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Abstract

Nowadays, a wide variety of applications are using encryption to protect their confiden-
tial data in network communication. Since currently available security tools are mainly
developed for plaintext network transmission, encryption obstructs security analysis and
protection.

In this thesis, we elaborate on the challenges resulting from encrypted network com-
munication. In fact, encryption does not stop intruders from exploiting application
vulnerabilities. However several protection mechanisms, e.g. kernel-based, compiler-
based or third-party libraries, help to mitigate the success of attacks. We examine the
feasibility of attacks against vulnerable applications on modern systems to identify the
need of additional protection mechanisms. One approach is the identification of the
vulnerability in order to fix it. Security testing can be applied to analyse applications
with common attack payloads. For applications using encryption, the analyst has to dis-
cover the encryption algorithm and the appropriate key first, in order to proceed with
testing. Another approach is to inspect the network traffic for known attack signatures.
However, inspecting network data of applications with an active end-to-end encryption
is not feasible on the network level without increasing the attack surface. Host-based
solutions can help here, but they are limited in their use cases and prone to local at-
tacks. Analysing binary applications without having access to the source code is known
as reverse engineering. The identification of specific locations inside the application is a
very labour-intensive process, but necessary for further analysis.

The contributions of our work are as follows. First, we propose a new method for ex-
ploiting vulnerabilities over the network to show that system-based or application-based
protection mechanisms are not sufficient. Second, we provide a framework for analysing
binaries using encrypted network communication, sustaining the end-to-end encryption.
The developed modules of the framework allow us to intercept, extract, modify and
inject plaintext data, which is transmitted encrypted over the network. We propose a
generic method to analyse applications with encrypted network communication without
breaking the end-to-end encryption. Using this framework, we create a data bridge for

v



security testing applications, to reduce the problem of testing with encrypted protocols
to testing with plaintext protocols. To protect network applications from intruders, we
build a second data bridge for virtual machine introspection. We use virtualization ex-
tensions to isolate our generic solution. This allows to protect monitoring/inspection
tools, e.g. intrusion detection systems, against further attacks. In our work we rely
on specific functions inside applications. Finally, we present a second framework for
efficient function identification in binary applications. We propose a method to speed
up the localization of specific functions. Our dynamic approach reduces the number
of executed functions significantly and therefore the time of the analysis process. To
evaluate the effectiveness of our framework for encrypted network communication, we
implemented a prototype for the x86 and ARM architecture. The evaluation shows that
our solution is equipped for attacks against the framework.
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Zusammenfassung

Verschlüsselung wird gegenwärtig von einer Vielzahl von Anwendungen genutzt, um ver-
trauliche Daten in der Netzwerkkommunikation zu schützen. Da die derzeit verfügbaren
Sicherheitsapplikationen hauptsächlich für Klartextübertragungen entwickelt wurden,
beeinträchtigt die Verschlüsselung die Sicherheitsanalyse und den Schutz der Applika-
tion.

In der vorliegenden Arbeit werden die aus der verschlüsselten Netzwerkkommunika-
tion resultierenden Herausforderungen untersucht. Verschlüsselung hält Angreifer nicht
davon ab, vorhandene Schwachstellen in Anwendungen auszunutzen. Gleichwohl exis-
tieren mehrere Schutzmechanismen, die z.B. im Kernel und Übersetzer oder in Biblio-
theken von Drittanbietern integriert sind. Diese schränken die Erfolgswahrscheinlich-
keit der Angriffe ein. Vor diesem Hintergrund wird die Durchführbarkeit von Angriffen
bei anfälligen Anwendungen auf modernen Systemen untersucht, um die Notwendigkeit
zusätzlicher Schutzmechanismen zu ermitteln. Ein möglicher Ansatz könnte die Identifi-
zierung der Schwachstelle sein, um diese zu beheben. Durch Sicherheitstests kann die An-
wendung mittels bekannter Angriffsdaten analysiert werden. Für Anwendungen, die Ver-
schlüsselung verwenden, muss der Analyst den Verschlüsselungsalgorithmus und den da-
zugehörigen Schlüssel zuerst ermitteln, um sodann mit dem Testen fortfahren zu können.
Ein weiterer Ansatz besteht darin, den Netzwerkverkehr auf bekannte Angriffssignatu-
ren zu untersuchen. Jedoch ist die Inspektion von Applikations-Netzwerkdaten mit ak-
tiver Ende-zu-Ende-Verschlüsselung auf Netzwerkebene nicht möglich, ohne zusätzliche
Angriffsvektoren hinzuzufügen. Host-basierte Lösungen können hier helfen, aber ihre
Anwendungsmöglichkeiten sind begrenzt und außerdem anfällig für lokale Angriffe. Die
Analyse der Binäranwendung ohne den Quellcode zu besitzen, wird als Reverse Engi-
neering bezeichnet. Die Identifizierung spezifischer Bereiche innerhalb der Applikation
ist ein sehr arbeitsintensiver Prozess, der jedoch für eine weiterführende Analyse unver-
zichtbar ist.

In der vorliegenden Arbeit wird zunächst eine neue Methode zur Ausnutzung von Schwach-
stellen über das Netzwerk vorgestellt, um zu verdeutlichen, dass ein system- oder an-
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wendungsbasierter Schutzmechanismus nicht ausreicht. In einem zweiten Schritt wird
ein Rahmenwerk für die Analyse von Binärdateien mit verschlüsselter Netzwerkkom-
munikation präsentiert, die dabei die Ende-zu-Ende-Verschlüsselung beibehält. Die ent-
wickelten Module des Rahmenwerks erlauben es, die Klartextdaten, die verschlüsselt
über das Netzwerk übertragen werden, abzufangen, zu extrahieren, zu modifizieren und
zu injizieren. Es wird eine generische Methode vorgeschlagen, um die Anwendung
mit verschlüsselter Netzwerkkommunikation zu analysieren, ohne die Ende-zu-Ende-
Verschlüsselung aufzubrechen. Mit diesem Framework wird eine Datenbrücke für Sicher-
heitstestanwendungen erstellt, um das Problem des Testens mit verschlüsselten Proto-
kollen auf das Testen mit Klartextprotokollen zu reduzieren. Um Netzwerkanwendungen
vor Eindringlingen zu schützen, wird eine zweite Datenbrücke für die Überwachung der
virtuellen Maschine zusätzlich hinzugefügt. Es werden Virtualisierungserweiterungen
genutzt, um die generische Lösung zu isolieren. Dies schützt Überwachungs- / Inspek-
tionswerkzeuge, wie z.B. Intrusion Detection Systeme, gegen weiterführende Angriffe.
In der vorliegenden Arbeit werden konkrete Funktionen innerhalb der Anwendungen
benötigt. Abschließend wird ein zweites Rahmenwerk für eine effiziente Funktionsiden-
tifikation in binären Anwendungen vorgestellt. Es wird eine Methode entwickelt, um die
Lokalisierung bestimmter Funktionen zu beschleunigen. Der neue dynamische Ansatz
reduziert die Anzahl der zu analysierenden ausgeführten Funktionen deutlich und damit
auch die Zeit des Analyseprozesses. Um die Funktionsfähigkeit des Rahmenwerks für
verschlüsselte Netzwerkkommunikation zu zeigen, wurde eine Prototyp auf der x86- und
ARM-Architektur implementiert. Die Auswertung zeigt, dass die entwickelte Lösung für
Angriffe gegen das Rahmenwerk vorbereitet ist.
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Chapter 1
Introduction

Nowadays, the internet is growing rapidly and undergoing big changes. On one hand
the number of devices connected to the internet grows and the range of types of devices
increases. On the other hand, in the last few years, the concept of Internet Of Things
(IoT) has emerged and evolved rapidly to bring to the connected world not only desktop
computers, mainframes and mobile devices, but also all types of other devices such as
cars, medical devices, various sensors and smart home devices. As a consequence to
these changes, the attack surface for cybercrime is not only getting larger, but also more
diversified.

Therefore, the usage of encryption in companies increased over the last years. According
to a recent survey of thales security[38], the current extensive usage of encryption has
an average deployment rate of 41%. At the same time the usage of encryption is also en-
abling a new attack surface for companies. Based on the study of A10 and the Ponemon
institute[1] in 2016, about 80% of organisations were attacked by cyber-criminals. About
half of these attacks were hidden in encrypted traffic to evade detection. 75% of the par-
ticipants admitted, that the intruder was able to steal employees’ credentials from their
network. The majority of the respondents (62%) does not decrypt and subsequently
inspect the encrypted traffic. The interesting point is, that 47% of them see the reason
in the lack of good security tools.

Recent statistics about cyber-attacks show, that the number of unknown and targeted
attacks is increasing[53]. An example for an unknown or a targeted attack, could be the
exploitation of a vulnerability inside an application, which is using encrypted network
communication. If no package inspection can be performed on the network traffic, the
system has to protect or mitigate the attacks against the application. Buffer Overflow
and Format String Vulnerabilities are two well known examples of this. Although these
attacks are known for many years, there is still a number of applications that have been
found to be vulnerable to such attacks in the recent years. Thus we can assume, that
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1 Introduction

this type of vulnerabilities will still be present in future. Currently, there are compiler-
based or system-based protection mechanisms to restrict the successful exploitation of
these kind of vulnerabilities. It has to be investigated if these protections are sufficient
to circumvent an attack in all cases without the inspection of network data. Especially
for the case of Format String Attacks, which are based on precise rules on how to exploit
a vulnerability, e.g. the usage of specific format string specifiers. With this knowledge,
generic rules for an Intrusion Detection System can be generated, to detect Format
String Attacks by inspecting the network data.

The omnipresent threat of network intrusions underlines that the necessity for effective
intrusion detection systems are indispensable in modern infrastructures. Regular intru-
sion incidents emphasize that protection against network attacks remains a great chal-
lenge. While state-of-the-art Network Intrusion Detection and Analysis Systems focus
on suspicious traffic, they lack an effective analysis of end-to-end encrypted communica-
tion activity. Contemporary Host-based Intrusion Detection Systems complement traffic
analysis by an additional fine-grained investigation on the host, yet, they are prone to
local attacks.

The security of a system should not rely only on the presence of a protection system.
To avoid successful attacks, the vulnerabilities of the system should be identified before
the intruder acts. A common way that has been applied for many years to detect
vulnerabilities in applications consists in security testing. With the increasing demand
for encryption to protect the confidentiality of network data, the requirements have
changed. When proprietary, closed-source software uses end-to-end encryption, security
testing tools, which are testing the application layer over network with plaintext data,
will eventually fail.

Analysing binary applications to identify vulnerabilities requires reverse engineering
techniques. Today’s software is growing in size and complexity. Consequently, analysing
closed-source binaries becomes time-consuming and labour-intensive. In the common
use case, the analyst is only interested in specific functions of the given application.
However, identifying the relevant functions is difficult since no related meta information
is given.

In this thesis, we will focus on the problems coming with encrypted network communi-
cation and elaborate an applicable solution.

First, we investigate if software vulnerabilities are still exploitable with modern pro-
tection mechanisms. Therefore, we evaluate the applicability of Format String Attacks
with active compiler-based and system-based protection mechanisms. Attacks from this
category are easy to detect using network data analysis, if there is a possible way to in-
spect the plain text of the network data. Since attacks over encrypted network data are
still a problem for many companies, we selected Format String Attacks as an example

2



In
tr

od
uc

ti
on

to proof that we should not rely only on compiler-based and system-based protection
mechanisms.

Second, we present a framework for inspecting encrypted network data without breaking
the security model of end-to-end encryption. Our approach does not require any source
code of the involved applications and thereby also protects closed source applications.
Our framework works independently of the utilized encryption key. We present two use
cases how our framework can detect intruders by analysing the network data and how we
can test remote applications with enabled network data encryption. To achieve this, the
framework detects the relevant functions in the target application, extracts and subse-
quently inspects the data. In order to test remote applications, the framework intercepts
and injects user controlled data into the application. We also transfer the framework to
the ARM architecture and thereby, make it suitable for embedded devices.

Additionally, we evaluate our framework against dedicated attacks to bypass or deacti-
vate it. To circumvent these attacks, we enhance our framework utilizing virtualization
technology. This allows us to support Host-based Intrusion Detection Systems in a live
environment. As such, we create an isolated analysis system that is resilient to local
attacks. More precisely, we employ Virtual Machine Introspection to effectively utilize
and protect hardware breakpoints from the guest to perform exhaustive traffic analysis
without disturbing the overall guest operation.

The methods used in the framework require reverse-engineering techniques, especially if
the target is a closed-source application. The identification of specific functions inside
the binary is necessary to enable the data bridge between the target, which has to be
protected or analyzed, and the framework itself. If the automated process fails, an
analyst has to analyse the binary manually to detect the required functions. To speed
up this reverse-engineering process and to provide a more generic solution for function
detection, we propose another framework in this thesis. We use the benefits of Dynamic
Binary Instrumentation as a base to collect executed function calls. We support the
analyst in filtering the relevant functions for specific functionality. Our approach is
divided into three steps. Namely real-time data gathering, user defined information
processing/filtering and graphical representation. We show a significant speed-up in
the reverse engineering process using our framework. In fact, we reduce the number of
executed functions to be viewed by the analyst. Furthermore by means of the visual
components, the analyst pre-selects the functions on an abstract level.

In the following Section 1.1 we describe the problem states, in Section 1.2 we summarize
the contributions in detail and give a brief outline in Section 1.3.
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1 Introduction

1.1 Problem Statement

In this thesis we face different challenges to achieve the overall solution for security
investigation in encrypted environments. First, we have to analyse if modern system-
based and compiler-based protection mechanisms are sufficient to mitigate attacks or
if additional security tools are necessary to protect vulnerable network applications.
Second, we have to identify a solution to be able to adapt current solutions, like network
security testing tools or intrusion detection systems, to operate with encrypted network
communication. Finally, we have to elaborate an efficient way for the localisation of
certain functions inside binary applications.

Exploitation of Vulnerable Applications over the Network

Over the years many protection mechanisms against exploitation of network based appli-
cations have been developed and implemented. They prevent the successful exploitation
of vulnerabilities from attacks over the network. One protection feature is disabling the
execution of code in writeable memory regions. This prevents the execution of shellcode
in user controlled buffers. A second feature is to enable address space layout random-
ization. This makes it difficult for an attacker to identify the exact address in remote
memory. There are many other protections like this to mitigate remote exploitation. The
challenge here is to create a generic method to show that even with active protection
mechanisms known vulnerabilities can still be exploited on modern systems.

Security Analysis with enabled Encrypted Network Communication

To protect the confidentiality of the payload message in network data, many applica-
tions use encryption. If end-to-end encryption is applied, then only the communication
participants can view the payload. However, this leads to new challenges in the security
world. For example, intrusion detection tools, which rely on inspection of plaintext data
will not be able to protect against malicious content. Considering security testing as
another example, security analysts cannot use classical testing tools operating on the
network level. They need to reverse engineer the encryption key and algorithm to be
able to communicate with the remote host. In order to solve all issues together, a generic
solution for the encrypted network communication use case, should be found. Since we
already have solutions for unencrypted network communication, we only need to build
a bridge between the current tools and the encrypting applications and keep up the
end-to-end encryption.
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1.2 Contributions

Efficient Function Identification in Binaries

Establishing the data bridge can only be done by having an endpoint inside the binary
itself before the encryption and after the decryption is executed. This endpoint can be
a function inside the target application, which is responsible for the encrypted network
communication. On closed-source binaries, the only way to identify these functions is
using reverse engineering techniques, which can be very time-consuming. This poses the
challenge of identifying the required functions in an efficient way.

1.2 Contributions

In this section, we summarize our contributions.

New Methods for Exploiting Vulnerabilities over the Network

To evaluate the feasibility of exploits on modern systems, we investigated the limitations
of the used protection mechanisms. For our analysis we selected format string vulnera-
bilities as a concrete example. There are two reasons for this decision. First, they are
easy to detect if the source code is available, because the number of vulnerable functions
is limited and can be automated. Second, the attack has to follow specific exploitation
rules, namely concrete format string parameters. This limits the attack payload and
cannot vary much and should be detected more easily.

We consider the protection mechanisms of the operating system, compiler and third party
libraries to mitigate successful exploitation of security vulnerabilities in the application
layer. We provide a new method to show, that network based applications can still be
successfully exploited even with active protection mechanism. Our method introduces
a novel mechanism that enables an attacker to write to arbitrary memory locations
using a format string attack without the requirement to place the format string onto
the stack, which is the base requirement of classical attacks. Furthermore we describe a
technique to redirect the control flow of a format string attack vulnerable function in a
blind fashion. This means, that a memory leakage is not needed anymore.

Development of a Framework for Security Analysis

Knowing the fact, that general mitigation techniques are not enough to protect against
application vulnerabilities like format string attacks, we need solutions to analyse bina-
ries even with enabled encrypted network communication. The main challenge is to anal-
yse the network application while keeping up the end-to-end encryption. The payload
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of the network transmission is encrypted and decrypted within the responsible functions
inside the application. We use reverse engineering techniques to access this payload in
the application memory. To achieve this, we need to identify the memory location of
the payload and the state of the application, when the payload is available.

Therefore, we provide an analysis framework, called iDeFEND, for closed source bina-
ries, that are communicating over the network using an encrypted channel. Using our
framework we are able to analyse the payload of the network data out of the application
without breaking the security of end-to-end encryption.

Data Bridge for Security Testing

Without the knowledge of the encryption algorithm and key, remote testing of network-
based applications with enabled encryption on the network channel becomes a challeng-
ing task. In our approach, we provide an interface for the analyst to analyse and inject
plaintext data in the network communication. This way, we reduce the problem of test-
ing with encrypted protocols to the testing with plaintext protocols and thus, enable
the usage of many already existing testing tools.

To achieve this we provide a method to identify network security related functions in
applications. As an example, these functions are responsible for the plaintext parsing,
encryption and sending. By taking control over these functions, we are able to inject,
intercept, extract and modify the payload in plaintext. This allows us to analyse appli-
cations using encrypted traffic without the need for reverse engineering of the encryption
algorithm and key.

Data Bridge for Virtual Machine Introspection

Being able to inspect the payload of network data helps to create a data bridge for
intrusion detection systems. However, modifying the target application or running the
framework on the same operating system creates new attack vectors. The problem of
host-based intrusion detection systems is, that they are vulnerable after a successful
attack gaining root privileges. The same problem affects our framework, if we want to
bridge the data for the use case of intrusion detection.

To solve this issue, we use the isolation concepts of virtualization to be separated from
the operating system of the monitoring target. More precisely we extract decrypted
network data for analysis through hypervisor functionality, using hardware breakpoints.
To achieve this, we handle hardware breakpoints using virtual machine introspection
techniques. With this approach we guarantee the breakpoint execution within the guest.
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1.3 Outline

Furthermore we hide hardware breakpoints from the target system and protect our
framework against deactivation.

Identification of Functions inside Binary Applications

The framework relies on the identification of designated functions inside closed-source
applications. For the case that the automated approach fails, an analyst has to reverse
engineer the required functions manually. Additionally, the function detection approach
of iDeFEND is dedicated to the use case of encrypted network communiciation. To cover
other use cases, e.g. identification of database relevant functions, we need a more generic
approach. Since manual reverse engineering and identifying functions is time-consuming
and labour-intensive, we need efficient methods.

We propose a new method to decrease the time overhead using dynamic binary in-
strumentation. In detail we log function calls of a target application. Our approach
enriches the data by providing labelling of program states. We process the gathered
data using common set operations. Finally, we illustrate the processed information with
highlighting. This will reduce the amount of functions significantly.

Demonstration of the Effectiveness of our Framework

We have implemented the described Framework, which is called iDeFEND, on the x86
and ARM architecture. We enhanced it using virtualization extensions. With several
experiments, we tested the applicability of our framework. The achieved results are
showing that our framework is able to inspect, intercept, modify, and inject the plaintext
data inside the encrypted network channel. Finally, we evaluated the framework against
common attacks and showed the effectiveness of iDeFEND.

1.3 Outline

The structure of this thesis is as follow.
In Chapter 2, we provide background information as it is needed to understand the
details of this thesis. Since this thesis is combining different research areas, we are
explaining the related information of each area. Since our implementations are depending
on different CPU architectures, we describe the required background of the x86 and ARM
architectures. Furthermore, we give an overview about dynamic binary instrumentation,
which is used to identify the required functions in our work.

In Chapter 3, we discuss the related work.
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In Chapter 4, we show that vulnerabilities on application level are still a big threat by
introducing a new exploitation method. This technique can be used to exploit a state
of the art full patch system over the encrypted network channel without being detected
by a network intrusion detection system.

In Chapter 5, we provide the concept of a framework to address the problematic of
encrypted network traffic. This chapter shows how to bypass the problem for closed
source application without knowing the encryption key or the algorithm.

In Chapter 6, we discuss how to do blackbox security tests for closed source application
which are using encrypted network communication. Furthermore, we also explain the
difference for the ARM platform to test mobile applications.

Chapter 7 expands the security of the framework by moving it into the hypervisor level
to achieve protection and reliability against successful attacks.

The identification of the required functions will be discussed in Chapter 8.

In Chapter 9, we show the effectiveness of the framework using an overall evaluation. We
show the adaptability by describing concrete scenarios and discuss the attacks against
our framework.

Finally, we conclude this thesis in Chapter 10.
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Chapter 2
Background

This thesis is considering different research topics, therefore we will explain the related
background to the reader. The focus of this thesis is on applications using encrypted
network communication. We will start with a brief overview end-to-end encryption in
network communication. The used methods are relying on CPU architectures, so we will
continue describing the relevant information for the x86 and ARM architectures. Next,
we continue on the topic of dynamic binary instrumentation, which is used for binary
analysis. As last, we give a short overview about the basics of format string attacks,
which are used in our work.

2.1 End-To-End Encryption in Network Communication

Encryption has a wide range of applications on computers, smart phones and many
other embedded devices that are connected to the internet. Communicating over the
internet means communicating over a huge network where all devices are connected
with each other. In such large networks it is impractical to have direct paths between
all devices and hence, the communication between two devices must be routed over
several networking nodes, for example servers [39, p. 3]. This of course introduces a
confidentiality problem, because all nodes between two communication partners have
potential access to the content. Additionally, a device has no real influence on the path
in a network. The routing of a communication channel is abstracted and handled by
the network layer of the OSI model. Applications, e.g. a messenger on a computer,
operate on the application layer of the OSI model in order to send messages between
two communication partners. When a user decides to send a text message, this text
is wrapped as a payload in a networking packet and is then delivered over several,
probably not trustworthy, networking nodes to the destination device. If the messenger
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communicates unencrypted, every node in between sender and recipient can read the
messages by simply unwrapping the network packets. Encrypting the payload of the
network packet prevents other nodes from acquiring information and still guarantees the
network protocol to deliver the packet. In general, the confidentiality of the message is
only given if the encryption is end-to-end. This means that only sender and recipient can
decrypt messages. As soon as another node is involved into the encryption chain, it is
not end-to-end encryption anymore and potentially insecure to confidentiality violations.
Usually such additional nodes are servers that handle communications of an application
or are used to store chat logs from messengers.

Another problem comes with the authenticity in networks. For asymmetric cryptogra-
phy, a confidential communication can be started by obtaining the public key of the
communication partner [35]. However, if a partner uses the public key of an attacker as
the key of his actual communication partner, the attacker is part of the confidential com-
munication and is able to decrypt messages and acquire information. Furthermore, the
attacker could deceive both communication partners and have full access to the whole
communication. This is called Man-In-The-Middle attack since the attacker is commu-
nicating with both partners with separate keys and simply forwards all messages [87].
This way, the victims cannot even notice the intruder. The attacker is in a position
where he can access all data and even manipulate or inject new messages. Symmetric
cryptography also suffers under this attack, since the secret key must be exchanged first,
which is generally realized by asymmetric cryptography. A solution to detect attackers,
for example, is to have a trusted third party that knows both trusted communication
parties and verifies their public keys to each other. Not using end-to-end encryption but
multiple chained encryptions in a conversation increases the risk of being successfully
deceived by an attacker since the amount of attackable nodes increases.

2.2 CPU Architecture

With the spreading demand for processors in high-performance computers, desktop com-
puters, smart phones and other embedded devices, the processor architectures have to
cope with a larger and larger range of applications. Each area of application requires the
optimization of different factors like computational power, energy consumption, real-time
constraints and physical robustness. As a result, two of the currently market-leading
processor architectures ARM and x86 are based on significantly differing designs and
thus, dominant different areas of computing. In the following subsections, we present
those differences between ARM and x86, regarding their architectural design, application
level programming and debugging interface.
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2.2 CPU Architecture

2.2.1 The x86 Architecture

One of the currently most distributed designs on the market is the x86 architecture. It
is dominating the sector of high performance computing and desktop computers. x86 is
designed as a backward compatible 32 bit CISC architecture with a comparatively large
instruction set of over one thousand instructions [59]. This makes it especially suited for
high performance applications where power consumption is of a lower priority. One of
the performance factors is the complex encoding pattern of instructions that allows to
efficiently implement a huge amount of instructions. Instructions have variable lengths
and consist of operation code bytes which are followed by several prefixes that indicate
the actual operations of the processor. Furthermore, many instructions exist that com-
bine several small operations. On x86, for example, instructions take memory addresses
as parameters, even as destination of computations. This way, only one instruction is
needed to wrap tasks over several processor cycles and allow to better optimize parallel
execution. Since our hardware is running an x86 Intel processor, we decided to focus on
the IA32 and we will refer to it as x86 in the following chapters.

2.2.1.1 Application Level Registers

A processor in general provides many different registers for a multitude of purposes. For
programming on application level, this set typically shrinks down to a few important
registers like for example the general purpose registers. On x86 most registers, especially
the general purpose registers, are accessible in different sizes. For instance, the general
purpose register EAX is a 32 bit register where the lower 16 bit can be accessed by
referring to register AX. AL and AH again are subsets for the lowest and second lowest 8
bit of AX. On x64, there is also a 64 bit variant RAX that is a superset of EAX. [59]

x86 provides the following set of registers.

• General Purpose Registers
Programmers can use eight different general purpose registers namely EAX, EBX,
ECX, EDX, ESI, EDI, EBP, ESP and their subsets as explained before. The first four
registers are freely usable for any kind of purpose and are accessible in 32, 16 and 8
bit versions. The four others are only provided in 32 and 16 bit variants. Caution
should be used especially on the latter two, EBP and ESP, as they are typically
representing the current stack frame pointer and the stack pointer itself. On x64
all of these registers are also available in 64 bit.

• Instruction Pointer
The program counter EIP always points to the instruction that is executed next. It
is not directly accessible, but rather indirectly through jumps or calls [59, p. 80].It
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has a subset register for the lower 16 bit and on x64, this register has a 64 bit
superset RIP.

• Program Status and Control Register
On x86 arithmetic or logical computations always create information about for
example an overflow, zero as the result of an operation and a carry bit. The
purpose of the status register is that it holds flags for each information.

• Segment Registers
The segment registers hold segment selectors of 16 bits length. A segment selector
is a special pointer that identifies a segment in memory.

2.2.1.2 Breakpoints on x86

The most basic and important feature of debugging is to interrupt a target application
at a specified point of execution, in order to analyse and manipulate its state. There-
fore, each processor architecture introduces different types of breakpoints and hardware
interfaces. Programmers generally can choose between two types of breakpoints: the
software and the hardware breakpoint.

