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Abstract

To increase performance and energetic efficiency, robot design recently evolved from classi-
cal, rigid to intrinsically compliant actuation. The introduction of elastic elements enables
the absorption of external impact forces, and it offers the capability of buffering and di-
rectedly releasing kinetic energy. Therefore, the instantaneously retrievable power at the
link side of the joint is not limited by the restricted input power of the motor. These prop-
erties can be exploited in the execution of highly dynamical, cyclic, and periodic motion
tasks such as hammering, pick-and-place with robotic manipulators, walking, jumping,
or running with versatile, articulated legs. Although compliant actuators are promis-
ing regarding performance and efficiency, they turn the plant into a multi-dimensional,
nonlinear, oscillatory system, of which the analysis and control is a challenging task.

This thesis contributes to the theory of energy-efficient limit cycle generation, dimen-
sionality reduction of nonlinear systems, natural dynamics-based, modal controllers, and
the application to legged system design and control. A new, robust control principle is
proposed, which solves the problem of resonance-like excitation in the single-degree-of-
freedom, nonlinear oscillator case. Thereby, existence, uniqueness, and attractiveness of
resulting periodic orbits are proven based on novel statements, which contribute to hybrid
dynamical system and contraction theory. To generalize these findings to multiple dimen-
sions, classical results of theoretical mechanics suggest to reduce the dimensionality of the
oscillatory dynamics to one. This proposition is further supported by empirical evidence
of biologists that fundamental principles of legged locomotion are based upon oscillatory
movements, which evolve on lower-dimensional submanifolds than the configuration space
of articulated legs. The well-established method of modal analysis solves the problem of
dimensionality reduction for the linear case. However, the multibody dynamics of artic-
ulated robots is strongly nonlinear, and therefore, linear modal analysis is not applicable
straightforwardly. A novel theory of oscillation modes of nonlinear dynamics is proposed
here, which solves the problem at hand for the general case. The main theorem on os-
cillation modes provides algebraically verifiable conditions, for which a one-dimensional
submanifold of some configuration space represents an invariant set of the considered dy-
namical system. By means of this finding a method is introduced which allows to embody
low-order, desired task dynamics as oscillation modes in the mechanical design of the
robotic system. To exploit the natural oscillatory behavior, as given by oscillation modes,
appropriate control methods are crucial. For this purpose, four different modal control
methods are introduced, which address the demands of feasibility, versatility, robustness,
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and efficiency with varying priority. The control methods are validated in simulations and
experiments. A proof of concept is performed by applying the theoretical results to the
design and control of legged robots. Thereby, the performance and efficiency of the ap-
proach is experimentally validated in various dynamic locomotion gaits with compliantly
actuated quadrupedal and bipedal robots. This is a fine step towards the vision to create
a versatile and efficient system, which can efficiently move in rather simple terrain but has
simultaneously the capability to climb, jump, and crawl in rough and challenging terrain,
being therefore able to reach areas, where no other system could go before.
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CHAPTER 1

Introduction

1.1. Motivation

The phenomena of nonlinear oscillations fascinate engineers and mathematicians since
the discovery of the oscillators of Duffing [Duf18] and van der Pol [VdP26], [VdP27] and
maybe even longer. They arose as models in continuum mechanics and electrical circuit
theory, respectively [GH83]. Oscillations, e. g., of particles or electrical charges, are mo-
tions, where parts of the same trajectory are retraced repeatedly. This general definition
implies the interchange of kinetic and potential energy. As such, in robotics nonlinear
oscillations became important at least since the intentional addition of compliance to the
generally nonlinear multibody dynamics of classically rigid robots. The idea of realizing
a desired visco-elastic behavior by control originates from the necessity of universally ap-
plicable robots to stably interact with uncertain or even unknown environments [Hog85].
To overcome the bandwidth limitations of any control system, robot development evolved
from rigid towards compliant actuation—implementing elasticities by real, physical springs
[PW95]. These elastic elements in combination with the inherent damping contained in
any real system act as low-pass filter on external forces, which compared to rigidly actu-
ated systems, substantially increase the mechanical robustness of the plant. In particular,
the elastic energy storage can be exploited to buffer and directedly release kinetic energy.
Thereby, task performance can be increased, and energetic efficiency can be gained com-
pared to rigid actuation, since the instantaneously retrievable output power of the joints
is not limited by the maximum power input related to the motors. The capability to
store potential energy independently of the configuration of the links can be particularly
exploited in oscillatory motion tasks such as throwing and pick-and-place for manipulator
arms, or walking, jumping, and running in case of legged systems. For the latter class of
tasks, the above-mentioned energy saving properties are even of major importance. Such
mobile, legged systems gain significant advantages over wheeled vehicles: they are able to
efficiently move in rather simple terrain, while fulfilling still the requirements to maneuver
in highly demanding environments, where rover like systems cannot be operated properly.
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Figure 1.1.: Comparison of the amplitude-frequency characteristics: linear vs. nonlinear
oscillator.

