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Abstract 
The process industry is confronted with a global competition and dynamic market. Therefore, the establishment 
and provision of innovative and future oriented process intelligence represents one solution for higher competitive 
capacity. Thus, the development and usage of innovative sensor principles in combination with intelligent linkage 
between sensor systems as well as process knowledge will lead to better process control in any life science area. 
Furthermore, food and beverage industry is confronted with the demand for large quantities of goods within 
constant quality corridors determined by the market, while at the same time only a small individual value added. 
Thus, a rising demand of novel sensing methodologies appears, implying the central necessity of sophisticated 
and adapted data modelling and analysis to establish robust measuring devices for bioprocess given surrounding 
conditions and analysing existing data pool to extract more relevant information and knowledge, much more 
linked to processing of food stuff. The very broad field of multivariate data analysis offers beneficial features to 
such demands. It contains a variety of tools which are typically convenient to apply and in the same time do not 
lead to over-complexified solutions to the challenge of interest. Additionally, this area provides a numerous 
amount of possibilities for a task and only few instructions and recommendations for applying which method for 
what challenge. Thus, with the focus on solutions “as simple as possible and as complex as necessary”, the central 
working hypothesis of this thesis is termed “Is there a standard way of applying multivariate data analysis on 
bioprocess sensor data?”  

This includes all aspects, such as data pre-processing, model generation, data post-processing, aspects of non-
linearity, model robustness, and the transfer of models. The thesis shows the application of a confined selection 
of algorithms on three different fields: first, ultrasonic sensor calibration used for the online detection of 
biochemical fluid properties using ultrasonic features in different calibration model approaches. Amongst others, 
variable selection on features, external parameter orthogonalisation on temperature and kernel-PLS were applied, 
reaching a robustified result of ~0.9g/100g prediction error for binary maltose solutions and ~1.5g/100g for 
ternary maltose and ethanol solutions in a temperature range between 10 and 20°C. Second, qualification of raw 
material with respect to processability by using PLS-DA on NIR-spectra of malt kernels and expert knowledge 
reaching a maximum classification error of 76.6% between model output and expert classification on industrial 
data. Further, multivariate process control tools were applied on process data to reach data driven classification 
of process quality reaching 84% match between model output and expert classification. Third, intelligent sensor 
network inspection and failure compensation for robust online process monitoring applying multivariate process 
control together with swarm intelligence reaching stable monitoring even under single sensor failure in 100% of 
the tested cases. The additional benefit of this system is, that it is not restricted to the number sensors or any 
specific sensor reading. The presented approach can be used as combined multiple sensor analysis reaching 
universal process control with integrated sensor evaluation. 

Even though, just a selection of possibilities are investigated, the answer to the hypothesis is twofold: yes, when 
coping all necessary aspects from data processing to model refinement and robustness issues and no, when it 
comes to fully automated solutions without respective knowledge of the user. 
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Zusammenfassung 
Die Prozessindustrie ist einem globalen Wettbewerb und einem dynamischen Markt ausgesetzt. Eine zentrale 
Lösung zur Erhöhung der Wettbewerbsfähigkeit stellt dafür unter anderem die Bereitstellung von innovativer und 
zukunftsorientierter Prozessintelligenz dar. Dabei wird die Entwicklung und Nutzung neuartiger Sensorprinzipien 
in Kombination mit intelligenten Verknüpfungen von Sensorsystemen und Prozesswissen zu einem besseren 
Prozessverständnis und folglich besserer Prozesskontrolle im Life Science Bereich führen. Weiterhin wird die 
Nahrungsmittel- und Getränkeproduktion mit der Nachfrage von großen Mengen an Gütern innerhalb der durch 
den Markt bestimmten, gleichbleibenden Qualitätskorridore bei gleichzeitig geringer, individueller 
Wertschöpfung konfrontiert. Damit wird auch die steigende Nachfrage an neuartiger Messmethoden aufgezeigt, 
welche die zentrale Notwendigkeit an geeigneter Datenanalyse und –modellierung impliziert. Mit deren Hilfe 
können entweder robuste Messsysteme für die durch Bioprozesse gegebenen Umgebungsbedingungen erstellt 
oder bereits bestehende Datenbestände analysiert werden. Letzteres wird genutzt, um weitere, relevante 
Informationen und Wissen zu extrahieren, unter anderem mit mehr Verknüpfung zur Verarbeitung der 
Lebensmittel. Das breite Feld der multivariaten Datenanalyse bietet nützliche Funktionen, um derartigen 
Forderungen gerecht zu werden. Es enthält eine Vielzahl von Werkzeugen, welche typischerweise bequem 
angewendet werden können, gleichzeitig aber nicht zu über-komplexen Lösungen für die jeweilige 
Problemstellung und deren Herausforderungen führen. Dieser Bereich bietet eine zahlreiche Menge an 
Möglichkeiten, um eine Aufgabe zu lösen. Allerdings existieren nur wenige Leitfäden und Empfehlungen für die 
Anwendung welcher Methode und deren Nutzung für eine gegebene Herausforderung. Daher und mit dem Fokus 
auf Lösungen „so einfach wie möglich und so komplex wie nötig“ wird die zentrale Arbeitshypothese dieser 
Dissertation wie folgt benannt: „Gibt es eine standardisierte Möglichkeit der Anwendung von multivariater 

Datenanalyse auf Sensordaten von Bioprozessen?“ 
Dies umfasst alle Aspekte, von der Datenvorverarbeitung über Modellgenerierung, Datennachbearbeitung, 
Nichtlinearität von Daten und Modellrobustheit bis hin zu dem Transfer von Modellen. Die Arbeit zeigt die 
Anwendung einer begrenzten Auswahl von Algorithmen auf drei verschiedene Bereiche: erstens, Kalibrierung 
eines Ultraschallsensors für die Online-Erfassung der biochemischen Eigenschaften eines Fluides mittels 
berechneter Merkmale der Ultraschallsignale in verschiedenen Kalibrierungsmodellansätzen. Unter anderem 
wurden dabei Methoden zur Variablenauswahl von Ultraschallmerkmalen, externe Parameter-Orthogonalisierung 
auf Temperatur und Kernel-PLS angewendet. Damit konnte ein robusteres Ergebnis in einem Temperaturbereich 
von 10 bis 20°C mit einem Vorhersagefehler von ~0.9g/100g für binäre Maltose-Lösungen und ~1.5g/100g für 
ternäre Maltose- und Ethanol-Lösungen erreicht werden. Zweitens, Qualifikation von Rohstoffen im Hinblick auf 
deren Verarbeitbarkeit unter der Anwendung von PLS-DA auf NIR-Spektren von Malzkörnern und 
Expertenwissen. Hier konnte ein maximaler Klassifikationsfehler von 76.6% zwischen Modelresultat und den 
Experteneinteilungen bei industriellen Daten erreicht werden. Weiterhin wurden Werkzeuge der multivariaten 
Prozesssteuerung verwendet, um Prozessdaten datengetrieben zu qualifizieren. Dabei wurde eine 84%ige 
Übereinstimmung zwischen Modelresultat und Expertenmeinung erreicht. Drittens, intelligente 
Sensornetzwerkkontrolle und Fehlerkompensation für robuste Online-Prozessüberwachung unter der 
Verwendung von Algorithmen der multivariaten Prozesssteuerung zusammen mit Schwarmintelligenz. Der 
Ansatz führte zu stabilem Monitoring in allen getesteten Fällen, auch bei Ausfall einzelner Sensoren. Ein 
zusätzlicher Vorteil des Systems ist, dass dieses nicht abhängig von der Anzahl an Sensoren sowie spezifischer 
Sensordaten ist. Der präsentierte Ansatz kann zur kombinierten, multiplen Sensoranalyse genutzt werden, wobei 
eine umfassende Prozesssteuerung mit integrierter Sensorevaluierung erreicht wird. Auch wenn nur eine Auswahl 
an Möglichkeiten untersucht wurden, so ist die Antwort auf die Hypothese zweifältig: Ja, wenn alle notwendigen 
Aspekte von der Datenverarbeitung über Modellanpassung und -verfeinerung bis hin zu Robustheit bewältigt 
werden und nein, wenn es um vollautomatische Lösungserstellung ohne entsprechende Kenntnisse des Benutzers 
geht. 
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1. Introduction 
Enhancing productivity of existing process units as well as increasing the knowledge in any life science area 
provoke the demand of novel sensor principles. Thus, extracting biochemical process leading parameters increase 
the productivity of existing process units. Such sensors and systems have to fulfill the robustness attributes of 
production (including hygienic design aspects), simplicity in service, maintenance as well as optimal cost-benefit 
ratio. Over the last decades, a variety of different principles were investigated measuring univariate as well as 
spectral process information [1]. Additionally, diverse sensors as well as sensor networks produce a big amount 
of data. Such data pool contain a variety of hidden information, which is mostly not fully used. Further, data pool 
are often superimposed with noise as well as corrupted information. This might lead to failure of process models, 
misleading interpretations and sometimes to total process failures.  

Summing these aspects together with the mostly time invariant and non-linear behavior of bioprocesses, this area 
of industrial production phases a variety of difficulties. The dynamic behavior of such processes is in contrast to 
the widely applied static and recipe driven process control. Under this perspective, computationally aided 
techniques such as computational intelligence provide helpful methods in solving such challenges that are hard to 
solve with conventional possibilities [5]. Therefore, this implies, amongst others, the usage of multivariate data 
analysis for extracting the most relevant patterns out of large data pool [6]. Such techniques are supported by the 
fast development of computational capacities as well as the reduction in size of utilized hardware.  

Such possibilities recently gave way for the rise of intelligent data handling and analysis. Nevertheless, there are 
still many challenges on the path to reach the full potential of intelligent sensing and data handling. Both areas of 
bioprocess and computational intelligence have steadily developed based on the rise of such techniques [5]. There 
is a need to emphasize the efforts in science of each single discipline together with a high exchange between them 
[7]. According to the PAT/QbD initiative of the FDA the future in process analysis will include the generation of 
knowledge through data in pharmaceutical, medical and food and feed industry. This implies the automation of 
non- automated systems, integration of quality assurance into production processes, enhanced product and process 
safety, efficiency as well as sustainability. It also includes the use of multivariate data analysis for extracting the 
most important information out of huge data sets [7]. Especially in the food and feed sector, the current practice 
of comparably low degree in automation makes this industrial branch attractive for future implementations [7]. 

This thesis exactly targets the handling of still existing challenges for intelligent sensing. This is achieved by 
following several, mostly data driven strategies and applications: 

a. Ultrasonic sensor calibration using (a) physical and (b) statistical sound features used for detection of 
biochemical fluid properties 

b. Raw material qualification with respect to multivariate full process behavior 

c. Sensor network inspection and failure compensation  

These topics include all relevant aspects of multivariate data analysis, such as data pre-processing, variable 
selection, model generation, outlier analysis, model validation, stability and robustness. Therefore, the core 
question of this thesis crystalizes as: 

Is there a standard way of multivariate model generation addressing all the listed keywords? 

Thus, the focus of this thesis is based on the point reported by Munck et al.: “The aim is to study complex 
processes as a whole in order to model interaction of the underlying latent functional factors which may later be 
defined more precisely by deductive methods” [8]. They showed in their feasibility study by using multivariate 
data analysis in food science applications, that explorative strategies can also lead to “fundamental scientific 
significance” [8]. Therefore, the aspects of bioprocess sensors and calibration, multivariate process data and 
influences of raw materials as well as sensor network inspection will be discussed in the following paragraphs, 
all under the aspect of data driven modelling. 
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1.1 Bioprocess sensors and calibration 

In the process industry there is a variety of novel sensor technologies, developed over the last decades. High 
scientific effort is given to spectroscopic techniques in diverse types of electromagnetic waves. These contain the 
benefit of measuring a big amount of variables and information, therefore several physical as well as chemical 
process constituents at one time point. An overview on existing process sensors is given in various literature.  

First of all, these sensors can be divided (next to their specific targets) amongst their complexity, their detection 
performance and selectivity (Figure 1.1), [see [1]]. Next to the sensor systems on the left lower part of Figure 1.1, 
which are already established in industry, optical systems over the whole bandwidth from UV to IR light including 
fluorescence and Raman spectroscopy are successfully applied for investigations in fluids and hard matter, also 
in beverage area [see [9] for example]. In the brewing sector, these applications are widely laboratory equipment. 
However, the usage for online measurements increased over last decades due to the fast developments with respect 
to boundaries given by the techniques. One limit for MIR measurements in absorption is the necessity of little 
layer thickness. Therefore, ATR-flow cells (attenuated total reflection) were established, which opens the 
possibility to measure MIR spectra of fluids without reducing the layer thickness [10]. Nevertheless, the MIRS 
for online usage is still limited by maximal fiber optics length of less than five meters due to the high absorption 
of the material. Single channel excitation for fluorescence measurements were enhanced by multichannel 
excitation reaching two-dimensional spectra (2D-fluorescence) and the fluorescence interference in Raman 
spectroscopy for example is partially eliminated by using excitation wavelength below 250 nm. These examples 
are just a short extract of developments. Nevertheless, it shows the importance of spectroscopic systems. To not 
reach beyond the scope of this thesis, a comprehensive overview on online monitoring of bioprocess using 
spectroscopic methods is given by Lourenço et al. [11], where standard methods for calibration as well as the 
measurement instrumentation, advantages, disadvantages and applications of NIR-, MIR-, UV-Vis-, Raman-, 
Fluorescence- and Terahertz spectroscopy are discussed.  

The main benefit of such spectroscopic methods such as IR- spectroscopy is the possibility to measure a variety 
of analytes at the same time [10] due to their specific absorption bands. In case of for instance NIR, chemical 
bonds are interacting with radiation induced by NIR allowing investigations on (amongst others) organic systems 
[12]. Typically, spectroscopic methods have one feature in common: to cover a suitable area of calibration model 
validity of such indirect principles, a sufficient and more or less equally distributed number of samples within 
defined boundaries is necessary [12].  

Additionally, multimodal optical spectroscopy extends the possibilities of singular usage. The three different 
implementation strategies are explained in Kessler, 2013 [7]. The usage of different wavelength ranges combines 
the benefits of single ranges and partially reduces their disadvantages (1), the combination of different optical 
configurations in one range opens the possibility to separate morphological scattering from chemical absorption 
(2) and the angular resolved measurement or line scans with an imaging system lead to different penetration depths 
and can be used, amongst others, to describe particle properties (size, distribution). 

Spatial resolved spectroscopy is another quite new approach, which measures spectral and spatial information at 
approximately the same time. This technique is known as chemical imaging. The three main possibilities are 
Whiskbroom, Staring and Pushbroom imaging. Basics can be found in Kessler 2013 [7], who states this 
technology as important for the future. However, challenges for optical spectroscopy are measurements in aqueous 
systems at rather low concentrations of analytes together with a strong scatter of cell suspensions [7], which is 
one main characteristic for biotechnological, especially brewing fluids.  

Nevertheless, online application for running bioprocesses, especially in industry, is still rare. In summary, there 
are two main reasons: first, sensitive and selective devices for analyzing multi-parametric systems via 
spectroscopy are mostly cost intensive. Second, the interpretation and analysis of such data is somewhat complex 
by means of calibration/modelling. However, for measurement of single analytes of known bandwidths, the use 
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of photometric sensors can be applied. For those using bandpass filters to measure specific wavelength, the 
advantage is the reduced cost of such systems compared to spectroscopic ones.  

A key issue is to integrate first principles in any 
sensor calibration. However, this is not always 
applicable [7]. The known relations between 
ultrasound, density and temperature with 
solutes in fluids, especially ethanol and sugar 
are of major interest in the development of 
novel sensor strategies. Most commonly 
applied method for inline measurements is the 
combination of speed of sound together with 
separate density measurement. A detailed 
review on measuring both properties with 
ultrasound, its difficulties and different design 
possibilities is given by Hoche et al. [13]. 
Nevertheless, all possibilities phase several 
limits such as dissipation by gas bubbles or 
particles. Even though algorithms can be used 
to either detect distorted signals prior to 
analysis, such as Angle Based Outlier Factor 
(ABOF, see section 1.2.3.2 “Outlier 
Analysis”), the strategy of signal analysis can 
be different as well. Acoustic sensors are also 
used for holistically measured information 
[14]. The success is shown in several 
applications. The major disadvantage is the 
variability of sensor signals by changes of 
setup or the sensor itself. Nevertheless, data 
driven soft-sensors are widely applied, also for spectroscopic sensor information. Anyway, a causal relation has 
to be extracted to correlate measured values to the target.  

Further, these systems can be distinguished according to their ability in measuring in aqueous solutions with 
respect to brewing conditions. Table 1.1 is summarizing major pros and cons, focus is given here on the more 
complex systems for measuring major substrates in fluids, more or less multivariate. The table shows, besides the 
difficulties mentioned for ultrasound measurements, there are obvious advantages. In addition to the same benefits 
like being non- invasive, inline applicability, rapid response time, low power consumption, excellent long term 
stability and high resolution and accuracy [15], there are low costs and advantages in areas of opaque medium 
due to its selectivity property (compared to optics in penetration and information depth [7]). Even though, it has 
to be mentioned, that opaqueness resulting from suspended particles may have negative impact due to attenuation 
and scattering of ultrasonic signal energy. Nevertheless, path length also does not play that important role as in 
transmission optics. Amongst all the listed possibilities and advantages, the light based systems are limited by 
non-scattered solutions, constant temperatures, and depending on the method used, on absorptions lower than a 
certain asymptotic value [10]. 

 

Figure 1.1: Classification of process instrumentation for online use, 
adapted from Bakeev, 2010 [1]; it shows a selection of process instruments 
classified according to their detection performance (sensitivity, precision, 
speed or quantification limits) as well as their selectivity on the one hand 
and their principle complexity and cost on the other (including e g. capital 
cost, training, maintenance and implementation); in contrast to Bakeev, 
only spectral versions of the more complex instruments are shown (IR, LIF, 
etc.); further, acoustics is moved more to selectivity, because recent 
developments reached higher resolutions and better detection accuracies 
from electronics and data mining point of view. Furthermore, spectral (S- ) 
imaging is added including e. g. hyperspectral or pushbroom imaging; the 
figure is thought as an indication of diversity of existing process 
instrumentation (LIF…laser - induced fluorescence; NMR…nuclear 
magnetic resonance; MS…mass spectroscopy; PSD…particle size 
distribution) 
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Table 1.1: selection criteria for different (assortment) measurement techniques for monitoring biological medium online [modified from [18]]; additionally, it has to be mentioned, that US is giving a bulk 
information over the path length (depending on the setup) and thus not spatially resolved in detail; furthermore, robustness against gas bubbles when using transmission mode for measuring is low and causes 
scattering 

 UV/VIS/s-NIR NIR MIR Fluorescence Raman Ultrasound 
Selectivity + ++ +++ ++ +++ o 
Sensitivity +++ +(+) +++ +++(+) ++(+) +++ 
Sampling +++ +++ + ++ +++ ++ 
Working in aqueous 
medium 

+++ + + ++ +++ +++ 

Applicability +++ ++ + + + +++ 
Process analytical tool +++ +++ + + +++ +++ 
Length of fiber 
optics/coaxial cable 

several Up to 100 m Few meters 
(Transmission) 

several several ~1 m, otherwise 
noise level increases 

Signal Absorption Absorption Absorption Emission Scattering Absorption, 
Scattering 

Acquisition mode Transmission, 
Reflectance, 
Transflectance, 
Internal reflection 

Transmission, 
Reflectance, 
Transflectance 

ATR 
(Transmission), 
Internal reflection 

Emission Transmission Transmission, 
Reflectance, 
Emission, 
Resonance 

Relative costs 1 3-5 6-10 4-6 8-12 1 
Robustness to:  

‐ Temperature 
fluctuations 

Very high Low  Very low Low  Low  Low 

‐ turbidity Low High Very low Very low Very high High* 
Detection limits (ppm) 0.3 0.1 - 1 100 – 2000 25 - 150 < 0.1 1000** 
References [11, 18] [7, 11, 18] [7, 11, 18] [11, 18] [11, 18] [13, 15] 

 

*robustness of US against turbidity (color) is high, but particles cause energy dissipation 

**approximated from a necessary density accuracy reported by Hoche et al., 2013 [13]
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1.1.1. Ultrasonic sensing 

Even though acoustics, especially ultrasound is said to be not too specific (see Figure 1.1), it was shown earlier, 
that differences in various types of solutes (salt, sugar) as well as various sugar types are detectable [16]. 
Nevertheless, applications of ultrasound are rarely documented [7] and the general usage for process monitoring 
is low compared to its potential [15]. Numerous ultrasound implementations already exist, such as monitoring 
brewing process or concentration and particle distribution measurements [15], in which developments of hardware 
(electronics), software (computational effort of algorithms for analysis) over the past decade [e. g. [13]] and the 
comparably low cost of the necessary electronic components [17] show the capability for ultrasonic sensors. 
Furthermore, data driven strategies (“acoustic chemometrics”, [1]) enlarges the measurable ultrasonic features by 
unspecific methods. Most commonly measured specific features are attenuation, sound velocity or impedance. 
These are dependent on three wave parameters that are phase, frequency and amplitude. Accuracy of ultrasonic 
measurements demands sampling rates in range of nanoseconds and picoseconds, the amplitude resolution is 12 
bit and higher [13, 15], which prevails as challenges for electronics. Hauptmann et al., 2002 and Hoche et al., 
2013  conclude, amongst others, that in general, all possibilities are temperature (gradient) dependent and accuracy 
limitations are caused by signal resolution (sampling rate as well as amplitude). Therefore, main enhancements 
for reaching the necessary accuracy should be achieved by correcting temperature gradients and maximizing 
signal to noise ratio. 

Further, an ultrasonic setup is comparably simple and the costs are usually quite low. Furthermore, the field of 
US does cover first principle solutions, real physical parameters such as acoustical impedance, speed of sound, 
sound attenuation or density. Nonetheless, there are also unspecific parameters. Ultrasound based sensors and 
measurements are innovative and cost efficient and its potential is still higher than used, even with the technology 
available [e. g. Hauptmann et al., 2002 [15]]. Taking together the fact of electronical and software developments 
with the possibilities of data driven modelling shown by Halstensen and Esbensen, 2010 [14], this field is of high 
interest in biotechnological applications.  

1.1.1.1 Detection of substrate differences 

In biotechnological fermentation medium, it is of most interest to monitor the substrates for biomass such as 
carbohydrates. It is known, that concentration changes of carbohydrates suspended in liquids is causing density 
changes. This leads to changing ultrasonic features such as speed of sound (c) or acoustical impedance (Z). 
Combining both under the assumption of small attenuation results in the bulk density as the ratio between 
impedance and speed of sound. For buffer rod setups, the prediction of impedance is possible using Equation 1. 
Therefore, the reflection coefficient has to be extracted out of the collected ultrasonic signal of the boundary 
between the setup specific buffer and the liquid sample of interest (subscript one and 2, respectively; for detailed 
theory refer to Hoche et al., 2013 [13]).  

ܴ ൌ
ܼଶ െ ܼଵ
ܼଶ ൅ ܼଵ

 (1)

Since changes of concentration or density is of interest, just liquid phase related features need to be predicted. 
Whereas the prediction of speed of sound is mostly unproblematic in clear and bubble free liquids, it might fail in 
case of particles or gaseous inclusions, since the traveling wave is dissipated or attenuated. 

Further, prediction of acoustical impedance needs highly accurate time and amplitude resolution [13]. Therefore, 
parts of this work are based on a data driven investigation of non-physical US features of buffer reflections to 
reduce the influence of suspended particles or gas bubbles and to overcome statistical inaccuracies by less accurate 
electronics. 
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1.1.1.2 Feature investigation 

The following features have mostly statistical background. It is shown rudimentarily by following two 
demonstrations, that information such like acoustical impedance are covered by these features. This abstract is 
implemented to partially justify the usage of features just from buffer reflections of an ultrasonic pulse. 

1. Energy balance 

At planar interfaces, the following equation for pressure transmission takes effect, assuming an incident angle 
α=0° of the ultrasonic pressure wave and the definition of acoustic impedance: 

௣ܶ ൌ
2ܼଶ

ܼଵ ൅ ܼଶ
 (2)

Combining Equation 1 as pressure reflection coefficient and Equation 2 together with the definition of acoustic 
intensity results in: 

௜ܫ ൌ ௥ܫ ൅ ௧ (3)ܫ

which is not surprisingly proving the law of conversion of energy (for detailed proof please be referred to Chapter 
7.2 in David and Cheeke, 2002 [19]). Further, the transmitted intensity It is function in properties of the medium 
it is transmitted to. Therefore, it is clear, that also the reflected intensity is function in both, the properties of buffer 
and medium. This proves that properties of medium of interest are hidden inside of the buffer rod reflection of the 
ultrasonic pulse. 

2. Interest on changing properties 

In general it was shown, that concentration differences of the carbohydrates ethanol and sugar (dissolved in water) 
in the same time are detectable knowing density ρ, speed of sound c and acoustical impedance of the medium. 
However, if just one measurand changes, one parameter is sufficient. Therefore, just one property out of the signal 
is necessary, such as the reflection coefficient (Equation 1) as a function of acoustic impedance of both, the setup 
specific buffer rod and the liquid of interest. Under the assumption of constant temperature as well as c and ρ of 
the buffer rod, the reflection coefficient R is proportional to acoustic impedance Z2 of the liquid. Further, the 
investigations presented in this thesis are dependent on changes in ultrasonic parameters. Hence, transforming 
Equation 1 and a derivation results in: 

݀
ܴ݀

ܼଶ ൌ
2ܼଵ

ሺ1 െ ܴሻଶ
 (4)

This proves, that changes in Z2 are just dependent on R. Taking the theory of the so called “reference reflection 
method” (RRM) for prediction of R (for detailed theory please be referred to Hoche et al., 2013 [13]) leads to: 

ܴଵଶ,௦ ൌ ܴଵଶ,௥௘௙ ∗ exp	൫ܽ௦ െ ܽ௥௘௙൯ (5)

Whereas subscript 12 resembles the interface between buffer and liquid, s for sample and ref for a reference 
measurement in another medium (like water or air). The parameter a is the slope of the linearized equation 

௥௞ܣ݈݊ ൌ ܽ ∗ ݇ ൅ ܾ (6)

whereas Ark is the maximum amplitude of the kth reflection (r). Under the assumption of steady surrounding 
conditions whilst investigating a sample (e.g. no changes in temperature, pressure or any other relevant physical 
environmental condition), R12,s is only function in slope a of Equation 6. This slope is dependent on the amplitudes 
of buffer reflections.  

These relations prove that under the mentioned assumptions only signal changes inside the buffer are necessary 
for the prediction of one measurand. It further shows that the calculation of R is only function in the amplitudes 
of the reflection. The relevant temporal features shown in the investigation “Ultrasonic sensor for predicting sugar 
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concentration using multivariate calibration” and investigations related to the project “Prozesstaugliches 
Ultraschallmesssystem für die Überwachung und Regelung der Konzentrationen von relevanten Komponenten in 
industriellen Hefefermentationsprozessen“ (AiF 16536 N, shown in Figure 1.2) are, amongst others, slope  and 
entropy . The figure shows, that there are dependencies of features with respect to changing concentration and 
temperature visible after applying multivariate data analysis. Further, it indicates different importance of 
individual features selected. 

 

Figure 1.2: this figure exemplary demonstrates some variable 
selection possibilities on US-features in binary maltose mixtures; (left 
up) dependency of regression coefficient for feature “spectral 
centroid“ over temperature – coefficient of determination from linear 
fit can be used as importance measure; (left down) dependency of 
feature “spectral centroid“ on maltose concentration – correlation 
coefficient can be used as importance measure; (right up) grey scale 
representation of importance measures coefficient of determination 
(R2

T), correlation coefficient (rmal), scaled regression coefficient (bs) 
and variable importance in the projection (VIP) for each feature + 
scaled sum sorted by magnitude; the same approach can be done for 
ethanol as well. 

The slope (Equation 7) resembles similar meaning than the physical relation presented before (RRM method). 
The entropy (Equation 8) is a measure of disorder in the signal (higher values relate to noisy signals).  

௧݁݌݋݈ݏ ൌ
ܰ ∗ ∑ ሺ݊ ∗ ௡ሻܣ

ே
௡ୀଵ െ ∑ ݊ே

௡ୀଵ ∗ ∑ ௡ܣ
ே
௡ୀଵ

∑ ௡ேܣ
௡ୀଵ ∗ ሺ∑ ݊ଶே

௡ୀଵ െ ሺ∑ ݊ே
௡ୀଵ ሻଶሻ

 (7)

௧ݕ݌݋ݎݐ݊݁ ൌ െ෍ ቆ
|௡ܣ|

∑ ௡|ேܣ|
௡ୀଵ

ቇ
ଶே

௡ୀଵ
݈݊ ቆ

|௡ܣ|
∑ ௡|ேܣ|
௡ୀଵ

ቇ
ଶ

 
(8)

The importance of the latter does not directly mean that the signals of investigation are noisy, but a numerical 
change of entropy of independent signals is linked to concentrations changes. However, both equations show that 
the values are function of amplitudes, too. Thus, it is most likely, that any of those features or a combination keep 
the information related to reflection coefficient. The temporal features used in the investigations are namely 
energy (as reported in [20] (short time energy), [21] and [22] (temporal energy envelope)), entropy (as reported 
in [20] and [23] (entropy based features)) and crest factor (as reported in [24]).  
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The relevant spectral features in the mentioned investigations are maximal magnitude [25], bandwidth [26-28], 
kurtosis [21, 22], skewness [21, 22], crest factor [21, 22, 24], energy [22, 29], entropy [24, 25], centroid [20-22, 
29, 30] and spread [21, 22]. Those features are calculated similar to the equations for time domain but using the 
power spectrum. This is achieved by applying a Fourier transform on the time domain representation. The feature 
bandwidth is the range of frequencies over a certain amplitude. In this study, the change of bandwidth around 
center frequency was taken. Park et al. (1994a, b) [26, 27] as well as Mörlein et al., 2005 [28] used this feature 
for investigations on fat content in meat samples. Skewness and kurtosis are statistical origin and describe the 
shape of a distribution. The crest factor resembles the ratio of the maximum magnitude to the average of the 
signal. Therefore, it represents the singularity of this property. The centroid resembles the point, where half of the 
energy of the signal is covered, the spread resembles the spread (variance) around the mean value (centroid) of 
the signal. The entropy is a measure of disorder in the signal information. Those features are described in more 
detail in Krause et al., 2014 [25]. Additionally, other features were taken into account but not further studied. 
Those are temporal smoothness [24], skewness [29], slope [22], centroid [21, 22, 29], spread [24], rolloff [24] and 
spectral smoothness [24], slope [21] and rolloff [20-22, 29, 30]. A detailed description of these features can be 
found in Hussein, 2013 [24]. Nevertheless, most mentioned references are from audio signal processing and it is 
known, that signals are linear time invariant. Still, the usage of features applied on a certain time frame of buffer 
reflections extracted out of US signals is possible under the assumption of quasi-stationary behavior in an 
appropriate time segment out of the full signal [24]. 

However, the successful usage of frequency domain representation of acoustic signals is shown in several 
references. The raising importance of acoustic sensors in general can be assumed from review of Halstensen and 
Esbensen, 2010 [14], Rathore et al., 2010 [31] and Pomerantsev et al., 2012 [32]. Even though the sensor setups 
are significantly different, the possibility of acoustic chemometrics on frequency domain representation of 
acoustic signals used for predicting particles sizes [33] or ammonia concentration [14] show the power of this 
relative simple and cost effective measuring principle. The detection of sodium chloride concentration in aqueous 
solution using multivariate data analysis and ultrasonic signals was shown by Schäfer et al. [34]. It could be 
shown, that detection of salt concentration using magnitude and phase in frequency domain together with 
temperature as predictors is possible via PLS regression. Even though the presented results look quite promising, 
some details are missing. First, the temperature dependence is not clear, since the range investigated is not 
presented. Further, discussion about the choice of final calibration model or the influence of chosen predictors is 
missing, respectively. From the chapter “material and methods” it might be assumed, that the used input data for 
calibration is built on the spectral representation of magnitude and phase. The temperature was entered to the 
predictor matrix as last column. Under the presented circumstances, it might have been beneficial to use PLS2 
and temperature as second target value. 

In summary, the last section proves the potential of feature investigation with respect to changing properties such 
as temperature or carbohydrates. This area of feature extraction for ultrasonic signals penetrating aqueous 
solutions opens a new option investigating such data pool. In combination with US setup investigations and the 
theory on impedance (see Hoche et al., 2013 [13]), this area show a promising path to novel information 
generation. This field is still quite new and shows various future possibilities. 

One obvious disadvantage is the dependence on the measurement setup. However, investigations in this area of 
acoustics is quite low. Additionally, the coherences are not fully known. In such cases, data driven models can be 
used to overcome difficulties of such systems, where physical relations are partially missing. Such techniques are 
known to work superior in the field of optics, the application in acoustics for fluid inspection is quite rare. 
Nevertheless, calibration for optical systems are also setup specific. Therefore, the disadvantage in comparison is 
acceptable. 
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1.1.2. Biotechnological aspects 

Another aspect in the aim of the investigated setup for online usage are the already mentioned difficulties for 
biotechnological fluids, such as gas bubbles or suspended particles. Both phenomena distort signals with respect 
to loss of energy. Thus, online application is often limited due to outliers (see chapter “discussion”, Figure 3.11). 
In this investigation, features could help to overcome those challenges.  

Nevertheless, there are two points to address when sensing a specific problem of interest.  

(1) Is the sensing principle capable of sensing the relevant properties of interest?  

(2) What sampling frequency has to be taken with respect to the progress of the investigated property in the 
process of interest? 

The first point should be considered by determining the relevant time constants in the process under investigation. 
In this work, the temporal most critical process is the aerobic production of yeast under brewing conditions. This 

process is typically approached in a propagation tank, 
similar to the description in the fourth thesis publication, 
page 49. The sensor for investigating the progress of 
substrate or product is based on ultrasound and mounted 
in the pipe of the mentioned plant. Therefore, the 
following physical phenomena are assumed most 
relevant: mass flow of the fluid, which carries influencing 
particles and serves as driving force for substrate and 
temperature flux. The critical time constant T is given by 

a characteristic length, say 10-2 m divided by the velocity of the mass element. Knowing the volume flow in these 
processes investigated (around 1100 L/h) and the dimension of the pipe (diameter of 5*10-2 m) results in 0.153 m/s 
and therefore a time constant of 0.0654 s, thus in the range of 10-2. Since ultrasound is in the range of 1500 m/s 
in aqueous fluids, its time constant is around 10-5, which is lower than the time constant of the process (principle 
explained schematically in Figure 1.3). Therefore, it is legit to assume, that temperature or substrate gradients can 
be considered as controllable effects with respect to a property measured in average. 

Another influencing factor is the surface tension at the buffer of the sensor, where gas bubbles could agglomerate 
and therefore influence the measured signal. Visual inspections proved, that this effect is not influencing to a 
critical extent. Further, the influences are hard to estimate. Anyway, the material properties with respect to 
adhesion can be customized by production of the sensor setup. 

The second point is considered with the following assumptions. Assuming a sufficiently high sampling frequency 
and the knowledge of the time constant for fermentation progress, it is valid to assume, that a number of temporal 
aligned signals should have similar properties (no significant change of any concentration, no major temperature 
change). Nevertheless, time constants of microbial systems are hard to estimate, in general caused by their 
complexity [35]. A respond might be very slow in case of a minor environmental change in any growth factor. A 
comparably lower reaction time of genetic adaption might be visible by changing temperature according to the 
used organism. One possibility presented by Szita et al., 2005 [36] is simply taking the doubling time of the 
organism to estimate the critical process time (Equation 9).  

ௗ,௠௜௡ݐ ൌ
݈݊2
μ௠௔௫

 (9)

In the applications presented in this thesis, the most frequently used microorganisms are from species 
Saccharomyces spp., mainly S. cerevisiae or S. pastorianus var carlbergensis. The temporal process investigated 
under brewing conditions is the yeast propagation (growth of biomass). This process is usually never run at 

 

Figure 1.3: gas bubbles, particles, substrate and local 
temperatures with the velocity of product flow (subscript p) 
versus sensor information propagation velocity (subscript s) 
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temperatures higher than 28 °C. Since both organisms have similar properties, a maximal possible growth rate µ 
of 0.47 h-1 (see Sonnleitner and Käppeli, 1986 [37]) can be assumed.  

Figure 1.4: estimating critical process time – graphical illustration of the theoretical online trend deviation using moving average; 
the maximum acceptable error will be just reached at the end of the curve, which resembles areas of concentration never reached in 
industrial propagation process; black line - substrate decline; dashed black line(s) upper and lower Acceptable online error limit; 
black dots - theoretical moving average result of online sugar sensor – sampling rate 30 sec 

This growth rate will just be reached, if a substrate concentration of approximately 0.1 g/L (no Crabtree effect, 
for details see Sonnleitner and Käppeli, 1986 [37]) and a 
temperature of 30 °C are given. Thus, using Equation 9 
results in a critical process time tcrit of 1.5 h. Further, 
assuming a minimum total process time of 12 h and a more 
suitable maximum growth rate of 0.3 h-1 under mentioned 
conditions, results in the graphical representation shown in 
Figure 1.4. Both assumptions are never reached in industry 
under the normal brewing conditions. Additionally, a 

maximum acceptable measuring error of 0.5 g/100g 
for online sensor estimation is assumed. Thus, a time 
delay caused by an average filter of 30 signals with a 
sampling rate of 30 sec causes a “delay” of 0.5 g/100g 
at the end of this curve. Nevertheless, a maximal 
decrease of the initial substrate of 120 g/L down to 
60 g/L is intended in real processes of this type. In 
conclusion, this delay would not influence in online 
applications. 

This information is necessary for the following two 
points. (1) Outlier detection of online signals using a 
number of temporal consecutive signals and (2) the 
effect on an average filter to reduce the statistical 
deviation of extracted US-features. The first issue will 

be discussed in detail in chapter “discussion” by using a buffer of signals for feature extraction. The second issue 
is shown in Table 1.2 and Figure 1.5. Those two representations show that 40 signals would cause an acceptable 
time delay of 20 min.   
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Figure 1.5: Investigation on the number of points for a moving 
average filter to reduce the standard deviation of US features – 
example temporal slope; data background are signals (buffer 
reflections) taken at approx. constant temperature on water (no 
change of concentration). 
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Table 1.2: size of moving average window for online 
detection (npoints); standard deviation calculation (σ) of 
data set including temporal slope of US signal buffer 
reflections; 190 sample points at one temperature, no 
concentration change and the corresponding time delay 
(tdelay) in minutes (sampling time 30 sec.) 

npoints σ tdelay [min] 
20 6.96 10 
40 2.55 20 
60 2.5 30 
80 1.4 40 

100 1.31 50 
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In addition, the applied feature analysis in this thesis was restricted to buffer reflections. Therefore, sampling rate 
(originally applied to collect a full signal travelling once through the setup being reflected once at the reflector; 
see first thesis publication for setup and explanation) could be reduced from 30 to 10 sec.  

1.2 Multivariate data analysis 

With the involvement of complex sensor data such as spectroscopy, computational data fusion techniques are 
necessary. Next to hard models, which use strict scientific relations, these soft models are data driven [7]. The 
latter can either be used as soft-sensor indirectly extracting leading parameters or as holistic process qualification. 
The biggest task in any of these systems is that the data processing reaches a predictive model for online use. 
Therefore, the field of multivariate data analysis, often referred to as chemometrics, provides plenty of 
possibilities for such tasks. In 
literature already a variety of 
reviews and tutorials are 
presented covering the basic 
methods used in multivariate 
data analysis. In general, one 
can divide between two tasks: 
(1) “quantitative model 
building”, where the 
collected data is used to 
establish a prediction model 
for an unknown leading 
parameter (e.g. concentration 
of a chemical component) 
and (2) “qualitative model 
building”, where data is used 
to classify samples measured 
(e.g. quality of samples). 
Figure 1.6 tries to give an 
overview on classifying 
methods and further 
subdivisions in multivariate data analysis. The methods used in this thesis are marked blue, the number of 
algorithms on each subclass should be seen as examples for numerous other possibilities. Three of the used 
methods, namely Support Vector Machines (SVM, originally used for classification), Partial Least Squares – 
Discriminant Analysis (PLS-DA, modified for classification) and unfold-PLS (Wold et al., 1998 [38], for three 
dimensional data problems) are overlapping with other subdivisions (indicated by the red dashed arrows).  

Figure 1.6 indicates that multivariate data analysis is a brought scientific field. Next to the mentioned methods for 
model generation, it implies amongst others investigations in inputs (importance), non-linearity, and model 
dimension. 

In general, multivariate data analysis can be divided into the following steps:  

(1) Data pre-processing 

(2) Model generation 

(3) Data post-processing 

Thus, Figure 1.7 gives an overview on the methods and algorithms applied in this thesis with respect to their 
functionality. Furthermore, some subdivisions are overlapping with other steps mentioned before. A selection of 
methods for each subclass will be explained in the corresponding following section. 

 
Figure 1.6: Methods (assortment) used for model generation in chemometrics based on different 
background; without (w/o) a priori knowledge is also referred to as unsupervised, with a priori 
as supervised, respectively; methods used in this thesis are coloured in blue, whereas Unfold-
PLS is used for multivariate statistical process control (MSPC) (thus linked to 3-way methods) 
and PLS-Discriminant Analysis (PLS-DA) for classification (here referred to as with a priori 
knowledge clustering); SVM is used for regression and thus linked to nonlinear regression 
methods such as kernel-PLS; LDA – Linear Discriminant Analysis, ANN – Artificial Neural 
Networks, SVM – Support Vector Machines, PARAFAC – Parallel Factor Analysis, PLS – 
Partial Least Squares, PCA – Principal Component Analysis, MCR – Multivariate Curve 
Resolution (here referred to w/o a priori knowledge, even though the methods initial estimation 
as well as constraints can be seen as knowledge inclusion), ICA – Independent Component 
Analysis; this figure is adapted from Gendrin et al., 2008 [4] 
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1.2.1 Data Pre-processing 

Figure 1.6 provides an overview of the used algorithms in this thesis with respect to their functionality or subclass, 
respectively. Each of the mentioned pre-processing subclass and its corresponding methods will be explained, a 
good overview including a variety of other algorithms is given by Axelson, 2012 [39]. 

1.2.1.1 Offset 

Eliminating an offset can be accomplished by column wise mean centering of data. Therefore, differences in the 
data are stronger visible rather than similarities. Mean centering is used in this thesis and is one of the most 
common applied pre-treatment methods, almost independently from the source of data [39]. Nonetheless, Axelson 

also mentions, that it is 
not advised for data sets 
where the responses 
change linearly with the 
targets or have no 
baseline. The first 
might be a reason for 
errors reported in US-
investigations in this 
work and thus need to 
be investigated in 
further studies.  

Baseline correction 
methods also belong to 
the group of offset, 
usually applied for 
spectral pretreatment 

[3]. The latter is partially included in next section “sample scaling”. 