• Software Breakpoint
On the hardware level, a software breakpoint is an instruction for which the execu-
tion is trapping the processor in a debugging state. Software breakpoints must be
placed in the executable code, which are only triggered on execution. They have
comparatively much overhead and thereby perform slower. However, they have
their advantages in being quantitatively unlimited.

The x86 architecture implements software breakpoints as interrupts from the in-
terrupt calling instruction Call to Interrupt Procedure that takes the number of
the to-be-invoked interrupt routine as an operand. The instruction generates two
bytes code, one byte for the operation code (short opcode) and one for the number
of the interrupt handling routine. Interrupt three, that means instruction INT3,
has a special implementation for debugging purposes and represents the actual
software breakpoint on x86 [59]. It generates only one byte code that consists of
the opcode 0xCC and is responsible for calling the debug exception handler. The
reduced size of one byte is reasonable for inserting software breakpoints in the
executable code. The INT3 behaves as a normal function call, except that it is
also pushing the current processor flags to the stack. The debug exception handler
returns to the normal execution of the program by popping the flags again.

• Hardware Breakpoint
Hardware breakpoints are implemented by dedicated registers that keep a break-
point address or value. They are more powerful than software breakpoints as they
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2.2 CPU Architecture

allow to trap the processor on, for example, reads, writes or executes of an address
or simple value. Hardware breakpoints are fast but limited to the typically low
amount of debugging registers on a processor. Using them is also highly dependent
on the design of the underlying processor architecture.

In x86, hardware breakpoints are implemented by eight registers (debug register 0
to 7) which are responsible for interrupting the processor on particular conditions.
They can be accessed and configured by dedicated move instructions that allow to
read and write them. All debug registers are privileged resources and can only be
accessed in certain processor modes [59].

– Breakpoint Address Registers
Intel specifies four debug registers DR0, DR1, DR2 and DR3. They are the core
of the breakpoint, since they hold the linear address or value that causes the
interrupt. Based on the number of those register, up to four breakpoints can
be used by programmers at a time.

– Debug Registers
The registers DR4 and DR5 are used when debug extensions are enabled. Oth-
erwise they are aliases for the registers DR6 and DR7 and do not have any
particular meaning.

– Debug Status Register
DR6 is the debug status register. On the interrupt handling routine of the
debugger this register can be read to get a closer information about the trig-
gered interrupt. It contains flags indicating that a breakpoint condition was
detected as specified in DR7 or that an access of a debug register, a single step
event or a task switch occurred.

– Debug Control Register
DR7 is the debug control register. Together with the breakpoint address regis-
ters it forms the actual breakpoints. Programmers have to set it up correctly
to enable the breakpoint address registers. It contains flags, for instance,
those indicating the type of each breakpoint (trap on read, write or execute)
and if a breakpoint is enabled.

2.2.1.3 Layout of the Stack and Procedure Calls

Reverse Engineering of software, or working directly above the hardware layer in gen-
eral, requires thorough knowledge about the layout of the stack and how procedure calls
are implemented in assembler on the given hardware. On x86 this topic is probably
more complex or at least more confusing than on many other architectures, as there are
many different calling conventions for which the usage is depending on the compiler.
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The calling convention specifies how procedures are called, how arguments are passed,
who is responsible for preserving registers (caller or callee), who cleans the stack and
how subroutines can return their results. Intel itself does not dictate a specific stan-
dard, but they propose different possibilities of how to realize function calls on their
architecture.

The fundamental requirement of implementing function calls is the presence of a stack.
On x86 the stack is a contiguous array of memory locations. Items are placed on the
stack by the instruction PUSH and removed by POP. The general purpose registers ESP

holds the address of the top of the stack and is called the stack pointer [59]. Pushing
items to the stack decreases the memory address of the stack pointer which means that
the stack grows down in memory. In order to realize different levels of function calls,
the stack is split into stack frames which contain for example local variables or function
arguments. The general purpose register EBP is specified to hold the address of the
beginning of the current frame. This way, variables on the stack can be easily accessed
by heaving a static pointer. A new frame is generated by pushing EBP to the stack and
moving the content of ESP to EBP, the reversal is achieved by popping moving frame to
stack pointer and popping the previous frame pointer.

The actual function calls are then performed by the call instruction. Two different type
of calls, a near and a far call, are provided [59]. The near call is used for routines in
the same task or functions that are close to each other based on their memory address.
Based on the variable length encoding of instructions this can either be an address from
a memory location, a register or an immediate offset value. The call jumps to the target
address and pushes the return address to the stack. Popping the address back to the
instruction pointer with the RET instruction results into a return to the original code.
The far call is responsible for calling kernel functions or routines from different tasks. It
jumps to an address in a specific memory segment and pushes the return address and
the return segment to the stack. On the return of the subroutine, the instruction pointer
is set to the return address in the saved segment. The arguments for a subroutine call
can be passed either on the stack or in general purpose registers except for ESP and EBP.
The content of registers can be preserved by pushing them to the stack. The easiest and
most memory consuming technique is to use the instructions PUSHA and POPA that push
and pop all registers from the stack. The function prologue, the first few instructions
of procedures that are always the same, is responsible to create a new stack frame and
allocate space on the stack. Depending on the compiler, the type and size of instructions
inside the prologue can vary, but usually are a push of the frame pointer, a move from
the stack pointer to the frame pointer register and an instruction that allocates the space
needed on the stack. This gives a size of six bytes per prologue.
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2.2.2 The ARM Architecture

Besides x86, the ARM architecture is occupying large parts of the processor market with
a significantly different design and hence, area of application. ARM is an abbreviation
for Advanced RISC Machine. It is a RISC processor architecture that supports imple-
mentations across a wide range of performance points. The architecture comes with
three different profiles (A, R and M ) that focus on the domains performance, hard real-
time and low power consumption [76, p. 30]. The recent architecture revision is ARMv8
which is fully backwards compatible with older revisions. Currently, ARM is dominat-
ing the processor market of mobile computers like tablets or smart phones, but is also
evolving in other areas with a total market share of 32 percent in 2015 [94, p. 16].

As a RISC architecture, ARM builds upon a simplified instruction set that merely
uses atomic instructions with a regular encoding. Atomicity means that almost each
instruction takes only one processor cycle. Regular encoding implies that all instructions
can be described by a few simple patterns. ARM instructions have a fixed length of 32
bits [76, p. 78].

Depending on the execution mode of the processor, instruction can also have a variable
length in Thumb mode for example it is of 16 bytes. Thumb is a processor execution
mode that allows to optimize code density for microprocessors with few resources. For
simplicity, the instruction uses a load and store model [76, p. 30]. This means that all
operations are performed on processor registers and not directly on the main memory.
Dedicated load and store instructions handle the data transfer from main memory to
registers and the other way around. Choosing this design reduces the complexity of
the instruction set and enables compilers to optimize register allocation. In the recent
revision, the architecture is extended to support 64 bit by introducing two modes of
execution. 64 bit mode is a superset of 32 bit mode that allows to access more registers,
for example, registers with a larger size or additional instructions. Since our evaluation
board only supports 32 bit execution mode, in the following sections, we will focus on
the properties of the 32 bit architecture, not on 64 bit nor Thumb mode.

Besides the decoding unit for instructions, ARM also focused on inventing technologies
that enhance the power-efficiency of processors under specific environments. In 2011
ARM presented the power optimization technology big.LITTLE that allows to build
processors with cores of different sizes [77]. This way, depending on the load, the pro-
cessor can switch between low power consumption and high performance to adapt to
the needs of a longer battery runtime and still have enough computational overhead for
CPU-intensive tasks, which is for example beneficial for smart phones.
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2.2.2.1 Coprocessors and Application Level Registers

The whole design of the ARM architecture is based on different coprocessors. Copro-
cessors do not necessarily have to be separated in hardware, they are more like a logical
subdivision of the processor. The coprocessor that represents the main module of the
processor is responsible for the instruction fetch and implements the basic instruction
set with all standard arithmetical and logical operations. Additionally, ARM defines up
to 16 coprocessors that extend the functionality of this main module [76, p. 3863]. Co-
processor 0 to 7 are implementation defined, coprocessor 8 to 15 are reserved by ARM.
This means that ARM only specified the interfacing for the first eight coprocessors and
the implementer of the chip chooses the specific functionality. Contrarily, the ARM
reserved coprocessors are fully specified in the instruction manual and provide, for ex-
ample, an interface for debugging (CP 14) or advanced SIMD instructions (CP 10 and
CP 11).

On application level, programmers can access different registers that are available on
each coprocessor. This set of general purpose registers is also available in any processor
mode [78, p. 14]. In 32 bit execution mode 16 registers each with a size of 32 bit are
available, in 64 bit mode this set is extended to 32 registers with a size of 64 bit. Since
we focus on the 32 bit version, we are interested in the following registers:

• General Purpose Registers
Registers 0 to 12 are general purpose registers and can be used by programmers
freely. Depending on the compiler and the implemented procedure call standard
they may have additional properties, but from the architectural side of view they
are equal.

• Stack Pointer
Register 13 in principle is another general purpose register. Caution should be
used for applications based on a stack, since ARM suggests to use this register for
holding the address of the top of the stack. Otherwise this register can be accessed
and used as any other general purpose register.

• Link Register
Register 14 is a similar special case as the stack pointer register. It is also a general
purpose register, but is referred to as link-register. On execution this register is
dedicated to hold the return address of the current subroutine call.

• Program Counter
Register 15 is a specific register that contains the program counter. Even though
the instruction set provides general access to this register, ARM deprecates the use
for any purpose other than the program counter. This register reads the address
of the current instruction plus 8 which means two instructions.
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2.2.2.2 Breakpoints on ARM

The concept of debugging on ARM is in general similar to that of other architectures,
only the detailed implementation varies. ARM also implements software and hardware
breakpoints which were described in section 2.2.1.2. Debugging is under the responsi-
bility of coprocessor 14 [76].

• Software Breakpoint
ARM implements software breakpoints as Breakpoint Instruction Exceptions. A
dedicated breakpoint instruction BKPT throws this exception on execution, indepen-
dent on the current execution mode, processor privilege level or exception level.
This means breakpoints instruction exceptions cannot be turned off and always
raise on execution. The insertion and deletion of breakpoints from executable
code is simple as all instructions have a fixed length of four bytes. The insertion
then boils down to a substitution of instructions.

• Hardware Breakpoint
The ARM specification defines up to 16 hardware breakpoints per processor. The
actual number of available breakpoints is chosen by the implementer and is ac-
cessible from the Debug ID Register (DBGDIDR). A triggering hardware breakpoint
throws a Breakpoint Exception that interrupts the execution of the current pro-
gram and steps into the exception handler. Hardware breakpoints can be turned
off, trigger on access of data or simply at execution of an instruction. This is
realized by assigning each hardware breakpoint a pair of registers. A control and
a value registers:

– Breakpoint Control Register
The registers DBGBCR0 to DBGBCR15 hold the control information of each break-
point. They hold flags that disable or enable the breakpoint, define the trig-
gering type like for example on address match, address mismatch, context id
match or mismatch, and for which exception level the debug event is gener-
ated. Depending on the implementation, a breakpoint might only support
address matching. Each breakpoint additionally can be linked to another
breakpoint. That means that only if the conditions of both breakpoints are
met, the debug exception is thrown. These registers can be, similarly to
all other registers of the debug coprocessor, be accessed by the coprocessor
interfacing move instructions MRC and MCR.

– Breakpoint Value Register
The registers DBGBVR0 to DBGBVR15 hold the value associated with the break-
point. Depending on the selected conditions in the control register, this can
be either a virtual address of an instruction or a context id. This register
together with the corresponding control register forms the actual breakpoint.
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2.2.2.3 Layout of the Stack and the ARM Procedure Call Standard

The concepts of the stack on ARM are similar to the stack described in section 2.2.1.3.
It is also a contiguous array of memory locations that is fully descending. That means,
the address of the top of a growing stack decreases in address space. In 32 bit mode,
the stack must be aligned to four bytes. The stack is accessed with the PUSH and POP

instructions that are aliases of STMDB and LDM. These instructions allow to push and
pop multiple registers from the stack at a time. As a result, only one instruction is
required to save and load multiple registers. Both instructions also allow to directly
access to the program counter, which for the case of a load results into a branch after
execution. The address of the top of the stack is stored in register r13 which is the
Stack Pointer Register. For programming languages that use stack frames there is
no dedicated register that holds the frame pointers. This means there is a subdivision
of the stack in different stack frames, but the program needs to manage these frames on
its own.

For function calls, ARM recommends to use its specified procedure calling standard.
Since direct modification of the program counter is deprecated, the only real choice to
call functions is to use the branch and link instruction which allows to move to addresses
in a 32 MB memory block relative to the current address. As the name already implies,
branch and link does also store the program counter before the branch is executed into
the Link Register. This makes it possible to return to the calling routine by simply
reading the address from the Link Register into the Program Counter. The ARM
procedure call standard defines that the arguments on a procedure call are passed in the
first four registers R0 to R3 [78, p. 17]. If the number of arguments is greater than four,
the remaining arguments are pushed to the stack. Also, if the size of the arguments is
larger than 32 bit, the arguments are passed by a pointer and stored on the stack. These
four registers are also used for returning the values of the subroutine. When the return
value is 32 bit or less, only R0 is used. Subroutines must preserve the registers R4 to
R8 and R9 to R11, since they are defined to hold local variables.

2.3 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) is a method where instrumentation code is
injected into a binary application to analyse its behaviour during runtime [83]. Once
injected, the instrumentation code will execute like it is part of the normal execution
stream inside the application. The instrumented code is generally transparent to the
application to which it is injected. Being able to analyse an application during runtime
means that it is possible to understand the behaviour and state of the application at
various stages it goes through during actual execution. This means there is a possibility
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to get an idea about the functions and modules the application calls within its own
program as well as some others it references from the operating system itself. Hence
dynamic binary instrumentation operates on what actually occurs instead of assuming
what might occur like static binary analysis does. Even though DBI is not exhaustive,
it does provide a detailed analysis of what an application goes through during its actual
execution state. Whether a DBI based program analysis tool is usable or not is generally
determined by the speed of the tool. Most developers have an interest in performance
improvements of the instrumentation [42].

Some advanced tools which perform tasks like detecting memory allocation errors [82],
model system performance [89], cache simulation [61] and detecting violations in the
security of a system [68] have been built using DBI techniques.

There are different approaches to do DBI. One way is the probe-based like Dynist [21].
In this approach so called trampolines are added in the executable and when they are
executed, they jump to the instrumentation instructions. This makes the code not
transparent because the original instructions are overwritten. A program can notice
this and hence prohibit reverse engineering. But as an advantage, trampolines can be
executed fast without much overhead.

The more flexible approach for analysis is the just-in-time (JIT) based approach. This
means that the framework does the main work during the runtime of the analysed
application.

2.3.1 Pin

An example for an instrumentation framework is Intel’s Pin. Since Pin 2 was released in
July 2004 for multiple architectures (x86, x64, Itanium and ARM), it became a popular
tool for analysing applications at run time. This section is based on the paper Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation [79].

Using Pin requires not only the Pin instrumentation system, but also a Pintool, written
by the user. Pintools basically consist of 2 types of routines. Analysis routines, which
perform the desired analysis work and instrumentation routines, that determine when
the analysis routines are called.

A simple example would be an analysis routine with a counter and an instrumentation
routine which places the analysis routine at every procedure call of the instrumented
application.

To allow different analysis methods, Pin supports different levels of instrumentation
granularity. The instrumentation routines can be called for each instruction, trace,
or procedure and additionally for certain events concerning the image, like loading or
unloading additional images.
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2.3.1.1 How Pin works

Pin can instrument an application both from launch time and during execution. In both
cases, Ptrace (for Unix) loads Pin (similar to a debugger), which in turn loads a Pintool
into the application’s address space. From there, the JIT (just-in-time) compiler inter-
cepts the currently executing code and generates new code with added instrumentation
instructions.

The purpose of the JIT compiler is to not recompile the complete application, but rather
to split the application up into smaller parts, called traces and save them in the Code
Cache, as seen in figure 2.1. These traces are split up either at a certain number of
instructions, at an unconditional branch (call, return) or after a number of conditional
branches. A trace can have multiple exits, created by conditional branches inside the
trace, who either point to another trace or a stub (basically a trace, which has not yet
been compiled). These stubs remain stubs until they are actually executed, at which
point the JIT replaces it by a trace. So, running the application together with Pin
attached, it is compiled on-demand, trace-by-trace, where a trace is only compiled once
& the original code of the application is not executed anymore.

Pin’s architecture is basically a virtual machine, whose purpose consists in using the
JIT compiler to generate code, caching it in a code cache, and providing an API for
developers to write Pintools and instrument applications. This can also be seen in in
figure 2.1.

Application Address Space

Original Application

mov ebp, esi
test esi, esi
je ebx
mov eax, esi
test eax, eax
je ebx
push [ebp+20]
push [ebp+1C]
push ebx
push esi
call [ebp-2C]
...

Pintool

Pin

JIT-Compiler

Pin

Code Cache

mov ebp, esi
test esi, esi
je ebx

Stub

Figure 2.1: Pin’s architecture, based on [79]
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2.3 Dynamic Binary Instrumentation

For improved performance, Pin also offers probe mode [58]. It differs from the regular
(JIT ) mode by not using the VM, but rather injecting code in the original application,
which results in a speedup. A drawback of this method however is that only procedure
granularity is available.

2.3.1.2 Pin’s optimizations

To improve the JIT compiling, Pin uses multiple optimizations: Trace Linking, Register
Re-allocation and Thread-local Register Spilling, among others.

Linking Pin’s traces usually end in a control transfer, which could involve the VM
generating the next trace from a stub. Direct control transfers (with only 1 jump target)
can be easily improved by simply placing a jump at the end of the trace. Indirect control
transfers (Jump, call or return) however require more effort because of multiple jump
targets for the trace exits. Pin’s solution involves predicting multiple jump target address
and building a chain of comparisons which try to find the correct jump address when
that part of the code is reached during execution.

Register Re-allocation Processes like the creation of the chain in the Trace Linking
involve utilizing registers, which are usually already in use by the application. Thus, we
need a way to free registers to allow these processes. A live analysis for the registers
is possible, which Pin does incrementally, since a complete flow graph is not available
when using JIT compilation.
Pin also has to make sure that the register bindings at the trace exits are what the linked
trace expects at its beginning. The simple method is to simply dump all register contents
to memory and restore them to the correct registers for the next trace. However, this
is too inefficient for Pin. Instead, when Pin compiles a trace’s code for the first time, it
matches the register layout to the one from the previous trace, so no flushing to memory
is needed. But in future executions of the trace, the expected registers of the trace
may change, which Pin solves by creating reconciliation code for the affected registers.
This reconciliation code is responsible for reordering the registers to match them to the
expected order for the next execution.

Thread-local Register Spilling The need of extra memory for the registers is not com-
pletely eliminated, for example the reconciliation might need memory for the exchange
of registers. This is solved by reserving one register (%rbx on x86) as the spill pointer,
pointing to the memory location we use for our purposes. Since threads can be switched
at any time, each thread has its own spill area and the value of the spill pointer is
adjusted for the next thread’s area.
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2.3.1.3 Instrumenting Windows applications

Similar to its Unix version, Pin also injects its Dynamic Link Library (DLL) and the
user’s Pintool DLL into the target process. Launching an application with Pin attached
involves the following steps [103]:

• Creating the process and attaching to it until kernel32.dll is finished initializing

• Immediately afterwards, changing the instruction pointer to a small routine to
load Pin’s and the Pintool’s DLL.

Injecting so early maximizes the information gain of the instrumenting process.

System calls like thread creation/termination also have to be handled by Pin. It inter-
cepts the system calls, and executes them in the Pin environment. Special care must be
taken to recreate the original environment of the system call regarding registers, argu-
ments and the system call number. As a special Windows case, the system call numbers
are undocumented and can even change in between Windows versions. So, Pin recreates
the numbers dynamically at runtime using a dummy process and executes each system
call once and records the results [103].

Handling the Windows Exceptions works similarly, Pin has to match the exception’s data
structures to the instructions in the code cache. In particular, the exception context has
to be matched to the original registers, since Pin may have altered registers during
execution of the program, as described in section 2.3.1.2. This retranslation has a
large overhead (200000 cycles instead of 5000) and can lead to a performance loss in
applications which use exceptions heavily [103].

Pin monitors the threads of the application closely and intercepts their execution as
soon as they are created. Additionally, Pin keeps a shadow copy of the stack, since
applications could theoretically operate beyond the top of the stack. Pin also creates
a VMM thread object for each thread, which are used for thread-local data for Pin
(register spill area, active system calls) and for the Pintools [103].

2.3.1.4 Controlling applications with Pin

It is possible to use Pin to execute the instrumented application at any point in the
application by using the CONTEXT and CHECKPOINT APIs [88]. The checkpoint
system allows execution at a specific point (which was marked before with a checkpoint)
with the current application state, including the currently set register values. The con-
text system is more powerful and allows editing the registers before the execution at
another point. The context system’s drawback is the performance cost, with the context
switch taking 4 times longer than with the checkpoint system. Potential uses for these
APIs are a multi-threading library and a transactional memory system [88].

22



B
ac

kg
ro

un
d

2.3 Dynamic Binary Instrumentation

2.3.1.5 Pin’s data buffering

Pin’s instrumentation unfortunately also includes a performance overhead, especially
when a large amount of data is collected by the instrumentation. One improvement for
this problem is provided by Pin’s buffering system [114]. The buffering system provides
a new API for Pintools, optimized buffers and a fast method to detect overflows. The
Pin developers claim a 4x improvement over existing buffering methods with the old
API [114].

2.3.2 DynamoRIO

DynamoRIO [18] is the framework with the longest development history of the three
discussed frameworks. It initially originated from Dynamo which was developed in the
nineties for a RISC architecture. In 2000, with the help of the Runtime Introspection
and Optimization (RIO) group, the code was ported to the x86 platform which resulted
in the new name, DynamoRIO. VMWare acquired it in 2007. Currently Google actively
contributes to DynamoRIO [34]. The framework supports x86 (32-bit and 64-bit) and
is available for Windows and Linux. It is developed as a free software under the BSD
license.

DynamoRIO is an interpreter for IA32 instruction set. It has an IA32 platform spe-
cific implementation. At an individual instruction set granularity, DynamoRIO allows
modification and optimization as well as dynamic introspection of native executables.
DynamoRIO is capable of running on binary files which have not been modified and
need no special support from any hardware or the operating system.

Since binary instrumentation of the original source code has a huge overhead Dy-
namoRIO uses a cache where it copies basic IA32 instruction blocks from the instru-
mented program to interpret and execute them there. This process is called copy-and-
annotate. The control flow instruction at the end of each block is modified so that the
control is returned to DynamoRIO which can then find the next block which needs to be
executed. Code is only allowed to execute inside the cache controlled by DynamoRIO
and not within the original binary image. To save overhead, DynamoRIO makes sure
that blocks with direct branches are sent straight to the next basic block instead of
passing control back to DynamoRIO. To deal with indirect jumps, DynamoRIO creates
a hash table lookup in the cache which converts the address of the indirect jump into
the corresponding address in the cache. The control is returned to DynamoRIO only if
there are no cached addresses for the indirect call in the hash table.

The traces generated by DynamoRIO enter only from the top but may end up exiting
from many places. DynamoRIO also has an interface which gives external libraries
access to modifying traces and basic blocks prior to writing them in its own cache. This
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allows instrumentation and optimization of the program and DynamoRIO allows the
application to run under itself through an interface [33].

DynamoRIO puts a lot of effort on transparency but it also has limits. For example,
there might be a scenario where the native execution generates an exception because it
reads from an unmapped memory space. However, inside the virtualization environment
of DynamoRIO it might happen so that the same memory read is at a location where
DynamoRIO stores data which needs to be accessed by the code cache execution. In
this case, no exception will be generated. Also memory intensive 32-bit applications
can crash because DynamoRIO has a memory overhead which can easily exceed the
addressable memory [20].

2.3.3 Valgrind

Another framework to create tools for dynamic binary instrumentation programming
is Valgrind [83]. Valgrind is an Open Source Framework under the GPL license and
is available for many different ISAs like x86, ARM, PPC and MIPS. To combine the
different ISAs Valgrind uses an intermediate representation. Valgrind takes up the re-
sponsibility of instrumentation and inserts code at runtime into existing machine code.
Valgrind has a core section to which tools written in C are written as plugins. So to
explain it really simply, the Valgrind core along with the plugin tool creates the Valgrind
tool.

This Valgrind tool is responsible for loading the application being instrumented and
inserts itself into the process as the client starts up. Valgrind works in a just-in-time
compilation mode. After the client is loaded, Valgrind executes the client code block
by block by compiling the code once more. During this compilation process, the ma-
chine code from the client is disassembled into another intermediate code representation,
namely, UCode. The plugin now instruments the generated UCode and the resulting
instrumented code is once again converted into x86 code and stored in the code cache
of Valgrind. This can now be rerun as and when it is necessary. Most of the time spent
by the Valgrind core is to find and run translations. The client’s original code is never
run. Other services like error recording and logging of debug information is provided by
this code as well. Valgrind allows the execution of a single tool at a time.

Also with Valgrind, it is possible to create shadow value tools and shadow every memory
or register, which means, a value can be assigned to every memory address or register.
Valgrind fulfils all the requirements for building such tools. First, it must be possible to
have a shadow state of the registers and of the memory which contains every value of
the original state. Secondly it must be possible to instrument all the reads and writes of
the system calls. Allocation and de-allocation must also be handled like it is done using
mmap. Finally, to keep the execution transparent, it is important that shadow values are
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2.4 Classical Format String Attack

provided but it should also be possible to output some extra values. These requirements
are partly supported by DynamoRIO and Pin through virtual registers.

Valgrind takes many basic blocks and combines them together into a superblock. To
reduce the management overheads, these superblocks have only one entry but can have
multiple exits. Valgrind is one of the most flexible DBI frameworks which also means
that is has a few drawbacks. [84]

2.4 Classical Format String Attack

To give the reader a background in the topic of this work, we begin by describing the
classical Format String Attack (FSA) attack that has evolved throughout the recent
years. The classical FSA exploits the behaviour of *printf functions, which correspond
to a class of functions that use formatting information to specify the output format.
Since the printf function family are variadic c-functions, the number of format specifiers
within the format strings is controlling the number of parameter which are used by the
function and are thus popped from the stack1. The most important format specifiers for
exploiting format string vulnerabilities are listed below:

%x - pop address from stack

%s - pop address and dereference

%n - write printed char count to address on stack

%hn - write to lower 16 bits (short)

%hhn - write to lower 8 bits (byte)

A basic format string vulnerability just passes a single argument to the printf function.
In the classical exploit the buffer is defined as a character array on the stack. If the
buffer contains user controlled input, an attacker can fill this buffer with arbitrary format
specifiers, as listed above, and the function will access the next immediate value on the
stack for each format identifier within the buffer.

Depending on the used specifier, different actions will be executed on the stack. The
attacker can, for example, shift the stack by using a %x operator or dereference a
memory address to access the content that is referenced by that address by using the
%s operator. But the most important format specifier for having a generic way for
exploiting this vulnerability is the %n operator. This specifier takes an address from the
top of the stack, dereferences it, and writes the total number of printed characters into
the specified location. This allows an attacker to write arbitrary values to an arbitrary

1e.g. printf(“id: %d, size:%d, name: %s”,id,size,name) consumes three arguments.
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memory location, assuming that the vulnerable input buffer is located on the stack2.
The chosen address could be the address of the saved return value, the pointer to an
address in the Global Offset Table (GOT) or an entry in the list of the destructors
(.dtors). Thereby the attacker is able to change the control flow of the application, if he
redirects such a pointer to some shellcode that has been prepared in advance.

