
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

ProCeeD - A Framework for Continuous Prototyping

Lukas Alfons Alperowitz

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit 1
Angewandte Softwaretechnik

ProCeeD - A Framework for Continuous
Prototyping

Lukas Alfons Alperowitz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation: 1. Prof. Bernd Brügge, Ph.D.
2. Prof. Dr. Horst Lichter

Die Dissertation wurde am 04.07.2017 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 12.09.2017 angenommen.

Abstract

Prototypes are used in software engineering to close the gap between an abstract idea
and the actual software solution. Prototypes facilitate a shared mental model between
the stakeholders of a software project. Several techniques have been proposed to develop
and deliver prototypes, but the continuous delivery of early prototypes to stakeholders
during requirements elicitation has not yet been addressed. This is an obstacle especially
in projects with unclear and vague requirements where early feedback from users is of
great importance.

This dissertation introduces the ProCeeD Framework and the Prototyper tool for deliver-
ing prototypes and obtaining feedback from stakeholders. ProCeeD allows the exploration
of requirements by automating the delivery of these prototypes and provides a common
feedback process for revolutionary as well as evolutionary prototypes. Prototyper is a soft-
ware delivery tool based on ProCeeD and allows the delivery of executable prototypes to
the target environment. Prototyper has been realized for the domain of mobile application
engineering and has been successfully applied in projects in both academia and industry.

ProCeeD and Prototyper have been empirically evaluated in four case studies involving
25 projects with more than 200 developers. The results show that teams who adopt
ProCeeD reduce the duration of a prototyping iteration compared to teams not adopting
the framework. In addition, projects using ProCeeD exhibited a 2-fold increase in prototype
deliveries to the target environment compared to projects not applying the framework.

v

Zusammenfassung

Prototypen in der Softwareentwicklung schließen die Lücke zwischen einer abstrakten
Idee und ihrer Umsetzung. Prototypen dienen als Diskussionsgrundlage und ermöglichen
Entwicklern und Stakeholdern ein gemeinsames mentales Modell zu entwickeln. Während
in der Vergangenheit mehrere Techniken zur Erstellung von Prototypen vorgeschlagen
worden sind, wurde die Rolle der Lieferung von frühen Prototypen an Stakeholder bislang
nicht adressiert. Dies ist gerade in Projekten mit unklaren und vagen Anforderungen, bei
der die frühzeitige und regelmäßige Diskussion mit den Stakeholdern notwendig ist, von
Nachteil.

In dieser Dissertation beschreiben wir das ProCeeD Framework und das darauf auf-
bauende Prototyper Tool. ProCeeD erlaubt die Lieferung von revolutionären sowie evolu-
tionären Prototypen in einem automatisierten und wiederholbaren Prozess. Des Weiteren
definiert ProCeeD einen einheitlichen Feedback-Prozess für revolutionäre sowie evolu-
tionäre Prototypen, der die Kommunikation zwischen Entwicklern und Stakeholdern
bereits in der Phase der Anforderungsermittlung unterstützt und unabhängig von der
Art des Prototypen genutzt werden kann. Mit dem Prototyper Tool stellen wir eine
Konzeptimplementierung von ProCeeD für die Lieferung von ausführbaren Prototypen vor.
Prototyper wurde mit einem Fokus auf mobile Anwendungen implementiert und erfolgre-
ich im universitären Umfeld und in der Industrie angewendet. ProCeeD und Prototyper
wurden empirisch in vier Fallstudien mit 25 Projekten und mit mehr als 200 Entwick-
lern evaluiert. Die Ergebnisse zeigen, dass Teams, die ProCeeD nutzen, die Dauer einer
Prototyping-Iteration im Vergleich zu Teams, die das Framework nicht anwenden, deutlich
reduzieren. Darüber hinaus zeigten ProCeeD-Teams eine Verdopplung der Lieferungen in
die Zielumgebung im Vergleich zu Teams, die ProCeeD nicht anwenden.

vii

Acknowledgements

The last years at TUM were some of the best of my life, especially due to the people I met
and had the pleasure to work with. First of all Bernd Brügge: Thank you for creating this
unique environment and all the possibilities. You taught me how to deal with uncertainty,
to catch opportunities and grow personally on the way. Also thank you to Horst Lichter
for enthusiastically being the second advisor of this research.

A special thanks to the iPraktikum team! Dora Dzvonyar for the great collaboration,
we spent months together and every time we pushed the boundaries a bit further. Not to
forget all the project teams I supervised, it was your enthusiasm and motivation which
brought things forward. Thanks to Irina Camilleri, Michael Fröhlich and Marius Schulz
for your great work during the courses! But also special thanks to the media team Ruth
Demmel, Andreas Jung, Martin Meir, Felix Neumann and Ernst Graf. You invested way
more than anyone could expect.

Thanks to everyone in the ProCeeD project who made this dissertation a reality. Stefan
Kofler for your professional work on Prototyper, it was a pleasure to work with you. Marie
Weintraud, Julian Geistbeck, Paul Schmiedmayer and Lara Marie Reimer, you all made
great contributions to this project!

I am grateful to have worked with a group of great colleagues at the chair. Constantin
Scheuermann for your encouragement and long bicycle rides in the evening, Jan Ole
Johanßen for the discussions and ideas, Andreas Seitz for the positive energy, Stephan
Krusche who introduced me to the chair and all others. Thank you for the good times, the
great discussions and your feedback. We not only shared offices, we spent years of our life
together.

Many thanks to Helma Schneider and the whole infrastructure group. We may have
worked many long evenings but when we look back and see what has changed in the last
three years, it was worth the effort! Not to forget Monika Markl and Uta Weber, thank you
for pulling the strings in the background and making it all work out.

A big thank you to my family, for all the support and advice. There is nobody who
knows me better. Finally and most importantly thank you Karo. We met on the way and
without your support, patience and love nothing of this would have been possible.

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Foundations 5
2.1 Requirements Engineering . 5

2.1.1 Stakeholders . 6
2.1.2 User Involvement . 7
2.1.3 Requirements Elicitation . 8

2.2 Prototyping . 8
2.2.1 Prototyping as a Process . 9
2.2.2 Prototypes as Artifacts . 12
2.2.3 Tool Support . 14
2.2.4 Market Overview . 15

2.3 Continuous Delivery . 16
2.4 Continuous Prototyping . 18

3 ProCeeD Framework 21
3.1 Scenarios . 21

3.1.1 Deliver Prototype . 22
3.1.2 Receive Prototype . 24
3.1.3 Deliver Multiple Prototypes . 25
3.1.4 Deliver Hybrid Prototype . 27
3.1.5 Decide on a Release Schedule . 29
3.1.6 Analyze the Release Process . 30

3.2 Use Cases . 31
3.3 Requirements . 33

3.3.1 Functional Requirements . 33
3.3.2 Nonfunctional Requirements . 35

3.4 Object Model . 36

xi

Contents

3.5 Dynamic Model . 38
3.5.1 Release . 38
3.5.2 Workflows . 39

3.6 Subsystem Decomposition . 42
3.7 Hardware/Software Mapping . 45

4 Prototyper 47
4.1 User Interface . 47
4.2 Hardware/Software Mapping . 55

5 Evaluation 61
5.1 Overview . 61

5.1.1 Hypotheses . 62
5.1.2 Methodology . 64

5.2 Case Study I: University Capstone Course 65
5.2.1 Design . 65
5.2.2 Quantitative Results . 70
5.2.3 Qualitative Results . 74
5.2.4 Discussion . 78

5.3 Case Study II: Process Metrics . 81
5.3.1 Design . 81
5.3.2 Results . 84
5.3.3 Discussion . 84

5.4 Case Study III: Industry . 86
5.4.1 Design . 86
5.4.2 Results . 86
5.4.3 Discussion . 89

5.5 Case Study IV: Storyboard-based Requirements Elicitation 90
5.5.1 Design . 90
5.5.2 Results . 91
5.5.3 Discussion . 92

5.6 Summary . 93
5.7 Threats to Validity . 93

6 Conclusion 95
6.1 Contributions . 95
6.2 Future Work . 97

Bibliography 99

xii

List of Figures

1.1 ProCeeD Framework and workflows. 2

2.1 Prototyping as a process - taxonomy (UML Class Diagram). 9
2.2 Prototypes as artifacts - taxonomy (UML Class Diagram). 12
2.3 Paper prototype digitized using the prototyping tool MarvelApp. 16
2.4 Example of a Continuous Delivery pipeline (adapted from [HF10]). 17
2.5 Continuous Prototyping approach. 18
2.6 Prototypes in Continuous Prototyping - taxonomy (UML Class Diagram). . . . 19

3.1 Release plan for scenario S1 and S2. 22
3.2 Release plan for scenario S3. 25
3.3 Release plan for scenario S4. 27
3.4 ProCeeD’s requirements exploration use case model (UML Use Case Diagram). 31
3.5 ProCeeD’s delivery automation use case model (UML Use Case Diagram). . . 32
3.6 ProCeeD’s process metrics use case model (UML Use Case Diagram). 32
3.7 ProCeeD’s object model (UML Class Diagram). 36
3.8 ProCeeD’s release model (UML State Machine Diagram). 38
3.9 ProCeeD’s workflows. 39
3.10 ProCeeD’s requirements exploration workflow (UML Activity Diagram). . . . 39
3.11 ProCeeD’s delivery automation workflow (UML Activity Diagram). 40
3.12 ProCeeD’s process metrics workflow (UML Activity Diagram). 41
3.13 ProCeeD’s process metrics - example . 41
3.14 ProCeeD’s subsystem decomposition - objects and packages (UML Class Diagram). 43
3.15 ProCeeD’s subsystem decomposition - subsystems (UML Component Diagram). 44
3.16 ProCeeD’s hardware/software mapping - example (UML Deployment Diagram). 45

4.1 Prototyper’s dashboard showing available applications. 47
4.2 ProCeeD components used for release mgmt. (UML Component Diagram). . . 48
4.3 Prototyper’s release management user interface showing revolutionary proto-

types (orange) and evolutionary prototypes (green). 49
4.4 ProCeeD components used for release promotion (UML Component Diagram). 49
4.5 Prototyper’s release promotion user interface. 50
4.6 Prototyper’s release notes user interface. 51

xiii

List of Figures

4.7 ProCeeD components used for feedback mgmt. (UML Component Diagram). . 51
4.8 Prototyper’s feedback management user interface. 52
4.9 Prototyper’s FeedbackCollector component embedded in a mobile application. 53
4.10 ProCeeD components used for process metrics (UML Component Diagram). . 54
4.11 Prototyper’s process metrics user interface showing metrics for a release. . . . 54
4.12 Prototyper’s hardware/software mapping (UML Deployment Diagram). Com-

ponents implemented as part of Prototyper are drawn blue, components based
on COTS software are drawn yellow. 56

4.13 Revolutionary and evolutionary prototypes combined into a hybrid prototype. 57
4.14 Mobile app created using Prototyper. Yellow parts are based on a revolutionary

prototype, orange parts are implemented in code. 58

5.1 Mapping of the case studies to the ProCeeD workflows. 64
5.2 Case study I: Organizational chart of the course (adapted from [BKA15]). . . . 66
5.3 Case study I: Continuous Prototyping process applied. 67
5.4 Case study I: Tracked events (capital letters) and calculated metrics (arrows). . 68
5.5 Case study I: Amount of prototypes delivered to the client. 70
5.6 Case study I: Amount of prototypes delivered to clients in an automated process. 71
5.7 Case study I: Delivery times revolutionary prototypes. 72
5.8 Case study I: Delivery times evolutionary prototypes. 72
5.9 Case study I: Feedback times revolutionary prototypes. 73
5.10 Case study I: Feedback times evolutionary prototypes. 73
5.11 Case study I: Feedback channels. 73
5.12 Case study I: Prototyper usage (single choice). 74
5.13 Case study I: Statements delivery automation 1.1 - 1.3 (5-likert). 75
5.14 Case study I: Statements delivery automation 2.1 - 2.2 (5-likert). 75
5.15 Case study I: Statements requirements exploration 1.1 - 1.3 (5-likert). 76
5.16 Case study I: Statements requirements exploration 2.1 - 2.3 (5-likert). 77
5.17 Case study I: Statements integration with developer tools 1.1 - 1.3 (5-likert). . . 77
5.18 Case study I: Statements integration with developer tools 2.1 - 2.3 (5-likert). . . 78
5.19 Case study II: Development workflow (adapted from [BKA15]) 81
5.20 Case study II: Metrics Continuous Integration. 82
5.21 Case study II: Metrics Continuous Prototyping. 83
5.22 Case study III: Release plan for DiaApp - example. 87
5.23 Case study III: Four prototyping iterations of the DiaApp dashboard. 88
5.24 Case study IV: Visual backlog creation process (adapted from [ASF17]). 90
5.25 Case study IV: Top-level architecture (example). 91
5.26 Case study IV: Visual backlog showing the system after five iterations. 92

6.1 Contributions. 95

xiv

List of Tables

2.1 Prototyping tools classified by goal, applied techniques and delivery process. . 15

5.1 Case study I: Participants . 65
5.2 Case study I: Questionnaire - overview . 69
5.3 Case study III: Releases delivered for DiaApp 2 86
5.4 Evaluation: Summary . 94

xv

Chapter 1
Introduction

Finding and fixing a problem in a software system early in the development process has
been shown to be significantly less expensive than correcting the problem after delivery
[BB01]. Dealing with change and being able to elicit and refine requirements even in late
development stages is a success factor for innovative software projects. In the waterfall
model [Roy+70] requirements are elicited and analyzed only at the beginning of the
software development process. Iterative and incremental lifecycle models like the Rational
Unified Process have proposed to model requirements elicitation as a workflow throughout
the lifespan of a software system [Jac+99]. To reduce the cost and risks caused by changing
requirements throughout the stages of the software lifecycle, agile methods such as Extreme
Programming or Scrum let developers work in even shorter cycles [Bec00], [SB02].

Various techniques can be applied to elicit requirements: in personal interviews or
questionnaires requirements are elicited with the stakeholders. Model-based approaches
apply use cases and scenarios written in natural language to structure the elicitation
process [Mai98]. Prototyping allows the elicitation of requirements using early abstractions
which show the main characteristics and features of an artifact in development. The term
‘prototype’ originates from the greek words protos, which translates to ‘original, primitive’
and typos which translate to ‘impression’1. Literally speaking, a prototype is ’a first or
primitive’ form of a product to be developed. Rapid prototyping describes the fast creation
of physical prototypes [TB90]. In software engineering Prototypes are created to close the
gap between an abstract idea and the proposed software solution by facilitating a shared
mental model [Nor12] between the stakeholders. Research shows that software prototyping
has a positive benefit on the success of software projects [HL01] and helps to overcome the
challenge that the requirements in a project are often unclear to the stakeholders until they
are implemented in a system which can be executed and tested [Car00].

In this dissertation we focus on prototypes to support the development of interactive
systems where user interface models are the means of communication between the stake-
holders. Prototypes for interactive systems can be created with several techniques such as
paper-based prototyping, wireframing, storyboarding or wizard-of-oz prototyping: Paper-
based prototypes focus on the static layout of the user interface. Wireframe prototypes
model the user interaction with low-fidelity sketches of the user interface elements. Story-
board prototyping demonstrates the interaction of the user with the system by modeling a

1http://www.dictionary.com/browse/prototype

1

Chapter 1: Introduction

flow of interaction steps using images or videos [And89]. Wizard-of-oz prototyping [Kel84]
has been applied to evaluate the user interface of a system while a human controls the not
yet developed interaction steps of the system.

In addition to this large spectrum of prototyping techniques, prototypes for interactive
software systems are developed with a variety of tools and media. The target environments
of interactive systems range from desktop computers, smartphones and tablets to wearable
devices and in-car entertainment systems. As a result prototypes are often demonstrated
and evaluated in environments which differ from the environment the proposed system will
be executed in. This can lead to wrong assumptions regarding the system’s requirements
by the stakeholders. For example, when a mobile application prototype is evaluated with
mouse and keyboard on a desktop computer, the user experiences the interactions in a
different way than in a mobile environment.

In this dissertation, we see requirements elicitation as a dialectic process where stakehold-
ers define, refine or dismiss requirements based on the regular delivery of these prototypes
to the user and in the target environment of the proposed system. In order to create
successful systems, the peculiarities of the target environment like the usage context, input
modalities or interaction model need to be taken into account already during requirements
elicitation. We believe that evaluating prototypes in the target environment facilitates prob-
lem understanding, improves the quality of the requirements and - ultimately - the final
system. An important aspect is the delivery of these early prototypes. While approaches
like Continuous Delivery [HF10] have been developed to automate the delivery of software
to the target environment, the delivery of revolutionary prototypes to explore and refine
requirements has not yet been addressed. This is a drawback especially in innovation
projects with unclear and vague requirements where early and regular feedback from users
is of great importance.

Transformation & Packaging

Prepare prototypes for delivery to the target environment

Feedback & Metrics
 

User feedback collection and metric calculation

Integration & Delivery

Continuous Delivery of prototypes

PROCEED  
Framework

PROCEED  
Workflows

Requirements Exploration  

Requirements exploration
using executable prototypes

Process Metrics

Metrics definition, collection  
 and analysis

Delivery Automation  

Automated delivery  
of prototypes

Mobile App Delivery Tool
 

Based on ProCeeD

PROTOTYPER  
Tool

Figure 1.1: ProCeeD Framework and workflows.

2

This dissertation addresses the above-described gap by introducing the ProCeeD Frame-
work for the delivery and feedback management of prototypes and the Prototyper tool
which adopts ProCeeD in the field of mobile application engineering. An overview of
ProCeeD’s architecture and workflows is shown in Figure 1.1. ProCeeD’s requirements
exploration workflow enables developers to elicit and explore requirements by delivering
one or multiple executable prototypes of the proposed system to groups of users. The
delivery automation workflow allows developers to deliver prototypes created with a
variety of techniques to the target environment using an automated and repeatable process.
Stakeholders can execute and evaluate the prototypes and give feedback. The process
metrics workflow enables development teams to measure, evaluate and improve their
delivery process based on process metrics calculated by ProCeeD. To evaluate ProCeeD
we implemented the Prototyper tool in the domain of mobile application engineering.
We evaluated ProCeeD and Prototyper in an academic and industrial setting in four case
studies. The remainder of this dissertation is structured as follows:

Chapter 2 introduces the terminology used in this dissertation as well as the foundations
in the fields of requirements engineering, prototyping and software delivery. It also shows
the results of a market study in which we analyzed prototyping tools with a focus on their
delivery workflow.

Chapter 3 describes the scenarios and use cases of the ProCeeD Framework and elicits
its functional and nonfunctional requirements. It then explains ProCeeD workflows
requirement exploration, delivery automation and process metrics. Finally it presents the
analysis and system design models of ProCeeD.

Chapter 4 shows the Prototyper application delivery tool which is based on the ProCeeD
Framework. It maps Prototyper’s user interface to the ProCeeD architecture and presents a
detailed mapping of ProCeeD’s and Prototyper’s components to hardware and software
nodes as well as protocols used in the implementation.

Chapter 5 presents the empirical evaluation of ProCeeD in four case studies. The first
case study evaluates Prototyper as well as ProCeeD’s delivery automation and requirements
exploration workflows in a multi-project capstone course with more than 200 developers
working in 22 projects. The second case study evaluates ProCeeD’s process metrics
workflow in a project course across multiple semesters. The third case study shows the
application of Prototyper and ProCeeD in a commercial project with a partner from the
pharmaceutical industry. The fourth case study describes the use of ProCeeD in a project
following a storyboard-based requirements elicitation approach.

Chapter 6 summarizes the contribution of this dissertation and provides an outlook on
future work with regard to ProCeeD and the Prototyper tool.

3

Chapter 2
Foundations

This chapter presents the foundations in the fields of requirements engineering, software
prototyping and software delivery and defines the notion of Continuous Prototyping. The
chapter is structured as follows: Section 2.1 presents an overview of the field of require-
ments engineering, in particular its origins and current research topics. It then describes
the roles and responsibilities of the different persons involved during requirements engi-
neering. Section 2.2 covers prototyping as a requirements elicitation technique and presents
prototyping as a process with different goals, techniques applied and delivery methods
used. It then describes prototypes as artifacts and presents a taxonomy to classify proto-
types by their fidelity, integration and executability. In addition it presents an overview of
prototyping approaches and tools created in science and industry. Section 2.3 introduces
the concept of Continuous Delivery. Finally Section 2.4 coins the notion of Continuous
Prototyping which integrates prototyping as a requirements elicitation technique with the
state of the art in continuous software delivery.

2.1 Requirements Engineering

The first attempts to structure requirements analysis in software projects emerged in the
1970’s when DeMarco introduced the structured analysis to model systems functionality
and data flows [DeM79]. DeMarco’s approach distinguished between the analysis of the
current state of a software system and a model of the desired state, an early form of
requirements specifications. McMenamin and Palmer later proposed Essential System
Analysis and distinguished between the essence and incarnation of a software system, a
distinction DeMarco’s approach was lacking. While the essence describes the characteristics
of a system in a perfect world and without any technological constraints, the incarnation of
a system considers the actual implementation constraints given by technology or people
[MP84]. By applying such an approach, requirements analysts could now distinguish
between the problem to be solved and a feasible technical solution.

Until the 1970’s, requirements were mainly written by developers and engineers. Soft-
ware systems were mostly created to automate existing processes. Users of such systems
were usually engineers or programmers and the system’s requirements could be stated
upfront and formally verified after their implementation. The focus of requirements engi-
neering methods was on the definition of unambiguous and complete requirements and
did not involve actual users of the proposed system. Dijkstra summarized the situation as

5

Chapter 2: Foundations

follows: "[T]he notion of ‘user’ cannot be precisely defined, and therefore has no place in
computer science or software engineering." [Dij79].

