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Abstract

This study focuses on the numerical investigation of the broadband noise generated by a low-
Mach-number flow passing through ducted diaphragms. The goal of the study is to develop a
fast and accurate tool based on a stochastic noise prediction method. Various noise prediction
techniques including a direct approach and different hybrid approaches were implemented and
were compared against experimental data. The experimental data was acquired performing in-
duct aeroacoustic measurements on the test campaign installed in the anechoic chamber of the
von Karman Institute for Fluid Dynamics. The measured data was post-processed using a multi-
port method to identify the active source.

The scale-resolved flow data is provided from compressible Large Eddy Simulation. The appli-
cability and the accuracy of a hybrid approach that combines Lighthill’s analogy and Green’s
function for sound generation and radiation, respectively, are investigated. A tailored Green’s
function is proposed using the mode-matching technique to account for the scattering of single
and tandem diaphragms in cylindrical ducts. Unsteady flow data required for the noise predic-
tion approach is provided using the LES data, and alternatively through a stochastic method.
The latter, namely ‘Stochastic Noise Generation and Radidation’ (SNGR) method, synthesizes
turbulent velocity field satisfying the two-point statistics of a target mean flow. A grouping
scheme for the noise sources based on the octree structure is introduced to minimize the mem-
ory requirements and further to reduce the computational cost. Comparison of the SNGR results
and the LES predictions and measured data revealed that promising noise predictions can be
achieved using the SNGR method given a proper anisotropy model and the spectral decay rate.
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1 Introduction

1.1 Motivation and goal

Flow generated noise is an important problem encountered in almost every area of daily life.
Especially for environments where high velocity flows are of concern, such as aircrafts, the
noise generated by the flow itself and its interaction with the surrounding structures, can signif-
icantly reduce human comfort, and even be hazardous in particular conditions, unless measures
are taken. Although it is a conventional problem that has existed for a long time throughout
history, it has been less than a century since substantial explanations were developed for the
underlying mechanism of flow noise generation. Today, it remains as a challenging research
problem to predict the noise generated by complex flows in real engineering applications, and
there are many ongoing research projects focusing on different application areas. Among these,
flow noise in aircrafts is of particular concern due to reaching substantially high levels.

There are various noise mechanisms in an aircraft, generating different levels of noise during
different phases of the flight. The noises coming from the sources like the engines, high-lift
devices, landing gear etc., which can be grouped under aircraft exterior noise, has been exten-
sively investigated both in the past and in ongoing research projects. There exist, on the other
hand, a noticeable gap in the literature for the studies investigating the interior noise which
is mainly due to the Environmental Conditioning Systems (ECS), also known as the Heating,
Ventilation and Air Conditioning (HVAC) systems. Two particular examples of aircraft noise to
which HVAC noise has a significant contribution are the ‘ramp noise’ and the ‘cockpit noise’.
For example, it was reported in [32] that the cockpit noise in an F16 jet aircraft is weighted by
around 10 dB when maximum defog is switched on. As it will be discussed later in the thesis, a
source causing a 10 dB increase in the noise spectrum can easily be considered to be dominant.

This HVAC system noise problem is not only studied in aircraft research, but indeed, is of high
concern to the research related to transportation in general. With the increasing trend to use
more and more electric vehicles in public and private transportation, HVAC noise problem has
gained even more importance: in the absence of combustion engine noise, the noise coming
from the HVAC systems simply became more audible. A significant contributor to the HVAC
noise is the flow noise generated by various flow restrictions installed in the HVAC systems.

Flow restrictions are typical elements of HVAC systems and ECS for building, automotive,
railway and aircraft applications. They can be fixed in position, i.e. diaphragms and orifices,
or variable, i.e valves, and are mainly used to balance the mass flow rates between different
branches of a ventilation network. Diaphragms and orifices offer an easy and efficient solution to
this problem. However, they can also generate substantial broadband noise due to the turbulence
they generate and/or interact with, and can even whistle in some particular conditions. Since a
posteriori mitigation solutions aimed at ensuring passenger satisfaction or quiet workplaces
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may be quite expensive, it is often preferable to perform an acoustic analysis at design stage in
order to predict whether the system will meet the desired noise targets. The noise generation
mechanisms associated with the interaction of the flow with solid surfaces are rather complex.
Therefore, designing an HVAC system to achieve a target noise level is not possible without
optimization, which makes having a fast and reliable tool essential to predict flow generated
noise in ducted systems.

The goal of this PhD study was determined as developing a numerical tool to predict the broad-
band noise in ducted flows, which can be used in HVAC noise problems. The complex geometry
of a typical HVAC system was simplified to a model problem which still reproduces most of
the aeroacoustic installation effects observed in a real system while redundant complexities are
avoided, which could cause losing the focus. The main focus here is placed on the stochastic
approaches for being a significantly cheaper, but less accurate alternative to the scale-resolved
prediction methods.

The details of the model problem designed for the PhD study, and an overview of the existing
approaches for flow noise prediction are presented in the next two sections.

1.2 Problem definition

A configuration with tandem diaphragms installed in a cylindrical duct was selected to rep-
resent the HVAC noise. The schematic representation of the ducted diaphragms is provided
in Figure 1.1. Given the two diaphragms, the upstream diaphragm induces a detached turbu-

Figure 1.1: Shematic representation of the model problem for HVAC noise.

lent flow, convected through the downstream diaphragm. This mechanism is known to generate
significant noise, above the level that would be emitted by the diaphragms if they were not in-
teracting (Sengissen et al. [82]). The diaphragms are designed to be identical, offering a circular
centered opening with a blockage ratio of 0̃.68. Use of such a simple geometry allowed han-
dling the noise propagation problem analytically, without making any apparent sacrifice from
the complexity of the resulting interaction of the turbulence with solid surfaces. The duct inner
diameter, D, is 0.15 m and the separation length of the two diaphragms is set to be 2D. The rea-
soning behind setting this separation length is discussed in Section 3.3.2. To better understand
the installation effects of the downstream diaphragm, a single diaphragm configuration, which
is obtained by removing the downstream diaphragm, is also investigated.
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1.3 An overview of the numerical noise prediction approaches

1.3 An overview of the numerical noise prediction ap-
proaches

Use of Computational Fluid Dynamics (CFD) to predict noise generated by flows is a relatively
recent concept, dating back to mid 1980s, while CFD for turbulence prediction has been avail-
able for more than half a decade. Such a slow evolution is due to the significantly higher costs
for predicting the acoustic fluctuations of a given flow field compared to predicting its turbulent
fluctuations. The discipline investigating the flow noise prediction using unsteady computa-
tional data is called ‘Computational Aeroacoustics’ (CAA). The name was introduced in the
work of Hardin et Lamkin [25]. This initial study aimed at computing the sound generation by
uniform flow over a cylinder at extremely low Reynolds numbers (around 200). They computed
the cylinder noise using some integral solutions valid at low Mach numbers (Crow [17]). Later
on, many different applications were reported in the literature, using a number of approaches for
noise prediction. A classification of existing CAA approaches is depicted in Figure 1.2, where
the basic distinction is made regarding the noise prediction method being ‘direct’ or ‘hybrid’.

Direct approaches simply solve the compressible ‘Navier-Stokes’ equations, which describe
both the flow and the acoustic fields. The unsteady flow field is obtained using one of the
unsteady flow simulation techniques: Large Eddy Simulation (LES), Detached Eddy Simula-
tion (DES), or Unsteady Reynolds Averaged Navier-Stokes (U-RANS) if only large scales are
needed. Although the idea is straightforward, the applicability of such approaches are very lim-
ited due to their excessive computational costs. Even with today’s computers, it is not possible
to simulate, within an acceptable time-range, a commercial flow accurately enough to resolve
the acoustic field inside.

Hybrid approaches offer a relatively cheaper solution to flow noise prediction albeit introduc-
ing some simplifications over the nonlinearity of the problem. The fundamental assumption
of this type of approaches is that sound propagation in flow is a linear process, and therefore
can be treated separately from the generation of noise, which is highly nonlinear. This assump-
tion allows solving the incompressible flow first to generate the source data, and calculating
the propagation afterward. There are different methodologies to achieve this based on an in-
compressible LES, or alternatively a RANS simulation. Note that semi-empirical methods are
usually not counted among CAA methods. However, they are added in this classification to
indicate that there exists methods in the literature relating RANS solutions to noise spectrum
data through semi-empirical formulations [55]. A method based on LES is called Split-based
method, in which a reduced set of compressible equations are solved using the incompressible
unsteady pressure data to predict density fluctuations. Alternatively, ‘aeroacoustic analogies’
provide a powerful tool to predict sources of noise based on the unsteady incompressible flow
data. Once the sources are calculated, the propagation problem is solved either using Green’s
functions, or linearized equations of motions such as Linearized Euler Equations (LEE) and
Acoustic Perturbation Equations (APE). The unsteady incompressible solutions are usually ob-
tained performing an LES. An alternative is called the stochastic approaches, in which the un-
steady turbulent velocity field is synthesized based on a RANS solution such that the resulting
field satisfy the two point statistics of the mean turbulent flow. The resulting synthetic velocity
field is again used to predict noise sources based on aeroacoustic analogies. This study focuses
on evaluation the applicability of a stochastic approach in ducted diaphragm flows. To solve the
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Figure 1.2: Classification of CAA methods. Arrow direction show increasing accuracy.

propagation problem, the Green’s function approach is adopted, and an analytical formulation
for ducted diaphragm cases is introduced. The organization of the analyses and the discussions
provided in the thesis is explained in the next section.

1.4 Organization of the thesis

The theoretical concepts required for a better understanding of the thesis work are presented
in Chapter 2. Fundamental theory of acoustics, some applied methods, and methods to relate
turbulence and flow noise generation are discussed here. The details of the experimental setup
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used in the study, and the calibration procedures are explained in Chapter 3. In Chapter 4, the
post-processing methods implemented for the identification of the scattering characteristics of
various components on the test rig, and the flow noise source are discussed and the results
are presented. The details of the numerical flow simulations performed in the thesis study are
given in Chapter 5. The numerical analysis included the investigation of a compressible LES
for unsteady flow prediction, and axisymmetric RANS computations for prediction of the mean
flow properties. Derivation of an analytical Green’s function to solve sound propagation prob-
lem taking into account the scattering from the single and tandem diaphragms is presented in
Chapter 6. The validation of the resulting analytical functions against a commercial numerical
solver is also provided in this chapter. Various noise prediction approaches are discussed and the
predictions from these approaches obtained using the unsteady LES data are compared in Chap-
ter 7. The noise prediction approaches discussed in this chapter include both direct and hybrid
approaches. In Chapter 8, the stochastic approach adopted in this study is discussed in detail.
The implementations involved using mean LES data, and alternatively the RANS solutions to
define the target flow parameters. The comparison of the noise predictions using the stochastic
approach, and the unsteady LES based predictions are also presented here. And finally, some
concluding remarks about the study are discussed in Chapter 9.

1.5 Published work

The study discussed in this thesis is based on several publications. The chronological order of
these publications are as follows. A first attempt to apply SNGR method in ducted diaphragm
noise problem was investigated in a conference paper presented in 20th AIAA/CEAS Aeroacous-
tics Conference [35]. Derivation of tailored Green’s function for ducted diaphragms, together
with implementation of Lighthill’s analogy for flows in such configurations were discussed in a
journal paper published in Acta Acustica Unites with Acustica [36]. The methods developed for
system identification of ducted diaphragms was presented in a journal paper published in The
Journal of Acoustical Society of America [34]. Finally, implementation of SNGR method with
modified time filter was submitted to the International Journal of Aeracoustics [37].
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2 Theory

A summary of the theoretical basis used in this study is provided in this chapter. The con-
cepts discussed include fundamental acoustic equations, acoustic field inside cylindrical ducts,
modal decomposition and aeroacoustic analogies. Further analyses can be found in Rienstra
and Hirschberg [72], Jacobsen [31], Schram [80] on duct acoustics, and in [80] on aeroacoustic
analogies.

2.1 Fundamental relations of acoustics

2.1.1 Governing equations of fluid motion

The fundamental assumption made for analyzing a fluid flow is the continuum assumption. The
discrete structure of the fluid molecules is neglected, and fluid is assumed to consist of infinites-
imally small elements called ‘fluid particles’ which contain sufficient amount of molecules to
show average molecular characteristics. Once the continuum assumption is made, a given fluid
flow can be described in terms of a number of variables which are well-defined everywhere
inside the fluid. This subsection briefly discusses the governing equations for fluid motion. No
derivations for governing equations are provided since fluid dynamics is not the focus of this
thesis. A detailed discussion can be found in the books of Kundu et al [43] and Pope [66].

Applying the laws of conservation on a fluid particle, the conservation equations in differential
form are obtained as follows:

∂ρ

∂t
+∇· (ρu) = 0, (2.1)

ρ
Dui

Dt
= ρgi +

∂τi j

∂xi
, (2.2)

where ρ denotes the fluid density, u is the flow velocity, and g and τi j are the body and the
surface forces per unit volume, respectively. Eq. (2.1) is called the continuity equation, and
Eq. (2.2) is called the momentum conservation equation. D/Dt represents the material deriva-
tive, i.e. the time rate of change of a fluid particle on a frame following the particle and is defined
as;

D

Dt
= ∂

∂t
+u ·∇. (2.3)

For most of the engineering applications, the fluid is assumed to be ‘Newtonian’, which implies
a linear relation between the stress and the rate of strain. Considering that the fluid is Newtonian
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and Stokes assumption is valid, a linear relation for τi j can be defined as;

τi j =−
(

p + 2

3
µ(∇·u)

)
δi j +2µei j , (2.4)

where p is pressure, µ is the fluid viscosity, and ei j is the strain rate tensor given as;

ei j ≡ 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
.

Eq. (2.4) is called the ‘constitutive equation’ for a Newtonian fluid. Substituting the constitutive
equation in momentum conservation equation as follows;

ρ
Dui

Dt
=− ∂p

∂xi
+ρgi + ∂

∂x j

[
2µei j − 2

3
µ(∇·u)δi j

]
, (2.5)

the general form of the Navier-Stokes equation is obtained.

2.1.2 Wave equations

Acoustic waves in a fluid medium occur in the form of pressure fluctuations which propagate
along the medium through the exchange of energy among particles next to each other. Such an
energy exchange also induces a fluctuation in the fluid density. Assuming ideal gas and adiabatic
process, i.e. no heat exchange, the isentropic relation between the pressure and density of a fluid
is written as;

p =Cργ, (2.6)

where C is a constant and γ is the specific heat ratio, which is also a constant given a homoge-
nous fluid at a constant temperature. The mean and the fluctuating parts of pressure, p(t ) and
density ρ(t ) can be separated as follows:

p(t ) = p0 +p ′(t ), (2.7)
ρ(t ) = ρ0 +ρ′(t ), (2.8)

where the subscript 0 and the prime denote the mean and fluctuating parts, respectively. Replac-
ing Eqs. (2.7) and (2.8) into Eq. (2.6) and taking the time derivative as;

∂
(
p0 +p ′)
∂t

=C
∂
(
ρ0 +ρ′)γ
∂t

,

∂p ′

∂t
=Cγργ−1∂ρ

′

∂t
,

∂p ′

∂t
= c2∂ρ

′

∂t
, (2.9)

the pressure and density fluctuations can be related through a constant c ≡√
Cγργ−1 =√

γp/ρ,
which is defined as the ‘speed of sound’.

8



2.1 Fundamental relations of acoustics

The acoustic wave propagation equation is obtained by linearizing and reorganizing the conti-
nuity and the momentum conversation equations. Assuming that ρ′ ¿ ρ0 and the medium is at
rest, the continuity equation given in Eq. (2.1) can be reduced to the following expression:

ρ0∇·u+ ∂ρ′

∂t
= 0. (2.10)

Replacing time derivative of the density fluctuation in Eq. (2.10) using Eq. (2.9) yields

ρ0∇·u+ 1

c2

∂p ′

∂t
= 0. (2.11)

Euler’s equation of motion for a fluid particle (conservation of momentum) is given as;

ρ
Du

Dt
+∇p = 0. (2.12)

Inserting Eq. (2.7) and (2.8) into Eq. (2.12), assuming homogeneous medium and neglecting
higher order terms, linearized Euler equation is obtained as follows:

(
ρ0 +ρ′)( ∂

∂t
+u ·∇

)
u+∇(

p0 +p ′)= 0,

ρ0
∂u

∂t
+∇p ′ = 0, (2.13)

Taking the time derivative of Eq. (2.11) and the divergence of Eq. (2.13), the two expressions
are merged to yield

ρ0∇· ∂u

∂t
+∇2p ′ = ρ0

∂∇·u

∂t
+ 1

c2
0

∂2p ′

∂t 2
,

∇2p ′− 1

c2
0

∂2p ′

∂t 2
= 0. (2.14)

Eq. (2.14) is called the ‘linearized wave equation’. c0 denotes the uniform speed of sound in the
homogeneous and isentropic medium. In a time harmonic-system, any unsteady variable, ξ(x, t )
is defined as;

ξ= ξ̂(x)e iωt+φ, (2.15)

where ξ̂ is the complex amplitude dependent on the position, and ω and φ denote the frequency
and the phase, respectively. For physical quantities such as the acoustic pressure fluctuation,
only the real parts of the complex amplitude and the exponential term are taken into account as
follows:

p ′ =ℜ
{

p̂e iωt+φ
}
= ∣∣p̂∣∣cos

(
iωt +φ)

. (2.16)

The second time derivative of the acoustic pressure fluctuation then becomes

∂2p ′

∂t 2
=−ω2

∣∣p̂∣∣cos
(
iωt +φ)

. (2.17)

9
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Inserting Eqs. (2.16) and (2.17) into Eq. (2.14) yields

∇2p̂ cos
(
iωt +φ)+ ω2

c2
0

p̂ cos
(
iωt +φ)= 0, (2.18)

which can be easily reduced to the ‘Helmholtz equation’:

∇2p̂ +ω2
∗p̂ = 0, (2.19)

where ω∗ ≡ω/c0 is called the free-field wavenumber. |p̂| is denoted as p̂ in Eq. (2.19) for better
readability. Note that Eq. (2.19) holds also true for the complex variable p ′. The Laplacian
operator, ∇2 takes the form

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (2.20)

in a Cartesian coordinate system, while in a spherical coordinate system, it is written as;

∇2 = 1

r 2

∂

∂r

(
r 2 ∂

∂r

)
+ 1

r 2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

r 2 sin2ϑ

∂2

∂ϕ2
, (2.21)

and in a cylindrical coordinate system, it becomes

∇2 = 1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r 2

∂2

∂ϑ2
+ ∂2

∂x2
. (2.22)

2.2 Duct acoustics

The acoustic field inside the duct illustrated in Figure 2.1 which has constant cross-section and
x-independent linear boundary conditions can be obtained as an infinite summation of special
solutions called ‘acoustic modes’. For simple duct geometries such as rectangular, circular, and
in particular cases elliptic, those acoustic modes can be analytically calculated using separation
of variables.

Direct approaches Hybrid approaches

CAA for Noise Generation and Propagation

Semi-empirical 

methods

Unsteady-

compressible data 

by

• DNS

• LES

• DES

Acoustic 

fluctuations

Using semi-empirical 

equations to obtain noise 

spectrum

LES based

Stochastic

RANS based

Unsteady velocity 

field synthesized

Split Methods

Density fluctuations are 

computed based on pressure 

fluctuations
• Green’s function

• LEE

• APE

• …

Velocity and 

pressure 

fluctuations 

obtained

Source terms obtained 

modifying cons. 

equations

Aeoroacoustic

analogies
Sound Propagation 

Problem

• Analytical

• Semi-analytical

• Numerical

y

x

z

Figure 2.1: A duct with constant cross-section.
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2.2 Duct acoustics

Considering the hard-walled cylindrical duct case of the this study, Helmholtz equation for the
complex variable p ′ is given as;

∂2p ′

∂r 2
+ 1

r

∂p ′

∂r
+ 1

r 2

∂2p ′

∂ϑ2
+ ∂2p ′

∂x2
+ω2

∗p ′ = 0, (2.23)

with the boundary condition for the rigid duct wall

∂p ′

∂r

∣∣∣
r=a

= 0, (2.24)

where a is the duct radius. A solution for Eq. (2.23) can be assumed of the form

p ′ = F (x)G(r )H(ϑ)e iωϑ. (2.25)

Inserting Eq. (2.25) in Eq. (2.23) yields

1

G

d2G

dr 2
+ 1

rG

dG

dr
+ 1

r 2H

d2H

dϑ2
+ 1

F

d2F

dx2
+ω2

∗ = 0. (2.26)

The underlined term in Eq. (2.26) depends only on x and is the only x-dependent term, which
is possible only if it equals a constant, −k2:

1

F

d2F

dx2
=−k2, (2.27)

d2F

dx2
+k2F = 0. (2.28)

Eq. (2.28) has a general solution of the form

F (x) = Ae−i kx +Be+i kx . (2.29)

Replacing the underlined term in Eq. (2.26) using Eq. (2.27) and multiplying the resulting ex-
pression by r 2,

r 2

G

d2G

dr 2
+ r

G

dG

dr
+ 1

H

d2H

dϑ2
+ r 2 (

ω2
∗−k2)= 0 (2.30)

is obtained. The underlined term in Eq. (2.30) is again to be equal to a constant, −m2 similar to
the case in Eq. (2.26):

1

H

d2H

dϑ2
=−m2, (2.31)

d2H

dϑ2
+m2H = 0. (2.32)

Once again, a general solution is available for Eq. (2.32) as follows:

H(ϑ) =Ce±i mϑ. (2.33)

Note that H should be periodic with a period 2π due to the axisymmetry of the duct:

H(ϑ) = H(ϑ+2π). (2.34)

11



Theory

Replacing ϑ in Eq. (2.33) with (ϑ+2π) is then to give the same solution, which is only achievable
if m is an integer. The only function in Eq. (2.25) for which a general solution is yet to be found
is G(r ). Inserting Eq. (2.31) into Eq. (2.30), and multiplying it by G/r 2 gives the following
expression:

d2G

dr 2
+ 1

r

dG

dr
+G

(
α2 − m

r 2

)
= 0, (2.35)

where α is defined in the following relation:

α2 =ω2
∗−k2. (2.36)

Eq. (2.35) is called the ‘Bessel equation’ and a general solution is provided as;

G(r ) = D Jm(αr )+EYm(αr ), (2.37)

where Jm and Ym are Bessel functions of the first and second kind, respectively. Jm and Ym

are plotted for different m values in Figure 2.2. It is seen that for r = 0, only Jm has a finite

Figure 2.2: Bessel functions of the first and the second kind.

value while all Ym functions tend to −∞ which is obviously not physical. To eliminate the

12



2.2 Duct acoustics

non-physical part, E is to be zero, yielding

G(r ) = D Jm(αr ). (2.38)

Since G is the only r -dependent function, the boundary condition given in Eq. (2.24) reduces to
the following expression:

dG

dr

∣∣∣
r=a

= DαJ ′m = 0, (2.39)

where J ′m is the derivative of the Jm with respect its argument. For Eq. (2.39) to be true, αa =
αmµa should be satisfied where αmµa corresponds to the µth non-trivial, non-negative zero of
J ′m . Note that k was related to α in Eq. (2.36). Therefore for α taking only particular values,
αmµ, k becomes

kmµ =
√
ω2 −α2

mµ. (2.40)

The solutions given by Eqs. (2.29), (2.33) and (2.38) are called the ‘duct modes’, and the
corresponding eigenvalues, kmµ, m and αmµ are called the ‘axial’, ‘azimuthal’, and ‘radial’
wavenumbers, respectively. It should be noted that all αmµ values are real, while it is the case
for only a finite number of kmµ. Figure 2.3 presents the axial wavenumbers distributed in the
complex plane for a given (m,ω∗) pair, where it is seen that only four of the wavenumbers lie on
the real axis. The importance of the axial wavenumbers being real or complex will be discussed
below.

The radial modes given in Eq. (2.38) satisfying the boundary condition in Eq. (2.39) are not
normalized. A more convenient form can obtained by scaling each mode to satisfy the orthonor-
mality condition given as; ∫ a

0
rUmµ(r )2dr = 1, (2.41)

where

Umµ(r ) ≡ Nmµ Jmµ(αmµr ). (2.42)

Using the integration formula given as;∫
xCm(βx)C̃m(βx) = 1

2

(
x2 − m2

β2

)
Cm(βx)C̃m(βx)+ 1

2
x2C ′

m(βx)C̃ ′
m(βx),

Eq. (2.41) becomes∫ a

0
rUmµ(r )2dr = 1

2

(
r 2 − m2

α2
mµ

)
U 2

mµ+
1

2
r 2U ′

mµU ′
mµ

∣∣∣a

r=0
(2.43)

= 1.

