to be executed on the real system.

� A set of Behavior Models, each providing a probabilistic representation of user ses-
sions in terms of invoked services and think times between subsequent invocations
as Markov chains. Transitions between Markov States are labeled with think times
and call probabilities.

� A Behavior Mix, specified as probabilities for the individual Behavior Models to oc-
cur during workload generation. The Behavior Models represent different customer
groups, e.g., Behavior Models for heavy users and/or occasional buyers.

� A Workload Intensity that includes a function which specifies the (possibly varying)
number of concurrent users during the workload generation execution.

Figure 9.2 illustrates an exemplary workload model. During the workload generation
process for a SUT, the model is used as follows:

The Workload Intensity specifies the number of active sessions. For each newly created
session, the Behavior Mix determines the user type to be emulated next by selecting

9.3. Workload Specification 131

add2cart

...

view items

...

0.7

Behavior Model(s)

Application Model

Behavior Mix (%)

<<conformsTo>>

 login

 view items

 add2cart

0.2

0.3

0.4

0.3 0.4 0.5 0.3

0.6
0.1

Protocol Layer

 login

 view items

 add2cart

remove

Session Layer

/login.shtml

[accept=1]

/welcome.shtml

1 0

login

n = number of items

remove

G: n > 0

A: n++

/delete.shtml

/confirm.shtml

remove

A: n++

A: n++

A: n--

G: n > 0
A: n--

0.2

 $

G = Guard
A = Action

 $

Workload Intensity

active

time

sessions

load

Figure 9.2: Exemplary Workload Model (without think times in the Behavior Models)
Vögele et al. (2016)

the corresponding Behavior Model based on the assigned relative frequencies. In the
selected Behavior Model, a probabilistic sequence of services is generated according to the
transition probabilities specified in the related Markov Chain. Furthermore, the GaAs of
the Session Layer are taken into account in order to generate valid sequences.

Assume that the Behavior Model is currently in the Markov state view items and the
current variable n has the value one. First, based on the transitions modeled in the Session
Layer from application state view items to the following states, it is validated which guard
conditions are satisfied—in the example, the transition from view items to add2Cart and
remove. As the number of items n is one, the guard G : n > 0 to transition remove is
true. The transition to add2Cart has no guard and can therefore always be executed.
Second, based on the transition probabilities, the next transition is chosen—40% of cases
to add2Cart and 60% to remove. Third, the action(s) on the variable value(s) will be
executed. When remove is chosen, the value of n is decreased by one; when add2Cart is
chosen, the value is increased by one. Finally, the think time is taken for this transition.
After the think time has elapsed, the Behavior Model moves to the next state and the
service is executed according to the specified EFSM of the Protocol Layer.

9.3. Workload Specification 132

9.3.2 WESSBAS-DSL

The Wessbas-DSL follows this workload modeling formalism and denotes a language for
expressing such models. In our approach, the Wessbas-DSL is used as an intermediate
language between the construction of SUT-specific but tool-agnostic workload models on
the one side, and the generation of corresponding inputs to load testing tools and perfor-
mance models on the other side. Wessbas is implemented as an Ecore-based meta-model
using the benefits and tool support of the Eclipse Modeling Framework (EMF) (Stein-
berg et al., 2009). The DSL structure offers a high degree of flexibility and extensibility.

Wessbas-DSL instances are extracted in an automatic way based on recorded session
logs from the SUT. These logs are recorded by monitoring the load (e.g. production load)
of the SUT (see Figure 9.1). With support of the Session Log Generator the raw logs are
transformed to the session log which is the input format for the Behavior Mix Extractor.
The Behavior Mix Extractor extracts the Behavior Mix and the corresponding Behavior
Models based on the created session log. The Behavior Mix is determined by identifying
different groups of customers with similar navigational patterns. During the extraction the
different Behavior Models are identified with support of clustering algorithms. Currently
supported clustering algorithms are K-means and X-means. Additionally, the Workload
Intensity is extracted using the Workload Intensity Extractor. Finally, the extracted Be-
havior Models, the Behavior Mix, the Workload Intensity, and the GaAs are transformed
to a valid Wessbas-DSL instance, which can be further transformed to performance
models (Section 9.3.3) and load generation tools (Section 9.3.4).

9.3.3 Transformation to Performance Models

In order to apply the proposed approach a performance model of the system under test is
required. In this work the Palladio Component Model (PCM) will be used as meta-model
(Becker/Koziolek/Reussner, 2009). PCM is a modeling language enabling the prediction
of quality-of-service attributes (QoS) like response times, CPU utilization, and through-
put (Becker/Koziolek/Reussner, 2009). PCM is composed of five complementary model
types. The central model type is the Repository Model. It models the software compo-
nents, component operations, and the relations between them. The modeled components
are then assembled into a System Model to represent the application system. Resource
containers (e.g., servers) and their associated hardware resources are modeled in the
Resource Environment Model, whereas the Allocation Model defines the allocation of as-
sembled components to the resource container. The Usage Model defines the workload of
the system.

As manual modeling requires too much effort we automatically derive the performance
models. The system specific parts of the performance model, all models except the usage
model, are generated in an automatic way using the approach proposed by Brunnert/
Vögele/Krcmar (2013). In this approach PCM instances are extracted from running Java
EE applications.

9.3. Workload Specification 133

The Usage Model is generated using the Wessbas approach introduced in our previ-
ous work (Vögele et al., 2015). PCM offers limited support to model complex workload
specification with the PCM usage model. Furthermore, reusing modeled activities is not
possible. To overcome these limitations, workarounds are required. In order to avoid
these workarounds, we extended the meta-model of the PCM Usage Model (Vögele et al.,
2015). We then adapted the transformation from Wessbas-DSL instances to PCM Us-
age Models proposed in Vögele/van Hoorn/Krcmar (2015) to the transformation to the
extended PCM Usage Model. The resulting PCM Usage Model consists of the Behavior
Models, Behavior Mix, and the Workload Intensity (see also example in Section 9.3.5).
The Application Model is merged into the Behavior Models by modeling the GaAs of the
Session Layer transitions to the transitions of the Behavior Model. The Protocol Layer is
not required in PCM. As simulation engine we use the discrete-event simulation engine
SimuCom (Becker/Koziolek/Reussner, 2009). The usage of other simulation engines will
be evaluated in our future work.

9.3.4 Generating JMeter Test Plans

A given Wessbas-DSL instance can be transformed into a corresponding load generation
tool. We used the publicly available extension, called Markov4JMeter (van Hoorn/Rohr/
Hasselbring, 2008), for the well-known load generator Apache JMeter, which allows us to
define and execute the workload specifications defined in Section 9.3.1. JMeter supports
the generation of workloads of various types of systems, not limited to Web-based systems.

The Test Plan Generator (Figure 9.1), reads a Wessbas-DSL instance, as described in
Section 9.3.2, from file and constructs a further XMI structure, which can be processed
by the JMeter tool. The XMI output is generated via the JMeter API and denotes a
JMeter-typical tree structure of Test Plan elements, including Markov4JMeter-specific
elements, namely Markov States and a Markov Session Controller, which are provided by
the Markov4JMeter add-on for JMeter (van Hoorn/Rohr/Hasselbring, 2008).

9.3.5 Example

In the following example we illustrate the concepts of the proposed approach. First,
the approach requires an architecture-level performance model. Though we use PCM
as performance model our approach can also be integrated with other architecture-level
performance models. A simplified example of a PCM instance in UML-like notation can
be found in Figure 9.3. Like explained in Section 9.3.3, the workload specific part is
generated using the Wessbas approach (see Section 9.3.3) and the system-specific part
using the approach proposed by Brunnert/Vögele/Krcmar (2013).

The simple exemplary system consists of two servers (Application Server, Database Server)
each containing one deployed component and a processing rate of 2.3 GHz. componentA
consists of four services login, add2cart, view items and remove; componentB of the ser-
vices getItem and getCustomer. In PCM for each service an abstract behavioral descrip-

9.4. Load Test Design Selector 134

tion called service effect specification RDSEFF is specified. RDSEFFs model the abstract
control flow of the services. They consist of internal actions (i.e., resource demands access-
ing the underlying hardware) and external calls (i.e., accessing connected components)
(Becker/Koziolek/Reussner, 2009). For reasons of simplicity we do not show the RDSEFF
models in our example.

The workload specification of our example system consists of a closed workload, specifying
the population size and the think times between the arrivals of new customer (Workload
Intensity). We remind that we use the workload specification introduced in Section 9.3.1.
Also an open workload specifying the arrival rate of new users could be used. Using the
Wessbas approach the usage model is modeled in a way that the first probabilistic branch
represents the Behavior Mix. Thus, the call probability to each Behavior Model is rep-
resented. PCM enables to vary the workload design options population size respectively
arrival rate (Workload Intensity) and the Behavior Mix in an easy way.

Simulating the PCM model using these workload settings results in a set of performance
metrics exemplary illustrated in Table 9.2. In this example each metric represents the
values which are necessary for the assessment of the configurable performance objectives
which will be explained in (Section 9.4.1.2). Changing the workload can lead to totally
different prediction results. Thus, the impact of the chosen workload on the performance
of the system is difficult to assess without using prediction results or by executing the
load test on a test system. As the design space is very huge the performance engineer
cannot assess all available combinations.

Workload Design Options Value

Workload Intensity 800

Behavior Mix 0,5; 0,25; 0,25

Performance Metric Value

CPU Utilization - App Server [%] 34%

CPU Utilization - DB Server [%] 45%

Response Time - Default Usage Scenario [s] 0.003

Throughput - Default Usage Scenario [req/s] 623

Number of Test Cases [#] 3

Coverage [%] 100%

Representativeness Error [SSE] 156

Table 9.2: Exemplary PCM Prediction Results

9.4 Load Test Design Selector

This section explains the (i.) selection of load test designs from performance models and
(ii.) the generation of executable load test cases. To select test designs from performance
models in an automatic way, we propose an optimization process using multi-objective
optimization techniques. The performance model extracted by the Wessbas approach is
used as initial performance model and the process searches for workload candidates that

9.4. Load Test Design Selector 135

0.25

Population: 800

0.250.5

Think Time: 2.0

Closed Workload

login

add2cart

0.40.7

login

view_items

login

add2cart

0.6

0.3

remove

Application Server Database Server

componentA
login
add2cart

view_items

remove

getCustomer

componentB
getItem

ProcessingRate: 2,3 GHz ProcessingRate: 2,3 GHz

Workload Specification

System Specification

Throughput: 10 Gbit/s

Figure 9.3: Simplified PCM example without think times and Guards and Actions

fulfill given performance objectives. From the resulting candidates performance engineers
can chose suitable solutions fitting to their trade-off decisions. First, the configuration of
the optimization process will be explained (see Section 9.4.1). Afterwards, the evolution-
ary optimization process will be executed (see Section 9.4.2) and the resulting candidates
transformed to executable load test scripts (see Section 9.4.3).

9.4.1 Configuration of Optimization Process

This section explains the configuration of the optimization process. It comprises the
configuration of workload design options (Section 9.4.1.1), the testing objectives (Sec-
tion 9.4.1.2) as well as the stop criteria (Section 9.4.1.3) for the optimization process.
This configuration must be specified manually by the performance engineer and will be
used during the evolutionary optimization process.

9.4. Load Test Design Selector 136

9.4.1.1 Workload Design Options

As explained in Section 9.3.1 a workload in PCM consists of the Behavior Models, Be-
havior Mix, and the Workload Intensity. As the goal is to find workloads that achieve
the performance objectives in an exploratory way the performance engineer can specify
which parts of the workload can be adjusted during the optimization process.

In our approach we enable to vary the Workload Intensity and the Behavior Mix of the
Workload Model. As the extracted Behavior Models represent the measured user behavior
we will not enable to adjust the Behavior Models. In this way the sequence of user actions
will be preserved. Further, the Design Space (DS) of the possible workload candidates
would also increase considerably. Thus, in our case the degree of freedom is two as we
enable to vary the Workload Intensity and the Behavior Mix.

In case the performance engineer is interested in finding workloads saturating specific
resources or SLAs (stress tests or scalability tests) the Workload Intensity and the Behav-
ior Mix must be varied as input for the optimization process (Barna/Litoiu/Ghanbari,
2011b). In this case the Workload Intensity must be varied as well as the level of stress
has to be determined. Using load levels as expected in the field (operational profile tests)
(Avritzer/Weyuker, 1995) only the Behavior Mix must be adjusted as the Workload In-
tensity should be configured like measured or expected in production.

The DS of all workload combinations can be very high. According to Barna/Litoiu/
Ghanbari (2011a) the total number of possible workload combinations when the Workload
Intensity and the Behavior Mix can be adjusted is:

Mixes =
nmax∑
n=1

(
n+ b− 1

b− 1

)
(9.1)

n is the number of users (Workload Intensity) and b is the number of test cases (Behavior
Models). Assuming we have a workload candidate with 200 users (Workload Intensity)
and 5 Behavior Models. The number of workload combinations would be 2.872.408.790
(see (Barna/Litoiu/Ghanbari, 2011a)). As the number of combinations is too high to
explore (even for relatively simple workloads) we use a multi-objective genetic algorithm
approach.