1.2. Problem statement and objectives

Although the step from rigid towards compliant actuation is promising regarding perfor-
mance and efficiency, it turns the dynamics of the plant into a nonlinear and oscillatory one,
of which the analysis and control is a challenging task. Even the single-degree-of-freedom
oscillators of Duffing [Duf18] and van der Pol [VdP26], [VdP27] are improperly understood
yet [GH83, p. 66], although they probably belong to the most studied nonlinear systems
of the last century. In case of forced linear oscillations such as of mass-spring-damper
systems, the concept of resonance is well studied, as particular solutions can be obtained
in closed form. In contrast, for nonlinear oscillators such as the forced Duffing oscillator
[Duf18], approximative solutions based on perturbation methods [Nay73] reveal a substan-
tially different resonance behavior as known from linear oscillation theory. For instance,
the system exhibits multiple resonance states, and the amplitude and frequency of the
steady-state response depend on the amplitude and frequency of the excitation as well as
on the initial conditions [NM79]. This fundamentally different behavior of nonlinear os-
cillators (compared to linear systems) makes the prediction of periodic and resonance-like
motions a non-trivial problem (Fig. 1.1).

By turning from single to multi-degrees-of-freedom (DOF) nonlinear oscillatory systems,
the situation becomes even worse. For instance, solutions of the conservative (elastic) dou-
ble pendulum, as representative of the most simplest multi-DOF, nonlinear oscillator, can
behave chaotically. Under certain conditions on the Hamiltonian1, an energy-conservative
one-DOF system displays periodic solutions, which correspond to level sets of energy.
However, in case of multi-DOF systems, such level sets are not necessarily closed. This
is as in general the level sets of multi-DOF systems have a dimensionality greater than
one. Accordingly, the existence of periodic solutions can be ensured solely for one-DOF
oscillators. From these considerations it becomes clear that for studying multi-dimensional
nonlinear oscillations, the concept of reducing the dimensionality of dynamical systems to
a single DOF dynamics is crucial.

However, even if a multi-DOF system features an invariant subset of reduced dimen-
sionality, as mentioned above, then its exploitation by control requires still the explicit
knowledge of its “shape”. The shape of such an invariant manifold depends on the model

1For instance, if the Hamiltonian is a strongly convex function of the generalized coordinate and the
conjugate momentum variable
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of the corresponding dynamical system, which, for a real plant cannot be assumed to be
exactly known. Additionally, even if the motion of the considered system can be nominally
controlled to evolve in the invariant manifold, disturbances may occur. As such, either
the system itself or the control needs to feature a certain attractiveness of the invariant
manifold.

To be able to exploit the natural oscillatory behavior, the “shape” of the corresponding
invariant manifold needs to match to the evolution of the task. Due to the nonlinearity of
the considered dynamical systems, this matching procedure is challenging.

In summary, the main objective of this thesis is to address the following questions:

• How can single-DOF, compliantly actuated, nonlinear, second-order systems be ef-
ficiently controlled to display attractive closed orbits?