The term U ′
mµ equals 0 by definition, as αmµ is selected to make J ′m zero, causing the last term

in Eq. (2.43) to be dropped. The right hand side of Eq. (2.43) becomes zero at r = 0, since either

13



Theory

Figure 2.3: The axial wavenumbers for a given ω= 3.

m or Jm(0) is zero. The normalization factor Nmµ is then obtained as follows:

1

2

(
a2 − m2

α2
mµ

)
N 2

mµ Jm(αmµa)2 = 1,

Nmµ =
[

1

2

(
a2 − m2

α2
mµ

)
Jm(αmµa)2

]−1/2

. (2.44)

This completes the analysis to obtain a general solution to define the acoustic field inside a
cylindrical duct. The acoustic field is given as a summation of the duct modes in the following
form:

p ′(x,r,ϑ) =
∞∑

m=−∞

∞∑
µ=1

(
Amµe−i kmµx +Bmµe+i kmµx

)
Umµ(r )e−i mϑ, (2.45)

where Amµ and Bmµ are the mode amplitudes. It was mentioned above that only a finite number
of axial wavenumbers are real although the summation given in Eq. (2.45) is infinite. For the
axial wavenumbers which are complex, the power term in the axial mode turn into a negative
real, causing the mode to exponentially decay. This means that only the modes with real axial
wavenumbers can propagate inside a duct. For the axial mode to be real, inside of the square

14



2.2 Duct acoustics

root given in Eq. (2.40) should be positive:

ω2 >α2
mµ. (2.46)

This leads to the following expression which represents the frequency limit fc for a given mode
to be real:

fc =
αmµc0

2πa
. (2.47)

Eq. (2.47) gives the minimum frequency for an acoustic mode (m,µ) to start propagating inside
the duct. The propagative modes at a given frequency are called ‘cut-on modes’, and similary,
the frequency limit given in Eq. (2.47) is called the ‘cut-on frequency’. A special case is ob-
tained for the frequency below the limit obtained for (m,µ) = (0,1), where only a single mode
can propagate along the duct. Substituting the corresponding values for (m,µ) in Eq. (2.45), it
reduces to a simple expression:

p ′ =
(

A01e−i kmµx +B01e+i k01x
)

. (2.48)

The acoustic wave obtained using Eq. (2.48) is called a ‘plane wave’ since p ′ depends only on
the axial component x. From the physical point of view, e∓i kmµx correspond to the right- and
left-going waves, respectively. This implies for an acoustic wave traveling inside a duct that
either Amµ or Bmµ is zero.

2.2.1 Effect of uniform mean flow

The solution given in Eq. (2.45) can be extended to the case where the acoustic field is convected
with a uniform mean flow. Defining the axial flow velocity, u0 = [u0,0,0]>, the linearized con-
tinuity equation given in Eq. (2.11) becomes

ρ0∇·u+ 1

c2
0

∂p ′

∂t
+ 1

c2
0

u0 ·∇p ′ = 0,

ρ0∇·u+ 1

c2
0

∂p ′

∂t
+ 1

c2
0

u0
∂p ′

∂x
= 0. (2.49)

Similarly, the momentum conservation equation given in Eq. (2.13) turns into

ρ0
∂u

∂t
+ρ0 (u0 ·∇)u+∇p ′ = 0,

ρ0
∂u

∂t
+ρ0u0

∂u

∂x
+∇p ′ = 0. (2.50)

Assuming time harmonic pressure and velocity fluctuations, Eqs. (2.49) and (2.50) can be writ-
ten as;

1

c2
0

(
iω+u0

∂

∂x

)
p ′+ρ0∇·u = 0, (2.51)

ρ0

(
iω+u0

∂

∂x

)
u+∇p ′ = 0. (2.52)
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The term ρ0u can be eliminated from Eqs. (2.51) and (2.52) to yield the convected wave equa-
tion:

1

c2
0

(
iω+u0

∂

∂x

)2

p ′−∇2p ′ = 0. (2.53)

Note that

1

c2
0

(
iω+u0

∂

∂x

)2

=
(
iω∗+M

∂

∂x

)2

, (2.54)

where the parameter M ≡ u0/c0 is called the Mach number. Similar to the no-flow case, a
solution in Fourier-Bessel modes can be obtained for the above eigenvalue problem as;

p ′(x,r,ϑ) =
∞∑

m=−∞

∞∑
µ=1

(
Amµe−i k+

mµx +Bmµe+i k−
mµx

)
Umµ(r )e−i mϑ, (2.55)

where the relation between the radial and axial wavenumbers are given as follows:

α2
mµ =

(
ω−Mkmµ

)2 −k2
mµ, (2.56)

k±
mµ =

−ωM ±
√
ω2 − (

1−M 2
)
α2

mµ

1−M 2
. (2.57)

Since the flow has only the axial component and separation of variables apply, the mean flow
is expected to effect only the axial modes. Therefore, the normalization of the radial modes
remains the same for the no-flow and uniform mean flow cases.

2.2.2 Sound propagation due to a point source inside a cylindrical duct

When there is a point source inside a cylindrical duct, the acoustic field generated by the source
located at x0 can be obtained solving the inhomogeneous convected wave equation:

∇2G −
(
iω∗+M

∂

∂x

)2

G = δ(x−x0), (2.58)

where G(x|x0) is the Green’s function representing the pressure field due to a unit point source,
δ. The Dirac function can be represented as;

δ(x−x0) = δ(r − r0)

r

1

2π

∫ ∞

−∞
e−iκ(x−x0)dκ

∫ ∞

−∞
e−i m(ϑ−ϑ0)dm, (2.59)

which immediately reduces to

δ(x−x0) = δ(r − r0)

r

1

2π

∫ ∞

−∞
e−iκ(x−x0)dκ

∞∑
−∞

e−i m(ϑ−ϑ0) (2.60)

since the solution should be periodic in azimuthal direction restricting m to take integer values
only. The solution to the inhomogeneous equation given in Eq. (2.58) is predicted to be of the
form

G (x,r,ϑ|x0,r0,ϑ0) =
∞∑

m=−∞
e−i m(ϑ−ϑ0)Gm(r, x) =

∞∑
m=−∞

e−i m(ϑ−ϑ0)
∫ ∞

−∞
Ĝm(r,κ)e−iκ(x−x0)dκ.

(2.61)
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2.2 Duct acoustics

Inserting Eqs. (2.60) and (2.61) into Eq. (2.58) yields

∂2Ĝm

∂r 2
+ 1

r

∂Ĝm

∂r
+

(
α2 − m2

r 2

)
Ĝm = δ(r − r0)

4π2r0
, (2.62)

where α is defined as;

α2 =Ω2 −κ2, (2.63)

andΩ=ω∗−κM . The solution of Eq. (2.62) is obtained by extending the homogeneous solution
to handle the source term on the right hand side as follows:

Ĝm(r,κ) = A(κ)Jm(αr )+ 1

8π
H(r − r0)

(
Jm(αr0)Ym(αr )−Ym(αr0)Jm(αr )

)
, (2.64)

where H(r − r0) is the Heaviside function. The boundary condition for the hard-wall duct is
once again given as;

Ĝ ′
m

∣∣
r=a = 0, (2.65)

where the prime denotes derivative with respect to the argument. The amplitude A(κ) can be
calculated substituting Eq. (2.64) into the boundary condition equation as follows:

Ĝ ′
m

∣∣
r=a =αAJ ′m + 1

8π
H

(
αJm0Y ′

m −αYm0 J ′m
)+ 1

8π
δ

(
αJm0Y ′

m −αYm0 J ′m
)∣∣

r=a = 0,

AJ ′ma =− 1

8π

(
Jm0Y ′

ma −Ym0 J ′ma

)
,

A = 1

8π

(
Ym0 − Jm0

Y ′
ma

J ′ma

)
. (2.66)

Note that since the point source is inside the duct, the condition r0 < a is always true, making
H = 1 and δ= 0. The terms Jm0, Ym0, Jma , Yma are short-hand notations for the Bessel functions
of the first and second kind calculated at (αr0) and (αa), respectively. Substituting the value of
A in Eq. (2.64), Ĝm can be written as;

Ĝm =


1

8π

(
Ym0 − Jm0

Y ′
ma

J ′ma

)
Jm , for r < r0

1

8π

(
Ym − Jm

Y ′
ma

J ′ma

)
Jm0, for r > r0

which can be given in a shorter form as;

Ĝm = 1

8π

(
Ym(αr>)J ′ma − Jm(αr>)Y ′

ma

J ′ma

)
Jm(αr<), (2.67)

where r> = max(r,r0) and r< = min(r,r0). In Eq. (2.67), both the numerator and denominator
can be written as αm times an analytical function, making Ĝm a meromorphic function with
isolated poles at α=αmµ satisfying Jm(αmµa)′ = 0. The integral given in Eq. (2.61)∫ ∞

−∞
Ĝm(r,κ)e−iκ(x−x0)dκ (2.68)
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can then be calculated using the residue theorem. Given a meromorphic function f (z) with
isolated poles b1, . . . ,bn in the complex plane enclosed in a simple contour γ, residue theorem
indicates that the line integral of f around γ can be evaluated as;∮

γ
f (z)d z = 2πi

∑
Res( f ,bk ), (2.69)

where Res( f ,b) is a residue of f . If f (z) can be expressed as a quotient of two functions,
f (z) = g (z)/h(z), where h(b) = 0 and h′(b) 6= 0, and if b is a simple pole, the residue equals;

Res( f ,b) = g (b)

h′(b)
. (2.70)

In Eq. (2.68), the integration contour is closed around the lower half-plane for x < x0 to enclose
the right-propagating modes, and around the upper half-plane for x > x0 to enclose the left-
propagating modes. Following Eq. (2.70), the derivative of the denominator of Ĝm with respect
to κ is given as;

dJ ′ma

dκ

∣∣∣
κ=κmµ

= Jm(αmµa)Qmµ, (2.71)

where

Q±
mµ =±a2 (

κmµ+ΩmµM
)(

1− m2

α2
mµ

)
. (2.72)

The ± sign refer to the right- and left-going modes, respectively. For α = αmµ, the Wronskian
given as;

Jm(x)Y ′
m(x)−Ym(x)J ′m(x) = 2

πx
(2.73)

reduces to

Jm(αmµa)Y ′
m(αmµa) = 2

πx
. (2.74)

Similarly the numerator of the term in parentheses in Eq. (2.67) reduces to
−Jm(αmµr>)Ym(αmµa)′ which can further be treated as;

−Jm(αmµr>)Ym(αmµa)′ =−Jm(αmµr>)Ym(αmµa)′
Jm(αmµa)

Jm(αmµa)
,

= 2

πx

−Jm(αmµr>)

Jm(αmµa)
. (2.75)

Calculating the residue using Eqs. (2.71) and (2.75) and substituting in the residue theorem,
Gm(r, x) is derived as;

Gm(r, x) = i

2π

∞∑
µ=1

Jm(αmµr<)Jm(αmµr>)

Qmµ Jm(αmµa)2
e−iκ(x−x0). (2.76)

Having r< and r> in pair, the distinction can now be removed, and the Green’s function for a
point source inside a cylindrical duct can be written as follows:

G(x,x0) = i

2π

∞∑
m=−∞

∞∑
µ=1

Jm(αmµr )Jm(αmµr0)

Qmµ Jm(αmµa)2
e−iκ(x−x0)−i m(ϑ−ϑ0). (2.77)
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2.2 Duct acoustics

2.2.3 Modal decomposition of the acoustic field inside a cylindrical duct

So far in the analyses provided in this section, finding the acoustic pressure at a given listener
point inside the duct was aimed at by performing a summation over the acoustic modes. In
this subsection, the problem will be reversed: given the acoustic pressure data at various points
inside the duct, the modal components will be calculated. The method is called ‘modal decom-
position’ and was devised by Åbom [3] as a higher order mode extension to the two-microphone
method of Chung et Blaser [15] which was valid only for the plane wave region. A revisit of the
method is provided below.

Following the analysis in Section 2.2.1, the pressure field at a point inside a cylindrical duct is
given as;

p ′(x,r,ϑ) =
∞∑

m=−∞

∞∑
µ=1

p+
mµUmµ(r )e−i k+

mµx−i mϑ+p−
mµUmµ(r )e+i k−

mµx−i mϑ, (2.78)

where p±
mµ correspond to the right-/left-going waves. Considering more than one listener points,

a system of equations can be constructed based on Eq. (2.78). Assuming Q cut-on modes, miµi

where (i = 1,2, . . . ,Q) and P listener points, x j where (y = 1,2, . . . ,P), a linear system is obtained
as;

p′ = Jp±, (2.79)

where p′
(P×1) = [p ′

x1
· · · p ′

xP
]> and p±

(2Q×1) = [p+
m1µ1

p−
m1µ1

· · · p+
mQµQ

p−
mQµQ

]>. The transfer ma-
trix between the measurements and right-/left-going waves, J, is constructed in the form of a
block matrix as;

J(P×2Q) =

J1,1 · · · J1,Q
...

. . .
...

JP,1 · · · JP,Q

 , (2.80)

where the generic block, Jp,q is defined as;

Jp,q ≡
[
Umqµq (r )e−i k+

mqµq xp−i mqϑp Umqµq (r )e i k−
mqµq xp−i mqϑp

]
. (2.81)

It is obvious from Eq. (2.79) that the modal components of any sound field can be calculated by
taking the inverse of the transfer matrix, J as follows:

p± = J−1p′. (2.82)

For J to be invertible it should be non-singular, i.e. it should contain at least 2Q linearly inde-
pendent rows, which immediately implies P ≥ 2Q. The matrix, J depends only on the listener
positions meaning that a proper positioning of the listeners is required to satisfy such a crite-
rion. Note that, it is possible to obtain an overdetermined system by setting P > 2Q with proper
positioning of listeners yielding a linearly independent system. In such a case, a direct inversion
is not possible. Moore-Penrose inversion (also called a ‘pseudo-inverse’) should be used instead
as follows:

J† = (J>J)−1J>. (2.83)
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Eq. (2.82) is then to be updated as;

〈p±〉 = J†p′, (2.84)

where 〈p±〉 denotes the least square estimate of p±. Constructing an overdetermined system
is of high practical importance. For real applications, either numerical or experimental, the
pressure data recorded at the listeners usually include non-acoustic content, i.e. error, as well.
The pseudo-inverse gives a least square estimation, which eliminates to a certain extent the error
in the input data.

2.3 Flow noise prediction through aeroacoustic analogies

The governing equations of the acoustic perturbations and the fluid flow are the same. The fluc-
tuation data obtained using an unsteady compressible set of flow equations also contain the
acoustic field induced by the flow. Flow noise prediction approaches making use of numeri-
cal solvers which take into account this compressibility effects are named ‘direct approaches’.
The acoustic field is not explicitly modeled in direct approaches. The compressible equations
inherently include a two-way coupling mechanism with the flow and the acoustic field. This
allows the direct approaches to solve any aeroacoustic problem: tonal, broadband, combustion
etc. noise. However, due to the disparity of scales and amplitudes between the hydrodynamic
and acoustic perturbations, the accuracy of the numerical simulations are to be very high to
be able the resolve the acoustic field properly. Such a demand for high accuracy results in ex-
cessive computational costs making direct approaches infeasible for many engineering flows.
Hybrid approaches as an alternative can provide satisfactory noise predictions at significantly
lower costs. The fundamental assumption of the hybrid approaches is that a one way coupling is
considered between the flow and the acoustic fields. The prediction of the flow and the acoustic
field are treated sequentially, ignoring the effect of the acoustic field on the flow. There are var-
ious noise prediction methods counted as hybrid. Among them, aeroacoustic analogies take an
important place for low Mach number noise prediction problems. The noise prediction strate-
gies adopted in the present study are mainly based on the aeroacoustic analogies of Lighthill
and Curle. Therefore, a detailed revisit is provided in the following subsections.

2.3.1 Lighthill’s aeroacoustic analogy

Lighthill [51] introduced the idea of reformulating the equations of fluid motion to allow a
distinction between the sound generation and propagation parts, which are called the ‘source’
and ‘reference’ regions. Lighthill’s derivation of such a formulation starts with the conservation
equations of mass and momentum. The conservative form of the momentum equation is given
as;

∂ρui

∂t
+ ∂ρui u j

∂x j
=−

(
∂p

∂xi
− ∂σi j

∂x j

)
+ fi , (2.85)
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where f is the density of the force field. Taking the time derivative of the continuity equation
(2.1) as;

∂2ρ

∂t 2
+ ∂

∂t

∂ρui

∂xi
= 0, (2.86)

and the divergence of Eq. (2.85) as;

∂

∂xi

∂ρui

∂t
+ ∂2ρui u j

∂xi∂x j
=−

(
∂2p

∂x2
i

− ∂2σi j

∂xi∂x j

)
+ ∂ fi

∂xi
, (2.87)

Eq. (2.87) is subtracted from Eq. (2.86) to obtain;

∂2ρ

∂t 2
= ∂2(ρui u j −σi j )

∂xi∂x j
+ ∂2p

∂x2
i

− ∂ fi

∂xi
. (2.88)

A term c2
0(∂2ρ/∂x2

i ) where c0 is a velocity is subtracted from both sides of Eq. (2.88) to obtain
the wave propagation operator of d’Alembert on the left hand side as follows:

∂2ρ

∂t 2
− c2

0
∂2ρ

∂x2
i

= ∂2(ρui u j −σi j )

∂xi∂x j
+ ∂2p − c2

0ρ

∂x2
i

− ∂ fi

∂xi
. (2.89)

Splitting the flow variables (ρ, p) into a uniform reference state (ρ0, p0) and a fluctuating part
(ρ′, p ′), assuming stagnant flow, and following an analysis similar to the one given in Sec-
tion 2.1.2, Eq. (2.89) can be written in terms of the fluctuating variables to obtain Lighthill’s
analogy:

∂2ρ′

∂t 2
− c2

0
∂2ρ′

∂x2
i

= ∂2Ti j

∂xi∂x j
− ∂ fi

∂xi
, (2.90)

with Ti j , the so-called Lightill’s stress tensor defined as;

Ti j ≡ ρui u j + (p ′− c2
0ρ

′)δi j −σi j . (2.91)

An important notice to be made here is that Eq. (2.91) is the exact equation defining all the
mechanisms generating acoustic waves in a uniform stagnant fluid. This implies that an attempt
to predict the noise generated inside flow using Eq. (2.91) requires the knowledge of all the non-
linear interactions among the flow variables, and therefore is not necessarily better than directly
solving the compressible Navier-Stokes equation. On the other hand, it allows evaluating the
relative importance of different noise generation mechanisms given a flow condition, so that
simplifications are easy to make.

The term fi drops if there are no external forces exerted on the fluid elements. For typical
industrial flow where high-Reynolds number assumption can be made, the contribution of the
viscous term,σi j to noise generation with respect to the ρui u j term can be neglected. Moreover,
for isentropic flows, the second term on the right hand side of Eq. (2.91) can also be dropped.
And finally, for low-Mach number flows, the compression effects can be considered to be very
small so that the following simplification holds true:

ρui u j ' ρ0ui u j . (2.92)
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2.3.1.1 Integral formulation of Lighthill’s analogy

Assuming causality and initially silent medium, the integral formulation of Eq. (2.90) is given
as;

ρ′(x, t ) =
∫ t

−∞

Ñ
V

∂2Ti j

∂yi∂y j
Gd3ydτ− c2

0

∫ t

−∞

Ï
∂V

(
ρ′ ∂G

∂yi
−G

∂ρ′

∂yi

)
ni d2ydτ, (2.93)

where x and y denote the listener and source positions, respectively. The volume integral on
the right hand side of Eq. (2.93) correspond to the incident sound field generated by volu-
metric sources, and the surface integral represents the scattering of the incident field over the
boundaries, ∂V . This form of integral representation of Lighthill’s analogy is highly prone to
numerical issues, as any error contained in the stress tensor data is severely amplified by double
differentiation. Integration by parts can be applied two times on the volume integral in Eq. (2.93)
to provide a more robust formulation as follows:

∫ t

−∞

Ñ
V

∂2Ti j

∂yi∂y j
Gd3ydτ=

∫ t

−∞

Ï
∂V

∂Ti j

∂yi
Gn j d2ydτ−

∫ t

−∞

Ñ
V

∂Ti j

∂yi

∂G

∂y j
d3ydτ,

=
∫ t

−∞

Ï
∂V

(
∂Ti j

∂yi
Gn j −Ti j

∂G

∂y j
ni

)
d2ydτ

+
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ. (2.94)

Substituting Eq. (2.94) in Eq. (2.93) yield;

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ

+
∫ t

−∞

Ï
∂V

(
∂Ti j

∂yi
Gn j −Ti j

∂G

∂y j
ni

)
d2ydτ

− c2
0

∫ t

−∞

Ï
∂V

(
ρ′ ∂G

∂yi
−G

∂ρ′

∂yi

)
ni d2ydτ. (2.95)

The double differentiation in the volume integral in Eq. (2.93) is now shifted to the Green’s
function, G for which a more robust differentiation, if not analytical, can be achieved. Assuming
free-field without any boundaries, the scattering terms vanish from Eq. (2.94). Note that, to be
able to impose this condition, the Green’s function should satisfy the Sommerfeld boundary
condition:

lim
r→∞r

(
∂G

∂t
+ c0

∂G

∂r

)
= 0. (2.96)

2.3.2 Curle’s aeroacoustic analogy

Lighthill’s analogy does not provide any solution to treat the scattering from the boundaries.
Therefore it is applicable only in free-field. Curle extended Lighthill’s analogy to take into
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account the interaction of the incident field with steady surfaces. The analysis starts with finding
an expression to replace ∂Ti j /∂yi ;

∂Ti j

∂yi
= ∂

∂yi

(
ρui u j + (p ′− c2

0ρ
′)δi j −σi j

)
. (2.97)

Thanks to the symmetry of Ti j , change of indices do yield the same result for the expression(
∂Ti j

∂yi

)
n j =

(
∂Ti j

∂y j

)
ni . (2.98)

Inserting the conservation of momentum equation (2.85) in the absence of external forces in
Eq. (2.97) and using Eq. (2.98), the following expression is obtained:

∂Ti j

∂yi
=−∂ρui

∂τ
− c2

0
∂ρ′

∂yi
. (2.99)

Substituting Eq. (2.91) and Eq. (2.99) in Eq. (2.95) gives the following expression:

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ

+
∫ t

−∞

Ï
∂V

{(
−∂ρui

∂τ
− c2

0
∂ρ′

∂yi

)
G − (

ρui u j + (p ′− c2
0ρ

′)δi j −σi j
) ∂G

∂y j

}
ni d2ydτ

− c2
0

∫ t

−∞

Ï
∂V

(
ρ′ ∂G

∂yi
−G

∂ρ′

∂yi

)
ni d2ydτ. (2.100)

Note that there are terms canceling each other in Eq. (2.100). When all the cancellations are
performed, the following expression is obtained:

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ

−
∫ t

−∞

Ï
∂V

(
∂ρui

∂τ
G+(

ρui u j +p ′δi j −σi j
) ∂G

∂y j

)
ni d2ydτ. (2.101)

There exists again a term in Eq. (2.101) where velocity is differentiated. Integrating this term
by parts as follows;∫ t

−∞

Ï
∂V

∂ρui

∂τ
Gni d2ydτ=

Ï
∂V

[
ρui ni G

]t
−∞ d2y−

∫ t

−∞

Ï
∂V
ρui ni

∂G

∂τ
d2ydτ. (2.102)

The first integral on the right hand side of Eq. (2.102) vanishes due to the virtue of causality,
and the second integral vanishes for impermeable fixed boundaries due to the no-slip condition.
Eq. (2.101) then reduces to the following:

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ−

∫ t

−∞

Ï
∂V

(p ′δi j −σi j )
∂G

∂yi
ni d2ydτ. (2.103)

Eq. (2.103) is valid for any Green’s function. Curle’s analogy uses the free-field Green’s func-
tion which is not discussed here since a tailored Green’s function for cylindrical ducts is used
instead in the this study. The discussion of implementation of a tailored Green’s function in
Eq. (2.103) is left to the Section 7.2.
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3 Experimental study on ducted
diaphragm flows

3.1 Introduction

The experimental investigation of the diaphragm flows include the determination of the con-
figurations to be numerically investigated by means of some preliminary measurements, and
providing reference flow and noise field data for the numerical analyses. All the experimental
analyses were carried out using the test rig installed in the anechoic chamber of the von Karman
Institute for Fluid Dynamics (VKI). Flow field measurements were conducted using hot-wire
anemometry. The aeroacoustic measurements included various campaigns to measure the noise
field inside and outside the duct, and to identify the active flow noise and the scattering charac-
teristic of the diaphragms. This chapter is devoted i) to provide detailed information about the
anechoic chamber and the test rig together with the instrumentation used, and ii) to discuss the
preliminary investigations conducted to determine the details of the test cases investigated in
the study.