1.2.1.2 Variable scaling 

One very common applied method is called auto-scaling or z-transform. Here, mean-centered variables are 
additionally divided by their standard deviation to remove the total variance inside the data. For this methodology, 
data pre-knowledge is necessary. Firstly, to prevent amplification of noise in case of variables with low variance 
with respect to a given target of interest. Secondly, for handling variables with comparably low variance but high 
informative content to the respective aim. Thirdly, once variables do not have the same range of magnitude the 
variables with largest absolute will dominate the rest [3].  

In case of high signal to noise ratio, the variance of some variables is artificially increased. This effect mostly 
leads to false correlations, which would even be enlarged by auto-scaling. Thus, a supporting scaling factor for 
additional stabilization was introduced by Keun et al., 2003. This so-called variable stability scaling (VAST) 
can support data analysis if there is spurious variation appearing. In this thesis, auto-scaled data is divided by this 
scaling factor called coefficient of variation (ratio between standard deviation and mean). Thus, spectral areas of 
higher information content were stressed in contrary to areas with more noise related variation. 

This method can also be used including a priori knowledge, such as class membership (sVAST). Thus, treatment 
is applied for each subgroup in calibration data individually [39, 40]. 

1.2.1.3 Sample scaling 

This kind of pre-processing might be necessary for correcting multiplicative variations between samples caused 
by e.g. light scattering in spectral optical signals due to path length differences (caused by e.g. particle size or 

 
Figure 1.7: Methods used in this work for pre-processing and post-processing of data; some of the 
methods typically cannot be strictly classified as indicated – thus, overlapping with the respective 
group is graphically highlighted; VAST- variable stability scaling, SNV – standard normal variate, 
MSC – multiplicative scatter correction, SG – Savitzky-Golay-Filter, EPO – external parameter 
orthogonalisation, ABOF – angle based outlier factor; this figure is partially adapted from Miller, 
2010 [3]. 
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thickness differences). It is not possible to remove such multiplicative variations by derivatives or variable pre-
processing. One possibility to correct light scattering is using the standard normal variate (SNV) on each signal 
[41]. Here, the mean value of each signal will be subtracted from each signal value and divided by the signals 
standard deviation. Thus, gradient differences of spectra will be removed. These variations could be somehow 
convoluted with the expected ones related to the problem of interest [3]. 

In this thesis multiplicative scatter correction (MSC) is also used. It is based on the idea to correct the level of 
the base scatter of all spectra to the niveau of an ideal spectrum. In most cases, the mean spectrum is taken as 
ideal or reference spectrum. Each spectrum will be adapted to the mean spectrum using least squares [3]. The 
corrected spectrum will be calculated using the fitted constants ai (intercept, additive correction factor) and bi 
(slope, multiplicative correction factor) [3]. Thus, MSC is a data set dependent transformation [42].  

1.2.1.4 Filtering 

Pre-processing by filtering can be applied in case 
of variables being presented as continuous 
numerical representation (discrete, digitized 
data). This case is existent in optical or acoustic 
data, where the variables are represented as 
continuous function. One of the famous filtering 
method in chemometrics, especially for spectral 
data, is the Savitzky Golay (SG) filter. This 
method can be used either for smoothing or for 
derivatives of individual spectra. Derivatives 
remove baseline shifts between spectra as well as 
improvement of resolution between overlapping 
features. Huang et al., 2008 for example report 
the application of second-derivative 
transformation together with extended 
multiplicative spectral signal correction in order 
to improve band resolution and remove physical 
and quantitative spectral variations [43]. Anyway, 
the derivative order, which is one of the three 
parameters of SG filter (window width, 
polynomial and derivative order), could be zero 
for just smoothing of data, one to effectively remove baseline shifts and two for additionally removing baseline 
slope differences between spectra. The window width determines the degree of smoothing as well as the 
deterioration of resolution improvements in an opposing manner. The SG filter itself is a set of coefficients defined 
by the three parameters and sequentially multiplied to local windows in a moving window manner. The content 
of this paragraph can be found in more detail in Miller et al., 2010 [3].  

The methods mentioned under “sample scaling” and “filtering” were applied on spectra used in this thesis. 
Figure 1.8 presents these original spectra, deviating in their absolute values from each other, almost at each 
wavelength. Obvious changes by sample scaling are reduced differences in absolute values between spectra, 
caused by the aforementioned influences. Applying SG filter for first derivative highlighted areas, where changes 
in the slope of the spectra are appearing, most likely caused by changed sample composition. The same counts 
for the second derivative, which highlights changes in the absorption peaks. 

 

 
Figure 1.8: sample scaling/filtering (selection); from top to bottom: 
original data, standard normal variate (SNV), multiplicative scatter 
correction (MSC), first and second derivative using Savitzky Golay 
algorithm (number of sampling points N=21, polynomial degree p=5). 
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1.2.1.5 Linearization – Kernel Matrix 

Several different ways for linearization of potential non-linear data are reported in literature, such as non-linear 
extension of data matrix by polynomial extensions [44] or orthogonal signal correction [39]. Another common 
way is the construction of a kernel matrix. A certain sample set of input data X [n x m] is restructured using the 
direct dependence of two samples to each other. This means, the samples of X are transformed into a new feature 
space using nonlinear mapping [45]. This results in a new input matrix K [n x n] (Equation 10).  

ܭ ൌ ቎
݇ଵ,ଵ ⋯ ݇ଵ,௡
⋮ ⋱ ⋮

݇௡,ଵ … ݇௡,௡
቏ (10)

Where ki,j can take the form of several different functions. The most famous are the linear or covariance, the 
polynomial and the radial basis function kernel (RBF, Equation 11). The description of those functions can be 
found in literature, for instance Nicolai et al. 2007 [45]. 

݇௜,௝ ൌ ݁
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೅ቛ

మ

ଶ∗ఙమ  
(11)

The Kernel width parameter σ is linked to the reliability or the SNR of the data. If this parameter is higher, the 
solution of the model becomes more linear. Over all, the value of ki,j becomes one in case of samples that are more 
similar and zero in case of less similar ones. 

Further, it is recommended to always perform a centering of the Kernel matrix prior to analysis. Therefore, an 
approach reported by Bennett and Embrechts was applied [46]. 

1.2.1.6 External Parameter Orthogonalisation 

This methodology used in this thesis can be found in detail in Roger et al., 2003 [47] and in appendix A1. They 
present a data matrix as follows: 

ࢄ ൌ ࡼࢄ ൅ ࡽࢄ ൅ (12) ࡾ

Where P contain the loadings of the projection onto the relevant target information (relevant subspace ۱Ԧ) and Q 

onto the external parameter influence (subspace ۵ሬሬԦ, containing influence of external parameter); R resembles a 

residual matrix. After some intermediate steps the subspace ۵෡ is estimated by PCA (see appendix A1). The 
original data matrix is modified by subtracting the influence of the external parameter following Equation 13: 

∗૙ࢄ  ൌ ࡵ૙൫ࢄ െ ൯ (13)ࢀ෡ࡳ෡ࡳ

Finally, a calibration can be calculated between X0* and Y0. Two of several possibilities are presented in Roger 
et al., 2003 [47]: a k-fold cross validation on the different Xi resulting in an error as a function of EPO component 
and PLS latent variables number. The second approach is based on an analysis of variance measured by Wilk’s 
ratio between the inner group and the total variance [47]. The approach used in the presented thesis is slightly 
different. The choice is done on the final error (similar to the approach one above). In contrast to the mentioned 
approach, the error is calculated on a validation data set. This way was chosen to combine the approach with 
kernel PLS and the method of robust calibration.  

1.2.2 Model generation 

Aim of scientific research in PAT is to better understand the processes and backgrounds of the challenges 
investigated. This implies the option of increasing complexity with respect to knowledge integration. In most PAT 
tasks, not the individually measured values are of interest but more importantly functional features of raw material 
or product are required [7]. One of the major benefits of using process analysis is to simultaneously optimize 
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process behavior and product functionality [7]. This is reached, amongst others, by trying to use all the information 
existing and a joint analysis. Amongst others, a review about mathematical procedures for model building on 
bioprocess data is given by Becker and Krause, 2010 [48]. Most popular modelling strategies start from low 
complexity and knowledge, such as data driven modelling, until process modelling using physico-chemical 
relations via differential equations (deterministic models) or knowledge based approaches such as fuzzy logic or 
artificial neural networks. Even though the latter include most knowledge about important relations in a 
biochemical process surrounding, the application of such systems in most cases is of rather low success. For 
deterministic models it can be explained by the huge complexity of bioprocesses resulting in a variety of equations 
and unknown parameters [44]. For knowledge based approaches it is often necessary to have enough experience 
providing sinful relations and connections [44]. If such background information is not available, the usage of data 
driven modelling becomes beneficial. Even in such approaches, it is achievable to include knowledge. It was 
shown by using multivariate curve resolution (MCR) [7] to integrate biochemical knowledge into data driven 
analysis. Altogether, the following three guiding principles given by Miller, 2010 should be considered [3]: 

“  

1. When building a method for on - line use, keep it simple! Strive for simplicity, but be wary of 
complexity. 

2. Do your best to cover the relevant analyzer response space in your calibration data. If this cannot be 
achieved, then at least know the limitations in your calibration data. 

3. Regardless of your background, strive to use both chemical and statistical thinking 

a. Use your prior knowledge to guide you (chemical thinking), 

b. But still ‘listen’ to the data – it might tell you something new! (statistical thinking)„ 

The background of the presented solutions in this thesis is majorly the data driven and well-known Partial Least 
squares (PLS) method. This method is used quite often in the field of chemometrics model generation. Further, a 
variety of different algorithms for PLS is existing. The used ones are namely Non-linear Iterative Partial Least 
Squares and kernel PLS. Here it is important to mention, that literature presents two very different kernel PLS 
approaches. On the one hand, kernel is referred to as data pre-processing, thus dealing with non-linearity. The 
subsequent data transformation is based on adapted NIPALS algorithm. On the other hand, kernel-PLS is a 
different algorithm for decomposing the data matrix based on the kernel XTYYTX, proposed by Lindgren et al., 
1993 [49] and used in the work of Whitehead, 2012 [50] and in the third thesis publication.  

Further, one can divide between the way of decomposition (kernel-PLS, NIPALS, SVD, and further methods 
reported by Burnham et al. 1996, Lavine and Workman, 2010 or Miller, 2010 [3, 51, 52]) and the adaption of PLS 
in principle to the usage of interest (e.g. PLS-DA, unfold-PLS, kernel-PLS).  

However, several other approaches for model generation, namely Support Vector Machines (SVM), K-means 
clustering and Principal Component Analysis (PCA) are used in this thesis. In the following subsections, the 
algorithms shown in Figure 1.6 including the marked ones used in this thesis are explained under their subdivision 
with respect to their aimed usage.  

1.2.2.1 Pattern Recognition 

This topic describes methods for automatic detection of different groups, patterns or clusters out of an n-
dimensional space of variables. Cluster analysis, which is based on the dissimilarity measure between objects 
[53], is one of the most known methods for unsupervised pattern recognition [54]. These methods without a priori 
knowledge include algorithms such as K-means, which is one of the most widely applied algorithm [53]. 
Important for these methods is the consideration of pre-processing, in particular variable scaling. Hastie et al., 
2008 shows, that the differences of clusters might disappear after applying this step (see Hastie et al., 2008 [53], 
Figure 14.5). However, next to K-means there are varieties of other methods used for clustering, such as 
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hierarchical clustering or proximity matrices. These methods include (amongst others) PCA (Principal 
Component Analysis, mentioned in section 1.2.2.2 “Multivariate data analysis for regression”) as well as 
Independent Component Analysis (ICA). The major difference in the latter two is the identification of unique 
components in ICA, which makes ICA applicable when PCA is limited [53]. The area of unsupervised as well as 
the following supervised algorithms are briefly discussed (amongst others) in Brereton, 2009 [55] and more 
application oriented in Hastie et al. 2008 [53].  

Methods with a priori knowledge (supervised) applied for linear challenges include Linear Discriminant 
Analysis (LDA) and correlation analysis, for non-linear cases Support Vector Machines (SVM) and Artificial 
Neural Networks (ANN) are widely known. The most famous approach, mainly known for calibration of 
multivariate data sets is Partial Least Squares (PLS, explained in section 1.2.2.2 “Multivariate data analysis for 
regression”). A slight adaption of this algorithm allows classification as well. This method is referred to as PLS-
DA, which is discussed in the third thesis publication as well as in Barker and Rayens, 2003 [56].  

Whereas PLS is used for linear and slight non-linear cases, challenges of non-linear background are treated with 
methods like support vector machines (SVM, also used for regression [SVR]) The development of general non-
linear SV algorithms in its present form was mainly done by Vapnik and co-workers in the early 20th century, 
even though it roots back to the framework of statistical learning theory developed in the 60ties and 70ties [57, 
58]. In 1997, Vapnik et al. extended the framework to non-linear regression [59]. Tutorials on classifiers and 
regression are given by Bruges, 1998 [60] and Smola and Schölkopf, 2004 [58], respectively.  

Further, the objective function for calculating the regression coefficients is different to that known from PLSR or 
MLR. Instead of minimizing the sum of the squared residual error, an alternative formulation serves as 
optimization background: 

minቆ
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Where θ is a parameter for regularization. Increased values of θ forces more on the root mean square magnitude 
of the regression coefficients. Instead of the classical least squares criterion, δi is defined by a significance 
threshold ε: 
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 (15)

Therefore, a sample with low residual will get a regression coefficient equal to zero. This means, that the others 
can easily describe those samples. The other samples with coefficients bigger than zero are referred to as support 
vectors.  

Another formulation for SVR is given by Least Squares- SVM (LS-SVM) [61]. The difference to the objective 
function described above is usage of the general squared loss function instead of Equation 15. Therefore, all 
regression coefficients will be nonzero. Further, instead of three tuning parameters (θ, σ, ε) only two have to be 
tuned (θ, σ). The training of the model is achieved by solving the linear Karush-Kuhn-Tucker system 
(Equation 16).  
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Where I is a [n x n] identity matrix, In a column vector of ones, y the vector of reference values and 1/γ corresponds 
to θ [57]. This algorithm is implemented in this work, results are shown in chapter “discussion”. 

Another famous, non-linear algorithm used for pattern recognition and regression is named artificial neural 
networks (ANN). ANN have an adjustable mathematical background capable of building a non-linear relation 
between many inputs and multiple outputs with features such as on-line application and learning ability but more 
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or less empirical modeling capacity and less extrapolation capability (see Goyal, 2013 [62]). They are more 
dependent on the data than on comprehension of any relation between regressor and target of interest [62]. 
Nevertheless, a major disadvantage of ANN is their complexity and thus not easy interpretability.  

However, the majority of data-driven models (including the ones mentioned in this thesis) will not be able to 
replace any of the laboratory measurements totally. They can be seen as powerful addition and reduction in effort. 
Further algorithms are mentioned in literature, e. g. Becker and Krause, 2010, Hastie et al., 2008 or Brereton, 
2009 [48, 53, 55]. 

1.2.2.2 Multivariate data analysis for regression  

Two-way models 

One of the major goals of multivariate data analysis is to find a relation between an n-dimensional data matrix 
and multiple samples with respect to corresponding observations. The two basic methodologies are named factor 
analysis and principal component analysis (PCA). There are similarities but also differences between these two 
methods [48, 53, 55], both analyzing one data matrix. These algorithms are also called component models [63]. 
Factor analysis was not applied in this work. PCA is basis for the widely applied Partial Least Squares algorithm 
(PLS, also referred to as Projection to latent structures). PLS is a method established for analysis of two data 
matrices simultaneously in a regression point of view, maximizing the covariance between x and y-data. The final 
model describes the approximated coherences between measured x-data and the desired target y [12]. PLS is the 
main method applied in this thesis, the algorithm of PLS is described in the second thesis publication. All those 
algorithms assume errors, noise or uninformative parts in the measured data. Thus, the problem of interest can be 
described by a condensed or reduced dimensional space of the data origin [64]. This is achieved by projecting the 
higher dimensional data onto latent variables, which reduces the dimensionality and simplifies any further analysis 
(calibration, monitoring and control, etc.) [64]. Other variants are Reduced rank regression (RRR), Canonical 
variate analysis (CVA), or canonical correlation regression (CCR) [51, 64]. The choice of method depends on the 
objectives. A detailed description of these algorithms is not given, the reader is referred to literature. Another 
distinction between these mentioned algorithms can be made based upon the knowledge included, whereas PCA, 
Multivariate Curve Resolution (MCR) and Independent Component Analysis (ICA) are categorized by Gendrin 
et al., 2008 without and PLS with a priori knowledge [4] (see Figure 1.6). 

Another objective is the consideration of non-linearity. Such issues can be handled with corresponding pre-
processing (as mentioned in the paragraph before). However, there are also varieties of algorithms for model 
generation facing this challenge. Two methods are used is this thesis, namely Support Vector Regression (see 
paragraph pattern recognition) and Kernel-PLS. This algorithm is modelling non-linearity by PLS-regression on 
a kernel matrix like presented above. This feature space might have a more suitable content than the original 
variable space. However, the used PLS algorithm (for instance NIPALS) has to be rearranged to avoid an 
unreasonable computational effort due to the possible high dimension of the kernel feature space. Examples are 
given for instance in Bennett and Embrechts, 2003 [46], Nicolaï et al., 2007 [45] or Krämer and Braun, 2007 [65]. 
The algorithm applied in this thesis was taken from Nicolaï et al., 2007 [45]. After extracting the latent variables, 
the regression model is built as follows: 

ෝ࢟ࢉ ൌ (17) ࢉ࢟ࢀࢀࢀ

for the calibration data and  

ෝ࢟࢜ ൌ ൯ࢁࡷࢀࢀ൫ࢁ࢜ࡷ
ି૚
(18) ࢉ࢟ࢀࢀ

for validation data. All the presented equations were implemented and used on the same data set as presented for 
LS-SVM model building. SVM Regression & Kernel PLS results are presented in chapter “discussion”. 

Three or n-way models 
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The last paragraph describes the basic techniques for multivariate analysis applied on two dimensional data 
structures. However, some data structures are of three or more dimensional kind, also referred to as multiway. A 
famous example is 2D fluorescence spectroscopy, where for each excitation wavelength the full spectrum of 
emitted fluorescence is measured. Applying this method on different samples results in three dimensions. Taking 
location and time into account, such data structures could have five dimensions. Other examples are 
chromatographic data or data measured under different chemical (pH) or physical (temperature or pressure) 
surrounding conditions [66]. Methods for multiway analysis are amongst others PARAFAC (PARAllel FACtor 
analysis), Tucker3 (both extensions of two-way PCA [63]) and its combination as well as PLSR for nPLS models. 
An overview of possibilities is given by Bro, 1998 [66]. Detailed description of algorithms is given in Bro, 1998 
[66] or Smilde et al. 2005 [63], a brief comparison of methods is given in Smilde et al. 2005 [63]. However, 
Smilde et al. also state, that an a priori choice of model is mostly not possible [63]. This fact is supported by the 
statement of Bro in using constraints to improve a model and usually a model cannot be optimal in all cases [66].  

There are two major advantages of using multi-way techniques. The first is uniqueness [66], which allows 
calibration in presence of unknown impurities. The second is better structural models [66], which is beneficial for 
robustness, economic models and most often better prediction accuracy.  

Although these methods are obviously powerful, in this work the method presented by Wold et al., 1998 [38], 
unfolding the three-way structure into a two-dimensional matrix combined with more or less standard PLS, was 
applied (similar to Tucker1 [63]). As presented by Whitehead, 2012, this method was adopted and applied for 
multivariate statistical process control, even though being not a truly tri-linear decomposition method [67].  

Multivariate statistical process control 

It is possible to distinguish between the usage of sensor data on the calibration of a specific target (usually a 
chemical component) or the complete process behavior. The latter is known as multivariate statistical process 
control (MSPC), which is mostly used for provision of multivariate trajectories for process inspection and control. 
The successful application of multivariate data analysis used even for industrial process monitoring, control and 
fault diagnosis has increased, especially in the last decades [64].  

Kourti reviews methodologies and transfer possibilities for industrial usage on the emerging applications of latent 
variable extraction applied for monitoring and control and based on image analysis as inexpensive sensor for such 
occasions, for example [64]. It is also mentioned, that any data treatment has to be utilized with care to preserve 
multivariate structure and integrity [64].  

One of the major benefits in using multivariate analysis is, that among predicting nominal changes in single 
variables changes, the covariance between them is also detectable. This means, that also minor changes in any 
variable causing major changes of the whole process trajectory are detectable, earlier than each variable deviating 
significantly on its own [64]. Grassi et al. (2014) give an example on the process of beer brewing. The main aim 
of the study is to extract the relevant process leading parameters online using NIR. Nevertheless, they also point 
out the difficulties in univariate quality assurance in industrial processes [68]. More specific, it is hard to find the 
error source for the abnormality of a certain batch [64], since a misbehaving variable could be originated by a 
combination of others. Thus, a broader view on the holistic information given is recommended. 

One of the aims of multivariate process control is the real time release of products (rather than time-consuming 
laboratory proved release). This aim is even emphasized by the FDA Guidance released in 2004 [69]. Thus, a 
product will be released, if the process was inside its boundaries and just analysed in laboratory, if problems 
occurred.  

1.2.2.3 Model Validation 

One of the major task in latent variable methods is the final model validation. This step is quite important in 
choosing the correct amount of necessary components rather than over- or under- fitting the problem of interest. 
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Thus, the chosen criterion has to have the background which allows comparison between models, also of different 
origin [70]. Estimating the dimensionality can be accomplished using the predicting error (see below). Other 
possibilities, which are helpful to choose more appropriate model sizes with respect to over fitting are, amongst 
others, so called information criteria. Such criteria are manifold including the Bayesian and the Akaide 
Information Criterion (BIC and AIC, respectively) [70]. Amongst others, the AIC was used for analyzing the 
model size in this work.  

ܥܫܣ ൌ ݊ ∗ logሺܵܵݎሻ ൅ 2 ∗ ݂݀ (19)

Where n is the number of samples, SSr the sum-of-squares of residuals and df the degrees of freedom. Choosing 
the correct degrees of freedom is one of the discussion points of several publications (e.g. Faber and Bro, 2002 
for the prediction error [71], Bruns et al., 2006, Chapter 5, p. 227 for ANOVA of least-squares fit (amongst others) 
[72] or Krämer and Braun, 2007 for the model selection on information criteria [65]). In contrary to Krämer and 
Braun, in the presented work the “naïve” approach df(PLS) = number of components was used.  

However, literature presents a variety of criteria and methods for error propagation but no overall solution for all 
given cases is reported. Axelson reports some aspects of proper validation out of the work of Esbensen and Geladi. 
One of such aspects is, that test set validation should be the first choice for correct validation objectives [39, 73]. 
Axelson further heavily recommends to always use a completely independent validation set, never “in touch” with 
any model generation to not result in too optimistic model predictive quality [39]. However, this might not always 
be possible due to a limited sample size in the data set.  

In conclusion, several different criteria were used for decision on best model size (number of latent variables). 
AIC as well as the RMSEV are complemented by the sum of squares for the model precision (SSa, resembling the 
prediction accuracy of each level, e.g. concentration) and sum of squares for model validity (SSr, resembling the 
overall regression accuracy). 
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Both are calculated for calibration and validation. They are based on the theory of ANOVA for empirical model 
building, for instance shown by Bruns et al., 2006, Chapter 5 [72]. Further, the mean sum of squares are calculated 
for comparison: 

ܵܯ ൌ SS ݂݀⁄  (22)

where df is the degree of freedom; for “precision” (subscript a) df = m - p – 2 and for “validity” (subscript r) 
df = n - p – 2 with m as the number of levels, n the number of samples and p for the number of 
parameters/components and subtracted by two for pre-processing by auto-scaling. This mean sum of squares can 
be compared in several ways. Brereton ([74], section 5.7.2) reports on using latent variable methods for pattern 
recognition comparing the percentage of classification with cross-validation to “autoprediction” (error calculated 
between model and training set, also sometimes referred to as calibration error, in this work subscript c). If these 
two are similar, the model might be of good choice. If the accuracy for validation (cross-validation, subscript cv) 
decreases, the results should be further investigated [74]. When building a ratio (autoprediction/cross-validation) 
between these accuracies, it will increase with rising number of latent variables. This fact can be also used for 
regression, where the ratio would decrease. Further, the mean sum of squares can be taken in a ratio with similar 
conclusion, rather than using the final model error. This measure can be used as an indicator for over-fitting. 
Cross-validation is the better choice for this ratio, because in test set validation (subscript v) for regression values 
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above one are also possible. Nevertheless, it still can be used for analysis assuming that MSrc decreases and MSrv 
increases with too many number of latent variables in the model. 

ܨܱ ൌ ௥௖ܵܯ ⁄௥௩ܵܯ  (23)

Another way of comparing mean sum of squares is presented by Brereton, 2003, section 4.3.3.2 [75] where the 
MS with a certain number of latent variables p is compared to the one with p-1. If this value [MSrv(p-1)/MSrv(p)] 
(adapted from [75]) reaches below one, the model with p-1 latent variables should be taken [75]. This can be even 
further analysed by assuming, that any additional component does not affect the model output anymore, resulting 
in an asymptotic behaviour.  

ܴ௔ ൌ ݌௔௩ሺܵܯ െ 1ሻ ⁄ሻ݌௔௩ሺܵܯ  (24)

ܴ௥ ൌ ݌௥௩ሺܵܯ െ 1ሻ ⁄ሻ݌௥௩ሺܵܯ  (25)

The last ratio investigated in this work is between precision and validity (Equation 26).  

ܴ௉ ௏⁄ ൌ ௔௩ܵܯ ⁄௥௩ܵܯ ൌ ݊݋݅ܿ݅ݏ݁ݎܲ ⁄ݕݐ݈ܸ݅݀݅ܽ  (26)

All ratios as well as the comparison of individual trend lines where analysed (see chapter “discussion” below). 
The reason in using several measures is, to support the choice of model size and accuracy as well as robustness 
in the same time (see section “Model Robustness”). 

1.2.3 Data Post-processing 

Even though this naming is not usual in literature, the following topics are included under this header: model 
validation, outlier analysis and variable selection/inspection. All topics are necessary to stabilize the solution of a 
model.  

1.2.3.1 Variable selection/inspection (for Partial Least Squares regression) 

Multivariate calibration models consist usually out of several measured chemical or physical variables (predictors) 
and a few targets (responses). The number of predictors might range from a few (like presented in the second 
thesis publication) up to thousands for optical spectroscopic data (like presented in the third thesis publication). 
In any case, the information of those variables will be compressed to a few latent variables with most direct 
correlation to the targets of interest (e.g. PLS regression). Nevertheless, the contribution of each single variable 
to the final model structure and the targets of interest is varying. Further, regions of low single to noise ratio might 
be excluded. Thus, methods for feature selection play an important role in multivariate analysis (Lavine and 
Workmann, 2010 [52]). Several algorithms for variable selection are presented in literature. Some of them are 
based on moving windows, were length, position and the number of windows are tunable (see Chen et al., 2014 
[76]). Such approaches are usually unsupervised. Other methods are based on informative vectors also referred to 
as Filter Methods. These different vectors are calculated based on the created multivariate model and contain the 
influence of single variables on the targets. The final “window” investigated by iteration consist on most relevant 
predictors only. Therefore, such methods are supervised. The latter are preferable, since the least necessary 
information out of the dataset is used. Teófilo et al., 2008 investigated the performance on a number of existing 
informative vectors for NIRS calibration [77]. The most promising vectors in their investigation were regression 
and net analyte signal (NAS) vector. However, they concluded that the other vectors analyzed might be more 
suitable for other data sets. Hence, a priori choice of the informative vector seems difficult.  

Why is variable selection necessary? 

It is known, that using all variables does not necessarily lead to best performance of the final model since 
uninformative variables could reduce dominance of informative ones [39]. Further, Nadler and Coifman, 2005 
[78] state, that in multivariate models with large calibration sets the final prediction error is mainly influenced by 
noise divided by the length of the Net Analyte Signal vector (σ/norm(xnas)). However, they also state that there 
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are additional error terms of the form σ2m2/n2 (n samples, m variables and σ noise level per variable). Thus, in 
case of m >> n, those terms can be quite large. Thus, the prediction error can be mainly dominated by those terms. 
In summary, the prediction error is influenced by the sensitivity (σ/norm(xnas)), the degree of statistical correlation 
(the larger the correlation or interferences the worse the prediction error) and the number of variables (the more 
variables, the more noisy the estimates) [78].  

Nevertheless, variable selection might avoid overfitting (more terms taken or more complicated than necessary) 
as well as improve the model performance. The major question is always, how much variables are necessary to 
optimally picture the given problem. This must not mean how much variables are significant. In general, optimal 
features for the specific algorithm do not necessarily equal to relevant features [79]. In most cases, highly 
correlated variables that are therefore redundant, do not add information, if used. In contrast, noise reduction 
might be also obtained by adding redundant variables. High correlation does also not mean that there is no 
complementary effect between variables. Finally, a variable with obviously no information alone might still 
support together with others. This count also for two uninformative variables, which might be useful together 
[80]. In conclusion, the topic of variable selection is of necessity but should be considered with care. For further 
reading about reasons please be referred to Axelson, 2012 [39]. 

In general, there are three possible ways in choosing a method out of several different ones used for the specific 
task: (1) “expert questionnaire”, (2) mathematical comparison of algorithms, and (3) data driven (by iteration; 
therefore process or application oriented). In this work, the methods Variable Importance in the Projection (VIP), 
Net Analyte Signal (NAS) as well as the regression vector (Reg) where used. 

(1) Expert Questionnaire by literature review 

The method of acquisition of expert knowledge by expert questionnaire is used most often in the area of social 
science. This method does not completely belong to the close area of experimental design (DoE), but has to be 
taken into account in rather complex processes, for example [81]. Nevertheless, the way used in the present 
investigation was adapted to support the choice of algorithm usage for variable selection. Therefore, a literature 
investigation was performed on the number of times a single algorithm is mentioned in a period between 2000 
and 2013. The detailed search settings are summarized in Table 1.3. The list contains just algorithms of supervised 
style. 

A good overview for variable subset selection in general is given in Axelson, 2012 [39]. Further algorithms can 
be found in Teófilo et al., 2009 [77], which are regression vector, correlation vector, residual vector, and 
covariance procedures vector. These could not be investigated in the questionnaire, since the naming is to general 
and therefore not comparable in the survey. The result of the investigation is shown in Figure 1.9.  

Table 1.3: Search engine: Google Scholar, exclude patents and citations; advanced search with the exact phrase “Variable Selection” and 
with at least one of the words “Chemometrics”, “Multivariate”, “MVA” or “Calibration” 

 Full name  with all of the words 

VIP Variable Importance in the Projection Variable Importance Projection VIP PLS  

NAS Net analyte Signal Net analyte Signal NAS PLS  

SNR Signal to Noise ratio signal to noise ratio SNR PLS 

UVE Uninformative Variable Elimination Uninformative Variable Elimination UVE PLS  

ICA Independent Component Analysis Independent Component Analysis ICA PLS 

GA Genetic Algorithm Genetic Algorithm GA PLS  

PSO Particle Swarm Optimization Particle Swarm Optimization PSO PLS 
ACO Ant Colony Optimization Ant Colony Optimization ACO PLS 

NN Neural Network Neural Network NN PLS 

SA Simulated Annealing Simulated Annealing SA PLS 

The reviewed algorithms can be classified according their origin, which is either multivariate statistics 
(information criteria (single equations) such as NAS, VIP and SNR or algorithms such as UVE and ICA) or 
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evolutionary algorithms (optimization strategies such as PSO, ACO and SA). The latter ones have secondary 
importance in this investigation, since it was aimed at simple solutions without additional coding. 

The algorithms based upon multivariate statistics can be again subdivided. The background of UVE and ICA are 
standalone algorithms whereas NAS, VIP and SNR are single equations based upon results from a prior 
accomplished PLS decomposition.  

The algorithm for UVE is similar to the method 
presented in section “robust calibration”. The 
background of ICA is the assumption of 
independency of components from original sources 
in an investigated, convoluted signal (for details in 
UVE and ICA refer to Axelson, 2012 [39]). Both 
algorithms are somewhat of more computational 
effort and were not considered in this thesis. Last, the 
reviewed single equation solutions contain the SNR, 
which can be calculated in many different ways. 
Thus, the result presented in Figure 1.9 is not 
unambiguous. Therefore, only NAS and VIP were 
taken into consideration. Additionally, the regression 
vector (vector of regression coefficients) was taken. 

(2) Mathematical Comparison 

Mathematical representation of these algorithms can 
be compared to check similarity between the three 
chosen options. First it has to be mentioned, that NAS 
(Equation 27) is not comparable mathematically to 
the others, since it is calculated based on the 
regression vector.  

Net Analyte Signal (NAS) [77] 

In multivariate calibration, the NAS is representative for the part of a mixture signal, which is useful in prediction. 
The calibration model considers only the relevant part of the mixture spectrum, which is orthogonal to the 
interference spectrum and contributes to the target. To calculate this part of a signal, the equation presented by 
Teófilo et al., 2009 can be used [77]:  

࢞௜
௡௔௦ ൌ

ො௜ݕ
࢈்࢈

∙ (27) ࢈

where ݕො represents the predicted target and b the regression vector. The NAS vector is calculated for each sample. 

Therefore, an average of those vectors result in an informative vector to be used for variable selection. 

Variable Importance in the Projection (VIP) [2, 39, 82-84] 

In VIP, Partial Least Squares reduce the input space X to the relevant subspace containing information for 
predicting y. To calculate the VIP parameters for each variable, the regression coefficients β in the variable space 
(also known as y-loadings q), the scores T and the weighted loadings W out of the PLS decomposition are used 
[83]: 

ܫܸ ௝ܲ ൌ ඨ
ܯ ∙ ∑ ቀ൫ݓ௝௔ ‖࢝௔‖⁄ ൯

ଶ
௔ଶ࢚௔்࢚௔ቁ஺ߚ

௔ୀଵ

∑ ܾ௔ଶ࢚௔்࢚௔஺
௔ୀଵ

 (28)

 
Figure 1.9: graphical illustration of the expert questionnaire; it is 
visible, that the algorithm VIP is having the highest impact in the 
field reviewed; dashed-dotted line and cross: Net Analyte Signal 
(NAS), dotted line and diamond: Uninformative Variable 
Elimination (UVE), dotted line and circle: Variable Importance in 
the Projection (VIP), dashed line and star: Particle Swarm 
Optimization (PSO), dotted line and plus: Ant Colony Optimization 
(ACO), dashed-dotted line and upper triangle: Simulated 
Annealing (SA), dashed-dotted line and lower triangle: 
Independent Component Analysis (ICA), dashed line and square: 
Signal to Noise Ratio (SNR) 
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where wja is the jth element (belonging to jth variable) of the ath column of W (each component or latent variable 
vector is stored in one column), ta is the ath column of matrix T, βa the ath element of the (in case of a single target) 

row vector β (or q, respectively), and M the number of variables. The part ∑ ௔ଶ࢚௔்࢚௔ߚ
஺
௔ୀଵ  resembles the percentage 

of explained y by the ath latent variable. Interpreting Equation 28, the VIP value (which is a weighted sum of 
squares of the PLS weights w) of the jth variable will be higher depending on the significance of:  

 the weighted loadings wja,  

 the ath element of the regression vector β (or q-loading), 

 the scores for the ath component (ta) 

In general it is known, that variables with values higher than one should be informative, since the average of all 
VIP2 = 1 [2, 82].  

Regression Vector [2, 77, 83-85] 

Calculation of the regression vector b (Reg) is accomplished by a relation proposed by Martens and Naes, 1991 
[85]: 

ௌ࢈ ൌ (29) ்ࢗሻିଵࢃ்ࡼሺࢃ

where the weighted loading matrix W, the x-loadings P and 
the y-loadings q are used. The subscript S counts for the 
scaled version of Reg, since in most of the PLS models 
original variables have to be preprocessed by mean centering 
or z-transform to reduce the influence of magnitude and 
make variables comparable to each other. Hence, the 
informative variables can be selected directly according to 
the magnitude of the absolute values of Reg [2, 83].  

Another possibility in choosing variables by regression 
coefficients is given by a method called PLS-Bootstrap [86]. 
Here, bootstrap sampling is used to estimate a confidence 
interval for each regression coefficient. If any confidence 
interval includes the value zero, the corresponding variable 
can be sorted out [86]). 

Nevertheless, calculation of NAS is based on regression 
coefficients. Further, information is included in regression 

coefficients as well as in VIP. It has to be mentioned additionally, that both filters described showed best 
performance in the investigations (see results section). 

A schematic categorization of algorithms used for variable selection and there position in the model building 
strategy is given in Figure 1.10, an extract of algorithms belonging to these different groups is given by 
Figure 1.11.  

Prior to model building 

Meinshausen, 2008 [87] stated, that the efficiency of typical variable selection methods with connection to the 
model algorithm is low, if there is a high redundancy in the data. This fact is increasing if the multiplicity (many 
predictors lead to a reduction of the power to detect important variables) of the problem is taken into account [87]. 
This means, that typical variable selection techniques seems to be helpful for deleting non correlated variables 
with respect to the target but highly correlated variables get the same importance, which is not always beneficial. 
Nadler and Coifman, 2005 [78] reported that the noise level and the original dimension of the variable space lead 
to the same conclusion: Variable selection has to be performed before model building. Meinshausen, 2008 

 
Figure 1.10: variable selection methods located around 
central model building/generation; Filter methods applied 
after a preliminary model generation and often used inside 
wrapper methods; the latter are most often integrated by 
an iterative scheme; exhaustive methods are located 
outside of the model generation algorithm investigation all 
possible variable combinations; embedded methods are 
integrated inside the model generation algorithm. 
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proposes Hierarchical Testing for variable selection. This method is based on statistically testing if clusters of 
variables have significant regression coefficients greater than zero.  

Since the options are manifold, the whole topic is just mentioned for the sake of completeness but will be not 
discussed in detail. 

Filter Methods 

Those methods select 
according to a specific 
property of the data. They 
can be applied independent 
of the training algorithm as 
well as on the amount of 
variable inputs. Therefore, 
the model algorithm is 
performed on a number of 
variables and a certain 
chosen criteria is calculated 
to rank those variables 
accordingly. Thus, those 
methods provide a global 
selection, which is not 
influenced by the used 
algorithm. A filter method 
can be, amongst others, 
statistical test such as t- or F-test as well as Pearson’s correlation coefficient. Further well-known methods are 
signal-to-noise, covariance procedures, residual vector or loading weights [2, 77, 88]. 

Wrapper Methods 

In those kind of algorithms, the feature search is embedded in the model-building step, based on a search 
algorithm. Thus, the feature selection is performed together with the algorithm for model building and subsets are 
also tested on their predictive power by for instance cross-validation. Finally, the variable combinations with best 
performance are taken for retraining of the model structure. It should be noted, that often Wrappers are based on 
Filter Methods. Amongst others, Support Vector Machines and their variants or decision trees belong to the 
category of Wrapper Methods [39]. Further, StepWise methods (SW) [2, 39, 82, 83], which are either Forward 
Selection (FS) or Backward Elimination (BE), evolutionary algorithms such as Genetic Algorithms (GA) [2, 82, 
84], Particle Swarm Optimization (PSO) [82, 84], Ant Colony Optimization (ACO) [82], Least Absolute 
Shrinkage and Selection Operator (LASSO) [53, 82, 83, 89], Elastic Net [53, 82], Uninformative variable 
elimination (UVE) [2, 39, 84], Monte-Carlo UVE (MC-UVE) [90], Sub-window permutation analysis (SwPA), 
Model Population Analysis (MPA) [91, 92], Competitive Adaptive Reweighing Sampling (CARS) [39, 91], 
Iterative predictor weighting PLS (IPW-PLS) [2], Regularized elimination procedure (REP) [2], Interval PLS 
(iPLS) [2, 39] and Moving window PLS (MW-PLS) [39] are mentioned under this topic.  

Embedded Methods 

Embedded variable selection procedures are coded to perform variable selection while model building. They are 
specific for a given algorithm [39]. In case of PLS for instance, each step for component extraction includes a 
variable selection procedure within the iterative algorithm. This is in contrast to the wrapper methods, which 
follow a double iterative procedure [2] with retraining after each variable subset. Methods in this category are 
amongst others Neural Networks or modified versions of standard PLS [39]. Also, Interactive variable selection 

 
Figure 1.11: overview of some variable selection methods described in literature (adapted from 
Mehmood et al., 2012 [2]); they are all classified under their respective header 
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(IVS) [2, 39] for PLS, Soft-Threshold PLS (ST-PLS) and Sparse-PLS as well as Powered PLS (PPLS) [2] belong 
to this category.  

Exhaustive Methods 

Those methods test all possible combinations of variables [39]. The obvious disadvantage is the numerous 
iterations necessary, when the number of variables increase (see for instance Cassotti and Grisoni [82]). They 
mention All Subset Models (ASM) as well as Sequential Search (SS) under this header [82]. An overview of the 
listed algorithms is given in Figure 1.11. 

Advantages/Disadvantages 

In general it can be said, that wrappers based on data-driven iteration are preferable, since no parameter fitting 
has to be done (compared to randomized versions), require less computational effort (compared to exhaustive 
methods), and are model algorithm independent (with respect to the method chosen). The risk of overfitting can 
be partly avoided by an external dataset for proper final model validation. This is recommended in all mentioned 
applications (see for instance Mehmood et al., 2012 [2] or Axelson et al., 2012 [39]). They are usually slower 
than embedded since two iterations are needed, but more flexible in choice of filter with respect to the application. 
They are more guided to the problem if done with care. The only relevant disadvantage is the higher risk of local 
instead of global optima [2]. This can be partly solved by iterations as for robust calibration. Nevertheless, no 
algorithm can be taken as perfect or optimal. Even though it was tried many times to compare between methods, 
only a few neutral comparisons are given [2]. It is recommended by Mehmood et al., 2012, to test several methods 
on the given problem of interest [2]. Nadler and Coifman, 2005 [78] state under a different background, that even 
if algorithms have similar performance, they might be superior in special cases over others.  

Table 1.4: Advantages and disadvantages of different strategies for variable selection; adapted from Saeys et al., 2007 [93] 

 Advantages Disadvantages 

Prior to 
model 
building 

‐ Completely model algorithm independent 

 

‐ Might ignore feature dependencies 

‐ ignores interaction with the model 
algorithm 

‐ extra computational effort 

Filter ‐ Fast and scalable  

‐ Independent from model algorithm 

‐ Better computational efficiency than Wrapper 

‐ Ignores feature dependencies (if 
univariate techniques) 

‐ Ignores interaction with the algorithm 

‐ Threshold definition  

Wrapper ‐ Interacts with model algorithm 

‐ Models feature dependencies 

‐ trying to minimize the number of errors directly 

‐ better prediction accuracy 

‐ more effective than Filter Methods 

‐ slow 

‐ Risk of overfitting  

‐ features are less robust 

‐ local optima 

Embedded ‐ Interacts with model algorithm 

‐ Better computational efficiency than Wrapper 

‐ Models feature dependencies 

‐ Algorithm dependant selection 

 

The result from the short literature review named “expert questionnaire” in the beginning of the chapter is 
therefore not surprising. Filters like VIP are often used since both wrapper and filter methods can be based on it 
– but it also shows the power with respect to simplicity and easy interpretability. 