• What are the preconditions for multi-dimensional nonlinear oscillations, i. e., under
which conditions collapses the natural dynamics of compliantly actuated multibody
systems to a single second-order differential equation?

• How to efficiently control compliantly actuated robots to display oscillatory or peri-
odic motions?

• Are there ways to embody a certain desired natural dynamics behavior of reduced
dimensionality into the plant, and how can such system-inherent properties be ex-
ploited in the execution of robotic tasks?

Ultimate goals of this thesis are gaining the understanding for natural motions of highly
nonlinear multibody systems with elastic elements in the joints, and exploiting the ac-
quired insights to increase performance and efficiency in the execution of particular tasks.
Thereby, the application of articulated, legged locomotion is intended to serve as the main
benchmark.

1.3. Related work

This section provides an overview of related work in the field of nonlinear oscillations and
the control of robotic system with elasticities in the joints. Thereby, the starting point of
investigations of this thesis is identified.

1.3.1. Compliantly actuated robotic systems

In the last decades, numerous robotic systems with elasticities in the power-trains of the
joints have been developed. For the goal of analyzing and controlling naturally arising
oscillations, the distinction of flexible-joint robots [Rea94] and compliantly actuated robots
[ASEG+08] is of concern, whereas the latter are often treated in the context of so-called
variable stiffness actuators (VSA), see [CVS12] and [WGE+16] for recent overviews. While
the rather high stiffness2 of flexible-joint robots arises mainly as a side effect of reduc-
ing weight and achieving superior controllability of the torques in the joints [HASH+01],
the rather low intrinsic stiffness of compliantly actuated robots is intended to match the
bandwidth of desired tasks [ASEF+11]. Again, one of the primary goals of this thesis is
exploiting the natural oscillatory behavior in the execution of particular tasks. As such,
only the class of compliantly actuated systems (with rather low intrinsic stiffness matching

2The term “stiffness” is used here for simplicity, although this quantity is non-tensorial (cf. Definition 2.3).
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to considered tasks) is of interest. Nevertheless, both classes of multibody systems with
elasticities in the joints can be treated in the general framework of statically controllable,
under-actuated Euler-Lagrange systems [ASWE+10], [ASOP12].

1.3.2. Basic control

In compliantly actuated systems, the motion of the links is controlled via springs by mov-
ing the motors. However, in general, electrical motors are able to generate high velocities
but rather low torques such that gear-boxes are required, which, in turn, are subject to
energetic losses. In general, the dissipated power increases with increasing velocities. As
such, a strategy to efficiently move the links is given by moving the motors as few as
possible. This can be achieved by directly controlling the motion of the motors, e. g., by
utilizing the methods of [Tom91], [OKL95], [ZDLS04], [ASOP12]. As these controllers
feedback exclusively control-input-collocated variables (i. e., motor positions and veloci-
ties), they perform very robustly even in case of significant model uncertainties. Thus,
these motor position controllers serve as a basis to control nonlinear oscillations in com-
pliantly actuated systems. Although, these controllers are able to statically regulate the
link configuration, in some situations, it is required to specifically increase the damping by
control. This is as efficient power-trains of compliantly actuated systems are designed such
that damping in parallel to the springs (connecting motors and links) is as low as possible.
The related methods aiming at the solution to the link-side damping problem can be classi-
fied in the basic approaches of full-state-feedback-based gain scheduling [ASH01], [PAS11],
[SMCT+13], cascaded structures or integrator backstepping [OASKH03], [OL99], [Ott08,
Chapt. 6.2], extensions of the Slotine and Li controller [SW88] to the flexible joint case
[Spo89], and feedback linearization [DLL98], [PMDL08]. The methods based on full-state
feedback control are validated to perform in experiments. However, a stability analysis is
not provided in the general nonlinear case. All other approaches come with a comprehen-
sive stability analysis, but experimental validations on the relevant class of compliantly
actuated systems are lacking.

