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Abstract

Systems biology exploits experimental and computational techniques to explain the be-

haviour of biological systems as a whole. Complex behaviours of biological systems, e.g.,

single cells, arise from the interaction of underlying mechanisms that have diverse and com-

plicated functionalities. These underlying mechanisms are extensively described by means

of mechanistic models. The intrinsic stochasticity in many cellular processes has been

shown to have functional roles to increase the robustness of cellular organisms. Therefore,

capturing the stochasticity is crucial for a true understanding of the behaviour of biolog-

ical systems. A broad range of cellular processes are modelled by means of biochemical

reaction networks. The exact temporal evolution of the probability distribution over the

state space of a biochemical reaction network is governed by the chemical master equa-

tion (CME). Due to the intractability of solving the CME, or approximations to it, for

most realistic systems, a field of systems biology research has been devoted to developing

mesoscopic descriptions which describe the stochastic biochemical kinetics in terms of the

statistical moments of the solution of the CME.

In this thesis, my aim was to establish robust, reliable and feasible mesoscopic approx-

imative methods that could be used in the formalism of systems biology to learn about

the underlying mechanisms of stochastic biochemical processes. To accomplish this goal, I

asked what key obstacles were in the way of obtaining mesoscopic descriptions for generic

biochemical reaction networks. A key bottleneck for the feasibility of mesoscopic ap-

proaches is their size scalability with respect to the number of species in the reaction

network: even if only the second-order moments of the CME solution are of interest, the

standard mesoscopic approaches are of quadratic scaling which is prohibitive for their

applicability to large-scale biochemical reaction networks. In this thesis, I proposed a

model reduction based on the topological structure of the reaction network that yields

near-linear scalability, and therefore, enables capturing of heterogeneity in large-scale bi-

ological processes. In addition, complex network structures, e.g., nonlinear kinetics that

do not follow the law of mass action and/or copy-number scale separation, require special
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treatments to ensure reliable approximation of the system dynamics. I addressed these

challenges by developing special moment closure approximations—e.g., employing Taylor

series expansion for the handling of non-mass action kinetics—which manifested superior

performance over standard moment approximation methods in our simulation studies.

Having achieved feasible mathematical descriptions for a wide range of realistic biological

processes, I asked how this framework can be efficiently utilised for answering systems

biology questions. Due to the variety of modelling approaches, along with the absence

of corresponding a priori error estimates, the optimal choice of the descriptive method

cannot easily be identified. In this regard, I believed that the systems biology research

would benefit from a comprehensive platform where a variety of relevant approaches can

be easily simulated and compared to assess their performances for the problem at hand.

To this end, I, together with my colleagues, developed a simulation platform enabling

efficient simulation and comprehensive comparisons across a broad range of modelling ap-

proaches. This simulation toolbox greatly enhances the accessibility of available modelling

approaches and facilitates the integration of the resulting descriptive models for the in-

ference of stochastic biochemical kinetics. In particular, for the latter, I investigated how

mesoscopic approximations can be used to better inform the inference of underlying mech-

anisms. Our studies indicated that the information contained in higher-order statistical

moments, can increase certainty and predictive power of parameter estimation results.

Taking all the contributions above together, I addressed various missing parts for achiev-

ing reliable and predictive mesoscopic descriptions that can improve our understanding of

the behaviour of biological systems.
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Chapter 1

Introduction

Biological systems are complex systems that are comprised of many elements with diverse

and complicated functionalities. Systems biology combines experimental and computa-

tional techniques to explain the collective behaviour of biological systems as a result of

the interaction of underlying mechanisms [Kitano, 2002]. Starting from early works such

as [Hodgkin and Huxley, 1952], an active field in systems biology research has been the

application of mathematics to describe the biological processes, e.g., gene expression and

signal transduction, at the single cell level [Elowitz et al., 2002, Raj et al., 2006, Schöberl

et al., 2002]. Mechanistic models are a useful asset in this regard that utilise mathematics

to explain the dynamics of single cells and learn about the underlying mechanisms that

give rise to particular phenomena. A careful consideration of the properties of the biolog-

ical system at hand, and a clear definition of the research questions to be answered, are

essential for the choice of a suitable mechanistic model out of the broad range of available

choices. Stochastic models are required for the treatment of many biological questions,

including those considered in this thesis work.

Many cellular processes, such as gene expression, signal transduction and cell fate de-

cisions, are subject to intrinsic stochasticity due to stochastic events, e.g., bursty gene

expression [Raser and O’Shea, 2004, Raj and van Oudenaarden, 2008]. As a result, iso-

genic cells can behave differently under the same conditions, for instance in response to

a stimulus, and give rise to heterogeneous cell populations [Elowitz et al., 2002]. The

stochasticity, sometimes referred to as noise, in cellular mechanisms has been shown to

have a crucial functional role, for example to increase their robustness in changing environ-

ments [Raj and van Oudenaarden, 2008, Eldar and Elowitz, 2010]. Hence, in modelling

of biological systems, capturing the intrinsic noise is essential for a true understanding
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Figure 1.1: Qualitatively different responses of cell populations to a stimulus
might seem identical on the population average level. Top and middle panels,
respectively, show a cell population that responds homogeneously and heterogeneously to
a stimulus. Bottom panel depicts a cell population comprised of two subpopulations with
distinct responses to the same stimulus. The population-averaged response (dashed line),
however, is indistinguishable for the three scenarios.

of biological systems and providing insight into their underlying mechanisms. Figure 1.1

demonstrates how qualitatively distinct behaviours can become indistinguishable when

neglecting the heterogeneity and merely analysing the average behaviour of the biological

system.

In my doctoral research, I wanted to use mathematical models to capture the dynamics of

stochastic biochemical processes that are relevant for typical systems biology questions. In

particular, I wanted to use reliable and feasible modelling approaches that could be applied

to generic biochemical reaction networks, and efficiently be utilised for further analyses

such as parameter estimation and model selection. Studying several biochemical processes,

e.g., models of gene expression and signal transduction, I encountered biological scenarios

that available approaches failed to handle reliably. In the following, I first provide an

introductory overview of these modelling approaches for describing stochastic biochemical

kinetics, and then point out the shortcomings of these approaches that motivated the key

questions of this thesis. In Section 1.2, I give a brief overview of how I addressed these

questions in the course of my PhD work.



1.1. DYNAMICS OF BIOCHEMICAL REACTION NETWORKS 3

1.1 Dynamics of biochemical reaction networks

Many biological processes, such as gene regulation, signal transduction and metabolism,

are modelled as (bio)chemical reaction networks (CRNs) consisting of biochemical species

that undergo chemical reactions. The instantaneous abundance of species in the network,

that defines the state of the CRN, changes via the firing of chemical reactions [Klipp

et al., 2005]. Due to the probabilistic nature of chemical reactions, the state of a CRN

evolves stochastically in time. The temporal evolution of the state of a CRN is a mem-

oryless stochastic process that can take on discrete values, i.e. molecular counts. Since

the evolution of this process occurs in continuous time, its dynamics is often modelled

by continuous-time Markov chains (CTMCs) [Norris, 1997] (see Section 2.1.2). Given an

initial condition, at each point in time, the CTMC can be found in any of a set of all

possible states with an associated probability. The set of all states that can be reached via

the firing of feasible chemical reactions, constitute the state space of a CTMC correspond-

ing to a CRN. Assuming a well-mixed and thermally equilibrated reaction environment,

the temporal evolution of the probability distribution over the state space of a CTMC

is exactly described by the Chemical Master Equation (CME) [Gillespie, 1992a]. Apart

from special cases [Jahnke and Huisinga, 2007], finding a solution to the CME is usually

intractable due to the infinite, or very large, state space of the corresponding CTMC.

To circumvent solving the CME directly, several approaches have been introduced to

approximately capture the statistics of the CTMCs. The Chemical Langevin Equation,

a set of Stochastic Differential Equations (SDEs), approximates the dynamics of Markov

jump processes by assuming a continuous memoryless noise process. The CTMC may be

approximated as a diffusion process by the Fokker-Planck equation. Other approximations

for the solution of the CME include using uniformization methods [Mateescu et al., 2010,

Sidje et al., 2007], quantised tensor trains [Kazeev et al., 2014], and the so-called product-

approximation of Jahnke [2011]. Additionally, Munsky and Khammash [2006] introduced

the Finite State Projection (FSP), an error-aware method that truncates the state space of

the CME into a finite subspace including the non-negligible part of the probability mass.

Alternatively, realisations of the CTMCs can be simulated by means of the Gillespie’s

algorithm, aka Stochastic Simulation Algorithm (SSA) [Gillespie, 1977], according to the

exact statistics given by the CME. As this algorithm becomes inefficient when the num-

bers of molecules of species are large and/or reaction kinetics are fast, many exact and

approximate variants of the SSA have been proposed over the years. To speed up the

stochastic simulations, the variants of SSA exploit algebraic tricks in implementing ex-

act stochastic simulations [Cao et al., 2004, Ramaswamy et al., 2009, Auger et al., 2006],
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Poisson statistics [Gillespie, 2001, Rathinam et al., 2003], time-scale separation [Cao et al.,

2005, Haseltine and Rawlings, 2002], etc. The realisations simulated by the SSA or its

variants can be used to analyse the dynamics of CTMCs by reconstructing the probability

distribution over its state space, or calculating the statistical moments of it. All of the

above-mentioned approaches yield a microscopic description of the stochastic process by

means of the full probability distribution over its state space. This detailed information is

gained at a high computational cost, e.g., the cost of solving a large ODE system in FSP

(see Section 2.2.1), or generating a statistically representative ensemble of realisations in

SSA (see Section 2.1.4).

Traditionally, biochemical reaction networks have also been studied in terms of their aver-

age dynamics using macroscopic descriptions such as the Reaction Rate Equations (RRE)

(see Section 2.2.4). The RRE provides the temporal evolution of the expected value of

the state of the system. In contrast to microscopic approaches, the RRE possesses a low

computational cost that scales linearly with the number of species (see Section 2.2.4), mak-

ing it a popular tool in mathematical modelling of biochemical reaction networks [Klipp

et al., 2005, Fall et al., 2010]. Although a valid approximation in the limit of large molecule

numbers, the RRE fails to capture the true dynamics of the system if the size of the intrin-

sic noise is large compared to the average state of the system [Grima, 2010]. Therefore,

a macroscopic description lacks any description of the intrinsic noise and, also possibly,

accurate representation of the average dynamics.

To work around the high computational cost of microscopic descriptions on the one hand,

and overcome the shortcomings of macroscopic descriptions on the other hand, one usually

resorts to mesoscopic descriptions for modelling of stochasticity in biological systems of

realistic sizes.

Mesoscopic descriptions of biochemical reaction networks

Mesoscopic descriptions provide information about the propagation of intrinsic stochas-

ticity in the system by modelling the temporal evolution of the statistical moments of the

probability distribution over the state space of the CTMCs. This level of resolution is

particularly advantageous if the biological system is far from the large molecule number

regime and/or the magnitude of intrinsic noise is large due to nonlinear dynamics. In those

cases, even if one is mainly interested in the average behaviour of the system—a quan-

tity which is conveniently approximated by the macroscopic descriptions—the inclusion

of covariances and higher-order moments enhances the approximation accuracy [Engblom,

2006].
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Discarding the full probability distribution and merely modelling a few moments of it,

mesoscopic descriptions possess remarkably reduced computational complexity compared

to microscopic counterparts. In this way, mesoscopic approaches form an interesting mod-

elling class which enables capturing of heterogeneity in the dynamics of stochastic systems

with affordable computational cost. Two well-established mesoscopic descriptions, namely

the system size expansion (SSE) [van Kampen, 2007, Grima, 2010, Thomas et al., 2013]

and the moment closure approximation (MA) [Engblom, 2006, Lee et al., 2009] are consid-

ered in this thesis, with the main focus being on the MA and its extensions. There exist

several other mesoscopic approaches, such as hybrid descriptions [Hellander and Lötstedt,

2007, Menz et al., 2012, Jahnke, 2011], which are not in the scope of this thesis.

Moment Closure Approximation

Researchers have long tried to go beyond the macroscopic descriptions by incorporat-

ing information about the heterogeneity in terms of statistical moments. In population

modelling, Whittle [1957], James H. Matis [1996], N̊asell [2003] and Keeling [2000] ap-

proximated the moments of the equilibrium distribution by assuming normal or lognormal

distributions. Hespanha and Singh [2005] introduced a stochastic method to truncate

the infinitely large system of ODEs governing the dynamics of the moments of the state

of chemical reaction networks; they, however, did not provide a general formulation of

this approach. Engblom [2006] derived the first general formulation of the so-called mo-

ment equations for the temporal evolution of the moments of arbitrary orders. Later, Lee

et al. [2009] derived another general formulation for the moment equations using a simpler

notation, where they also discussed the numerical simulation of the moment equations.

The moment equations for CRNs with linear propensities, i.e. those with at most mono-

molecular reactions and mass-action kinetics (see 2.1.1), are exact. In CRNs with bi-

molecular reactions or non-mass action kinetics, the moment equations are generally not

closed, i.e. the evolution equations for a moment depend on moments of higher orders.

To be able to solve the moment equations, one therefore needs to truncate the moment

equations at a desired order by means of a moment closure technique. Moment closure

techniques employ distribution assumptions or algebraic constraints [Engblom, 2006, Hes-

panha, 2007, Lee et al., 2009, Ruess et al., 2011, Singh and Hespanha, 2011, Grima, 2012,

Ale et al., 2013, Schnoerr et al., 2014] to approximate the higher-order moments in terms

of lower-order moments. The application of moment closure introduces an approximation

error into the otherwise exact moment equations.
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1.2 Overview and contribution of this thesis

Due to the diversity and complexity of biological systems, scenarios arise that are chal-

lenging for standard mesoscopic descriptions. i) For instance, although mass-action ki-

netics in biochemical reaction networks is easily interpretable within the formulation of

the above-mentioned mathematical models, special treatments are needed for reliable ap-

proximations of general non-mass action kinetics, e.g., Michaelis-Menten kinetics. ii) In

addition, similar to other fields of computational research, computational complexity in

mesoscopic modelling is an essential concern that prohibits the capturing of stochastic-

ity in large-scale processes. iii) Furthermore, due to the unavailability of a priori error

bounds for these mesoscopic approximations, a problem-specific optimal choice of mod-

elling approach is generally unclear. Given the variety of modelling approaches and their

degrees of freedom, for instance the choice of moment order and closure technique for

moment-closure approximations, I realised a necessity for a unifying, accessible framework

that would allow for efficient simulations and performance comparisons across various ap-

proaches. iv) Finally, as descriptive models are extensively used in the inverse problem of

inferring the underlying mechanisms of biological systems, I wanted to utilise the infor-

mation captured by mesoscopic descriptions for more informative inference. I addressed

the above-mentioned issues in the main research projects of my PhD thesis, summarised

in Figure 1.2. In the following, I provide a brief description of my contributions, while the

corresponding articles are provided in Appendices A–D. The following works resulted in

reliable and feasible mesoscopic approaches that can be efficiently applied to analyse the

dynamics of generic stochastic biochemical processes.

• Enhancing the accuracy of mesoscopic modelling in dealing with non-

mass action kinetics. The accuracy of the moment approximation method is

directly influenced by the choice of the moment closure technique. Although com-

mon well-known closure techniques succeed in providing satisfactory results in many

cases, several scenarios, some of which are quite ubiquitous in the modelling of

biological systems, render the closure of the MA equations for satisfactory approx-

imation accuracy challenging. A common scenario which challenges the choice of a

proper moment closure technique involves reactions with non-mass action kinetics.

If the reaction propensities are non-polynomial functions, for instance according to

Michaelis-Menten kinetics, infinitely many higher-order moments will appear in the

(conditional) moment equations. Thus, we need to find a way to approximate the

propensity functions and close the (conditional) moment equations. Milner et al.

[2011] proposed an approach for the moment equations in the special case of ratio-
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nal propensities. In this thesis, I proposed the use of Taylor series expansion for

approximating propensity functions of general form in the framework of conditional

moment equations [Kazeroonian et al., 2014]. In this work, I investigated the choice

of closure techniques and truncation orders that are consistent with the approxima-

tion made by Taylor series expansion. This study showed that the expansion order

can be used to tune the approximation error and yield desirable accuracy.

• Model reduction based on topological network structure to enable meso-

scopic description of large-scale biochemical reaction networks. Mesoscopic

descriptions possess significantly fewer state variables than the CME or microscopic

approximations of it such as the FSP. However, even in the lowest-order mesoscopic

approximations, the number of state variables of the governing equations scales

quadratically with the number of species in the CRN. Hence, available methods

are infeasible for large-sized biochemical reaction networks. To enable mesoscopic

description of large-scale CRNs, I investigated the possibility of exploiting the topo-

logical structure of the CRN for model reduction. Studying a variety of recurrent

motifs in biological networks, as well as several published signalling and metabolic

pathways, I proposed a scalable moment closure approximation method whose com-

plexity predominantly depends on local properties, such as the average node degree,

instead of the total number of species [Kazeroonian et al., 2017]. This model reduc-

tion resulted in significantly improved scalability of mesoscopic descriptions. Higher-

degree extensions of the proposed reduction scheme enabled systematic reduction of

the approximation error until a satisfactory approximation quality is achieved.

• Comprehensive platform for efficient simulations and performance com-

parisons to enable optimal choice of modelling approaches. The spectrum of

modelling approaches for describing the dynamics of biochemical reaction networks

spans different levels of description, namely, microscopic, mesoscopic and macro-

scopic descriptions. Various approaches in this spectrum provide different levels

of information about the system and possess different computational complexities.

Even methods with similar descriptive power and complexity can differ in their per-

formance for a specific problem. For instance, the MA and the SSE both provide

similar information about the CRN, with ODE systems of roughly the same size,

however, their solutions can be of different accuracies [Kazeroonian et al., 2016,

Fröhlich et al., 2016]. For the MA alone, the choice of the closure scheme and

the truncation order of moment equations for the best outcome, i.e. minimum ap-

proximation error in describing the moments of interest, is non-trivial and highly

dependent on the kinetics of the system.
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Since a priori error bounds for most of the approximative approaches in this spec-

trum are not available, simulation studies have to be conducted to test the quality of

different approximations and select the proper modelling approach. Despite such a

necessity, a comprehensive comparative study of available descriptions has received

little attention. More importantly, a platform to facilitate comparison of modelling

approaches in terms of their approximation accuracy and numerical efficiency has

been missing. In addition, for a subset of these methods, efficient implementations

have not been publicly available. To address these needs, I led the development

and implementation of an accessible and comprehensive software toolbox CERENA

(http://cerenadevelopers.github.io/CERENA/). Being an open-source MATLAB

toolbox, CERENA allows for the automatic generation of different model types and

their numerical simulation [Kazeroonian et al., 2016]. This platform facilitates ef-

ficient integration of simulation results (including sensitivity analysis) for further

analyses such as parameter estimation.

• Exploiting mesoscopic descriptions for more informative inference of

stochastic biochemical kinetics. Mechanistic models, generally, depend on some

parameters, e.g., the kinetic constants of chemical reactions and initial abundance

of species. The predicted behaviour of the biological system given by a mechanistic

model, therefore, is dependent on the values of corresponding parameters and can

show qualitative differences in different regions of parameter space. Thus, obtain-

ing reliable predictive models is only possible through obtaining reliable parameter

values. However, the true values of these parameters are mostly unknown and can-

not be measured directly. Therefore, an increasing interest in the inverse problem

of estimating the parameter values from experimental data has arisen in the sys-

tems biology community. In parameter estimation, experimental data about the

quantities of interest are used to calibrate the mathematical model describing the

dynamics of the biological system. Due to the finite amount of experimental data—

and other factors such as measurement noise—there is uncertainty involved with the

estimated parameter values. Decreasing this uncertainty is crucial for increasing the

predictive power of mechanistic models. This can be achieved by incorporating more

experimental data and/or exploiting more information from the available data. For

instance, population-averaged data might yield non-informative or misleading in-

ference, as they lack information about heterogeneity that could otherwise provide

valuable insights into the underlying mechanisms (see Figure 1.1).

To exploit information beyond the population average, mesoscopic descriptions can

be employed to describe statistical moments of data, e.g., from population snapshot

data, [Zechner et al., 2012, Milner et al., 2013, Ruess and Lygeros, 2015]. I investi-

http://cerenadevelopers.github.io/CERENA/
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gated the impact of the added information by more summary statistics on inference

results, by employing a parameter estimation framework based on moment-closure

approximations of various orders [Kazeroonian et al., 2013]. This study indicated

that the incorporation of higher-order statistical moments (significantly) decreases

the uncertainty of estimated parameter values and increases the predictive power of

the model.

Detailed descriptions of the above-mentioned manuscripts and my contributions are pro-

vided in Chapter 3. I am the first author of these contributions and was in charge of the

preparation.

1.2.1 Other contributions

In my doctoral work, I also contributed to two other projects and the corresponding pub-

lications: i) the development of the method of conditional moments, a hybrid microscopic-

mesoscopic approach for the handling of copy-number scale separation in biochemical

processes [Hasenauer et al., 2014b]; and ii) the comparison of system size expansion and

moment closure approximations for the inference of stochastic chemical kinetics [Fröhlich

et al., 2016]. A brief summary of these articles is given below.

1. J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J. Theis. Method of conditional

moments (MCM) for the Chemical Master Equation. Journal of Mathemat-

ical Biology. 69(3): 687-735, 2014.

In this work, we introduced a novel approach, namely the method of conditional

moments (MCM), for describing the statistics of the solution of the chemical master

equation. To ensure reliable approximations in the presence of copy-number scale

separation, the MCM employs a hybrid stochastic-deterministic description. The

state of low copy-number species is modelled in terms of their associated marginal

probabilities, while the state of medium/high copy-number species is captured in

terms of the statistical moments of their corresponding distributions. Furthermore,

to account for potentially distinct dynamics in various states of low copy-number

species, the state distributions of medium/high copy-number species are conditioned

on the state of low copy-number species. This allows for the capturing of complex

correlation structures, e.g., as in multi-attractor and oscillatory systems. The MCM

was shown to improve upon other hybrid approaches, as well as the standard mo-

ment closure approximation, where microscopic effects, such as fluctuations in gene

expression, rise to macroscopic differences in the behaviour of the biological system.
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My contribution: I contributed to the mathematical derivation of proper initial con-

ditions for the MCM. Furthermore, I performed the simulation study illustrating

the properties of the MCM and assessed the numerical error introduced by approx-

imating the DAE that describes the conditional moments by an ODE. Finally, I

contributed to the writing of the manuscript.

2. F. Fröhlich, P. Thomas, A. Kazeroonian, F. J. Theis, R. Grima, J. Hasenauer.

Inference for Stochastic Chemical Kinetics Using Moment Equations and

System Size Expansion. PLOS Computational Biology 12(7): e1005030, 2016.

In this article, we introduced efficient gradient-based methods for parameter esti-

mation and uncertainty analysis using moment closure approximations (MA) and

system size expansion (SSE). Using these methods, we compared the parameter es-

timation accuracy and identifiability achieved using different mesoscopic modelling

approaches. Studying the Epo-induced JAK/STAT signaling, we showed that MA

and SSE yield an improved parameter identifiability compared to reaction rate equa-

tions, even if merely population-average data are used. Furthermore, we studied

various volume regimes to identify those in which the estimation results are more

reliable.

My contribution: I contributed to the mathematical derivation of the moment closure

approximations used in this study. For this, I employed the modelling and analysis

toolbox CERENA developed in this thesis (see Chapter 3 and [Kazeroonian et al.,

2016] for more details regarding CERENA).

1.3 Outline

This is a cumulative dissertation based on the research work that is published in my

first-author articles. I lay the background for these articles in Chapter 2 by introducing

the fundamental notions of chemical reaction networks and stochastic chemical kinet-

ics described by continuous-time Markov chains and the chemical master equation. In

Section 2.2, I briefly describe several microscopic, mesoscopic and macroscopic descrip-

tions that are used in this thesis for the analysis of biochemical reaction networks. In

Section 2.3, the methods used for parameter estimation and uncertainty analysis are out-

lined. In Chapter 3, I give a summary of all the contributed articles. Chapter 4 concludes

this dissertation and discusses possible extensions and continuations of this work. Finally,

the full text of my first-author articles are attached in the Appendices A–D.
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simulation results for further analyses, 
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✦ Incorporation of information about heterogeneity 
could result in identifiable parameters. 

✦ The inclusion of higher-order statistical moments 
reduces the uncertainty of parameter estimates 
and increases the predictive power of the model.
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[Kazeroonian et al., 2014]

[Kazeroonian et al., 2017]

[Kazeroonian et al., 2016]

[Kazeroonian et al., 2013]

Figure 1.2: Overview of the thesis. (A) This thesis focuses on simulating the stochastic
dynamics of cellular processes that are modelled as biochemical reaction networks. (B, C,
D, E) The key contributions of the thesis that resulted in the corresponding first-author
articles. The summaries of these contributions, as well as the full-text articles can be
found in Chapter 3 and Appendices A–D respectively.
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Chapter 2

Methods

This thesis work mainly focuses on biochemical reaction networks that exist at the heart of

many biological processes. The dynamics of biochemical reaction networks is intrinsically

stochastic due to the discrete nature of matter and chemical reactions. In this chapter, I

give an overview of the methodologies for the analysis of stochastic biochemical kinetics,

on which this thesis work has been founded.

2.1 Stochastic chemical kinetics

Stochastic chemical kinetics are mainly modelled using continuous time Markov chains

(CTMCs). The probabilistic evolution of CTMCs can be exactly described by the Chemi-

cal Master Equation (CME) [Gillespie, 1992a]. Alternatively, individual trajectories of the

CTMCs can be simulated using Stochastic Simulation Algorithm (SSA) [Gillespie, 1977]

and its variants. In the following, I lay out the background information on chemical re-

action networks, continuous-time Markov chains, the Chemical Master Equation and the

Stochastic Simulation Algorithm. This information is the foundation on which the later

sections will be built.

2.1.1 Chemical Reaction Networks

A (bio)chemical reaction network (CRN) is a system comprising of several distinct entities,

or chemical species, that can be present in various abundances. A chemical species is an

ensemble of chemically identical molecules, e.g., a specific protein. The chemical species
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undergo chemical reactions [McNaught and Wilkinson, 1997]. A chemical reaction is

a transition via which, for instance, the chemical species are synthesised, degraded, or

converted into other species. The chemical reactions, therefore, change the abundance of

chemical species, and consequently, the configuration of the system in terms of molecular

copy numbers changes over time. Given a certain initial configuration, the state of the

system, that is the number of molecules of chemical species, evolves randomly in time with

statistics given by the kinetics of the chemical reactions (see Section 2.1.4).

Consider a chemical reaction network of ns chemical species, S1, S2, · · · , Sns , and nr chem-

ical reactions, R1, R2, · · · , Rnr . The reaction Rj changes the configuration of the system

as below

Rj :

ns∑

i=1

ν−i,jSi
kj→

ns∑

i=1

ν+
i,jSi.

The parameter kj is the kinetic constant of reaction Rj . The kinetic constants are influ-

enced by chemical characteristics of the reactions, as well as the environment in which the

reactions take place, such as the temperature. The coefficient ν−i,j ∈ N0, called the stoi-

chiometric coefficient of reactants, denotes the number of Si molecules that are consumed

in reaction Rj . Similarly, the stoichiometric coefficient of products, ν+
i,j ∈ N0, denotes the

number of Si molecules that are produced in reaction Rj [Klipp et al., 2005]. The net

change in the abundance of species Si upon firing of reaction Rj is, therefore, given by the

overall stoichiometric coefficient νi,j = ν+
i,j−ν−i,j ∈ Z. In this way, the overall stoichiometry

of the reaction Rj can be summarised in the vector νj = (ν1,j , ν2,j , · · · , νns,j)T ∈ Zns .

The state of the system at time t is represented by a vector Xt = (X1,t, X2,t, . . . , Xns,t)
T ∈

Nns0 , in which Xi,t is the number of molecules of species Si at time t. Upon firing of the

reaction Rj , the state of the system changes according to the stoichiometry of Rj :

Xt → Xt + νj . (2.1)

The probability of the occurrence of reaction Rj per unit time is called the propensity of

reaction Rj , denoted by aj(Xt) : Nns0 → R+, and is a function of the current state of

the reaction network as well as the kinetics of the reaction. The statistics of the time

spent between firing of consecutive reactions and the index of the next reaction to fire are

given by the reaction propensities [Feller, 1940] (see Section 2.1.4 for more details). The

propensities can have various functional forms depending on the specific kinetics of the

reactions. In the simplest case, the reaction kinetics follow the law of mass action [Gille-

spie, 1977], which basically states the probability of a reaction to happen is proportional

to the probability of the required molecules of reactants to meet and collide. For instance,



2.1. STOCHASTIC CHEMICAL KINETICS 15

Table 2.1: Reaction propensities according to the law of mass action.