After IBM presented the personal computer in 1981 [IBM81], the rise of interactive
software systems and their users facilitated a paradigm shift in requirements engineering:
Eliciting and analyzing requirements without involving the users of a system was no longer
enough. With the Spiral Model [Boe88], Boehm claimed to reduce the risk of large software
projects by employing an iterative and prototype-based design approach where require-
ments could be altered between iterations. Subsequent iterative and incremental lifecycle
models like the Rational Unified Process [Jac+99] modeled requirements engineering as a
workflow throughout the lifespan of a software system. To further reduce the risk caused
by changing requirements throughout the software lifecycle, agile methods such as Extreme
Programming and Scrum let stakeholders review and refine the requirements in short
development cycles [Bec00], [SB02]. Today, requirements engineering is concerned with
the elicitation, documentation, negotiation, validation and management of requirements
throughout the whole software lifecycle [Poh10].

In the following sections, we present an overview of the different roles involved in
requirements engineering and discuss techniques to elicit requirements.

2.1.1 Stakeholders

The term stakeholder has its origin in the area of strategic management [Fre10]. In software
engineering, especially in requirements engineering, different definitions for the notion of a
stakeholder exist. Macaulay was the first to define stakeholders in the field of requirements
engineering as: "all those who have a stake in the change being considered, those who
stand to gain from it, and those who stand to lose." [Mac93]. Kotonya and Sommerville
saw stakeholders as "people or organizations who will be affected by the system and who
have a direct or indirect influence on the system requirements." [KS98], similar to Conger
who stated stakeholders are "The people and organizations affected by the application"
[Con93]. For this dissertation, we define stakeholders according to Glinz and Wieringa as
"a person or organization who influences a system’s requirements or who is impacted by
that system." [GW07].

We distinguish the following stakeholders: requirements analysts, developers, interaction
designers, clients, users and promoters. Requirements analysts are concerned with the
exploration, elicitation and analysis of the system’s requirements. Using techniques
described in Section 2.2 requirements analysts collaborate with other stakeholders to define
and refine requirements.

Developers contribute artifacts like source code or architectural concepts. Depending on
the project organization developers fulfill additional roles like managing delivery or code
review activities.

6

Section 2.1: Requirements Engineering

Interaction Designers are especially involved during the ideation and development of
interactive software systems. Their responsibilities are the definition, evaluation and
refinement of the user interface and user interaction model of the proposed system.

Clients are the persons or the company who pay, contract or request a software application.
A client can have varying domain knowledge and decision power [BD09]. When the client
is a domain expert who is very familiar with the problem to be solved, he can give valuable
feedback to the developers [BPKR09].

Users are the persons who will use the proposed system [BD09]. They can provide
explicit and implicit feedback to other stakeholders. Explicit feedback is actively provided
in the form of textual or spoken comments on the user interaction design of a prototype.
Implicit feedback is any feedback which can be collected without the active participation
of the user, e.g. through the collection of the interaction steps a user took while using a
software application.

Witte and Hausschild introduced the notion of promoters. A promoter is an invisible
stakeholder who may not influence the requirements of a software system, but still has an
impact on its success. While promoters stay mostly invisible during development, they
have a viable interest in the development of a software system. By using their expert
knowledge or position in the company they help to overcome organizational barriers and
obstacles [Wit73], [Hau98].

2.1.2 User Involvement

Methods to involve users during software development have been researched since the
1980’s, when the concept of user-centered system design [ND86] appeared. Gould and
Lewis proposed three principles for user centered design [GL85]: early focus on users,
empirical measurement using prototypes and iterative design. They recommended that
potential users of the system become part of the design team from the beginning. As not
each potential user of a system can be actively involved during requirements engineering,
several concepts emerged to allow the creation of user models: Jacobson introduced the
term actor as a superclass for the different users of a system. He defined an actor as
everyone who "interacts with the system" and "needs to exchange information with the
system" [Jac93].

Cooper coined the term persona. A persona is a fictional representation of a group
of users [Coo99]. Personas are created to allow developers and designers to model the
different kinds of users which will use the proposed system later on.

Nowadays the involvement of actual users is a desired practice during software develop-
ment [Kuj03], [Pag13]. However, Kujala found that "early user involvement is still a rare
phenomenon in ordinary development projects" [KKLK05]. Moreover, Kujala sees "early
user involvement [...] to be a powerful way of improving the requirements quality and
project success" [KKLK05].

7

Chapter 2: Foundations

2.1.3 Requirements Elicitation

Requirements elicitation is the extraction and creation of the requirements of a system by
its stakeholders [Poh10]. An important aspect of requirements elicitation is the scoping of
the problem that needs to be solved by defining the system’s boundaries and identifying its
stakeholders [KS98]. Requirements elicitation is a challenging activity because stakeholders
who know about the problem domain may not understand the technical aspects of the
system under development. On the other hand developers, who know about software
engineering processes, are sometimes not familiar with the problem domain [HB95],[KS98].
Many techniques can be applied to elicit requirements:

• People-oriented techniques include the use of questionnaires and the conduction of
interviews with clients or users. In addition, the analysis of existing documentation
is used in reengineering projects.

• Creative techniques elicit requirements using brainstorming or focus groups with
multiple stakeholders [PEM03].

• Model-based approaches structure the requirements elicitation process by applying a
set of goals or scenarios defining the type and detail of the information to be gathered.
A well-known goal-based elicitation approach is KAOS [LDL98], which proposes
to derive a systems requirements from a set of goals. Examples for requirements
elicitation approaches involving scenarios are CREWS [Mai98] and SCRIPT [Sta+12].

• Cognitive techniques use protocol analysis where subjects execute a certain task while
thinking aloud. Another technique is card sorting where subjects are asked to
structure domain entities by grouping cards containing possible entities [NE00].

Prototyping is a requirements elicitation technique that emerged in the 1970’s. As
prototyping is the focus of this dissertation, we describe the prototyping process and
prototypes as artifacts in detail in the next section.

2.2 Prototyping

The term Prototype itself originates from the greek words protos, which translates to ‘original,
primitive’ and typos which translate to ‘impression’1. Literally, a prototype is ‘a first or
primitive’ form of a product to be developed. In industrial production, a prototype
represents an early sample showing the main characteristics and features of the product
under development. In this context, the term ‘Rapid Prototyping’ describes the fast creation
of physical prototypes [CLL03].

Bruegge and Dutoit refer to software prototypes as simplified versions of a system
[BD09], similarly to Guida et al. who state that "[a] prototype is a dynamic model of the
software system under construction" [GLZ99]. Prototypes demonstrate parts of a proposed

1http://www.dictionary.com/browse/prototype

8

Section 2.2: Prototyping

system in a simplified manner and can be used to present the vision of a system [BBLZ96].
Prototyping can be understood as "the construction of an executable system model to
enhance understanding of the problem and identify appropriate and feasible external
behaviors for possible solutions” [HDK93]. A prototype demonstrates the feasibility of the
functionality of a system to identify possible risks; it provides a means of communication
between developers and users and it is used to explore and elicit requirements which are
not completely known upfront [Rup+07], [Urb92], [BKKZ92].

Prototyping techniques have been part of software engineering lifecycle models since
the 1980’s. For example, Boehm incorporated the creation of prototypes in his spiral
model [Boe88]: he required developers to create prototypes in each iteration to reduce
the project risk. Jacobson proposed the creation of prototypes in the Unified Process to
evaluate architectural decisions as well as to demonstrate the mitigation of technical risks
[Jac+99], [Kru04]. Beck proposes to create User Stories to describe requirements in Extreme
Programming [Bec00]. A developer creates a prototype for each user story to demonstrate
the requirement to the customer or users. In the following, we analyze prototyping by the
underlying process and the resulting artifacts.

2.2.1 Prototyping as a Process

Prototype development can be modeled as process with a certain goal. Prototypes can be
created using different techniques and are delivered to project stakeholders in a manual or
automated delivery process. Figure 2.1 depicts this taxonomy.

Prototyping
process

Technique

Paper-based
prototyping

Story-
boarding

Video
prototyping

Wireframing

Digital
prototyping

Wizard-of-oz
prototyping

Delivery

Manual
process

Automated
process

Goal

Exploratory
prototyping

Revolutionary
prototyping

Evolutionary
prototyping

Code-based
prototyping

Model-based
prototyping

Figure 2.1: Prototyping as a process - taxonomy (UML Class Diagram).

9

Chapter 2: Foundations

Goal

Graham distinguishes three classes of prototyping processes, each of them fulfilling a
different goal [Gra94b]. Exploratory Prototyping is applied when the problem to be solved
is not yet defined, e.g. to envision new ideas or as an approach for unsolved problems
[Gra94b]. Revolutionary Prototyping, also known as ‘throw-away prototyping’, has the goal
to elicit requirements for a system by discussing possible alternative solutions and to
facilitate communication with the stakeholders, e.g. developers, clients or users [Gra94b].
An important aspect of revolutionary prototyping is that the created prototypes are used to
discuss ideas and possible solutions and are ‘thrown away’ afterwards. Creating multiple
revolutionary prototypes can therefore introduce overhead into the software development
process. Appropriate tools which keep the effort for the creation of revolutionary prototypes
low are required. Furthermore, exposing a revolutionary prototype to e.g. a client or user
can lead to disappointment when it becomes clear that the final system may not implement
all features shown in the prototype [KHSI12].

Evolutionary Prototyping describes an incremental and iterative prototyping approach.
Evolutionary prototypes are created and refined in cycles and evolved towards the actual
system. An evolutionary prototype is implemented and delivered using the same tools
and programming language as the actual system [Gra94b], [Flo84].

Davis proposed the concept of Operational Prototyping by combining evolutionary and
throw-away prototyping. Operational prototyping asks developers to create a throw-away
copy of the currently developed evolutionary prototype. An experienced developer alters
the prototype together with the client and according to their ideas. When the client accepts
the prototype, the change is integrated into the evolutionary prototype [Dav92].

Technique

Prototypes can be created with several techniques such as paper-based prototyping, wire-
framing, storyboarding, digital prototyping, video prototyping or wizard-of-oz prototyping.
These are shown in Figure 2.1 as an overview:

Paper-based prototyping describes the sketching of a user interface on paper [Sny03]. The
sketches are then used to evaluate the user interface. For such an experiment a facilitator
puts the prototype on a table and narrates the interaction steps the user should take. The
user interacts with the paper prototype as he would with the real system. Paper prototypes
allow users to participate in the prototyping process by expressing ideas and providing
feedback. According to Snyder, paper prototypes allow the fast collection of user feedback
while requiring little effort and expertise to create [Sny03]. Developers are likely to accept
changes as they are less emotionally attached to the prototype [DKA14]. However, creating
and especially modifying a paper prototype can be a time-consuming activity.

10

Section 2.2: Prototyping

Wireframing has its origin in 3D computer graphics, where it describes the visual repre-
sentation of an object by only showing its outer structure without any texture or color. In
software engineering, a wireframe prototype is a low-fidelity drawing of the user interface
showing only the rough position and size of its elements. A wireframe does not include
any detailed design like colored images. Multiple wireframe prototypes can be used to
prototype the user interface of a system [Sny03]. Wireframe prototypes can be created using
software tools and are then distributed electronically. Sefelin et al. found that prototypes
drawn on paper result in the same quantity and quality of critiques and suggestions from
users as wireframes created with software [STG03]. Similarly, Walker et al. found paper
and wireframe prototypes to be equally suitable for usability testing [WTL02].

Storyboarding is a well-established practice in the filming industry to sketch out movies
before filming them. Movie storyboards consist of sequences of frames showing a specific
drawing representing the movie shots. Applied to software prototyping, the frames show
e.g. an image of the user interface or a narrated part explaining the users interactions with
the system [And89].

Digital prototyping denotes the creation of prototypes with software tools. Jørgensen et al.
developed TAP [JCK10], a tool to create prototypes for mobile devices. Lasecki et al. used
crowdsourcing techniques to create digital prototypes with multiple persons at the same
time [Las+15].

Video prototyping is a scenario-based technique to model the user interface and interaction
model of interactive systems. Vertelney describes an approach to demonstrate a user
interface with a small implementation effort as only the parts of the interface which are
shown in the video need to be designed and implemented [Ver89]: The video prototype
shows the proposed interface and also the interactions of the user with it. Creighton
developed a video-based approach where objects and their relationship can be annotated in
scenario movies. Based on the annotations, UML models are generated from the scenario
movie [COB06].

Wizard-of-oz prototyping models the user interface of a not yet implemented system with
a human carrying out the interaction steps of the proposed system. If a user e.g. clicks a
button, a human will fake the system’s response on the display without the user noticing
[Kel84]. Experiments with wizard-of-oz prototypes need to be executed in a way that
the participating users believe the system has already been implemented. Wizard-of-oz
prototypes are a cost-efficient way to explore different interaction methods and usability
aspects without the need of implementing these alternatives upfront. Ganhor et al. have
used executable, low fidelity prototypes to conduct wizard-of-oz experiments with a mobile
application [GGSF14]. Peters used wizard-of-oz prototyping to explore requirements for
building control system with multiple modalities [Pet16].

Finally, Model-based prototyping describes techniques where prototypes are generated
automatically from any kind of model, e.g. a formalized use case model. Code-based
prototyping describes the implementation of a prototype in a programming language.

11

Chapter 2: Foundations

Delivery

Prototyping can be distinguished by the process applied for delivering a prototype. For
this dissertation, we define two possibilities: A prototype is delivered using an automated
process when the prototype can be delivered to the target environment by a developer with
only few interactions. This also includes that a developer can apply the same delivery
process for a prototype as he uses for the delivery of the proposed system.

A prototype is delivered using a manual process when the prototype is delivered with
a method which diverges from the method applied for delivering the proposed system.
Manual delivery methods are e.g. email, paper or proprietary solutions of prototyping tool
vendors.

2.2.2 Prototypes as Artifacts

Prototypes can be classified as artifacts according to their focus, integration, precision and
executability. Figure 2.2 visualizes this taxonomy.

Integration Precision

User interface
prototype

Function
prototype

Horizontal
prototype

Vertical
prototype

Focus

Low-fidelity
prototype

High-fidelity
prototype

Prototype
artifact

Architecture
prototype

Executability

Non-
exectuable
prototype

Exectuable
prototype

Figure 2.2: Prototypes as artifacts - taxonomy (UML Class Diagram).

Focus

Prototypes can vary in their focus depending on the nature of the proposed system and its
corresponding requirements. A user interface prototype is created to discuss e.g. the user
interaction model or user interface design of an interactive system with its stakeholders.
A function prototype is used to evaluate technical aspects like an algorithm. When the
prototype is created to evaluate aspects of the proposed systems architecture, e.g. the
communication between different subsystems, an architecture prototype is the appropriate
choice.

12

Section 2.2: Prototyping

Integration

Nielsen distinguishes prototypes by their integration into horizontal and vertical prototypes
[Nie94]. A horizontal prototype covers e.g. the user interface of the actual system, but not its
underlying objects and methods. In contrast, a vertical prototype implements a slice of the
actual system, i.e parts of the user interface with the corresponding objects and methods.
While a horizontal prototype is used to demonstrate the user interaction model, a vertical
prototype is usually applied to demonstrate a single piece of functionality [BKKZ92].

Fidelity

Prototypes can be distinguished by their precision, denoting the level of fidelity of the
prototype.

Low-fidelity prototypes show a model of the user interface of the actual system. User
interface elements are drawn as sketches and may not be precisely aligned. Low-fidelity
prototypes are created on paper or with software and are used to iteratively explore the
design space. Rudd et al. construct low-fidelity prototypes to depict concepts and design
alternatives or user interface designs [RSI96]. They state that low-fidelity prototypes offer
limited functionality and interactivity and require a facilitator who knows the application
thoroughly to demonstrate the interaction steps of the application [RSI96]. Koehler et
al. state that low-fidelity prototypes tend to distract stakeholders less from the actual
prototype by avoiding details when compared to high-fidelity prototypes [KHSI12].

In contrast, high-fidelity prototypes are created with attention to detail, often using
detailed designs. Using high-fidelity prototypes users can interact with prototype as if it
were the real system. In general, high-fidelity prototypes trade speed for accuracy [RSI96].
They are not as quick and easy to create as low-fidelity prototypes, but they model the
interface and interaction design of the actual system more precisely. Although prototyping
tools exist to simplify their creation, high-fidelity prototyping requires substantial effort
and can introduce overhead in the development process. Sefelin states that using high-
fidelity prototypes, stakeholder feedback often addresses only details in the user interface
and that stakeholders are reluctant to challenge the developer as they think this is already
the actual system [STG03].

Virzi compared usability problems when using low- and high-fidelity prototypes and
found that both approaches find the same set of usability problems along the development
process [Vir89]. They further show that low-fidelity prototyping is not only effective during
initial design stages, but also throughout the product development lifecycle.

13

Chapter 2: Foundations

Executability

Prototypes can further be distinguished by their executability. We define a prototype to
be executable as the prototype can be executed in the target environment of the proposed
system and a user can interact with the prototype using the interaction methods of the
proposed system. If the proposed system is aiming for a touch-based user interface on a
mobile device, then the executable prototype should also be usable with that user interface.

2.2.3 Tool Support

Creating prototypes with varying goals and techniques can be accomplished with com-
mercial and non-commercial prototyping tools. In the following two sections, we give an
overview of solutions developed in research and present a market overview of commer-
cially available prototyping tools. For this dissertation we focus on tools and approaches
to create user interface prototypes.

In the 1990s, Vlissides and Tang created IBuild, a user interface builder which allows
the composition of user interfaces independently from the proposed system. With Ibuild
developers can prototype user interfaces and apply Ibuild’s code generation feature to
export the interface in the programming language and using the user interface toolkit of
the proposed system [VT91]. Landay created SLICK, a tool to quickly create interactive,
digital sketches of interactive systems. Using SLICK, developers can sketch low-fidelity
user interfaces using a digital stylus. In a second step, they can connect the drawn interface
elements with each other. For example, a developer can connect a button with dialog box.
Every time a user clicks the button, the dialog box will appear. User interface prototypes
drawn with SLICK provide the advantage of being interactive when compared to paper
prototypes [Lan96]. Stangl’s SCRIPT editor allows the creation of scenario-based user
interface prototypes. SCRIPT allows developers to evolve scenarios and user interface
prototypes concurrently. In addition, it helps developers to keep both in a consistent state
during development by visualizing elements where user interface prototype and scenario
deviate from each other: If a developer modifies a scenario, SCRIPT makes sure that the
corresponding user interface conforms with the scenario and vice versa [Sta+12]. Hoffmann
presented the OpenUMF tool which allows developers to automatically transform use case
models into user interface prototypes whenever the use case model has changed. To allow
this automated code generation, OpenUMF implements a formalized notation for denoting
use cases [HL13].

14

Section 2.2: Prototyping

2.2.4 Market Overview

Table 2.1 depicts the results of a market survey we conducted in 2016 to assess commercial
and non-commercial available prototyping tools.

Table 2.1: Prototyping tools classified by goal, applied techniques and delivery process.

Tool Website Technique Delivery

Balsamiq balsamiq.com
Wireframing

Digital prot.

Manual

(PDF)

Moqups moqups.com
Wireframing

Digital prot.

Manual

(PDF, HTML)

AppCooker appcooker.com Digital prot.
Manual

(PDF, Proprietary)

InVision invisionapp.com
Wireframing

Digital prot.

Manual

(PDF, Proprietary)

MarvelApp marvelapp.com

Paper-based prot.

Wireframing

Digital prot.

Manual

(HTML, App)

Keynote

PowerPoint

apple.com

microsoft.com

Wireframing

Digital prot.

Manual

(PDF, Proprietary)

Android Studio

Xcode

android.com

apple.com

Code-based prot.

Digital prot.
N/A

Proto.io proto.io
Wireframing

Digital prot.

Manual

(PDF, Proprietary)

Paintcode paintcodeapp.com Digital prot. N/A

JustInMind justinmind.com
Wireframing

Digital prot.

Manual

(HTML, Proprietary)

All tools analyzed allow developers to define a certain amount of interactivity for
the prototypes ranging from the definition of transition between different screens up to
completely programmable environments where e.g. input and output parameters for
user interface elements can be defined. Figure 2.3 shows an example of an paper-based
prototype digitized using the prototyping tool MarvelApp2. Here a developer has digitized
a paper-based prototype in a first step. In a second step, he has linked several elements of
the prototype with another screen to make the prototype interactive. Regarding the applied
prototyping technique, most of the tools allowed the creation of low-fidelity wireframes
and low- and high-fidelity digital prototypes.

2http://www.marvelapp.com

15

Chapter 2: Foundations

IDEs such as Android Studio3 or Apple Xcode4 can be used to create prototypes that
are code-based or to a certain degree digital. While most of the tools allow the manual
delivery of the created prototypes e.g. as PDF documents, some tools allow the delivery of
prototypes as executable application. AppCooker provides proprietary apps for common
ecosystems like iOS and Android to execute prototypes created with the tool. Only one
tool, MarvelApp, allowed the creation of mobile apps which can be deployed to the target
environment. Such an app can be delivered ‘as-is’ and only be edited using the prototyping
tool itself. The delivery process itself is managed by MarvelApp.

We conclude that while many tools exist to create revolutionary and evolutionary
prototypes for interactive systems, available tools neglect the delivery of these prototypes.
If a tools supports the delivery of the created prototypes, it uses a manual and proprietary
approach.

Figure 2.3: Paper prototype digitized using the prototyping tool MarvelApp.

2.3 Continuous Delivery

Continuous Delivery is a software delivery approach introduced by Humble and Farley
[HF10] which builds on Continuous Integration [Boo91], [FF06]. With Continuous Delivery,
developers not only automatically test each change to a software, but also automate the
deployment of each successful tested change to a target environment using an repeatable
process [HF10]. The characteristics of the target environment, e.g. the operating system

3https://developer.android.com/studio/
4https://developer.apple.com/xcode/

16

Section 2.3: Continuous Delivery

or available software, should match the characteristics of the production environment as
closely as possible. The goal is keeping software in a state from which it can be released
to the production environment at any point in time. Continuous Delivery workflows are
adopted in industry [Kle+15], [Nar15] and are part of software engineering education
[KA14] [KABW14], [BKA15].

