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ON STABILITY, ERROR CORRECTION, AND NOISE
COMPENSATION IN DISCRETE TOMOGRAPHY∗

ANDREAS ALPERS† AND PETER GRITZMANN†

Abstract. The task of reconstructing binary images from the knowledge of their line sums
(discrete X-rays) in a given finite number m of directions is ill-posed. Even some small noise in the
physical measurements can lead to dramatically different yet still unique solutions.

The present paper addresses in particular the following problems. Does discrete tomography have
the power of error correction? Can noise be compensated by taking more X-ray images, and, if so,
what is the quantitative effect of taking one more X-ray? Our main theorem gives the first nontrivial
unconditioned (and best possible) stability result. In particular, we show that the Hamming distance
between any two different sets of m X-ray images of the same cardinality is at least 2(m − 1), and
this is best possible. As a consequence, this result implies a Rényi-type theorem for denoising and
shows that the noise compensating effect of X-rays is linear in their number.

Our theoretical results are complemented by determining the computational complexity of some
underlying algorithmic tasks. In particular, we show that while there always is a certain inherent
stability, the possibility of making (worst-case) efficient use of it is rather limited.
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1. Introduction. Discrete tomography deals with the reconstruction of finite
sets from knowledge about their interaction with certain query sets. The most promi-
nent example is that of the reconstruction of a finite subset F of Z

d from its X-rays
(i.e., line sums) in a small positive integer number m of directions. Applications of
discrete tomography include quality control in semiconductor industry, image pro-
cessing, graph theory, scheduling, statistical data security, game theory, etc. (see,
e.g., [6], [8], [9], [13], [14], [17], [19]). The reconstruction task is an ill-posed discrete
inverse problem, depicting (suitable variants of) all three Hadamard criteria [12] for
ill-posedness. In fact, for general data there need not exist a solution, if the data is
consistent, the solutions need not be uniquely determined, and even in the case of
uniqueness, the solution may change dramatically with small changes of the data.

The papers [1] and [2] show just how unstable the reconstruction task really is:
For arbitrarily large lattice sets even of the same cardinality, a total error of only
2(m− 1) in the measurements can lead to unique but disjoint solutions. Clearly, this
is an important issue for all practical applications where noise in the data cannot be
avoided, particularly if the data stems from physical measurements.

The main theorem of the present paper shows that this number 2(m− 1) is best
possible in an ultimate sense. In Theorem 2.1 we prove that two finite sets of the same
cardinality whose X-rays in a given set of m directions differ by a total of less than
2(m− 1) are “tomographically equivalent.” This means that either the X-rays differ
by at least 2(m − 1), or they do not differ at all. Note that the situation becomes
trivial if the assumption on the equal cardinality of the lattice sets is omitted. Indeed,
if the cardinalities of the two sets differ by k, then the total difference of the X-rays is
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228 ANDREAS ALPERS AND PETER GRITZMANN

at least km, and this is best possible (just delete k points of an arbitrary finite lattice
set of cardinality at least k to obtain the second set).

Theorem 2.1 enables us to derive stability versions of all known uniqueness theo-
rems, providing uniqueness even for somewhat noisy data. Complementing the theo-
retical results, we deal with the computational complexity of trying to take advantage
of the inherent stability. The precise statements of our results will be given in the
next section. Here we only summarize them qualitatively.

While it is clear that the total sum over all X-rays is a multiple of m and hence a
small enough error in this number can be corrected, the problem of determining how
the individual measurements should be corrected in order to provide consistency of
the data is NP-complete whenever m ≥ 3 but easy for m ≤ 2. Also, finding a set
which best fits the data is NP-hard for m ≥ 3 but can be solved in polynomial time
for m ≤ 2.

The paper is organized as follows: After introducing some notation we state our
main stability theorem, some of its corollaries, and the related algorithmic results in
section 2. In sections 3 and 4 we give the proofs of our stability result and of the
algorithmic results, respectively.

2. Main results: A stability theorem and some of its relatives. Let
d,m ∈ N, d ≥ 2, and let F be a field with Z ⊆ F. Our underlying vector space will
always be F

d but certain restrictions to the subring Z
d of all lattice points will also be

relevant. Hence we will formulate some definitions and results in terms of K ∈ {F,Z}.
In particular, set

Fd(K) = {F : F ⊂ K
d ∧ F is finite}

and Fd = Fd(Z). The elements of Fd are called lattice sets. Let Sd denote the set
of all 1-dimensional linear subspaces of F

d, and let Ld be the subset of Sd of all such
subspaces that are spanned by vectors from Z

d. The elements of Ld will be referred
to as lattice lines. Further, for S ∈ Sd let AK(S) = {v + S : v ∈ K

d}.
Then, for F ∈ Fd(K) and S ∈ Sd, the (discrete 1-dimensional) X-ray of F parallel

to S is the function

XSF : AK(S) → N0 = N ∪ {0}

defined by

XSF (T ) = |F ∩ T | =
∑
x∈T

11F (x)

for each T ∈ AK(S).