9.4.1.2 Performance Objectives

In this configuration step the performance objectives used to assess the workload design
candidates are chosen. As stated before, often more than one criterion should be optimized
at the same time which are conflicting with a high probability. We predefined a set of
objectives which can be chosen by the test engineer fitting to their testing objectives,
whereby at least one criterion must be chosen. For each objective the performance engineer
can set the following options:

9.4. Load Test Design Selector 137

1. The performance engineer can chose which of the predefined objectives should be
considered during the load test design selection. At least one objective must be
selected.

2. For each selected objective it must be configured if the objective should be maxi-
mized or minimized (Sign of objective). For example, workload candidates which
maximize the CPU utilization should be derived.

3. A minimum and/or a maximum threshold for the selected objective can be defined.
For example, as the system behavior becomes unpredictable when the CPU is too
high (around 80%) the maximum limit should be configured. Further, if the engineer
is only interested in workloads which are higher than a predefined threshold the
minimum utilization can be configured.

The available performance objectives are explained in the following:

Resource Utilization: The resource utilization is the most important objective. Of-
ten it must be evaluated which workload is necessary to stress a specific resource type
(Barna/Litoiu/Ghanbari, 2011a; Zhang/Cheung, 2002; Briand/Labiche/Shousha, 2005).
Each resource type that is modeled in the used performance model can be chosen as
testing objective. The common resources in PCM are CPU, HDD and network. When
multiple resource container are modeled in PCM for each container the resource utiliza-
tion can be configured separately. Currently only the resource type CPU utilization is
supported in our approach.

Response Time: Response times can be configured as performance objective as well.
When response time SLAs are predefined the question which workloads (Workload In-
tensity and Behavior Mix) would violate this SLA is of high importance (Barna/Litoiu/
Ghanbari, 2011a; Grechanik/Chen/Xie, 2012; Di Penta et al., 2007). The average pre-
dicted response time of the simulated system requests will be taken as input for the
evolutionary optimization process. Thus, no user think times are taken into account.

Throughput: Throughput can also be an important metric for the selection of work-
load candidates as SLAs can also include throughput requirements. The number of system
level requests initiated by the PCM usage model per second will be taken as input for the
evolutionary optimization process.

Number of Test Cases: The number of test cases can have an high impact on the
load testing effort. The maintenance effort increases as the test cases must be updated
for each new software release. Further, for each test case test data must be provided.
The number of test cases is defined as the number of Behavior Models with an execution
probability greater than zero.

System Coverage: Chosen workloads can result in very low test coverage and the
system can be tested always in the same saturation regime (Woodside/Franks/Petriu,
2007). Therefore, achieving a high test coverage can be an objective of a test design. The
system coverage in our work is defined as the percentage of software components which
are called by the selected test cases. Each component must be called at least once to be

9.4. Load Test Design Selector 138

considered. The coverage can be defined on method (Service Effect Specification (SEFF))
or component level (PCM - Basic Component). For each candidate the percentage of
called SEFFs or components is calculated.

Representativeness Error: An important requirement is that the workloads should
be as representative as possible to the measured workload (Feitelson, 2002; Lutteroth/
Weber, 2008; Draheim et al., 2006). Therefore, one possible test goal is to ensure that the
proportion of requests per request type is as similar as possible to the proportion of the
initially measured workload. The representativeness error of a workload compared to the
measured workload will be determined by calculating the Sum of Squared Error (SSE) for
the proportions of the request counts. For each workload candidate the sum of squared
error will be calculated as follows:

SSE =
n∑

i=1

(rpmi ∗ 100− rpsi ∗ 100)2 (9.2)

rpmi is defined as the measured proportion of request type (RT) i and rpsi as the sim-
ulated proportion of this request type. An example can be found in Table 9.3. The
measured request proportion (MRP) and the simulated request proportion (SRP) of two
experiments are presented. For each simulated distribution the SSE compared to the
measured distribution will be calculated. In the example the request proportion SRP1 is
more representative than SRP2 as the SSE value is lower. The lower the value the more
representative the executed workload compared to the measured workload.

RT MRP SRP1 SSE1 SRP2 SSE2

login 10% 14% 16 15% 25

view items 20% 16% 16 20% 0

add2cart 20% 14% 36 12% 64

shoppingcart 30% 28% 4 23% 49

home 10% 14% 16 15% 25

logout 10% 14% 16 15% 25

sum 100% 100% 104 100% 188

Table 9.3: Exemplary calculation of representativeness error

9.4.1.3 Stop Criteria

Finally, the stop criteria for the optimization process must be configured. The stop
criterion defines when the optimization process will terminate and present the results to
the performance engineer. At least one stop criteria must be chosen. In case multiple
criteria are chosen the optimization process stops when one of the criteria is fulfilled.

9.4. Load Test Design Selector 139

The following stop criteria are defined:

1. Duration of optimization process

2. Number of simulations

3. Number of iterations of the genetic algorithm

4. Specific number of candidates fulfilling minimum criteria is found

5. Specifying the minimum coverage metric C of the Pareto front of the new optimiza-
tion run compared to Pareto front of the previous run

The coverage metric C used in Koziolek et al. (2011) is based on Zitzler et al. (2003) has
the goal to define the efficiency of the found Pareto front from a new optimization run.
This metric compares two Pareto fronts A and B by first calculating the common Pareto
front P as A ∪B. Afterwards, the coverage C(A,B) of A is calculated as the proportion

of candidates from A in the Pareto front P : |A∩P |
P

. When the share of C(A,B) is higher
than 50% then A is the better front as more candidates are in P .

9.4.2 Evolutionary Optimization Process

Having defined a configuration the evolutionary optimization can be executed. We propose
an automated optimization process that takes the configuration and an initial performance
model as input and searches for workload candidates optimizing the given performance
objectives. The optimization process search for Pareto-optimal candidates. Based on
these candidates, performance engineers can select candidates for these objectives.

The selected performance objectives must first be translated into a fitness function used
during the optimization process (Section 9.4.2.1). Afterwards, the optimization is exe-
cuted until the stop criteria is reached (Section 9.4.2.2). Finally, the results are presented
to the performance engineer (Section 9.4.2.3).

9.4.2.1 Fitness Functions

Each performance objective must be translated into a fitness function that is used during
the optimization process. In case no thresholds are configured for a specific objective the
optimization process tries to minimize / maximize the value of the functions.

In case a performance objective has to fulfill a predefined threshold or must be within a
predefined value range the fitness function has to be adapted for this objective. In this
case not the predicted value of a simulation (e.g. CPU utilization) should be maximized or
minimized. The fitness function is adapted in a way that the function has the maximum
when the metric is in the predefined range. As an example the CPU utilization of the

9.4. Load Test Design Selector 140

resulting workload candidates should be within the range of 40% to 50% utilization. Then
the fitness function must be adapted that the function has the maximum value within this
range. In case the CPU utilization of a candidate is lower/higher than these thresholds,
the value of the fitness function decreases. The higher the deviation of the predicted value
is compared to the targeted range, the higher the penalty. We use the following functions
to calculate the fitness function.

First the value m is calculated as the mean value for the given threshold range.

m = (thresholdmax + thresholdmin)/2 (9.3)

For instance if the minimum threshold is 40% and the maximum threshold 50%, the value
m is 45%. Afterwards, the relative deviation d of the predicted value x to the value m is
calculated. In case the value of x is within the threshold range the deviation is zero.

d =

{
0, if x in threshold range
m−x
m
, if x not in threshold range

(9.4)

Finally, we use the normal distribution to calculate the value of the function based on
the value of d. We use the normal distribution with a mean value of zero and a standard
deviation of 0.4. The lower the value of the standard deviation, the higher is the value
of the normal distribution within the threshold. Thus, the penalty of values outside the
threshold is higher. Figure 9.4 illustrates the fitness function of the CPU utilization for
the threshold range 40% to 50%.

9.4.2.2 Evolutionary Optimization

The search problem of the evolutionary optimization will be formulated as a MOP. A
MOP is defined as a problem where the goal is to optimize different maximization or
minimization fitness functions simultaneously (Coello/Lamont/Van Veldhuisen, 2007).
In this work a combination of maximization and minimization functions for the fitness
functions Q = q1, . . . , qk will be applied (see Section 9.4.1.2). A MOP can be defined as:

min/max
c∈DS

[fq1(c), fq2(c), ..., fqk(c)] (9.5)

k is the number of fitness functions selected in the configuration process. The vector c
is a n-dimensional decision variable vector c = (c1, ..., cn) from some universe Ω. Each
decision variable of the vector can be mapped to a design decision of the performance
model. In our case it represents a workload candidate consisting of a Behavior Mix and a
Workload Intensity. Depending on the configuration the Workload Intensity is varied as
well or is assumed constant. The approach presented in this work searches for multiple

9.4. Load Test Design Selector 141

●

●

●

● ●

●

●

●

●

●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CPU Utilization (%)

F
itn

es
s

F
un

ct
io

n
V

al
ue

● Fitness Function

Figure 9.4: Exemplary fitness function of the CPU utilization using the threshold range
40% to 50%.

solutions instead of one global optimum. Several solutions can be found that fulfill these
functions.

The Load Test Design Selector is based on the opt4j framework (version 3.1.4) for evolu-
tionary computation (Lukasiewycz et al., 2011) using the NSGA-II genetic algorithm. To
solve the MOP evolutionary algorithms are particularly suitable due to the fact that they
are able to handle a set of possible Pareto-optimal solutions at the same time. A workload
candidate is Pareto-optimal, if there exists no other candidate which would decrease some
criterion without causing a simultaneous increase in at least one other criterion (assum-
ing minimization) (Coello/Lamont/Van Veldhuisen, 2007). Further, another advantage
of evolutionary algorithms is that they are capable of finding solutions in a very huge
design space. Other meta-heuristics could be used as well.

The optimization process is illustrated in Figure 9.5. The optimization process takes the
configuration and the initial candidate extracted in the previous step as input (see Sec-
tion 9.3.3). A vector of possible workload design options is called genotype (Lukasiewycz et al.,
2011) and represents the possible composition of the candidates. In the first iteration a
set of candidates are randomly created by selecting concrete values for the decision vari-
ables of the genotypes. Each genotype is then decoded into concrete performance model
instances. These performance model instances are called phenotypes and are concrete
representatives of the genotype.

9.4. Load Test Design Selector 142

candidate
configuration

Mutation Crossover Random

set of candidates

Calculation of metrics

Simulation of candidates (Simulation Service)

prediction results

metrics + candidates

Exit criteria fulfilled?

final set of Pareto-optimal
set of candidates

set of Pareto-optimal

Evaluation of fitness functions

fitness function values

Selection of Pareto-optimal candidates

candidates

candidates

initial

Figure 9.5: Evolutionary Optimization Approach (based on Koziolek et al. (2011)

Afterwards, each candidate is simulated in order to determine the prediction results. As
the simulation of each candidate one after another would be very time consuming we
execute the optimization process with the help of a distributed and scalable simulation
cluster that can simulate multiple instances in parallel. This service, named SiaaS, sim-
ulates PCM instance based on a headless Eclipse instance (Willnecker/Vögele/Krcmar,
2016). Simulation jobs are triggered by a platform-independent REST interface and can
be reused by other applications. This allows simulating a vast amount of model instances
in parallel on cloud or on-premise installations.

In the next step based on the prediction results from the performance model the metrics
that are used as input for the fitness functions are calculated (see Section 9.4.1.2). The
configured fitness functions are evaluated and afterwards the candidates are checked for
Pareto-optimality. Only the candidates which are Pareto-optimal are selected for the next
generation.

When no exit criterion is reached these candidates are used for the next iteration. This
time new candidates are created based on mutation and crossover (Coello/Lamont/
Van Veldhuisen, 2007). Crossover mixes the genomes of the selected candidates and
creates a new candidate. This is done for example by taking the Behavior Mix from one
candidate and the Workload Intensity from another candidate. With mutation the values
of the attributes of the candidates are modified, for example, by increasing the Workload

9.5. Evaluation 143

Intensity of one candidate. This way, the optimization iteratively searches the design
space for better workload solutions based on the configured fitness functions.

When the configured stop criterion is reached the optimization will stop and the final set
of Pareto-optimal candidates is presented to the user.

9.4.2.3 Results Presentation

Finally, the results of the optimization process will be presented to the test designer.
The results are summarized as a list of the Pareto-optimal solutions and the predicted
values of the configured performance objectives. Further, the resulting candidates will be
presented using suitable visualizations like shown during the evaluation. The candidates
which do not fulfill the threshold criteria can be filtered out. The test designer can
identify the Pareto-optimal solutions and make trade-off decisions which test cases to
choose based on given test goals. For instance, if resource coverage is more important
than the maximization of the resource usage the selection of the Pareto-optimal solution
where the coverage is higher can be preferred. Optionally, candidates of interest can
also be examined in more detail and simulations with a higher simulation time can be
conducted.

