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Abstract 19 

Mass associated with surface topography makes a significant contribution to the Earth’s 20 

gravitational potential at all spectral scales. Accurate computation in spherical harmonics to 21 

high degree requires calculations of multiple integer powers of the global topography. The 22 

purpose of this paper is to analyse the contributions of Earth’s topography to its potential to 23 

the tenth power of the topography, and quantify truncation errors resulting from neglecting 24 

higher-order powers. To account for the effect of gravity attenuation with height, we use 25 

series expansions for gravity upward-continuation to the Earth’s surface. With degree-2160 26 

expansions, limitation to the first three powers of the topography, as often done in practice, 27 

may give rise to maximum truncation errors exceeding 100 mGal at a reference sphere, and 28 

~25 mGal at the topography. Aiming for a maximum truncation error of 1 mGal we found 29 

that higher-order terms to the seventh power are required over the Himalaya Mountains as 30 

example of Earth’s most rugged land region. Upward-continuation of topographic gravity 31 

effects with mGal-precision from the sphere to the Earth’s surface is accomplished with a 32 

series expansion of fifth order. As a key finding, the accurate conversion of topography to 33 

gravity effects at the Earth’s surface is governed by two similar yet not identical series 34 

expansions. For degree-2160 expansions, we recommend that the powers of Earth’s 35 

topography be used up to seventh order to accurately evaluate the topographic potential to the 36 



mGal-level, as required, e.g., for the construction of high-resolution Bouguer gravity anomaly 37 

maps in spherical harmonics. 38 
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1 Introduction 40 

Series expansions of the topographic gravitational potential (i.e. the gravitational potential 41 

induced by topographic masses, hereafter called topographic potential) in spherical 42 

harmonics are a universal tool for the transformation of a planet’s topography to implied 43 

potential and gravity effects. Previous studies have used this transformation for a wide range 44 

of applications, such as comparisons of the Earth’s topography and/or isostatic compensation 45 

masses with the observed gravity field [e.g., Rummel et al., 1988; Tsoulis, 2001; Göttl and 46 

Rummel, 2009; Novák, 2010a; Hirt et al., 2012], the computation of spherical harmonic 47 

Bouguer anomalies for the Moon [Wieczorek and Phillips, 1998], Mars [Neumann et al., 48 

2004] and Earth [Balmino et al., 2012]. Further applications include, but are not limited to, 49 

estimations of the Moho density contrast [Martinec, 1994], inversion of magnetic anomalies 50 

[Parker and Huestis, 1974], computation of topographic effects in geoid determination [e.g., 51 

Vaníček et al., 1995; Sjöberg, 2000; Heck, 2003] and gravity reductions [Nahavandchi and 52 

Sjöberg, 1998], topographic effects in satellite gravity gradiometry [e.g., Wild and Heck, 53 

2005; Mahkloof and Ilk, 2008; Eshagh, 2009], and cross-comparisons with Newton’s integral 54 

in the spatial domain [Kuhn and Seitz, 2005]. 55 

Because the relation between topographic height function and topographic potential is non-56 

linear [Rummel et al., 1988; Wieczorek, 2007], the topographic potential is usually expanded 57 

into a series of powers of the topographic heights. The necessity for non-linear terms was 58 

pointed out early by Jung [1952]. Rummel et al. [1988] derived the contributions of Earth’s 59 

topography to the topographic potential up to third-order, and studied these for degree-180 60 

harmonic models. Balmino [1994] generalized the transformation to higher orders. Wieczorek 61 

and Phillips [1998] expressed the relation between gravity and topography as an infinite 62 

series expansion and studied the truncation errors for the Moon’s topographic potential. 63 

Chambat and Valette [2005] studied the second-order contributions to the topographic 64 

potential. Wieczorek [2007] investigated the truncation errors for the terrestrial planets and 65 

found truncation errors at the level of some mGal for third-order expansions of Earth’s 66 

topography to degree ~360 [Wieczorek, 2012, pers. comm.].  67 

In the presence of the degree-2160 EGM2008 Earth geopotential model [EGM 2008; Pavlis 68 

et al., 2008; Pavlis et al., 2012], series expansions are used nowadays to compute the 69 

potential of Earth’s topography with a comparable [Makhloof, 2007; Novák, 2010a; 70 

Bagherbandi, 2011; Bagherbandi and Sjöberg, 2012] or even higher (to degree 5400, cf. 71 

Novák, [2010b] and Gruber et al., [2012]; to degree 10,800, cf. Balmino et al., [2012]) 72 

resolution.  Many of the recent works truncate the series expansions of the topographic 73 

potential after three orders, as such seemingly relying on findings for degree-360 models of 74 

Earth’s topography. Exceptions are Tenzer et al. [2011a] and Novák [2010b] who computed 75 

the first five powers of the topographic potential. Some researchers acknowledge that terms 76 

higher than third-order might be required. For example, Makhloof  [2007, p. 101] states that 77 

“at least the first, second and third terms of height must be taken into account for calculating 78 

the gravitational effect”, Balmino et al. [2012, Sect. 6 ibid] note that “a truncation at the 79 

third power is probably not sufficient in areas of high/rough topography”, and Tenzer et al. 80 

[2011a] find that using up to fifth order will result into a relative accuracy of better than 81 

0.016% when modelling gravitational effects of ocean water masses to degree 360, while 82 



pointing out that “a careful analysis of the convergence and optimal truncation […] is 83 

needed when using a higher than 360 degree of a spectral resolution”.  With the exception of 84 

Novák [2010b], little attempt is made in most of the previous works to quantify or reduce the 85 

truncation error of third-order series expansions and degree-2160 models by including the 86 

higher-order terms.  87 

The aim of this study is to investigate the accurate evaluation of series expansions of the 88 

topographic potential for degree-2160 Earth topography models. By analysing the signal 89 

strengths and examining the truncation errors, this study provides answers on the role of the 90 

neglected higher-order terms. From a range of functionals of the topographic potential, we 91 

exemplify the evaluation for the topographic gravity effect, which is technically the radial 92 

derivative of the topographic potential. 93 

We place a first focus on determination and analysis of the topographic potential degree 94 

variance spectra of the first ten powers of Earth’s topography. A second focus is on 95 

quantifying the truncation errors for topographic gravity effects over mountainous test areas. 96 

Because some practical applications require evaluation of topographic gravity effects at the 97 

Earth’s surface rather than a reference sphere, we put a third focus on emerging 3D spherical 98 

harmonic synthesis (SHS) methods capable of providing topographic gravity effects  that 99 

account for the effect of gravity attenuation with height. This is required in practical 100 

applications involving topographic reductions of observed surface gravity, as is the case with 101 

the geophysically defined Bouguer anomaly, which is defined at the Earth’s surface [e.g., 102 