Two sets F1, F2 ∈ Fn(F) are called tomographically equivalent with respect to
S1, . . . , Sm ∈ Sd if XSiF1 = XSiF2 for i = 1, . . . ,m.

Given m different lines S1, . . . , Sm ∈ Sd, the basic questions in discrete tomogra-
phy are as follows. What kind of information about a finite (lattice) set F ∈ K

d can be
retrieved from its X-ray images XS1F, . . . ,XSmF? How difficult is the reconstruction
algorithmically? How sensitive is the task to data errors? Here the data is given in
terms of functions
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ON STABILITY IN DISCRETE TOMOGRAPHY 229

fi : AK(Si) → N0, i = 1, . . . ,m,

with finite support Ti ⊆ AK(Si) represented by appropriately chosen data structures;
see [8]. Hence the difference of two data functions with respect to the same line S ∈ Sd

is a function h : AK(S) → Z; its size will be measured in terms of its �1-norm

‖h‖1 =
∑

T∈AK(S)

|h(T )|.

For surveys on various aspects of discrete tomography see [10], [11], [13].
Our main stability result can now be formulated as follows.
Theorem 2.1. Let S1, . . . , Sm ∈ Sd be different and F1, F2 ∈ Fd(K) with |F1| =

|F2|. If

m∑
i=1

||XSiF1 −XSi
F2||1 < 2(m− 1),

then F1 and F2 are tomographically equivalent.
The proof will be given in section 3. Clearly, Theorem 2.1 is equivalent to the

following theorem.
Theorem 2.2. Let S1, . . . , Sm ∈ Sd be different. Then there do not exist F1, F2 ∈

Fd(K) with |F1| = |F2| and 0 <
∑m

i=1 ||XSi
F1 −XSi

F2||1 < 2(m− 1).
As corollaries to this stability result we may derive “noisy versions” of all known

uniqueness theorems. In the following we give two such examples.
Rényi’s well-known theorem [16] states that if we know the cardinality |F | of

a finite set F we can guarantee uniqueness from X-rays taken in any m ≥ |F | + 1
different directions. Our first corollary shows that we can guarantee uniqueness, even
if the X-rays are not given precisely.

Corollary 2.3. Let F1, F2 ∈ Fd(K) with |F1| = |F2|, m ∈ N with m ≥ |F1|+ 1,
and let S1, . . . , Sm ∈ Sd be different. If

∑m
i=1 ||XSi

F1 − XSi
F2||1 < 2|F1|, then

F1 = F2.
Proof. By Theorem 2.1, F1 and F2 are tomographically equivalent; hence the

assertion follows from Rényi’s theorem [16].
Corollary 2.3 shows the potential power of error correction in the setting of Rényi’s

theorem: A total error smaller than 2n can be compensated without increasing the
number of X-rays taken if the cardinality n of the original set F is known. But even
without knowing n precisely we can correct errors—at the expense, however, of taking
more X-rays.

Corollary 2.4. Let F1, F2 ∈ Fd(K) with |F1| ≤ |F2|, m ∈ N with m ≥ 2|F1|,
and let S1, . . . , Sm ∈ Sd be different. Then

∑m
i=1 ||XSi

F1 −XSi
F2||1 < 2|F1| implies

F1 = F2.
Proof. Clearly

∑m
i=1 ||XSiF1 −XSiF2||1 ≥ m(|F2| − |F1|). Thus,

∑m
i=1 ||XSiF1 −

XSiF2||1 < 2|F1| implies |F1| = |F2|, and the assertion follows from Corollary
2.3.

Next we give a stable version of a theorem of Gardner and Gritzmann [7] for the
set Cd of convex lattice sets, i.e., of sets F ∈ Fd with F = conv(F ∩ Z

d).
Corollary 2.5. Let F1, F2 ∈ Cd with |F1| = |F2|.
(i) There are sets {S1, S2, S3, S4} ⊆ Ld of four lines such that∑4

i=1 ||XSiF1 −XSiF2||1 < 6 implies F1 = F2.
(ii) For any set {S1, . . . , Sm} ⊆ Ld of m ≥ 7 coplanar lattice lines,∑m

i=1 ||XSi
F1 −XSi

F2||1 < 2(m− 1) implies F1 = F2.
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230 ANDREAS ALPERS AND PETER GRITZMANN

Proof. By Theorem 2.1, F1 and F2 are tomographically equivalent in both
parts of the statement; hence the assertion follows from the uniqueness theorems of
[7].

Note that this theorem also holds for the somewhat more general class of Q-convex
lattice sets because they are uniquely determined by the same sets of lattice lines as
the convex lattice sets (see [5]).