To protect against this type of attack, protection mechanisms have been established
to mitigate memory write attacks. We hereby differ between two classes of protections
mechanisms: Compiler-based and system-based protections. A commonly used compiler-
based defence mechanism against control flow violations are stack cookies. The basic
idea behind stack cookies is that in order to overwrite the return address of a function,
a user has to overflow a buffer on the stack and thus overwrite everything between
this buffer and the return address. If the compiler places a stack cookie between the
buffer and the return address, the attacker also has to overwrite this cookie. As an
attacker is unable to know the content of this cookie in advance, it is possible to detect
the modification of the return address, if the cookie was overwritten by an attacker.
This cookie can be easily circumvented by FSAs, because the place to be written can be
directly controlled by the attacker. Another compiler-based protection mechanism is the
compiler flag RELocation Read-Only (RELRO). This mechanism is resolves all addresses
at the beginning and maps the GOT as read-only, so an attacker cannot overwrite the
function pointer and redirect the control flow. A further mechanism that specifically
protects against a FSA is using the FORTIFY SOURCE option at compile time. The idea
behind FORTIFY SOURCE is to check the source code for the usage of certain insecure
functions. These are common functions (e.g. strcpy) that use a given buffer and expect
it to be delimited by a null terminator, which is not always the case. If the compiler
detects the usage of such an insecure function (like strcpy), it tries to identify the
size of the destination buffer and replaces the vulnerable function with a more secure
function. A call to the printf function is replaced with a more secure function, so
that the compiled program can handle a possible attack at runtime. If an attacker, for
example, tries to use the %n parameter in a format string, the program will crash.

Although this is a good idea, Planet has shown that this protection can be circumvented
by overwriting the IO FLAGS2 FORTIFY bit in the file stream by controlling the nargs
value in the format string [93]. Another compiler-based protection is pointer encryption.
This technique is used to encrypt instruction pointers with a simple encryption function,
which is not known by the attacker and thus prevents a pointer manipulation by the
attacker [29]. This approach is thereby somehow similar to the stack-cookie approach.
Although even if the algorithm uses XOR, the attacker can easily find the key if he

2An input to a buffer like “\x78\x4f\x9e\xbf”,“%5u”,“%10$hhn” will, for example, write the value
0x9 to the least significant byte at the address 0xbf9e4f78, because in this example the tenth value
on the stack is containing our user input.
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2.4 Classical Format String Attack

knows a pair of plain and cipher text. Furthermore, instruction set randomization uses
the same idea in which the attacker does not know the instruction set [41].

As next, we describe common system-based mitigation approaches. One approach is Ad-
dress Space Layout Randomization (ASLR). ASLR randomizes the memory addresses
of both the executed code as well as the stack. Unfortunately, it only randomizes the
prefix of entire pages, thus in case of 4K pages (which is common on the Intel architec-
ture), the last 12 bits of an address are not randomized. On modern systems we also see
more randomization added to some mappings. They extend it to 20 bits and therefore
only the last 4 bits are not randomized. This does not ensure security in 32 bit systems
because the address can still be bruteforced. The reason for this is the limited number
of randomized bits [11, 12, 81, 102, 108]. Another system-based protection mechanism
is Non Executable Bit (NX) or Data Execution Prevention (DEP). Its goal is to hinder
the execution of code that is located on a page that is supposed to contain data. Thus
it hinders an attacker to prepare, for example his shellcode on the stack or heap.

Libsafe is a library, which can be used to protect against overwriting the stack at run-
time. Equal to FORTIFY SOURCE, it replaces vulnerable functions like *printf() with
secure versions. If there is a possible attack the library will kill the process and log the
event. The disadvantage of this approach is that it works only for limited amount of
functions [9].

FormatGuard is a patch for glibc, which counts the arguments that are given to the
printf function at run-time and compares it to the number of format specifiers (%). If
the format string uses for example more arguments than the actual number of printf
arguments, then it is assumed that an attack has taken place and the program will be
terminated. To use this protection the programmer has to re-compile the program with
FormatGuard. A problem with this approach is that it can detect the attack only if the
number of specifiers is changing but not if the variables are reordered. Indeed, this kind
of attack cannot be recognized by FormatGuard [28].
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Related Work

In this chapter, we discuss the related work on security testing and intrusion detection
in encrypted environment. This work is related to the Chapters 5, 6 and 7.

The related work on format string attacks is described in Chapter 4 and we provide the
related for function identification in Chapter 8.

3.1 Security Testing

Many existing fuzzing frameworks facilitate the security testing of network communicat-
ing applications. Gascon et al. [45] present a fuzzing framework for proprietary network
protocols which uses inference to create a generative model for message formats. Their
approach relies on unencrypted network traffic, similar to many other smart automated
model-based [69] [8] [49] and grammar-based [119] [46] fuzzing techniques. Nowadays,
there is also a vast amount of powerful commercial fuzzing and vulnerability scanning
frameworks like Defensics [24], Nessus [100], beSTORM [99], Peach Fuzzer [36], hong-
gfuzz [106] and american fuzzy lop [120] available in the market. They provide very
complex and sophisticated algorithms to cover many different areas of fuzzing and vul-
nerability testing, but overall also lack proper support of encrypted network communi-
cations.

Biyani et al. [13] address this issue and present a solution by extending the SPIKE
fuzzing framework to support encrypted protocols. They add a SSL wrapper to the
existing plaintext fuzzer which allows to communicate with the target test application
over an encrypted tunnel. This way, the fuzzer can inject its plaintext test data into
the encrypted channel and test the target application for vulnerabilities. This approach,
however, is limited to SSL encryptions which only represent a small part of proprietary
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software products. Another drawback is that their implementation is customized and
only applicable for the open source fuzzer SPIKE. Tsankov et al. [113] introduce a differ-
ent solution that allows a more generic fuzzing of encrypted protocols. Their approach
is based on the knowledge of the encryption key and algorithm, which is problematic
from a security point of view

As of yet, there is no generic and security preserving solution to testing of applications
with encrypted network traffic. We propose an interface for testing frameworks. It makes
the encryption of the program under test transparent without violating the security of
end-to-end encrypted communications. This way, we reduce the problem of testing
encrypted protocols to testing of plaintext protocols and thus, enable the usage of many
already existing testing tools.

3.2 Intrusion Detection

There exists a variety of Intrusion Detection Systems(IDSs) in order to detect attacks
over network communication. Li et al. [75] introduced different concepts and common
standards regarding IDS, providing a theoretical base for further research. They in-
troduce a general categorization into signature-based (SID) and anomaly-based (AID)
intrusion detection. While SID may detect known intrusions reliably, novel intrusions re-
main unobserved. AID may also detect new intrusions but, amongst others, suffers from
high false alarm rates. They also state that network-based IDS do not detect anomalies
in encrypted network traffic. With a growing percentage of encrypted network commu-
nication, the research of IDS in encrypted networks becomes more prevalent.

3.2.1 Intrusion Detection in Encrypted Networks

Intrusion detection in encrypted networks presents a challenge, which is tried to cope
with in a variety of ways. Existing research on this topic can be classified into two main
categories. A considerable amount of strategies concentrates on traffic analysis of the
encrypted data, without decryption or plaintext inspection. Fewer approaches employ
decryption or extraction of decrypted data for analysis. While traffic analysis approaches
are limited to interpretation of transmission information such as packet size, timing or
the encrypted data itself, these strategies do not need to solve the problem of extracting
plaintext from the observed communication and respective emerging problems. One
of these problems is keeping the end-to-end encryption scheme intact and securing the
possible attack surface of decrypted information being present in the IDS. Strategies,
employing decryption or plaintext extraction, however, enable a more precise analysis
of the communication, as all communicated content is available for dissection.
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An example for basic traffic analysis IDS is the system proposed by Joglekar and
Tate [62], which only focuses on protocol violations for intrusion detection. The percent-
age of detectable intrusions is therefore reduced to this specific kind of attack. Yamada
et al. [118] and Foroushani et al.[40] present traffic analysis approaches based on data size
and timing. While the first detection approach is limited to attacks which employ a scan-
ning phase at the beginning, the second approach focuses on SSH connections to public
servers only. Koch and Rodosek [70] [71] explored analysis approaches such as command
evaluation and user identification in encrypted remote sessions (e.g. SSH/SSL) through
packet sizes, divergences and communication delays. While the first approach, command
evaluation, limits intrusion detection to encrypted remote sessions (e.g. SSH), the sys-
tem proposed in the second approach (S2E2) was not tested. Another behaviour-based
approach was put forward by Koch et al. which employs detection through similar-
ity measures, by means of correlation to the majority of connections. Augustin and
Balaz [7] introduced a hybrid detection approach combining recognition of applications
used in SSL encrypted communication and anomaly-based detection. This limits the re-
sults to attacks through SSL encrypted communication. Flow-based detection systems
have been introduced by Hellemons et al. [55], focusing on SSH traffic only, and Amoli
and Hämäläinen [4], proposing a flow-based approach for high-speed networks using
machine learning, but providing no test results. Zolotukhin et al. [121] proposed a data-
mining approach employing the DBSCAN algorithm, limited to DoS attacks. Another
technique, applicable for encrypted traffic analysis in an intrusion detection scenario, is
proposed by Böttinger et al. [16]. They demonstrated the feasibility of detecting finger-
printed data in encrypted TLS traffic for large amounts of traffic, restricting detection of
small payloads and other forms of communication. Generally, the results of many traffic
analysis based approaches are limited to a specific form of encrypted communication,
e.g. SSL, or attacks.

Strategies, employing decryption or extraction of decrypted data, are put forward by
Abimbola et al. [3], which employs extracting plaintext data from the operating systems
protocol stack and Goh et al. [48] [47], mirroring encrypted network traffic to a central
entity, which decrypts and analyses the data. However, this dedicated decryption of
data in a third entity breaks the end-to-end encryption scheme. Many frameworks
are designed as a Host based Intrusion Detection System (HIDS), where the system
is executed on the same host as the observation target. This is a challenge regarding
protection from attacks against the framework. Other systems [3] are designed to extract
information from lower layers of the network protocol stack (e.g. OSI layer 3), requiring
more incisive modifications to the observed host.

Our approach provides a general detection strategy, independent of encryption protocol
or attack type. We extract the monitoring data directly from the applications process
address space via Virtual Machine Introspection (VMI), minimizing modifications to
the target host. This improves the security of the framework compared to conventional
approaches. As our system serves as an observation interface for an external IDS by
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making the encryption transparent, conventional IDS solutions for plaintext traffic can
be employed.

3.2.2 Virtual Machine Introspection for IDS Protection

With virtualization providing a variety of separative and protective means, the usage of
VMI for securing IDS has been proposed in several publications. Garfinkel et al. [43]
move the whole IDS to the Virtual Machine Monitor (VMM), using VMI for moni-
toring. Deng et al. introduce stealthy binary program instrumentation via hardware
virtualization in their project SPIDER [31]. The approach was implemented for KVM,
using software breakpoints to trap into the hypervisor. Originally designed for malware
analysis, Vasudevan and Yerraballi introduce their implementation of VAMPiRE [115],
using stealth breakpoints through virtual memory and hardware single-stepping tech-
niques. These solutions introduce some drawbacks. The usage of software breakpoints
for application inspection is undesired under some circumstance (e.g. for malware anal-
ysis [115]), while single-stepping through hardware breakpoints introduce a significant
performance overhead. Ho et al. [57] describe their implementation of a pervasive debug-
ger implemented for the hypervisor Xen. The PDB is located on the hypervisor level.
The implementation of the pervasive debugger depends on GNU-Debugger (GDB) to
set and pass breakpoint events to the PDB Client located on the lower level.

The approach introduced in this thesis is different. We use hardware breakpoints for
target inspection but don’t require single-stepping, thus avoiding performance cutbacks.
Our solution combines the benefits of a general detection strategy and virtualization,
providing an observation interface for multiple architectures with improved protection.
We reduce intrusion detection on encrypted channels to intrusion detection on plaintext
channels, thus enabling the use of existing IDS tools in the area of encrypted communi-
cation.

32



B
lin

d
F

or
m

at
S

tr
in

gs

Chapter 4
Blind Format String Attacks

Intruders are exploiting software vulnerabilities to penetrate the system. If encryption
data transfer is used, the confidentiality of the payload is protected, but an attacker can
still act the same way as no encryption is in place. Unfortunately an IDS has difficulties
to inspect the payload, and therefore can’t detect this attack. In that case, only host
base protection mechanisms can help to stop the attack. In this chapter, we select
Format String Vulnerabilities(FSVs) as an example to investigate the effectiveness of
the software mitigation.

FSVs are known for many years and are assumed to be easy to detect. But unfortunately
there still exist applications, which are vulnerable to this kind of attack. According to
the CVE database [110], the number of vulnerabilities that can be classified as a format
string vulnerability has decreased in the last 15 years. Over the course of the last 8
years, however, it appears to stay on a constant level.

There was, for example, a severe format string flaw in the application sudo from versions
1.8.0 through 1.8.3p1, which was found in the sudo debug() function (CVE-2012-0809).
In Linux kernel through 3.9.4 existed a bug which allowed an attacker to gain privilege
rights, which could be exploited by using format strings in device names (CVE-2013-
2851). There also existed an exploitable format string bug in the Linux kernel before
3.8.4 in the function ext3 msg() which could be used to get higher privileges or crash the
system (CVE-2013-1848). This vulnerability is even found in vehicles, e.g. the bluetooth
stack of the car BMW 330i lead to a remote crash of the multimedia software (CVE-
2017-9212). Therefore, we can assume, that format string bugs will still be present in
the future. Table 4.1 lists the number of registered format strings vulnerabilities over
the last 8 years.

Since the first methods for a FSA were released, system wide protection mechanisms
like NX and ASLR are implemented in many operating systems. Also compiler-based
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Year 2010 2011 2012 2013 2014 2015 2016 2017 (until may)
Number 14 9 18 14 5 8 8 5

Table 4.1: Number of format string attacks in the last eight years

protections like stack-cookies and FORTIFY SOURCE should protect from binary ex-
ploitation. All these protection mechanisms make exploitation more difficult nowadays.
Nevertheless, Planet [93] has shown that FORTIFY SOURCE can be circumvented and
Payer et al. [90] have shown, that NX can also be bypassed.

All generic exploiting techniques shown in the past are relying on two mature constraints.
First, the input buffer that is used by the attacker has to be placed on the stack, and
secondly, the attacker requires knowledge about the output of the format string. In
this chapter, we instead assume, that the attacker is blind regarding to the output of
the application. He will not receive any memory leakage by the exploited application.
In addition, we also show that with our technique, the attacker’s payload may also be
located on heap, instead of the stack.

Parts of this chapter were published [66].

4.1 Related Work

The topic of FSAs is already known in the academic world for over a decade. The
basic concept was first introduced by Newsham back in the year 2000 [85]. The concept
was then extended and described in more detail in 2001 by Teso [98]. The attack
has been enhanced by Haas [52] and Planet [93] in 2010. Haas is showing that the
memory leak of a format string can be used to calculate all relevant memory address
to build the exploit string without any bruteforce, whereas Planet is showing a way to
bypass the FORTIFY SOURCE protection using format string attacks. In the recent years,
however, this topic gained less interest. Payer et al. [90], describes a method for applying
both Return Oriented Programming (ROP) [101] and Jump Oriented Programming
(JOP) [14] to format string attacks described by Haas and Planet and also discusses
different protection mechanisms.

Since the current state of exploiting FSAs is based on a memory leakage, we will focus
on the challenge of exploiting without memory leaks. Since our thesis is focusing on
encrypted data communication, we consider the case of remote exploiting.
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4.2 New Attack Methods

After we discussed the classical FSA in the last section, we now describe a novel technique
to apply an FSA even in an environment, where the exploit string is placed on the heap
and in addition the user has no direct control over the stack content. Afterwards, we
will also describe, how it is possible to exploit this blindly, even without any feedback
by the vulnerable program.

As this chapter is about describing a blind FSA, it is important to define the term “Blind
Attack”: A blind attack is a network-based attack that is executed remotely without
any local access to the attacked system. In addition, the attack does not require the
attacking entity to receive any data from the attacked system. In the case of a FSA
this especially means that the output of the attacked printf function is not available to
the attacker. Nevertheless, we assume, that the attacker is in possession of the executed
binary beforehand. This is a legit restriction because most software is custom of the
shelf software that is not self-developed and is available for the public.

1 void logfunc(char *buf) {

2 char * pch;

3 pch = strtok (buf,"|");

4 while (pch != NULL) {

5 printf(pch);

6 pch = strtok (NULL, "|");

7 }

8 }

9 int parse(char *buf, int log) {

10 if (log == ENABLELOGGING)

11 logfunc(buf);

12 /* Do something using local stack variables */

13 }

14 int handle(clientsocket) {

15 char *buf = (char*)malloc(SIZE);

16 //...

17 recv(clientsocket, buf, SIZE-1, 0);

18 parse(buf,1);

19 free(buf);

20 //...

21 }

22 int func(serversocket) {

23 //...

24 while(1) {

25 pid = fork();

26 if(pid == 0) { /* ... */ handle(clientsock); /* ... */

27 }

28 //...

29 }

30 //...

31 }

Figure 4.1: Format string vulnerability on the heap
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4.2.1 Attack payload on heap

To exploit a FSA vulnerability, an attacker traditionally needs to store her attack payload
in a buffer inside the vulnerable program. In Section 2.4, we have shown how a FSA
is applied if the user input is saved on the stack. Within related work it is assumed
that this buffer is located on the stack of the attacked system. This is an optimistic
assumption, as it is not always the case in practice. The problem with a heap based FSA
is that the attacker can only write to addresses, which are already saved on the stack
using the %n specifier. In this case, the attacker is not able to write directly on the
stack. This means, that the required destination address for FSAs cannot be placed on
the stack, which stops the attacker to dereference this destination address using format
string specifier.

Stack-based FSAs, however, rely on user controlled input on the stack. The attacker
places the exploit string, which contains the address of the write destination, directly
inside the user input buffer. This address can then be directly accessed by the $ operator
or using the %x operator many times to pop all values from top of stack until the
attacker controlled data is at the top of stack. In our case we do not require the attacker
controlled input on the stack. This means only application controlled data is referenced
on the stack. We therefore assume that there is no other input channel to place data on
the stack, which would make the exploitation easier.

4.2.2 Arbitrary write

Above, we described how to write to application controlled locations by dereferencing the
memory addresses on the stack and writing to it using the %n specifier. Now we focus
on a generic exploitation concept to achieve arbitrary writes into application memory.
The basic idea of our novel approach is to use the saved frame pointer, which is stored on
the stack once a new function is called. If the application is not compiled with specific
flags like -fomit-frame-pointer every function will save/push the last frame pointer on
the stack in the prologue and restore it in the epilogue. We benefit from this fact because
this address is always pointing to another location on the stack, which is also writeable.
Therefore, no protection mechanisms like NX, stack cookies or ASLR will protect the
system from an attacker writing to that location. Whenever an application is using the
saved frame pointer feature, one frame pointer is pointing to the next frame pointer like
a linked list. The next frame is therefore also located on the stack on higher addresses,
which can also be written to.

The goal of our mechanism is to use this list of saved frame pointers to achieve an arbi-
trary write to an arbitrary location within the system. With current FSA mechanisms
we are only able to write to locations, which are already referenced on the stack of
the current application. But by leveraging the linked list property of the saved frame

36



B
lin

d
F

or
m

at
S

tr
in

gs

4.2 New Attack Methods

pointers, we are able to modify the saved frame pointers on the stack according to our
needs and thus achieve a situation in which we are able to write to an arbitrary location
in memory. First, we are using the saved base pointer (EBP) on a lower address to
overwrite the value of the next saved EBP, to point it to an arbitrary address like the
GOT. In the second step, we can write at this location with an arbitrary value.

4.2.3 Changing the control flow

As we are able now to write to arbitrary memory locations, we describe how it is possible
to hijack the applications control flow using an FSA. This still requires exact knowledge
about the addresses, which have to be modified in order to control the execution flow. In
the case of a blind attack, with no feedback from the attacked application and with ASLR
activated at the same time, it is impossible to guess the exact address of our destination
in advance. Entries like GOT are mainly at constant addresses but, as mentioned in
Section 2.4, the compiler flag RELRO will protect this locations from write access. In
our approach we will only write to the stack, which is always writeable, to change the
execution flow of the application. A generic way of controlling the execution flow is to
overwrite the saved instruction pointer on the stack, so that an address gets executed on
a ret command that was chosen by an attacker. As we already described above, the stack
frames are connected with a linked list with directed pointers. Our goal is to control the
pointers in a way, so that we can write to arbitrary locations on the stack.

We will now describe our mechanism in more detail. To illustrate our mechanism, first
imagine a chain of three function calls like shown in Figure 4.1. In this example a
function handle calls a vulnerable function parse which in turn forwards the attackers
buffer to an internal log function wrapper logfunc. This is a common scenario in both
the Linux kernel and userspace applications. The initial stack layout of this scenario is
depicted in Figure 4.2(a). If we consider a format string like %6$hhn, we will write to
the destination of the 6th value on the stack. The number six would be the offset in our
explanation. The size is given as multiples of the architecture size, in our case 32 bit.
EBP is the saved extended base pointer of the calling function. We do not have to
care about the stack cookie protection, but if there is a cookie it will be at the bottom
of the box, which we assume in our case as part of the frame content like the used
stack variables. As the stack is growing to lower addresses, it is possible to overwrite
the contents of the stack frames of the function handle and parse from within the log
function. The attack consists of three format string overwrites that use the pointers in
EBP.

Note that the linked list of saved frame pointers is corrupted by this attack. An attacker
may, nevertheless, reconstruct it after he is able to execute his own code, if it is required.
This is only the case if the function is using local variables after the overwrite and before
the return. Otherwise the application flow is changed and the attacker succeeded.
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4 Blind Format String Attacks

(a) Initial Stack configuration with three func-
tions.

(b) In the first step, the EBP of handle() is redi-
rected to the EBP of parse().

(c) In the second step, the EBP of parse() is
redirected to the EIP of handle().

(d) In the third step, the EIP of handle() is redi-
rected to the attackers code.

Figure 4.2: Sequence of overwrites to modify the return address

In the first overwrite, the saved EBP of the function handle (1) will be modified to
point to the saved EBP of the function parse. This is achieved by using the offset X in
the format specifier and change the content at offset X + Y with the address of offset
X. Now we can directly address the saved EBP of parse, as shown in Figure 4.2(b).
The next overwrite then replaces the contents of the saved EBP of parse, located at
offset X (2), to the EIP of the function handle, located at offset X + Y + 1, by using
the offset X + Y , as shown in Figure 4.2(b). As a result of these first two steps an
attacker generated a pointer on the stack, which points to the return address. In the
third step the attacker overwrites this return address using offset X (3) to either point
to the shellcode or some ROP chain, which the attacker prepared in advance. This final
step is depicted in Figure 4.2(c). After the vulnerable function finishes, the control flow
will switch to a sequence of instructions that was chosen by the attacker. An overview
over the conducted overwrites is given in Table 4.2.
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4.2 New Attack Methods

offset in dereferenced value written
format string offset (address of)

1 X X+Y X
2 X+Y X X+Y+1
3 X X+Y+1 Address of ROP gadget

Table 4.2: Overview of required overwrites.

4.2.4 Pointer modification with ASLR enabled

In our approach we leverage the saved frame pointer feature as it contains pointers that
can be used during an FSA. In case the attacked system has stack ASLR enabled, an
attacker is unable to guess the address he has to write to the stack. Unfortunately in its
simple version, ASLR is not randomizing the whole address. For example all addresses
inside a page will be constant, as ASLR only randomizes the beginning of the stack on
page granularity. This means that effectively the least significant 12 bits, we assume
a page size of 4K as described in Section 2.4, of the address will be constant and not
randomized. In the case of an FSA an attacker can benefit from this behaviour as he
only needs to overwrite the least significant bytes of the frame pointer and redirect it to
another frame pointer. Thus he modifies the least significant bytes of an address that is
already pointing to the right location. Depending on the frame size the attacker has to
overwrite one or two bytes. In the case of a good alignment and a distance less than 256
Bytes, an attacker does not need to care about ASLR, because only one byte write is
required. We can only write a multiple of eight bits using the %n operator. This means
that in case of a two byte overwrite, four bits of randomization are overwritten by the
FSA. In a practical exploit this is not a problem and an attacker is able to brute force
these four bits because of two reasons. First, if we have a network related application,
each connection is transferred into its own process. This feature can be leveraged in a
way that the attacker is able to crash the process without crashing the whole application.
In case the exploit is not successful, the attacker can simply reconnect and try again.
The second reason is, that only four bits of ASLR randomization is not a barrier for an
attacker in this case, because the value only has to be found once. Every other write
will also be at the same randomized four bits and can thus be calculated beforehand.
Note that as the connection handler is forked for every connection the stack will also be
at the same address until the main application is restarted. In contrast to the 12 bit
ASLR randomization, some systems use 20 bits of randomization for the stack. In this
case an attacker has to bruteforce more bits, but as we will show this case in our Proof
Of Concept (POC), even with 20 bits of randomization the attack is practicable in a
short time.
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4.3 Proof of concept

After we have introduced a novel technique to change the control flow of an application
in a blind way using an FSA, we now introduce our POC implementation. In the
following we assume the attack to be conducted on a 32 bit Linux system on the x86
architecture. In our tests we used an Ubuntu 14.10 system with the latest security
patches applied. Therefore, we assume that our binary is compiled with gcc in version
4.8. As already described, our vulnerable application consists of a networking daemon
that forks a new process once it receives a new network connection. Each connection
is than handled inside the newly created process. Our test system has the following
protections activated: ASLR for stack, heap and libraries, NX on stack and heap, and
RELRO. The stack addresses, where the EBPs are stored is randomized with 20 bit.
After a local analysis of the attacked binary we will get the following values for the stack
frame sizes: X = 48 Bytes and Y = 48 Bytes. This means that we will only require
a one byte write if the least significant byte (LSByte) of the saved EBP of handle() is
between 0x60(= X + Y ) and 0xfc(= 0x100 − 4). Otherwise it has to be a two byte
write. As it is the more complex case, we will only consider the case of two byte writes
and show, that this technique is feasible even with bigger frame sizes.

First of all, we will start with a simple bruteforce using three phases: In Phase 1, we will
iterate over all possible values for the LSByte and restore the saved EBP of handle().
Since the addresses on the stack are 32bit aligned, there are only 64 possible values for
the LSByte. If the value that is currently checked does not match, we assume that the
application crashes and the server socket is closed. We can recognize this behaviour once
we do not get any feedback. On the other hand we also have to take into account that
not all successful tries imply a correct guess of the correct LSByte value. Thus after
this step there can still be a number of false positives that we have to filter in the next
step. Therefore, we will collect all checked LSByte values that do not crash the server
immediately in the first phase and verify them in the second phase.