These mentioned points together with the simplicity support the choice of method within this work, which is based 
on a stepwise method with the filters VIP, regression coefficient or NAS or any of their combination. The reason 
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for the choice of several filters in comparison is the recommendation by for instance Chong and Jun, 2005 [83], 
which conclude in their study to use a complementary combination of VIP and regression coefficients. Another 
reason is given by the fact, that stepwise methods usually based on one filter are inefficient if multicollinearity 
(explainable by several variables doing the same job) is present in the data [83].   

This also supports the choice of a wrapper method for flexible use of filters. Last it can be said, that for instance 
Chong and Jun, 2005 [83] concluded best performance for VIP and complementary power of regression 
coefficients, Mehmood et al., 2011 [94] concluded best performance of VIP as filter and Teófilo et al., 2009 [77] 
concluded best performance of regression coefficients and NAS in their investigation. The later also concluded, 
that this output counts for the data investigated, other filters might be more effective in other cases.  

Finally, it has to be mentioned, that one of the most critical points amongst the choice of search algorithm is the 
performance prediction, which serves as final criterion in the choice of the best subset, discussed in section 1.2.2.3. 

(3) Data driven or application oriented 

The functionality of those methods (in this work limited to the three presented algorithms) can be tested on the 
data, whereas the final model quality is used as criterion for the choice. In the presented publications, most 
efficient algorithm was VIP (third thesis publication) as well as the combination with Reg (second thesis 
publication). The output of NIR investigations slightly shows that VIP seems to be enough for selecting different 
wavebands under the assumption, that those have low multicollinearity. The feature investigation in US signals 
show that a better performance is achieved combining two measures, since the features extracted are known to be 
highly multi-collinear. The aspect of performance under multicollinearity present is discussed by Chong et al., 
2005 [83].  

1.2.3.2 Outlier analysis  

Literature presents a variety of algorithms for outlier detection. Outlier analysis is another broad scientific field, 
which will not be discussed in detail here. Nevertheless, in multivariate statistics it is distinguished between x-
sample outlier (on a complete sample profile), x-variable outlier (if just one variable behaves different in 
comparison to the others) and y-sample outlier (based on the samples characteristic response [regression only]) 
[3]. One of the most often applied outlier detection is based on Hotelling T2 statistics compared to Q residuals. 
The first came up as an alternative to the standard method leverage over the past 15 years [95]. The relation 
between Hotelling T2 and the leverage of a sample is given by [95]: 

ଶܶ	ݏᇱ݈݈݃݊݅݁ݐ݋ܪ ൌ ሺ݊ െ 1ሻሺ݄௜ െ 1 ݊⁄ ሻ (30)

The Q residuals are calculated on the residuals from the X matrix to investigate the sample outliers [96]. This can 
also be done by comparing the residual variances [97]. For calibration models it is also of interest to check y-
outliers, which can be done by simply using the residuals received from predicted and original target value [6]. 
Nevertheless, predicting outliers and removing them is always a crucial topic.  

Cao et al. [98] give a short review on outlier detection in statistics. They report two different approaches, namely 
diagnostics and robust estimators. The first starts with identification of outliers and subsequent regression of the 
remaining data by a variety of regression methods. One of the most common approaches is based on the mean 
standard deviation, which serves as basis for a statistic with a certain threshold. Such methods fail, if there are 
multiple outliers, since they effect the result to such an extent, that outliers are masked (masking effect, different 
to masking presented in the third thesis publication in discriminant analysis) [98]. Cao et al. also report several 
algorithms handling masking, but most of them are limited in just sample outliers [98]. In regression analysis, the 
targets are also of interest.  

In robust estimators, the aim is to find a model fitting the majority of data and examine the outliers based on this 
solution. They are able to detect target outliers but mostly have lower effectiveness predicting sample outliers 
[98]. Further, their susceptibility to outliers is reported to be lower, but outliers found are varying between models 
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of different background [98]. Based upon those issues and the coexistence of outliers in both samples and targets, 
Cao et al. use Monte-Carlo cross-validation [98]. A similar approach is presented in different publications of Li 
et al. [70, 91, 92] named model population analysis. The Monte Carlo simulations are used for statistical analysis 
of sub-model outputs (regression coefficients or prediction errors), whereas prediction errors showed good results 
for effective outlier detection [70]. This method is also used for variable selection.  

Another comparatively simple approach was presented by Mitzscherling, 2004, who used statistical variation of 
loadings during LOOCV analysis of data to discuss and interpret the impact of single variables (variable selection) 
and the source of variation (possible outliers) [44].  

The statistical distribution of, for instance, residual errors indicate the quality of the sample data set. Cao et al. 
[98] use the background of Monte Carlo (MC) simulations on data set to create multiple models (as explained 
under MPA for variable selection) and investigate the residual errors of targets on their mean and standard 
deviation. They define outliers of three different categories – x-outliers, y or model outliers and a mixture of both 
[98]. Those different types are either visible in a histogram showing deviations from normal distribution (whereas 
y and model outliers show a single own distribution in the histogram, x-outliers influence the central peak by 
bigger mean and standard deviation) or in a plot of mean against standard deviation, similar to the leverage to 
residual variance plot mentioned above.  

However, also variable outliers can affect the model output. Li et al. showed, that artificial outliers in variables 
results in skewed distribution of errors or slopes of the models [70]. Similarly, the errors in the second thesis 
publication where analyzed on single levels. It was visible, that in lower concentration levels the skewed 
distribution appeared. In contrast to Li et al., it cannot directly be linked to variables, since other levels showed 
only brought “normal” distributions possibly indicating sample outliers. Thus, such investigations should be 
further considered in the future. 

A different way of outlier consideration was followed in detecting valid US signals. These signals represent a 
hyper-dimensional cluster in a feature space. Distorted signals would be geometrically outside of this cluster. 
Therefore, outlier detection using Angle Based Outlier Factor (ABOF) can be applied to sort out signals prior to 
further signal processing, saving time and space in an online application later. In multivariate cluster analysis, 
ABOF (Equation 31) detecting cluster outliers is presented by Kriegel et al. [99].  

ሺܵ௉ሻܨܱܤܣ ൌ Var஻,஼∈ெ/ௌು ቆ
,തതതത௉ܵܤۦ തതതത௉ܵܥ

തതതത௉‖ଶܵܤ‖ ∙ തതതത௉‖ଶܵܥ‖
ቇ (31)

This algorithm calculates the geometrical angles between a set of three data points and compares its variance. If 
a data point is inside of the cluster, the angles to other points vary quite a lot. A point outside the cluster will have 
almost the same angle to all of the points. In a preliminary investigation, some simple feature (integral, momentum 
and centroid, Equation 32-34) where used on signals from yeast propagation. It is worth mentioning, that choice 
of features was guided by minimal computational effort for online application. 

ூ,௣ܨ ൌ෍ |௡ܣ|
ே

௡ୀଵ
 (32)
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Results on outlier detection procedures are shown in the publications included in this thesis (see results section) 
with the conclusion, that those might not always work satisfactorily and thus need intensive consideration in each 
special case.  
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1.2.3.3 Model Robustness 

Another very important aspect of any kind of model generation is the robustness of the solution. This includes the 
ability of the corresponding algorithms used for model generation to cope with both, normal and experimental 
variability, to not result in unusual large deviating predictions [39]. Recommendation for such algorithms is also 
quite diverse. Amongst others, robustness and model stability as well as realistic prediction performance is 
influenced by the choice of validation sample. Thus, a realistic representative training set has to be found. 
Influences of sample subsets in model training as well as validation are discussed in Axelson, 2012 in chapter 
four [39]. This includes the influences reasoned by the presence of outliers such as masking (variations are not 
detected due to model distortion) or swamping (good data is identified as outliers) [39].  

This fact is also supported by the points of Li et al. in 2012. They state, that a single quantity (e.g. RMSEV) for 
model assessment is highly dependent on the choice of the corresponding training and test set and thus lack in 
statistical substantiation.  

Further, the number of samples for validation is of importance. Faber in 1999 concluded, that therefore the 
uncertainty of the errors have to be calculated additionally [100]. The proposed iterative approach on randomized 
sample sets results in a mean error and its standard deviation. The lower the error, the higher the accuracy and the 
lower the standard deviation, the higher the stability. Another, very similar approach is followed by model 
population analysis (MPA), presented by Li et al., 2012 (see also sections variable selection and outlier detection 
in this work) [70].  

A combination for model selection using model prediction performance and variable selection is shown by 
division into different data sets. The data presented in the appendix, Figure A.1 are light spectra of plant leaves 
collected in a grain study field to detect the nitrogen content. Typically, such investigations are analyzed using 
the REIP index, which showed low accuracy. Thus, multivariate data analysis was accomplished instead. The 
presented example (see appendix) aims at more certain predictive error calculation using a similar approach as 
presented by Chen et al., 2014 [76]. A similar variant was accomplished for the special case of US feature 
investigation. Therefore, a data set of ~6600 samples from the setup presented in the first and second thesis 
publication on binary and ternary mixtures of sugar, ethanol and water over a certain temperature range was 
divided into 50 subsets. The calibration model was calculated on one data set extracted out of the data pool before 
iteration, the validation error (RMSEV) was calculated on each of the 50 subsets. Results of this investigation are 
shown below in the chapter “discussion”. 

Other possibilities for robust calibration by weighting single samples with respect to outliers are proposed in 
literature (Martens and Naes, 1991 or Liebmann et al., 2010 [85, 101]). However, the robustness of calibration 
models is dependent on the data (noise, outliers) or the application (laboratory, process). Therefore, it will always 
need special consideration. 

1.3 Quality inspection of raw materials 

Another aspect in food and beverage industrial production is the quality of raw material. This is varying from 
harvest to harvest, influenced by processing as well as storage. Again, literature presents a variety of different 
techniques for quality analysis and evaluation. Established methods such as gas chromatography (GC) for 
evaluating the sensorial appearance of products as quality indication are also possible (reviewed by Plutowska 
et al., 2008 [102]). Even though, such methods are very necessary and are still not completely substitutable in 
quantitative analysis, they are comparably slow and need often extensive sample preparation with respect to 
quality evaluation of raw materials. Online application is possible but comparably sophisticated. Brosnan and 
Sun, 2004 give a review about the application of computer vision by image analysis such as X-ray, 3D and color 
vision on food products for quality analysis [103]. They report usage of those techniques for grain evaluation as 
well. The benefits of non-destructiveness and flexibility together with the rising speed of computational 
possibilities increase the online potential of computer vision for automated process analysis in food industry. One 
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important sensorial aspect and grading factor related to food quality and human appreciation is the color 
associating freshness or food safety [104]. This attribute could be estimated by spectrophotometers as well as by 
computer vision using image analysis. Wu and Chen, 2013 review the application of the latter on color but point 
out the potential for other attributes such as shape, size or defects [104]. They also report a high spatial resolution 
by image analysis. Even though, the informative content with respect to more detailed information in e.g. chemical 
composition might not reach the same level, it is an interesting field with respect to online industrial application. 
However, compared to hyperspectral imaging or comparable methods, the efficiency regarding costs seem much 
higher.  

In general, methods for estimating quality or chemical composition of any raw material or product in food stuff 
should be fast, non-invasive and non-destructive, which is in contrast to UV and Vis spectroscopy provided by 
NIRS [12]. Even though those spectra contain a high amount of superimposed bands, the versatile information 
content is already widely used for chemical as well as physical qualification and quantification [105]. With respect 
to specific food stuff application, Ratcliffe and Pannozzo, 1999 applied NIR spectroscopy on wort samples to 
distinguish between different malt qualities based on multi-linear regression using four wavelengths [106]. Aim 
of the study by Ratcliffe and Pannozzo was to predict three major quality attributes, namely hot water extract, free 
alpha amino nitrogen and soluble protein [106]. However, their approach needs processing of raw material 
reaching liquid wort to be analysed. Even though this approach is applicable, the results achieved by using rapid 
laboratory processing might be too slow for industrial application. Another possibility is shown by Giovenzana 
et al., 2014 presenting a rapid possibility to evaluate the beer quality on soluble solid content (extract) as well as 
pH- value during fermentation by analysing samples offline using vis/NIR spectral analysis [107]. Regardless of 
the presented accuracies, the approach shows chances for online monitoring using presented methods. 

Sileoni et al., 2010 report several online applications for meat, cheese, fruits and grain (e. g. whole malt kernel), 
but majorly on predicting single traits or quality attributes [12]. One reference is given to a quality index used as 
target for PLSR but based on a laboratory malt profile [12, 105].  

Sileoni et al. further shows the potential of NIR spectroscopy applied for fast quality detection of whole malt 
grain and maize grits. Their application was investigated related to brewing relevant material features, namely 
moisture and total nitrogen content [12]. These results regarding full grain inspection support the finding from the 
third thesis publication. In another publication, Sileoni, 2011 reports several applications for quantitative use of 
NIR spectroscopy [105]. Even though, this method is not very sensitive for such aims [105], the benefits (reported 
amongst others in section 1.1.1 and 1.3) still make it a favourable option. Under restrictions, the authors are also 
stating the possibility of NIR used for qualitative analysis. One work reviewed by Sileoni proves NIR usage for 
physico-chemical fingerprinting and thus applicability for classification by applying MSC to partially separate 
physical and chemical spectral components [105]. Amongst predicting individual parameters of malt or beer for 
quality evaluation, Sileoni also showed the possibility to combine those parameters to a quality index and its 
prediction by applying PLSR on NIR spectra [105]. A similar approach was shown by Gianinetti et al., 2005, who 
used different combinations of general malt parameters, PCA and discriminant analysis to group different classes 
of quality [108]. Here, focus lies on the differentiation of breeding programs for malting. The parameters were all 
received by laboratory analysis (e.g. hot wort extract [HWE] or wort viscosity). Munck and Möller, 2005 showed 
the possibility to evaluate malting quality by classification on vigour and vitality [109]. Fluorescence and image 
analysis were used for detecting germination, NIR spectroscopy was used to calibrate to vigour and vitality. Other 
methods in the field of quality inspection using multivariate information on barley or other grains are reported in 
the third thesis publication. 

Lachenmeier, 2007 proposed a rapid quality control for spirit drinks and beer by applying NIR calibrated to a 
variety of spirit drink parameters (such as density or ethanol concentration) resulting in different accuracies [110]. 
Nevertheless, the majority of applications reported are oriented to one specific parameter of interest or the relation 
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of quality to single attribute, such as content of a specific chemical ingredient [12, 105]. This is mentioned in the 
third thesis publication to not always lead to exact predictions of the central target, material quality.  

Further, Huang et al. in 2008 gave a brought review on the usage of online and inline applications of NIR spectral 
measurements on food stuff such like dairy products, beverages or meat [43]. Another review on NIR application 
with respect to food quality is given by Cen and He, 2007 [111], including more detailed reports on most popular 
algorithms for pre-processing, model building as well as the measurement devices. Majorly, the detection of 
interest in the reported grain or grain products were established quality parameters such as protein content, 
moisture or hardness, whereas the review of Cen and Hu contains, besides online and inline, a various number of 
general applications in a variety of food areas [43, 111]. But nevertheless, there are major constraints of NIR 
applied in food analysis such as cost, reliability of calibration (thus necessity of robust algorithms and non-
conventional methods), and non-sensitivity to mineral content (thus combination with fluorescence spectroscopy 
or electronic nose) [43, 111] (some challenges applying NIR are also reported by Grassi et al. [68]). Georgieva 
et al., 2014 applied NIR and multivariate data analysis to predict, identify, and qualify berry fruits. In contrast, 
they investigated fruit extracts, which implements at least one processing step to the raw material. Nevertheless, 
the aim of their study was focused on quality attributes directly, such as species or preparation procedure using 
classification and storage time applying regression. Even though, the multivariate methods used are quite simple 
and not always fully appropriate (PLSR on zero [no storage] and one [storage]), they could show the possibilities 
of the mentioned method [112]. 

Further, Nicolai et al., 2007 give an extensive review on NIR used for fruit and vegetable quality. They state, that 
more research in modelling with incorporated knowledge based on real coherences, meaning rather than just 
simple and empirical more explorative or even inductive statistics are necessary [113]. Further, techniques 
including spatial or temporal resolved spectroscopy to separate absorption and scattering effects are quite 
interesting. These might lead to innovative prediction models on texture associated properties [113]. Such more 
advanced techniques include the aforementioned hyperspectral imaging (HSI). Gowen et al., 2007 reviewed the 
potential in using these methods for food quality and safety analysis and give examples on hyperspectral 
reflectance, fluorescence and transmission imaging [114]. However, such methods are much higher in equipment 
costs than the “simple” NIR- or 2D-fluorescence spectroscopy and require much more sophisticated multivariate 
analysis together with image processing. Nevertheless, two separate features are used in HSI. The spatial feature 
can be used for investigating complex heterogeneous samples, the spectral feature again is used for characterizing 
different (chemical) components simultaneously on and underneath the surface of a sample [114]. Regardless of 
the cost issues and under the aspect of continuing emphasis on PAT, it is still most likely, that interest of such 
techniques for food analysis will rise [114]. 

Another possibility of quality estimation is given by combination of numerical and linguistic data using fuzzy 
logic. Perrot et al., 2006 give a review on the application of fuzzy logic for control of food quality [115]. They 
address one of the challenges in the food area, namely non-existing sensors as well as monetary unattractive 
variants. They propose using knowledge combined with sensor data for indirect measurement or quality control 
instead. They also hint, that instead using classical fuzzy membership functions (e. g. Mamdani type), it is more 
efficient to estimate these functions by the theory of possibility [115].  

Quality inspection and property prediction in cereals is a broad scientific and industrial field. One quite successful 
method over the past decades is artificial neural networks (ANN, see section 1.2.2.1 “Pattern Recognition”). 
Goyal reports, that the application of such networks for different tasks gained acceptance in the field of cereals 
over the last years [62]. Nevertheless, the setup of such networks are quite sensitive and need to be done with care 
[62]. Amongst others, Goyal reports the application of ANN for cereal grain quality, whole barley kernel 
identification and identification of physical parameters of grain quality with respect to malting barley. Further, he 
reports several novel techniques such as image analysis, classification, prediction and system modelling applied 
for grain analysis pointing out, that they are mostly in the development stage [62]. Nevertheless, Zapotoczny 
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reports that “The development of non-destructive methods for the evaluation of cereal grain varieties has 
significant implications for the food processing industry” (Zapotoczny, 2011; found in Goyal, 2013 [62]), which 
can be taken as fact for sensing techniques in other areas as well. 

Although this chapter is reporting just selected publications from literature and does not give a comprehensive 
overview on the topic quality analysis in general, following points are most obvious: 

‐ the application of new, multivariate measurements such as NIRS prove to be applicable 

‐ multivariate data analysis with new computational possibilities and adapted to a specific challenge of 
interest are highly recommended 

‐ limitation to existing knowledge in the standards of quality of a specific product investigated is not always 
leading to the target 

Up to the knowledge of the author, none of the reported methods with respect to overall quality inspection in malt 
kernels was intensively applied in industrial scale, which lead to research and the third thesis publication. 

1.4 Sensor network inspection 

In general, bioprocess sensor networks are not monitored automatically with respect to failures. Therefore, models 
used assisting process monitoring based on some process theory as well as based on a fixed number of valuable 
sensors are either not grasping any changes induced by faults or fail themselves being exposed to any equipment 
failure. Thus, fault detection is a major task for stable and reliable progress of bioprocesses and its monitoring. 
Kourti defines fault detection with the “detection of sensor failure, equipment failure, presence of unusual 
disturbances, and any other situation that does not correspond to a good routine operation.” and reports 
possibilities based on multivariate statistics including separated process state monitoring and handling missing 
data [64].  

In contrast to many solutions presented in literature, the monitoring solution in this thesis is based not only on 
single sensor information but also on a combined treatment, additionally supported by swarm behavior. The 

evolutionary management of controlled swarms 
can result in robustness to sensor failures, its 
resilience in this regard is an emerging 
knowledge. Logically, sensors with redundant 
information should be of less importance in the 
state estimation. The identification of the 
importance of a sensor is not often an easy job; 
this is especially true in a complex swarm 
scenario. The importance together with the 
reliability can be measured by the magnitude of 
the sensor importance value. An example is 
shown by combining historic process data as cost 
function for statistical process model choices on 
different number of sensor inputs, shown in the 
fourth thesis publication (a simplified, schematic 

representation is shown in Figure 1.12). Controlled swarming can therefore be used to identify and explore effects 
of sensor failure. Swarms, as expected from nature, are able to adapt and survive with only a moderate loss in 
performance, however the prediction is limited. In some cases due sensor redundancy, sensor loss can result in a 
significantly modified swarm emergent behaviour. 

 
Figure 1.12: schematic representation of sensor swarm predicting 
latent process trajectory; the respective cloud of members succeed, 
sensors Si and Sj (first case) as well as Sd and Sh (second case) are faulty 
and thus not taken into account 
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1.5 Thesis outline 

Being capable of solving the aforementioned issues will lead to sustainable and resource efficient production. In 
the following, those different aspects are elaborated with the aim of exemplarily giving possibilities of solving 
such challenges with general, data driven approaches. This includes the possibility of data driven sensor 
calibration on innovative ultrasonic sensor system for fluid property inspection, the usage of near infrared 
spectroscopy for raw material quality inspection with the aid of multivariate process control strategies and finally, 
process sensor network inspection under swarm intelligent decision making. 

The thesis gives a small abstract of the possibilities in data analysis applied to different challenges and with the 
respective adaptions. The core hypothesis of this work is: 

Is there any general pathway though pre-processing, model generation and post-processing in data-driven 
bioprocess applications using multivariate data analysis?  

This hypothesis implies the following key aspects: 

‐ algorithms for: 

o variable pre-processing 

o sample pre-processing 

o model generation 

o variable selection 

o outlier analysis 

‐ non-linearity 

‐ discriminant analysis 

‐ regression 

‐ model robustness 

‐ transfer of models 

‐ intelligent sensor network evaluation 

‐ process monitoring 

The examples for application of PAT in this thesis follow the key aspect of process analysis to not only detect but 
also eliminate or minimize faults either in sensors or process [7]. Therefore, system integration by standardization 
(arbitrary data pool for MSPC and Swarm), knowledge creation with causality to the product (NIR fingerprint for 
processability) as well as the development of new instruments for in-line monitoring (US and combined with 
fuzzy control) is applied. To address these issues, the thesis is divided into three parts – calibration of ultrasonic 
sensor setups, quality inspection of raw material with respect to processing behavior, and sensor network 
evaluation together with full process monitoring.  

Optimal product quality of bioprocesses can be ensured by intelligent control systems with integrated monitoring 
of key parameters. Quality of brewers’ yeast is important to increase the efficiency of subsequent brewing 
processes.  

The state-of-the art drawbacks are:  

‐ lacks in online detection of yeast attributes or process guiding parameters 

‐ un-flexible temporal control schemes typically used for industrial processes 

‐ variations of raw products, such as brewing wort based on malt kernels 

‐ lacks of flexibility in advanced modern monitoring and control models with multivariate background and 
sensor networks 
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Under the header of calibration of ultrasonic sensor setups the basic MVA algorithms for regression analysis PCA 
and PLS are used and discussed. The first publication is seen as an introductory guidance for pathways in the PAT 
topics, hardware and physics of Ultrasonic sensors in bioprocess fluids as well as full process considerations, 
sensor calibration, knowledge inclusion and its various aspects (handled individually, investigated by Krause 
et al.), focusing on the example of biomass growth under industrial, brewing relevant aspects. Birle et al. and 
Hoche et al. further investigate the first two parts, respectively. The latter point is addressed in this thesis. The 
outlook of this publication gives directions for future investigations on US signals by analyzing subdivisions of 
these. The part of sensor calibration in this publication serves as foundation for the second thesis publication as 
well as further results included in this thesis on ternary mixtures and temperature behavior. 

In a preliminary publication (not included in this thesis) a spectral analysis on temperature spectra of speed of 
sound was applied, showing the possibility to use MVA in general to break down high dimensional data into 
simpler interpretable variants [116]. The outlook of this publication gives the path for following investigations by 
raising the issue of pattern recognition used for extracting new signal properties into a different MVA system 
combined with process knowledge.  

The second thesis publication deals with the analysis of buffer reflections, US features and variable selection, 
presents a more realistic model than in the first thesis publication with respect to temperature inclusion and opens 
the aspects non-linearity, robustness and stability. It further shows preliminary investigations related to model 
population analysis reported by Li et al., 2012 [70]. The novelty of this topic is the analysis of maltose-ethanol-
water samples with varying temperatures using ultrasonic transducer mounted on a steel buffer, the combination 
of multivariate data analysis used on ultrasonic signal features from buffer reflections, variable selection to 
evaluate the strength of used features and, together with the additional results presented in the chapter 
“discussion”, external parameter orthogonalisation as well as considerations of robustness and non-linearities.  

The second topic Quality inspection of raw material with respect to processing behavior is handled in the third 
thesis publication using discriminant analysis on NIR spectra for classification into groups of different processing 
quality as well as MSPC for process evaluation. Amongst others, it deals with the aspects, variables and sample 
pre-processing, masking, outlier detection, robustness and the transfer of models. The innovative aspects in this 
part of the thesis are NIR-spectra directly correlated to process quality, the direct application on industrial data 
and MSPC for support of expert classification. 

The third topic sensor network evaluation together with full process monitoring is handled in the fourth thesis 
publication dealing with parameter settings of a particle swarm for sensor and model evaluation resulting in a 
combined multiple sensor investigation. This is capable of spotting sensor failures as well as holistic process 
system consideration by using MSPC as powerful control tool. In addition, the necessity and strength of variable 
importance detection and variable selection is underlined again. The improvement here amongst other existing 
solutions is, that the method is not restricted to any fixed number of multisensory inputs as well as the use of a 
specific sensor reading, it is capable of stable monitoring in case of sensor failures and thus combining process 
control, monitoring and sensor network inspection. 
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2. Summary of results (thesis publications) 
2.1 Paper summary 

Part 1: Bioprocess monitoring – brewing yeast propagation as example 

Optimal product quality of bioprocesses can be ensured by intelligent control systems with integrated monitoring 
of key parameters. Quality of brewers’ yeast is important to increase the efficiency of subsequent brewing 
processes. One solution is to first detect essential process parameters, second combine those with expert 
knowledge and third with linguistic control mechanisms. These can be fulfilled by fuzzy logic including process 
dynamics associated by accurate of sensing devices. Incipient stages for multivariate calibration of an ultrasound 
based device including temperature dependencies using temporal and spectral properties of ultrasonic waves are 
presented. Additionally, preliminary results of a mechanistic model for the temperature dependency of yeast 
growth adapted from literature is shown. The publication is thought as a perspective in combining new (ultrasonic) 
measurement devices for qualification of fermentation progress together with fuzzy logic control schemes 
enhanced by trend estimation using mathematical growth modelling. The results on mathematical growth 
modelling followed by further studies (McHardy, 2013 [117]) together with studies on fuzzy logic control and 
dynamics (Birle et al., 2015 [118]) are used for flexible control of temperature and aeration resulting in vital yeast 
and enhanced transparency of propagation progress according to the demands. Preliminary results on these two 
parts are also included in this publication but left out in this thesis. 

The contribution further shows the processing of ultrasonic signals estimating the ‘‘apparent extract’’. This value 
reflects the major components in solution (mainly carbohydrates such as sugar and ethanol). The calibration 
procedure on offline signals in frequency domain was absolved using PLS regression reaching a maximum 
prediction error of ~0.5 g/100 g by leave-one-line-out cross-validation (LOOCV). It is shown that using only 
ultrasonic characterization of such mixtures is enough to get insight into fluid properties without knowledge about 
progress of fermentation.  

One of the most critical points considering online process application is the influence of temperature. This offline 
study showed that calibration of ultrasonic properties to apparent extract values at single temperatures is possible 
in a range of six to 22 °C. However, this analysis can only be regarded as perspective, since several influences are 
still not considered. Nevertheless, evaluating the connections between those independent temperature models, the 
presented results show a promising path for implementing the ultrasonic sensor online including accurate 
correlation to the process-related parameters to reach better process performance and understanding as well as a 
high quality end product.  

Part 2: Data-driven calibration of new sensing devices 

Following the aim of data-driven model building via multivariate regression, time and frequency domain of 
ultrasonic signals are analysed in order to predict maltose concentration in aqueous solutions. It is shown, that the 
prediction of concentrations at different temperatures is possible by using several multivariate regression models 
for individual temperature points. Combining these models by a linear approximation of each coefficient over 
temperature results in a unified solution, which takes temperature effects into account (temperature between 10 
and 21 °C, fitting to brewing processes). The proposed methods have a low processing time required for analysing 
online signals and are based on non-invasive sensor setup, applicable in pipelines. In addition, ultrasonic signal 
sections used in the presented investigation were extracted out of buffer reflections, which remain primarily 
unaffected by bubble and particle interferences. Model calibration was performed in order to investigate the 
feasibility of online monitoring in fermentation processes. Processing of ultrasonic signals, model evaluation 
using features from time and frequency domain of ultrasonic pulse as well as input variable selection are discussed. 
The basic approach used for creating the final prediction solution was partial least squares (PLS) regression 
validated by cross validation. Feature selection was applied showing its power in choosing the required input 
features by their sensitivity towards the target of interest. The overall minimum prediction error was 0.64 g/100 g. 
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The applied approach highlights the strength of the methods used to detect less sensitive inputs in correlation to 
respective targets.  

Part 3: Quality estimation of raw material by process discrimination 

To handle the mentioned aspect of raw material variations such as malt kernels as basis for medium in brewing 
processes, a new strategy for quality analysis of brewing malt using near infrared (NIR) spectra taken from kernels 
in reflection as fingerprint to classify directly to processability of malt was established. Two main tasks are 
handled, namely discriminant analysis of NIR spectra to quality classes of malt kernels with the aid of partial least 
squares and automatic process evaluation classifying the different processes in the mentioned three categories. 
The accuracy achieved in the first task using pilot plant data in relation to the expert classification “good”, 
“normal” and “bad” was 90.6 and 92.7 % in validation and calibration, respectively. The second task was 
attempted by two numerical possibilities, one calculating the residual standard deviation of a process based on 
multivariate statistical process control (MSPC), and the second discretizing each process individually based on 
its single online trends. Both are finally compared to the expert opinion reaching a match of 85 % between single 
trend analyses using K-means clustering as well as 84 % between a RSD values from MSPC analysis and expert 
qualification, respectively. Furthermore, the results of the aforementioned calibration model were transferred to 
industrial scale, established via adjustment to corresponding system conditions reaching 93.6 and 76.6 % in 
calibration and validation, respectively. The authors investigated different data processing algorithms. The best 
possible algorithm combination was reached using either standard normal variate (SNV) or multiplicative scatter 
correction (MSC) combined with first derivative as spectral and variable stability scaling (VAST) as variable pre-
processing. Further, studies on variable selection and outlier detection showed first positive results. Finally, 
possibilities of automatic qualification on lautering processes lead to reduction in expert efforts on qualifying 
processes.  

Part 4: Sensor network evaluation 

Typically, comprehensive process models are or at least should be based on online data provided by sensors or 
sensor networks. In MSPC models, even the full matrix of process data can be involved. In such cases, those 
models might fail, if one or more sensors are giving false information or are damaged. Thus, a methodology 
combining process knowledge with computational efforts aiming at a flexible sensor network for coping with 
sensor failures is presented. Therefore, multivariate linear and non-linear combinations of inputs (sensors) are 
utilized creating a search space based on the multisensory data pool. The raw data retrieved from several sensors 
is used for extracting multivariate statistical process control trajectories. Those different models are further scored 
by swarm intelligence (particle swarm optimization) leading to the optimal sensor/model combination at certain 
time step. The core of the presented approach is to determine the fermentation trajectory in combination with 
sensor output validation online by using a swarm intelligence based system. In addition, the network should be 
able to replace or ignore false sensor information caused by drift, wrong calibration, or a total sensor failure. Thus, 
the authors address adjustments of the basic algorithms, cost function, accuracy of output as well as the dynamic 
behaviour. The presented results on online data indicate the possibility of more robust online monitoring using 
the swarm sensing idea for biotechnological processes to insure optimal and timely effective processing. It is 
shown, that a discrete swarm with suitable parameter settings on a search space based on MSPC charts is able to 
overcome sensor failures including failure detection. MSPC trajectories in validation were supported over the 
whole process with 85 % decisions towards models with almost maximum inputs (representing correct progress 
of fermentation as well as fully functional sensors). Combined with historical similarity of sensors it was further 
possible to find false inputs in 100 %. Compared to MSPC and several other process models, the benefits of the 
presented methodology is not being restricted to any number of multisensory inputs as well as the use of an 
specific sensor reading.   
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To ensure optimal product quality of bioprocesses, it is necessary to develop
intelligent control systems with integrated monitoring of key parameters. Having
optimal yeast propagation in brewing technology is important to increase the
efficiency of subsequent processes. Major drawbacks are: lacks in online detection
of yeast attributes and temporal control schemes. One solution is to accurately
detect essential process parameters combined with expert knowledge of linguistic
control mechanisms. Those needs can be fulfilled by fuzzy logic or state observers
including process dynamics associated with accurate multivariate calibration of
sensing devices. Ultrasonic-based devices could monitor key parameter but their
inline implementation is limited due to influences of the temperature and gas
bubbles. Thus, incipient stages for calibration of the device including temperature
dependencies using time and frequency properties of ultrasonic waves are
presented. A multivariate model using offline measurements with a maximum
prediction error of 0.48 g/100 g is reported in this study. Additionally, we show
preliminary results of a mechanistic model for the temperature dependency of
yeast growth adapted from the literature (biomass and ethanol production,
substrate consumption). The results will lead to flexible control of temperature
and aeration resulting in vital yeast and enhanced transparency of propagation
progress according to the demands.
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1 Introduction

Automatic monitoring and control of biotechnical fermenta-
tion processes represents a crucial aspect of various scientific
studies. However, two of the biggest drawbacks are the online
detection of relevant process parameters as well as the dyna-
mical behavior of biological influenced reactions [1]. The
fermentation of viable yeast cells (propagation) in the context
of a modern yeast management in brewing industry is of
essential importance with respect to the final product quality

and its acceptance by the consumer. Such processes require
careful, accurate monitoring and control as well as deep
experience and knowledge of personnel according to their
sensitivity in changes in physical leading parameters.

The PAT initiative, launched in 2004 by the FDA (Food and
Drug Administration), forces a shift in the view on process
validation and releases [2]. Therefore, instead of complex
offline laboratory analysis, process-oriented validation as well
as release of process parts is intended. This principle of the PAT
initiative has opened a whole new perspective on the under-
standing of processes that were previously regarded as a black
box. Owing to its complex living dynamics, the fermentation
processes in the brewing industry present itself as ideal
applications of PAT in order to explore its possibilities and
limitations. Although significant process variables indicating
efficiency as well as high quality of fermentations are well
known, their time-efficient determination suitable to
process demands is limited. The underlying requirement is
thus to provide comprehensive process intelligence via inno-
vative sensor concepts to improve process continuity, process
safety and process efficiency. One major task is to combine
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innovative sensor principles with modern methods of data
analysis and modeling using process and product knowledge.

This contribution presents a perspective for combining
ultrasonic measuring equipment used for detecting the rele-
vant process parameters with soft sensing principles as well as
intelligent control strategies using fuzzy logic. Therefore, every
part in the contribution is divided into three subsections:
ultrasonic measuring device including multivariate calibration,
mechanistic growth model and fuzzy logic control.

1.1 Ultrasonic measuring device

Detection of relevant system parameters is very crucial regarding
process monitoring and control. Among others, the importance
of ultrasonic measuring devices for quality assurance in several
fields increased over the past decades. Those sensor systems
should have the ability to be robust, easy to use and non-
invasive, especially in case of food-related applications. Typically
used sensor equipment for analyzing fluid properties are
in direct contact with the fluid of interest [3, 4] (http://
www.iul-instruments.de/pdf/vitalsensors_2.pdf; http://www.
anton-paar.com/Dichtesensoren/; http://www.sensotech.com/).
Over the last decades, the importance of non-invasive, indirect
measurement using ultrasonic sensors for such uses became
more and more practical, since they provide rapid response,
good long-term stability and high resolution as well as accuracy
[5, 6]. The developed sensors for different applications mainly
differ in the principle used, the sensor geometry and in the
materials used and thus differ in the accuracy and performance
[7–10]. Some research groups have studied the possibility of
using ultrasonic devices for measuring sugar concentration in
different variants [11, 12]. Furthermore, investigations in
ultrasonic monitoring of certain fermentation processes
including ternary mixtures containing sugar and ethanol were
also reported [13–15]. Most of the presented devices in the
literature are in contact with the medium and/or applied to an
almost isothermal surrounding. Furthermore, investigations on
ternary mixtures are usually made in direct relation with the
process behavior [13–15]. Those approaches often lack the
ability to fit dynamical bioprocesses with changing temperature
as well as to fulfill hygienic conditions.

The applied sensor setup is measuring via pulse echo
method according to McClements and Fairly, Bamberger and
Greenwood and Sch.afer [7, 9, 16]. This system is used to
investigate changes in physical properties induced by different
concentration of solutes, namely maltose and ethanol as well as
temperature differences. Different fluid properties cause
changes in the traveling velocity of the monitored ultrasonic
wave as well as differences in the frequency spectra of respec-
tive signals [17]. Developing a physical relationship between
pulse distortion and the fluid properties is quite complicated
due to the variability (e.g. air bubbles, yeast cells) of the
system.

Analyzing material properties as control variables for
biotechnological applications in a physical modeling manner is
often not possible. To overcome this challenge, the use of
multivariate statistics (Chemometrics) is stated. Those statis-
tical-based analysis techniques are used to find a relation

between target values Y, which are not directly measurable, and
some corresponding predictors X by means of multiple linear
regression (MLR). The use of MLR is only possible, if a matrix
X (estimators) does have full rank; otherwise, the inverse
(XTX)�1 does not exist. Thus, data reduction using principal
component analysis (PCA) could help solving this problem.
PCA summarizes the matrix in new components due to the
highest variance in the complete data set. The underlying
assumption that large variation in X is of necessity when
describing Y (targets) does not always fit when it comes to
regression. It may happen that components with high
predictability for certain target values are deleted. The alter-
native is partial least squares regression (PLSR), which calcu-
lates the PC due to highest covariance between estimators (X)
and targets (Y) [18–20].

In this contribution, PLSR is used for modeling the varia-
tions in frequency spectra in combination with time-of-flight
(TOF) of ultrasonic signals transmitted through aqueous
solutions with varying maltose as well as ethanol concentra-
tions using leave-one-line-out cross-validation (LOOCV).

1.2 Motivation for mathematical growth modeling

The control and monitoring of industrial bioprocesses faces
special conditions. On the one hand, the living nature of
organisms and substances involved in the process adds strong
dynamics to the system. On the other hand, it often turns out
to be difficult to grasp the process-related information and
parameters such as substrate or product concentration online.
The necessary long-term stable and robust online sensors for
the measurement and monitoring of, for example, biomass,
metabolites or nutrient concentrations is rarely available
[21, 22]. Therefore, the background of monitoring and control
strategies in industrial bioprocesses is laboratory offline
analysis. These strategies are limited by the number of samples
taken over a specific process. Furthermore, offline analyses
include a time delay with respect to the fermentation progress.
Therefore, a correct temporal reaction of any control
mechanism cannot be ensured. This indicates the demand of
sufficient sensor equipment for efficient online monitoring.
Promising methods for online monitoring of concentration
trends of the relevant metabolites, nutrients and biomass are
optical or acoustical spectroscopy [23–25]. However, the
industrial use of these techniques in biotechnological processes
is rare due to high costs and operation-related adaption.
Furthermore, an extensive analysis of the signals on the
corresponding target variable is required (metabolites,
biomass, etc.). These challenges forced an increase in the
interest in the field of indirect measurement and monitoring
using ‘‘software sensors’’ over the last decades [26–31]. Soft-
Sensors used in biological-based fermentation processes are
typically based on mathematical growth models. Therefore, the
living phase in the reaction of interest and the corresponding
metabolites will be simulated via differential equations.

The aerobic growth of the yeast strain Saccharomyces cere-
visiae is well known and studied in detail by several groups
[32–35]. Modeling investigations in growth of Saccharomyces
pastorianus var. carlsbergensis is included in the work of Kurz
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[36]. Yeast metabolism in general follows two different path-
ways for energy production when exposed to glucose
concentration higher than a critical value, even under the
presence of oxygen. This effect is typically known as respira-
tory shunt or Crabtree effect [32, 37–39]. It describes an
overflow metabolism in which ethanol is produced by yeast
even under full aerobic conditions. Several different explana-
tions are discussed in the literature; a short overview is given
by Kurz [36].

One of the major drawbacks of such models is the imple-
mentation of temperature dependence of certain growth
parameters. Since control of yeast propagation under brewing
relevant conditions is mainly influenced by the temperature,
this part has to be considered. In Kurz [36], the temperature
influence is investigated; this work was further used as the basis
for the model used in the present contribution.

In this article, preliminary investigations on simple kinetics
resembling the behavior of aerobic, temperature-dependent
growth are shown and compared with the literature. Those
equations will be used for further enhancing the monitoring
and control issues of the proposed fuzzy propagation system.

1.3 Fuzzy logic control

The control of yeast fermentation in breweries is normally a
static, recipe-driven process with isothermal management and
continuous or intermittent ventilation. The settings are
commonly based on the values obtained by experience. The
process settings therefore do not take into account the current
yeast requirements. State of the art of process monitoring in
this field is achieved by manual sample taking and lab analysis.
Therefore, interruptions or changing process conditions will be
eliminated only with time-delayed response of the system
operator. Owing to the inherent complexity (time-varying
behavior and nonlinearity) of biological processes they set up
high challenges to the control system. Since the introduction of
fuzzy logic control by Zadeh [40], this technique has evolved
into an established practice for the control of biotechnological
processes [41–44]. Unlike the crisp set theory, the fuzzy set
theory allows the transition from the classic bivalent concept of
truth to the gradual and multivalent truth concept. Instead of
crisp values the fuzzy theory deals with linguistic variables
(fuzzified numerical values) that are expressed by corre-
sponding fuzzy sets. In its classical configuration, a fuzzy
controller consists of three parts:

(i) Fuzzification
(ii) Inference engine

(iii) Defuzzification.

In the fuzzification part, the distinct, numerical input
values read out of the process (received from the measuring
devices) get fuzzificated, are assigned to linguistic terms and
evaluated by distinct rule bases representing the expert
knowledge of the process in the form of ‘‘ifythen’’ rules. In
how far a crisp value belongs to a certain fuzzy set (grade of
membership) is described by a membership function. The
crisp values are mapped with their membership functions and
the membership degree to their fuzzy set, respectively linguistic

variable is calculated. In the case of applying multiple input
single output (MISO) controllers and the MAXMIN-Inference
method, the determination of the resulting membership degree
of the premise part is achieved by the minimum (MIN)
operator. The degree of performance of the corresponding set
in the conclusion part is then calculated by cutting it to the
resulting value of the premise part. The retransformation of
the linguistic output values into numerical values is accom-
plished by defuzzification. Applying the widely used Center of
Area (COA) (Eq. 1) defuzzification, the conclusion parts of all
rules are conjoint by a maximum operator and interpreted as a
geometric area. The calculation of the centroid finally delivers
the new crisp value, respectively set point for the corre-
sponding actuator.

yakt ¼

Pn
i¼1

Gi � yi

Pn
i¼1

Gi

ð1Þ

Practical applications of fuzzy logic control of fed-batch
yeast fermentations are presented by Besli et al., Mahjoub et al.
as well as Miśkiewicz and Kasperski [45–47].