9.4.3 Automatic Generation of Load Test Scripts

The selected workload solution can automatically be feed back to the Wessbas-DSL in
terms of changing the Workload Intensity and the Behavior Mix specification. Based on
the DSL the Test Plan Generator generates executable load test scripts for the common
load testing tool Apache JMeter including the extension Markov4JMeter (van Hoorn et al.,
2014) (see Section 9.3.4).

9.5 Evaluation

During evaluation, we apply our proposed extraction approach and tooling to the industry-
standard benchmark SPECjEnterprise2010. This serves as an investigation of (i.) the
practicality of the approach and tooling support (qualitative) and (ii.) the representa-
tiveness of the extracted load test designs (quantitative).

9.5.1 Research Questions and Evaluation Methodology

We particularly investigate the following research questions in order to evaluate our pro-
posed approach:

9.5. Evaluation 144

� RQ 1: How well is the applicability and the plausibility of the results of the multi-
objective optimization approach?

To validate the applicability and the plausibility of the results of the approach two
different configuration settings will be used. For each configuration a set of Pareto-
optimal solutions will be derived from a performance model using the evolutionary
optimization approach. These automatic derived solutions will then be visualized
and discussed. Special care will be taken on the analysis of the plausibility of the
results and on the time it takes to perform the evolutionary optimization.

� RQ 2: How accurately do the performance and workload characteristics of the se-
lected and simulated test design match the characteristics measured from the SUT?

To answer this research question for each run from (RQ 1) one Pareto-optimal
solution will be selected and transformed into load test scripts (Section 9.3.4). The
load test scripts will be executed and the measurement results of the real system
will be compared with the predictions derived from the performance model.

An experiment using the SPECjEnterprise2010 Benchmark30 will be executed. This Java
EE benchmark represents an industry application of an automobile manufacturer whose
main users are automobile dealers. First, a Wessbas-DSL will be extracted (see Sec-
tion 9.3.2) and a performance model of this benchmark will be created like proposed in
Section 9.3.3.

As explained in Section 9.3.2 clustering algorithms are used for the identification of the
Behavior Mix and the Behavior Models. With the configuration of the clustering the
number of resulting cluster can be influenced. Depending on the number of derived
clusters the complexity of the Behavior Models can be influenced. For example, when
a high number of clusters is derived the number of possible test cases is increased but
the complexity of the Behavior Models is reduced. Using X-means clustering the number
of resulting clusters will be determined automatically by the algorithm. In this case the
resulting Behavior Models can be quite complex. For example see purchase transaction
of SPECjEnterprise2010 benchmark in Figure 9.7. As it could be the goal to reduce the
complexity of the test cases simple Behavior Models are required. In this case K-means
clustering with a high k value can be applied.

9.5.2 SPECjEnterprise2010 Deployment

The SPECjEnterprise2010 industry benchmark deployment is used for the evaluation of
the proposed approach. SPECjEnterprise2010 is a Java EE application representing a
business case combining customer relationship management (CRM), supply chain man-
agement (SCM), and manufacturing. It includes a workload specification and a dataset
which is needed for the execution of load tests. The workload is generated by the Faban
Harness and Benchmark Driver.31 The benchmark consists of three different application

30SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECjEnterprise2010
results or findings in this publication have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official Web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.

31http://java.net/projects/faban/

9.5. Evaluation 145

domains; namely, Orders domain (CRM), Manufacturing domain, and Supplier domain
(SCM). The Orders domain (CRM) provides a Web-based user interface representing a
standard e-commerce application with product information and a shopping cart. It drives
the demand to the Manufacturing domain, which simulates production across different
manufacturing plants. The task of the Supplier domain (SCM) is to order new parts for
the Manufacturing domain. In this work, we consider only the Orders domain, which rep-
resents a typical Web-based application providing e-commerce functionality to customers;
in this case automobile dealer. Using this application, customers are able to purchase and
sell cars, to manage their accounts and dealership inventory, and to browse the catalogue
of cars. The Orders domain runs independently from the other two domains, as they
are mainly intended to be used as (Web-)service by other applications. It represents the
production system / SUT.

9.5.2.1 Hardware Infrastructure

Production System / SUT

VMware ESXi Hypervisor

Apache

Derby DB

Load Driver

1 Gbit/s

Faban Harness

 JMeter incl. Markov4JMeter

IBM System X3755M3

Virtual Machine

HotSpot JVM

JBoss AS

SPECjEnterprise2010

4 AMD Opteron 6172 processors

12 cores and 2,1 GHz

256 GB RAM

Vers. 5.1

6 vCPU and 16 GB RAM

openSuse Vers. 12.3

64 bit, Vers. 1.7.0

Vers. 7.1.1, 6 GB Heap

VMware ESXi Hypervisor

IBM System X3755M3

Virtual Machine

HotSpot JVM

4 AMD Opteron 6172 processors

12 cores and 2,1 GHz

256 GB RAM

Vers. 5.1

8 vCPU and 16 GB RAM

openSuse Vers. 12.3

64 bit, Vers. 1.7.0

Vers. 2.9.Vers. 1.03.

Figure 9.6: Hardware and software infrastructure

The SUT and the Dealer Driver are deployed on separate virtual machines (VM), linked
by a 1 GBit/s network (see Figure 9.6). The SUT is deployed on an IBM System X3755M3
server with 6 virtual CPUs and 16 GB RAM. The Dealer Driver also runs on an IBM
System X3755M3 server VM with 8 virtual CPUs and 16 GB RAM. The application server
is JBoss 7.1.1. using the Java EE 6 full profile with 6 GB heap allocated. As persistence
layer, an Apache Derby DB is used running in the same JVM as the JBoss application
server. Both systems use openSUSE operating system in version 12.3 and are executed
on a 64-bit OpenJDK 1.7.0 Server Java VM in version 1.7.0.

9.5.2.2 Workload Description

SPECjEnterprise2010 defines three different transaction types which are executed by auto-
mobile dealers: Browse (B), Manage (M), and Purchase (P). Within the transaction type
Browse, the benchmark driver navigates to the catalogue of available cars and browses the
catalogue for a constant number of thirteen times. Manage describes a scenario during

9.5. Evaluation 146

login

view

items quantity

add to cart

shoppingcart

clear cart

remove

defer

order

purchase

cart

home

logout

0.67; n (1.5; 0.2)

0.11; n (4.0; 0.3)

0.1;

n (4.0; 0.3)

0.12;

n (4.0; 0.3)

0.68;

n (1.0; 0.1)

0.32;

n (1.5; 0.2)
0.58;

n (2.3; 0.2)

0.22;

n (2.3; 0.2)

0.2;

n (2.3; 0.2)

login

inventory

cancel

order

sell inventory

home

logout

0.48; n (2.0; 0.2)

0.02;

n (2.0; 0.2)

0.5; n (2.5; 0.3)

0.23; n (4.0; 0.4)

0.77;n (4.0; 0.4)

login

view

items

home

logout

0.93; n (1.6; 0.5)

0.07; n (1.5; 0.2)

purchasemanagebrowse

1.0; n (2.3; 0.2)

1.0; n (1.0; 0.1)

1.0; n (1.5; 0.2)

1.0 ; n (4.0; 0.4)

1.0; n (2.7; 0.3)
1.0; n (2.0; 0.2)

1.0; n (2.0; 0.2)

1.0; n (3.4; 0.4)

1.0; n (2.8; 0.3)

1.0; n (3.5; 0.4)

1.0 ; n (2.8; 0.3)
p: probability

n: normal think time distribution

m: mean

sd: standard deviation

p;n (m; sd)

Figure 9.7: SPECjEnterprise2010 transactions Browse, Manage, and Purchase as Be-
havior Models.

which open orders are canceled and vehicles are sold. In the more complex transaction
type Purchase, orders are placed and immediately purchased or deferred. The shopping
cart is either cleared or items are removed one by one until only one item remains. Each
of these transaction types corresponds to a sequence of HTTP requests. The workload in
the Faban dealer driver is not defined in a probabilistic way and only a few of the HTTP
requests are generated in a probabilistic way.

SPECjEnterprise2010 defines a total of 13 different HTTP request types, using a request
parameter called action. We additionally split the request type called View Items into
two different request types as it executes two different use cases resulting in different
resource demands; one request type is View Items and the other is View Items Quantity.
In the first use case, View Items is called to browse the catalogue of available cars. In
the second use case, only one specific item of the catalogue is selected.

Within the original dealer driver, no think times are defined between the execution of
the HTTP actions, i.e., each HTTP action is executed directly after its previous request
has been completed. Therefore, we added think times between these actions as Gaussian
distribution with mean and standard deviation. The think times are randomly specified
between mean values of one to four seconds. Figure 9.7 depicts the structure of the three
transaction types as Behavior Models, obtained by applying our Wessbas extraction
approach including the transition probabilities and the specified think times.

In the original benchmark workload, automobile dealers log in to the system, execute
multiple instances of the three transactions types, and log out. Each of the three trans-
action types is executed with a specified probability. The standard transaction mix is
50% Browse, 25% Manage, and 25% Purchase. We modified the dealer driver such that
each transaction starts with a login and ends with a logout. In this way, each transaction

9.5. Evaluation 147

corresponds to a unique session and the transaction mix corresponds to the Behavior Mix.
As a result, the transaction types define the different navigational patterns.

9.5.2.3 Benchmark Execution and Monitoring

In a first step we execute a SPECjEnterprise2010 benchmark run in order to extract
a Wessbas-DSL instance and a performance model. We execute one benchmark run
with the Faban Harness using the standard transaction mix and a load of 800 concurrent
users, resulting in a moderate CPU utilization of the SUT of approximately 25%. The
benchmark run is executed for twelve minutes after a three minute ramp-up phase and
before a three minute ramp-down phase. We extract the system-specific parts of the
performance model (as described in Section 9.3.3). This part of the performance model
will be reused during the evaluation.

We collected standard HTTP access logs from the application server and transformed
them to a session log using the Session Log Generator (see Figure 9.1). During the
transformation, we only take complete sessions during steady state into account; meaning,
sessions starting with a login request after the ramp-up phase and ending with a logout
request before the ramp down phase. Thus, incomplete sessions are removed.

During the performance model creation we used k-means clustering with a high number
of k (k = 50). This way we created a large number of test cases which are quite simple.
Simple means that the test cases show little probabilistic behavior mostly representing
a single path from the login request to the logout request. Using a high number of test
cases we evaluate if our approach can also be used with a very large design space with
many different test case combinations. However, due to the high number we are not able
to visualize the resulting Behavior Models.

9.5.3 Results of Optimization Process

In order to answer RQ 1 (Section 9.5.1) we define two different exemplary configuration
settings (see Table 9.4):

In the first configuration we are looking for workload candidates resulting in a throughput
of 504 to 558 requests per second, having a low representativeness error and as fewer test
cases as possible. The second configuration uses four performance objectives and derives
workload candidates with a moderate CPU utilization between 20% and 25%, having a
high test coverage, low representativeness error and also as less test cases as possible.

We configured opt4J to run until the coverage criteria C is below 53% (see Section 9.4.1.3).
This means the optimization will stop when the Pareto front of the current iteration is at
least 3% better than the Pareto front of the previous run. We used a parent population
size of 50 and a offspring population size λ of 50 and a cross-over rate of 0.95%. For both
configurations we enable to vary the workload design options Behavior Mix and Workload

9.5. Evaluation 148

Configuration 1

Performance Objective Sign Threshold Value

Throughput max Y 504 - 558

Number of Test Cases min N

Representativeness Error min N

Configuration 2

Performance Objective Sign Threshold Value

CPU Utilization - App Server max Y 20% - 25%

Coverage max N

Number of Test Cases min N

Representativeness Error min N

Table 9.4: Two configuration setting used for the evaluation of RQ 1

Intensity. We used 16 parallel simulations for the simulation service and each simulation
run simulates 300 time units.

As we can see in Figure 9.8 the coverage criteria C of configuration 1 was below 53% after
30 iterations. These iterations took approximately eight-and-a-half hours and resulted in
1500 simulations. Configuration 2 stopped after 20 iterations resulting in 1000 simulation
runs and a duration of seven hours. We can also see that since iteration 16 the coverage
criterion does not improve strongly anymore for both runs.

Configuration setting 1

Having executed the first configuration setting 86 candidates where considered to be
Pareto-optimal. 14 of the 86 candidates are valid candidates, meaning candidates with
a throughput exactly between 504 and 558 requests per second. As we use thresholds
for the throughput criteria the objective function will be calculated like explained in Sec-
tion 9.4.2.1. Thus, the fitness function (throughput‘) has the maximum value when the
candidate is within the configured range. Figure 9.9 visualizes the throughput‘, represen-
tativeness error and number of test cases as 3-D Pareto front.