3.2 Experimental setup

3.2.1 Anechoic chamber

The anechoic chamber installed in VKI was designed for studying and certifying low speed
cooling and ventilation fans (ducted or unducted) [11]. It is split into two rooms by a wall par-
tition in which flow elements of various types, such as fans, ducts etc. can be perpendicularly
fitted. A schematic depicting the anechoic room is presented in Figure 3.1. The rooms are con-
structed in the shape of a trapezoid to reduce the number of pressure nodes inside the room.
An external blower is connected to the Room II through acoustic mufflers, which damp out the
noise emitted by the blower itself (see Figure 3.2-a). The blower permits controlling the pres-
sure difference, and thereby the mass flow rate along the flow element. It operates in suction
mode and induces, from the inlet plenum, a flow, which is discharged to Room II through the
flow element. This mode of operation ensures a minimized level of incoming turbulence for the
flow element. The instrumentation used for aeroacoustic measurements are installed in Room I.
It is also possible to make wake measurements in Room II. The instrumentation in the ane-
choic chamber is controlled via a Data Acquisition (DAQ) system placed outside the chamber.
An opening on the ground of the anechoic chamber served as a passage for the harness com-
ing from the DAQ system. The rotational speed of the blower is controlled from an electronic
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control unit shown in Figure 3.2-b, located next to the DAQ system.

4.0 m

Inlet
plenum

Room I
Room II

Outlet
plenum

to driving blower

2.5 m

2.0 m

Flow element

Top view

Figure 3.1: Schematic representation of the anechoic chamber installed in VKI.

(b)(a)

Figure 3.2: (a) Acoustic mufflers connecting the blower to the anechoic chamber. (b) Electronic
control unit of the blower.

3.2.2 Test rig

The test rig used in the thesis study was designed and manufactured within the scope of the IDE-
ALVENT project, to investigate ducted fan noise. It consists of a modular duct system traversing
the wall partition as shown in Figure 3.3. The duct system contains fans, non-air-moving de-
vices, i.e. diaphragms, and various instrumented sections hosting static pressure probes, radial
and azimuthal hot-wire traversing mechanisms, microphone multi-ports and loudspeaker arrays.
A bell-mouth is installed at the inlet of the duct to provide clean inflow. At the outlet, which
is behind the wall-partition, an anechoic termination is used to reduce the contamination of the
noise field inside the duct due to the duct-end reflections. The modules in between were de-
signed to be interchangeable, bringing a flexibility to investigate different configurations. They
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are made of Plexiglass to have visual access for Particle Image Velocimetry (PIV) measure-
ments. The duct inner diameter, D equals 0.15 m. To generate flow noise, diaphragm sections
are attached to the duct, obstructing the duct flow. The diaphragm sections are constituted of
single/tandem diaphragm(s) with a wall thickness of 0.008 m, and a circular opening at the
center offering a blockage ratio equal to 0.68.

(c)(b)(a)

(e)(d) (f)

Figure 3.3: Test rig installed in the anechoic chamber. (a) Bell-mouth. (b) Loudspeaker array.
(c) Diaphragm module. (d) Microphone array. (e) Anechoic termination. (f) Duct
assembly.

3.2.2.1 Instrumentation

The flow and noise field measurements involved the use of hotwire anemometry, microphone
and loudspeaker arrays, and calibration of these devices. The technical details of the instrumen-
tation used in the experimental analyses and the calibration procedures followed are explained
below:

Hotwire Anemometry: Velocity measurements were conducted using a constant temperature
single-wire anemometry made of 9 µm tungsten wire. The 9 µm wire allowed to capture eddy
frequencies up to 10 kHz. The hotwire anemometry was calibrated using a converging cali-
bration nozzle, and a water manometer, as shown in Figure 3.4. The calibration was achieved
by placing the hotwire within the potential core of the nozzle. The velocity at the potential
core is calculated through Bernoulli principle, by measuring the pressure drop between the
core and the nozzle stagnation chamber, using a water manometer. The hotwire anemometry
was supported by a traversing mechanism depicted in Figure 3.4, which can be attached to the
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modules of the duct. The traversing mechanism was automated by two electric servo motors,
moving the hotwire anemometry in radial and azimuthal directions to span the cross-section at
which it is located.

(a) (c)

(b)

Figure 3.4: (a) Technical drawing of the hotwire traversing mechanism. (a) Use of the calibra-
tion nozzle. (b) Hotwire traversing mechanism attached to the duct.

Loudspeakers: External acoustic excitation of the duct was achieved by using 4-inch Morel type
EM428 loudspeakers (see Figure 3.5-a). Type E428 loudspeakers give 150W nominal output
with a nearly constant sensitivity between 200 Hz and 5 kHz. Three 8-channel multiplexers
shown in Figure 3.5-b were used to simultaneously control the loudspeaker arrays, and to
amplify the input signal.

Microphones: To measure the acoustic field inside the duct, 1/4-inch Bruel & Kjaer (B&K)
type 4938 microphones were used with B&K type 2670 preamplifiers (see Figure 3.6). Type
4938 microphones have a dynamic range of 30-172 decibels (dB), and a frequency range of
4 Hz-70 kHz. The change of the pressure-field response of the microphone remains within
±2 dB for this frequency range. The microphones were individually calibrated at 94 dB - 1 kHz
using a B&K type 4231 sound calibrator.

Conditioning amplifier: To increase the quality of the acoustic measurements, the microphones
are used together with conditioning amplifiers, which supply powering to the transducer,
provide electrical isolation, and filter and amplify the signal measured by the transducer. In
our test rig, B&K Nexus type 2690 conditioning amplifiers shown in Figure 3.7 were used.
Type 2690 amplifier supports 4-channel amplification and provides a gain of −20 to +80 dB
with a gain linearity within ±0.02 dB. It has built-in analog filters at 0.1, 1, 10, and 20 Hz for
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(a) (b)

Figure 3.5: (a) Loudspeaker. (b) Multiplexers connected in parallel.

(b)(a)

Figure 3.6: (a) Microphone attached to preamplifier. (b) Sound calibrator.

high-pass, and at 100 Hz, 1, 3, 10, 22.4, 30, and 100 kHz for low-pass with a decay value of
40 dB/decade. A low-pass filter at 22.4 kHz was selected for all the aeroacoustic measurements.
The gains were re-adjusted for each test configuration to maximize the measurement sensitivity.

DAQ system: The control of the loudspeakers and the acquisition of the measurement data were
managed using a DAQ system. The DAQ system consists of a NI PXI 1045 chassis, carrying
a NI PXI 8105 embedded controller, and 8 NI PXI 6143 multifunction I/O modules used with
NI TB 2706 termination blocks. Each I/O module has 8 analog input channels (16 bit resolution
and 250 kS/s sampling rate), 8 digital I/O channels, a digital trigger, and an internal clock op-
erating at 10 MHz. The overall configuration of the data acquisition setup used for the acoustic
measurements is depicted in Figure 3.8.
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Figure 3.7: Conditioning amplifier.

Microphones

Conditioning amplifiers

Loudspeakers

Multiplexers

DAQ system

Figure 3.8: The setup used for data acquisition.

3.3 Preliminary investigations about the test cases

3.3.1 Inflow velocity

The noise generated by diaphragm flows is proportional to some power of the inflow velocity.
For a clear distinction of the acoustic installation effects of diaphragms from the background
noise of the empty duct, the inflow velocity should be above a certain value. However, com-
putational costs of the numerical analysis, which is based on LES also increases with the in-
flow velocity, meaning that there should be a trade-off between the level of noise generated
by diaphragm(s) and the computational costs. Outside-duct measurements were carried out
to determine the minimum inflow velocity inducing distinguishable noise generation by the
diaphragm(s). Two free-field microphones both facing towards the center of the bell-mouth
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were located at the positions depicted in Figure 3.9. The microphones are used in pair with
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Figure 3.9: Schematic representation of the experimental setup for the outside-duct measure-
ments.

an azimuthal separation of 20 degrees to avoid directivity issues. The microphone readings
were sampled at 25,600 Hz for the outside-duct measurements, and for the rest of the thesis
study as well. The frequency analysis of the measured noise field was performed using the Fast
Fourier Transform (FFT) normalized with respect to the number of FFT points equal to 215, and
presented in Sound Pressure Levels (SPL) calculated as SPL [dB] = 20log10(P/Pr e f ) where
Pr e f = 2×10−5 Pa. The SPLs corresponding to the empty duct, single and tandem diaphragm
cases are presented in Figure 3.10 for an inflow bulk velocity of 6 m/s. The spectra measured in
both single and tandem diaphragm configurations were observed to be sufficiently higher than
the background noise, with a minimum difference of 15 dB at 5 kHz in the single diaphragm
case.

3.3.2 Separation distance of the tandem diaphragms

The experimental part of the thesis study focuses on characterization of broadband noise gen-
erated by ducted singularities. When installed closer than a critical value for a given flow con-
dition, tandem diaphragms are known to generate a non-linear acoustic interaction, namely
whistling [94], which is outside the scope of this study. Therefore, avoiding any whistling was
of primary concern in deciding the distance between the tandem diaphragms. Positioning the
diaphragms well apart from each other, on the other hand, increases the computational cost of
LES, which was also undesirable. The rig design allowed to set the distance between the di-
aphragms as multiples of 1D. It was observed that a 1D separation between the two diaphragms
triggered whistling for a similar flow case. Therefore, the separation distance of the tandem di-
aphragms were set as 2D, and the resulting noise field was measured using a wall-flush micro-
phone positioned at the upstream far-field. Figure 3.11 presents the result of the measurement,
where no tonal peaks as a sign of whistling are observed for the frequency range of interest.

3.3.3 Positioning of the modules along the duct axis

In determining the overall configuration of the duct, three criteria were observed: i) not locat-
ing any listeners in the source region downstream of the diaphragm(s), ii) having a sufficiently
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Figure 3.10: Noise spectra obtained for the empty duct, the single diaphragm, and the tandem
diaphragm configurations for an inflow bulk velocity of 6 m/s. The vertical dashed
line indicates the first cut-on.

Figure 3.11: In-duct noise spectrum for the tandem diaphragm case measured at upstream far-
field. The vertical dashed line indicates the first cut-on.

long inlet section to obtain a fully developed boundary layer before the flow reaches the di-
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aphragm(s), and iii) leaving adequate distance between the microphone and loudspeaker arrays
to eliminate the effect of the evanescent modes emitted from the loudspeakers. These criteria
simply imply better measurements with longer duct. However, the duct must fit in the anechoic
chamber with sufficient clearance before the inflow plenum to ensure axisymmetric inflow con-
ditions. Regarding the dimensions of Room I, the part of the duct contained in this room was
extended to be 21D long leaving a 5D gap between the bell-mouth and the inflow plenum. The
rest of the duct configurations were determined investigating the influence of the aforemen-
tioned three criteria as discussed below.

While applying the modal decomposition method, only the cut-on modes were taken into ac-
count. Therefore, the contribution of the higher order modes to the acoustic pressure was to
be avoided. Besides, the zone of listeners should be free of sources, even if the sources emit
only the cut-on modes, not to modify the acoustic waves as they pass through the listener
zones. These two conditions imply keeping sufficient distance between the microphones and
the sources of sound, i.e. the loudspeakers and the turbulence itself.

The two-port method expects the microphone arrays to be in between the source region and the
loudspeaker array, for both upstream and downstream sections. According to Lighthill’s anal-
ogy, noise sources are scaled with the level of turbulence. As a corollary, dominant sources are
distributed close to the downstream side of the diaphragm. This brings the necessity for a longer
downstream section, leaving sufficient gap between the source region and the downstream mi-
crophone array. To obtain the longest downstream section, the minimum length of inlet section
yielding converged downstream flow conditions was to be known. The decay-out distance of
the evanescent modes up to the 2nd azimuthal mode was also needed to minimize the distance
of the microphones from the loudspeakers, and eventually to maximize the distance from the
source region.

A parametric study based on axisymmetric RANS simulations was conducted to determine the
shortest inlet section where the inflow had a fully developed boundary layer before reaching the
diaphragm, and therefore yielded converged downstream conditions. The RANS simulations
were computed for various single diaphragm cases with different diaphragm positions: 4D, 5D
and 6D apart from the duct starting position. To have more realistic inflow conditions for the
duct, the bell-mouth and a simplified version of the inflow plenum were also modeled as shown
in Figure 3.12. The solutions are obtained using the baseline k−ωmodel of ANSYS Fluent 15.0

4D

4D

0.5D

4-5-6D 20D

in
le

t

axis outlet

1D 2D 4D

Figure 3.12: Model geometry for the RANS simulation.
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[CITE]. Constant inlet velocity of 0.093 m/s with 5% turbulence intensity was imposed on the
opening to ensure a bulk velocity of 6 m/s inside the duct. Pressure outlet boundary condition
was imposed on the duct-end cross-section with zero gauge pressure. The effect of the length of
the inlet section on the downstream flow field was investigated by comparing the velocity mag-
nitude and the turbulent kinetic energy on the downstream cross-sections denoted by vertical
dashed lines in Figure 3.12. The resulting downstream flow field of 4D, 5D, and 6D long inlet
configurations are presented in Figure 3.13. No significant difference in the downstream flow

Figure 3.13: Mean velocity field (top) and turbulent kinetic energy (bottom) distribution for
different inlet configurations on cross-sections 1D (left), 2D (middle), and 4D
(right) downstream of the diaphragm.

field was observed between the three configurations as seen in Figure 3.13.

The bell-mouth and the modules hosting the microphone and loudspeaker arrays already sum
up to a duct portion of 6D length, for which converged downstream flow conditions are verified
by the above CFD analysis. The minimum length of the duct was then determined based on the
distance left between the loudspeaker and microphone arrays. To observe the decaying behavior
of the evanescent modes, a configuration with a test source and two listener arrays were devised
as shown in Figure 3.14. The sound field emitted from a loudspeaker was considered to be
of monopolar form. Therefore a monopole was used as the test source. The number and the
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Figure 3.14: Configuration used for testing the effect of the evanescent modes in the near-field.

relative positions of listeners within the listener arrays were determined to be the same with
those of the microphone arrays installed in the test rig. The source was positioned near one
of the microphone arrays. The other microphone array was positioned well apart ensuring the
far-field conditions. The modal decomposition of the acoustic field generated by the test source
was conducted at each of the listener sections to obtain p±

1 and p±
2 . The acoustic field at a

reference position was then calculated twice by reconstructing the acoustic modes, p±
1 and p±

2
respectively. The entire process was repeated for different ∆x values. The duct configuration
allows the distance between the closest loudspeaker-microphone pair to be 0.73D or more with
a step increase of 1D. The acoustic field, which is obtained by reconstructing the acoustic modes
predicted in the far-field is given at the top of Figure 3.15. At the bottom of the figure, the
difference in the resulting acoustic field, which occurs when the acoustic modes are predicted
using the near-field listener array is presented for different source positions. It is observed in
Figure 3.15 that the effect of the evanescent modes on modal decomposition is more apparent
close to the cut-on frequencies. The evanescent modes decay more slowly at frequencies close
to cut-on, causing such a behavior. Better prediction of the acoustic modes were obtained as
the separation between the source and the listener increased up to 2.73D, while no significant
improvement was observed for longer separation distances.

3.3.4 Microphone arrays

The upper limit for the acoustic modes to be investigated in the thesis is the 2nd azimuthal mode,
which corresponds to 5 cut-on modes ranging from (m,µ) = (−2,0) to (m,µ) = (2,0) implying
10 unknowns in total. To isolate these modes, the number of listener points, NL at a given duct
section should satisfy NL ≥ 10, as discussed in Section 2.2.3. To increase the robustness of the
measurements by having an overdetermined system, the microphone arrays are constructed of
12 microphones, for both the upstream and the downstream sections. The relative positions of
the microphones with respect to the (upstream) diaphragm are listed in Table 3.1. The minimum
distance of 0.04 m between the axial stations of each of the microphone arrays allows a modal
decomposition up to 4,250 Hz, which is calculated by a version of Nyquist theorem based on
the sampling distance of wavenumber. The upper limit of modal decomposition in the thesis is
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Figure 3.15: (Top) SPL of the acoustic field obtained reconstructing the modes computed in the
far-field. Vertical dashed lines indicate the first and the second cut-on frequencies.
(Bottom) Difference in the resulting SPL, observed when the near-field data is
used to predict to acoustic modes. The curves shown in the plot correspond to
different source positions.

the cut-on frequency, fc subsequent to the 2nd azimuthal mode, which is found as follows:

fc =
αmµc0

2πa
. (3.1)

Using Eq. 3.1, the upper frequency limit is calculated to be 2,764 Hz, which is lower than the
Nyquist limit mentioned above.

It was discussed in Section 2.2.3 that the transfer matrix between the left- and right-going waves,
J has to be invertible, i.e. non-singular. The J matrix is dependent only on the listener positions.
Therefore, its level of singularity can be checked at the design stage. As an inverse measure of
singularity, the conditioning number of J is computed through the following equation:

κ(J) = ‖J‖‖J−1‖ (3.2)

Note that Eq. 3.2 cannot be applied to overdetermined systems since the resulting matrix is not
square, and thus not invertible. The inverse of an overdetermined matrix can be estimated by
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Table 3.1: Positions of the microphones. The axial coordinate is relative with respect to the
(upstream) diaphragm.

Upstream section Downstream section

Microphone No. (∆x [m], ϑ [deg]) Microphone No. (∆x [m], ϑ [deg])

Mic 1 (-0.52, 0) Mic 13 (1.00, 90)

Mic 2 (-0.52, 135) Mic 14 (1.00, 180)

Mic 3 (-0.52, -90) Mic 15 (1.00, -45)

Mic 4 (-0.48, 45) Mic 16 (1.04, 45)

Mic 5 (-0.48, 90) Mic 17 (1.04, 90)

Mic 6 (-0.48, 180) Mic 18 (1.04, 180)

Mic 7 (-0.41, 0) Mic 19 (1.11, -90)

Mic 8 (-0.41, 90) Mic 20 (1.11, 0)

Mic 9 (-0.41, -90) Mic 21 (1.11, -90)

Mic 10 (-0.37, 0) Mic 22 (1.15, 0)

Mic 11 (-0.37, 90) Mic 23 (1.15, 180)

Mic 12 (-0.37, 180) Mic 24 (1.15, -90)

computing the Moore-Penrose inverse (pseudo-inverse) as follows:

J† = (J>J)−1J>. (3.3)

Eq. 3.2 can then be reformulated as

κ(J) = ‖J‖‖J†‖ (3.4)

to compute the conditioning number of an overdetermined system. The κ data computed for
the given microphone arrays is plotted in Figure 3.16. It is observed that the microphone arrays
used in both sections yield a non-singular linear system for the given modal range.

3.3.5 Phase calibration of the microphones

When recording an acoustic signal by a microphone, depending on the impedance of the micro-
phone and the cabling used in data acquisition, a constant phase is added to the recorded signal.
The modal decomposition technique is based on detecting the phase change of the acoustic field
at different measurement positions. To properly capture this phase data, the unknown phase con-
tribution of each of the microphones has to eliminated. For this purpose, the phase calibration of
the microphones was done using a calibration tube. The calibration tube shown in Figure 3.17
consists of a cylindrical tube with an inner diameter of 0.042 m, attached at one end to a MONA-
COR type KU-516 loudspeaker with a frequency range of 160 Hz-6.5 kHz. On the other end
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Figure 3.16: The conditioning numbers for the upstream and downstream microphone arrays.

of the tube, 8 axially aligned openings exist to mount the microphones. When excited by the
loudspeaker at a given frequency lower than the first cut-off, which is at 4,750 Hz, the phase
of the resulting acoustic field depends only on the axial position along the tube. Therefore, the
microphones, sharing the same axial position, are exposed to the same phase. The phase cal-
ibration can then be achieved by computing the phase differences in the signals measured by
different microphones.

Figure 3.17: Calibration tube with microphones installed.

Since the calibration tube has a fixed length, the acoustic field inside the tube contains various
pressure nodes. The positions of these nodes change with frequency, and may thereby match the
position of microphone openings, degrading the microphone measurements. To investigate the
existence of such a degradation, the coherence between microphone measurements is calculated
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through the following expression:

Cx y ( f ) = ‖Gx y ( f )‖2

Gxx( f )Gy y ( f )
, (3.5)

where Gx y is the cross-spectral density between the signals x and y , and Gxx and Gy y are the
auto-spectral density of x and y , respectively. The expected value of Cx y is 1 if x and y are
causal, and is 0 if there exist no causality in between. In Figure 3.18, the phase difference
between a reference microphone and 7 other microphones are plotted together with the corre-
sponding coherence data. The coherence value is observed to be less than 1 for the frequency

Figure 3.18: Phase difference (top) and coherence (bottom) data between a reference micro-
phone (mic 1) and 7 other microphones (mic 2-8).

range 2-3.5 kHz, indicating certain level of non-causality in the measurements due to a possible
pressure node around the microphones. A deviation in the phase difference is also observed in
the same range of frequency. As a remedy, the phase difference data for the frequency range
2-3.5 kHz was regenerated using a spline function which takes the remaining part as input. The
regenerated phase difference used in calibration of the microphones is plotted in Figure 3.19.
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Figure 3.19: Phase calibration updated using a spline function between 2 kHz and 3.5 kHz.

3.3.6 Loudspeaker arrays

The exact positions of the loudspeakers are not needed for the experimental analyses. However,
as in the case of the microphone arrays, the set of load cases obtained by the excitation of
each of the loudspeakers should be linearly independent, i.e. non-singular. Therefore, a similar
conditioning number analysis is performed for the loudspeaker arrays and the result is plotted in
Figure 3.20. The trend observed in Figure 3.20 is similar to the one seen in Figure 3.16, although

Figure 3.20: The conditioning numbers for the load cases obtained by excitation of the up-
stream and the downstream loudspeaker arrays.

being less smooth. And the κ values are around 5 times higher compared to the conditioning
number of the microphone arrays, for the frequency range beyond the first cut-off. This implies
a higher level of singularity in the source excitations.
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3.3.7 Configuration of the duct for single and tandem diaphragm cases

A schematic is presented in Figure 3.21 depicting the finalized configurations for the single and
the tandem diaphragm cases: an inlet bell-mouth providing a clean inflow is followed by the
loudspeaker module containing an array of 12 loudspeakers. Leaving a 2.73D distance with the
loudspeaker module, the upstream microphone section is installed comprising 12 wall-flush mi-
crophones at 4 consecutive sections. At a distance of 2D downstream of the last microphone is
the diaphragm section. A second set of 12-microphone and 12-loudspeaker modules are located
6D downstream of the diaphragm(s) section, again leaving a 2.73D distance in between. The
distance between the microphone array and the closest diaphragm reduces to 4D in the tandem
diaphragms case. The dominant sources in this case are contained between the two diaphragms,
leaving thereby sufficient distance between the loudspeaker array. A detailed analysis to deter-
mine the effective source regions is provided in Section 7.3.2. Traversing the wall-partition, the
duct is terminated with an anechoic module to reduce the contamination in the in-duct noise
field due to the duct termination reflections.
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Figure 3.21: Schematic of the experimental rig for the tandem diaphragm configurations. The
single diaphragm configuration is obtained by removing the downstream di-
aphragm.

3.4 Flow field measurements using hotwire anemometry

The hotwire measurements were conducted to provide reference mean flow field to compare
with the numerical simulations. The hotwire traversing mechanism was attached to the duct at
various cross-sections shown in Figure 3.22.

Each cross-section was spanned from the center to the surface at two azimuthal positions per-
pendicular to each other. The hotwire measurements were taken for 10 seconds at each radial
position. The hotwire orientation yielded a measurement direction equal to the sum of the axial
and radial velocity components. The flow data was obtained by averaging the measurements
taken at different azimuthal positions. The resulting mean velocity field is presented in Fig-
ure 3.23.
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Figure 3.22: Schematic depicting the hotwire measurement cross-sections downstream the di-
aphragm(s) for the tandem (top) and the single (bottom) diaphragm cases.

Figure 3.23: Mean velocity measurement data for the single (top) and tandem (bottom) di-
aphragms cases
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4 Active source identification using the
two-port method

4.1 Introduction

Designing ventilation systems for building, automotive and public transportation vehicle appli-
cations involves integrating various fans, flow restrictions, silencers, etc. into a complex duct
system. Upfront flow noise prediction for such complex systems is required for optimized de-
sign and to avoid a posteriori corrective measures which are usually expensive, if possible at all.
The acoustic network modeling approach offers an attractive fast framework for this purpose. It
consists in isolating, characterizing and recombining the sub-components of a complex system,
with an overall computational cost below the effort associated with the modeling of the whole
system at once. The process can produce results with good accuracy as long as the interactions
between different noise-generating sub-components remain linear and allow using the princi-
ple of superposition. The characterization of the isolated noise generating components, named
‘source identification’, constitutes a key part of this procedure.