Let us now turn to results on some algorithmic tasks related to stability and
instability in discrete tomography. We concentrate on the case of finite lattice sets
whose X-rays are taken in lattice directions. Thus, let S1, . . . , Sm ∈ Ld. Proofs of the
following statements will be given in section 4.

We begin with two examples of algorithmic consequences of Theorem 2.1, “noisy
extensions” of known complexity results. It has been shown in [8] that the two
problems

ConsistencyFd(S1, . . . , Sm)
Input: For i = 1, . . . ,m data functions fi : AZ(Si) → N0 with finite support.
Question: Does there exist a finite lattice set F ∈ Fd such that XSiF = fi

for i = 1, . . . ,m?

and

UniquenessFd(S1, . . . , Sm)
Input: A set F1 ∈ Fd.
Question: Does there exist a set F2 ∈ Fd with F1 �= F2 such that

XSiF1 = XSiF2 for i = 1, . . . ,m?

can be solved in polynomial time for m ≤ 2 but are NP-complete for m ≥ 3.

With the aid of Theorem 2.1 these results can be extended as follows.

Corollary 2.6. Let S1, . . . , Sm ∈ Ld be different. The two problems

X-Ray-CorrectionFd(S1, . . . , Sm)
Input: For every i = 1, . . . ,m a data function fi : AZ(Si) → N0 with

finite support.
Question: Does there exist a finite lattice set F ∈ Fd with∑m

i=1 ||XSiF − fi||1 ≤ m− 1?

and

Similar-SolutionFd(S1, . . . , Sm)
Input: A finite lattice set F1 ∈ Fd.
Question: Does there exist a finite lattice set F2 ∈ Fd with |F1| = |F2| and

F1 �= F2 such that
∑m

i=1 ||XSiF1 −XSiF2||1 ≤ 2m− 3?

are in P for m ≤ 2 but are NP-complete for m ≥ 3.

Note that X-Ray-CorrectionFd(S1, . . . , Sm) can also be formulated as the task
to decide, for given data functions fi : AZ(Si) → N0 (i = 1, . . . ,m) with finite support,
whether there exist “corrected” data functions gi : AZ(Si) → N0 (i = 1, . . . ,m) with
finite support that are consistent and do not differ from the given functions by more
than a total of m− 1. Corollary 2.6 shows that this form of measurement correction
is just as hard as checking consistency.

If the data is noisy it seems natural to try to find a finite lattice set that fits the
measurements best. This task is studied in the following theorem.
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ON STABILITY IN DISCRETE TOMOGRAPHY 231

Theorem 2.7. Let S1, . . . , Sm ∈ Ld be different. The problem

Nearest-SolutionFd(S1, . . . , Sm)
Input: For every i = 1, . . . ,m, a data function fi : AZ(Si) → N0 with

finite support.
Task: Determine a set F ∗ ∈ Fd such that∑m

i=1 ||XSiF
∗ − fi||1 = minF∈Fd

∑m
i=1 ||XSiF − fi||1

is in P for m ≤ 2 but is NP-hard for m ≥ 3.
From the NP-hardness of ConsistencyFd(S1, . . . , Sm) the statement for m≥3 fol-

lows easily. In fact, for a given instance (f1, . . . , fm) of ConsistencyFd(S1, . . . , Sm) let
F ∗ denote a solution of Nearest-SolutionFd(S1, . . . , Sm) for the input (f1, . . . , fm).
Then (f1, . . . , fm) is a yes-instance of ConsistencyFd(S1, . . . , Sm) if and only if
XSiF

∗ = fi for all i = 1, . . . ,m. However, the proof of the polynomial-time solvabil-
ity in the case m = 2 is more involved and will be given in section 4.

3. Proof of the main stability result. Note first that it is enough to prove
Theorem 2.1 for K = F. The proof will be based on four lemmas. The first lemma is
a simple combinatorial observation.

Lemma 3.1. Let S ∈ Sd and let f, g : AF(S) → N0 be data functions with finite
support. Further, set A+ = {T ∈ AF(S) : f(T ) − g(T ) > 0} and A− = {T ∈ AF(S) :
f(T ) − g(T ) < 0}. Then

||f − g||1 = 2
∑

T∈A+

(
f(T ) − g(T )

)
− ‖f‖1 + ‖g‖1.

In particular, when ‖f‖1 = ‖g‖1 the number ||f − g||1 is even.
Proof. Since∑

T∈AF(S)

(f(T ) − g(T )) =
∑

T∈AF(S)

f(T ) −
∑

T∈AF(S)

g(T ) = ‖f‖1 − ‖g‖1,

we have

||f − g||1 =
∑

T∈AF(S)

|f(T ) − g(T )| =
∑

T∈A+

(f(T ) − g(T )) −
∑

T∈A−

(f(T ) − g(T ))

=
∑

T∈A+

(f(T ) − g(T )) −
∑

T∈A−

(f(T ) − g(T )) +
∑

T∈A+

(f(T ) − g(T ))

+
∑

T∈A−

(f(T ) − g(T )) − ‖f‖1 + ‖g‖1

= 2
∑

T∈A+

(f(T ) − g(T )) − ‖f‖1 + ‖g‖1.