It can be seen that all Pareto-optimal candidates have a high value for the throughput‘
fitness function. This means the throughput of all candidates are in or very near to the
configured throughput threshold. The candidate with the lowest throughput‘ value of
0.922 results in a throughput of 447 requests per seconds. This is only a difference of
11.3% to the required minimum throughput level of 504.

In Figure 9.10 the number of test cases against the representativeness error is shown. All
candidates, the Pareto-optimal candidates and the valid Pareto-optimal candidates are
illustrated. The Pareto-front on the lower left border shows that the lower the number
of test cases the higher the representativeness error. This result is as expected as the

9.5. Evaluation 149

Figure 9.8: Coverage criterion C of the Pareto front per iteration compared to the Pareto
front of the previous iteration

Figure 9.9: 3-D Pareto front throughput‘ vs. representativeness error vs. number of test
cases

9.5. Evaluation 150

Figure 9.10: Number of test cases vs. representativeness error

lower the number of test cases it becomes more and more difficult to find representative
Behavior Mixes.

An example of a valid candidate with a low number of test cases of 3 results in an
representativeness error of 298 and a throughput of 504 requests per second. In case
the representativeness error should be lower, than a higher number of test cases must be
accepted by the performance engineer.

Configuration setting 2

87 of the candidates were considered as Pareto-optimal by the evolutionary algorithm.
17 of the 87 candidates are valid candidates in the CPU utilization range between 20%
and 25%. Figure 9.11 shows the Pareto-front for coverage, representativeness error and
number of test cases of all resulting candidates. We do not show the CPU utilization
objective as this objective represents a constraint that should be fulfilled. This threshold
criterion must be fulfilled, but it is not relevant how well it is fulfilled. Further, the CPU
utilization has no impact on the other three objectives.

All candidate solutions as representativeness error over number of test cases are shows
in Figure 9.12. The Pareto-optimal solutions and the valid Pareto-candidates are high-
lighted. Like in the first scenario it can be observed that the lower the number of selected
test cases the higher the representativeness error.

9.5. Evaluation 151

Figure 9.11: 3-D Pareto front coverage vs. representativeness error vs. number of test
cases

Figure 9.12: Number of test cases vs representativeness error

9.5. Evaluation 152

Figure 9.13: Number of test cases vs. coverage

In Figure 9.13 the number of test cases over the coverage is illustrated. It can be observed
for the Pareto-optimal candidates that the lower the number of test cases the lower the
coverage. Candidates who are not at the border are superior to others in the other two
quality criteria representativeness error and CPU utilization.

The performance engineer can know decide which resulting candidate fits best to his
objectives. For example, let’s assume the performance engineer want to have a candi-
date with a high representativeness then the resulting candidate with 6 test cases is the
best solution. In this case the representativeness error of this candidate is 182 SSE and
the RDSEFF coverage is 94%. When the number of test cases should be lower than a
candidate with a higher representativeness error and a lower coverage must be selected.

Concluding, the answer to RQ 1 is that the results of the multi-objective optimization
process for the two configuration settings are plausible. The lower the number of test
cases is the higher is the representativeness error and the lower the system coverage.
Furthermore, the approach is able to find solution within the predefined thresholds. The
applicability of the approach is also good as only little manual effort is need. However,
the time it takes to conduct the analysis must be further optimized.

9.5.4 Prediction Accuracy of Selected Test Design Candidates

In this section for each configuration setting of the previous section a Pareto-optimal can-
didate is selected and the load test scripts for this candidate are generated as explained in

9.5. Evaluation 153

Section 9.4.3. The exemplary mentioned candidates of the previous section are taken into
account. Afterwards, we execute the load test scripts and compare the predicted metrics
of the Pareto-optimal candidates with the resulting measurements to answer RQ 2. Again,
the benchmark run is executed for twelve minutes after a three minute ramp-up phase
and before a three minute ramp-down phase. The results can be found in Table 9.5. We
evaluate the prediction metrics required for the evaluation of the performance objectives
(see Table 9.2). Further evaluations of resulting workload and performance characteristics
of the extracted performance models and load test scripts can be found in our previous
work (see Vögele et al. (2016); Brunnert/Vögele/Krcmar (2013)).

Workload Candidate 1 - Configuration Setting 1 Workload Candidate 2 - Configuration Setting 2

Performance Objective Simulation Measured Prediction Error Simulation Measured Prediction Error

CPU Utilization - App Server [%] 30.04% 31.1 %;34.03% (usr;1-idle) 3.41%; 11.71% 23.69% 25.61%; 28.36% (usr;1-idle) 7.51%; 16.45%

Response Time - Default Usage Scenario [s] 0.0036 0.0048 25.23% 0.0035 0.0037 5.41%

Throughput - Default Usage Scenario [req/s] 504 486 3.7% 464 459 1.09%

Representativeness Error [SSE] 298 309 3.56% 182 178 1.69%

Coverage [%] 82.97% 82.97% 0% 94% 94% 0%

Number of Test Cases [#] 3 3 0% 6 6 0%

Table 9.5: Comparison of prediction metrics from resulting workload candidates with
measurement results

Workload Candidate 1 Workload Candidate 2

Request MRP MRP SSE SRP SSE MRP SSE SRP SSE

home 8.0% 6.9% 1.2 6.9% 1.2 6.9% 1.2 6.8% 1.4
remove 0.4% 5.4% 25.1 5.4% 25.1 0.1% 0.1 0.1% 0.1

deferorder 0.9% 0.0% 0.8 0.0% 0.8 3.4% 6.1 3.5% 6.6
View Items 28.3% 40.3% 145.5 40.0% 138.8 22.3% 36.1 23.0% 27.6

View Items quantity 8.4% 6.8% 2.5 6.8% 2.3 15.3% 47.8 15.4% 49.9
clearcart 0.8% 0.0% 0.6 0.0% 0.6 1.3% 0.3 1.3% 0.3

cancelorder 0.1% 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0
shoppingcart 1.2% 5.4% 17.9 5.4% 17.8 1.4% 0.0 1.4% 0.0
Add to Cart 8.4% 6.8% 2.5 6.8% 2.4 15.3% 47.8 15.4% 49.8

logout 8.0% 6.9% 1.2 6.9% 1.2 6.9% 1.2 6.8% 1.4
inventory 8.3% 5.3% 9.2 5.3% 9.1 3.5% 23.0 3.4% 24.1

login 8.2% 6.9% 1.7 6.9% 1.7 8.1% 0.0 8.0% 0.0
sellinventory 18.0% 8.0% 100.9 8.2% 97.0 14.3% 13.8 13.5% 20.3
purchasecart 1.1% 1.3% 0.1 1.4% 0.1 1.3% 0.0 1.3% 0.0

Sum 100.0% 100.0% 309.2 100.0% 298.2 100.0% 177.6 100.0% 181.7

Table 9.6: Representativeness error of workload candidates

Workload Candidate 1

We measured the CPU utilization every 10 seconds using the Linux command line tool
System Activity Reporter (SAR)32. The CPU utilization is split into overall CPU utiliza-
tion (1-idle) and user CPU utilization.

This candidate shows a moderate prediction error for the overall CPU utilization of 11.71%
and 3.41% for the user CPU utilization. The difference can be explained by the fact
that the used performance model generator (Brunnert/Vögele/Krcmar, 2013) do not take
the system utilization into account. Therefore the predicted overall utilization is lower

32http://linux.die.net/man/1/sar

9.6. Assumptions and Limitations 154

than the total utilization. The prediction error of the average response times is with
25.23% below the 30% acceptable error propagated by (Menascé, 2002). The throughput
is predicted with a very high accuracy (prediction error 3.7%) and the coverage is exactly
the same compared to the measurements. The representativeness error of the simulated
candidate and the measurement compared to the originally measured request distribution
are both quite low. The simulated error is 298 SSE and the measured 309 SSE. This
comes from the fact, that the simulated distribution (SRP) of the system level requests
is almost identical to the measured distribution (MRP) (see Table 9.6).

Workload Candidate 2

The prediction error for the second workload candidate for the overall CPU utilization is
16.45%. The prediction error of the user CPU utilization is with 7.51% very low. The
prediction error of the throughput defined as system level requests per second is with
1.09% also very low. The prediction error for the average response times is 5.41%. The
workload metric representativeness error has almost the same value as the simulation (see
Table 9.6).

Overall, the prediction accuracy of both workload candidates for the performance and
workload characteristics is very high (RQ 2). Only the prediction errors of the response
times are quite high but nevertheless below the 30% acceptable error.

9.6 Assumptions and Limitations

During our experiments a performance model generator is used (Brunnert/Vögele/Krcmar,
2013) to create the system-specific parts of the performance model in an automatic way.
We were able to use this generator as it is designed for generating performance models for
Java EE applications. Furthermore, the prediction accuracy of the generated model has
previously been evaluated. This type of generator is not available for all session-based
systems and performance models. Alternatively, the system-specific can also be modeled
manually.

The usage model can also be modeled manually without the Wessbas approach in case
no system implementation or no session records are available. In this case the usage model
must be transformed in a way that it can be used with our approach. This means for ex-
ample, the first branch represents the Behavior Mix followed by the Behavior Models. We
will also provide tool support for this transformation. However, using manually modeled
usage models no executable test case scripts can be generated.

The configuration of contra dictionary objectives and thresholds is currently possible.
For instance, when a configuration is defined searching for candidates with a high CPU
utilization threshold and very low response times. In this case no valid candidates can
be found. This is difficult to prevented, as prediction values are not available at the time
the configuration is specified. To prevent this, a workaround would be to allow only the
configuration of thresholds for one objective.

9.7. Threats to Validity 155

The duration of the optimization process took around seven hours during our evaluation.
Depending on the configured stop criteria and the duration of the simulation the duration
can also be higher. As we use the scalable simulation service we can reduce the runtime
by using additional simulation worker in parallel. As this increases the required hardware
resources we will evaluate the usage of faster simulation engines as well. Also analytical
solvers like the LQN (Koziolek/Reussner, 2008) solver would reduce the runtime.

The used metric coverage is very simple to use and interpret. Further, it can be directly
calculated based on the prediction results. However, structural coverage metrics like state-
ment, branch and condition coverage metrics, which are common in functional testing,
could increase the accuracy of this approach. To enable this, also structural metrics, like
which statements, branches and actions are called must be added to the PCM results.

9.7 Threats to Validity

No global optimization criterion exists to which this approach can be compared. Thus, it
cannot be guaranteed that the real Pareto-optimal solutions are found. This comes also
from the fact that we use a metaheuristic Coello/Lamont/Van Veldhuisen (2007). How-
ever, we presented a structured approach that optimizes effectively based on optimization
goals.

Further, this approach is only applicable when the underlying performance model rep-
resents the most important user interactions. Therefore we extract the workload spec-
ification from the production system. In case the system is not yet in production the
performance model must be created manually.

We enable to specify thresholds for performance objectives and proved that valid results
can be derived. However, it cannot be guaranteed that all Pareto-optimal candidates fulfill
the threshold criteria. This can be seen at the evaluation results. Thus, the number of
resulting valid candidates can be considerably lower than the absolute number of Pareto-
candidates. As we present all resulting candidates to the performance engineer, in some
cases manual adjustment of the workload candidates is required. For example, when the
CPU utilization for one candidate is too low the performance engineer can increase the
Workload Intensity as long as the threshold is reached. However, this could be very time
consuming.

Ideally, the proposed research questions should be answered using logs of a real-world sys-
tem to obtain production workloads with corresponding performance measurements and a
test environment for load testing. Some non-synthetic logs of real-world system are pub-
licly available and have been used by researchers. However, we do not have performance
measurements of these systems as well. Thus, we cannot use these publicly available logs
only to evaluate our approach. Using synthetic logs imposes a threat to external validity
and performance measurements would also be not available. As a result, a lab experiments
under controlled conditions is the best option for us. Therefore, we select an industry
standard benchmark that includes a representative workload profile. As future work we

9.8. Conclusions and Future Work 156

are planning to evaluate also against other applications like the SPECjEnterpriseNEXT
benchmark which represents a distributed system setup.

9.8 Conclusions and Future Work

The selection of test case designs enabling the given performance objectives is an impor-
tant task when planning load tests. However, it is still a big challenge to design the load
tests before load test execution. In response to this challenge we propose an approach that
extracts, evaluates and generates load test designs in an automatic way based on given
multiple performance objectives. We use a performance model to assess different workload
designs that match the objectives using a multi-objective genetic algorithm. The result-
ing Pareto-optimal candidates are presented to the performance engineer who can chose
the candidate fitting to the trade-off decision. The evaluation with the industry-standard
benchmark SPECjEnterprise2010 demonstrated the practicality and plausibility of the
results of the proposed approach. Further, we demonstrate the high prediction accuracy
of the simulated workload candidates.