The present work focuses on the analysis of frequency
spectra as well as on TOF predictions in combination with
temperature measurements for the prediction of the combined
effect of ethanol and sugar on the ultrasonic pulse behavior.
Multivariate calibration is applied using PLSR; the model size
was estimated by the most commonly used cross-validation.
The model output is given in terms of an extract value, which
resembles the total amount of dissolved carbon sources. The
measured ternary mixtures are presented with a value called
‘‘apparent extract,’’ which is a common representation of a
typical yeast propagation progress in the brewing industry [48].
This value was applied earlier for fuzzy control and indicated
that temporal control of yeast propagation in the given
boundary conditions is possible [49, 50]. Furthermore, inves-
tigations are made on modeling the temperature-dependent
growth of yeast with simple model equations adapted from the
literature. Those mathematical functions are thought to be
implemented as objective functions in the fuzzy control scheme
to enhance the controller accuracy. This work is thought as a
perspective in combining new ultrasonic measurement devices
for the qualification of fermentation progress together with a
fuzzy logic control scheme, which is supposed to be enhanced
by trend estimation using mechanistic modeling.

2 Materials and methods

2.1 Ultrasonic measuring device

2.1.1 Experimental setup
The experimental setup based on a VARINLINEs clutch as
well as the measuring principle is explained schematically in
Fig. 1. This figure includes a photograph of the setup as well
(middle). The clutch made of stainless steel is widely used as a
typical process access for inline sensors. The setup pipe
diameter used was 50 mm (DN50). The indirect heating/
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cooling of the container was established using an external
thermostat. Investigations on ternary mixtures (ethanol,
maltose as sugar equivalent, water) are made by filling the
chamber with respective solutions, continuous heat supply and
stirring by magnetic stir bar for homogeneous temperature
distribution. Ultrasonic signals are recorded over a tempera-
ture range reaching from 6 to 221C at constant container
pressure over a time frame of around 3 h. The temperature
points used in this study for calibration were extracted in steps
of 0.5 K (70.02 K) out of this continuous spectrum.

The in-house-produced piezo electric transducer (built
using a piezo ceramic with a center frequency of 2 MHz) is
used for creating an ultrasonic pulse by excitation with a
rectangular electrical pulse (width of 200 ns, amplitude of 5 V).
After passing container wall (wall 1) and fluid, the pulse is
reflected at the backside (wall 2) and caught by the transducer,
which works as a receiver in the same time (pulse-echo
method).

The signal is recorded via a microcontroller connected to
the measuring device. The temperature of the probe fluid is
measured by Pt 100 temperature sensor (maximum accuracy
of 70.11C). The experiments were carried out for each solu-
tion mixture separately.

Several mixtures of maltose–water and maltose–ethanol–
water in a range of 0–12% (per weight) maltose as well as
0–3% (per weight) ethanol for measuring the ultrasonic pulse
behavior were prepared (Fig. 2). Homogenization was reached
with a magnetic stir bar. For each investigation, a sample
volume of 3 L was prepared by dissolving a known mass of
crystalline maltose (D(1)-Maltose Monohydrate, Roths) and
ethanol (HPLC Gradient Grade, Roths) using a Sartorius
Laboratorys weight (L 2200 S) in demineralized water
reaching a defined final weight.

The reference concentration for control was measured using
an Anton Paars Density Meter (DMA 4500). Signals for
analysis were extracted from the total set of continuous
measured temperature spectrum resulting in data sets of 40–60

objects with varying concentrations for each temperature
point, respectively.

2.1.2 Signal processing

2.1.2.1 TOF prediction
The setup-specific TOF prediction of the ultrasonic wave
traveling through the fluid was achieved by comparing a
reference reflection insight the buffer material with a reflection
of the echo using the cross-correlation method.

A typical signal shape of the used setup with schematic
explanation is shown in Fig. 3. This method and the used
algorithm is explained in detail by Hoche [51].

2.1.2.2 Frequency analysis
Extracting the corresponding frequency spectra every signal is
analyzed by Fast Fourier transform. The achieved magnitude
spectrum (P(f)) is analyzed for phase changes (j(f)). The

Figure 1. On the left hand side, a schematic drawing of the experimental setup is shown; it includes a tempering mantle provided with
tempering fluid by an external thermostat, the piezo electric transducer (coupled to a microcontroller) and a Pt100 resistance thermo-
meter for monitoring the temperature inside the chamber. This setup is shown also in the photography (middle); the right hand side
shows the schematic principle (pulse echo method) with piezo electric transducer, excited via the electronic equipment; after passing the
first wall (steel), the pulse travels through the sample and is reflected at the backside (wall 2); transducer works as receiver at the same
time, signal is collected via the electronic equipment (microcontroller).
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Figure 2. This diagram shows the experimental design of the
measured samples (maltose–ethanol–water mixtures, chosen in
relation to propagation processes for calibration.
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resulting two vectors per signal are taken as input in rows
combined with the corresponding TOF measured for each signal.

Since phase of a signal is sensitive to noise [17], the used
bandwidth for analysis has to be adapted. For extracting the
frequency domain information, the signal is divided into equal
segments with 90% overlapping, and each segment was scaled by
Blackman window function (w(n), see Eq. 2) to ensure less
spectral leakage. Later, the windowed segment was transformed
to frequency domain using Fast Fourier Transform (FFT)
method, at which the output frequency domain representation
(i.e. power spectrum versus frequency) is the average of all the
single segment transformations.

wðnf Þ ¼ A0 � A1 � cos
2 � p � nf

N � 1

� �
1A2 � cos

4 � p � nf

N � 1

� �
ð2Þ

where N is the length of each window (in this contribution
1/10 of signal length), A0–2 are constants with values of 0.42,
0.5 and 0.08, respectively. The region of highest variation in the
signals was found in a bandwidth of 0.5–3.5 MHz applying the
method mentioned above (Fig. 4). This bandwidth was taken
for (unfiltered) magnitude as the model input. The same
bandwidth was used calculating the spectral phase representa-
tion of single signals. For statistical investigations, the data
used require pre-processing. The following abstract explains
the organization and calculations on matrices for the
regression analysis. The target values (apparent extract (%),
measured offline with the Anton Paars) are stored in a
column vector. The corresponding signal properties (magni-
tude, phase and TOF at a certain temperature) are stored in
rows of a predictor matrix X.

X ¼ ½tof ;Pðf Þ;jðf Þ� ð3Þ

Previous to the decomposition the matrices were autoscaled by
centering each column to its mean value and scaling to unit
variance dividing by its standard deviation.

2.1.3 Introduction to partial least squares
The calculations on data sets were programmed and
carried out applying the most commonly used nonlinear
iterative partial least-square (NIPALS) algorithm developed
by Wold [20]. This algorithm is calculating the PC iteratively.
This statistical method uses reduced amount of latent

variables compared with the descriptor variables found by
highest covariance between in Y and X. The used algorithm for
PLS calculating k components was carried out in home-built
subroutines programmed using MATLABs. A brief descrip-
tion of the algorithm can be found in the literature
[19, 20, 52–54] (http://folk.uio.no/henninri/pca_module/
pca_nipals.pdf).

2.1.4 Calculation of regression coefficients
After iteration is finished, the principal components are used
to calculate the parameters in B of the regression model

Ŷ ¼ X � B11 � b0 ð4Þ

Vector b is estimated as follows:

b0 ¼ ym � xm � B ð5Þ

where the vectors ym and xm contain the mean values of the
corresponding columns of X and Y. Matrix B is estimated as

11( )et A1( )rt A

root estimation at 
characteristic location

search for the characteristic 
location related to the 

reference

in general next to the 
absolute maximum of the 

reference signal

Figure 3. This figure shows a typical signal
from the above-presented setup. Prediction
of time-of-flight (TOF) is achieved by
temporal comparison of the echo impulse
t(Ae11) and the complementary buffer
reflection t(Ar1).
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Figure 4. Magnitude spectra of smoothed magnitude presenta-
tion using Blackman window. The figure shows spectra of
different signals for changing temperature at the same maltose
concentration; Bandwidth area with high variance from �0.5 to
�3 MHz.
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follows:

B ¼ S�1
X � ½WðP

T �WÞ�1
�QT� � SY ð6Þ

where the diagonal matrices S include the standard deviation
of the corresponding columns of X and Y [52, 55].

The codes for calibration were programmed and carried out
using MATLABs (Version 7 Release 14, The MathWorks,
USA).

2.1.5 Estimation of model size and accuracy
Calculation of regression coefficients (matrix B) is carried out
by the following Eq. (6), respectively. Choosing the most
reliable model order (number of PC taken for estimation
of the parameter matrix B) causes the most problems in terms
of accuracy and stability of the calculated regression model.
One possible criterion is choosing the model size by the
minimum predictive error (for example, root mean-square
error (RMSE); the formal description of RMSE is shown
in Eq. 8). In this contribution, the RMSE of cross-validation is
used for model order prediction (RMSECV). Calculating the
error was absolved leaving every line of each data set out once
using it for validation after PLSR. The method is known as
LOOCV.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðyi � ŷiÞ
2=n

s
ð7Þ

The variables used in Eq. (7) are n for the number of
samples, y for the known target value and ŷ for the corre-
sponding predicted value.

2.2 Mechanistic growth model

2.2.1 Materials and methods
Validation of the kinetic model was accomplished collecting
experimental data from fermentations of S. pastorianus var.
carlsbergensis W43/70 (common bottom-fermenting yeast). To
ensure comparability between each of the fermentations,
the following settings were kept constant. The inoculum used
was pre-cultivated in a sterile wort reaching a final volume of
2 L. The fermentations at three different temperatures were
carried out using a B Brauns System (B Brauns Biostat UD-
30) filled with 20 L brewing wort with 12 g/100 g original
gravity. Stirrer speed was adjusted to 200 U/min, aeration rate at
5 L/min. A volume of around 5 mL antifoam solution was added
to the medium to prevent foam. Additionally, the system was
kept with an overpressure of 250 mbar. The fermentation time
differed between 13 and 42 h according to the number of yeast
cells per milliliter at the end of fermentation.

The simulations for the aerobic yeast growth were calcu-
lated using Berkeley Madonnas (v8.3.18, Berkeley Madonna)

2.2.2 Theory of aerobic yeast growth
The lack of suitable sensor systems as well as insufficient
process knowledge inspires the development of mathematical
approximations to get deeper insight into the organisms’

behavior. Those approximations are used among others to
predict and monitor the progress of cultivation. Such
systems are useful to predict the relevant process parameters,
which are of particular interest. One of the possibilities is the
establishment of a reliable growth model.

The typical aerobic growth behavior of Saccharomyces
yeast strains is described by Monod-type equations.
The substrate uptake (Eq. 8) follows Monod kinetics,
inhibited in the presence of ethanol as shown by Hoppe and
Hansford [56].

qs ¼ qs;max �
Cs

Cs1Ks
�

Kie

Kie1CE
� Lt � ftemp ð8Þ

For description of lag phase, when microorganisms are
inoculated to the growth medium, a more detailed look on
biochemical pathways has to be made. Basic Michaelis–Menten
or Monod-type equations describe only the transition
phase of depletion in substrate of interest but not the intrinsic
enzymatic adaption in the beginning of the process. Therefore,
an unstructured model using basic equations would not
describe the complete process sufficient enough. Thus, a
sigmoidal function simulating the lag phase is used to
overcome this disadvantage, represented by the factor Lt (Eq. 9,
Fig. 5).

Lt ¼
1

11e�ðt�tlagÞ
ð9Þ

The second factor ftemp is introduced to simulate
the temperature-dependent glucose uptake. Gathering first
insight, the model output of the preliminary investigations
in this contribution is compared with the square root model
(Eq. 10).

ftemp ¼ ðb � ðT � TminÞ � ð1� ec�ðT�TmaxÞÞÞ
2

ð10Þ

In contrast to the model approaches presented by Kurz,
Sonnleitner and Kaeppeli or Barford [36, 39, 57], the division
of substrate into different pathways was considered as

Figure 5. Course of the exponential function for simulation of the
lag-time in the beginning of cultivation. With tlag�2 h, the factor
Lt asymptotic convergence to one is achieved at around 1.
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proposed by Irvine et al. [58]:

a ¼
1

11CS=K
ð11Þ

This assumption is suitable for ‘‘blackbox’’ modeling and valid,
as long as oxygen saturation in the medium is ensured.

The growth of yeast cells is considered as autocatalytic
reaction (Eq. 12), whereas the total specific growth rate m is
described as the sum of the two substrate pathways partitioned
by the value a, similar to Sonnleitner and Kaeppeli [39].

rx ¼ m � CX ð12Þ

The final system of differential equations only considers the
mass balances of biomass, sugar and ethanol in the liquid
phase. Growth on ethanol is not taken into account, since
substrate concentration of the respective propagation process
is always higher than the critical respiration limit (41 g/100 g,
[48]). Therefore, ethanol uptake can be neglected.

2.2.3 Offline analysis and processing
The experimental values used for the validation of the simulation
had to be preprocessed. The fermentable portion of carbohy-
drates in wort is estimated as 70% of the total extract (total solids
contained in a liquid) measured with the Anton Paars.
Furthermore, simulations were carried out in unit mmol/L. The
conversion from unit g/100 g was carried out using glucose as the
sugar equivalent. The biomass concentration was determined by
microscopic counting via ‘‘Thoma-Kammer’’.

CX ¼
ms � ncells

Mbiomass
ð13Þ

Conversion to unit mmol/L was absolved using Eq. (13)
where ms resembles the specific dry weight of a cell

(2.5� 10�11 g/cell [48]), ncells the yeast cell count (cells/mL)
and M the molar weight of 1 mol biomass. The mean biomass
composition (CH1.79N0.15O0.5) is taken from the literature [39].

2.3 Fuzzy logic theory

The supply of vital yeast in sufficient quantities and quality at
the right time point is a crucial factor of the process and
production planning. In Birle et al. [49], an expert system
based on the fuzzy logic control is proposed, which allows a
flexible, dynamic and demand-oriented process control of
brewer’s yeast propagation instead of static and inflexible, step
sequence-based process control systems that are hitherto
existing.

The set up of the fuzzy controller and the rule bases was
accomplished with the software Virtual Experts (Gimbio
GmbH). The operator adjusts the desired point of yeast harvest
via a user interface. The final cell concentration should be at
least 80� 106 cells/mL in achieving this fixed time point. This
concentration is needed to guarantee a fast start of the
subsequent process of alcoholic beer fermentation. The decline
of apparent extract concentration is measured by a laser
refractometer (ACMs). For extract trajectory, an objective
function was defined. The deviation between the current
trajectory and the objective one was taken as the input for the
fuzzy temperature controller. As a second input variable, the
deviation of current and objective slope of cell growth was
applied. After assessing the deviations via a simple rule base in
the manner of ‘‘ifythen’’ rules, the fuzzy controller delivers an
incremental increase or decrease in the temperature in the
propagation tank. The strategy of ventilation is dedicated to an
optimal supply with oxygen. To cope with this requirement,
the ventilation controller uses the yield coefficient (cell growth/
% extract) and the absolute cell concentration as input

Figure 6. Applied control loop of the fuzzy propagation system; current values of involved sensors are compared to respective desired
values out of the model – deviations entering the fuzzy controller; fuzzy outputs are used for tuning the corresponding actuators (cooling
and ventilation valve).
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variables to control the ventilation cycles and aeration volume.
The applied fuzzy inference system follows the implication
principle of Mamdani linking the membership functions in the
precondition part of a distinct rule via MIN-operator (logical
AND). The basic idea of this alternative of implication is that
the conclusion’s content of truth should not exceed the one of
the precondition parts [59]. The fuzzy sets themselves were
kept quite simple using standard forms of triangular and
trapezoid sets. Although the rule base was kept very little,
comprising only six rules for temperature regulation and nine
rules for aeration control, the presented controller (see Fig. 6
for schematic explanation of the control loop) works quite
reliable.

3 Results and discussion

3.1 Ultrasonic measuring device

In the above-mentioned paragraphs, it was shown that the
influences of temperature as well as different solutes in
aqueous solutions are visible changing from time domain to
frequency domain. For finding the best solution in the deter-
mination of unknown concentrations, the use of statistical
tools such as Chemometrics is proposed. Before calculating the
regression model, several processing steps had to be carried out
as explained in the sections before.

First, the signals were analyzed to detect the correct
frequency band for all signals used for further calculations. The
processing steps and the calculation reaching to the final
regression model are collected to provide better understanding
in a final scheme shown in Fig. 7. The final regression model
was calculated using PLS regression, model size and accuracy
were determined by cross-validation.

The prediction errors (RMSECV) of the 33 different models
for each temperature point (6–22, 0.5 K steps) achieved by
using nine PLS components for each model are shown in
Table 1. The maximum error is o0.5 g/100 g. The two models
showing higher a prediction error (9 and 15.51C) contain

samples predicted as outliers calculating the leverage of each
sample [19, 60] (result not shown) and were thus not taken
into account. The method of outlier detection still needs
further investigation.

The parity plot in Fig. 8A shows a good relation between
the measured and predicted values for respective solutions.
Thus, the variations of the wave shape due to medium as well
as temperature influences are visible considering the frequency
transform of the total signal (transmitted pulse by the
transducer and pulse traveled through the medium). The
statistical method gathers this information by summing up the
significant variance in few PLS components.

The final regression model structure is given as

ŷ ¼ 1 � b01X � B ð14Þ

where vector B is structured as follows:

B ¼ ½btof ; bPðf1Þ; bPðf2Þ; . . . ; bPðfnÞ; bjðf1Þ; bjðf2Þ; . . . ; bjðfnÞ�
T ð15Þ

Validation of the models was achieved using samples out of
whole data set, which were not included in the calibration. To
calculate the concentration at the right temperature, the result
was extracted by interpolation:

ŷ1ðT1 � T0 � 0:5Þ ¼ 1 � b0ðT1 � T0 � 0:5Þ1X � BðT1 � T0 � 0:5Þ

ŷ2ðT2 � T010:5Þ ¼ 1 � b0ðT2 � T010:5Þ1X � BðT2 � T010:5Þ

ŷ0ðT0Þ ¼ ŷ11
ŷ2 � ŷ1

T2 � T1
� ðT0 � T1Þ

Using linear interpolation as first approximation causes a
prediction error of 0.5 g/100 g for apparent extract with a
marginal error of 45 ns for the TOF as well as 0.5 K tempera-
ture variation. This estimation is shown in Fig. 8C. The model
combination over temperature still needs further investigation.

Nevertheless, high variations in the predicted results of used
regression model may come from qualitatively corrupt ultrasonic

Figure 7. Schematic sum of the algorithm used for regression
predicting the apparent extract in liquid medium.

Table 1. RMSECV for each model in the temperature range

T in (1C) RMSECV (g/100 g) T (1C) RMSECV (g/100 g)

6 0.4 14.5 0.24

6.5 0.38 15 0.24

7 0.31 15.5 0.87

7.5 0.27 16 0.18

8 0.28 16.5 0.37

8.5 0.44 17 0.38

9 0.61 17.5 0.48

9.5 0.23 18 0.2

10 0.26 18.5 0.27

10.5 0.31 19 0.32

11 0.37 19.5 0.3

11.5 0.33 20 0.32

12 0.25 20.5 0.25

12.5 0.31 21 0.29

13 0.29 21.5 0.35

13.5 0.37 22 0.26

14 0.29
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signals caused by the used setup (see parity plot in
Fig. 8B). This is on the one hand due to the material used as
buffer and on the other hand the data evaluation by the used
electronics. Future steps include effort in investigating different
buffer materials as well as revised electronic equipment.
Furthermore, detailed investigation of the frequency domain
using the sensitivity analysis as well as variable selection methods

to investigate the most informative parts of the spectra in
correlation to the targets of interest by means of regression will be
carried out. This includes as well subdivision of signals into start
and echo with independent analysis to investigate their relations.

The possibility to apply this sensor system online in a
process later on will be one of the biggest benefits compared
with the existing measuring systems in the industry. So far,
online solutions are typically in direct contact with the
medium and thus, service and maintenance as well as
construction are of high effort. Final estimation of the
substrate concentration using the presented approach would
need simple vector multiplication. Therefore, online usage due
to low processing time is possible. Further research will be
applied on the one hand to reach a higher accuracy and on the
other hand to implement the system online in a process.

3.2 Mechanistic growth model

Following the trend of temperature-dependent yeast growth
with respect to substrate, ethanol and biomass concentration, a
preliminary approach using simplified equations from the
literature was tested. Therefore, three laboratory fermentations
were absolved validating the principle accuracy as well as the
temperature dependency. The parameters used for simulation
are shown in Table 2.

The results of the simulations compared to validation runs
are shown in Fig. 9A. The absolute errors compared with the
offline measured data are summarized in Table 3. It is shown
that the accuracy of this simple model is already quite accep-
table. The parameter ftemp was adapted according to the
respective temperature.

The value of biomass yield over the fermentative pathway
(YXSf) had to be adopted compared with the literature [36, 39] to
narrow the simulation output to the experimental values. This
can be explained by several reasons. Owing to preprocessing of
values for yeast cell count using specific yeast cell dry weight,
which ranges between 2.5� 10�11 [48] and 4� 10�11 g/cell [36],
values for biomass in mmol/L thus vary in a big span. Therefore,
it has to be investigated, how this value behaves under reported
conditions between different strains of Saccharomyces yeasts.
Furthermore, the method of microscopic cell counting is an
error-prone analytical method, although it is broadly accepted
[61]. The final deviation between simulation results and
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Figure 8. (A) Parity plot for apparent extract (g/100 g); calibra-
tion with samples at 61C (70.03 K); maximum predictive error
over all temperature models (RMSECV)o0.5 g/100 g; number of
component: 9. (B) Parity plot for maltose; validation with
samples not taken into calibration; maximum absolute error
between 4 and 10 g/100 g maltose is less than 0.8 g/100 g.
(C) Estimation of marginal error; the plane shows the behavior
for maltose solutions. Error bars plotted were estimated by
comparing the values for the models with corresponding
temperature points (1C) with the output by linear interpolation.
The TOF (10�6 s) was taken to resemble the ultrasonic property.

Table 2. Parameters of the Black-Box Model applied for validation

Parameter Value Unit References

qs,max 0.486 mmol/(mmol � h) [1]

Ks 2.8 mmol/L [1]

Kie 500 mmol/L [2]

K 5.5 mmol �
YES 1.748 mol/mol Stoichiometry

YXSox 3.527 mol/mol [1]

YXSf 0.98 mol/mol �

Parameters with units, applied values and references are presented.

Parameters marked with � are determined via the parameter

estimation procedure.
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experimental data is shown in Table 3. Those variations of
around 0.3, 0.06 and 0.09 g/100 g for substrate, biomass and
ethanol, respectively, are believed to be due to abovementioned

reasons. Nevertheless, further investigations are needed to get a
deeper insight in those differences.

Furthermore, parameter tlag was adapted in each run, since
lag-time in the beginning of fermentation is dependent on the
temperature as well as on the vitality/viability of yeast. This
organism-specific properties could not be guaranteed to be
always the same (for values see Table 4). It also noteworthy
that variety in the wort composition taken from different
batches could be a reason for small differences. The parameter
ftemp is shown in Fig. 9B compared with the square root model
proposed by Kurz [36].

Those preliminary results show that the assumptions made for
simplifying the model equations are not far from the validated
literature data. It has to be mentioned that the three points in
Fig. 9B have to be validated by further test runs at several
temperature points as well as varying temperature profiles. In
addition, the influence of the Monod kinetics on the substrate
decline presented in this work is rather small. Nevertheless, using
the existing fundamental knowledge is believed to be more reli-
able in modeling growth of microorganisms. Therefore, future
work will be accomplished increasing the amount of data to proof
the simulation results as well as the mathematical background in
detail. The underlying aim of raising the accuracy of the fuzzy
controller by adapting the objective function for trend estimation
using the apparent extract via simple approximation equations is
possible. Vice versa, the controller could be also adopted to use
other input variables like biomass as well as virtual concentration
of sugar or ethanol.

3.3 Fuzzy logic control

First trials in the field of brewer’s yeast propagation control
via fuzzy logic [49] show very promising results. The
applied fuzzy controller receives online field data from a sensor
array comprising the measurements of dissolved oxygen
(Clark electrode, Mettler Toledos), turbidity (yeast cell
count; Opteks), apparent extract concentration (laser
refractometer; ACMs), temperature and pressure. The sensor
array was implemented in the circulation pipe of the
system. The controlled parameters are the temperature (glycol
cooling system), ventilation intervals and the volume flow of
ventilation. For this research, objective functions for extract
decline as well as growth of cell count concentration were
defined. The functions (slopes) are variable in time and
therefore can be adjusted by setting the desired point of
yeast harvest. As there was no experience about the metabolic
and anabolic behavior at permanently changing temperatures,
the objective functions were kept linear at first. The
applied fuzzy system consists of two controllers, one for
temperature control and another one adjusting aeration
parameter such as ventilation periods (length of ventilation
intervals) and volume flow of ventilation. The differences of
real and objective rates are used as input variables for the
fuzzy temperature controller that continuously adjusts
temperature in the propagation vessel. Figure 10 shows sche-
matically the mode of operation of the fuzzy temperature
controller. The deviations of the first derivatives of extract
decline and yeast cell growth compared with their model
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Figure 9. (A) Results of three fermentations compared to model
simulations; it could be shown that using the proposed literature
model with simplifications it is possible to simulate such
processes. (Triangles and dark dotted lines resemble substrate
trend, filled dots and light dotted lines resemble ethanol and
diamond with dashed lines biomass trends; all concentrations
are given in unit mmol/L). (B) Comparison between the square
root model [36] for ftemp (hard lined) and simulation results from
own runs (dots). Each dot resembles a single fermentation.

Table 3. Absolute errors between model simulations and
experimental data form absolved fermentations

Substrate (g/100 g) Biomass (g/100 g) Ethanol (g/100 g)

T 5 141C 0.18 0.062 0.011

T 5 201C 0.16 0.021 0.04

T 5 251C 0.3 0.041 0.091

Table 4. Values for parameters ftemp and tlag achieved through
parameter estimation for different temperatures

ftemp tlag

T 5 141C 0.228 1.71

T 5 201C 0.39 3.3

T 5 251C 0.674 1.91
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functions are used as the input variables:

eExtract ¼
dExtractModel

dt
�

dExtractOutput

dt
ð16Þ

eYCC ¼
dYCCModel

dt
�

dYCCOutput

dt
ð17Þ

The two plots show the real trajectories (solid lines),
model (dashed lines) and the deviation as control difference
(dotted lines) already indicating potential for optimization.
The input fuzzy sets used in this work are defined by
trapezoidal membership functions and the applied rule base
(Table 5) comprises six rules allocating the linguistic
terms via simple control algorithms in the form of
‘‘if-then’’ rules. Change in the temperature is achieved via
incremental temperature variation

Tout ¼ Tðt � 1Þ1
Tfuzzy

n
ð18Þ

where Tout is the new calculated set point of temperature and
T(t�1) the temperature one time step before. Tfuzzy/n denotes

the fuzzy output value referred to one hour divided by the
number of control cycles per hour, each control cycle being
30 s. The fluctuations in those trajectories may come from
inadequate objective functions used in the presented approach.
Those model functions do not consider an initial lag phase and

Figure 10. Schematic outline of the applied fuzzy temperature controller. Shown are the deviations of the first derivatives between
modeled and real extract decline (g/(100 g � d)) and yeast growth rate (mio. cells/(mL1d)). Fuzzy sets are trapeziodal for both inputs. The
rule base includes six rules. Fuzzy output variable is a temperature increment referred to as increase or decrease of temperature per hour.

Table 5. Rule base of temperature controller

Temperature

IF THEN

Delta_Es_Rate 5 slower d_Temperature 5 pos.

Delta_Es_Rate 5 matched d_Temperature 5 null

Delta_Es_Rate 5 faster d_Temperature 5 neg.

Delta_HZZ_Rate 5 slower d_Temperature 5 pos.

Delta_HZZ_Rate 5 matched d_Temperature 5 null

Delta_HZZ_Rate 5 faster d_Temperature 5 null

Delta_ES_Rate: Deviation of the current uptake rate of extract from

the corresponding objective function; Delta_HZZ_Rate: Deviation of

the current growth rate of biomass from the corresponding objective

function; d_Temperature: incremental increase or decrease in

temperature.
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transition phase to exponential growth of the culture at process
start. Thus, the deviations in the beginning are strongly
negative. As a consequence, the temperature controller tends to
increase the temperature in the initial process phase.
Furthermore, bigger fluctuations in growth rate are visible and
supposed to be due to effects of gassing out and gas bubbles
influencing the turbidity measurement. Those indications
show some of the major research points for future work
already in progress. The second fuzzy controller used for
aeration control based on the yeast cell count in combination
with the yield coefficient was also established. The corre-
sponding rules are not shown. The fermentation results
achieved with the established controller are shown in Fig. 11.

The rule base decisions of the fuzzy controller for the
aeration volume and the aeration cycles are based on the input
variables yeast cell count concentration and yield (relation of
cell growth and extract decline). One of the drawbacks
observed while propagating was that due to the extreme
formation of foam in the vessel, a continuous aeration strategy
could not be pursued. Thus, pulsed ventilation was applied.
These aeration intervals caused a non-negligible noise of the
turbidity signal (result not shown). It is assumed that during
the paused time period the hydrostatic pressure decreases and
leads to gassing out. The gas bubbles are then detected by the
sensor and interpreted as yeast cells by mistake. This effect
needs further investigation, since optical sensors as well as
acoustic ones are affected by bubbles. Another point is that the
culture partly tends to switch to the anaerobic metabolism
what can be seen from the trajectories of yield and the
difference of the substrate uptake rate to the model function.

4 Concluding remarks and outlook

The paper is thought as a perspective in combining new
ultrasonic measurement devices for qualification of fermen-
tation progress together with a fuzzy logic control scheme,
which is thought to be enhanced by trend estimation using
mathematical modeling. Furthermore, the fuzzy controller will

be enhanced embedding additional sensor information, which
will make the process control more independent to sensor
failures. Therefore, a new plant design is established containing
a more comprehensive sensor array to enlighten the process of
yeast propagation. The disadvantages of inflexible valve control
mentioned for the reported trials will be diminished by
implementing a flexible mass flow controller. Furthermore,
analysis of the exhaust air will be introduced to obtain deeper
insight into the metabolic activity of the yeast. The major
drawback while propagating was the formation of foam as
stated in Section 3. Therefore, pulsed ventilation was chosen
causing a non-negligible noise in measuring the turbidity,
which is assumed to be caused by degassing. This phenomenon
as well as the aeration strategy itself has to be further inves-
tigated, since optical sensors as well as acoustic ones are both
sensitive to gas bubbles in the medium. Another disadvantage
will be diminished by replacing the inaccurate objective
functions used so far by more ideal trends. Those simplified
functions showed a good compromise in the preliminary
investigation (variations of around 0.3, 0.06 and 0.09 g/100 g
for substrate, biomass and ethanol, respectively). The discussed
influence of the Monod part in the presented substrate decline
will be proved in detail by future investigations, since it is
believed that using the existing fundamental knowledge is
more reliable when explaining growth behavior of micro-
organisms. The presented model equations need further vali-
dation, proof of assumptions as well as investigations on
limitations like nitrogen source or trace elements. Further-
more, taking balances for oxygen and carbon dioxide in both
liquid and gaseous phase into account would enhance model
output with respect to the growth behavior. Research has to be
made on the implementation of such equations into a process
control scheme. With respect to an additionally enhanced
control strategy, the procedure of temperature control has to
be reconsidered. The system reacts relatively slow to
temperature changes. Therefore, the controller might increase
or decrease the temperature to its upper or lower limit until a
significant change of cell growth, respectively extract
consumption occurs. Thus, the controller is likely prone to
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Figure 11. Plots show the results for fuzzy
controlled propagations finished after 24 and
48 h, respectively. It is visible that the
controller adapts the temperature (yline;
unit 1C) as well as the airflow (-.-line; resem-
bled by percent opening of the aeration valve);
the fermentation aim (�6% apparent extract,
-.-line; 80–100 Mio cells/mL, yline) could be
reached in both cases; the big jump in the
trend of the airflow is due to the inflexible
valves.
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oscillation. To avoid this phenomenon, it is intended to
implement a more predictive controller based on numerical
state estimation, taking into consideration the temperature-
dependent growth kinetics of Saccharomyces sp.

The third part of this contribution showed the processing
and calibration of ultrasonic measuring equipment. Detection
of relevant process parameters like sugar and ethanol
concentrations during cultivation progress online is one
of the major challenges in biotechnical applications. The
independent detection of both solutes in aqueous solutions
using one measuring device based on single physical back-
ground is not possible without assumptions so far. In brewing
processes, the detection of extract content using sucrose or
maltose as sugar equivalent with the aid of density is typically
established. Since ethanol is influencing the density of
respective solutions inversely to the sugar amount, the esti-
mation of an ‘‘apparent extract’’ was used. This value resembles
the mixture of major solutes, total sugar and ethanol content
together.

It could be shown that regression on the target apparent
extract is possible using the presented algorithms analyzing the
ultrasonic signals in frequency domain. The calibration proce-
dure was absolved using PLS regression reaching an error of
o0.5 g/100 g by LOOCV. Although the variation in predicting
the concentrations is still high, the advantages of this spectral
analysis in combination with the presented sensor setup in
service and maintenance due to completely contactless investi-
gations of the fluid of interest is quite noteworthy. Furthermore,
it is shown that using only ultrasonic characterization of such
mixtures is enough to get insight into fluid properties without
knowledge about progress of fermentation. However, this
analysis can only be regarded as perspective, since influences of
real fermentations like dissolved CO2 are still not considered.
Furthermore, the use of frequency spectra has to be regarded
carefully, since it is, among others, influenced by noise caused by
bubbles. This attenuation effect has to be studied by detailed
bubble size analysis. Additionally, investigations in choosing the
correct frequency band using sensitivity analysis as well as
applying suitable variable selection methods for multivariate
analysis have to be studied. Further, combining ultrasonic
properties from time domain (TOF) with frequency domain
(P(f), Phase(f)) by means of multivariate statistics have to be
studied in detail. Future aim will be the online prediction of
concentrations correct to one decimal, which is known to be
accurate enough in monitoring processes of brewing industry
like cooking or fermentation. However, the stability and
robustness of this approach in combination with setup opti-
mization has to be the objective of further research.

One of the most critical points considering online process
application is the influence of temperature. The study showed
that the direct calibration of ultrasonic properties to offline
measured apparent extract values at single temperatures is
possible in a range of 6–221C. Therefore, the connections
between those independent models have to be evaluated.

Those presented results show a promising path to better
process performance and understanding. The perspective of
implementing the ultrasonic sensor online in such a system
including an accurate correlation to the process-related para-

meters will increase the stability and robustness together with
the flexible and adopted fuzzy controller to reach a high-
quality end productct.

Nomenclature

Ai [–] constants of Blackman window

function

B vector of Regression parameters

b, c, Tmin, Tmax [–], [–], [K], [K] constants for ftemp – square

root function

b0 [g/100g] first regression parameter

COA center of area

CX, CS, CE [mmol/L] concentration of biomass,

substrate, ethanol

ftemp [–] temperature coefficient

K [g/100 g] constant for simulating

Crabtree-effect

Kie [mmol/L] Inhibition constant (ethanol)

KS [mmol/L] half saturation constant (Substrate)

Lt lag time function

M maintenance

MAX maximum operator

Mbiomass [g/mol] molar weight of biomass

MIN minimum operator

ms [g/cell] specific dry weight of yeast cells

N [–] number of windows

N [–] number of samples

nf [–] number of frequency pin

nCells, YCC [mio. cells/mL] yeast cell count

P(f) magnitude spectrum

p, P loading vector/matrix of X

q, Q loading vector/matrix of Y

qs, qs,max (maximum) specific substrate

uptake

Sx, Sy diagonal matrix with standard

deviation

T [1C, K] temperature

t(Ai) reflection of ultrasonic pulse

t, T score vector/matrix of X

tlag [s] lag time

tof [s] time of flight

u, U score vector/matrix of Y

W(n) window function

w, W weighted loading vector/Matrix

X predictor matrix

Y target matrix

Y [mol/mol] yield coefficient

j(f) phase spectrum

Subscripts, Exponents

‘‘Predicted’’

e11 Echo impulse

E Ethanol

f Fermentative

i Counter

m Mean

ox Oxidative

r1 Buffer reflection

S Substrate

X Biomass
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a b s t r a c t

This paper presents a multivariate regression method for the prediction of maltose concentration in
aqueous solutions. For this purpose, time and frequency domain of ultrasonic signals are analyzed. It is
shown, that the prediction of concentration at different temperatures is possible by using several multi-
variate regression models for individual temperature points. Combining these models by a linear approx-
imation of each coefficient over temperature results in a unified solution, which takes temperature effects
into account. The benefit of the proposed method is the low processing time required for analyzing online
signals as well as the non-invasive sensor setup which can be used in pipelines. Also the ultrasonic signal
sections used in the presented investigation were extracted out of buffer reflections which remain pri-
marily unaffected by bubble and particle interferences.

Model calibration was performed in order to investigate the feasibility of online monitoring in fermen-
tation processes. The temperature range investigated was from 10 �C to 21 �C. This range fits to fermen-
tation processes used in the brewing industry. This paper describes the processing of ultrasonic signals
for regression, the model evaluation as well as the input variable selection. The statistical approach used
for creating the final prediction solution was partial least squares (PLS) regression validated by cross val-
idation. The overall minimum root mean squared error achieved was 0.64 g/100 g.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many biotechnological processes it is of great interest to de-
tect the concentration of ingredients in the working medium. Fur-
ther, monitoring and control of such industrial processes need
reliable online measuring devices. Those sensor systems should
have the ability to be robust, easy to use and non-invasive, even
when it comes to food related applications. Typically, the sensor
equipment used for analyzing fluid properties is invasive to the
medium of interest [1–4]. Over the last few decades the impor-
tance of ultrasonic sensors for such applications have become more
and more standard [5,6]. Several groups have studied the possibil-
ity of ultrasonic devices for measuring sugar concentration in
various different ways [7,8]. Further, frequency and time domain
representation of ultrasonic features is reported to contain
information about the changes in density of respective fluids. In
literature there are several possibilities presented which use indi-
rect prediction of acoustic impedance via reflection coefficient
combined with ultrasonic velocity estimated from time of flight

measurement to finally calculate the density of the fluid [9–14].
However, relevant information in relation to changes in sugar con-
centration and therefore density changes should be visible in
acoustic impedance. Extracting this feature based on the known
physical relations with the presented setup is quite difficult. Nev-
ertheless, one possibility to extract the feature impedance is based
on the decay of temporal echo amplitudes in the buffer material
[10]. Other possibilities presented in literature are based on the
frequency domain. Further, influences like superposition as well
as signal resolution do have a high impact on those approaches.
Despite all that, literature reports difficulties in predicting imped-
ance accurately under the given circumstances [15,16]. In this
work, the information was gathered using several acoustic features
calculated on time and frequency domain representation. These
were extracted on buffer reflections of ultrasonic signals. There-
fore, influences caused by i.e. gas bubbles can be avoided by only
analyzing the signal reflection. Although those signal parts do not
penetrate the medium, they still carry medium information in the
reflection coefficient. Generally, the chosen features individually
capture the information included in each signal. This results in a
new feature based multivariate representation covering signal
attenuation as well.

http://dx.doi.org/10.1016/j.ultras.2014.02.019
0041-624X/� 2014 Elsevier B.V. All rights reserved.
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Analyzing material properties as control variables for industrial
applications based on physical modelling is not always possible
due to the lack of knowledge. This leads to the use of multivariate
statistics. These methods have been used for years in several fields
when dealing with large volumes of data [17]. For evaluating data
based on its statistical variance, multivariate regression models,
such as principal component regression (PCR) or PLS, are used to
handle the large amount of mostly collinear variables. These meth-
ods are used for correlation of target values (Y) with direct measur-
able descriptor variables (X). The background of such approaches is
multiple linear regression (MLR). In this contribution partial least
squares regression (PLSR) is used for modelling the variations in
ultrasonic signals transmitted through aqueous solutions with
varying maltose concentrations. This method uses a reduced num-
ber of latent variables compared to the descriptor variables found
by cross correlation of variance in Y and X.

It was shown earlier, that changing concentration of a dissolved
substance causes changes in the fluid properties such as density
and bulk modulus. This directly influences the properties of the
ultrasonic waves travelling through the fluid [18]. It was reported,
that features of ultrasonic signals like reflection coefficient is fre-
quency dependent [18]. Developing a physical relationship be-
tween pulse distortion and the fluid properties is quite
complicated due to the complexity of the system. Because of this
the usage of multivariate data analysis is of benefit in cases of fast
modelling of the phenomena of interest [18]. With the aid of mul-
tivariate analysis, it is possible to extract the most dominant infor-
mation with respect to density. At the same time, the noise caused
by arbitrary influences such as temperature inaccuracies, superpo-
sition, and bubble induced distortion will be discarded. This is the
goal of the presented study. It was shown earlier in a similar ap-
proach using PLS, that it is possible to predict substance concentra-
tions using ultrasonic signal features [18].

This study presents a system, which is fully non-invasive. Fur-
ther, it is less dependent on influences caused by bubble interfer-
ences or particles suspended in the medium of interest. A signal
with corresponding wavelength travelling through the fluid could

lose energy caused by scattering or dissipation at these bubbles
or particles [19]. Up till now, the calibration covers a defined tem-
perature range and is capable of detecting sugar concentration. The
method is based on feature extraction of ultrasonic pulses and
multivariate regression based on PLS. Up to the author’s knowl-
edge, the combination of both parts is new in the field of ultrasonic
measurements. Finally, the method is simple and easy to imple-
ment. It is also possible, to extend the detection on ternary mix-
tures containing ethanol as well. Benefit of this extension would
be the possibility to use just on sensor device as well as uncoupling
the detection from any relation to the process behavior like in Resa
et al. or Cha and Hitzmann [20–22].

2. Materials and methods

2.1. Experimental

The experimental setup as well as the measuring principle is ex-
plained schematically in Fig. 1 including photography of the setup
(middle). The shown container is indirectly heated over a temper-
ing mantle which is supplied with tempering fluid by an external
thermostat. To investigate maltose-water mixtures the container
is first filled with the solution of interest. Additionally, the solution
is heated/cooled continuously as well as permanently mixed by a
magnetic stirrer to reach a temperature distribution as homoge-
neous as possible. The ultrasonic signals are recorded over a tem-
perature range from 10 up to 21 �C at constant container
pressure over a time frame of around 3 h. The temperature points
used in this study for calibration were extracted in steps of 0.5 K
out of this continuous spectrum.