In the present section we will apply Lemma 3.1 to the X-rays of sets F1,F2∈Fd(F),
i.e., to f = XSF1 and g = XSF2.

The next lemma is geometric in nature and will enable us to reduce the proof of
Theorem 2.1 to the planar case.

Lemma 3.2. Let d ≥ 3, S1, . . . , Sm ∈ Sd be different and F1, F2 ∈ Fd(F). Then
there exists a surjective linear map ϕ : F

d → F
2 with the following properties.

(i) ϕ(S1), . . . , ϕ(Sm) are different lines in S2.
(ii) If i ∈ {1, . . . ,m} and a, b ∈ F1∪F2 satisfy ϕ(b) ∈ ϕ(a)+ϕ(Si), then b ∈ a+Si.
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232 ANDREAS ALPERS AND PETER GRITZMANN

Proof. In order to satisfy the two properties the kernel ker(ϕ) will be chosen
complementary to any plane spanned by two of the m lines, and also complementary to
any plane spanned by one of the lines S1, . . . , Sm and a line generated by the difference
of two of the vectors of F1∪F2. Let us denote the set of these exceptional planes by P.
Each of the planes P ∈ P can be described as the set of solutions of a homogeneous
(d − 2) × d system of linear equations; let AP denote a corresponding coefficient
matrix. Now, let π1, . . . , π2d be different primes. Further, for x ∈ F let B(x) be the
2× d matrix with row vectors (xπ1 , xπ2 , . . . , xπd) and (xπd+1 , xπd+2 , . . . , xπ2d), and let
H(x) be the solution space of the corresponding homogeneous 2×d system. Then for
each P ∈ P the determinant of the matrix composed of AP and B(x) is a nontrivial
polynomial in x. (In fact, the coefficients are (d−2)× (d−2) subdeterminants of AP ,
and by the choice of the exponents of x in B(x) there is generically no cancellation.)
Hence for all sufficiently large integers x, H(x) is complementary to each plane P ∈ P.
Now taking a fixed such vector x, we define ϕ by choosing an arbitrary basis of H(x),
extend it to a basis of F

d, and specify that ϕ maps the basis vectors of H(x) to 0 and
the remaining two to the standard basis vectors of F

2. Then ker(ϕ) = H(x), whence
ϕ has the desired properties.

Note that a linear mapping ϕ with the properties of Lemma 3.2 is necessarily
injective on F1 ∪ F2.

The following two lemmas are more algebraic in nature. The next contains a
well-known result on the elementary part of the Prouhet–Tarry–Escott Problem on
solutions of a specific power system of polynomial equations. As a service to the
reader we still outline the proof. For a survey on the Prouhet–Tarry–Escott Problem
see [3] or [4].

Lemma 3.3. Let x1, . . . , xq, y1, . . . , yq ∈ F such that

q∑
i=1

xj
i =

q∑
i=1

yji

for j = 1, . . . , q. Then the multisets {x1, . . . , xq} and {y1, . . . , yq} coincide.
Proof. We show that x1, . . . , xq and y1, . . . , yq are the roots of the same polynomial

of degree q.
For i = 1, . . . , q let pi, si ∈ F[X1, . . . , Xq] be defined by

pi = Xi
1 + Xi

2 + · · · + Xi
q, si =

∑
1≤k1<···<ki≤q

Xk1
· · ·Xki

.

The polynomials pi and si are the well-known power sums and elementary symmetric
functions of the indeterminates X1, . . . , Xq, respectively. Clearly, for the indetermi-
nates X1, . . . , Xq, Y we have

q∏
i=1

(Y −Xi) = Y q − s1Y
q−1 + s2Y

q−2 + · · · + (−1)qsq.

Using the Newton identities (see, e.g., [15]) it follows inductively that for i = 1, . . . , q

si ∈ F[p1, . . . , pq].

Since by assumption

pi(x1, . . . , xq) = pi(y1, . . . , yq) for i = 1, . . . , q,
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ON STABILITY IN DISCRETE TOMOGRAPHY 233

this implies

si(x1, . . . , xq) = si(y1, . . . , yq) for i = 1, . . . , q.

Consequently,

q∏
i=1

(Y − xi) =

q∑
i=0

(−1)iY q−isi(x1, . . . , xq) =

q∏
i=1

(Y − yi);

i.e., the two polynomials
∏q

i=1(Y −xi) and
∏q

i=1(Y −yi) in F[Y ] are identical. Hence
x1, . . . , xq is just a permutation of y1, . . . , yq.