1.3.3. One-dimensional oscillations

A central issue of this thesis is the excitation and maintenance of oscillations in nonlinear,
compliantly actuated systems. As mentioned in Sect. 1.2, this is already in the single-
DOF case a challenging task. The control methods implementing a limit cycle behavior in
robotic systems reported so far are mainly based on the principles of van der Pol oscillators
[VdP26], e. g., [SD08], [GOAS13], and central pattern generators (CPG) [Ijs01], [BI04],
[IC07], [BI08], whereas the latter approaches realize basically a (harmonic) excitation
acting on the spring. The limit cycle controllers proposed in [SD08] and [GOAS13] realize
a nonlinear damping term, which increases the system energy if the state evolves inside
the limit cycle, and decreases it outside the limit cycle. A theoretical difficulty of this
approach is that for the stability analysis, it is assumed that damping forces (which are
inherent in any real plant) are canceled a priori. The idea of a CPG is to generate a
periodic pattern, which is feed-forward to the plant as reference motor position. The
extension to the classical CPG approach [BI08] considers further feedback of the plant to
adapt the frequency of the generated pattern to a resonance-like steady state. Although,
the concept of adapting the resonance frequency of the plant seems to be promising w. r. t.
the goal of exploiting the natural dynamics behavior, it suffers from the unpredictability
of periodic and resonance-like motions of forced nonlinear oscillators (cf. Sect. 1.2).
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1.3.4. Normal modes

A precondition for the step from single to multi-dimensional, natural, periodic motions
is given if the (multi-dimensional) system of second-order differential equations features
two-dimensional (2-D), invariant subsets of its state space. The concept of modal de-
composition, which is well known from linear vibration and control theory, provides a
powerful tool to separate high-dimensional linear systems into 1-D decoupled ones. How-
ever, the dynamics of articulated multibody systems at hand is nonlinear in general, such
that the classical modal decomposition cannot be conducted. The problem of describing
periodic solutions of systems of nonlinear second-order equations has been treated in the
literature in the context of so-called normal modes [Ros66], [Ran71], [Ran74], [CVS90],
[SP93]. Thereby, the definition of Rosenberg of normal modes [Ros66] applies to con-
servative systems consisting of nonlinear (and coupled) elasticities but constant masses.
Although, e. g., in [Ran74] and [CVS90], explicit parameterizations have been found in
the two-DOF case, the Rosenberg definition of normal modes cannot track the class of
articulated multibody systems at hand, where the indispensable nonlinearity is mainly the
result of the rotation of bodies. In principle, such systems could be treated by the more
general formulation of nonlinear normal modes, as proposed by Shaw and Pierre [SP93].
However, the procedure to determine normal modes, as proposed in [SP93], involves a set
of nonlinear, partial differential equations, for which even the existence of solutions can be
proven only in particular, symmetrical cases. As such, no appropriate method has been
reported so far, which solves the problem of dimensionality reduction for the compliantly
actuated systems of interest.