Reaction Order Reaction Type Propensity

0 ∅ kj→ product kj

1 Si
kj→ product kjXi

2 Si + Sl
kj→ product kjXiXl

2 Si + Si
kj→ product 1

2kjXi(Xi − 1)

in the case of a bimolecular reaction (see Table 2.1), the probability of a distinct pair of

Si and Sl molecules to meet is proportional to the number of distinct pairs of Si and Sl

molecules, i.e.
(
Xi
1

)(
Xl
1

)
= XiXl, under well-mixed and thermal equilibrium assumptions.

The proportionality factor is given by the kinetic constant of the reaction. The propen-

sities for reactions of order 0, 1 and 2, according to the law of mass action, are given in

Table 2.1. It is worth noting that in the case of a dimerisation reaction, the probability

for two distinct molecules of the species Si to meet is given by
(
Xi
2

)
= 1

2Xi(Xi − 1). The

reaction kinetics may not follow the law of mass action, and have more complicated forms

instead. Usually, this results in situations where not all detailed molecular interactions

are modelled as individual reactions, but instead lumped together in one reaction. The

most common example is the Michaelis-Menten kinetics [Michaelis and Menten, 1913] de-

scribing the rate of enzymatic reactions of some substrate Si as VmaxXi
KM+Xi

with Vmax and

KM being constants and Xi being the number of molecules of Si. It is worth noting that

reactions with three (or more) reactants are improbable as they require three (or more)

randomly chosen molecules to come into simultaneous contact. Therefore, trimolecular

reactions do not represent regular elementary events, and instead are sometimes used as

approximations to a sequence of multiple reactions [Gillespie, 1992b]. Thus in this thesis,

we only consider reactions with at most 2 reactants.

As mentioned earlier, the temporal evolution of the state of the system is determined by

the sequence of chemical reactions to fire and the times of those events. Consequently,

Xt is a random process due to the probabilistic nature of the chemical reactions. At

each time point t, the time until the next reaction and the index of the next reaction are

randomly distributed with probability density functions that only depend on the reaction

propensities, which are in turn functions of the current state of the system Xt. Therefore,

statistically speaking, the knowledge about the current state is sufficient to determine the

probability distribution of the state of the system at a later time t+∆t, meaning that Xt is

a Markov process (see Section 2.1.2 for more information). Since the number of molecules

of chemical species is a non-negative integer-valued quantity, the state of the system can
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only take on specific discrete values. Thus, Xt can only jump between states in the state

space and is, therefore, a Markov jump process. Additionally, since the state transitions

can happen at any (real-valued) time, Xt belongs to a particular class of Markov chains,

namely Continuous-Time Markov Chains (CTMCs) [Norris, 1998]. The random jumps

of Xt occur according to transition probabilities between possible states. The formal

definitions of the random process Xt and the corresponding transition probabilities—that

are determined by reaction propensities—are given in the next section.

2.1.2 Markov processes

The temporal evolution of the exact state of many processes cannot be determined, e.g.,

due to the intrinsic randomness of the system, or insufficient knowledge about the system.

Such processes evolve randomly according to some probabilistic rules, and merely the

statistic of the process can be determined instead of the exact trajectory of the system.

Markov processes are a simple type of random processes that possess the so-called Markov

property [Norris, 1998, van Kampen, 2007]. The Markov property states that the future

state of the system is only dependent on the current state and not on the preceding states.

This property indicates that the Markov processes are memoryless, as the history of the

process does not influence the future evolution of it.

More precisely, if we consider a succession of time points, t1 < t2 < · · · < tN < tN+1, and

denote the state of a Markov process at those time points by {Xt1 ,Xt2 , · · · ,XtN ,XtN+1},
then the Markov property states:

P (XtN+1 |Xt1 , · · · ,XtN ) = P (XtN+1 |XtN ). (2.2)

Hence, the state of the process at the next time point, tN+1, only depends on the state

at tN and is independent from all preceding states. Using the identity (2.2) on the condi-

tional probability, one can obtain the following for the joint probability of the trajectory

{Xt1 ,Xt2 , · · · ,XtN }:

P (Xt1 , · · · ,XtN ) = P (Xt1)P (Xt2 |Xt1) · · ·P (XtN |XtN−1) = P (Xt1)
N−1∏

i=1

P (Xti+1 |Xti).

(2.3)
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Markov jump processes

A special type of Markov processes are those whose state is a subset of a d-dimensional

integer lattice Ψ ∈ Zd, in other words, whose state can take on only discrete values. These

are called Markov Jump Processes (MJP) since the system can only jump from one state

to another. The state space Ψ may be infinite, or finite due to some constraints on the

dynamics of the system.

For simplicity, we consider a finite MJP with a state space of n different states {x1, · · · ,xn}.
At each time point ti, we assign a probability vector over all possible states, P(ti) =

(P (Xti = x1), P (Xti = x2), · · · , P (Xti = xn))T . Using the Markov property, the proba-

bility vector at the next time point ti+1 is obtained via

P(ti+1) = W(ti+1)P(ti), (2.4)

where W(t) is a matrix whose elements represent the probabilities of transitioning from

one point into another in the state space:

[W(ti+1)]kl = P (Xti+1 = xk|Xti = xl). (2.5)

Hence, W(t) is called transition matrix of the system at time t [Norris, 1998, van Kampen,

2007]. From the definition (2.5), one can deduce the following properties for the transition

matrix:

• All elements of W are non-negative.

• All columns of W add up to unity, since each column represents the transition

probability from a given state to all possible states.

Therefore, W is a left stochastic matrix. If W(t) is constant for all times t, the Markov

process is said to be homogenous. Accordingly, a homogeneous MJP starting from the

initial probability distribution P(t1) evolves as

P(tN ) = WN−1P(t1). (2.6)

Continuous-time discrete-state Markov chains

So far, we assumed a series of successive time points, t1 < t2 < · · · < tN < tN+1,

to analyse the dynamics of a Markov process. However, such a selection of discrete
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time points is not natural for many processes that evolve continuously in time. These

processes mark a special class, namely Continuous-Time Markov Chains (CTMCs). At

each time point, we can define a probability distribution P(t) comprising of the proba-

bility of the CTMC possessing a particular configuration x, P (Xt = x), for all x ∈ Ψ.

Again, assuming a finite state space of n different states {x1, · · · ,xn}, the vector P(t) =

(P (Xt = x1), P (Xt = x2), · · · , P (Xt = xn))T represents all state probabilities at time t.

The probability distribution P(t) evolves in continuous time and its rate of change at any

time t is given by
dP(t)

dt
= Q(t)P(t), P(t0) = P0, (2.7)

where Q(t) is called the transition rate matrix of the system, denoting the change in the

probability distribution per unit time [Norris, 1998, van Kampen, 2007]. The matrix Q

has the following properties:

• All diagonal elements of Q are finite negative values, i.e., 0 ≤ −[Q]kk <∞ for all k.

• All off-diagonal elements of Q are non-negative, i.e., [Q]kl ≥ 0 for all k 6= l.

• All columns of Q add up to zero, i.e.,
∑

k[Q]kl = 0 for all l.

The initial condition P0 denotes the initial probability distribution of the process. The

differential equation (2.7) can be written and solved if the state space Ψ is finite. In

the case of infinite state spaces, a truncation is required to obtain a finite set on which

the problem (2.7) is tractable. However, special cases exist in which equation (2.7) can

be analytically solved on infinite state spaces [Jahnke and Huisinga, 2007]. This class of

Markov processes are the main focus of this thesis, as they are extensively used to model

stochastic chemical kinetics. In the next section, I briefly outline how the CTMCs are

used to derive the governing equations for the dynamics of biochemical reaction networks.

2.1.3 Chemical Master Equation

As pointed out earlier, the temporal evolution of the state of a biochemical reaction

network fulfils the Markov property, as the statistics of the future configuration only

depends on the current configuration of the reaction network. The state of the CRN,

Xt = (X1,t,X2,t, . . . ,Xns,t)
T ∈ Nns0 , represents the counts of species and therefore, can

only take non-negative integer values, making Xt an MJP. Furthermore, since a chemical

reaction network evolves in continuous time, Xt can be regarded as a CTMC.
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We consider the probability distribution P(t) consisting of elements P (Xt = x) over all

states x ∈ Ψ. To use Eq. (2.7) and obtain the governing equation for P(t), one needs to

know the transition probabilities for all adjacent states in the state space. By adjacent

states, I refer to those states that can be immediately reached from one another. Since

the state Xt is only changed via the firing of chemical reactions, the adjacent states to

the current configuration are those that are reached via one firing of any of the feasible

reactions. If the reaction network has the configuration x at time t, the transition proba-

bility from x at time t, into x + νj at time t+ ∆t, for an infinitesimal time interval ∆t, is

proportional to the probability of firing of reaction Rj in ∆t: aj(x)∆t for ∆t� 1.

The change in the probability associated with a state x, P (Xt = x), results from the

influx from/outflux into adjacent states. More precisely, assume that the probability of

the stochastic process to realise state x at time t is P (Xt = x). The change in P (Xt = x)

in an infinitesimal time interval ∆t� 1 is given by

∆P (x, t) = P (x, t+ ∆t)− P (x, t) =

nr∑

j=1

Pjin − Pjout , (2.8)

where Pjin is the probability of arriving at state x via one firing of reaction Rj in ∆t, and

Pjout is the probability of leaving the state x via one firing of reaction Rj in ∆t. The influx

of probability from a state x− νj in an infinitesimal time interval ∆t, Pjin , is given by 1)

the probability of the system realising configuration x−νj at time t, and 2) the probability

of the firing of reaction Rj in ∆t given that the system is at state x − νj . Similarly, the

outflux into a state x + νj in an infinitesimal time interval ∆t, Pjout , is given by 1) the

probability of the system realising configuration x at time t, and 2) the probability of

the firing of reaction Rj in ∆t given that the system is at state x. Consequently, the net

change in P (Xt = x) is obtained by the superposition of influx and outflux of all reactions:

∆P (x, t) =

nr∑

j=1

(
P (x− νj , t)aj(x− νj)∆t− P (x, t)aj(x)∆t

)
. (2.9)

Here, it is assumed that the reaction propensities are proper : if x � ν−j (i.e., ∃i : xi < ν−i,j)

then aj(x) = 0, imposing that the reactions can only take place if sufficiently many

reactants are available. Taking the limit ∆t→ 0 yields the following differential equation,

governing the temporal evolution of P (x, t):

∂

∂t
P (x, t) =

nr∑

j=1

(
aj(x− νj)P (x− νj , t)− aj(x)P (x, t)

)
. (2.10)
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Eq. (2.10) is called the Chemical Master Equation (CME) [Gillespie, 1992a], and describes

the exact statistics of the CTMCs corresponding to the temporal evolution of biochemical

reaction networks. The CME is also known as the forward Kolmogorov equation (for more

details see van Kampen [2007]).

The state space of the CME is mostly infinitely large and therefore, finding a direct solution

to the CME is mostly intractable. For this reason, several approximative approaches have

been proposed over the last decades to approximate the solution of the CME. A few of

these methods are described in the next sections.

2.1.4 Stochastic Simulation Algorithm

An alternative approach to analyse the dynamics of stochastic processes is to simulate

realisations of the process. The well-known Stochastic Simulation Algorithm (SSA) [Gille-

spie, 1977] is such an approach whose main idea is to generate statistically representative

trajectories of the CTMCs. To ensure this, various trajectories of a CTMC are generated

such that the frequency of generating a trajectory is proportional to the probability of the

CTMC realising that trajectory according to the chemical master equation.

The idea of the SSA is simple and intuitive. Starting from an ensemble of initial con-

figurations, randomly drawn from the initial probability distribution of the CTMC, the

SSA tracks changes to the configuration of the system which result from the occurrence

of chemical reactions. The necessary information for simulating exact trajectories of the

underlying CTMC are encoded in the reaction propensities, as the firing of the chemical

reactions is the only mechanism through which the state of the system changes.

To move forward starting from a given configuration, one needs to know i) the time until

the next reaction happens, and ii) the index of the reaction which happens next. For all

possible reactions, one can write a joint probability density function for the time of the

next reaction, τ , and the next reaction being a particular one, Rj : P(τ, j). In this way,

P(τ, j)∆τ is the probability that the next reaction to fire is reaction Rj and that this

reaction fires in the infinitesimal time interval (τ, τ + ∆τ). This joint probability can be

written as the product of the two independent probabilities [Gillespie, 1977]

P(τ, j)∆τ = P1(τ)P2(j)∆τ , (2.11)

where
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• P1(τ) is the probability density function that no reaction happens in the next time

interval of length τ .

• P2(j) is the probability density function of the reaction Rj to fire in the time interval

(τ, τ + ∆τ). By definition, this is equal to the propensity of reaction Rj given the

state of the system at time τ .

Given that the system is in state x at τ ′, i.e. X′τ = x, for any infinitesimal time interval

∆τ ′, the probability that any reaction fires in (τ ′, τ ′ + ∆τ ′) is given by the sum of the

propensities of all possible reactions times the time interval:
∑

j aj(x)∆τ ′. Accordingly,

one can write:

P1(τ ′ + ∆τ ′) = P1(τ ′)


1−

∑

j

aj(x)∆τ ′


 ,

∆τ ′→0
====⇒ dP1(τ ′)

dτ ′
= −P1(τ ′)

∑

j

aj(x)

(2.12)

which yields:

P1(τ) = exp


−

∑

j

aj(x)τ


 . (2.13)

Using the independence assumption (2.11), and substituting P1(τ) by Eq. (2.13) and P2(j)

by the propensity aj(x), we can calculate the probability density function of the time until

the next firing of reaction Rj as

P(τ, j) = exp


−

∑

j

aj(x)τ


 aj(x). (2.14)

The first-reaction method for implementing the SSA proceeds by sampling nr random

variables for the time until the next firing of all possible reactions from the corresponding

probability distributions according to (2.14). Taking the smallest of the resulting times,

one finds the time and the index of the next reaction to fire. Subsequently, the state of the

process X is updated according to the stoichiometry of that reaction, i.e. Xτ+∆τ ′ := x+νj ,

where j is the index of the next reaction to fire, and τ is the time of the firing.

To speed up this algorithm, one can sample the reaction time and the reaction index

independently, to avoid the unnecessary sampling of nr random variables. Taking the sum

of P(τ, j) in (2.14) over all reactions j, we obtain the following probability density function
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for the time until any reaction fires:

P(τ) = exp (−a0(x)τ) a0(x). (2.15)

where a0(x) =
∑

j aj(x). Thus, the time until the next reaction is exponentially dis-

tributed with parameter a0(x). The probability of the next reaction to be Rj is simply
aj(x)
a0(x) . This more efficient SSA, called the next-reaction method [Gibson and Bruck, 2000],

consists of sampling two random variables for the time and the index of the next reaction

from their corresponding distributions. The state update step is done similarly to the

first-reaction method.

The SSA generates trajectories of the CTMC for the time interval of interest. An estimate

to the probability P (x, t) is given by the frequency of the trajectories that visit state x

at time t. The SSA results can also be used to estimate the statistics of the CTMC by

the Monte-Carlo integration [Newman and Barkema, 1999]. For example, the mean and

variance of the process are approximated by

m(t) =
1

N

N∑

l=1

xl(t),

C(t) =
1

N − 1

N∑

l=1

(
xl(t)−m(t)

)(
xl(t)−m(t)

)T
,

(2.16)

with N being the number of trajectories, and xl(t) being the state of the CTMC at

time t in the lth trajectory. The estimators for probability distribution and the statistical

moments are unbiased and converge to the true moments of the CTMC. However, to ensure

estimates with low variances, generally a large number of realisations are required. As a

result, although SSAs are simple and powerful methods for exact simulation of CTMCs,

their high computational cost limits their applicability.

Many variants of the SSA have been proposed over the years to improve its efficiency or

generality. In this thesis, in addition to the next-reaction SSA, a modified next-reaction

method [Anderson, 2007] was used for the simulation of systems with time-dependent

propensities where the sampling of only one random variable is required per reaction

event.
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2.2 Approximative methods for the stochastic chemical ki-

netics

The exact description of statistics of stochastic chemical kinetics, as is given by the chem-

ical master equation, is mostly intractable due to the large or infinite state space of the

CME. To circumvent this problem, several approximative methods have been introduced

over the past decades for the description of the dynamics of chemical reaction systems.

This section, briefly introduces the approximations that have been in the scope of this

thesis.

2.2.1 Finite State Projection

In a reaction network of ns biochemical species, the CME is defined for all states x ∈ Ψ ⊂
Nns0 which can be reached via chemical reactions. The set Ψ is generally very large, or

infinite, and as a result, a direct solution of the CME is mostly intractable. However, the

subset of states with non-negligible probability mass is usually significantly smaller than

the set of all reachable states Ψ. Motivated by this notion, the Finite State Projection

(FSP), proposed by Munsky and Khammash [2006], merely solves the CME on a truncated

state space Ψ̂ ⊂ Ψ which possesses a sufficiently large portion of the probability mass.

In Eq. (2.10), we presented the CME equation for every individual state x ∈ Ψ. If

we enumerate all states in Ψ as XΨ := (x1,x2, · · · )T , and define the probability vector

P(t) := (P (x1, t), P (x2, t), · · · )T , the CME for all states x ∈ Ψ is written as

dP(t)

dt
= A P(t). (2.17)

The matrix A is a linear operator defined on the sequence XΨ as

Akl =





−∑nr
j=1 aj(xk) for k = l

aj(xk) for all l such that xl = xk + νj

0 otherwise

(2.18)

If we now define a finite ordered index set J := {j1, j2, · · · , jn} corresponding to the states

XJ = {xji ,xj2 , · · · ,xjn}, the approximation of CME for the subset of states defined by

the index set J is given by
dPJ(t)

dt
= AJ PJ(t), (2.19)
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where PJ(t) := (P (x1, t), P (x2, t), · · · , P (xjn , t))
T , and the matrix AJ is obtained by

choosing the rows and columns of A according to J . In (2.19), the incoming probability

from the states x ∈ XΨ \ XJ is disregarded. Since Eq. (2.19) is finite, the solution PJ(t)

is calculated via

PJ(t) = exp(AJ t)PJ(0). (2.20)

Equation (2.19) approximates the solution of the CME on a truncated state space Ψ̂

defined by the index set J . Eq. 2.19 can be interpreted as solving the CME for a system

consisting of states XJ , while all other states are lumped together into a sink state that only

absorbs probability from the system, without returning any probability back to the system.

Munsky and Khammash [2006] show that the solution PJ provides a lower bound on the

solution of the CME. The sum of the probabilities remained in the system,
∑

x∈Ψ̂ PJ(x, t),

is an indicator of the approximation error by truncating the state space. If no truncation

is made, this sum is equal to 1. Therefore, the difference 1 −∑x∈Ψ̂ PJ(x, t) indicates

the amount of probability leaked out of the system. This approximation error can be

monotonically decreased by expanding the state space of the FSP.

The applicability of FSP depends on the number of states with a significant probability

mass. There exist novel algorithms than can solve the FSP with some million states [Ma-

teescu et al., 2010] and higher [Kazeev et al., 2014]. The latter uses the quantised tensor

train representation of the CME and achieves a computational complexity that scales

linearly with the number of biochemical species.

2.2.2 Moment closure approximation method

Microscopic descriptions, such as the FSP (Section 2.2.1), quickly become infeasible as the

number of species in the chemical reaction network grows. To circumvent such demanding

computational cost, several approaches have been developed that focus on representing

the solution of the CME in terms of its statistical moments, and thereby providing a

mesoscopic description of the dynamics of the CRNs. The moment closure approximation

method (MA) [Engblom, 2006, Lee et al., 2009] is such a mesoscopic approximation that

yields a system of ordinary differential equations for the temporal evolution of the moments

of the state of a CRN.

Here, I lay out the derivation of the moment equations, using a notation similar to [Lee

et al., 2009]. The central moments of the probability distribution over the state space of
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the CTMC, P(x, t), are defined as below:

mean m = (m1, . . . ,mns)
T =

∑

x≥0

xP(x, t),

covariance C =
∑

x≥0

(x−m)(x−m)TP(x, t),

higher-order moments CI =
∑

x≥0

(x−m)IP(x, t),

(2.21)

where the sums go over all x ∈ Nns0 . Here, the following product notation is used:

(x−m)I :=

ns∏

i=1

(xi −mi)
Ii , (2.22)

where I = (I1, . . . , Ins) is a vector of non-negative integers. The order of the moment CI

is defined to be MI =
∑ns

i=1 Ii. The CME can be used to derive the governing equations

for the dynamics of the above moments, by using the following lemma:

Lemma 1. Let P(x|t) satisfy a proper Chemical Master Equation (2.10). Then, the time

evolution of the expectation of a polynomial test-function TI(x): Nns0 → R is governed by

the following ODE:

∂

∂t
E[TI(x)] =

∑

x≥0

TI(x)
∂

∂t
P(x|t) =

nr∑

j=1

E
[
(TI(x− νj)− TI(x))aj(x)

]
. (2.23)

The proof of Lemma 1 is provided in [Engblom, 2006]. Choosing appropriate test functions

TI(x) and using the Taylor expansion of the propensities aj(x), one can derive the ODEs

for the temporal evolution of the moments. In the simplest case, Tei(x) = xi is chosen

for which Lemma 1 yields the temporal evolution of the mean E[Tei(x)] = E[xi] = mi.

Here, ei is a vector of length ns in which the ith element is 1 and all other elements are

zero. Similarly, choosing Tei+ek(x) = (xi −mi)(xk −mk), Lemma 1 provides the ODEs

governing the temporal evolution of the covariance Cik.

Given that the chemical reactions are at most bimolecular, so that the third- and higher-

order terms in their Taylor series expansion vanish, the moment equations for the mean,
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covariance and higher-order central moments can be written as:

∂mi(t)

∂t
=

nr∑

j=1

νi,j


aj(m(t)) +

1

2

∑

k1,k2

∂2aj(m(t))

∂xk1∂xk2
Ck1k2(t)


 , (2.24)

∂Ci1i2(t)

∂t
=

nr∑

j=1

(
νi1,j

∑

k

∂aj(m(t))

∂xk
Ci1k + νi2,j

∑

k

∂aj(m(t))

∂xk
Ci2k

+νi1jνi2j


aj(m(t)) +

1

2

∑

k1,k2

∂2aj(m(t))

∂xk1∂xk2
Ck1k2(t)






+

nr∑

j=1

(νi1j
∑

k1,k2

∂2aj(m(t))

∂xk1∂xk2
Ci1k1k2(t) + νi2j

∑

k1,k2

∂2aj(m(t))

∂xk1∂xk2
Ci2k1k2(t)


 , (2.25)

∂C[I1,··· ,Ins ](t)

∂t
=

nr∑

j=1

aj(m(t))
∑

l1,l2,··· ,lns
l1+l2+···+lns 6=M

(
I1

l1

)
· · ·
(
Ins

lns

)
νI1−l11,j · · · νIns−lnsns,j

C[l1,··· ,lns ](t)

+

nr∑

j=1

∑

k

∂aj(m(t))

∂xk

∑

l1,l2,··· ,lns
l1+l2+···+lns 6=M

(
I1

l1

)
· · ·
(
Ins

lns

)
νI1−l11,j · · · νIns−lnsns,j

C[l1,··· ,lk+1,··· ,lns ](t)

+
1

2

nr∑

j=1

∑

k1,k2

∂2aj(m(t))

∂xk1∂xk2
×

∑

l1,l2,··· ,lns
l1+l2+···+lns 6=M

(
I1

l1

)
· · ·
(
Ins

lns

)
νI1−l11,j · · · νIns−lnsns,j

C[l1,··· ,lk1+1,··· ,lk2+1,··· ,lns ](t)

−
ns∑

k=1

Ik
∂mk(t)

∂t
C[I1,··· ,Ik−1,··· ,Ins ](t).

(2.26)

Here, Cij(t) denotes the (i, j)th element of the covariance matrix C in (2.21), and Ci1k1k2(t)

denotes the third-order moment C[I1,··· ,Ins ](t) where Ii1 = 1, Ik1 = 1, Ik2 = 1 and all

other elements are zero. The notation C[I1,··· ,Ins ] is used according to (2.21). The details

of derivation can be found in [Lee et al., 2009, Appendix]. If the reactions have more

than 2 reactants, or if they do not follow the law of mass-action such that the third-

and higher-order derivatives of the propensity function do not vanish, then moments of

order M + 2 or higher will appear in the moment equations of order M ; in some cases,

e.g., if the propensities are rational functions, infinitely many higher-order moments will

appear [Milner et al., 2011].
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Moment closure

The moment equations are generally not closed, meaning that the time evolution of mo-

ments of order M depends on moments of orders higher than M . For instance, the

covariance equation (2.25) includes third-order moments (Ci1k1k2 and Ci2k1k2). In this

way, the moment equations form an infinitely large coupled system of ODEs that cannot

be integrated. Therefore, to enable numerical or analytical solution of the moment equa-

tions, one needs to truncate and close the ODE system by applying a so-called moment

closure technique. Moment closure introduces an error to the otherwise exact moment

equations (2.24)-(2.26), as it merely approximates the higher-order moments in terms of

the lower-order moments to truncate the infinite set of moment equations. The magni-

tude of this error depends on the closure scheme used. For a specific class of systems, that

includes the systems with linear propensities, e.g., monomolecular reactions with mass-

action kinetics, the second-order derivative of the propensities vanishes, and as a result,

the moment equations will not depend on higher-order moments. Therefore, the moment

equations for systems with linear propensities are closed and exact.

Using a moment closure technique, one truncates the moment equations at a desirable

order M , and approximates the higher-order moments as functions of moments of orders

smaller than or equal to M [Engblom, 2006, Hespanha, 2007, Lee et al., 2009, Ruess et al.,

2011, Singh and Hespanha, 2011]. Several approaches are available for the approximation

of higher-order moments. The three most common approaches are: 1) Making specific

assumptions, e.g., normality, about the distribution; 2) Approximating higher-order mo-

ments in such a way that the derivatives in the resulting system of equations matches that

of the original system of equations; 3) Making specific assumptions about the process, for

instance assuming that the process is in the regime where the macroscopic approximation

is valid.

In this thesis, I mainly apply four well-know closure schemes that are detailed below:

• Low-dispersion closure [Hespanha, 2008]. If the distribution is tightly clustered

around the mean, i.e., the standard deviation is much smaller than the mean, then

the higher-order central moments of the distribution can be negligible compared to

the lower-order moments. The low-dispersion closure of M th-order, therefore, sets

the moments of order M + 1 and higher to zero. For instance, the low-dispersion

closure sets the third-order term Ci1k1k2 to zero in (2.25). If the distribution is

rather symmetrical, the odd-order moments become quite negligible. Hence, the

low-dispersion closure applied on even-order moment equations usually yields more
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accurate results.

• Zero-cumulants [Matis and Kiffe, 1999]. Cumulants of a distribution are statis-

tical quantities that are functions of the moments of that distribution. For instance,

the first four cumulants of a univariate distribution, κ1, κ2, κ3, κ4, are written as

functions of the first four central moments:

κ1 = m, κ2 = C2, κ3 = C3, κ4 = C4 − 3C2
2 .

For a multivariate distribution, the cumulants between random variables X1, · · · , Xk

can be represented in terms of the non-central moments via the following:

κ(X1, · · · , Xk) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π
E

(∏

i∈B
Xi

)
, (2.27)

where the first sum runs over all partitions π in the set {1, · · · , k}, and the first

product runs over all blocks B in a partition π, and |π| denotes the number of blocks

in partition π.

By definition, the third- and all higher-order cumulants of a Normal distribution are

zero. Therefore, by applying the zero-cumulants closure to the moment equations of

order M , one assumes that the distribution of interest is similar to a Normal distri-

bution and sets all cumulants of order M+1 and higher to zero. This equality yields

an expression of the higher-order moments in terms of lower-order moments. For

instance, applying the zero-cumulants closure to the third-order moment equations

for a univariate distribution, one obtains: κ4 = 0 ⇒ C4 = 3C2
2 . Similar to the

low-dispersion closure, applying zero-cumulants closure sets Ci1k1k2 = 0 in (2.25).

• Derivative-matching/Log-normal closure [Singh and Hespanha, 2007].