Lemma 3.4. Let k ∈ N and σ1, . . . , σk+1, τ1, . . . , τk+1 ∈ F such that Si =
lin

{
(σi, τi)

T
}
∈ S2, i = 1, . . . , k + 1, are different. Then

(τ1X − σ1Y )
k
, . . . , (τk+1X − σk+1Y )k ∈ F[X,Y ]

form a basis of the F-vector space Vk that is generated by the k + 1 binomials Y k,
X1Y k−1, . . . , Xk−1Y 1, Xk ∈ F[X,Y ].

Proof. Every polynomial (τiX − σiY )
k

can be expressed in terms of its coefficient
vector ((

k

0

)
τ0
i (−σi)

k, . . . ,

(
k

k

)
τki (−σi)

0

)

with respect to the binomial basis {Y k, X1Y k−1, . . . , Xk−1Y 1, Xk}. Thus, we have
to show only that these k + 1 vectors are linearly independent, i.e., that the matrix

C =

((
k

j − 1

)
(τi)

j−1(−σi)
k−j+1

)
i,j=1,...,k+1

∈ F
(k+1)×(k+1)

is nonsingular.
Suppose first that σ1 · · ·σk+1 �= 0. By setting ρi = −σ−1

i τi, and by denoting the

Vandermonde matrix (ρj−1
i )i,j=1,...,k+1 by C ′, we obtain

det(C) = det(C ′) ·
k+1∏
i=1

(
k

i− 1

)
(−σi)

k =
∏
i>j

(ρi − ρj) ·
k+1∏
i=1

(
k

i− 1

)
(−σi)

k.

Thus, if det(C) = 0, then there exist indices i0, j0 in {1, . . . , k + 1} with i0 �= j0
but ρi0 = ρj0 . This means that σ−1

i0
τi0 = σ−1

j0
τj0 , whence Si0 = Sj0 , contrary to the

assumption. Therefore det(C) �= 0.
Now suppose that one of the σi is zero. Without loss of generality we may assume

that σ1 = 0. Note that then σi �= 0 for i > 1. The first row of C is now a nonzero
multiple of (0, . . . , 0, 1). By developing det(C) with respect to the first row, we see
that the same argument as in the first case applies again.

Now we are ready to prove our main stability result.
Proof of Theorem 2.1. Let F1, F2 ∈ Fd(F) with |F1| = |F2| and 0 <

∑m
i=1 ||XSi

F1−
XSi

F2||1 < 2(m− 1). By Lemma 3.1, this implies that m ≥ 3.
Suppose first that the error involves more than one direction; i.e., XSiF1 �= XSiF2

for at least two different indices i1 and i2. By Lemma 3.1, ‖XSiF1 − XSiF2‖1 ≥ 2
for i = i1, i2. Therefore, ignoring Si1 , the sets F1 and F2 provide a counterexample
already for m − 1 directions. Hence we may in the following assume that XSiF1 =
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234 ANDREAS ALPERS AND PETER GRITZMANN

XSi
F2 for i = 1, . . . ,m − 1; i.e., the error occurs only for Sm. Similarly, we may

assume that the error is exactly 2(m− 2).
Next, we reduce the statement to the planar case. Let d ≥ 3 and suppose that

F1, F2 ∈ Fd(F) with |F1| = |F2| and 0 <
∑m

i=1 ||XSiF1 −XSiF2||1 < 2(m − 1). Let
ϕ be a linear mapping according to Lemma 3.2, and set F ′

j = ϕ(Fj) for j = 1, 2 and

S′
i = ϕ(Si) for i = 1, . . . ,m. Then F ′

1, F
′
2 ∈ F2(F), |F ′

1| = |F ′
2|, S′

1, . . . , S
′
m ∈ S2

are different, and XS′
i
F ′
j = XSiFj for i = 1, . . . ,m and j = 1, 2. Hence we obtain a

counterexample already in dimension 2.
Finally we turn to the planar case. So, in the following let d = 2. The n points of

F1 and F2 will be denoted by (x1, y1), . . . , (xn, yn) and (x′
1, y

′
1), . . . , (x

′
n, y

′
n), respec-

tively.
Let σ1, . . . , σm, τ1, . . . , τm ∈ F be such that Si = lin

{
(σi, τi)

T
}

for i = 1, . . . ,m.
By Lemma 3.4 we know that for k = 1, . . . ,m− 2

(τ1X − σ1Y )
k
, . . . , (τk+1X − σk+1Y )k

form a basis of the F-vector space Vk generated by the binomials Y k, X1Y k−1,. . .,Xk−1Y 1,
Xk. Since, of course, (τmX − σmY )

k ∈ Vk, there are coefficients α1,k, . . . , αm−1,k ∈ F

such that

(τmX − σmY )k =

m−1∑
i=1

αi,k(τiX − σiY )k.