Humble and Farley’s Continuous Delivery approach is based on tool support for main-
taining a deployment pipeline. This pipeline, visualized in Figure 2.4, is instantiated every
time a developer finishes a development task and commits the changes to the Version
Control Repository. After each commit the Commit Stage (1) is executed, i.e., the change is
built and unit-tested. If the commit stage passes successfully, the resulting artifacts are
stored in the Artifact Repository, from where they can be passed to subsequent Test Stages
(2). Artifacts are deployed to one or many Test Environments (3) which should match the
configuration of the Production Environment.

Configuration

Build
artifacts

Metadata
Build

artifacts
Metadata Build

artifacts
Metadata

Configuration

Version Control Repository

Artifact Repository

Testdata

Test Stage(s)

Configure environment
Deploy binaries
Execute Tests

Enviroments

Configure environment
Deploy binaries

Commit Stage

Build
Unittest
Package

1 2 3

Figure 2.4: Example of a Continuous Delivery pipeline (adapted from [HF10]).

Olseen and Bosch state that by applying Continuous Delivery, software teams are able
to "[r]espond and act based on instant customer feedback and see the actual deployment
of software functionality as a way of experimenting and testing what the customer needs"
[OAB12].

17

Chapter 2: Foundations

2.4 Continuous Prototyping

In Section 2.2 found that while prototypes are created with mature tool support, none of
the tools provides an automated and repeatable process to deliver prototypes the target
environment. In Section 2.3 we described Continuous Delivery as a software delivery
technique and concluded that while software can be delivered using an automated process,
the delivery of prototypes to the target environment has not been dealt with yet.

User

Executable 
Release

Revolutionary
Prototype

Evolutionary
Prototype

Feedback

Common Delivery Process

Target  
Environment

Developer

Prototyping
Tools / IDEs

Figure 2.5: Continuous Prototyping approach.

To address this topic, this dissertation coins the term Continuous Prototyping. Continuous
Prototyping enables developers to deliver revolutionary as well as evolutionary prototypes
as executable releases to the target environment at any stage of the development. Stake-
holders can evaluate the releases in the target environment and provide feedback to the
developers. In order to achieve this, Continuous Prototyping brings the concept of an auto-
mated delivery process for software as defined by Humble [HF10] to the field of software
prototyping. Figure 2.5 depicts a high-level view of our Continuous Prototyping approach.
Continuous Prototyping distinguishes between three kinds of prototypes: revolutionary
prototypes, evolutionary prototypes and hybrid prototypes. Figure 2.6 presents a mapping of
these prototypes to the techniques described in Section 2.2.1.

Revolutionary prototypes are used to explore and refine requirements and can be created
with any technique. After the requirement is discussed such a revolutionary prototype is
mostly thrown away. An example for a revolutionary prototype could e.g. be a wireframe
prototype created using a prototyping tool.

Evolutionary prototypes are prototypes usually created in the programming language of
the proposed system based on already defined requirements. Artifacts of an evolutionary
prototype, e.g. source code, are reused and altered in subsequent iterations.

18

Section 2.4: Continuous Prototyping

A hybrid prototype is an evolutionary prototype which partly consists of revolutionary
prototypes. For instance, a team who wants to show off a new user interface design
for a part of their application could create a hybrid prototype consisting of the actual
application and a mocked user interface for the corresponding part. When development
teams adopt Continuous Prototyping, they create revolutionary, evolutionary and hybrid
prototypes using a technique of their choice and deliver them using one, common process.
Furthermore, they can involve users by delivering executable prototypes to collect feedback
already during requirements elicitation.

Hybrid
Prototype

Digital

Video

Code-based

Wireframe

Wizard-of-ozPaper

Model-basedStoryboard

Hybrid
prototype

Revolutionary
prototype

Evolutionary
prototype

Technique

Figure 2.6: Prototypes in Continuous Prototyping - taxonomy (UML Class Diagram).

19

Chapter 3
ProCeeD Framework

This chapter presents the ProCeeD Framework. ProCeeD is based on the Continuous Proto-
typing approach and allows development teams to explore, define and refine requirements
by delivering revolutionary, evolutionary as well as hybrid prototypes to the target environ-
ment following an automated and repeatable process. ProCeeD enables users to execute
and evaluate these prototypes in the target environment. Moreover, ProCeeD allows the
concurrent delivery of alternative prototypes to explore multiple design alternatives. Using
ProCeeD, developers can clarify requirements by testing hypotheses through collecting
implicit and explicit feedback from users. In addition, ProCeeD has the capability to
continuously evaluate a team’s delivery process based on a set of process metrics.

The remainder of this chapter is structured as follows: Section 3.1 presents six scenarios
which describe the interaction of developers and users with ProCeeD. The scenarios are
based on three exemplary release plans. Section 3.2 describes the use case model of Pro-
CeeD and its three workflows requirements exploration, delivery automation and process
metrics. Based on the scenarios and use-cases Section 3.3 elicits ProCeeD’s functional
and nonfunctional requirements. Section 3.4 presents ProCeeD’s object model and its
main objects in detail. Section 3.5 explains ProCeeD dynamic model, in particular its
three workflows. Section 3.6 describes ProCeeD components and subsystems. Section 3.7
presents an exemplary mapping of ProCeeD to hardware and software components.

3.1 Scenarios

This section presents ProCeeD’s design scenarios using the actors John, a software developer
and Carl, a client requesting the application developed by John.

The six scenarios are based on the following, exemplary project setting: John is work-
ing on a new feature for an existing interactive system with a particular focus on user
interaction design. John creates revolutionary prototypes before implementing a feature to
refine and discuss the requirement with Carl. He uses the ProCeeD Framework to manage
the creation and delivery of revolutionary and evolutionary prototypes. John regularly
delivers releases to Carl, who executes the releases in the target environment and provides
feedback to John. Scenario S1 (Deliver Prototype) describes how John delivers a prototype
to Carl, scenario S2 (Receive Prototype) explains how Carl is notified after a prototype has
been released, how Carl can access a release and how he provides feedback. In scenario
S3 (Deliver Multiple Prototypes) John leverages ProCeeD to show Carl multiple design

21

Chapter 3: ProCeeD Framework

alternatives, scenario S4 (Deliver Hybrid Prototypes) presents how ProCeeD allows John to
combine revolutionary and evolutionary prototypes into a hybrid prototype. Scenario S5
(Decide On Release Schedule) describes how John uses ProCeeD to define process metrics.
Finally, scenario S6 (Analyze the Release Process) describes how John uses metrics to monitor
the release process of his team.

3.1.1 Deliver Prototype

Scenario S1 and S2 are based on the exemplary release plan depicted in Figure 3.3. The
release plan is structured as follows: The Development section depicts each iteration John
created for a new feature. Iteration RV1-RV5 are revolutionary prototypes, iteration EV6-
EV8 are carried out using evolutionary prototypes and are therefore implemented in the
programming language of the target system. The section Groups and Releases show the three
target groups developers, clients and users. Carl can deliver releases to any of the three
groups. In addition it shows the releases ("Rx") created by John and delivered to the groups
during the development of the new feature. Yellow Releases are based on revolutionary
prototypes, orange releases are based on evolutionary prototypes. Feedback by a member
of a group is depicted by a blue circle.

R4R1 R5R2

R2

RV2 RV4

R3

R3

EV7RV1 RV3 RV5 EV6

R5

R5

EV8

Development

Developers

Clients

Users

Groups &
Releases

Key
Revolutionary
Prototype

Evolutionary
Prototype Feedback

Figure 3.1: Release plan for scenario S1 and S2.

22

Section 3.1: Scenarios

The following scenario describes how a developer John uses ProCeeD to deliver exe-
cutable prototypes to a client Carl.

Scenario name DeliverPrototype

Participating actor
instances

john:Developer, carl:Client

Flow of events
1. John finishes an iteration of a revolutionary prototype for a requirement "User Lo-

gin using Password Manager" using the web-based prototyping tool MarvelApp.
He now wants to deliver the prototype to the other members of the development
team to obtain feedback.

2. John uses ProCeeD to transform and package the revolutionary prototype into
an application which can be executed in the target environment of the project, a
mobile application for the iOS platform.

3. He creates a release ("R1") from the revolutionary prototype to deliver it to a
user group.

4. He writes short release notes to describe how the new user interface allows the
integration of a password manager.

5. John delivers the release to all members of the development team and asks for
their feedback.

6. After reviewing the feedback on the new login functionality from his team, John
implements a couple of refinements and delivers a next release ("R2") to his
team.

7. The team agrees to ask Carl for his feedback. John therefore promotes R2 to Carl.

8. ProCeeD notifies Carl, who can now install the release on his phone. He provides
feedback using a button inside the application.

9. After another release ("R3"), John implements the interaction design from the
revolutionary prototype into the evolutionary prototype ("EV6" to "EV8").

10. After John accepted the implementation in R5, the release is promoted to a group
of end users for further evaluation.

23

Chapter 3: ProCeeD Framework

3.1.2 Receive Prototype

The following scenario describes how Carl receives a release delivered by John.

Scenario name ReceivePrototype

Participating actor
instances

carl:Client

Flow of events
1. Carl is on the way home from work when he receives an email from John, one of

the developers of a project he is involved in as a client.

2. Carl reads the email notification which states that a new releases has been
delivered to him.

3. He reviews the release notes John wrote about the integration of a password
manager to improve the login experience.

4. Carl accesses the new release on his mobile device using a link in the email.

5. He executes the release on his mobile phone, focusing on the login feature John
highlighted in the release notes.

6. Carl taps the feedback button inside the app and provides feedback to John about
a design issue with the login button and a logical inconsistency he found in the
interaction model when he forgot to enter a password.

7. The next morning Carl shows the prototype to some colleagues and asks for their
feedback.

8. He adds the feedback by his colleagues via the feedback button and sends it to
John.

24

Section 3.1: Scenarios

3.1.3 Deliver Multiple Prototypes

ProCeeD should allow developers to deliver of multiple prototypes to a group of users at
the same time. Scenario S3 describes this functionality and is based on the release plan
depicted in Figure 3.3.

Developers

Clients

Users

R1 R3

RV2 EV8RV1

RV4

EV7

R3

R3

RV3a

RV3b

R2a

R2b

R2a

R2b

RV5

EV6

Development

Groups &
Releases

Key
Revolutionary
Prototype

Evolutionary
Prototype

Feedback

Figure 3.2: Release plan for scenario S3.

The release plan is structured as follows: The Development section presents each iteration
the development team went through for a new feature. Iteration RV1-RV5 are revolutionary
prototypes, iteration EV6-EV8 are evolutionary prototypes and therefore implemented
in the programming language of the target application. For Iteration RV3, two design
alternatives, (RV3a and RV3b), are created and delivered. Section Groups and Releases shows
the releases ("Rx") created and delivered during the development of the new feature. Yellow
releases are based on revolutionary prototypes, orange releases are based on evolutionary
prototypes. The visualization contains a blue feedback icon for releases that have received
feedback from at least one member of the corresponding group.

25

Chapter 3: ProCeeD Framework

The following scenario describes how the developer John uses ProCeeD to clarify a
requirement by delivering multiple prototypes to the client Carl.

Scenario name DeliverMultiplePrototypes

Participating actor
instances

john:Developer, carl:Client

Flow of events
1. John is preparing the user interaction design for a requirement regarding the

management of the user profile. After he finished a first draft, he creates a
release R1 and delivers it to his fellow developers.

2. He and his team conclude that they could implement two solutions which differ
in the amount of interaction steps and complexity. One alternative would only
show the contents of the user profile, the other alternative would allow a user to
edit their user profile inside the application.

3. Using the prototyping tool MarvelApp John creates two revolutionary prototypes,
(Ex3a and Ex3b) to demonstrate the possible alternative solutions.

4. John decides that he needs to ask Carl for feedback with which alternative to
continue. He creates a release for each of the revolutionary prototypes, R2a and
R2b.

5. In addition, he writes release notes for both prototypes. He includes questions
he wants Carl to answer while he is evaluating and comparing both design
alternatives.

6. He promotes both releases to Carl at 6pm.

7. Carl is already on its way home when he receives an email notification about the
new releases.

8. Using the link in the email, he can access both prototypes without remembering
his credentials. Carl spends his subway trip evaluating the two prototypes.

9. A day later the team meets with Carl who has already evaluated the two releases
on his device.

10. After a short discussion, the team and Carl decide for the simpler alternative
without the ability to edit the user profile inside the application.

11. John implements the requirement in the evolutionary prototype.

26

Section 3.1: Scenarios

3.1.4 Deliver Hybrid Prototype

The following scenario describes how John uses ProCeeD to create a hybrid prototype based
on an evolutionary prototype and components of a revolutionary prototype. A hybrid
prototype contains an actual implementation of some parts of an application, while the
other parts are still a revolutionary prototype. This allows developers to quickly evaluate
an idea or a possible change to the user interaction design in the context of the complete
system. It also allows developers to present each iteration within the context and scope
of the application in development. A user can experience both parts at once, the already
implemented parts as well as the parts which are still prototypical, e.g. in the form of a
wireframe or a digital prototype.

The following scenario S4 is based on the exemplary release plan depicted in
Figure 3.3. The release plan is structured as follows: The Development section
presents each iteration the development team created for a new feature. Iteration
RV1-RV2 are revolutionary prototypes. For the iterations HY3-HY5, John creates a
hybrid prototype consisting of an evolutionary prototype and parts of the revolu-
tionary prototype. Iteration EV6-EV8 are carried out using evolutionary prototypes.

Developers

Clients

Users

R1 R3

R1

RV2 EV8RV1 EV7

R3

R3

HY3 EV6HY4 HY5

R2

R2

R2

Development

Groups &
Releases

Hybrid  
Prototype

Feedback

Key
Revolutionary
Prototype

Evolutionary
Prototype

Figure 3.3: Release plan for scenario S4.

27

Chapter 3: ProCeeD Framework

Scenario name DeliverHybridPrototype

Participating actor
instances

john:Developer, carl:Client

Flow of events
1. John creates a revolutionary prototype for a change to the user interaction

design of the application’s onboarding workflow. He creates a release ("R1") and
promotes it to Carl.

2. Carl sends feedback to John that he needs to see the new user interface in the
context of the full application in order to evaluate it properly.

3. John uses ProCeeD to replace parts of the evolutionary prototype with the
revolutionary prototype he just created.

4. John creates a hybrid release R2.

5. He promotes the release ("R2") to Carl.

6. Carl likes the new design and decides to ask some clients for their feedback.

7. John refines the release notes so that the clients understand what has changed in
the release and promotes the R2 to the client group.

8. After receiving positive overall feedback, John implements the requirement.

9. John finishes the implementation and delivers a release R3 to Carl and later to
the users.

28

Section 3.1: Scenarios

3.1.5 Decide on a Release Schedule

After presenting scenarios covering the requirements exploration and delivery automation
workflows of ProCeeD, we now describe a scenario which involves ProCeeD’s process
metrics workflow. The following scenario S5 presents how a Developer John uses ProCeeD
to decide when to send the next release to Carl. This allows John to regularly send releases
to Carl without overwhelming him.

Scenario name DecideOnReleaseSchedule

Participating actor
instances

john:Developer, carl:Client

Flow of events
1. John did some refinements to a prototype he is currently working on in collabo-

ration with Carl.

2. John delivered a release of an earlier version of the prototype to Carl a day ago
but hasn’t received any feedback yet.

3. John wants to find out if Carl has already accessed the release and how long Carl
usually takes to access a release.

4. He uses ProCeeD to define a corresponding metric called "Time between release
created and release accessed".

5. Using the metric he finds out that Carl typically reviews new releases after 48h.

6. John decides not to send the next release until Carl has given feedback for the
already delivered one.

7. After four days and two days later as usual, Carl has still not replied, so John
reminds him that he needs his input on the release.

8. The next morning he receives an email from Carl with detailed feedback.

9. John finds Carls feedback useful and incorporates it before delivering another
release to Carl.

29

Chapter 3: ProCeeD Framework

3.1.6 Analyze the Release Process

Scenario S6 shows how ProCeeD helps John to get a better understanding of the perfor-
mance and bottlenecks of his team’s release process.

Scenario name AnalyzeReleaseProcess

Participating actor
instances

john:Developer, carl:Client

Flow of events
1. In a team meeting, John discusses why it is important to regularly evaluate

releases in the target environment.

2. John explains that the three new members who joined the team in the last weeks
are not yet used to the practice. The team agrees on being extra careful in sticking
to the workflow.

3. To measure their progress, John uses ProCeeD to define a release frequency metric
and adds it to the team dashboard.

4. He introduces the metric in the next development team meeting.

5. From now on the team will review the metric in every team meeting and discuss
possible ways to improve.

6. After four weeks, John has a look at the metrics with the whole team. The metrics
dashboard shows that the team has delivered a release to the target environment
at least once per week.

7. John discusses the positive result with the team. Together they agree to stick
with the release schedule.

30

Section 3.2: Use Cases

3.2 Use Cases

Based on the scenarios described in Section 3.1 we present ProCeeD’s use case model for
the three workflows delivery automation, requirements exploration and process metrics.
Each model depicts the use cases and their relationships for the actors Developer and User.
A User can be any person who will use the proposed system, e.g. the client or an end user,
but also a developer.

Requirements Exploration

Figure 3.4 shows the use case model for the requirements exploration workflow. A Developer
can deliver different release alternatives to a group of Users. He can also manage the
feedback of the users by storing and analyzing it in an issue tracking system.

A User can access a release, evaluate it in the target environment, and provide feedback.
He can compare different releases while executing them in the target environment, e.g.
to decide on aspects of the interaction design. While using a release, the User can give
in-situ feedback at any time. He can give textual feedback or annotate a screenshot before
sending it to the Developers.

Developer User

Evaluate release

Provide textual
feedback

Manage
feedback

Promote release
alternatives

«extends»

Compare
releases

Deliver release

Store feedback in
issue tracker

«extends»

Analyze
feedback

«extends»

Use Case Diagram - Requirements Exploration

Annotate
screenshot

«extends»

Figure 3.4: ProCeeD’s requirements exploration use case model (UML Use Case Diagram).

Delivery Automation

Figure 3.4 shows the use case model for the delivery automation workflow. A Developer can
create a new release from revolutionary as well as evolutionary prototypes. He can provide
textual release notes for a release and deliver it to e.g a group of Developer. Afterwards,
he can promote the release, which is currently delivered to the development team, to a
group of clients. Finally he can determine the target audience of a release by managing the
groups of Users who can access a respective release.

A User can access a release which has been released to a group he is a member of. He
can read the release notes for the release as provided by the Developer.

31

Chapter 3: ProCeeD Framework

Create release from
rev. prototype

Developer

Provide release
notes

Create release from
evol. prototype

Promote release

Manage release
groups

User

Access release

Read release
notes

«includes»

Create release

Deliver release

Determine
distribution

«includes»

«extends»

«include»

«extends»

Use Case Diagram - Delivery Automation

«extends»

Figure 3.5: ProCeeD’s delivery automation use case model (UML Use Case Diagram).

Process Metrics

Figure 3.4 shows the use case model for the process metrics workflow. A Developer invokes
an event every time he creates or delivers a release. A User invokes an event every time he
accesses a release or when he sends feedback to the developer.

Based on these events, a Developer can define process metrics which represent time spans
between the events. Developers can use the metrics to derive decisions about e.g. when to
send the next release to a user group or when to ask a client for additional feedback.

Developer
User

Invoke eventDefine process
metric

Analyze feedback
process

«includes»

Analyze delivery
process

«includes»

Access release

Send feedback

Deliver release

Invoke event

Create release
«extends»

«extends»

Analyze process
metric

«extends»

«extends»

Derive decision
«extends»

Use Case Diagram - Process Metrics

Figure 3.6: ProCeeD’s process metrics use case model (UML Use Case Diagram).

32

Section 3.3: Requirements

3.3 Requirements

Based on the scenarios and use cases, we now derive ProCeeD’s functional and nonfunc-
tional requirements [BD09]. The functional requirements are grouped depending on which
of the three workflows delivery automation, requirement exploration and process metrics
they are part of.

The requirements exploration workflow enables developers to explore requirements
by creating one or more prototypes of the proposed system. The delivery automation
workflow allows developers to deliver revolutionary and evolutionary prototypes based
on the Continuous Prototyping approach described in Section 2.4. Users can execute and
evaluate the prototypes in the target environment and give feedback to define or refine
requirements. The process metrics workflow allows the measurement of process metrics to
improve the adoption of the ProCeeD Framework inside development teams. In addition,
the workflow allows developers to decide on the release schedule based on the collected
data.

3.3.1 Functional Requirements

In this section we describe ProCeeD’s functional requirements using the two actors Developer
and User.

Requirements Exploration

FR1.1 ProCeeD shall be able to deliver multiple releases to a group of users at the same
time, e.g. in order to get a decision or feedback on several design alternatives.

FR1.2 ProCeeD shall allow a user to give textual feedback to the developer while using the
application in the target environment. For instance, if the user evaluates a mobile
application prototype, he should be able to state feedback on any screen of the
application.

FR1.3 ProCeeD shall allow a user to create and annotate screenshots of the user interface
while executing and evaluating a release and attach them to a feedback item.

FR1.4 ProCeeD shall allow the management of explicit and implicit feedback provided by
users. For each feedback item, the author and timestamp of the feedback should be
collected. Feedback should be managed on a release level.

33

Chapter 3: ProCeeD Framework

Delivery Automation

FR2.1 ProCeeD shall be able to deliver a release of a revolutionary prototype to the target
environment of the system in development.

FR2.2 ProCeeD shall accommodate the necessary transformation steps to allow a revolu-
tionary prototype to be executed in the target environment.

FR2.3 ProCeeD shall be able to deliver a release of an evolutionary prototype to the target
environment.

FR2.4 ProCeeD shall allow the promotion of a release to a group of users.

FR2.5 ProCeeD shall notify each user with the appropriate permissions about a new
release. The notification should contain the version of the release, the release notes
as stated by the developer and a link to access the release.

FR2.6 ProCeeD shall allow developers to manage users and assign them to user groups.
Managing users includes the invitation of new users and the removal of existing
users from user groups.

FR2.7 ProCeeD shall allow developers to provide release notes for a release. Developers
shall be able to refine release notes during each promotion step.

FR2.8 ProCeeD shall allow developers to look up which user group has or had access to
which release(s) at any point in time.