Hackney and Featherstone, 2003; Kuhn et al., 2009]. Our 3D-SHS is based on gravity 103 

upward-continuation using an efficient higher-order gradient approach [Hirt, 2012; Balmino 104 

et al., 2012]. This allows us to study the contribution of the higher-order series expansion 105 

terms and truncation errors not only at the surface of a reference sphere but also at the Earth’s 106 

surface as represented by topographic models.  107 

Numerical case studies over the Mount Everest region (representing Earth’s most elevated 108 

and rugged land region), and the European Alps region (as an example of a more medium-109 

elevated mountain range) are used to quantify truncation errors for degree-2160 topography 110 

models. We believe the choice of this resolution is justified by the fact that EGM2008 is now 111 

a de-facto standard reference model used by a wide geo-scientific community, and the 112 

topographic potential is required to the same resolution for some applications.  We 113 

demonstrate that in spherical harmonic representation the practical evaluation of topographic 114 

gravity effects at the Earth’s surface is governed by two closely related series expansions (the 115 

transformation of topography to topographic potential, and 3D SHS for the upward-116 

continuation). With the principles used in this study, truncation errors can be quantified for 117 

other planetary bodies, and/or higher resolution topography models, and/or other functionals 118 

of the topographic potential. 119 

2. Mathematical approach 120 

2.1 Series expansions of the topographic potential  121 

Series expansions of the topographic potential have been derived several times in the 122 

literature [see e.g., Rummel et al., 1988, p3; Wieczorek and Phillips, 1998, p1716; Ramillien, 123 

2002, p144; Eshagh, 2009, p663]. Principally, these derivations start from the fundamental 124 

Newton’s integral in the space domain, replace the inverse distance in this integral through a 125 

series of Legendre polynomials and expand the heights of the topography into a binomial 126 

series, see the above references. Note that a variety of terms are in use in the literature for 127 



series expansions of the topographic potential, e.g., gravitational potential created by the 128 

topography [Ramillien, 2002], Newton’s integral in spherical harmonic expansion [Kuhn and 129 

Featherstone, 2003], transformation of gravity to topography [Wieczorek, 2007] or 130 

(computation of) Bouguer coefficients [Balmino et al., 2012]. 131 

Let pH  denote topographic heights of power p in the space domain, and p
nmH  the short-hand 132 

for the fully-normalized spherical harmonic coefficients ( , ) p
nmHC HS  of the topography of 133 

power p with n degree and m order. The coefficients p
nmH  are related to pH   through the 134 

spherical harmonic expansion  135 
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where maxn  denotes the maximum degree of expansion (here 2160),  the longitude and  137 

geocentric latitude of the computation point. (sin )nmP    are the 4-fully-normalized 138 
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describes the R -normalized and laterally variable topographic heights of power p in the space 142 

domain and 143 
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in the spectral domain. The series expansions of the topographic potential describe the 145 

transformation of the height functions ( )p
nmH  to power maxp p  to the topographic potential 146 

maxp
nmV  [after Rummel et al., 1988; Balmino, 1994; Wieczorek and Phillips, 1998] 147 
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where   is the (constant) mass-density of the topography and   is the mean (bulk) mass-149 

density of the planet. maxp
nmV   is the short-hand for the fully-normalized spherical harmonic 150 

coefficients max( , ) p
nmVC VS   of the topographic potential obtained from Eq. (4). Instead of a 151 

constant  , laterally varying mass-density values i  could be used by replacing the 152 

topographic heights pH  with products of pH   and i , see, e.g.,  Kuhn and Featherstone 153 

[2003]; Novák and Grafarend [2006]; Wieczorek [2007]. Three-dimensional density 154 

functions can be used for some simple functions of the geocentric radius (e.g. polynomials; 155 

see Tenzer et al., [2011b]). In this study we use the common case of constant mass-density 156 

for topographic masses.  157 



According to Wieczorek [2007], maxp  = 1 corresponds to the Bouguer shell effect (i.e., 158 

Bouguer plate correction), and terms maxp  > 1 can be interpreted as terrain correction to the 159 

Bouguer shell in spherical harmonics (adding the third dimension).  For p larger than 3, all 160 

coefficients ( )p
nmV  with 3n p   are zero, so do not contribute to maxp

nmV , cf. Balmino [1994, 161 

p335].  It is the products of the degree-dependent factors [the ( 4 )n i  -terms in Eq. (4)] 162 

which cause an increasingly larger contribution of higher-order powers of the topography as 163 

the degree n increases (Sect. 3.1). Explicit forms of the ( )p
nmV -terms are given in the Appendix 164 

to maxp = 10. 165 

While modeling the full spectrum requires (theoretically) an infinite expansion of Eq. 166 

(4) (that is, maxn  and maxp  are infinite), for a band-limited spectrum ( maxn  is finite) the exact 167 

transformation of topography to its topographic potential requires expansion of Eq. (4) to 168 

only maxp   maxn + 3. This is because for higher-order terms the leading factor becomes zero. 169 

In practical applications, however, limitation to a much smaller number of terms is sufficient 170 

to force truncation errors below a certain threshold (e.g., related to the precision of 171 

gravimetric measurements). Parameter maxp  is influenced by a range of factors such as the 172 

resolution of the topography ( maxn ), the planetary body under consideration (see Wieczorek 173 

[2007], Fig. 9 ibid), the height of evaluation of topographic gravity effects, and the threshold 174 

below which truncation errors are considered acceptable. The investigation of maxp  at 175 

different evaluation heights (surface of reference sphere and height of the topography) is 176 

treated for Earth and maxn = 2160 in the numerical case study (Sect. 3). 177 

The topographic potential coefficients maxp
nmV   are converted to topographic gravity effects  178 

maxpg  as radial derivative of the topographic potential 179 
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where GM is the product of the universal gravitational constant and planetary mass, and 181 

( , , )r   are the 3D coordinates of the evaluation point ( longitude,  geocentric latitude and 182 

r geocentric radius). The factor ( / )nR r  is known as attenuation factor and plays an important 183 

role in this study (see Sect. 2.2 and 3.2).  184 

To accurately reduce (full-spectrum) gravity observations from terrestrial gravimetry, 185 

topographic gravity effects from truncated (e.g., maxn = 2160) spherical harmonic models are 186 

not sufficient. This is because observed gravity data possess spectral energy at all spatial 187 

scales (e.g., Torge, [2001]), while the spherical harmonic model cannot represent short-scale 188 

topographic gravity effects (here at scales less than 5 arc-min). This effect, known as (signal) 189 

omission error, can be taken into account in the spatial domain using high-resolution digital 190 

elevation data and, e.g., the residual terrain modelling technique (RTM, Forsberg, [1984]).  191 

Given that omission errors can reach magnitudes of ~100 mGal or more in case of EGM2008 192 

(e.g., Hirt, [2012], Table 5 ibid), it is clear that the resolution of degree-2160 topography 193 



models cannot guarantee 1 mGal accuracy in the absolute sense, e.g., for the purpose of 194 

reducing (full-spectrum) gravity observations. Here we focus on accurate spherical harmonic 195 

modelling of topographic gravity effects, band-limited to 5 arc-min resolution, which is 196 

commensurate with the EGM2008 geopotential model. For modelling of short-scale 197 

topographic gravity effects beyond the resolution of spherical harmonic models see e.g. 198 

Pavlis et al., [2007] and Hirt et al., [2011]. Omission error modelling is not further dealt with 199 

in this study. 200 

2.2. Continuation to the Earth’s surface 201 

For all comparisons or reductions involving gravity measurements, topographic gravity 202 

effects are required at the 3D-location ( , , )Qr   of the gravity station at the point Q at 203 