1.3.5. Control of multi-dimensional nonlinear oscillations

Although the analysis of natural, nonlinear, oscillatory, or periodic motions is currently
mainly unresolved, there remains the alternative to implement them in compliantly actu-
ated systems by (feedback) control. The control methods reported so far, which realize
explosive and periodic motions in multiple-joint robotic systems, are based on numer-
ical optimal control [BHV11], [BPH+12], [HHAS12], [BPH+13], shaping attractive 2-D
manifolds by feedback control [GAP01], [CEU02], [WGK03], [DS03], [GOAS13], tracking
of periodic reference trajectories/patterns [BI08], [UGK14], and inter-limb synchroniza-
tion control [FvdSS14], just to name a few from each category. The approaches reported
in [BHV11], [BPH+12], [HHAS12], [BPH+13] exploit the natural dynamics behavior of
compliantly actuated robotic arms in throwing a ball. A current limitation of numerical-
optimization-based methods is that computational costs and number of local minima ex-
plode with the number of degrees of freedom. As such, the reported experiments are
conducted with systems, where only two joints are involved in the motion. The methods
in [GAP01], [CEU02], [WGK03], [DS03], [GOAS13], scale to higher dimensional systems
and a variety of periodic tasks. Despite their generality, the approaches do not include a
directed method to take the natural oscillatory behavior of the plant into account. The
approach of adaptive frequency oscillators as proposed in [BI08] extends the idea of central
pattern generators [Ijs01] by a feedback, which enables the closed-loop system to adapt
to an inherent frequency of the plant. However, in realization of adaptive frequency oscil-
lators for compliant quadrupedal robots [BI08], the “optimal” inter-joint distribution of
pattern amplitudes (and phase relations) are determined by manual search. The concepts
proposed in [UGK14] and [FvdSS14] solve the problem of efficient periodic motion gener-
ation most closely. Both methods utilize the control input of variable stiffnesses to adapt
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to multi-DOF periodic motions. In [UGK14], linear elasticities are considered in parallel
to the actuators and a periodic reference trajectory is tracked. The power-continuous con-
troller introduced by [FvdSS14] synchronizes the nominal motion of two oscillators. For
both approaches it remains open to show to which extent the natural oscillatory behavior
of multibody systems with elasticities can be exploited, since the inertial dynamics of the
robotic links is not explicitly taken into account.

1.4. Contributions and overview

This thesis investigates the theoretical foundations of nonlinear oscillations, transfers
gained insights to the design and control of compliantly actuated robotic systems, and
verifies the proposed concepts in applications to tasks of robotic arms and legged systems.
The key methodologies are validated in experiments with at least one of the robotic sys-
tems: DLR Hand Arm System [GASB+11], the compliant biped C-Runner [LWL+16], or
the compliantly actuated quadruped Bert (Sect. 7.1.1), whereby, the latter hardware sys-
tem has been developed in the course of this thesis. In addition to these technical aspects,
based on theoretical findings of this thesis, it was possible to generate new hypotheses
in neural motor control [LAS14a], [SLAS16] and to substantiate the evidence of existing
empirical models in biomechanics [LFAS17].

To deepen the understanding of mechanical systems and their natural oscillatory or
periodic solutions, the geometry of the underlying physics is indispensable. Therefore,
Chapt. 2 provides an overview of the differential geometric concepts of theoretical me-
chanics. Although, the mathematical theory is well-known from the literature [LR89],
[Fra03], [Arn13], the description is recapitulated from a robotics and control point of
view. In particular, geometrical interpretations of relevant physical principles and effects
are highlighted. In Chapt. 3, the compliantly actuated mechanical systems of interest
are introduced and generalized w. r. t. the formulation of [ASOP12] to the case of under-
actuation at rigid-body level. Moreover, basic concepts to control the static equilibrium
conditions are investigated. In particular, a novel control method is introduced, which
implements a damping term for the dynamics of indirectly actuated states. This con-
troller preserves the structure of the plant-inherent elasticity and performs very robustly
on real-hardware systems therefore.

The central contribution of this thesis is the theory on reducing the dimensionality of
natural (uncontrolled) evolutions of compliantly actuated multibody systems to one. This
concept of one-dimensional (1-D), invariant submanifolds of configurations is referred to as
oscillation modes. On the basis of this fundamental theory, the proposed approach of con-
trolling naturally arising, nonlinear oscillations consists of the “trinity” of newly introduced
methodologies and concepts of limit cylcle control, oscillation modes, and modal control
(Fig. 1.2). In Chapt. 4, a control principle is introduced, which switches the potential
energy based on thresholding the elastic tension. This way, limit cycles are generated by
exciting the natural oscillatory dynamics of planar, non-conservative Euler-Lagrange sys-
tems. Considering the equilibrium configuration of the potential as control input (which is
a reliable assumption utilizing the basic control to be described in Sect. 3.2), the controller
feedbacks solely measurements of the state at position level, and it requires, if anything,
the knowledge of a static model of the plant. Due to the switching nature of the control
law, the resulting closed-loop dynamics represents a hybrid dynamical system. By inves-
tigating the stability properties of such planar systems, novel interpretations of ordinary
statements to prove the existence and convergence of hybrid closed orbits are found. To
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ẋ

hybrid

hybrid

application to dynamic legged locomotion

Figure 1.2.: Theory of Multi-Dimensional Nonlinear Oscillation Control and applications.