In the second phase, we reduce the number of possible values that we received in the first
phase by verifying the integrity of those values. In our POC we designed four different
verification tests that can be divided into two category. In the first category, we try to
rewrite pointers on the stack by building a chained list of pointers. For example, as we
know the stack layout, we can calculate the relative addresses of the saved frame pointers
of other frames or any other variables within the frames and to overwrite their contents.
In this case, we do not expect the application to crash. In the second category we also
use those addresses where we assume pointers on the stack and redirect the pointer
chain to point to a non-mapped memory location at the end, so printf() will crash
during the memory write. After this verification process, we have the exact address of
the LSByte.
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4.3 Proof of concept

The third phase is then required to obtain the value of the second byte. Thus this phase
is only needed if we have a two byte write. In this phase we are writing to the second
byte, which has 256 possible values in total. Since we now modify the saved EBP by a
multiple of 4K, the probability of having false positives is small. In our POC we did not
get any false positives during our experiments. Our attack thus requires 256 + 64 + δ1

connections in the worst case, which only takes few seconds in total. As the exploit
strings used in this phase are small and can thus be executed very fast after printf()

is called and the connections can also be multi-threaded, this step can be conducted in
a short time.

After having the exact LSBytes of our address, we can now calculate all other stack
addresses and build our exploit string to achieve an arbitrary write as describe in Sec-
tion 4.2.3. The stack layout of our POC is illustrated in Figure 4.3, where every column
represents the stack layout in one of the described three stages of our attack. In Stage
3, we overwrite the saved instruction pointer of handle() to return to a previously
chosen destination. This destination could be the first ROP chain. Putting the whole
ROP chain into the stack would assume that we have enough space on the stack for all
gadgets. It would also require more space in the input buffer or many calls to printf()

for many writes using the format string vulnerability. Therefore the ROP chain should
be located within the buffer itself and the number of the written gadgets by printf()

should be small. It should only be used to switch the stack to the heap and to execute
another ROP chain. But this technique has a big constraint. Since the libc is ran-
domized, the non-randomized gadgets are only available in the text section. We cannot
guarantee that we can find enough gadgets in the text section, especially if the binary is
small. It has been proven that the libc gadgets are turing complete by Schacham [101],
so we set our focus to use the libc gadgets here. As our technique is based on a remote
connection, the Procedure Linkage Table (PLT) contains network related functions like
send() and recv(). We are going to use this feature for constructing a memory leak and
to extract the address of the libc back to the attacker. The addresses of the used library
functions like send() are stored in the GOT at a constant and readable address. The call
to a library function is done inside the text segment, which is not randomized. We can
either call it by returning to the text segment or we can call it directly using the PLT
entry, which is also on constant addresses. Overwriting the return value with send@PLT
and leveraging the send function also requires that we know the value of clientsocket, to
return the information to the right client. This value could be bruteforced, but in many
cases it is stored on the stack. In our POC, for example, the clientsocket is a parameter
of the handle() function. We are using a gadget to lift the stack to the position of
clientsocket and return to send@PLT with the arguments (clientsocket, send@GOT, 4,
0). This sends the address of send@libc to the attacker, who in the next step is able
calculate all addresses inside the libc and build an exploit for a successful attack.

1δ = false positive count * 4 (# of verification tests)
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Figure 4.3: Stack layout for the proof of concept

4.4 Protection

The core of these attack is the presence of frame pointer, which are seen as a linked
list. The frame pointers are modified to write to arbitrary locations on the stack. This
mean, if we omit the frame pointers during the compilation process, there wouldn’t be
any pointer to be modified. Modern compilers are supporting this, e.g. in GCC we only
have to add the flag −fomit−frame−pointer in our compile parameters. If we do not
have the source code, we implemented a tool called BinProtect [95] to protect binaries
retrospectively. The approach is based on instrumentation techniques and can add
additional code to validate the input before the vulnerable function is executed.

4.5 Summary

In this chapter we have shown that format string attacks are still a security issue in
recent history. We proposed a new approach, which does not require a memory leakage
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4.5 Summary

to exploit a format string vulnerability. Using our approach, we can exploit an FSA
blindly without having any output channel to the attacker or access to the local system.
Our concept extends the classical FSAs to write to arbitrary memory locations even
in cases where the format string is not stored on the stack but instead resides on the
heap. We especially show that it is possible to redirect the control flow of an application
using and modifying only pointers that are already present on the stack. We have also
considered the most known protection mechanisms like ASLR, NX, RELRO and have
shown that blind format string attacks are feasible even with activated protections on
the host. Finally, we proposed a way to protect against these attacks.
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Chapter 5
Framework for Analysing Binary
Applications

There is a vast amount of applications communicating over the network, for which
the exchanged data is confidential and therefore encrypted. While encryptions helps to
protect the confidentiality of the transmitted data, the application can still be vulnerable
to remote attacks. For an intruder it does not matter if the transmission is encrypted
or not, to exploit the vulnerable application.

Intrusion Detection Systems(IDSs) are used to detect such attacks. There are two cate-
gories of IDSs. First, a detection sensor located in the network, which is called Network
based Intrusion Detection System (NIDS). Second, a local sensor residing on the same
system as the monitored application. This sensor is called Host based Intrusion Detec-
tion System (HIDS).

When encryption is applied, the NIDS acts blindly and cannot protect against attacks,
such as Blind Format String Attacks as described in Chapter 4. End-to-end encryption
is designed to terminate at the destination application to fulfil the required security. By
terminating the encryption at another node (e.g. a proxy server), the NIDS can inspect
network data, but this will add an additional attack vector. So only a HIDS is capable
to analyse these data, if we want to keep up the end-to-end encryption.

Beside this, the encryption layer makes it harder for the security analyst to test the
remote application. From the point of view of a security analyst, a remote application
can be tested by sending user controlled arbitrary data. The data is then parsed by the
receiver. The problem here is that most vulnerabilities are located inside the application
logic and can only be tested if the client/server is decrypting and parsing the user
controlled data successful. To achieve this, one must rebuild an application for testing
using the same algorithm and encryption key. Even this is already time consuming, but
some applications have to reach a certain state of execution before the real vulnerability
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can be triggered. For that purpose, more application logic has to be implemented by the
analyst. A possibility is to combine the target application with a self-written application
for the analysis. To achieve this, the analyst controls the target application and uses
it to reach the potential vulnerable state. Afterwards, the key of the current state is
extracted and passed to a self-written test application to send the arbitrary data. If the
application updates the encryption key like in stream ciphers, we are locked out of the
application and are not able to perform any actions using the original application.

In this chapter, we present our Intrusion Detection Framework for Encrypted Network
Data (iDeFEND). iDeFEND is a generic framework to keep up the end-to-end en-
cryption while still being capable to inspect plaintext data. We show the features of
iDeFEND by describing two use cases for applications using encrypted network commu-
nication. As a first use case we present how we inspect plaintext network data and how
we bridge the data for an IDS. This topic will be covered in detail together with the
problems of a HIDS in Chapter 7. As a second use case we present a method to support
analysts in testing network applications and to look for vulnerabilities. This use case
will be covered in detail in Chapter 6. Our approach does not require any source code of
the involved applications, nor the encryption key, nor information about the algorithm.
iDeFEND is using a host based approach to solve the problem of encrypted network
traffic. Instead of rebuilding the communication channel, we use the same channel of
the application. We extract the information directly from the memory of the target
application. This makes the whole encryption transparent from our view and we do
not need to care about the encryption at all. We work at a layer above the encryption,
where we monitor every traffic in plaintext. The evaluation is presented in detail in
Chapter 9.

Parts of this chapter were published [64].

5.1 Framework Design

In this section we present the concept and the design of our framework for inspecting
plaintext network data. If the whole network communication is encrypted, the appli-
cation usually contains two wrapper functions. One is responsible for encrypting the
plaintext and sending the data afterwards over the network. In our thesis we label this
function Crypt and Send (CaS). The other function is responsible for receiving the net-
work data and decrypting it afterwards to process the plaintext data. We label this
function as Receive and Decrypt (RaD). These functions contain the plaintext data that
is sent/received over the network. Both functions represent the core functionality for
our framework. These functions are used in our use cases for extraction, interception
and injection.
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5.1 Framework Design

Debugger
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Figure 5.1: iDeFEND design

47



5 Framework for Analysing Binary Applications

Figure 5.1 depicts the design of iDeFEND using the function CaS as an example. The
case with RaD is analogous. Our framework consists of three parts: the Detector,
the Collector and the Monitor modules. The Detector module is responsible for reverse
engineering the offsets for the functions CaS and RaD. The application on the left side in
Figure 5.1 contains the Control Flow Graph (CFG) with the CaS function in the centre.
Tracking back the functions crypt(1) and send(2) using the underlying Debugger inside
the Detector module, we have an intersection at CaS. The detection of the functions
is described in detail in Section 5.2. The Collector module is responsible for gathering
the plaintext data used for network communication from the application. This module
requires the already identified offsets of CaS and RaD. iDeFEND supports two types of
the Collector. One method is using the Debugger in the Detector module to directly
extract or intercept/modify the plaintext data on CaS(3) or RaD before it is processed
by the target application. The other method is placing the Collector directly into the
process space of the application. This is setting a hook(4) on the function CaS and RaD
to capture the information passed to these functions. Each time the application sends
or receives encrypted network data, the Collector will gather the plaintext data. We
pass the collected data to the Monitor module. This module is responsible for handling
the plaintext data and for providing an interface to IDSs.

5.2 Function Identification using the Detector

In this section, we describe the Detector module of iDeFEND. Before extracting infor-
mation from a process, we need to identify the application’s CaS and RaD functions. To
achieve this, we use the breakpoint features of a debugger. Since we have to deal with en-
crypted network traffic, the application has to provide at least three functions: crypt(1),
send(2) and receive. Send and receive are in general the public library functions of the
Operating System (OS), thus we can retrieve their address easily. The crypt(1) function
is responsible for en-/decrypting the data. Depending on the algorithm it can be one
or two functions. If a dynamically linked encryption library is used, we can identify the
crypt offset easily by looking for the API export of the library in the memory. Otherwise,
we have to identify the function inside the binary. There are already some approaches
to detect functions, which are used for encryption [23] [51]. If they fail, we will use a
more generic approach for function identification, which we describe in Chapter 8.

Having the offsets of crypt(1) and send(2) illustrated in Figure 5.1, we set hardware
Breakpoints(BPs) on these functions and start the application. We are only interested
in encrypted network traffic, so we have to make sure we do not catch too much data.
In case of outgoing network data, the important plaintext is only the plaintext that is
encrypted and sent afterwards. The constellation of crypt, send and CaS appears only if
the application is the correct state. As an example, the encrypt function can also be used
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5.3 Information Extraction using the Collector
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Figure 5.2: Debugger states

by other functionalities, e.g. encrypting a file. Figure 5.2 illustrates the possible states of
the application depending on the occurrence of the BPs. After starting the application
we wait until the first encryption BP occurs otherwise we stay in the same state (Wait).
At this point, we are in the state C. We save the application state including all relevant
data, such as registers, the memory content and the application stack. After resuming
the application the next BP is either on crypt(1) or on send(2). At crypt the application
is encrypting some data for sending or internal use. At send(2) the application is going
to send some data and we change to the final state CaS. At this final state, there are only
two possibilities. Either some plaintext data is transmitted over the network and the
encryption was for internal use, or the encrypted data is transmitted over the network.
We evaluate this by comparing the data modified by the encrypt function with the data
accessed by the send function in state C. If they match, the same data is going to be
send over the network. In that case, we can identify the CaS function by comparing the
partly reconstructed CFG of both states with each other and look for an intersection
as illustrated in Figure 5.1. We retrieve the execution flow by backtracking the caller
functions. We aim for the intersection of both execution flows. This is most likely
the CaS function. In the case of incoming network data, we have to detect the RaD
functionality. This works analogous to the identification of CaS. We propose another
approach in Chapter 6 if no RaD function is available in the application.

5.3 Information Extraction using the Collector

In this section, we describe the methods to extract the necessary information from the
detected CaS and RaD functions to pass it to the Monitor module. This feature is
supporting the use case of inspecting plaintext network data to identify intruders. The
method is describing the module Collector in iDeFEND. Our framework supports two
ways for extraction.
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Figure 5.3: Function Hooking

First we describe the Collector module using the Debugger illustrated at the bottom in
Figure 5.1. We place one BP at the entry of CaS(3) and another one inside the RaD. The
plaintext of the encrypted messages is passed to the function CaS as function parameter.
When the application halts at CaS(3), we retrieve the data from the parameters. In the
case of RaD the encrypted message is decrypted and parsed afterwards. To extract
this data we set the BP immediately after the decryption is done. When the application
halts at RaD, we extract the plaintext either from the return value or the modified input
parameters. The location of the decrypted data is already identified by the Detector
module. The next step is to pass it to the Monitor module to analyse it.

Our second method uses the Collector module inside the target application, illustrated
on the right side of the application in Figure 5.1. Instead of exits to the debugger we run
our own code inside the target process. For this purpose, we inject our own module into
the target application. Figure 5.3 shows how we use a trampoline to redirect the detected
functions to a place inside our module. To achieve this, we replace the initial prologue
of the detected functions with a jmp instruction. This redirects the program to our
code. In our additional code we save the input parameters to the original function. We
restore the original prologue of the hooked function, call it with the original parameters
and save the return value. Another thread collects the extracted data and delivers it to
the Monitor module. Our function returns during this information exchange and the
applications resumes as intended.

5.4 Packet Injection and Interception

In this section we consider the second use case and describe the method for sending
user controlled arbitrary data using the application’s CaS function. To achieve this,
we use an equal technique as described for the Collector module in Section 5.3 to load
our own module Injector into the target application. Having our module inside the
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5.5 Implementation for the x86 Architecture

target application, we build an Inter-Process Communication (IPC) to exchange data
with the module. To send arbitrary data to the server, we use this channel to pass our
plaintext network data to the Injector. As being part of the application, we call the
CaS function directly with our input as parameter and let the application do all the
necessary data modification, like splitting, encrypting and sending. As IPC channel for
communicating with CaS, we use code injection to place our precompiled calling stub
into the application. This stub will get the objects for sending directly from the new
allocated memory inside the application and call the CaS. The benefit here is, that we do
not have to care about any algorithm or the encryption key. We also do not have to care
about the states the encryption algorithm proposes as in stream ciphers. iDeFEND is
also able to intercept and modify the plaintext data transmitted over the network. We
use the same hooking technique as described for the Collector module in Section 5.3.
Each time a packet is sent or received our hooked function retrieves the data. We use
the IPC to interact with the security analyst using an external graphical user interface.
At this point, the application is halted and the tester inspects or alters the data for
testing purposes.

5.5 Implementation for the x86 Architecture

We have implemented a prototype of our framework. Our implementation was running
on a machine with an Intel Core i7-4600U CPU 2.10GHz CPU and 8GB RAM. We used
two virtual machines with Windows 7 Professional with Service Pack 1 and Ubuntu
14.04 LTS as OS. The Detector module uses a self-written debugger to place and handle
hardware BPs inside the target application. We set two hardware BPs on crypt and send
to detect CaS, RaD is detected analogously. The Collector inside the Detector module
places a BP at the entry of CaS(3) to extract the parameters given to the function and
another one inside the RaD to have access to the already decrypted data.

When the application halts at one BP, we gather the memory pointer directly from the
stack and registers. After dereferencing the pointer we extract the plaintext data out of
the memory. Since this technique stops the application for all incoming and outgoing
network packets, the application slows down. To avoid this, we implemented another
method to extract the data without incurring performance. We execute our code directly
inside the target process space. The benefit in doing so is, that we sustain effectiveness
and do not delay the target application during the information extraction. Executing
additional code in another process is easily achieved using module injection. This allows
us to provide code fragments or even functions in the target application.

Our framework supports two methods to inject additional code into the target process.
On Windows OS we use the default debugging API calls to load our Dynamic Link
Library (DLL) into the application. The second method can be used for Windows and
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Linux OSs. We scan for unused memory inside the binary, which is called code cave. We
use the code cave to insert the code snippet for loading the module and execute it by
manually setting the instruction pointer (IP) of the application [5]. After the injection of
our module, the hooks to the CaS and RaD functions are placed. Our Collector logs the
parameters and return values of the hooked functions and passes them to the Monitor
module. By default iDeFEND performs this by using a IPC with the Monitor module
running on the same system. The modules do not have to run together on the same
machine. The Collector module of iDeFEND can also be used separately. We set up
a clean test system to use the Detector module and to generate the relevant offsets for
CaS and RaD. This data is written into a config file and the Collector module loads
the offsets to attach to the productive system and start extracting the plaintext data.
iDeFEND also allows to send the gathered data from the Collector module over the
network to run the Monitor module and an IDS on a different machine.

5.6 Summary

In this chapter, we proposed iDeFEND, a framework to analyse the payload in encrypted
network communication. We have shown how we can inspect the encrypted network data
of closed source applications in a use case. Our method can automatically identify the
related functions for encrypted network communication inside applications. We made
use of the identified functions to extract plaintext network data from the application
using the Collector module. We used the collected data for further analysis in our
Monitor module to detect exploits. With iDeFEND, we can use the identified functions
to intercept and modify the current plaintext network data to change the parameters
sent to the target application without the need for reverse engineering of the encryption
algorithm and key. We showed how to use the identified functions to inject arbitrary
data and enforced an unintended data transmission.
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Chapter 6
Security Testing of Mobile Applications

Encrypting the network traffic prevents attackers from accessing sensitive data, but
cannot stop them from exploiting security flaws in the implementation to achieve crashes,
intrusion or code execution on the system. Security testing is responsible for detecting
these vulnerabilities at an early stage. However, even powerful testing frameworks are
blind when end-to-end encryption is applied and can only randomly generate or mutate
packets. Additionally, the encryption layer makes it difficult for security testers to
validate the remote program which increases the risk of missing faults. Solutions to
this issue usually require a high amount of reverse engineering, since most of the target
applications are closed source.

iDeFEND was implemented and evaluated for the x86 architecture, but nowadays most
of the networking applications are running on mobile devices like smart phones, tablets
or other embedded devices whose processors are primarily designed by ARM. Since
the framework uses hardware dependant features, its concept must be adapted to the
specifics of the new platform.

Additionally, mobile applications tend to buffer network packets in a queue before send-
ing them. This compensates bad connectivity, but results in a conflict with the current
approach of iDeFEND. Furthermore, the framework relies on the presence of a specific
wrapper function to inspect the received, unencrypted network data. In practice, this
function can be more complex than expected by the framework and requires additional
reverse engineering.

We overcome these shortcomings and extend the iDeFEND system. We provide a frame-
work that allows to use common security testing tools for encrypted network applications.
The evaluation is presented in detail in Chapter 9.

Parts of this chapter were published [65].
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6.1 Testing Applications using iDeFEND

In this section we present a use case of the iDeFEND framework and explain how it
enables security testing of encrypted network applications.

The iDeFEND framework is designed to support security testing of proprietary, closed
source software. This type of testing is referred to as black box testing, since we examine
the functionality of the programs under test without knowing details on the develop-
ment, program internals or implementation. Even though the program is a blackbox,
security analysts are still able to use powerful fuzzing tools to test for commonly known
vulnerabilities. They can, for example, test a server against blind format string attacks
as described in Chapter 4. In this scenario, a security analyst sends attack strings to
the server application, lets it interpret the data and afterwards validates the response
and thereby, the outcome of the test case. Since no information about implementation
and design of the target application is available, also the internals of the encryption are
unknown. This means, the analyst does not have information about the encryption al-
gorithm, the encryption key or encryption protocol. As a result, the test messages of the
security analyst cannot get past the encryption layer and thus, program internals cannot
be tested appropriately. Either the plaintext test message does not fulfil the specification
of the protocol which leads to rejection of the data. Or the test data is accepted but
expected to be encrypted and thereby, arbitrarily changed during decryption. Figure
6.1 illustrates this scenario with the orange arrow representing the test string data. The
diverging arrow heads symbolize the arbitrarily changed data after decryption. Since the
test data is changed, it will not trigger the functionality the tester originally intended
to.

client app server app

security analyst

encrypted channel

‘‘%n‘‘

?
?

?

Figure 6.1: Security Testing of Encrypted Communications
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6.2 Improvements of iDeFEND

If the security analyst wants to test the server application as intended, he can use
the iDeFEND framework. Using the framework for testing circumvents the issue of
encryption. It provides an interface for the security analyst to the client application
and thus, access to the encrypted channel. This way, the security analyst can pass
the plaintext test data to the framework interface which uses the client application to
encrypt and send the data. The sent data then is decrypted correctly at the server
application and eventually triggers the intended functionality. Figure 6.2 shows the flow
of the plaintext test data with the green arrow. The security analyst passes the data
to iDeFEND, which is using the wrapper function in the client application to inject the
data into the encrypted channel. Since the wrapper function is handling the encryption
and network communication, the test data is sent to the server application like any other
program internal message and the test data is decrypted at the server correctly.

client app server app

iDeFEND

security analyst

encrypted channel

‘‘%n‘‘

‘‘%n‘‘

Figure 6.2: Security Testing of Encrypted Communications with iDeFEND

6.2 Improvements of iDeFEND

In this section we discuss the limitations of the current iDeFEND approach for software
testing and present our improvements to make it applicable for a wider range of appli-
cations and test setups. We put focus on the conceptual weaknesses of the framework
and separately address the transfer to ARM in the following section 6.3.

Currently, iDeFEND implements the identification of the wrapper functions with back-
tracking. Therefore, the call graphs at successive calls to the logic function pairs are
intersected. Knowing, for example, that wrapper CaS is responsible for calling encrypt
and send, means that the call graphs of encrypt and send must have an intersection at

55



6 Security Testing of Mobile Applications

the wrapper function. This approach introduces a weakness. The wrapper functions can
only be detected when they successively call encrypt and send. For applications that
use a message queue in network communication, this assumption is never met.

Additionally, iDeFEND defined the RaD wrapper function to return the decrypted plain-
text packet. It inspects the plaintext data by hooking the function at its return instruc-
tion. This requires detailed knowledge about the structure of the RaD function and the
presence of RaD function.

In the following subsections we propose solutions to those two problems.

6.2.1 Test Data Injection into Message Queues

In general, applications can implement encrypted network traffic in two different ways.
Either data is encrypted and sent at the same point in the program, or at separate points.
If the data is encrypted at one and sent at another point, the data must be stored in any
kind of packet queue. This means that the program is encrypting the data, enqueuing
it, later dequeuing and eventually sending it. In this scenario, the wrapper function is
encrypting and enqueuing, instead of encrypting and sending data. This is an issue, since
the wrapper function EnCrypt & EnQueue (CaQ) cannot be detected with the existing
approach of iDeFEND. The current algorithm relies on knowing the addresses of both
encrypt and enqueue. To our understanding, there is no generic way of identifying the
address of such an enqueue function. This means, the current design of iDeFEND cannot
be used for security testing of applications with packet queues.

We addressed this issue and analysed the structure of such applications and came up
with a solution. Figure 6.3 illustrates the control flow graph for the wrapper function
CaQ. Usually, programs implement protocols that construct different packets for many
different purposes. This means that for each packet the wrapper function is called from
a different calling context. Independent of the packet, the wrapper function is calling
the same encryption routine. Projecting this to the call stacks at encrypt, independent
of the packet type, all call stacks share the same function frames beginning at CaQ. For
this reason, the CaQ function can be identified as soon as at least two call stacks from
different calling contexts are collected.

Our solution to the issue of identifying the CaQ function is to record all call stacks at
encrypt and intersect them to find the wrapper function. Going from top to bottom,
the last function frame that is the same for all recorded call stacks, reveals the CaQ.
In order to avoid call stacks that are a result of internal encryption, the encrypted data
is validated to be network traffic as soon as it is send. Since the data is copied to the
queue, the pointers at send and encrypt vary. We handle this problem by not saving the
pointer itself, but the whole buffer. At the validation of the data flow we simply compare
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6.2 Improvements of iDeFEND

the contents. When the data is validated to be network traffic, the corresponding call
stack at encrypt can be used for the detection of CaQ.

Debugger

CaQ

crypt send

Collector

Application

Detector

Monitor

event1 event2 event3

queue

Figure 6.3: CFG for wrapper function CaQ

6.2.2 Generic Approach for Data Inspection

The second problem of iDeFEND is that the current approach assumes the existence of
a specially structured RaD function, which is not always the case. The RaD is assumed
to return the decrypted plaintext data. iDeFEND hooks the RaD at the return and
extracts the plaintext data. However, many applications do not implement this type of
wrapper function. In general the receiving wrapper function is a loop that never returns.
As illustrated by figure 6.4, the RaD loop calls the receive function and passes the data
to a parsing unit. The parser then decrypts the data. Without knowing the structure
of the RaD, the current iDeFEND cannot inspect the plaintext data. The correct offset
and the information about the correct register or data pointer have to be known at this
point.
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6 Security Testing of Mobile Applications

We analysed this issue and came up with generic solution. We do not rely on the presence
and detection of wrapper functions. Our generic solution works for applications that only
implement the basic functions (de-)crypt, send and receive. Additionally, our improved
approach does not even rely on frame pointers.

Similar to the original approach we also break on receive and decrypt. However, we
identify data that is received from the network not by comparing the pointers of data,
but by comparing the content of input and output buffer between receive and decrypt.
The idea is the same as it was for validating data that is going to be send over the network
for the CaQ. When the decrypt function returns and we validated that the encrypted
data was received from the network previously, we extract the plaintext data from the
returned buffer. The extracted data then can be passed to the tester for inspection.

With this method we extended iDeFEND to allow the inspection of unencrypted server
responses, even though the application does not implement a wrapper function and use
frame pointers.

Debugger

RaD

receive

parse

Collector

Application

Detector

Monitor

decrypt

Figure 6.4: CFG for the function RaD
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6.3 Transfer to the ARM Architecture

6.3 Transfer to the ARM Architecture

In this section we discuss the transfer of the iDeFEND framework to the ARM platform.
We present the key differences between the x86 and ARM architecture and describe how
the concept can be applied to the new environment.

In the security testing scenario presented in 6.1, the client application is usually running
on a mobile or embedded device. Most of these devices use processors whose design is
based on the ARM architecture. The current concept of iDeFEND is only applicable
for x86 and thus, does not support ARM devices. We transferred the current concept
of iDeFEND to the ARM architecture. The key features that had to be transferred
are debugging with hardware breakpoints, data extraction at function calls, call graph
reconstruction from the stack and hooking of functions on machine code level.

6.3.1 Using Hardware Breakpoints for Debugging

Both architectures x86 and ARM implement both hardware and software breakpoints.
Hardware breakpoints offer a better performance, do not require modification of the
executable code and thus, are less obvious to detect. This makes them perfectly suited
for implementing the detector module of iDeFEND. They are limited to a small number
of breakpoints per processor, but that is unproblematic, since the specification of x86
offers up to four and ARM offers up to 16 hardware breakpoints. For the implementation
of iDeFEND at most four breakpoints are necessary to trap on the target procedures
send, receive, encrypt and decrypt.