Derivative-matching closure aims at representing the higher-order moments in terms

of the lower-order moments in such a way that minimises the difference between

the derivatives of the original ODE system and the closed ODE system. More

specifically, a moment of order M +1 is represented as a separable function of lower-

order moments:

CM+1 = CγMM C
γM−1

M−1 · · ·C
γ1
1 . (2.28)

The coefficients γ1, · · · , γM are chosen in such a way that the relative error of the

derivatives is minimised: ∣∣∣∣∣
∂lC̃
∂tl
− ∂lC

∂tl

∂lC
∂tl

∣∣∣∣∣ , (2.29)
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where C̃ is the vector of approximate moments after applying moment closure. Even

though the Derivative-matching closure does not make an explicit assumption about

the distribution, the resulting expressions for the higher-order moments match those

of a log-normal distribution. Applying derivative-matching closure to (2.25), one

obtains

Ci1k1k2 =
Ci1k1Ci1k2Ck1k2 + Ci1k1Ci1k2mk1mk2 + Ci1k1Ck1k2mi1mk2 + Ci1k2Ck1k2mi1mk1

mi1mk1mk2

.

• Mean-field closure. The Mean-field closure assumes independence between differ-

ent random variables. Consequently, the joint non-central moments can be repre-

sented as products of moments of individual variable, i.e.,

ĈI = E[XI1
1 X

I2
2 . . . XIN

N ] = E[XI1
1 ]E[XI2

2 ] . . .E[XIN
N ] = ĈI1e1ĈI2e2 . . . ĈINeN , (2.30)

where ĈI is the non-central moment of order MI =
∑N

i=1 Ii, and ei is a vector

of length N in which the ith element is 1 and all other elements are zero. Using

conversion relations between central and non-central moments, the mean-field closure

can be applied to central moment equations. According to mean-field closure, the

third-order moment in (2.25) is approximated as Ci1k1k2 = mi1mk1mk2 .

Prior knowledge about the distribution P(x, t) can be used to guide the choice of moment

closure. For instance, if the counts of species in the biochemical reaction network are

expected to be normally distributed, then the zero-cumulants closure could be a proper

choice. Since such a knowledge is usually not available, the derivative-matching closure

can be used that does not make an explicit distribution assumption. However, as a priori

error bounds for various moment closures are not available, the optimal choice of moment

closure cannot be guaranteed beforehand, and simulation comparisons can be used for this

purpose. For instance, in simulating a three-stage model of gene expression (Figure 2.1),

the third-order moment approximation with derivative-matching closure correctly predicts

the mRNA and protein levels. Predictions given by the third-order moment approxima-

tions with low-dispersion and zero-cumulants closures, however, deviate considerably from

the reference solution given by the Stochastic Simulation Algorithm. In this simulation

study, increasing the order of (conditional) moment approximation method almost con-

sistently decreases the relative error in predicting the protein concentration for various

moment closures. In many applications, low-dispersion closure is used for its simplicity

and numerical efficiency.
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Figure 2.1: Performance of different moment closure techniques in predicting
the mRNA and protein levels in a three-stage model of gene expression. (A)
Schematic of the three-stage model of gene expression used for a comparative study of
different moment closures. (B) mRNA and protein levels predicted by third-order mo-
ment approximations with derivative-matching, low-dispersion and zero-cumulants clo-
sures, compared to the reference solution given by the Stochastic Simulation Algorithm.
(C) Influence of the order of moment approximation method on the performance of several
moment closure techniques. (A, C) Figures taken from [Kazeroonian et al., 2016].

2.2.3 System size expansion

The System Size Expansion (SSE) [van Kampen, 2007, Grima, 2010, Thomas et al., 2013]

is a systematic approximation method that yields mesoscopic approximations to solution

of the CME. The SSE provides a power series expansion, derived from the CME, whose

truncation order determines the order of the approximation error. The idea of the SSE,

developed by van Kampen [2007], is based on deriving a series expansion in powers of

a small parameter Ω−1. To derive an expansion series which describes dynamics of the

internal noise or stochasticity to various orders, the chosen parameter Ω−1 must govern

the size of the fluctuations. In particular, we desire that the size of the fluctuations are

small for small Ω−1 or large Ω, such that the contribution of the expansion terms for

describing the dynamics of noise decreases with their order.

To choose such a parameter, we note that the internal noise in chemical reaction networks

stems from the discrete nature of molecular species and chemical reaction. Contrarily, the

macroscopic features of reaction network are resulted from the collective behaviour of all

molecules together [van Kampen, 2007]. Therefore, it is intuitive to expect that the size of

the system, e.g., the cellular volume in which the biochemical reactions occur, determines

the importance of the fluctuations. Therefore, the inverse of the size parameter is chosen
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as the expansion parameter Ω−1.

To have the system size appear explicitly in the CME, we rewrite the CME (2.10) as:

∂

∂t
P (x, t) = Ω

nr∑

j=1

(
f̂j(x− νj)P (x− νj , t)− f̂j(x)P (x, t)

)
, (2.31)

where Ωf̂j(x) = aj(x) is the propensity of reaction Rj . The limit of the function f̂j as Ω

tends to infinity is the familiar macroscopic reaction rate used in Reaction Rate Equations

(see Section 2.2.4).

In studying stochastic systems, it is commonly observed that, in a collection of N particle,

e.g., N molecules, the fluctuations are of order N
1
2 . More specifically, it is usually expected

that P(x, t) has a sharp maximum around the macroscopic value x = Ωφ(t), where φ(t)

is the concentration of species as given by the macroscopic reaction rate equations (see

Section 2.2.4). The width of the distribution P(x, t) around this macroscopic value is then

assumed to be of order x1/2 ∼ Ω1/2. Following this rule of thumb, we use the following

ansatz as the basic step towards the derivation of the SSE:

x = Ωφ(t) + Ω
1
2 ξ, (2.32)

Parameter ξ represents the fluctuations around these macroscopic concentrations. Using

ansatz (2.32), we transform the probability function P (x, t) into the probability function

of ξ:

P (x, t) = P (Ωφ(t) + Ω
1
2 ξ) = Π(ξ, t). (2.33)

According to the transformation (2.33), one can calculate derivatives of Π(ξ, t) in terms

of P (x, t), and rewrite the CME in terms of the variable ξ. The resulting ODE system,

which is an expansion series in powers of Ω, constitute the SSE equations. Details of the

derivation is provided in [van Kampen, 2007].

The lowest order of the SSE, reproduces the macroscopic reaction rate equations:

∂φi
∂t

=

nr∑

j=1

νijfj(φ), (2.34)

where fj(φ) = limΩ→∞ f̂j(Ωφ) is the macroscopic rate function.
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The next order term in SSE, called the Linear Noise Approximation (LNA), describes the

covariance of the fluctuations around the macroscopic concentrations given by (2.34):

∂Σik

∂t
=

nr∑

j=1

ns∑

l=1

(
νij
∂fj(φ)

∂φl
Σlk + νkj

∂fj(φ)

∂φl
Σli

)
+

1

Ω

nr∑

j=1

νijνkjfj(φ). (2.35)

For CMEs with unimodal solutions, the LNA can be interpreted as a Gaussian approxi-

mation of the probability density function of the CME.

The RRE and LNA are exact for all CRNs including at most monomolecular reactions,

as well as a small class of bimolecular reactions [Grima, 2015]. In cases where (2.34) and

(2.35) are not exact, one can take higher orders of the SSE into account to systematically

correct the mean concentrations and the covariance of fluctuations predicted by RRE and

LNA respectively. For instance, the Effective Mesoscopic Rate Equation (EMRE) [Grima,

2010], provides a more accurate approximation for mean concentrations:

∂µi
∂t

=
∂φi
∂t

+

nr∑

j=1

νij




ns∑

k=1

∂fj(φ)

∂φk
(µk − φk) +

1

2

ns∑

k,l=1

∂2fj(φ)

∂φkφl
Σkl −

1

2

ns∑

k=1

φk
Ω

∂2fj(φ)

∂φ2
k


 .

(2.36)

The EMRE yields correction terms, of order Ω−1, to the solution of the RRE. Similarly, the

next order of the SSE, the Inverse Omega Square (IOS) [Thomas et al., 2013], describes

the covariance of fluctuations around the mean µ, predicted by the EMRE. In this way

IOS provides correction terms of order Ω−2 to the solution of the LNA. The SSE methods

tend to be more accurate for systems of small and medium volumes [Ramaswamy et al.,

2012].

2.2.4 Macroscopic rate equation

All the methods described so far concern with microscopic or mesoscopic description of the

dynamics of the CRNs where the noise is taken into account. In the limit of large molecule

numbers where the importance of fluctuations are small, however, it is very common to

resort to a macroscopic description of the system where merely the average behaviour is

studied.

A macroscopic approximation describes the dynamics of the macroscopic variable, m = E[x],

i.e., the expected value of the state of the system. As it was shown in Section 2.1.3, the

CME was derived by taking into account every single update in the state of the CRN,

and the consequent update in the reaction propensities. Contrarily, we note that in the
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limit of large molecule numbers, the effect of every single state update on the propensities

is negligible. Therefore, we can assume the propensity of a reaction Rj , aj(m), remains

constant in a small time interval ∆t. This implies that the time spent between firings

of the reaction Rj in ∆t are exponentially distributed, and that the reaction Rj can on

average fire aj(m)∆t in the interval ∆t. Thus, the number of firings of Rj in ∆t, Nj , is

Poisson distributed with parameter λ = aj(m)∆t:

Nj ∼ Pois(aj(m)∆t)⇒ E[Nj ] = aj(m)∆t. (2.37)

Knowing the expected number of the firings of each reaction from (2.37), one can obtain

the change in the macroscopic state of the system ∆m in ∆t:

∆m =

nr∑

j=1

νjE[Nj ] =

nr∑

j=1

νjaj(m)∆t, (2.38)

or in matrix form

∆m = S a(m)∆t, (2.39)

where S is the stoichiometry matrix

S =




ν1,1 ν1,2 · · · ν1,nr

ν2,1 ν2,2 · · · ν2,nr
...

...
. . .

...

νns,1 νns,2 · · · νns,nr



, (2.40)

and a(m) is the vector of propensities of all reactions.

Taking the limit of ∆t→ 0, we arrive at

lim
∆t→0

∆m

∆t
=
∂m

∂t
= S a(m). (2.41)

Equation (2.41) is the macroscopic rate equation which describes the time evolution of

the macroscopic state of the CRN. Equation (2.41) is an ODE system of size ns, meaning

that the size of the macroscopic rate equation scales linearly with the number of species.

It is customary to present the macroscopic equation in terms of the concentration of species

φ = m
Ω with Ω being the volume of the compartment in which the reactions take place.

Rewriting (2.41) in terms of φ, we arrive at the Reaction Rate Equation (RRE):

∂φ

∂t
= S f(φ), (2.42)
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Table 2.2: Macroscopic rate functions according to the law of mass action.

Reaction Order Reaction Type Macroscopic rate function

0 ∅
k′j→ product kj

1 Si
k′j→ product kjφi

2 Si + Sl
k′j→ product kjφiφl

2 Si + Si
k′j→ product kjφ

2
i

where f(φ) is the vector of the macroscopic rate functions. Assuming the law of mass ac-

tion, the macroscopic rate functions for reactions of at most order 2 are listed in Table 2.2.

The parameter k′j denotes the macroscopic rate constant of the reaction. The relationship

of the macroscopic rate constants to the kinetic constants introduced in Section 2.1.1 is

provided in the Supplement of [Kazeroonian et al., 2016]. The macroscopic rate functions

in terms of concentrations are similar to reaction propensities in terms of molecule num-

bers. Only, in the case of two reactant molecules of the same species, (Xi)(Xi − 1) is

approximated by φ2
i which is justified in the limit of large molecule numbers.

For reaction networks with constant and linear propensities, the solution of the RRE (2.42)

yields the exact mean concentrations. However, for most bimolecular reactions an approx-

imation error is introduced. The reason is the implicit assumption that the expectation

of a propensity equals the propensity evaluated at the expected value of the state, i.e.,

E[a(x)] = a(E[x]) = a(m). In such cases, the solution of RRE is only reflective of the true

mean concentration in the limit of large molecule numbers [Grima, 2015].

Alternatively, the RRE is derived/reproduced as the lowest-order of the SSE (see Sec-

tion 2.2.3).

2.3 Parameter estimation

In previous sections, I provided a brief overview of several methods which yield math-

ematical models for describing the dynamics of biochemical reaction networks. All the

mentioned mathematical models depend on some parameters, such as kinetic constants

or initial conditions, and thus, can only yield reliable predictions for the behaviour of the

CRNs if reliable parameter values are provided. Since in general the parameters are not

known and cannot be directly measured, experimental measurements are usually used to

calibrate the mathematical models and estimate the parameter values.
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Experimental data about the behaviour of biological systems can be obtained via various

measurement techniques, and therefore, can provide various levels of information. For

instance population average data, e.g., obtained by Western Blots, provide the average

value of the measured quantity, e.g., concentration of a species, in a population of cells.

In this thesis, population snapshot data have been used for parameter estimation in CRNs.

Population snapshot data, obtained via flow or (non time-lapse) cytometry, includes the

values of the measured quantities in individual cells in a population. This type of data may

be used in a distribution-based parameter estimation framework, as in Section 2.3.3, to

exploit the maximum information provided by the data, and thus, minimise uncertainty of

the estimates. The high computational cost of this framework, however, makes it infeasible

for many realistic applications. To circumvent this obstacle, merely the statistical moments

of the data can be exploited by a moment-based estimation framework (Section 2.3.2),

thereby greatly reducing the computational cost. In the following, these likelihood-based

approaches are described.

2.3.1 Likelihood-based parameter estimation

In this work, I have used likelihood-based approaches for parameter estimation. Alterna-

tively, one can use Bayesian framework for parameter inference. Given a measured data

D and a modelM, the likelihood-based parameter estimation method aims at finding the

set of the model parameters θ for which it is most likely to observe D given the modelM.

Consider a model M with state variables x and observables y:

M(θ) =

{
ẋ = f(x, θ, t), x(t0) = x0(θ),

y = h(x, θ, t),
(2.43)

and a dataset D consisting of noise-corrupted measurements ȳk of the observables y at

time points tk, k = 1, . . . , nt:

D = {(tk, ȳk)}ntk=1 . (2.44)

The likelihood of data D given a set of parameters θ is then defined as

LD(θ) = P (D|θ) =

nt∏

k=1

P (ȳk|y(tk, θ), σk). (2.45)
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If there are ny independent observables, ȳk = {ȳi,k}nyi=1, the likelihood (2.45) is rewritten

as

LD(θ) =

nt∏

k=1

ny∏

i=1

P (ȳi,k|yi(tk, θ), σi,k), (2.46)

where, yi(tk, θ) are the model predictions for ith observable at time tk, and σi,k denotes

the measurement noise. The maximum likelihood estimate (MLE) is then defined as the

set of parameters θMLE that maximises the likelihood function LD(θ):

θMLE =argmax
θ

LD(θ)

subject toM(θ).
(2.47)

To improve the numerical robustness and convergence of optimisers, usually the negative

log-likelihood J(θ) = − logLD(θ) is minimised to obtain the MLE:

θMLE = arg min
θ∈Θ

J(θ), (2.48)

with Θ being the search region in the parameter space. To further improve the numer-

ical properties of the optimisation problem (2.48), usually log-transformed parameters

ξ = log(θ) are used [Raue et al., 2013].

Likelihood function for additive normally distributed measurement noise. In

case of additive measurement noise that is normally distributed, i.e., ȳi,k = yi(tk, θ) + εi,k

with εi,k ∼ N (0, σ2
i,k(θ)), the conditional probability of data given model parameters is

given by

P (ȳi,k|yi(tk, θ), σ2
i,k) = N (ȳi,k|yi(tk, θ), σ2

i,k(θ)). (2.49)

Consequently, we obtain the following for the likelihood and the negative log-likelihood

functions:

LD(θ) =

nt∏

k=1

ny∏

i=1

1√
2πσi,k(θ)

exp

{
−1

2

(
ȳi,k − yi(tk, θ)

σi,k(θ)

)2
}
,

J(θ) =
1

2

nt∑

k=1

ny∑

i=1

log
(
2πσ2

i,k(θ)
)

+

(
ȳi,k − yi(tk, θ)

σi,k(θ)

)2

.

(2.50)

To find the MLE parameters θMLE, the optimisation problem (2.48) can be efficiently

solved using gradient-based optimisation algorithms [Raue et al., 2013, Coleman and Li,

1992, 1996]. For this purpose the gradient of the objective function J(θ) needs to be

evaluated. The gradient of J(θ) is a function of the gradient of the observables with
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respect to model parameters. For instance, in the case of normally-distributed additive

noise, the gradient of the objective function is derived as

∂J

∂θl
=

1

2

nt∑

k=1

ny∑

i=1

∂

∂θl
log
(
2πσ2

i,k(θ)
)

+
∂

∂θl

(
ȳi,k − yi(tk, θ)

σi,k(θ)

)2

=
1

2

nt∑

k=1

ny∑

i=1

1

σ2
i,k(θ)

(
1− (ȳi,k − yi(tk, θ))2

σ2
i,k(θ)

)
∂σ2

i,k(θ)

∂θl
− 2

ȳi,k − yi(tk, θ)
σ2
i,k(θ)

∂yi(tk, θ)

∂θl
.

(2.51)

To calculate ∇θJ , the gradient of the observables with respect to parameters, ∇θyi(tk, θ),
needs to be evaluated. The latter can be obtained using forward sensitivity analysis [Hind-

marsh et al., 2005] in a robust and computationally efficient way.

Forward sensitivity analysis

Having defined a likelihood function, the parameters of the model M can be estimated

by using various optimisation methods for the optimisation problem (2.48). To derive the

modelM, in this thesis, the methods described in Section 2.2 were used, i.e. the FSP, MA,

SSE, and RRE, as well as the method of conditional moments [Hasenauer et al., 2014b]. All

these methods yield systems of differential equations, whose parameters can be estimated

efficiently using gradient-based optimisation methods [Raue et al., 2013]. A naive way

of approximating the gradient of the likelihood function with respect to the parameters

is to use finite difference methods. However, for more robust and computationally more

efficient results one resorts to methods based on sensitivity equations [Raue et al., 2013].

Sensitivities indicate the change in a functional of the process, e.g., the observables, in

response to a change in parameter values. The forward sensitivity analysis [Hindmarsh

et al., 2005] provide the time-dependent sensitivity of the state-variables of the differential

equations with respect to the parameters. Consider the model M (2.43), which is an

n-dimensional ODE system

ẋ = f(x, θ, t), x(t0) = x0(θ)

y = h(x, θ, t),
(2.52)

or an n-dimensional DAE system

F (ẋ,x, θ, t) = 0, x(t0) = x0(θ), ẋ(t0) = ẋ0(θ)

y = h(x, θ, t),
(2.53)
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with x ∈ Rn being the state variables of the ODE/DAE system, y ∈ Rno being the vector

of observables, and θ ∈ Rnθ being the set of parameters. The forward sensitivities for

these systems are defined as

Sx(t) =
(
sx1(t), sx2(t), · · · , sxnθ(t)

)
∈ Rn×nθ ,

sxi (t) =
∂x(t)

∂θi
, for i = 1, 2, · · · , nθ,

(2.54)

in which sxi (t) ∈ Rn is the sensitivity of the state variables x with respect to the ith

parameter, θi.

The forward sensitivity equations for the ODE system (2.52) are

ṡi =
∂f

∂x
si +

∂f

∂θi
, for i = 1, · · · , nθ,

si(t0) =
∂x0(θ)

∂θi
.

(2.55)

The forward sensitivity equations for the DAE system (2.53) are

∂F

∂x
si +

∂F

∂ẋ
ṡi +

∂F

∂θi
= 0, for i = 1, · · · , nθ,

si(t0) =
∂x0(θ)

∂θi
, ṡi(t0) =

∂ẋ0(θ)

∂θi
.

(2.56)

Therefore, the computation of the state sensitivities with respect to all parameters involves

solving a system of n(1 + nθ) differential equations.

The sensitivity of the observables y is defined as

Sy(t) =
(
sy1(t), sy2(t), · · · , synθ(t)

)
∈ Rno×nθ ,

syi (t) =
∂y(t)

∂θi
, for i = 1, 2, · · · , nθ,

(2.57)

where syi (t) ∈ Rno denotes the sensitivity of the observables y with respect to the ith

parameter, θi. Using the solution of the forward sensitivity equations, the sensitivities of

the observables can be computed via

syi =
∂h

∂x
sxi +

∂h

∂θi
, (2.58)

where ∂h
∂x =

(
∂hj
∂xk

)
jk
∈ Rno×n.
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2.3.2 Moment-based likelihood function for population snapshot data

Consider the population snapshot data Dk =
{(
tk, ȳ

(s)
k

)}Sk
s=1

collected at measurement

times tk for k = 1, . . . , nt by sampling Sk cells from the cell population. The statistics of

the population snapshot data, e.g., statistical moments of various orders, can be used for a

more informative parameter estimation in comparison with population average data [Zech-

ner et al., 2012, Milner et al., 2013, Ruess and Lygeros, 2015]. For instance, the mean and

variance of observables can be estimated from the population snapshot data as

µ̄y,k =
1

Sk

Sk∑

s=1

ȳ
(s)
k ,

C̄yy,k =
1

Sk

Sk∑

s=1

(
ȳ

(s)
k − µ̄y(tk)

)2
.

These estimated moments can be compared to moments predicted by the model M, e.g.,

using moment closure approximation method or system size expansion, to estimate the

parameters. The sample sizes Sk of population snapshot data are usually quite large,

e.g., in the order of 104 for flow cytometry. Thus, according to the central limit theorem,

the estimated moments in (2.59) are expected to be normally distributed around the true

moments [Zechner et al., 2012]. Hence, the likelihood of observing the empirical moments

µ̄y,k and C̄yy,k given the predicted moments µy(tk, θ) and Cyy(tk, θ) is

LD,µ̄y(θ) =

nt∏

k=1

N
(
µ̄y,k|µy(tk, θ), σ2

µ̄y,k

)
, (2.59)

LD,C̄yy(θ) =

nt∏

k=1

N
(
C̄yy,k|Cyy(tk, θ), σ2

C̄yy,k

)
. (2.60)

Similar likelihood functions can be derived higher-order moments predicted by the model

as well. Assuming independence of estimators for various moments, the overall likelihood

function is obtained as the product of the likelihood of individual moments. For instance, if

only mean and variance are employed for parameter estimation, then the overall likelihood

function is given by LD(θ) = LD,µ̄y(θ) · LD,C̄yy(θ), and, consequently, the negative log-

likelihood is given by

J(θ) =
1

2

nt∑

k=1

ny∑

i=1

log
(

2πσ2
µ̄y,k

(θ)
)

+

(
µ̄y,k − µy(tk, θ)

σµ̄y,k(θ)

)2

+
1

2

nt∑

k=1

ny∑

i=1

log
(

2πσ2
C̄yy,k

(θ)
)

+

(
C̄yy,k − Cyy(tk, θ)

σC̄yy,k(θ)

)2

.

(2.61)
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The variance of estimators for the mean and variance are calculated as below:

σ2
µ̄y,k

= E
[
(µ̄y,k − µy(tk, θ))2

]
= E



(

1

Sk

Sk∑

s=1

ȳ
(s)
k − µy(tk, θ)

)2

+ E

[
ε2k,T

]

=
1

N
Cyy(tk, θ) + σ2

k,T ,

σ2
C̄yy,k

= E
[(
C̄yy,k − Cyy(tk, θ))

)2]
=

1

Sk

(
Cyyyy(tk, θ)−

Sk − 3

Sk − 1
C2
yy(tk, θ)

)
,

(2.62)

where Cyyyy(tk, θ) denotes the fourth-order moment of y(tk, θ), and σ2
k,T denotes the tech-

nical measurement noise. As the simulation of the fourth-order moment might be compu-

tationally demanding, the empirical fourth-order moment calculated from the population

snapshot data may be used. The derivation of the variance of estimators can be found

in [Fröhlich et al., 2016, Zechner et al., 2012]. Taking additional moments into account for

the evaluation of the overall likelihood function results in a more informative estimation

for the model parameters.

2.3.3 FSP-based likelihood function for population snapshot data

Consider the same population snapshot data Dk =
{(
tk, ȳ

(s)
k

)}Sk
s=1

as in Section 2.3.2.

If the probability distribution of the observables, p(y|t, θ), is known, the likelihood of

observing data D can be written as

LD(θ) = c
N∏

k=1

Sk∏

s=1

p(y = ȳ(s)(tk)|tk, θ), (2.63)

where the probabilities for all data points are evaluated and multiplied.

The finite state projection can be used to obtain the probability distribution of observables,

p(y|t, θ). The FSP provides an approximation to the solution of the CME for a given

parameter set θ, and therefore, can yield the probability distribution of the states, p(x|t, θ).
Using the solution of the FSP, p(x|t, θ), and the conditional probability of observables

given the states, p(y|x), the total probability distribution for observables y is obtained by

marginalising over all states x ∈ Ψ̂,

p(y|tk, θ) =
∑

x∈Ψ̂

p(y|x) p(x|tk, θ), (2.64)
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where Ψ̂ is the state space of the FSP (see Section 2.2.1). Assuming noise-free measure-

ments, the observable y is a deterministic function of x, y = h(x), thus

p(y|x) =

{
1 if y = h(x)

0 otherwise.

Therefore, the sum (2.64) is simplified to

p(y|tk, θ) =
∑

x∈Ψ̂
h(x)=y

p(x|tk, θ). (2.65)

The probability distribution (2.65) is the distribution from which the observations ȳ
(s)
k

are drawn. Substituting (2.65) in (2.63), the FSP-based likelihood function LFSP
D (θ) is

obtained. The maximum likelihood estimation problem using the FSP is formulated as:

maximize
θ

logLFSP
D (θ)

subject to ΣFSP(θ),
(2.66)

where ΣFSP(θ) denotes the ODE system of the FSP. The constant c in (2.63) only de-

pends on the data and can be disregarded for the optimisation problem (2.66). Unlike the

moment-based ML estimator in Section 2.3.2, the FSP-based estimator uses all available

information in the data as the likelihood of each single data point is taken into account.

More details on the derivation of this FSP-based likelihood function are provided in [Hase-

nauer et al., 2011, Nüesch, 2010].

2.3.4 Identifiability and uncertainty analysis

The maximum likelihood estimators return the parameter vector θMLE that is most likely

to generate the observed data. Due to the potential measurement noise and the finite

sample size of the measurement data, however, the θMLE usually does not coincide with

the true parameters of the system. Moreover, depending on the definition of the model

M, the set of observables {yi(tk, θ)}, and the measurement data D it may not be possible

to estimate (a subset of) parameters with acceptable/desirable certainty. Even assuming

perfect measurement data (i.e. noise-free and continuous in time), it may not be possible

to determine unique values for parameters. Such cases give rise to non-identifiable param-

eters [Raue et al., 2009, 2010]. Therefore, the MLE alone will not give a valuable insight

about the true parameter values, unless these issues are addressed. Thus, one needs to

know if the parameter are at all identifiable, and how certain the parameter estimates
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are. For the latter, one usually considers the corresponding confidence intervals [Meeker

and Escobar, 1995]. The significance level α of the calculated confidence interval states

that if the estimation procedure were to be repeated on multiple samples, the calculated

confidence interval would contain the true parameter value in (1− α)% of the times.

To assess identifiability of parameters, two non-identifiability types can be considered:

• Structural identifiability [Raue et al., 2009, 2010] solely considers the structure of

the model (including the definition of observables) and answers the question wether

a certain parameter can be uniquely estimated given perfect (i.e. noise-free and

continuous in time) measurement data.

• Practical identifiability [Raue et al., 2009] investigates the identifiability of parame-

ters given a specific dataset D. Given the data D, a parameter is said to be identi-

fiable if the corresponding confidence intervals are finite, or desirably tight.