Process Metrics

FR3.1 ProCeeD shall gather the following time stamps for each release: when did a
developer create a release; when did a user receive a release; when did a user access
a release; when did the user provide feedback on a release.

FR3.2 ProCeeD shall allow a developer to compute process metrics and provide the
capability to analyze them on a user group level. ProCeeD should visualize the
process metrics in a way that a developer can analyze the duration of each step of
the delivery process.

FR3.3 ProCeeD shall allow a developer to look up when a user received which release(s)
and when the user gave feedback.

FR3.4 ProCeeD shall allow a developer to check what prototype a certain release contains.

FR3.5 ProCeeD shall allow a developer to look up which user accessed which release(s) at
any given point in time.

34

Section 3.3: Requirements

3.3.2 Nonfunctional Requirements

For ProCeeD we derive the following nonfunctional requirements, categorized by usability,
interface, supportability and performance [BD09].

Usability

NFR1.1 ProCeeD shall allow developers to apply the same delivery workflow and interac-
tion steps for the delivery of revolutionary as well as evolutionary prototypes.

NFR1.2 ProCeeD shall support a fast workflow for developers to create and deliver a new
release.

NFR1.3 ProCeeD shall support a fast workflow for users to provide explicit feedback.

NFR1.4 ProCeeD shall allow a developer to monitor the release process of multiple
applications at once quickly.

Interface

NFR2.1 ProCeeD shall be able to retrieve revolutionary prototypes from prototyping tools.
At least two prototyping tools need to be supported.

NFR2.2 ProCeeD shall retrieve artifacts like source code of evolutionary prototypes from a
version control system.

NFR2.3 ProCeeD shall allow developers to store feedback in an issue tracking system.
Only one issue tracking system needs to be supported at the same time.

NFR2.4 ProCeeD shall be able to control and monitor the build process of a continuous
integration service.

Supportability

NFR3.1 ProCeeD shall support multiple target environments. For example if a mobile
application is developed for the Android and iOS ecosystems, developers should
be able to deliver revolutionary as well as evolutionary prototypes to both envi-
ronments.

NFR3.2 ProCeeD shall allow the integration of a user feedback service.

NFR3.3 Process metrics collected by ProCeeD shall be visualized on a user group level.

Performance

NFR4.1 ProCeeD should allow developers to access the system even while a high amount
of users access releases.

NFR4.2 ProCeeD should be responsive even when connected systems are inaccessible.
These are: the integration service, prototyping tools and the issue tracker.

35

Chapter 3: ProCeeD Framework

3.4 Object Model

In this section we present ProCeeD’s object model. Figure 3.7 depicts the objects of the
problem domain and their methods and attributes.

PrototypeComponent

PrototypeCreatedEvent

ReleaseDeliveredEvent

ReleaseAccessedEvent

FeedbackReceivedEvent

+track(timestamp)

- Timestamp
- User

Event

DeliveryTime

AccessTime

EvaluationTime

+compute(group)
+evaluate()

Metric

+create()
+promote(userGroup)
+notify()

- Version
- ReleaseNotes

Release

Developer

Req.-Analyst

Client

Promoter

End user
+manage()
+authorize()

UserGroup

- name
- email

User

- Identifier
- TargetPlatform

Application

+storeArtifact()
+provideArtifact()
+removeArtifact()

ArtifactPackage

BuildLog

Metadata

Text

ImplicitFeedback

ExplicitFeedback

+manage()
+store()
+toIssueTracker()

- Creator
- Content

FeedbackItem

Annotation

CrashReport

UsageContext

+compose()

Prototype

+apply(prototype)

- Definition

Transformation
Step

- SourceCode

Evolutionary
Prototype

+savePrototype()

IDE

+providePrototype()

PrototypingTool

+storeData()
+provideData()

VersionControl
System

+collect()
+transfer()

FeedbackCollector

+persist()
+providePackage()

- Type

Revolutionary
Prototype

*

*

*

*

*

*

*

*

Text

Figure 3.7: ProCeeD’s object model (UML Class Diagram).

The model is structured as follows: an Application has 0..n Releases. A Release
is based on one Prototype which is composed of one or more PrototypeComponents.
PrototypeComponents are either a RevolutionaryPrototype or an EvolutionaryPrototype.

36

Section 3.4: Object Model

A RevolutionaryPrototype is created using a PrototypingTool and by applying a technique
described in Section 2.2. For each RevolutionaryPrototype 0..n TransformationSteps are
modeled. ProCeeD applies the TransformationSteps on the RevolutionaryPrototype to allow
its delivery as an executable Release. A RevolutionaryPrototype is usually created to collect
feedback on the interaction model or user interface design of a requirement.

An EvolutionaryPrototype is created based on artifacts like source code developed using
the IDE and programming language of the target system. Developers add and alter source
code in the VersionControlSystem when implementing a requirement. They create a Release
every time they need to collect feedback or when the implementation of a requirement is
finished.

A developer can choose to compose a prototype of an EvolutionaryPrototype and parts of
a RevolutionaryPrototype. Such a prototype, consisting of both kinds of PrototypeComponent,
is called hybrid prototype. A hybrid prototype is delivered if e.g. parts of the user interface
need to be created or reworked or a new feature is shown best in the context of the
complete application. The hybrid prototype is modeled as a Prototype object in our model.

Each Release created from a Prototype is identified by a Version. A Release is composed of
1..n Artifacts. These are e.g. the executable AppPackage created from the compiled source
code or BuildLogs which document the result of the build process of a Release. Metadata,
describing e.g. a timestamp when a certain Release was created, is also stored as an Artifact.
A developer can provide ReleaseNotes for a Release in textual form.

A Release can be promoted to a UserGroup consisting of 0..n Users. Users are the persons
executing a release, e.g. a Requirements Analyst, a Developer, a Client, a End user or a
Promoter. ProCeeD manages which UserGroup has access to which Release. After a Release
got promoted to a UserGroup, all Users of the UserGroup can access it.

Users can provide FeedbackItems for a Release. A FeedbackItem is decribed by its creator
and content. ProCeeD allows developers to collect and manage ExplicitFeedback like Textual
feedback or Annotations by a User. In addition, ProCeeD allows developers to collect and
manage ImplicitFeedback like Usage Context and Crash Reports for each release.

For each release, ProCeeD tracks Events which are triggered by action carried out
by members of a UserGroup. Supported Events are PrototypeCreated, ReleaseDelivered,
ReleaseAccessed, FeedbackReceived. Based on the Events ProCeeD can compute process
Metrics for each Release. Metrics supported by ProCeeD are DeliveryTime, AccessTime and
FeedbackTime.

37

Chapter 3: ProCeeD Framework

3.5 Dynamic Model

This section presents the dynamic model of ProCeeD. We present a state machine diagram
of a ProCeeD Release object and provide a model as well as a detailed description of the
ProCeeD workflows requirements exploration, delivery automation and process metrics.

3.5.1 Release

Figure 3.8 shows the dynamic model of a ProCeeD release in a UML State Machine Diagram
depicting all states a release can adopt as well as the transitions between the states.

After a developer created a release from a prototype, its state transitions to created. When
a developer decides to release to a group of users, it transitions into the delivered state.
As soon as a member of a user group accesses the release in the target environment for
the first time, the state changes to received. When a user provides feedback, the release
transitions to commented. A release can be replaced when a developer delivers the next
release to the user group. If a release is either in the delivered, received or commented state
and is replaced by a subsequent release, it transitions to its final state, replaced.

promote(group) /

replace /

access /

provideFeedback /
replace /

replace /

delivered

received

commented

replacedcreated

Figure 3.8: ProCeeD’s release model (UML State Machine Diagram).

This release state machine is the foundation for the three ProCeeD workflows described
in the next section. In particular, the different states of a release as well as their transitions
are recorded as events and later used for the computation of metrics in the process metrics
workflow.

38

Section 3.5: Dynamic Model

3.5.2 Workflows

This section describes ProCeeD’s workflows requirements exploration, delivery automation
and process metrics. An overview is depicted in Figure 3.9.

PROCEED  
Workflows

Requirements Exploration  

Requirements exploration using

executable prototypes

Process Metrics

Metrics definition, collection  
 and analysis.

Delivery Automation  

Automated delivery  
of prototypes

Figure 3.9: ProCeeD’s workflows.

The requirements exploration workflow enables developers to elicit and explore re-
quirements by creating one or multiple prototypes of the proposed system. The delivery
automation workflow allows developers to deliver revolutionary as well as evolutionary
prototypes. Users can execute and evaluate the prototype in the target environment and
give feedback. The process metrics workflow allows developers to measure and evaluate
their teams delivery workflow.

Requirements Exploration

Using ProCeeD’s requirements exploration workflow developers can apply an iterative
and incremental prototyping approach. Figure 3.10 shows the workflow as a UML Activity
Diagram.

D
ev

el
op

er

Requirement/
feedback
received

Create
evolutionary
prototype

Needs
clarification?

Evolutionary
prototype created

Yes

Yes

Define or refine
requirement

Change
necessary?

No
More design
alternatives?

Create
revolutionary

prototype

NoYes

Revolutionary
prototype created

No

Figure 3.10: ProCeeD’s requirements exploration workflow (UML Activity Diagram).

The workflow is executed every time a developer receives a new requirement or feedback
on a existing requirement. A developer first decides whether the feedback leads to a new
or refined requirement. If the feedback does not impact the requirements of the project,
the workflow terminates. Depending on the maturity of the requirement, the developer
now decides if it can be implemented as a change to the evolutionary prototype or if
a revolutionary prototype needs to be created to collect more feedback and clarify the
requirement before its implementation. An evolutionary prototype is usually developed
using the IDE and programming language of the target environment, while a revolutionary
prototype can also be created using a prototyping tool. The workflow repeats and the

39

Chapter 3: ProCeeD Framework

revolutionary prototype is refined until the requirement is implemented or dismissed. If
design alternatives for a requirement exist, ProCeeD allows developers to create multiple
prototypes for each alternative of the requirement. Users can then evaluate and compare
the prototypes and decide which alternative to implement. For instance, the workflow
can be used to decide between different user interface designs or interaction models for a
requirement. The decision process of which alternative to choose is beyond the scope of
this dissertation.

Delivery Automation

Using the delivery automation workflow, a developer can automate the deployment and
delivery of both revolutionary and evolutionary prototypes. Figure 3.11 shows an overview
of this workflow, which is executed every time a prototype was created and a developer
wants to deliver the prototype in order to collect feedback.

D
ev

el
op

er
U

se
r

Revolutionary
prototype created

Provide
feedback

Evolutionary
prototype created

Trans-
form

Notification
received

Build and
package

Create
release

Download/
access release

Has
feedback?

Yes

No

Notify
recipient

Read
release notes

Execute release
in target env.

Deliver to
recipient

Add
release
notes

Store
artifact

Figure 3.11: ProCeeD’s delivery automation workflow (UML Activity Diagram).

In a first step, ProCeeD transforms revolutionary prototypes to be executable in the
target environment using predefined transformation steps for the respective prototyping
tool used by the developer. Following this, the prototype is built and packaged. The
resulting artifacts are stored in the artifact repository of the project. A developer can
now create a release and define release notes. A release can be delivered to a user group,
and as soon as this happens, the members of the group are notified. Each user in the
user group can now access the release and execute it in the target environment. ProCeeD
allows developers to include user feedback and usage analytics components into releases
created from revolutionary and evolutionary prototypes. These allows a user to give in-situ
feedback while using the release.

40

Section 3.5: Dynamic Model

Process Metrics

With ProCeeD’s process metrics workflow, developers can analyze and adjust their team’s
delivery process. Figure 3.12 shows the workflow as a UML Activity Diagram.

D
ev

el
op

er

Define
metric

YesNo

Collect
events

Compute
metric

Evaluate
metric

Refine process

Project
finished?

Figure 3.12: ProCeeD’s process metrics workflow (UML Activity Diagram).

ProCeeD collects the following events during the lifecycle of a prototype: PrototypeCreated,
ReleaseDelivered, ReleaseAccessed and FeedbackReceived. The events are described in the
object model shown in Section 3.4.

A developer can define a process metric based on the events. ProCeeD collect appropriate
events and computes the metric e.g. for each release. A developer can evaluate a metrics
and derive e.g. refinements for the release process. Figure 3.13 gives an overview of the
metrics ProCeeD provides to developers.

Prototype
CREATED

Release
DELIVERED

Delivery time

Feedback
RECEIVED

Evaluation time

Iteration length

Release
ACCESSED

Access time

Feedback time

Figure 3.13: ProCeeD’s process metrics - example

We define a Prototyping Iteration as the time span between the creation of a prototype
and receiving feedback on the prototype. An iteration can be divided into three parts:
The Delivery Time is defined as the time span between the creation of a prototype and its
delivery to a user group. The Access Time reflects the time a user takes to access a new
release after it was delivered. The Evaluation Time measures the time span between the
moment a user accessed a release for the first time and the moment the user provides
feedback to the development team.

41

Chapter 3: ProCeeD Framework

Developers can use ProCeeD’s process metrics to evaluate their delivery workflow. For
example, a team that develops a new feature could define the following metric: using
ProCeeD they can calculate the time between a release was delivered to their client and the
time the client accessed the release for the first time in the target environment. Using the
metric, the team can now decide when to send the next release to the client and ask for
feedback without overwhelming the client.

3.6 Subsystem Decomposition

We derive ProCeeD’s system design following the approach proposed by Bruegge and
Dutoit [BD09]. In a first step, we decompose the objects identified in Section 3.4 into
components. Then we group the components into subsystems and describe their interfaces.
Figure 3.14 presents ProCeeD’s components using packages as a UML Class Diagram. The
ReleaseService allows the creation and promotion of releases from packaged prototypes
stored in the ArtifactRepository. These prototypes are created by the BuildService component.

The BuildService retrieves PrototypeComponents either from the VersionControlRepository
or a PrototypingTool. To release evolutionary prototypes, the BuildService retrieves artifacts
like source code and media items from the VersionControlRepository. To allow the release of
revolutionary prototypes, the PackageService first performs a set of transformation steps on
the revolutionary prototype created with a PrototypingTool. The BuildService then builds
and packages both kinds of prototypes. The resulting executable prototype and logs as
well as metadata of the build process are stored in the ArtifactRepository.

Releases can be promoted to groups of users defined in the UserManager. The UserManager
controls which user can access which release. To allow users to provide feedback to a
release, two components are used: the FeedbackCollector is part of each prototype created
by the BuildService and allows users of the application to provide feedback from within
the application. The FeedbackRepository stores the user feedback and allows a developer to
manage the received feedback items.

The MetricsManager collects the events for ProCeeD’s process metrics workflow which are
described in Section 3.5.2. For example, the MetricsManager can record an event whenever a
group of users received a release and when the group accessed the release for the first time.
Based on the tracked events, the MetricsManager computes metrics defined by a developer.

42

Section 3.6: Subsystem Decomposition

ReleaseService

BuildService

VersionControlRepository

MetricsManager UserManager

ArtifactRepository

IDEPrototypingTool

PackageService

FeedbackCollector FeedbackRepository

PrototypeComponent

PrototypeCreatedEvent

ReleaseDeliveredEvent

ReleaseAccessedEvent

FeedbackReceivedEvent

+track(timestamp)

- Timestamp
- User

Event

DeliveryTime

AccessTime

EvaluationTime

+compute(group)
+evaluate()

Metric

+create()
+promote(userGroup)
+notify()

- Version
- ReleaseNotes

Release

Developer

Req.-Analyst

Client

Promoter

End user
+manage()
+authorize()

UserGroup

- name
- email

User

- Identifier
- TargetPlatform

Application

+storeArtifact()
+provideArtifact()
+removeArtifact()

ArtifactPackage

BuildLog

Metadata

Text

ImplicitFeedback

ExplicitFeedback

+manage()
+store()
+toIssueTracker()

- Creator
- Content

FeedbackItem

Annotation

CrashReport

UsageContext

+compose()

Prototype

+apply(prototype)

- Definition

Transformation
Step

- SourceCode

Evolutionary
Prototype

+savePrototype()

IDE

+providePrototype()

PrototypingTool

+storeData()
+provideData()

VersionControl
System

+collect()
+transfer()

FeedbackCollector

+persist()
+providePackage()

- Type

Revolutionary
Prototype

*

*

*

*

*

*

*

*

Text

Figure 3.14: ProCeeD’s subsystem decomposition - objects and packages (UML Class Diagram).

43

Chapter 3: ProCeeD Framework

Figure 3.15 shows the ProCeeD components clustered into four subsystems Development,
Integration, Delivery and Repository as a UML Component Diagram. Public services which
can be consumed by e.g. a graphical user interface are depicted in grey.

The Development subsystem allows developers to create and prepare prototypes for
delivery to the target environment. It contains the software components to transform
revolutionary prototypes created with prototyping tools into a format which can be
delivered to and executed in the target environment. Evolutionary prototypes are persisted
by the Repository subsystem to be later retrieved by the Integration subsystem. Revolutionary
Prototypes are provided to the Integration subsystem.

The Integration subsystem is concerned with the automation of the build and package
process for revolutionary as well as evolutionary prototypes. It allows developers to create
executable releases from prototypes. Moreover, it stores and retrieves artifacts in the
Repository subsystem. Using the Delivery subsystem, developers are able to deliver and
promote release and to manage users and groups. In addition, it allows developers to
monitor the delivery process using the MetricsManager. Finally, the Repository subsystem is
concerned with the storage of source code, build artifacts and user feedback. Developers
can manage user feedback and copy FeedbackItems to an issue tracking system.

Development
«subsystem»

«subsystem»

Delivery

FeedbackCollector

ReleaseService

UserManager

authorize

MetricsManagerPrototypingTool

PackageService

Feedback
Repository

Artifact
Repository

VersionControl
Repository

provide
Prototype

IDE

storeData provideData storeArtifact provideArtifact

provide
Package

compute

evaluate
manage

transfer

store

toIssueTracker manage

create

track

Repository

promote

BuildService

Integration
«subsystem»

Delivery
«subsystem»

Figure 3.15: ProCeeD’s subsystem decomposition - subsystems (UML Component Diagram).

44

Section 3.7: Hardware/Software Mapping

3.7 Hardware/Software Mapping

In this section we present an exemplary mapping of ProCeeD’s subsystems and components
to hardware and software nodes. The mapping is depicted in Figure 3.16 and shows a
deployment of ProCeeD to a private cloud environment.

Private Cloud
«device»

Desktop Computer
«device»

Public Cloud
«device»

Integration Server
«executionEnvironment»

Version Control Service
«executionEnvironment»

Issue Tracking Service
«executionEnvironment»

Cloudservice
«executionEnvironment»

BuildService
PrototypingTool

PackageService

Feedback
Repository

VersionControl
Repository

Delivery Server
«executionEnvironment»

MetricsManager

UserManager

ArtifactRepository

OS
«executionEnvironment»

Smartphone
«device»

Target Application
«executionEnvironment»

FeedbackCollector

IDE

«protocol»
SSH

«protocol»
HTTPS

«protocol»
HTTP

«protocol»
HTTPS

«protocol»
SSH

ReleaseService

«protocol»
HTTP

Figure 3.16: ProCeeD’s hardware/software mapping - example (UML Deployment Diagram).

The Integration Server accesses prototypes created in the PrototypingTool using an HTTP-
based protocol. To create the source code of evolutionary prototypes, developers use on
an IDE running on a computer. Commercial or non-commercial software components can
be used as a Version Control System, Integration Server and Issue Tracking Service. On the
Integration Server node we deploy ProCeeD’s ReleaseService as well as the ArtifactRepository
component. The node is therefore concerned with the creation and the storage of releases
and their artifacts. The Delivery Server executes the PromotionManager as well as the

45

Chapter 3: ProCeeD Framework

MetricsManager components. Both components are implemented as custom software
components. The FeedbackCollector component is deployed into the target application
with each release created by ProCeeD. It transfers FeedbackItems created by the user of a
release to DeliveryService which stores the FeedbackItem in the FeedbackRepository of the
Issue Tracking Service.

46

Chapter 4
Prototyper

In this chapter we present Prototyper, a delivery solution for mobile applications. Pro-
totyper uses the services and workflows offered by the ProCeeD Framework and allows
developers to deliver prototypes whether they were created with a prototyping tool or im-
plemented in the programming language of the target system, as an executable application
to their users. We developed Prototyper as a research instrument to evaluate the ProCeeD
Framework in both: a university context and in projects in industry.

The remainder of this chapter is structured as follows: Section 4.1 presents Prototyper’s
user interface and maps it to the ProCeeD components described in Section 3.6. Section 4.2
shows the mapping of these components to hardware and software nodes and describes
implementation details.

4.1 User Interface

In this section we present Prototyper’s user interface model, which consists of the following
elements: application management, release management, release promotion, feedback
management and process metrics. For each part, we show the mapping to the respective
ProCeeD components, subsystems and their services. An excerpt of Prototyper’s user
interface showing the application management dashboard is depicted in Figure 4.1.

Figure 4.1: Prototyper’s dashboard showing available applications.

47

Chapter 4: Prototyper

The Dashboard presents the applications a user has access to. Each application is depicted
with an icon and a unique identifier. The user interface adapts depending on the role of the
current user. A developer can manage releases and feedback, while a user can execute tasks
such as downloading the latest release, reading the release notes or providing feedback to
a release

Release Management

Using the Release Management UI, developers can create releases from prototypes using
ProCeeD’s ReleaseService. Figure 4.2 shows the involved components and services. Involved
components are colored, services consumed by the release management user interface
are shown in grey. When delivering a release of a revolutionary prototype created with
a PrototypingTool, the PackageService transforms the prototype into an exectuable which
can be deployed to the target environment. When creating a release from an evolution-
ary or hybrid prototype, ProCeeD retrieves the source code of the prototype from the
VersionControlRepository.

Development
«subsystem»

«subsystem»

Delivery

FeedbackCollector

ReleaseService

UserManager

authorize

MetricsManagerPrototypingTool

PackageService

Feedback
Repository

Artifact
Repository

VersionControl
Repository

provide
Prototype

IDE

storeData provideData storeArtifact provideArtifact

provide
Package

compute

evaluate
manage

transfer

store

toIssueTracker manage

create

track

Repository

promote

BuildService

Integration
«subsystem»

Delivery
«subsystem»

Figure 4.2: ProCeeD components used for release mgmt. (UML Component Diagram).