For every line T parallel to any of the lines S1, . . . , Sm−1 we have |F1 ∩ T | =
|F2 ∩ T |. Hence, as multisets the projections of F1 and F2 parallel to Si (on any line
complementary to Si) coincide for i = 1, . . . ,m− 1. Thus

{(τix1 − σiy1), . . . , (τixn − σiyn)} = {(τix′
1 − σiy

′
1), . . . , (τix

′
n − σiy

′
n)}

for i = 1, . . . ,m− 1. As a consequence we have

n∑
j=1

(
(τmxj − σmyj)

k − (τmx′
j − σmy′j)

k
)

=

n∑
j=1

m−1∑
i=1

αi,k

(
(τixj − σiyj)

k − (τix
′
j − σiy

′
j)

k
)

= 0

for each k = 1, . . . ,m− 2.
Now we define the multiset differences

A = {(τmx1 − σmy1), . . . , (τmxn − σmyn)} \ {(τmx′
1 − σmy′1), . . . , (τmx′

n − σmy′n)}

and

B = {(τmx′
1 − σmy′1), . . . , (τmx′

n − σmy′n)} \ {(τmx1 − σmy1), . . . , (τmxn − σmyn)}.

Note that |A| and |B| count the positive excess of F1 over F2 and of F2 over F1,
respectively, on lines parallel to Sm. To be more precise, let A+ = {T ∈ AF(Sm) :
XSmF1(T )−XSmF2(T ) > 0} and A− = {T ∈ AF(Sm) : XSmF1(T )−XSmF2(T ) < 0}.
Then with the aid of Lemma 3.1

|A| =
∑

T∈A+

(
XSmF1(T ) −XSmF2(T )

)
=

1

2
||XSmF1 −XSmF2||1;
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ON STABILITY IN DISCRETE TOMOGRAPHY 235

similarly,

|B| =
∑

T∈A−

(
XSmF2(T ) −XSmF1(T )

)
=

1

2
||XSmF1 −XSmF2||1.

Hence

|A| = |B| = m− 2

and thus, particularly, A �=B. Using the notation A={a1, . . . , aq} and B={b1, . . . , bq}
with q = m− 2, we have for each k = 1, . . . , q

n∑
j=1

(
(τmxj − σmyj)

k − (τmx′
j − σmy′j)

k
)

=

q∑
j=1

akj −
q∑

j=1

bkj = 0,

a contradiction to Lemma 3.3. This completes the proof of Theorem 2.1.

4. Proofs of the algorithmic results. In the following we give the proofs for
the algorithmic results stated in section 2. We begin with the membership of X-Ray-

CorrectionFd(S1, . . . , Sm) and Similar-SolutionFd(S1, . . . , Sm) in the class NP.
Given an instance (f1, . . . , fm) or F1, respectively, one would, of course, like to use
as a certificate a corresponding set F or F2, respectively. If the set is available and
polynomial in the encoding length, the conditions can be checked efficiently. Let us
call a set F support consistent if for each of the m directions the support of the X-ray
XSi

F is a subset of the support of the data function fi, i.e.,

{T ∈ AZ(Si) : XSi
F (T ) �= 0} ⊂ Ti for i = 1, . . . ,m,

where

Ti = {T ∈ AZ(Si) : fi(T ) �= 0} for i = 1, . . . ,m.

In fact, every support consistent solution is a subset of the grid

G = Z
d ∩

m⋂
i=1

⋃
T∈Ti

T,

and G contains only polynomially many points v1, . . . , vk of polynomially bounded
size.

Since, in general, errors are allowed we cannot restrict ourselves to support consis-
tent solutions. But then not every solution must consist of lattice points whose binary
size is bounded by a polynomial in the input. The next lemma shows, however, that
there always exist solutions of polynomial size.

Lemma 4.1. Let γ ∈ N be a constant. Further, for i = 1, . . . ,m let fi : AZ(Si) →
N0 be a data function with finite support, and let F ∈ Fd be such that

m∑
i=1

||XSi
F − fi||1 ≤ γ

m∑
i=1

||fi||1.

Then there exists a finite lattice set F ∗ ∈ Fd of binary size that is bounded by a
polynomial in the binary size of (f1, . . . , fm) with

|F | = |F ∗| and

m∑
i=1

||XSiF
∗ − fi||1 =

m∑
i=1

||XSiF − fi||1 for i = 1, . . . ,m.
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236 ANDREAS ALPERS AND PETER GRITZMANN

Proof. Without loss of generality we may assume that the grid G contains the
origin. Now, for v1, v2 ∈ G and i, j = 1, . . . ,m with i �= j, the point of intersection
of the two lines v1 + Si and v2 + Sj has binary size that is bounded by a polynomial
in the binary size of (f1, . . . , fm). Hence there is a constant λ of polynomial size
such that λ[−1, 1]d contains all such intersections and such that for every v ∈ G and
i = 1, . . . ,m the line v + Si contains at least two lattice points of λ[−1, 1]d. Let

T = G + {S1, . . . , Sm}, k = max

{
mλ, γ

m∑
i=1

||fi||1

}

and

W = (1 + k)λ[−1, 1]d, C = W \
(
λ[−1, 1]d

)
.