Earth’s surface rather than at the surface of the reference sphere. As an example, we name the 204 

geophysically defined Bouguer anomaly where the topographic effect is reduced at gravity 205 

station height [e.g., Hackney and Featherstone, 2003]. There are two ways to accomplish the 206 

3D-SHS of topographic gravity effects: 207 

1. Direct evaluation of Eq. (5) at ( , , )Qr   the locations of the gravity stations. For high-208 

degree (say maxn  beyond ~1000) SHS at multiple points arranged in regularly spaced 209 

latitude-longitude grids, the direct SHS approach is very time-consuming [e.g., 210 

Holmes, 2003]. This is because numerically efficient algorithms for high-degree SHS 211 

[e.g., Tscherning and Poder, 1982; Holmes and Featherstone, 2002; Holmes and 212 

Pavlis, 2008] require a constant ( / )nR r  attenuation factor along the parallels of the 213 

latitude-longitude grid. Earth’s topography makes the ( / )n
QR r -factor a varying 214 

quantity along parallels, preventing the direct use of efficient high-degree SHS 215 

algorithms [e.g., Hirt, 2012]. 216 

2.  (Upward)-continuation of g from the reference sphere ( , , )R   to ( , , )Qr  using 217 

Taylor series expansions. These provide an efficient solution to 3D-SHS of 218 

topographic gravity effects at multiple grid points because the g  and the radial 219 

derivatives of g  are evaluated at some constant r, which enables the use of efficient 220 

SHS algorithms. Hirt [2012] investigated the use of higher-order gradients for the 221 

upward-continuation of gravity effects from the EGM2008 geopotential model. As we 222 

will show here, this technique is equally suited for efficient yet accurate SHS of 223 

topographic gravity effects from the topographic potential. 224 

While the direct evaluation of g  at ( , , )Qr   is of course feasible for a smaller number (say 225 

thousands) of scattered points, it is too time consuming for multiple (say millions) densely-226 

spaced grid points. We therefore investigate Taylor series expansions to degree maxk  for the 227 

continuation of gravity effects to the Earth’s surface 228 
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where H  is the elevation of the point P, and /k kg r   is the radial derivative of order k 230 

computed from [Hirt, 2012] 231 
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at the surface of the sphere r R . The 0-th derivative is the topographic gravity itself (Eq. 5) 233 

at r R .  To improve the convergence of the upward-continuation (Sect. 3.3), it is 234 

advantageous to evaluate /k kg r   at a mean reference elevation refH  (e.g., 4000 m) above 235 

the reference radius R  236 
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where refH H  is the elevation of point Q relative to refH , and the radial derivatives are 238 

evaluated at Refr R H  . As main advantage of Eqs. (6) to (8) over Eq. (5), height 239 

information H  (e.g., from digital elevation models) can be taken into account globally at 240 

high-resolution, say a few arc minutes or higher, within reasonable computation times [Hirt, 241 

2012], while keeping the SHS computations and use of height information separated. We 242 

note that Eqs. (6) and (8) are valid only if the series expansion exists and converges, which 243 

has not been proven here.  However, numerical evaluations suggest that they can be used for 244 

practical computations.  245 

We acknowledge that Balmino et al. [2012] also use Taylor expansions for gravity upward-246 

continuation in place of the direct 3D SHS, however, without using mean reference 247 

elevations refH  to accelerate the convergence.  We note Eqs. (6) and (7) are similar to the 248 

frequently used analytical downward-continuation of gravity measurements, as described in 249 

Moritz [1980]. While Moritz’s approach (downward)-continues gravity in the spatial domain, 250 

from the Earth’s surface to some reference surface inside Earth, our approach continues 251 

gravity in the spectral domain, from some reference surface R + refH  to the Earth’ surface, as 252 

represented through elevation H . Thus, the upward-continuation approach taken here is 253 

suitable for topographic reductions at the Earth’s surface (as is done in geophysics) while 254 

Moritz’s approach is used in geodesy in the context of gravimetric geoid determination. 255 

3. Numerical study 256 

The rationale of the numerical study is to analyse how the ( )p
nmV  of Earth’s topography 257 

contribute to Earth’s topographic potential maxp
nmV  and gravity effects g  and to examine the 258 

truncation errors of topographic gravity effects at the reference sphere and at the topography. 259 

As high-resolution spherical harmonic model of Earth’s topography, we use the DTM2006.0 260 

model [Pavlis et al., 2007; Pavlis et al., 2012] in all of our numerical tests. DTM2006.0 is a 261 

companion product of EGM2008 [Pavlis et al. 2012] and provides harmonic coefficients 262 

( *, *)nmHC HS  of the Earth’s solid surface (i.e., ocean depths over sea and topographic 263 

heights of the land/air interface elsewhere) which are used here to degree maxn = 2160. 264 

Among other data sources, DTM2006.0 relies on SRTM (Shuttle Radar Topography Mission) 265 



elevations within the SRTM data coverage, altimetry-derived bathymetry, and ICESat-2 ice 266 

altimetry over Greenland and Antarctica, see Pavlis et al. [2012] for more details. 267 

3.1 Computation of Earth’s topographic potential 268 

We make use of the concept of rock-equivalent topography (RET, see e.g., Rummel et al., 269 

[1988]) which is convenient because a single constant mass-density value can be used to 270 

describe the topographic masses over land, ocean and ice. Following steps were taken to 271 

compute the topographic potential contributions of Earth’s topography to tenth power. 272 

(1) We first evaluated the DTM2006.0 ( *, *)nmHC HS  fully-normalised coefficients to maxn = 273 

2160 into a regularly spaced 2×2 grid of geocentric latitude and longitude using the 274 

harmonic_synth spherical harmonic synthesis software [Holmes and Pavlis, 2008]. Note 275 

we use the “asterisks” symbol in order to distinguish above coefficients from that of the 276 

RET elevations (cf. point 3 below).  277 

(2) We then compressed the ocean water masses as well as ice masses of the ice sheets over 278 

Greenland and Antartica to RET of a constant mass-density of  = 2670 kg m-3 using the 279 

procedure described in Hirt et al. [2012].  280 

(3) We used the SH-Tools (http://shtools.ipgp.fr/) implementation of Driscoll and Healy’s 281 

[1994] algorithm for spherical harmonic analysis (SHA) of the 2×2 grid of RET 282 

elevations. This gave us the (1)
nmH  = ( , )nmHC HS  coefficients of Earth’s RET to degree 283 

2700, from which we use all coefficients to maxn = 2160 (see also Pavlis et al. [2007]).  284 

(4)  In the same manner, we derived the ( )p
nmH coefficients of the squared, cubed and higher-285 

order powers of the dimensionless RET to p = 10, by first forming the powers p  of the 286 

2×2 RET elevations, then normalizing the RET elevations with Eq. (2) and a constant 287 

reference radius R  = 6,378,137 m (semi-major axis of the Geodetic Reference System 288 

1980, cf. Moritz [2000]), before applying Driscoll and Healy’s algorithm.  Thus, ten 289 