The ReleaseService then creates an executable release for all supported prototypes and
then stores the release artifacts in the ArtifactRepository. The release is now shown in the
Prototyper UI and can be promoted to a group of users. Figure 4.2 illustrates an example
with three releases. Releases 46 and 47 where created from a revolutionary prototype
("MarvelApp"), Release 48 from an evolutionary prototype ("Xcode Project"). By using the
link in the identifier column, a developer can drill down to the underlying commit history
in the VersionControlRepository or view the revolutionary prototype the release is based on.
A developer can also track who has downloaded the release and manage associated user
feedback.

48

Section 4.1: User Interface

Figure 4.3: Prototyper’s release management user interface showing revolutionary prototypes
(orange) and evolutionary prototypes (green).

Release Promotion

The Prototyper Release Promotion UI allows developers to promote releases to groups of
users. It builds on ProCeeD’s ReleaseService and UserManager components which are shown
in Figure 4.4.

Development
«subsystem»

«subsystem»

Delivery

FeedbackCollector

ReleaseService

UserManager

authorize

MetricsManagerPrototypingTool

PackageService

Feedback
Repository

Artifact
Repository

VersionControl
Repository

provide
Prototype

IDE

storeData provideData storeArtifact provideArtifact

provide
Package

compute

evaluate
manage

transfer

store

toIssueTracker manage

create

track

Repository

promote

BuildService

Integration
«subsystem»

Delivery
«subsystem»

Figure 4.4: ProCeeD components used for release promotion (UML Component Diagram).

49

Chapter 4: Prototyper

A developer can promote a release to one or multiple groups of users. In addition,
he can choose to deliver additional releases to a group of users at the same time. This
allows developers to explore a requirement by providing multiple, alternative releases to a
group of users who then can provide feedback and express which alternative they would
prefer. The release promotion user interface, shown in Figure 4.5, presents developers
with a release matrix which denotes what releases are currently deployed to which user
group. Figure 4.5 depicts an example with three user groups. While the developers are
running the newest release 5, clients and users are currently on release 4 and can access an
additional, revolutionary prototype, marked as release 3.

Figure 4.5: Prototyper’s release promotion user interface.

A developer can design a promotion workflow tailored to the needs of the project he
is working on. Before delivering a release to a client he could e.g. define a group of
developers executing manual user interface tests. When promoting the release, developers
can provide release notes using the Release Notes UI depicted in Figure 4.6. The release
notes are shown to each member of the according user group. Prototyper allows developers
to refine release notes on each promotion step (1). While an internal release to fellow
developers may only contain brief comments on the last changes, a developer can refine
these release notes before the next promotion step (2).

50

Section 4.1: User Interface

1 2

Figure 4.6: Prototyper’s release notes user interface.

Feedback Management

Prototyper’s User Feedback UI is split into two parts which are based on the components
depicted in Figure 4.7. The FeedbackRepository allows developers to manage feedback
received by users. A developer can read the textual feedback and look up annotated
screenshots.

Development
«subsystem»

«subsystem»

Delivery

FeedbackCollector

ReleaseService

UserManager

authorize

MetricsManagerPrototypingTool

PackageService

Feedback
Repository

Artifact
Repository

VersionControl
Repository

provide
Prototype

IDE

storeData provideData storeArtifact provideArtifact

provide
Package

compute

evaluate
manage

transfer

store

toIssueTracker manage

create

track

Repository

promote

BuildService

Integration
«subsystem»

Delivery
«subsystem»

Figure 4.7: ProCeeD components used for feedback mgmt. (UML Component Diagram).

51

Chapter 4: Prototyper

To further process feedback items, he can decide to transfer items to an issue tracking
system. Figure 4.8 depicts an example with three feedback items. Each shows the author,
their textual feedback and, if provided by the user, an annotated screenshot.

Figure 4.8: Prototyper’s feedback management user interface.

The second part of Prototyper’s user feedback interface builds on the FeedbackCollector
component and is deployed with each release. Using the feedback user interface shown
in Figure 4.9, users can provide in-situ feedback while evaluating a release in the target
environment. While using the application, a user can tap the blue feedback button (1).
They can then add an annotated screenshot (2, 3) to a feedback item and provide textual
feedback (4).

52

Section 4.1: User Interface

1 2

3 4

Figure 4.9: Prototyper’s FeedbackCollector component embedded in a mobile application.

53

Chapter 4: Prototyper

Process Metrics

Following ProCeeD’s process metrics workflow, Prototyper tracks the events modeled in
ProCeeD’s object model presented in Section 3.4. Building on top of ProCeeD MetricsMan-
ager component, depicted in Figure 4.10, Prototyper collects events generated by ProCeeD’s
ReleaseService and FeedbackCollector.

Development
«subsystem»

«subsystem»

Delivery

FeedbackCollector

ReleaseService

UserManager

authorize

MetricsManagerPrototypingTool

PackageService

Feedback
Repository

Artifact
Repository

VersionControl
Repository

provide
Prototype

IDE

storeData provideData storeArtifact provideArtifact

provide
Package

compute

evaluate
manage

transfer

store

toIssueTracker manage

create

track

Repository

promote

BuildService

Integration
«subsystem»

Delivery
«subsystem»

Figure 4.10: ProCeeD components used for process metrics (UML Component Diagram).

Based on the collected events, developers can define and monitor the metrics described
in Section 3.4 for each release.

Figure 4.11: Prototyper’s process metrics user interface showing metrics for a release.

54

Section 4.2: Hardware/Software Mapping

Metrics are calculated on a per-user-group-basis. Developers can download reports
visualizing the release process of the project and use these reports e.g. to improve the
team’s release workflow or to decide when to send the next release to a group of users.
Figure 4.11 shows an exemplary report for a release which has been delivered to two user
groups. A developer has already provided feedback, while feedback from the client is still
missing.

4.2 Hardware/Software Mapping

Figure 4.12 presents the mapping of Prototyper and ProCeeD components to actual
hardware and software as well as protocols. For the scope of this research, we deployed
several ProCeeD components using the Atlassian1 software development stack. We used
Atlassian’s Bitbucket Server2 as a VersionControlRepository, their Bamboo3 integration
service for the BuildService as well as the ArtifactRepository and the issue tracker JIRA4 as a
FeedbackRepository.

As a PrototypingTool we used MarvelApp5, a web-based solution for the creation of user
interface prototypes like wireframes and digital prototypes. MarvelApp also provides a
smartphone app which allows developers to digitize prototypes created on paper.

Components we implemented on our own are marked in blue. With Prototyper’s
PackageService on the Prototyper Package node we implemented a component to transform
prototypes created using MarvelApp into mobile iOS Applications which can be build
and code signed by the BuildService. The Prototyper Delivery node executes the ProCeeD
ReleaseService, UserManager and MetricsManager components. In addition, Prototyper Delivery
executes the FeedbackRepository which can be synchronized with Atlassian JIRA by a
developer. The FeedbackCollector component was implemented as an iOS framework
which is integrated into each revolutionary and evolutionary prototype delivered using
Prototyper.

In the following sections we describe how developers can deliver revolutionary as well
as hybrid prototypes using the nodes Prototyper Package containing the PackageService,
Application containing the FeedbackCollector component and Prototyper Delivery executing
the UserManager, MetricsManager and FeedbackRepository components.

1http://www.atlassian.com
2http://www.atlassian.com/bitbucket
3http://www.atlassian.com/bamboo
4http://www.atlassian.com/jira
5http://www.marvelapp.com

55

Chapter 4: Prototyper

Public Cloud
«device»

Private Cloud
«device»

Protototyper Package
«executionEnvironment»

Desktop Computer
«device»

Atlassian Bamboo
«executionEnvironment»

Atlassian Bitbucket
«executionEnvironment»

Atlassian Jira
«executionEnvironment»

CloudService
«executionEnvironment»

BuildService
MarvelApp

PackageService

Feedback
Repository

VersionControl
Repository

Protototyper Delivery
«executionEnvironment»

UserManagerReleaseService

ArtifactRepository

OS
«executionEnvironment»

iOS Smartphone
«device»

Application
«executionEnvironment»

FeedbackCollector

Xcode IDE

HTTP
«protocol»

«protocol»
HTTP

MetricsManagerFeedbackRepository

«protocol»
HTTP

«protocol»
HTTP

«protocol»
HTTP

«protocol»
SSH

«protocol»
HTTP

Figure 4.12: Prototyper’s hardware/software mapping (UML Deployment Diagram). Components
implemented as part of Prototyper are drawn blue, components based on COTS
software are drawn yellow.

56

Section 4.2: Hardware/Software Mapping

Create a Release of a Revolutionary Prototype

Developers can use the PackageService to transform revolutionary prototypes created
using a prototyping tool into a mobile applications which can be executed in the target
environment. The workflow is as follows: The PackageService downloads a representation
of the revolutionary prototype from the prototyping tool MarvelApp. It supports various
input formats, e.g. PDF, a series of images, web-based representations or structured formats
like XML or JSON. Using pre-defined transformation steps for the corresponding prototyp-
ing tool, the PackageService transforms the revolutionary prototype into an intermediate
format which is then embedded in a template application, e.g. a mobile iOS or Android
application. In addition, Prototyper Package adds the FeedbackCollector component for
in-situ user feedback to the application.

After the prototype package is finished, the ReleaseService builds, packages and code-
signs the revolutionary prototype as an mobile application using the integration service
Atlasssian Bamboo. The release is now ready to be delivered to a group of users. If an
error occurs, the developer is informed.

Figure 4.13: Revolutionary and evolutionary prototypes combined into a hybrid prototype.

57

Chapter 4: Prototyper

Create a Release of a Hybrid Prototype

Prototyper Package allows developers to create hybrid prototypes consisting of an
application already written in the programming language of the target system and parts
of revolutionary prototypes. Thus, the developer can integrate parts of a revolutionary
prototype into to an already existing application to e.g. show a feature which is only
partially implemented.

The workflow is as follows: Using the PackageService a developer creates a representation
of the revolutionary prototype he wants to integrate. The developer then downloads the
representation and integrates it into his app project using the IDE. He then integrates the
prototype into the app using a lightweight integration framework. The framework parses
the packaged prototype and allows the developer to replace e.g. one or multiple screens
with screens of the prototype. Figure 4.13 shows an example in which a developer has
integrated a MarvelApp prototype into an existing mobile application using the Xcode
IDE6. The developer composed the user interface shown with parts of a revolutionary
prototype ("Recipes", "CookieJars").

Figure 4.14: Mobile app created using Prototyper. Yellow parts are based on a revolutionary
prototype, orange parts are implemented in code.

6http://www.apple.com/Xcode

58

Section 4.2: Hardware/Software Mapping

After this step, a release containing both parts, i.e. the parts of the application which
are written in code and the revolutionary prototype, are delivered and can be evaluated
in the target environment. Figure 4.14 shows the example app which has been created
using this hybrid approach. It consists of two parts: The developer has combined parts of
a revolutionary prototype (yellow) with an existing evolutionary prototype, developed in
the programming language of the target app (orange).

Deliver a Release

The ReleaseService allows the delivery of revolutionary, evolutionary and hybrid pro-
totypes using a common workflow, interaction design and technological foundation. If
a developer wants to deliver multiple design alternatives of a prototype to a group of
testers in order to get feedback and decide which one to choose, Prototyper automates all
necessary deployment steps. A user can download and access each release simultaneously
on their mobile device and compare them in the target environment.

As defined in the ProCeeD Framework, Prototyper also implements a common in-app
feedback system for revolutionary as well as evolutionary prototypes. The system is
implemented using two components: the FeedbackCollector component is deployed into
each release delivered with Prototyper. It allows users to provide in-app feedback while
using the application. The FeedbackRepository component is part of Prototyper and allows
developers to manage and further process user feedback. While Prototyper implements a
FeedbackRepository component, feedback can also be stored in an issue tracking system for
further triage or implementation.

59

Chapter 5
Evaluation

In the previous chapters we described the ProCeeD Framework and Prototyper as a tool
building upon it. This chapter presents the empirical evaluation of Prototyper and ProCeeD
in four case studies.

Section 5.1 describes our hypotheses and the research methodology applied. Section
5.2 presents the quantitative and qualitative evaluation of ProCeeD’s delivery automation
and requirements exploration workflow in a multi-project university capstone course with
more than 200 developers working in 22 teams. Section 5.3 evaluates the application of
ProCeeD’s process metrics workflows in a project course running over multiple semesters.
Section 5.4 describes the application of Prototyper and ProCeeD in a commercial project
with a partner from the pharmaceutical industry. Section 5.5 presents how ProCeeD can be
applied in projects using a storyboard-based requirements elicitation approach. Section 5.6
summarizes our findings. Section 5.7 discusses possible threats to validity.

5.1 Overview

In this section we present our hypotheses as well as the research methodology applied.
While ProCeeD can be adopted for the development of any interactive software system, this
evaluation focuses on the field of mobile application engineering. Mobile applications are
interactive systems and may involve multiple input and output modalities. User interface
prototyping is applied during the development of such systems. All four case studies cover
projects concerned with mobile system development for the Apple iOS ecosystem. While
case studies I, II and IV were conducted in an academic context with clients from industry,
case study III is based on an industry project.

We realized the functional requirements of ProCeeD using the Prototyper tool in Chapter
4. Based on the functional and nonfunctional requirements defined in Section 3.3.2 this
evaluation assesses the following aspects of ProCeeD: the unified delivery process for
revolutionary and evolutionary prototypes; process improvements in the field of prototype
delivery; the process adoption and the traceability of the delivery process.

61

Chapter 5: Evaluation

5.1.1 Hypotheses

In the following we present the five hypotheses evaluated in this dissertation.

Delivery Process

To evaluate the concept of a common delivery process, we hypothesize that ProCeeD
allows developers to apply a common delivery process for revolutionary and evolutionary
prototypes delivered during a software project.

H1: With ProCeeD developers adopt a common delivery process for revolutionary as well
as evolutionary prototypes.

H1a Using ProCeeD developers deliver revolutionary prototypes using an
automated process.

H1b Using ProCeeD developers deliver revolutionary prototypes using the
same tools and delivery process as they use for evolutionary prototypes.

Process Improvements

To investigate how ProCeeD improves the delivery of prototypes, we hypothesize that
ProCeeD improves the prototype delivery process by lowering the amount of time necessary
to deliver a prototype and shortening the length of a prototyping iteration compared to
teams not adopting ProCeeD.

H2: ProCeeD reduces the length of a prototyping iteration.

H2a Using ProCeeD developers need less time to deliver prototypes compared
to developers not using ProCeeD.

H2b ProCeeD teams see a shorter overall iteration length compared to Non-
ProCeeD teams.

We further hypothesize that ProCeeD improves user involvement during requirements
engineering by allowing developers to collect more and better feedback compared to
projects not adopting by ProCeeD.

H3: ProCeeD allows developers to collect more and better feedback.

H3a Teams who use ProCeeD see more feedback than Non-ProCeeD teams.

H3b Teams who adopt ProCeeD receive better feedback than Non-ProCeeD
teams.

62

Section 5.1: Overview

Process Adoption

To evaluate ProCeeD’s adoption by developers, we hypothesize that developers see a
benefit for their development workflow when applying ProCeeD.

H4: Developers see a benefit of applying ProCeeD in their workflow.

H4a Developers use ProCeeD to download a release.

H4b Developers use ProCeeD to lookup feedback.

H4c Developers use ProCeeD’s integration with the issue tracking tool and
communication tools.

Process Traceability

To assess how ProCeeD improves the traceability of the delivery process we hypothesize
that ProCeeD reduces the amount of time developers need to monitor the delivery process
of multiple project teams. We further hypothesize that developers utilize ProCeeD to
decide when to interact with their users by e.g. sending a new release or asking their
clients for feedback.

H5: ProCeeD improves the traceability of the software delivery process in multi-project
organizations.

H5a ProCeeD reduces the time needed to monitor the delivery process.

H5b ProCeeD allows developers to optimize the frequency of their deliveries.

63

Chapter 5: Evaluation

5.1.2 Methodology

To evaluate the above-described hypotheses we conducted four case studies. An overview
of the case studies mapped to the ProCeeD workflows evaluated is depicted in Figure 5.1.

 PROTOTYPER  
Tool

PROCEED  
Workflows

Requirements Exploration   Process Metrics Delivery Automation  

Case Studies I, III, IV Case Studies I, III Case Study II

 PROCEED  
Framework

Case Studies I, III

Case Studies I, II, III, IV

Figure 5.1: Mapping of the case studies to the ProCeeD workflows.

Case study I evaluates Prototyper and ProCeeD’s delivery automation and requirements
exploration workflows in two instances of a multi-project capstone course with more
than 200 developers working in 22 projects with clients from industry. In the case study,
presented in Section 5.2, we quantitatively evaluated ProCeeD over the course of one
year. To complement our findings, we present the results of a qualitative user survey
we conducted with 11 project teams. Case study II, presented in Section 5.3, qualitatively
evaluates ProCeeD’s process metrics workflow in a project-based capstone course across
multiple semesters. Case study III qualitatively evaluates the use of Prototyper and ProCeeD
in a commercial project in the pharmaceutical industry over the course of 18 months. The
study is described in Section 5.4. Case study IV introduces ProCeeD in an innovation project
using a storyboard-based requirements elicitation approach. The case study follows a
qualitative research approach and is presented in Section 5.5.

64

Section 5.2: Case Study I: University Capstone Course

5.2 Case Study I: University Capstone Course

In this confirmatory case study [ESSD08], we describe the adoption and usage of ProCeeD’s
delivery automation and requirements exploration workflows in a multi-project capstone
course with clients from industry. We quantitatively evaluated the delivery process of all
participating teams and conducted a qualitative evaluation based on an online questionnaire
afterwards. The study design is based on a pre-study we published in [Alp+17]. Section
5.2.1 describes the study design; it includes the participants, environment and our research
approach. Section 5.2.2 and 5.2.3 report the quantitative and qualitative study results.
Section 5.2.4 discusses our findings.

5.2.1 Design

This section presents the participants of the study and describes the study environment.

Participants

Participants of the capstone course typically have a background in computer science and
a varying levels of experience. Table 5.1 presents the participants of the two instances
of the course evaluated in this case study. In total, 159 students working in 22 teams of
6-8 developers took part. Each team was lead by a doctoral student in the role of the
project leader and an experienced student in the role of a coach. 11 teams ("ProCeeD
teams") were using ProCeeD and Prototyper to deliver revolutionary as well as evolutionary
prototypes. 11 teams ("Non-ProCeeD teams") delivered revolutionary prototypes using a
method of their choice and a delivery process based on Atlassian Bamboo1 and Microsoft
HockeyApp2 for evolutionary prototypes [KA14]. The Non-ProCeeD teams took part
during the winter semester 2015/2016, the ProCeeD teams during the summer semester
2016.

Table 5.1: Case study I: Participants

Teams Participants Coaches Project Leaders Team-Size

Non-ProCeeD 79 11 11 6-8 (+ 2)

ProCeeD 80 11 11 6-8 (+ 2)

Environment

The instances of the course took part during the winter semester 2015/2016 and summer
semester 2016 respectively. During the course, participating students worked in teams over
the period of three months to develop mobile applications and the corresponding systems
with partners from industry. The course is based on the Rugby process model [BKA15],
an agile development model in the context of Continuous Software Engineering which is

1http://www.atlassian.com/bamboo
2http://www.hockeyapp.net

65

Chapter 5: Evaluation

based on Scrum. Rugby is described in detail in [KABW14], [KA14] and [Kru16]. Figure
5.2 shows the organizational structure of the course. Two instructors are responsible for the
overall management. Each project team is composed of one or many clients from industry,
a project leader, a coach as well as the students who are in the role of developers.

Cross-Project
Activities

Project 2Project 1 Project n

 Management

 Development

Release Mg.
Coach

Project
Leader

Release
Manager

Developer

...
 Management

 Development

Project
Leader

Release
Manager

Developer

...

 Management

 Development

Project
Leader

Client ...Client Client

Release
Manager

Developer

...

Program
Managers

Program Management
Instructor Instructor

CoachCoachCoach
Program
Managers

Code Quality
Coach

Code Quality
Manager

Code Quality
Manager

Code Quality
Manager

Figure 5.2: Case study I: Organizational chart of the course (adapted from [BKA15]).

The client is an employee of a partner from industry. The project leader is a teaching
assistant in the role of a scrum master. The coach supports a project leader in his daily
work. Some of the developers take over the responsibility for additional topics in the team,
e.g. release management. At the beginning of the course, the clients present their projects
ideas to the students in a Kickoff meeting. Afterwards students are allocated into teams of
6-8 developers. Teams develop their projects in sprints of one to two weeks. For each sprint
planning and review meeting the client usually meets with the team in person. In the
Design Review meeting, around 7 weeks after the Kickoff, each team presents the current
state of their project including a detailed system design. At the end of the course and
during the Client Acceptance Test each team presents their system in front of all participants
and clients. We describe the course organization in detail in [BKA15].

66

Section 5.2: Case Study I: University Capstone Course

Research Process

The study was conducted as follows: all teams, ProCeeD teams as well as Non-ProCeeD
teams, were taught the basics of prototyping and release management in interactive
tutorials given by the course instructors at the beginning of the course. The ProCeeD teams
were introduced to Continuous Prototyping and the Prototyper tool in a separate, in-class
tutorial where the course instructors presented them with the Continuous Prototyping
approach described in this dissertation. An overview of the prototyping process applied
by the teams is shown in Figure 5.3.

Create/update
product backlog

Update backlog
item

Needs
clarification?

No

Yes
Create

revolutionary-
prototype

Sprint backlog
item available

Inspect
Backlog Item

Create sprint
backlog

Deliver release
Inspect

feedback

Product backlog

No

Yes

Product
backlog item

available

Yes
No

Change
evolutionary-

prototype

Figure 5.3: Case study I: Continuous Prototyping process applied.