Calculation of confidence intervals based on profile likelihoods

Several approaches for the calculation of confidence intervals exist, for instance those

based on the local approximations of the likelihood function. In this thesis, I use profile

likelihoods [Murphy and van der Vaart, 2000, Raue et al., 2009] to for the evaluation

of confidence intervals. Given the likelihood function LD(θ), the profile likelihood of

parameter θi is

PL(θi) = max
θj 6=i
LD(θ). (2.67)

For a given value of θi, the profile likelihood PL(θi) yields the maximal likelihood by opti-

mising the likelihood function with respect to all other parameters. The profile likelihood

is used to calculate the likelihood ratio Ri = PL(θi)/LD(θMLE). The likelihood ratio Ri

equals one at the MLE θMLE
i and, if the parameter θi is identifiable, approaching zero for

large |θi − θMLE
i |. Therefore, Ri is an indicator of the uncertainty of the parameter θi

Using profile likelihood PL(θi), the confidence interval of parameter θi is evaluated as

CIαi =

{
θi

∣∣∣∣
PL(θi)

LD(θMLE)
> exp

(
−∆α

2

)}
, (2.68)

where ∆α is the α-th percentile of the χ2-squared distribution with nθ degrees of freedom,

∫ ∆α

0
χ2(ξ|nθ)dξ = α. (2.69)
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This confidence interval is linked to a rejection test based on the likelihood-ratio in this

way: Assume that a hypothesis testing procedure is given which, for any parameter θ0,

tests the null hypothesis θ = θ0 against the alternative hypothesis θ 6= θ0. The confidence

interval CIαi includes all parameters θ0 for which the null hypothesis is not rejected at

significance level α. For further details, we refer to [Raue et al., 2009] and [Meeker and

Escobar, 1995].
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Chapter 3

Summary of Contributed Articles

In this chapter, I provide detailed summaries of the four articles which constitute this

publication-based dissertation. I am the sole first author of all of these articles and was

in charge of their preparation. A detailed description of my contributions for each pub-

lication is provided below. All articles are peer-reviewed, published in international well-

established journals or in proceedings of established scientific conferences, and are not

used in any other publication-based dissertation. The articles are sorted in chronological

order. The full text of these articles will follow in Appendices A-D.

1. A. Kazeroonian, J. Hasenauer, and F. J. Theis. Parameter Estimation for

Stochastic Biochemical Processes: A Comparison of Moment Equation

and Finite State Projection. In Proceedings of 10th International Workshop on

Computational Systems Biology (WCSB), Tampere, Finland, pages 66-73, 2013.

The inference of the parameters of biochemical reaction networks, e.g., binding affini-

ties and degradation rates, from experimental data is a highly relevant problem in

systems and mathematical biology (see Section 2.3). To achieve accurate predictive

models, high quality parameter estimates with low uncertainties are essential. Un-

certainty of estimates for the parameter values can be reduced by (i) incorporating

more experimental data in the parameter estimation process or (ii) improving the

extraction of information from the available data. The latter is often preferable as it

does not require additional biological experiments, which are often time-consuming

and expensive.

The experimental data for studying heterogeneous cell populations is often collected

via techniques, such as flow and mass cytometry, that provide single cell data. The
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distribution of single cell measurements was shown to be a source of substantial

information about the parameters of a biochemical network [Munsky et al., 2009].

In particular, it was established that even only the use of variance information, in

addition to the mean, substantially improves the parameter estimation compared to

using the mean alone [Munsky et al., 2009]. Building on these findings, I carried

out a novel study which investigated how much information about parameter values

was encoded in the higher-order moments, and in the full distribution of single cell

measurements.

For this task, I considered mesoscopic modelling, and in particular moment closure

approximations (MA), to be a proper tool to explain the higher-order moments of

distributions of single cell data. It was explained in the Methods chapter (Sec-

tion 2.2.2) that the MA describes statistical moments with affordable computational

complexity–unlike microscopic modelling approaches, such as the finite state projec-

tion (FSP) (see Section 2.2.1).

To assess the information about the parameters encoded in statistical moments of

different orders, I derived MAs of various orders–in most previous studies only first-

and second-order moments were employed–for a gene expression model with affine

propensities. This biochemical reaction network possesses only first-order reactions

(see Section 2.1.1). In such a reaction network, the moment equations are exact as

no moment closure is needed (see Section 2.2.2). Therefore, I could examine the

effect of additional higher-order moments without the interference of approximation

errors introduced by moment closure. I used simulated population snapshot data

to fit the MAs and estimate the parameters of the reaction network. For this pur-

pose, I devised an objective function assuming independent, normally distributed

measurement noise for the statistical moments (see Section 2.3.2). I estimated the

error variance for each moment with a bootstrap approach. In addition, I performed

parameter estimation using the FSP which uses the full distribution of the data

(see Section 2.3.3), and compared the resulting parameter uncertainties with those

obtained by MA-based estimation.

In this study, I showed that the parameter uncertainty systematically decreases

with the incorporation of higher-order moments. For the considered application,

the most significant improvement of parameter estimation accuracy was observed by

including the second-order moments: If merely the first-order MA was employed,

all parameters of the model were practically non-identifiable. In this case, although

the model simulation could be perfectly fit to the mean of the observed data, the

higher-order moments could not be correctly predicted by using this set of fitted

parameters. As soon as at least second-order moments were used, all parameters
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became identifiable. In addition to the assessment of the estimation accuracy, I

outlined how higher-order moments can be used for validating parameter estimates.

As MA can be written for any arbitrary order of moments, higher-order moments

of the same single cell data that are not used for parameter estimation, can be

employed for model validation. Thus, in contrast to standard validation approaches,

this MA-based approach does not require independent experimental data for model

validation. This is a powerful concept that is transferable to a broad spectrum of

applications.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I wrote the first complete draft of the paper, and iterated

it with Jan Hasenauer and Fabian Theis.

2. A. Kazeroonian, F. J. Theis, and J. Hasenauer. Modeling of stochastic biological

processes with non-polynomial propensities using non-central conditional

moment equation. IFAC Proceedings Volumes, Volume 47, Issue 3, 2014, Pages

1729-1735.

As outlined in previous chapters, stochastic biochemical kinetics can be efficiently

modelled by moment closure approximations and conditional moment equations (see

Section 2.2.2 and 1.2.1). This is especially important for biochemical reaction net-

works for which simulating the CME or running the SSA is computationally infeasible

(see Section 2.1.3 and 2.1.4). For many systems with bimolecular reactions, moment

equations and conditional moment equations are not closed and moment closure is

necessary (see Section 2.2.2). The derivation of the moment equations and the appli-

cation of moment closure depend on the reaction kinetics (see Section 2.1.1). If the

reaction propensities follow the law of mass-action, a finite number (one or two) of

higher-order moments appear in the moment equations of any order, which need to

be approximated by means of a moment closure technique. However, many biolog-

ical processes in practice are modelled using non-mass action kinetics. Frequently

used kinetics in this regard, such as Michaelis-Menten kinetics, Hill kinetics, and

substrate inhibition kinetics, result in non-polynomial reaction propensities. This

means that infinitely many higher-order moments need to be taken into account for

deriving the equations for the temporal evolution of the moments. As such a treat-

ment is not feasible, non-mass-action kinetics are not directly interpretable in the

framework of moment equations and conditional moment equations. Milner et al.

[2011] proposed an approach for moment closure approximations in the case of ratio-

nal propensity functions; however, a general approach for the treatment of arbitrary

(non-polynomial) propensity functions was missing.



48 CHAPTER 3. SUMMARY OF CONTRIBUTED ARTICLES

To enable moment closure approximations for arbitrary biochemical kinetics, I pro-

posed a novel systematic approximation by means of Taylor series expansion. By

truncating the Taylor series expansion, I approximated a non-polynomial propensity

function with a finite number of terms that are readily interpretable in the derivation

of (conditional) moment equations. The approximation error introduced by this ex-

pansion can be controlled via the truncation order. Following the approximation by

Taylor series expansion, the resulting higher-order moments need to be approximated

by means of moment closure; this introduces another layer of approximation. I anal-

ysed several closure schemes and analytically showed that the low-dispersion closure

is consistent with the assumptions made by the truncation of the Taylor series ex-

pansion. The overall approximation accuracy of the resulting (conditional) moment

equations is determined by the truncation order of the Taylor series, and the order of

the moment closure. Therefore, I next investigated the interplay of these two sources

of approximation error to achieve the best approximation accuracy. Since analytical

bounds for the corresponding errors are not available, I opted for a simulation study

describing the dynamics of a biochemical reaction network with Michaelis-Menten

kinetics including both low-copy and high-copy number species. Such a system is

well described by a hybrid stochastic-deterministic approach, and therefore, I em-

ployed the method of conditional moments (see Section 1.2.1) for this simulation

study. This was the first study where non-mass action kinetics were considered in

the framework of conditional moment equations. I assessed the resulting accuracy

by comparing the simulation results to those obtained by using the finite state pro-

jection (taken as the “ground truth”) (see Section 2.2.1). Simulating various orders

of conditional moment equations, with varying truncation orders of Taylor series

expansion, I showed that the choice of these two orders can be tuned to reduce the

overall approximation error.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I wrote the first complete draft of the paper, and iterated

it with Jan Hasenauer and Fabian Theis.

3. A. Kazeroonian, F. Fröhlich, A. Raue, F. J. Theis, J. Hasenauer. CERENA:

ChEmical REaction Network Analyzer – A Toolbox for the Simulation

and Analysis of Stochastic Chemical Kinetics. PLOS ONE 11(1): e0146732,

2016.

The realm of modelling approaches for stochastic biochemical kinetics is broad with

freedom in choosing the resolution. A collection of microscopic, mesoscopic and

macroscopic approaches were introduced in Section 2.2. It was noted that depend-
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ing on the level of description (e.g., microscopic vs. macroscopic), the associated

computational complexity of simulating the biochemical reaction network varies.

In addition, the approximation accuracy of the mentioned modelling approaches,

even among those in the same class, e.g., mesoscopic descriptions, differs. Many of

the modelling approaches have an additional degree of freedom in choosing model-

specific options–e.g., the choice of moment closure order and technique for MA and

MCM–which can substantially influence their performance. To add one more layer

of complexity, the relative performance of different modelling approaches depends

on the properties of the biological system at hand, rendering the choice of optimal

modelling approach problem-specific. As several of these modelling approaches lack

a priori estimates on error bounds, their performance for a given biochemical net-

work is not predictable. Due to these issues, in general, no automatic solution for a

problem-specific choice of optimal modelling approach can be obtained, and instead,

simulation and comparative studies are required. Given that public implementations

of many of these approaches were not available, we realised that there was a need

for a software toolbox that allows for comprehensive comparison of a broad range of

modelling approaches with distinct properties.

To this end, I decided to develop a novel, unifying framework which offers efficient

derivation and simulation of a wide range of modelling approaches with a user-

friendly interface. I led the development of CERENA, a unique open-source MAT-

LAB toolbox for the modelling and simulation of biochemical reaction networks.

CERENA encompasses the collection of the modelling approaches introduced in

Section 2.2. In particular, I developed efficient implementations for deriving the mo-

ment and the conditional moment equations, and extended the implemented meth-

ods to handle general kinetics, i.e. non-mass action kinetics and time-dependent

propensities. I implemented a unifying interface for all the included modelling ap-

proaches, and enabled proper interpretation of chemical reaction networks in the

framework of each approach. I also enabled the import of reaction networks de-

scribed in the Systems Biology Markup Language (SBML) format. I linked CER-

ENA to efficient numerical solvers, via AMICI–a tool developed by Fabian Fröhlich

in another project [Frohlich et al., 2017]. This ensures fast and efficient simula-

tion of a given biochemical reaction network using various methods. Through this

linking, CERENA also offers forward and adjoint sensitivity analyses to facilitate

further studies such as parameter estimation and uncertainty analysis. Finally, I

implemented automatic evaluation and visualisation of the statistical moments of

interest based on the solution of various approaches.

To showcase the advantages of such a software toolbox, both in guiding the optimal
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choice of modelling approach, as well as the efficiency and feasibility of simulating

stochastic kinetics, I conducted comparative studies on two different biochemical

networks: a model of gene expression incorporating a feedback loop and a model

of JAK/STAT signalling pathway. Comparisons with the SSA and FSP results

(treated as the “ground truth”) revealed that one could find a method with desir-

able approximation accuracy from the pool of possible methods. Finally, I showed

the significantly reduced computational cost of the simulations enabled in this tool-

box compared to available alternatives. Overall, in this work, I could show that the

unique collection of modelling approaches in CERENA, together with efficient nu-

merical simulations, enables smooth selection of appropriate problem-specific mod-

elling approaches. CERENA is freely available from

http://cerenadevelopers.github.io/CERENA/.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I planned the project with the other authors. I led the

implementation of the MATLAB toolbox CERENA, which provides a link to the soft-

ware tool AMICI (previously CVODEwrap) developed by Fabian Fröhlich [Frohlich

et al., 2017]. Finally, I wrote the first complete draft of the manuscript and iterated

the manuscript with the other authors, in particular Jan Hasenauer.

4. A. Kazeroonian, F. J. Theis, J. Hasenauer. A scalable moment-closure approx-

imation for large-scale biochemical reaction networks. Bioinformatics 2017;

33 (14): i293-i300.

As described in details in Sections 2.2.2 and 2.2.3, mesoscopic models are powerful

tools for simulating stochastic chemical kinetics, as they provide a tradeoff between

resolution and computational cost. On the one hand, they provide information about

stochasticity and heterogeneity by modelling (a few) statistical moments of the state

of a stochastic process. On the other hand, since they consist of a system of ODEs

for the statistical moments of a few orders, they can be simulated efficiently using

well-established efficient numerical solvers. In particular, the simulation of meso-

scopic models is usually far more efficient than microscopic models such as SSA (see

Section 2.1.4). However, when it comes to the scaling of the number of state vari-

ables of the mesoscopic models with the number of species in a biochemical reaction

network, it is immediately noticed that mesoscopic description of realistic biological

systems could be challenging. For instance, the number of the state variables of the

second-order moment closure approximation scales quadratically with the number

of species in a reaction network. Thus, as the number of species increases, even the

second-order MA becomes infeasible. Given that there are many relevant biochemical

http://cerenadevelopers.github.io/CERENA/
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pathways, e.g., signalling or metabolic pathways, that consist of hundreds or thou-

sands of species, I noticed an important shortcoming of the available approaches for

modelling of realistic stochastic biochemical networks.

To address this issue, I explored the possibility of a reliable reduction scheme for

mesoscopic models, that would enable mesoscopic description of large-scale reaction

networks. Focusing on the second-order moments, I inspected the structure of the

covariance matrix in a few signalling pathways, and observed that the covariances

tend to zero as the network distance between species increases. Motivated by the

observation of strong local dependencies in biological networks, while long-range cor-

relations are mostly not present, I had the idea to exploit the structure of biochemical

reaction networks to establish a novel reduction scheme.

To this end, I defined a dependency matrix that encodes the directed connectivities

in a reaction network. This dependency matrix can be derived from the topology

of the network, i.e. the stoichiometry matrix and the reaction propensities. Using

the dependency matrix, I proposed an automatic scheme for identifying the most

relevant covariances that correspond to the strongest (direct) dependencies in the

network. In this way, I defined the novel scalable moment closure approximation

(sMA) that only describes the selected covariances, while the remaining covariances

are set to zero or approximated by moment closure.

To assess the size reduction gained by the sMA, I analytically calculated the size

of the sMA for a series of network motifs commonly found in biology. In addition,

I considered general and scale-free pathway topologies, and calculated a novel ap-

proximation for the scaling of the expected size of the sMA. These analytical results

showed almost linear scaling of the size of sMA with the number of species in the

network. In order to validate and test the performance of sMA on realistic biological

networks, I inspected the network topology of a large number of published pathways

of varying sizes using sMA, MA and RRE (see Section 2.2.4). The results revealed

that also in practice the sMA yields a semi-linear scaling, similar to the RRE, but

with the added advantage that it captures heterogeneity by modelling a subset of

second-order moments. Finally, I examined the approximation quality of sMA by

simulating two signalling pathways with curated parameter values. I showed that

the prediction of the sMA is mostly in agreement with that of the full MA. For

models with non-mass action kinetics (see Section 2.1.1), I extended the proposed

reduction scheme to higher degrees, and showed that the approximation error could

be tuned by changing the degree of the reduction. I implemented the scalable mo-

ment closure approximation in the toolbox CERENA that I developed as part of my
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PhD work [Kazeroonian et al., 2016] (see the summary of the previous article for

more information regarding CERENA).

In addition to the scientific contributions, I was the author in charge of the prepara-

tion of this publication. I proposed the ideas for the derivation of the sMA. Finally,

I wrote the first complete draft of the manuscript and iterated the manuscript with

Jan Hasenauer and Fabian Theis.



Chapter 4

Discussion and Outlook

The ultimate aim of systems biology centres around a holistic understanding of biology,

at a global scale, where collective behaviour of biological systems are explained as a result

of underlying mechanisms. A part of this holistic view is concerned with the study of how

single cells respond to stimuli, process information and make decisions. Processes involved

in the single cell dynamics, e.g., gene expression, signal transduction and metabolism, are

subject to stochasticity. This intrinsic noise of biological processes is not a nuisance

and in contrast, can have roles in the functioning of cell populations. Therefore, in the

study of single cells, capturing this stochasticity provides more insights into the under-

lying mechanisms—the information that would be obscured if one merely analysed the

population-averaged behaviour.

In my doctoral thesis, my goal was to utilise mathematical models to capture heterogene-

ity in realistic biochemical processes, and obtain reliable descriptive models to learn about

the underlying mechanisms of biological systems. Although microscopic descriptions, such

as Stochastic Simulation Algorithms, and the Chemical Master Equation on finite state

spaces, can provide detailed information about stochastic systems, their high computa-

tional complexities make them infeasible for realistic processes. Mesoscopic descriptions

capture the heterogeneity in cell populations by modelling a few statistical moments of

the probability distribution over the state space of the stochastic process, and thereby

drastically reduce the computational cost. However, due to complexity and diversity of

biochemical processes (in terms of their kinetics, sizes, etc.), there are ubiquitous biological

scenarios that pose challenges to the applicability of standard mesoscopic approaches.

Firstly, size scalability of standard mesoscopic approaches is prohibitive for large-scale

reaction networks, such as metabolic pathways that may have hundreds to thousands of
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species. To address this issue, in this thesis, I proposed a model reduction exploiting the

topological structure of the reaction network. Our conducted simulation studies on several

published pathways showed promising results for drastically reducing the computational

cost while maintaining satisfactory approximation accuracy. Secondly, nonlinear kinetics,

or copy-number regime of the species in the reaction network calls for special treatments to

achieve reliable approximations. In my thesis, I extended the moment-closure approxima-

tions for the handling of non-mass action kinetics of general form. I also contributed to the

development of the method of conditional moments for the handling of copy-number scale

separation. These extensions showed superior performances over standard treatments in

simulation studies.

Furthermore, as error bounds for mesoscopic approximative methods are not known a

priori, the optimal choice for modelling approach, order of approximation and moment

closure techniques is only accessible through simulation and comparative studies. Moti-

vated by this need, in this thesis, we developed a comprehensive simulation platform that

enables efficient simulation and performance comparisons across multiple modelling ap-

proaches. This unifying framework, also facilitates the integration of mechanistic models

in the systems biology framework for inference/parameter estimation and model selection.

To this end, in this thesis work, we conducted studies for utilising moment-closure ap-

proximations (and system size expansions) to provide more insight into the inference of

biological systems. Our results indicated the added benefit of higher-order moments in

reducing the uncertainty of parameter estimates and increasing the predictive power of

mechanistic models.

This thesis work resulted in a feasible framework for reliable descriptions of realistic

stochastic biochemical processes that can be used for understanding the behaviour of

biological systems. This work can be extended further to enable the analysis of stochastic

biochemical kinetics in a wider range of applications. Several possible extensions in this re-

gard are discussed in the following. These ideas describe further improvements that would

allow for more efficient use of mesoscopic approaches to answer fundamental questions of

systems biology.

4.1 Outlook 1: Potential advantages of mesoscopic approaches

in multi-scale modelling

Biological systems are comprised of mechanisms that operate across a broad range of

spatial and temporal scales. The spatial scales include molecular, cellular, tissue, organ,
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organism and population levels, while the temporal scales range from microseconds to

years [Dada and Mendes, 2011]. The intra- and inter-scale interactions of these mecha-

nisms give rise to complex behaviours of biological systems, such as their growth and devel-

opment. Therefore, understanding of complex biological functions can only be achieved by

models that integrate the mechanisms on various spatial and temporal scales. In the recent

years, the advent of high-throughput experimental technologies, together with powerful

computational techniques, smoothed the way for developing multi-scale modelling and in-

ference for the above-mentioned purpose [Martins et al., 2010, Dada and Mendes, 2011,

Walpole et al., 2013].

The aim of multi-scale modelling is to explain a macroscopic behaviour by combining mod-

els that describe individual scales/aspects of the system. Multi-scale models are usually

derived by putting together models from various model classes such as Agent-based models,

Ordinary/Partial Differential Equations, Boolean models, etc. The inclusion and coupling

of several modelling classes make the simulation of multi-scale models computationally

complex, and call for efficient computational techniques. For instance, the heterogeneous

multi-scale method (HMM) [E and Engquist, 2003] is an efficient computational frame-

work which couples macroscopic and microscopic descriptions. To achieve an efficient

coupling, the HMM uses microscopic descriptions to provide the necessary information for

macroscopic descriptions in regions where the macroscopic model is not valid or explicitly

defined. Apart from the simulation, inference of multi-scale models is usually challenging

as usually a large number of simulations are required due to the stochasticity of involved

processes. Furthermore, to obtain reliable parameter estimates, reproducibility of the re-

sults has to be ensured [Hasenauer et al., 2015]. In this regard, the mesoscopic approaches

considered in this thesis, namely the SSE, MA, MCM and sMA, can be employed in multi-

scale inference problems to enable feasible capturing of stochasticity and circumvent the

need for repeated stochastic simulations. In addition, as these mesoscopic methods belong

to the ODE model class, efficient deterministic optimisers for ODEs can be used for which

the reproducibility can generally be easily achieved.

4.2 Outlook 2: Incorporation of deterministic variability

In this thesis, I mainly focused on capturing the intrinsic stochasticity in biological pro-

cesses. However, heterogeneity in cell populations can also arise from deterministic vari-

ability among individual cells. For instance, cellular organisms may form subpopulations

with distinct phenotypic properties. The distinct subpopulations can respond differently

to external stimuli, and as a result, can increase the robustness of cell populations in



56 CHAPTER 4. DISCUSSION AND OUTLOOK

fluctuating environments. The heterogeneity has been shown to have functional roles in

the emergence of complex behaviours in cellular mechanisms [Eldar and Elowitz, 2010].

Therefore, both intrinsic stochasticity and extrinsic variability, e.g., distinct properties of

cellular subpopulations, need to be taken into account to obtain a holistic understanding

of biological systems.

Heterogeneity in the presence of subpopulations is commonly analysed by means of mix-

ture models where a cell population is modelled as the weighted sum of underlying sub-

populations. Recently, Hasenauer et al. [2014a] introduced the ODE-constrained mixture-

modelling framework (ODE-MM) which improves upon the standard mixture-modelling by

exploiting the predictive power of reaction rate equations (RRE) to describe the underly-

ing reaction networks. Using the RRE, the average dynamics of individual subpopulations

are mechanistically modelled while further properties, e.g., the variance of the mixture

components corresponding to individual subpopulations, are modelled as unknown pa-

rameters. The ODE-MM framework can unravel the underlying subpopulation structure

in experimental data, and also provide insight into the sources of variability [Hasenauer

et al., 2014a, Loos et al., 2016]. A natural extension of the ODE-MM can be achieved by

utilising mesoscopic approaches, such as the MA and SSE to incorporate more mechanis-

tic knowledge about the subpopulation dynamics. In this way, in addition to the average

dynamics, the covariance structure of individual subpopulations are described and used

for parameter estimation. The ODE-MM can be further extended by employing the MCM

such that the underlying subpopulations are modelled as conditional distributions resulted

by the MCM solution. In this case, the weighting of the subpopulations is also mechanisti-

cally obtained in terms of the marginal probabilities associated with individual conditional

distributions [Hasenauer et al., 2014b].

4.3 Outlook 3: Exploiting autocorrelation information

In this thesis, I considered the application of moment closure approximation for parameter

estimation using population snapshot data. This data type provides information about the

dynamics of cell populations with the resolution of single cells; however, individual cells

are not tracked over time. Time-lapse microscopy data, on the other hand, contains tra-

jectories for individual cells, and therefore, provides more information about the dynamics

of single cells and cell populations. Incorporating the temporal correlation information

encoded in the trajectories of single cells in time-lapse microscopy can enable a more

informative parameter estimation approach with decreased uncertainty. As an example,

in pedigree analysis, the incorporation of temporal correlations in trajectories could en-
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Figure 4.1: Single cell traces provide temporal correlation information that is
not captured in population snapshot data. (A) A sample single cell derived progeny
depicting the impact of differentiation on cell division times. (B) A sample progeny in
which a particular protein is up-regulated after differentiation.

able inference about inheritance mechanisms, and detection of distinct cell subsets. This

information is not accessible via population snapshot data (Figure 4.1).

In order to use time-lapse data in the framework of moment-based parameter estimation,

an appropriate likelihood function needs to be established to utilise the temporal structure

of the data. For this purpose, governing equations for the autocorrelation of the state of

the stochastic process should be derived. Lestas et al. [2008] consider the autocorrelation

equations for linear propensities and at steady state. A theoretical extension of this thesis

work can focus on the derivation of the governing equations for autocorrelation in MA

and MCM, and corresponding likelihood functions to utilise time-lapse microscopy data.
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ABSTRACT
Many biochemical processes exhibit intrinsic stochastic
fluctuations. These intrinsic fluctuations can be modeled
using the chemical master equation (CME). The estima-
tion of the parameters of the CME is challenging because
the CME is a high or infinite dimensional system.

We compare two approaches currently used to esti-
mate parameters of CMEs from population snapshot data.
The first approach relies on a truncation of the CME, the
finite state projection, and uses the data directly. The sec-
ond method relies on moment equations – dynamical sys-
tems computing the moments of the CME solution – and
merely uses the moments of the data. The second method
is computationally more efficient, however, it cannot use
all information contained in the data. In this manuscript,
we assess the statistical power of the individual approaches
and study moment equations of different order. Further-
more, we refine the likelihood function for the moment
equation and introduce a novel validation method.

We performed a comparative study of the commonly
used 3-stage model of gene expression. Using maximum
likelihood estimates and a rigorous uncertainty quantifi-
cation based on profile likelihoods, we show that the fi-
nite state projection approach is statistically more power-
ful than approaches based on moment equation. Never-
theless, even in case of partial observations, the first and
second moments of the CME solution are highly informa-
tive and permit parameter identifiability. These findings,
in combination with the novel tools for validation and un-
certainty analysis, improve the insight into the problem
class.

1. INTRODUCTION

In recent years, a multitude of studies have shown that
many biochemical processes in prokaryotic and eukary-
otic cells exhibit intrinsic stochastic fluctuations [1]. These
fluctuations arise from low copy-number effects and are
particularly significant for transcription and translation [2].
It is now known that these fluctuations are in many cases
required for cellular function, e.g., for robust decision mak-
ing on the population level [1].

The stochastic dynamics of biological processes can
be described using continuous-time discrete-state Markov
chains (CTMCs). The statistics of these Markov chains
are governed by the chemical master equation (CME). In-
dividual realizations of the process can be obtained via
stochastic simulation algorithms (SSAs) [3, 4]. The
stochastic process can be studied by analyzing statistics
of many such realizations. Alternatively, the CME can be
simulated using the finite state projection (FSP) method [5],
which relies on truncation of the state space of the CME.
While SSAs and the FSP are in principle capable of re-
solving all details of the dynamics of the CME, they im-
pose a significant computational cost. This computational
cost already becomes intractable for many small-scale sys-
tems. As an alternative, the method of moments (MM)
[6, 7, 8] can be employed to capture the overall statistics
of the process, such as mean and variance of individual
species as well as covariances.

While the SSA, the FSP, and the MM all have advan-
tages and disadvantages, a joint property is that they re-
quire accurate parameter values. The models and simu-
lations are only predictive if good estimates of the reac-
tion rates are available. Several estimation methods, re-
lying on different models, were proposed (see, e.g., [9]
and references therein), however, in most studies only the
optimal parameter estimate has been considered, and the
methods have not been compared. In this manuscript, we
study the parameter estimates and confidence intervals ob-
tained using FSP and MM. We present the individual like-
lihood functions and evaluate the informativeness using
profile likelihoods. This is done for the widely used 3-
stage model of gene expression [2], which is depicted in
Figure 1.

2. METHODS

2.1. Modeling and simulation

2.1.1. Chemical master equation

The time evolution of the state X = (X1, . . . , Xns)
T ∈

Nns0 of stochastic biochemical reaction networks is mostly
described using CTMCs. The statistics of CTMCs are
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Moment equation (order 1):

µ̇Doff = τoffµDon − τonµDoff

µ̇Don = τonµDoff − τoffµDon

µ̇r = krµDon − γrµr

µ̇p = kpµr − γpµp

Figure 1. Three-stage gene expression model. (left) Schematic of the 3-stage gene expression model shows two DNA
states (on, off), mRNAs and proteins. Transitions as well as synthesis and degradation reactions are shown as arrows.
(right) Moment equations for means and variances of the individual species. The subscripts indicate the dependency, e.g.,
µr is the mean mRNA number.

governed by the CME. For a process with nr chemical
reactions,

Rk :

ns∑

i=1

ν−ikXi →
ns∑

i=1

ν+
ikXi,

with reaction stoichiometries ν−k , ν+
k , and νk = ν+

k − ν−k ,
and reaction propensities ak(X, θ), the CME is

∂

∂t
p(x; t) =

nr∑

k=1
x≥ν+

k

ak(x− νk, θ)p(x− νk; t)−
nr∑

k=1

ak(x, θ)p(x; t).