The in-house produced piezo electric transducer (built using a
piezo ceramic with a center frequency of 2 MHz) is used for creat-
ing an ultrasonic pulse by excitation with a rectangular electrical
pulse (width of 200 ns, amplitude of 5 V). After passing container
wall (wall 1) and fluid the pulse is reflected at the backside (wall 2)
and caught by the transducer which works as a receiver in the

Nomenclature

a regression parameters for temperature dependence (�)
B, b matrix/vector of regression parameters (�)
b0 first regression parameter (g/100g)
BW bandwidth (�)
cen centroid (�)
cf crest factor (�)
EDFT extended discrete Fourier transform
eng energy (�)
ent entropy (�)
fs sampling rate (Hz)
h leverage of sample (�)
k number of iterations extracting the latent vectors
kur kurtosis (�)
m number of variables (�)
mag magnitude (�)
MLR multiple linear regression
n number of samples (�)
N number of data points in ultrasonic signal sequence (�)
NIPALS nonlinear iterative partial least squares
p, P loading vector/matrix of X
PMMA poly(methyl methacrylate)
PVDF polyvinylidene flouride
PC principal component
PCA principal component analysis

PLS(R) partial least squares (regression)
q, Q loading vector/matrix of Y
RMSECV root mean squared error of cross-validation (g/100g)
S diagonal matrix with standard deviation
s2 sample variance
ske skewness (�)
spr spread (�)
T temperature (�C K)
t(Ai) reflection of ultrasonic pulse
t, T score vector/matrix of X
u, U score vector/matrix of Y
VIP variable importance in the projection
w, W weighted loading vector/matrix
X predictor matrix
Y target matrix

Subscripts, exponents

^ ‘‘predicted’’
a,i,j counter
s scaled
s spectral
t temporal
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same time (pulse-echo method). The signal is recorded via
microcontroller connected to the measuring device. The tempera-
ture of the probe fluid is measured by Pt 100 temperature sensors
(maximum accuracy of ±0.1 �C). The experiments were carried out
for each concentration separately. Several mixtures of maltose-
water in a range of 2–12% (per weight) for measuring the ultra-
sonic pulse behavior were prepared. Homogenization was reached
with a magnetic stir bar. For each investigation a sample volume of
3 L was prepared dissolving a known mass of crystalline maltose
(D(+)-Maltose Monohydrate, Roth�) using a Sartorius Laboratory�

weight (L 2200 S) in distilled water reaching a defined final weight.
The reference concentration for control was measured using an
Anton Paar� Density Meter (DMA 4500). Signals for analysis were
extracted from the total set of continuous measured temperature
range resulting always in data sets of around 70 objects with
varying concentration at individual temperature points.

2.2. Temperature influence

In the presented work individual temperature independent
multivariate relations were calculated. Therefore, signals for anal-
ysis were extracted from the total set of continuous measured tem-
perature spectrum resulting always in data sets of around 70
objects with varying concentrations for each temperature point. Fi-
nally, each regression parameter of individual temperature model
was plotted against temperature to gather the influence (see Sec-
tion 3, Fig. 6C). The overall model was built by polynomial regres-
sion of each regression parameter. This relation was developed
using first order polynomial regression due to lowest overall resid-
ual error (see Section 3, Fig. 6A and B).

2.3. Signal processing

Ultrasonic signals collected using the presented setup were
influenced by noise and superposition phenomena. Therefore, data
was preprocessed averaging around 10 signals of approximately
equal conditions. Further, most relevant reflections created in the
steel buffer of the presented sensor system were extracted.

The transformation of time domain representation into fre-
quency domain was accomplished using extended discrete Fourier
transform (EDFT) and the used signal parts were extracted from
buffer reflections of the used setup. Since they are influenced by
superposition phenomena, the region of interest was limited to a

comparably small time frame. Due to limited sampling frequency,
the data representation can be seen as incomplete resulting in
numerical frames of �200 data points. Literature reports the men-
tioned extended discrete Fourier transform algorithm (EDFT) for
incomplete data. Additionally, a higher frequency resolution can
be reached [23,24], which was necessary in extracting meaningful
frequency spectra for spectral feature extraction. This algorithm is
able to extrapolate input sequence to a defined length N. In contrast
to DFT, an increase in the frequency resolution up to 1/(N � fs) can be
achieved (where fs resembles the sampling rate) [23].

Since the frequency domain of a signal is sensitive to noise [18]
the interval of interest for frequency analysis has to be adapted. To
locate this interval, the signals were processed with window func-
tions. One benefit of windowing is the reduction of frequency mag-
nitude in regions of non-interest (just containing random noise) to
a mean of zero in a statistical manner. Therefore, uninformative
signal parts will be weighted down. To choose an adequate method
according to the needs, a sinusoidal signal including several fre-
quencies was analyzed using different windows. Those windows
were rectangular, Hamming, Hanning, flat top, Blackman, Kaiser,
Bartlett and Gaussian window function (Fig. 2).

Minimal spectral leakage is an important criteria in the window
choice. Thus, rectangular, flat top and Kaiser window can be ex-
cluded comparing the results presented in Fig. 2. Further, Bartlett
and Gaussian window were excluded taking the accuracy of mag-
nitude calculation into account. The results of this investigation
showed, that the differences between Hanning, Hamming and
Blackman window function were neglectable. Therefore, Blackman
window function was applied to investigate the representative
bandwidth of the US-signals in this work. Each signal was analyzed
window-wise to cover the main magnitude changes over the whole
frequency band like reported in Krause et al. [25]. It is shown in
Fig. 3, that the highest variations in the signals take place in a
bandwidth of 0.5–3.5 MHz. This bandwidth was taken for feature
extraction. The final feature analysis was carried out on the un-
windowed signal. The frequency region of interest was set to the
predefined bandwidth from window investigation.

2.4. Feature extraction

In this work 12 features are suggested for further analysis. Those
features are summarized in Table A1 (Appendix) at the end of this
contribution. They are taken as model input for multivariate regres-

Fig. 1. On the left hand side a schematic drawing of the experimental setup is shown; it includes a tempering mantle provided with tempering fluid by an external
thermostat, the piezo electric transducer (coupled to a microcontroller) and a Pt 100 resistance thermometer for monitoring the temperature inside the chamber; further,
there is an inlet for filling the chamber with fluid; the same setup is shown in the photography (middle); the right hand side shows the schematic measuring principle (pulse
echo method) with piezo electric transducer, excited via the electronic equipment; after passing the first wall (steel) the pulse travels through the sample and is reflected at
the backside (wall 2); transducer works as receiver at the same time, signal is collected via the electronic equipment.
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sion. The used features were chosen by their correlation index in a
statistical manner. Furthermore, already published contributions
investigating those mentioned acoustic features for signal analysis
showed the general applicability [26–28]. Sensitivity analysis on
features in several bioprocesses proved dependencies in various
applications. As already mentioned above, the chosen features cap-
ture the information included in each signal in a multivariate sense
individually.

2.5. Multivariate regression

Data used for statistical analysis requires statistical pre-pro-
cessing. The next section explains the organization of matrices
for regression analysis. The target values (concentration of maltose
[g/100 g]) are stored in a column vector. The corresponding signal
properties (mag, BW, cfs etc.; all at a certain temperature) are
stored in rows of a predictor matrix X (Eq. (1)).

X ¼ ½mag;BW;kurs; skes; engt; engs; entt ; ents; cf s; cens; sprs; cf t � ð1Þ

Previous to decomposition the matrices were autoscaled by
centering each column to its mean value and scaling to unit vari-
ance dividing by its standard deviation. This is necessary to ex-
clude influences due to absolute values of single columns.

2.6. Theory of partial least squares

The calculations on each data set (�70 signals) were
programmed and carried out applying the most commonly used
nonlinear iterative partial least squares (NIPALS) Algorithm devel-
oped by Wold [17,29–32]. This algorithm is calculating the PLS
components iteratively. The used algorithm for PLS calculating k
components can be formally described as

For i = 1, 2,. . ., k

1: wi ¼ ðXT
i�1 � ui�1Þ=jjðXT

i�1 � ui�1Þjj

whereas ui�1 in the first iteration will be equal to the column of Y
with highest magnitude. The calculated vector w is called loading
weight vector of Y and X obtained as the components of the cross-
covariance between targets and predictors. The score vector t and
the corresponding loading vector q are calculated as follows:

1: ti ¼ Xi�1 �W i

2: qi ¼ ðYT
i�1 � tiÞ=ðtT

i � tiÞ

The vector u in the first iteration is chosen as mentioned above.
In the following iterations it is calculated via

3: ui ¼ ðY i�1 � qiÞ=ðqT
i � qiÞ

Further, the loading vector p is calculated as follows:

4: pi ¼ ðX
T
i�1 � tiÞ=ðtT

i � tiÞ

Finally, the ‘‘working matrices’’ for the next iteration are calcu-
lated as

5: Xi ¼ Xi�1 � ti � pT
i

Fig. 2. Investigation of spectral leakage in different window functions applied to a sinusoidal signal including different frequencies.

Fig. 3. Magnitude spectrum of raw ultrasonic signals analyzed with Blackman
window method.
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6: Y i ¼ Yi�1 � ti � qT
i

The vectors pi, qi, ui, and ti are stored as columns in correspond-
ing matrices shown in Eq. (2).

T ¼ ½t1; t2; . . . ; tk� ð2Þ

2.7. Calculation of regression coefficients

After iteration is finished, the principal components are used to
calculate the parameters in B of the regression model (Eq. (3)).

Ŷ ¼ X � Bþ 1 � b0 ð3Þ

Vector b0 is estimated as shown in Eq. (4).

b0 ¼ �y � �x � B ð4Þ

whereas the vectors y and x contain the mean values of the corre-
sponding columns of X and Y. Matrix B is estimated following Eq.
(5).

B ¼ S�1
X � ½WðP �WÞ

�1 � qT � � SY ð5Þ

whereas the diagonal matrices S include the standard deviation of
the corresponding columns of X and Y. Further details can be found
amongst others in Krause et al. [33].

2.8. Estimation of model size and accuracy

Calculation of regression coefficients (matrix B) is carried out
following Eqs. (4) and (5), respectively. Choosing the most reliable
model order (number of PLS components taken for estimation of
the parameter matrix B) causes the most problems in terms of
accuracy and stability of the calculated regression model. One pos-
sible criterion is to choose the model size by the minimum predic-
tive error (for example root mean square error [RMSE]; the formal
description of RMSE is shown in Eq. (6) determined over the most
commonly used cross-validation. In this contribution the root
mean square error of cross-validation is used for model order pre-
diction (RMSECV).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1
ðyi � ŷiÞ2

.
n

r
ð6Þ

The variables used in Eq. (6) are n for the number of samples, y
for the reference value and ŷ for the corresponding predicted value.

In this work, the combination of individual temperature inde-
pendent regression models are combined by polynomial fit of
regression parameters to temperature. Therefore, it is assumed
that RMSECV tends to overfitting with respect to the final model
structure. Thus, the measure used for decision on the number of
components was the prediction error of the final model (including
temperature dependence) on a validation dataset (RMSEV) cover-
ing the whole range of temperatures and concentrations (data
not included in the calibration).

2.9. Variable importance/feature selection

In multivariate regression it is of great interest to extract most
relevant information for robustness reasons. It is also necessary to
decide, whether an input variable is important to the model or not.
Moreover, it is beneficial to exclude non-informative variables
from the input to prevent influences of those due to noisy or defec-
tive data. Extracting informative variables in multivariate regres-
sion using PLS can be done analyzing regression coefficients
combined with variable importance in the projection (VIP) [34–
36]. Therefore, the ‘‘autoscaled’’ regression coefficients (Eq. (7))
and the VIP (Eq. (8)) were calculated for each model and variable,
respectively.

Bs ¼WðP �WÞ�1 � Q T ð7Þ

VIPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
XA

a¼1
ðQ 2

atT
a taðwja=jjwaÞÞ

2 XA

a¼1
Q 2

atT
a ta

.r
ð8Þ

Here, index a stands for the number of used latent vectors, j for
the respective variable. All the presented methods reaching to the
final regression model are collected in a final scheme for better
understanding (Fig. 4).

3. Results and discussion

To find the best solution for detection of unknown concentra-
tions, several iterations and processing steps had to be accom-
plished. First, the signals were averaged and analyzed to detect
the correct frequency band from 0.5 to 3.5 MHz for all signals to al-
low further calculations. Second, buffer reflections were deter-
mined and transformed to frequency domain for extracting
acoustic features. After autoscaling the dataset was statistically
analyzed for outliers (presented later in the results section). Addi-
tionally, variable selection methods were applied to reduce the

Fig. 4. Schematic summary of methods used for pre-processing of ultrasonic signals of the dataset for model investigation.
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input matrix to the most relevant variables. Finally, individual iso-
thermal regression models were calculated using PLS regression.
The whole investigation presented covers a range from 2 to 12
g/100 g maltose diluted in distilled water and a temperature spec-
trum ranging from 10 to 21 �C, where the datasets of around 70
samples at each temperature point were analyzed using cross-
validation. For each sample set models with increasing number
of PLS components and corresponding errors are calculated. Fur-
thermore, each individual model was analyzed for importance of
input variables using variable importance in the projection (VIP)
in combination with scaled regression coefficients (Bs) to select
the most relevant features for calibration. There for each variable
selection vector was normalized individually and the resulting
numerical values were used as gray scale color representation
(Fig. 5). To increase the accuracy of the model, features were ex-
cluded according to their lack of importance indicated by the
importance measures (Bs and VIP (Fig. 5)) and model evaluation
was repeated. With the aid of the presented importance calcula-
tion, it was possible to exclude 4 out of the 12 presented features.
Those remaining features are spectral centroid, energy, bandwidth,
crest factor and magnitude as well as temporal crest factor, entro-
py and energy. The excluded features were spectral kurtosis, skew-
ness, entropy and spread. These four features indicate low
sensitivity in correlation to maltose concentration as well as to

temperature (see Table A1). This highlights the strength of those
importance measures used in this contribution for data sorting.

The final regression structure implying the temperature depen-
dent coefficients was tested using polynomial regression of first
and second order on the individual regression coefficients. The
overall RMSEV was found to be lower using first order polynomial
approaches (Fig. 6).

Finally, the overall regression model structure is given by Eq.
(9):

Ŷ ¼ X � b ð9Þ

Whereas regression vector b is structured as follows:

b ¼ ½b0; bmag ; bBW ; . . . ; bcft �
T ð10Þ

The temperature influence of each regression coefficient in vec-
tor b is calculated as shown in Eq. (11).

b ¼ a0;T þ a1;T � T ð11Þ

with

a0;T ¼ ½a0;0; a0;mag ; a0;BW ; . . . ; a0;cft �
T

a1;T ¼ ½a1;0; a1;mag ; a1;BW ; . . . ; a1;cft �
T

Fig. 5. Color map (gray scale) presenting the importance of each variable (feature) in individual multivariate temperature model; for clarity reasons only values each 4th
temperature model are shown; the single line plot at the bottom represents the summed and normalized importance measure of both presented methods over the whole
temperature profile investigated.
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Fig. 6. Comparison between 1st (A) and 2nd (B) order polynomial fits used for temperature dependent regression coefficients of individual multivariate models. Although
behavior of some parameters do indicate nonlinear temperature dependency (C), the overall RMSE achieved with only 1st order polynomial fits showed best result.
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The variable T (1 � 1) resembles the temperature value of the
respective signal.

Decisions on the correct number of components used in the
final overall solution, including polynomial regression on temper-
ature dependence, were made by averaging the prediction errors
for an external dataset (overall RMSEV). The minimum prediction
error of 0.64 g/100 g was achieved by using 5 PLS components
and 8 features as inputs in each individual regression model. The
decrease in the overall RMSE (calculated on �2900 signals with
varying temperature after combining the individual regression
models) is presented in Fig. 7 and Table 1. Although the reported
error is still quite high, the detection of different concentrations
at varying temperature was possible (see parity plot Fig. 8).

This figure indicates that the established solution lacks accuracy
in range of lower concentrations for two reasons: Firstly, there ap-
pears to be a higher sensitivity to information ratio for lower sugar
concentrations, and secondly a possible non-linearity of the fea-
tures used in the presented concentration range. The plot of the
smoothed histogram indicates skewed distribution for prediction
at 2 g/100 g, whereas the other histograms are almost normally
distributed. This further supports the points mentioned above.

Nevertheless, predicting concentrations in g/100 g which are cor-
rect to one decimal place is known to be accurate enough for mon-
itoring processes online in brewing industry such as cooking or
fermentation. However, the calculated validation error of 0.64 g/
100 g on laboratory data is still higher than a theoretically acceptable
absolute deviation for online monitoring of +/�0.5 g/100 g.

Statistical outlier detection was used to find and reduce the
number of signals containing noise, which is caused by several un-
known influences. This strategy was used to enhance robustness of
the solution as well as achieving an acceptable prediction error. In
this work an approach describing the influences of each signal on
the calibration is used to exclude outliers from the dataset. There-
fore, the leverage (Eq. (12)) as well as the residual Y-variance (Eq.
(13)) of each sample was calculated [17,37].

Hi ¼
1
N

XA

a¼1

ðt2
ia=tT

a taÞ ð12Þ

S2
Ri ¼ ðyi � ŷiÞ2 ð13Þ

Samples with higher leverage than 3 times the mean of h (pos-
sibly representing samples with unusual x data [37]) and addition-
ally higher residual variance than 3 times the mean of s2

R were
excluded in each dataset. This caused a decrease of the inner model
prediction error (RMSE of calibration, Table 2).

Nevertheless, overall RMSE including temperature dependence
of each regression coefficient resulted in a lower value when using
full dataset in individual regression models. Therefore, further
investigations to detect possible outliers such as distorted signals
using density based approaches, such as the local outlier factor
(LOF) [38], will be part of future analysis.

The possibility of applying this non-invasive sensor system
online to a process will be one of the biggest benefits as compared
to existing measuring systems in industry. Until now most online
solutions are based on invasive setup designs or bypass solutions

Fig. 7. Comparison between number of features (decreasing due to the variable importance order) and the number of PLS components chosen for the models; minimum
prediction error (RMSE) of �0.64 g/100 g achieved using 8 out of 12 features.

Table 1
Comparison between number of features and the number of PLS components chosen
for the models.

PLS components 1 2 3 4 5 6
Input variables

Full 1.02 0.83 0.77 0.74 0.69 0.66
Minus ents 0.98 0.83 0.71 0.66 0.65 0.66
& Minus skes 0.92 0.83 0.73 0.67 0.66 0.65
& Minus sprs 0.99 0.83 0.71 0.67 0.65 0.68
& Minus kurs 1.07 0.80 0.69 0.65 0.64 0.66
& Minus cens 1.02 0.76 0.66 0.65 0.68 0.67

Fig. 8. Parity plot – estimated vs. reference concentration of �2900 samples with
varying temperature covering the whole temperature range investigated. The
continuous line resembles ypred = yref. The plotted error bars resemble a 2 ⁄ r
deviation (�95% confidence interval to predicted mean); the dashed line resembles
a +/�0.5 g/100 g absolute deviation; little figure: smoothed histogram of predicted
concentration at 2 g/100 g.
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to detect relevant concentrations, which are relatively complicated
from a service, maintenance and economic point of view. Other
possibilities are offline systems, which include a high effort in
preparing samples for measurement. The used setup together with
the presented multivariate data analysis presents a possibility to
predict maltose concentration by using only reflected signal parts
which did not penetrate the medium of interest. Therefore, influ-
encing effects such as gas bubbles and particles can be neglected.
Additionally, the presented multivariate method for feature selec-
tion showed its strength towards choosing the necessary input

variables by their sensitivity towards the substrate concentration.
Nevertheless, further research will be applied to reach an even
higher accuracy of ultrasonic signals by investigating different set-
up materials, near field and superposition phenomena as well as
electronic circuit adaptions. Additionally, the system should be
implemented in a process to investigate dynamic process influ-
ences online. Finally, calibration needs to be extended to include
influences due to fermentation products such as alcohol.

4. Conclusions

In this contribution it is shown, that prediction of maltose dis-
solved in water at different temperatures using features from time
and frequency domain of ultrasonic pulses combined with statisti-
cal modelling as regression tool is possible. The method used for
choosing model size (number of principle components) was cross
validation. The overall RMSE value for prediction was 0.64 g/
100 g using 5 components and 8 features. Those features used
are: maximum spectral magnitude, bandwidth, temporal and spec-
tral energy, temporal entropy, temporal and spectral crest factor
and spectral centroid. This highlights the strength of the methods

Table 2
Comparison taking all datasets (including 12 ultrasonic features) and those excluding
the outliers indicated by the outlier detection algorithm.

PLS
components

All data points w/o Outliers

Mean
RMSE

Overall
RMSE

Mean
RMSE

Overall
RMSE

3 0.63 0.78 0.59 0.79
4 0.58 0.74 0.53 0.75
5 0.54 0.7 0.47 0.74
6 0.5 0.66 0.42 0.67
7 0.48 0.67 0.39 0.68

Table A1
Explanation of used acoustic features; the shown correlations are examples extracted from �10 �C and 6 g/100 g maltose, respectively – those plots vary between each measuring
point; the presented bar resemble the standard deviation of each value.

Feature name Abbr. Formula Graphical interpretation Correlation to conc. Correlation to T

Maximal magnitude mag maxðjxðnÞjÞ

Bandwidth BW fnðjxðnÞj ¼¼ 1
3 maxðjxðnÞjÞ � fnðjxðnÞj ¼¼ 1

3 maxðjxðnÞjÞ

Spectral kurtosis kurs PN

n¼1
ðn�Ct Þ4�pmf ðnÞ

ssp2

< 3 flatter distribution
¼ 3 normal distribution
> 3 peaker distribution

8<
:

Spectral skewness skes P1024

n¼1
ðn�cent Þ3�pmf ðnÞ

ssp3=2

< 0 more energy on the right
¼ 0 symmetric distribution
> 0 more energy on the

8<
:

Temporal energy engt
PN

k¼1ðxðkÞÞ
2

Spectral energy engs
PN

n¼1jXðnÞj
2

Temporal entropy entt
�
PN

k¼1
jxðkÞjPN

k¼1
jxðkÞj

� �2

ln jxðkÞjPN

k¼1
jxðkÞj

� �2

Spectral entropy ents �
P1024

n¼1 pmf ðnÞ � lnðpmf ðnÞÞ

Spectral crest factor cfs maxðjXðnÞjÞ
1
N

PN

n¼1
jXðnÞj

Temporal crest factor cfs maxðjXðnÞjÞ
1
N

PN

n¼1
jXðnÞj

Spectral centroid cens cens ¼
PN

n¼1
n:jXðnÞjPN

n¼1
jXðnÞj

Spectral spread sprs ssp ¼
PN

n¼1ðn� censÞ2 � pmf ðnÞ; pmf ðnÞ ¼ jXðnÞjPN

n¼1
jXðnÞj
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used to detect less sensitive inputs in correlation to respective
targets.

Although validation error in this approach is still higher than
the one which is already presented in Krause et al. [25], the pre-
sented approach is more realistic, since simple linear interpolation
is not feasible for the shown temperature behavior. Further, the
presented error is still higher than a theoretically acceptable abso-
lute deviation of +/�0.5 g/100 g in monitoring online processes in
brewing industry. However, the lack in accuracy presented in low-
er regions of sugar concentration is believed to be due to signal
sensitivity issues and non-linear behavior of presented features.
Therefore, the stability and robustness of this approach in combi-
nation with setup optimization will be the aim of further research
(setup material, setup design, near field and superposition phe-
nomena, electronic circuit adaptions). This will include the
enhancement of signal quality in the measurement setup. One of
the biggest influences is coming from buffer material and design.
This will be further optimized by changing to material with prop-
erties more suitable to process demands [e.g. poly(methyl methac-
rylate) (PMMA), polyvinylidene flouride (PVDF)] and by adapting
the design of the buffer itself. The mentioned materials were cho-
sen according to investigations on the impedance differences be-
tween fluid and buffer. In theory, PMMA is more sensitive with
respect to density changes in the fluid. Those changes have an im-
pact on the wavelet amplitude. The drawback is the loss of buffer
reflections. PVDF could be used as reflector material, since it has
high absorptivity [39,40].

Further, iterative schemes for enhancing variable selection as
shown in literature [41] are thought to enhance the outcome of
the presented approach and will be investigated. Additionally,
appropriate outlier detection algorithms will be implemented. Fu-
ture investigations should also focus on thermal gradient and other
dynamic process influences. Nevertheless, this measuring system
is highly competitive with current existing solutions in the indus-
try from both an economical point of view as well as regarding ser-
vice and maintenance concerns.
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online trends. Both methods were compared to the expert 
opinion coinciding with 84 and 85 %, respectively.
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Abbreviations
µ  Centroid of class S
A  Number of components
ABOF  Angle-based outlier factor
B  Matrix of regression parameters
b0  Vector of intercepts
d()  Distance
ei  Vector of residuals
FAN  Free amino nitrogen
hi  Leverage
MLR  Multilinear regression
MSC  Multiplicative scatter correction
MSPC  Multivariate statistical process control
n  Number of sampling points
NAS  Net analyte signals
NIR  Near infrared
p  Polynomial degree
p, P  Vector/matrix of X-loadings
PC  Principal components
PCA  Principal component analysis
PLS-DA  Partial least squares discriminant analysis
PLS(R)  Partial least squares (regression)
q, Q  Vector/matrix of Y-loadings
RMSE  Root mean squared error
RSD  Residual standard deviation
S  Classes
sP, b, c  Vectors representing data point in multidi-

mensional space

Abstract This work is focused on a new strategy for 
quality analysis of brewing malt using near infrared (NIR) 
spectra taken from malt kernels in reflection as fingerprint 
to classify directly to processability of malt. One part of the 
study deals with calibrating a partial least squares discri-
minant analysis (PLS-DA) model with NIR spectra clas-
sifying malt into the three different classes resulting in a 
five-component model. Therefore, suitable pre-processing 
algorithms for spectra were tested. The target for calibra-
tion is given by an expert opinion on lautering runs (filtra-
tion step in brewing). The accuracy achieved using pilot 
plant data in relation to the expert classification “good”, 
“normal” and “bad” was 90.6 and 92.7 % in validation and 
calibration, respectively. The second part of the study is 
presenting the transfer of these analytical tools to industrial 
scale. This was established via adjustment to correspond-
ing system conditions. The accuracy achieved using simi-
lar algorithms as mentioned before was 93.6 and 76.6 % in 
calibration and validation, respectively. Independent from 
this, two numerical possibilities were established for auto-
matic process evaluation classifying the different processes 
in three categories (good, normal, bad): the first is calculat-
ing the residual standard deviation of a process based on 
multivariate statistical process control and the second is 
discretizing each process individually based on its single 
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SSE  Sum of squares
STA  Single trend analysis
sVAST  Supervised variable stability scaling
SVD  Singular value decomposition
SX, SY  Diagonal matrix with standard deviation
t, T  Vector/matrix of X-scores
VAST  Variable stability scaling
VIP  Variable importance in the projection
Vt  Ratio of variance
w  Vector of weight factors
w, W  Weighted loading vector/matrix
x  Vector of input values/NIR spectrum
X  Matrix of input data
XT  Matrix of restructured PLS scores
Y  Matrix of targets
σ  Variance
τ  Vector of scaled time frames

Subscripts
^  Predicted
¯  Mean
a, i, j, k, n, p  Counter
s  Scaled
turb  Turbidity

Introduction

Malt is a natural product which is exposed to vintage-induced 
variations. Consequently, occurring harvest quality variations 
on this raw product causes adaption in processing. Neverthe-
less, high and constant quality is an essential requirement 
concerning economic production of valuable beer.

Particularly, lautering is influenced by variations in malt 
properties. Lautering is known as one of the limiting pro-
cesses in several breweries. Therefore, short lautering time 
accompanied by corresponding wort quality represents a 
central demand. Particularly, the variations in malt qual-
ity are critical with respect to compliance of this necessity. 
Thus, breweries demand for malt fulfilling narrow specifi-
cations to prevent lautering problems prior to processing. 
However, it is shown quite often that standard malt analyt-
ics are not enough to predict malt with bad lautering abili-
ties. This statement is confirmed by investigations of the 
workgroup Vlb Berlin [1]. Factors like homogeneity or 
β-glucan content are known influencing factors on lautering 
time, indeed. Nevertheless, isolated factors are not suitable 
for a reliable performance criterion (e.g. Nischwitz et al. 
[2]). In contrast to filtration theory, investigations revealed 
that viscosity has limited impact on lautering velocity. 
Instead, it is obviously more influenced by particle size 
distribution of used grain. Particle size distribution is lately 

reasoned by malt texture and composition. Malt solution 
(detectable as friability via friabilimeter as a fast method) 
[3], which directly influences groating results, seems to 
play an important role on particle size distribution. Compo-
sition and change of protein fraction during mashing appear 
to have further impact. Protein starts to precipitate during 
mashing [4] and generates protein–carbohydrate complex, 
which proved to be lautering inhibiting (e.g. Moll et al. [5] 
or Sjoholm et al. [6]). The common malt analytics do not 
cover these areas of complex formation and interactions.

Further, studies investigate laboratory systems, which 
should predict lautering time in industrial scale. Such sys-
tems are usually time intensive and minor effective, since 
laboratory mash is filtered, but transfer of the results to 
industrial scale is only partially possible.

Each brewery aims at predicting the reasons for bottle-
necks in lautering as early as possible to react with suit-
able retaliatory actions. This means that a fast and reliable 
method has to be available to reject single malt batches 
already at delivery. This would also help in preparation 
for specific technological as well as control actions whilst 
brewing to minimize lautering problems.

NIR analytics provide the possibilities to close the gaps 
in malt analytics as well as in fast methods to predict lauter-
ing ability. The content of information is even higher once the 
whole spectral region is considered. This background is used 
in the current study. There are more or less distinct differences 
in the absorption bands which could be used for analysis. In 
the field of microbiology, bacteria and yeasts are distinguished 
on strain level after defined cultivation using a broader IR 
region as a fingerprint (e.g. Ellis et al. [7]). In addition, the 
potential of spectral evaluation was shown in earlier studies by 
extracting inaccessible process parameters [8]. The potential 
of NIR spectroscopy in predicting raw material quality as well 
as analysing the composition of food stuff (e.g. Nicolaï et al. 
[9]) was shown in diverse areas, too. In cereal technology, a 
wide range of applications based on NIR is presented (e.g. 
by using artificial neural networks for calibration, review by 
Goyal [10]). Amongst others, applications in brewing indus-
try, measuring protein and water, β-glucan content or solu-
tion progress of green malt are known (e.g. Meurens and Yan 
[11]). Appropriate calibrated devices are therefore standard in 
incoming goods inspection of malt houses. NIR spectroscopy 
was also applied to analyse germination properties of barley 
[12] or calibration on quality index of malt [13].

Aim of study

The aim of the present study is the establishment of a 
prediction method for lautering ability of different malt 
batches using NIR spectroscopy. Therefore, next to the 
existing quality evaluation of malt, a fingerprint adjusted 
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to the corresponding processing system is established. 
This fingerprint should be capable in classifying problem-
atic batches. To achieve this goal, the process step before 
(mashing) is kept constant. This should minimize its influ-
ence on the correlation between NIR spectra and lauter-
ing parameters. Finally, the NIR spectrum of a malt batch 
should be directly used as a rapid evaluation method for 
quality inspection. The NIR spectra were used for calibrat-
ing a PLS-DA model classifying the malt into the three dif-
ferent classes. Therefore, a “dummy” matrix of three col-
umns with entry one for class membership or zero for no 
class membership is needed as target for the PLS algorithm. 
This dummy matrix is created from the expert opinion on 
the lautering runs. Independent from this, two numerical 
possibilities were established for automatic process evalu-
ation and compared to expert opinion.

The following steps had to be developed and are 
explained in the next sections:

(1) Evaluation and classification of lautering processes 
(either by expert knowledge or by numerics)

(2) Processing of NIR spectra
(3) Establishing a fingerprint for prediction of quality by 

discriminant analysis.

The whole approach including all necessary and investi-
gated steps is summarized in the flow chart shown in Fig. 1.

Materials and methods

Data pool

Malt

Samples for adjustment of NIR measuring system were 
harvested between 2010 and 2012. The pilot plant trials 
were realized on two different barley types (Marthe and 
Grace) with differing malt qualities (variation of malt-
ing to reach different cytolytic and proteolytic solubility 
properties). Altogether, 11 pilsner malt single batches for 
lautering were employed. The reference analysis for malt 

Fig. 1  A flow chart of the 
whole calibration process [the 
two different input sources 
(pilot and industrial scale) are 
investigated independently]; 
NIR data serve as predictor, the 
expert opinion as target in the 
artificial matrix Y; as a side pro-
cess, two numerical possibilities 
were tested on the process data 
and compared to the expert 
opinion
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specifications was performed according to the standard 
methods of “Mitteleuropäische Brau- und Analysenkom-
mission” (Mebak) [14]. The ranges of malt specifications 
used are shown in Table 1. Malt samples with fat marked 
values were used to cover diverse quality.

NIR spectra

NIR-spectra were recorded using the Multi Purpose FT-
NIR spectrometer (MPA, Bruker Optik GmbH) without 
any sample preparation prior to analysis. The spectra were 
measured in reflection on full-corn samples in the range of 
800–2,500 nm with resolution of 8 cm−1 and 64 scans and 
transformed to absorption spectra by Fourier transform. 
Each spectrum was recorded in three different sample 
beakers to support the robustness of the calibration model. 
Investigating on sample shape (full corn, milled), the reso-
lution and number of scans as well as the choice of differ-
ent malt specification and the reference measurement can 
be found in Holtz et al. [15].

Process data lautering trials

The lautering process is used for separating the mash into 
insoluble parts of the grain and the liquid wort needed as 
base media for brewing. The process consists of three main 
steps: mashing out, recirculation and sparging. The trials 
for this study were performed in a pilot brew house scaled 
to 60 L of cast wort. This plant is equipped with a pro-
grammable logic control (PLC) system (PCS-7, Siemens). 
Several sensors to measure differential pressure, turbidity, 
original gravity, flow rate, temperature and total volume are 
mounted to the lauter tun.

On each malt type, three to nine repetitions were carried 
out resulting in a total of 51 lautering runs. Each run was 

carried out using 10 kg malt, ground using the institute’s 
two roller mill (Künzel Maschinenbau GmbH, Kulmbach, 
Germany) with a consistent milling gap of 0.8 mm. The 
mashing program with temperature rests of 62, 72, and 
78 °C/10 min, and a heating rate of 1 °C/min was fixed for 
all trials. Mashing was carried out with a ratio of 1 kg grist 
to 4 L water in each run. These two processing steps prior 
to lautering were kept as constant as possible to have most 
probable direct relation between malt properties and lauter-
ing performance.

The lautering itself was accomplished with a standard 
procedure described in the following. This recipe included 
a lauter rest of 10 min followed by 5 min turbid wort 
pumping with consistent valve and pump settings. Further, 
the lautering valve was set to a fixed value over the whole 
duration of lauter wort run (no control), since the mass 
flow was used as indicator for malt quality. Sparging was 
carried out with 20 L of water (78 °C) after a volume of 
20 L as well as 40 L of run-off wort. After finishing mash-
ing out, the raking machine was left out of the spent grain 
and first lowered to 50 mm at the same time the first sparg-
ing started in each process. The raking machine was low-
ered earlier just in case of no flow. The raking system was 
rotating with 0.75 m/min until the end of lautering. End 
of the process was manually set at a total lauter wort vol-
ume of 60 L. Finally, the lautering plots were sorted and 
interpreted to categories “good”, “normal” and “bad” using 
expert knowledge. These criteria are explained in the fol-
lowing paragraphs.

Data from industrial processes were collected over 
1 year from a German brewery. In processes investigated, 
only 100 % pilsner malt was used. The lautering program 
as well as the processing steps before was absolved by a 
typical step control, and conditions were kept constant 
according to the internal standards.

Table 1  Specification ranges of 
used malt samples (bold marked 
values are out of norm)

Analytics Mebak method Unit Norm values Minimum Maximum

Moisture 3.1.4.1 % 3–5 4.0 5.6

Extract 3.1.4.2.2 % d.m. 79–82 81.3 85.2

Viscosity (8.6 %) 3.1.4.4 mPas 1.450–1.600 1.426 1.607

Friability value 3.1.3.6.1 % >80 83.3 99.0

Steely kernels % <2.5 0.0 2.1

Appearance 3.1.4.2.6 Clear or opal Clear Opal

pH value 5.6–6.0 5.7 6.1

Raw protein 3.1.4.5.1.1 % d.m. 8.0–13.5 9.1 11.2

Soluble nitrogen 3.1.4.5.2.1 mg (100 g)−1 d.m. 550–750 538 793

Kolbach index 3.1.4.5.3 % 35–45 35.8 49.6

FAN 3.1.4.5.5.1 mg (100 g)−1 d.m. 120–160 123 202

β-Glucan 3.1.4.9.1.2 mg L−1 15 370

 
69 

 

   

COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Results 



 
 

 

   

1 3

Data processing

Interpretation and analysis of process data

There are three different approaches for the classification 
in this study; the first one is based on expert knowledge. 
Experienced brewers were asked to evaluate the typical 
process chart (as seen in Fig. 2). This figure shows the 
complexity of this task. Even though the main indicators 
are the trends for turbidity, rake system height, the pressure 
difference or the fill height (depending on the used equip-
ment) as well as the total process time, there are a lot of 

more influencing factors. Therefore, it is quite hard to give 
a detailed explanation here.

The second approach is based on a multivariate method 
taken from the toolbox of multivariate statistical process 
control (MSPC). This method uses the full-process data as 
input for a PLS regression (here the volume as target) and 
a subsequent PCA on the resulting T-scores. The resulting 
residual matrix from this investigation is taken for calculat-
ing the “residual standard deviation”—the more similar a 
process is to the calibration data, the lower this value is. 
The whole approach was not influenced by the expert clas-
sification except for the used calibration processes.

Fig. 2  Good (top) and bad 
(bottom) lautering progress of 
industrial brewery; red dotted 
step number, blue dotted lauter-
ing wort, green dotted rake 
system, blue line pressure dif-
ference, light blue dotted mass 
flow sparging water, red line 
original gravity, light blue line 
speed of rake system, magenta 
line integral of mass flow, yel‑
low dotted turbidity, black line 
sparging water volume; both 
diagrams are showing two dif-
ferent qualities of process runs. 
This is clearly visible when just 
taking the yellow dotted trend 
(turbidity), the green dotted 
trend (height of rake system) 
as well as the duration of each 
process (time axis). Two of 
the main criteria are turbidity 
trend (below or above 40 EBC) 
as well as the total process 
time—in these two examples, 
these criteria are clearly fulfilled 
for both classifications (good 
and bad)
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The third numerical possibility is named single trend 
analysis (STA). Here, each of the mentioned trends is ana-
lysed individually to achieve a numerical representation of 
each process individually. The result is an [n × 1] vector 
for each process, where n depends on the number of taken 
trends for representation. This method was followed by an 
automatic k-means cluster analysis. The only connection to 
the expert opinion is the matching error used whilst iterat-
ing over the numerical values from individual trends taken 
into the n-dimensional vector for each process.

The used categories or classes were “good”, “normal” 
and “bad”. The timeline of the extract in combination with 
start of sparging water is used to divide the process into 
relevant investigation areas. Figure 3 shows the charac-
teristic points of the extract trend. Point one indicates the 
start of first wort run. Second point indicates start of sparg-
ing water which has to be considered as a disturbance of 
the system. Each procedure induced by manual as well as 
automatic control implicates an indirect influence on malt 
properties or conceals the direct influence of properties, 
respectively. With respect to the controlled industrial pro-
cesses, this fragmentation provides the possibility to give 
different weights to each of the different areas. The inflec-
tion point in the extract curve implies the end of first wort 
run (point 3, the whole first wort is displaced from spent 
grains). Finally, point 4 represents the end of lautering run, 
the break-even point of last water.

Evaluation of processes by experts is time-consuming 
and contains the possibility for errors. In this study, it was 
tried to establish mathematical procedures for process eval-
uation as well. The next paragraphs will explain the pos-
sibility of either single trend analysis (STA) of significant 
process trends or methods of multivariate statistical process 
control (MSPC).

Measurements in original magnitude are not presented 
in this work, since each lautering tun is having its individ-
ual settings, sensors and sensor readings, respectively.

Single trend analysis (STA) First, different approaches 
for discretization of single sensor trends were investigated. 
Therefore, single processes were divided into temporal sec-
tions according to the extract trend. The different relevant 
time points such as first recast are indicated in Fig. 3. Fur-
ther, the trends of turbidity, volume flow, volume, posi-
tion of rake system, fill level and pressure difference were 
discretized in different approaches and taken into account. 
These are explained in the following paragraphs.

Turbidity One of the main quality criteria is the maximal 
turbidity of a lautering process. Here, the trend was divided 
into several horizontal areas for numerical expression. 
Afterwards, the time the trend line is present in individual 
areas is summed up. Finally, these values are related to the 
total time and multiplied with a vector w of weight factors 
to one single value (Eqs. 1, 2).

The vector τ contains the scaled values for the corre-
sponding areas. Here, j resembles the respective area (d; 16 
for industrial, 21 for pilot plant trials) and n how often the 
trend entered this area.

The vector is multiplied with a vector of weight factors 
resulting in a representative numerical value. The weights 
are distributed linearly from 1/d (first area, 0–5 EBC) until 

(1)τ j =

∑n
i=1

(

tout,i − tin,i

)

ttotal

(2)xturb,p = τ
T
p ∗ w

Fig. 3  Schematic extract trend 
line whilst lautering; the mark-
ers indicate characteristic time 
points: 1 defined start point, 2 
start of sparging, 3 inflection 
point and 4 defined end point
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1 (last area). This results in higher final values for pro-
cesses with higher turbidity. This is caused by bigger tem-
poral values in high turbidity areas which are additionally 
weighted stronger.

Rake system position and volume flow The numerical val-
ues for rake system position are calculated as sum of time 
under a specific threshold. This threshold is plant specific 
and represents a deep cut. These cuts are necessary as soon 
as the cake density is too high. The higher the density, the 
lower the volume flow rate falls. Therefore, adjusts the pro-
cess to a more comparable status despite taking deep cuts 
into account. A similar value was calculated for the volume 
flow.

Pressure difference The pressure difference reflects the 
progress of filter cake resistance. The average slope of the 
difference until the first recast as well as the ratio between 
start and end difference were taken as representative numer-
ical values.

All these extracted values were compared in different 
combinations as input to a cluster analysis using K-means. 
Afterwards, the result was compared to the choice of the 
experts.

K‑means K-means classifies n data points into k different 
classes Sj, whereas µj resembles the centroid of each class. 
The data point n is represented as a vector x containing the 
different combinations of the above-mentioned extracted 
values. To reach optimal class division, the sum-of-squares 
criterion in Eq. 3 is minimized.

New data points are classified by the minimal distance to 
each of the cluster centre (Eq. 4).