Then each line v+Si with v ∈ G intersects the annulus C in at least 2k lattice points.
Now, if q ∈ F \W , then there is at most one line in T that passes through q. We will
successively replace the points of F \W by points in C. Let us deal first with those
points of F \W which are met by one of the X-ray lines in T . We replace such points
q one by one by the lattice point of C closest to q on that line with smallest �∞ norm
among all such points which have not previously been inserted. By the choice of k
there are always enough points of C on each line.

After having handled all such points we replace all points q ∈ F \ W that are
not met by any of the X-ray lines by a set of points of the same cardinality on the
boundary of W that is disjoint from any line in T . An elementary lattice point count
shows that by the choice of k a set of appropriate cardinality always exists. This way
we obtain a finite lattice set F ∗ with |F | = |F ∗|. By construction, the X-ray images
of F and F ∗ coincide on each line of T . Also the total sums for F and F ∗ on all other
lines are the same. This proves the assertion.

It follows now directly from Lemma 4.1 that X-Ray-CorrectionFd(S1, . . . , Sm)
and Similar-SolutionFd(S1, . . . , Sm) are indeed in NP.

For m = 2 the result of Lemma 4.1 can be sharpened. It is not just possible to
avoid points “too far out” but it suffices to consider only instances and solutions “with
no empty line in between.” To be precise, we call a data function f : AZd(S) → N0

consecutive if for v1, v2, v3 ∈ Z
d it is true that f(v2 + S) �= 0 whenever f(v1 +

S) �= 0, f(v3 + S) �= 0, and v2 + S ⊂ conv(v1 + S) ∪ (v3 + S). Further, an m-
tuple (f1, . . . , fm) of data functions with respect to S1, . . . , Sm is called consecutive if
f1, . . . , fm are consecutive. Similarly, a finite lattice set F is called consecutive if and
only if (XS1

F, . . . ,XSm
F ) is consecutive. It is clear that for m = 2 we can always

replace a given instance of any of our problems by an equivalent consecutive one.
Now we can give the proof of Corollary 2.6.
Proof of Corollary 2.6. Let first m ≥ 3 and let us begin with X-Ray-CorrectionFd

(S1, . . . , Sm).
Let (f1, . . . , fm) be an instance of ConsistencyFd(S1, . . . , Sm). Then (f1, . . . , fm)

is also an instance of X-Ray-CorrectionFd(S1, . . . , Sm). Suppose first that no set
F ∈ Fd exists with

∑m
i=1 ||XSiF − fi||1 ≤ m − 1. Then, of course, (f1, . . . , fm) is a

no-instance of ConsistencyFd(S1, . . . , Sm).
Thus, suppose there is a set F ∈ Fd with

∑m
i=1 ||XSi

F − fi||1 ≤ m − 1. Let
||f1|| = · · · = ||fm||. In polynomial time we can construct a line T ∗ ∈ AZ(S1) with

T ∗ ∩
⋃

T∈Ti

T ∩
⋃

T∈Tj

T = ∅ for all i �= j.
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ON STABILITY IN DISCRETE TOMOGRAPHY 237

Now let f∗
1 (T ) = f1(T ) for T ∈ AZ(S1) \ {T ∗} and f∗

1 (T ∗) = m − 1.
Then, clearly, (f∗

1 , f2, . . . , fm) is a yes-instance of X-Ray-CorrectionFd(S1, . . . , Sm)
if and only if (f1, f2, . . . , fm) is a yes-instance of ConsistencyFd(S1, . . . , Sm).
The result, therefore, is that ConsistencyFd(S1, . . . , Sm) reduces polynomially to
X-Ray-CorrectionFd(S1, . . . , Sm). Since by [8] the former is NP-hard, so is the
latter.

Next, let F1 be an instance of UniquenessFd(S1, . . . , Sm). Of course, F1 is also
an instance of Similar-SolutionFd(S1, . . . , Sm). Let F2 ∈ Fd with |F1| = |F2| and∑m

i=1 ||XSi
F1 − XSiF2||1 < 2(m − 1). Then by Theorem 2.1, F2 is tomographically

equivalent to F1. Hence F1 is a yes-instance of UniquenessFd(S1, . . . , Sm) if and
only if F1 is a yes-instance of Similar-SolutionFd(S1, . . . , Sm). Since Unique-

nessFd(S1, . . . , Sm) is NP-hard by [8] this concludes the proof for m ≥ 3.
The case m=1 is trivial, so let m=2. The fact that Similar-SolutionFd(S1, S2)

is in P follows in conjunction with Theorem 2.1 directly from the polynomial-time
solvability of UniquenessFd(S1, S2).