The solution of the CME depends on the parameters θ,
which are for instance reaction rates.

The CME is defined for all reachable states x ∈ Ω ⊂
Nns0 , where ns is the number of biochemical species. The
set of reachable states Ω is in general very large, or infi-
nite, rendering a direct solution of the full CME infeasible.
Fortunately, the set of states with a significant probability
mass is often small. This is exploited by the FSP, a di-
rect method for approximating the solution of the CME [5]
with pre-specified accuracy. Therefore, a subset ΩFSP of
the set of reachable states Ω is chosen. The time evolution
of p(x; t) with x ∈ ΩFSP is described by the CME, but
influxes from states x − νk /∈ ΩFSP are removed. Proba-
bilities p(x; t) resulting from the simulation of this trun-
cated system, which can be shown to be a lower bound for

the actual probabilities of the CME, converge to the ac-
tual probabilities by growing ΩFSP until the pre-specified
accuracy is met.

A requirement for the application of the FSP is that
the number of states with a significant probability mass is
not too large. Novel algorithms can handle some million
states [10]. Beyond this, the direct numerical simulation
becomes infeasible.

2.1.2. Method of moments

In situations where the FSP is no longer applicable, the
method of moments can be employed to approximate the
solution of the CME [6]. The MM, also called moment
equation, does not reproduce the exact solution of the CME.
Instead, it computes the moments of p(x; t), i.e. mean

µi(t) =
∑

x∈Ω

xip(x; t),

variance

Cij(t) =
∑

x∈Ω

(xi − µi(t))(xj − µj(t))p(x; t),

and higher-order moments [6]. The dynamics of the mo-
ments are governed by a set of ordinary differential equa-
tions (ODEs). Given that chemical reactions are at most
bimolecular, the ODEs for the mean and the variance are



dµi
dt

=

nr∑

k=1

νik


ak(µ, θ) +

1

2

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cl1l2


 ,

dCij
dt

=

nr∑

k=1


νik

∑

l

∂ak(µ, θ)

∂xl
Cil + νjk

∑

l

∂ak(µ, θ)

∂xl
Cjl + νikνjk


ak(µ, θ) +

1

2

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cl1l2






+

nr∑

k=1


νik

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cil1l2 + νjk

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cjl1l2


 ,

in which Cil1l2 and Cjl1l2 are third order moments ac-
cording to notation used in [6]. The governing equation
for arbitrary moment orders can be found in [6, Equa-
tion (2.46)]. If all reactions are at most mono-molecular,
the moment equation is closed, meaning that the evolution
of moments of order m does not depend on moments of
order greater than m. In this case, the moment equations
are exact. If bimolecular chemical reactions are present,
the moment equation ODEs are not closed, and the eval-
uation of a moment of order m requires the moments of
order m+ 1 [6]. Moment closure techniques must be em-
ployed [11], and the resulting moments will only be an
approximation of the true moments of the solution of the
CME.

Moment equations are in general low-dimensional com-
pared to the CME. Thus, they can generally be solved
more efficiently. However, a drawback is that a finite num-
ber of moments does not allow the reconstruction of the
underlying distribution p(x; t). Hence, information is lost.

2.2. Parameter estimation

In this work, we considered population snapshot dataDk ={(
Ȳ (s)(tk), tk

)}Sk
s=1

, k = 1, . . . , N , obtained by sam-
pling cells s = 1, . . . , Sk from the cell population and
measuring one (or more) properties of these cells, e.g.,
using flow cytometry or microscopy. For notational sim-
plicity, we assume that one observable, Ȳ = h(X), can be
measured. The observation function h describes the type
of measurement; in the most simple case h(X) = Xi.
The measurement is assumed to be noise-free as we later
want to assess the informativeness of single-cell data vs.
the moments.

Given a realization X at a certain time tk, the proba-
bility of observing Ȳ at time tk is p(y = Ȳ ;x = X). The
total probability to observe Ȳ at time tk is obtained by
taking into account all possible realizations X ∈ Ω of the
process. Given that the number of molecules is a discrete
variable, this total probability is obtained by marginaliz-
ing over the state space Ω,

p(y; tk, θ) =
∑

x∈Ω

p(y;x) p(x; tk, θ),

where p(x; tk, θ) is the solution of the CME. Bearing in
mind that we do not consider any measurement noise, y is

a deterministic function of x, y = h(x), thus

p(y|x) =

{
1 if y = h(x)
0 otherwise,

so the sum simplifies to

p(y; tk, θ) =
∑

x∈Ω
h(x)=y

p(x; tk, θ).

Following the argumentation above, the probability distri-
bution p(y; tk, θ) is the distribution from which the obser-
vations are drawn. Thus,

p(y = Ȳ (s)(tk)) = p(y; tk, θ), s = 1, . . . , Sk.

In the following, we compare two classes of likelihood
functions for these data, namely an FSP-based likelihood
function and a moment-based likelihood function with re-
spect to their statistical power. As mentioned before, we
do not consider any measurement noise in this compari-
son, but the inclusion of noise in the presented procedure
would be rather straightforward.

2.2.1. FSP-based estimation

As outlined earlier, for CTMCs with a small effective state
space, the FSP can be used to approximate the solution
of the CME for a given parameter set θ. Using this ap-
proximation of the probability distribution of the hidden
state, p(x; t, θ), and the corresponding approximation of
the probability distribution of the observable, p(y; t, θ),
the likelihood of the stochastic process,

LFSP
D (θ) = c

N∏

k=1

Sk∏

s=1

p(y = Ȳ (s)(tk); tk, θ),

can be evaluated. Basically, the probabilities are evalu-
ated and multiplied for all observed states. The constant
c depends only on the data and can be neglected for op-
timization purposes. For a detailed introduction of this
FSP-based likelihood function, we refer to [12, 13]. Given
the FSP-based likelihood function, the estimation problem
can be formulated. The FSP-based maximum likelihood
(ML) estimation problem is:

maximize
θ

logLFSP
D (θ)

subject to ΣFSP(θ),



in which ΣFSP(θ) denotes the finite-dimensional ODE
model resulting from the FSP of the CME on the sub-
set ΩFSP. To reduce numerical problems, the problem is
formulated using the log-likelihood function logLFSP

D (θ).
Furthermore, we optimize the logarithm of the parameters
ξ = log10(θ) to ensure positivity and improve the perfor-
mance of the optimization routines. The optimal solution
of the FSP-based ML estimation problem is the parame-
ter vector for which the likelihood of observing the single
cell data is maximized. This estimator uses all available
information.

2.2.2. Moment-based estimation

For many processes the approximation of the CME so-
lution using the FSP is not feasible because the number
of states with non-negligible probability is too large. In
such cases, the moment equation can be employed to ap-
proximate the statistics of the CME solution. To employ
moment equations for parameter estimation, the statistics
of the snapshots are computed, e.g., mean and variance,

µ̄y(tk) =
1

Sk

Sk∑

s=1

Ȳ (s)(tk),

C̄yy(tk) =
1

Sk

Sk∑

s=1

(
Ȳ (s)(tk)− µ̄y(tk)

)2

.

These measured moments are compared to moments pre-
dicted by the model and the observation function h(x).
Since the sample sizes Sk are often quite large – for flow
cytometry often in the order of 104 – it follows from the
central limit theorem that the empirical moments, e.g.,
µ̄y(tk) and C̄yy(tk), are almost normally distributed
around the true moments [14]. Hence, a normal error
model is assumed,

LMM
D,µy (θ) =

N∏

k=1

N
(
µy(tk, θ)|µ̄y(tk), σ2

µ̄y (tk)
)
,

LMM
D,Cyy (θ) =

N∏

k=1

N
(
Cyy(tk, θ)|C̄yy(tk), σ2

C̄yy
(tk)

)
,

where N (·|µ, σ2) is the probability density of the normal
distribution. Such a likelihood function can be derived for
every moment predicted by the model, e.g., also the third
and fourth order central moments. Clearly, the considera-
tion of additional, non-redundant moments provides addi-
tional information about the model parameters as the in-
dividual likelihood functions are multiplied, e.g., if mean
and variance are employed then a reasonable likelihood
function is

LMM
D (θ) = LMM

D,µy (θ) · LMM
D,Cyy (θ).

Unfortunately, also the computational complexity of sim-
ulating the moment equations increases with each addi-
tional moment considered in the model.

The likelihoods LMM
D,µy (θ), LMM

D,Cyy (θ) and those for
the higher-order moments require information about the

error variance of the respective empirical estimator, e.g.,
σ2
µ̄y for µ̄y(tk) and σ2

C̄yy
for C̄yy(tk). The variance of

the estimators for the first and second order moments can
be found in [14]. For third and higher-order moments the
calculation of these estimators become increasingly com-
plex, and we did not find respective results in the liter-
ature. To circumvent the analytical derivation, we pro-
pose to estimate the variance of the empirical estimators
using non-parametric bootstrapping [15]. This approach
employs a two-step procedure. At first, a sample of size
Sk is drawn from {Ȳ (s)(tk)}Sks=1 (all Ȳ (s)(tk) have prob-
ability 1

Sk
) and the moments of this artificial sample are

evaluated. This step is repeated a large number of times,
in general more than one thousand times, yielding a large
sample for each moment of interest. Therefore, the vari-
ance of each moment can easily be computed from the
corresponding sample. This sample variance is a reliable
measure for the uncertainty, if Sk � 1. It does not require
any distribution assumption for p(y; tk, θ) and is easily ap-
plicable to any higher-order moments.

Given the likelihood function LMM
D (θ), which is the

product of the likelihood functions for the moments of in-
terest, the moment-based ML estimation problem,

maximize
θ∈Rnθ+

logLMM
D (θ)

subject to ΣMM(θ),

can be formulated. ΣMM(θ) is the model used to simulate
the moment equations for the moments of interest.

2.2.3. Identifiability and uncertainty analysis

As the measurement data are limited and potentially noise
corrupted, the parameters can in general not be estimated
precisely. To assess the remaining parameter uncertainty
and the practical identifiability, we use profile likelihoods
[16]. Given the likelihood function LD(θ), the profile
likelihood of parameter θi is

PL(θi) = max
θj 6=i
LD(θ).

This profile likelihood PL(θi) is the maximal likelihood
for a given value of θi. Using the profile likelihood, the
likelihood ratioR(θi) = PL(θi)/LD(θ̂) can be evaluated,
in which θ̂ is the ML estimate. The likelihood ratio R is
one at the globally optimal point θ̂i and approaches zero
for large |θi − θ̂i| if the parameter is identifiable. The
area under PL(θi) provides a reasonable measure for the
uncertainty of parameter θi. For further details, we refer
to [16, 17].

In the following, we employ profile likelihoods to as-
sess the information content of the moments of the data
in comparison with that of the full distribution of data.
More information will result in many identifiable parame-
ters and small parameter uncertainties.
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(a) Four stochastic realizations of the 3-stage model of gene expres-
sion.
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(b) Population snapshot data used for parameter estimation.

Figure 2. Dynamics of the 3-stage model of gene expres-
sion. (a) Time-dependent protein number in four repre-
sentative cells together with the population mean. (b) Pop-
ulation snapshot data obtained by sampling single cell tra-
jectories. The size of the markers in (b) is proportional to
the number of observed cells with the corresponding pro-
tein number. Due to the long tail of the distribution, the
mode of the data seen in (b) differs significantly from the
mean of the data depicted in (a).

3. RESULTS AND DISCUSSION

3.1. Parameter estimation for the 3-stage model of gene
expression

In this section, we compare the performance of previously
mentioned estimation methods, namely, FSP-based and
MM-based parameter estimates, using the common 3-stage
model of gene expression [2]. A schematic of the pro-
cess and the corresponding moment equations for mean

and variance are shown in Figure 1. The model has six
parameters: the transition rate of DNA into the on-state
(τon), the transition rate of DNA into the off-state (τoff),
the transcription rate in the on-state (kr), the rate of mRNA
degradation (γr), the translation rate (kp), and the rate of
protein degradation (γp). In the following, we study the
problem of estimating these rates from protein measure-
ments. Therefore, we generate artificial data

Dk =
{(
Ȳ (s)(tk), tk

)}105

s=1
, k = 1, . . . , 10,

with tk = k and Ȳ being the number of proteins. For the
generation of the artificial data, the parameter vector

θtrue = (τon, τoff, kr, γr, kp, γp)T

= (0.05, 0.05, 5, 1, 4, 1)T

is used. We refer to this parameter vector θtrue as the true
parameter vector in the following. Also, no measurement
noise is considered in the generation of the data. In the
initial state, mRNA and protein numbers follow a Pois-
son distribution with mean 4 and 10, respectively. The
probability to be in the DNA on-state is 0.7. Figure 2 de-
picts sample paths of the model (Figure 2(a)) as well as the
snapshot data (Figure 2(b)) used for parameter estimation.
Using these data we estimate θ = (τon, τoff, kr, γr, kp, γp)T.

For FSP-based and moment-based likelihood functions
the maximum likelihood estimates are computed and the
parameter uncertainty is evaluated. For the
moment-based likelihood function we employed differ-
ent moment orders. The uncertainty of the moments has
been determined using the non-parametric bootstrapping
approach introduced before.

Figure 3 depicts the model simulation for the ML es-
timates for the different likelihood functions along with
the data. It is clear that for all ML estimates we observe
a good agreement with the data used for the estimation.
To validate the ML estimates, we employed the higher-
order moments of the data, which have not been used for
the parameter estimation. We find that all ML estimates,
which were obtained using at least the mean and the vari-
ance, successfully predict the higher-order moments not
used to obtain the ML estimates. Only the ML estimate
computed merely from the mean of the data fails. Thus,
the information contained in the mean is insufficient. This
is confirmed by the profile likelihoods shown in Figure 4,
which show that all likelihood functions establish identi-
fiability, except the moment-based likelihood function of
order 1. A careful comparison of the profile likelihoods
shows that the uncertainty in the estimation of the param-
eters decreases as more information (more moments) are
used. Since the FSP-based likelihood function makes use
of all the information, the resulting parameter uncertain-
ties are minimal. If the moment order is increased, the
confidence intervals for moment-based likelihood func-
tion also become more narrow, however even for moment
order 4, the result of the FSP remains superior. Note that
for all likelihood functions, the true parameters are con-



6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150
va

ria
nc

e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

0 2 4 6 8 10
6

8

10

12

time t

m
ea

n

0 2 4 6 8 10
0

50

100

150

time t

va
ria

nc
e

0 2 4 6 8 10
0

500

1000

1500

time t

sk
ew

ne
ss

0 2 4 6 8 10
0

2.5

5

x 104

time t

ku
rto

si
s

fitted outputs predicted outputs

FSP-based
estimation

moment-based
estimation
(order 2)

moment-based
estimation
(order 3)

moment-based
estimation
(order 4)

moment-based
estimation
(order 1)

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500
sk

ew
ne

ss

0

2.5

5

x 104

ku
rto

si
s

6

8

10

12

m
ea

n

0

50

100

150

va
ria

nc
e

0

500

1000

1500

sk
ew

ne
ss

0

2.5

5

x 104

ku
rto

si
s

0 2 4 6 8 10
6

8

10

12

time t

m
ea

n

0 2 4 6 8 10
0

50

100

150

time t

va
ria

nc
e

0 2 4 6 8 10
0

500

1000

1500

time t

sk
ew

ne
ss

0 2 4 6 8 10
0

2.5

5

x 104

time t

ku
rto

si
s

measurement (± 4 std)

Figure 3. Model-data comparison for ML estimates obtained using different likelihood functions. ML estimation has
been performed using moment-based likelihood functions of different orders (order 1: mean; order 2: mean and variance;
order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-based likelihood
function. Gray error bars show the mean and 4-σ intervals ([µ−4σ, µ+4σ]) of the measurement data. For the different ML
estimates the fit is illustrated by showing the model output (blue lines, —) and the measurement data (grey error bars).
All models describe the respective data well. To assess the predictive power of the model, the ML estimates are used
to predict the higher-order moments (magenta lines, —) which have not been employed for the parameter estimation.
The ML estimate computed using moment-based estimation of order 1 fails to provide good prediction, while already
information about mean and variance (order 2) is sufficient to obtain a predictive model.

tained in the 95% confidence intervals constructed from
the profile likelihoods (not shown).

3.2. Discussion

The computational complexity of the simulation of CTMCs
renders the estimation of their parameters challenging. Dif-
ferent methods have been proposed to circumvent this com-
plexity, among other the moment equations [18, 9, 14]. In
this work, we evaluate the information contained in the
moments of measurement data with respect to parameter
estimation (by employing moment-based likelihood func-
tion) and compare it with the complete information con-
tained in population snapshot data (by employing FSP-
based likelihood function). The practical identifiability
and the uncertainty of the parameter estimates are assessed
using profile likelihoods. To the best of our knowledge,
this is the first profile likelihood-based uncertainty anal-
ysis for stochastic processes, probably because the eval-

uation of the likelihood function is computationally often
infeasible. This is not the case if a moment-based estima-
tion is employed.

As a case study, we consider the widely used 3-stage
model of gene expression [2]. For this model, we show
that measurements of the mean expression do not in gen-
eral ensure identifiability, but rather that measurements of
the variance are required. This is consistent with results
by Munsky et al. [18] for the two-stage model of gene
expression. Information about third and fourth order mo-
ments can decrease the uncertainty further, however this
reduction is often insignificant. The full information con-
tained in the data, which is exploited by the FSP-based
estimation, remains out of reach for the MM-based esti-
mation approach.

Although the FSP-based likelihood function is statis-
tically more powerful, parameter estimation based on the
moment equation is the method of choice for processes,
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Figure 4. Parameter uncertainty for different likelihood functions. The parameter uncertainty and parameter iden-
tifiability has been evaluated for moment-based likelihood functions of different orders (order 1: mean; order 2: mean
and variance; order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-
based likelihood function. The profile likelihoods (blue lines, —) indicate that the measurements of the mean do not
carry enough information to identify the parameters. Information about mean and variance ensures identifiability, and
the uncertainty is slightly reduced if additional moments are used. The FSP-based likelihood function, which exploits all
information contained in the data, yields the smallest uncertainties. All confidence intervals (not shown), derived from
likelihood profiles, contain the true parameter values (red lines, —), which indicates consistency.

in particular, if the FSP is infeasible. Furthermore, pa-
rameter estimation using the moment equation is more ef-
ficient. The parameter estimation using the moment equa-
tion of order 2 is roughly 30 times faster than the pa-
rameter estimation using the FSP. However, it remains to
be studied how moment closures, which are required for
systems including bimolecular reactions, influence the pa-
rameter estimation. If a bias is introduced, as we expect,
it should be analyzed how a refinement of the moment
equation, e.g., the conditional moment equation [19], can
be used to improve the results.

Beyond the profile likelihood-based evaluation of the
information encoded in the moments, we introduced a non-
parametric bootstrapping approach to evaluate the uncer-
tainty of the empirical estimates of the moments. This ap-
proach allows for the construction of likelihood function
without additional distribution assumptions. Furthermore,
we illustrated how the higher-order moments, which have
not been used for parameter estimation, can be used for
model validation. This approach is attractive, as models
can basically be fitted and validated on the same dataset.
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nology, Zürich, 2010.

[14] C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter,
J. Lygeros, and H. Koeppl, “Moment-based infer-
ence predicts bimodality in transient gene expres-
sion,” Proc. Nati. Acad. Sci. U S A, vol. 109, no.
21, pp. 8340–8345, May 2012.

[15] T. J. DiCiccio and B. Efron, “Bootstrap confidence
intervals,” Statist. Sci., vol. 11, no. 3, pp. 189–228,
1996.

[16] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann,
M. Schilling, U. Klingmüller, and J. Timmer, “Struc-
tural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile
likelihood,” Bioinf., vol. 25, no. 25, pp. 1923–1929,
May 2009.

[17] W. Q. Meeker and L. A. Escobar, “Teaching about
approximate confidence regions based on maximum
likelihood estimation,” Am. Stat., vol. 49, no. 1, pp.
48–53, Feb 1995.

[18] B. Munsky, B. Trinh, and M. Khammash, “Listening
to the noise: random fluctuations reveal gene net-
work parameters,” Mol. Syst. Biol., vol. 5, no. 318,
Oct. 2009.

[19] J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J.
Theis, “Method of conditional moments (MCM)
for the chemical master equation,” submitted to the

Journal of Mathematical Biology, 2012.



76APPENDIX A. PARAMETER ESTIMATION FOR STOCHASTIC BIOCHEMICAL PROCESSES: A COMPARISONOFMOMENT EQUATION AND FINITE STATE PROJECTION. INTERNATIONAL WORKSHOP ON COMPUTATIONAL SYSTEMS BIOLOGY (WCSB), 2013.



Appendix B

Modeling of stochastic biological

processes with non-polynomial

propensities using non-central

conditional moment equation.

IFAC Proceedings Volumes, 2014.

This is a pre-copyedited, author-produced version of an article accepted for publication in

IFAC Proceedings Volumes following peer review. The version of record

A. Kazeroonian, F. J. Theis, and J. Hasenauer. Modeling of stochastic biological

processes with non-polynomial propensities using non-central conditional mo-

ment equation. IFAC Proceedings Volumes, Volume 47, Issue 3, 2014, Pages 1729-1735.

is available online at:

http://dx.doi.org/10.3182/20140824-6-ZA-1003.02298

http://dx.doi.org/10.3182/20140824-6-ZA-1003.02298


Modeling of stochastic biological processes
with non-polynomial propensities using

non-central conditional moment equation

Atefeh Kazeroonian, Fabian J. Theis, and Jan Hasenauer

Institute of Computational Biology, Helmholtz Zentrum München,
85764 Neuherberg, Germany

Department of Mathematics, Technische Universität München,
85748 Garching, Germany

(e-mail: {atefeh.kazeroonian, fabian.theis,
jan.hasenauer}@helmholtz-muenchen.de).

Abstract: Biological processes exhibiting stochastic fluctuations are mainly modeled using the
Chemical Master Equation (CME). As a direct simulation of the CME is often computationally
intractable, we recently introduced the Method of Conditional Moments (MCM). The MCM is
a hybrid approach to approximate the statistics of the CME solution. In this work, we provide a
more comprehensive formulation of the MCM by using non-central conditional moments instead
of central conditional moments. The modified formulation allows for additional insight into the
model structure and for extensions to higher-order reactions and non-polynomial propensity
functions. The properties of the non-central MCM are analyzed using a model for the regulation
of pili formation on the surface of bacteria, which possesses rational propensity functions.

Keywords: stochastic modeling, chemical master equation, moment equations

1. INTRODUCTION

Gene expression, signal transduction and even cell fate
decisions have been shown to be subject to stochastic
fluctuations [Raser and O’Shea, 2004, Eldar and Elowitz,
2010]. These stochastic fluctuations are often due to the
low abundance of DNAs, mRNAs and proteins [Taniguchi
et al., 2010]. For decades it was assumed that these fluc-
tuations are a nuisance and disturb correct information
processing in cells. However, in recent years it has been
shown that stochastic fluctuations are essential for func-
tioning as well as robustness of many processes [Eldar and
Elowitz, 2010]. Furthermore, fluctuations can be employed
to unravel the underlying signaling mechanisms [Munsky
et al., 2009, 2012].

A multitude of approaches have been proposed to model
stochastic dynamics in biological systems. Discrete-state
continuous-time Markov chains (CTMCs) are the gold
standard as they capture the discreteness of the ensemble
sizes of chemical species (S1, S2, . . . , Sns

) as well as the
discreteness of chemical reactions,

Rj :

ns∑

i=1

ν−ijSi →
ns∑

i=1

ν+ijSi, j = 1, . . . , nr.

The stoichiometric coefficients ν−ij , ν
+
ij and νij = ν+ij − ν−ij

denote the number of molecules of species Si consumed,
produced and net produced, respectively, when the reac-
tion Rj takes place. Accordingly, ν−j , ν+j and νj describe
the overall stoichiometry of reaction Rj .

CTMCs describe the time evolution of the ensemble state
Xt = (X1,t, . . . , Xns,t) ∈ Nns

0 of the species S1, S2, . . . , Sns

as a jump process. Xt remains constant as long as no re-
action occurs. If Rj takes place, the ensemble sizes change
according to the stoichiometry of Rj , Xt → Xt + νj . The
index j of the next reaction and the time to the next
reaction are random with distributions determined by the
propensity functions aj : Nns

0 → R+, j = 1, . . . , nr [Feller,
1940]. The statistics of the process, i.e. the probabilities
p(x|t) = P (Xt = x) that Xt occupies a certain state x at
time t, are described by the chemical master equation
(CME) [van Kampen, 2007],

∂

∂t
p(x|t) =

nr∑

j=1

x≥ν+
j

aj(x−νj)p(x−νj |t)−
nr∑

j=1

aj(x)p(x|t), (1)

in which the inequality constraint x ≥ ν+j ensures positiv-
ity. Associated propensities aj are “proper”, meaning that
if ∃i ∈ {1, . . . , ns} : Xi,t � ν−ij then aj(Xt) = 0.

The CME is a system of linear ordinary differential equa-
tions (ODEs) which describes the dynamics of CTMCs.
Jahnke and Huisinga [2007] derived a closed-form solution
of the CME in the case of monomolecular reactions. If the
process contains nonlinear propensity functions, in gen-
eral, numerical approximations are necessary. A multitude
of approximation methods have been proposed over the
last decades, e.g., error-aware state truncation [Munsky
and Khammash, 2006], inexact integration [Sidje et al.,
2007], product approximations [Jahnke, 2011], approxima-
tion of the CME by the Fokker-Planck equation [Gardiner,



2011], or modeling of the statistical moments of the CME
solution [Engblom, 2006]. However, these methods often
fail if low- as well as high-copy number species are involved
in the biochemical process.

In recent years, several hybrid methods have been in-
troduced to circumvent these shortcomings. These hy-
brid methods are based on decomposing the system into
fast and slow reactions [Haseltine and Rawlings, 2002],
or low- and high-copy number species [Hellander and
Lötstedt, 2007, Henzinger et al., 2010, Jahnke, 2011, Menz
et al., 2012]. For the latter we recently proposed a gen-
eralization, the method of conditional moments (MCM)
[Hasenauer et al., 2013]. The MCM provides a fully
stochastic description for the low-copy number species
and a moment-based description for the medium/high-
copy number species. Thus, it combines concepts from
hybrid stochastic-deterministic modeling [Jahnke, 2011,
Menz et al., 2012] and moment-based modeling [Engblom,
2006]. We showed that this allows for an improved ap-
proximation quality for common models of transcription-
translation process.

In this manuscript, we generalize the MCM to include
reactions with rates not obeying the law of mass action.
This allows for the consideration of activation and inhi-
bition mechanisms possessing Michaelis-Menten-like char-
acteristics. In addition to this generalization, we state the
MCM in terms of non-central moments. This improves the
readability and interpretability compared to the central
MCM [Hasenauer et al., 2013]. To enhance the MCM
further for systems with nonlinear propensity functions,
we propose the use of Taylor series expansion (TSE) to-
gether with the low-dispersion closure scheme. This ap-
proach is evaluated using a model for PapI regulation in
E. coli [Munsky and Khammash, 2006].

2. APPROACH

Single-molecule fluorescence microscopy techniques, such
as fluorescence in situ hybridization, revealed that the
copy numbers of chemical species spread over several
orders of magnitude. In E. coli, the mean number of a
protein is in general 100- to 1000-fold higher than the
mean number of the corresponding mRNA [Taniguchi
et al., 2010]. Such naturally occurring scale separations
can be exploited to accelerate the simulation of stochastic
biochemical processes. Therefore, species S1, . . . , Sns are
classified as either low- or medium/high-copy number
species. The abundances of low-copy number species are
collected in Yt, while the abundances of medium/high-copy
number species are collected in Zt. Thus, without lost of
generality Xt = (Yt, Zt) and p(x|t) = p(y, z|t).
The CME describes the evolution of the full joint dis-
tribution p(y, z|t). In contrast, the MCM employs the
decomposition

p(y, z|t) = p(z|y, t)p(y|t) (2)

which follows from the multiplication axiom. p(y|t) de-
notes the marginal probability of the low-copy num-
ber species being in state y, while p(z|y, t) denotes the
conditional probability of the medium/high-copy number
species being in state z given that the low-copy number
species are in state y. Using this decomposition, the CME
can be rewritten as

(a) Biological process

∅
off on

τon

τoff

promotor

k γ

mRNA

Model of regulated gene expression:
• promotor can switch between on- and off-state with rates τon and τoff

• promotor in on-state⇒ gene is transcribed to mRNA with rate k
• promotor in off-state⇒ gene is not transcribed
• mRNA is degraded with rate γ

(b) Derivation of chemical master equation
1.) Define biochemical species and biochemical reaction, e.g., promotor state and mRNA.
2.) Define reaction stoichiometries and reaction propensities.
3.) Form evolution equations for the state probabilities.