The acoustic source identification of a component necessitates a preliminary identification of
the acoustic scattering properties of the system in which it is tested. To this end, different meth-
ods were proposed in the literature, which often rely on an external known acoustic source,
with large enough amplitude to consider the unknown component source field as negligible in
comparison and remove that unknown from the system of equations. The earliest method in
this field is the classical standing wave tube method, introduced by Taylor [93] in the early
20th century, in which a microphone is traversed on a tube attached to an acoustic driver at one
end, and to the system under investigation on the other end. A bit later, Johnston and Schmidt
[33] developed the two-microphone method, showing an easier implementation as no scanning
of the duct with the microphone was required. In their method, the microphone readings were
correlated to the excitations at discrete frequencies from the external source to obtain incident,
reflected and transmitted waves. Since then, the concept of using two or more microphones for
source and impedance prediction became a standard for the methods using external source. Sey-
bert and Ross [83] developed a two-microphone method with band-limited random excitation,
and estimated the impedance via the relation between acoustic pressure and velocity. Later on,
Chung and Blaser [15] introduced an alternative two-microphone method where the incident
and the reflected waves are related to each other using convolution integrals based on impul-
sive responses calculated at, and between the microphone positions. They also implemented a
sensor-switching technique for automatic phase and gain calibration of the microphones. Åbom
and Bodén [68] provided a detailed investigation of possible error mechanisms in the two-
microphone method of Chung and Blaser [15], which were also relevant for the other methods,
and quantified their effect on the measurements. They defined the lower and upper frequency
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bounds of applicability of the two-microphone method.

The source identification method implemented in the present study is based on a multi-modal
decomposition technique. One of the earliest studies analyzing ducted noise sources in terms
of acoustic modes was presented by Dyer [20]. Following his study, Kerschen and Johnston
[39] devised a modal decomposition technique for time-variant and invariant systems where
the time dependent modal amplitude is computed by combining the measured pressure data
from microphones evenly distributed in the azimuthal direction. To be able to decompose the
radial modes, it is normally expected to take microphone measurements at different radii inside
the duct, which is intrusive and often impractical, especially in presence of flow. To overcome
this problem, Yardley [100] devised a measurement technique placing microphones at different
axial positions. Later on, Moore [58] used this technique to measure the radial and azimuthal
modes emitted by ducted fans. All these methods somehow assume a certain source type to
perform the modal decomposition. Åbom [67] introduced an alternative approach, which also
constitutes the basis of the study in this chapter, capable of identifying the acoustic modes
independent of the source signal type. The so-called passive (e.g. reflecting and scattering)
properties of a circular duct are first obtained using an external source, and the active noise
radiated by a ducted fluid machine are calculated in a second step with the external source
switched off. A considerable asset of this method is that it removes the necessity of anechoic
duct end terminations, which remains as a practical issue. The method was initially applied in
the plane wave range (Åbom et al., [69]; Lavrentjev et al., [49]), but was soon extended to
higher modes leading to the formulation of modal reflection and scattering matrices (Lavrentjev
and Åbom, [48]), with applications to fan noise. For example, a recent identification of the first
8 propagative modes (i.e. including a radial mode) emitted by an Environmental Control System
blower was performed by Sack et al. [78]. Sack and Åbom [77] also implemented this method
for the characterization of the noise emitted by a sharp-edged orifice plate. In a recent study,
Davids and Bennett [19] proposed a method combining coherence-based approaches and modal
analysis to investigate the identification of separate noise sources in case of noise generation by
more than one sources.

In this context, this chapter focuses on some numerical robustness issues that are associated
with the above methods. The determination of the modal coefficients of a measured acoustic
field and the calculation of the modal reflection scattering matrices both involve matrix inver-
sions that can lead to measurement noise amplification if the matrices are badly conditioned.
The conditioning number of the matrix can be improved by repeating the measurements with
linearly-independent excitation conditions, which are usually obtained using external sources
(loudspeakers). In the present study the noise emitted by the unknown source itself is used
to determine the modal reflection coefficients at the duct terminations. It is shown that this
approach can lead to a more robust determination of the unknown active source. Different im-
plementations of the algorithms are compared, leading to different numerical robustness. As an
illustrative application case, the aerodynamic noise generated by single and tandem diaphragms
installed in a cylindrical duct is determined following two paths: i) by measuring the tandem
diaphragms active noise at once, and ii) by superposing two models of the single diaphragm
measured as a sub-component. The comparison is meant to assess the validity of the network
model linearity principle.
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4.2 Modal decomposition and filtering of non-acoustic pres-
sure components

Microphones measure any pressure fluctuation without distinguishing between acoustic and
non-acoustic perturbations. Performing acoustic measurements in a flow medium with turbu-
lence, the measured acoustic signal is possibly contaminated by turbulent pressure fluctua-
tions. To eliminate such a contamination in the in-duct acoustic measurements conducted in
the present study, the approach mentioned Section 2.2.3 is adopted. The frequency range of in-
terest in the present study is limited to cover up to the 2nd azimuthal mode, which corresponds
to 5 cut-on modes ranging from (m,µ) = (−2,0) to (m,µ) = (2,0) implying 10 unknowns in total,
while 12 microphones have been installed on each side of the diaphragm(s), yielding an over-
determined system. Having an overdetermined system allows a least square estimation of the
propagative acoustic modes using Eq. (2.84). By re-calculating the pressure fluctuations using
these modes, the parts of the recorded signal that do not propagate as acoustic modes, which we
conjecture to be mainly induced by the turbulent boundary layer, are filtered out.

This is illustrated in Figures 4.1 and 4.2, showing a comparison between the acoustic spec-
trum directly measured at microphones 13 and 18 (corresponding to upstream and downstream
sections, respectively), and the spectrum obtained by this pseudo-inversion and reconstruction
procedure, for the single and tandem diaphragms cases. Significant differences are observed
in the plane wave region between the measured and the reconstructed spectra for the single
diaphragm case, especially in the downstream section. A contrario, the measured and recon-
structed spectra match quite well for the tandem diaphragm case. The explanation stands in
the level of the noise produced by the tandem diaphragm cases, where the interaction of the
turbulence shed by the upstream diaphragm with the downstream one causes acoustic radiation
more than 20 dB above the noise produced by the single diaphragm. It can be inferred that the
microphones measure essentially pressure fluctuations of acoustic nature for the tandem config-
uration, while a non-negligible hydrodynamic component is present in the low frequency range
for the single diaphragm.

4.3 Computing the duct terminations modal reflection matri-
ces from active noise measurements

An outgoing wave p+ reaching a non-anechoic duct termination (Figure 4.3) is reflected as a
wave p− in proportion to the modal reflection matrix R [49]:

p− = Rp+ , (4.1)

which can thus be obtained by R = [
p−][

p+]−1. Similar to the above discussion, in order to
permit this inversion several pairs of vectors p+ and p− must be measured, for at least Q linearly-
independent load cases if Q modes are cut-on in the frequency range of interest. Noting P the
number of load cases with P ≥Q, the following modal matrices are constructed:

p±
(Q×P ) =

[
p±

I p±
II · · · p±

P

]
. (4.2)

45



Active source identification using the two-port method

Figure 4.1: Comparison between the spectra obtained from the measured signal and the re-
constructed signal at mic. #13 (upstream) for (a) the single diaphragm and (b) the
tandem diaphragms cases. Left: only plane wave propagation, center: plane wave
and first azimuthal mode propagative, right: plane wave, first and second azimuthal
modes propagative.

The different load cases are usually obtained by means of loudspeakers as shown in Figure 3.21,
used individually or in combination. However, the use of external sources in computation of the
duct termination reflection coefficients may bring particular problems. The modules hosting the
loudspeakers should have a perforated surface, allowing the loudspeaker sound to be transmitted
inside the duct. These perforates on the duct surface influence the duct terminations reflectivity
properties, sometimes in a nonlinear fashion such that the impedance value changes with the
level of noise inside the duct. Moreover, since they bridge an acoustic connection between
the loudspeaker and the duct, the resulting reflectivity of the duct termination becomes also
dependent on the impedance of the loudspeakers. The impedance of a loudspeaker, on the other
hand, may change with loudspeaker being switched on or off. This may eventually lead to
different duct termination reflectivity properties for the passive and the active measurements.

Use of the loudspeaker excitations to compute the duct termination reflection coefficients gives
also rise to some practical issues which increase the complexity of the measurement process. As
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measurements

Figure 4.2: Comparison between the spectra obtained from the measured signal and the recon-
structed signal at mic. #18 (downstream) for (a) the single diaphragm and (b) the
tandem diaphragms cases. Left: only plane wave propagation, center: plane wave
and first azimuthal mode propagative, right: plane wave, first and second azimuthal
modes propagative.

R

p– 

p+ 

Figure 4.3: Reflection from the duct-end.

a rule, the loudspeaker must be located at the opposite side of the termination being measured,
with respect to the microphone array module. Note that in order to reduce the measurement
time, loudspeakers can be emitting at both sides of the test rig simultaneously to obtain the
modal reflection matrices of both terminations in a single run, but in that case one must avoid
emitting the same frequencies from the two sides to respect the above mentioned rule. This
cannot always be guaranteed due to non-linearities or imperfections in the electro-acoustical
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response of the loudspeakers. Besides, the reflection matrices should ideally be obtained in
presence of the same mean flow as for the active measurements, since the flow can affect the
terminations reflective properties. But in that case the loudspeakers may not have a sufficient
output power to be heard over the noise of the unknown source. It then becomes simpler, and
even necessary in particular conditions to use the acoustic field radiated by the source itself for
the determination of the reflectivity properties of the terminations.

In case of noise produced by obstacles at large enough Reynolds numbers, the stochastic nature
of turbulence ensures that i) the emitted sound will be relatively broadband and permit a con-
tinuous measurement of the reflection matrices across the frequency range, and ii) two different
acquisitions are unique and linearly independent, provided the measurement is performed for a
sufficiently long time. Therefore, repeating the measurements P times where P ≥Q to generate
P load cases, it is possible to obtain non-singular outgoing/incoming modal matrices, p±

(Q×P ). In
the present study, 90 different measurements of 30 seconds were taken for both single and tan-
dem diaphragms configurations. The level of singularity of the resultant over-determined matrix
can be inspected by calculating its conditioning number κ defined as:

κ(J) = ‖J‖‖J−1‖ , (4.3)

which should remain as low as possible to minimize numerical noise amplification during the
inversion process. The conditioning numbers of the incoming/outgoing fields for the single di-
aphragm case are depicted in Figure 4.4. The results for the tandem diaphragm case, which are
very similar to the single diaphragm case, are not shown here. It can be observed that the ob-

Figure 4.4: Conditioning number for the overdetermined load matrix for the single diaphragm
case.

tained condition numbers remain relatively low, thereby demonstrating that the turbulent noise
emitted by the component being investigated can be used to calculate the duct ends reflection
matrices. To verify the convergence of the conditioning number, it is calculated for increas-
ing number of load cases, and the resulting distribution is integrated over the frequency axis.
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The integration is performed only over the frequency range corresponding to the 2nd azimuthal
mode, since convergence issues, if any, are to primarily appear in this range. The resulting cu-
mulative conditioning number, Σκ vs. the number of load cases is plotted in Figure 4.5. It can
be observed that Σκ remains relatively constant for load cases greater than 20. A similar con-

Figure 4.5: Convergence of the conditioning number for the active measurements in the single
diaphragm case.

vergence analysis is performed for the passive measurements in which different load cases are
obtained by exciting each of the 24 loudspeakers at a given frequency. The resulting cumulative
conditioning number, Σκ corresponding to the 2nd azimuthal mode is again plotted with respect
to the number of load cases, in Figure 4.6. A convergence is obtained for load cases higher than
15. The convergence value, however is observed to be two orders of magnitude higher than the
value computed using the active measurement data-set. This indicates a notably higher level of
singularity for the passive measurements, providing another argument for the superiority of the
present approach in characterization of the duct termination reflectivity.

The reflection coefficients for the upstream and downstream duct terminations obtained follow-
ing the above procedure are plotted in Figures 4.7 and 4.8 for frequencies including the first
azimuthal mode. The results correspond to a configuration in which loudspeaker modules were
replaced by empty duct. The off-diagonal elements of the reflection matrix for the upstream
end in the first azimuthal mode are observed to be almost zero (see Figures 4.8-a, -b, and -c).
This indicates very low scattering across the azimuthal modes, as expected in an axisymmetric
termination [72]. On the contrary, the anechoic termination installed at the downstream end of
the duct is not axisymmetric and hence induces azimuthal scattering, visible in the non-zero
off-diagonal elements of the downstream termination modal reflection matrix (Figures 4.8-d,
-e, and -f).
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Figure 4.6: Convergence of the conditioning number for the passive measurements in the single
diaphragm case.

Figure 4.7: Reflection coefficient for (a) upstream and (b) downstream duct-ends in plane wave
region.

4.3.1 Sensitivity of the duct termination reflectivity to the acoustic condi-
tions

To show the validity of the above argumentation on possible drawbacks of determining the duct
termination reflectivity properties by means of the loudspeakers, the dependence of these prop-
erties i) on the existence of the loudspeaker modules, and ii) on the noise level inside the duct
was inspected. The reflection coefficients of the upstream and downstream duct terminations
were computed within the plane wave region. The computations were done for the single and
the tandem diaphragm cases, with loudspeaker modules unmounted, mounted/switched off, or
mounted/switched on. For the configurations without loudspeaker modules, empty modules of
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Figure 4.8: Reflection coefficient for (a,b,c) upstream and (d,e,f) downstream duct-ends for the
1st azimuthal mode.

the same length were used for replacement, to keep the duct overall length constant. The config-
urations with the loudspeakers switched on were obtained by completing the passive measure-
ment campaign (see Section 4.4 for details). The reflection coefficients were then computed at
the excitation frequencies only. For the rest of the test cases, termination reflection coefficients
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are computed within the full range of frequency of interest, using the broadband active noise
data. The comparison of all the cases is presented in Figure 4.9. It is seen that replacing the

Figure 4.9: Reflection coefficients of the upstream (left) and downstream (right) terminations
within the plane wave region for the single (bottom) and tandem (top) diaphragm
cases.

empty modules with the perforated ones hosting the loudspeaker arrays causes a significant
change in the reflection coefficients of both terminations. Moreover, switching the loudspeakers
on and sending tonal excitations also remarkably affect the reflectivity. During the passive mea-
surements, only 4 out of 24 loudspeakers were simultaneously activated. The effect is thereby
expected to be even stronger in cases where more loudspeakers are used in parallel. As the
reflection coefficients were computed only at the excitation frequencies for the cases with loud-
speakers switched on, the possible change in the impedance of the loudspeakers for the rest of
the frequency range of interest was separately investigated through the following analysis.

The same flow conditions, and thereby the same active noise data hold true for both active
and the passive measurements, while the active noise in the passive measurement campaign is
suppressed by tonal loudspeaker excitations. This implies the availability of the active noise
data for the passive measurements within a frequency range omitting the excitation frequencies
and their harmonics. Following this approach, a broadband prediction of the duct-end reflection
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coefficients were obtained based on the passive measurement dataset. The predictions at the ex-
citation frequencies were then omitted, and a pattern for the reflection coefficients was extracted
for the remaining frequencies. The result is provided in Figure 4.10 in comparison to the tonal
prediction of the reflection coefficients at the excitation frequencies. The broadband predictions

Figure 4.10: Reflection coefficients of the upstream (left) and downstream (right) terminations
within the plane wave region obtained using the active (i.e. flow) and passive (i.e.
loudspeaker excitations) noise data. Square markers indicate the excitation fre-
quencies. Both computations are based on the passive measurements data-set.

seem to follow the same trend with the tonal ones, especially at the upstream termination. This
verifies a broadband change in the impedance of a loudspeaker emitting tonal excitations.

The duct termination reflectivity properties may also be affected by the level of noise inside
the duct. As mentioned before, the noise generated by the single and tandem diaphragms differ
significantly, especially in the plane wave region. To inspect the effect of this change in the
noise level on the termination reflectivity, a comparison is presented in Figure 4.11 between
the two configurations with the same duct terminations. As seen in the figure, the termination
reflectivity change with the level of noise for the frequency range 200-500 Hz, more evidently
when the loudspeakers are installed. Beyond this frequency range, the reflection coefficient of
the upstream termination remains constant at different noise levels, while a slight change can
still be observed for the downstream termination.

Based on the above analyses, it can be concluded that the reflectivity properties of the duct
terminations may be highly sensitive to the acoustic conditions. Therefore, the characterization
of the duct termination reflectivity has to be done separately for different configurations, and
the use of active noise for this purpose provides a practical solution.

53



Active source identification using the two-port method

Figure 4.11: Reflection coefficients of the upstream (left) and downstream (right) terminations
with (bottom) and without (top) loudspeaker modules.

4.4 Active source identification

The incoming and the outgoing waves measured at each port p±
a,b are the sum of the source

waves ps
a,b and reflected waves pr,±

a,b as illustrated in Figure 4.12:

p+
a,b = pr,+

a,b +ps
a,b , (4.4)

p−
a,b = pr,−

a,b . (4.5)

The source components ps
a,b are the ones of interest, and the waves pr,±

a,b result from non-
anechoic terminations causing the source waves to be at least partly reflected by the duct ter-
minations, partly-transmitted and partly-reflected at the source itself, and so forth. Ri and Ro

are the inlet and outlet modal reflection matrices. Ra,b and Ta,b are the modal reflection and
transmission matrices of the source for waves incident from the a and b sides, which can be
grouped to form a scattering matrix

S ≡
[

Ra Tb

Ta Rb

]
(4.6)
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Figure 4.12: Schematic of the experimental rig for the 2-port analysis.

such that the problem can be formulated as

p+ = S p−+ps , (4.7)

with p+ ≡ [p+
a p+

b ]> and p− ≡ [p−
a p−

b ]>.

The determination of the scattering matrix S from Eq. (4.7) requires to invert the modal vector
p−, and to eliminate the unknown source modal vector ps . The latter can be achieved by either
finding the correlation between the source and the reflected waves, or using the external loud-
speakers at levels high enough to render the contribution of the source to the measured sound
field negligible. In that case, we have indeed

S = [
p+][

p−]−1 . (4.8)

For a number Q of propagative acoustic modes, at least 2Q different load cases are required.
In this instance, external sources are compulsory, as the acoustic field generated by the source
cannot be used to determine its own scattering matrix. The elements of the scattering matrices
corresponding to the single and tandem diaphragms for the plane wave region are depicted in
Figure 4.13. The convective effects on the scattering matrix for both configurations are observed
to be small, which is expected considering the low Mach number flow investigated.

Once the scattering matrix is determined, the source term, ps can be obtained from the active
measurements, i.e. loudspeakers switched off, applying first the modal decomposition and then
using Eq. (4.7). The results are depicted in Figure 4.14 for the single and the tandem diaphragm
cases. A quite strong contamination can be observed due to the duct end reflections for both the
single and the tandem diaphragm cases. The broadband characteristic of the flow noise is much
more readable in the source spectra.

An alternative formulation proposed in the literature [49] combines Eqs. (4.4), (4.1) and (4.7)
to obtain:

ps = (I−SR)(J++J−R)−1 p′ =Cp′, (4.9)

where R≡ diag{Ra ,Rb}, and J± is defined such that p′ = J+p++J−p−. This condensed form is
a priori more convenient than solving Eqs. (4.4), (4.1) and (4.7) in sequence since it directly re-
lates the active source to the raw microphone measurements. In the present work this approach
was however shown to exhibit numerical robustness issues, presumably due to the inversion
of the matrix (J++J−R). While the matrices J± are calculated exactly, the accuracy of the re-
flection matrix R can suffer from an ill-conditioned vector p+ as discussed in Section 4.3. This
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Figure 4.13: Elements of the scattering matrix of the single (a,c) and the tandem (b,d) di-
aphragms for the plane wave region. Markers indicate the excitation frequencies.

sensitivity is illustrated in Figure 4.15, where the source identification based on Eq. (4.9) has
been performed using reflection matrices R obtained by two different procedures: through pas-
sive measurements using the loudspeakers, and through active measurements as proposed in this
paper. The results are compared with the source identified by applying sequentially Eqs. (4.4),
(4.1) and (4.7), considered here as the reference. It can be observed that the reflection matrix
obtained from the active measurements yields a spectrum that is matching with the reference
one, but that the reflection matrix obtained from the passive measurements induces spurious
noise in the source spectrum.
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4.5 Prediction of the noise emitted by the tandem diaphragms from the active source
characterization of a single diaphragm

Figure 4.14: Comparison of the the source predictions obtained using the 2-port method against
the reconstructed measurements for (a) single and (b) tandem diaphragm cases.

4.5 Prediction of the noise emitted by the tandem di-
aphragms from the active source characterization of a
single diaphragm

The possibility to model a complex systems as a collection of simpler sub-components is here
evaluated for the tandem diaphragms case. Given the tandem diaphragms configuration illus-
trated in Figure 4.16, and the Ra,b and Ta,b values calculated at x = 0 for the upstream diaphragm
position, the equivalent scattering matrix of the tandem diaphragms can be obtained performing
a recursive summation of the waves scattered between the two diaphragms. The recursive pro-
cedure described below is extensively investigated in Section 6.3. There, the single diaphragm
scattering matrix is obtained by an analytical mode-matching technique neglecting convective
effects, while in the present case the scattering matrix is obtained experimentally, thus includ-
ing flow effects and the convective asymmetries in the upstream vs. downstream reflection /
transmission coefficients that may result from it.

The relation between p+
b and p−

a shown in Figure 4.16 can be written in terms of the right-
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Figure 4.15: Source prediction comparison among the variants of the 2-port method for (a)
single and (b) tandem diaphragm cases. Solid line: reference prediction using
Eqs. (4.4), (4.1) and (4.7) in sequence; dash-dotted: source prediction using
Eq. (4.9) with R from passive measurements; symbols: source prediction using
Eq. (4.9) with R from active measurements.
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Figure 4.16: Schematic representation of the network modeling of tandem diaphragms.

going waves successively reflected between the diaphragms as shown in Figure 4.17, where
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characterization of a single diaphragm

pb
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Figure 4.17: Decomposition of the outgoing wave into infinitely many right-going reflected
waves.

E± ≡ diag
{

e∓ik±L
}

and R± ≡ E∓ R E±. This summation can be written as

p+
b = (1/E+)Ta(I+R+

b Ra +R+
b RaR+

b Ra +·· · )E+Tap−
a . (4.10)

Please note that the term (1/E+) is added in Eq. (4.10) to have p+
b calculated at x = 0. The terms

expressing the infinite sum in Eq. (4.10) can be rewritten in a recursive form:(
I+R+

b Ra +·· ·)= (
I+R+

b Ra
(
I+R+

b Ra (I+·· · ))) (4.11)

where the recursive summation can be treated using the mathematical induction method:

z =
(
I+R+

b Ra
(
I+R+

b Ra (I+·· · )))= (I+R+
b Ra z),

(I−R+
b Ra) z = I,

z = (I−R+
b Ra)−1. (4.12)

The infinite summation in Eq. (4.10) can be replaced by the right-hand-side of Eq. (4.12), giving
the outgoing wave:

p+
b = (1/E+)Ta (I−R+

b Ra)−1 E+Tap−
a ,

≡ Teqv,a p−
a , (4.13)

where Teqv,a is the equivalent transmission coefficient matrix for the tandem diaphragm case.
Similarly, the equivalent reflection coefficient matrix can be obtained as

p+
a = [

Tb (I−R−
a Rb)−1 R−

a Ta +Ra
]

p−
a ,

≡ Reqv,a p−
a . (4.14)

The equivalent scattering matrix, Seqv can be constructed:

Seqv =
[

Reqv,a Teqv,b

Teqv,a Reqv,b

]
. (4.15)

The comparison between source predictions obtained from the network modeling and the multi-
port method is given in Figure 4.18. There can be observed a very good agreement between the
two source predictions.
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Figure 4.18: Comparison among the source predictions obtained using the 2-port method and
the network modeling for (a) single and (b) tandem diaphragm cases.

To investigate the interaction of the tandem diaphragms in noise generation, the network mod-
eling approach is implemented on the active source data obtained from the single diaphragm
case. Similar to the recursive analysis introduced above, a recursive summation of the source
waves ps

a,b is conducted to predict the resulting active source for the tandem diaphragm case,
ps∗ = [ps∗

a ps∗
b ]>, using the below formulation:

ps∗
a = ps

a + (1/E−)
[
Tb (I−R+

a Rb)−1 E−ps
a

+Tb (I−R+
a Rb)−1 R+

a ps
b . (4.16)

Eq. (4.16) can be easily re-written to obtain ps∗
b . The active source prediction obtained from

Eq. (4.16) is depicted in comparison with the source predictions obtained directly from the
two-port method for the single and tandem diaphragm cases in Figure 4.19. The prediction
obtained by network modeling of the active source is seen to underpredict the source for the
tandem diaphragm case. Such a result indicates a non-linear mechanism is responsible for noise
generation, while the interaction is observed to be linear for the scattering mechanism.