As future work we will apply the approach to select load test cases in distributed appli-
cations with many servers and components. Furthermore, we extend the approach that
it can be used with faster simulation engines like EventSim (Merkle/Henss, 2011) or an-
alytical solvers like LQN to reduce the simulation time. Both the impact of different
user input parameter will be investigated in the future and the integration with feedback-
based learning approaches. Moreover, we investigate to add the resource types HDD and
memory to the optimization process.

Part C

Chapter 10

Discussion

In this chapter the results of the publications are further discussed. First, the results are
summarized and then limitations, contributions and future research are described.

10.1 Summary of Findings

An overview of the findings for each embedded publication is given in this section. The
key results of each paper are also listed in Table 10.1.

In P1 the goal was to support the load testing process by automatic extraction of repre-
sentative and probabilistic workload specifications from system logs. To enable that these
workload specifications are tool and system independent, a DSL is introduced. Instance
of this DSL can be automatically extracted from system logs. During the extraction pro-
cess groups of users having similar usage patterns are identified with clustering techniques.
Based on these instances workload specifications of common load testing tools, in our case
Apache JMeter (including the Markov4JMeter Plugin), are automatically generated. We
evaluated the approach using the industry benchmark SPECjEnterprise2010. We proved
that the workload characteristics of the extracted workload match the characteristics of
the measured workload with high accuracy. Furthermore, the clustering technique was
able to identify the transaction types of the SPECjEnterprise2010 benchmark with 100%
accuracy. However, the load test scripts are not yet executable on real applications as the
required protocol information are not extracted automatically. Therefore, we evaluated
the extracted workload characteristics using a mock-up Web application.

The authors of P2 worked in several industrial projects during this research. In this
paper the authors were involved in a large-scale development project in which a SOA was
developed. The main task within this project was to ensure that predefined performance
requirements are met when the application is going into production. As the existing appli-
cations that should be integrated within this project are not designed for this integration
the performance evaluation using load testing is a difficult task. Especially, when the
services are under control of different teams and the services need to be scaled before the
tests start. The contribution of this paper is the usage of performance models to predict
service call frequencies for each service. The performance models are derived from existing

158

10.1. Summary of Findings 159

UML activity diagrams. Additionally, these models are used to derive suitable load test
scenarios based on the most frequently used usage paths.

The goal of this dissertation is to derive load test designs with performance models.
As a result, in P3 we evaluated if the already extracted workload specification of P1
can be transformed into workload specifications of model-based performance evaluation
tools as well. Therefore, we transformed instances of the Wessbas-DSL into workload
specification of performance models and evaluated this transformation using the SPEC-
jEnterprise2010 industry benchmark. Again, the workload characteristics of the extracted
workload match the characteristics of the measured workload with high accuracy. Thus,
we could prove in this paper that the Wessbas-DSL can be used as an intermediate
language for the extraction of workload specifications of load testing approaches and
model-based performance evaluation. However, we encountered limitations in modeling
complex workload specification only with the PCM usage model. Thus, as a workaround
we violated the separation of concerns within PCM and modeled parts of the workload in
the repository model using RDSEFFs.

P4 includes contents from and extends the content of P1 and P3. This paper contains
the following major improvements and extensions to the work reported in the previous
papers.

� First, it considerable extends the Wessbas approach and tooling support (modeling
language, extraction, generation). The relevant extensions include:

– Automatic learning of guards and actions to ensure that valid sequences of user
requests can be generated. Moreover, the guards and actions are automatically
transformed to JMeter Test Plans and to the Palladio Component Model.

– The extraction and integration of protocol information required to generate
executable load tests.

– The extraction and integration of input data that is required to execute the
load tests.

� Second, a comprehensive evaluation against the industry-standard benchmark SPEC-
jEnterprise2010 was conducted.

– We have refined the research questions introduced in P1 (impact of clustering
algorithms and impact on accuracy of workload characteristics) and added
three additional research questions (impact on the accuracy of performance
characteristics, accuracy under changing workload settings, impact of guards
and actions).

– In van Hoorn et al. (2014) the workload characteristics of the extracted work-
loads are compared against a mock-up Web application. This was sufficient
to analyze the workload characteristics. However, performance characteristics
could not be evaluated. In this paper, we evaluate more workload characteris-
tics (e.g., session durations, think times) and performance characteristics (e.g.,
response times, CPU utilizations, and heap usage) against the real SPEC-
jEnterprise2010 application. Based on the extensions developed as part of

10.1. Summary of Findings 160

this paper, we were able to generate and execute the load test scripts for the
SPECjEnterprise2010 application.

� Third, a more comprehensive description of the concepts from the previous work
along with an extended related work section.

P5 has the goal to overcome the limitations of the modeling capability of the PCM usage
model. The limitations include reusing modeled usage scenarios and the modeling of
arbitrary usage flows. Due to these limitations the workload specification of P2 cannot
be modeled only in the PCM usage model. Thus, we extend the PCM usage model in
way that complex usage pattern can be modeled only with the PCM usage model. This
has the advantage that the clear separation of concerns within PCM can be prevented.
As a result, the models that represent the system-specific parts are not modified when
instances of the Wessbas-DSL are transformed into workload specifications of PCM.

As the extraction of representative workload specifications for load testing and model-
based performance evaluation is enabled with the output of the papers P1 to P5 in P6
we demonstrate how to select load test designs from performance models that fulfill given
performance objectives. This approach, named Load Test Design Selector, is integrated
with the Wessbas approach. As it is not always the goal to derive representative work-
loads, in this paper the performance engineer is enabled to derive specifications following
(possibly multiple) different goals. Therefore, we define a set of performance objectives
derived from literature which are common for load test design selection. These objectives
comprise the commons goals for resource utilizations, response times, and throughput.
We also include new objectives that are not considered in other approaches comprising
the number of test cases, system coverage, and representativeness. For each goal it can
be specified if it should be maximized/minimized or if a predefined threshold should be
reached. As an example, the goal of a workload might be to stress the CPU to a specified
value, using a minimal set of test cases and representing the real workload as good as
possible. The performance objectives and combination of these objectives are specified by
a performance engineer and can be manifold and depend on the system, the development
status and the goals of the software project. Based on these performance objectives the
load test designs are extracted.

We defined an multi-objective optimization process based on an EA that derives load test
designs fulfilling the given objectives. The load test design in form of the Workload Inten-
sity and the Workload Mix of the usage model are constantly adapted in the reproduction
phase of the EA to generate new individuals that are evaluated based on the prediction
results. The simulation framework introduced in P13 is used to derive the prediction
results (Willnecker/Vögele/Krcmar, 2016). This process iterates several times until a
predefined exit criteria is reached. This process searches for Pareto-optimal candidates.
A candidate is Pareto-optimal, if there exists no other candidate which would decrease
some criterion without causing a simultaneous increase in at least one other criterion (as-
suming minimization). These resulting candidates are then presented to the performance
engineer who can chose between the resulting load test designs. After the selection of a
load test design it can be transformed into executable load test scripts.

10.1. Summary of Findings 161

No. Key Results

P1 � Tool and system independent DSL for the specification of workloads

� Extraction of instances of these DSL in an automatic way

� Identification of groups of users having similar usage pattern

� Transformation of these DSL instances into load test scripts

� Evaluation of workload characteristics of extracted workloads

P2 Using performance models to support load testing of a large SOA environment by
� prediction of service call frequencies

� selection of usage scenarios from performance models

P3 � Transformation of DSL instances introduced in P1 into workload specifications of
architecture-level performance models

� Demonstration that the DSL can be used as intermediate language for the extraction
of workload specifications of load testing approaches and model-based performance
evaluation.

P4 � Enable to (close to) fully automatically extract and generate executable load tests and
model-based performance predictions

� A comprehensive evaluation against the industry-standard benchmark
SPECjEnterprise2010 in which workload and performance characteristics are evaluated

� A more comprehensive description of the concepts from the previous work along with
an extended related work section

P5 � Extension of PCM usage model meta-model to enable the modeling of complex usage
pattern

� By transforming Wessbas-DSL instances into workload specification of PCM the
clear separation of concerns within PCM can be retained

P6 � Approach for multi-objective optimization of load test designs based on performance
models

� Integration with the Wessbas approach to automatically derive performance models
and executable load tests from the chosen test design

� Comprehensive evaluation against the industry-standard benchmark
SPECjEnterprise2010

Table 10.1: Key results of embedded publications

Again, using the industry benchmark SPECjEnterprise2010 we proved the practicality
and plausibility of the resulting load test design candidates. We defined two real world
scenarios and derived load test design candidates for each scenario. Additionally, we
demonstrate the high prediction accuracy of the simulated workload candidates by com-
parison with real measurements.

10.2. Limitations 162

10.2 Limitations

There are several limitations that must be considered. First, the used data structure
in the Wessbas approach to represent Behavior Models can be very inefficient when
these models comprise a large number of states. The size of the transition matrices grow
exponentially as the number of possible transition is n2. Especially, large matrices increase
the complexity for the clustering with the Weka framework. This fact could possibly make
it unfeasible to use the Wessbas approach with a large number of states.

The usage of performance models to select workload specifications is dependent on a
performance model that models the system-specific parts of a system with high prediction
accuracy. These models cannot be extracted from all types of application systems in a
automatic way. During this thesis we used an already evaluated extraction approach
for Java EE applications. For other types of systems it is possible that no automatic
extraction approach (see Section 2.2.4) is available and manual modeling is required.

The main limitations of the multi-objective optimization is that no global optimization
criterion exists to which this approach can be compared. As a result, it cannot be guar-
anteed that the best Pareto-optimal solutions are found. Moreover, it takes same time
to conduct the optimization and it is quite resource intensive. The runtime of the evo-
lutionary optimization can be reduced when faster simulation techniques (e.g. EventSim
Merkle/Henss (2011)) or analytical solvers (e.g. LQN Solver Koziolek/Reussner (2008))
are applied.

During this thesis we primarily used the industry benchmark SPECjEnterprise2010 to
evaluate the developed prototypes. As it is difficult for researchers to get access to real
world application systems we used this industry benchmark. As we mainly used this
benchmark, the generalizability of our findings is limited. In the future it would be of
great benefit if the proposed approach is evaluated using real world systems.

10.3 Contribution to Research

In literature most approaches use performance models in combination with multi-objective
optimization techniques to derive optimal system architectures. In this thesis we are the
first approach that uses these models to derive executable load test designs following mul-
tiple performance objectives. Research in this area is mainly focusing on extracting either
representative workloads or on extracting workloads that are able to detect performance
problems under load. This dissertation addresses this gap by proposing an automatic
approach that derives load test design from performance models following multiple per-
formance goals using a multi-objective optimization approach. Additionally, we formulate
further performance goals that could additionally be taken into account like component
coverage and number of test cases.

With the modeling of the workload specification using a DSL we are not only enabling
to extract system and tool agnostic models we are also able to integrate the workload

10.4. Contribution to Practice 163

modeling for measurement and model-based approaches. This DSL is extracted from
runtime data and can be used as intermediate language to generate executable load tests
and workload specifications for model-based performance predictions. To the best of our
knowledge Wessbas this is the first approach that enables the process from runtime data
to executable load tests and model-based performance prediction.

In the field of software performance research two main approaches exists that model user
behavior. One way is the usage of CBMGs (van Hoorn/Rohr/Hasselbring, 2008; Menascé,
2002) extracted from HTTP server logs, which are based on Markov Chains. The other
is the extraction and specification of EFSMs. In our work we combine both approaches.
As a result, probabilistic user behavior modeling is enabled (cf. CBMGs) while ensuring
that valid sequences of user requests are generated (EFSMs) with the usage of guards
and actions. As the probabilities of the extracted workload specifications are changed
when guards and actions are introduced, conditional probabilities must be calculated for
each transition. We proved that we can combine both approaches and extract workload
specifications which are almost identical to the measured workload specifications.

10.4 Contribution to Practice

The combination of measurement and model-based prediction is of great benefit for the
usage in practice. The flexible specification of performance goals and the selection of load
test designs enable faster selection of load tests, as the number of possible load test design
options is too high to be evaluated manually. Furthermore, the assessment of the impact
of workload designs on the system is only possible to evaluate by conducting multiple
load tests. The approach is also applicable for all session-based systems and requires no
detailed knowledge about workload extraction.

This dissertation considerably improves the applicability of model-based performance eval-
uations in practice by providing tool support for the automatic extraction of large parts of
these models. This way the required effort to specify workloads that fulfill the given per-
formance objectives is significantly reduced. The ability to automatically generate load
tests and workload specifications of performance models makes it possible to better apply
existing model-based performance evaluation techniques in practice. Workload specifica-
tions and usage pattern can be continuously extracted from the production environment
and used for load tests during development. This is especially useful when release cycles
of the systems should be reduced and not much time to specify the load tests is available.
As a result, the Wessbas approach can be integrated into DevOps processes.