transfer the principles of one-dimensional limit cycle generation to the multi-dimensional
case, the problem of dimensionality reduction needs to be solved. Yet, tackling this prob-
lem in the general case is not trivial. Although the well-established method of modal
decomposition solves the problem in the linear case, especially the multibody dynamics of
articulated robotic systems is strongly nonlinear, and therefore, linear modal analysis is
not applicable. The novel theory on oscillation modes of nonlinear dynamics, as introduced
in Chapt. 5, solves the problem of dimensionality reduction in the general multibody case.
The contributed theorems on oscillation modes provide algebraically verifiable conditions,
for which a one-dimensional submanifold of the configuration space represents an invariant
set of the considered uncontrolled system. This stands in stark contrast to the concept of
normal modes [SP93], where the invariance conditions arise as a set of nonlinear partial
differential equations. Based on the proposed directly testable conditions on oscillation
modes, a method is proposed in Sect. 5.2, which enables to embody fundamental low-
order template model dynamics of robotic tasks in the design of the mechanical system.
To exploit the natural oscillatory dynamics of compliantly actuated systems (which are
represented by oscillation modes) in the execution of real-world tasks, one needs to trade
off between the requirements of feasibility, versatility, robustness, and performance respec-
tively efficiency. Each of the four modal control methods, as contributed in Chapt. 6, is
best suited at least for one of these aims. Modal globalization control (Sect. 6.1) applies to
any (statically controllable) compliantly actuated system, as the controller makes the local
linear oscillation properties globally valid. The practical feasibility of the method has been
validated in experiments on the DLR Hand Arm System. Moreover, a strict Lyapunov
function approach is introduced in the context of modal globalization control, which al-
lows to prove exponential stability for a class of parameter-varying second-order systems.
Modal shaping control, as proposed in Sect. 6.2, is intended to increase the versatility of
possible tasks, where performance or efficiency is of paramount importance. The control
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effort of this method is minimalistic in a sense that the controller is not active, when the
natural motion of the plant coincides with the shaped mode. The approach is conceptu-
ally validated in simulations of compliantly actuated, quadrupedal jumping tasks. The
method of modal adaptation (Sect. 6.3) may be regarded as the next core contribution of
this thesis. Based on sole observations of the motion of configuration variables, it is able
to extract the oscillation modes of the plant. The combination of modal adaptation and
switching-based limit cycle control (as mentioned above) yields a powerful tool to excite
periodic motions evolving in the oscillation modes without model-parameter knowledge of
the plant. The performance and efficiency of the method has been validated in several
experimental applications on the DLR Hand Arm System as well as on a compliantly
actuated robotic leg [SLAS16]. A further seminal finding is the hypothesis that the con-
troller structure can be realized by a biologically plausible network of neurons [LAS14a],
[SLAS16]. Finally, the concept of modal matching, as introduced in Sect. 6.4 combines
the aims of versatility and efficiency. The method exploits the nonlinearity of compliantly
actuated multibody systems to match and control the direction of local eigenvectors to
a given task. A first proof of concept of this approach is performed by simulation of a
compliantly actuated leg in a directed jumping task. A by-product of the modal matching
methodology is a task-dynamics formulation based on holonomic constraints.

Chapter 7 is dedicated to the applications of the general theory of oscillation modes,
limit cycle, and modal control in legged locomotion (Fig. 1.2). A widely accepted and
empirically validated hypothesis of biologists claims that the high-dimensional, nonlin-
ear dynamics anchored in a complex legged animal collapses to strongly reduced-order
template model dynamics [FK99], [HFKG06], like the spring-loaded inverted pendulum
(SLIP) model [Bli89]. By the methodology of oscillation mode embodiment, examples are
discovered, which validate that the dynamics of the SLIP model can be anchored in the
elastic multibody dynamics of articulated legs. In particular, Sect. 7.1 and 7.2 provides re-
alizations of such template model dynamics in the real compliantly actuated quadrupedal
and bipedal robots Bert and C-Runner, respectively. Thereby, first experimental verifica-
tions by a dynamic pronk, trot and walk are performed on real robotic analog systems.
As such, the theory contributed by this thesis supports and substantiates the hypotheses
of the biologists.