4.6 Conclusions

In this chapter, flow related noise generated by the two diaphragm configurations has been in-
vestigated up to the 2nd azimuthal mode using model decomposition technique. The effect of the
turbulence contamination on the wall-flush microphone readings has been quantified by recon-
structing the decomposed acoustic field and comparing to the raw measurements. Noticeable
turbulent contamination in the acoustic measurements were observed in the single diaphragm
case, while the effect was shown to be ignorable in the tandem diaphragm case. The drawbacks
of the use of external sources in determination of the duct termination reflectivity properties
was discussed through investigating the sensitivity of the termination reflectivity on the acous-
tic field and boundary conditions inside the duct. The sensitivity analysis involved comparing
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Figure 4.19: Comparison among the source predictions obtained network modeling of the ac-
tive source against the predictions of the two-port method.

the single and tandem diaphragm cases with loudspeakers switched on/off or replaced by empty
duct modules. Significant change in the reflection coefficients of both upstream and downstream
terminations with different configurations verified the necessity to compute those coefficients
separately for each test case. As a practical solution, the use of the active noise in predicting
the duct termination reflection matrices was proposed. Two-port method was implemented to
achieve source identification in the single and tandem diaphragm cases, using two different
formulations: one with using the duct termination reflection coefficients and one without. The
former was shown to suffer from robustness issues arising from the use of the reflectivity data
obtained using the passive measurements. When reflection coefficients calculated based on the
active noise data were used, on the other hand, the two formulations was shown to yield the same
result. The linearity of the scattering and noise generation mechanisms in tandem diaphragms
were also investigated. The scattering matrix and the active source for the tandem diaphragm
case was predicted by network modeling of the corresponding parameters for the single di-
aphragm. The predictions were compared to the results of the two-port method implemented
for the tandem diaphragm case. A linear interaction between the diaphragms was observed in
terms of the scattering mechanism, while the interaction for noise generation was shown to be
highly nonlinear.
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5 Numerical investigation of ducted
diaphragm flows

The noise prediction approaches investigated in the thesis required both steady and unsteady
flow simulations. The unsteady flow data was obtained from a compressible LES, while ax-
isymmetric RANS simulations were conducted for steady flow solutions. Use of LES for pre-
diction of engineering flows became achievable only recently due to its computational costs. It
was even more recent that the use of LES for direct noise computation purposes in engineering
flows became possible, since proper resolution of the acoustic field, which is much smaller com-
pared to the turbulent fluctuations in terms of the perturbation amplitudes, requires significantly
enhanced refinement of mesh increasing the computational costs even more.

There are various studies in the literature attempting to solve diaphragm noise prediction prob-
lem using direct approaches based on compressible LES. The earliest attempt to the authors
knowledge was made by Gloerfelt et Lafon [23] investigating the noise generation in a rectan-
gular duct with a slit-shaped diaphragm at a relatively low Reynolds number (Reduct = 32,000
and Redi ap = 14,000). Sengissen et al. [82] later investigated the noise generated by tandem
orifices with 1D and 2D separations in a circular duct of diameter D. The Reynolds number
with respect to the duct was 1̃7,500 in their study. There are also studies on system identifica-
tion of ducted diaphragm configurations using compressible LES. Alenius et al. [4] studied the
scattering characteristics of a circular diaphragm installed in circular and rectangular ducts at a
higher Reynolds number around 80,000, using Dynamic Mode Decomposition [79]. In a more
recent study, Sovardi et al. [91] investigated the system identification problem in circular ducted
diaphragm in the presence of a flow at Re = 18,000 using the ‘parametric LES-SI method’ in
which acoustically excited flow data is used to predict the characteristics of the scattering ele-
ment. The first author of that study was also responsible for conducting the compressible LES
of the present study as part of his doctoral studies [90].

The RANS simulations are required to provide a reference solution for the stochastic noise pre-
diction methods. RANS simulation for low Mach number shear flows like the present cases is
a well-established research topic. There exist many studies in the literature comparing differ-
ent turbulence models for this type of flows. A particular investigation of the flow through an
orifice meter, which can be considered as ducted diaphragm, using CFD was done by Shah et
al. [84]. They performed a RANS simulation using the standard k−ε model 3-dimensional duct
geometry. Standard k − ε model [47], where k and ε denote the turbulent kinetic energy and
dissipation rate respectively, is the most popular turbulence model used in many industrial CFD
applications [84]. It is a two-equation model assuming linear isotropy. The model requires a
wall-function to predict the boundary layer near the wall, which indeed is one of the main rea-
sons for the popularity of the model, since the use of wall-functions reduces the requirement for
a refined mesh near the wall. An important deficit of the model is that it suffers from ‘stagnation
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point anomaly’,i.e. overestimation of turbulent kinetic energy in regions where the flow is stag-
nated, due to not being realizable [85]. An improved version of the standard k − ε model was
suggested by Shih et al. [85]. They developed an anisotropy model satisfying the realizability
constraint, therefore limiting the non-physical production of turbulent kinetic energy. There are
alternative turbulence models for low Reynolds number applications in which wall-functions
are not preferable due to their poor performance. Low-Re k −ε models again use k and ε equa-
tions for closure, but no wall-functions to predict the boundary layer profile. Some extra terms
are added instead in the closure equations which are dominant near the wall and negligible in
the free-field. The extent of the applicability of low-Re k −ε models is extensively investigated
for many different types of flows. A detailed comparison of eight low-Re k − ε models was
reported by Patel et al. in [63] where the models were tested for four different boundary layer
cases. Costa et al. [16] tested another set of 8 low-Re k−ε models for internal mixed convection
flows. And Hrenya et al. [30] performed a similar analysis for fully developed pipe flows.

In the thesis, the flow predictions obtained from the LES, and various RANS simulations using
the standard k − ε model and six different low-Re k − ε models are compared against hot-wire
measurement data for single and tandem diaphragm cases. The low-Re k−εmodels investigated
are Abid [2], Abe-Kondo-Nagano (AKN) [1], Chang-Hsieh-Chien (CHC) [14], Lam-Bremhorst
(LB) [45], Launder-Sharma (LS) [46] and Yang-Shih (YS) [99]. The details of the numerical
simulations, and the comparison of the results are given in the following subsections.

5.1 Large Eddy Simulation

The LES solver adopted in the present study is the AVBP solver [82] (developed by CERFACS
and EFP), which solves the compressible Navier-Stokes equations on unstructured meshes. A
second order Lax-Wendroff scheme [50] in time and space is used to discretize the temporal and
spatial derivatives. The time steps of the simulations are fixed after reaching the stationary flow
condition, to afford a CFL number of 0.7. The spatial discretization achieves stable simulations
while granting low acoustic dissipation and dispersion errors in the domain under analysis. The
large turbulent eddies (compared to the mesh elements size) are resolved, whereas the subgrid
scales are resolved by means of the so called Wall-Attached-Layer-Eddy (WALE) model. The
WALE model was suggested by Nicous et Ducros [60], who aimed at developing a turbulent
eddy viscosity model, νt which goes naturally to zero at the wall, removing the necessity for
damping functions or dynamic procedure to satisfy no-slip condition. The derived subgrid scale
model was of the form;

νt = (Cw∆)2 OP 1

OP 2

= (Cw∆)2

(
Sd

i j Sd
i j

)3/2(
Si j Si j

)5/2 + (
Sd

i j Sd
i j

)5/4
, (5.1)

where Cw is the model constant, ∆ ≡ V 1/3 is the characteristic length for a mesh element with
volume V . The tensor Ŝi j is the strain rate defined as;

Ŝi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (5.2)
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where u denote the resolved velocity field. The Sd
i j is the symmetric, traceless part of the square

of the velocity gradient given as follows:

Sd
i j =

1

2

(
g 2

i j + g 2
j i

)
− 1

3
δi j g kk , (5.3)

where g i j ≡ ∂ui /∂x j is the gradient of the resolved velocity. The model constant Cw is calcu-
lated using the following relation;

C 2
w =C 2

s

〈p2
(
Si j Si j

)〉
〈Si j Si j OP 1/OP 2〉

, (5.4)

where Cs is the constant used in the Smagorinsky model [88]. The length of the domain is set
as 15D and 17D for the single and tandem diaphragm cases, respectively, where the (upstream)
diaphragm is located at the axial position x = 6D. The computational mesh shown in Figure 5.1
consists of 1.2×107 elements for the single diaphragm case, whereas for the tandem diaphragms
case, 1.55×107 elements are utilized.

Figure 5.1: The LES mesh used in the thesis.

Both meshes consist of hexahedral elements structured according to an O-grid topology around
the diaphragm. The grid is refined in radial direction with element sizes of the order of the
Taylor microscale, λ which is calculated as;

λ=p
10η2/3l 1/3, (5.5)
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Figure 5.2: Instantaneous velocity field obtained from the LES computation.

where l is the integral length scale which can be predicted as 0.25D (Bailey et al. [6]) and η is
the Kolmogorov length scale define as;

η=
(
ν3

ε

)1/4

. (5.6)

This choice resolves the inertial turbulent scales, whereas the viscous scales are handled by
means of the WALE sub-grid scale model. In order to accurately capture the turbulence gener-
ated noise, the boundary layer developed at the diaphragms is resolved. This is done by further
refining the computational grid to have the first cell near the wall in the viscous sublayer; i.e.
for a radial unit wall r+ = 5. The simulations are carried out assuring the acoustic reflections
to be as small as possible at the boundaries. Therefore the boundary conditions adopted con-
sist of a modified version of the Navier-Stokes Characteristic Boundary Conditions (NSCBCs)
[64] based on the so called Plane Wave Masking (PWM) method [65]. In PWM method, the
acoustic plane waves computed in time domain using the ‘characteristic based filtering’ (see
Section 7.1.1) are canceled out at the boundaries by imposing the opposite of the waves. The
wall boundary is described by an adiabatic no-slip condition. At the inlet a constant velocity pro-
file of U = 6 m/s is assumed, whereas at the outlet, a constant standard pressure P = 101,325 Pa
is imposed. For the mean flow parameters to have converged values, the simulations were con-
ducted throughout a one-duct-through flow. The flow data is stored with a sampling frequency
of 12,500 Hz for 5,000 time steps in both single and tandem diaphragm cases. Any LES data is
processed as segments of 1,000 time steps and converted to frequency domain using 1,024 FFT
points. Fig. 5.2 depicts an instantaneous velocity field obtained from the LES analysis for the
tandem diaphragm configuration.

5.2 Reynolds Averaged Navier-Stokes simulations

The mean flow parameters of the single and tandem diaphragm configurations were predicted
with axisymmetric RANS simulations. The simulations were carried out using the commercial
flow solver ANSYS Fluent v.18. The standard k−ε model and six low-Re k−ε models provided
in the commercial solver were tested. The models tested in the thesis are linear, i.e. a linear
relation is assumed to predict eddy viscosity:

νt =Cµ fµ
k2

ε
, (5.7)
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where cµ is the model constant, fµ is a damping function, and ε̃ = ε−D. The generic form of
transport equations for turbulent scalars are given as follows:

∂k

∂t
+ ∂kUi

∂xi
= ∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
+Pk − (ε−D), (5.8)

∂ε

∂t
+ ∂εUi

∂xi
= ∂

∂x j

[(
ν+ νt

σε

)
∂ε

∂x j

]
+Cε1 f1

ε

k
Pk −Cε2 f2

ε2

k
+E . (5.9)

where Pk is the shear production of the turbulent kinetic energy defined as;

Pk = νt S2; (5.10)

given that S is the mean strain rate tensor. The closure relations contain five model constants:
Cµ, Cε1 , Cε2 , σk and σε. The terms fµ, f1 and f2 are damping functions. There are also two
additional terms, D and E which do not show up in the standard formulation of k − ε model.
The values assigned to the model constants, damping functions and additional terms differ from
model to model. Model parameters are tabulated in Table 5.1. For low-Re k − ε models, the
damping functions tend to 1, and the additional terms to zero away from the wall, recovering
the standard formulation. There are a couple terms used to construct the damping functions:
Ret = k2/(νε), Rek = r k1/2/ν, where r is the radial distance from the wall, and y∗ = uεy/ν
where uε = (νε)1/4.

The 2-dimensional mesh for the single diaphragm case used in RANS simulations is shown
in Figure 5.3. The domain length extends over 6D at the inlet section, and 13D at the down-
stream section. The mesh consisted of around 7×104 elements for the single diaphragm case,
and around 9×104 elements for the tandem diaphragm case. The mesh was constructed to re-
solve the boundary, satisfying y+ < 1 for all the duct surfaces. Uniform velocity inlet boundary
condition was imposed on the inlet. The outlet boundary condition was set as pressure outlet
with zero gauge pressure. Pressure and velocity equations were solved in coupled mode. Second
order schemes were used for all the flow variables.

Figure 5.3: The 2D mesh used in the axiysmmetric RANS analyses.

The mean velocity fields obtained from the LES and RANS simulation are compared against
the hot-wire measurements in Figures A.1, A.2, A.3 and A.4 at the measurement locations
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depicted in Figure 3.22. The LES results showed good agreement with the experiments for
both single and double diaphragm cases. The standard k −ε model failed to predict the velocity
profile in both the configurations. The low-Re k − ε models yielded similar results except the
YS model. Ab, AKN, CHC, LB, and LS models all satisfactorily predicted the velocity for the
single diaphragm case, although some discrepancies were observed at tandem diaphragms case.

The turbulent kinetic distributions provided by variants of k−ε model are compared against the
LES predictions in Figure A.5 and A.6 for the single and the tandem diaphragm configurations,
respectively. The first five low-Re k − ε models (in alphabetical order) give similar turbulent
kinetic energy distributions for both configurations, like the flow velocity predictions. All the
models underpredict the turbulent kinetic energy production in the shear layer, and face ‘stag-
nation point anomaly’ at the upstream face of the downstream diaphragm. The low-Re k − ε
models neither include production limiters, nor are realizable, and therefore are prone to pro-
duce non-physical kinetic energy. The zone where turbulent kinetic energy is maximum, on the
other hand, was fairly predicted by the first five low-Re k −ε methods, which indicates that the
transport of the kinetic energy was properly handled. The reason for YS model yielding results
closer to the standard model rather than the low-Re k −ε models is considered to be due to the
extremely small terms in the wall damping function. Probably because of stability issues, the
model could be tuned to immediately behave like the standard model for not so low-Re number
flows.
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Table 5.1: Model constants and functions in different low-Re k −ε models

Model Cµ Cε1 Cε2 σk σε

Std 0.09 1.44 1.92 1.0 1.3

Abid 0.09 1.45 1.83 1.0 1.4

AKN 0.09 1.50 1.90 1.4 1.3

CHC 0.09 1.44 1.92 1.0 1.3

LB 0.09 1.44 1.92 1.0 1.3

LS 0.09 1.44 1.92 1.0 1.3

YS 0.09 1.44 1.92 1.0 1.3

Model fµ f1 f2

Std 1.0 1.0 1.0

Abid tanh(0.008Rek )
(
1+ 4

Re3/4
t

)
1.0 1− 2

9 e−Ret /36(1−e−Ret /12)

AKN
(1−e−y∗/14)2

×(1+ 5
Re3/4

t
e−(Ret /200)2

) 1.0
(1−e−y∗/3.1)2

×(1+0.3e−(Ret /6.5)2
)

CHC
(1−e−0.0215Rek )2

×
(
1+ 31.66

Re5/4
t

) 1.0 (1−0.01e−Re2
t )

×(1−e−0.0631Rek )

LB
(1−e−0.0165Rek )2

×
(
1+ 20.5

Ret

) 1+
(

0.05
fµ

)3
1−e−Re2

t

LS e−3/4(1+Ret /50)2
1.0 1−0.3e−Re2

t

YS
(1+1/

p
Ret )(1−e−1.5×10−4Rek

×e−5.0×10−7Re3
k−1.0×10−10Re5

k )

p
Ret

1+pRet

p
Ret

1+pRet

Model D E εW -B.C.

Std 0 0 Wall functions

Abid 0 0 ν∂
2k
∂r 2

AKN 0 0 2ν
(
∂
p

k
∂r
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6 Tailored Green’s function for ducts
with diaphragms

6.1 Introduction

In hybrid approaches, propagation of noise is treated subsequent to the computation of the noise
sources inside the domain. The method to be used for noise propagation depends on the prob-
lem, since the noise propagation is affected by mean flow. Acoustics waves are convected with
the mean flow and they go under refraction when a non-uniformity of the flow is encountered.
For high-Mach number and/or highly non-uniform flows, these effects becomes non-negligible.
Flow noise around/emitted by aircrafts, jet noise, etc. are examples to this type of noise prob-
lems. In such cases, it is convenient to use Linearized Euler Equations (LEE), or alternatively
Acoustic Perturbation Equations (APE) [22], which account for the mean flow effects.

Contrarily, mean flow effects may be neglected for low Mach number flows, which makes meth-
ods based on wave propagation/Helmholtz equation applicable. A Green’s function is used to
solve the inhomogeneous equation. These approaches offer a relatively simple and significantly
cheaper solution so that they are widely used in the industrial aeroacoustic applications. An
important problem related to the Green’s function approach is to calculate the scattering of
the noise from the boundaries. For most cases, a numerical approach such as ‘Finite Element’
(FEM) and ‘Boundary Element Methods’ (BEM), is to be adopted to take into account the scat-
tering due to the arbitrarly shaped surfaces contained in the flow domain. In some particular
cases, however, an analytical solution is possible for relatively simple geometries, such as ducts
with simple cross-sections, infinite planes etc. In this thesis, the noise propagation problem is
solved through the derivation of a tailored Green’s function including the scattering effects of
the cylindrical duct and of the single/tandem diaphragm(s). While the Green’s function of the
cylindrical straight duct is found in classical text books (see e.g. Rienstra and Hirschberg [72]
for zero and uniform mean flows, Sodha et al. [89] and Willatzen [97] for non-uniform mean
flows), the contribution of ducted singularities to the Green’s function has been more scarcely
tackled in the literature. van Herpe and Crighton [28] treated the two-dimensional slit diaphragm
case, but to the author’s knowledge the axisymmetric solution for a tandem diaphragm was not
reported at the time when this problem was investigated. A mode-matching technique proposed
by Rienstra [71, 73] is here combined with a recursive summation of the reflected waves be-
tween the two diaphragms to obtain the compound duct-tandem-diaphragm Green’s function.
The proposed method is, of course, limited to low Mach number flows as the mean flow effects
are not accounted for.
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6.2 Single Diaphragm Case

The pressure at the position x(ϑ,r, x) due to a right-going wave inside a cylindrical duct can be
defined using a modal representation as follows:

p(x) =
∞∑

m=−∞

∞∑
µ=1

AmµUmµ(r )e−i kmµx−i mϑ, (6.1)

where Amµ denotes the amplitude of the corresponding mode, the exponential term defines the
phase based on the azimuthal and the axial modes, and Umµ ≡ Nmµ Jm(αmµr ) is the orthonormal
radial component satisfying:

〈Umν,Umµ〉 =
∫ a

0
Umν(r )Umµ(r )r dr = 1, µ= ν,

= 0, µ 6= ν. (6.2)

The term Jm represents the ordinary Bessel function of the first kind and αmµ corresponds to
the µth non-trivial zero of J ′m(ϕ) where the prime denotes the first derivative with respect to
ϕ. Please note that the initial value of α is set as 0, corresponding to the plane wave region.
Calculating the integral in Eq. (6.2), the normalization constant Nmµ is obtained as:

Nmµ =
[

1

2
(a2 − m2

α2
mµ

)J 2
m(αmµa)

]−1/2

. (6.3)

The Green’s function for cylindrical ducts given in Eq. (2.77) can be written in the form of
Eq. (6.1) by defining the amplitude term Amµ as:

Amµ =
Umµ(αmµr0)e i kmµx0−mϑ0

kmµ
. (6.4)

In case of a discontinuity along the duct, the pressure wave induced by a point source is scattered
as it passes through the discontinuity. Figure 6.1 schematically represents such a scattering of
the incident wave, p+

i nc generated from a point source, located at the upstream position x0, into
the reflected and transmitted waves, pr e f and ptr a .

pinc
– 

ptrax0

R, T

pref 

pinc
+ 

Figure 6.1: Scattering of an incident wave passing through a ducted diaphragm.

This scattering mechanism corresponds to a transfer of energy between the acoustic modes,
which can be represented by a matrix with unit determinant scaling the mode amplitudes. If
the discontinuity is axisymmetric, like the circular diaphragm case, the scattering occurs only
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6.2 Single Diaphragm Case

between the radial modes; i.e. no transition of energy among the azimuthal modes, which al-
lows treating each azimuthal mode separately. In such a case, the amplitude scaling of Green’s
function corresponding to a single azimuthal mode can be defined on the reflection and the
transmission sides by:

Gωm,r e f =
∞∑
µ=1

BmµUmµe i (±kmµx−mϑ), (6.5)

Gωm,tr =
∞∑
µ=1

CmµUmµe i (∓kmµx−mϑ), (6.6)

where

Bmµ =
∞∑
ν=1

RmµνAmν→ B = RA, (6.7)

and

Cmµ =
∞∑
ν=1

TmµνAmν→ C = TA. (6.8)

The matrices R and T define the scaling of the mode amplitudes on the reflection and the trans-
mission sides, respectively. The classical mode matching technique explained in [73] for the
specific case of a single diaphragm is revisited in the present study to determine these matrices.
The method is based on the continuity of pressure and axial velocity; i.e. the partial derivative
of pressure with respect to x, at the interface of the discontinuity which is the diaphragm in the
present case. The thickness of the diaphragm is assumed to be zero as it is acoustically compact
along the axial direction within the given frequency range of interest. Considering the linearity
of the problem, the scattering of a single µ-mode is investigated only. Given a cylindrical duct
with an infinitely thin diaphragm of radius b at the axial position x = D, and a point source
of unit strength upstream the diaphragm, the continuity of pressure and axial velocity at the
diaphragm section for the radial zone 0 < r < b yields respectively;

∞∑
ν=1

(RmµνAmνe i kmνD + Amνe−i kmνD )Umν =
∞∑
ν=1

TmµνAmνUmνe−i kmνD , (6.9)

∞∑
ν=1

kmν(RmµνAmνe i kmνD − Amνe−i kmνD )Umν =
∞∑
ν=1

−kmνTmµνAmνUmνe−i kmνD . (6.10)

It is not possible to derive unique expressions for R and T using Eq. (6.9) and (6.10) as no
proper boundary condition is defined for the edge of the diaphragm [72]. However, considering
the physical fact that the scattering should be independent of the source amplitude, a possible
solution for the scattering problem can be obtained through the following equations:

∞∑
ν=1

(Rmµνe i kmνD +e−i kmνD )Umν =
∞∑
ν=1

TmµνUmνe−i kmνD , (6.11)

∞∑
ν=1

kmν(Rmµνe i kmνD −e−i kmνD )Umν =
∞∑
ν=1

−kmνTmµνUmνe−i kmνD . (6.12)
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Tailored Green’s function for ducts with diaphragms

Assuming the diaphragm as a separate duct section with zero axial length, Green’s function for
a single µ-mode at the diaphragm location; i.e. x = D, can be written as;

Gωmµ,tr =
∞∑
ν=1

T ∗
mνµAmνÛmνe i (∓lmνx−mϑ), (6.13)

where lmµ and Ûmµ are the reduced wave number and the corresponding normalized radial
component for the diaphragm section, respectively, and T ∗

mµν is the auxiliary coefficient. Then
a similar relation can be established between the diaphragm and any of the duct sections based
on the continuity of velocity and pressure. On the transmission side; i.e. x = D+, for the radial
zone, 0 < r < b the continuity of velocity yields;

∞∑
ν=1

−lmνT ∗
mµνÛmνe−i lmνD =

∞∑
ν=1

−kmνTmµνUmνe−i kmνD . (6.14)

Please note that, using Eq. (6.11), (6.12) and (6.14), it is possible to obtain algebraic expres-
sions for the matrices R and T, which also satisfy Eq. (6.9) and (6.10). Since the velocities on
both surfaces of the diaphragm (b < r < a) are zero, the interval for the continuity of velocity
expressed in Eq. (6.12) can be extended to the entire cross-section. Then, taking the inner prod-
uct with the basis function Umλ; i.e. multiplying with Umλr and taking the integral along the
duct radius as shown in Eq. (6.2), Eq. (6.12) can be reduced to the following equation in matrix
form:

E+R−E− =−E−T, (6.15)

where E± ≡ δλνe±i kmλD . Using the above expression to replace the reflection term in Eq. (6.11)
and taking the inner product with the basis function Ûmλ, we obtain:

∞∑
ν=1

〈Ûmλ,Umν〉be−i kmνD =
∞∑
ν=1

〈Ûmλ,Umν〉be−i kmνD Tmνµ, (6.16)

or in matrix form:
ME− = ME−T, (6.17)

where M ≡ 〈Ûmλ,Umν〉b . Similarly, taking the inner product of Eq. (6.14) with the basis function
Umλ, it is obtained at x = D+:

∞∑
ν=1

〈Umλ,Ûmν〉blmνe−i lmνD T ∗
mνµ = kmλe−i kmλD T ∗

mλµ ,0 < r < b, (6.18)

which can again be written in matrix form as:

M>T∗ = KE−T, (6.19)

where T∗ denotes all the terms related to the auxiliary coefficient and K ≡ δλνkmλ. Multiplying
both sides of Eq. (6.19) with MK−1 to have:

MK−1M>T∗ = ME−T, (6.20)

and using Eq. (6.17) to replace the right hand side of Eq. (6.20), T∗ is obtained as follows:

T∗ = (MK−1M>)−1ME−. (6.21)
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6.3 Extension of the tailored Green’s function for the tandem diaphragm case

Then substituting this expression in Eq. (6.19), the final expression for the transmission coeffi-
cient is derived as:

T = E+K−1M>(MK−1M>)−1ME−. (6.22)

Once the transmission matrix is derived, the reflection matrix, R can easily be calculated from
Eq. (6.15). As mentioned before, the solution given in Eq. (6.22) is not unique; hence, may
cause convergence problems while truncating the infinite series Uλ and Ûλ. To overcome this
issue, it is suggested in [57] that the lengths of the truncated series should be proportional to
the diameter ratio between the duct and the diaphragm; i.e. for MP×Q , P/Q ≈ b/a should be
satisfied.