On x86, one debug register is responsible for one breakpoint. It holds the address or
value depending on the type of the breakpoint. A shared control register is responsible
for all debug registers. It holds flags to enable, disable and configure each breakpoint.
On ARM, each hardware breakpoint consists of two registers, a control and a value
register [76]. Since iDeFEND only requires the insertion of breakpoints on instructions,
which means addresses, the breakpoint value register is simply set to one of the addresses
of the target functions. The control register has 32 bits with flags for several options
that allow, for example, to link different breakpoints, enable or disable them, specify
the privilege and exception level the breakpoint debug event is generated on. In our
use case we want to break on application level and only on address matches. Obviously,
this means that for the control register the enable flag must be set. The breakpoints
are not required to be linked and should only trigger on an address match. Removing a
breakpoint is simply done by flipping the enable-bit in the control register.
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6.3.2 Extracting Data from Procedure Calls

The next important feature that requires adaptation to the ARM architecture is the
extraction of arguments on procedure calls and thus, the extraction of data pointers
of in- and output when one of our breakpoints is triggered. Extracting the data is
necessary, for example, to detect and exclude internal encryption and to gather data
with the collector module. Since the breakpoints are placed on the prologues of the
target procedures, which means on the first instruction of the procedure, the function
parameters are still untouched and remain in the same registers and stack position as
they were passed by the calling procedure. This means, the function parameters can be
accessed based on the specification of the underlying calling convention.

ARM, in contrast to x86, defined its own procedure call standard [78] and recommended
its usage. On ARM, the first four parameters are always passed in the in the first four
registers R0 to R3. Every additional parameter is pushed to the stack. Since the Stack
Pointer register always holds the address of the top of the stack, the arguments five and
higher can be accessed by a simple read from the stack pointer register and accessing
the memory at the obtained address plus the argument offset.

It is, however, not always the case that all input and output buffers and buffer sizes
are passed as function parameters. Depending on the implementation of the target ap-
plication, the encrypt function, for example, may also use the return value to return
the address of the ciphertext buffer to the calling function. In this scenario, it is nec-
essary for the debugger to resume the application and break again on the return of the
procedure, in order to extract the return value.

On x86 return values are typically placed in the EAX register. However, breaking on
the return address of a procedure on x86 is complex, as there usually is not only one
but multiple return instructions for different control flows. That means it is necessary
to break on all returns within the procedure to be sure to get the correct return, and
then extract the return value from the register when one of them triggers. Depending
on the amount of available hardware breakpoints this is probably not feasible. On ARM
this problem is not present, since each processor has a special Link Register that always
holds the return address of the current function call. It is easy to place a breakpoint at
the return address and wait for the procedure to finish. When the breakpoint on the
return address triggers, the return value can be extracted from the R0 register.

6.3.3 Call Graph Reconstruction

In order to detect the wrapper functions CaS and RaD in memory, iDeFEND proposes
to reconstruct and intersect the call graphs for the function pairs encrypt and send,
and receive and decrypt. The call graph in this case represents the different levels of
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6.3 Transfer to the ARM Architecture
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Figure 6.5: Stack layout on ARM

procedure calls. For example, when the main method of an application calls a function
A which uses a function B and where our breakpoint was placed on B, then the call
graph at B would consist of the three procedures main, A and B (see Figure 6.5). On
the lowest layers of software, procedure calls are managed by the stack.

The stack exists on both x86 and ARM, and is split into multiple stack frames, whereas
each frame represents a procedure call level in the call graph. When a procedure is called,
a new frame is pushed to the stack, and when this procedure finishes and returns, the
frame is popped again. Based on this design, the reconstruction of the call graph boils
down to the reconstruction of stack frames from an existing stack. On x86, the unwinding
of the stack frames is quite simple. The register EBP holds the address of the current
stack frame. On every procedure call, the previous value of EBP is pushed to the stack
and EBP is updated to the current stack pointer. The reversal of this process, which is
required to unwind the stack, is as simple as reading the address from EBP to obtain the
memory address that holds the previous frame pointer. This value then can be used to
get the frame pointer before and so on until the bottom of the stack is reached.

On ARM, unwinding the stack is a more complex task. In general, the architecture
does not provide a dedicated frame pointer register. Depending on the optimization
level of the underlying compiler, stack pointers might not even be present on the stack.
This is problematic, since it is highly complex to reconstruct stack frames without having
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frame pointers, as it requires a sophisticated analysis of the stack. Nevertheless, there are
other methods that can at least reconstruct parts of the call graph, which are sufficient
to detect the wrapper functions. One idea is to use the LR register to keep track of
the procedure calls with the debugger at runtime. Since the register holds the return
address of the current procedure call, it is possible to step back to its caller with a single
breakpoint. This means, it is possible to go through the call graph backwardly, which
in our case is sufficient for the detector module. The idea is to insert breakpoints on the
four target functions send, receive, encrypt and decrypt. Consequently, the approach
to detect the wrapper functions is to wait for a break on encrypt or receive and then
step backwards until the breakpoint on send triggers or decrypt, respectively. When
this is the case, the previous break must have been inside the wrapper routine. In
case, where during this backwards stepping any other breakpoint than the expected
triggers, the call cannot originate from the wrapper function and the stepping must be
aborted. This approach requires an additional hardware breakpoint, is slower based on
potentially many application interrupts and also needs a disassembling logic to find the
start address of the wrapper functions, since we end up anywhere inside the function
when simply breaking on return addresses.

A faster and simpler to method is based on the functionality of compilers. They allow
to have a properly set up stack with frames and a dedicated frame pointer register,
depending on the configuration. This of course requires the target application to be
build from source with the correct compiler configuration. Table 6.1 illustrates the
effects of different flags, configurations and optimizations on the generation of stack
frames for the GCC compiler. The flags mapcs-frame and fno-omit-frame-pointer force
the compiler to preserve stack pointers throughout all optimization levels. The only
difference is that the pointer offsets vary. Without them, the compiler only generates
stack pointers for optimization level O0, which means no optimization. As a result, closed
source software which was compiled without additional flags but optimization enabled,
do not have stack pointers and thus, are not supporting the call graph reconstructing
described earlier. Compilations that do not specify any additional flags or optimization
have frame pointers.

Additionally, it may occur that the wrapper functions call libraries which redirect the
call to send, receive, crypt and decrypt. Normally, this should never be the case, but
when it is, all of the libraries in between must be also compiled with stack pointers
enabled.

6.3.4 Hooking Functions

In case the collector module uses module injection for the extraction of plaintext data
from the target application, function hooking becomes a requirement. The idea behind
hooking is that each time the target function is about to be called, the execution is
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6.3 Transfer to the ARM Architecture

GCC Flag
Optimization Offset to next

O0 O1 O2 O3 frame pointer (FP)

no flags X FP - 4
-mapcs-frame X X X X FP - 12
-fno-omit-frame-pointer X X X X FP - 4
-mapcs-frame

X X X X FP - 12
fno-omit-frame-pointer

Table 6.1: Presence of Stack Pointers with different Compiler Settings

redirected to a function in our injected module that contains our own implementation
of the function. This redirection of control flow is implemented on assembler level by
modifying instructions in the executable section of the application. In order to guarantee
that the hook is always executed when the function is called, the trampoline, the code
that redirects control flow, must be inserted at the beginning of a function.

On x86, the prologue of each procedure consists of three instructions that together have
a size of six bytes. Since those instructions do neither modify the program counter nor
contain program counter relative offsets, they are address independent and thus, can be
moved to a different location in memory. This means, that six bytes are available at
each function to insert, for example, a jump instruction which redirects the execution
to another function. In order to not crash the program, the function in the module
must save all registers and execute the three missing instructions before returning to the
original function. Since x86 has instructions with variable lengths, only instructions of
a size smaller or equal to six bytes can be used. If the instruction is smaller, it simply
can be padded with NOP instructions that have one byte and keep the processor idling.
Six bytes is enough to insert either a jump which is relative to the current instruction
pointer or a jump that uses an absolute address from memory. For relative jumps, the
code that is placing the hook also has to calculate the correct relative offsets at runtime.
Using the call instruction as a trampoline is a bit more difficult, since it does not only
branch but also push the return address to the stack and thus, complicates, for example,
the access of function parameters.

On ARM, the function hooking must be handled differently, mainly based on the heavily
varying instruction sets. Here, instructions have a fixed length of four bytes, which makes
substitution of instructions simple. The prologue of procedures, however, is not always
the same as it is on x86. The first instruction can be memory address dependent or
independent. In the worst case the first instruction is address dependent and cannot be
moved, as it contains a program counter relative instruction, which frequently is the case
in loads from constant pools. There, hooking is not possible. In the other case, where
the instruction is a move or a push to the stack, the instruction is address independent
and can be moved. ARM has an unconditional branch instruction that is suitable to
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insert hooks, as it jumps to a memory address relative to the current program counter.
The range, however, is limited to an offset of 26 bit, which can be problematic in many
scenarios. On Linux, for example, the code of the base module, the application itself, is
mapped to the lowest addresses in memory. Shared objects as the injected module are
mapped to the highest addresses. This results into a gap, which is significantly larger
than the 26 bit can specify.

Another possibility to branch, and solution to the range problem, is to directly modify
the program counter. Here, the limitations are that the prologue offers only space for one
instruction. ARM does not provide 32 bit constant moves, but only an instruction that
loads a 32 bit value from memory to a register, relative to the current program counter.
This means, it is possible to substitute the first instruction of the target procedure with
this load and perform the branch. The memory location that holds the address must be
close to the load instruction and can only be safely placed on dead code. Since compilers
always use multiple bytes of padding between two procedures in memory, the padding
would be a good location to place the address.

6.4 Implementation

We implemented the improved iDeFEND framework on an ARM device that is running
a Linux operating system. Choosing Linux for this task seemed reasonable, as most
of the target ARM devices like smart phones, tablets or embedded boards are either
running Linux or Android, which is also based on the Linux Kernel. We decided to use
a Raspberry Pi 2 embedded board that is equipped with a 900MHz quad core ARM
Cortex-A7 processor and 1GB RAM. It uses the Linux distribution Raspbian 4.1.13-v7
as operating system.

We split the implementation into two parts. First we present the detector module,
followed by the implementation of the collector module.

6.4.1 The Detector Module

The base module of iDeFEND, the detector, is a debugger which is specifically geared
towards detecting the addresses of the CaS and RaD functions in the target, remote
program. On Linux, application level debugging is provided by an API called ptrace. It
has a very generic interface that abstracts the access to the hardware. Since ptrace can
only attach to single threads, and that we want to debug the whole processes, we attach
it to every thread of our target process. In order to get the required interrupts on send,
receive, encrypt and decrypt, we insert hardware breakpoints on these four functions.
This is implemented with a ptrace call that writes to the breakpoint value and control
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registers. Since the Raspberry 2 provides five hardware breakpoints, we insert all four
breakpoints at once. The control registers are set to 0x1E1 and the value registers to
the address of the target functions. The control register value is composed by the enable
flag and the flag to only break on an address match.

After attaching to the process and inserting all hardware breakpoints, the debugger
iterates through a loop that waits for debug events. This is implemented with an API
call to waitpid with the WALL flag set, which results into a blocking wait for any debug
event from any thread of the remote process. When a breakpoint is hit, the remote
program is analysed and resumed afterwards. Since breakpoint exceptions force the
processor to not increment the program counter, simply resuming the paused thread
would again trigger the same breakpoint. Therefore, we move the breakpoint to the
next instruction, which on ARM is always four bytes later, resume and wait for the
next break to move the breakpoint back to its original location. This single step only
leads to correct program behaviour when the skipped instruction is not a branch or
program counter modifying operation. This is guaranteed, as we only break on function
prologues.

6.4.1.1 Finding addresses of Send and Receive

In order to insert the breakpoints at the correct locations, the virtual addresses of the
target functions are required. iDeFEND expects that the encrypt and decrypt function
addresses are already given by either having access to the source code or an external
detection tool. The remaining two functions send and receive will eventually be exported
functions of the Linux system library. This is based on the fact that network commu-
nication is also abstracted by the operating system and thereby, applications will, at
least at the last instance of the call, use the system library. On Windows or Linux on
x86, system modules are mapped to the same address for every process. As a result, the
debugger can simply get the function addresses by resolving the addresses of the sym-
bols in its own process. This convenience, however, is not existing on Linux on ARM.
Getting the addresses in the debugged process memory space eventually boils down to
determining the base address of the loaded kernel module in the remote process and
extracting the function offsets inside the module binary on disk.

On Linux every process has its own info structure placed in the /proc folder. It includes
a mapping of all currently loaded modules of the process. Searching for the name of
the shared object that exports the send and receive functions allows to retrieve its base
address in memory space of the process. It also has a reference to the location of the
binary on the file system. Therefore, we use the nm utility application that gives us
the offsets for function names in a binary file. Based on the fact that Linux maps the
whole unchanged binary file to memory, the address of the send and receive functions in
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process memory space can be simply calculated by adding the retrieved offsets from nm
in the binary and the base address of the module in memory from the /proc folder.

6.4.1.2 Detecting Successive Calls to Function Pairs and Locating the Wrapper
Functions

When the debugger stops at a breakpoint, it must verify that the call originates from one
of the wrapper functions CaS or RaD. We implemented this by analysing the state of the
remote program and excluding the case of internal encryption. Data is considered to be
sent over the network, when two successive calls to the function pairs encrypt and send,
and receive and decrypt are observed, which use the same data pointers. Therefore,
the implementation saves the function arguments at breaks of encrypt and receive, and
verify them when breakpoints on send and decrypt are hit. Since the syntax of all target
functions is known, the approach of section 6.3.2 can be used to extract the function
arguments from the registers and the stack. When a function uses a return value for one
of the parameters, the debugger additionally breaks on the return address of encrypt
and receive to extract the arguments there.

For the second type of validation, when trying to detect the CaQ, the implementation
copies the whole buffer at every encryption call. We track the data per thread, together
with a time stamp, and evaluate it at interrupts on send. We free the copied data either
after it is sent or after a certain time without being sent. This is necessary, in case data
is copied from an internal encryption and otherwise stay infinitely long in memory. We
chose 15 seconds for the time out threshold.

Only when this verification is successful, the detector module has to intersect the call
graphs in order to detect the address of the wrapper functions. The call graph at runtime
can be obtained by reconstructing the stack frames. We implemented the reconstruction
for applications that are compiled with the -mapcs-frame, described in table 6.1. Our
implementation gets the address of the first stack frame from the frame pointer register.
The pointer to the next frame pointer is stored at the retrieved address minus twelve.
From there the next frame pointer is again in memory at the current frame pointer minus
twelve. When all stack frames are reconstructed, the two call graphs can be intersected
by searching for the first frame that appears in both call graphs and hence, has the same
previous frame pointer.

6.4.2 The Collector Module

The collector module is responsible for extracting the plaintext data from the commu-
nication as soon as the detector provides the addresses for the wrapper functions. The
extraction with the debugger simply uses the argument extraction from section 6.3.2.
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As soon as it retrieved the pointers from the arguments of the wrapper functions, the
data can be read, modified and so on. A faster implementation uses code injection and
hooks the wrapper functions. Therefore, the module, a shared object, must be loaded
into the remote process with the dynamic loader of Linux.

On a program start up Linux uses a dynamic link loader that maps all required shared
objects to memory before the process is actually run. The loader itself is a shared
library of the kernel and provides an API call dlopen that allows to load objects even
at runtime. Executing this method in the remote process requires, similar to detecting
send and receive, the base address of the loader object in process memory and the offset
in the binary file on disk. Since the debugger cannot directly execute functions in the
remote program, the call must be implemented by controlling the program counter and
all registers of the remote process.

At first a backup copy of all register values must be created, in order to not crash the
program after finishing. Afterwards, a string that contains the path and file name of
the to-be-injected module is pushed to the stack and the function arguments, namely
the stack pointer and the value 1, must be stored in the registers R0 and R1. Then,
the program counter is set to the address of the loader function and the link register
which holds the return address is set to zero. This way, the debugger traps with a null
pointer exception when the remote process tries to return to address zero after finishing
loading. Eventually, the backup for the registers can be applied and the injection is
completed.

The last step to fully integrate the loaded module into the remote process is to place the
hooks at the wrapper functions and detour the execution to the injected implementation.
Based on the introduction to hooking on ARM in section 6.3.4, the implementation
substitutes the first instruction by a memory load to the program counter, which results
into the branch.

6.5 Summary

With the rising demand for confidentiality and thus, encryption in consumer level and
commercial software, security testing faces new challenges. Currently, existing testing
tools only have poor or no support at all for encrypted network communications. That
is precisely the reason why we proposed a generic solution to this issue by using the
iDeFEND framework. The framework makes the encryption transparent and thereby,
does not violate the security of end-to-end encryption. Since iDeFEND cannot be used on
the ARM platform and nowadays many network applications are from the mobile sector
and thus, use ARM processors, we transferred it to the ARM architecture. Additionally,
we pointed out the limitations of the current framework and introduced improvements
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to it. Our novel methods provide a more generic approach for security testing. We
introduced a method that allows to inject test data into network applications that use
message queues. Our solution detects and hooks the function that is responsible for
encrypting and enqueuing packets.

Furthermore, we introduced a generic method to inspect the incoming unencrypted
network data. Our method does not rely on the presence of a RaD wrapper function or
even frame pointers.

With the extended iDeFEND framework we provide an interface to the encrypted chan-
nel of an application that allows already existing testing tools to work as intended, also
on the ARM platform. Our improved framework decouples the testing of software from
the actual encryption.
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Chapter 7
Protection using Virtual Machine
Introspection

Regular intrusion incidents emphasize that protection against network attacks remains
a great challenge. Thus, Intrusion Detection Systems(IDSs) are indispensable in modern
infrastructures. While state of the art Network Intrusion Detection and Analysis Sys-
tems focus on suspicious traffic, they lack an effective analysis of end-to-end encrypted
communication activity. Contemporary Host-based IDSs complement traffic analysis by
an additional fine-grained investigation on the host, yet, they are prone to local attacks.
To approach both limitations, we combine the best of both worlds, by introducing an
analysis system that operates from a level below the operating system. In this chapter,
we present a bridge for IDSs which relies on virtualization extensions of modern Intel
microarchitectures. This allows us to achieve an analysis of encrypted end-to-end com-
munication channels and protect our framework at the same time. As such, we create
an isolated analysis system that is resilient to local attacks. More precisely, we employ
Virtual Machine Introspection (VMI) to effectively engage and hide hardware break-
points from the guest to analyse decrypted traffic without disturbing the overall guest
operation.

VMI grants us the ability to keep control over the target system, even if it is compro-
mised. Further, in order to intercept the guest system, we engage and hide hardware
breakpoints by leveraging the system’s ability to intercept accesses to debug registers.
To prevent potential exposures, we apply emulation techniques satisfying requests to the
guest’s debug registers. There is a plethora of previous work within the area of VMI
providing stealthy guest system monitoring [73] [92] [44]. While implementing similar
approaches, we employ VMI techniques as a vehicle for protecting our framework.

The evaluation is presented in detail in Chapter 9.
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7.1 Attacks on Host-based Intrusion Detection Systems

A Host based Intrusion Detection System (HIDS) resides on the host they should protect.
Hence, rootkits and attacks, which compromised the host machine are able to detect
the presence of HIDSs, as their functionality and security mechanisms are commonly
known. After compromising a host, malicious software can evade the IDS by disguising
its activity to avoid pattern detection mechanisms of the system. If evasion is not an
option, malicious code interferes with the IDS components to prevent it from detecting
the malicious software in the first place or even altering the reporting mechanism to its
advantage, e.g. the malware is not listed in the reports. [44]

Specifically the iDeFEND framework works like a HIDS and a compromised system can
deactivate the security mechanisms. Further rootkits can also open additional attack
surfaces by weakening the security of the host they managed to compromise. This gives
follow-up attacks the possibility to infiltrate the machine as well. The security gained
by iDeFEND relies on an uncompromised target machine, as it will only protect against
attacks incoming from the encrypted data of the target application. If an attack gets
passed the framework either through the specific application where iDeFEND is applied
on or through the communication of another application on the system, the machine has
to be seen as compromised. At this point the attacker has several options to counter
the security solution by using the following weaknesses.

• (P1) Analysing the machine status can detect the presence of iDeFEND.

• (P2) iDeFEND can be deactivated, after detecting its presence.

The possibilities to detect and react to iDeFEND depend on the method used for data
collection. As iDeFEND uses the functionality of a debugger, which is attached to the
target application, the attacker can use debugger detection techniques to check for the
presence of the framework. To detect the presence of a debugger for a given application
(P1), the attacker may use several anti-debugging techniques [17]. As iDeFEND does
not protect itself against these detection mechanisms, the attacker may then react to
the presence of the debugger and can assume that a debugger is used for analysis. From
this he can derive that iDeFEND is being applied as a security framework. On the other
hand, the attacker may disable iDeFEND to allow further attacks to come through the
channel, which should be observed by iDeFEND. Even if the presence of the security
framework is not detected, the attacker can still assume the presence of iDeFEND. He
may attack the host by revert changes, performed by the original iDeFEND framework,
such as clearing breakpoints or restoring the programs integrity. In detail he can disable
the breakpoints set by iDeFEND (P2). This can be performed by modifying or clearing
the debug register content, which will move or remove the active breakpoint. Further
the flags for used hardware breakpoints can be cleared on using the DR7 on the x86
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architecture. As iDeFEND does not check the presence of its breakpoints periodically,
the framework will not be able to react to the changes within the target process.

The second method used in iDeFEND to collect unencrypted data for analysis is using
hooks on the Crypt and Send (CaS) and Receive and Decrypt (RaD) function. Using
hooks or even software breakpoints to extract data from the target application will
violate the code integrity. The attacker may have access to the original binaries and
therefore identify hooks on functions in the application by analysing the byte signature
of the binary (P1). When the presence of iDeFEND is detected, the attacker may replace
the function hook with the original instructions and deactivate the framework this way
(P2).

7.2 Hypervisor Extension

In this section we present a design choice, which allows us to introduce security mech-
anisms to protect the iDeFEND framework against attacks described in the previous
section. As this is an extension to the iDeFEND framework, we are using the same
structure. Therefore we will describe the Detector, Collector and Monitor modules with
their upgrades to accomplish their original purpose.

7.2.1 Framework Design

We are using Xen as a virtualization environment. The Virtual Machines(VMs) man-
aged by the hypervisor are also referred to as domains. The privileged domain, named
Dom0, controls other, unprivileged guest domains and we make use of VMI techniques
to interact with our target guest. The goal of VMI is to view the state of a VM from
outside of the guest and take control over the execution flow of the guest [44]. This
includes the ability to read and write arbitrary memory, register content, pause and
resume the target machine. VMI also allows to register events for a given guest machine
and handles them from without the VM. An arbitrary guest domain without privileges
is called DomU. The application, whose encrypted network traffic we want to extract for
analysis is located inside such a DomU machine. The modules of our security framework
are set up in Dom0. We use a hardware virtual machine (HVM) to support Linux and
Windows Operating Systems(OSs). We are setting up native debugging functionalities
for our target VM over VMI. This way we are isolated from the target system and there-
fore secure from influence of a compromised DomU. Figure 7.1 depicts the framework
used to detect intruders over encrypted channels using VMI. The figure shows the setup
of the modules, as well as the basic architecture provided by Xen.
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Figure 7.1: Hypervisor Extension

The Detector module in Dom0 is again responsible for identifying the CaS and RaD
functions of our target application and retrieving their Virtual Function Address (VFA).
Detecting the relevant VFAs using the Detector can also be performed in a closed and
safe environment, as the retrieved information has to be known once, to make use of the
whole framework. As the crypt and send addresses are known from iDeFEND, we make
use of these addresses. We install hardware breakpoints on the two functions using VMI.
When the breakpoints get hit we can extract the stack from the target application to our
Dom0. Here we can reconstruct both stacks, by applying guest OS meta information.
After reconstructing the stacks for the hit breakpoints we can intersect the stack traces
to find the CaS function and it’s VFA. The important part about these functions is
that they receive the transmitted data before any other function and have access to the
plain text message as well. For CaS the parameters of the function will provide the
plain text. On the other side the RaD function will receive encrypted network traffic
and decrypt it. Identifying the VFAs of CaS and RaD of our target application allows
us to set up the Collector correctly. The Collector module is described in its detail
in the following section. The Collector makes use of the VFAs of the identified CaS
and RaD functions. The hooking techniques described by iDeFEND are not needed for
the hypervisor extension, as they were only used for security testing. We can extract
plaintext data or modify the data as well just by making use of breakpoints at CaS
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and RaD. We place protected hardware breakpoints at these locations. By protected we
mean, that the OS is

• unable to read the debug register contents set by our framework.

• able to modify debug register values, without affecting the set breakpoints.

Using the placed breakpoints, we are able to extract the transmitted plaintext data
from the application memory to the isolated Dom0, where our Collector is located.
He passes the data on to the Monitor, which provides an interface for an IDS. This
design choice allows us to apply the Monitor similarly as in the original iDeFEND. The
monitor can be located within Dom0 or on any uncompromised additional DomU. The
Monitor allows to take actions on the result of the analysis of the provided plaintext
data by the IDS. These actions include pausing the VM for further inspection or even
remove the attack data inside the target application. There are three options for running
the Monitor module. These possibilities include running the Monitor on Dom0, another
guest VM or outsource it to another machine using the network. Running the Monitor on
Dom0 allows fast communication between the Collector and the Monitor as they use
Inter-Process Communication (IPC) for data exchange. Setting up the Monitor on a
separate DomU has the advantage of being really fast to set up, if the domain has
been configured correctly once, as it can be ported to different hosts easily. Using the
Monitor from a remote location may be slower than the previous two approaches, as the
network presents a bottle-neck for the data exchange. However, using a remote location
for the Monitor can be helpful for private networks, to use a shared IDS, without the
need to setting it up on several machines.

7.2.2 Virtualized Collector

The Collector module is set up in Dom0, to be isolated from the target VM through
virtualization techniques, as it runs on in a different domain then the target application
of the framework. The constraint of isolation required for virtualized environments,
defines that a guest machine, in our case any DomU may not influence the state or the
execution of any other domain. The Collector will install protected hardware breakpoints
inside the target application on a given DomU using VMI. The attacker can detect the
virtualisation but not if the iDeFEND is in use, which partly solves (P1). This will be
discussed in detail in Chapter 9. The protected hardware breakpoints we use, cannot be
read from the guest OS, as we install a debug register access event, which allows us to
change the content of the debug registers, before the actual read instruction is executed
by the guest. Every time an access to the debug registers is required, the hypervisor will
notify our framework, so we can modify the content or return fake values. When the
breakpoint location gets executed, the collector gets notified through an event channel.
At this point the target application is paused, as is the VM, and the Collector may use
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VMI to extract the unencrypted network data from the memory of the process and pass
it to the monitor for analysis. Step-by-step the Collector is performing the following
operations.

1. Install memory event

2. Memory event allows to install hardware breakpoints, enable debug register access
event

3. Debug register access event restores expected debug register content, before the
OS access and enables the memory event again

4. Hardware breakpoint executed, allows us to extract plaintext data from the target
application

First, we need to install the hardware breakpoints for the target application. As the
target VM gets debugged in its running state, we have to make sure to set up the
breakpoints for the correct process, as the target VM executes different tasks constantly.
To modify the context of a process, we can use the hypercall API of Xen. However this
function only allows to modify the context of the currently executing process. Therefore
we install an event, which gets triggered if the memory page, where our breakpoint
should reside in, gets executed. Such a memory event set up through VMI uses the page
fault on execution to trap the event to the hypervisor. If the memory page is about to get
executed we get notified in our Collector module residing in Dom0 through a VMExit.
At this point we may modify the debug registers of the target VM as we are paused
in the context of the correct process. Therefore we set up the breakpoint addresses in
the DR0-3 registers and enable the breakpoints by setting the flags accordingly in DR7.
We delete the memory event after its first execution, as it is no longer needed. As we
protect the content of the debug registers from the guest OS we also enable the debug
register access flag on DR7. This way we force the guest OS to throw a debug interrupt
when the debug registers are accessed, allowing us to react to the access. On a debug
register access we want to restore their content as expected by the guest. The expected
values for the guest can be read from the debug registers before installing our hardware
breakpoints in our memory event. This way we inject arbitrary values to the debug
registers, before the guest VM performs the read instruction, solving the first constraint
for a protected breakpoint.