10.5 Future Research

There are several possible directions for future research. First of all, the integration of the
approach in DevOps processes can further be evaluated. During continuous integration the
capabilities of model-based performance prediction can be used to identify weaknesses in

10.5. Future Research 164

the system architecture for specific usage pattern. This way the robustness of the system
architecture can be continuously assessed and further improved.

Another important direction of future research is to consider the impact of different input
variables on the selection of the test cases. Input variables can have a high impact on the
response times of specific user requests. For example, the response time can be consider-
ably lower when a customer with a very seldom name is searched in a application system
than a customer with a very popular name. Even though these parametric dependencies
can be specified in PCM but yet cannot be extracted in an automatic way.

Furthermore, the evaluation of the approach for modern distributed applications is re-
quired. The industry benchmark SPECjEnterprise2010 is more a classical three tier web
application which will be gradually substituted by multi-tier applications. Furthermore,
modern web technologies must be evaluated which do not provide the required informa-
tion in the request URL to derive protocol information for the execution of load tests. In
this case it is not possible to generate executable load tests based on standard http access
logs.

The integration with feedback-based learning approaches is also of interest. During load
test execution the measured and predicted system behavior can be compared. When there
are differences the models can be adjusted and new test cases can be selected automatically
(Barna/Litoiu/Ghanbari, 2011a).

The identification of test coverage criteria is also a very interesting direction of future
research. Only few coverage criteria for load test selection are currently available. In
this dissertation we introduced and used a criteria for the determination of representative
workloads and a quite simple coverage criterion based on the percentage of methods
called within a test. The introduction of new test coverage criteria used for load test
design selection remains important. Moreover, the relation of classical coverage criterion
used during functional testing (e.g. code coverage, structural metrics) and performance
characteristic should also be examined in more detail.

References

Abbors, F.; Ahmad, T.; Truşcan, D.; Porres, I. (2012): MBPeT: A Model-Based
Performance Testing Tool. In Proceedings of the 4th International Conference on
Advances in System Testing and Validation Lifecycle (VALID)., 1–8.

Alavi, M. (1984): An Assessment of the Prototyping Approach to Information Systems
Development. Communications of the ACM , vol. 27 no. 6, 556–563, ISSN 0001–0782.

Aleti, A.; Buhnova, B.; Grunske, L.; Koziolek, A.; Meedeniya, I. (2013): Soft-
ware Architecture Optimization Methods: A Systematic Literature Review. Soft-
ware Engineering, IEEE Transactions on, vol. 39 no. 5, 658–683, ISSN 0098–5589.

Ardagna, D.; Casale, G.; Ciavotta, M.; Pérez, J. F.; Wang, W. (2014): Quality-
of-service in cloud computing: modeling techniques and their applications. Journal
of Internet Services and Applications , vol. 5 no. 1, 11, ISSN 1869–0238.

Arlitt, M.; Jin, T. (2000): A workload characterization study of the 1998 World Cup
Web site. Network, IEEE , vol. 14 no. 3, 30–37, ISSN 0890–8044.

Arlitt, M. F.; Krishnamurthy, D.; Rolia, J. (2001): Characterizing the Scalability
of a Large Web-based Shopping System. ACM Transactions on Internet Technology ,
vol. 1 no. 1, 44–69, ISSN 1533–5399.

Avritzer, A.; Weyuker, E. R. (1995): The automatic generation of load test suites
and the assessment of the resulting software. IEEE Transactions on Software Engi-
neering , vol. 21 no. 9, 705–716, ISSN 0098–5589.

Avritzer, A.; Kondek, J.; Liu, D.; Weyuker, E. J. (2002): Software performance
testing based on workload characterization. In Proceedings of the 3rd International
Workshop on Software and Performance (WOSP)., 17–24.

Balsamo, S.; Marco, A. D.; Inverardi, P.; Simeoni, M. (2004): Model-based
performance prediction in software development: A survey. vol. 30 no. 5, 295–310,
ISSN 0098–5589.

Barber, S. (2004): Creating Effective Load Models for Performance Testing with In-
complete Empirical Data. In Proceedings of the 6th International Workshop on Web
Site Evolution (WSE). IEEE, 51–59.

Barford, P.; Crovella, M. (1998): Generating Representative Web Workloads for
Network and Server Performance Evaluation. SIGMETRICS Perform. Eval. Rev.
vol. 26 no. 1, 151–160, ISSN 0163–5999.

165

References 166

Barna, C.; Litoiu, M.; Ghanbari, H. (2011a): Autonomic load-testing framework. In
Proceedings of the 8th International Conference on Autonomic Computing (ICAC).
ACM, 91–100.

Barna, C.; Litoiu, M.; Ghanbari, H. (2011b): Model-based Performance Testing
(NIER Track). In Proceedings of the 33rd International Conference on Software
Engineering. ACM, New York, NY, USA, ICSE ’11, ISBN 978–1–4503–0445–0, 872–
875.

Bayan, M. S.; Cangussu, J. W. (2006): Automatic Stress and Load Testing for Em-
bedded Systems. In 30th Annual International Computer Software and Applications
Conference (COMPSAC’06). IEEE, ISSN 0730–3157, 229–233.

Bayan, M.; Cangussu, J. a. W. (2008): Automatic Feedback, Control-based, Stress
and Load Testing. In Proceedings of the 2008 ACM Symposium on Applied Com-
puting. ACM, New York, NY, USA, SAC ’08, ISBN 978–1–59593–753–7, 661–666.

Becker, S.; Koziolek, H.; Reussner, R. (2009): The Palladio component model
for model-driven performance prediction. Journal of Systems and Software, vol. 82
no. 1, 3 – 22, ISSN 0164–1212.

Berkhin, P.; Kogan, J.; Nicholas, C.; Teboulle, M. eds. (2006): A Survey of
Clustering Data Mining Techniques. Springer Berlin Heidelberg, Berlin, Heidelberg,
25–71, ISBN 978–3–540–28349–2.

Beschastnikh, I.; Brun, Y.; Schneider, S.; Sloan, M.; Ernst, M. D. (2011):
Leveraging Existing Instrumentation to Automatically Infer Invariant-constrained
Models. In Proceedings of the 19th SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. ACM, 267–277.

Brebner, P. C. (2016): Automatic Performance Modelling from Application Perfor-
mance Management (APM) Data: An Experience Report. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering. ACM, New
York, NY, USA, ICPE ’16, ISBN 978–1–4503–4080–9, 55–61.

Briand, L. C.; Labiche, Y.; Shousha, M. (2005): Stress Testing Real-time Systems
with Genetic Algorithms. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation. ACM, New York, NY, USA, GECCO ’05, ISBN
1–59593–010–8, 1021–1028.

Brosig, F.; Huber, N.; Kounev, S. (2011): Automated extraction of architecture-
level performance models of distributed component-based systems. In Proceedings
of the 26th International Conference on Automated Software Engineering (ASE).
IEEE/ACM, ISSN 1938–4300, 183–192.

Brosig, F.; Kounev, S.; Krogmann, K. (2009): Automated Extraction of Palla-
dio Component Models from Running Enterprise Java Applications. In Proceedings
of the Fourth International ICST Conference on Performance Evaluation Method-
ologies and Tools. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, VALUE-
TOOLS ’09, ISBN 978–963–9799–70–7, 1–10.

References 167

Brunnert, A.; Danciu, A.; Vögele, C.; Tertilt, D.; Krcmar, H. (2013): Integrat-
ing the Palladio-Bench into the Software Development Process of a SOA Project.
In Proceedings of the Symposium on Software Performance: Joint Kieker/Palladio
Days., 30–38.

Brunnert, A.; Hoorn, A. van; Willnecker, F.; Danciu, A.; Hasselbring, W.;
Heger, C.; Herbst, N.; Jamshidi, P.; Jung, R.; Kistowski, J. von; Kozi-
olek, A.; Kroß, J.; Spinner, S.; Vögele, C.; Walter, J.; Wert, A. (2015):
Performance-oriented DevOps: A Research Agenda. SPEC Research Group — De-
vOps Performance Working Group, Standard Performance Evaluation Corporation
(SPEC) (SPEC-RG-2015-01) – technical report.

Brunnert, A.; Krcmar, H. (2014): Detecting Performance Change in Enterprise Ap-
plication Versions Using Resource Profiles. In Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS).,
165–172.

Brunnert, A.; Vögele, C.; Danciu, A.; Pfaff, M.; Mayer, M.; Krcmar, H. (2014):
Performance Management Work. Business & Information Systems Engineering , vol.
6 no. 3, 177–179, ISSN 1867–0202.

Brunnert, A.; Vögele, C.; Krcmar, H. (2013): Automatic Performance Model Gen-
eration for Java Enterprise Edition (EE) Applications. In Proceedings of the 10th
European Workshop on Performance Engineering (EPEW). Springer, ISBN 978–3–
642–40724–6, 74–88.

Bulej, L.; Kalibera, T.; Tůma, P. (2005): Repeated Results Analysis for Middleware
Regression Benchmarking. Performance Evaluation, vol. 60 no. 1, 345–358.

Calinescu, R.; Grunske, L.; Kwiatkowska, M.; Mirandola, R.; Tamburrelli,
G. (2011): Dynamic QoS Management and Optimization in Service-Based Sys-
tems. IEEE Transactions on Software Engineering , vol. 37 no. 3, 387–409, ISSN
0098–5589.

Calzarossa, M. C.; Massari, L.; Tessera, D. (2016): Workload Characterization: A
Survey Revisited. ACM Comput. Surv. vol. 48 no. 3, 48:1–48:43, ISSN 0360–0300.

Canfora, G.; Di Penta, M.; Esposito, R.; Villani, M. L. (2005): An Approach for
QoS-aware Service Composition Based on Genetic Algorithms. In Proceedings of
the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, New
York, NY, USA, GECCO ’05, ISBN 1–59593–010–8, 1069–1075.

Ciancone, A.; Filieri, A.; Drago, M.; Mirandola, R.; Grassi, V. (2011): Klaper-
Suite: An Integrated Model-Driven Environment for Reliability and Performance
Analysis of Component-Based Systems. In Objects, Models, Components, Patterns
Springer, ISBN 978–3–642–21951–1, 99–114.

Coello, C. A. C.; Lamont, G. B.; Van Veldhuisen, D. A. (2007): Evolutionary
algorithms for solving multi-objective problems. vol. 5, Springer, ISBN 0387367977.

References 168

Costa, L. T.; Czekster, R. M.; Oliveira, F. M. de; Rodrigues, E. d. M.; Silveira,
M. B. da; Zorzo, A. F. (2012): Generating Performance Test Scripts and Sce-
narios Based on Abstract Intermediate Models. In Proceedings of the International
Conference on Software Engineering and Knowledge Engineering (SEKE)., 112–117.

Danciu, A.; Kross, J.; Brunnert, A.; Willnecker, F.; Vögele, C.; Kapadia, A.;
Krcmar, H. (2015): Landscaping Performance Research at the ICPE and Its Pre-
decessors: A Systematic Literature Review. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. ACM, New York, NY, USA,
ICPE ’15, ISBN 978–1–4503–3248–4, 91–96.

Denning, P. J. (1997): A New Social Contract for Research. Communications of the
ACM , vol. 40 no. 2, 132–134, ISSN 0001–0782.

Di Penta, M.; Canfora, G.; Esposito, G.; Mazza, V.; Bruno, M. (2007): Search-
based Testing of Service Level Agreements. In Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation. ACM, New York, NY, USA,
GECCO ’07, ISBN 978–1–59593–697–4, 1090–1097.

Draheim, D.; Grundy, J.; Hosking, J.; Lutteroth, C.; Weber, G. (2006): Real-
istic load testing of Web applications. In Proceedings of the 10th European Confer-
ence on Software Maintenance and Reengineering (CSMR). IEEE, ISBN 1534–5351,
59–70.

Dynatrace (2016): Dynatrace. http://www.dynatrace.com, Last accessed December
11, 2016.

Ehrgott, M. (2006): Multicriteria optimization. Springer Science & Business Media,
ISBN 978–3540213987.

Feitelson, D. G. (2002): Workload modeling for performance evaluation. Performance
Evaluation of Complex Systems: Techniques and Tools , vol. 2459, 114–141.

Feitelson, D. G. (2015): Workload modeling for computer systems performance eval-
uation. Cambridge University Press, ISBN 978–1107078239.

Filieri, A.; Grunske, L.; Leva, A. (2015): Lightweight Adaptive Filtering for Efficient
Learning and Updating of Probabilistic Models. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. vol. 1, IEEE, 200–211.

Foo, K. C.; Jiang, Z. M.; Adams, B.; Hassan, A. E.; Zou, Y.; Flora, P. (2010):
Mining Performance Regression Testing Repositories for Automated Performance
Analysis. In 2010 10th International Conference on Quality Software. IEEE, ISSN
1550–6002, 32–41.