6.3 Extension of the tailored Green’s function for the tandem
diaphragm case

As discussed in the previous subsection, any wave passing through a ducted diaphragm is scat-
tered into a reflected and a transmitted wave. In case of a tandem diaphragm configuration, the
acoustic wave is subjected to an infinite loop of reflections between the two diaphragms as it
encounters either of them.

Loudsp.
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pinc
+ 
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Figure 6.2: Scattering of an incident wave passing through ducted tandem diaphragms.

Considering the case shown in Figure 6.2 where the two diaphragms with reflec-
tion/transmission matrices, R1,2/T1,2, are installed in an infinite duct with a point source located
upstream, these infinitely many reflections sum up to cumulative right-/left-going waves, p±

D .

RDRDRDRDRDpd  

pD
+ = T1pinc

+ 

R1R2T1pinc
+ 

R1R2R1R2T1pinc
+

+

+

+
· 
· 
· 

Figure 6.3: Decomposition of the cumulative right-going wave.

Taking the cumulative right-going wave, p+
D as an example, the summation of the infinitely

many reflected waves can be described explicitly as shown in Figure 6.3. This explicit summa-
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tion can be formulated as:

p+
D = (I+R1R2 +R1R2R1R2 +·· · )T1p+

i nc , (6.23)

where the infinite summation term can be reorganized to have a recursive form as follows:

(I+R1R2 +R1R2R1R2 +·· · ) =
(
I+R1R2

(
I+R1R2(I+·· · ))). (6.24)

Recursive summations of this kind can be treated using the mathematical induction method:

z =
(
I+R1R2

(
I+R1R2(I+·· · ))),

z = (I+R1R2z),

(I−R1R2z) = I,

z = (I−R1R2)−1. (6.25)

Substituting Eq. (6.25) into Eq. (6.23), the following expression can be obtained for the cumu-
lative right-going wave;

p+
D = (I−R1R2)−1T1p+

i nc . (6.26)

Finding an explicit expression for the cumulative waves in between the diaphragms, the reflec-
tion and the transmission matrices corresponding to the tandem diaphragm case, RT D and TT D ,
respectively, can be written in terms of R1,2 and T1,2:

RT D = R1 +T1(I−R1R2)−1R2T1, (6.27)

TT D = T2(I−R1R2)−1T1. (6.28)

It is obvious that the reflection matrices RT D and TT D correspond to the listener points upstream
and downstream the diaphragms, respectively for the current case where the source is located
upstream. When the source is located in between the diaphragms, the same procedure should
be followed for the right- and left-going incident waves, separately. Considering a listener point
positioned upstream the diaphragms, the reflection matrix RT D corresponding to the right-going
incident wave, p+

i nc due to a source in between the diaphragms is formulated by:

RT D = T1(I−R2R1)−1R2. (6.29)

Similarly, the transmission matrix TT D corresponding to the left-going incident wave, p−
i nc is

written as:
TT D = T1(I−R2R1)−1. (6.30)

6.4 Numerical validation of the tailored Green’s function

To validate the tailored Green’s function and to point out the necessity for such an analytical
approach, it is compared to the commercial solver LMS Virtual Lab Rev. 13. A test quadrupole
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6.5 No-flow scattering characteristics of the diaphragm

0.0625 D

0.5 D
0.125 D

Shear

Layer

Figure 6.4: Schematic representation of the test source positions on the shear layer.

has been placed at different positions, which are selected to be within the estimated shear layer
downstream the diaphragm as depicted in Figure 6.4.

The far-field acoustic pressure induced by the test quadrupole has been computed for each po-
sition, using both the numerical solver with two different meshes of 30 and 60 elements per
wavelength at 1 kHz, respectively, and the tailored Green’s function. In the numerical com-
putations, the Finite Element Method option with constant second order spatial discretization
scheme has been adopted to solve the Helmholtz equation. The computation time required for
the numerical method per frequency is 11 CPU sec and 90 CPU sec for the fine and coarse mesh
cases, respectively, while it is 0.0017 CPU sec for the analytical method.

It is observed at the top of Figure 6.5 that the analytical solution of the tailored Green’s function
for single diaphragm matches the numerical results with mesh convergence obtained for the
source location 0.5 D. Placing the source closer to the diaphragm, the numerical solver starts
overestimating the sound pressure level, especially in lower frequencies, as an indication of an
insufficient mesh resolution. It should be noted that applying adaptive discretization schemes
and local mesh refinement, more accurate solutions for the given source locations could have
been obtained with the numerical solver. This was however not performed in this study, where
the objective was mostly to validate the derivation of our specific tandem-diaphragm Green’s
function by means of a more general numerical approach. In the analytical method, the proxim-
ity of the sources with the diaphragm only affects the number of acoustic modes to be involved.

The verification of the tailored Green’s function for tandem diaphragm is provided for a test
source located in between, and downstream the diaphragms in the top and bottom plots of
Figure 6.6, respectively. The test source is located off the duct axis by 0.25 D in both cases
to avoid symmetry in the resulting acoustic fields. The axial positions mentioned in the figure
legends have been given with respect to the upstream diaphragm.

6.5 No-flow scattering characteristics of the diaphragm

The scattering matrix of the diaphragm(s) when there is no flow is calculated using the two-port
method similar to the experimental case investigated in Chapter 4. Considering the case shown
in Figure 4.12 with zero flow velocity, the scattering behavior of both the single and tandem
diaphragms are expected to be symmetric along the duct axis. The reflection and transmission
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Figure 6.5: Comparison of the acoustic responses obtained from numerical solver with the tai-
lored Green’s function. The vertical dashed line indicates the first cut-off frequency.

matrices, Ra,b and Ta,b reduce to R and T, respectively. Eq. (4.4) then becomes;[
p+

a
p+

b

]
=

[
R T
T R

][
p−

a
p−

b

]
. (6.31)

The matrices R and T are calculated up to the 2nd azimuthal mode, which required 10 different
load cases for [pa pb]> to be invertible. Different load cases are obtained by randomly placing
a test source within the source zone shown in Figure 6.7, and calculating the acoustic response
at the listeners on both sides of the diaphragm(s). 15 listeners are located at each of the listener
zones, and the calculation is repeated for 15 different source positions, yielding an overdeter-
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6.5 No-flow scattering characteristics of the diaphragm

Figure 6.6: Comparison of the acoustic responses obtained from numerical solver with the tai-
lored Green’s function for tandem diaphragm case with the test source located in
between (top) and downstream (bottom) the diaphragms. The vertical dashed line
indicates the first cut-off frequency.
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Figure 6.7: Source and listener zones defined for the system identification of the diaphragm(s).

mined system by a factor of 1.5. The source strength is defined to be constant over the frequency
range with the value 1+ i 1 kg/ms2. The acoustic response calculations are performed using the
tailored Green’s function for the single and tandem diaphragms. The resulting reflection and
transmission coefficients up to the 1st azimuthal mode are plotted in Figures 6.8 and 6.9. The
off-diagonal elements are observed to be zero as a result of the axisymmetry, and thereby are
not shown in the plots.
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Figure 6.8: The reflection/transmission coefficient for the single (left) and the tandem (right)
diaphragms for m = 0.
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Figure 6.9: The reflection/transmission coefficient for the single (left) and the tandem (right)
diaphragms for m = 1
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7 Use of unsteady LES data for noise
prediction

7.1 Noise prediction using compressible flow data

7.1.1 Characteristic Based Filtering method

To extract the acoustic field in the plane wave region from the LES calculations, a DNC method
called Characteristic Based Filtering (CBF) is used. The method was proposed by Kopitz et
al. [41] to provide non-reflecting boundary conditions in plane wave region for LES, and it is
based on the order of magnitude difference in the correlation lengths and speed of propagation
of the acoustic and the turbulent fields. The details of the method are given as follows.

In case of a left-to-right going flow with a mean velocity, U ; the acoustic information is carried
with the characteristic waves at a convection speed, c f =U + c0 for the right-going character-
istic wave, f , and cg = U − c0 for the left-going characteristic wave, g . Considering the flow
field obtained from the numerical simulation, the unsteady part which is easily computed by
subtracting the mean can be written as the sum of the turbulent and the acoustic fields:

p = pt +p ′, (7.1)
u = ut +u′, (7.2)

where p and u correspond to the unsteady pressure and velocity fields, respectively. The
subindex ‘t’ and the ‘prime’ denote the turbulent and the acoustic perturbations, respectively.
The relations between the characteristic waves, and the acoustic perturbations are given by:

u′ = f − g , (7.3)
p ′ = ρc0( f + g ), (7.4)

where ρ and c0 are density and the speed of sound, respectively. The above equations can be
reformulated to obtain the characteristic waves, f and g :

f = 1

2

(
p ′

ρc0
+u′

)
, (7.5)

g = 1

2

(
p ′

ρc0
−u′

)
. (7.6)

These waves are monitored at two different sections with axial positions, x1 and x2 = x1+d (see
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f, c0 + U

g, c0 − U

d

x1

u1 + u1́

p1 + p1́

x2

u2 + u2́

p2 + p2́

U

Figure 7.1: Characteristic waves traveling inside a duct with mean flow.

Figure 7.1), to have:

f (x1|t ) = f (x2|t +τ f ), τ f =
d

c f
, (7.7)

g (x1|t ) = g (x2|t +τg ), τg = −d

cg
. (7.8)

At this point, two auxiliary variables in terms of the unsteady pressure, p and velocity, u are
introduced in the form of the characteristic wave equation:

f ∗(p,u) = 1

2

(
p

ρc0
+u

)
, (7.9)

g∗(p,u) = 1

2

(
p

ρc0
−u

)
. (7.10)

Please note that the auxiliary variables f ∗(p,u) and g∗(p,u) can directly be obtained from the
numerical flow field as they are defined in terms of the unsteady flow data. Eq. (7.1) and (7.2)
implies that these auxiliary variables can also be written in terms of the acoustic and turbulent
components of the unsteady flow data as f ∗(p ′,u′, pt ,ut ) and g∗(p ′,u′, pt ,ut ). A time-shifted
averaging of these auxiliary variables is performed over the two sections mentioned above to
have 〈 f ∗(x1|t ), f ∗(x2|t +τ f )〉 and 〈g∗(x1|t ), g∗(x2|t +τg )〉. Since the characteristic wave equa-
tion is linear, this averaging can be applied to each of the arguments of f ∗ and g∗, separately.
When the axial separation, d is sufficiently large, the turbulent components pt and ut become
uncorrelated between the two sections. According to the statistics theory, averaging two uncor-
related signals yields a zero mean. Then, the time-shifted averaging of the auxiliary variables
eliminates the turbulent contribution in the unsteady flow data, yielding approximate character-
istic wave equations:

f ≈ 〈 f ∗(x1|t ), f ∗(x2|t +τ f )〉, (7.11)
g ≈ 〈g∗(x1|t ), g∗(x2|t +τg )〉. (7.12)

Once the characteristic waves are computed, the acoustic pressure and velocity can be retrieved
using Eq. (7.3) and (7.4). It should be noted that the CBF method is only applicable in the
plane wave region since the wave phase velocity becomes frequency dependent for the higher
order modes, which prevents filtering the characteristic waves using time domain data. In the
present analysis, the CBF method has been implemented locating four sections at each side

84
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of the diaphragm(s) which are separated from each other by 0.5D. The distance between the
section planes has been selected to be greater than the integral time scale multiplied by the
mean convection velocity for the turbulent structures to be uncorrelated. For the time-shifted
averaging approach to be valid, the flow field enclosing the selected cross-sections is to be
source-free. To ensure a source-free region, the distances between the diaphragm(s) and the
nearest cross-sections at the upstream and downstream sections have been selected to be 3D
and 5D, respectively.

7.2 Noise prediction using the pressure distribution on the
diaphragms

The dominant noise generation mechanism in ducted diaphragms is known to be the interac-
tion between the diaphragm(s) and the turbulence around it [24, 56, 59, 81, 92]. To investigate
the contribution of the diaphragms to the noise generation, a prediction method based on the
surface pressure data over the diaphragms has been implemented. The method uses a variation
of Curle’s analogy [18] to model the noise generated by solid surfaces as dipoles, which then
replace these surfaces.

Reconsidering the integral equation obtained in the derivation of Curle’s analogy:

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ−

∫ t

−∞

Ï
∂V

(p ′δi j −σi j )
∂G

∂y j
ni d2ydτ, (7.13)

a modification is made by choosing a tailored Green’s function for cylindrical ducts, Gc yl in-
stead of the free-field Green’s function. Defining

∂V = ∂Vduct +∂Vdi ap , (7.14)

where, Vduct and ∂Vdi ap denote the duct and the diaphragm surfaces, respectively, the surface
integral in Eq. 7.13 can be split into two as follows:Ï

∂V
(p ′δi j −σi j )

∂Gc yl

∂y j
ni d2ydτ=

Ï
∂Vduct

(p ′δi j −σi j )
∂Gc yl

∂y j
ni d2ydτ,

+
Ï

∂Vdi ap

(p ′δi j −σi j )
∂Gc yl

∂y j
ni d2ydτ. (7.15)

Since ∂Gc yl /∂n = 0 is satisfied on the duct surface, the surface integral over ∂Vduct van-
ishes. Assuming high Reynolds number flow, the viscous term, σi j can also be dropped from
Eq. (7.13) to obtain

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2Gc yl

∂yi∂y j
d3ydτ−

∫ t

−∞

Ï
∂Vdi ap

p ′δi j
∂Gc yl

∂y j
ni d2ydτ. (7.16)

On the right hand side of Eq. (7.16), the volume integral corresponds to the noise generation by
the volume sources inside a cylindrical duct, and the surface integral to the scattering and noise
generation by the diaphragm. To compute the surface integral in Eq. (7.16) over a discrete do-
main, the pressure fluctuations are integrated over the surface mesh elements, yielding acoustic

85



Use of unsteady LES data for noise prediction

sources of dipolar form. The computations were done in the frequency domain by taking the
Fourier Transform of the unsteady pressure data. The tailored Green’s function at a particular
frequency for a point source in a cylindrical duct, Gω was given in Eq. (2.77) in Section 2.2.2.
The derivative of the tailored Green’s function with respect to the source position, y is calculated
through the below analysis.

Defining

Q ≡ Jm(αmµr )

kmµ(a2 − m2

α2
mµ

)J 2
m(αmµa)

, (7.17)

F (r0) ≡ Jm(αmµr0) , (7.18)
H(ϑ0, x0) ≡ i

(∓kmµ(x −x0)−m(ϑ−ϑ0)
)

, (7.19)

Eq. (2.77) can be reformatted as follows:

Gω = i

2π

∞∑
m=−∞

∞∑
µ=1

QFeH . (7.20)

The tailored Green’s function for a dipole placed in a cylindrical duct can then be written as;

Gω,xi =
i

2π

∞∑
m=−∞

∞∑
µ=1

Q(F,xi +F H,xi )eH . (7.21)

The derivative terms given in generic form are listed explicitly in Appendix B.1.

For the plane wave region which corresponds to (m,µ) = (0,1), Eq. (7.21) reduces to

Gω,xi =
i

2π

e∓iω0(x−x0)

ω0a2
(7.22)

for a listener in the far-field. Being r0 and ϑ0 invariant, Eq. (7.22) implies that for the plane
wave region, the distributed dipoles at the diaphragm positions can be summed up to a single
equivalent dipole for each of the diaphragms, when the listeners are located in the far-field.
The noise predictions obtained from the distributed and the equivalent dipoles are compared in
Figure 7.2. As expected, the two SPLs coincide for the plane wave region. The higher order
modes are triggered in the distributed case due to the variation of the dipoles strengths and
phases in the azimuthal and radial directions.

7.3 Noise prediction using the turbulent velocity

The acoustic density perturbation obtained using Lighthill’s analogy was given in Section 2.3.
When used with the tailored Green’s function derived in Chapter 6 satisfying ∂G/∂n = 0,
Eq. (2.93) reduces to

ρ′(x, t ) =
∫ t

−∞

Ñ
V

Ti j
∂2G

∂yi∂y j
d3ydτ, (7.23)
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Figure 7.2: Comparison of the sound pressure level obtained from the distributed and the
merged dipoles for the single (top) and the tandem (bottom) diaphragm cases. The
vertical dashed line indicates the first cut-off frequency.

where

Ti j = ρvi v j + (p ′− c2
0ρ

′)δi j −σi j . (7.24)

For an isentropic flow, the second term in the right hand side of 7.24 becomes zero, and for a
high Reynolds number flow, the viscous effects, σi j can be neglected, yielding the following
expression to calculate acoustic density perturbation:

ρ′(x, t ) =
∫ t

−∞

Ñ
V
ρvi v j

∂2G

∂yi∂y j
d3ydτ. (7.25)
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The source term in Eq. (7.25) is of quadrupolar form. Similar to the case of the dipolar sources,
the tailored Green’s function is to be differentiated twice with respect to the source position.
Taking once more the derivative of Eq. (7.21), the tailored Green’s function for a quadrupole
inside a duct is calculated as;

Gω,yi y j =
i

2π

∞∑
m=−∞

∞∑
µ=1

Q(F,yi y j +F,yi H,y j +F,y j H,yi +F H,yi y j +F H,yi H,y j )eH . (7.26)

Over a discrete domain, Eq. (7.25) turns into

ρ̂(x) =
N∑

n=1
(ρvi v j )n

∞∑
m=0

∞∑
µ=0

(Gω,yi y j )mµ∆n , (7.27)

The parameters determining the computation time of the Green’s function approach per fre-
quency and per listener are the number of sources and acoustic modes involved. A prediction
with maximum accuracy is obtained when the summation in Eq. (7.27) is computed over the en-
tire LES mesh using sufficiently high number of modes. Considering the 1.2×107 and 1.6×107

elements for the single and tandem diaphragm cases, the solution is expected to be very ex-
pensive even if an analytical approach is used. To reduce the computation time without signifi-
cant loss of accuracy, a convergence analysis for the number of acoustic modes involved, and a
grouping scheme for the mesh elements were applied. The details are explained in the following
subsections.

7.3.1 Convergence analysis for the number of acoustic modes

The number of acoustic modes to be involved in the solution of the Green’s function depends on
the frequency, and the distance of the source to the listener and the diaphragms. It was discussed
in Section 2.2.3 that at a given frequency, only a finite number of modes are cut-on, while the
rest of the infinite series in Eq. (2.77) exhibit an exponential decay. The number of the cut-
on modes at the maximum frequency of interest of the thesis study is 9. For a listener located
distant to the source in a duct, accounting for only these 9 modes yields a converged acoustic
response. If the source is located closer to the listener, the evanescent modes start contributing
to the acoustic field. Besides, when there is a scattering surface such as a diaphragm in the
near-field of the source, some of the evanescent modes may scatter into the cut-on modes, and
thereby, contribute to the far-field acoustic pressure. The listener points set in the numerical
cases match the microphone positions with respect to the diaphragm(s) given in Section 3.3.4.
All the sources are assumed to be contained downstream of the (upstream) diaphragm. The
distance between the diaphragm and the closest listener is then taken as the minimum distance
between any source-listener pair. To determine the number of acoustic modes to be included
in the solution is determined by calculating the acoustic response at the closest listener due to
a test source for increasing number of modes until convergence. The source strength is set to
be 1+ i 1 kg/ms2 for all the frequency range. The analysis is repeated for the source positions
at different distances to the diaphragm to obtain a convergence map in terms of the acoustic
modes. The number of acoustic modes yielding converged acoustic response with respect to the
source position is tabulated in Table 7.1.
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Table 7.1: Distance to the diaphragm vs. minimum number of modes to be involved for a con-
verged solution

x/D < 0.02 0.0267 0.033 0.0467 0.06 ∞
Num. of Modes 40 30 25 20 15 10

Level 1 Level 3 Level 4Level 2

Figure 7.3: Integration of the quadrupoles using the octree structure. The red zones represent
the distributed volume sources where each is integrated to an equivalent source.

7.3.2 Grouping of the sources in the flow field

The grouping scheme is introduced to decrease the number of sources, i.e. quadrupoles. This
involves dividing the mesh domain into smaller subsets, and summing up the quadrupoles con-
tained in each subset to a single equivalent source. An octree structure was used for modi-
fying the grouping scheme in a systematical manner to see the effect of the grouping on the
resultant acoustic response at the listeners. A convergence analysis, where the proximity to the
diaphragm(s) is assumed to be the dominant factor was conducted to minimize this effect.

Initially, a region of dominant noise-generating sources has been defined. Considering the very
low turbulence intensity upstream of the diaphragm; i.e. weak acoustic sources, and the low
radiation efficiency of the quadrupolar sources away from the diaphragm, a 4D long region
downstream of the diaphragm has been assumed to be large enough to enclose the dominant
source region. Later on, it is verified that an even shorter region is sufficient for a converged
acoustic response. The entire set of quadrupoles contained in the selected 4D long region has
been divided into 4 cylindrical blocks of 1D length. The quadrupoles distributed in each block
have been re-integrated at levels from 1 to 3, where re-integration at level 1 means summing all
the quadrupoles contained in the corresponding block to a single equivalent quadrupole. At level
2, each block of quadrupoles are grouped in eight 1/2D long quarter-cylindrical sub-blocks. A
2D schematic is illustrated in Figure 7.3 to represent the concept of re-integration at higher
levels. Each resultant point quadrupole is located at the center of gravity of its corresponding
sub-block. Figure 7.4 shows the acoustic response at the far-field upstream of the diaphragm
due to each of the cylindrical blocks integrated at different levels. Comparing those acoustic
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responses to each other, it can be deduced that for the last block, an integration at level 1 yields
sufficient convergence; i.e. an equivalent quadrupole at the volumetric center of the block can
adequately represent the entire block of distributed quadrupoles. The quadrupole integration
scheme described above does not depend on the turbulence correlation length, in the sense that
the contributions of the integrated quadrupoles are summed in real and imaginary parts at the
listener location (accounting for possible interferences), for each time segment of the CFD data,
before being averaged in amplitude for all time segments (assuming time-decorrelation between
segments, which was verified). For the quadrupoles upstream of the axial position x/D = 3, the
same process has been repeated by dividing the zone into four 1/2D long cylindrical blocks
which are re-integrated at levels from 2 to 4. It can be seen in Figure 7.5 that an integration
at level 2 yields totally converged acoustic response for the cylindrical blocks downstream of
x/D = 1. This process has been repeated for those cylindrical blocks showing discrepancy in the
acoustic responses obtained at different integration levels, by halving the length of the blocks
and increasing the level of integration by one, until a converged response is obtained for the
entire source region. Such a methodology gradually going from integration level 1 to higher
levels has been adopted to minimize the number of acoustic response computations until reach-
ing convergence. The positional thresholds for each level in the resulting integration scheme are
depicted at the top in Figure 7.6. The threshold values for the tandem diaphragm case are then
directly determined regarding the results of the single diaphragm case, and are depicted at the
bottom of the same figure. The convergence of the selected grouping scheme is verified for the
single diaphragm case by making a comparison against a ‘refined’ scheme, which is obtained
by increasing the level of integration by one for each axial block shown at the top of Figure 7.6.
Figure 7.7 depicts that the given scheme for the single diaphragm configuration yields an acous-
tic response reasonably similar to one of a finer scheme, which is, again, expected to be the case
for the tandem configuration as well. To verify the initial assumption of a dominant source
region, the sound fields radiated from the source regions of gradually increased lengths down-
stream the diaphragm are compared in Figure 7.8. It is shown in the figure that the sources
contained in a 0.5D long region, which are likely to have greater radiation efficiency due to
being close to the diaphragm, are mostly responsible for the noise generation within the plane
wave region. For the frequencies above the first cut-off, the sources outside this half-diameter
region dominate the noise generation. Regarding the convergence of the acoustic responses,
it can be verified that defining a 4D long region downstream the diaphragm for noise source
computation provides conservative margin for a converged acoustic response at the far-field.