SHA gave us 10 sets of 2,336,041 p
nmH  coefficient pairs to maxn = 2160. 290 

(5) Finally, we computed the contributions ( )p
nmV  of the powers of the RET as well as the total 291 

contribution of all powers to p = 10 using Eq. (4) with  = 2670 kg m-3 and  = 5515 kg 292 

m-3 (cf. Torge [2001]). 293 

It is important to mention that higher powers of the topographic height function should be 294 

sampled with higher spatial resolution to allow for correct evaluation of high-degree 295 

harmonic coefficients.  Therefore, we use grids of higher spatial resolution (e.g. 2×2) than 296 

would be required to derive the spherical harmonic coefficients up to n = 2160 corresponding 297 

to a spatial resolution of 5×5 (half-wavelength) on the sphere.  298 

3.2 Spectra of Earth’s topographic potential  299 

The dimensionless topographic potential degree variance n   [e.g., Rapp, 1982] 300 
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of all (single) contributions ( )p
nmV   (see Appendix, Eqs. A1 to A10 for explicit forms) and the 302 

total contribution max 10p
nmV   are shown in Fig. 1. From the topographic potential degree 303 

variances shown in Fig. 1, the graphs for p   3 have been published, e.g., by Novák and 304 

Grafarend [2006] to maxn = 360, by Makhloof [2007, p101 ibid] to maxn = 2000, by 305 

Bagherbandi [2011, p152 ibid] to maxn = 2160, by Balmino et al. [2012, Fig. 7 ibid] to maxn = 306 

10,800 and the graphs for p   5  by Novák [2010b] to maxn = 5,400, whilst the spectra of 307 

orders p > 5 are little investigated in the literature for high-degree models. 308 

 309 

Figure 1. Potential degree variances (dimensionless) of Earth’s topographic potential to 310 

maxp = 10 (black), and contributions (1)V  to (10)V  311 

While the contribution of the linear and squared topography steadily decreases with 312 

increasing harmonic degree n, there is an opposite behaviour visible for the higher-order 313 

terms with p > 2. At low and medium harmonic degrees (say, to 360), the spectral power of 314 

the first six contributions ranges over more than 20 magnitudes of order, while this range  315 

diminishes to less than 4 magnitudes at high degrees (around 2000). This shows that higher-316 

order terms make an increasingly more relevant contribution to the topographic potential as 317 

the harmonic degree increases. 318 



Bearing in mind that the square-root of the degree variances may better indicate the practical 319 

relevance of the ( )pV  contributions to the topographic potential in the space domain (see 320 

Balmino et al., [2012]), it becomes obvious that at n = 2000 (6)V  reaches more than 1 % and 321 
(4)V  about ~10% of the linear contribution (1)V .  This readily suggests that with today’s high-322 

degree models of Earth’s topography, terms higher than (3)V  are required to accurately 323 

describe the high-resolution potential of a given topography/density distribution. 324 

Figure 1 shows that at medium harmonic degrees of about 360, the (square-root) contribution 325 

of terms higher than (3)V  is well below 1%, as such insignificant in practice for degree-360 326 

models. From Wieczorek’s [2007] convergence analysis a similar conclusion can be drawn 327 

(compare Fig. 9 ibid). It can be argued from Fig. 1 that the high powers of the topography, 328 

say p  8, could be dropped in practical applications, as they make a square-root contribution 329 

of no larger than ~0.1 % over the entire range of harmonic degrees shown in Fig. 1. These 330 

low-contribution terms are included here up to p  = 10 to yield precise reference values of the 331 

topographic potential, allowing for a reliable analysis of truncation errors when considering 332 

less terms (e.g. p  < 10). 333 

3.3 Convergence of the series in the spatial domain 334 

Though the topographic potential degree variance spectra reveal the relative importance of 335 

the higher-order powers of the topography beyond harmonic degree of ~1000, numerical tests 336 

in the spatial domain are necessary to quantify truncation errors in terms of topographic 337 

gravity effects. The application of series expansions of the topographic potential to compute 338 

topographic gravity effects at the Earth’s surface is essentially governed by two series 339 

expansions.  340 

 The first is the series expansions of the topographic potential itself, used to transform 341 

the powers of the topography to topographic potential and gravity effects [Eqs. (4) 342 

and (5)]. 343 

 The second is used to upward-continue the topographic gravity effects from some 344 

reference surface to the Earth’s topography [Eqs. (7) and (8)]. 345 

First we analyse approximation errors of the continuation of topographic gravity effects to the 346 

Earth’s surface with a Taylor expansion limited to maxk  followed by an analysis of truncation 347 

errors resulting from dropping the higher-order powers of the topography beyond maxp . 348 

Because our tests involve topographic gravity effects computations at the Earth’s surface, the 349 

direct 3D SHS technique (variant 1 in Sect. 2.2) is too time-consuming to study the 350 

convergence over the entire surface of Earth. Over smaller regions, however, SHS at the 3D 351 

locations of the topography is feasible within acceptable computation times [cf. Hirt, 2012]. 352 

We therefore choose two test areas of regional extent with extreme and moderate topography 353 

(Figs. 2a and 2b). The Himalaya region (27<<29, 84<<88) includes the Mount Everest 354 

summit and the North Indian plains with the SRTM topography extending over a range of 355 

more than 8,000 m. The European Alps region (45<<47, 5<<9) features an elevation 356 

range of 4,500 m. While the Mount-Everest region should be indicative for a worst-case error 357 

estimate for Earth, the European Alps area serves as an example of a moderately rugged 358 

mountain range. In all subsequent tests, we consider a 1-mGal-level acceptable for practical 359 

applications. The computation points are arranged in terms of 0.02 resolution grids regularly 360 



spaced in geocentric latitude and longitude, giving 20,000 points per test region. Elevations 361 

representing the Earth’s surface were interpolated bicubically from the 1km SRTM vers 4.1 362 

release from Jarvis et al., [2008], whereby the difference between geodetic and geocentric 363 

latitude was taken into account (see Torge, [2001, p95]).  364 

 365 
Figure 2. Topography (from SRTM, panels a and b) and topographic gravity effects (from 366 

DTM2006 to degree 2160, panels c and d) over the test areas Himalayas (a and c) and 367 

European Alps (b and d), coordinates are in terms of geocentric latitude and longitude 368 

 369 

3.3.1 Gravity upward-continuation tests 370 

We computed true values true
Qg at the 3D-locations of the SRTM-topography with an 371 

expansion up to maxp = 10 (Figs. 2c and 2d). We then evaluated g  [Eq. (5)] and radial 372 

derivatives /k kg r   [Eq. (7)] for k  6 both at the surface of the reference sphere ( R  = 373 

6,378,137 m and refH = 0) and at a reference height of refH = 4,000 m above R  (i.e., 374 

R + refH = 6,382,137 m) and used these grids along with SRTM height information H  for the 375 

continuation of topographic gravity effects to the Earth’s surface [Eqs. (6) and (8)]. For the 376 