ProCeeD teams were asked to decide for each backlog item if the underlying requirement
is already clear enough to be implemented during the next sprint or if the backlog item
needs further refinement and discussion, in which case the team could decide to create and
deliver a prototype to do so. Teams were asked to not only deliver a product increment at
the end of a sprint but to deliver prototypes to their clients any time they needed feedback.

During the course, we asked the ProCeeD as well as Non-ProCeeD teams to gather
feedback from their client not only in personal meetings but using any means of communi-
cation. For the ProCeeD teams we configured Prototyper to include the FeedbackCollector
component, described in Section 3.6, in each delivered revolutionary prototype in order to
allow users to give textual feedback or to create and annotate screenshots while evaluating
the prototype on their mobile device. We also asked the teams to include the FeedbackCol-
lector component in each delivery of an evolutionary prototype they created using their
IDE. The Non-ProCeeD teams did not use Prototyper to deliver prototypes to their client,
but used a delivery method of their choice to deliver revolutionary prototypes, e.g. email
or personal meetings. For the delivery of evolutionary prototypes they used the continuous
delivery process described in [KA14].

67

Chapter 5: Evaluation

During the course we continuously monitored the usage of Prototyper and the adoption
of the ProCeeD workflows. Moreover, we held weekly meetings with the release managers
of both ProCeeD teams and Non-ProCeeD teams and helped them with any issues they
faced while adopting the delivery process in their team.

In addition we calculated several metrics regarding the delivery process of each team
based on ProCeeD’s process metrics workflow we described in Section 3.3.1. The metrics
delivery time, feedback time and iteration length and the underlying events (depicted in
Figure 5.4) are defined as follows:

• Delivery time: Interval between a team completing a prototype (“Prototype CRE-
ATED”) and delivering it to the client (“Prototype DELIVERED”).

• Feedback time: Interval between delivering a prototype to the client (“Prototype
DELIVERED”) and receiving feedback from the client (“Feedback RECEIVED”).

• Iteration length: Interval between a team completing a prototype (“Prototype CRE-
ATED”) and receiving feedback from the client (“Feedback RECEIVED”)

Prototype
CREATED

Prototype
DELIVERED

Delivery time

Feedback
RECEIVED

Feedback time

Iteration length

Figure 5.4: Case study I: Tracked events (capital letters) and calculated metrics (arrows).

We calculated the metrics for each release the teams sent to their clients. Releases
delivered to other user groups than the client, e.g. to the development team, were not
taken into account in this case study. The events PrototypeCreated, PrototypeDelivered and
FeedbackReceived were collected as follows: For the ProCeeD teams we used ProCeeD’s
process metrics functionality. In addition, we manually added the FeedbackReceived event
using spreadsheets filled out by the team to cover situations in which clients used feedback
channels ProCeeD did not track automatically, e.g. feedback given during personal
meetings. For the Non-ProCeeD teams we collected the events using spreadsheets which
were filled out by the teams and the course instructors on a weekly basis.

After the end of the capstone course we asked all members of the ProCeeD teams to fill
out a questionnaire about their experiences with ProCeeD and Prototyper. The answers
to the questionnaire were collected anonymously and participation was voluntary. The
participants had two weeks to complete the online questionnaire, and a reminder was sent
to those who did not complete it within one week. We invited 102 participants to take the
survey and received 76 valid responses, which amounts to a response rate of 74.5%.

68

Section 5.2: Case Study I: University Capstone Course

An overview of the questionnaire is shown in Table 5.2. In question group A we asked
about the participants’ prior knowledge and the mobile devices they used during the
course. In question group B we asked the participants about the tasks they executed using
Prototyper and feedback channels used by their client. Question group C covered the
adoption and usage of the ProCeeD workflows requirements exploration and delivery
automation. In question group D we inquired about the different integrations Prototyper
offers with development tools as well about their overall opinion about Prototyper and
their ideas for future improvements.

Table 5.2: Case study I: Questionnaire - overview

Group No Type Description

A Prior knowledge and background

1 5-Likert (5 items) Prior Knowledge

2 Yes/No Devices Use

B Tasks and Feedback

1 Single Choice (6 items) Frequency of tasks executed by participant using Prototyper

2 Single Choice (6 items) Frequency of tasks executed by team using Prototyper

3 Multiple Choice Communication channels used for a new release

4 Text Release workflow as applied in the team

5 Multiple Choice Feedback channels used by the client for revolutionary prototypes

6 Multiple Choice Feedback channels used by the client for evolutionary prototypes

C Workflows

1 5-Likert (6 items) Workflow - Requirements Exploration

2 Text Workflow - Requirements Exploration - Application Example

3 5-Likert (6 items) Workflow - Delivery Automation

4 Text Remarks Workflows

D Prototyper Tools

1 5-Likert Integration Prototyper with development tools (5 items)

2 Text Prototyper - Pros

3 Text Prototyper - Cons

4 Text Prototyper - Improvements

69

Chapter 5: Evaluation

5.2.2 Quantitative Results

In this section we present the quantitative results of the case study. We analyzed the
following amount of releases. For the ProCeeD teams, 140 releases were delivered to the
client, 96 of which received feedback (68%). For the Non-ProCeeD teams 69 of the 114 total
releases delivered to the client received feedback (60%).

Amount of Releases by Type

We first analyzed the amount of releases delivered by ProCeeD teams and Non-ProCeeD
teams. Figure 5.5 shows the total amount of deliveries split by release type. While Non-
ProCeeD teams delivered a total amount of 21 revolutionary prototypes to their clients,
ProCeeD teams delivered a total of 43 revolutionary prototypes; 4 of them were delivered
manually, e.g via paper or email, and 39 of them were delivered using the automated
process of the Prototyper tool.

Independently from the delivery method, ProCeeD teams delivered 105% more revolu-
tionary prototypes than Non-ProCeeD teams, 90% of them using Prototyper. With regard
to the amount of evolutionary prototypes delivered, Non-ProCeeD teams delivered 97
releases compared to 93 releases delivered by the ProCeeD teams.

21
4

39

93

97

0

20

40

60

80

100

120

140

Non-ProCeeD Teams ProCeeD Teams

D
el

iv
er

ie
s Evolutionary Prot.

(Automated Delivery)

Revolutionary Prot.
(Automated Delivery)

Revolutionary Prot.
(Manual Delivery)

Figure 5.5: Case study I: Amount of prototypes delivered to the client.

70

Section 5.2: Case Study I: University Capstone Course

Frequency of Releases

Figure 5.6 shows all automated deliveries to the client carried out by ProCeeD and
Non-ProCeeD teams on a weekly basis. As the instance of the capstone course in which we
introduced ProCeeD and Prototyper was conducted during the winter semester, we omitted
the two weeks semester break to increase the comparability of the two instances of the
course. Manual deliveries, e.g. via paper or email, are not included. During weeks 1-6 of
the course, ProCeeD teams showed a 2-fold increase in automated deliveries compared to
Non-ProCeeD teams. During weeks 7-13, the number of automated deliveries of ProCeeD
and Non-ProCeeD teams where close to each other, with ProCeeD teams showing more
deliveries in week 7 to 10 and Non-ProCeeD teams in weeks 11 to 13.

0 0
1

7

4

9

8
9 9 9

12

11

14

0

6

14
15

12
12

9

12 11
11

10
11

13

0

2

4

6

8

10

12

14

16

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

D
el
iv
er
ie
s

Week

Automated Deliveries Non-ProCeeD Teams

Automated Deliveries ProCeeD Teams

Figure 5.6: Case study I: Amount of prototypes delivered to clients in an automated process.

71

Chapter 5: Evaluation

In the following sections, we inspect the releases carried out by the teams by analyzing
the time spans teams took to deliver a release and clients took to provide feedback.

Iteration Length - Delivery Time

We measured the delivery and feedback time intervals for each release delivered by
ProCeeD and Non-ProCeeD teams. We only considered the prototypes delivered to the
client that received feedback, independently from the channel the client used to provide
it (e.g. personal meeting, Prototyper’s feedback component or email). For Non-ProCeeD
teams we considered a total of 69 releases, for ProCeeD teams we considered 96 releases.

We first compare the time Non-ProCeeD and ProCeeD teams took to deliver revolutionary
as well as evolutionary prototypes. Figure 5.7 presents the delivery time for revolutionary
prototypes. While the median delivery time of Non-ProCeeD teams was 3.9 days, ProCeeD
teams showed a shorter median delivery time of 0.9 days for revolutionary prototypes. In
comparison the delivery times for evolutionary prototypes as depicted in Figure 5.8 indicate
a more equal median Delivery Time with 1.0 days for Non-ProCeeD teams and 0.8 days
for ProCeeD teams. We conclude that while the median delivery time for revolutionary
prototypes is lower for ProCeeD teams, the delivery times for evolutionary prototypes
differs only marginally between ProCeeD and Non-ProCeeD teams.

Figure 5.7: Case study I: Delivery times
revolutionary prototypes.

Figure 5.8: Case study I: Delivery times
evolutionary prototypes.

Iteration Length - Feedback Time

Next we compare the feedback times of Non-ProCeeD and ProCeeD teams again for
revolutionary as well as evolutionary prototypes. Figure 5.9 visualizes the feedback time
for revolutionary prototypes. While the median feedback time for Non-ProCeeD teams
was 0.2 days, it was 0.8 days for Non-ProCeeD teams. When comparing the feedback
time for evolutionary prototypes, as shown in Figure 5.10, the median feedback time for

72

Section 5.2: Case Study I: University Capstone Course

Non-ProCeeD teams was 0.9 days, and 0.7 days for ProCeeD teams. The results indicate
that the feedback time for revolutionary prototypes increased slightly for ProCeeD teams
when compared to Non-ProCeeD teams. The feedback time for evolutionary prototypes
indicates only a marginal difference.

Figure 5.9: Case study I: Feedback times
revolutionary prototypes.

Figure 5.10: Case study I: Feedback times
evolutionary prototypes.

Feedback Channels

Finally, we analyzed the feedback channels chosen by the clients. Figure 5.11 depicts
the results. All teams used personal meetings to gather feedback from the client roughly
every two weeks. Prototyper’s in-app feedback component, email and the Slack instant
messaging service were used by half of the teams. Feedback via the wiki system was
provided only by the client of one team, the issue tracker was not used to provide feedback.

11

5 5 5

1
0

10

6 6
5

1
0

0

2

4

6

8

10

M
ee
tin
gs

Pr
ot
ot
yp
er

M
ail
/P
ho
ne

Sl
ac
k

W
iki

Iss
ue
-T
ra
ck
er

T
ea
m
s

Feedback channels used for
revolutionary prototypes

Feedback channels used for
evolutionary prototypes

Figure 5.11: Case study I: Feedback channels.

73

Chapter 5: Evaluation

5.2.3 Qualitative Results

In this section we present the results of the questionnaire sent to the ProCeeD teams to
complement the quantitative evaluation presented in Section 5.2.2.

Tasks

We first analyzed how often each participant performed a certain tasks in Prototyper.
Participants answered three questions about whether and how often they used features
of Prototyper in their personal workflow. Figure 5.12 visualizes the responses. The first
question dealt with the issue wether the participants downloaded a releases on their own
device. 51% of the participants downloaded a release 7 or more times, 20% 3-6 times.
29% downloaded a release only 1-2 times or not at all. The second question asked if
the participant used Prototyper’s in-app feedback component. 19% of the participants
provided feedback using Prototyper 7 or more times, 17% 3-6 times. 64% used the feedback
function only 1-2 times or not at all. Question three asked the participants wether they
used Prototyper to lookup feedback provided by the client. 46% of the participants looked
up client feedback for a release 7 or more times, 21% 3-6 times. 33% looked at client
feedback only 1-2 times or not at all.

We conclude that while most of the participants downloaded releases and reviewed
client feedback multiple times, Prototyper’s in-app feedback function was hardly used by
the participating students.

Figure 5.12: Case study I: Prototyper usage (single choice).

74

Section 5.2: Case Study I: University Capstone Course

Delivery Automation Workflow

To assess ProCeeD’s delivery automation workflow we inquired about the participants’
opinion on five statements depicted in Figure 5.13 and 5.14. 85% of the participants strongly
agreed or agreed that Prototyper allowed them to use the same delivery workflow from the
first wireframe up to the delivery at the end of the project, 4% had a neutral opinion and
11% disagreed with the statement. 69% of the participants strongly agreed or agreed that
Prototyper allowed them to deliver revolutionary prototypes faster compared to other tools
they are aware of. 5% had a neutral opinion and 26% disagreed with the statement. 67%
of the participants strongly agreed or agreed that Prototyper made their team’s delivery
workflow faster compared to other tools they are aware of. 7% had a neutral opinion, 26%
disagreed or strongly disagreed with the statement.

Figure 5.13: Case study I: Statements delivery automation 1.1 - 1.3 (5-likert).

In addition we asked if participants knew of the Prototyper’s concept of managing
multiple user groups. 87% of the participants strongly agreed or agreed to the statement
that Prototyper allowed them to manage different user groups. 12% had a neutral opinion
and 1% disagreed. When asked if they always knew when a release was delivered to a
user group 75% agreed or strongly agreed, 22% had a neutral opinion and 3% disagreed.

Figure 5.14: Case study I: Statements delivery automation 2.1 - 2.2 (5-likert).

75

Chapter 5: Evaluation

Requirements Exploration

To assess ProCeeD’s requirements exploration workflow we asked the participants to
state their opinion on the six statements depicted in Figure 5.15 and 5.16. 65% of the
participants strongly agreed or agreed that they see an overall use of Prototyper for
exploring requirements. 27% had a neutral opinion. 8% disagreed or strongly disagreed
with the statement. Second we asked participants to state their opinion on two statements
regarding Prototyper’s functionality. 75% of the participants strongly agreed or agreed
on the statement that Prototyper allows them to deliver multiple releases to a user-group
at the same time, 4% had a neutral opinion, 21% percent disagreed or strongly disagreed.
Moreover, 52% of the participants agreed that the delivery of multiple releases provided
a benefit for collecting feedback from the client. 26% had a neutral opinion. 22% of the
participants disagreed or strongly disagreed with the statement.

Figure 5.15: Case study I: Statements requirements exploration 1.1 - 1.3 (5-likert).

We then asked if their client knew from where to get the a releases delivered by the team
already in the first week of the course. 51% of the participants strongly agreed or agreed
on the statement, 29% had a neutral opinion, 20% percent disagreed or strongly disagreed.
In the second question 89 % of the participants strongly agreed or agreed that the team
applied build promotion by evaluating each release internally first before delivering it to
the client. 5% had a neutral opinion, 6% percent disagreed or strongly disagreed. In the
third question we asked wether the participant know how to relate a client feedback item
to a release. 59 % of the participants strongly agreed or agreed, 34% had a neutral opinion,
7% percent disagreed or strongly disagreed.

76

Section 5.2: Case Study I: University Capstone Course

Figure 5.16: Case study I: Statements requirements exploration 2.1 - 2.3 (5-likert).

Integrations

Finally we presented the survey participants with six statements regarding Prototyper’s
integration with development tools and asked them if they found these integrations useful
for their development workflow. The answers are depicted in Figure 5.17 and 5.18.

Figure 5.17: Case study I: Statements integration with developer tools 1.1 - 1.3 (5-likert).

First we presented the participants with three statements about Prototyper’s integration
with Slack3, the main communication tool used during the capstone course. Most of the
participants strongly agreed or agreed that the notifications Prototyper provided into
the Slack channels of the teams about a release being created (79%), delivered (77%) or a
feedback to a releases being received (82%) were useful to them. The remaining participants
had mostly a neutral opinion, less than 8% disagreed.

3http://www.slack.com

77

Chapter 5: Evaluation

We then asked the participants about the integration with Atlassian Bamboo4, the
integration server used during the course. 55% of the participants strongly agreed or
agreed that the traceability from a release created in Prototyper to the corresponding build
and commit was useful to them. 38% had a neutral opinion, 7% disagreed.

Figure 5.18: Case study I: Statements integration with developer tools 2.1 - 2.3 (5-likert).

Regarding Prototyper’s capability to transform a prototype created with Marvel App5, a
prototyping tool used during the course, 62% of the participants agreed or strongly agreed
that it was useful for them. 32% had a neutral opinion, 6% disagreed or strongly disagreed.
Finally, we asked about Prototyper’s functionality to copy user feedback from Prototyper to
Atlassian JIRA6, the issue-tracker used during the course. 58% of the participants strongly
agreed or agreed that this feature was useful for their development workflow, 36% had a
neutral opinion. 6% disagreed or strongly disagreed with the statement.

5.2.4 Discussion

The quantitative results presented in Figure 5.5 indicate that ProCeeD teams delivered an
increased amount of revolutionary prototypes. Furthermore ProCeeD teams were able to
deliver revolutionary prototypes using an automated process. Due to the fact that also
Non-ProCeeD teams delivered evolutionary prototypes using an automated and repeatable
process, the amount of evolutionary prototypes delivered did not change. The results
depicted in Figure 5.6 support this finding. It shows that ProCeeD teams delivered more
revolutionary prototypes than Non-ProCeeD teams in the first six weeks of the capstone
course: most of the user interaction design is carried out by the teams during this time.
Therefore, revolutionary prototypes are frequently used.

In later project stages and when teams mostly delivered evolutionary prototypes,
ProCeeD and Non-ProCeeD teams did not show a notable difference in the amount of

4http://www.atlassian.com/bamboo
5http://www.marvelapp.com
6https://www.atlassian.com/jira

78

Section 5.2: Case Study I: University Capstone Course

prototypes delivered. The survey results indicate that the majority of the participants
agreed that Prototyper allows the delivery of revolutionary and evolutionary prototypes
using the same workflow. Therefore, we gained support for hypothesis H1 which states
that using ProCeeD, developers can adopt a common delivery process for revolutionary as
well as evolutionary prototypes.

The quantitative data also indicates that ProCeeD teams had a shorter delivery time
for revolutionary prototypes. Revolutionary prototypes were delivered in less than one
day after they were finished compared to Non-ProCeeD teams which took four days. We
observed that the Non-ProCeeD teams presented most of the revolutionary prototypes
in personal meetings with their client and did not deliver them upfront: they finished
the prototype some days before the next meeting but delivered them only right before
or even during the meeting. ProCeeD teams delivered revolutionary prototypes more
quickly after they finished them. We could assume that ProCeeD teams did not evaluate a
prototype properly internally before delivering it but the questionnaire responses indicate
that ProCeeD teams mostly delivered a prototype to their team first and promoted it to
their client afterwards.

In summary, ProCeeD teams show a decrease of the prototype delivery time (see
Figure 5.4) for revolutionary prototypes. The results support hypothesis H2 which states
that ProCeeD lowers the time developers need to deliver prototypes and allows shorter
prototyping iterations.

During our case study ProCeeD teams showed a two-fold increase over Non-ProCeeD
teams in deliveries of revolutionary prototypes to their client. At the same time, they
received feedback from the clients on more releases, 69 for the Non-ProCeeD teams
and 96 releases with feedback for the ProCeeD teams. The measured feedback times
indicate that ProCeeD teams took longer than Non-ProCeeD teams to gather feedback on a
revolutionary prototype. The feedback times for evolutionary prototypes did not differ.
Non-ProCeeD teams delivered revolutionary prototypes mostly in personal meetings and
they received feedback on them right away. We conclude that ProCeeD teams received
feedback on more releases than Non-ProCeeD teams. As we did not evaluate the quality
of the received feedback we can only partially support hypothesis H3 which states that
ProCeeD allows developers to collect more and better feedback.

Finally, we evaluated how Prototyper and ProCeeD are adopted by developers. Almost
every participant used Prototyper to download new releases. 78% of the survey participants
own a device matching the target environment of the capstone course, consequently only
these students could actually download a release. The majority of participants agreed
that Prototyper made their development workflow faster, in particular when delivering
revolutionary prototypes. Given the fact that prototyper’s feedback component was only
one of many feedback channels used by the teams, the Prototyper’s in-app feedback

79

Chapter 5: Evaluation

component (see Section 4.1) was only rarely used by the developers. We observed that
developers mainly used communication channels such as instant messaging or personal
meetings to provide feedback.

Concerning Prototyper’s feedback management component we conclude that two thirds
of the participants actively used Prototyper’s functionality to receive feedback from the
clients. The questionnaire results further indicate that the majority of the participants
understood and applied the concept of multiple release groups. Regarding Prototyper’s
requirements exploration workflow, participants’ opinions varied concerning whether the
delivery of multiple releases at the same time helped them to gather feedback. While
the requirements exploration using multiple releases showed mixed results, we can still
provide support for hypothesis H4 that developers see a benefit of adoption ProCeeD in
their workflow.

80

Section 5.3: Case Study II: Process Metrics

5.3 Case Study II: Process Metrics

In this case study we describe how we applied ProCeeD’s process metrics workflow to
improve the manageability of a multi-project capstone course in a university context.
Section 5.3.1 describes the study design. Section 5.3.2 presents the results of applying
ProCeeD’s process metrics in a capstone course with more than 100 students developing
applications in 10-12 parallel projects over the course of three months. Section 5.3.3
discusses our experiences on how we selected and used process metrics during the course.
This case study has been published in [ADB16].

5.3.1 Design

In this case study we evaluate how ProCeeD can help course instructors to manage project-
based software engineering courses which involve workflows like Continuous Delivery
and Continuous Prototyping. Teaching and monitoring the adoption of such workflows
can be time-consuming, which is why the instructor needs a quick way to assess each
project’s status and identify potential problems.

In the following section we first summarize two workflows, namely Continuous Integra-
tion and Continuous Prototyping and second explain how we used ProCeeD to select and
compute metrics to measure the adoption and usage of each workflow in the project teams.
For the selected the metrics, we analyzed each of the workflows with regard to its desired
outputs based on the techniques suggested by [Kan+04; Gra94a; FN00].

inform about
build status

Atlassian
Bitbucket

Developer

commit notify

User

Prototyper

uploads app

Target
Environment

monitor

Release  
Manager

Atlassian  
Bamboo

crash reports

feedback

download

checkout,
compile, test,
package build

Atlassian  
Jira

notify

store crash reports and feedback as issues

Figure 5.19: Case study II: Development workflow (adapted from [BKA15])

81

Chapter 5: Evaluation

Continuous Integration

To introduce Continuous Prototyping a team needs to adopt Continuous Integration
practices first. As part of this workflow we used in the course a dedicated system which
executes Unit-Tests as well as automated UI-Tests after each commit in a team’s repository.
If an error occurs, the author of the commit is notified, so that he can fix the code and
the according build as soon as possible. The workflow is described in detail in [BKA15].
Experiences from past courses show that the reasons for a failing build can be manifold,
ranging from coding errors over configuration errors of the build server. As Continuous
Integration focuses on the key principle of getting the build to pass successfully again as
soon as possible, we measure this workflow with the following two metrics.