7.4 Comparison of the LES predictions against the in-duct
aeroacoustic measurements

The noise predictions for the single and the tandem diaphragm cases obtained using the
quadrupole method, the dipole method, and the CBF method, respectively are compared to the
in-duct measurements. The results for the single diaphragm case are shown in Figure 7.9 where
it can be seen that there is a strong contamination in the SPL obtained from the measurements
especially in the plane wave region due to standing waves present along the duct, as a result
of having partly reflective duct-ends in the experimental set-up. This contamination prevents a
direct comparison between the measurements and the noise prediction methods, which use the
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Figure 7.4: Acoustic pressure spectra at far-field induced by the quadrupoles integrated at levels
from 1 to 3. Origin of x is taken on the diaphragm.
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Figure 7.5: Acoustic pressure spectra at far-field induced by the quadrupoles integrated at levels
from 2 to 4. Origin of x is taken on the diaphragm.

infinite duct assumption. However, it is still possible to make a general assessment of the predic-
tion accuracies of the numerical methods, especially for the frequencies above the first cut-off.
It is evident that the noise prediction obtained from the quadrupole method well matches the ex-
periments for this frequency range. The dipole method does not provide satisfactory prediction
at any part of the spectrum. However, it approaches the quadrupole method for the frequencies
below 600 Hz. This indicates that isolation of the pressure fluctuations on the diaphragm sur-
faces as the dominant noise source is not valid for the single diaphragm case. The CBF method,
which is only valid in the plane wave region, yields an SPL similar to the quadrupole method
for the frequencies below 600 Hz although it inaccurately predicts a sharp decay in the SPL
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Figure 7.6: Non-dimensional limits for converged integration at each level for the single (top)
and tandem (bottom) diaphragm configurations.

for higher frequencies. Beyond this frequency, the acoustic perturbations, which are very small
in amplitude, are truncated by the LES solver, while the turbulent velocity fluctuations, which
are used for computing the Lighthill’s stress tensor, are not affected by such a truncation due to
having much higher amplitudes.

The results for the tandem diaphragm case are depicted in Figure 7.10. The contamination
problem for the SPL obtained from the measurements repeats for the tandem diaphragm case as
well. It can again be seen that the quadrupole method satisfactorily matches the experimental
results for the frequencies beyond the first cut-off. In the tandem diaphragm case, the pressure
fluctuations on the downstream diaphragm significantly contribute to noise generation. This
implies a better prediction of the SPL by the dipole method, which can already be observed
Figure 7.10. However, it still underpredicts the SPL compared to the quadrupole method for
the plane wave region, where the sound generation is expected to be dominated by the surface
sources. Such an underprediction might be due to not taking into account the dipoles on the duct
surfaces near the diaphragms in noise generation. For the higher order modes, the dipole method
accurately predicts the peaks observed in the measurements at the mode transition frequencies
despite of underestimating the sound pressure level in between those peaks. The CBF method
provides a considerably better noise prediction for the overall plane wave region in the tandem
diaphragm case. The 20 dB increase in the SPL, compared to the single diaphragm case, leads
to ten-times-stronger acoustic perturbations, which can be more accurately captured by the LES
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Figure 7.7: Comparison between the results of the converged grouping scheme and the refined
scheme.

solver without being truncated.

7.5 Conclusions

The objective of the chapter was to assess the accuracy and robustness of the Lighthill/Curle
analogy using a tailored Green’s function for the duct-diaphragms system. The resulting noise
predictions, compared with experimental validation data, indicate that above the first duct cut-
off frequency, satisfactory results can be obtained by integrating the quadrupolar field with the
new tailored Green’s function. The method has the advantage of not requiring any pressure data;
however, it is limited to the low Mach number applications due to not taking into account the
mean flow effects. It was shown for the single diaphragm case that applying an analogy account-
ing only for the diaphragm unsteady forces (dipoles) underestimates the significant broadband
contribution above the duct cut-off frequency. These broadband contributions were shown to be
correctly predicted using distributed quadrupoles and the tailored Green’s function. It is con-
cluded that the diaphragm-distributed dipoles do not fully account for the diffraction of the
quadrupoles, despite of having pressure data obtained by a compressible LES. The quadrupoles
distributed inside the duct are presumed to play a non-negligible contribution as the frequency
approaches the duct cut-off frequency and above.
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Figure 7.8: Comparison of the sound field radiated from the source regions of different lengths
downstream the diaphragm.

For the tandem diaphragm case, accounting for the diaphragm-distributed dipoles yields much
better agreement with the experimental and quadrupolar data. This can be explained by the
much stronger hydrodynamic interactions between the two diaphragms.

Finally, the results demonstrate that even when compressible flow data are available, processing
them by means of a suitable analogy with an adequate Green’s function, the acoustic field can
be obtained with enhanced accuracy and robustness, compared with a direct treatment of the
CFD data.
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Figure 7.9: Comparison of noise spectra obtained by the measurements and different noise pre-
diction methods at the upstream far-field for the single diaphragm case. For better
readability, the quadrupole method is compared against the measurements (top),
and the two other noise prediction methods (bottom) separately. The vertical dashed
line indicates the first cut-off frequency.
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Figure 7.10: Comparison of noise spectra obtained by the measurements and different noise
prediction methods at the upstream far-field for the tandem diaphragm case. For
better readability, the quadrupole method is compared against the measurements
(top), and the two other noise prediction methods (bottom) separately. The vertical
dashed line indicates the first cut-off frequency.
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8 Stochastic Noise Generation and
Radiation (SNGR) method

8.1 Introduction

Methods to compute flow-induced noise commonly rely on unsteady flow data, such as Large
Eddy Simulation (LES) (Gloerfelt et Lafon [23]), Detached Eddy Simulation (DES) or some of
its variants (Shur et al. [86]). Quite accurate noise prediction can be obtained, but the computa-
tional costs associated with such approaches do not allow the numerous runs that are necessary
for numerical optimization. As a less compute intensive alternative, stochastic approaches do
not explicitly resolve the unsteady Navier Stokes equations, but are based on a generation of
transient flow data satisfying statistical properties obtained by means of, for instance, Reynolds-
Averaged Navier-Stokes simulations.

The use of stochastic methods to synthesize turbulence was introduced by Kraichnan et al. [42]
to provide realistic boundary conditions for LES computations. Karweit et al. [38] used this
concept to develop the so-called ‘Stochastic Noise Generation and Radiation’ (SNGR) method,
where the turbulent velocity field was defined as the summation of the random Fourier modes
homogeneously distributed in space. The energy level of the modes was determined using the
one-dimensional von Karman-Pao energy spectrum, which is locally computed based on the
mean turbulent kinetic energy and dissipation rate data obtained from a RANS solution. Bechara
et al. [10] used this approach to predict noise generated by free turbulent flows. To introduce a
temporal correlation, a band-pass filter was applied to the uncorrelated turbulent velocity data.
Bailly et al. [8] introduced the idea of convecting the synthetic field with the mean flow and
providing the temporal decorrelation by adding a time- and wavenumber-dependent phase term
for each Fourier mode. They implemented the method for both confined [8] and unconfined
flows [7]. Bauer et al. [9] applied the SGNR method to generate frozen turbulence around a flat
plate to predict the trailing edge noise. Concerning the effect of the sweeping hypothesis (small
eddies being carried by the most energetic eddies) on jet noise prediction [76], Lafitte et al. [44]
modified the SNGR formulation of Bailly et al. [8] to include this effect. To introduce temporal
decorrelation in SNGR method in a realistic and efficient way, Billson et al. [12] proposed a two-
step method, where a simple convection equation was used to take into account the convection
of the turbulence and the temporal de-correlation was achieved blending the convected velocity
field with synthetic field at each time instant using an exponentially weighted filter. In a later
work [13], they extended this method to take the anisotropy into account.

As an alternative stochastic approach, based on the concept introduced by Klein et al. [40] where
the velocity fluctuations were created by filtering white noise to provide realistic inflow data for
LES, Ewert et Emunds [21] developed the so-called Random Particle Mesh (RPM) method to
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predict slat noise. They applied Gaussian filters on white noise to create stream functions from
which the turbulent velocity field was obtained. The filter lengths are determined regarding the
integral length scale data predicted from a RANS solution. Later, Siefert et Ewert [87] modified
the RPM method to include the sweeping effect and implemented it for a jet noise prediction
problem. In recent work, Heo et al. [27] implemented the RPM method using an unsteady
RANS solution to predict the tonal and the broadband noise generated by a fan.

In the present thesis, SNGR approach is followed to predict the noise coming from single and
double diaphragms installed in a cylindrical duct. Such configurations are frequently used in
HVAC applications to balance the mass flow rate, for being very easy to manufacture and in-
stall, albeit causing significant noise. As an initial attempt to predict the ducted diaphragm noise
using stochastic approaches in the present study, the SNGR method of Bailly et al. [8] was im-
plemented based on a three-dimensional RANS simulation in [35]. The radiation of the acoustic
sources was computed using Lighthill’s analogy, implemented in a numerical acoustic solver.
In parallel, Curle’s analogy [18] was applied using unsteady pressure data obtained over the
diaphragm surfaces by means of LES, to better understand the contribution of the diaphragm(s)
to noise generation. The two numerical predictions were compared to in-duct acoustic mea-
surements. Although the SNGR implementation showed some promising behavior, significant
discrepancies remained, which were attributed to the insufficient match between the statistical
properties of the RANS and LES flow fields on the one hand, and to known numerical issues
that are encountered when the Lighthill sources are located too close to the acoustic mesh on
the other hand. To minimize those numerical errors, a tailored Green’s function was introduced
in Chapter 6 and was validated using turbulent velocity field data obtained from LES in Chapter
7. In this chapter, the same methodology is followed replacing the unsteady LES data with the
synthetic turbulent velocity field obtained from the SNGR method of Billson et al. [13].

Stochastic methods rely on a statistical description of the flow field for the generation of syn-
thetic time-resolved velocity fields. Lighthill’s approach to flow-induced noise [51] indicates
the importance of two-point statistics in particular. Various studies have been published on the
relation between the space-time correlation functions and the noise generation in jet or shear
flows [52, 54, 70, 75]. Accordingly, stochastic noise prediction approaches are often based
on the determination of the turbulent length- and time-scales from RANS k-ε or k-ω mod-
els, sometimes complemented by ad hoc calibration procedures to yield a satisfactory match
with observations. This preliminary calculation often relies on an assumption of isotropic ho-
mogeneous turbulence. However, flow properties such as isotropy are strongly dependent on
geometric details, making it difficult to develop a generic method applicable to a wide range of
cases.

Thereto, an important objective of this work is to minimize the amount of input needed for the
calibration of the length and time scales. The focus is placed on designing a new temporal filter,
in which spectral decay is adjusted according to LES data to better represent the dissipation of
turbulence. The effect of anisotropy is also investigated using a non-linear model for anisotropy
correction. The noise prediction using the compressible LES data presented in Chapter 7 is
taken as the reference data for comparison. For a reliable evaluation of the capability of the
SNGR method in predicting the ducted diaphragm noise, the mean flow data was obtained
averaging the LES field, eliminating errors due to discrepancies between the RANS and LES
statistics. An aeroacoustic source grouping scheme, similar to the one introduced in Section
7.3.2, is implemented in the present study prior to the computation of the synthetic field using
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Figure 8.1: Geometric representation of a wave vector.

generic source terms to further reduce the memory requirements and computational cost of the
acoustic propagation problem.

8.2 Theory

The SNGR formulation of Bechara et al. [10], where the turbulent velocity field is defined as a
weighted summation of Fourier modes which are randomly and homogeneously distributed in
three-dimensional space is given as follows:

ut (x, t ) = 2
N∑

n=1
ûn cos

(
kn · (x−uc t )+ψn

)
σn (8.1)

where kn is the wavevector whose magnitude gives the wavenumber, uc is the convection ve-
locity, and ûn , ψn , and σn are the amplitude, phase and direction of the nth Fourier mode,
respectively. σn is defined on a plane normal to kn to obtain a solenoidal velocity field (see Fig-
ure 8.1). To achieve homogeneous distribution of the wave vectors in three-dimensional space,
the following probability density functions (PDF) are used while determining the angles ϑn and
ϕn which define the orientation of the nth wave vector:

P (ϕn) = (2π)−1, −π≤ϕn ≤π, (8.2)
P (ϑn) = cos (ϑn)/2, −π/2 ≤ϑn ≤π/2. (8.3)

The direction of the nth Fourier mode defined by the angle αn is expected to be randomly
distributed on the plane perpendicular to the nth wave vector. Therefore, the PDF corresponding
to αn is given as follows:

P (αn) = (2π)−1, −π≤αn ≤π. (8.4)

Similarly, the phase of the nth Fourier mode, ψn is determined randomly with the following
PDF:

P (ψn) = (2π)−1, −π≤ψn ≤π. (8.5)
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The amplitude of the nth Fourier mode is ûn =
√

E (kn)∆kn , where E(k) denotes the one-
dimensional von Karman-Pao energy spectrum [62, 96] for isotropic turbulence given as

E (k) = 4p
π

Γ (17/6)

Γ(1/3)

2K /3

ke

(k/ke )4[
1+ (k/ke )2]17/6

e
−2

(
k

kη

)2

, (8.6)

and ∆kn is the bandwidth of the nth wave number. In Eq. (8.6), K denotes the turbulent kinetic
energy, ke and kη are the wavenumbers corresponding to the integral and Kolmogorov length
scales, respectively. These scales are locally calculated by the following two equations:

kη =ε1/4ν−3/4, (8.7)

ke =9π

55

α

Λ
, (8.8)

where ν, ε and Λ correspond to the kinematic viscosity, dissipation rate and the integral length
scale, respectively. The coefficient, α is used for scaling the spectrum so that the integration
of the spectrum along (0,k) where k →∞ yields the turbulent kinetic energy. To have such an
equality, α must satisfy the following, assuming Reynolds number →∞:

α= 4p
π

Γ (17/6)

Γ(1/3)
. (8.9)

The integral length scale is computed by

Λ= fL
K −3/2

ε
, (8.10)

where fL is an adjustment parameter. The inputs in the above analysis are the mean flow velocity,
the turbulent kinetic energy and the dissipation rate data. In a later work, Bailly et al. [8] added
a time varying phase, ωn t in Eq. (8.1) to introduce temporal de-correlation, where ωn denoted
the angular frequency of the corresponding nth mode. Investigating this approach, Omais et al.
[61] showed that any time dependent variable added to change the phase of the Fourier mode
in Eq. (8.1) is to be uniformly distributed in space. This means that the time dependent terms
introduced for the convection and the temporal de-correlation of turbulence cause non-physical
results in case of inhomogeneous turbulence.

Alternatively, Billson et al. [12] proposed a two-step method for the generation of synthetic
turbulence to better represent the flow de-correlation in time, which is adopted in the present
study. In their approach, the turbulent velocity field, vm−1

t (x) at the time step (m−1) is convected
through the convection equation

∂
(
ρvm−1

t

)
∂t

+ ∂
(
ρu j vm−1

t

)
∂x j

= 0, (8.11)

where ρ and ρu j correspond to the mean density and mean momentum, respectively. Then, to
obtain the turbulent velocity field at time step (m), the convected velocity field is blended with
the synthetic turbulent velocity fields generated at time steps (m) and (m −1) using Eq. (8.1)
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with the convection term omitted from the phase of the Fourier modes. This blending operation
results an exponentially weighted temporal filter equation of Holt-Winters type [29, 98]:

vm
t (x) = avm−1

t (x)+b
(
um

t (x)−um−1
t (x)

)
, (8.12)

where a = exp(−∆t/τ f ) and b = f A
p

(1−a)/2. The terms ∆t and f A are the time step size and
the tuning parameter for the turbulent kinetic energy, while τ f is the local dynamic time scale.
Choosing a proper model for the time constant is crucial for accurate prediction of turbulent
flow noise [5]. In the original work of Billson et al. [12], the time constant, τ f was predicted as

τ f = fT
K

ε
(8.13)

with an adjustment parameter, fT . The applicability of a frequency independent time constant is
to be verified for the present flow case, as the time and length scales in turbulent flows can also
be frequency dependent [26] and the dependency of the scales on the frequency significantly af-
fect flow noise generation [5]. To examine the existence of such a dependency on the frequency
in the present case, the cross-power spectral density (CPSD) of velocity has been computed at
each point in the flow domain for increasing time-lag values using

Γuu (x,ω,τi ) =F {u (x, t )u (x, t +τi )} , (8.14)

where F {·} is the discrete Fourier Transform operator, τi = i∆τ, is the time lag at the i th iteration
for i = 1,2, · · · , N . The local Eulerian time scales are then calculated for each frequency:

Lω =
N∑

i=1
Γuu (x,ω,τi )∆τ, (8.15)

and normalized using

lω = LωUr e f

E{Λ}
, (8.16)

where Ur e f is selected to be the inflow velocity and E {Λ} is the integral length scale averaged
over the flow domain. The resulting normalized time scales at various points downstream of the
diaphragm are plotted with respect to the Strouhal number, St = f D/Ur e f in Figure 8.2, where
Ur e f is selected to be the inflow velocity.

As seen in the figure, no strong variation is observed for the frequency range of interest. Hence
the expression used for the time scale given in Eq. (8.13) has been adopted for the present study.
It should be noted that all the tuning parameters faced in the above analysis have been set to be
unity in the present study, as no particular tuning of the flow scales was conducted.

8.2.1 Anisotropy correction

To include the effect of the anisotropy, Billson et al. [13] introduced the idea of distorting the
isotropic synthetic turbulent velocity field using the Reynolds stress tensor as discussed below.
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Figure 8.2: Normalized Eulerian time scales vs. Strouhal number computed at various points
downstream the diaphragm for the single diaphragm case. The center of the di-
aphragm cross-section is taken as the origin.

Given the local Reynolds stress tensor, τ= ρuu> normalized as

a =−3

2

τ

ρK
, (8.17)

and rotated to its principal axes to yield;

a∗ =R>aR, (8.18)

where R is the three-dimensional rotation matrix. Anisotropy can be added to the isotropic
turbulent velocity field, which is synthesized using Eq. (8.1), by rotating all the vectors to the
principal axes (multiplying by R>), scaling the Fourier summation with a∗1/2 and rotating the
resulting vector field back to the original coordinate system (multiplying by R). To retain the
divergence-free characteristic of the turbulent velocity field, the wave vector k is to be scaled
with a∗−1/2. It was shown in [13] that the stress tensor calculated from the resulting turbulent
velocity field satisfies the target stress tensor τ. There are various models in the literature for
predicting the anisotropy from the mean flow velocity data. In [13], a linear eddy viscosity
model has been used to predict the anisotropy. Omais et al. [61] showed that use of a non-
linear Reynolds stress model (RSM) significantly improves the prediction of the anisotropy,
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and so does the accuracy of the SNGR method. Following their approach, the non-linear RSM
introduced by Shih et al. [85] is implemented in the present study. The RSM is given by

ui u j = 2

3
Kδi j −Cµ

K 2

ε
2S∗

i j +2C2
K 3

ε2

(
−S∗

i kΩ
∗
k j +Ω∗

i k S∗
k j

)
, (8.19)

where S∗
i j is the traceless strain tensor given as

S∗
i j =

1

2

(
∂U i

∂x j
+ ∂U j

∂xi

)
− 1

3

∂U k

∂xk
δi j , (8.20)

and Ω∗
i j is the vorticity tensor:

Ω∗
i j =

1

2

(
∂U i

∂x j
+ ∂U j

∂xi

)
. (8.21)

with U i representing the mean flow velocity. To satisfy the realizability in any flow condition,
the coefficients Cµ and C2 in Eq. (8.19) are defined according to the rate of deformation and the
rate of rotation of the mean flow:

Cµ = 1

A0 + A∗
s

U∗K
ε

, C2 =
√

1−9C 2
µ

(S∗K
ε

)
C0 +6 S∗K

ε
Ω∗K
ε

, (8.22)

where A0 = 6.5, C0 = 1, S∗ =
√

S∗
i j S∗

j i , Ω
∗ =

√
Ω∗

i jΩ
∗
j i , A∗

s =p
6cos

(1
3 arccos

(p
6W ∗) )

, U∗ =√
S∗

i j S∗
i j +Ω∗

i jΩ
∗
i j , and W ∗ = S∗

i j S∗
j k S∗

ki

(S∗)3 .

8.2.2 Computing the mean flow parameters using the LES data

The mean flow field required as input in the above analysis is usually provided by a RANS
simulation in order to minimize computational costs. However, to better evaluate the accuracy
of the SNGR synthesis, the mean flow parameters were first calculated using the mean LES
data instead of a RANS solution, so that any ambiguities which could result from a possible
difference in the RANS simulation and the mean LES data were avoided.

To obtain the turbulent kinetic energy and the dissipation rate from the LES, the conservation
equation for the filtered turbulent kinetic energy has been used. Any flow variable in an LES
model can be written as the summation of the filtered and the sub-grid scale parts. For the
turbulent kinetic energy K , the filtered part, K f can be directly computed using the filtered
turbulent velocity field data, ũi :

K f =
1

2
ũi ũi . (8.23)
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The modeled turbulent eddy viscosity, νt is an output of the solver. The sub-grid scale part of
the turbulent kinetic energy, Ksg s can be predicted using

Ksg s =
(
νt

Cw∆

)2

, (8.24)

where Cw is the model constant (=0.57 for the WALE model) and the ∆ is the characteristic
filter size computed as the cubic root of the volume of the corresponding mesh element. For the
prediction of the dissipation rate, the conservation equation for the filtered kinetic energy, K f as
given in Pope’s book [66] is considered:

D̃K f

D̃t
− ∂

∂xi

[
ũ j

(
2νS̃i j −τr

i j −
p̃

ρ
δi j

)]
=−ε f −Pr , (8.25)

where

S̃i j = 1

2

(
∂ũi

∂x j
+ ∂ũ j

∂xi

)
(8.26)

represents the filtered stress tensor, and τr
i j corresponds to the residual stress computed using

the linear eddy viscosity model:

τr
i j =−2νt S̃i j . (8.27)

The left hand side of Eq. (8.25) represents the transport of the filtered energy while the right
hand side is related to viscous dissipation (ε f being the viscous dissipation of the filtered field)
and rate of the transfer of the kinetic energy to the sub-grid scale (Pr ). Assuming a temporarily
stationary flow, i.e. the net production of the kinetic energy equals zero, the total dissipation
rate, ε in the flow field can be found by summing these two terms:

ε= ε f +Pr , (8.28)

where,

ε f ≡ νS̃i j S̃i j , (8.29)
Pr ≡−τr

i j S̃i j . (8.30)

8.3 A new temporal filter

The energy spectra of the noise sources observed in an Eulerian frame within a flow are affected
by the sweeping of turbulence [75]. This is achieved with the convection operation in the present
SNGR implementation. In flow regions with strong convection, the noise sources are charac-
terized by the spatially generated synthetic velocity field. However, for the flow regions where
the mean convection velocity is close to zero, such as the recirculation zone(s) downstream of
the diaphragm(s) shown in Figure 8.3, the temporal de-correlation obtained by the filter given
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Figure 8.3: The mean u-velocity field for the single diaphragm case. The white-dashed line
denotes the separation zone downstream of the diaphragm.

in Eq. (8.12) becomes also effective in defining the turbulent fluctuations in an Eulerian frame.
Despite of their relatively low turbulence intensity, the acoustic sources contained within those
regions may still have significant contribution, since their radiation efficiency is enhanced by
the proximity of the diaphragm(s). Hence, it is important for the spectral decay of the filter
to match the LES value for those regions. For the single diaphragm configuration, the energy
spectra of the velocity data at randomly selected various points within the separation zone are
calculated using the LES data and depicted in Figure fig:EuuSpectrum. Since the LES data in-
cludes compressibility effects, peaks in the spectra are observed at the cut-on frequencies, where
new acoustic modes become propagative. It is seen that for the frequency range where the shape
of the spectrum is not dominated by acoustic mode cut-on, the spectral decay can be approxi-
mated by a −4.5 slope. This spectral decay being much steeper than −5/3, it can be inferred that
the energy spectrum corresponding to the frequency range of interest exhibits more dissipation
than in isotropic homogeneous turbulence. Similar values for the spectral decay in the dissipa-
tive range were reported in various experimental studies investigating the energy spectrum in
pipe flows [74, 95, 101]. The Reynolds number of the flow investigated in the present study is
ReD = U D/ν ∼= 64,000. In the work of Torbergsen et Krogstad [95], the closest experimental
case available for comparison with ReD = 70,000, the computed spectral decay was −4.2, fairly
close to the value predicted from the present LES.

The logarithmic slope of the spectrum of the temporal filter given in Eq. (8.12) can be calculated
by taking the Fourier Transform:

Vω = aVωe− 2πω
N + b

(
uω+uωe− 2πω

N

)
, (8.31)

where Vω and uω are the Fourier Transform of v and u, respectively, and N is the number of the
discrete time instants. Since the synthetic velocity field u (x) is uncorrelated in time, its Fourier
Transform yields a constant, γ. Reorganizing Eq. (8.31) and taking the logarithm, one obtains:

logVω = logb + logγ + log
(
1+e− 2πω

N

)
− log

(
1−ae− 2πω

N

)
. (8.32)

Taking the derivative of Eq. (8.32) with respect to logω and multiplying by 2 yields the loga-
rithmic slope of the energy spectrum of the temporal filter:

sl ope =−4πω

N
e− 2πω

N

(
1

1+e−2πω/N
+a

1

1−e−2πω/N

)
. (8.33)
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Figure 8.4: Energy spectrum of the u-velocity at various points in the separation zone.