Himalaya region, Fig. 3 shows the differences between true
Qg  and maxk

Qg  as a function of the 377 



parameter maxk    for the case refH = 0 m, and Fig. 4 the respective differences for the case 378 

refH = 4,000 m.  379 

From Fig. 3, the convergence of the upward-continuation is relatively slow when refH = 0 m, 380 

with the differences true
Qg  minus maxk

Qg exceeding values of 100 mGal for maxk = 5. Using an 381 

average reference height refH = 4,000 m in the upward continuation significantly shortens the 382 

distances H - refH  along which the gravity values are continued. As a result, the convergence 383 

is considerably improved (Holmes, [2003]; Hirt, [2012]), with approximation errors true
Qg  384 

minus maxk
Qg  falling below the mGal-level for maxk = 5 (cf. Table 1 and Fig. 4) over the most 385 

rugged area of Earth. Repetition of the same test over the European Alps area shows that that 386 

a fourth-order series expansion and refH = 4,000 m is capable of reducing approximation 387 

errors below the mGal-level (cf. Table 2), which is a useful indication for other areas with 388 

comparable or less rugged topography. We acknowledge that the reference height refH  could 389 

be chosen smaller, say 2,000 m (~average elevation of the Alps) which would result in an 390 

even better convergence over the European Alps. Using a single constant value of 4,000 m is 391 

more convenient, and gives acceptable results not only over both areas, but very likely over 392 

entire Earth. 393 

394 



  395 

 396 

Figure 3. Approximation errors of upward-continued gravity as a function of maxk  with 397 

reference height refH = 0 m, test area is the Himalaya region, coordinates are in terms of 398 

geocentric latitude and longitude, unit in mGal 399 

 400 
Figure 4. Approximation errors of upward-continued gravity over the Himalaya region as a 401 

function of maxk , with reference height  refH = 4000 m, unit in mGal 402 

403 



Table 1. Approximation errors of upward-continued gravity over the Himalaya region as a 404 

function of the Taylor expansion degree maxk  units in mGal 405 

Expansion 

degree maxk  

Reference height refH  = 0 m Reference height refH  = 4000 m 

min max mean rms Min max mean rms 

0 -551.21 284.12 -13.60 74.98 -165.77 32.68 -8.59 17.67 

1 -315.88 728.36 5.47 59.75 -28.20 85.05 -0.07 4.11 

2 -703.36 218.29 -3.29 35.87 -38.34 4.76 -0.16 1.07 

3 -105.41 502.41 1.59 17.20 -1.56 13.54 0.00 0.27 

4 -283.41 42.21 -0.62 7.02 -3.86 0.28 0.00 0.06 

5 -16.49 132.18 0.21 2.54 -0.05 0.93 0.00 0.01 

6 -52.55 5.48 -0.06 0.83 -0.18 0.01 0.00 0.01 

 406 

Table 2. Approximation errors of upward-continued gravity over the European Alps as a 407 

function of the Taylor expansion degree maxk , units in mGal 408 

Expansion 

degree maxk  

Reference height refH  = 0 m Reference height refH  = 4000 m 

min max mean rms Min max mean rms 

0 -122.27 48.17 -3.90 16.12 -82.66 43.22 -1.25 13.04 

1 -23.14 59.19 0.78 4.92 -33.17 13.90 -0.80 4.04 

2 -24.44 11.76 -0.19 1.36 -9.71 3.63 -0.20 1.06 

3 -3.76 8.05 0.03 0.32 -2.33 1.06 -0.05 0.24 

4 -2.19 0.94 -0.01 0.07 -0.47 0.26 -0.01 0.05 

5 -0.20 0.49 -0.01 0.01 -0.09 0.05 -0.01 0.01 

6 -0.11 0.02 -0.01 0.01 -0.02 0.00 -0.01 0.01 

 409 

3.3.2 Convergence tests 410 

Here we answer the question how many powers of the topography should be included in the 411 

evaluation of series expansions of the topographic potential and the frequently used maxn = 412 

2160 in order to force truncation errors below the 1-mGal-threshold. From the spectral 413 

analysis (Fig. 1), we conclude that inclusion of terms higher than maxp = 10 would not lead to 414 

any perceptible topographic gravity effects differences when compared to maxp = 10. We 415 

therefore use maxp = 10 as ‘true’ comparison values to quantify truncation errors, similar to 416 

the tests by Wieczorek [2007]. 417 

Test A – truncation errors at the reference sphere 418 



Over the Himalaya region, Fig. 5 shows the truncation error defined as max 10pg   419 

minus max [1..6]pg  , computed at the surface of the reference sphere (Eq. 5). For maxp = 3, the 420 

value sometimes used in practice with degree-2160 models, truncation errors exceed the 100 421 

mGal level. Inclusion of each additional term reduces the maximum truncation errors by a 422 

factor of ~2 to ~3. Taking into account the powers to maxp = 6 reduces maximum errors to 423 

~5mGal, while expansion to maxp = 8 diminishes truncation errors to less than 1 mGal (cf. 424 

Table 3). Over the European Alps region, limitation to quartic terms ( maxp = 4) is sufficient to 425 

make truncation errors smaller than 1 mGal (Table 4). 426 

Test B – truncation errors at the topography 427 

Truncation errors computed at the sphere do not take into account the effect of gravity 428 

attenuation, and can be over-estimates if topographic gravity effects are required at the 429 

surface of the topography. We therefore examined the truncation errors at the topography by 430 

using the successfully tested upward-continuation procedure (cf. Sect. 3.3.1) with refH = 431 

4,000 m, and maxk = 6, which is more than sufficient for accurate 3D-SHS (see Tables 1 and 432 

2). In comparisons to truncation error tests at the sphere, truncation errors at the topography 433 

are always smaller for the same maxp , compare Fig. 5 with 6. Maximum truncation errors for 434 

the Himalaya area are at the ~25 mGal level for maxp = 3, and fall below the 1-mGal-435 

threshold for maxp = 6 (Table 3). For the European Alps region, convergence is reached for 436 

maxp = 4 (Table 4). 437 

438 



 439 

 440 
Figure 5. Truncation errors of gravity at the surface of the reference sphere over the 441 

Himalaya region as a function of maxp , unit in mGal 442 

 443 

 444 
Figure 6. Truncation errors of upward-continued gravity over the Himalaya region as a 445 

function of maxp  unit in mGal 446 

447 



 448 

Table 3. Truncation errors of gravity over the Himalaya region as a function of maxp , units in 449 

mGal 450 

Expansion 

degree maxp  

Case A - at the sphere Case B - at the topography 

min max mean rms min max mean rms 

1 -309.69 462.06 2.34 72.49 -134.16 129.34 0.01 27.78 

2 -185.85 250.29 0.01 35.73 -58.09 52.76 -0.68 10.44 

3 -90.09 119.03 -0.01 15.10 -24.08 21.60 -0.21 3.97 

4 -36.64 47.36 -0.00 5.42 -8.38 7.73 -0.06 1.36 

5 -12.37 15.96 -0.00 1.68 -2.47 2.40 -0.01 0.42 

6 -3.57 4.64 -0.00 0.46 -0.63 0.65 0.00 0.11 

7 -0.90 1.18 -0.00 0.11 -0.15 0.16 0.00 0.03 

8 -0.20 0.26 -0.00 0.02 -0.17 0.04 0.00 0.01 

 451 

Table 4. Truncation errors of gravity over the European Alps as a function of maxp , units in 452 