Multivariate statistical process control (MSPC) MSPC is 
used to create statistically supported process trajectories for 

(3)SSE =

k
∑

j=1

∑

xn∈Sj

∣

∣xn − µj

∣

∣

2

(4)class = min
(

d
(

Sj, xi

))

the control of processes. To extract these trajectories, a num-
ber of optimal processes and their sensor trends are used. 
The approach used in the present study is based on a method 
developed by Wold et al. [16, 17]. Compared to other meth-
ods of MSPC, this method is advantageous in its adaption to 
the existing issue. One of the reasons for this is the usage of 
“unfold-PLS” (usage of PLS on unfolded three-dimensional 
data matrix). Here, the interpretation of results is somewhat 
easier compared to other methods, such as multiway-PCA, 
multiway-PLS or truly tri-linear decomposition [16–18]. 
Further, the method is divided into three different levels of 
process control. This helps to modulate different aspects of 
analysis such as individual observations (Level 1), the evo-
lution of processes (Level 2) and the processes as a whole 
(Level 3).

The quality comparison of individual processes is aimed 
in the present study. The aspects of process control of the 
presented method are therefore renounced. The principle of 
extracting relevant information out of the existing data pool 
is shown in Fig. 4. Therefore, the process data is adapted 
to equal length. Here, a defined wort volume served as cri-
teria for the new “sampling frequency”. Afterwards the re-
digitized data are calibrated to the volume as target vector 
using PLS. The calculated scores are restructured for a sub-
sequent PCA analysis to investigate the variance of these 
scores over the temporal process trends.

Finally, the residual matrix is calculated using a defined 
number of components (criteria: explained variance of 
restructured matrix XT). In the end, the residual standard 
deviation (RSD) is calculated for each process (Eq. 5):

where ei resembles the residual vector of a single pro-
cess, n the number of used PLS components for genera-
tion of matrix XT, k the number of used variables (online-
sensor data) and d the number of used PCA components 
(T-scores). The used processes for calibrating this proce-
dure are qualified as “good” based upon expert knowledge. 
Extracted PLS und PCA components are further used to 

(5)RSDi =

√

∑n
1 e

2
i

(k − d)

Fig. 4  Schematic explanation of MSPC method by S. Wold et al.; 
“re-digitizing” of processes to equal data length (orientation on maxi-
mal volume), PLS calibration on volume, restructuring of PLS score 

vectors, PCA analysis of this matrix, calculation of residual matrix E 
after extraction of a defined number of components
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decompose new processes calculating their RSD. This 
value describes how good a certain process fits to the model 
based on good processes; hence, it gives gradual deviation 
of single processes.

Pre‑processing of NIR spectra

Extracting relevant information often proves to be difficult 
due to a variety of influences. This underlines the necessity 
for appropriate pre-processing. The data matrix X consist 
of NIR spectra oriented row wise (objects). Each column 
represents the absorption values calculated form the meas-
ured reflection spectra at a specific wavelength (variables). 
One can differentiate between row- and column-wise pre-
processing. Row-wise pre-processing is used to reduce 
physical influences such as light scattering in spectra. This 
can be caused by differing particle material. Such effects 
can be multiplicative and thereby explain a general slope 
difference compared to the reference signal. In this study, 
the algorithms named multiplicative scatter correction 
(MSC) and standard normal variate (SNV) were applied. 
Further, algorithms to calculate the first or second deriva-
tive used to correct a possible baseline shift were used. The 
named methods are most common in pre-processing of 
light spectra in multivariate data analysis [19].

Column-wise pre-processing is aiming at comparabil-
ity in absolute values of different variables (auto-scaling), 
easier interpretation of results (mean centring) and reduc-
tion in signal noise (variable stability scaling, VAST). In 
case of discriminant analysis, group-specific differences 
can be implemented by supervised variable stability scaling 
(sVAST) [19, 20].

All mentioned transformations (spectral and variable 
pre-processing) were used in the present study. Those 
methods are quite common in the field of multivariate 
data analysis and described well in the literature. A good 
summary of scaling and pre-processing algorithms can be 
found amongst other methods in Axelson [19].

Spectral smoothing and derivatives using Savitzky–Golay 
filter One of the most used algorithms in pre-processing 
light spectra is the Savitzky–Golay function. This algorithm 
can be used as a numerical smoothing algorithm. Here, the 
spectral values are smoothed by fitting a polynomial using a 
predefined number of sampling points.

Another possibility to increase the useful data content is 
the baseline correction via numerical derivatives. This can 
be done using the Savitzky–Golay algorithm as well by 
differentiating the polynomials over the chosen sampling 
points. The parameters “sampling points” and “polynomial 
degree” have to be adapted according to the present data. 
In this study, the optimal choice is investigated by iterating 
between 11 and 25 sampling points (n) and a polynomial 

degree between 3 and 7 (p) (results not shown). The best 
prediction accuracy of 85 % is achieved using n = 13 and 
p = 3 for data from pilot trials.

Multivariate model development

The data evaluation, projecting spectra on quality criteria 
received from lautering processes, is based on multivariate 
data analysis. These methods are used to build a relation 
between dependent and independent variables [21]. Over 
the last decades, those multivariate data analysis algorithms 
were established in the field of spectral NIR analysis (see 
Kessler [20]). Particularly, the use of partial least squares 
regression (PLSR) showed to be beneficial compared to 
other methods. In contrast to multilinear regression (MLR) 
or principal component regression (PCR), PLSR is taking 
the relation between dependent and independent variables 
into account. This is achieved by the correlation between 
dependent and independent variables prior calculating the 
components. The success of PLSR in interpretation of NIR 
spectra can be seen in several fields (e.g. Nicolaï et al. [9]).

The background of PLSR is PCA. The data matrix 
is transformed into latent variables. Based on the algo-
rithm, the decomposition results amongst others in scores 
(T) and loadings (P). The final regression model is calcu-
lated between these components and matrix Y (targets) 
rather than based on the original variables. The underly-
ing mathematical driving force for decomposition is given 
by the statistical variance in the data. A detailed descrip-
tion of the background can be found in Kessler [20]. The 
algorithms used for decomposition were either “nonlinear 
iterative partial least squares” (NIPALS) (see Wold [22]) 
or kernel algorithm (see Lindgren et al. [23]). Descrip-
tion of NIPALS algorithm can be found in various litera-
tures (e.g. Kessler [20] or Krause et al. [24]). In addition, 
it was shown earlier that calculating principal components 
for PLS regression, using the kernel algorithm, requires 
less computational effort than NIPALS algorithm. This 
method is based on eigenvectors of the kernel matrix [17, 
23], which is calculated by XTYYTX. In contrast to the 
well-known singular value decomposition (SVD) [25], the 
components are calculated iteratively according to the mag-
nitude of eigenvalues. Prior calculating the new next com-
ponent, the data matrix is deflated [23]. The used code in 
this study was adapted for more objects than variables by 
De Jong [26], based on Lindgren.

After calculation of latent variables, calculation of 
regression coefficients B between X and Y was carried out 
using a relation proposed by Martens and Naes [27]. The 
final model calculating the group membership is given by 
Eq. 6.

(6)Ŷ = X · B + 1 · b0
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where Ŷ resembles the predicted target matrix, X the matrix 
of predictors, B the matrix of regression coefficients, 1 a 
column vector of ones and b0 a vector of intercepts.

Choice of appropriate number of components The selec-
tion of the suitable number of principal components (PCs) 
for modelling the desired correlation is often critical. In the 
present study, it is dependent on how good the relationship 
between lautering data and NIR spectra is reflected. In gen-
eral, the choice can be based on different criteria [27]. Using 
the minimal predicting error, as a condition for determining 
the number of components, is one of the most popular meth-
ods. Here, the root mean square error (RMSE) is calculated. 
In this study, the RMSE of cross-validation as well as the 
RMSE of validation is used. The background of calculation 
can be found in the literature (e.g. Kessler [20]). Finally, the 
choice of the number of components is indicated by the low-
est error or highest accuracy. In parallel, this method was 
supported by calculating the explained variance σexplained of 
X data (Eq. 7) [28].

where ta represents the score, pa the loading vector of the 
ath component and X the data matrix of predictors. Both 
methods were used for modelling the prediction of lauter-
ing ability.

Partial least squares: discriminant analysis Partial least 
squares (PLS) as standard method for regression of light 
spectra was originally not established for statistical discrim-
ination. But it was already used for this purpose quite often 
[29]. However, plenty of other possibilities are existing in 
the area of cluster analysis. Examples like K-means or sup-
port vector machines (e.g. Serrano et al. [30]) are used as 
algorithms either on scores of a PCA or PLS analysis or 
directly on the original variables or properties of the present 
problem [30, 31]. Further, an extension of the PLS regres-
sion was proposed (see Barker and Rayens [29] or Nocairï 
et al. [29, 32]). In this method, the target values (groups or 
classes) are replaced by a dummy matrix of orthogonal unit 
vectors (Eq. 8).

The group membership to either of the k groups is 
indicated by lk, i resembles the corresponding object 
(1…n spectra). Afterwards, the matrix X of spec-
tra is analysed in combination with dummy matrix Y 
using PLS. The extracted loadings of this decomposi-
tion are used to establish a regression model. The cal-
culated regression coefficients can be used for class 

(7)
σexplained

σtotal

=

∑A
a=1 tT

a tapT
a pa

trXTX

(8)Yki def
=

{

1, yi = lk
0, yi �= lk

membership prediction. The predicted decimal values 
have to be transformed to binary values. The thresholds 
for this transformation were detected using iteration on 
each class individual (e.g. 0.45 for class one, results 
not shown). The threshold values with the maximal cor-
rect classified objects for each class (training data) were 
taken for further analysis.

Finally, using PLS-DA needs adaption of prediction 
accuracy calculation. The calculation is shown in Eq. 9. 
In this study, only predictions with clear classification 
were accepted. Double classifications such as [1 1 0] were 
treated as wrong. Exceptions were made in case of unclear 
classification even within the expert’s choice.

Post‑processing

Variable selection The full NIR spectrum of a malt sample 
contains a variety of information. There are regions, which 
are not really contributing with importance to predict cer-
tain features. Particularly in the case of high signal-to-noise 
ratio, in specific signal regions, it is important to exclude 
non-informative or noisy areas, which strongly contributes 
to model stability.

The possibilities of variable selection are manifold [33]. 
Focus in this study was given on “net analyte signal” (NAS, 
Eq. 10), the scaled regression coefficients Bs and the vari-
able importance in the projection ((VIP), Eq. 11).

For calculating the NAS, regression vector b and the 
predicted value y are necessary. Using Eq. 10, a signal x is 
calculated which just contains values of high magnitude at 
important areas of the signal. Calculating and averaging all 
signals on samples of calibration make it possible to isolate 
important signal regions.

The calculation of scaled regression coefficients is 
achieved automatically whilst constructing the regression 
model. They also contain information due to importance of 
single variables (see Teófilo et al. [33]).

The third method (VIP, Eq. 11) is based on calculat-
ing the projection part of single variable j in relation to y. 
This is done with increasing number of components (A, a) 
using scores t and the corresponding loadings (w and c). If 
these single numeric values provide a significant contribu-
tion, higher contributions of this variable to the target are 
expected [34].

(9)Q % =

∑

correct predicted
∑

all objects
· 100

(10)xnas
i =

ŷi

bTb
· b

(11)VIPj =

√

√

√

√

n ·
∑A

a=1 w2
jac2

atT
a ta

∑A
a=1 c2

atT
a ta
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This is done with increasing number of components (A, 
a) using scores t and the corresponding loadings (w and c). 
If these single numeric values provide a significant contri-
bution, higher contributions of this variable to the target are 
expected [34].

The effectiveness of these methods is dependent, 
amongst others, on the present data [33]. Further it was 
reported that reducing the input variables by less informa-
tive areas should be supported by several methods.

Outlier detection (Angle‑based outlier factor) The calcu-
lation of an ABOF is shown in Eq. 12. Here, each point in 
multidimensional space is regarded as outlier if the variance 
of its angle to all the other points in the cluster is low. If the 
variance is big, the point is more likely located in the centre 
of the cluster.

The calculated angle between sP, b and c (numerator) is 
relativized by its spatial distance (denominator). The prin-
ciple is explained in Kriegel et al. [35]. The data extracted 
from STA analysis and their combinations were taken as 
basis for this investigation. The ABOF algorithm was used 
to analyse results from STA investigation to check the Y 
data for outliers.

(12)ABOF
�

sp

�

= Varb,c,εM/bp





�

bsp, csp

�

�

�bsp

�

�

2
·
�

�csp

�

�

2





Statistical outlier detection Various methods calculating 
outliers in a multivariate data pool are presented in the lit-
erature (e.g. Martens and Naes [27]). In the present study, a 
method based on the leverage of an object combined with 
the ratio of residual variance after decomposition to the 
maximum variance [20, 36] is used. Calculation of sample 
leverage (Eq. 13) was done using the extracted scores from 
decomposition procedure. This is reflecting the influence of 
one sample on the final regression model. The residual vari-
ance (Eq. 14) is huge for objects, which contain irrelevant 
information (X data) or are badly described by the model (Y 
data), respectively.

where n is the number of objects (samples), tia the 
score value of sample i and ta the score vector of the ath 
component.

Results and discussion

Combination of data pre-processing algorithms

Based on the present issue, the decision on pre-processing 
algorithms as well as the areas of importance in the spec-
tra a priori is not possible. Such a decision could lead to 
unwanted loss of information, since even wet chemi-
cal analysis did not lead to clear relations between single 
chemical compounds and their influence on filtration per-
formance yet. Therefore, the aim of this study is a data-
driven “fingerprint”. As a consequence, data-driven choice 
of algorithms based on whole spectral information was 

(13)hi =
1

n

A
∑

a=1

(

t2
ia

tT
a ta

)

(14)Vt =
residualsamplevariance

totalvariance

Fig. 5  Possible combinations of single pre-processing algorithms for 
NIR spectra; the pre-processing due to light scattering (left) can be 
combined with derivatives (middle) and with different variable pre-
processing (right)
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Fig. 6  Graphical proof of generated (artificial) unmasked three-dimensional three-class problem; left three original classes (triangles, squares 
and circles); right prediction of classes via PLS-DA–classes are clearly predicted
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established. Iterations were performed to decide, which 
combination of pre-processing algorithms fits best, whereas 
the prediction error serves as decision criterion. All possi-
ble combinations are displayed in Fig. 5. The best predic-
tion accuracy was achieved combining either SNV or MSC 
together with the first derivative and VAST.

Creating the prediction model using discriminant analysis

The aim of this study was the prediction of malt qual-
ity in relation to its lautering performance. Therefore, a 
rough classification should be established. These classes 
are provided by experts grading the process trends. The 
subsequent prediction should be based on the correlation 
between NIR spectra on malt kernels collected in labora-
tory and expert classification. Such kind of regressions falls 
within the scope of discriminant analysis. One of the main 
problems reported in the literature is the so-called mask-
ing problem. This means that predicting one out of three 
classes could not be achieved, since it is masked by the 
other groups [31, 37]. If these classes are aligned in the 
three-dimensional space, the predictions using the coordi-
nates in the X-matrix lead to one class taking values around 
0.5 in each Y-coordinate. One solution would be extend-
ing the original X-matrix prior to regression by a nonlin-
ear extension. Extending the X-matrix by a polynomial of 
second order to crisper classification, each class coordinate 
(Y-matrix) gets values which supports the class member-
ship. Furthermore, Fig. 6 shows another trial of a gener-
ated (artificial) three-dimensional three-class problem. The 
classes presented here are unmasked. The predictions also 
present a crisp classification of individual classes. This 
graphical representation proofs that masking is just occur-
ring in special cases, where classes are somewhat lined up 
with each other.

For this reason, the presented classification problem 
for processability of malt was also graphically investi-
gated, if masking is occurring. The result is shown in Fig. 7 

indicating that each class has clearly different coordinates 
than the others. It can be concluded that masking effect is 
not existing. Since this multidimensional problem is more 
difficult to proof graphically, further studies on proofing a 
masking effect are necessary in future.

The final results of the classification model achieved on 
the data collected via pilot plant trials using the presented 
algorithms as well as the corresponding calibration and val-
idation sets are summed up in Table 2.

Variable selection

The presented methods (NAS, Bs and VIP) were compared 
to reduce the amount of input variables without deteriora-
tion in the prediction accuracy. The achieved results using 
VIP, which proved best performance, are shown in Fig. 8. 
The representation on top shows the absolute values of VIP 
(summed for all three groups). The figure at the bottom 
represents a typical NIR spectrum with areas of character-
istic influence on model predictions, detected by VIP (red 
marked). A reduction in input variables (wavelengths) of 
51.6 % could be achieved using this kind of variable selec-
tion whilst prediction error not influenced.

Verification using industrial data

The lautering data of an industrial brewery were analysed 
by experts to fit into the categories “good”, “normal” and 
“bad”. These process data are influenced by the control, 
which is necessary to achieve most optimal results. In 
this evaluation, the height of the rake system has to be 
taken into account. Therefore, it has to be analysed that 
whether an increase in turbidity is caused by the influence 
of rake system control, lautering valve or the malt quality 
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Fig. 7  Three-class problem—predicting malt quality; proof for no 
masking effect occurring; circles predicted as group one, triangles 
predicted as group three, squares predicted as group two, crosses 
samples completely predicted wrong

Table 2  Final configuration of prediction model; size of the used 
data set, pre-processing of data matrix, number of used components 
for regression and prediction accuracy

Data set 52 lautering trials; each 3 NIR spectra (malt 
kernel)

Pre-processing 
methods

First derivative via Savitzky–Golay filter, n = 13 
and p = 3

Multiplicative scatter correction or standard nor-
mal variate (MSC or SNV)

Variable stability scaling (VAST)

Number of  
components

5 PLS components

Calibration Validation

Number of objects 124 32

Prediction accuracy 92.7 % 90.6 %

Number of wrong 
predicted processes

3 1

 
76 

 

   

COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Results 



 
 

 

   

1 3

itself. To characterize lautering performance accord-
ing to the malt quality, these technically induced effects 
were not taken into account by the experts. Additionally, 
the same criteria for classification into these three groups 
were taken to ensure comparability to pilot trials. A good 
lautering progress is shown in Fig. 2, top. The turbid-
ity decreases in the beginning and stays below 40 EBC. 
A bad lautering progress is shown in Fig. 2, bottom. The 
turbidity proceeds almost the whole lautering time above 
40 EBC. The rake system is run deep to keep the volume 
flow upright.

Single trend analysis

A comparison between expert classification and K-means 
analysis on the basis of rake system, turbidity and lautering 

time is shown in Fig. 9. The colours resemble classification 
by K-means on STA values, and labels indicate classifica-
tion by experts. This comparison coincide with 85 % (14 
processes of 94 were not matched).

Multivariate statistical process control (MSPC)

Iteration on threshold to achieve a classification in three 
classes according to the quality using aforementioned RSD 
had to be realized. This iteration was executed in compari-
son with the expert’s classification. The calculated RSD of 
all investigated processes is shown in Fig. 10. The colours 
resemble the membership to the individual group, which 
are defined by the iterative thresholds. The comparison 
between experts and RSD coincide with 84 % (15 pro-
cesses out of 94 not matched).

Fig. 8  Top absolute values of “variable importance in projection” 
(VIP) for variable selection (calculated and summed up for all three 
groups); bottom: typical NIR spectrum for malt kernels; grey marked 

areas were detected as distinctive by VIP reducing the input matrix by 
51 % of total variables (wavelength)
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Discriminant analysis of industrial data

The coherences achieved with pilot trials should finally be 
validated using industrial data. The used data sets, the final 
processing and the best prediction error are summarized 

in Table 3. The result of this analysis is shown in Fig. 11. 
Green circles indicate correct predictions, and red crosses 
indicate incorrect predictions. The bases of this visualiza-
tion are values extracted via STA. The created calibration 
model for industrial data is based on 21 PLS components. 
This comparably high number could, amongst others, be 
related to the lower resolution of industrial NIR spectra (16 
wave numbers). Additionally, several processes were just 
provided with two malt spectra. Finally, it may be assumed 
that the different number of objects per group influences 
the result as well [32].

In addition, pattern not included in calibration could 
not be correctly predicted either. All these mentioned 
points will be basis for further research. Another aspect 
is the analysis of outliers. Two possible ways which were 
applied to the present issue are described in the following 
paragraphs.

Outlier detection

Outlier detection was performed due to the lower accuracy 
in industrial data. According to the literature, a variety of 
methods based on different background are existing. One 
of the presented methods is the angle-based outlier factor 
(ABOF), and the other method is used in multivariate sta-
tistics [20, 36].
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Fig. 9  Graphical representation of K-means results on the basis of 
rake system, turbidity value and the end point of lautering in com-
parison with the expert classification; triangles indicate bad, squares 
the normal and circles the good processes classified by K-means; g 
resembles good, s normal and b bad processes classified by experts. 
In case of data points labelled with two letters, a clear classifica-
tion by experts was not possible; the maximum matching achieved 
between experts, and K-means classification on single trend analysis 
(STA) was 85 %
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was 84 %. Bad (b) batches are coloured black, normal (s) as grey and 
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For ABOF analysis, the data extracted from STA were 
used. Iterations on these different parameters in different 
combinations are performed aiming to find thresholds to 
define the four misclassified processes as outliers. Using 
this method, the y data (processes) were analysed for outly-
ing data points. In the optimal combination of parameters 
and thresholds, these four processes could be defined as 
outliers. Nevertheless, 20 other processes were classified 
as outliers as well. Consequently, the presented approach 
is not suitable under the given circumstances and assump-
tions. The result of the comparison between leverage and 
residual variance of industrial x data is shown in Fig. 12. 
Although just a few points could be regarded as outliers, 
since they are in the area up right resembling high influence 
on the model and still being poorly described, no coher-
ence between these points and the misclassified processes 
was visible. In conclusion, it can be said that further inves-
tigations are necessary for achieving a meaningful outlier 
analysis.

Conclusion and outlook

In this study, it was shown that NIR fingerprints of malt 
kernels can be used to predict lautering performance. This 
was achieved by calibrating NIR spectra to expert classi-
fication on lautering runs. Three classes based on expert 
knowledge were defined, namely “good”, “normal” and 
“bad”. The study was based on investigating different data 
pre-processing, processing and post-processing algorithms.

The development of best possible algorithm combination 
for data processing and model generation was performed 
based on pilot plant trials. Afterwards, it was validated using 
industrial data. The best prediction accuracy was reached 
using either standard normal variate (SNV) or multiplicative 
scatter correction (MSC) combined with the first derivative 
as spectral and variable stability scaling (VAST) as vari-
able pre-processing. The calibration model was based on 
discriminant analysis and PLS (PLS-DA). The prediction 
accuracy for validation in relation to the expert classification 
“good”, “normal” and “bad” was 90.6 % with five compo-
nents and 76.6 % with 21 components for pilot and indus-
trial data, respectively. Model development was performed 
on full kernel NIR spectra with a resolution of 8 wave 
numbers and 64 scans. The lower accuracy as well as the 
high number of components for industrial data is amongst 
others caused by lower resolution of spectra. Further influ-
ences are the limited number of patterns for calibration. It 
might be reasonable to assume that non-existing patterns 
in calibration result in faulty predictions. Both could be 
solved by either change of the data recording or continuous 
extension of data pool. Additionally, different number of 
objects per group for calibration can influence the predic-
tion accuracy [32]. Another aspect is the loss of information 
whilst pre-processing of data. The used algorithms reduced 
noise caused by physical effects such as light scattering. It 
is conceivable that this information could provide a con-
tribution to a better prediction using adapted treatment. To 
what extend these points in the present investigation can be 
influenced and solved will be the aim of further research. In 
addition, the method for classification should be compared 
to other approaches presented in the literature (such as com-
bination of support vector machines (SVM) and particle 
swarm optimization (PSO), Melgani and Bazi [38] or tabu 
search, PSO and SVM, Chuang et al. [39]). Furthermore, 
spectroscopic data treatment could be enhanced by multiple 
regression systems (see Benoudjit et al. [40]). It has to be 
mentioned that the studies on variable selection and outlier 
detection could also contribute to stability and improvement 
of models. The investigations performed so far showed first 
positive results. Nevertheless, these points as well as the 
relation between the presented results and the biochemical 
background should be further treated. The latter could be 
achieved for example by empirical or synthetic calibration 

Table 3  Final configuration of prediction model for industrial pro-
cesses; size of the used data set, pre-processing of data matrix, num-
ber of used components for regression and prediction accuracy

Data set 94 Lautering trials; each min 2 NIR spectra 
(malt kernel)

Pre-processing  
methods

First derivative via Savitzky–Golay filter, 
n = 25 and p = 3

Multiplicative scatter correction (MSC)

Variable stability scaling (VAST)

Number of components 21 PLS components

Calibration Validation

Number of objects 188 46

Prediction accuracy 93.7 % 76.6 %

Number of wrong 
predicted processes

11 9
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Fig. 11  Result of calibration and validation of industrial data; circles 
indicate correct, crosses false predictions; in total, 20 out of 234 data 
points were predicted incorrect (11 out of 188 in calibration, 9 out 
of 46 in validation); graphical presentation of results based on STA 
analysis
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(see Shi et al. [41]) as well as more intense investigations on 
the relation to the reference methods presented.

In the present study, the use of uniform malt samples was 
intentionally to prevent inhomogeneity in the raw mate-
rial. Further investigations should also take malt blends 
and special malts into account. Aim should be to validate 
the functioning of the established method. A further aim 
should be the possibility to directly influence the lautering 
performance by specific manipulation of malt grist through 
blending of differently qualified raw material. Here, inves-
tigations on variation of process steps grinding and mash-
ing should be performed. These can have a big impact on 
lautering, as well. To what extend these investigations could 
be used for recommendations according to adjustments of 
these two process steps remains to be analysed.

The possibilities of automatic qualification of lauter-
ing processes showed quite promising results. This leads to 
reduction in expert efforts, respectively. A match of 85 % 
between single trend analysis and expert qualification as 
well as 84 % between multivariate statistical process con-
trol (MSPC) and expert qualification was achieved. Since 
almost each lautering tun is having its individual settings, 
sensors and sensor readings, respectively, usage of any of the 
presented approaches has to be adapted to each problem of 
interest individual, which is counting for most of the exist-
ing, data-driven models. It has to be investigated that how 
far these methods can be adapted to be easily transferred 

to other brewing plants and recipes. Therefore, inputs and 
methods for processing should be analysed in greater depth.

Finally, it remains to be said that the presented investiga-
tions were limited due to harvesting years. This does not 
cover seasonal variations of raw material quality. It is most 
reasonable to expect an influence on the presented method 
by differences in harvesting year, since changes in the 
composition of raw material is most likely. Those changes 
already influence more simple correlations like NIR to pro-
tein content. For this purpose, a method for automatically 
adapting the models by means of a moving average filter 
should be investigated.
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In this work, amethodology combining process knowledgewith computational efforts is presented. The aim is to
create a self-organizing sensor network capable of getting over sensor failures. First, multivariate linear and non-
linear models are utilized creating a search space based on the multi-sensor data pool. Simple correlations
between the raw data retrieved from several sensors are used for extracting multivariate statistical process
control trajectories. Those differentmodels are scored by swarm intelligence (particle swarmoptimization) lead-
ing to the optimal sensor/model combination at certain time step aiming at determination of the fermentation
trajectory in combination with sensor output validation.
The results on online data indicate the possibility ofmore robust onlinemonitoring using the swarm sensing idea
for biotechnological processes to insure optimal and timely effective processing as well as sensor failure detec-
tion. Adjustments of the basic algorithms, cost function, accuracy of output as well as the dynamic behaviour
are addressed. This methodology is not restricted to the number of sensor inputs as well as the use of specific
sensor readings, which makes it beneficial over other approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Increase of transparency of individual processing steps achieving
accurate production is one of the major goals in bioprocess monitoring.
This includes online monitoring of system variables, where immediate
online measurement of leading process variables like substrate as well
as biomass concentration is generally not possible.

Furthermore, comprehensive quality control of running processes
has to be addressed. Additionally, stable and effective monitoring of
industrial biotechnological applications requires a variety of sensor
systems. Those are generally exposed to influencing side effects like
temperature dependency associated with changes in by-products, gas
bubbles and complex process behaviour resulting in corrupted sensor
information. Also, existing sensorsmake up a big part in costs and safety
for the whole plant concerning service, maintenance and usage (over-
view in [1]). Moreover, sensor data are used mostly independently
from each other for monitoring. The full potential of such a data pool,
if all information is used for control, is rarely tapped. The connectivity
of sensors in most biotechnological applications is not among each
other but embedded in a central hierarchical structure (field, process
and enterprise level). The measured signals merge for the first time on
the process level and can be used by the operator for process guidance.
A direct communication with each other is not existing and feedback to
field level is rare. Literature reports studies, which deal with interacting

sensors [2–5] as well as processing of their data [6,7]. Thereby, mobile
sensor networks as an early warning system of forest fires [5] or the
maintenance for historical buildings [2] were established. The single
components act independently from each other but react to signals of
other sensors taking their position and environmental conditions into
account. The application, whichwill be controlled by the corresponding
network will only take decisions based on several independent signals.
Further investigations on swarm intelligent based sensor network
communication can be found in Hase [8]. The principle of an “intelligent
swarm” of sensors is established in other studies [4,5], too. The usage of
swarm algorithms for optimization increased through the past decades
[9–13]. One of themost famous algorithms is “particle swarm optimiza-
tion” (PSO),which is based on the behaviour of birds or fish swarm [11].
This algorithm is known to solve highly non-linear and dynamic prob-
lems such as bioprocesses [14]. Furthermore, this algorithm has the
ability to perform independent from integrated process knowledge
using a suitable cost function. Reports from different fields like process
engineering or mechanical engineering [9,14–20] as well as the choice
of suitable wave length for multivariate prediction models show the
successful application of swarm intelligence. Wolf et al. (2009) reports
on the optimization and control of a biogas plant comparing PSO and
a genetic algorithm (GA). Here, PSO needed less computational time
with respect to convergence on a simulation result [14]. Another com-
parison betweenGA, ant colony optimization (ACO), PSO and simulated
annealing (SA) by Abraham et al. (2006) resulted in better solutions
from PSO and ACO (mostly better standard deviations compared to SA
and GA) [9]. Finally it has to be mentioned, that the usage of swarm
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intelligence (SI) is favourable with respect to simplicity, flexibility and
fast convergence [9,16,21] as well as robust and almost optimal
solutions [11]. Additional benefits and advantages are their memory
and learning capability (e. g. ACO, Blum and Roli [22]). Comparing PSO
to other metaheuristic algorithms results usually in more parameters
to tune and/or more equations and thus more calculation steps (e. g.
GA, ACO). Nevertheless, it is generally possible to tune any algorithm
and its parameters to find tracks on which they work better than
other ones. One difference and advantage of PSO over many other
metaheuristic methods is the small amount of tuneable parameters
and the simplicity of only having two equations. The challenge is always
the adaption of algorithm parameters, the choice of the cost function
and the convergence criterion as well as the boundary conditions.

The implementation in biotechnological applications with the
mentioned properties is mostly realized on isolated applications of sin-
gle methods or devices acting on their own. Those are rarely applied in
industry. In contrast to the mentioned applications, the presented study
reports amethodologywhichwill find the optimal solution out of a pool
of process solutions (multivariate trajectories). Therefore, computation-
al intelligence in combination with multivariate statistical process
control is used to establish a sensor network being capable of online
measurements, self-control and detection of corrupted data/sensors,
respectively. Such data driven models are one possibility to deal with
a multivariate data pool (see [23]). The aim is to detect faulty sensors
and corrupted signals by simple multivariate linear and non-linear sta-
tistical process control charts based on sensor data. Swarm intelligence
(particle swarm optimization) is then used to find the optimal sensor/
model combination out of those different models at a certain time
step. Thus, trajectory of fermentation will be determined and a sensor
output validation will be performed. The approach combines process
knowledge with corresponding measuring systems aiming at cross-
linked sensors for their self-control.

2. Material & methods

2.1. Experimental

Modelling and validation background of the presented approach
were experimental data from aerobic fermentations of Saccharomyces
pastorianus var. carlsbergensis W43/70 (common bottom-fermenting
yeast). Those were realized in a pilot scale industrial fermentation
tank (Co. Esau &Hueber, the R&I scheme is shown in Fig. 1). This reactor
has a working volume of around 70 L. The medium takenwas beer wort
(~12 g/100 g original gravity, 100% barley malt, based on a commercial
malt extract, Weyermann Bavarian Pilsner). The inoculum used was
pre-cultivated yeast for ~5 Mio·cells/mL (counted under the micro-
scope via Thoma Chamber). The aeration rate and pulse/pause frequen-
cy aswell as the temperaturewere adjusted and controlled according to
the predefined total process time using fuzzy control. The total process
time is defined by the time the bacterial population reaches its end
point of 100–120 Mio·cells/mL as well as an extract decline of maxi-
mum4g/100g. The pumpspeedwasfixed to 30%pumppower (approx.
1100 L/h). To prevent foam, another fuzzy controller was used to adjust
the overpressure to maximum 1 bar. The whole controller principle can
be found elsewhere [24,25]. The processes taken for the investigations
presented were in the range from ~10.5 to ~20.5 °C resulting in batch
length from 25 to 51 h. The online data were collected in sampling
frequency of 10 s and reduced to a frequency of approximately 50 s
for computational issues.

2.2. Data pre-processing

The batch data used for the presented approach contained sensor
data for pH, dissolved oxygen, temperature, turbidity, density, ultra-
sound velocity and pressure. Each data set was inspected and cut to
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Fig. 1. P&I scheme and periphery of pilot propagation plant; the reactor vessel of 120 L total volume is equippedwith level, foam and pressure sensors, dissolved oxygen and pHprobes as
well as temperature sensors. Tempering of the vessel can be done over cooling and heating jackets. Homogenization is reached using a pump in a piping circle including aeration via a
jet (TurboAir, Co. Esau & Hueber) and ultrasound, density as well as turbidity measurement units. All instruments are connected electronically to a programmable logic controller
(PLC, Co. Beckhoff), digital signals are pre-processed via Software TwinCat (Co. Beckhoff), and online data processing as well as Fuzzy Control is accomplished via Software VirtualExpert
(Co. Gimbio).
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the length from start- (inoculation with yeast) to endpoint (90–
100 Mio·cells/mL). Furthermore, the following conversions of single
sensor data were accomplished.

2.2.1. Turbidity
The turbidity sensor (Co. Optek, measuring in CU units) was

calibrated to zero using water. Therefore, the turbidity value of wort
(index wo) was subtracted from the online data (index on) in each
batch (Eq. (1)).

ODs ¼ ODon−ODwo: ð1Þ

2.2.2. Density
The sensor (vibrating U-tube, Co. Centec) measures density and

temperature. Each online value is transformed by Eq. (2), where ρ(Tt)

resembles the density at the temperature T measured at time t (index
wa for water and m for medium, respectively).

ρs Ttð Þ ¼ ρm Ttð Þ
ρwa Ttð Þ : ð2Þ

2.2.3. Ultrasound velocity
The sensor (Co. Centec) measures speed of sound and temperature.

Each online value is transformed by Eq. (3), where v(Tt) resembles the
speed of sound at the temperature T measured at time t (index wa for
water and m for medium, respectively).

vs Ttð Þ ¼ vm Ttð Þ
vwa Ttð Þ : ð3Þ

Fig. 2. Schematic explanation ofMSPCmethod by S.Wold et al. [32] for calibration: (1) “unfolding” of batches an PLS regression onmaturity of batches➔ regression parameters for online
prediction ofmaturity; (2) “re-digitalizing” of processes to equal data length (orientation on percent batch finished), subsequent PLS regression on re-digitized batches and maturity; and
(3) reorganization of PLS-scores resulting inmatrixXt, PCA on thismatrix and using a certain number of components reaching residualmatrix E➔ calculation of RSD for individual batches
as value for batch similarity; other variables are diagonal matrices Sx and Sy containing the respective standard deviations, matrix W with weighted loadings, matrix Q with loadings of
targets Y, b0 as intercept, vector ei as residual for individual batch of certain score, J as counter for number of second PLS components, K the number of used variables (online-sensor
data) and d the number of used PCA components.
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2.2.4. Dissolved oxygen
The oxygen sensor (Clark probe, Co. Mettler Toledo) was calibrated

against air to measure the concentration of dissolved oxygen in mg/L.
As concentration changes were influenced by system pressure and
temperature next to microbial consumption, values were scaled from
0 to 100% using Eq. (4).

cO2 ;% Tt ; ptð Þ ¼ cO2 ;mg=L Tt ;ptð Þ
cO2max;mg=L Tt ;ptð Þ � 100 ð4Þ

whereas CO2max,mg/L is calculated according to Henry's law

cO2max;mg=L Tt ; ptð Þ ¼ Hc;p Ttð Þ �MO2 � pt � pO2
� f ð5Þ

where MO2 is the molar mass of oxygen (g/mol), p the total system
pressure measured online (atm), pO2

the partial pressure of oxygen
(0.2095) and f a correction factor for the extract concentration
(~dissolved solids, mainly sugar) of the medium (adopted from
Annemüller et al. [26]). The extract concentration resembles the amount
of dissolved material (mainly sugar). The constant Hc,p is temperature
dependent and calculated following Eq. (6).

Hc;p Ttð Þ ¼ Hc;p;s � exp C � T−1−Ts
−1

� �� �
ð6Þ

whereHc,p,s (1.2296 ∗ 10−3 mol/(L ∗ atm)) resembles Henry's constant for
standard conditions and C a constant (1895.8 K), both adapted from liter-
ature [27]. Ts resembles the temperature for standard conditions
(298.15 K).

The values for pH (Co. Mettler Toledo), pressure and temperature
(built-in temperature sensor of ultrasound setup) were left original.

Besides, any column of followingmatrices used formultivariate data
analysis were pre-processed using auto-scaling (z-transform) [28,29].

2.3. Multivariate statistical process control (MSPC)

This method is used to create statistically supported process
trajectories for process control [30,31]. There are a number of different
possibilities to extract those trajectories out of a number of optimal
processes and their sensor trends. Here, the approach is based on a
method developed by Wold et al. [32,33], which is advantageous in
case of adaption to the existing issue compared to other methods. The
method is based on “unfold-PLS” (usage of PLS on unfolded three
dimensional datamatrices), where the interpretation of results is some-
what easier compared to other multi-way decomposition approaches
used in multivariate data analysis [32–34].

Three different levels of process control can be extracted using this
method. Those are individual observations (Level 1), the batch trace
level (Level 2) and the batch level (Level 3) [32]. For the presented
approach in this study only two levels were used. Level 1 (referred to
as “maturity prediction”, MP) and Level 3 (referred to as “residual
standard deviation”, RSD).

The calculations and algorithms can be found in Wold et al. [32]. The
procedure aswell as the most relevant equations is shown in Figs. 2 and
3. The used algorithms for PLS regression and model building were
programmed and carried out with home-built subroutines pro-
grammed in MATLAB (Version 7 Release 14, The MathWorks, Inc.,
USA). A brief description of the algorithms can be found in literature
[29,32,35–40].

2.4. Data post-processing

In the presented work seven sensors were used as inputs. Addition-
ally, the inputs were extended by a full polynomial extension of second
order including mixed terms. Therefore, a total of 35 inputs is available.
Modelling each possible combination of those inputs results in 235

possibilities. Since each single input is not of same importance to the
modelled target of interest, a post processing algorithm called “variable
importance in the projection” (VIP) is applied. The description of calcu-
lation can be found in various literature (e.g. Eriksson et al. Lee et al. or
Chong and Jun [41–43], dependent on themethod of decomposition). In
the presented approach, a model for maturity prediction using al 35
inputs was established to investigate the importance of each variable.
Since the mean squared VIP equals one, the generally applied cut-off
criterion is “greater than one” [43].

2.5. Particle swarm optimization

One of themost famous algorithms in swarm intelligence is “particle
swarm optimization” (PSO). This algorithm is based on the behaviour of
birds or fish swarm [11]. The virtual members in such a swarm (particle
or individual) consist of a binary code resembling a certain combination
of sensors for one process trajectory. In each iteration, the individual
model solution will be calculated. Afterwards, the cost function will be
evaluated (explained in the next paragraph). This cost value will be
compared with the local and the global best solution at this step to
calculate the new velocity (vi) for changing the position (pi) of the
particle, if necessary [see Eqs. (7) and (8)].

vi;pþ1 ¼ r1 �w � vi;p þ c1 � r2 � pi;best;local−pi
� �þ c2 � r3

� pbest;global−pi
� �

: ð7Þ

pi;pþ1 ¼ pi;p þ vi;pþ1: ð8Þ

Fig. 3.Online usage of MSPC: the new batch will be re-digitized, maturity calculated using
regression parametersbPLS fromfirst PLS, scores Tnew calculatedusing loadingsP from sec-
ond PLS, resorting and calculation of Scores TPCA using loadings PPCA — finally, calculating
residual matrix and the RSD value.
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With inertia weight w (a fixed number typically around 0.9 or
dynamic [19]), c1 and c2 as constants known as “self-confidence” and
“swarm-confidence” [11] (c1 + c2 = 4 [19]) as well as r1, r2, and r3 as
uniformly distributed random numbers between zero and one. The ran-
dom number r1 multiplied to the inertia weightw was implemented to
introduce random-dynamic change. The choice of those constants in
this work was accomplished by iterations (see Results & discussion sec-
tion). Furthermore, pi,best,local represents the local best solution or
position of each individual particle and pbest,global the global best solution
of the swarm.

Those equationswill be iteratively calculated on each particle until a
breakup criterion is reached. The breakup criterion in this investigation
was a certain number of iterations.

2.5.1. Constraints
Typically, the velocity of each particle in a swarm searching on a

continuous n-dimensional search space is limited between −vmax and
vmax. Since the presented problem resembles a discrete search space,
following constraints are applied after each other instead.

pi;kþ1 jð Þ ¼
pi;k jð Þ if vi;kþ1 jð Þ�� ��b 0:25

pi;k jð Þ þ vi;kþ1 jð Þ
vi;kþ1 jð Þ�� �� otherwise

8<
: : ð9Þ

pi;kþ1 jð Þ ¼ 0 if pi;kþ1 jð Þ≤0
1 otherwise

�
: ð10Þ

Here, index k stands for the number of iteration, j the input number
and i for the particle.

Further, the random number r1 is inserted to create more flexibility
and dynamical behaviour of the swarm. Preliminary results (data not

shown) on the presented discrete problem showed an early conver-
gence at local minima in case of fixed inertia weights.

2.5.2. Cost function
The cost function in this work consists of three parts. The first part

(costi,1) resembles the full process evaluation in the corresponding
data window compared to the historic process trajectory on the
chosen number of inputs. Here, i resembles the particle, j the
batch number, n the total number of batches and c stands for
calibration.

costi;1 ¼ RSDonXn

j¼1
RSDc; j=n

: ð11Þ

costi;1 ¼ 1 if costi;1 b1
costi;1 otherwise

�
: ð12Þ

The second part includes the single sensor evaluation. To evaluate
the sensor input for the cost in each of the possible input combinations,
each input data window was evaluated compared to the historic back-
ground. Therefore, the inputs of the five batches were z-transformed.
The mean z-transformed trend as well as the 6σ band was used as
valid data frame for each individual sensor. If a certain input violates
the corresponding alarm limit more than a defined number of times
(95% confidence interval, r95), the cost of this input rises. This approach
is adapted to the “Alarm limit violation similarity factor” presented in
Johannesmeyer et al. [44].