In order to guarantee the execution of our breakpoints inside the target application,
we also set up the one-time memory execute event again, as it was used for the initial
installation of the hardware breakpoints. When the memory event gets triggered again,
we can set up our breakpoints again, before the actual breakpoint address is executed.
This ensures that our framework cannot be deactivated from the guest OS. This solves
(P2) described in Section 7.1 and grants the second property of breakpoint protection.
As the memory event gets hit again we can extract the expected values of the guest OS
for the debug registers and use them in further circles on, as well as set up our hardware
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breakpoints as intended. When our hardware breakpoint finally gets hit in the execution
of the target application, we can read the actual unencrypted plaintext from the process
memory and pass it on to the Monitor module. As we want to stay undetected by a
compromised VM we also have to allow the VM to attach its own debugger to the same
application as we do. The location of the guest hardware breakpoints can be extracted
at the point our memory event gets triggered. We install memory events for the guest
breakpoints as well, allowing us to hold a maximum of four hardware breakpoints per
memory page.

7.3 Implementation

In this section we are going to explain our proof of concept implementation of our
framework using VMI.

7.3.1 Implementation on x86

We implemented our framework on the Virtual Machine Monitor (VMM) Xen [10] 4.6.1
as a virtualization environment and we make use of LibVMI (Release 0.12) [91] as a VMI
framework. Dom0 is hosted with Ubuntu 16.06 64-bit, while our guest VM is running
Windows 7 Enterprise 64-bit with Service Pack 1 and one VCPU. The host machine uses
an Intel Core i5-4670 CPU with 3.40GHz. LibVMI allows us to interact with the target
guest application from outside of the VM. Using the framework we may set up callbacks
for specific events inside the target OS and modify the state of the VM. We are using a
small Xen modification, which allows the interrupt event of LibVMI to react to debug
interrupts as well, which are thrown by hardware breakpoints. We use a vmi event t with
the type VMI EVENT INTERRUPT to install a callback to react to debug interrupts
inside the target guest. Using LibVMI we may also set up a vmi event t and configure it
to represent our on-memory-page-execute as presented in the design section. We can do
so by using the macro SETUP MEM EVENT and specify the address of our hardware
breakpoint and use VMI MEMEVENT PAGE as granularity. In order for the event to
get triggered on execute we set the conditional parameter to VMI MEMACCESS X. By
performing these steps we can install a callback, which will then get triggered if the page
where the breakpoint is located in gets executed. The event will get registered for the
guest VM after we use the vmi register event call and pass our prepared memory event
as a parameter. When the callback installed by our memory event gets triggered we
need to take care of several things.

First we want to extract the expected debug register values from the guest to present the
correct values, if the debug registers get accessed from within the VM. As we are in the
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callback, which got triggered by an execution of our target process we can inspect the
process’ registers using the LibVMI function vmi get vcpureg. We save the content of the
registers to an array for later use and proceed by setting up the hardware breakpoints
we want to have installed using vmi set vcpureg. This function allows to change the
value of a register of the current process context. We also change enable bit 13 of the
DR7 register to get notified about debug register accesses in our callback for a debug
interrupt. We only need the memory event once to set up the correct values for the
debug register. This is why we delete the memory as a last step of the callback using
vmi clear event. At this point we wait for the target VM to execute either the instruction
with our breakpoint or to check the register values for suspicious content. In both cases
the callback of our interrupt event will be executed and allow us to react accordingly.
If the breakpoint gets hit during the process execution, we want to extract the relevant
data from the target process. We can read the content of a virtual address of the
target process using vmi read va. This way we can extract the plaintext data from the
parameters or the return value and pass it on to the Monitor for analysis. After the
data has been successfully extracted and passed on, we can wait for the response from
the responsible IDS and continue the execution if there was no attack. If an attack
got detected we may overwrite the data inside the target application with zeroes using
vmi write va. To keep the breakpoint enabled and jump over the interrupt handler of
the OS which follows after the hit hardware breakpoint, we move the breakpoint by
the addresses instruction length. When this moved breakpoint gets triggered, we may
install the original breakpoint again. If there is a debug register access about to happen,
we want to write back the expected values to the VM and set up our memory event
again, in order to guarantee the reestablishment of our hardware breakpoints before
their instruction gets executed.

7.3.2 Implementation on ARM

We also implemented the framework on a Cubieboard3 [30], featuring an Allwinner
Tech A20 dual-core CPU [2]. This processor contains two ARM Cortex-A7 [6] cores,
implementing virtualization extensions and debug logic which provides means for setting
hardware breakpoints. We used Ubuntu Utopic on a v3.16 Linux Kernel, modified by
Thomas Leonhard[74] for the privileged domain and an Ubuntu Trusty on a v4.1 Stock
Linux Kernel, with the CONFIG PID IN CONTEXTIDR flag enabled for the unprivileged
domain, on which the target application runs. In order to separate and isolate the
iDeFEND system from the observation target, we used the same hypervisor as for x86,
namely XEN. As the latest release of the hypervisor (v4.8) does not implement access
to or virtualization of ARM debug logic, yet, a patch for XEN has been developed. This
patch extends the XEN API by configuration functions for ARM debug registers and
event handling mechanisms. In order to make use of the extended API, another patch
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for the Virtual Machine Introspection library libVMI [117] has been implemented, which
provides a more abstract interface to the new functionality.

Our implementation for the ARM architecture differs in certain points. While we also
use libVMI in order to inspect the monitored guest, configure breakpoints and handle
occurring events, the employed strategy and functions differ. In order to set HWBPs
on ARM, register pairs in the privileged CP14 register group need to be configured.
Access to this registers is only possible from within the hypervisor code in our setup.
As the most recent XEN hypervisor version 4.8 doesn’t export functions through which
these registers can be set, we patched libXenControl and the hypervisor itself to add the
required functionality. The applied patch was subsequently extended to libVMI, such
that the new XEN functions can be employed, using the libVMI API. Thus, in order
to set hardware breakpoints, we use our newly introduced functions xc cp14 {getreg,
setreg}. In contrary to the x86 solution, our hardware breakpoints hit on a match
with one specific code address, committed for execution. As the latest version of the hy-
pervisor didn’t provide functionality to handle incoming debug exceptions on ARM, we
extended the hypervisor patch to notify libVMI and make the current breakpoint context
available. This required new handler functions to interpret incoming debug exceptions,
which send a notification over the already existing XEN event channel mechanisms, in
order to inform libVMI. With the introduced changes, we are able to configure hard-
ware breakpoints and register callbacks in libVMI for debug events. Extraction of the
observation data works analogous to the x86 approach.

7.4 Discussion

In this section we discuss the protection mechanism of our proposed framework from
a technical perspective. The evaluation regarding the high level attacks against our
framework and the experimental results are presented in Chapter 9.

By using the presented design we get several advantages in security when compared to
the usage of a userspace debugger. First of all the OS of the guest does not get notified
of the presence of a debugger, as we do not modify any process blocks or similar to
state, that a debugger is present for the application. This implies that anti-debugging
techniques, which rely on such additional process information to detect the presence of
a debugger will not detect the presence of our framework. Also this property allows the
VM to attach a debugger to the process, without getting notified that it is already being
debugged.

The only way to detect the presence of our framework (P1) is to inspect the content of
the debug registers of the application’s context. This requires accessing the debug reg-
isters. In relation to the implementation of a debugger, using the Debug Architecture of
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the hypervisor, some security considerations have to be given. The employed debug ar-
chitecture provides a variety of ways on how to handle an occurring debug exception and
protect the handling process. In this work, we developed a debugger component, resid-
ing in the XEN hypervisor. In this section we will refer to this component as Hypervisor
Debug Component (HDC). We need to ensure the safe execution of debug exception
handling and prevent unauthorized manipulation to means of debugging control. Thus
the HDC needs to fully observe and control accesses to all registers, changing the state
of the debug logic.

In order to put a hypervisor in full control of the hardware, the Architecture provides
means of trapping important events, such as accesses to certain registers, occurring
exceptions or interrupts, into the hypervisor. Whenever such an important event is
encountered, the execution flow may be configured to be rerouted to hypervisor code.
The hypervisor may then decide to handle the event itself and hide it from an overlying
operating system, thus ultimately exercising full control over all overlying components.
This general strategy can also be applied to retain control over the debug logic.

On the x86 architecture, we use bit 13 of the DR7 register to get notified by the guest
VM that the next instruction will access one of the debug registers. We may alter the
content of the debug registers to the VM’s expectation and continue the execution of
the VM. The guest will therefore read the altered debug registers and will not be able
to actually read the values set by us. We reenable the hardware breakpoints using our
memory event later on. This way we guarantee the execution (P2) of our breakpoints
and keeping the protection of our breakpoints intact.

The ARMv7-A Architecture is different. By configuring the HDCR.{TDRA, TDOSA,
TDA} bits of the Hyp Debug Configuration Register (HDCR), all valid non-secure ac-
cesses to relevant debug registers are trapped into the hypervisor. Non-Secure and se-
cure, in this context, refer to a security state, introduced by the Security Extensions [6]
of the ARMv7-A Architecture. While conventional userspace and operating system code
is executed in non-secure state, the secure state is used for implementations of a Trusted
Execution Environment (TEE). The HDCR configuration introduced above only traps
non-secure accesses. Since the secure state is defined as trusted environment, we we do
not expect any malicious activity there.

With the introduced configuration of HDCR and DR7 all access and manipulation at-
tempts of required debug registers are trapped to the hypervisor. Thus, providing full
control over the debug logic to our HDC.
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7.5 Summary

In this chapter we discussed the problems and attack surface, which is present in modern
HIDSs. In the virtualized environment we can make sure that the actual attack surface
of the HIDSs is outsourced to the hypervisor level. In detail we showed how we ported
the framework iDeFEND to the hypervisor level, granting us the possibility to inspect
incoming encrypted network traffic for attacks. By using protected hardware breakpoints
we can extract the necessary data as soon as the plaintext of the message is available
inside the target application. After the data has been collected, the plaintext can be
analysed for attacks by a generic IDS.
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Chapter 8
Function Identification

Reverse engineering is a challenging task, requiring time and experience. Analysing
given binary executables can be used to find code blocks with certain properties, pos-
sible bottlenecks and vulnerable spots of a system or to identify components and their
relationships. In order to accomplish this, reverse engineers are forced to look into the
assembly of the binaries, since most of the software in use is closed-source.

The main goal of reverse engineering is to determine the functionality of a given binary
or to locate a specific functionality inside the executable. This allows modifications
or to bypass certain functionality. Usually the gained information about the software
behaviour and structure resides in the reverse engineers mind. Therefore, mastering
reverse engineering takes a lot of time and is labour-intensive even for an experienced
reverse engineer, it is a costly activity.

There exist tools for static as well as for dynamic analysis of executables to assist the
reverse engineer. Static tools can be disassemblers, string searching tools, signature
comparing utilities and others. IDA Pro [56] is an example for a well-known static
analysis tool. It is a disassembler, which includes function name resolving of known API-
calls and allows the analyst to view the assembly in a flow chart, which is representing
the branches of the code.

Dynamic analysis is mainly performed using debuggers, allowing the reverse engineer to
inspect the executed code at runtime, set breakpoints and look at the content of registers
at a given execution. Furthermore binaries can be analysed during execution with the
help of binary instrumentation, allowing the analyst to dynamically insert additional
code into the execution flow of the application. Using dynamic analysis it is possible to
extract variables, memory accesses, function calls and more during execution. Also with
the already existing tools the reverse engineering process takes a considerable amount
of time. Identifying certain functionality requires experience and patience.
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We developed a framework to achieve progress in this problem. We use Dynamic Binary
Instrumentation (DBI) as base to collect all executed functions, identified by their Vir-
tual Function Address (VFA), inside the target application. The gathered information is
saved to a database and is processed by using set operations on the data and represented
using our framework. Using graphical visualisation techniques we display the data in a
manner to the reverse engineer so that he can deduce the applications behaviour and
structure, thus increasing the efficiency of his reverse engineering process.

Parts of this chapter were published [67].

8.1 Related Work

Different researchers try to develop tools to make the reverse engineering process more
efficient and to speed it up. Quist et al. [96] presented a method using dynamic analysis
to visually represent the execution flow of a program (focusing on malware), making
the process of reverse engineering easier. They use the Ether hypervisor framework
to monitor the execution of the target application and display the data to the reverse
engineer in a processed manner highlighting the often executed portions. A visual reverse
engineering system was already presented by Conti et al. [25] indicating that visual
utilities speed up the work of analysts noticeably. Conti et al. present a way to analyse
binary files, allowing the reverse engineer to gain insight into unfamiliar formats and
structures.

An overview over the existing software visualisation tools is given by Diehl [32]. For
example, Rigi [63] displays program structure and interaction. Rigi allows to analyse
and document large software systems, when there the source code is available. The
information about the system’s evolution is visualised as directed graph to represent
software modules. SeeSoft [37] can be used to visually represent the evolution of software
source code. Eick et al. focused heavily on the software engineering part such as version
control and static structure analysis, but also use profiling as a dynamic analysis to
round up Seesoft. Reniers et al. [97] present their tool for software maintenance. The
toolset is designed to keep track of software structure, metrics and code duplicates.
These informations are represented visually. Trinius et al. [112] use visual analysis to
quickly identify malware samples and classify the samples according to their behaviour
as illustrated by the tool with treemaps and thread graphs. To do so they use a sandbox
report and visualise it to the analyst. Using this approach it simplifies the analyst’s work
of classifying new malware samples into the families of already known malware.

Previous work on function identification focused on identifying cryptographic algorithms
using dynamic analysis or static analysis of the binary. Wang et al. [116] try to identify
cryptographic functionality using DBI. The assumption about the programs behaviour
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that the message is processed after the decryption causes problems when it comes to
identifying block ciphers, because they only get processed at the end of the message.
Caballero et al. [22] extend the method introduced by Wang et al. and scan for repeatedly
called functions. This approach is able to identify more algorithmic procedures, but also
leads to false positives in loop-intensive applications. The proposed method of Caballero
et al. was further developed by Gröbert et al. [51], who introduced a divide-and-conquer
algorithm, analysing parts of the target application’s source and merging them back
together later on.

DBI is already widely used for performance analysis of all kinds like callgrind [83] for
call graphs and cache performance analysis and Dr. Memory [19] to find memory
leaks. In general there are different approaches to do DBI. One way is probe-based
like Dyninst [21]. In this approach, so called trampolines are added in the executable
and when they are executed they jump to the instrumentation instructions. This makes
the code not transparent because the original instructions are overwritten with tram-
polines and are no more in the memory. A program can notice this and so prohibit
the reverse engineering. But as an advantage trampolines can be executed fast without
much overhead. The more flexible approach for analysis is the jit-based approach which
is used by frameworks like DynamoRIO, Pintool and Valgrind [18] [27] [83]. It means
that just before a block of instructions of the original application is executed, it is anal-
ysed and new instructions are dynamically inserted. This means that the main work of
the frameworks is done during runtime of the analysed application.

Determining relevant functions and parts is the main task of the reverse engineer. Our
framework is providing the reverse engineer additional analysis functionality to visualise
and identify interesting functions. We provide reverse engineers a tool, which allows to
identify functions of their interest and does not rely on the behaviour of the implemented
algorithms inside the binary application. Instead, we use program state classifications
to filter the specific Virtual Function Addresses (VFAs) with the interaction of the
analyst.

8.2 Use Case Scenario

First, we describe a concrete use case to explain the whole process of function identifi-
cation in detail. In the following sections we will refer to this example.

We have an analyst interested in the SSH connect function in the target of evaluation.
To have a ground truth we choose the open source application PUTTY [107], which is a
well-known application as SSH client. At the beginning, the analyst has no knowledge
about the structure of the applications code. The target application is a black box
system.
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As first step, the analyst will get familiar with the Target Of Evaluation (TOE) from
a user perspective, but no expert knowledge about security or reverse engineering is
required at this point. Knowing the features, the analyst will start the TOE using our
framework and will be asked to enter a label name for the next task he want to execute.
A label describes the high level state of the application for the next time frame. Every
time the analyst is changing his action, he also have to change the current label.

Some examples for a label could be Open File, Enter Data or Connect. The analyst
decides how detailed the labels should be. Using labels like Entering IP-Address of
remote server instead of User input, makes sense if the analyst want to distinguish
between the different user inputs. To keep the example simple, we use only three labels
in this chapter.

• userinput describes the time slot, the analyst enters some data.

• connect describes the time slot, the TOE is establishing a SSH connection.

• init describes the application start and the idle status of the TOE and all other
actions, which are not part of the labels userinput and connect.

Since the labels are set by a human, the time slots are not exact and will have over-
lapping states. As an example, if we change the label from idle to connect, the connect
label will contain data from the idle state. Therefore we will filter them out using our
framework.

The filter is applied by the analyst and requires basic knowledge about computer science
and mathematics. The analyst have to identify in which states of the TOE the searched
functions are executed. In our example, the connect function is only executed during
the active label connect and is never executed while the other labels were active. The
filter rules are based on set theory. In our case, we need the set difference operation to
exclude all the elements from the connect label, which are also part of the other labels.
The results after filtering the elements will be just a small subset of the original data,
and they will be presented to the analyst.

For the next and last step, the analyst requires reverse engineering know-how. The
displayed data contains the VFA of the remaining functions and the count how often
the function was executed. The count is an important value for the analyst, because
the analyst can control in some cases how often the desired connect function should
be called. If we are looking for the related functions of connect, they will probably
be called only once during the whole execution time, if there is only one connection
established.

The latest version of the User Interface (UI) is illustrated in Figure 8.1. On the left side,
we see an enumeration of the elements (VFAs) in our database. Below of them, we find
a list of the used modules, which can be used in the filter, which is illustrated at the
bottom of the Screenshot. Other categories for filtering are shown on the right side. In
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Figure 8.1: Screenshot of the Visualiser

the middle of the Figure, we can see the boxes. The border colour is representing the
label and the background colour the module. The number is showing, how many times
the function was executed. The box with the text is displayed, if the analyst in right
clicking on a box. It contains all the meta data, which is associated with the VFA.

8.3 Application Design

Our Framework is divided into three components as illustrated in Figure 8.2. The Ex-
tractor -Module of our framework creates a real-time call trace of the target application.
The interactive usage of the Processor -Module allows the analyst to filter the functions
executed in a specific state of the program. The Visualiser -Module is responsible for
visualising the information returned by the Processor -Module.
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Application VisualiserExtractor

Processor

Thread 1 Thread 2

Thread 4Thread 3

Figure 8.2: Framework Design
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During the execution of the target application our Extractor -Module collects data on the
loaded modules and the executed functions. By doing so, the Extractor -Module creates
a call trace, which we want to enrich by a state property. The application will be in
different states based on the actions the analyst triggers. A state in our case could
be for example opening a file, establishing a connection or just idling. The analyst is
able to set human understandable labels to mark the states that are interesting. By
doing so the analyst marks executed functions of the current performed actions of the
applications with a label. This label can also be interpreted as a state of the program,
in which a set of functions are called to perform a certain action and lead into another
state. We allow the analyst to set his labels with the help of our Extractor -Module,
which adds the label information to every called function. This is performed using DBI.
This labelling process is central to our approach, since we want to visualise functions
executed in different program states later.

As further step, after collecting data of calls made during execution with the respected
label, we allow to set different filters to the collected data. This functionality is imple-
mented in our Processor -Module. Every element in our set is a VFA with additional
meta data. The sets are defined during runtime based on three categories, which can be
used for filter operations.

• module describes the name of the executable or library (data type: String)

• threadid describes the ID of the belonging thread as (data type: Integer)

• label describes the high level state information of the application defined by the
analyst (data type: String)

The filter operations are defined as the set operation in mathematics.

• Union (X ∪ Y) merges the elements together between the both sets X and Y.

• Intersection (X ∩ Y) takes out all elements that are member of both sets X and
Y.

• Set difference (X \ Y) removes all elements from the set X, which are present in
the set Y.

The syntax is defined as follows.

< category > ::= module | threadid | label
< set operation > ::= ∪ | ∩ | \
< value > ::=< String > | < Integer >
< set > ::=< category >:< value >
< set > ::= (< set > < set operation > < set >)

Example: ((label :connect \ label :userinput) \ label :init)

87



8 Function Identification

The Visualiser -Module is using the visual perception of human beings to display the
results of the Processor -Module. It uses different optical elements like colours, shapes
and sizes for fast visual recognition of important data. As one solution we use boxes
for different functions, displaying the amount of calls for the function performed in the
selected state filter. It adds colouring to the functions, representing Labels, Modules or
ThreadIDs to give additional visual information to the reverse engineer allowing him to
identify interesting code parts inside the executable faster.

8.4 Information Gathering

In this section we will first discuss different frameworks for DBI and then explain the
decision for a framework we use in our tool set.

8.4.1 DynamoRio

The framework supports x86 (32-bit and 64-bit) and is available for Windows and Linux.
It is developed as free software under the BSD license. To keep the application code
transparent DynamoRIO follows three basic guidelines. The first states that we should
keep as much as possible unchanged from the original application. So if you, for example,
count the mov instructions in the program executed in the virtual environment it is very
likely that the number is very near to the mov instructions execute in the original
application. If it is necessary to change something, the application should not notice the
change (second guideline). Finally the third guideline states that DynamoRIO does not
make assumptions about the architecture and the operation system besides the minimum
needed.

To generate basic blocks, DynamoRIO copies small parts of the executable into the code
cache and applies small modifications. This is called copy-and-annotate. To optimize
the execution, often sequentially executed basic blocks are combined and put into the
trace cache which is separated by the normal basic block code cache. There the trace
can be executed as one unit without executing management overhead, which decreases
execution time. Also an indirect branch lookup is inlined and so it is possible to execute
more basic blocks with indirect branches without doing a context switch back to the
Manager. Another optimization DynamoRIO applies is the delay of interrupts. This is
important because in contrast to Valgrind, for DynamoRIO it is not easy to determine
the current machine context at every point. So if possible the interrupt is delayed to a
point where the state of the application is accessible to DynamoRIO. For example if a
timer signal is received and the execution is currently in the middle of a basic block in
the code cache the application gets the timer interrupt later.
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When it comes to the development of a tool for DynamoRIO (called clients), Dy-
namoRIO provides the possibility to change the instructions of a clean C call before
inserting it. Of course at this point the tool developer has to care himself about trans-
parency and can deliberately destroy transparency. To avoid problems of shared libraries,
DynamoRIO loads the library used in the instrumentation code separately.

8.4.2 Pin

Pin is a proprietary framework from Intel which can be used free of charge for non-
commercial use. It supports x86 (32-bit and 64-bit), Itanium and ARM architecture.
It focuses on an easy to use high level C/C++ API [27]. So Pin follows a call-based
model which means you do not insert single instructions, only calls to C/C++ functions.
Internally Pin works often like DynamoRIO and tries to improve certain points. In
difference to DynamoRIO and Valgrind Pin automatically inlines code for performance
optimization (mainly execution time) and takes care about register saving. Also it can
be dynamically attached or detached to a program execution.

For optimization reasons Pin uses a Just-in-time-Compiler which directly compiles form
the ISA code to the same ISA (for example x86 code to x86 code). During compilation,
registers can be re-allocated. For example, if the instrumentation code, which should be
included, needs registers also needed by the application, it can be avoided to save and
restore registers by re-allocation of registers. This re-allocation must now be handled
when going from one basic block (or trace) to another. Pin tries to do only the minimal
reconciliation needed. To achieve this for every trace entry we remember the register
bindings and consider them if we compile a new trace which targets this trace. No
reconciliation is needed if we compile a trace which is a target of a single other trace.
In this case we just use the binding of the traces targeting the trace currently compiled.
Because of this technique, the executed instructions differ much more from the original
instructions, compared to DynamoRIO.

8.4.3 Valgrind

Valgrind is an Open Source framework under the GPL licence and is available for many
different ISAs like x86, ARM, PPC and MIPS. To combine the different ISAs, Valgrind
uses an intermediate representation (IR). So first the code is translated to the IR and
there the instrumentation code can be easily added platform independently. To execute
a basic block in the IR the block again has to be translated back to the original ISA. This
procedure is split into eight phases and is called disassemble-and-resynthesize.

Valgrind takes more basic blocks together to a superblock, which only has one entry
but can have more exits, to reduce the management overhead. So Valgrind is one of the
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most flexible DBI frameworks which of course also brings some drawbacks demonstrated
in the next section. [82]

8.4.4 Instrumentation Tool Selection

For our framework we decided to use Intel’s Pin [26] for three reasons. Pin can be
attached and detached from the target application during execution, which is quite
useful to allow the analyst to instrument only the part of the target application he
chooses to.

Compared to DynamoRIO, Pin is more stable. Memory intensive 32-bit applications
can crash because DynamoRIO has a memory overhead which then could exceed the
addressable memory [20] [18]. Also in difference to DynamoRIO, Pin chains basic blocks
incrementally, which means that at the end of a basic block with an indirect jump, Pin
adds new targets dynamically to the chain. Compared to DynamoRIO, which collects
one trace and saves it, this approach is more flexible.

Valgrind is a much more comprehensive framework than Pin. Due to its great poten-
tial Valgrind loses out when it comes to performance. Regarding performance of an
application with instrumentation, Pin is doing really well, compared to Valgrind and
DynamoRIO, as stated in the Pin white paper [79].

8.5 Information Processing

In this section we present the Processor -Module of our framework. The gathered data
contains the information about every executed function with a specific Label, ThreadID
and Module matched to the respective VFA. The Module and ThreadID for each function
is extracted from the application and is saved by the Extractor -Module. The Label
information is set by the analyst using the Extractor -Module. A function with VFA x,
e.g. the ssh connect function, is part of the set label:y, e.g. connect, if and only if a
call to the VFA occurred within the time frame, the specified label:y is active. Since
the labelling is a time dependent property, the values in a set of a specific label are
not limited to the specific functions the analyst is looking for. The target application is
always executing some functions like updating the Graphical User Interface (GUI) of the
application or something alike. Therefore the VFAs for a specific label may also have
occurred in other defined labels. This has to be considered during processing.

Trying to identify a specific function in a binary, without having a valid signature of
the desired function, is quite challenging. During the execution of the process we set
our labels as high level program states. Figure 8.3 shows the execution of the PUTTY
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Amount of unique VFAs per second. Colours show the belonging of the function to
labels or label intersections. // hachures show the time period where label userinput

was set by the analyst, \\the label connect, init was set otherwise

Figure 8.3: Executed functions with label

application. The x-Axis shows the time in seconds, the y-Axis states the amount of
unique function calls within a second span of time. The analyst is interested only on the
functions that are part of the red bar. The time frame when label connect was specified
is marked by falling hachures (\\) in the background, the label userinput with rising
hachures (//) and label init was specified without hachures. The colours indicate the
called functions belonging to a label or to an intersection of labels. We are interested in
extracting unique calls of functions belonging only to the label connect coloured in red.
The red colour displays the amount of functions uniquely called during connect. As we
can see in Figure 8.3, while label connect is active, there are also function calls, which
are also executed in the time frame of other labels. The goal of the Processor -Module is
to process these interesting VFAs from the gathered data.