Franks, G.; Al-Omari, T.; Woodside, M.; Das, O.; Derisavi, S. (2009): En-
hanced Modeling and Solution of Layered Queueing Networks. IEEE Transactions
on Software Engineering , vol. 35 no. 2, 148–161, ISSN 0098–5589.

Gambi, A.; Filieri, A.; Dustdar, S. (2013): Iterative Test Suites Refinement for
Elastic Computing Systems. In Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering. ACM, New York, NY, USA, ESEC/FSE 2013,
ISBN 978–1–4503–2237–9, 635–638.

http://www.dynatrace.com

References 169

Goševa-Popstojanova, K.; Singh, A. D.; Mazimdar, S.; Li, F. (2006): Empir-
ical Characterization of Session-Based Workload and Reliability for Web Servers.
Springer Empirical Software Engineering , vol. 11 no. 1, 71–117, ISSN 1382–3256.

Grechanik, M.; Chen, F.; Xie, Q. (2012): Automatically finding performance prob-
lems with feedback-directed learning software testing. In Proceedings of the 34th
International Conference on Software Engineering (ICSE 2012). , ISBN 0270–5257,
156–166.

Grinshpan, L. (2012): Solving enterprise applications performance puzzles: queuing
models to the rescue. Wiley-IEEE Press, ISBN 978–1–1180–615–72.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten,
I. H. (2009): The WEKA data mining software: An update. ACM SIGKDD
Explor. Newsletter , vol. 11 no. 1, 10–18.

Heinrich, R.; Merkle, P.; Henss, J.; Paech, B. (2015): Integrating business process
simulation and information system simulation for performance prediction. Software
& Systems Modeling ,, 1–21, ISSN 1619–1374.

Heinrich, R.; Schmieders, E.; Jung, R.; Rostami, K.; Metzger, A.; Hasselbring,
W.; Reussner, R.; Pohl, K. (2014): Integrating Run-Time Observations and
Design Component Models for Cloud System Analysis. In 9th International Work-
shop on Models@run.time. CEUR Vol-1270, 41–46.

Herbst, N. R.; Huber, N.; Kounev, S.; Amrehn, E. (2013): Self-Adaptive Work-
load Classification and Forecasting for Proactive Resource Provisioning. In Proceed-
ings of the International Conference on Performance Engineering (ICPE). ACM,
187–198.

Hevner, A. R.; March, S. T.; Park, J.; Ram, S. (2004): Design Science in Infor-
mation Systems Research. MIS Quarterly vol. 28 no. 1.

Hoorn, A. van; Rohr, M.; Hasselbring, W. (2008): Generating Probabilistic and
Intensity-Varying Workload for Web-Based Software Systems. In Proceedings of the
SPEC International Performance Evaluation Workshop 2008. vol. 5119, Springer,
ISBN 978–3–540–69813–5, 124–143.

Hoorn, A. van; Vögele, C.; Schulz, E.; Hasselbring, W.; Krcmar, H. (2014):
Automatic Extraction of Probabilistic Workload Specifications for Load Testing
Session-Based Application Systems. In Proceedings of the 8th International Confer-
ence on Performance Evaluation Methodologies and Tools (VALUETOOLS). ACM,
ISBN 978–1–63190–057–0, 139–146.

Hoorn, A. van; Waller, J.; Hasselbring, W. (2012): Kieker: A Framework for Ap-
plication Performance Monitoring and Dynamic Software Analysis. In Proceedings
of the International Conference on Performance Engineering (ICPE). ACM, ISBN
978–1–4503–1202–8, 247–248.

Israr, T. A.; Lau, D. H.; Franks, G.; Woodside, M. (2005): Automatic Generation
of Layered Queuing Software Performance Models from Commonly Available Traces.
In Proceedings of the 5th International Workshop on Software and Performance.
ACM, New York, NY, USA, WOSP ’05, ISBN 1–59593–087–6, 147–158.

References 170

Jain, R. (1991): The Art of Computer Systems Performance Analysis. John Wiley &
Sons, New York, NY, USA, ISBN 978–0–471–50336–1.

Jiang, Z. M.; Hassan, A. E. (2015): A Survey on Load Testing of Large-Scale Software
Systems. IEEE Transactions on Software Engineering , vol. 41 no. 11, 1091–1118,
ISSN 0098–5589.

Junzan, Z.; Bo, Z.; Shanping, L. (2014): LTF: A Model-Based Load Testing Frame-
work for Web Applications. In Proceedings of the 14th International Conference on
Quality Software (QSIC). IEEE, ISBN 1550–6002, 154–163.

Kalaji, A. S.; Hierons, R. M.; Swift, S. (2009): Generating Feasible Transition Paths
for Testing from an Extended Finite State Machine (EFSM). In 2009 International
Conference on Software Testing Verification and Validation. IEEE, ISSN 2159–4848,
230–239.

Kim, G.-H.; Kim, Y.-G.; Shin, S.-K.; Kim, K. J.; Chung, K.-Y. eds. (2013):
Software Performance Test Automation by Using the Virtualization. Springer
Netherlands, Dordrecht, 1191–1199, ISBN 978–94–007–5860–5.

Kistowski, J. v.; Herbst, N. R.; Kounev, S. (2014): Modeling Variations in Load
Intensity over Time. In Proceedings of the 3th International Workshop on Large
Scale Testing (LT). ACM, ISBN 978–1–4503–2762–6, 1–4.

Kolmogorov, A. N. (1950): Foundations of the Theory of Probability. Chelsea Pub-
lishing Co..

Kounev, S.; Brosig, F.; Huber, N. (2014): The Descartes Modeling Language.
Department of Computer Science, University of Wuerzburg – technical report.

Koziolek, A.; Koziolek, H.; Reussner, R. (2011): PerOpteryx: Automated Ap-
plication of Tactics in Multi-objective Software Architecture Optimization. In Pro-
ceedings of the Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT
Symposium – ISARCS on Quality of Software Architectures – QoSA and Architect-
ing Critical Systems – ISARCS. ACM, ISBN 978–1–4503–0724–6, 33–42.

Koziolek, H. (2010): Performance evaluation of component-based software systems: A
survey. Performance Evaluation, vol. 67 no. 8, 634–658.

Koziolek, H.; Reussner, R.; Kounev, S.; Gorton, I.; Sachs, K. eds. (2008): A
Model Transformation from the Palladio Component Model to Layered Queueing
Networks. Springer Berlin Heidelberg, Berlin, Heidelberg, 58–78, ISBN 978–3–540–
69814–2.

Krcmar, H. (2015): Informationsmanagement. Springer, Berlin/Heidelberg, Germany,
6. Auflage, ISBN 978–3–662–45863–1.

Krishnamurthy, D.; Rolia, J. A.; Majumdar, S. (2006): A Synthetic Workload
Generation Technique for Stress Testing Session-Based Systems. IEEE Transactions
on Software Engineering , vol. 32 no. 11, 868–882.

Labs, H.-P. (1998): Worldcup98 web logs. http://ita.ee.lbl.gov/html/contrib/
WorldCup.html, Last accessed December 16, 2016.

http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

References 171

Lehrig, S.; Becker, M. (2014): Approaching the cloud: Using palladio for scalability,
elasticity, and efficiency analyses. In Proceedings of the Symposium on Software
Performance., 26–28.

Levy, Y.; Ellis, T. J. (2006): A systems approach to conduct an effective literature
review in support of information systems research. Informing Science: International
Journal of an Emerging Transdiscipline, vol. 9 no. 1, 181–212.

Litoiu, M.; Barna, C. (2013): A performance evaluation framework for Web appli-
cations. Journal of Software: Evolution and Process , vol. 25 no. 8, 871–890, ISSN
2047–7481.

Liu, Y.; Gorton, I.; Zhu, L. (2007): Performance Prediction of Service-Oriented
Applications Based on an Enterprise Service Bus. In International Computer Soft-
ware and Applications Conference (COMPSAC). Beijing, China, ISSN 0730–3157,
327–334.

Lukasiewycz, M.; Glaß, M.; Reimann, F.; Teich, J. (2011): Opt4J - A Modu-
lar Framework for Meta-heuristic Optimization. In Proceedings of the Genetic and
Evolutionary Computing Conference (GECCO 2011). Dublin, Ireland, 1723–1730.

Lutteroth, C.; Weber, G. (2008): Modeling a Realistic Workload for Performance
Testing. In Enterprise Distributed Object Computing Conference. IEEE, ISBN
1541–7719, 149–158.

March, S. T.; Smith, G. F. (1995): Design and natural science research on information
technology. Decision Support Systems , vol. 15 no. 4, 251 – 266, ISSN 0167–9236.

Meier, J.; Farre, C.; Bansode, P.; Barber, S.; Rea, D. (2007): Performance
testing guidance for web applications: patterns & practices. Microsoft Press, 288,
ISBN 9780735625709.

Menascé, D. A. (2002): Load testing of Web sites. IEEE Internet Computing , vol. 6
no. 4, 70–74, ISSN 1089–7801.

Menascé, D. A. (2008): Computing missing service demand parameters for perfor-
mance models. In Proceedings of the CMG Conference 2008., 241–248.

Menascé, D. A.; Almeida, V. A. F.; Fonseca, R.; Mendes, M. A. (1999): A
Methodology for Workload Characterization of E-Commerce Sites. In Proceedings
of the 1st Conference on Electronic Commerce (EC). ACM, ISBN 1–58113–176–3,
119–128.

Menascé, D. A.; Almeida, V.; Riedi, R.; Ribeiro, F.; Fonseca, R.; Wag-
ner Meira, J. (2000): In search of invariants for e-business workloads. In Pro-
ceedings of the 2nd Conference on Electronic commerce (EC). ACM, 56–65.

Merkle, P.; Henss, J. (2011): EventSim–an event-driven Palladio software architecture
simulator. Karlsruhe Reports in Informatics (Palladio Days 2011 Proceedings), vol.
32, 15–22, ISSN 2190–4782.

References 172

Mizan, A.; Franks, G. (2012): Automated Performance Model Construction through
Event Log Analysis. In 2012 IEEE Fifth International Conference on Software Test-
ing, Verification and Validation. IEEE, ISSN 2159–4848, 636–641.

Mosberger, D.; Jin, T. (1998): httperf-a tool for measuring web server performance.
SIGMETRICS Performance Evaluation Review , vol. 26 no. 3, 31–37, ISSN 0163–
5999.

Object Management Group, Inc. (2005): UML Profile for Schedulability, Perfor-
mance, and Time (SPT), Version 1.1. http://www.omg.org/spec/SPTP/1.1/.

Object Management Group, Inc. (2013): Modeling and Analysis of Real-time Em-
bedded Systems (MARTE)..

Ohmann, T.; Herzberg, M.; Fiss, S.; Halbert, A.; Palyart, M.; Beschastnikh,
I.; Brun, Y. (2014): Behavioral Resource-aware Model Inference. In Proceedings
of the 29th International Conference on Automated Software Engineering (ASE).
ACM, ISBN 978–1–4503–3013–8, 19–30.

Peffers, K.; Tuunanen, T.; Rothenberger, M. A.; Chatterjee, S. (2007): A
Design Science Research Methodology for Information Systems Research. Journal
of Management Information Systems , vol. 24 no. 3, 45–77.

Pelleg, D.; Moore, A. W. et al. (2000): X-means: Extending K-means with Efficient
Estimation of the Number of Clusters. In Proceedings of the 17th International
Conference on Machine Learning (ICML)., 727–734.

Rodrigues, E. M.; Saad, R. S.; Oliveira, F. M.; Costa, L. T.; Bernardino, M.;
Zorzo, A. F. (2014): Evaluating capture and replay and model-based performance
testing tools: an empirical comparison. In Proceedings of the 8th International
Symposium on Empirical Software Engineering and Measurement. ACM, 1–8.

Rolia, J. A.; Sevcik, K. C. (1995): The Method of Layers. IEEE Transactions on
Software Engineering , vol. 21 no. 8, 689–700, ISSN 0098–5589.

Ruffo, G.; Schifanella, R.; Sereno, M.; Politi, R. (2004): WALTy: a user behavior
tailored tool for evaluating Web application performance. In Proceedings of the 3th
International Symposium on Network Computing and Applications. IEEE, 77–86.

Schulz, E. (2014): Integrating Performance Tests in a Generative Software Development
Platform., Master’s Thesis, Kiel University, Germany.

Schulz, E.; Goerigk, W.; Hasselbring, W.; Hoorn, A. van; Knoche, H. (2014):
Model-Driven Load and Performance Test Engineering in DynaMod. In Proceedings
of the Workshop on Model-based and Model-driven Software Modernization., 10–11.