Following the approach presented by Johannesmeyer et al. (2002),
the inverse of the cumulative binomial distribution at a probability

Fig. 4. Processmonitoring platformand interactionwith swarm sensing system to deliver a process corridor out of themost suitable sensor input combination togetherwith sensor output
validation; vi = velocity of particle i (index p+ 1= current iteration step, p=step before),w= inertiaweight, pi = position of particle i (for j= 1 to n number of inputs), RSD= residual
standard deviation to historical batches, m = number of batches for calibration, index l = 1 to o number of inputs used in the current proposed model.

52 D. Krause et al. / Chemometrics and Intelligent Laboratory Systems 145 (2015) 48–59   

 
86 

 

   

COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Results 



 
 

 

   

value of 0.95 is calculated first to define the “critical number of
violations” [allowed hits of the boundaries Eq. (13)] [44].

r95 ¼ max l; such that
Xl

i¼0

n
i

� 	
� pi � 1−pð Þn−i b0:95 ð13Þ

where l is the number critical number of violations, n the number of
trials (length of the data frame) and p the probability value (0.025 for
a two sided distribution).

Moreover, the number of violations of each sensor in each data
frame is counted and divided by the maximum number of allowed

violations (counters). Afterwards, a data frame counter for each sensor
as well as the cost for the chosen sensor combination is calculated
(Eqs. (14), (15) and (16)).

1: counterw jð Þ ¼ counterw−1 jð Þ þ 1 if counters jð ÞN1
counterw−1 jð Þ−1 otherwise

�
: ð14Þ

2: counterw jð Þ ¼ 0 if counterw jð Þb0 : ð15Þ

3: costi;2 ¼ 1
n
�
Xn
j¼1

counterw jð Þ
w

� counters jð Þ : ð16Þ

Here, the index/variable w resembles the data frame number, s for
“sensor”, i the particle, n the total number of sensors/inputs used and j
the individual input.

The third part is introduced (Eq. (17)), since the chosen model
should include as much valid inputs as possible for evaluating the
sensor network. Otherwise, the swarm tends to stop at local optima
with lower input number but similar low cost.

costi;3 ¼ 1=n: ð17Þ

Here, n stands for the number of inputs chosen.
Finally, the evaluation of each particle is calculated by summing all

three parts (Eq. (18)).

costi ¼
X3

l¼1

costi;l: ð18Þ

3. Results & discussion

3.1. Swarm sensing idea

The aim in the present study was to create a swarm intelligence
based system to evaluate sensor readings as well as process perfor-
mance online. Additionally, the network should be capable to replace
sensor readings in case of failure (drift, wrong calibration, total failure).
The search space for this swarmwas based on sensor readings extended
to a polynomial of second order including mixed terms. Each possible
combination of those generated search space dimensions was used to
create multivariate statistical process control charts. Furthermore, sin-
gle sensor evaluations with historical trends based on statistical areas
were used. Both of the latter were used to prove the similarity of online
data to historic background data. Those different models are scored by
swarm intelligence (particle swarm optimization) leading to the opti-
mal sensor/model combination at a certain time step. This leads to
enlightening of the trajectory of fermentation in combination with sen-
sor output validation. Those points include the challenge of vastly vary-
ing batch length as well as dealing with corrupted sensor inputs. The
whole methodology is summarized in Fig. 4.

The results achieved in the present study are based on online data
from five batches of aerobic yeast fermentation under brewing relevant
conditions for calibration and two batches for validation. This number of
background data is principally not enough in a statistical sense. Never-
theless, it is enough for showing the ability of the proposed method.

In the following paragraphs, choosing most relevant data for MSPC,
adjustments of the settings for basic swarm algorithms as well as
calibration and validation of the swarm for process and sensor evalua-
tion are addressed.

3.1.1. Search space
The background of the search space is a multivariate linear and

non-linear combination of sensor inputs. Starting with seven sensors
(see Fig. 4), a full polynomial of second order including mixed terms
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Fig. 5.VIP values in grayscale of thefirst PLS regression on maturity index using 35 inputs;
thefirst nine terms are foundby the “greater than one” rule; density, dissolved oxygenand
pHwere taken into the selection manually to include them in the evaluation of the swarm
intelligent based system; OD — optical density/turbidity, ρ — density, USV — speed of
sound, pO2 — dissolved oxygen, T — temperature, p — pressure and pH— pH-value.

Table 1
Ranges for parameter investigation via iteration.

Min Step size Max

c1 0.6 0.2 3.4
c2 =4 − c1

w 0.7 0.1 3.2
No. particles 10 2 32

53D. Krause et al. / Chemometrics and Intelligent Laboratory Systems 145 (2015) 48–59   

 
87 

 

   

COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Results 



 
 

 

   

gives 35 terms/inputs, leading to 235 possible combinations of those
inputs.

On the one hand, this causes a quite high computational effort. On
the other hand, the importance or impact of each individual input is
unclear. Therefore, preliminary investigations were conducted to find
the most suitable input terms for further investigations. Here, the first
step of the mentioned MSPC methodology was performed using the
same five batches as calibration background.

The resulting matrices P (x-loading), W (weighted x-loading), q
(y-loading) and T (x-scores) are used for an investigation based on
variable importance in the projection (VIP) (e.g. [43]). This method
is often used to prove the influence of a certain input variable on
the problem of interest. In general, the mean of all VIP values is

equal to one. Therefore, the rule of “bigger than one” is mostly ap-
plied. Under the conditions presented, this resulted in 20 important
inputs and therefore 220 possibilities. To further reduce the compu-
tational effort of the approach for online application, the cut-off
value was set to 1.1 resulting in 12 inputs and ~4000 possible combi-
nations. The result of this investigation is shown in Fig. 5. The values
pH, turbidity and density or their combinations inside the selection
do reflect the most informative values due to their high online stabil-
ity and correlation to the progress of the fermentation. Besides, dis-
solved oxygen is quite important due to the faster growth of yeast
under oxidative conditions. Pressure has no big impact from the bio-
logical process point of view, as long as it stays in the presented
boundaries. Speed of sound is very sensitive to bubble interferences
and therefore noisy. Additionally, influence of temperature on speed
of sound is higher than concentration differences caused by the or-
ganisms' metabolism. Therefore, both values show a lower numeri-
cal impact. The highest influence on the duration of the biological
process is given by temperature, which is included in mixed terms
T*OD, pH*T and pO2*T. The only impacting term (pO2*USV) including
speed of sound might be reasonable, since one influence on the
speed of sound is the aeration resulting in gas bubbles. This fluctua-
tion occurs in both online trends and might be diminished by the
combination of them. Those results show the power of this data driv-
en modelling approach in combination with process knowledge.
Nevertheless, further investigations are necessary to fund those
statements. Such investigations should include sensitivity analysis
of inputs and the effect provided by polynomial extension with re-
gard to the cost function to investigate their additional information.
Those 12 inputs are taken for further investigations. The search space
for the swarm is established out of all possible combinations of those
inputs. This results in 212 (4096) possibilities reduced by the combi-
nations with less than three inputs involved. For each possibility,
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Fig. 6.Comparison between number of iterations reaching convergence to an individual local aswell as a proposed global best solutionwith different values for parameters c1, c2,w and 20
particles; the data background were 10 data frames (50 data points, 50% overlap) out of a calibration batch; according to the number of iterations and the standard deviations, the upper
two diagrams lead to the assumption, that neither w = 0.8 (w ≈ 0.4) nor w = 1.8 (w ≈ 0.9) but w = 2.2–3 due to higher flexibility (higher standard deviations) should be chosen
(assuming, that higher number of iterations provides more solutions invested by swarm); the other 4 diagrams support this assumption to bigger values of w. Further, settings for c1
seem to be reasonable between 1 and 1.5 as well as 2.2 and 3.2 (c2 between 3 and 2.5 as well as 1.8 and 0.8, respectively).

Table 2
Settings for swarm after applying condition one on ten averaged results from ten data
frames out of the calibration data; the minimum cost value was reached with zero stan-
dard deviation in all cases; P— Particles, No. Pc — Number of particles converged to global
best solution, No. IL/G — Number of iterations for converged local/global best solution.

No. P c1 c2 w No. Pc No. IL Std. No. IG Std.

1. 24 2.6 1.4 2.2 23.7 9.6 2.8 6.6 2.9
2. 26 2.4 1.6 2.4 25.4 14 9 10.3 10.2
3. 26 2.6 1.4 2.6 24.6 15.3 5.5 10.2 6.9
4. 28 2.2 1.8 2.2 28 10.2 6 7.9 6
5. 28 3 1 2.3 27.2 14.9 8.2 11.1 9.4
6. 28 1.8 2.2 2.4 27.9 9 3.3 5.8 3
7. 28 2.4 1.6 2.6 26.5 13.2 5.1 8.9 6.1
8. 30 2.6 1.4 2.5 29.3 10.3 2.9 6.7 3.3
9. 30 2.8 1.2 2.6 27.7 10.9 3.4 5.8 2.8
10. 30 2.4 1.6 2.8 27.4 11.4 2.8 6.5 3.2
11. 32 3 1 2.3 31.7 10.9 5.9 6.9 6.8
12. 32 3 1 2.6 29.7 13.1 3.4 6.7 3.2
14. 32 1 3 2.7 30.8 8.5 3.2 5 2.4
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level 2 (maturity prediction for graphical interpretation) and 3
(residual standard deviation for cost function) are calculated. The
number of PLS components (PLS regression) aswell as principal compo-
nents (PCA) were chosen on a minimum of 85% explained X-variance.

3.2. Parameter investigation

Values for the parameters of PSO algorithms can be taken from
literature. Nevertheless, correct setting should be investigated using
iterations on the current problem of interest. Therefore, parameters c1,
c2, w and the numbers of particles itself were examined (Table 1).

The search space was used like mentioned above, results were
achieved using 10 data frames (50 data points, 50% overlap) out of
one batch from the calibration set.

First, iterative results on parameter settings were analysed
compared to values of literature. A good start for parameters c1 and c2
at 2 was mentioned [19]. Values for inertia weight w were reported at
0.9 with reduction to 0.4 later on [19]. Assuming a high efficiency for
reaching global minimum would be a comparably big number of itera-
tions until convergence. Fig. 6 is showing results for constant settings
of c (c1 = c2 = 2) and w ≈ 0.4 and w ≈ 0.9. Since the random number
r1 is inserted for dynamic issues, the values for w were approximated,
assuming for a sufficiently high number of repetitions (≫10) to reach
statistically ½ of the value multiplied with the random number. There-
fore,w= 0.8 andw= 1.8 are the values of interest for comparison. The
figure leads to the assumption, that due to higher flexibility the inertia
weight should be chosen between 2.2 and 3. Further, settings for c1
seem to be reasonable between 1 and 1.5 as well as 2.2 and 3.2 (c2
between 3 and 2.5 as well as 1.8 and 0.8, respectively).

The results presented in Fig. 6 do not include the condition to find
global minimum. Additionally, number of particles was arbitrarily

chosen. Thus, the results were further analysed with the following
conditions:

1. The minimum cost should be 1.0833 (see Cost function section; data
from calibration have to be correct, all inputs should be used).

2. At least 90% of all particles have to converge to global best.
3. Minimum number of particles.

The results after applying condition one and two are shown in
Table 2. The results in Table 2 emphasizes, that the treated task in this
investigation need a higher self-confidence of the swarm. The average
value for c1 is 2.4 and for c2 1.6. Moreover, the values for inertia weight
tend towards 2.5. However, for final settings, condition three as well as
the minimum numbers of iterations including the minimal standard
deviation for each, local and global best solution are applied, the latter
leads to minimum computational effort. Therefore, only setting one
fulfils all definitions. Besides, those settings are consistent with the
assumptions from Fig. 6. Therefore, they were taken for all further
investigations.

3.3. Calibration of swarm

Calibration of swarmwas established using the settings investigated.
Further, the search space based on historic trajectories was prepared
using five calibration batches. The data were analysed in frames of 50
data points and 50% overlap. After applying those settings on the
calibration run, in more than 50% of the modelled cases the model
with maximum number of inputs (n = 12) and more than 20% with
one input lower (n = 11) over the whole process time was found. No
sensor was indicated as false. Even though, none of the inputs is outside
its statistical boundaries, the swarm does not reach the known global
best solution in all cases. Thus, the expectations for an ideal case are

Table 3
Investigation on the effect of increasing number of particles for probability in finding best solution in eachmodelled case over thewhole process; for calibration batch themodel with n =
12 inputs is expected; increasingnumber of particles are followed by increased processing time on eachdata frame— themean time ondata frames is shownasØ t; settings for the swarm:
c1 = 2.4, c2 = 1.6 and w = 2.2.

No. of particles 20 25 30 35 40 45 50 55 60 65 70 75 80

No. of inputs

n = 12 [%] 58.9 62.8 70.7 76.4 79.6 81.9 83.5 85 86.4 87.7 88.6 89.4 90.2
n = 11 [%] 31.1 29.4 24.1 19.7 17.3 15.6 14.3 13.1 11.9 10.8 10 9.3 8.6
n = 10 [%] 7.8 6.7 4.4 3.3 2.7 2.2 1.9 1.7 1.5 1.3 1.2 1.1 1
n = 9 [%] 2.2 1.1 0.7 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2
Ø t [s] 6.6 8.4 10.3 12 13.6 15.5 17.2 19 20.8 22.6 24.3 26 27.7
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Fig. 7. Investigation on increasing number of particles on the inputs' usage for inertia weight w = 2.2 (left) and 2.5 (right) in the model solutions per iteration over the whole process;
roh = density, OD = turbidity, USV = speed of sound, T = temperature, pO2 = dissolved oxygen, pH = pH value as well as some mixed or squared terms.
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not fulfilled sufficiently. In case of a good batch, a higher percentage of
the known best model with maximum number of inputs should be
reached. To reach this goal, one particle could be initialized with the
best model case. This choice would lead to almost 100% usage but is in
contrast to the sense of particle swarm optimization. Another solution
could be the introduction of a part time memory, which helps the
swarm to partially forget the global best solution and introduces a
higher dynamic behaviour. This issue is partially integrated already by
the inertia weight w. Additionally, this option could result in no

convergence of the swarm at all, which is against its nature. The
third proposed option is simply increasing the number of particles
which increases the probabilities converging at global best solution
at least until a certain limit of particles. The disadvantage is the in-
creased processing time. The results of this investigation are shown
in Table 3.

Not surprisingly those results show, that with higher number of
particles the optimal solution will be found more often in all cases
over the whole process time. They further show that despite the more

Table 4
Investigation on the effect of increasing number of particles for probability in finding best solution in each modelled case over the whole process by increasing inertia weight w to 2.5;
probabilities are given in %, the averaged processing time on each time point iteration in seconds.

No. of particles 20 25 30 35 40 45 50 55 60 65 70 75 80

No. of inputs

n = 12 [%] 73.3 81.7 84.1 86.1 87.8 89.4 90.8 91.7 92.3 93 93.5 94 94.4
n = 11 [%] 24.4 17.2 14.8 13.1 11.6 10 8.7 7.9 7.3 6.7 6.2 5.7 5.4
n = 10 [%] 2.2 1.1 1.1 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.3
Ø t [s] 6.6 8.4 10.1 11.7 13.5 15.3 17 18.6 20.4 22.2 24 25.6 27.3

Fig. 8. Three time sectors for one calibration batch are shown even though the end of this batch (lower left) isfluctuation, no input value is indicated as corrupted (colour scale on the right
of the trajectory).Moreover, each individual scaled input trend (smallfigures at the bottom) shows good similaritywith historical data. It is also visible, that theprocess trajectory is in each
frame identical, which indicates proper working of the swarm finding the model with maximum number of inputs. In 90.8% of the modelled cases 12 inputs were taken, in the other 8.7%
with one input lower.

56 D. Krause et al. / Chemometrics and Intelligent Laboratory Systems 145 (2015) 48–59   

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000
maturity prediction

percent batch finished

x
e

d
ni

ytir
ut

a
m

0 50 100
-5

0

5
roh

0 50 100
-2

0

2

4

OD

0 50 100
-2

0

2

4

OD*USV

0 50 100
-2

0

2

4

OD*roh

0 50 100
-2

0

2

4

OD2

0 50 100
-2

0

2

4

T*OD

0 50 100
-5

0

5
pO2

0 50 100
-10

0

10
pO2*OD

0 50 100
-5

0

5
pO2*T

0 50 100
-5

0

5
pH

0 50 100
-5

0

5
pH*OD

0 50 100
-10

0

10
pH*T

roh

OD

OD*USV

OD*roh

OD 2̂

T*OD

pO2

pO2*OD

pO2 T

pH

pH*OD

pH*T

 
90 

 

   

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000
maturity prediction

percent batch finished

x
e

d
ni

ytir
ut

a
m

0 50 100
-5

0

5
roh

0 50 100
-2

0

2

4

OD

0 50 100
-2

0

2

4

OD*USV

0 50 100
-2

0

2

4

OD*roh

0 50 100
-2

0

2

4

OD2

0 50 100
-2

0

2

4

T*OD

0 50 100
-5

0

5
pO2

0 50 100
-10

0

10
pO2*OD

0 50 100
-5

0

5
pO2*T

0 50 100
-5

0

5
pH

0 50 100
-5

0

5
pH*OD

0 50 100
-10

0

10
pH*T

roh

OD

OD*USV

OD*roh

OD 2̂

T*OD

pO2

pO2*OD

pO2*T

pH

pH*OD

pH*T

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000
maturity prediction

percent batch finished

x
e

d
ni

ytir
ut

a
m

0 50 100
-5

0

5
roh

0 50 100
-2

0

2

4

OD

0 50 100
-2

0

2

4

OD*USV

0 50 100
-2

0

2

4

OD*roh

0 50 100
-2

0

2

4

OD2

0 50 100
-2

0

2

4

T*OD

0 50 100
-5

0

5
pO2

0 50 100
-10

0

10
pO2*OD

0 50 100
-5

0

5
pO2*T

0 50 100
-5

0

5
pH

0 50 100
-5

0

5
pH*OD

0 50 100
-10

0

10
pH*T

roh

OD

OD*USV

OD*roh

OD 2̂

T*OD

pO2

pO2*OD

pO2*T

pH

pH*OD

pH*T

COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Results 



 
 

 

   

than three times bigger time needed per iteration for 80 in comparison
to 25 particles, it is still in an acceptable range. The sampling frequency
is around 50 s, thewindows analysedwith 50 data points and 50% over-
lap. Therefore, around every 20th minute, one output of the swarm
would be necessary in online usage. Further, Fig. 7 shows the increasing
usage of each input over the whole process time with increasing
number of particles. This underlines the assumption, that higher num-
ber of particles increases the probability of finding the best model
with maximum number of inputs.

The last trial for reducing the number of particles with respect to
computational effort was increasing the value of inertia weight from
2.2 to the mean of 2.5 (see results Table 2). The results in Table 4
show a reduction to 50 particles with similar accuracy and ~1.5 times
less processing time.

In addition, usages of individual inputs (Fig. 7, right) underline the
efficiency of the swarm. Each input was used more than 98% over the
whole process time. Therefore, those settings are taken for further
analysis. The result of calibration for three time sectors is shown in
Fig. 8. It is visible, that no sensor is indicated as corrupted (colour
scale on the right of the trajectory). Besides, each individual scaled
input trend (small figures at the bottom) shows good similarity with
historical data. It is also visible, that the background process trajectory
in each frame is identical. This indicates proper working of the swarm
in finding the model with maximum number of inputs. Even though, a
model with less number of inputs might be more feasible due to less
computational effort as well as the reduced necessity of sensors in
general, the aim of the proposed swarm sensing solution was two-
fold. Next to the more stable monitoring with a trustable online trajec-
tory, the whole sensor network should be evaluated, regardless of the
number of individual sensors at this point. In 90.8% of the modelled
cases, 12 inputs were taken, in 8.7% one input lower. The trajectory al-
ways keeps the 3*σ boundaries even in the noisy area at the end of
the process. Moreover, each input was used more than 98% of the
cases. This indicates the random “failure” of the swarm in choosing
models with less inputs and therefore underlines the efficiency of the
swarm.

All in all, those settings were used to investigate a batch with sensor
faults in the following section.

3.4. Validation of swarm

Validation of swarm was established using the same settings as well
as the search space like mentioned before. The data were similarly
analysed in frames of 50 data points and 50% overlap. As a preliminary
sensor failure testing, a batch, where the pH sensor failed was chosen.
This failure was due to a mechanical damage and leakage of internal
buffer solution. Therefore, the expected models found by the swarm
should have maximally nine inputs. The decisions of the swarm apply-
ing the settings from before on the validation run resulted in around
20% of the modelled cases by using the maximum valid number of in-
puts (n = 9), around 45% with one input lower (n = 11) and around
20% with two inputs lower (results shown in Fig. 9) over the whole
process time. Table 5 shows the usage of the 12 available inputs in the
model choice of swarm decision over the whole process time. Further-
more, the amount of inputs' individual percentage outside the historical
statistics is displayed.

The results presented in Fig. 10 underline the power of the presented
method. In more than 20% of the modelled cases the decision of the
swarm tends towards the model with maximum accurate inputs, each
input related to pH is indicated as corrupted in the upper right colour
scale. In around 65% of the cases eight and seven inputs are used. Similar
results were achieved using 80 particles (no significant changes in the
overall model choices, results not shown), which supports the chosen
settings above.

Thus, the usage lower than 95% of some inputs can be explained by
inputs related to dissolved oxygen are outside their boundaries in
some cases (see also Fig. 10, small figures at the bottom). In addition,
turbidity values leave their optimal region in minor circumstances.
Furthermore, the number of inputs in the swarms' choice lower than
nine is also valid. The differences in the usage percentage might be a
higher correlation of individual inputs as well as slightly different RSD
values in certain time frames.

4. Conclusion & outlook

It could be shown, that a discrete swarm with suitable parameter
settings on a search space based on multivariate statistical process con-
trol charts is able to overcome sensor failures. It would be further possi-
ble to replace corrupted sensor readings by historical data based on
swarm decision using the same approach but calibrating to the sensor
value as target instead. Moreover, investigations regarding integration
and stability are necessary. Furthermore, behaviour in the case of multi-
ple failures are necessary. In addition, limits and numerical stability for
bigger number of particles used on the respective task have to be inves-
tigated. Even though processing times presented are quite low, the
investigationswere performedwith respect to an integration of the pro-
posed approached on a microcontroller. Those devices have usually a
comparably low processing power. This issue can therefore still not be
neglected.

Nevertheless, the results indicate the possibility of more robust
online monitoring using the swarm sensing idea for biotechnological
processes to insure optimal and timely effective processing as well as
sensor failure detection. The methodology was successful in predicting
false input information. Furthermore, it was possible to still predict
the progress of fermentation in a multivariate statistical process control
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Fig. 9.Usage of inputs in swarms decision on model trajectory; most cases were modelled
with eight inputs, second most are almost equally distributed on nine and seven inputs.

Table 5
Percentage of inputs used in multivariate trajectories over the whole process time. All of the valid inputs were used more than 95%.

ρ OD OD*USV OD*ρ OD2 T*OD pO2 pO2*OD pO2*T pH pH*OD pH*T

Usage [%] 95,6 98,9 95,6 94,4 98,9 98,9 92,2 47,8 68,9 0 6,7 1,1
Outside statistics [%] 0 1,1 2,2 1,1 0 2,2 4,4 10 12,2 100 93,3 98,9
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Fig. 10. Three time sectors for one validation batch are shown; three input values are indicated as corrupted (colour scale on the right of the trajectory, each of them combined with pH).
The individual scaled input trends (three small figures at the lower right bottom) show the non-conformity with historical data. It is also visible, that the process trajectory changes
between the frames. The swarm found the model with maximum valid number of inputs in more than 20%, more than 65% one or two inputs lower over the whole process time.
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sense. The swarm supported over the whole process the control charts
in validation run, in 85% the decision was towards the models with
almost maximum inputs. In combination with the historical similarity
of sensors it was possible to find false inputs in 100%. The presented
methodology is not restricted to the number of sensor inputs as well
as the use of specific sensor readings, which makes it beneficial over
simple MSPC or other approaches. In the presented work, adjustments
of the basic algorithms, cost function, accuracy of output as well as the
dynamic behaviour of the swarm are addressed. Nevertheless, chosen
cost functional need to be further investigated (e.g. weighting of indi-
vidual parts). Furthermore, the shown results on the settings of the
swarm indicate additional effort. Also, constraints and the chosen
parameters inside (e.g. c1 or c2 for inter-particle communication to
control the spread of relevant information) as well as the influence of
window size and pre-processing of inputs have to be investigated. In
case of the applied constraints, a comparison to other binary PSO algo-
rithms such as presented by Chuang et al. (2009) has to be performed
[45]. Besides, comparison to other multi-model fitting or model fusion
methods as well as deterministic optimization methods or other

evolutionary algorithms (e.g. GA or Bayesian Optimization Algorithm)
as well as their multi-objective versions should be accomplished to
see the functionality as well as the benefits according to computational
effort and accuracy of the modified PSO version presented. Finally,
comparable methods to the presented online monitoring approach to
investigate the power like the price theorymodel need to be established
[46].
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3. Discussion 
Data driven analysis of sensor and process data has tremendously increased over the last decade. This statistical 
driven area is very helpful in case of (partially) unknown physical or chemical background as well as multi-
influenced conditions. Those drawbacks are typically present with bioprocess data.  

The major goal of process analysis is to find and understand a causal relation between a measurement and a 
response. By using data driven approaches, causality is not always obvious. Therefore, it is always necessary to 
proceed corresponding data storage and processing together with knowledge inclusion [7]. Further, development 
of first principle solution is one aim in most applications. Nevertheless, those are not always reachable [7]. 
Another target can be to establish soft-sensors predicting not directly measurable data or the combination of online 
data with predictive mechanistic models. However, those topics do not often find the way to industrial application 
and thus have a lack in broad acceptance. 

The present work is showing applications of newest multivariate data analytics used in sensor calibration and 
process data analysis including sensor network inspection of bioprocesses. Those fields are coping 
multidimensional temporal and spectral data including aspects of outlier analysis, variable importance, and model 
robustness. 

The mentioned applications show, that it is hard to accomplish a data driven model solution with standard 
algorithms and without knowing the tuning parameters and surrounding conditions. Thus, single software 
solutions will not be capable in all cases to handle those multiple aspects. This implies knowledge of data and 
objectives as well as understanding of algorithms and should always be absolved with care and deliberation. This 
aspect is somehow also emphasized by Kourti, 2005 with respect to multivariate process control [64]. Kourti 
reports that “process knowledge is a must”, since it affects choice of weights and transformations of variables, for 
example [64].  

The success of data driven modelling, including the mentioned feature analysis, is shown in the publications not 
included in this work as well [116, 119] and underlined by the additional results shown in this thesis. Those results, 
even though not yet accurate, show the general applicability and power of both, feature analysis for fluid 
inspection as well as data driven modelling with multivariate data analysis.  

The used variable selection method can of course be enhanced. More investigations would be necessary to give a 
fundamental conclusion on the power of individual methods, but the tendency to general solutions and holistic 
approaches rather than solutions fitted to a single challenge and hard to transfer is shown by the numerous 
publications in literature and the possibilities shown in this work.  

Another aspect, especially in supervised classification learning, could be the question if a feature is relevant for a 
learning algorithm rather than for the classification task [79]. This aspect implies the size of training set compared 
to number of features [79], also in combination with model robustness. This was not considered to full extend in 
this work and should be taken into account in future research. Additionally, pre-modelling variable selection has 
to be considered, and application such as model population analysis (MPA) seem powerful and should be 
investigated. Even though, each individual problem will have its own aspects, but generalization and wide 
applicability as well as more or less easy interpretation capabilities to solve many different challenges is always 
preferable.  

General results 

In the first part of this thesis, results with respect to fuzzy control and mechanistic growth modelling are presented. 
Even though not the core of the presented work, it is worth mentioning, that the aim of replacing simple linear 
objective function without the knowledge of the process might be not always acceptable, even though a fuzzy 
controller is able to deal with such. Not surprisingly, there were big deviations to the linear trajectories visible. 
Under the given circumstances, these might have even a positive impact on the quality of the product (yeast cells), 
since the controller forces fast growth by overshooting the ideal temperature in the beginning of the process and 
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undershoot at the end, resulting in cooling of the fermentation broth if the aimed number of cells is reached. 
Nevertheless, aim of further studies was to replace those functions by a more predictive controller based on 
numerical state estimation including the temperature dependent growth kinetics of Saccharomyces sp. (e. g. Birle 
et al., 2015 [118]). Further, the discussed minor influence of the Monod based growth velocity on the presented 
substrate decline were investigated based on oxygen induced growth limitations e. g. by McHardy, 2013 [117]). 
It was shown, that the used process systems are limited in oxygen distribution, but neglecting the aerobic part of 
glycolysis reaching an eight to 16 times higher ATP yield is not possible.  

Empirical and data driven calibration of ultrasonic sensors 

The validation error of maltose, ethanol or apparent extract concentrations published on the presented ultrasonic 
setup (first and second thesis publication) prove to be high and usually higher than a theoretically acceptable 
absolute deviation of +/- 0.5 g/100 g for online monitoring in brewing industry. Further, calibration background 
(binary mixture with only maltose or temperature spectrum as input) are not feasible neither for the more 
complicated product matrix (side effects of bubbles, CO2 or ethanol concentration) nor online application of the 
respective device. The published validation errors and used calibration background predicting maltose or apparent 
extract are summarized in Table 3.1. 

Table 3.1: summary of published validation errors on sugar concentration predicted by different multivariate calibration models on 
ultrasonic signal properties 

 Target Model 
background 

Inputs boundaries Error 
(RMSEV) 

Limitations publication 

1. Sucrose 
(Ethanol) 

PLS, PCR Temperature 
spectrum of USV 

0-12 (0-6) 
g/100g; 2-
30 °C  

0.5 g/100g 
(0.18  g/100g) 

Not online [116] 

2. Apparent 
extract 

PLS Phase and 
magnitude 
spectrum 
(frequency 
domain) 

maltose 0-
12 g/100g 
ethanol 0-
3 g/100g 
6-22 °C 
temp 6-22 °C 

< 0.5 g/100g simple linear 
interpolation 
between 
temperatures 

First thesis 
publication 

3 Maltose PLS + 
polynomial 
regression 

Temporal and 
spectral Features 

maltose 2-
12 g/100g 
temp 10-21 °C 

0.64 g/100g Only binary 
calibration 
samples 

Second thesis 
publication 

The influences reported causing these deviations are signal sensitivity issues, possibly causing lack of accuracy 
in regions of lower sugar concentration, setup material and setup design, near field and superposition phenomena 
due temperature effects as well as electronic circuit adaptions. These more physical and setup specific aspects are 
investigated and discussed in more detail by Hoche et al. [13, 120, 121], aiming at the known physical relationship 
between density and speed of sound to predict concentrations of maltose and ethanol. Even though successful and 
definitely proving the concept in specific aspects, the used materials (PVDF, PMMA, PEEK), for example, are 
not fully accepted in food related applications (temperature limits or chemical resistance compared to steel; 
possibility to contain bisphenol-A (PMMA)). The results presented in Krause et al., 2011 [116] are not included 
in this thesis, since they are not very advantageous with respect to online application. Nevertheless, it is worth 
mentioning, that it could be shown to predict both concentrations (substrate and product) independently by using 
just one measuring device. 

The other drawbacks mentioned in this thesis such as binary mixtures, model stability and robustness as well as 
non-linearity of the presented approach are preliminarily accomplished in further studies, described in the 
following paragraphs.  

a. Considerations of Non-linearity 

The second thesis publication presents the prediction of sugar, respectively maltose concentration in binary 
mixtures with varying temperature. The first obvious non-linearity is visible in temperature dependence. The 
effect of additional dissolved ethanol (ternary mixture) introduces another probable non-linear effect. A 
preliminary investigation on three temporal US features and support vector machines showed that it is possible to 



COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Discussion 

 
96 

 

cluster binary from ternary mixtures with respect to a certain concentration. It was further visible, that support 
vectors were similar and deviating in a non-linear form with temperature (Figure 3.1).  

Figure 3.1: Preliminary trial of support vector clustering on three temporal US features to discriminate binary maltose from binary 
ethanol and ternary mixtures; upper left and right as well as lower left figure display the mixtures at different temperatures, circles 
for binary maltose, star for ternary and triangle for binary ethanol mixture; lower right figure displays the support vectors for three 
different temperatures, circle for 10 °C, star for 14 °C and diamond for 18 °C 

Therefore, it is most promising to use support 
vector regression to establish a continuous 
calibration model predicting maltose or ethanol 
concentration. These algorithms are used to 
enhance the presented output from the second 
thesis publication. Therefore, the extended 
dataset of ternary mixtures over the temperature 
range of 10 to 20 °C from the experimental setup 
presented in the chapter “material and methods” 
of the first and second thesis publication was used 
as basis.  

b. Support vector Regression 

For the first investigation, a sample set of 
concentrations between zero and 14 g/100g 
maltose and zero to 5 g/100g ethanol at an almost 
constant temperature T = 10 °C (+/- 0.15 °K) was 
extracted. The predictor matrix X consisted of 
three temporal features (presented in the 
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Figure 3.2: parity plot for measured vs. predicted maltose 
concentration using LS-SVR with RBF kernel (RBFγ = 143.53, σ2 = 0.19), 
T = 10 °C; error bars presented resemble the 2*σ of each 
concentration level; except for 14 and 4 g/100g, the prediction 
accuracy is very good compared to the investigation using standard 
PLS regression 
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preliminary investigation above), namely energy, entropy and crest factor. Three of the most popular kernels were 
tested (Table 3.2). The most promising accuracy is given by using the RBF kernel, where a validation error of 
0.33 g/100g was reached. The parity plot is shown in Figure 3.2, presenting the prediction of maltose 
concentration.  

This data set was analyzed with a toolbox (LS-SVM v1.8, Suykens, Leuven, Belgium) in Matlab R2010a (The 
MathWorks, Inc., Natick, USA).  

Table 3.2: prediction accuracy presented by RMSEC and RMSEV for calibration with LS-SVM using different kernel functions; the dataset 
consists of three temporal features (entropy, energy and crest factor) from US signals on samples with concentrations between zero and 
14 g/100g maltose (2 g/100g steps) and zero to 5 g/100g ethanol (1 g/100g steps) at an almost constant temperature T = 10 °C 
(+/- 0.15 °K); the linear kernel just has one parameter (γ), the polynomial kernel additionally the intercept (b = 2.652) and the polynomial 
degree (p = 6), the RBF kernel the variance (squared standard deviation, σ2 = 0.19); the calibration data set contained nc = 116, the 
validation set nv = 115 samples 

 γ RMSEC RMSEV 
linear 5.72 2.97 3.14 
poly 0.37 0.38 0.48 
RBF 143.53 0.26 0.33 

The parity plot for the model using LS-SVR with RBF kernel (RBFγ = 143.53, σ2 = 0.19) for the dataset at T = 10 °C 
with a prediction accuracy shown by the error bars is superior in comparison to the investigation using standard 
PLS regression, except for 14 and 4 g/100g. Taking out these two levels of concentration, the results change as 
shown in Table 3.3. The most promising accuracy is given again by using the RBF kernel, where a validation 
error of 0.13 g/100g was reached. The increase in the prediction performance is quite noteworthy and justifies the 
reduction of the inputs by these two measuring points. 

Table 3.3: prediction accuracy presented by RMSEC and RMSEV for calibration with LS-SVM using different kernel functions; the dataset 
consists of three temporal features (entropy, energy and crest factor) from US signals on samples with concentrations between zero 
and 12 g/100g maltose (2 g/100g steps, without 4 g/100g) and zero to 5 g/100g ethanol (1 g/100g steps) at an almost constant temperature 
T = 10 °C (+/- 0.15 °K); the linear kernel just has one parameter (γ), the polynomial kernel additionally the intercept (b = 8.6581) and 
the polynomial degree (p = 5), the RBF kernel the variance (squared standard deviation, σ2 = 0.17); the calibration data set contained 
nc = 92, the validation set nv = 92 samples 

 γ RMSEC RMSEV 
linear 5.64 1.57 1.56 
poly 30.44 0.16 0.31 
RBF 2547 0.04 0.13 

Additionally, the parity plot is shown in 
Figure 3.3. Furthermore, the whole approach was 
tested for other temperatures and for ethanol 
concentration and has proven similar good 
results.  

Even though, the results of SVR model show very 
promising accuracy, a deeper investigation on the 
problem of interest and the interpretability of 
interim results of algorithm used is not as simple 
as described for typical PLS results discussed in 
the sections above. Thus, the approach discussed 
in the following section was realized. 

c. Kernel PLS 

Another possibility in modelling non-linearity is 
given by kernel pre-processing as described in 
section 1.2.1.6 and PLS as mentioned in 

 
Figure 3.3: parity plot for measured vs. predicted maltose 
concentration using LS-SVR with RBF kernel (RBFγ = 2546.96, σ2 = 0.17), 
T = 10 °C; error bars presented resemble the 2*σ of each 
concentration level; the prediction accuracy is increased compared to 
the investigation before
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section 1.2.2.2 “Multivariate data analysis for regression”. The results using these algorithms and the same dataset 
as reported for SVR one paragraph before are summarized in Table 3.4. Even though lower than for the LS-SVR 
model, the most promising accuracy is again given by using the RBF kernel, where a validation error of 
0.23 g/100g was reached. Consequently, the parity plot is given in Figure 3.4, presenting the prediction of maltose 
concentration. The number of components were chosen on the Akaide Information Criterion (AIC, shown in the 
right figure of Figure 3.4), which is more suitable than simple RMSE since it takes model complexity by number 
of components or latent vectors (LV) into account. The error bars in the parity plot for the model using kernel-
PLS with RBF kernel (RBFσ

2
 = 0.17), for the dataset at T = 10 °C, show very good prediction accuracy. The result 

is still quite good compared to the investigation using standard PLS regression. This approach also works for other 
temperatures and for ethanol concentration in a similar good manner. 

Table 3.4: prediction accuracy presented by RMSEC and RMSEV for calibration with Kernel-PLS using different kernel functions; the 
dataset consists of three temporal features (entropy, energy and crest factor) from US signals on samples with concentrations between 
zero and 14 g/100g maltose and zero to 5 g/100g ethanol at an almost constant temperature T = 10 °C (+/- 0.15 °K); the linear kernel just 
has one parameter (γ), the polynomial kernel additionally the intercept (b = 8.66) and the polynomial degree (p = 5), the RBF kernel the 
variance (squared standard deviation; σ2 = 0.17); the calibration data set contained nc = 92, the validation set nv = 92 samples 

  LV RMSEC RMSEV 
linear  3 2.97 3.14 
poly  11 0.64 0.63 
RBF  28 0.15 0.23 

Both kernel methods show the possibility for predicting concentrations out of binary mixtures at single 
temperatures. Even though, the used number of LV is high, the less complex kernel-PLS shows a comparably 
acceptable error taking into account that only three temporal features were taken as inputs. This raises the 
following issues: 

‐ Is it possible to include temperature influences?, and 

‐ What features are relevant? 

The second point can be investigated by variable selection (section 1.2.3.1” Variable selection/inspection”) or by 
simply iterating on the inputs and their combination for the best model output. The latter is more beneficial, if the 
inputs are altered, which is the case when using kernels.  

For the first issue, literature presents a methodology called external parameter orthogonalisation (EPO, see Roger 
et al., 2003 and 2004 [47, 122]). This potential method tries to divide the input space in two subspaces, one with 
useful information with respect to the target of interest and one with the information altered by external 
parameters. Beneficially, the approach tries to find subspaces without relation to the respective target Y and does 

Figure 3.4: (left) parity plot for measured vs. predicted maltose concentration using kernel-PLS with RBF kernel (RBFσ2 = 0.17), 
T = 10 °C; error bars presented resemble the 2*σ of each concentration level; except for 14, 4 and 0 g/100g, even though less accurate 
than the LS-SVM solution, the prediction accuracy is still acceptable compared to the result presented in the second thesis publication 
(where only binary mixtures were analyzed); (right) presentation of decreasing AIC by increasing number of components 
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not need the response to be kept constant. In the basic EPO algorithm, it is not necessary to use accurate values 
of the respective external parameter as responses [47]. Roger et al. defines, amongst others, two main correction 
strategies – availability of external parameter (e. g. measured) or not [47]. 

d. External Parameter Orthogonalisation (EPO) 

The presented approach was used on the data set of 6000 samples with concentrations between two and 12 g/100g 
maltose, one and 5 g/100g ethanol and temperatures between 10 and 20 °C. Firstly, the same inputs as presented 
for LS-SVM und kernel-PLS were investigated. EPO was performed using PCA, the final model building using 
PLS. The EPO reduction of the input matrix resulted in a better prediction error, but still in an unacceptable 
magnitude. Thus, the whole feature space of 12 features was investigated iteratively to find the best input 
combination. Furthermore, model building on the EPO reduced input matrix was accomplished by kernel-PLS. 
The iteration was performed on: 

‐ steps of temperature for EPO from 0.5 to 
4 °K in 0.5 °K step size 

‐ number of chosen EPO components 
(maximum number limited to 99.99% 
explained X-variance) 

‐ number of chosen PLS LV based on the 
AIC 

This investigation resulted in the combination of 
features highest magnitude in the frequency 
representation, spectral kurtosis, skewness, 
entropy, centroid as well as temporal energy and 
entropy. Furthermore, the best temperature step 
for EPO was 2.5 °K with a final model validation 
prediction error of 0.73 g/100g, three EPO 
components and seven latent PLS vectors. The concentrations in the data set were randomly distributed - half of 
the samples were taken for calibration, the others for validation. For EPO investigation, a calibration set of 
temperatures with step size 2.5 °K was extracted from the full data set. For the proof of EPO concept (inputs were 
chosen according to the output of iteration result) the presented algorithm of section 1.2.1.7 was followed; the 
result is shown as score plot in Figure 3.5. Thus, it is visible, that one EPO component seems to be sufficient in 
discriminating between the different temperature levels. 

e. Final model building including robust calibration 

Additionally to EPO pre-processing, the iteration output from the analysis before was investigated by kernel-PLS 
using RBF kernel. These algorithms are combined with the model robustness scheme in section 1.2.3.3 and the 
over fitting issues presented in section 1.2.2.3 to support the choice of final model size. Next to the question of 
the number of EPO components, the issue of model size by number of LV has to be investigated. Thus, the mean 
prediction error for validation (RMSE) and the corresponding standard deviation together with the number of 
EPO components for reducing the effect of temperature as external parameter in the input data are compared 
(Figure 3.6). The figure indicates, that two EPO components are obviously too much for the presented case (error 
as well as standard deviation are mostly higher). Although the differences between original and reduced data set 
by one EPO are quite low, there are better accuracies achieved around eight to 10 and 14/15 LV by the latter.  