mGal 453 

Expansion 

degree maxp  

Case A - at the sphere Case B - at the topography 

min max mean rms min max mean rms 

1 -57.78 91.24 0.35 14.55 -48.89 50.80 -0.20 9.63 

2 -18.56 22.64 -0.01 3.41 -13.07 11.30 -0.11 2.03 

3 -4.62 4.78 -0.00 0.70 -3.02 2.17 -0.02 0.40 

4 -0.89 0.90 -0.00 0.12 -0.57 0.35 -0.01 0.07 

5 -0.14 0.14 -0.00 0.02 -0.10 0.05 -0.01 0.01 

6 -0.02 0.02 -0.00 0.00 -0.03 0.00 -0.01 0.01 

7 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 

8 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 

 454 

4. Discussion 455 

The computation of topographic gravity effects at the Earth’s surface from degree-2160 456 

models of Earth’s topography is accomplished through a combination of two series 457 

expansions, the first to convert topography to topographic potential and topographic gravity 458 

at the reference sphere, and the second to upward-continue topographic gravity effects to the 459 

Earth’s surface, and thus to account for gravity attenuation with height. Both series 460 

expansions [cf. Eqs. (4) and (8)] have notable similarities, in that, they expand topographic 461 

gravity into powers of the topography, and depend on binomial coefficients. While the first 462 

uses powers of heights in the spectral domain, the second uses them in the spatial domain. 463 



If topographic gravity effects are sought at the reference sphere (this may be the case e.g., 464 

when comparison data such coefficients of a gravitational potential model would be given at 465 

the radius of the same reference sphere), the second expansion is not required. Also, over 466 

small areas SHS performed directly at the 3D locations of the topography [Eq. (5)] can 467 

replace the second expansion. Nonetheless if topographic gravity effects are required at the 468 

Earth’s surface in terms of densely-spaced multiple grid points, the use of two series 469 

expansions offers a pragmatic solution that  keeps SHS computation times manageably small 470 

[see Hirt, 2012]. 471 

Our convergence analysis (Sect. 3) showed that limitation to the first three powers of the 472 

topography ( maxp = 3) gives rise to truncation errors exceeding 100 mGal at the reference 473 

sphere, and ~25 mGal at the topography. Inclusion of the higher-order terms to the 7th power 474 

reduces truncation errors to the mGal-level over the Himalaya region. Because of the 475 

demanding computational requirements for direct 3D SHS (without Taylor upward-476 

continuation) we were unable to test truncation errors over entire Earth. Nonetheless, the 477 

chosen Himalaya Mountains test area is likely to yield reasonable worst-case error estimates. 478 

As a key finding of our study, both series expansions of the topographic potential and the 479 

upward-continuation of topographic gravity effects require a comparable number of terms 480 

( maxp = 6 and maxk = 5, which are six terms including 0th-order) to converge over the 481 

Himalayas, and maxp = maxk = 4 over the European Alps region. This behaviour might be 482 

explained by the similarities evident among the series expansions used. 483 

Our results differ from Balmino et al. [2012], who investigated topographic gravity effects to 484 

ultra-high harmonic degree of 10,800. They limited the series expansions to maxp = 3 (while 485 

acknowledging this value might be too small) and used a large maxk = 40 for the upward-486 

continuation of gravity with Taylor expansions of the attenuation factor itself. Balmino et 487 

al.’s [2012] results are not directly comparable with our study because of the ultra-high 488 

degree of 10,800 of their topography model, and the fact they did not use reference heights 489 

refH  to improve the convergence of the upward-continuation. Nonetheless our study suggests 490 

first that with ultra high-degree topography models, maxp  should be considerably larger than 491 

3. Second, the use of reference heights refH  will accelerate the upward-continuation 492 

convergence, suggesting maxk could be well below 40. With the software available for our 493 

study, we cannot (yet) provide exact values for maxp  and maxk  for topographic gravity effects 494 

from ultra-high degree topography models.  495 

We also compared our results to the study by Sun and Sjöberg [2001]. They investigated the 496 

convergence and optimal truncation of binomial expansions of the attenuation factor and 497 

found that maxk = 7 yields a truncation error of less than 1 % for max 2160n   and an elevation 498 

of 9,000 m [Sun and Sjöberg, 2001, p634]. Opposed to our numerical tests, Sun and Sjöberg 499 

restricted their investigation to the attenuation factor itself, without including empirical 500 

coefficients ( , ) p
nmHC HS  to max 2160n  , and without using the reference height refH  to 501 

accelerate the convergence. From our Tables 1 and 2 it is evident a smaller value of maxk = 4 502 

would be sufficient to reach a comparable precision level, if reference heights are used.  503 



Finally, it is worth mentioning that Balmino et al. [2012] found that the contributions of the 504 

first three powers of the topography reach comparable signal strength at about degree 3,000, 505 

with the third-order  (3)V contribution being larger than that of (2)V , and (2)V  being larger 506 

than (1)V  in harmonic band ~3,000 to 10,800. This demonstrates the importance of inclusion 507 

of higher-order powers of the topography for the computation of topographic gravity effects. 508 

With ultra-high degree harmonic models, it is reasonable to expect a similar behaviour for at 509 

least some of the terms higher than third-order (Novák [2010b] already demonstrated this for 510 

max 5400n   and maxp = 5). 511 

5. Conclusions 512 

For degree-2160 models of Earth’s topography, this study investigated the effect of 513 

truncating the series expansions of the topographic potential. Limitation of series expansions 514 

of the topographic potential to the first three powers of the topography gives rise to truncation 515 

errors of more than 100 mGal (at the sphere) and ~25 mGal (at the topography) over regions 516 

with extreme topography, while not safely reaching the 1-mGal-level over a moderately 517 

rugged area. To keep truncation errors below the mGal-level, the first seven powers of the 518 

topography should be included in the series expansions of the topographic potential. The 519 

higher-order powers of the topography were found to make a significant contribution to the 520 

topographic potential at short wavelengths, say harmonic degrees ~1000 to 2160. We have 521 

further shown that a Taylor-expansion to fifth-order can be used to upward-continue 522 

topographic gravity effects to the Earth’s surface with mGal-precision over areas of extreme 523 

topography. The use of reference heights significantly accelerates the convergence of the 524 

gravity continuation with Taylor expansions. 525 

The results of this study are relevant for any geophysical application of the degree-2160 526 

EGM2008 geopotential model where accurate values of the topographic potential are 527 

required at the same resolution. Example applications include the construction of spherical 528 

harmonic Bouguer gravity anomaly maps and gravity inversion, but also topographic 529 

reductions (terrain corrections) in spherical harmonics. Finally, for all future studies dealing 530 

with the use of high-degree topographic potential models, e.g., for Moon, Mars or other 531 

planetary bodies, the higher-order terms of the topography as well as the upward-continuation 532 

process could be investigated with approaches similar to those described in this paper. 533 

Appendix 534 

The contributions ( )p
nmV  of the linear, quadratic, cubic, quartic, up to the 10th-power of the 535 

topography ( )p
nmH  to the topographic potential 536 

10
max 10 ( )