The Processor -Module provides the possibility to filter the collected functions by Threa-
dID, Module and the used Label, gathered during the execution. The main goal of this
filtering functionality is to determine the specific VFAs that occur within specified cir-
cumstances (states). To do so, we allow the analyst to filter on the categories Label,
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The numbers indicate the exclusive belonging of a VFA to a label or an intersection of
labels.

Figure 8.4: Venn diagram of executed functions

Module and ThreadID with common operations on sets. These operations are union,
intersection and set difference (∪, ∩, \).

To extract those functions from the gathered data we will use the set operations of our
Processor -Module. As shown in Figure 8.4 after the extracting process we end up with
440 (=39+1+204+196) functions (red label set) called during the label connect. To
reduce the amount of VFAs to the interesting application parts, the reverse engineer
has the possibility to exclude the other two labels using our Processor -Module with its
set difference operator, ending up with 39 VFAs uniquely called by the functionality he
is interested in. Figure 8.4 shows the number of functions belonging to one or more
labels. There are 39 functions, which exclusively belong to the label connect, while there
are 196 functions called during connect as well as userinput. 204 functions have been
called during all three labels. We can filter for the functions exclusively used in connect
by using ((label:connect \ label:userinput) \ label:init). In this example we used three
labels, but we are not limited in the number of labels.

After applying the analyst’s filter, the Processor -Module calculates the call count for
each function accordingly from the gathered call trace. The number of calls can help
the analyst to understand the internal structure of the target application more quickly.
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Figure 8.5: Graphical representation

While helper functions are getting called very frequently, wrapper functions are getting
called less. Knowing this behaviour the analyst can focus first on the functions, which
are rarely called. Therefore, we calculate the number of calls for the VFAs. Since the
analyst knows how often he triggered his action during the program execution, the call
count allows him to estimate if the VFA is relevant for him or not. E.g., if he triggered
the connect functionality during the gathering process once he is most likely looking for
a function also called once.

8.6 Graphical Representation

After the analyst specified the filter he wants to apply to the collected function call data
in the Processor -Module, the results are presented to him by our Visualiser -Module.
The main goal of the Visualiser -Module is to show the big data collection from the
Extractor -Module in a manner that the analyst can quickly derive information about
the program structure and behaviour by visualising the applied filter.

We propose a box view and a graph view to visualise the filter of the analyst. The result
set of the VFAs of the applied filter is presented to the analyst by displaying boxes for
every VFA as shown in Figure 8.5 by default. The VFA itself is not the first thing we
want the analyst to notice. We want him to quickly identify functions with a low call
count and highlight this property with text size.

Displaying the number of calls of a specific VFA gives the analyst a general idea about
the structure of the program. VFAs with a smaller count call, especially when filtering
for labels, tend to be the function the analyst is looking for. As a second focus after
the call count of the individual VFAs we allow the analyst to bind function properties
(label, module, thread) to colour the background of the box or the border. This gives
the analyst multiple ways of analysing the gathered data and allows him to notice VFA
properties visually. We use only two colour informations at the same time to not overload
the user with visual effects. We provide a colour set as default, but the analyst may
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Function property Value Visualisation
Function ID 385 -
Function Address 0x01351780 Text
Function Name ssh2 setup pty -
Module: putty.exe Colour
Thread ID(s): 4 Colour
Label: connect Colour
Count: 2 Text and Size

Table 8.1: Function details and visual representation

change the colours individually. The method of visualisation of the properties is stated
in Table 8.1.

E.g., after applying the filter ((label:connect \ label:userinput) \ label:init) for connect
exclusive functions, we end up with 39 boxes in our Visualiser -Module. We bind the
module property of the VFA to the background colour and the thread information to the
border colour. This way we can quickly determine the main module responsible for the
label we filtered for. We end up with 37 boxes of the module putty.exe, which represent
the main VFAs for the connect functionality inside the PuTTY application.

Using this individual colouring option allows the analyst to familiarize with the VFAs and
their properties on a visual basis, without having to remember properties in numerical
form.

If the analyst is interested in a specific thread behaviour he may set the filter to that
thread, bind the background colour of the boxes to the label property and the border
colour to the module. The analyst can now identify the labels just by their colours, thus
recognise the functionalities executed by the various threads.

Analysing modules for their purpose can also be achieved with the help of our Visualiser -
Module. We just have to set the filter to a specific module. We bind the thread id to
the background, to identify associated threads to a specific module just by the colour.
Further the border colour may be set according to the label, giving us an idea in which
program states the module is in use.

At the selection of a function box the analyst is provided with additional properties
regarding the selected VFA. These properties include lists of labels and threads the VFA
occurred, the module and the overall call count of the function (see Table 8.1.

The purpose of the graph view is to give a quick overview over the target application.
It can also help the analyst when the result set of his filter is too large to narrow down
his filter to the interesting functionality. In the node graph view the function VFAs are
represented by nodes of the tree, the size of the nodes visually represents the call count
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of the function if the analyst chooses to do so, allowing him to find VFAs with a lower
call count more quickly. Further we allow the analyst to colour the nodes according to
label, module or thread. We only display the call count inside the nodes and provide the
additional properties (Table 8.1) of each function only on selection of the analyst.

Figure 8.6 shows a representation of all the called VFAs (represented as nodes) related
to their calling thread by edges. The rectangle nodes represent the different thread
Id’s. This allows the analyst to gain insight into VFAs used by one specific thread. For
example the functions west of thread 2 were only called by thread 2. Thread 5 has its
specific functions displayed north of the node and thread 6 to its east. On the other
hand the analyst can quickly determine VFAs, which are used by more threads. In
Figure 8.6 these would be the nodes between the threads 0, 5, 7, 6 and 2. Thread 0
and 7 only use functions shared with other threads. Such shared VFAs are most likely
low-level functions, such as strlen or similar. Low-level and shared functions generally
are called more frequently than specific functions, therefore we want to visualise the
number of calls as a central focus of attention. The call count of VFAs is represented
by the number in the nodes, as well as by the node size. The lower the call count the
bigger is the node. This helps the analyst determine interesting functions as described
in Section 8.5 in this graph more easily. Especially the VFAs with an amount of one
or two calls are very promising to represent a certain functionality. From the graph the
analyst can see how many different VFAs are used by the threads. Thread 4 calls the
most amount of functions. The colour of the node represents the module, the function is
belonging to. For example, the analyst can derive that thread 3 only uses one module,
the dark green one. The orange module is only used by thread 4. Overall Figure 8.6
shows the analyst relations between threads, the functions and their modules, but also
provides visual highlighting of VFAs with a low amount of calls. The used node graph
is optimized with the algorithm ForceAtlas2 [60].

8.7 Implementation

In this section we describe how we implemented our framework on a machine with an In-
tel Core i7-4600U CPU 2.10GHz CPU and 8GB RAM. We used Windows 7 Professional
with Service Pack 1 as Operating System (OS).

8.7.1 Dynamic Binary Instrumentation

In order to keep track of the called functions as well as logging additional information
about the functions and modules we use Intel’s Pin Framework (Pin 2.14 kit 71293
E) [26], because of its overall performance and stability described in Section 8.4.4
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Nodes: VFAs; Rectangle nodes: ThreadIDs; Colours: Module; Number: Call count
Shows belonging of VFA to a module and threads.

Figure 8.6: Graphical representation with nodes stating the call count
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8.7 Implementation

The Extractor -Module is implemented as a Pintool, which has the purpose of saving
the execution flow of the target application but also allow us to label certain states of
execution.

The labelling process needs us to allow to interact with the Pintool while it is attached
to the target process. To enable a simple communication with the Pintool we print
the address of an allocated variable of the Pintool to a file before adding any kind of
instrumentation to the target application. This address is then used by our labelling
functionality. When the analyst sets a new label we simply open a handle to the target
application process and use WriteProcessMemory to the passed address. From this point
on the Extractor -Module will use the new label, with whom is written to the database.
The overhead due to establishing an IPC would be even bigger. Thus we write the value
into the memory ourselves.

After passing the address of the label variable we add two Instrumentations to the tar-
get application. The first, IMG AddInstrumentFunction is called whenever an image
is loaded by the target process. Therefore this instrumentation allows us to gather
data about the loaded modules and save them to our database. The second, RTN Add-
InstrumentFunction allows us to insert a function at routine granularity. This way we
can enumerate the existing procedures, save the interesting data about these functions
and add a further instrumentation using RTN InsertCall to log every call of the func-
tion.

8.7.2 Buffering Data

Keeping track of all the functions called within the target application is a challenging
task. Since we also want to instrument very fast and thread intensive applications, the
amount of calls in the target application may quickly exceed the amount of calls we can
save to our hard disk. If we would pause the process on every function call to write
the desired information to our hard disk, we would end up with a very slow reacting
binary. The amount of function calls may exceed the number of functions we can save to
hard disk in a given time period. We want to buffer the gathered data in memory and
write them to hard disk to improve performance. Since we gather data from different
threads we have to make sure we are thread safe. The Boost Library [15] includes a
single-producer-single-consumer lock-free queue. This means one thread is allowed to
push to the queue and one to pop from it without worries about race conditions. We use
a boost::lockfree::spsc queue and keep the data in memory. We save objects representing
function calls in our queue from multiple threads so we have to use a lock to take fall into
the single-producer requirements for the queue. Furthermore we have to pause the target
process if our queue is full. Otherwise we would miss some function calls in our execution
flow. Writing to the database will be done by an additional thread in the target process.
This allows us to push multiple function calls onto memory during program execution
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without great performance issues. The additional thread will pop multiple strings of
gathered data about the function calls from the queue, concatenate them and then store
them to the database on hard disk. This way, we lower the performed hard disk accesses.
We plotted the time related to the objects of called functions kept in memory for the
worst-case-scenario under full CPU usage. As we can see in Figure 8.7 a usage of more
than two hundred objects will not gather any benefit to the performance, since the time
used per object settles down at about 0.02ms afterwards.

If the target application exits we pause the process, write the remaining data from the
queue to our database and then quit the process.

8.7.3 Gathered Data

We want to save information about the modules loaded by the target process, like the
name and path to the module for recognition purposes and the module base to calculate
relative VFAs of functions. Further we are interested in properties of the called functions
such as their name, the module they belong to, the VFA and the amount of calls of the
function. During execution of the application we monitor the timestamp of a call, the
VFA of the currently called function, the ID of the issuing thread and the label specified
by the analyst.

All this data is saved to a single SQLite database (SQLite Version 3.8.10.1) [105]. We
decided to use SQLite, because it is a lightweight solution. Furthermore SQL allows us
to perform queries to evaluate the gathered data very efficiently. The scheme of this
database is illustrated in Figure 8.8.

When a module is loaded by the process we save it in the table modules, storing its name,
the path to the module and the module base address. Functions present in the executable
are saved with eventual given name and VFA and a reference to a module they belong
to. The call count is calculated after the extracting process, in the Processor -Module.
The table calltracking is the main table where we store our call trace. For every function
call we insert a new ID, with a timestamp, save the VFA of the called function and add
the thread who called the function and reference the label as an integer variable.

8.7.4 Information processing

As a next step the analyst can use the Processor -Module, which can be used to perform
common set operations to the gathered data. Since the data already resides in a SQLite
database we use the SQL implementation of the set operations to reach our goal.

Union of two sets of filters is performed by concatenating two select statements, according
to the desired filter together, together with the UNION operator. Intersections of sets
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8.7 Implementation

Figure 8.7: Time/memory plot for the worst-case-scenario
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Figure 8.8: UML-Diagram of Database

are performed using the INTERSECT operator and the set difference is calculated by
using EXCEPT.

After the gathering process we can make use of the calltracking-table of the database to
apply filters to the label and the different threads. Since this table contains huge amount
of data and increases very fast, a few hundred thousands of entries in a short time,
we make filtering more effective by creating a temporary copy of the calltracking-table,
restricting it to unique entries of VFA, ThreadID and Label. Our main output is the table
functions where the VFA and the count resides. These are the main informations we want
the analyst to catch immediately. We also apply module filters to the functions-table,
since a join of the large calltracking-table with the functions table takes an unnecessary
amount of time.

We also provide parentheses to be inserted into the filter to gain even more possibilities
and lower possible mistakes in longer statements. E.g. the analyst can specify the
following operation chaining together multiple set operations as he chooses.

((label:key Enter \ label:key A) ∩ threadid:7)) ∩module:gpg.exe

To provide the use of parentheses in filtering statements we use temporary tables. These
are created for any statement between an opening and a closing bracket, parsing the
input to a statement without any brackets, removing the innermost once at a time with
regular expression search. This is also necessary because SQLite does not support the
use of brackets with multiple select statements. Therefore standard SQLite statements
could not reach the details we would like. The temporary tables are dropped before a
new filter is applied.
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8.8 Experiments

8.7.5 Information visualisation

After applying the desired filter to the function calls, the analyst quickly wants to
determine functions by their VFAs with special attention to functions with a low call
count. A low amount of calls is indicating a higher probability of being the function,
the analyst is looking for. This is due to the fact that the analyst is looking for a
functionality, which is most likely implemented in a wrapper function. These are called
less often than the according helper functions.

The Visualiser -Module of our application shows VFAs in boxes. These are implemented
as custom widgets in Qt (Qt Version 5.4.1 32-bit), allowing us to bind the border colour
or the background colour to the analyst specified preferences. On selection of a box we
display the additional information about the VFA in a small pop-up window.

After the database selection we make sure to generate an appropriate amount of colours
for the function properties and only show them if the analyst chooses to do so, as we do
not want to overload the interface with information the analyst is not interested in.

The Visualiser -Module uses the box visualisation as the primary way of representing
the functions according to the analysts filter settings. The node graph view as described
in Section 8.6 still has to be implemented in future work.

8.8 Experiments

In this section we present some experiments performed with our framework. We show
how we identified specific functions in open source software, explain the labels we set
during the execution and provide the results of the performed tests on the framework’s
performance.

We used as a ground truth open source applications to validate the detected functions
in the source file. We selected three applications using security related functions like
cryptographic functions or hash functions. We have chosen the well-known applications
Putty [107], GPG [50] and OpenSSL [86]. To verify our results, we compiled the test
application with debug information in order to get function names for the found function
VFAs.

We present the results of function identification in Putty, GPG and OpenSSL in Ta-
ble 8.2. We set labels during execution for Putty trying to identify the functions relevant
for establishing a SSH connection. We processed the data with our framework showing
only functions that occurred during state connect and excluded all the other labels. In
GPG we looked for functions responsible for creating an RSA key. OpenSSL is analysed
for the relevant functions for the creation of the PEM file of a newly created key.
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APP-Name # executed # filtered # interesting functions relevance reduction

Putty 746 37 18 ssh functions 48.6% 95.04%
GPG 335 23 8 cipher functions 34.8% 93.13%

6 hash functions 26.1%
OpenSSL 735 29 24 cipher/hash functions 82.8% 96.05%

Table 8.2: Experiments

Step-by-step we are now going through the example looking for PuTTY’s SSH connection
functionality.
We started in label init and didn’t interact with the application. We changed the label
to userinput and typed the username, hit the ENTER key and typed the password for
the connection we are going to establish. We used the init label between the actions.
We change the label to connect and hit the ENTER key straight afterwards. After the
connection is completed we change back to init and perform some more actions within
the console like listing the files of the current directory and closing the connection using
the userinput label. To identify the functions related to the connect functionality we
used the following filter:

(((label:connect \ label:init) \ label:userinput) ∩module:putty.exe)

The other applications were analysed in a similar manner in order to identify a main
functionality.

In Table 8.2 the columns state the application name, the number of executed function
and the number of filtered functions, which we found using an appropriate filter on the
application. Further we number the interesting functions representing the functionality
we try to identify.

The column relevance of Table 8.2 indicates how much of the filtered functions by our
process also are interesting functions a reverse engineer might be looking for. The column
reduction shows the percentage of the executed functions the analyst does not have to
look into when using our framework filtering. With the help of our tool and using good
labelling the analyst can reduce his work by reducing the number of functions to be
analysed.

To understand the results better, a more detailed overview for the application Putty is
given in Table 8.3. The time spend by the analyst took about 140 second to set the
label and gather all the data. After that point the analyst set a filter, to reduce the data
from 746 functions to 37. While the total number of all executed are 746, the functions
related to the SSH functionality are only 236. From these functions are 74 executed
while the label connect is active. Excluding all the SSH functions, which are executed
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8.9 Summary

Description of executed functions Total count SSH related count

During the whole execution time 746 236
In the timeframe of connect 419 74
In the timeframe of connect 37 18
Not executed in other timer frames
In the timeframe of connect 22 12
Not executed in other time frames
Total execution count is 1

Table 8.3: Statistics for Putty

while other labels are active, we get a total number of 18, which is listed in Table 8.4.
These 18 functions are illustrated to the analyst together with a call count. Assuming
the function we look for is executed only once, we have 12 functions left. Since the
analyst does not know at that point if the functions are SSH related function, he has
to check them together with the 10 unimportant functions, which are illustrated with a
call count of 1 in Table 8.5.

8.9 Summary

We proposed our framework for interactive function identification decreasing the effort
of reverse engineering. We have shown how we speed up the reverse engineering process
by using three steps in the analysing process. We used the Pintool to get the data of all
executed functions during the test. We used a time memory trade-off to speed up the
logging functionally for real-time performance. We processed the data by supporting
common set operations. A filter can be applied to labels, threads and module of a
function and concatenated together using common set operations to restrict the desired
functionality of the binary even further using our Processor -Module. We implemented
a graphical representation for the output of the huge amount of data to quickly identify
the results based on visual components. We used an iterative and interactive approach
to set human readable labels using our Extractor -Module. We reduced the number of
functions to be checked by the analyst.
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Function name Count
do ssh2 transport 1
ssh2 channel init 1
ssh2 chanopen init 1
ssh2 chanreq init 2
ssh2 msg channel response 2
ssh2 msg channel window adjust 1
ssh2 pkt defer 2
ssh2 pkt defer noqueue 2
ssh2 pkt send with padding 1
ssh2 queue chanreq handler 2
ssh2 response authconn 1
ssh2 send ttymode 1
ssh2 setup env 1
ssh2 setup pty 2
ssh agent forwarding permitted 1
ssh pkt defersend 1
ssh setup portfwd 1
ssh tty parse specchar 1

Table 8.4: Relevant Functions for the Analyst
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8.9 Summary

Function name Count
conf get str strs 56
bufchain init 1
ctrlparse 1
alloc channel id 1
parse ttymodes 1
term get ttymode 53
findrel234 56
newtree234 2
get ttymode 53
strcmp 349
isspace 5
sscanf 1
vscan fn 1
ungetc nolock 1
filbuf 1

isleadbyte 1
inc 13
input l 1
whiteout 2

Table 8.5: Unimportant Functions for the Analyst
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Chapter 9
Evaluation

In this chapter we will evaluate the iDeFEND framework. First, we will describe sce-
narios to show the problems in encrypted environment and how our approach solves it.
Second, we will define the threats against our framework and evaluate our protection
against dedicated attacks.

Parts of this chapter were published [65].

9.1 Scenarios

In this section we discuss some selected scenarios to describe the problems of encrypted
network communication. Furthermore we also show how the problem can be solved with
the framework described in this thesis.

Encryption in network traffic can be divided into two groups. First, a host-to-host based
encryption, where all outgoing and incoming traffic from and to a host is encrypted
and decrypted on OS protocol stack level. Second, the application-to-application based
encryption, where applications use their own implementations of encrypting functions
or are compiled with public encryption libraries.

In this work we considered only application-to-application based encryption scenarios.
The reason is that for host-to-host based encryption, solutions are already present. If
encryption and decryption are done on Network or Transport Layers of the OSI model,
then OS features can be used to capture all incoming and outgoing messages after de-
cryption and before encryption. For example, with IPsec/VPN we have encryption on
Network Layer, so a message-capturing filter could be inserted between Network and
Transport layers. An example of using Protocol Stack filters to capture decrypted mes-
sages in scenarios with host-to-host encryption is described by Abimbola et al. [3].
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Figure 9.1: Scenario: Problem of Intrusion Detection Systems

All figures in this section are composed of two parts. On the left side we illustrate
the local system, and the remote part on the right side. To refer to our framework,
we use here Crypt and Send (CaS) and Receive and Decrypt (RaD) as the functions
responsible for communication. CaS is sending data to RaD. Our solution is always part
of one system, either local or remote.

9.1.1 Intrusion Detection

This scenario describes an application installed in the local network, which is commu-
nicating with remote applications located anywhere in the internet using an encrypted
network communication channel. This application can act as a client or as a server
depending on the use case. A Network based Intrusion Detection System (NIDS) is used
to detect malicious data in the network traffic entering and leaving the local network. In
this scenario, the NIDS can also be any Intrusion Detection System (IDS) or monitoring
system, outside of the target operating system.

The problem we address in this scenario is that a NIDS cannot perform deep packet
inspection of encrypted traffic (see Figure 9.1). Based on the encryption, accessing the
plaintext data could also require knowledge about the used encryption algorithm and
key. Considering signature based IDS, which inspects network traffic for specific byte
sequence patterns, we need access to the plain-text data. One possible solution is based
on terminating the encryption at a central point like a company proxy and send the data
as plain-text to the receiver in the local network [48].

Another solution would be acting as Man In The Middle (MITM) and establishing a
dedicated encryption channel from the MITM to the sender and the receiver. As an
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9.1 Scenarios

Local Server

NIDS

Application
CaS

RaD CaS

RaD
Application

encrypted data

iDeFEND

Figure 9.2: Scenario: Intrusion Detection with our Framework

example, this approach can be used to examine HTTPS traffic by installing company
certificates as root Certificate Authority (CA) on the company workstations. The com-
pany can use a proxy server and terminate all HTTPS connections at a central point
and generate new certificates and sign them. The web browser would accept this new
certificates if the chain contains the trusted root CA.

But having propriety encryption would make this approach much more complicated and
increase the effort by requiring reverse engineering. We propose a solution, which is
illustrated in Figure 9.2, to inspect the plain-text data while keeping up the end-to-
end encryption. Our solution accesses the data directly in the memory of the network
application process right after it is decrypted or before it is encrypted. Additionally it
does not require any knowledge about the encryption algorithm and key.

9.1.2 Testing remote applications

This scenario is considering a remote server application requiring an encrypted com-
munication channel and a client, which can be installed in the controlled local network.
Sources for both, the server and the client, are not available and the encryption algorithm
and key are unknown.

The goal in this scenario is to ensure that the remote application is secure. As an
example, fuzzing can be used to achieve this goal. Testing a remote server is easy if
the communication is not encrypted. However, this is not the case with an encrypted
communication channel. The server has to be able to decrypt the received message before
it can start to process it. If the message is not encrypted correctly, the server fails to
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Figure 9.3: Scenario: Testing remote applications

decrypt it. Therefore, if a tester wants to cover server’s logic beyond the decrypting
function, it has to encrypt messages correctly before sending them to the server.

We propose a solution to test a remote server using encrypted communication. To
encrypt messages correctly and send them to the server, the native client for the server
can be used. As an example, we can intercept and modify the data the client is sending.
While the local client tries to send a message, we stop the program right before it
encrypts the message, replace the outgoing message right in the memory of the client
with data from a security analyst or fuzzer-generated data. When the program resumes
its execution, it will encrypt and send the data created by the modified data. We can
also directly inject arbitrary data by directly calling the responsible function with our
own parameters. This scenario is illustrated in Figure 9.3.

9.1.3 Testing local parts of a distributed system

In this scenario, we consider an application installed in the local network, which is under
tester’s control. The application is part of a distributed system and communicates with
other parts of the system installed in networks, which are not under the tester’s control.
The communication channel is encrypted, the algorithm and key are unknown.

Vulnerable client applications, which are communicating over public networks, can also
be attacked remotely.

In order to ensure that locally installed components do not have such vulnerabilities
they have to be analysed. To test if the program is secure enough an analyst can use
the same testing methods used by attackers to find vulnerabilities. We can distinguish
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Figure 9.4: Scenario: Testing local applications

two cases for this scenario. In the first case the communication protocol is unknown.
In this case the program can be tested only with random invalid data. The second case
assumes there is some knowledge of the communication protocol, which can be used to
make the testing process more efficient. The more precise the knowledge of the protocol
is, the more efficient the testing will be.

The program under inspection can act as a server or as a client. Depending on the role
the program plays when communicating over network slightly different techniques can
be used to fuzz it. To test a client, we can enforce it to communicate with a fake server.
After the local application decrypts the data, it will be replaced by the test data. We
only need one valid network package, which we can replay many times. Such a message
can be captured with a sniffer out of the communication between the application and a
real server or client. The captured message could be sent repeatedly. The contents of
the message do not matter, since it will be replaced anyway. The response of the local
application will also be captured by our framework. Inspection of the data can show us,
if the test succeeded or not. For example memory leak vulnerabilities like Format String
Attacks(FSAs) or SQL Injections can be detected this way. Another way is to monitor
if the application is crashing or not. This Scenario is illustrated in Figure 9.4.

9.1.4 Logging network data history

An environment for this scenario consists of a program installed in the local network
communicating with remote programs using encrypted communication channel. The
program may act as a server or a client.
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Figure 9.5: Scenario: Network data logging

Having a message exchanging history for the program which communicates over networks
is useful for further analysis. Logging can also be achieved using a proxy as MITM, but
this will break end-to-end encryption if the communication is encrypted. Extending
an application with a logging feature is also not a trivial task if only the binaries are
available.

Our framework is able to access a data in the memory of another process, it can be used
to extend applications with a logging feature when solutions like sniffers and proxies
do not help. According to the design of iDeFEND the logging can be done using the
Monitor module. It can be considered as an additional advantage, that the original
program is not changed. If we have certified applications, which are not allowed to be
changed, we can basically enhance the functionality without modifying the binary. This
is possible, because our framework will act like a debugger here and only inspect the
application. Additionally, the newly added logging feature can be switched off/on even
without restarting the application. This scenario is illustrated in Figure 9.5.

9.1.5 Behaviour change

An environment for this scenario consists of a program installed in the local network
communicating with remote programs using encrypted communication channel. The
program may act as a server or a client.

Behaviour of a program communicating with remote programs may partially or com-
pletely depend on data it receives. If we want to prevent the application from performing
some actions without affecting its other functionalities, we can modify data right after
it is received and before the application starts to process it.
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Figure 9.6: Scenario: Changing the behaviour of applications

Imagine the case, the application is polling on every start if a new update is available.
If the remote server answers with a new update, the application will be updated by
executing code on the server. A security analyst wants to test, if untrusted binary
updates will be downloaded and executed by the target application, but currently no
update is available by the remote host. In that case, the response of the server can be
modified to fake that an update is available and can be downloaded.

With our framework we can access and modify data right after it is received and de-
crypted directly in the memory of the process under inspection. This scenario is illus-
trated in Figure 9.6.

9.1.6 Extending communication protocols

This scenario is about extending the communication protocol in a distributed system.
One or more components of the system are installed in the local network.

Many applications developed long time ago using old technologies are still being used.
But changing business requirements raises a need for software modifications. This is not
problematic when sources for the program are available. If the program is no longer
supported by original developers, and source code is lost, then the task of implementing
the required changes is a challenging task.

Considering Industry 4.0, we have many legacy clients who are connected to the big
infrastructure of the company. Since the system was not supposed to be available for
intruders, no or less security mechanisms were implemented. As an example, consider
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Figure 9.7: Scenario: Extending the protocol

devices communicating encrypted using legacy encryption algorithms, e.g. DES, which
is known as unsecure in the current time.