Furthermore, nine LV should be ideal considering the standard deviation, since the deviation rises for both data 
set afterwards, even though the error decreases after 12 LV again. The choice of a model with lower prediction 
accuracy but better standard deviation of prediction error for robustness reasons is favorable.  

 
Figure 3.5: Score plot of EPO investigation on the dataset of step size 
2.5 °K and all samples with concentrations between zero and 14 g/100g 
maltose and zero to 5 g/100g ethanol; it is visible, that the first 
component is enough to clearly distinguish between the different 

9.75 9.8 9.85 9.9 9.95 10 10.05 10.1 10.15 10.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

  10

12.5

  15

17.5

  20

E
P

O
 S

co
re

 2

EPO Score 1



COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Discussion 

 
100 

 

Investigating the proposed measures for validity and precision explained in section 1.2.2.3 “Model Validation” 
also supports those choices (Figure 3.9 at the end of this chapter). The ratio MSrc/MSrv (validity 
calibration/validity validation) decrease with rising number of components due to overfitting, ratio MSav/MSrv 
(precision/validity) indicate by convergence no 
necessity to include more components or latent 
vectors. Further, MSav(p-1)/MSav(p) (precision) 
and MSrv(p-1)/MSrv(p) (validity) converge or 
fluctuate around one starting at a certain model 
size, which again supports the assumption from 
before. In the separate plots of MSav

 (precision) 
and MSrv (validity) a (local) minimum would 
indicate the preferable number of latent vectors. 
Thus, in each plot a number of latent vectors 
between eight and 10 would be enough.  

Finally, using one EPO component on the input 
data results in the lowest mean sum of squares for 
precision indicating one EPO component as 
sufficient. This choice is underlined by 
Figure 3.7, where each model is compared in the 
pre-chosen area between five and 16 LV. 
Inspection of parity plots additionally also 
supports the assumptions from before, since 
precision with only one EPO component in higher 
concentration levels are slightly better whereas 
the validity difference between one and two EPO 
components are much less (Figure 3.10 at the end of this chapter).  

Figure 3.7: to underline the choice from above, each model is compared individually in the pre-chosen area plotting residual error 
against number of used EPO components; error bars = three times standard deviation (3*σ); due to robustness, the choice would be 
the same as for the figure before (slightly higher error but lower standard deviation); thus nine LV and one EPO component seem to 
be suitable 

To support the choice of latent vectors once more, visual inspection of error statistics are shown in Figure 3.8. 
Even though their might be slight evidence of better validity as well as better precision in some levels and the 
figure indicates a slight better shape of residual distribution for 15 LV, the normal probability plot for nine LV is 
not deviation as much as the one for 15 LV in the boundary areas of the data. This might indicate overfitting in 
case of 15 latent vector model. Single level statistics as well as individual standard deviations of levels/samples 
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Figure 3.6: comparison between mean prediction error (left side) and 
their standard deviation (right side) for original data set models 
(squares), data set reduced by one EPO component (circles) and 
reduced by two EPO components (diamonds); the top two figures show 
plot from one to 25, the figures at the bottom from three to 18 LV; two 
EPO components are obviously too much for the presented case (error 
as well as standard deviation are mostly higher); although the 
differences between original and reduced data set by one EPO are quite 
low, there are better accuracies achieved around eight to 10 and 14/15 
LV by the latter. Even though the error decreases after 12 LV again, 
nine LV should be ideal considering the standard deviation, since the 
deviation rises for both data set afterwards.  
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are shown in appendix A.5 for nine and 15 LV, visually proving the assumption of nine LV as sufficient (some 
individual distributions with 15 LV deviate stronger). Nevertheless, those could be used for further analysis with 
respect to error-prone or outlying samples.  

Figure 3.8: comparison of four graphical validation methods proving normal distribution of residual errors; residual distribution 
(top left), linearized normal probability plot (top right), cumulative distribution function (down left) and parity plot with two times 
standard deviation as error bars (down right); even though residual distribution using 15 LV (top left subfigure on the right side) fits 
better and their might be slight evidence of better validity (level 2 g/100g less deviating from expected values) as well as better 
precision (deviation of level 10 g/100g slightly lower), the normal probability plot for nine LV is not deviation too much. This might 
indicate overfitting in case of 15 LV model 

Finally, several different model algorithms as well as data set configurations were tested. Presenting all the results 
of this feasibility and possibility investigation shown in the last paragraphs would be beyond the scope. Therefore, 
they are just summarized in Table 3.5. All reported prediction errors are far away from being acceptable, but those 
results show the power of data driven modelling combined with modern algorithms for data processing and 
knowledge about the problem of interest.  

Table 3.5: different model algorithms including robust approach in PLS based models, used on seven US- features as input and RBF kernel 
as non-linear pre-processing; boundaries are samples between zero and 12 g/100g maltose and 10 to 20 °C (binary mixtures) and 
additional zero to 5 g/100g ethanol (binary and ternary mixtures) 

Model type Data set γ σ2 (RBF) EPO LV RMSEC 
Mean 

RMSEV 
σ 

(RMSEV) 

SVR 

6600 samples, 
Temperature as 8th 
input variable, 
ternary 

232.12 5.63 - - 0.39 1.22 0.08 

Kernel-PLS 

6600 samples, 
polynomial 
extension (2nd 
degree) of input 
data, ternary 

- 65.32 1 15 1.22 1.34 0.06 

Kernel-PLS 
2450 samples, Only 
binary maltose 

- 169.43 2 8 0.65 0.895 0.11 

Kernel-PLS 
6600 samples, 
ternary 

- 11.34 1 9 1.47 1.5 0.06 

Additionally, it is worth to mention, that the error achieved using the Kernel-PLS approach on binary maltose 
samples (see Table 3.5, third line) resulted in a comparable error then reported in the second thesis publication. 
The improvement here is a single and robust model solution. The figures for those models including the same 
visual inspection possibilities as discussed above are shown in the appendix A.4 to A.7. The comparably big errors 
presented in this thesis have multiple sources. Amongst others, the mentioned non-linearity in the second thesis 
publication is partially investigated in the section before. Further, robustness as well as possible outliers inside 
the data set, also indicated by the skewed error distribution in the second thesis publication are treated in the 
mentioned section. Even though preliminary, those investigations are similar to the approach MPA presented by 
Li et al. [70]. Nevertheless, one of the biggest influences is coming from buffer material and design.  
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Figure 3.9: plots of validity and precision as well as ratios of mean sum of squares in different variants (explanation section 1.2.2.3) as one step in robust model generation using original data set (left), 
reduced by one (middle) and two EPO components (right). Figures on the top present ratios MSrc/MSrv (validity calibration/validity validation, top left, decreasing with rising number of components 
due to overfitting), MSav/MSrv (precision/validity, top right, convergence supports the assumption of no necessity to include more components or latent vectors), MSav(p-1)/MSav(p) (precision, bottom 
left) and MSrv(p-1)/MSrv(p) (validity, bottom right) – the latter both converge around one, which supports again the assumption of no necessity to include more components or latent vectors; figures at 
the bottom present precision and validity mean sum of squares as separate plot - dashed line with circles – MSav

 (precision), dashed line with squares - MSrv (validity) – a (local) minimum in both is 
preferable – thus, in each plot a number of latent vectors between eight and 10 would be enough; using one EPO component on the input data results in the lowest mean sum of squares for precision 
indicating one EPO component as sufficient  
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Figure 3.10: visual inspection of parity plots (error bars of one times standard deviation) with rising number of EPO components (vertical) and rising number of latent vectors (horizontal); the differences 
here are only minor, but precision with only one EPO component in higher concentration levels (e. g. seven, eight and nine LV) are slightly better whereas the validity difference between one and two EPO 
components are much less (e. g. level 2 g/100g at eight or nine LV)
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The setup used was non-optimized with respect to the targets of interest. Those were first of all speed of sound 
and acoustical impedance, which results in density. Density and speed of sound open the possibility to detect 
concentration changes in ethanol and sugar in the same time. For measuring acoustical impedance in the necessary 
accuracy, the materials used should have comparable impedance not as with the used steel buffer. Further, design 
and electronics as well had to be optimized. Thus, material changes with properties more suitable to process 
demands [e.g. polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF)] and by adapting the design of 
the buffer and the setup itself, were investigated (amongst others). These materials were taken according to 
investigations on the differences between sample and buffer impedance. All those aspects are discussed in detail 
in Hoche et al. [13, 120, 121, 123, 124]. Nevertheless, optimization in the direction of those aspects might also 
not reach to the goal when focusing on feature analysis (e.g. loss of buffer reflections).  

Furthermore, the use of frequency spectra has to be regarded carefully. The frequency domain is highly sensitive 
to noise caused by bubbles, for example. In future investigations, this attenuation effect has to be studied by 
detailed bubble size analysis. In addition, combining ultrasonic properties from time domain such as time of flight 
(TOF) with frequency domain (P(f), Phase(f)) by means of multivariate statistics have to be studied in detail. This 
includes investigations on block wise (pre-)processing (Skov et al., 2008 [125]) and combining physical 
knowledge with data driven approaches (TOF/USV and PLS on frequency spectra or multiple specific features). 

One possibility to exclude distorted signals in case of interfering gas bubbles or particles for example, such as in 
the mentioned propagation process (pulsed aeration, see first thesis publication) is given by outlier detection prior 
model analysis. This aspect is investigated with Angel Based Outlier Analysis (ABOF) on US signals. The setup 
used to collect those signals was a buffer-reflector 
design with ~50mm path length measuring in 
pulse echo mode. The fermentation was aerated in 
pulse-pause, therefore temporal occurrence of gas 
bubbles has to be expected. Features were 
extracted on the temporal region where ultrasonic 
echoes are expected (50 to 200μs). This results in 
a three-dimensional vector SP, with was further 
used for ABOF investigation. At the start of 
fermentation, a buffer of 80 signals is filled (~ 15 
min) which are not distorted by any circumstance. 
The minimal variance of this buffer resembles the 
threshold for the ongoing investigation. 
Afterwards, the algorithm moves in a moving 
window sense comparing each new measured 
signal to the buffer. Just signals above the 
variance threshold are taken into the buffer and 
outliers are left out. The success of this possibility 
is shown in Figure 3.11, which proves the 
potential on the extracted time of flight clearly influenced by gas bubbles (causing visible shifts in trend lines). 
Nevertheless, it is also visible, that the cross correlation method adapted by Hoche et al., 2011 [120] is also 
capable of detecting the time of flight, even if the signals are distorted (see results around 1.5 h). Thus, the whole 
approach should be investigated in more detail.  

Assuming to receive ideal signals, the stability and robustness of the multivariate prediction model has to be 
verified. First, the discussed non-linearity was additionally investigated in this thesis. Although the presented 
errors are way too high for online as well as laboratory conditions, it could be shown, that the tendency of 

 
Figure 3.11: outlier detection of ultrasonic signals out of a yeast 
propagation process represented by US time of flight detection over 
time; outlier detection based on ABOF and three dimensional temporal 
feature space; outliers (red dots) are signals distorted by gas bubbles 
induced by aeration; algorithm used for time of flight detection was not 
successful to detect correct pulses, since gas inclusions deviate the US- 
signal too much 
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predictions, even under changing temperature as well as on ternary mixtures (water-sugar-ethanol) with only US 
features of buffer reflections of the mentioned setup (steal buffer mounted in a pipe) is following the expected 
trend. Not surprisingly, the errors for support vector regression using RBF-kernel as pre-processing showed 
comparably best performance. Nevertheless, interpretability and overfitting issues lead to further trials using 
kernel-PLS with RBF-kernel as pre-processing. This trial is showing a holistic analysis starting with extensive 
feature selection using a combination of VIP and regression parameters. Further, studies of robustness are 
integrated by model building via robust calibration using prediction error statistics. Additionally, overfitting issues 
are handled by adapted, ANOVA related model qualification measures. All those steps lead to a more stable and 
trustable choice of latent vectors for the PLS regression model. Although the presented final models do not reach 
necessary accuracy, the approach reported combines several aspects of model qualification following the reports 
of Teófilo et al., 2009 and Mehmood et al., 2012 (variable selection) [2, 77], Axelson, 2012 and Faber, 1999 (data 
sets) [39, 100], Bruns, et al., 2006 (regression ANOVA) [72] as well as Li et al., 2012 and Chen et al., 2014 (MPA 
and robustness) [70, 76]. Thus, it is showing, although still simple, the complexity of multivariate data analysis. 
If possible, it is highly recommended to take those aspects into account in future investigations. Especially 
statistical analysis of model output has a big advantage over standard solutions with respect to robustness, 
overfitting, outliers or variable selection (e. g. Li et al., 2012 [70]). Further, using non-linear regression 
background, such as kernel pre-processing, highlights the potential of data driven modelling with respect to the 
presented example US feature investigation. 

In conclusion, all presented calibration solutions are different – but compared to approaches in the literature based 
on ultrasound, the presented methods are independent of any assumption in process behaviour. Although the 
variation in all presented predictions is still high, the advantages of the final spectral analysis in combination with 
the presented sensor setup due to completely contactless investigations of the fluid of interest is quite noteworthy. 
So far, online solutions are typically in direct contact with the medium and thus design is of high effort. 
Furthermore, most monitoring solutions using ultrasound are based on at least two measuring principles to detect 
two different solutes. Nevertheless, there are still many points to investigate, such as iterative variable selection, 
sensitivity, robustness and outlier analysis.  

Quality inspection using NIRS 

Applying multivariate data analysis on quality inspection is another aspect handled in this work. It is shown in 
the third thesis publication, that NIRS can be used as data-driven fingerprints for estimating the processability 
with respect to lautering performance. Due to the complexity of NIR spectra the direct use for chemical analysis 
is not recommended (Sileoni, 2011 [105]). Nevertheless, it is possible to use them as a first approach for 
qualitative analysis. NIRS is widely used to quickly and directly identify starting products in pharmaceutical 
industry, for example [105]. As already mentioned before, data pre-processing is one of the major challenges. 
This study showed several state-of-the-art methods and its combinations reaching most promising accuracies by 
data driven choices (SNV or MSC in combination with first derivative for spectral treatment, VAST for variable 
treatment). It is worth to mention, that those trials were accomplished on full kernel spectra and validated in 
relation to the expert classification “good”, “normal” and “bad” on pilot plant (90.6 %, five LV) as well as 
industrial scale data (76.6 %, 21 LV). Reasons for lower accuracy as well as comparably high number of latent 
vectors for industrial data could be either the lower resolution of spectra or a limited number of patterns used for 
calibration procedure as well as diverging number of objects per class or group [126]. In the second case it is 
reasonable to assume that non-existing patterns for model calibration results in faulty predictions. The latter both 
could be solved by continuous extension of data pool. For the first reason, a general recommendation is to always 
collect as much data as possible (higher resolution) – reduction will be always possible afterwards. This is shown 
by variable selection applied on the presented data. The results of 51 % less wavelength as input to the pilot plant 
model lead to a more robust model solution and further indicate wave band regions of higher importance. This 
results underlines the necessity of variable selection once more. Nevertheless, the relation of results to the 
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biochemical background should be further treated. This can be achieved by for example more intense 
investigations on the relation to the laboratory reference methods or by empirical or synthetic calibration (see Shi 
et al. [127]). In future research on this topic it is recommended to follow the report of Sileoni et al. using 
knowledge from wave band characteristics to understand the results more with respect to the chemistry and/or 
physics. Sileoni further recommend creating knowledge by correlations between chemistry and spectroscopic 
features using relevant experiments. Those could support in finding qualitative as well as quantitative relations 
with respect to external parameters or waveband regions [105]. 

An additional influence on accuracy of any model is the loss of information whilst pre-processing of data. Kourti 
reports, that in case of pre-processing the multivariate nature of the respective data needs to be preserved [64]. It 
is possible by univariate data compression to introduce interfering correlations [64]. Thus, algorithms for such 
issues should be carefully chosen. Those used for the presented case reduce noise caused by physical effects such 
as light scattering. It can be assumed that such information may reach a better prediction by using adjusted 
treatment. Therefore, this topic should be integrated in future research. Even though, Sileoni reports, that NIRS is 
not utilisable for structure clarification [105], others recommend to use both, absorbance for chemical and scatter 
for physical (including also structural) information to utilize more of the existent content inside spectra [7]. Huang 
et al. also reports the possible usage for structure determination [43].  

The core of the presented classification models is PLS-DA. Although simple, this algorithm was suitable to handle 
the presented challenge. One major drawback in classification is the masking effect. It was possible to show, that 
this effect is not visible under the presented conditions. Even though, the used algorithm showed good 
performance and it is widely applied in literature, the outcome should be compared to other reported 
methodologies such as support vector machines (SVM) based solutions [128, 129].  

Altogether, there are more aspects to investigate - instead of: 

- using uniform malt samples (reason: prevent inhomogeneity in the raw material), malt blends and special 
malts have to be analysed to validate the established method.  

- keeping all processing steps as constant as possible, varying the influence on lautering performance by 
specific manipulation of grinding, mashing and blending of malt to invest their impact. 

- using samples limited in harvesting year, seasonal variations of raw material composition have to be taken 
into account by e.g. automatically adapting the models by means of a moving average filter. 

Those investigations might be used for recommendations according to adjustments of any process steps prior to 
lautering, but it remains to be analysed.  

However, the number of 21 PLS components used for the industrial model is quite high. This could be reasoned 
by the lower resolution of spectra, the different number of objects per group or patterns not included in calibration. 
One of the major challenges for multivariate calibration models in general always remaining is the transferability, 
even though the presented results show applicability and transferability in both, pilot and industrial scale. Usually, 
a calibration model is dependent on the data and its origin (e.g. environments or instruments). Therefore, one of 
the future task has to be research in transfer approaches and thus reaching universality [111]. This aspect is 
supported by Nicolai et al., 2007, who point to more explorative than only empirical model building in 
multivariate data analysis [113]. They mention light transport simulations or Monte Carlo method as possibilities 
to support this issue, most likely reaching better separation of physical and chemical information [113]. These 
factors would lead, amongst others, to improve the technology and to increase the ability for highly demanded 
on-line analysis for food industry, for example [111]. Nevertheless, the brought application of such technologies 
will only succeed, if on the one hand, the cost/benefit ratio of measurement systems will improve by either 
decreasing investment cost or increasing quality awareness of customers (see Nicolai et al., 2007 [113]). 
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However, one highlight of these investigations so far is, that even if physical, chemical or biological relations are 
(partly) known, hidden information might be found by data driven approaches. In the report of Procopio et al., 
2013 [130] the authors used PLS to receive a holistic view on importance of different amino acids as substrate 
and the final aroma composition of the aimed fermentation product including possible mixed effects. The most 
valuable outcome of the investigation was the match with already existing results reported in the literature. Thus, 
it was shown, to establish a fingerprint between the concentrations of amino acid and the different aromatic 
components using multivariate analysis. In conclusion, those results point out the usage of multivariate data 
analysis to uncover synergies between inputs and outputs in a statistical manner. 

Multivariate Statistical Process Control (MSPC) 

One additional and very powerful usage of multivariate methods is the application on process control. In summary, 
several processes are used to define a statistical background of virtual trajectories to check the quality of the 
progress of future processes at each temporal window. Kourti, 2005 reports, that using univariate data 
compression methods in such cases often destroy the multivariate nature or delete relevant information of the 
present data [64]. Therefore, basic multivariate data compression such as PCA or PLS is recommended. With 
respect to the dimensionality of process data, such algorithms need adaption of the data matrices prior to 
compression. The usage of such background was shown successfully (amongst others) by Mitzscherling, 2004 
[44] or Whitehead, 2012 [67] and by the fourth thesis publication. Nevertheless, such methods are used in general 
to qualify process batches. This can be accomplished also for one complete batch, as shown in the third thesis 
publication. Here, the presented method was used to automatically qualify lautering processes to reduce future 
efforts of experts. Validation on three classes defined by expert knowledge, namely “good”, “normal” and “bad” 
resulted in a match of 84 % between MSPC and expert qualification. However, since each processing unit (e.g. 
lautering tun) is having its distinct settings and sensors, implying adjustments of the presented approach to each 
problem of interest individually. This is not surprisingly counting for most of the existing, data-driven models. 
As already mentioned, the transferability is one of the major challenges, and thus has to be investigated for all 
systems and solutions in the area of multivariate data analysis.  

In addition, the applied method for MSPC in this thesis is still two-dimensional, since matrices are unfolded and 
batch lengths adopted by maturity indexing. The really trilinear methods like PARAFAC show also to be quite 
powerful and thus a rising interest in a variety of fields [44, 66]. With the increasing amount of data from growing 
number of available sensors including spectral solutions, these tools become of major importance in data analysis, 
since such data pool are not only three-dimensional anymore. Nevertheless, this is a very relevant path of future 
exploration and might be highly relevant [67]. 

However, it has to be mentioned once more, that knowledge, especially process knowledge is a vital necessity 
when using those methods. Most of the decisions on the choice in model parameters, the way of data treatment, 
the correct choice of data used for model generation as well as corresponding variable weights is dependent on 
this essential knowledge [64]. 

Swarm Sensing  

One major challenge in online monitoring of bioprocesses is addressed in the fourth thesis publication. This is the 
validity of sensor readings with respect to progress of running process. As shown by several applications of MSPC 
for example, the immediate online measurement of system and leading process variables like substrate as well as 
biomass concentration is not necessary. However, comprehensive quality control of running processes is, amongst 
others, limited to failure and drift-free sensors and sensor readings. Additionally, the rising amount of sensor 
systems for the variety of measurement goals (rising typically due to higher quality demands) are all together 
exposed to influencing side effects. Thus, any multivariate model based on such variables will fail, if one or more 
sensor does not fulfil its original purpose. The presented swarm intelligence based approach was established to 
work even under those conditions. It was possible to show, that simple MSPC based trajectories of diverse origin 
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can be used as search space for a discrete swarm to find in any time step of running process a suitable solution for 
statistical process trajectory. Further, each sensor used as input for this search space can be evaluated on its 
validity. Amongst the successful monitoring by control charts of the validation process supported by the swarm 
in combination with the historical similarity of sensors, it was possible to find and neglect false inputs in 100% 
by still giving positive monitoring feedback. The biggest benefit of this approach is therefore being not restricted 
to the number of sensor inputs or the necessity of specific sensor readings compared to simple MSPC or other 
predictive models.  

The whole investigations were performed aiming at an integration of the proposed method on a microcontroller 
later on. Since such devices are limited in processing power the issue of processing time cannot be neglected. 
Although it is feasible to assume, that models with minimum number of inputs might work much better (less 
computational effort, reduced necessity of sensors), than the solutions presented, the swarm is aiming at the model 
with the maximum number of individual inputs by purpose. In addition to more stable monitoring with a stressable 
online trajectory, an evaluation of the entire sensor network is absolved (with the feature, that the network could 
contain an arbitrary amount of members). As a result, on a process with barely false sensor readings, each input 
was used more than 98 % of the cases. Accepting a random “failure” of the swarm (choice of models with less 
inputs), this result underlines the efficiency of the swarm. 

Another topic, which is partially investigated in the fourth thesis publication, is the aspect of missing data. Kourti 
reports the possibility to use latent variable methods together with the knowledge of highly correlated process 
variables as well as redundant information [64]. The method presented here is based on similar background, but 
using the choice of a particle swarm on different multivariate model solutions instead of loading vectors of a 
single latent variable method. This is obviously more advantageous in case of noisy data, always present in 
respective processes. Additionally, more than one sensor reading can be error prone at one specific time point 
investigated. Further, it is possible to aim at replacing a corrupted sensor reading by historical data based on a 
swarm decision. Therefore, calibration would be performed to the corresponding sensor as target instead following 
the approach presented. Nevertheless, in case of changing biological conditions, such as changing metabolism of 
respective organism, the presented particle swarm based solution might also fail. 

Even though the reported results are based upon an initial approach, the possibility to predict the progress of 
fermentation in all cases in a multivariate statistical process control sense is shown. The presented results point 
towards more robust online monitoring for biotechnological processes insuring temporal effective processing as 
well as sensor failure detection. In conclusion, the swarm sensing approach presented resembles a combined 
multiple sensor investigation for holistic process and integrated sensor evaluation and control. 

Even though it is generally possible to tune any algorithm and its parameters to find challenges on which they 
work better than another one (which does not mean, that one algorithm is always better), comparison to data-
driven or other metaheuristic optimization algorithms including multi-objective versions should be examined. 
This includes a comparison based upon computational effort as well as accuracy between such methods and the 
modified PSO version presented. Amongst others, it is also necessary to determine, how this system behaves if 
several sensor failures occur. Furthermore, chosen cost functional with respect to weights of individual parts as 
well as parameters of the swarm indicate additional effort. 

For all presented applications, a different model background results not surprisingly in different accuracies. It is 
one of the biggest difficulties to choose an optimal model background, understand and adapt it to the demands, 
choose the correct inputs, find outliers decently, validate and robustify the model correctly, create the correct 
design space and model the correct physicochemical and/or biological background. This is underlined by the fact, 
that the lack of causality in any relation is not always obvious, since tools of multivariate data analysis are able to 
establish relations between multiple variables and almost any target (e. g. quality data), even if there is no general 
relation existing [7]). Further, the usage of any of the presented approaches has to be adapted to each problem of 
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interest individually, which is counting for most of the existing, data-driven models, exemplarily shown in the 
third thesis publication on pilot an industrial scale process data.  

Altogether it should be mentioned, that nothing is final and everything could be better. We are just approximating. 
With the rise of computational power, more possibilities are given. It is recommendable to ignore time and 
computational cost to get best outputs in calibration. With the issue of powerful computers, it is possible to go 
into much higher operations. Therefore, even simple methods like data-driven approaches can go for complex 
problem solutions.  

The most conclusive and valuable outcome of this thesis would be a procedure for picking the right mathematical 
tool for: 

 Data Pre-processing 

 Model Generation 

 Post-Processing 

In contrary to expectations, no one can predict the right tool, and this comes from the heuristic nature of the 
problem. As shown in the third thesis publication, a choice of correct algorithm (in the respective example on pre-
processing algorithms or areas of importance in spectra) suitable for the problem of interest a priori is not always 
possible. A fully inappropriate choice most often leads to complete failure and very poor accuracies. A partially 
improper choice might lead to loss of information. Nevertheless, in several cases even wet chemical analysis does 
not lead to clear statements of a component or a quality attribute (e.g. third thesis publication). Moreover, the 
physical background is often not completely known (e.g. first and second thesis publication). In any of those 
cases, it might be necessary to try different ways and generate knowledge to find an acceptable outcome of the 
respective investigation. Thus, rather only clever suggestions would be plausible based upon pattern recognition, 
linkage to quality assurance, regressions of new sensing systems or combined evaluation in a holistic 
process/sensor interaction perspective – all considering the sub steps and the major steps with regard to the target 
state estimator (or function). Finally, expanding the statement of Brosnan and Sun, 2004 on the potential of 
computer vision “a higher implementation and uptake (…) to meet the ever expanding requirements of the food 
industry” [103] is counting for new technologies in the whole PAT toolbox, such as sensors, data analysis, process 
monitoring and control implying the demand on novel developments. 
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A. APPENDIX 
A.1 Model robustness – NIR REIP investigation  

Dataset of 721 objects divided into seven subsets; iteration on windows and on datasets; best prediction error with 
N = 21 and p = 5 (SG filter), spectral smoothing (SG0) and variable stability scaling (VAST) resulting in 
prediction errors presented in Table A.1. Nevertheless, deeper investigations are needed (e. g. degrees of freedom, 
variable selection and number of latent vectors) 

   

Figure A.1: reciprocal error and standard deviation of error for NIR-REIP investigation – iteration over windows of selected 
variables and number of component; the optimal choice should be in the region of the maximum in both plots. 

Table A.1: choice of model size according to the figure above and the mentioned criteria (subtitle of figure) 

 Latent Vectors Variable Windows Mean RMSEV Standard Deviation 

Best error 6 39 16.2 1.3 

Best std 8 27 17.3 0.7 

One option 6 27 16.4 0.84 
 

 

Figure A.2: plot of prediction error using six latent vectors; 
lowest error is visible at window 39, but standard deviation of 
error is higher than windows before 

 

Figure A.3: chosen window contains the red marked variables 
(wave lengths) 
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A.2 Linearization – Kernel Matrix 

Several different ways for linearization of potential non-linear data are reported in literature, such as non-linear 
extension of data matrix by e. g. polynomial extensions [44] or OSC correction [39]. Another common way is 
the construction of a kernel matrix. A certain sample set of input data X [n x m] is restructured using the direct 
dependence of two samples to each other. This means, the samples of X are transformed into a new feature space 
using nonlinear mapping [45]. This results in a new input matrix K [n x n] (Equation 1).  

ܭ ൌ ቎
݇ଵ,ଵ ⋯ ݇ଵ,௡
⋮ ⋱ ⋮

݇௡,ଵ … ݇௡,௡
቏ (1)

Where ki,j can take the form of several different functions. The most famous are the linear or covariance, the 
polynomial and the radial basis function kernel (RBF, Equation 2). The description of those functions can be 
found in literature, for instance Nicolai et al. 2007 [45]. 

݇௜,௝ ൌ ݁
ିቛ࢞೔

೅ି࢞ೕ
೅ቛ

మ

ଶ∗ఙమ  
(2)

The Kernel width parameter σ is linked to the reliability or the SNR of the data. If this parameter is higher, the 
solution of the model becomes more linear. Over all, the value of ki,j becomes one in case of samples that are more 
similar and zero in case of less similar ones. 

Further, it is recommended to always perform a centering of the Kernel matrix prior to analysis. Therefore, Bennett 
and Embrechts propose the following two equations [46]: 

ࡴ ൌ ൬ࡵ െ
1
݊
૚࢔૚ࢀ࢔൰ (3)

࢘ࢋ࢚࢔ࢋࢉ,࢜ࡷ ൌ ൬࢜ࡷ െ
1
݊
૚࢜࢔૚࢔

(4) ࡴ൰ࡷࢀ

࢘ࢋ࢚࢔ࢋࢉࡷ ൌ (5) ࡴࡷࡴ

Where I is a [n x n] identity matrix, 1n and 1nv vectors of ones with [n] and [nv] dimensionality.  
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A.3 External Parameter Orthogonalisation  

The methodology used can be found in detail in Roger et al., 2003 [47]. They present a data matrix as follows: 

ࢄ ൌ ࡼࢄ ൅ ࡽࢄ ൅ (1) ࡾ

where P contain the loadings of the projection onto the relevant target information (relevant subspace ۱Ԧ) and Q 

onto the external parameter influence (subspace ۵ሬሬԦ, containing influence of external parameter); R resembles a 

residual matrix. In case of being able to calculate or guess an infectious subspace ۵෡, an estimation of Q can be 
estimated by following expression: 

෡ࡽ ൌ ෡൯ࡳ෡்ࡳ෡൫ࡳ
ିଵ
(2) ࢀ෡ࡳ

The pre-processing by EPO will subsequently transform X into the relevant part X* by: 

∗ࢄ  ൌ ࡵ൫ࢄ െ ෡൯ (3)ࡽ

Assuming one to k matrices Xi with n samples and m variables having k different values for an external parameter, 
for instance temperature T. Thus, it is possible to create a matrix M [k x p] with k averaged spectra on each Xi, 
where each row is calculated as: 

௜࢓  ൌ
ଵ

௡
∑ ௝࢞

௜௝ୀ௡
௝ୀଵ  (4)

Further, matrix D [k x p] is defined by di = mi – m1. This definition together with Equation 1 gives: 

௜ࢊ ൌ ሺ࢓௜ െ	࢓ଵሻࡼ ൅	ሺ࢓௜ െ ࡽଵሻ࢓ ൅	
1
݊
෍ ൫ ௝࢘

௜ െ ࢘ଵ
௜ ൯

௝ୀ௡

௝ୀଵ
 (5)

Taking into account, that all mi are by definition the mean spectra of the same targets, (mi – m1)P = 0. Thus, the 
final matrix form is given by: 

ࡰ ൌ ࡽ࡭ ൅ ᇱ (6)ࡾ

Roger et al., 2003 [47] propose to retrieve subspace ۵෡ by a PCA of D resulting in: 

ࡰ ൌ ࢀ෡ࡳࢀ ൅ ᇱᇱ (7)ࡾ

Since the columns of ۵෡ are therefore orthogonal and of unitary length, ࡳ෡ࡳࢀ෡ ൌ ෡ࡽ Equation 27 will reduce to .ࡵ ൌ

 and ࢀ෡ࡳ෡ࡳ

∗૙ࢄ  ൌ ࡵ૙൫ࢄ െ ൯ (8)ࢀ෡ࡳ෡ࡳ

Finally, a calibration can be calculated between X0* and Y0, any new sample is preprocessed by: 

∗࢝ࢋ࢔࢞ ൌ ࢞∗൫ࡵ െ ൯ (9)ࢀ෡ࡳ෡ࡳ

The only open question is, how much components should be used to reduce the effect of the external parameter. 
Two of several possibilities are presented in Roger et al., 2003 [47]: a k-fold cross validation on the different Xi 
resulting in an error as a function of EPO component and PLS latent variables number (which requires knowledge 
about corresponding responses to samples in X). The second approach is based on an analysis of variance 
measured by Wilk’s ratio between the inner group and the total variance [47]. This can be explained in a 
geometrical way: without extracting the external parameter influence, two different samples measured at the same 
external parameter settings can match more than two equal samples measured at two different external parameter 
settings. Therefore, the n clusters of k equal samples do not separate. If they do not separate at all, the ration of 
variances equal zero. In case of perfect separation, the ratio equals one.  
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The approach used in the presented work is slightly different. The choice is done on the final error (similar to the 
approach one above). But the error is calculated on a validation data set. This way was chosen to combine the 
approach with kernel PLS and the method of robust calibration.  
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A.4 Additional results for SVR-model on full data set 

The figures are additional to the results presented in the main document and present the distribution of samples 
used in the calibration and validation data based on concentrations and temperatures (Figure A.4), final model 
error statistic (Figure A.5 + A.6) and the single concentration level error statistics (Figure A.7). 

 
Figure A.4: frequency of respective concentrations and 
temperatures in samples taken for all investigations in 
calibration and validation 

 
Figure A.5: comparison four graphical validation methods 
proving normal distribution of residual errors of SVR model 
solution; residual distribution (top left), linearized normal 
probability plot (top right), cumulative distribution function 
(down left) and parity plot with two times standard deviation as 
error bars (down right) 

 
Figure A.6: resulting error and its standard deviation separated according to concentration level, temperature and the concentration 
combination in the samples; there are differences visible, but no clear systematic error behaviour is appearing 
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Figure A.7: resulting error statistics for individual concentration levels of SVR model solution; except for 2 g/100g (further investigations needed), no clear systematic error behaviour is visible 
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A.5 Additional results for Kernel PLS on full data set and EPO 

The figures are supplementary to the results presented in the main document and present an addition to the final 
model error statistic (Figure A.8 for nine LV and Figure A.9 for 15 LV) and the single concentration level error 
statistics (Figure A.10 for nine LV and Figure A.11 for 15 LV). 

 
Figure A.8: resulting error and its standard deviation separated according to concentration level, temperature and the concentration 
combination in the samples for the model with nine LV; there are differences visible, but no clear systematic error behaviour is appearing 

 
Figure A.9: resulting error and its standard deviation separated according to concentration level, temperature and the concentration 
combination in the samples for the model with 15 LV; there are differences visible, but no clear systematic error behaviour is appearing 
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Figure A.10: resulting error statistics for individual concentration levels of kernel-PLS model solution with nine LV; except for 2 g/100g (further investigations needed), no clear systematic error 
behaviour is visible 
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Figure A.11: resulting error statistics for individual concentration levels of kernel-PLS model solution with 15 LV; except for 2 g/100g (further investigations needed), no clear systematic error 
behaviour is visible 
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A.6 Kernel-PLS on full data set and polynomial extension 

The figures are supplementary material to the results presented in the main document for the model solution 
created by polynomial extension of input data. 

 
Figure A.12: Score plot of EPO investigation on the dataset of 
step size 2.5 °K and all samples with concentrations between 
zero and 14 g/100g maltose and zero to 5 g/100g ethanol; it is 
visible, that the first component is enough to clearly distinguish 
between the different temperatures. 

 
Figure A.13: each model is compared individually in the pre-
chosen area plotting residual error against number of used EPO 
components; error bars = three times standard deviation (3*σ); 
14-15 LV and one EPO component seem to be suitable 

 
Figure A.14: comparison between mean prediction error (left 
side) and their standard deviation (right side) for original data 
set models (squares), data set reduced by one EPO component 
(circles) and reduced by two EPO components (diamonds); the 
top two figures show plot from one to 25, the figures at the 
bottom from three to 18 latent vectors; two EPO components are 
obviously too much for the presented case (error as well as 
standard deviation are mostly higher); although the differences 
between original and reduced data set by one EPO are quite low, 
there are better accuracies achieved 15 LV by the latter. 

 
Figure A.15: comparison four graphical validation methods 
proving normal distribution of residual errors for kernel-PLS 
model solution on data set with polynomial extension; residual 
distribution (top left), linearized normal probability plot (top 
right), cumulative distribution function (down left) and parity 
plot with two times standard deviation as error bars (down right) 
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Figure A.16: resulting error and its standard deviation separated according to concentration level, temperature and the concentration 
combination in the samples; there are differences visible, but no clear systematic error behaviour is appearing 
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Figure A.17: visual inspection of parity plots (error bars of one times standard deviation) with rising number of EPO components (vertical) and rising number of latent vectors (horizontal); the differences 
are again only minor 
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Figure A.18: plots of validity and precision as well as ratios of mean sum of squares in different variants using original data set (left), reduced by one (middle) and two EPO components (right). Figures 
on the top present ratios MSrc/MSrv (validity calibration/validity validation, top left, decreasing with rising number of components due to overfitting), MSav/MSrv (precision/validity, top right, convergence 
supports the assumption of no necessity to include more components or latent vectors), MSav(p-1)/MSav(p) (precision, bottom left) and MSrv(p-1)/MSrv(p) (validity, bottom right) – the latter both converge 
around one, which supports again the assumption of no necessity to include more components or latent vectors; figures at the bottom present precision and validity mean sum of squares as separate 
plot - dashed line with circles – MSav

 (precision), dashed line with squares - MSrv (validity) – a (local) minimum in both is preferable 
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Figure A.19: resulting error statistics for individual concentration levels of kernel-PLS model solution with 15 LV; except for 2 g/100g (further investigations needed), no clear systematic error 
behaviour is visible 
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A.7 Kernel-PLS on binary mixture with maltose 

The figures are supplementary material to the results presented in the main document for the model 
solution created on calibration data with binary mixtures of maltose only. 

 
Figure A.20: Score plot of EPO investigation on the dataset of 
step size 2.5 °K and all samples with concentrations between 
zero and 14 g/100g maltose and zero to 5 g/100g ethanol; it is 
visible, that the first component is enough to clearly distinguish 
between the different temperatures. 

 

Figure A.21: each model is compared individually in the pre-
chosen area plotting residual error against number of used EPO 
components; error bars = three times standard deviation (3*σ); 
eight LV and two EPO component seem to be suitable 

 
Figure A.22: comparison between mean prediction error (left 
side) and their standard deviation (right side) for original data 
set models (squares), data set reduced by one EPO component 
(circles) and reduced by two EPO components (diamonds); the 
top two figures show plot from one to 25, the figures at the 
bottom from three to 18 latent vectors; two EPO components 
are obviously too much for the presented case (error as well as 
standard deviation are mostly higher); although the differences 
between original and reduced data set by one EPO are quite 
low, there are better accuracies achieved around eight to 10 and 
14/15 LV by the latter. Even though the error decreases after 10 
LV again, eight to nine LV should be ideal considering the 
standard deviation, since the deviation rises for both data set 
afterwards. 

 
Figure A.23: comparison four graphical validation methods 
proving normal distribution of residual errors for kernel-PLS 
model solution on data set with binary maltose only; residual 
distribution (top left), linearized normal probability plot (top 
right), cumulative distribution function (down left) and parity 
plot with two times standard deviation as error bars (down right) 
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Figure A.24: resulting error and its standard deviation separated according to concentration level and temperature in the samples; there 
are differences visible, but no clear systematic error behaviour is appearing 
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Figure A.25: visual inspection of parity plots (error bars of one times standard deviation) with rising number of EPO components (vertical) and rising number of latent vectors (horizontal) 
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Figure A.26: plots of validity and precision as well as ratios of mean sum of squares in different variants using original data set (left), reduced by one (middle) and two EPO components (right). Figures 
on the top present ratios MSrc/MSrv (validity calibration/validity validation, top left, decreasing with rising number of components due to overfitting), MSav/MSrv (precision/validity, top right, 
convergence supports the assumption of no necessity to include more components or latent vectors), MSav(p-1)/MSav(p) (precision, bottom left) and MSrv(p-1)/MSrv(p) (validity, bottom right) – the latter 
both converge around one, which supports again the assumption of no necessity to include more components or latent vectors; figures at the bottom present precision and validity mean sum of squares 
as separate plot - dashed line with circles – MSav

 (precision), dashed line with squares - MSrv (validity) – a (local) minimum in both is preferable 

0 10 20 30
0

0.5

1

1.5

M
S

rc
/M

S
rv

Number of LV

0 10 20 30
0

0.5

1

1.5

2

2.5

M
S

av
(p

-1
)/

M
S

av
(p

)

Number of LV
0 10 20 30

0.5

1

1.5

2

2.5

M
S

rv
(p

-1
)/

M
S

rv
(p

)

Number of LV

0 10 20 30
1

2

3

4

5

6

M
S

av
/M

S
rv

Number of LV
0 10 20 30

0

0.5

1

1.5

M
S

rc
/M

S
rv

Number of LV

0 10 20 30
0

0.5

1

1.5

2

2.5

M
S

av
(p

-1
)/

M
S

av
(p

)

Number of LV
0 10 20 30

0.5

1

1.5

2

M
S

rv
(p

-1
)/

M
S

rv
(p

)

Number of LV

0 10 20 30
0

2

4

6

8

M
S

av
/M

S
rv

Number of LV
0 10 20 30

0

0.5

1

1.5

M
S

rc
/M

S
rv

Number of LV

0 10 20 30
0

1

2

3

M
S

av
(p

-1
)/

M
S

av
(p

)

Number of LV
0 10 20 30

0

1

2

3

M
S

rv
(p

-1
)/

M
S

rv
(p

)

Number of LV

0 10 20 30
2

3

4

5

6

7

M
S

av
/M

S
rv

Number of LV

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

M
e

a
n

 S
u

m
-o

f-
S

q
u

a
re

s

Number of LV

 

 
MS

av

MS
rv

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

M
e

a
n

 S
u

m
-o

f-
S

q
u

a
re

s

Number of LV

 

 
MS

av

MS
rv

0 5 10 15 20 25
0

5

10

15

20

25

30

35

M
e

a
n

 S
u

m
-o

f-
S

q
u

a
re

s

Number of LV

 

 
MS

av

MS
rv



COMPUTATIONALLY AIDED RELIABILITY ANALYSIS OF SENSOR DATA FOR BIOPROCESSES Appendix 

 
XIX 

 

 

 
Figure A.27: resulting error statistics for individual concentration levels of kernel-PLS model solution; there are indications for systematic error behaviour visible (further investigations needed) 
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