The investigations and findings reported here yielded five journal articles, ten conference
papers in the main robotic and control congresses (Table 1.1), and three patents, of which
[KLO17] is accepted and [LAS], [LFAS] are currently under review.
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Reference Description

Journal,
[LPAS14]

D. Lakatos, F. Petit, and A. Albu-Schäffer. Nonlinear Oscillations for Cyclic
Movements in Human and Robotic Arms. IEEE Transactions on Robotics,
30(4):865–879, Aug. 2014.

Journal,
[LAS16]

D. Lakatos and A. Albu-Schäffer. Modal Matching: An Approach to Natural
Compliant Jumping Control. IEEE Robotics and Automation Letters, 1(1):274–
281, Jan. 2016.

Journal,
[SLAS16]

P. Stratmann, D. Lakatos, and A. Albu-Schäffer. Neuromodulation and Synap-
tic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency
in Coupled Compliant Joints via PCA. Frontiers in Neurorobotics, 10(2):1–20,
Mar. 2016.

Journal,
[SLOAS17]

P. Stratmann, D. Lakatos, M. C. Özparpucu, and A. Albu-Schäffer. Legged
Elastic Multibody Systems: Adjusting Limit Cycles to Close-to-Optimal Energy
Efficiency. IEEE Robotics and Automation Letters, 2(2):436–443, Apr. 2017.
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[LFAS17]

D. Lakatos, W. Friedl, and A. Albu-Schaffer. Eigenmodes of Nonlinear Dynam-
ics: Definition, Existence, and Embodiment into Legged Robots with Elastic
Elements. IEEE Robotics and Automation Letters, 2(2):1062–1069, Apr. 2017.

Conference,
[LPAS13]

D. Lakatos, F. Petit, and A. Albu-Schäffer. Nonlinear Oscillations for Cyclic
Movements in Variable Impedance Actuated Robotic Arms. In IEEE Int. Conf.
on Robotics and Automation, pages 508–515, May 2013.

Conference,
[LGP+13a]

D. Lakatos, G. Garofalo, F. Petit, C. Ott, and A. Albu-Schäffer. Modal Limit
Cycle Control for Variable Stiffness Actuated Robots. In IEEE Int. Conf. on
Robotics and Automation, pages 4934–4941, May 2013.

Conference,
[LGP+13b]

D. Lakatos, M. Görner, F. Petit, A. Dietrich, and A. Albu-Schäffer. A Modally
Adaptive Control for Multi-Contact Cyclic Motions in Compliantly Actuated
Robotic Systems. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 5388–5395, Nov. 2013.

Conference,
[LGDAS14]

D. Lakatos, G. Garofalo, A. Dietrich, and A. Albu-Schäffer. Jumping Control
for Compliantly Actuated Multilegged Robots. In IEEE Int. Conf. on Robotics
and Automation, pages 4562–4568, May 2014.

Conference,
[LAS14a]

D. Lakatos and A. Albu-Schaffer. Neuron model interpretation of a cyclic motion
control concept. In IEEE RAS & EMBS Int. Conf. on Biomedical Robotics and
Biomechatronics, pages 905–910, Aug. 2014.

Conference,
[LAS14b]

D. Lakatos and A. Albu-Schäffer. Switching based limit cycle control for com-
pliantly actuated second-order systems. In Proc. of the IFAC World Congress,
pages 6392–6399, Aug. 2014.

Conference,
[LRSAS14]

D. Lakatos, C. Rode, A. Seyfarth, and A. Albu-Schäffer. Design and Con-
trol of Compliantly Actuated Bipedal Running Robots: Concepts to Exploit
Natural System Dynamics. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), pages 930–937, Nov. 2014.