(c) Chemical master equation (CME)
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+ kp(r − 1, on)− kp(r, on)

off-state dynamics:
∂
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p(r, off) = τoff p(r, on)− τon p(r, off)

+ γ(r + 1)p(r + 1, off)− γrp(r, off)

(d) Derivation of conditional moment equation
1.) Select low- and high-copy number species, e.g., DNA state (low) and mRNA (high).

2.) Define of marginal probabilities, e.g., pon =
∑

r p(r, on).

3.) Define conditional moments, e.g., µr,on =
∑

r rp(r|on) and µr2,on =
∑

r r
2p(r|on).

4.) Derive evolution equations for marginal probabilities and conditional moments from
the chemical master equation.

5.) Apply moment closure in case of non-affine reaction propensities.
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Fig. 1. Illustration of the method of conditional mo-
ments using a two-state model for gene expression.
(a) Model of gene expression accounting for two pro-
motor states [Munsky et al., 2012]. (b) Procedure
to derive the CME. (c) CME of the gene expression
model. The discrete state space is visualized along
with the possible transitions. Note that we skip the
dependence on the time t to simplify the notation.
(d) Procedure to derive the conditional moment equa-
tion from the CME. (e) Conditional moment equa-
tion when modeling the promotor state as low-copy
number species and the mRNA as medium/high-copy
number species.



∂

∂t
p(y, z|t) = −

nr∑

j=1

aj(y, z)p(z|y, t)p(y|t)

+

nr∑

j=1

y≥ν+
j,y

z≥ν+
j,z

aj(y − νj,y, z − νj,z)p(z − νj,z|y − νj,y, t)p(y − νj,y|t).

(3)

This decomposition suggests that the dynamics of p(y|t)
and p(z|y, t) can be modeled separately [Haseltine and
Rawlings, 2005, Hasenauer et al., 2013]. In the MCM, the
distribution of the low-copy number species is described in
terms of marginal probabilities,

p(y|t) =
∑

z≥0
p(y, z|t). (4)

For medium/high-copy number species, the non-central
moments of p(z|y, t) are considered,

µI,z(y, t) = Ez
[
ZI
∣∣ y, t

]
=
∑

z≥0
zIp(z|y, t), (5)

with I being a non-negative integer-valued vector of length
ns,z and ZI :=

∏ns,z

i=1 Z
Ii
i . The conditioning on y can

be important if transitions between different low-copy
number states are slow. The marginal probabilities of
discrete states together with the corresponding conditional
moments can be used to determine the overall moments of
the process, µ̄I,z(t), i.e. the moments independent of the
stochastic states, via

µ̄I,z(t) = E
[
ZI |t

]
=
∑

y≥0
µI,z(y, t)p(y|t).

In the following, we provide exact and approximate evolu-
tion equations for p(y|t) and µI,z(y, t). Figure 1 provides
a visual outline of the method.

3. NON-CENTRAL CONDITIONAL MOMENT
EQUATIONS

Upon decomposition of state vector, x = (y, z), evolu-
tion equations for marginal probabilities of low-abundance
species, p(y|t), as well as non-central moments of high-
abundance species conditioned on the state of the low-
abundance species, µI,z(y, t), have to be determined.
Therefore, a governing equation for expectation of an arbi-
trary polynomial test-function T (Z) is derived to provide
MCM equations as special cases.

Lemma 1. Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a proper
CME (3) (∀x � ν−j : aj(x) = 0), then, for any polynomial

test-function T : Nnz
0 × R+ → R,

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

nr∑

j=1

y≥ν+
j,y

Ez[T (Z + νj,z)aj(y − νj,y, Z)| y − νj,y, t] p(y − νj,y|t)

−
nr∑

j=1

Ez[T (Z)aj(Z, y)| y, t] p(y|t).

(6)

Note that Lemma 1 is only valid if the expectation
Ez[T (Z)aj(Z, y)| y, t] exists. This is generally true for rea-
sonable models of biological processes.

Proof. The time derivative of Ez[T (Z)| y, t] p(y|t) is

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

∂

∂t


∑

z≥0
T (z)p(z|y, t)p(y|t)




=
∑

z≥0
T (z)

∂

∂t
p(z, y|t) +

∑

z≥0
p(z, y|t) ∂

∂t
T (z).

The second term vanishes as the time derivative of T (z)
is zero. Similar to the proof by Hasenauer et al. [2013],
∂
∂tp(z, y|t) is substituted according to the CME (3), the
order of summations is changed, and z is replaced by
z + νj,z in the first sum to obtain

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

nr∑

j=1

y≥ν+
j,y

∑

z≥ν−
j,z

T (z + νj,z)aj(y − νj,y, z)p(z|y − νj,y, t)

× p(y − νj,y|t)−
nr∑

j=1

∑

z≥0
T (z)aj(y, z)p(z|y, t)p(y|t).

The lower bound z ≥ ν−j,z can be replaced by z ≥ 0

as for z � ν−j,z : aj(z) = 0 (due to propensities being

proper). Utilizing the definition of conditional expectation
Ez[T (z)| y, t] =

∑
z≥0 T (Z)p(z|y, t), the expression above

simplifies to the evolution equation stated in Lemma 1,
which concludes the proof. �
Setting T (Z) to 1 and ZI , Lemma 1 yields the governing
equations for p(y|t) and µI,z(y, t) respectively.

Theorem 2. Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a proper
CME (3), the evolution equations for marginal prob-
abilities, p(y|t), and non-central conditional moments,
µI,z(y, t), are given by the system

∂

∂t
p(y|t) = −

nr∑

j=1

Ez[aj(Z, y)| y, t] p(y|t)

+

nr∑

j=1

y≥ν+
j,y

Ez[aj(y − νj,y, Z)| y − νj,y, t] p(y − νj,y|t),

p(y|t) ∂
∂t
µI,z(y, t) + µI,z(y, t)

∂

∂t
p(y|t) =

nr∑

j=1

y≥ν+
j,y

Ez
[
aj(y − νj,y, Z)(Z + νj,z)

I
∣∣ y − νj,y, t

]

× p(y − νj,y|t)−
nr∑

j=1

Ez
[
aj(Z, y)ZI

∣∣ y, t
]
p(y|t).

(7)

The MCM equations can be written for moments of
arbitrary order. In contrast to the central conditional
moment equations [Hasenauer et al., 2013], no distinc-
tion between first and higher-order moments is neces-
sary, yielding a more compact set of equations. Also
this presentation of the MCM is a generalization of the



central MCM since it removes the assumption that the
propensity functions should allow for a decomposition of
the form aj(x, t) = c gj(y, t)hj(z, t). Therefore, the non-
central MCM provides a simpler and more general formu-
lation and thus facilitates further investigations.

The resulting set of evolution equations is a DAE system.
Initial conditions for p(y|t), µI,z(y, t), ṗ(y|t) and µ̇I,z(y, t)
can be calculated via (7) given that ∀y : p(y|t0) 6= 0. If
this is not fulfilled, the procedure introduced by Hasenauer
et al. [2013] can be adopted.

The simulation of the conditional moment equations re-
quires the evaluation of expectations Ez[aj(Z, y)| y, t] and
Ez
[
aj(Z, y)ZI

∣∣ y, t
]
. This can be done by employing the

Taylor series expansion of the propensity function aj(z, y).
More specifically, since the expectation with respect to
the random variable Z is sought, aj(z, y) is merely ex-
panded with respect to z. In principle, any expansion
point can be selected for the TSE, however, the vector
of conditional means of z, µ′z(y, t) =

∑
z≥0 z p(z|y, t) =

(µe1,z(y, t), . . . , µens ,z
(y, t)), is considered in the following:

aj(z, y) = aj(µ
′
z(y, t), y)

+

ns,z∑

k=1

∂aj(µ
′
z(y, t), y)

∂zk
(zk − µek,z(y, t))

+
1

2

ns,z∑

k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl
(zk − µek,z(y, t))(zl − µel,z(y, t))

+ . . . . (8)

The expectation Ez[aj(Z, y)| y, t] follows as

Ez[aj(Z, y)| y, t] = aj(µ
′
z(y, t), y)

+
1

2

ns,z∑

k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl
Cek+el,z(y, t) + . . . ,

(9)

in which ei denotes the ith unit vector and CI,z(y, t) =∑
z≥0 (z − µ′z(y, t))I p(z|y, t) represent the central mo-

ments. The central moments can be replaced by their
equivalent expressions in terms of non-central moments,
e.g., Cek+el,z(y, t) = µek+el,z(y, t) − µek,z(y, t)µel,z(y, t).
In case the TSE (9) is finite, Ez

[
aj(Z, y)ZI

∣∣ y, t
]

can be
evaluated in a similar manner by writing the TSE of
aj(Z, y)ZI . However, if the TSE (9) is infinite, or in-
tractably high-order, it may be truncated at a specific
order N . This truncation introduces a degree of freedom in
choosing either of the following approaches for evaluating
Ez
[
aj(Z, y)ZI

∣∣ y, t
]
.

Truncate-multiply approach. To approximate the expec-
tation Ez

[
aj(Z, y)ZI

∣∣ y, t
]
, first the TSE of aj(Z, y) (8) is

truncated at order N , and then it is multiplied by ZI . The
expectation of the resulting product is

Ez
[
aj(Z, y)ZI

∣∣ y, t
]

= aj(µ
′
z(y, t), y)µI,z(y, t)

+

ns,z∑

k=1

∂aj(µ
′
z(y, t), y)

∂zk
Ez
[
(Zk − µek,z(y, t))ZI

∣∣ y, t
]

+
1

2

ns,z∑

k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl

× Ez
[
(Zk − µek,z(y, t))(Zl − µel,z(y, t))ZI

∣∣ y, t
]

+ . . . .
(10)

The expectation terms in (10) can easily be expressed in
terms of non-central moments.

Multiply-truncate approach. In the multiply-truncate
approach, the order of operations is changed. First ZI

is multiplied by aj(Z, y), then the TSE of the product
aj(Z, y)ZI is obtained and, if necessary, truncated, yield-
ing the expectation

Ez
[
ZIaj(Z, y)

∣∣ y, t
]

= (µ′z(y, t))
I
aj(µ

′
z(y, t), y)

+
1

2

ns,z∑

k,l=1

∂2
(

(µ′z(y, t))
I
aj(µ

′
z(y, t), y)

)

∂zk∂zl
Cek+el,z(y, t)

+ . . . .
(11)

In the truncate-multiply approach, if the TSE is truncated
at order N , (10) contains moments up to order N +

∑
i Ii,

whereas in the multiply-truncate approach, with the TSE
of orderN , (11) contains moments up to orderN . Thus, for
the multiply-truncate approach it may be more plausible
to have the truncation order N equal to or greater than the
moment order, i.e. N ≥ ∑i Ii. In this way, the evolution
equation for a moment µI,z(y, t) depends on moments of
the same order.

4. CLOSURE OF THE CONDITIONAL MOMENT
EQUATIONS

The evolution equations for moments up to order M ,
i.e. ∀I :

∑
i Ii ≤ M , in general depend on moments of

orders > M . To simulate the conditional moment equa-
tions, these higher-order moments have to be approxi-
mated using moment closure. Also, if the propensities
are non-polynomial, their TSEs are generally infinite and
need to be truncated. Accordingly, the accuracy of con-
ditional moment equations is determined by (1) the error
introduced by truncating Taylor series of the propensity
functions aj(z, y), and (2) the error introduced by the
moment closure scheme. In the following, these two sources
of error are discussed for polynomial and non-polynomial
propensity functions.

4.1 Polynomial propensities

If the kinetics obey the law of mass action, all propensities
are polynomial functions and their TSEs are finite and
their truncation is not necessary. However, higher-order
moments still appear.

Under certain conditions the higher-order moments cancel
out, yielding a closed set of equations [Hasenauer et al.,
2013]. However, in general, closure schemes have to be em-
ployed. Moment closure schemes approximate higher-order
moments as functions of the lower-order moments, e.g.,
using distributional assumptions [Engblom, 2006, Singh
and Hespanha, 2011]. For instance, the simplest and also
most commonly used moment closure is low-dispersion clo-
sure which relies on the assumption that the distribution
is tightly clustered around the mean, implying that the
higher-order central moments are negligible. Accordingly,
all higher-order central moments are set to zero,

∀I with
∑

i

Ii > M : CI,z(y, t) = 0. (12)



In case of polynomial propensities, different moment clo-
sure schemes can be used with either of the truncate-
multiply and multiply-truncate approaches. The error of
the approximation is then directly related to the validity
of the assumptions made by the closure.

4.2 Non-polynomial propensity functions

In case of non-polynomial propensity functions, the corre-
sponding TSEs are infinite and need to be truncated. In
this case, both the errors introduced by the truncation of
the TSE and by the moment closure affect the approxima-
tion quality of the MCM.

TSEs are truncated by discarding higher-order terms in (9)
and (10) or (11). In the truncate-multiply approach,
higher-order terms in (9) and (10) are of different natures,
i.e. the former are the higher-order central moments while
the latter are combinations of non-central moments. Thus,
setting them to zero implies different, and inconsistent, as-
sumptions about the moments. However, in the multiply-
truncate approach, truncations of the TSEs (9) and (11)
both correspond to the same assumption, i.e. that the
higher-order central moments are zero. This is conceptu-
ally similar to the low-dispersion moment closure, which
also sets higher-order central moments to zero. Hence, in
the approximation of conditional moment equations with
non-polynomial propensities, the low dispersion closure to-
gether with the multiply-truncate approach is a promising
choice as it ensures consistency.

Interestingly, it can be shown that using the low-dispersion
closure, the truncate-multiply approach is identical to the
multiply-truncate approach, given that the order of the
TSE truncation at least equals the moment order, i.e.
N ≥ M . However, the two approaches are different if
N < M , or if another moment closure scheme is applied.

5. EXAMPLE: PAPI REGULATION MODEL

In this section, the performance of non-central MCM is
assessed using a biological system that describes the regu-
lation of Pap pili formation on the surface of E. coli [Mun-
sky and Khammash, 2006]. This biological process in-
volves low- as well as medium/high-copy number species.
Therefore, it is challenging for simulation methods that
do not account for the differences in the abundance of
the species. Furthermore, it demands handling of non-
polynomial propensity functions.

Several simulations based on MCM with different setups
are carried out and the results are compared to the
results obtained by finite state projection (FSP). As shown
by Munsky and Khammash [2006], the results of FSP can
be assumed to be exact for this problem.

5.1 Biological system

The PapI regulation model (Figure 2) comprises a pap
operon and two regulatory proteins. The regulatory pro-
tein LRP can reversibly bind to either or both of the bind-
ing sites on the pap operon. The states g1 to g4 represent
the four possible configurations of the pap operon. Pili
production can only take place if the operon is in state g2.
Protein PapI decreases the unbinding rate of LRP from

g1

g2 g3

g4

LRPPapI

τ2 τ2

τ1 τ1λ1(r)

λ1(r)λ2(r)

λ2(r)

Fig. 2. Schematic of the PapI regulation model. Arrows
represent the binding and unbinding of LRP to/from
the operon. Dotted arrows indicate the influence of
PapI on the reaction rates.

Table 1. Reactions and reaction propensities
for the PapI regulation model.

reaction number stoichiometry rate

R1 g1 + l→ g2 τ1 = c1
R2 g2 → l + g1 λ1 = c3 − c4 r

r+1

R3 g1 + l→ g3 τ1 = c1
R4 g3 → l + g1 λ2 = c5 − c6 r

r+1

R5 g2 + l→ g4 τ2 = c2
R6 g4 → l + g2 λ2 = c5 − c6 r

r+1

R7 g3 + l→ g4 τ2 = c2
R8 g4 → l + g3 λ1 = c3 − c4 r

r+1

R9 g2 → g2 + r kr
R10 r → ∅ γr

the operon, and therefore establishes a positive feedback
loop for the production of pili. The total number of LRP
molecules (denoted by l) is constant, while the count of
PapI molecules (denoted by r) is variable. Reactions and
kinetic rates of the model are provided in Table 1.

The operon states are modeled as low-abundance species
as there is only a single operon. PapI and LRP proteins
are found in relatively larger amounts, therefore, they
are considered as medium/high-copy number species and
represented by the moments of their distributions. Fur-
thermore, to obtain the MCM equations, the nonlinear
kinetic rates, i.e. those in reactions R2, R4, R6 and R8,
should be approximated as polynomials by means of TSE.

5.2 Simulation study

To analyze the impact of the approximation errors of
moment closure and truncation of TSE (in either of the
truncate-multiply and multiply-truncate approaches) on
the accuracy of the MCM simulation, several simulations
are carried out. We use the notation MCMi/j to refer to
different simulations where i denotes the highest moment
order (previously mentioned as M) and j denotes the
order of the TSE (previously mentioned as N). For all the
simulations, parameter values (c1, c2, c3, c4, c5, c6, kr, γr) =
(1, 0.01, 2.5, 2.25, 1.2, 0.2, 10, 1) and initial conditions l =
100, r = 5, and p(g1) = 1 are used.

Using the truncate-multiply approach (Figure 3), we find
that all MCM simulations generally agree with the FSP in
resolving marginal probabilities and conditional moments.
However, as Figure 4 shows, there is no consistent trend in
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Fig. 3. Marginal probabilities of states of the pap operon
(left) and conditional means and 1-σ intervals of PapI
(right) for FSP, MCM3/2, MCM4/2, and MCM4/3
with the truncate-multiply approach.
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Fig. 4. Relative errors of the mean number of PapI
molecules predicted by different MCM simulations
with the truncate-multiply approach.

the impact of the moment order and the truncation order
on the accuracy of the simulation results.

The results for the overall mean of PapI (Figure 4) suggest
that, for most cases, applying a truncation order smaller
than the moment order leads to improved approximation
quality. For this example, the TSE of order 2 yields the
smallest error. Although increasing the moment order
improves the results when the truncation order is equal
to/greater than two, this is not always the case.

For instance, MCM1/1 performs better than MCM2/1,
MCM3/1, and MCM4/1 (Figure 4). Relative errors in Fig-
ure 4 are computed with respect to FSP simulation, e.g.,
errorMCM2/2 = abs(E[r|t]MCM2/2 − E[r|t]FSP)/E[r|t]FSP.

The same study is repeated for the multiply-truncate
approach. In this approach, the highest moment order
that appears in the MCM equations corresponds to the
minimum of the truncation order and the moment order,
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Fig. 6. Relative errors of the mean number of PapI
molecules predicted by different MCM simulations
with the multiply-truncate approach.

i.e. min(M,N). Therefore, given that j < i, all simulations
MCMi/j with the same j are identical. Therefore, only the
effect of the truncation order on the accuracy of the MCM
simulation has to be investigated. Unfortunately, we again
do not find a consistent trend (Figure 6).

To summarize, this example illustrates how MCM can be
used to approximate the statistics of stochastic processes
with non-polynomial reaction propensities. Surprisingly,
no consistent trend was found in the impact of the order
of TSE and the order of moment closure on the accuracy
of the MCM simulation when low dispersion closure was
used.

6. DISCUSSION

In this work, we presented the non-central conditional
moment equations, a reformulation and extension of the
central MCM [Hasenauer et al., 2013]. Being a hybrid
simulation method for systems of stochastic dynamics, the
MCM combines stochastic and moment-based descriptions
depending on copy-numbers of species. Reformulation in
terms of non-central moments facilitated the extension of
the MCM to include reactions with non-polynomial kinetic
rates. We proposed the use of Taylor series expansion
for the approximation of non-polynomial propensity func-
tions. As the truncation of the TSE introduces degrees of



freedom, we compared two alternative approaches for the
approximation of the conditional moment equations.

To evaluate the performance of non-central MCM, a model
for regulation of Pap pili formation on the surface of E. coli
was analysed. Our study demonstrated that non-central
MCM can handle non-polynomial propensity functions by
means of Taylor series expansion. Surprisingly, we found
that increasing the order of Taylor series expansion does
not always improve the accuracy of simulation.

In situations where the low-dispersion assumption is not
physically plausible, the compatibility of more sophisti-
cated closure techniques [Gillespie, 2009, Singh and Hes-
panha, 2011] with the TSE has to be analyzed. Also, to
further enhance the approximation quality, approximation
approaches such as sigma-point expansion methods, in-
stead of Taylor series expansion, might be used.

If all propensities are rational, the approach introduced
by Milner et al. [2011] for moment equations can also
be adapted for the MCM. In this approach, a polynomial
system is obtained by multiplying the original system by
the product of the propensity denominators, and the TSE
can be avoided.

The approximation of the statistics of stochastic processes
by the MCM can be used in a variety of applications.
In particular, parameter estimation, experimental design
and control of stochastic processes can be rendered more
efficient [Zechner et al., 2012].
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Abstract
Gene expression, signal transduction and many other cellular processes are subject to sto-

chastic fluctuations. The analysis of these stochastic chemical kinetics is important for

understanding cell-to-cell variability and its functional implications, but it is also challenging.

A multitude of exact and approximate descriptions of stochastic chemical kinetics have

been developed, however, tools to automatically generate the descriptions and compare

their accuracy and computational efficiency are missing. In this manuscript we introduced

CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of

the Chemical Master Equation solution statistics. CERENA implements stochastic simula-

tion algorithms and the finite state projection for microscopic descriptions of processes, the

system size expansion and moment equations for meso- and macroscopic descriptions, as

well as the novel conditional moment equations for a hybrid description. This unique collec-

tion of descriptions in a single toolbox facilitates the selection of appropriate modeling

approaches. Unlike other software packages, the implementation of CERENA is completely

general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By

providing SBML import, symbolic model generation and simulation using MEX-files,

CERENA is user-friendly and computationally efficient. The availability of forward and

adjoint sensitivity analyses allows for further studies such as parameter estimation and

uncertainty analysis. The MATLAB code implementing CERENA is freely available from

http://cerenadevelopers.github.io/CERENA/.

Introduction
Biological processes, including chemical reaction networks, are dynamical systems with inher-
ently stochastic dynamics due to the discrete nature of matter [1]. The kinetics of these pro-
cesses are described by continuous-time Markov chains and can be simulated using stochastic
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simulation algorithms (SSAs) [2]. The impact of stochastic fluctuations is more pronounced in
low copy-number regimes [3] and tends to decrease, but possibly remaining important, as
copy-numbers increase [4]. Given the importance of stochasticity in the dynamics of biological
systems, e.g., cellular mechanisms and their functions [5], a holistic understanding of cell biol-
ogy requires accurate capturing of stochastic effects.

Using well-mixed and thermal equilibrium assumptions, the dynamics of chemical reaction
networks is exactly described by the Chemical Master Equation (CME) [6]. The solution of the
CME yields the probability distribution over the state of the system [1]. Besides special cases
[7], the exact solution of the CME is mostly infeasible as CMEs are usually infinite-dimensional
systems of differential equations. Several approaches have been developed to approximate the
solution of the CME, amongst others variants of finite state projection (FSP) [8–10]. However,
high computational complexity is a limiting factor for the applicability of this class of simula-
tion methods.

To reduce computational complexity, a multitude of approaches have been introduced that,
instead of approximating the full probability distribution, focus on the statistical moments of
it. Various orders of the method of moments (MM) [11] and the system size expansion (SSE)
[1, 12] provide information about the mean and higher-order moments of the distribution.
These methods yield the reaction rate equations (RRE) as a special case. To improve upon the
approximation in the presence of low as well as high copy-number species, hybrid micro-
scopic-mesoscopic approaches such as the method of conditional moments (MCM) [13] and
the conditional linear noise approximations [14] have been introduced. All these methods are
of reduced computational complexity as they possess significantly fewer state-variables com-
pared to the CME or FSP, thus remain feasible for real-world application problems.

Beyond fast numerical simulation, moment-based descriptions facilitate parameter estima-
tion and model selection for stochastic processes [15, 16]. This is essential for inferring
unknown rate constants and pathway topologies from experimental data. In addition to the
approximative model, state-of-the-art estimation algorithms strongly benefit from the solution
of sensitivity equations [17].

Several well-known open-source software packages are available for stochastic simulations,
finite state projection, method of moments, and system size expansion (e.g., [18–26] whose
properties are summarized in Fig 1). In addition, there exist web-based simulation platforms,
e.g., SHAVE [27]. However, a software package offering a broad collection of simulation meth-
ods is still missing. Furthermore, none of the available software provides sensitivity equations,
or hybrid approaches such as the method of conditional moments.

In this paper, we introduce CERENA (ChEmical REaction Network Analyzer), a toolbox for
the analysis of stochastic chemical kinetics. CERENA includes a variety of methods for the
analysis of stochastic biochemical reaction networks, focusing on mesoscopic and macroscopic
descriptions, namely RRE, MM, and SSE. Also, CERENA provides the first implementation of
MCM, and offers a wide range of options, amongst others variable truncation orders and dif-
ferent closure schemes. In addition, FSP and SSA implemented in CERENA can be used to pro-
vide microscopic descriptions of stochastic chemical kinetics. Although efficient
implementations of many variants of SSA are available, e.g., in StochKit [18], CERENA is the
only package supporting arbitrary, including fast-varying, time-dependent reaction propensi-
ties [28]. This variety of descriptions renders CERENA unique compared to other relevant soft-
ware packages (see Fig 1). To improve applicability of CERENA for realistic systems, the
toolbox allows for multiple compartments, non-mass action kinetics, and time-dependent pro-
pensities. CERENA is the first toolbox for stochastic modeling to provide forward and adjoint
sensitivity equations to facilitate efficient parameter estimation when linked to optimization
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packages. Ensuring efficient numerical simulation, CERENA enables comprehensive studies
for a variety of meso- and macroscopic descriptions.

In the following, we describe the functionality of CERENA and introduce the different
approximations. CERENA is then used for a detailed quantitive comparison of different
approximation methods, including various moment closures, which was not done before. In
particular, the approximation accuracies and computation times are assessed, demonstrating
the efficiency of the CERENA implementation.

Fig 1. Overview of software packages for stochastic modeling and their capabilities.

doi:10.1371/journal.pone.0146732.g001
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Methods
In the following, several methods for the modeling of stochastic processes and the correspond-
ing sensitivity analysis are briefly introduced.

Modeling approaches for stochastic biochemical reaction networks
A chemical reaction network, comprising of ns chemical species and nr chemical reactions is
described using a continuous-time Markov chain (CTMC) [29]. The state vector of this
CTMC,X 2 N

ns
0 , represents the counts of species, and is changed every time a reaction fires.

The probability of observing the CTMC at a particular state x at time t is denoted by p(x|t).
The time evolution of the probability distribution p(x|t) is governed by the CME, which is a
system of ordinary differential equations (ODEs) (see S1 CERENA Documentation for more
details). As solving the CME is mostly infeasible due to the large or infinite number of states x,
various approximative methods have been developed. Several methods concentrate on the full
distribution p(x|t) to provide a microscopic description. For mesoscopic and macroscopic
descriptions, there exist several methods that focus on representing the solution of the CME in
terms of its statistical moments. The microscopic, mesoscopic and hybrid methods imple-
mented in CERENA are briefly introduced in the following.

Stochastic Simulation Algorithm. SSAs generate statistically representative sample paths
of the CTMC [2]. An estimate to the probability distribution p(x|t) is given by the frequency of
sample paths that occupy state x at time t. To estimate the moments of the process, Monte-
Carlo integration can be performed. While estimators for probability distribution and
moments are unbiased and converge, the sample-sizes required to obtain low-variance esti-
mates are generally large, rendering SSA-based methods computationally demanding.

Finite State Projection. To enable a direct approximation of p(x|t), FSP [8] reduces the
number of state variables of the CME by only considering the states of non-negligible probabil-
ities. The remaining set of ODEs then yields a lower bound for p(x|t). Growing the state-space
of FSP decreases the approximation error at the cost of increased computational complexity.