Thanks to our framework we can stop the client before sending the required information
over the network. We can extract the plaintext of the message, apply an additional secure
encryption, e.g. AES-256, and replace the plaintext data with modified encrypted data.
The target application will perform additional encryption using the DES algorithm and
send it to the destination. Thus, we encapsulate the plaintext in our encryption, which
is encapsulated by the original encryption algorithm.

Applying this solution to the infrastructure would require, that all parties have the same
algorithm. Either, all legacy devices (v1) are enhanced with iDeFEND or additional
new applications (v2) are part of the communication. This Scenario is illustrated in
Figure 9.7.

9.2 Attacks against iDeFEND

In the following, we will analyse the attack surface of iDeFEND, define relevant assets
and attack vectors and evaluate the hardening of the framework.

9.2.1 Assets and Attacker Motivation

As iDeFEND serves as an observation interface, which abstracts interaction with a
given observation target for example an external IDS, the integrity and reliability of
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9.2 Attacks against iDeFEND

the iDeFEND system and all information it is providing, is essential. By analysing the
iDeFEND system according to the three classical information security goals (Confiden-
tiality, Integrity, Availability) introduced by McCumber [80], we retrieve a set of security
requirements iDeFEND should fulfil, which are depicted in Table 9.1.

Confidentiality iDeFEND should not release information about
the plaintext data, extracted from the observation
target

Integrity The integrity of iDeFENDs execution and the data
it provides, has to be protected

Availability The system and observation data flow should not
be interrupted

Table 9.1: Security requirements for iDeFEND

A key property of the iDeFEND system is leaving the end-to-end encryption scheme of
the monitored application intact. Protecting the confidentiality of the monitoring data
therefore is an important security requirement. In order to ensure continuous moni-
toring of the observation target and provide reliable data to the external monitoring
unit, the Integrity and Availability of iDeFEND are further important security require-
ments.

From the security requirements in Table 9.1 we can deduce the following key assets of
the iDeFEND system:

1. Introspection Interface

2. iDeFEND Processes

3. Monitoring Data

The Introspection Interface represents the main connection between iDeFEND and the
observation target. Manipulation of the introspection interface endangers Integrity and
Availability of the system. The second key asset, the iDeFEND Processes, represent
the core of the whole monitoring system. Manipulation or deactivation jeopardizes all
three security requirements. The third key asset, Monitoring Data from the observation
target, needs to be protected in order to enforce Availability and Confidentiality of
iDeFEND.

While it is not necessarily known to an attacker, that iDeFEND is monitoring a target
system, a set of general offensive goals can be defined. This goals include hiding malware
and its communication as well as preventing countermeasures against malware operation.
In the context of iDeFEND these goals can be reduced to the following.
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Figure 9.8: iDeFEND Attack Surface

• Detection of monitoring systems or components

• Disabling of monitoring systems or components

• Deception of monitoring systems or components

9.2.2 Attack Surface

Analysing the architecture of our framework, we can classify the attack surface of iDe-
FEND into different categories. This categorization is illustrated as an Attack Tree in
Figure 9.8. Afterwards the introduced categories are summarized into attack vectors,
covering the present attack surface.

Attacks on iDeFEND can be primarily categorized into attacks through monitored and
unmonitored components. Such components are the observation target (monitored), the
operating system and a third application running on the target host (unmonitored).
While a third application may run with different privilege levels (high and low), every
component can either be attacked remotely or locally. As iDeFEND is conceptually not
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9.2 Attacks against iDeFEND

Nr Type Attack Vector
1© remote Overtaken Observation Target
2© remote Third network application
3© local Third user-privileged application
4© local Third high-privileged application
5© local Operating System

Table 9.2: Attack Vectors of iDeFEND

designed to monitor malware itself, attacks through monitored malicious components
are not discussed in this section. From the attack surface introduced in Figure 9.8, the
general attack vectors shown in Table 9.2 can be deduced. These vectors resemble the
markings from Figure 9.8 in enumeration and strategy.

Attacks on iDeFEND can be conducted through five general vectors in order to achieve
the attack goals, defined in section 9.2.1. The first vector includes attacks, which are
conducted through an overtaken observation target. The second vector consists in at-
tacks through a third networking application, which is running on the same host as the
observation target. Both of these vectors can be utilized remotely. Vectors three and
four contain attacks through locally deployed malware, which is running on the same
host as the observation target with differing execution privileges. Finally the fifth vector
holds attacks from the target hosts operating system.

9.2.3 Attack Impact Analysis

In the following we will analyse the impact of attacks from the vectors defined in Table
9.2 on iDeFEND and compare the results. In the attack descriptions we will refer to the
instance of the userspace implementation as host and for our extension as host VM. The
attack analysis is mainly relevant for the operation of iDeFEND in a defensive scenario
such as an interface for an external IDS.

9.2.3.1 Vector 1: Overtaken Observation Target

An attacker remotely overtook the observation target of iDeFEND through an ex-
ploitable zero day vulnerability.

Userspace Implementation The attacker is now able to detect iDeFEND monitoring,
as the userspace implementation is not designed to hide its presence. Possible approaches
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to implement the detection are behaviour analysis, timing attacks or requests to the oper-
ating systems debug interface. Depending on the deployed host architecture the attacker
can interfere with the monitoring system in a limited manner, for example by manipu-
lating breakpoints. This approach provides limited capabilities of temporarily disabling
the monitoring process. However, a meaningful deception of iDeFEND is not possible
through this vector, as all deviations from the expected behaviour of the observation
target or monitoring outages, caused by breakpoint manipulations, are observed by the
system.

Extension The management of the observation target is now conducted through VMI.
While the detection of a virtualized environment is generally possible as shown by
Thompson et al. [111], its presence offers limited guard against detection of the moni-
toring framework. Detection of monitoring through OS debug interface requests is no
longer possible and detection through behaviour analysis is significantly harder. Due to
the strong separation of iDeFEND and the observation target through virtualization,
disabling or manipulation of the monitoring system is effectively impeded.

9.2.3.2 Vector 2: Third network application

An attacker remotely overtook a third network application running in userspace on the
iDeFEND host or host VM respectively, through a buffer-overflow vulnerability.

Userspace Implementation Likewise Vector 1, the attacker is able to detect iDeFEND
monitoring of the observation target running on the system. However, disabling or
deception of the monitoring process are easily prevented by executing the iDeFEND
processes with higher privileges.

Extension Likewise Vector 1, the attacker’s ability to detect the monitoring process
is limited while resistance against disabling and deception of the monitoring system is
improved by separation through virtualization instead of separation through different
execution privileges.

9.2.3.3 Vector 3: Third user-privileged application

An attacker managed to execute a malicious script on the iDeFEND host machine or
host VM respectively, running with user privileges.
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9.2 Attacks against iDeFEND

Userspace Implementation Similar to Vector 2 the attacker may detect iDeFEND
monitoring but is not able to disable or deceive with the process in any way due to lower
execution privileges.

Extension Similar to Vector 2 the detection of monitoring is limited and the attacker
is not able to disable or deceive the monitoring process in any way due to separation
through virtualization.

9.2.3.4 Vector 4: Third high-privileged application

An attacker connected a malicious USB stick to the iDeFEND host system or host
VM respectively, which is subsequently infected with malware, running with elevated
privileges.

Userspace Implementation Due to the high-privileged malware the attacker is not
only able to detect iDeFEND, as described in the previous attacks, but also to disable
the monitoring system completely. This may be achieved by interference through the
debug interface of the operating system or simply stopping or removing the monitoring
system. A sophisticated attacker may manipulate the control flow of either or both the
observation target and iDeFEND in order to deceive the monitoring process, hiding the
infection and its communication.

Extension While the detection potential stays the same as in Vector 1, disabling the
monitoring system is completely prevented by the separation through virtualization.
Deception of iDeFEND is possible in a limited manner, as a process with elevated priv-
ileges may potentially tamper with the monitored process. However, such attempts will
be observed by iDeFEND in any case.

9.2.3.5 Vector 5: Operating System

An attacker managed to install and run a malicious kernel module on the iDeFEND host
system or host VM respectively.

Userspace Implementation With full control over the operating system, the attacker
is able to detect, disable and deceive the monitoring process as described in Vector
4.
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Extension With full control over the operating system, the attacker still only has
limited capabilities to detect, if the observation target is being monitored and is not
able to disable the monitoring process in any way. He may interfere with monitoring
by tampering with the observation target process in order to try and deceive iDeFEND,
but like in Vector 4 this attempts will be detected.

9.2.4 Summary

As demonstrated in the above analysis, the iDeFEND extension provides a considerable
gain in protection against the attacks from the vectors, minimizing the overall attack
surface. A summarized comparison between the defensive properties of the userspace
implementation and our extension is provided in Table 9.3, which displays the respective
defence attributes of the userspace iDeFEND implementation and our extension using
VMI. Attributes are rated with - (No protection), if no preventive measures against
the respective attack are in effect. Attributes rated with + (Limited protection)
offer partial guard against the respective attack, whose special constraints are defined
in the detailed analysis. Finally, attributes rated with ++ (Full protection) render
the respective attack infeasible, thoroughly protecting the system. In direct compari-
son, Table 9.3 shows, that the userspace implementation of iDeFEND lacks defensive
capabilities regarding attacks with the goal of detecting a monitoring framework and
attacks which are performed with higher than user privileges (4, 5). These shortcomings
are patched by our implemented extension. The extension offers a limited protection
against detection attacks, as some sort of additional behaviour analysis needs to be
conducted. Furthermore, the extension protects iDeFEND against attacks from higher
privileged processes or even the operating system itself by strong separation through
virtualization. With the extension in place iDeFEND is fully shielded against disabling
and significantly hardened against other forms of manipulation. Summing up, the ex-
tension enables iDeFEND to protect its key assets and fully comply with the security
requirements, introduced in Subsection 9.2.1, in case of substantial infections of the
observation targets host system, while impeding monitoring detection.
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9.3 Validation

Userspace Implementation

Vec / Goal Detection Disabling Deception
Vector 1 − + ++
Vector 2 − ++ ++
Vector 3 − ++ ++
Vector 4 − − −
Vector 5 − − −

Extension using VMI

Vec / Goal Detection Disabling Deception
Vector 1 + ++ ++
Vector 2 + ++ ++
Vector 3 + ++ ++
Vector 4 + ++ +
Vector 5 + ++ +

− : No protection + : Limited protection ++ : Full protection

Table 9.3: iDeFEND Defence Attribute Comparison

9.3 Validation

We have evaluated our iDeFEND framework for five popular and well-known applica-
tions. Since the framework was designed to work on proprietary software, we only chose
applications for evaluation that do not use standard libraries for implementing the en-
crypted communication. When a standard library is used, functions can be identified
and hooked by simply looking at the export tables. Beside the required criterion of
encryption, we wanted to have at least one messenger, one file transfer and one secure
shell application. These types implement different network protocols which handle text
messages, binary files and customized commands. Furthermore, we wanted to have at
least one test application that is single-threaded, multi-threaded, uses the console for
user interaction and implements an own GUI. In order to have ground-truth information
of the wrapper functions, we used the following open source applications.

• telegram-cli, version 1.4.1

• uTox, version 0.7.1

• PLINK, version v0.67
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• PSFTP, version 0.67

• PSCP, version 0.67

Table 9.4 gives a detailed overview of the selected applications. The second column states
the type of the application. The third column shows the type of data that is primarily
transferred by the protocol. The last two columns indicate whether the application
implements a GUI or is multi or single threaded, respectively.

We evaluated the framework in three steps. In a first step, we compiled the applications
from source. We used the gcc compiler with the -mapcs-frame flag. Afterwards, we
attached the gdb debugger to the applications and looked for the used send and receive
methods. This was realized by inserting breakpoints on the operating system network
socket functions and waiting for them to be called.

In a second step, we reverse engineered the cryptographic functions and used the gdb
debugger to manually detect the wrapper functions by intersecting the call graphs at
crypt and send. We verified the result by analysing the source code with the help of
the software doxygen [54]. Doxygen automatically generates a documentation for source
code and improves the readability and understandability of function dependencies by
providing visualized call graphs.

In a third step, we configured the framework with the function names of send, recv,
encrypt and decrypt. Afterwards we used the framework to detect the wrapper functions
and tried to inspect, intersect and inject data to the communication channel.

Table 9.5 summarizes the results of our evaluation for our userspace implementation. The
first column contains the name of the applications. The columns send and receive state
the system library functions the application used to communicate over the network. The
column Wrapper-Type states whether a CaS or EnCrypt & EnQueue (CaQ) function is
implemented. The following three columns illustrate whether plaintext data inspection,
interception or even injection to the encrypted communication was possible by using
our framework. The last column indicates whether code injection and hooking of the
wrapper function was working.

Name Type Data Category User Interface Threading

telegram-cli Messenger Text Console Multi
uTox Messenger Text GUI Multi
PLINK Secure Shell Commands Console Single
PSFTP File Transfer Files Console Single
PSCP File Transfer Files Console Single

Table 9.4: Description of the open source test applications for iDeFEND

122



E
va

lu
at

io
n

9.3 Validation

Name Send Receive Wrapper Inspect Intercept Data Module
Inject Inject

telegram-cli Write Read CaQ X X X X
uTox SendTo RecvFrom CaS X X X X
PLINK Send Recv CaS X X X X
PSFTP Send Recv CaS X X X X
PSCP Send Recv CaS X X X X

Table 9.5: Results of the Evaluation for Userspace iDeFEND

Name Send Receive Wrapper Inspect Intercept

telegram-cli Write Read CaQ X X
uTox SendTo RecvFrom CaS X X
PLINK Send Recv CaS X X
PSFTP Send Recv CaS X X
PSCP Send Recv CaS X X

Table 9.6: Results of the Evaluation for iDeFEND with the Virtualization Extension

Briefly summarized, we were able to inspect, intercept and inject data for all five appli-
cations. Except for Telegram, all applications implement the CaS function. Telegram
implements a message queue and therefore, uses the CaQ. We were also able to use code
injection and hooking of the wrapper functions on all five applications.

Using the virtualization extension, the functionality is limited to inspect and intercept,
which are enough for the use case of adding a bridge for IDSs. Table 9.6 summarizes
the results for our virtualization extension. Module Injection is not possible, because
modules will be part of the target system and therefore attackable. The responsible
functionality of arbitrary data injection is also part of the injected module.

The focus of the extension is security and protection against intruders. In order to
evaluate the protection against detection, we attach our debugger to a Virtual Machine
(VM) and ran application protection tools. These tools have the option of protecting
binaries from debugging by recompiling the binary itself. The tools in use are Themida
(Version 2.4.1.0) [109] and VMProtect (Version 3.0) [104]. Themida claims to implement
anti-debugging techniques to detect any kind of debugger, protects against memory
dumping techniques and even more. VMProtect also uses a virtual CPU to execute
the code, which has to be protected. This way VMProtect protects against further
virtualization and code mutation. The toolkit also detects virtualization environments
and the presence of debuggers. We install the protection tools on the guest VM and
recompile the binary we want to use our framework for. We attach our debugger to the
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Name virtualized iDeFEND userspace iDeFEND

Themida X 7

VMProtect X 7

Table 9.7: Detection of iDeFEND with Protected Applications

protected target application. Using all the presented tools with debugging protection,
we are still able to install hardware breakpoints for the target location and extract data
from the target application, as it halts at our breakpoints. Userspace debuggers, such
as OllyDbg, caused the protected applications to terminate silently, as the protected
binary detected the presence of the debugger. Table 9.7 summarizes the results of the
detection. A checkmark means that our solution is not detected.

Briefly summarized, we evaluated the protection of our approach using state-of-the-art
software protection mechanisms, which include debugging detection and modification
protection. We made use of well-known anti-debugging tools to try and detect the
framework presented in this section, with the result that the presented framework with
virtualization extension is undetected.

Any form of introspection or debugging of an observation target introduces a certain
amount of processing overhead. While this overhead is rather small in the userspace im-
plementation, monitoring a virtualized target via Virtual Machine Introspection (VMI)
introduces a considerable amount of overhead. A main cause for this virtualization over-
head are VMExits, traps from the unprivileged machine into the hypervisor in order to
execute privileged actions or due to debug events. In order to analyse the performance
impact of monitoring through our iDeFEND extension, we setup two testing environ-
ments. We measured the execution time of CaS with and without monitoring by our
extension.

In the first test we measured CaS execution time in PLINK, while in the second test the
CaS execution time of PSFTP was measured. Both applications cause a considerable
amount of VMExits through e.g. memory allocation and deallocation. We repeated the
measurements 1000 times for with and without monitoring respectively.

In Figure 9.9 the results of our timing measurements are displayed. The Y-Axis rep-
resents the execution time of CaS in milliseconds [ms], the X-Axis represents an enu-
meration of the timing samples. Every measurement is displayed as a small cross. Blue
crosses mark the execution time of an unmonitored CaS function, while green crosses
mark the execution time of a monitored CaS function.
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Figure 9.9: Performance Deviation through iDeFEND Monitoring

For PLINK, unmonitored execution of CaS took an average of 0.980827 ms. Due to
the complexity of the PLINK implementation, incorporating memory allocation and
deallocation in CaS, more traps into the hypervisor are performed. This results in a
considerably higher average execution time of 9.118875 ms with monitoring.

Unmonitored execution of CaS in PSFTP took an average of 1.249789 ms. Likewise to
PLINK, a high implementation complexity subsequently causes more traps into the hy-
pervisor. Thus, the average CaS execution time with monitoring took 8.497180 ms.

The calculated average execution times are summarized in Table 9.8.

Name Unmonitored Monitored Overhead
execution in ms execution in ms in ms

PLINK 0.980827 9.118875 8.138048
PSFTP 1.249789 8.497180 7.247391

Table 9.8: Average CaS Execution with and without iDeFEND Monitoring
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As shown in Table 9.8, monitoring through our iDeFEND extension introduces a consid-
erable amount of processing overhead, related to the amount of guest VMExits during
execution. However, the introduced overhead is not a constraint for the utilization of
our iDeFEND extension. In the operational environments of our target applications,
our framework monitors networking applications. Network communication itself often
introduces significant amounts of delay, exceeding the presented overhead by far. Thus,
despite the overhead, our extension is still entirely applicable for its intended use.
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Chapter 10
Conclusion

Security investigation in encrypted environment has many challenges to be solved before
we can talk about a practical solution. One major challenge is resulting from intrusion
detection systems in encrypted traffic [72]. While different approaches try to do traffic
analysis on the encrypted network data, others decrypt the traffic for further analysis.
Analysis on encrypted traffic is not as efficient as traffic analysis on plaintext data. But
decrypting the traffic can break the security of end-to-end encryption or it is a dedicated
solution, which covers not all use cases.

For the case, no prevention is possible based on the network data, system-based protec-
tions can stop the attacker. Therefore, we examined the effectiveness of common pro-
tection mechanism to mitigate successful exploitation of vulnerabilities in applications.
Taking the example of Format String Vulnerabilities, we considered beside system-based
protections, e.g. Address Space Layout Randomization (ASLR) and Non Executable Bit
(NX), also compiler-based protections, e.g. RELocation Read-Only (RELRO). Since re-
mote Format String Attacks are mostly exploited using a memory leak, we elaborated
an approach to take over the control of the remote application without any leakage,
called Blind Attack. Common exploits rely on the presence of user controlled data on
the stack and therefore we researched a method for writing the payload on the stack by
having the user data only on the heap. Finally, we implemented a proof of concept to
show the feasibility of our approach and proposed ideas how to protect against it.

Knowing the fact, that Format String Attacks can be detected easily based on the
network data, the need for solutions to inspect the payload is given. In our thesis, we
proposed a framework, which is called iDeFEND, to establish a data bridge between
tools operating on plaintext traffic and the target application communication encrypted
over the network. Our approach keeps up the end-to-end encryption and allows to
extract the payload out of the encrypted network traffic. This informations allows an
IDS to look for malicious content inside the network communication. Furthermore, our
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framework is also able to intercept and modify the payload or to inject content created
by the analyst into the data stream. Using these features, we provide a data bridge for
security testing tools.

iDeFEND relies on designated functions inside binary applications. In common cases, we
can detect them automatically, but in some specific situations manual reverse engineering
would be required. Since this is a time-consuming process, we provide a framework for
efficient function identification inside binary applications. In our dynamic approach,
we enrich the application with meta data to have time-based state information. After
processing the data we limit the number of executed functions and display them to the
analyst. Using visual components, we help the analyst to identify the wanted function
in a short time.

As iDeFEND can be used in a live environment to protect the system, we classified
attacks against our framework and evaluated them. As a consequence, we used virtu-
alization extensions to isolate iDeFEND from the operation system to protect it from
dedicated attacks. To show the effectiveness we have implemented the framework and
validated it using experiments on well-known applications.

Future Work

While the Attack Model introduced in Section 9.2 covers an extensive amount of iDe-
FENDs attack surface, some corner cases are explicitly not handled. iDeFEND, for
example, is conceptually not designed to monitor designated malware, but rather oper-
ate as an intermediate interface between an observation target and an external entity.
This external entity can be an IDS or an actor in a security testing environment. De-
fending against attacks from a dedicated malware observation target are therefore not
part of the conceptual iDeFEND requirements. To investigate the encrypted network
traffic of malware, the framework have to be hardened against these attacks.

Additionally, the iDeFEND extension is unable to detect attacks against cryptographic
algorithms of the observation target. This is due to the fact, that the extension only
inspects the payload of encrypted communication but not the communication itself.
Thus, if the monitored application is overtaken through a malicious payload, sent in a
cryptographic handshake, the extension does not notice. This can be solved by observing
the encrypted data before it is getting decrypted. But this would require additional
Breakpoints(BPs).

Finally, the implemented iDeFEND extension uses hardware BPs in order to coordinate
VMI on the observation targets host VM. The current version of the XEN hypervisor
does not support virtualization of ARM debug registers. However, due to the ARMv7.1
Debug Architecture Design, the overall number of breakpoints is tied to a range between
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two and sixteen hardware breakpoint slots. In our testing environment, the available
hardware provides a total of 6 HWBPs. Therefore the process matching is handled in
the software logic of iDeFEND. Having multiple applications executing the same virtual
address as the target process, leads to unnecessary VMexits and performance overhead.
Future improvements of the XEN hypervisor, such as virtualization of ARM debug
registers, would avoid VMexits from unmonitored applications.
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[51] Felix Gröbert, Carsten Willems, and Thorsten Holz. “Automated identification
of cryptographic primitives in binary programs”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 6961 LNCS. 2011, pp. 41–60.

[52] Paul Haas. “Advanced format string attacks”. In: DEFCON 18 DEFCON 18
(2010).

[53] Hackmageddon. Information Security Timelines and Statistics. url: http://

www.hackmageddon.com/2017/01/19/2016- cyber- attacks- statistics/

(visited on 06/21/2017).

[54] Dimitri van Heesch. Doxygen. url: http://www.doxygen.org/ (visited on
06/21/2017).

[55] Laurens Hellemons, Luuk Hendriks, Rick Hofstede, Anna Sperotto, Ramin Sadre,
and Aiko Pras. “SSHCure: a flow-based SSH intrusion detection system”. In:
IFIP International Conference on Autonomous Infrastructure, Management and
Security. Springer. 2012, pp. 86–97.

[56] SA Hex Rays. IDA Pro Disassembler and Debugger. url: https://hex-rays.
com/products/ida/index.shtml (visited on 06/21/2017).

XIII

https://www.gnupg.org
http://www.hackmageddon.com/2017/01/19/2016-cyber-attacks-statistics/
http://www.hackmageddon.com/2017/01/19/2016-cyber-attacks-statistics/
http://www.doxygen.org/
https://hex-rays.com/products/ida/index.shtml
https://hex-rays.com/products/ida/index.shtml


Bibliography

[57] Alex Ho, Steven Hand, and Tim Harris. “PDB: Pervasive debugging with Xen”.
In: Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Work-
shop on. IEEE. 2004, pp. 260–265.

[58] Intel. Pin 3.0 User Guide. url: https : / / software . intel . com / sites /

landingpage/pintool/docs/76991/Pin/html/ (visited on 06/21/2017).

[59] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
325462-059US. 2016.

[60] Mathieu Jacomy, Sebastien Heymann, Tommaso Venturini, and Mathieu Bastian.
“Forceatlas2, a continuous graph layout algorithm for handy network visualiza-
tion”. In: Medialab center of research 560 (2011).

[61] A Jaleel, M Mattina, and B Jacob. “Last level cache (LLC) performance of data
mining workloads on a CMP - a case study of parallel bioinformatics workloads”.
In: The Twelfth International Symposium on High-Performance Computer Ar-
chitecture, 2006. Feb. 2006, pp. 88–98.

[62] Sachin P Joglekar and Stephen R Tate. “ProtoMon: Embedded monitors for cryp-
tographic protocol intrusion detection and prevention”. In: Information Technol-
ogy: Coding and Computing, 2004. Proceedings. ITCC 2004. International Con-
ference on. Vol. 1. IEEE. 2004, pp. 81–88.

[63] Holger M Kienle and Hausi A Müller. “Rigi—An environment for software re-
verse engineering, exploration, visualization, and redocumentation”. In: Science
of Computer Programming 75.4 (2010), pp. 247–263.

[64] Fatih Kilic and Claudia Eckert. “iDeFEND: Intrusion Detection Framework for
Encrypted Network Data”. In: Proceedings of the 14th International Conference
on Cryptology and Network Security (CANS 2015). Vol. 9476. Lecture Notes in
Computer Science. Springer International Publishing, 2015, pp. 111–118.

[65] Fatih Kilic, Benedikt Geßele, and Hasan Ibne Akram. “Security Testing over
Encrypted Channels on the ARM Platform”. In: Proceedings of the 12th Interna-
tional Conference on Internet Monitoring and Protection (ICIMP 2017). 2017.

[66] Fatih Kilic, Thomas Kittel, and Claudia Eckert. “Blind Format String Attacks”.
In: Proceedings of the 10th International Conference on Security and Privacy
in Communication Networks (SecureComm 2014). Vol. 153. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer International Publishing, 2015, pp. 301–314.

[67] Fatih Kilic, Hannes Laner, and Claudia Eckert. “Interactive Function Identifica-
tion Decreasing the Effort of Reverse Engineering”. In: Proceedings of the 11th In-
ternational Conference on Information Security and Cryptology (Inscrypt 2015).
Springer International Publishing, 2016, pp. 468–487.

XIV

https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/


Bibliography

[68] Vladimir Kiriansky, Derek Bruening, and Saman P Amarasinghe. “Secure Exe-
cution via Program Shepherding”. In: Proceedings of the 11th USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association, 2002, pp. 191–206.

[69] T Kitagawa, M Hanaoka, and K Kono. “AspFuzz: A state-aware protocol fuzzer
based on application-layer protocols”. In: Computers and Communications (ISCC),
2010 IEEE Symposium on. 2010, pp. 202–208.

[70] Robert Koch and Gabi Dreo Rodosek. “Command evaluation in encrypted re-
mote sessions”. In: Network and System Security (NSS), 2010 4th International
Conference on. IEEE. 2010, pp. 299–305.

[71] Robert Koch and Gabi Dreo Rodosek. “Security system for encrypted environ-
ments (S2E2)”. In: International Workshop on Recent Advances in Intrusion De-
tection. Springer. 2010, pp. 505–507.

[72] Tiina Kovanen, Gil David, and Timo Hämäläinen. “Survey: Intrusion Detection
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