1

p p
nm nm

p

V V



                 (A1) 537 

read in explicit form 538 

(1) (1)3

(2 1)nm nmV H
n




 


         (A2) 539 



(2) (2)3( 2)

2(2 1)nm nm

n
V H

n





 


        (A3) 540 

(3) (3)3( 2)( 1)

6(2 1)nm nm

n n
V H

n




 
 


        (A4) 541 

(4) (4)3( 2)( 1)

24(2 1)nm nm

n n n
V H

n




 
 


       (A5) 542 

(5) (5)3( 2)( 1) ( 1)

120(2 1)nm nm

n n n n
V H

n




  
 


       (A6) 543 

(6) (6)3( 2)( 1) ( 1)( 2)

720(2 1)nm nm

n n n n n
V H

n




   
 


      (A7) 544 

(7) (7)3( 2)( 1) ( 1)( 2)( 3

50

)

( 14 2 )0nm nm

n n n n n n
V H

n




    
 


     (A8) 545 

(8) (8)3( 2)( 1) ( 1)( 2)(

40

3)( 4)

(2320 1)nm nm

n n n n n n n
V H

n




     
 


    (A9) 546 

(9) (9)3( 2)( 1) ( 1)( 2)( 3)( 4)( 5)

362880(2 1)nm nm

n n n n n n n n
V H

n




      
 


   (A10) 547 

(10) (10)3( 2)( 1) ( 1)( 2)( 3)( 4)( 5)( 6

362880

)

(2 1)0nm nm

n n n n n n n n n
V H

n




       
 


  (A11) 548 

Acknowledgements 549 

We thank the Australian Research Council (ARC) for funding through discovery project 550 

grant DP120102441. Sincere thanks go to the two anonymous reviewers for their very 551 

constructive comments, and to Tom Parsons for handling of our manuscript. Our spherical 552 

harmonic analyses were performed using the freely available software archive SHTOOLS 553 

(shtools.ipgp.fr). This is The Institute for Geoscience Research publication Nr 428. 554 

References 555 
 556 

Balmino, G., (1994), Gravitational potential harmonics from the shape of an homogeneous 557 

body, Celestial Mech. Dyn. Astron. 60(3), 331- 364, doi:10.1007/BF00691901. 558 

Balmino G., N. Vales, S. Bonvalot and A. Briais (2012), Spherical harmonic modelling to 559 

ultra-high degree of Bouguer and isostatic anomalies, J. Geod., 86(7), 499-520, doi: 560 

10.1007/s00190-011-0533-4. 561 

Bagherbandi, M. (2011), An isostatic Earth crustal model and its applications, Doctoral 562 

Dissertation, Division of Geodesy and Geoinformatics, Royal Institute of Technology 563 

(KTH) Sweden. URL: kth.diva-portal.org/smash/get/diva2:407999/FULLTEXT01 564 



Bagherbandi M., and L.E. Sjöberg (2012), A synthetic Earth gravity model based on a 565 

topographic-isostatic model, Stud. Geophys. Geod., 56 (2012), 1-xxx, doi: 566 

10.1007/s11200-011-9045-1. 567 

Chambat, F., and B. Valette (2005), Earth gravity up to second order in topography and 568 

density, Physics Earth Plan. Int, 151 (1-2) 89-106, doi:10.1016/j.pepi.2005.01.002. 569 

Driscoll, J. R., and D. M. Healy (1994), Computing Fourier transforms and convolutions on 570 

the 2-sphere, Adv. Appl. Math., 15(2), 202-250, doi:10.1006/aama.1994.1008. 571 

EGM (2008), Earth Gravitational Model 2008. URL: http://earth-info.nga.mil/GandG/wgs84/ 572 

gravitymod/egm2008. 573 

Eshagh, M. (2009), Comparison of two approaches for considering laterally varying density 574 

in topographic effect on satellite gravity gradiometric data, Acta Geophysica, 58(4), 575 

661-686, doi:10.2478/s11600-009-0057-y. 576 

Forsberg R (1984), A study of terrain reductions, density anomalies and geophysical 577 

inversion methods in gravity field modelling. Report 355, Department of Geodetic 578 

Science and Surveying, Ohio State University, Columbus 579 

Göttl, F., and R. Rummel (2009), A Geodetic View on Isostatic Models.  Pure Appl. Geoph., 580 

166(8-9), 1247-1260, doi: 10.1007/s00024-004-0489-x. 581 

Gruber C., Novák P., F. Flechtner and F. Barthelmes (2012), Derivation of the topographic 582 

potential from global DEM models, International Association of Geodesy Symposia, 583 

Springer-Verlag Berlin Heidelberg, paper accepted for publication. 584 

Hackney, R.I., and W E. Featherstone (2003), Geodetic versus geophysical perspectives of 585 

the ‘gravity anomaly’, Geophysical Journal International, 154(1), 35-43, 586 

doi:10.1046/j.1365-246X.2003.01941.x, Erratum in 154(2), 596, doi:10.1046/j.1365-587 

246X.2003.02058.x, Corrigendum in 167(6), 585, doi:10.1111/j.1365-588 

246X.2006.03035.x.                                              589 

Heck, B. (2003), On Helmert’s methods of condensation, J. Geod., 77(3-4), 155-170, doi: 590 

10.1007/s00190-003-0318-5. 591 

Hirt, C. (2012), Efficient and accurate high-degree spherical harmonic synthesis of gravity 592 

field functionals at the Earth's surface using the gradient approach, J Geod., 86(9), 729-593 

744, doi: 10.1007/s00190-012-0550-y. 594 

Hirt, C., M. Kuhn, W.E. Featherstone, and F. Göttl (2012), Topographic/isostatic evaluation 595 

of new-generation GOCE gravity field models, J. Geophys. Res., 117, B05407, 596 

doi:10.1029/2011JB008878. 597 

Hirt, C., T. Gruber, and W. Featherstone (2011), Evaluation of the first GOCE static gravity 598 

field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid 599 

heights. J Geod., 85(10), 723-740, DOI: 10.1007/s00190-011-0482-f. 600 

Holmes, S.A. (2003), High degree spherical harmonic synthesis for simulated earth gravity 601 

modelling, PhD Thesis, Department of Spatial Sciences, Curtin University of 602 

Technology, Perth, Australia, 171 pp. 603 

Holmes, S.A., and W.E. Featherstone (2002), A unified approach to the Clenshaw summation 604 

and the recursive computation of very high degree and order normalized associated 605 

Legendre functions, J. Geod., 76(5), 279-299, doi: 10.1007/s00190-002-0216-2. 606 

Holmes, S.A., and N.K. Pavlis (2008), Spherical harmonic synthesis software 607 

harmonic_synth.  608 

(http://earth-info.nga.mil/GandG/wgs84/gravitymod/ new_egm/new_egm.html). 609 

Jarvis A., H.I. Reuter, A. Nelson, and E. Guevara, (2008), Hole-filled SRTM for the globe 610 