The slope given in Eq. (8.33) is only dependent on the coefficient a, which is a function of the
time step ∆t , and on the time constant τ f , neither of which are suitable for freely adjusting the
slope of the filter. Given a time step satisfying the ratio, ∆t/τ f = 0.0001, which yields a CFL
value much smaller than the limit for numerical stability, the resulting slope of the spectrum in
the frequency range of interest is almost constant and approximately equal to −2; while using a
bigger time step makes the slope even closer to zero. This analysis implies that using the filter
given in Eq. (8.12), it is not possible to obtain a velocity field with an energy spectrum matching
the LES flow field. To overcome this issue, a cascaded temporal filter is proposed in the present
study as follows:

wm
t (x) =a1wm−1

t (x)+b1
(
um

t (x)−um−1
t (x)

)
,

zm
t (x) =a2zm−1

t (x)+b2wm
t (x) ,

vm
t (x) =a3vm−1

t (x)+b3zm
t (x) ,

(8.34)

where w and z are auxiliary variables, a1 and a2 are free parameters used for tuning the slope
of the resulting filter spectrum, b1 =

p
(1−a1)/2 , b2 =

p
(1−a2) , a3 = exp(−∆t/τ f ), and b3 =p

(1−a1) /σ. The correction factor, σ is added to ensure that the standard deviations of v and u
are equal. To tune the parameters, a1 and a2, a random series u with constant spectrum is used.
Setting a1 = 0.98, and a2 = 0.7, the logarithmic slope of the filter spectrum over the domain of
interest for the single diaphragm case lies between −4.42 and −4.51, with an average equal to
−4.50. The corresponding correction factor σ is numerically computed to be 8.26 by taking the
ratio of the standard deviation of v to that of u.
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8.4 Numerical setup and synthetic flow field

The mesh used for the SNGR method has to be fine enough to minimize numerical dissipa-
tion when solving the convection equation. The SNGR mesh has been determined based on the
average cell size of the LES mesh taken as reference. For both single and double diaphragm
configurations, the upstream boundary of the SNGR domain has been set matching with the
downstream face of the (upstream) diaphragm. Meshes of 1.67×106 and 2.56×106 elements
have been created for the single and double diaphragm cases, respectively, without any partic-
ular refinement for the boundary layers. Both the inflow and outflow boundary conditions have
been set to 0 m/s. A buffer layer of length 2D has been applied to the downstream end of the
domain to avoid spurious noise generation, where the synthetic source data is weighted by a
semi-Hanning decaying window function. No buffer layer is required for the inlet, as the tur-
bulence intensity at the upstream interface of the (upstream) diaphragm is already very close to
zero.

The convection equation has been solved using a first order upwind scheme with a time step of
2×10−5 seconds. The maximum CFL number with the given mesh and time step is 0.75, below
the stability limit for the selected numerical scheme of 1. The wavenumber range has been
determined through a convergence analysis. The lower bound has been taken as 0.1min(ke )
where the minimum of the ke-distribution within the domain of interest is calculated to be of
order 10 m−1 using Eq. (8.8) for both configurations. Acoustic convergence has been achieved
with the upper bound of ke set to 200 m−1 and 500 m−1, and the number of wavenumbers equals
50 and 125 for the single and double diaphragm configurations, respectively.

The anisotropy model investigated in the present study is compared with the anisotropy data
computed from LES. The approach proposed by Lumley and Newman [53] has been adopted
thereto. In their approach, the relation between the two invariants I I = −ai j a j i /2 and I I I =
det(ai j ), with ai j = τi j /2K −1/3, is used for determining the characteristics of the turbulence.
I I = I I I = 0 indicates isotropic turbulence, while I I > 0 and I I I ∼= 0 indicates 2-component ax-
isymmetric turbulence. In the present SNGR data, the invariant, I I I is seen to be very close to
zero for the entire flow domain of interest for both single and double diaphragm cases. Hence,
the comparison between the anisotropy models and the LES data are made regarding the invari-
ant, I I . In Figure 8.5, the I I -distribution obtained from the anisotropy model and the LES data
are plotted.

The anisotropy model is seen to slightly overestimate the anisotropy for the shear zone until
x/D =3.5, while it significantly underestimates the anisotropy in the boundary layer over the
duct surface. Similar to the single diaphragm case, the nonlinear model shows some discrep-
ancies in predicting the anisotropy in the shear zone for the double diaphragm configuration as
seen in Figure 8.6. Once again, the anisotropy in the boundary layer over the duct surface is
underestimated by the model. Another discrepancy is noticed within the region in front of the
downstream diaphragm. The model indicates axisymmetric turbulence in this region, while it is
close to isotropic according to the LES data. This region is known to be critical for noise gener-
ation especially within the plane wave region, hence an effect can be expected on the resulting
noise predictions.

The comparison of the computational costs per CPU of a converged simulation obtained by
the isotropic and anisotropic implementations of the SNGR method against the LES is given in
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Figure 8.5: Comparison of the anisotropy tensor invariant, I I for the single diaphragm case.
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Figure 8.6: Comparison of the anisotropy tensor invariant, I I for the double diaphragm case.

Table 8.1.

Table 8.1: The CPU time required per time step for the SNGR method and the LES

SNGR - Isotropic SNGR - Anisotropic LES

CPU time per time step (sec) 352 480 43200
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8.5 An automatic grouping scheme for effective storage of
noise source data

Applying a source grouping scheme at each SNGR synthesis time step permits to consider-
ably reduce the memory requirement. In free field conditions, the criteria to respect for such
agglomeration of sources would merely be the acoustical compactness of the volume in which
the sources are summed onto a single point (thereby accounting for leading-order interferential
effects), and having the listener in the geometrical far-field of that volume (to neglect amplitude
modulation). However, due to the presence of scattering surfaces and of the diaphragm in par-
ticular, those criteria are not necessarily sufficient in the present case, and an automatic source
grouping procedure is hereby proposed to devise an optimal grouping scheme. The intention
is to assess whether a convergence test performed using dummy sources remains valid when
aeroacoustically meaningful sources are applied.

The dummy sources are generated over the SNGR mesh, of identical intensity for all frequen-
cies, and locally scaled by the ui u j data predicted using Eq. (8.19). The phase of the dummy
sources was randomly assigned. A total source region of 4D length downstream of the di-
aphragm is taken into consideration and is divided into four cylindrical blocks of 1D length
similar to the analysis provided in Section 7.3.2. The comparison of the Sound Pressure Level
(SPL) radiated at the upstream far-field by the equivalent sources grouped at different levels in
each of the four level-0 blocks is depicted in Figure 8.7. It can be seen that the level-0 grouping
yields convergence only for sources located at least 1D away from the diaphragm and in the
plane wave regime. For frequencies above the first transverse mode cut-off frequency, and even
in the plane wave regime for the closest level-0 block, significant discrepancies are observed
with the level-1 grouping results.

The non-converged blocks are then octree-refined, and the analysis is repeated for each block
and sub-block until convergence within 1 dB over the entire frequency range is achieved. The
resulting grouping scheme is illustrated in Figure 8.8. It is then necessary to verify that the above
automatic procedure leads to a source grouping scheme that is also valid when the SNGR data
are used. The assessment is performed by applying the converged scheme shown in Figure 8.8
to the SNGR data, and comparing the radiated field to that obtained by applying one further
refinement iteration to all sub-blocks. Figure 8.9 shows that the two SPLs satisfactorily match
for the entire frequency range of interest. The number of source points to be stored in the
resulting converged grouping schemes are reduced to 1,872 and 12,176 for the single and double
diaphragm configurations, respectively, yielding a reduction of the memory requirement of more
than 99% for both configurations.

The negligible contribution of the sources located beyond 4D downstream of the single di-
aphragm is demonstrated in Figure 8.10, where the radiated SPL (still at the same listener
location) has been obtained for increasing spatial extends from 2D to 4D downstream of the
diaphragm. Convergence is already obtained for a 4D axial extend.
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Figure 8.7: Acoustic response comparison of the four blocks grouped at levels 0 and 1. The
vertical dashed lines indicate the first cut-off frequency.
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Figure 8.8: Converged grouping schemes for the single and the double diaphragm configura-
tions.

Figure 8.9: Noise predictions obtained using the coarse and refined grouping schemes.

8.6 Comparison between acoustic predictions obtained from
SNGR and LES data

The LES comparisons of the SNGR results are done using the synthetic data based on the mean
LES, to be able distinguish between the errors due to the method itself, and the discrepancies in113
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Figure 8.10: Noise predictions obtained using source regions of different axial extends for the
single diaphragm case.

the mean flow data. The effects of the anisotropy correction developed in Section 8.2.1, and the
temporal filter proposed in Section 8.3 are discussed respectively, in the next two subsections.

8.6.1 Effect of the anisotropy correction

A comparison of the acoustic responses obtained from the SNGR method with and without the
anisotropy correction, and from the LES data, is given in Figure 8.11. Using the proposed tem-
poral filter and the non-linear anisotropy model, a very good match between the SNGR- and
LES-based predictions is observed for the single diaphragm case. In contrast, an overestima-
tion of 20 dB, about constant over the full frequency range, is obtained without the anisotropy
correction. That correction consists in reorienting and scaling the velocity vectors to meet the
targeted axisymmetric anisotropic character, but without changing the invariants of Lighthill’s
stress tensor. It can therefore be expected that the anisotropic flow field generates less noise than
the isotropic one, as the correction reduces the amplitude of the off-diagonal elements of the
Lighthill’s stress tensor.

For the double diaphragm configuration, the effect of the anisotropy correction is seen in Fig-
ure 8.12 to depend on the frequency. Surprisingly, it improves the match with the LES-based
prediction in the high frequency range (above 3 kHz), but degrades the agreement in the low
frequency range (below 400 Hz). This result is somewhat counter-intuitive considering that the
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Figure 8.11: Far-field noise comparison of the SNGR implementations with or without
anisotropy correction vs. LES in the single diaphragm case.

smallest turbulence scales are usually found to be more isotropic than the largest ones.

8.6.2 Effect of the temporal filter

It was mentioned in Section 8.3 that the temporal filter used in the SNGR method is expected to
have a significant effect on the noise prediction for the single diaphragm case, due to possible
acoustic contribution of the flow regions with almost zero convection velocity. To see this effect,
the noise prediction by the SNGR method with the cascaded temporal filter is compared to that
of the original method of Bilsson et al in Figure 8.13. The anisotropy correction is applied
for both implementations. As the original temporal filter yields a shallower spectrum, a similar
behavior in the resulting acoustic response is observed. It is seen in Figure 8.13 that the SNGR
method of Bilsson et al. underestimates the far-field noise for frequencies lower than 1300 Hz,
while an overestimation is observed for higher frequencies.

A similar conclusion is reached for the double diaphragm case as shown in Figure 8.14, al-
though the effect is less pronounced. A possible reason is that the convection velocities of the
dominant noise sources are larger for the double diaphragm case than for the single diaphragm
case. Hence the temporal de-correlation effect is possibly less important compared with the
convective effect.
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Figure 8.12: Far-field noise comparison of the SNGR implementations with or without
anisotropy correction vs. LES in the double diaphragm case.

8.7 Comparison of the noise predictions obtained from the
RANS-based SNGR syntheses against the LES data

Once it is verified that SNGR method is fairly reproducing the flow generated noise given the
proper flow fields, the method is now implemented based on the axisymmetric RANS predic-
tions and compared against the LES results in Figures 8.15, 8.16, 8.17 and 8.18. The SNGR
predictions using the mean flow data from the first five low-Re k − ε models do particularly
match the LES predictions for a wide range of frequency in the single diaphragm case. The
standard k − ε and YS models underpredicts the noise which is also the case for the turbulent
kinetic energy predictions. It is an expected result since the synthetic flow field is scaled with re-
spect to turbulent kinetic energy. All the models yield poor prediction of the noise generated by
the tandem diaphragms, due to not properly capturing the turbulence generation mechanisms.

8.8 Conclusions

The applicability of the SNGR method for the prediction of the noise emitted by single and
double ducted diaphragms has been investigated. An analytical solution has been used for the
propagation problem in order to avoid the effect of numerical propagation errors and focus
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Figure 8.13: Far-field noise comparison of the SNGR implementations with different temporal
filters vs. LES in the single diaphragm case.

the analysis on the accuracy of the source reconstruction. The required flow data have been
obtained from LES statistics. A cascaded filter has been proposed, which was shown to yield
a better match of the turbulence spectral decay with the LES data, than using the previously
published temporal filter. An anisotropy correction has been implemented as well, which was
shown to have a significant effect on the space-time correlation of the synthesized flow field.
Lighthill’s aeroacoustic analogy has been used for computing the noise sources, and the prop-
agation problem has been solved using a tailored Green’s function for ducted diaphragms. A
significant reduction of the memory requirement and CPU time has been attained by applying
a grouping scheme that was automatically optimized on the basis of dummy source data, and
which should therefore not depend on the specific source data used in later calculations. This
has been verified using the SNGR dataset. The noise generated by the ducted diaphragm(s) was
proven to be quite accurately predicted through comparison with the LES-based result, pro-
vided that an accurate anisotropy model and a temporal filter with the correct spectral decay
are applied. In particular, the benefit of introducing an anisotropy correction was quite clear
for the single diaphragm case, but was shown to depend on the frequency range for the dou-
ble diaphragm configuration. The good match between the SNGR and the LES results, where
the CPU cost of the SNGR approach was about 1/50th of the LES CPU cost, indicates that
such stochastic methods are a viable option for this category of flows and could be used for
optimization purposes.
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Figure 8.14: Far-field noise comparison of the SNGR implementations with different temporal
filters vs. LES in the double diaphragm case.
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Figure 8.15: Far-field noise comparison of the SNGR implementations based on different
RANS solutions vs. LES in the single (top) and double (bottom) diaphragm cases.
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Figure 8.16: Far-field noise comparison of the SNGR implementations based on different
RANS solutions vs. LES in the single (top) and double (bottom) diaphragm cases.
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Figure 8.17: Far-field noise comparison of the SNGR implementations based on different
RANS solutions vs. LES in the single (top) and double (bottom) diaphragm cases.
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Figure 8.18: Far-field noise comparison of the SNGR implementations based on different
RANS solutions vs. LES in the single (top) and double (bottom) diaphragm cases.

122



9 Concluding remarks

Experimental and numerical investigations of the ducted diaphragm noise were presented in
this thesis. The problem of noise emitted by ducted diaphragms was considered to represent
the noise generation that takes place in HVAC systems. The primary goal of the study was to
develop a numerical tool providing fast and accurate prediction of ducted diaphragm noise. De-
velopment of such a tool involved bringing various analytical and numerical concepts together,
and besides, a detailed experimental investigation to provide a reference solution to the problem.
To meet the goal of having a ‘fast’ tool, a stochastic approach was adopted for the prediction
of ducted diaphragm noise. The two main issues encountered in the study were lack of an ex-
isting stochastic approach yielding satisfactory predictions of duct noise, and significantly high
computational costs required when numerically solving the propagation of the noise emitted by
the volumetric sources inside the duct. Besides, a contamination issue was encountered in the
experimental investigation. The reflections from the duct ends were observed to contaminate
the measured acoustic field. The content of the thesis work was then shaped around these four
issues.

The existing method of Lavrentjev et al. [49] for source identification in ducted flows was imple-
mented to the ducted diaphragm cases investigated in the thesis. Some sensitivity issues related
to the common approach of using the passive measurements to determine the duct termination
reflection coefficients in the presence of perforated/lined duct elements were addressed. It was
shown that when a lined or perforated module was installed at the duct end, the reflectivity of the
duct end became highly sensitive to the acoustic conditioning, particularly at low frequencies.
A plausible explanation for such a phenomenon was considered to be the non-linear interac-
tion of the duct acoustic field with the small cavities contained on the lined/perforated surfaces,
modifying the duct end reflectivity. The importance of computing the duct end reflection coef-
ficient for every particular flow case being investigated was then pointed out. As a remedy, use
of the turbulent flow noise itself for the determination of the duct end reflection coefficients was
proposed, and the validity of the assumption was experimentally verified.

To overcome the excessive computational cost of numerically solving the propagation of the
noise emitted by the quadrupolar sources contained within the duct, the simplicity of the ax-
isymmetric configurations investigated in the thesis was exploited, and an analytical solution
was derived. Derivation of a tailored Green’s function for ducted diaphragms in the form of
infinite series reduced the computational errors to the truncation level occurring due to the fi-
nite summation of the infinite series. An extension of the analytical solution to the tandem
diaphragm case was introduced to increase the applicability of the approach. Despite suffering
from being hard to be generalized, the proposed analytical solution provided an almost exact
solution to the present problem. It can also serve as a benchmark tool to test the accuracy of
various numerical approaches.

To the author, the most important factor by which the duct noise problem differ from other noise
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problems is that the duct modes shape the overall spectrum of the resulting noise to a significant
extent, which is not the case for un-ducted cases. This makes the noise prediction problem rela-
tively easy by finding some other target parameters effective in noise generation. For the present
case of ducted diaphragm, the vast number of numerical investigations performed throughout
the thesis work revealed that the shape of the noise spectrum of a given duct flow was mainly
determined by the spectral decay of the sources in the frequency domain. Besides, anisotropy
acts as an important factor scaling the resultant prediction. A source field satisfying these two
criteria was observed to reproduce the noise generated by a target flow field. A method con-
trolling these two parameters was devised by using Billson’s Stochastic Noise Generation and
Radiation method with a modified temporal filter ensuring the synthetic field to face the same
spectral decay as the actual flow. When combined with a proper anisotropy correction, very
accurate noise predictions could be achieved at significantly lower costs compared to the scale-
resolved approaches. The author believes that such an approach can be used to solve a range
of aeroacoustic problems provided that a dataset for tabulated estimates of the key parameters
affecting the noise generation is constructed for various flow configurations.
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A Comparison of the mean velocity and
turbulent kinetic energy

Figure A.1: Comparison of the mean velocity predicted by LES (dash-dotted) against the ex-
perimental data (markers) at cross-sections in the downstream section. x = 0 cor-
respond to the upstream diaphragm.
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Comparison of the mean velocity and turbulent kinetic energy

Figure A.2: Comparison of the mean velocity predicted by the standard k − ε, Ab and AKN
models against the experimental data at x = 3D and x = 1.15D for the single and
tandem diaphragm cases, respectively.
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Figure A.3: Comparison of the mean velocity predicted by the CHC and LB models against the
experimental data at x = 3D and x = 1.15D for the single and tandem diaphragm
cases, respectively.
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Comparison of the mean velocity and turbulent kinetic energy

Figure A.4: Comparison of the mean velocity predicted by the LS and YS models against the
experimental data at x = 3D and x = 1.15D for the single and tandem diaphragm
cases, respectively.
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Figure A.5: Comparison of the turbulent kinetic energy distribution of the RANS models
against the LES results for the single diaphragm case.
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Comparison of the mean velocity and turbulent kinetic energy

Figure A.6: Comparison of the turbulent kinetic energy distribution of the RANS models
against the LES results for the tandem diaphragm case.

132



B Notes on tailored Green’s function

B.1 Derivative Terms for Tailored Green’s Function

F,x = 0 (B.1)
F,y =αmµ cos(θ0)J ′m(αmµr0) (B.2)
F,z =αmµ sin(θ0)J ′m(αmµr0) (B.3)
H,x =±i kmµ (B.4)
H,y =−i m sin(θ0)/r0 (B.5)
H,z = i m cos(θ0)/r0 (B.6)

F,y y =α2
mµ cos(θ0)2 J ′′m(αmµr0)+αmµ

sin(θ0)2

r0
J ′m(αmµr0) (B.7)

F,y z =α2
mµ sin(θ0)cos(θ0)J ′′m(αmµr0)−αmµ

sin(θ0)cos(θ0)

r0
J ′m(αmµr0) (B.8)

F,zz =α2
mµ sin(θ0)2 J ′′m(αmµr0)+αmµ

cos(θ0)2

r0
J ′m(αmµr0) (B.9)

H,xx = 0 (B.10)
H,x y = 0 (B.11)
H,xz = 0 (B.12)

H,y y = 2i m sin(θ0)cos(θ0)/r 2
0 (B.13)

H,y z = i m
(

sin(θ0)2 −cos(θ0)2)/r 2
0 (B.14)

H,zz =−2i m sin(θ0)cos(θ0)/r 2
0 (B.15)

B.2 An extension to include the diaphragm thickness effects

The tailored Green’s function derived in Eq. (6.13) assumes an infinitely thin diaphragm. To
include the thickness effects, the sudden contraction and expansion problems are to be com-
bined in a recursive manner. The analysis starts with derivation of a tailored Green’s function
for a single discontinuity inside a duct. Similar to the single diaphragm case investigated in
Section 6.2, the reflected and the transmitted parts of the Green’s function corresponding to a
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single azimuthal mode, m and a given angular frequency ω;

Gωm,r e f =
∞∑
µ=1

BmµUmµe i (±kmµx−mϑ) (B.16)

Gωm,tr =
∞∑
µ=1

CmµÛmµe i (∓kmµx−mϑ) (B.17)

where

Bmµ =
∞∑
ν=1

RmµνAmν→ B = RA, (B.18)

and

Cmµ =
∞∑
ν=1

TmµνAmν→ C = TA, (B.19)

and Um,µ and Ûm,µ are the orthonormal radial components for the duct sections with radii, a
and b respectively. The continuity of pressure and axial velocity at the discontinuity, located at
x = D respectively yields;

∞∑
ν=1

(RmµνAmνe i kmνD + Amνe−i kmνD )Umν =
∞∑
ν=1

TmµνAmνÛmνe−i kmνD , (B.20)

∞∑
ν=1

kmν(RmµνAmνe i kmνD − Amνe−i kmνD )Umν =
∞∑
ν=1

−kmνTmµνAmνÛmνe−i kmνD . (B.21)

Once again, given Eqs. (B.20) and (B.21), the solution for the reflection and the transmission
matrices, R and T cannot be uniquely obtained due to not defining any boundary conditions for
the edge of the discontinuity. A solution on the other hand is obtained by assuming the scattering
being independent of the source strength as follows:

∞∑
ν=1

(Rmµνe i kmνD +e−i kmνD )Umν =
∞∑
ν=1

TmµνÛmνe−i kmνD , (B.22)

∞∑
ν=1

kmν(Rmµνe i kmνD −e−i kmνD )Umν =
∞∑
ν=1

−kmνTmµνÛmνe−i kmνD . (B.23)

The linearity of the problem allows treating each µ-mode separately. Taking the inner product
of the Eqs. (B.22) and (B.23)for the interval 0 < r < b using Ûmλ and Umλ as the basis function
respectively, the following expressions are obtained:

∞∑
ν=1

〈Ûmλ,Umν〉b(Rmνe i kmνD +e−i kmνD ) = Tmλe−i kmλD , (B.24)

kmλ(Rmλe i kmλD −e−i kmνD ) =
∞∑
ν=1

−〈Umλ,Ûmν〉bkmνTmµνe−i kmνD . (B.25)

Eqs. (B.24) and (B.25) can be written in matrix form as follows:

M(RE++E−) = TE−, (B.26)

K(RE+−E−) = M>LTE−, (B.27)

where M ≡ 〈Ûmλ,Umν〉b , E± ≡ δλνe±i kmλD , K ≡ δλνkmλ, and L ≡ δλνlmλ. Replacing TE− in
Eq. (B.27) with the expression given in Eq. (B.26);

K(RE+−E−) = M>LM(RE++E−), (B.28)
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and solving Eq. (B.28) for R as follows;

KRE+−M>LMRE+ = KE−+M>LME−,

(K−M>LM)R = (K+M>LM)E2−,

R = (K−M>LM)−1(K+M>LM)E2−, (B.29)

the reflection matrix, R is calculated. The transmission matrix, T is then easily obtained via
Eq. (B.26).

Given the case where a sudden contraction is followed by a sudden expansion in an infinitely
long duct, the equivalent reflection and transmission matrices are calculated using the following
recursive approach. For simplicity, x = 0 is set to match the sudden contraction. The reflec-
tion/transmission matrices for an acoustic wave generated by a point source located in the duct
section with radius a are defined as Rab/Tab , and those generated by a point source in the
duct section with radius b as Rba/Tba . The superscript c and e denotes whether the reflec-
tion/transmission matrices are calculated at the contraction of the expansion, respectively. The
reflected wave, pr is then written in terms of the right-going incident wave, pi+ as follows:

pr =
(
Rc

ab +Tc
ba

(
(· · ·+ I )Re

baRc
ba + I

)
Re

baTc
ab

)
pi+,

pr = (
Rc

ab +Tc
ba(I −Re

baRc
ba)−1Re

baTc
ab

)
pi+. (B.30)

Similarly, the transmitted wave, pt is found to be as follows:

pt = Te
ba(I −Rc

baRe
ba)−1Tc

abpi+. (B.31)
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