Now let (f1, f2) be an instance of X-Ray-CorrectionFd(S1, S2). Without loss
of generality let (f1, f2) be consecutive. Clearly, (f1, f2) is a yes-instance if and
only if there exist consecutive and consistent functions gi : AZ(Si) → N0 i = 1, 2

with
∑2

i=1 ||gi − fi||1 ≤ 1. On the one hand, there are at most ‖f1‖1 + ‖f2‖1 + 1
many different choices of pairs (g1, g2) of such functions; hence all such pairs can
be enumerated in polynomial time. On the other hand, for each choice (g1, g2) it
can be checked in polynomial-time whether it is a yes-instance of ConsistencyFd

(S1, S2).
Finally we will show that Nearest-SolutionFd(S1, S2) can be solved in poly-

nomial time. (Again, the case m = 1 is trivial.)
Proof of the polynomial-time solvability of Nearest-SolutionFd(S1, S2). Let

(f1, f2) be an instance of Nearest-SolutionFd(S1, S2). Without loss of generality
we may assume that (f1, f2) is consecutive. Also, since the empty set is a feasible
solution with error ‖f1‖1 + ‖f2‖1, we know that there is always a solution within the
grid G′ that is obtained from G by adding for i = 1, 2 to the support of fi the next
‖f1‖1 + ‖f2‖1 lattice lines parallel to Si and taking all intersections of any two of the
extended two sets of parallel lines. Then G′ contains at most (2‖f1‖1+‖f2‖1)(‖f1‖1+
2‖f2‖1) lattice points which can all be determined in polynomial time. Let N = |G′|,
and let M denote the number of different lines parallel to S1 or S2 that meet G. The
points of G′ will be the candidate points among which we will choose a solution.

Further, an optimal solution has at most 2 max{‖f1‖1, ‖f2‖1} points. Therefore
it suffices to solve at most that many instances with the same data but the additional
constraint that the solution F has cardinality γ.

Let F ∈ Fd with |F | = γ. Then we have by Lemma 3.1

||XS1F − f1||1 + ||XS2F − f2||1
= 2

∑
T∈A+

1

(
XS1F (T )−f1(T )

)
− |F |+‖f1‖1 + 2

∑
T∈A+

2

(
XS2F (T )−f2(T )

)
− |F |+‖f2‖1

= 2

⎛
⎝ ∑

T∈A+
1

(
XS1F (T ) − f1(T )

)
+

∑
T∈A+

2

(
XS2F (T ) − f2(T )

)⎞⎠− 2γ + ‖f1‖1 + ‖f2‖1,

where A+
i = {T ∈ AZ(Si) : XSiF (T ) − fi(T ) > 0} for i = 1, 2.
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238 ANDREAS ALPERS AND PETER GRITZMANN

Hence it suffices to find a finite lattice set F with |F | = γ that minimizes the sum
of the excess of XSiF (T ) over fi(T ).

Introducing one 0-1-variable for each candidate point of G′, taking the incidence
matrix A ∈ {0, 1}M×N whose rows correspond to the X-ray lines and whose columns
correspond to the candidate points, collecting the X-ray data in a right-hand b ∈ N

M
0 ,

and using the notation 11 for a vector of ones of appropriate size, we can formulate
this task as an integer linear programming problem.

11T y → min
s.t. Ax ≤ b + y

11Tx = γ
x ∈ {0, 1}N , y ∈ N

M
0 .

Its linear programming relaxation can then be stated as the task to find a real vector
solving

11T y → min

s.t. C

(
x
y

)
≤ c,

where

C =

(
AT 11 −11 −IN IN 0
−IM 0 0 0 0 −IM

)T

and c = (b, γ,−γ, 0, 11, 0)T ,

and where IM and IN denote the appropriately sized unit matrices.
We show that C is totally unimodular. Clearly it suffices to show that the sub-

matrix

B =

(
A
11T

)

is totally unimodular. But this follows from the fact that each collection of rows from
B can be split into two parts such that the difference of the sums of the rows in the
first and in the second part is a vector with coefficients in {−1, 0, 1} (see [18]). This
is trivial if the collection does not involve the last row of B since the rows of A can be
partitioned into two sets that correspond to the two directions and each column of A
contains exactly two entries 1, one corresponding to S1 and one corresponding to S2.
If, on the other hand, the last row is involved, take it as one part of the partition.

One can now use any polynomial-time linear programming algorithm to solve the
task.
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