Reaction Rate Equations. The RRE is the most commonly used modeling approach for
biochemical reaction networks. It constitutes a system of ODEs for the time evolution of the
mean of the stochastic process in the macroscopic limit. For reaction networks with constant
and linear propensities, i.e. those with only zero- or monomolecular reactions, the solution of
the RRE is exactly the mean of the stochastic process. For reaction networks with nonlinear
propensities, the RRE prediction can be considerably different from the true mean of the pro-
cess since it neglects the stochastic effects. In such cases, the solution of RRE is reflective of the
true mean of the stochastic process only in the limit of large molecule numbers [30].

System Size Expansion. For a systematic approximation of the dynamics of mesoscopic
systems, the SSE has been introduced [1]. The SSE is a power series expansion of the CME in
the inverse volume of the system. The lowest-order approximation for the mean reproduces
the aforementioned RRE. For the covariance, the lowest-order approximation yields the well-
known linear noise approximation (LNA), whose validity has been studied in [30] for different
classes of reaction systems. Higher-order corrections for the mean and covariance yield the
effective mesoscopic rate equation (EMRE) [12] and the inverse omega square (IOS) approxi-
mation [26].

Method of Moments. The method of moments (MM) [11] is conceptually similar to SSE
in that it also sets a framework for describing the moments of the solution of the CME. A sys-
tem of ODEs for the exact time evolution of the moments, which constitutes the moment equa-
tions, can be derived from the CME. Generally, the equations for the lower-order moments
depend on the higher-order moments, rendering moment closure necessary. Commonly used
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closure techniques include low dispersion closure, mean field closure, zero cumulants closure,
and derivative matching closure [31]. The application of moment closure yields a closed set of
approximative equations for the time evolution of the moments.

Method of Conditional Moments. The MCM [13] combines a microscopic description of
low copy-number species with a moment-based description of high copy-number species, pro-
viding a hybrid approach for approximating the solution of the CME. Since stochastic fluctua-
tions are more dominant for low copy-number species, marginal probability densities for these
species are determined. The high-copy number species are merely described in terms of their
moments, conditioned on the state of low-copy number species. The MCM equations are
derived from the CME, and form a system of differential algebraic equations (DAEs). Similar
to the moment equations, the moment closure is generally required to close the set of MCM
equations. This hybrid description can yield an improved approximation accuracy [13].

Sensitivity analysis
FSP, RRE, SSE, MM andMCM yield systems of differential equations. The parameters of differ-
ential equations can efficiently be inferred using gradient-based optimization methods [17].
While gradients can be approximated using finite differences, methods based on sensitivity equa-
tions are known to be more robust and computationally more efficient [17]. CERENA enables
first- and second-order forward sensitivity analysis for all ODE-based and DAE-based modeling
approaches, as well as adjoint sensitivity analysis [32] for all ODE-based modeling approaches.

Forward sensitivity equations. Forward sensitivity equations provide the time-dependent
sensitivity of the state-variables of the differential equations with respect to the parameters.
Assuming that the model possesses n state-variables and nθ parameters, roughly a system of
n(1+nθ) differential equations is solved to compute the first-order state sensitivities with
respect to all parameters. The sensitivity of measured quantities and objective functions can
then be computed based on state sensitivities.

Adjoint sensitivity equations. If the sensitivity of few functions with respect to many
parameters is required, computing the state sensitivities is unnecessarily demanding. In this
case, the adjoint sensitivity equations [32] can be solved to yield a set of adjoint states which
are independent of the parameters. These trajectories are then used to calculate the sensitivity
with respect to any parameters of interest, with low computational cost. Thus, in applications
with high-dimensional parameter spaces and/or few output functionals, calculating adjoint
sensitivities tends to be computationally more advantageous. In parameter estimation, the like-
lihood function can be defined as the sole output functional of the system.

Implementation
CERENA is a MATLAB-based toolbox for the simulation of chemical reaction networks. It
provides a collection of methods for the analysis of stochastic processes, focusing on SSE, MM
and MCM of various orders. In addition, FSP and SSAs are implemented in CERENA to pro-
vide microscopic descriptions of the process, and can also be used to assess the approximation
errors of the aforementioned methods. The workflow of the toolbox is laid out in Fig 2. In the
following, different aspects of implementation and features of the toolbox are explained. For a
detailed list of functions, we refer to the S1 CERENA Documentation. The CERENA toolbox is
freely available from http://cerenadevelopers.github.io/CERENA/.

Network specification
To use CERENA, the biochemical reaction network has to be defined in a specific format
described in the S1 CERENA Documentation. The definition includes species, compartments,
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Fig 2. Workflow of CERENA. (a) CERENA can be used to study (multi-compartment) chemical reaction
networks. (b) The reaction network can be defined in MATLAB, or alternatively, imported from SBML. (c) The
system of equations for different modeling approaches implemented in CERENA is generated, and optionally
stored as MATLAB functions for numerical simulation using MATLABODE solvers. Furthermore, the
representation of the system can be exported to the estimation toolbox Data2Dynamics. (d) The symbolic
representation of the system of equations together with the initial conditions is stored in a MATLAB script. (e)
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reactions and their propensities, inputs and observables of the system. Reaction propensities
can be time-dependent and may or may not follow the law of mass action. In case of non-mass
action kinetics the propensities are approximated, e.g., using Taylor series expansion in MM
and MCM [33]. Inputs are used to describe experimental conditions. Alternatively, networks
described in the Systems Biology Markup Language (SBML) can be imported.

Model derivation and symbolic representation
Following the definition of the biochemical reaction network, a modeling approach and corre-
sponding options, such as approximation order and moment closure technique, can be
selected. In addition to the moment closure techniques implemented in CERENA (see Fig 1),
user-defined closures can be provided. In case of MM and MCM, it can be specified whether
the equations in terms of molecule numbers or concentrations are to be derived. A system of
equations corresponding to the selected modeling approach is then derived, and provided as a
MATLAB script file including the corresponding initial conditions. This symbolic representa-
tion is the basis for the rest of the simulation and analysis. CERENA extensively uses MATLAB
Symbolic Math Toolbox for a variety of symbolic manipulations including symbolic differenti-
ation, e.g., in the calculation of Jacobian matrices used to accelerate the numerical simulation.

The models can be exported to Data2Dynamics software [34] for parameter estimation and
model selection. In addition, an optional intermediate MATLAB function can be generated for
the numerical simulation of the symbolic equations using MATLAB ODE solver ode15s.

Derivation of sensitivity equations and numerical integration
Forward and adjoint sensitivity equations for the selected model are derived based on the afore-
mentioned symbolic representation. The complete symbolic representation can then be used to
compile simulation files. CERENA uses CVODES and IDAS solvers of the SUNDIALS package
[32] which are C implementations of solvers suited for efficient numerical integration of stiff
ODEs and DAEs. Although the SUNDIALS package provides a MATLAB interface to the C
solvers, the governing equations must be specified as MATLAB code, which adds an overhead
to the overall computational cost of numerical simulation. To ensure efficiency, wrappers for
CVODES and IDAS, which compile model-specific MEX-files from automatically generated
native C code, have been implemented in CERENA. The compiled MEX-files are used for the
numerical simulation of the system with given parameter values and time vector. Options for
the numerical solvers and sensitivity analysis can be specified as inputs to the MEX simulation
files. For efficient numerical simulation, essential capabilities of the SUNDIALS package can be
exploited. The compiled MEX-files can be used for subsequent analysis.

Stochastic simulations
The solvers based on differential equations are complemented by SSAs, e.g. to provide refer-
ence solutions. In the case of SSAs, realizations of the stochastic process are simulated. CER-
ENA implements next-reaction methods for constant [2] and time-dependent propensities
[28]. To the best of our knowledge, an implementation of the modified next-reaction method
for systems with time-dependent propensities and delays is not available in other software

Based on the symbolic representation, 1st and 2nd order sensitivity equations are derived. MEX-files, which
use CVODES and IDAS packages of SUNDIALS for the numerical simulation of the models, are compiled. (f)
The generated MEX-files are used for numerical simulation, and can be integrated with other software for
parameter estimation. (g) Various aspects of the simulation results can be visualized using CERENA.

doi:10.1371/journal.pone.0146732.g002
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packages. This method, implemented in CERENA, is exact for reaction networks with time-
dependent propensities whose antiderivatives are available in closed-form. Otherwise, a
numerical integration error is introduced. This error can be controlled by adjusting the integra-
tion error tolerance of the respective numerical solvers.

Visualization
To facilitate the interpretation of the numerical simulation results, CERENA offers various
visualization routines. Time courses for stochastic realizations, as well as mean and higher-
order moments of species, can be plotted. Moreover, the full and marginal probabilities can be
visualized for SSA, FSP andMCM. To illustrate the interaction between different network com-
ponents and propagation of stochasticity, correlation and partial correlation maps, including
movies of these maps over time, are provided.

Application
In this Section, we present two biological models to demonstrate different features of CERENA,
including the improved computational complexity. Furthermore, we exploit the comprehen-
siveness of CERENA to compare different approximative descriptions.

Three-stage gene expression model
As the first example, we consider the generalized three-stage model of gene expression [3]
depicted in Fig 3(a). This model includes a gene with a promotor switching between on- and
off-states. Transcription of mRNA takes place if the promotor is in the on-state, and the tran-
scribed mRNA can be translated into protein. The model also incorporates a protein-induced
activation of the promoter which establishes a positive feedback loop. Protein and mRNA are
subject to degradation. The combination of low-copy number species (the gene) and medium/
high-copy number species (mRNA and protein) makes this model an interesting simulation
test example.

Comprehensive comparison of approximation accuracy. The accuracy of various
approximative descriptions is problem-specific, and therefore, comparisons of different
descriptions for a process of interest is interesting in different applications. As demonstrated
for this model, CERENA offers an easy-to-use framework for such a comprehensive compari-
son, thanks to its broad collection of simulation methods.

This process was implemented and simulated in CERENA for the parameter values given in
S1 CERENA Documentation, Chapter 1, Table E. Fig 3(b) depicts the simulation results for the
mean and the variance of the number of protein molecules obtained using various methods.
All methods yield results which agree well with the reference solution, obtained using FSP. The
RRE deviates the most from the reference solution. This behavior is expected, especially when
the abundance of species is low, as RRE merely provides a macroscopic description of the sto-
chastic process.

As mRNA is only transcribed if the promotor is in the on-state, the conditional distributions
of mRNA and protein counts in the on- and off-states differ. These differences are captured by
the MCM (Fig 3(c)), which provides information about the probability of different promotor
states and the moments of the corresponding conditional distributions of the counts of mRNA
and protein.

The accuracy of different descriptions is quantified in terms of the relative errors of the
mean and variance with respect to the FSP, e.g., |μMCM−μFSP|/μFSP. Fig 4 displays the relative
errors of MM and MCM close to steady state (t = 100), for various truncation orders and
moment closures. For derivative matching closure, we find that the resulting ODE model
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cannot be simulated robustly as it diverges for several truncation orders. It is observed that the
contribution of higher-order moments tends to enhance the simulation accuracy of lower-
order moments. The influence of truncation order on the accuracy varies for different closure
schemes.

Improved computational efficiency. A key bottleneck in the analysis of stochastic chemi-
cal kinetics is the computational complexity of the numerical simulation. As the number of

Fig 3. Simulation of the three-stage model of gene expression. (a) Schematic of the three-stage model of
gene expression. (b) Mean (left) and variance (right) of the number of protein molecules obtained using
different orders of SSE, MM and MCM. (c) Marginal probabilities of promotor states (left), the mean of protein
molecule numbers conditioned on the promotor state (middle), and the variance of protein molecule numbers
conditioned on the promotor state (right) predicted by MCM of order 3. (b,c) FSP results serve as the
reference solution. Low dispersion closure was used for MM and MCM. MM2, MM3, MCM2 and MCM3
denote the second- and third-order MM and the second- and third-order MCM.

doi:10.1371/journal.pone.0146732.g003
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biochemical species or the approximation order increases, the system of differential equations
to be solved becomes larger (Fig 5, top panel), indicating the need for efficient numerical simu-
lation schemes. Since the FSP describes the full probability distribution, its system of equations
is several orders of magnitude larger than the rest of the methods which merely capture a few
moments of the probability distribution (Fig 5, top panel).

We assessed the computation time for implementations in CERENA and compared it to
other packages/implementations (Fig 5, bottom panel). It is evident that the combination of

Fig 4. Approximation error of MM andMCM of various orders with various moment closures for the
three-stage model of gene expression.Relative errors of mean and variance of the protein concentration at
the steady state are depicted for different truncation orders and moment closures. The truncation orderm
means that moments up to orderm are simulated. For moment orders and closures for which the numerical
simulation could not be completed, i.e. derivative matching, no approximation error is reported.

doi:10.1371/journal.pone.0146732.g004

Fig 5. Complexity of different descriptions of the three-stage model of gene expression.Number of
state-variables (top) and computation time (bottom). Runtimes are shown for the numerical simulation using
CVODES/IDAS wrappers implemented in CERENA and MATLAB solver ode15s, as well as for
StochDynTools. The computation times were calculated by averaging over at least 10 simulations. For MM
and MCM low dispersion closure was used.

doi:10.1371/journal.pone.0146732.g005
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CVODES and IDAS packages with corresponding wrappers in CERENA resulted in remark-
able speedup, around 10–100 fold, compared to the use of standard MATLAB ODE-solvers,
e.g., ode15s. Also, other toolboxes, e.g., StochDynTools and iNA, were outperformed by
CERENA. A comparison across different methods reveals that the simulation of higher-order
descriptions which possess more state-variables tends to be computationally more demanding
than the simulation of lower-order descriptions.

JAK-STAT signaling pathway
The second example studied using CERENA is a model of the JAK-STAT signaling pathway
introduced by [35]. The model, sketched in Fig 6(a), describes the signaling cascade of STAT
protein. Upon activation, the Epo receptor triggers the phosphorylation of cytoplasmic STAT.
Dimerization and translocation of phosphorylated STAT into the nucleus, followed by a

Fig 6. Simulation results for the JAK-STAT signaling pathway. (a) Schematic of the simplified JAK-STAT
signaling pathway. The intermediate states npSTAT1 to npSTAT5 are used to model the delayed export of
STAT from the nucleus. (b) The mean (left) and variance (right) of dimerized phosphorylated STAT
concentration, obtained using several methods. SSA simulation results serve as the reference solution.

doi:10.1371/journal.pone.0146732.g006
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delayed export of STAT from the nucleus complete the loop. The time-dependent concentra-
tion of phosphorylated Epo receptor, [pEpoR], functions as an input to the system. The experi-
mental data for the concentration of phosphorylated Epo receptor, cytoplasmic STAT and
phosphorylated cytoplasmic STAT are available from previous studies [36].

The JAK-STAT signaling pathway is an interesting application example as it (i) includes
two compartments, namely cytoplasm and nucleus, and (ii) involves a time-dependent
propensity.

Simulation of multi-compartment systems with time-dependent propensities. We used
CERENA to describe the dynamics of JAK-STAT signaling pathway for parameter values given
in S1 CERENA Documentation, Chapter 8, Table A. As the copy numbers are relatively high in
this pathway, MCM and FSP were not considered. To provide the reference solution, the modi-
fied next-reaction method for systems with time-dependent propensities implemented in CER-
ENA was used which enabled handling of the time-dependent input. As seen in Fig 6(b), all
methods showed the same qualitative behavior as the reference solution.

Comparison of sensitivity analysis methods. In previous studies, it was shown that the
parameters of the JAK-STAT signaling pathway can be estimated efficiently for RRE [35] and
EMRE and second-order MM descriptions [37]. These studies used gradient-based optimiza-
tion methods with gradients being computed using forward sensitivity analysis. Here, we con-
sidered a weighted least-squares objective function as used by [37], and compared the
performance of finite differences, forward and adjoint sensitivity analyses in gradient calcula-
tion for second- and third-order moment equations.

We observed that, even for a small number of parameters, a gain in efficiency is achieved by
using forward and adjoint sensitivity analysis methods instead of finite differences (Fig 7).
Moreover, the adjoint sensitivity analysis has the best scalability with respect to the number of
parameters.

Discussion
Amultitude of studies revealed the functional role of cell-to-cell variability in cellular mecha-
nisms [5]. Hence, the analysis of cell-to-cell variability and its implications is crucial for a

Fig 7. Computation time for different sensitivity analysis methods. The objective function gradient for
MM2 simulation is evaluated for an increasing number of parameters. The computation times of finite
differences, forward sensitivity analysis, and adjoint sensitivity analysis are shown.

doi:10.1371/journal.pone.0146732.g007
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holistic understanding of biological systems, indicating the need for corresponding efficient
simulation tools. In this work, we introduced CERENA, a user-friendly toolbox for the study of
stochastic biological processes. CERENA offers a broad collection of simulation methods for
micro-, meso- and macroscopic description of stochastic processes, rendering it unique com-
pared to other software packages. In addition to various orders of the system size expansion
and moment equations, the first implementation of the method of conditional moments is pro-
vided. CERENA attains generality not only method-wise, but also by imposing the least restric-
tions on the biological systems. Specifically, (regulatory) processes involving non-mass action
kinetics, and/or time-dependent propensities can be analyzed. CERENA is one of the few pack-
ages to provide an SSA for the latter case. A key feature, distinguishing CERENA from all other
packages for stochastic modeling, is the implementation of forward and adjoint sensitivity
analyses for robust and efficient gradient calculations, especially in applications with high-
dimensional parameter spaces. This enables feasible gradient-based optimization. To improve
the computational efficiency, CERENA uses SUNDIALS solvers to compile numerical simula-
tion MEX-files.

We used CERENA for detailed quantitative comparisons of different modeling approaches
on models for three-stage gene expression and Epo-induced JAK-STAT signaling. These appli-
cations demonstrated that CERENA (i) offers suitable approximative methods for different
biological regimes (or systems in different regimes of copy-numbers), and (ii) renders the com-
prehensive comparison of approximative descriptions and the subsequent selection straightfor-
ward. Also, the implementation of numerical solvers in CERENA proved to be significantly
more efficient compared to other packages/implementations. For sensitivity analysis, a further
acceleration was achieved by using forward and adjoint sensitivity analyses, with the latter pos-
sessing a superior scalability with respect to the number of parameters.

The current version of CERENA allows for the study of population-averaged and popula-
tion snapshot data by providing time-dependent moments. To that end, a useful advancement
could be realized by the integration of CERENA with sophisticated parameter estimation and
model selection tools, such as ODE-constrained mixture modeling [38]. Complementarily, the
moments obtained using MM, MCM and SSE could be used to compute a distribution approxi-
mation [39–41] to provide a more informative comparison with respect to SSA and FSP solu-
tions. An automatic reconstruction of such approximative distributions could be incorporated
in future releases of CERENA.

In conclusion, we have shown that CERENA is a comprehensive toolbox for stochastic
modeling which maximizes both applicability and computational efficiency. This renders fur-
ther studies of biological problems of realistic sizes feasible.

Supporting Information
S1 CERENA Documentation. The documentation of CERENA. This documentation
includes a more detailed description of the modeling approaches implemented in CERENA, as
well as elaborate instructions on using the CERENA toolbox.
(PDF)
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Abstract

Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dy-

namics are often described by continuous-time discrete-state Markov chains and simulated using

stochastic simulation algorithms. As these stochastic simulations are computationally demanding,

ordinary differential equation models for the dynamics of the statistical moments have been de-

veloped. The number of state variables of these approximating models, however, grows at least

quadratically with the number of biochemical species. This limits their application to small- and

medium-sized processes.

Results: In this article, we present a scalable moment-closure approximation (sMA) for the simula-

tion of statistical moments of large-scale stochastic processes. The sMA exploits the structure of

the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields

approximating models whose number of state variables depends predominantly on local proper-

ties, i.e. the average node degree of the reaction network, instead of the overall network size. The

resulting complexity reduction is assessed by studying a range of medium- and large-scale bio-

chemical reaction networks. To evaluate the approximation accuracy and the improvement in com-

putational efficiency, we study models for JAK2/STAT5 signalling and NFjB signalling. Our method

is applicable to generic biochemical reaction networks and we provide an implementation, includ-

ing an SBML interface, which renders the sMA easily accessible.

Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox

CERENA and is available from https://github.com/CERENADevelopers/CERENA.

Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellular mechanisms are subject to inherent biological noise that

stems from stochastic events such as bursty gene expression. Due to

such stochasticity, isogenic cells can behave differently under identi-

cal conditions (Elowitz et al., 2002), giving rise to heterogeneous

cell populations. Rather than being a nuisance, biological noise has

been proven to be crucial in the functioning of biological systems

such as microbial populations and biological tissue (Raj and van

Oudenaarden, 2008), e.g. increasing their robustness. Studying the

stochasticity of biological processes, therefore, can shed light on

their underlying mechanisms and is crucial for a better understand-

ing of their behaviour.

Many biological processes, e.g. gene expression and signal trans-

duction, are modelled as networks of chemical species that undergo

chemical reactions. The dynamics of chemical reaction networks,

i.e. the temporal evolution of the counts of individual species, is usu-

ally described by continuous-time discrete-state Markov chains

(CTMCs). The statistics of CTMCs are described by the Chemical

Master Equation (CME). As the simulation of the CME is computa-

tionally intractable for most processes due to their high- or even

infinite-dimensional state space, several methods have been pro-

posed to approximate the statistical moments, e.g. moment-closure

approximations (MAs) (Engblom, 2006; Lee et al., 2009) and

system-size expansions (Grima, 2010; van Kampen, 2007). These
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methods yield ordinary differential equations (ODEs) that ap-

proximate the temporal evolution of the statistical moments. These

ODEs are usually lower-dimensional than the CME, rendering their

numerical simulation more tractable. However, already for the ana-

lysis of the mean and covariance of the stochastic process, the size

of the state space of the approximating models grows quadratically

with the number of biochemical species. This limits the application of

these methods to small- and medium-scale biochemical reaction net-

works if the calculation of all statistical moments is required.

However interestingly, in a range of applications, including parameter

estimation (Fröhlich et al., 2016; Munsky et al., 2009), information

about a subset of statistical moments can be sufficient.

In this study, we introduce a scalable second-order moment-

closure approximation (s2MA) which is feasible for large-scale bio-

chemical reaction networks. The s2MA is designed for the accurate

description of selected statistical moments, including means and

variances. We introduce an algorithm that exploits the structure of

the reaction network to select the subset of moments which are most

relevant for the reliable approximation of means and variances.

Using analytical results for toy networks and published biological

models, we show the superior scaling of s2MA over other methods

for moment approximation, which renders the s2MA tractable for

large reaction networks. To assess the accuracy and computational

efficiency of s2MA, we simulated several network motifs and mod-

els for JAK2/STAT5 and TNF signalling.

2 Approach

We consider a biochemical reaction network of n species, S1; . . . ; Sn,

and nr reactions, R1; . . . ;Rnr
. The state of this network is denoted by

X ¼ X1;X2; . . . ;Xnð ÞT where Xi is the number of molecules of spe-

cies Si. Upon the firing of reaction Rr, the state X undergoes the tran-

sition X!ar
Xþ mr, in which �r and ar Xð Þ denote the stoichiometry

and the propensity of reaction Rr, respectively. Due to the stochastic

nature of chemical reactions, the state vector X evolves stochastic-

ally over time. The probability distribution of X at time t is denoted

by p xjtð Þ over all possible states x.

The temporal evolution of the statistical moments of p xjtð Þ can

be approximated using MAs of different orders. The order of an

MA is the highest order of the statistical moments which are mod-

elled. The second-order MA (2MA) is an ODE with n(n þ 3)/2 state

variables which describes the dynamics of the mean m ¼
P

xxp xjtð Þ
and covariance C ¼

P
x x�mð Þ x�mð ÞTp xjtð Þ:

@mi

@t
¼
P

r�ri ar mð Þ þ 1

2

X
k;l

@2ar

@xk@xl

����
m

Ckl

 !
;

@Cij

@t
¼
P

r

�
�ri�rjar mð Þ þ

X
k

@ar

@xk

����
m

�riCjk þ �rjCik

� �

þ1

2

X
k;l

@2ar

@xk@xl

����
m

�ri�rjCkl þ �riCjkl þ �rjCikl

� ��
;

(1)

where Cikl denotes the third-order moment of Xi, Xk and Xl. Due to

the symmetry Cij ¼ Cji only Cij with i � j is considered. As in (1),

the evolution equations for second-order moments usually depend

on third-order moments. To close the 2MA equations, moment-

closure techniques are applied which approximate the third-order

moments as functions of first- and second-order moments

(Hespanha, 2008). The moment closure introduces an approxima-

tion error to the otherwise exact moment equations, as it relies on

assumptions about p xjtð Þ (e.g. normality or log-normality; Singh

and Hespanha, 2006).

The 2MA (1) describes the covariances of all pairs of species and

thus possesses O n2
� �

state variables. This quadratic scaling with re-

spect to the number of species, n, poses a challenge for the applic-

ability of 2MA to large biological networks that may contain several

hundreds up to thousands of species. However, it is usually observed

that in large biochemical networks, many pairwise correlations be-

tween species are small. This implies a comparably low covariance

and a small contribution to the right-hand side of (1). Consequently,

for an approximation of the dynamics of the biochemical network,

it may not be necessary to model all covariances.

Studying a series of networks, including the JAK2/STAT5 signalling

pathway described by Bachmann et al. (2011), we observed that species

that directly influence each other via a reaction have a stronger pairwise

correlation. For the JAK2/STAT5 signalling pathway, depicted in Figure

1A, we found that >50% of the correlation coefficients do not exceed

an absolute value of 0.1 (Fig. 1B). Furthermore, the correlation coeffi-

cients decrease as the distance between species in the network increases

(Fig. 1C). Since in many cases biological networks are sparsely con-

nected and distances between species are relatively large (Fig. 1D), a sig-

nificant portion of the covariances may be negligible.

Motivated by this observation, we develop a scalable s2MA that

models a subset of covariances. The s2MA is designed to provide a

good approximation for means and variances of species, as those

moments are essential in a range of applications including parameter

estimation (Munsky et al., 2009; Fröhlich et al., 2016). Accordingly,

the s2MA captures the subset of covariances that are expected to in-

fluence the temporal evolution of the means and variances most

strongly. In the simplest case, we only consider the covariances C�

that have a direct influence on the means and variances, i.e. those

that appear in their evolution equations for mi and Cii:

• Covariances Cik for which a reaction Rr exists with �ri 6¼ 0 and
@ar

@xk
6¼ 0. This is the case if Sk is a modifier or reactant in a reaction

producing or consuming Si.
• Covariances Ckl for which a reaction Rr exists with �ri 6¼ 0 and

@2ar

@xk@xl
6¼ 0. This is the case if both, Sk and Sl, are modifiers or

reactants in a reaction producing or consuming Si.

The remaining covariances are set to zero. The resulting MA ex-

ploits the network structure and is similar to a recently proposed

MA for spatially distributed systems exploiting the neighbourhood

structure (Feng et al., 2016). In the following, we present a mathem-

atical formulation of the s2MA as well as extensions to control its

size and approximation accuracy.

3 Materials and Methods

To simulate the statistical moments of the trajectories of large-scale

stochastic biochemical reaction networks, we introduce scalable

moment-closure approximations (sMAs). These sMA are based on

the afore-mentioned findings and exploit the structure of the bio-

chemical reaction network. In the following, we present the required

graph characteristics and the derivation of the s2MA.

3.1 Graph representation of biochemical reaction

networks
The s2MA uses the structure of the reaction network to identify the

covariances that are most relevant to accurately approximate the

means and variances of species. To establish a simple structure-

based procedure, we exploit the graph structure of the biochemical

reaction networks. This graph structure is best represented using

the Systems Biology Graphical Notation (SBGN) process diagram

i294 A.Kazeroonian et al.



(Le Novère et al., 2009). In essence, SBGN process diagram is a

graph which consists of entity nodes representing biochemical species,

process nodes representing biochemical reactions and arcs indicating

the interactions/dependences. The incoming edges to a process node

indicate all the reactants, as well as the modifiers, of the correspond-

ing reaction, while the outgoing edges from a process node mark the

products. For instance, reaction R2 in Figure 2 is a bimolecular reac-

tion where species S2 and S3 react to form species S4. In reaction R3,

species S5 acts as a modifier that activates the conversion of S4 into S6

and S7. The graph structure is encoded in the propensities and the

stoichiometric coefficients and can be easily visualized for Systems

Biology Markup Language (SBML) models using software toolboxes

such as CellDesigner (Funahashi et al., 2008).

We use the graph representation to define a dependency matrix

D which summarizes direct dependencies between species in the net-

work. Following the arguments in Section 2, we say that a species Sj

directly depends a species Si, if the evolution equations for the mean

or the variance of Sj, i.e., mj and Cjj, depend on moments of Si.