Metric: Continuous Integration - Time to fix

We calculate the time to fix, which is the average period of time between a failed build
and the first successful build on the team’s main development branch [DMG07]. A high
time to fix could e.g. indicate that a team does not check the status of the integration server,
or that the developers are not experienced enough to fix errors in the build pipeline. If the
time to fix increased significantly over the past weeks, for instance, the instructor can take a
look at the corresponding project and talk to the team to find out more about the root cause.

Figure 5.20: Case study II: Metrics Continuous Integration.

Metric: Continuous Integration - Builds

By showing the absolute numbers of successful and failed builds we allow the course
instructor to analyze a team’s Continuous Integration process. A large amount of failed
builds could e.g. indicate that the team was unable to interpret the errors provided by the
integration server or that the server itself did not work as expected.

82

Section 5.3: Case Study II: Process Metrics

Continuous Prototyping

To evaluate the adoption of ProCeeD and Continuous Prototyping we evaluated the
deliveries of a project team to their clients. We encourage teams to deliver prototypes
to their client regularly in order to define and refine their requirements, e.g. when they
implemented a new feature. Figure 5.21 shows the metrics we calculated using ProCeeDs
Process Metrics Workflow:

Figure 5.21: Case study II: Metrics Continuous Prototyping.

Metric: Continuous Prototyping - Delivery to Client

With this indicator, we determine each week if a client has downloaded a release of the
team’s application at least once. A successful download by the client can be an indicator
for the grade of their current involvement. If a team does not have any download by their
client for weeks, an instructor can inquire about possible root causes. These can range
from a problem in communication with the client to delivery problems due to the nature
of the project. For instance, if the team develops a complex system with various sensors or
other hardware devices involved, a delivery to the client can be challenging.

Metric: Continuous Prototyping - Downloads

To evaluate a build of the system on a mobile device before delivering it to the client, the
teams used Prototyper to download the build of their application to their devices before
delivering it to the client. This allowed them to minimize the amount of errors that can
happen during the delivery of a new product increment [HF10]. In addition we measure
the number of downloads to team members’ devices to determine if they make use of the
promotion workflow.

83

Chapter 5: Evaluation

5.3.2 Results

During the course of one semester we combined the collected metrics on a single sheet
for each project so that a team can evaluate their development workflow as a whole. We
believe that an indicator considered in isolation can not accurately predict project success
[Kan+04]. We generated the reporting sheet for each project team on a weekly basis during
the length of the course and used it to identify projects were certain workflows were not
adopted as expected. After taking a more detailed look to identify possible root causes, we
talked to the project leader or coach of the team to find a solution. Multiple times we found
that even though some indicators pointed towards a problem, the team had very good
reasons to work they way they did. In these cases we stuck to one of the key principles of
the agile manifesto: "Individuals and interactions over processes and tools" [Bec+01], and
did not ask the teams to change their approach.

In personal interviews the instructors and project leaders stated that the metrics sheet
gave them a quick overview over the project status. If they noticed an irregularity, e.g. a
high number of failed builds, they could go into the respective systems and investigate the
root causes or talk to the responsible members of the development team. Therefore, the
metrics were often a good first indicator and proved to be a tool to oversee several projects
at once.

5.3.3 Discussion

As a project-based organization our capstone course is run by instructors and students
in multiple roles. We think that choosing the right target audience for process metrics
upfront is an important success factor. Instructors and project leaders are more experienced
that team coaches and developers which are students and therefore much usually less
knowledgeable in the field of project management. We think that students who have not
yet experienced how a project’s characteristics can influence such indicators would tend
to interpret the metrics too literally, while instructors have the proper mindset to use the
metrics as a basis for making decisions. For instance, making the number of commits of
each team member available to the participants might drive them to increase their commit
count by e.g. making unnecessary commits, because many of them fail to understand the
limited explanatory power of this metric when considered in isolation.

In addition to limiting the use of metrics for direct comparisons within teams, we do
not think that comparing whole teams directly to each other is useful to the outcome of the
course. Each team works on a different project with its particular challenges, and they
can take very different paths to reach their goal [DKA14]. Our experience shows that a
team’s characteristics ranging from the type of problem to solve to the personality of the
team members can be quite different, and they can and should not be ranked directly
against each other using performance indicators. In summary, we recommend to apply
the following rules to adopting process metrics in software engineering project courses:
metrics should be used and exposed only to instructors and should not be accessible by
students. A high-level overview over the individual projects allows the instructors to

84

Section 5.3: Case Study II: Process Metrics

recognize and react to problems in the adoption workflows version control, continuous
integration and continuous delivery early on. Nevertheless, we think that regardless of
how thoroughly the data is collected, a simple number should never be the only indicator
of project progress when it comes to teaching software engineering in a real-world setting.
We therefore conclude that these process metrics should be applied with caution, especially
when it comes to grading and assessing students’ performance. Instructors should treat
the metric as a first indicator of a possible problem and always investigate the root causes
by e.g. speaking to the team members.

In the case study we showed a possibility how instructors can use process metrics
created using ProCeeD to reduce the amount of time they need to monitor the adoption
of Continuous Integration and Continuous Prototyping in capstone courses. In personal
interviews with the instructors of a capstone course we found anecdotal evidence that
ProCeeD’s process metrics workflow helps them to manage the delivery workflow of
multiple projects at once by checking a standardized metrics sheet on a weekly basis. We
therefore gained support for hypothesis H5a which states that ProCeeD improves the
traceability of the software delivery process and therefore reduces the time needed to
monitor multiple projects at the same time.

85

Chapter 5: Evaluation

5.4 Case Study III: Industry

In this case study we applied Prototyper in a commercial project with a partner from the
pharmaceutical industry.

5.4.1 Design

We introduced Prototyper and ProCeeD in a project concerned with the development of
a mobile diabetes management application DiaApp. At the beginning of the evaluation
period, DiaApp 1 had been launched for two months and the team was getting ready to
begin the design and development of version 2. The development team consisted of four
persons including an interaction designer. On the client side three people were involved.
The client was located remotely and only met with the development team in person once
per month. The team also involved a group of testers consisting of end users as well as
colleagues of the clients in the project. The involved end users were real patients with
diabetes and evaluated the new dashboard from the perspective of a person with diabetes.
The development of version 2 was carried out following Scrum as an agile process model,
and the project ran over a period of four months. As target environment of the application
the Apple iOS platform was used. The scope of the project included the rework of the
interaction design of a central component of DiaApp, the Dashboard. With the help of
the dashboard the app user can visualize health parameters like measured blood sugar
levels, injected insulin doses and carbohydrates eaten. In the following section we describe
our observations during the study regarding the development of the next version of the
dashboard component of DiaApp.

5.4.2 Results

The team began the development with a discussion about user feedback regarding the
already launched version of DiaApp. They then structured the requirements of the clients
in a product backlog. During the development of version 2 the team created revolutionary
as well as evolutionary prototypes for the new dashboard. Every time they wanted to
gather feedback from their colleagues, clients or a group of end users, the team sent out
a release using Prototyper. Table 5.3 shows the total amount of releases delivered to
developers, clients and users.

Table 5.3: Case study III: Releases delivered for DiaApp 2

Rel. to Developers Promotions to Clients Promotions to End Users

Rev. Prototypes delivered 17 11 3

Ev. Prototypes delivered 77 14 4

Feedback Items received 131 95 12

86

Section 5.4: Case Study III: Industry

As the team applied ProCeeD’s delivery automation workflow, they delivered each
release first internally and promoted it some time later to the clients or end user. The team
promoted 11 revolutionary and 14 evolutionary prototypes to the clients. 3 revolutionary
prototypes and 4 evolutionary prototypes were even delivered to end users. The team
received a total of 221 feedback items collected using Prototyper’s feedback collector
component or via other feedback channels like email. 131 items were written by developers,
95 by clients and 12 by end users. 65% of the feedback items contained annotated
screenshots.

In the following we describe our observations regarding the development workflow
applied by the team. Figure 5.22 shows a simplified release plan visualizing how the team
structured their release workflow. The development began with all user groups using
R1, which has been released as DiaApp 1 earlier on. After creating three iterations of a
revolutionary prototype, the developers decided to deliver RV4 to the client. To allow
the client to compare the EV1 and RV4, the developers decided to deliver Release R2
in addition to the already delivered R1. The team received feedback by the client and
incorporated it into the prototypes RV5 and RV6. After receiving only positive feedback
for R3 from the clients, the team decided to send the release to the end users who were
actual patients. This process continued until all requirements were met and implemented.
EV8 was released as R4, tested and launched as DiaApp 2.

Developers

Clients

User

RV2EV1 RV4 EV7

R1 R4

R4

R4

RV3

R2

R1

RV5 EV6

Development

Recipients +
Releases

Key

R1

R1

R2a

R1

R3

R1

R3

R1

RV6

R3

R1

EV8

Revolutionary
Prototype

Evolutionary
Prototype

Feedback

Figure 5.22: Case study III: Release plan for DiaApp - example.

87

Chapter 5: Evaluation

Figure 5.23 presents screenshots of four iterations EV1, RV4, RV6 and EV8 which were
delivered to the clients or end users.

EV1 RV4

RV6 EV8

Figure 5.23: Case study III: Four prototyping iterations of the DiaApp dashboard.

88

Section 5.4: Case Study III: Industry

5.4.3 Discussion

In personal interviews, the three clients and the developers agreed that using Prototyper
improved the prototyping process compared to other approaches they were aware of
as follows: clients were able to receive and download revolutionary and evolutionary
prototypes using the same workflow. They particularly liked the way to provide feedback
in-app because this simplified the process to e.g. comment on user interface design
elements. One client stated that he liked the approach of having executable, revolutionary
prototypes as mobile apps because he could quickly install them on his colleagues’ devices.
Another mentioned that evaluating prototypes by installing an actual application on his
smartphone became part of his weekly routine.

Developers stated that delivering each prototype using the same workflow especially
speeded up the development and helped them to organize user feedback at a single place.
We observed that end users, who evaluated the revolutionary prototypes of DiaApp 2,
gave different feedback than clients or developers: while clients and developers were
already focused on the implementation of the requirements they agreed on, end users also
provided feedback which was rather focused on new features or improvements to their
daily workflow.

In this case study, we showed how ProCeeD and Prototyper can be used to deliver
revolutionary as well as evolutionary prototypes to developers, clients and actual end users
using a common delivery workflow. In personal interviews with the clients and developers
we gained support for hypothesis H1 which states that ProCeeD allows a common delivery
process for revolutionary and evolutionary prototypes.

In addition, we showed how the project team applied the same feedback mechanism for
revolutionary and evolutionary prototypes as well as for each of the user groups. Overall a
total amount of 221 feedback items were collected. Hypothesis H3 can therefore be further
supported. It should be noted that as we only included a few end users in the case study,
the implications of exposing early, revolutionary prototypes to hundreds of end users
remains future work.

89

Chapter 5: Evaluation

5.5 Case Study IV: Storyboard-based Requirements Elicitation

In this case study we applied the ProCeeD workflows for a storyboard-based requirements
elicitation approach in a two-week software engineering course [ASF17]. Storyboards
are a well-established practice in the filming industry to organize and sketch out movies.
When used for software development, storyboards allow developers to visually structure
a project’s requirements. Each frame of the storyboard describes a requirement and the
subsystems involved in the implementation of the requirement.

5.5.1 Design

The course was conducted with 15 students and 4 instructors. The task of the students was
to create a series of prototypes of a human-centric cyber-physical system which supports
humans in hazardous environments [SSBV16]. We provided the students with equipment
such as sensor kits, soldering machines, a lab room and a 3D printer. Furthermore,
we introduced them to the ProCeeD workflows. The course was conducted using an
agile methodology based on Scrum. A visual storyboard served as a product backlog to
structure the development and delivery. Every morning the current state of the storyboard
was shown to the students during the stand-up meeting. During this meeting, the team
prioritized what to do next and which frames of the storyboard should be implemented.
As soon as a storyboard frame was finished, the students acted out the frame in a small
theater play which was filmed. This frame of the storyboard was then replaced by the
filmed clip.

Scenario

1

Storyboard

2

Impl. & TestTop-Level Design

4

Demo Video

5

Worker activates
the emergency

transmitter.

Rescuer gets a
call on his Phone.
He answers the

call.

Rescuer captures
emergency drone

on the field.

Frame 1

Frame 2

Frame n

Impl. & Test 1

Impl. & Test 2

Impl. & Test n

Scene 1

Scene 2

Scene n

3

Event 1

Event 2

Event n

Figure 5.24: Case study IV: Visual backlog creation process (adapted from [ASF17]).

90

Section 5.5: Case Study IV: Storyboard-based Requirements Elicitation

5.5.2 Results

At the beginning of the course, we asked the students to define a visionary scenario for
the system to be developed [RC09], [BKA15]. In the scenario, the students described the
event flow to be carried out by the actors of the proposed system (see Figure 5.24.1). We
asked the students to also propose and describe features even if they were considered not
realizable during the two weeks of the course. Based on the event flow the students created
the initial storyboard shown in Figure 5.24.2. Each frame shows a specific drawing which
represents the shots planned for the movie. The storyboard frames also served as a visual
product backlog. An initial architecture model was created in parallel to the visual product
backlog and kept in sync in subsequent iterations (see Figure 5.24.3). The architecture
model represents an informal communication diagram where each subsystem is labeled
and depicted with an icon. Arrows between the subsystems are used to indicate message
exchange. During each iteration, the architecture model and the storyboard prototype were
refined. Eacj change in the storyboard prototype may influence the architecture model and
vise versa. Figure 5.25 shows an iteration of the architecture model.

Figure 5.25: Case study IV: Top-level architecture (example).

For the implementation of the executable prototype, the students chose a frame from
the storyboard and the according subsystems from the architecture model. Afterwards
the executable prototype was delivered using Prototyper to actual devices (see Figure
5.24.4). In addition, an integration test was conducted to check if the subsystems involved
in one frame were ready to be filmed. After the unit and integration tests had passed,

91

Chapter 5: Evaluation

the scene was staged, filmed, and the hand-drawn frame in the storyboard was replaced
with the filmed clip (see Figure 5.24.5). The current iteration of the animated storyboard
was then delivered to the instructors as a movie. Hand-drawn prototypes were digitized
and, like evolutionary prototypes implemented in code, delivered to the course instructors
via Prototyper. After several iterations, more and more drawn frames were replaced with
the actual movie clips, showing the implemented system. This process was repeated
until all drawn frames in the storyboard were replaced by filmed frames. Figure 5.26
shows a snapshot of the storyboard prototype after five iterations. Parts of the frames are
still hand-drawn and not implemented or filmed yet, others are already filmed and the
functionality of the executable prototype shown in the frame is already implemented.

5.5.3 Discussion

In this case study we presented an approach to use ProCeeD workflows for the develop-
ment and delivery of prototypes based on storyboards in terms of demo movies. Each
demo movie allowed the students to integrate the component of the system as soon as their
implementation was is finished, while also visualizing the current progress. Using Proto-
typer students where able to quickly deliver even multiple revolutionary and evolutionary
prototypes and use them to create the demo movie. Our results further support hypothesis
H1 as we applied ProCeeD to automate the delivery of revolutionary prototypes created
with a storyboarding approach. In addition found that visual product backlogs facilitated a
common understanding of the problem to be solved in even in an early stage of the project
while still allowing the develop the requirements iteratively and incrementally. We believe
that the use of storyboards is a promising approach for agile software development, in
particular if interdisciplinary teams are involved.

Figure 5.26: Case study IV: Visual backlog showing the system after five iterations.

92

Section 5.6: Summary

5.6 Summary

Table 5.4 summarizes the results of the four case studies and presents the evaluation
results of each hypothesis we stated in Section 5.1.1. In Case Studies I, III and IV we
presented quantitative as well as qualitative evidence that ProCeeD allows developers to
deliver revolutionary as well as evolutionary prototypes using a common delivery process
(H1). We further showed quantitative evidence that ProCeeD allows developers to reduce
the length of a prototyping iteration (H2) in Case Study I. We can only partially support
hypothesis H3 in Case Study I and III: while teams who adopted ProCeeD showed a shorter
overall iteration length when compared to Non-ProCeeD teams we could not show an
improvement of the feedback quality. While we showed quantitative evidence that teams
adopting ProCeeD receive more user feedback than teams not using ProCeeD, we did not
analyze the quality of the received feedback. With Case Study I we showed evidence hat
developers see a benefit of applying ProCeeD in their development workflow (H4). We
finally evaluated ProCeeD’s process metrics workflow in Case Study II and showed that it
improves the traceability of the software delivery process in multi-project organizations
(H5).

5.7 Threats to Validity

We see the following limitations regarding the results of the four case studies presented.
Case Study I was conducted in a large university capstone course. With regard to the
quantitative data and the underlying usage of ProCeeD we saw the following threats to
validity: While we selected students with various prior experience and from different
fields of studys a selection bias regarding the participating students cannot be ruled
out. When we computed the delivery and feedback time spans, our starting point was
the creation of a prototype. Hence, our results do not consider a possible overhead of
creating the revolutionary prototypes. The results of the qualitative study part are based
on subjective ratings by the participants. While we conducted the study after the grading
was finalized, we cannot rule out a bias in the answer of the students. In Case Study
II we presented how process metrics allow the instructors to maintain an overview over
the projects and intervene when problems arise. We presented only anecdotal evidence
that the metrics described increase the manageability of such project courses. The study
described the application of ProCeeD’s process metrics workflow from the perspective of
the course instructors and therefore only with a small sample size. Finally Case Study III
and IV applied ProCeeD in rather small projects. As we observed only a small amount of
participants the results should be considered anecdotal evidence.

93

Chapter 5: Evaluation

Table 5.4: Evaluation: Summary

No. Hypothesis Case Study Result

1 With ProCeeD developers adopt a common delivery process
for revolutionary as well as evolutionary prototypes.

I,III,IV Supported

1a Using ProCeeD developers deliver revolutionary prototypes
using an automated process.

I,III,IV Supported

1b Using ProCeeD developers deliver revolutionary prototypes
using same tools and delivery process as they use for evolu-
tionary prototypes.

I,III,IV Supported

2 ProCeeD reduces the length of a prototyping iteration. I Supported

2a Using ProCeeD developers need less time to deliver prototypes
compared to developers not using ProCeeD.

I Supported

2b Teams who adopt ProCeeD see a shorter overall iterations
length compared to Non-ProCeeD teams.

I Supported

3 ProCeeD allows developers to collect more and better feed-
back.

I,III Partially Supported

3a Teams who use ProCeeD see more feedback than Non-
ProCeeD teams.

I,III Supported

3b Teams who adopt ProCeeD receive better feedback than Non-
ProCeeD teams.

I,III Rejected

4 Developers see a benefit of applying ProCeeD in their work-
flow.

I Supported

4a Developers used ProCeeD to download a release. I Supported

4b Developers used ProCeeD to lookup feedback. I Supported

4c Developers used ProCeeD’s integration with issue tracking
tool and communication tools.

I Supported

5 ProCeeD improves the traceability of software delivery pro-
cesses in multi-project organizations.

II Supported

5a ProCeeD reduces the time developers need to monitor the
delivery process.

II Supported

5b ProCeeD allows developers to optimize the frequency of their
deliveries.

II Supported

94

Chapter 6
Conclusion

Prototypes developed to explore and elicit requirements are currently facing two problems.
First, prototypes are created with extensive and mature tool support but are seldom deliv-
ered as executable releases the target environment. Second, the delivery process applied
for revolutionary prototypes diverges from the delivery process used for evolutionary
prototypes. We found that no available prototyping approaches or tools address the deliv-
ery of revolutionary as well as evolutionary prototypes to the target environment using a
common process.

6.1 Contributions

This dissertation addresses these problems with three contributions wich are summarized
6.1. The ProCeeD Framework allows developers to create and deliver executable prototypes to
the target environment using an automated and repeatable process and provides a common
feedback mechanism for users. By delivering and discussing prototypes, developers can
define and refine requirements in collaboration with their stakeholders. Using ProCeeD,
developers can test hypotheses on ambiguous or unclear requirements by using executable
prototypes. Stakeholders can evaluate these prototypes and provide feedback to evaluate
existing requirements or to make new requirements emerge.

Approach and Process Model

CONTINUOUS PROTOTYPING AND PROCEED WORKFLOWS

Empirical Evaluation

CASE STUDIES IN ACADEMIC AND INDUSTRY SETTINGS
3

2

1

Architecture and Tool Implementation

PROCEED FRAMEWORK AND PROTOTYPER TOOL

Figure 6.1: Contributions.

95

Chapter 6: Conclusion

In addition, ProCeeD allows the delivery of several prototypes to compare alternatives
in the target environment. ProCeeD is not limited to the delivery of prototypes during
requirements elicitation; it establishes a common software delivery solution from
requirements elicitation to software evolution. Developers can apply the same delivery
and feedback process throughout the whole lifespan of a development project.

The Prototyper tool is based on ProCeeD and implements a common process for the
delivery of executable prototypes in the field of mobile application engineering. Prototyper
allows the transformation of prototypes created with prototyping tools into mobile apps
which are executable in the target environment. Prototyper supports the delivery of
multiple releases to a group of users. In addition, prototypes can be created with different
prototyping techniques, e.g. paper prototyping and digital prototyping. Using Prototyper’s
feedback component, developers can collect in-situ feedback on these prototypes.