Segall, I.; Tzoref-Brill, R. (2015): Feedback-driven Combinatorial Test Design and
Execution. In Proceedings of the 8th ACM International Systems and Storage Con-
ference. ACM, New York, NY, USA, SYSTOR ’15, ISBN 978–1–4503–3607–9, 12:1–
12:6.

http://www.omg.org/spec/SPTP/1.1/

References 173

Shams, M.; Krishnamurthy, D.; Far, B. (2006): A model-based approach for test-
ing the performance of web applications. In Proceedings of the 3rd International
Workshop on software quality assurance. ACM, 54–61.

Silveira, M. B. da; Rodrigues, E. d. M.; Zorzo, A. F.; Costa, L. T.; Vieira,
H. V.; Oliveira, F. M. de (2011): Generation of Scripts for Performance Testing
Based on UML Models. In Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE)., 258–263.

Simon, H. A. (1996): The sciences of the artificial. MIT press.

Sjoeberg, D. I. K.; Hannay, J. E.; Hansen, O.; Kampenes, V. B.; Kara-
hasanovic, A.; Liborg, N. K.; Rekdal, A. C. (2005): A survey of controlled
experiments in software engineering. IEEE Transactions on Software Engineering ,
vol. 31 no. 9, 733–753, ISSN 0098–5589.

Smith, C. U.; Bernardo, M.; Hillston, J. eds. (2007): Introduction to Software
Performance Engineering: Origins and Outstanding Problems. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 395–428, ISBN 978–3–540–72522–0.

Spinner, S.; Casale, G.; Zhu, X.; Kounev, S. (2014): LibReDE: A Library for
Resource Demand Estimation. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering (ICPE ’14). ACM, 227–228.

Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E. (2009): EMF: Eclipse
Modeling Framework. 2. edition. Addison-Wesley.

Vögele, C.; Brunnert, A.; Danciu, A.; Tertilt, D.; Krcmar, H. (2014): Using
Performance Models to Support Load Testing in a Large SOA Environment. In
Proceedings of the 3th International Workshop on Large Scale Testing. ACM, ISBN
978–1–4503–2762–6, 5–6.

Vögele, C.; Heinrich, R.; Heilein, R.; Hoorn, A. v.; Krcmar, H. (2015): Modeling
Complex User Behavior with the Palladio Component Model. In Symposium on
Software Performance (SSP 2015). GI - Softwaretechnik-Trends.

Vögele, C.; Hoorn, A. van; Krcmar, H. (2015): Automatic Extraction of Session-
Based Workload Specifications for Architecture-Level Performance Models. In Pro-
ceedings of the 4th International Workshop on Large-Scale Testing (LT). ACM,
5–8.

Vögele, C.; Hoorn, A. van; Schulz, E.; Hasselbring, W.; Krcmar, H. (2016):
WESSBAS: extraction of probabilistic workload specifications for load testing and
performance prediction—a model-driven approach for session-based application sys-
tems. Software & Systems Modeling ,, 1–35, ISSN 1619–1374.

Vögele, C.; Hoorn, A. van; Schulz, E.; Hasselbring, W.; Krcmar, H. (2016):
WESSBAS: extraction of probabilistic workload specifications for load testing and
performance prediction—a model-driven approach for session-based application sys-
tems. Available: http://dx.doi.org/10.5281/zenodo.54859.

References 174

Vögele, C.; Krcmar, H. (2016): Multi-Objective Optimization of Load Test Designs.
Available: https://doi.org/10.5281/zenodo.61911.

Walkinshaw, N.; Taylor, R.; Derrick, J. (2013): Inferring Extended Finite State
Machine models from software executions. In Proceedings of the 20th Working Con-
ference on Reverse Engineering. IEEE, 301–310.

Wang, W.; Huang, X.; Qin, X.; Zhang, W.; Wei, J.; Zhong, H. (2012):
Application-Level CPU Consumption Estimation: Towards Performance Isolation
of Multi-tenancy Web Applications. In Proceedings of the 2012 IEEE 6th Interna-
tional Conference on Cloud Computing (CLOUD 2012)., 439–446.

Webster, J.; Watson, R. T. (2002): Analyzing the Past to Prepare for the Future:
Writing a Literature Review. MIS Quarterly , vol. 26 no. 2, xiii–xxiii, ISSN 02767783.

WFMC Terminology (1999): Glossary (WFMC-TC-1011)..

Willnecker, F.; Brunnert, A.; Gottesheim, W.; Krcmar, H. (2015): Using Dyna-
trace Monitoring Data for Generating Performance Models of Java EE Applications.
In Proceedings of the 6th ACM/SPEC International Conference on Performance En-
gineering. ACM, New York, NY, USA, ICPE ’15, ISBN 978–1–4503–3248–4, 103–
104.

Willnecker, F.; Krcmar, H. (2016): Optimization of Deployment Topologies for
Distributed Enterprise Applications. In Proceedings of the 12th International ACM
Sigsoft Conference on the Quality of Software Architectures (QoSA). IEEE, 106–115.

Willnecker, F.; Vögele, C.; Krcmar, H. (2016): SiaaS: Simulation as a Service.
In Proceedings of the Symposium on Software Performance. GI - Softwaretechnik-
Trends.

Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B.; Wesslén,
A. (2012): Experimentation in software engineering. Springer Science & Business
Media, ISBN 978–3642290435.

Woodside, M.; Franks, G.; Petriu, D. C. (2007): The Future of Software Perfor-
mance Engineering. In Proceeding of the Future of Software Engineering. IEEE,
171–187.

Woodside, M.; Petriu, D. C.; Petriu, D. B.; Shen, H.; Israr, T.; Merseguer,
J. (2005): Performance by Unified Model Analysis (PUMA). In Proceedings of the
5th International Workshop on software and performance (WOSP). ACM, ISBN
1–59593–087–6, 1–12.

Zhang, J.; Cheung, S. C. (2002): Automated test case generation for the stress
testing of multimedia systems. Software: Practice and Experience, vol. 32 no. 15,
1411–1435, ISSN 1097–024X.

Zhang, P.; Elbaum, S.; Dwyer, M. B. (2011): Automatic Generation of Load Tests.
In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, Washington, DC, USA, ASE ’11,
ISBN 978–1–4577–1638–6, 43–52.

References 175

Zhao, L.; Tian, J. (2003): Testing the suitability of Markov chains as Web usage
models. In Proceedings of the 27th Annual International Computer Software and
Applications Conference. IEEE, ISBN 0730–3157, 356–361.

Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; Fonseca, V. G. da (2003):
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation, vol. 7 no. 2, 117–132, ISSN 1089–778X.

	Acknowledgement
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Part A
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Research Goal and Research Questions
	1.3 Thesis Structure

	2 Conceptual Background
	2.1 Load Testing
	2.1.1 Load Test Objectives
	2.1.2 Load Test Design
	2.1.3 Load Test Execution
	2.1.4 Load Test Analysis

	2.2 Model-based Performance Evaluation
	2.2.1 Analytical Performance Models
	2.2.2 Architecture-Level Performance Models
	2.2.3 Palladio Component Model
	2.2.4 Automatic Extraction of Performance Models

	2.3 Evolutionary Optimization
	2.3.1 Multi-objective Optimization Problems
	2.3.2 Basic Concepts of Evolutionary Optimization

	3 Research Methodology
	3.1 Research Design
	3.2 Research Methods
	3.3 Publications

	Part B
	4 Automatic Extraction of Probabilistic Workload Specifications for Load Testing Session-Based Application Systems
	4.1 Introduction
	4.2 Background and Related Work
	4.3 WESSBAS-DSL
	4.4 Extracting WESSBAS-DSL Instances
	4.4.1 Clustering-Based Behavior Mix Extraction
	4.4.2 Generating WESSBAS-DSL Instances

	4.5 Generating JMeter Test Plans
	4.6 Evaluation
	4.6.1 Evaluation Methodology
	4.6.2 SPECjEnterprise2010 Deployment
	4.6.2.1 Workload Description
	4.6.2.2 Benchmark Execution and Monitoring

	4.6.3 Accuracy of Clustering
	4.6.4 Accuracy of Workload Characteristics
	4.6.4.1 Session Length and Distinct Sessions
	4.6.4.2 Request Counts

	4.7 Conclusion and Future Work

	5 Using Performance Models to Support Load Testing in a Large SOA Environment
	5.1 Introduction
	5.2 Using Performance Models to Support Load Testing
	5.2.1 Extracting Usage Scenarios
	5.2.2 Transforming Performance Models
	5.2.3 Analyzing Prediction Results

	5.3 Conclusion and Future Work

	6 Automatic Extraction of Session-Based Workload Specifications for Architecture Level Performance Models
	6.1 Introduction
	6.2 Related Work
	6.3 Transforming WESSBAS-DSL Instances into PCM
	6.3.1 Wessbas Approach
	6.3.2 Palladio Component Model
	6.3.3 Transformation

	6.4 Evaluation
	6.5 Conclusion and Future Work

	7 WESSBAS: Extraction of Probabilistic Workload Specifications for Load Testing and Performance Prediction - A Model-Driven Approach for Session-Based Application Systems
	7.1 Introduction
	7.2 Related Work
	7.2.1 User Behavior Modeling
	7.2.2 Workload Intensity
	7.2.3 Workload Extraction
	7.2.4 Workload Modeling for Performance Models

	7.3 Workload Specification
	7.3.1 Workload Specification Formalism
	7.3.1.1 Application Model
	7.3.1.2 Behavior Models
	7.3.1.3 Behavior Mix
	7.3.1.4 Workload Intensity
	7.3.1.5 Workload Generation Process

	7.3.2 WESSBAS-DSL

	7.4 Extracting WESSBAS-DSL Instances
	7.4.1 Monitoring and Session Log Generation
	7.4.2 Clustering-Based Behavior Mix Extraction
	7.4.3 Workload Intensity Extraction
	7.4.4 Automatic Learning of Guards and Actions
	7.4.5 Calculation of Conditional Probabilities
	7.4.6 Generating WESSBAS-DSL Instances

	7.5 Generating JMeter Test Plans
	7.6 Transformation to Performance Models
	7.6.1 Palladio Component Model
	7.6.2 Generation of Performance Models
	7.6.3 Transformation

	7.7 Evaluation
	7.7.1 Research Questions and Methodology
	7.7.2 Fifa World Cup 1998 Access Logs
	7.7.3 SPECjEnterprise2010 Deployment
	7.7.3.1 Hardware Infrastructure
	7.7.3.2 Workload Description
	7.7.3.3 Benchmark Execution and Monitoring

	7.7.4 Evaluation Results
	7.7.4.1 Accuracy of Clustering
	7.7.4.2 Accuracy of World Cup 1998 Workload Characteristics
	7.7.4.3 Accuracy of SPECjEnterprise2010 Workload Characteristics
	7.7.4.4 Accuracy of Performance Metrics
	7.7.4.5 Accuracy of Changing Workload Settings
	7.7.4.6 Impact of Guards and Actions

	7.7.5 Threats to Validity
	7.7.6 Assumptions and Limitations

	7.8 Conclusion and Future Work
	7.9 Appendix

	8 Modeling Complex User Behavior with the Palladio Component Model
	8.1 Introduction
	8.2 Limitations of PCM Usage Model
	8.3 Extension of PCM Usage Model
	8.4 Evaluation
	8.5 Related Work
	8.6 Conclusion and Future Work

	9 Multi-Objective Optimization of Load Test Designs using Performance Models
	9.1 Introduction
	9.2 Related Work
	9.2.1 Feedback-based Load Generation Techniques
	9.2.2 Genetic Algorithm Techniques
	9.2.3 Architecture Optimization Techniques using Performance Models

	9.3 Workload Specifications for Load Testing and Model-based Performance Prediction
	9.3.1 Workload Specification
	9.3.2 WESSBAS-DSL
	9.3.3 Transformation to Performance Models
	9.3.4 Generating JMeter Test Plans
	9.3.5 Example

	9.4 Load Test Design Selector
	9.4.1 Configuration of Optimization Process
	9.4.1.1 Workload Design Options
	9.4.1.2 Performance Objectives
	9.4.1.3 Stop Criteria

	9.4.2 Evolutionary Optimization Process
	9.4.2.1 Fitness Functions
	9.4.2.2 Evolutionary Optimization
	9.4.2.3 Results Presentation

	9.4.3 Automatic Generation of Load Test Scripts

	9.5 Evaluation
	9.5.1 Research Questions and Evaluation Methodology
	9.5.2 SPECjEnterprise2010 Deployment
	9.5.2.1 Hardware Infrastructure
	9.5.2.2 Workload Description
	9.5.2.3 Benchmark Execution and Monitoring

	9.5.3 Results of Optimization Process
	9.5.4 Prediction Accuracy of Selected Test Design Candidates

	9.6 Assumptions and Limitations
	9.7 Threats to Validity
	9.8 Conclusions and Future Work

	Part C
	10 Discussion
	10.1 Summary of Findings
	10.2 Limitations
	10.3 Contribution to Research
	10.4 Contribution to Practice
	10.5 Future Research

	References