Accordingly, it can be shown that:

• The products of a reaction depend on the reactants and the

modifiers.

• The reactants of a reaction depend on the other reactants and the

modifier.

This yields the dependency matrix D,

Dij ¼
1 if Si directly influences Sj

0 otherwise

(

Note that D is not necessarily symmetric as the defined dependency

is a directed property. In the model depicted in Figure 2, S4 depends

on S2 (D24 ¼ 1) but not vice versa (D42 ¼ 0). The dependency ma-

trix D encodes the necessary information for the construction of the

s2MA.

3.2 The scalable s2MA
The exact evolution equations for means m and covariances C (1)

can be written as

@mi

@t
¼ Fm;i m;C;Hð Þ; i 2 f1; . . . ;ng

@Cij

@t
¼ FC;ij m;C;Hð Þ; i; jð Þ 2 I

with I ¼ f i; jð Þ 2 f1; . . . ;ng2ji � jg:

(2)

where H denotes all moments with orders greater than two.

To avoid redundancies caused by the symmetry of the covari-

ances, Cij ¼ Cji, we consider only the subset I of covariances.

The higher-order moments H result from reactions with non-

linear propensities and their temporal evolution is not to

described by (2). To obtain a closed formulation, the higher-order

moments H are approximated by functions of lower-order

moments, H � �H m;Cð Þ, using moment closure techniques.

Common techniques include zero-cumulant closure (Matis and

Kiffe, 1999), low-dispersion closure (Hespanha, 2008), and

Fig. 1. Correlation coefficients in the simulated JAK2/STAT5 signalling pathway. (A) A partial schematic of the JAK2/STAT5 signalling pathway. (B) Maximum

absolute pairwise correlation coefficients found in the simulation of the JAK2/STAT5 signalling pathway. (C) Maximum absolute pairwise correlation coefficients

as function of the distance between species. (D) Frequency distribution of distance between species pairs

Fig. 2. Illustration of SBGN process diagram of a simple biochemical reaction

network. Biochemical species (boxes), biochemical processes (squares) and

interactions/dependencies (arcs) are visualised. Label Si indicates species Si

A scalable moment-closure approximation i295



derivative-matching (Singh and Hespanha, 2007). This yields the

2MA,

@mi

@t
¼ Fm;i m;C; �H m;Cð Þ

� �
¼: �Fm;i m;Cð Þ; i 2 f1; . . . ; ng

@Cij

@t
¼ FC;ij m;C; �H m;Cð Þ

� �
¼: �FC;ij m;Cð Þ; i; jð Þ 2 I:

The solution of the 2MA yields an approximation to the moments

of the state of the biochemical reaction network. The quality of this

approximation depends on the accuracy of the moment closure

(Kazeroonian et al., 2016; Schnoerr et al., 2015).

The 2MA possesses n nþ 3ð Þ=2 state variables, thus, it grows

quadratically with n. The simplest s2MA, the first-degree s2MA, re-

duces the growth rate by considering only the covariances on which

the temporal evolution of the means and variances depends directly.

This reduced set of covariances, Cij with i; jð Þ 2 I 1ð Þ, can be deter-

mined using the dependency matrix D,

I 1ð Þ ¼ i; jð Þ 2 f1; . . . ;ng2

����i � j ^ DþDT
� �

ij
6¼ 0

� �
:

The covariances Cij with i; jð Þ 2 InI 1ð Þ are not modelled by the first-

degree s2MA but can be approximated using the means, the vari-

ances and the reduced set of covariances. In this study, we use the

low-dispersion closure, Cij ¼ 0 for i; jð Þ 2 InI 1ð Þ.

The approximation quality of the s2MA can be controlled

using the cut-off degree. The second-degree s2MA describes the

covariances that influence the temporal evolution of the means

and variances either directly or via an intermediate step. More

precisely, the second-degree s2MA considers the covariances Cij;

i; jð Þ 2 I 1ð Þ and the covariances which appear in their evolution

equations. The set of these covariances, Cij; i; jð Þ 2 I 2ð Þ, is defined

by the second power of the dependency matrix D2. More gener-

ally, we define the dth-degree s2MA (s2MA-d) which describes the

reduced set of covariances Cij with i; jð Þ 2 I dð Þ,

I dð Þ ¼ i; jð Þ 2 f1; . . . ;ng2

����i � j ^ Dd þ Dd
� �T

	 

ij
6¼ 0

� �
:

The degree d � 1 denotes the maximal intermediate dependency

steps between species pairs (Si, Sj) for which covariances are

included in the s2MA. For a given d, we obtain the s2MA-d,

@mi

@t
¼ �Fm;i m;Cð Þ; i 2 f1; . . . ; ng

@Cij

@t
¼ �FC;ij m;Cð Þ; i; jð Þ 2 I dð Þ

Cij tð Þ ¼ 0; i; jð Þ 2 InI dð Þ:

(3)

We focus on the case d ¼ 1, in which merely covariances of interact-

ing species are considered. To capture long-range interactions, we

considered d � 2, which can improve the approximation accuracy of

the s2MA in biological systems with complex or highly non-linear

kinetics. The potentially enhanced approximation accuracy comes

at the cost of higher computational complexity as the number of

state variables increases with d. In Section 4, we demonstrate that

one can usually find a satisfactory tradeoff between the compu-

tational cost and approximation quality for complex biological

networks.

3.3 Implementation
We implemented methods for the construction and simulation

of the s2MA in the ChEmical REaction Network Analyzer

(CERENA), an open source MATLAB toolbox (Kazeroonian

et al., 2016). The advanced version of CERENA supports

automatic construction of the 2MA and the s2MA using symbolic

calculus and allows for a range of moment closure schemes.

The proposed construction algorithm circumvents the formulation

of the full 2MA to ensure feasibility for large-scale networks.

Biochemical reaction networks can be defined in the SBML or in a

simple m-file format. For efficient numerical simulation, C-code

simulation files are compiled using the Advanced MATLAB

Interface for CVODES and IDAS (Fröhlich et al., 2016).

This C-code employs sophisticated numerical methods imple-

mented in CVODES (Serban and Hindmarsh, 2005), facilitating

the study of a wide range of models. In addition, simulation

using MATLAB internal ODE solvers is supported. CERENA is

freely available from GitHub (http://cerenadevelopers.github.io/

CERENA/) and its functionality is described in a detailed

documentation.

4 Results

In the following, we study the properties of the s2MA and illustrate

its importance for the study of large-scale biochemical reaction net-

works. For this purpose, we analyse various network motifs as well

as published pathway models for which available methods are com-

putationally demanding or even infeasible.

4.1 Scaling properties
The size of the s2MA for a given network as well as its scaling prop-

erties depends on network characteristics. To highlight the scaling

properties, we considered reoccurring network motifs and per-

formed a general theoretical assessment. As verification, we in-

spected published signalling and metabolic pathways with different

numbers of biochemical species.

4.1.1 Theoretical scaling for network motifs and generic networks

To study the scaling properties of s2MA, we considered three differ-

ent network motifs illustrated in Figure 3A–C:

• A chain of monomolecular reactions as observed in metabolic

processes (Krumsiek et al., 2011) and delay representations

(Bachmann et al., 2011).
• A 2D grid of monomolecular reactions as observed in histone

methylation (Zheng et al., 2012).
• A sequence of bimolecular reactions with a hub as observed

in polymerisation related processes, e.g. prion aggregation

(Rubenstein et al., 2007).

For these network motifs, we derived the size of the s2MA-1 and -2

(see Table 1). For all three motifs, we found a linear scaling of the

size of the s2MA-1 with respect to the number of species n. The

same holds for the s2MA-2 of the chain of monomolecular reactions

and the 2D grid of monomolecular reactions. The s2MA-2 of the se-

quence of bimolecular reactions with a hub is identical to the 2MA

as all species are connected via at most one intermediate species (the

hub). Accordingly, the analysis of selected motifs suggests that the

s2MA allows for a substantial size reduction in the absence of cen-

tral hubs.

For generic network structures, the scaling of the s2MA depends

on the degree distribution P(d) of nodes in the graph representation

of the biochemical reaction network (see Section 3.1). By construc-

tion, the number of covariances in the s2MA-1 is the sum of node

degrees over two,
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number of covariances in s2MA� 1 ¼ 1

2

Xn

i¼1
di ¼

n �d

2
;

in which di denotes the degree of node i and the division by

two is required as covariances are associated to two nodes.

Introducing the average node degree, �d ¼ 1
n

Pn
i¼1 di, the s2MA-1 de-

scribes the temporal evolution of n means, n variances and n �d
2 covari-

ances, and thus possesses n
2 4þ �d
� �

state variables. If we assume that

there are no long-ranged connections in the network and every node

is only connected to a subset of neighbouring nodes, then we can as-

sume that �d is independent of the size of the network n, and s2MA-1

will scale linearly with the number of species.

The degree distribution in biological systems have been reported

to follow a power-law (Albert, 2005), P dð Þ / d�c, with an exponent

of 2 < c < 3. Networks with this property are usually referred to

as scale-free networks. The expected value of the average node de-

gree in scale-free networks is

E �d
� �
¼
Xn

i¼1
di ¼

Xn�1

d¼1
d � P dð Þ ¼

Xn�1

d¼1
d1�c:

Using the lower bound of c and the upper bound on the partial sums

of the harmonic series, we obtain

if c > 2 ) E �d
� �

< ln n� 1ð Þ þ 1ð Þ:

Evaluating this upper bound, we notice that even for networks with

up to n ¼ 104 species, �d hardly exceeds 10, making it behave like a

constant compared to n. Accordingly, we conclude that the size of

the s2MA-1 should scale (only slightly worse than) linearly with the

network size.

4.1.2 Scaling for published biochemical reaction networks

To corroborate the theoretical predictions derived under the as-

sumption of scale-free networks, we studied a collection of 50

published biochemical reaction networks. These networks were ex-

tracted from the BioModels, NetPath and Reactome database. They

include between 17 and 1277 biochemical species and a range of

rate laws. A comprehensive list of the networks is provided in

Supplementary Table S1.

We used an extension of the MATLAB toolbox CERENA to

generate the s2MAs for the networks and recorded the sizes

(Fig. 4). The analysis verified our prediction of a roughly linear re-

lation between the size of the s2MA-1 and the number of species.

The s2MA-1, on average, possessed only five times more state vari-

ables than the reaction rate equations, ensuring the applicability of

the s2MA-1 to large-scale networks. For the largest network, a

size reduction by a factor of >120 was achieved compared to the

2MA.

As the consideration of pair-wise correlations between reaction

partners might not be sufficient for a particular application, we also

assessed the scaling of the s2MA-2 and -3. In agreement with the re-

sults for the network motifs, we found that the size of the s2MA of

degree � 2 grew stronger than linear, namely with order 1.25 and

1.49. This implies that for realistic pathway structures, also the size

of the s2MA of degree 2 and 3 grows substantially slower than the

size of the 2MA, facilitating the analysis of stochasticity in large-

scale networks.

4.2 Approximation accuracy
The improved scalability of the s2MA is achieved by merely model-

ling a subset of covariances. In the following section, we will assess

the resulting approximation error and its dependence on the degree

Fig. 3. Illustration of considered network motifs. (A) Chain of monomolecular

reactions (n ¼ 5). (B) 2D grid of monomolecular reactions (n ¼ 25). (C) Chain

of bimolecular reactions with a hub (n ¼ 5)

Table 1. Comparison of the sizes of the 2MA and the s2MA for dif-

ferent network motifs

Network motif Number of state variables

2MA s2MA-1 s2MA-2

Chain of monomolecular reactions nðnþ3Þ
2 3n� 1 4n� 3

2D grid of monomolecular reactions nðnþ3Þ
2 4n�

ffiffiffi
n
p

7n� 7
ffiffiffi
n
p
þ 1

Chain of bimolecular reactions nðnþ3Þ
2 4n� 3 nðnþ3Þ

2

Fig. 4. Scaling of different moment-closure approximations for published net-

works. Moment-closure approximations for individual networks (markers)

and fitted regression curves (lines) are shown
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of the s2MA. For this analysis, we consider two network motifs and

two published signalling pathways.

4.2.1 Comparison of approximation methods for network motifs

For an initial assessment of the approximation accuracy, we con-

sidered the chain of monomolecular reactions (n ¼ 10) and the se-

quence of bimolecular reactions with a hub (n ¼ 20) with mass

action kinetics (Fig. 3A and C). The initial conditions and parameter

values are reported in Supplementary Tables S2 and S3. As a meas-

ure for the approximation accuracy the relative errors in the means

and variances were used, e.g.

100%� jC
s2MA
ii tð Þ � C2MA

ii tð Þj
maxtC2MA

ii tð Þ
;

in which Cs2MA
ii tð Þ and C2MA

ii tð Þ denote the time-dependent variance

of species i calculated by s2MA and 2MA, respectively.

The numerical simulation revealed a good agreement of means

and variances of 2MA and s2MA-1 (Fig. 5). Neglecting the covari-

ances that are not modelled by the s2MA; however, resulted in a

relative error <1% for the means and <20% for the variances.

Given a size reductions of 55.4 and 66.5%, the low relative error

supported the validity of the approach.

4.2.2 Comparison of approximation accuracy for s2MA of

different degrees on published biochemical reaction networks

To assess the approximation accuracy of s2MAs of different degrees

for realistic pathway topologies, we considered the published mod-

els of JAK2/STAT5 signalling and TNF signalling. These models

were also considered in the scalability analysis (Section 4.1.2).

The model of JAK2/STAT5 signalling describes the activity of

the transcription factor STAT5 in response to Epo treatment

(Bachmann et al., 2011). STAT5 regulates cell proliferation, differ-

entiation and inflammation. The considered model accounts for 25

biochemical species and includes biochemical reactions with non-

mass action kinetics. Its 2MA possesses 350 state variables while the

s2MA-1 has less than one-third of the state variables, namely 112.

Nonetheless, the simulation revealed a good agreement of 2MA and

s2MA-1 for the means and variances (Fig. 6A). The means and vari-

ances computed using s2MA-2 and s2MA-3 were essentially indis-

tinguishable from those computed using 2MA. For all s2MAs, we

observed a reduction in the computation time comparable to the size

reduction.

The model of TNF signalling describes the activation of pro- and

antiapoptotic factors, i.e. caspases and NFjB, in response to TNF

treatment (Schliemann et al., 2011). Apoptosis is a form of pro-

grammed cell death which is relevant, among others, in immune

Fig. 5. Approximation accuracy of the s2MA-1 for network motifs. (A) The

chain of monomolecular reactions with n ¼ 10. (B) The sequence of bimolecu-

lar reactions with n ¼ 20. (A, B) Means and variances are depicted along with

relative errors in the variances (2MA versus s2MA-1) for several biochemical

species

Fig. 6. Approximation accuracy of the s2MA for published pathways. (A) The

JAK2/STAT5 signalling pathway. (B) The TNF signalling network. (A, B)

Means and variances computed using the 2MA and the s2MA-1, -2 and -3 are

depicted for several biochemical species. For the s2MA of different degrees,

the relative error in the variances with respect to the 2MA is provided
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response and cancer. The model comprises 47 biochemical species,

yielding a 2MA with 1175 state variables. In contrast, the s2MA-1, -

2 and -3 possess only 189, 540 and 664 state variables. The numer-

ical simulation of the s2MA-1 was more than 25 times faster than

the numerical simulation of the 2MA. The disagreement between

s2MA-1 and 2MA, which resulted in a relative error of 100% for

some species (Fig. 6B) indicates that also covariances betweens spe-

cies which do not interact directly might be required for an accurate

description of mean and variances. The comparison of the results

for s2MA-1, -2 and -3 confirmed that the approximation error de-

creases as more covariances are taken into account. For s2MA-3,

the relative error is below 15%.

In summary, our analysis of network motifs and published net-

works revealed that the s2MA yields substantially smaller ODE

models than the 2MA, indicating a substantial gain in computa-

tional efficiency. Moreover, even for models with many species and

non-mass action kinetics, a good approximation accuracy was

achieved.

5 Discussion

Stochasticity of biochemical reactions is an inherent property of bio-

logical processes. It contributes to the establishment of functional

cell-to-cell variability and robust decision-making (Eldar and

Elowitz, 2010; Raj and van Oudenaarden, 2008). The analysis of

the stochastic processes is, however, restricted by the available ana-

lytical and numerical methods. In this manuscript, we introduce the

scalable second-order moment-closure approximation, the first

method to enable the simulation of statistical moments of large-

scale stochastic processes. The s2MA exploits the network structure

to construct approximate evolution equations for selected process

statistics.

To assess and illustrate the properties of s2MA, we studied net-

work motifs and a large collection of published networks. This com-

prehensive evaluation, which sets this study apart from other studies

of moment-closure approximations (e.g. (Feng et al., 2016; Singh

and Hespanha, 2006), verified that in practice the size of the first-

degree s2MA (s2MA-1) grows linearly with the network size, a scal-

ability that is similar to the reaction rate equations. Accordingly, the

s2MA enables the assessment of stochastic dynamics on a new scale.

The achieved scalability, however, comes at the cost of an approxi-

mation error. The approximation quality can be easily controlled

via the degree of the s2MA.

Beyond scalable moment-closure approximations for the calcu-

lation of means and variances, structured-based approaches might

be used for the evaluation of third-order moments and conditional

moments (Hasenauer et al., 2014). Complementarily, an improve-

ment might be achieved by tailored moment-closure schemes which

avoid neglecting a large fraction of covariances. A possible formu-

lation, for instance, could be based on partial correlations

(Krumsiek et al., 2011) or convergent moments (Zhang et al.,

2016). All of these methods would benefit from a priori and a pos-

teriori error bounds, which are not yet available for moment-

closure approximations, such as the s2MA, but are urgently

needed.

In summary, we presented a scalable moment-closure approxi-

mation for the simulation of stochastic chemical kinetics. This

method is beneficial for application problems that require numerical

simulations at low computation cost, e.g. parameter estimation

(Fröhlich et al., 2016; Munsky et al., 2009). An implementation of

the method is provided in the open-source MATLAB toolbox

CERENA to facilitate its application and further extensions. This

implementation, as well as the concept of structure-based reduction,

is applicable to a broad range of problems and will help to improve

the analysis of stochastic chemical kinetics.
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1 Comparison of the s2MA with structure-based, random and
greedy selection of covariances

To corroborate our hypothesis that a structure-based selection of covariances is appropriate, we compared
the proposed selection scheme to random selection for the simulation of the chain of monomolecular reactions
(Supplement Figure 3). For random selection, the index set I(δ) in Eq. (3) was defined as the union of
index pairs corresponding to (1) the variances, {(i, i)|i = 1, . . . , n}, and (2) a random sample drawn from
{(i, j) ∈ {1, . . . , n}2|i < j} without replacement. For various numbers of covariances, we sampled the
distribution of the error in the variances,

n∑

i=1

∫ T

0

(
C rand
ii (t)− C 2MA

ii (t)
)2
dt,

in which C rand
ii (t) denotes the time-dependent variance of species i calculated for a random set of covariances.

The comparison with the error for the s2MA-1 showed that the structure-based selection achieved a lower
approximation error than random selection, even if random selection was allowed to describe a larger number
of the covariances (Supplement Figure 1). This implies that the direct dependency, as defined in the Approach
section, is a good proxy for the relevance of a covariance for a good approximation.

To assess the sub-optimality of the structure-based selection of covariances, we compared it to a greedy
approach. The greedy approach started with an ODE which merely includes the evolution equations for
means and variances, i.e., Eq. (3) with I(δ) = {(i, i)|i = 1, . . . , n}, and sequentially added one covariance.
In each iteration, all possible choices for the additional covariance were considered and the covariance which
resulted in the strongest decrease of the approximation error was included. This procedure was repeated until
the ODE had the same size as the s2MA-1. The final model derived using this greedy approach possessed – as
expected – a slightly lower approximation error than the s2MA-1 (Supplement Figure 1). The improvement
of approximation accuracy, however, came with a substantial computational burden, which might not be
feasible for large-scale biochemical reaction networks. Furthermore, the greedy approach is simulation-based
and results generally depend on parameter values.
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Supplement Figure 1: Comparison of structure-based covariance selection, random selection and
the greedy approach for the chain of monomolecular reactions (n = 10). The integrated error in the
variance is shown for the s2MA-1 and reduced MA with randomly/greedy-based selected sets of covariances.
For random selection, the frequencies of 20 samples are depicted for various numbers of sample covariances.
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Supplement Figure 2: Number of edges in the simulated pathways. The number of edges in the
simulated pathways is compared to the number of edges in scale-free networks of the same sizes. Parameter
γ in Section 4.1.1 is set to 2 to calculate the upper bound on the number of edges in scale-free networks.
(inset) The distribution of the average degree in the simulated pathways.

2 Comparison of the published biochemical reaction networks to
scale-free networks of same sizes

We calculated the size of the s2MA-1 (that is the number of edges in the network) for scale-free networks
of the same size as the studied pathways. Supplement Figure 2 shows that for large networks, the s2MA-1
of scale-free networks is larger than the s2MA-1 of the studied biological pathways. These results suggest
that the scale-free assumption can provide a safe upper bound for the connectivities/degree distribution in
biochemical reaction networks. Also, to verify the local connectivities assumption, we calculated the average
degree of a node in the pathways. Supplement Figure 2 (inset) illustrates that, independently of the size of
the network, the average degree hardly exceeds 10.

3 List of published pathways

The Supplement Table 1 provides the list of published biochemical networks that are used for the scalability
analysis of the s2MA.

4 Network motifs

Illustrations of the considered chain of monomolecular reactions and sequence of bimolecular reactions with
a hub are provided by Supplement Figures 3 and 4, respectively. The parameter values and initial conditions
used for the simulation are listed in Supplement Tables 2 and 3.
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Supplement Table 1: Published models used for the scalability analysis of s2MA.
Name Identifier Source

1 Androgen receptor (AR) signalling pathway NetPath 2 NetPath database
2 B Cell Receptor (BCR) signalling pathway NetPath 12 NetPath database
3 Brain-derived neurotrophic factor (BDNF) signalling path-

way
NetPath 76 NetPath database

4 Corticotropin-realising hormone (CRH) signalling pathway NetPath 129 NetPath database
5 Epidermal growth factor receptor (EGFR1) signalling path-

way
NetPath 4 NetPath database

6 Fibroblast growth factor-1 (FGF1) signalling pathway NetPath 134 NetPath database
7 Gastrin signalling pathway NetPath 154 NetPath database
8 Hedgehog signalling pathway NetPath 10 NetPath database
9 Interleukin-2 (IL-2) signalling pathway NetPath 14 NetPath database
10 Interleukin-3 (IL-3) signalling pathway NetPath 15 NetPath database
11 Interleukin-4 (IL-4) signalling pathway NetPath 16 NetPath database
12 Interleukin-5 (IL-5) signalling pathway NetPath 17 NetPath database
13 Interleukin-6 (IL-6) signalling pathway NetPath 18 NetPath database
14 Interleukin-7 (IL-7) signalling pathway NetPath 19 NetPath database
15 Interleukin-9 (IL-9) signalling pathway NetPath 20 NetPath database
16 Interleukin-10 (IL-10) signalling pathway NetPath 132 NetPath database
17 Interleukin-11 (IL-11) signalling pathway NetPath 147 NetPath database
18 Kit Receptor signalling pathway NetPath 6 NetPath database
19 Leptin signalling pathway NetPath 22 NetPath database
20 Notch signalling pathway NetPath 3 NetPath database
21 Prolactin signalling pathway NetPath 56 NetPath database
22 Receptor activator of nuclear factor kappa-B ligand

(RANKL) signalling pathway
NetPath 21 NetPath database

23 T Cell Receptor (TCR) signalling pathway NetPath 11 NetPath database
24 Transforming growth factor beta (TGF-beta) receptor sig-

nalling pathway
NetPath 7 NetPath database

25 Tumor necrosis factor (TNF) alpha signalling pathway NetPath 9 NetPath database
26 Thyroid-stimulating hormone (TSH) signalling pathway NetPath 23 NetPath database
27 Thymic stromal lymphopoietin (TSLP) signalling pathway NetPath 24 NetPath database
28 TIE2/TEK signalling pathway NetPath 138 NetPath database
29 Wnt signalling pathway NetPath 8 NetPath database
30 Carbon metabolism BIOMD0000000051 Biomodels database
31 E. coli metabolic adaptation BIOMD0000000244 Biomodels database
32 Influenza virus replication BIOMD0000000463 Biomodels database
33 TNF signalling network BIOMD0000000407 Biomodels database
34 Yeast pheromone pathway BIOMD0000000032 Biomodels database
35 Degradation of beta-catenin by the destruction complex R-HSA-195253.1 Reactome database
36 DNA replication R-HSA-69306 Reactome database
37 Interferon gamma signalling pathway R-HSA-877300 Reactome database
38 Interferon alpha/beta signalling pathway R-HSA-909733 Reactome database
39 Cholesterol biosynthesis R-HSA-191273 Reactome database
40 DAG and IP3 signalling R-HSA-1489509 Reactome database
41 Growth hormone receptor signalling R-HSA-982772 Reactome database
42 Inositol phosphate metabolism R-HSA-1483249 Reactome database
43 Integrin alphaIIb beta3 signalling R-HSA-354192 Reactome database
44 ISG15 antiviral mechanism R-HSA-1169408 Reactome database
45 Meiotic recombination R-HSA-912446 Reactome database
46 Peroxisomal lipid metabolism R-HSA-390918 Reactome database
47 PIP3 activates AKT signalling R-HSA-1257604 Reactome database
48 RAF-independent MAPK1/3 activation R-HSA-112409 Reactome database
49 RAF/MAP kinase cascade R-HSA-5673001 Reactome database
50 JAK2/STAT5 signalling pathway - Bachmann et al. (2011)

4



x2x1 x3 x4 x5 x6 x7 x8 x9 x10

k0 k+

k�

k0k+

k�

k+

k�

k+

k�

k+

k�

k+

k�

k+

k�

k+

k�

k+

k�

x2x1 x3 x4 x5 · · · x16 x17 x18 x19 x20

x1 x1 x1 x1 x1 x1 x1 x1 x1

x0

; ;

; ;
; ; ; ; ; ; ; ; ; ;

k0 k1 k2 k3 k4 k5 k6 k17 k18 k19 k20

k�

kd

k� k� k� k� k� k� k� k�

kdkdkdkdkdkdkdkdkdkd

Supplement Figure 3: The schematic of the chain of monomolecular reactions
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Supplement Figure 4: Schematic of the sequence of bimolecular reactions with a hub.

Supplement Table 2: Parameter values and initial conditions used in the simulation of the chain of monomolec-
ular reactions.

k0 k+ k− [x1](0) [x2](0) [x3](0) [x4](0) [x5](0) [x6](0) [x7](0) [x8](0) [x9](0) [x10](0)
0.5 1 0.2 10 0 0 0 0 0 0 0 0 0

Supplement Table 3: Parameter values and initial conditions used in the simulation of the sequence of
bimolecular reactions with a hub.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14
100 5 1 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23

k15 k16 k17 k18 k19 k20 k−1 k−2 k− kd [x0](0) [x1](0) to [x29](0)
0.24 0.25 0.26 0.27 0.28 0.29 0.1 0.01 0.001 0.001 50 0

5


	Introduction
	Dynamics of biochemical reaction networks
	Overview and contribution of this thesis
	Other contributions

	Outline

	Methods
	Stochastic chemical kinetics
	Chemical Reaction Networks
	Markov processes
	Chemical Master Equation
	Stochastic Simulation Algorithm

	Approximative methods for the stochastic chemical kinetics
	Finite State Projection
	Moment closure approximation method
	System size expansion
	Macroscopic rate equation

	Parameter estimation
	Likelihood-based parameter estimation
	Moment-based likelihood function for population snapshot data
	FSP-based likelihood function for population snapshot data
	Identifiability and uncertainty analysis


	Summary of Contributed Articles
	Discussion and Outlook
	blackOutlook 1: Potential advantages of mesoscopic approaches in multi-scale modelling
	Outlook 2: Incorporation of deterministic variability
	Outlook 3: Exploiting autocorrelation information

	Appendices (First-author articles)
	Parameter Estimation for Stochastic Biochemical Processes: A Comparison of Moment Equation and Finite State Projection. International Workshop on Computational Systems Biology (WCSB), 2013.
	Modeling of stochastic biological processes with non-polynomial propensities using non-central conditional moment equation. IFAC Proceedings Volumes, 2014.
	CERENA: ChEmical REaction Network Analyzer – A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE, 2016.
	A scalable moment-closure approximation for large-scale biochemical reaction networks. Bioinformatics, 2017.