ProCeeD and Prototyper were empirically evaluated in four case studies. Case Study
I evaluated ProCeeD’s delivery workflows in two instances of a multi-project capstone
course, each with more than 100 developers working in 11 industry projects. We showed
that teams who adopt ProCeeD reduce the length of a prototyping iteration when compared
with projects not adopting the framework. ProCeeD teams showed a two-fold increase of
revolutionary prototype iterations delivered to the target environment compared to teams
not applying the framework. Case Study II evaluated ProCeeD’s process metrics workflow
by validating the adoption of ProCeeD in project-based organizations in a capstone course
across two semesters. We showed how ProCeeD helps to improve the manageability
of the delivery process. Case Study III applied ProCeeD in a commercial project with
a partner from the pharmaceutical industry. It was shown that ProCeeD establishes a
common software delivery and feedback process for revolutionary as well as evolutionary
prototypes. In addition we presented how ProCeeD and Prototyper allow the delivery
of early prototypes to the end users of a system. Case Study IV introduced ProCeeD in
a project using a storyboard-based requirements elicitation approach. We showed how
ProCeeD can be applied to deliver storyboard-based prototypes.

96

Section 6.2: Future Work

6.2 Future Work

In this section we provide an outlook on future research directions and improvements
regarding the ProCeeD Framework and the Prototyper tool.

Further Evaluation

We have evaluated ProCeeD and Prototyper in multiple case studies in both academic
and commercial contexts. The projects were carried out by 6-8 developers each, lasted
for three months and involved small groups of users. Future evaluations could assess
the following aspects of ProCeeD: it could be evaluated how ProCeeD can be adopted
in projects with a large amount of users. This could raise additional challenges in the
areas of, e.g. expectation and feedback management. Furthermore, it should be analyzed
how ProCeeD performs when multiple target environments need to be supported at
the same time. This can induce overhead due to additional complexity in the software
development and delivery process. Finally, the impact of ProCeeD on the communication
within software teams could be explored. While Case Study III showed that ProCeeD’s
feedback component was frequently used, the impact of an automated delivery process for
prototypes on the communication between users, interaction designers, developers and
clients needs to be further evaluated.

Prototype Exchange Format

In Chapter 2 we showed that various commercial and non-commercial tools for creating
revolutionary prototypes are available. Each of the tools builds on its own proprietary data
exchange format to describe and store prototypes. In ProCeeD we demonstrated how to
transform and package such prototypes into mobile apps which can be executed in different
target environments. We currently need to implement the necessary transformation
steps for each prototyping tool separately. A common intermediary format to store and
interchange prototypes would solve this problem. Defining and publishing such a format
could facilitate adoption among the prototyping tool vendors and simplify the application
of the ProCeeD workflows in software projects.

Extension of ProCeeD and Prototyper

The integration of Prototyper into the development tool chain could be further improved.
As chat-based control ("ChatOps") of software delivery processes gains importance in
industry, Prototyper could be extended by a chat-based user interface. The interface could
not only allow developers to deliver and promote releases but also to manage and even
react to user feedback instantly and without leaving the communication tool of their choice.

To simplify the creation of hybrid prototypes we could extend Prototyper’s integration
into IDEs. Developers currently need to go through the manual step of downloading and
integrating a revolutionary prototype after it was altered in the respective prototyping tool,
which could be managed from within the IDE.

97

Chapter 6: Conclusion

While Prototyper is capable of delivering multiple, alternative releases to a group of
users at the same time, its feedback management capabilities do not yet allow developers
to look up if a user had access to one or multiple releases while he provided a certain
feedback item. This is not a problem in projects with a small amount of users, as developers
can structure the feedback manually, but it is important to improve on this to allow the
usage of Prototyper in projects with a large amount of users and in order to conduct A/B
tests with early prototypes.

Finally, ProCeeD’s user feedback model is another opportunity for future work.
ProCeeD’s current feedback model is release-centric, each feedback item is collected and
stored for a specific release and a specific part of the user interface. Especially during
the early prototyping of a feature, users may come up with visionary ideas which will
question e.g. more than just a part of the user interaction model. For this we could
extend ProCeeD’s feedback model to accommodate more general feedback and provide
developers with the necessary workflows to process it [DKAB16].

With the Prototyper tool we developed a software delivery solution for mobile appli-
cations which allows to continuously deliver revolutionary and evolutionary prototypes
using a common workflow. In the future we plan to publish Prototyper both as open source
software and using a Software-as-a-Service approach. We believe that applying Continuous
Prototyping using ProCeeD and Prototyper will have a lasting benefit on the collaboration
between interaction designers, developers and users and we are looking forward to where
the journey takes us from here!

98

Bibliography

[ADB16] L. Alperowitz, D. Dzvonyar, and B. Bruegge. “Metrics in Agile project courses.” In:
Proceedings of the 38th International Conference on Software Engineering Companion. ACM.
2016, pp. 323–326.

[Alp+17] L. Alperowitz, Weintraud, A. Marie, K. S. Christoph, and B. Bruegge. “Continuous
Prototyping.” In: 3rd International Workshop on Rapid Continuous Software Engineering
(RCoSE’17). ACM. Buenos Aires - Argentina. 2017.

[And89] S. J. Andriole. Storyboard prototyping: a new approach to user requirements analysis. QED
Information Sciences, Inc., 1989.

[ASF17] L. Alperowitz, C. Scheuermann, and N. Frankenberg. “From Storyboards to Code: Vi-
sual Product Backlogs in Agile Project Courses.” In: 15. Workshop Software Engineering
im Unterricht der Hochschulen (SEUH). 2017.

[BB01] B. Boehm and V. R. Basili. “Top 10 list [software development].” In: Computer 34.1
(2001), pp. 135–137.

[BBLZ96] D. Bäumer, W. R. Bischofberger, H. Lichter, and H. Züllighoven. “User interface
prototyping—concepts, tools, and experience.” In: Proceedings of the 18th international
conference on Software engineering. IEEE. 1996, pp. 532–541.

[BD09] B. Bruegge and A. Dutoit. Object-Oriented Software Engineering Using UML, Patterns
and Java. Prentice Hall, 2009.

[Bec+01] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. “Manifesto for agile software
development.” In: (2001).

[Bec00] K. Beck. Extreme programming explained: embrace change. addison-wesley professional,
2000.

[BKA15] B. Bruegge, S. Krusche, and L. Alperowitz. “Software engineering project courses
with industrial clients.” In: ACM Transactions on Computing Education (TOCE) 15.4
(2015), p. 17.

[BKKZ92] R. Budde, K. Kautz, K. Kuhlenkamp, and H. Züllighoven. Prototyping. Springer, 1992.

99

Bibliography

[Boe88] B. W. Boehm. “A spiral model of software development and enhancement.” In:
Computer 21.5 (1988), pp. 61–72.

[Boo91] G. Booch. Object Oriented Design with Applications. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc., 1991.

[BPKR09] B. Berenbach, D. Paulish, J. Kazmeier, and A. Rudorfer. Software & Systems Require-
ments Engineering: In Practice. McGraw-Hill Education, 2009.

[Car00] J. M. Carroll. Making use: scenario-based design of human-computer interactions. MIT
press, 2000.

[CLL03] C. K. Chua, K. F. Leong, and C. S. Lim. Rapid Prototyping: Principles and Applications,
2nd Edition. World Scientific Publishing Co Inc, 2003.

[COB06] O. Creighton, M. Ott, and B. Bruegge. “Software cinema-video-based requirements
engineering.” In: Requirements Engineering, 14th International Conference. IEEE. 2006,
pp. 109–118.

[Con93] S. A. Conger. The new software engineering. Course Technology Press, 1993.

[Coo99] A. Cooper. “The Inmates are Running the Asylum–Why High-Tech Products Drive
Us Crazy and How 2 to Restore the Sanity.” In: SAMS (1999).

[Dav92] A. M. Davis. “Operational prototyping: A new development approach.” In: IEEE
software 9.5 (1992), pp. 70–78.

[DeM79] T. DeMarco. “Structure analysis and system specification.” In: Pioneers and Their
Contributions to Software Engineering. Springer, 1979, pp. 255–288.

[Dij79] E. W. Dijkstra. Panel remarks. 4th International Conference on Software Engineering.
1979.

[DKA14] D. Dzvonyar, S. Krusche, and L. Alperowitz. “Real projects with informal models.”
In: MODELS’14 - Proceedings of the 10th Educators’ Symposium. 2014.

[DKAB16] D. Dzvonyar, S. Krusche, R. Alkadhi, and B. Bruegge. “Context-aware user feedback
in continuous software evolution.” In: Proceedings of the International Workshop on
Continuous Software Evolution and Delivery. ACM. 2016, pp. 12–18.

[DMG07] P. M. Duvall, S Matyas, and A Glover. Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley, 2007.

[ESSD08] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. “Selecting Empirical Meth-
ods for Software Engineering Research.” In: Guide to Advanced Empirical Software
Engineering. Ed. by F. Shull, J. Singer, and D. I. K. Sjøberg. London: Springer, 2008,
pp. 285–311.

100

[FF06] M. Fowler and M. Foemmel. “Continuous integration.” In: Thought-Works)
https://martinfowler.com/articles/continuousIntegration.html (2006), p. 122.

[Flo84] C. Floyd. “A systematic look at prototyping.” In: Approaches to prototyping. Springer,
1984, pp. 1–18.

[FN00] N. E. Fenton and M. Neil. “Software metrics: roadmap.” In: Proceedings of the Confer-
ence on the Future of Software Engineering. ACM. 2000, pp. 357–370.

[Fre10] R. E. Freeman. Strategic management: A stakeholder approach. Cambridge University
Press, 2010.

[GGSF14] R. Ganhör, F. Güldenpfennig, O. Subasi, and G. Fitzpatrick. “Towards Fast and
Interactive Prototypes of Mobile Apps.” In: Proceedings of the 26th Australian Computer-
Human Interaction Conference on Designing Futures: The Future of Design. OzCHI ’14.
USA: ACM, 2014, pp. 328–331.

[GL85] J. D. Gould and C. Lewis. “Designing for usability: key principles and what designers
think.” In: Communications of the ACM 28.3 (1985), pp. 300–311.

[GLZ99] G. Guida, G. Lamperti, and M. Zanella. “Software Prototyping in Data and Knowl-
edge Engineering.” In: Springer, 1999. Chap. The Prototyping Approach to Software
Development, pp. 1–32.

[Gra94a] R. B. Grady. “Successfully applying software metrics.” In: Computer 27.9 (1994),
pp. 18–25.

[Gra94b] I. Graham. Object Oriented Methods, 2nd Edition. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1994.

[GW07] M. Glinz and R. J. Wieringa. “Stakeholders in requirements engineering.” In: IEEE
software 24.2 (2007), pp. 18–20.

[Hau98] J. Hauschildt. Promotoren: Champions der Innovation. Gabler Verlag, 1998.

[HB95] K. Holtzblatt and H. R. Beyer. “HumanFACTOR.” In: Communications of the ACM 38.5
(1995), p. 31.

[HDK93] P. Hsia, A. M. Davis, and D. C. Kung. “Status report: requirements engineering.” In:
IEEE 10.6 (1993), pp. 75–79.

[HF10] J. Humble and D. Farley. Continuous delivery: reliable software releases through build, test,
and deployment automation. Pearson Education, 2010.

[HL01] H. F. Hofmann and F. Lehner. “Requirements engineering as a success factor in
software projects.” In: IEEE software 18.4 (2001), p. 58.

101

Bibliography

[HL13] V. Hoffmann and H. Lichter. Rapid prototyping in der use-case-zentrierten Anforderungs-
analyse. Tech. rep. Fachgruppe Informatik, 2013.

[IBM81] IBM. IBM Archives: Announcement Press Release IBM PC. 1981. url: https://www-
03.ibm.com/ibm/history/exhibits/pc25/pc25_press.html.

[Jac+99] I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, and G. Booch. The unified software
development process. Vol. 1. Addison-wesley Reading, 1999.

[Jac93] I. Jacobson. Object-oriented software engineering: a use case driven approach. Pearson
Education, 1993.

[JCK10] A. P. Jørgensen, M. Collard, and C. Koch. “Prototyping iPhone Apps: Realistic
Experiences on the Device.” In: Proceedings of the 6th Nordic Conference on Human-
Computer Interaction: Extending Boundaries. NordiCHI ’10. New York, NY, USA: ACM,
2010, pp. 687–690.

[KA14] S. Krusche and L. Alperowitz. “Introduction of continuous delivery in multi-customer
project courses.” In: Companion Proceedings of the 36th International Conference on
Software Engineering. ACM. 2014, pp. 335–343.

[KABW14] S. Krusche, L. Alperowitz, B. Bruegge, and M. O. Wagner. “Rugby: an agile process
model based on continuous delivery.” In: Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering. ACM. 2014, pp. 42–50.

[Kan+04] C. Kaner et al. “Software engineering metrics: What do they measure and how do we
know?” In: Proceedings of METRICS’04. 2004.

[Kel84] J. F. Kelley. “An iterative design methodology for user-friendly natural language
office information applications.” In: ACM Transactions on Information Systems (TOIS)
2.1 (1984), pp. 26–41.

[KHSI12] B. Köhler, J. Haladjian, B. Simeonova, and D. Ismailović. “Feedback in low vs.
high fidelity visuals for game prototypes.” In: Proceedings of the Second International
Workshop on Games and Software Engineering: Realizing User Engagement with Game
Engineering Techniques. IEEE, 2012, pp. 42–47.

[KKLK05] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo. “The role of user involvement in
requirements quality and project success.” In: 13th IEEE International Conference on
Requirements Engineering (RE’05). 2005, pp. 75–84.

[Kle+15] S. Klepper, S. Krusche, S. Peters, B. Bruegge, and L. Alperowitz. “Introducing con-
tinuous delivery of mobile apps in a corporate environment: a case study.” In: 2nd
International Workshop on Rapid Continuous Software Engineering (RCoSE). IEEE/ACM.
2015, pp. 5–11.

102

https://www-03.ibm.com/ibm/history/exhibits/pc25/ pc25_press.html
https://www-03.ibm.com/ibm/history/exhibits/pc25/ pc25_press.html

[Kru04] P. Kruchten. The rational unified process: an introduction. Addison-Wesley Professional,
2004.

[Kru16] S. Krusche. “Rugby - A Process Model for Continuous Software Engineering.” PhD
thesis. Technical University Munich, Germany, 2016.

[KS98] G. Kotonya and I. Sommerville. Requirements engineering: processes and techniques.
Wiley Publishing, 1998.

[Kuj03] S. Kujala. “User involvement: a review of the benefits and challenges.” In: Behaviour
& information technology 22.1 (2003), pp. 1–16.

[Lan96] J. A. Landay. “SILK: sketching interfaces like krazy.” In: Conference companion on
Human factors in computing systems. ACM. 1996, pp. 398–399.

[Las+15] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S. Bernstein. “Appari-
tion: Crowdsourced User Interfaces That Come to Life As You Sketch Them.” In:
Proceedings of the 33rd Annual Conference on Human Factors in Computing Systems. CHI
’15. USA: ACM, 2015, pp. 1925–1934.

[LDL98] A. van Lamsweerde, R. Darimont, and E. Letier. “Managing conflicts in goal-driven
requirements engineering.” In: IEEE Transactions on Software Engineering 24.11 (1998),
pp. 908–926.

[Mac93] L. Macaulay. “Requirements capture as a cooperative activity.” In: Requirements
Engineering, 1993., Proceedings of IEEE International Symposium on. IEEE. 1993, pp. 174–
181.

[Mai98] N. A. M. Maiden. “CREWS-SAVRE: Scenarios for Acquiring and Validating Require-
ments.” In: Domain Modelling for Interactive Systems Design. Ed. by A. Sutcliffe and
D. Benyon. USA: Springer, 1998, pp. 39–66.

[MP84] S. M. McMenamin and J. F. Palmer. Essential systems analysis. Yourdon Press, 1984.

[Nar15] S. Narayan. Agile IT Organization Design: For Digital Transformation and Continuous
Delivery. Pearson Education, 2015.

[ND86] D. A. Norman and S. W. Draper. User centered system design. L. Erlbaum Associates
Inc., 1986.

[NE00] B. Nuseibeh and S. Easterbrook. “Requirements Engineering: A Roadmap.” In: Pro-
ceedings of the Conference on The Future of Software Engineering. ICSE ’00. New York,
NY, USA: ACM, 2000, pp. 35–46.

[Nie94] J. Nielsen. Usability Engineering. Elsevier, 1994.

[Nor12] D. Norman. The design of everyday things. Basic Books, 2012.

103

Bibliography

[OAB12] H. H. Olsson, H. Alahyari, and J. Bosch. “Climbing the "Stairway to Heaven"–A
Mulitiple-Case Study Exploring Barriers in the Transition from Agile Development
towards Continuous Deployment of Software.” In: 2012 38th Euromicro Conference on
Software Engineering and Advanced Applications. IEEE, 2012, pp. 392–399.

[Pag13] D. Pagano. PORTNEUF - A Framework for Continuous User Involvement. Verlag Dr. Hut,
2013.

[PEM03] F. Paetsch, A. Eberlein, and F. Maurer. “Requirements Engineering and Agile Software
Development.” In: Proceedings of the 12th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises. WETICE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 308–.

[Pet16] S. M. Peters. “MIBO – A Framework for the Integration of Multimodal Intuitive Con-
trols in Smart Buildings.” Dissertation. München: Technische Universität München,
2016.

[Poh10] K. Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. 1st.
Springer, 2010.

[RC09] M. B. Rosson and J. M. Carroll. “Scenario based design.” In: Human-computer interac-
tion. Boca Raton, FL (2009), pp. 145–162.

[Roy+70] W. W. Royce et al. “Managing the development of large software systems.” In:
proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles. 1970, pp. 1–9.

[RSI96] J. Rudd, K. Stern, and S. Isensee. “Low vs. high-fidelity prototyping debate.” In:
Interactions 3.1 (1996), pp. 76–85.

[Rup+07] C. Rupp et al. “Requirements-Engineering und-Management: Professionelle, iterative
Anforderungsanalyse für die Praxis. 4.” In: Aufl. Hanser, München (2007).

[SB02] K. Schwaber and M. Beedle. “Agile Software Development with Scrum.” In: (2002).

[Sny03] C. Snyder. Paper prototyping: The fast and easy way to design and refine user interfaces.
Morgan Kaufmann, 2003.

[SSBV16] C. Scheuermann, M. Strobel, B. Bruegge, and S. Verclas. “Increasing the Support to
Humans in Factory Environments using a Smart Glove: An Evaluation.” In: 2016
International Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress. Toulouse, France: IEEE, 2016, pp. 847–854.

[Sta+12] H. Stangl et al. “SCRIPT: A Framework for Scenario-Driven Prototyping.” PhD thesis.
Technische Universität München, 2012.

104

[STG03] R. Sefelin, M. Tscheligi, and V. Giller. “Paper prototyping-what is it good for?:
a comparison of paper-and computer-based low-fidelity prototyping.” In: CHI’03
extended abstracts on Human factors in computing systems. ACM. 2003, pp. 778–779.

[TB90] S. D. Tripp and B. Bichelmeyer. “Rapid prototyping: An alternative instructional
design strategy.” In: Educational Technology Research and Development 38.1 (1990),
pp. 31–44.

[Urb92] J. E. Urban. Software Prototyping and Requirements Engineering. Tech. rep. Arizona State
University, 1992.

[Ver89] L. Vertelney. “Using video to prototype user interfaces.” In: ACM SIGCHI Bulletin
21.2 (1989), pp. 57–61.

[Vir89] R. A. Virzi. “What can you learn from a low-fidelity prototype?” In: Proceedings of the
Human Factors and Ergonomics Society Annual Meeting. Vol. 33. 4. SAGE Publications.
1989, pp. 224–228.

[VT91] J. M. Vlissides and S. Tang. “A unidraw-based user interface builder.” In: Proceedings
of the 4th annual ACM symposium on User interface software and technology. ACM. 1991,
pp. 201–210.

[Wit73] E. Witte. Organisation für Investitionsentscheidungen - Das Promotorenmodell. 1973.

[WTL02] M. Walker, L. Takayama, and J. A. Landay. “High-fidelity or low-fidelity, paper or
computer? Choosing attributes when testing web prototypes.” In: Proceedings of the
Human Factors and Ergonomics Society Annual Meeting. Vol. 46. 5. SAGE Publications.
2002, pp. 661–665.

105

	Cover Page
	List of Figures
	List of Tables
	1 Introduction
	2 Foundations
	2.1 Requirements Engineering
	2.1.1 Stakeholders
	2.1.2 User Involvement
	2.1.3 Requirements Elicitation

	2.2 Prototyping
	2.2.1 Prototyping as a Process
	2.2.2 Prototypes as Artifacts
	2.2.3 Tool Support
	2.2.4 Market Overview

	2.3 Continuous Delivery
	2.4 Continuous Prototyping

	3 ProCeeD Framework
	3.1 Scenarios
	3.1.1 Deliver Prototype
	3.1.2 Receive Prototype
	3.1.3 Deliver Multiple Prototypes
	3.1.4 Deliver Hybrid Prototype
	3.1.5 Decide on a Release Schedule
	3.1.6 Analyze the Release Process

	3.2 Use Cases
	3.3 Requirements
	3.3.1 Functional Requirements
	3.3.2 Nonfunctional Requirements

	3.4 Object Model
	3.5 Dynamic Model
	3.5.1 Release
	3.5.2 Workflows

	3.6 Subsystem Decomposition
	3.7 Hardware/Software Mapping

	4 Prototyper
	4.1 User Interface
	4.2 Hardware/Software Mapping

	5 Evaluation
	5.1 Overview
	5.1.1 Hypotheses
	5.1.2 Methodology

	5.2 Case Study I: University Capstone Course
	5.2.1 Design
	5.2.2 Quantitative Results
	5.2.3 Qualitative Results
	5.2.4 Discussion

	5.3 Case Study II: Process Metrics
	5.3.1 Design
	5.3.2 Results
	5.3.3 Discussion

	5.4 Case Study III: Industry
	5.4.1 Design
	5.4.2 Results
	5.4.3 Discussion

	5.5 Case Study IV: Storyboard-based Requirements Elicitation
	5.5.1 Design
	5.5.2 Results
	5.5.3 Discussion

	5.6 Summary
	5.7 Threats to Validity

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	Bibliography