Version 4, Available from the CGIAR-SXI SRTM 90m database 611 

(http://srtm.csi.cgiar.org). 612 



Jung, K. (1952), die rechnerische Behandlung der Airyischen Isostasie mit einer Entwicklung 613 

des Quadrats der Meereshöhen nach Kugelfunktionen, Gerlands Beiträge zur 614 

Geophysik, 62(1), 39-56. 615 

Kuhn, M., and W.E. Featherstone (2003), On the optimal spatial resolution of crustal mass 616 

distributions for Forward Gravity Field Modelling, In: Proceed 3rd Meeting of the 617 

Intern. Gravity and Geoid Commission, (ed. I Tziavos), Editions Ziti, pp 195-200. 618 

Kuhn, M., and K. Seitz (2005), Comparison of Newton's Integral in the Space and Frequency 619 

Domains, In: Sanso F (ed) A Window on the Future of Geodesy. Springer, Berlin 620 

Heidelberg NewYork, pp 386–391.  621 

Kuhn, M., W.E. Featherstone and J.F. Kirby, (2009), Complete spherical Bouguer gravity 622 

anomalies over Australia, Australian Journal of Earth Sciences, 56(2), 209-219, doi: 623 

10.1080/08120090802547041. 624 

Makhloof, A.A. (2007), The Use of Topographic-Isostatic Mass Information in Geodetic 625 

Applications, Dissertation. Institut für  Geodäsie und Geoinformation der Universität 626 

Bonn, D 98. 627 

Makhloof, A.A., and K.-H. Ilk (2008), Effects of topographic-isostatic masses on 628 

gravitational functionals at the Earth's surface and at airborne and satellite altitudes, J 629 

Geod, 82(2), 93-111, doi 10.1007/s00190-007-0159-8. 630 

Martinec, Z. (1994). The density contrast at the Mohorovicic discontinuity, Geophys. J. Int. 631 

117(2), 539-544, doi: 10.1111/j.1365-246X.1994.tb03950.x. 632 

Moritz, H. (1980), Advanced Physical Geodesy, Herbert Wichmann, Karlsruhe, Germany. 633 

Moritz, H. (2000), Geodetic Reference System 1980, Journal of Geodesy, 74(1), 128-162, 634 

doi: 10.1007/s001900050278.. 635 

Neumann, G. A., M.T. Zuber, M.A. Wieczorek, P.J.  McGovern, F.G., Lemoine, and D.E.  636 

Smith (2004), Crustal structure of Mars from gravity and topography, J. Geophys. Res., 637 

109, E08002, doi: 10.1029/2004JE002262. 638 

Nahavandchi, H. and L.E. Sjöberg, (1998), Terrain corrections to power H3 in gravimetric 639 

geoid determination, J. Geod., 72(3), 124-135, doi: 10.1007/s001900050154. 640 

Novák, P. and E.W. Grafarend (2006), The effect of topographical and atmospheric masses 641 

on spaceborne gravimetric and gradiometric data, Stud. Geoph. Geod., 50(4), 549-582, 642 

doi: 10.1007/s11200-006-0035-7. 643 

Novák, P. (2010a), High resolution constituents of the Earth gravitational field, Surv. 644 

Geophysics, 31(1), 1-21, doi: 10.1007/s10712-009-9077-z. 645 

Novák, P. (2010b), Direct modelling of the gravitational field using harmonic series, Acta 646 

Geodyn. Geomater., 7(1), 35-47. 647 

Parker, R.L. and S.P. Huestis (1974), The inversion of magnetic anomalies in the presence of 648 

topography, J. Geophys. Res., 79 (11), 1587-1593. 649 

Pavlis N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and 650 

evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, 651 

B04406, doi:10.1029/2011JB008916.  652 

Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2008), An Earth Gravitational 653 

Model to Degree 2160: EGM2008, presented at the 2008 General Assembly of the 654 

European Geoscience Union, Vienna, Austria, April 13–18. 655 

Pavlis, N. K., J. K. Factor, and S. A. Holmes (2007), Terrain-related gravimetric quantities 656 

computed for the next EGM, Proceed. of the 1st International Symposium of the 657 

International Gravity Field Service (IGFS), Istanbul, Turkey. Harita Dergisi, Special 658 

Issue 18, 318–323. 659 

Rapp, R.H. (1982), Degree variances of the Earth's potential, topography and its isostatic 660 

compensation, Bulletin Geodesique, 56(2), 84-94. 661 



Ramillien, G. (2002), Gravity/magnetic potential of uneven shell topography, J. Geod., 76(3), 662 

139-149, doi:10.1007/s00190-002-0193-5. 663 

Rummel, R., R.H. Rapp, H. Sünkel, and C.C. Tscherning (1988), Comparisons of global 664 

topographic/isostatic models to the Earth's observed gravity field, Report No 388, Dep. 665 

Geodetic Sci. Surv., Ohio State University, Columbus, Ohio. 666 

Sjöberg, L.E. (2000), Topographic effects by the Stokes–Helmert method of geoid and quasi-667 

geoid determinations, J. Geod., 74(2), 255-268, doi: 10.1007/s001900050284. 668 

Sun W., and L.E. Sjöberg (2001), Convergence and optimal truncation of binomial 669 

expansions used in isostatic compensations and terrain corrections, J. Geod., 74(9), 670 

627-636, doi: 10.107/s00190000000125. 671 

Tenzer, R., Novák, P., Gladkikh, V. (2011a), On the accuracy of the bathymetry generated 672 

gravitational field quantities for a depth-dependent seawater density distribution. Studia 673 

Geophysica et Geodaetica 55: 609-626. 674 

Tenzer, R., Novák, P., Vajda, P. (2011b), Uniform spectral representation of the Earth’s inner 675 

density structures and their gravitational field, Contributions to Geophysics and 676 

Geodesy, 41(3), 191-209, doi: 10.2478/v10126-011-0007-y. 677 

Torge, W. (2001), Geodesy, 3rd Edition, de Gruyter, Berlin, New York. 678 

Tscherning, C.C., and K. Poder (1982), Some geodetic applications of Clenshaw summation, 679 

Boll Geofis Sci Aff, 4, 351-364. 680 

Tsoulis, D. (2001), A comparison between the Airy/Heiskanen and the Pratt/Hayford isostatic 681 

models for the computation of potential harmonic coefficients, J. Geod., 74(9), 637-682 

643, doi:10.1007/s001900000124. 683 

Vaníček P, M. Najafi, Z. Martinec, L. Harrie, L.E. Sjöberg (1995), Higher-degree reference 684 

field in the generalized Stokes-Helmert's scheme for geoid computation., J. Geod., 685 

70(3), 176-182. doi: 10.1007/BF00943693. 686 

Wieczorek, M.A., and R.J. Phillips (1998), Potential anomalies on the sphere: Applications to 687 

the thickness o the lunar crust, J. Geophys. Res., 103(E1), 1715-1724. 688 

Wieczorek, M.A. (2007), Gravity and topography of the terrestrial planets. In: Treatise on 689 

Geophysics, 10, 165-206,  Elsevier-Pergamon, Oxford. 690 

Wild, F., and B. Heck (2005), A comparison of different isostatic models applied to satellite 691 

gravity gradiometry, In: Jekeli, C., Bastos, L., Fernandes (Eds.) Gravity, Geoid and 692 

Space Missions, Porto,  Portugal,, IAG Symposia Series 129,  230-235. 693 

 694 