Conference,
[LSFAS15]

D. Lakatos, D. Seidel, W. Friedl, and A. Albu-Schäffer. Targeted Jumping
of Compliantly Actuated Hoppers based on Discrete Planning and Switching
Control. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
5802–5808, 2015.

Conference,
[KLOAS16]

M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schäffer. A Passivity-Based Ap-
proach for Trajectory Tracking and Link-Side Damping of Compliantly Actuated
Robots. In IEEE Int. Conf. on Robotics and Automation, pages 1079–1086,
May 2016. Best Automation Paper Award Finalist.

Conference,
[LASRL16]

D. Lakatos, A. Albu-Schäffer, C. Rode, and F. Loeffl. Dynamic Bipedal Walking
by Controlling only the Equilibrium of Intrinsic Elasticities. In IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), pages 1282–1289, Nov. 2016.

Table 1.1.: Main publications covered by this thesis.
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CHAPTER 2

Differential Geometric Fundamentals of Mechanics

To analyze and control periodic motions of mechanical systems, the concepts of manifolds,
tensors, and submanifolds are crucial. Especially, the analysis and control of intrinsically
periodic tasks, e. g., in legged locomotion can be substantially simplified, in case their
dynamics is represented in different curvy-linear coordinates which generally dissent from
the coordinates where the actuation physically takes place. Therefore, the concept of dif-
ferentiable manifolds suggests clear rules how to transform physical quantities (required
to describe the dynamics) between these coordinate systems and formalize the way how
these so-called tensor-fields are differentiated. Periodicity requirements as well as envi-
ronmental contacts (appearing in legged locomotion) constrain the motion of mechanical
systems to evolve on a lower-dimensional space than its configuration manifold. But also
basic principles of energy-efficient limit cycle generation rely on such a dimensionality re-
duction. Therefore, the concept of (holonomic) motion constraints is introduced, which
can be conveniently handled by the notion of submanifolds. In the following, the differen-
tial geometric concepts are briefly introduced from an application point of view only. For
rigorous definitions and a comprehensive description, the reader is referred to [Fra03].

2.1. Differentiable manifolds

The requirement to introduce the notion of a manifold arises when a space is considered
which cannot be completely covered by a single coordinate system.1 The idea of a manifold
is to cover the point set of interest by a family of local coordinate systems such that
two intersecting coordinate “patches” can be continuously related to each other [Fra03].
The existence of such coordinate patches depends on topological properties of the surface
(described by the point set) [LR89]. Since this thesis focuses on the application of the
differential-geometric concepts to analyze dynamical systems and to design controllers,
the topological requirements for the existence of such coordinate neighborhoods will be
considered as given. This means that the surfaces treated here are so-called differentiable
manifolds, where such properties are guaranteed by definition.

In the following, the differentiable manifold will be defined based on a common exam-

1Note that the Euclidean space R
n can be always covered by a single Cartesian coordinate system.
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Figure 2.1.: Definition of a manifold.

ple in multibody systems, where the manifold consists of a covering by two (or more)
coordinate neighborhoods: the joint or configuration and the task coordinates2 (Fig. 2.1).
This intuitive example can be easily extended to an arbitrary countable set of coordinate
neighborhoods.

Definition 2.1 (Manifold). A n-dimensional manifold is a point set3 M = Q ∪ X ∪ . . .
which is covered by a family of local coordinate systems, for instance, the patch of the
configuration coordinates Q and the patch of the task coordinates X . The point set is
called locally R

n (Euclidean) in a sense that for each subset Q and X there are one-to-
one correspondences ΦQ : Q → R

n and ΦX : X → R
n with open subsets ΦQ and ΦX

of R
n, respectively. In other words, the manifold (not necessarily embedded in R

n) is
such that to each point r ∈ M, one can assign the n real numbers q := (q1, . . . , qn) and
x := (x1, . . . , xn), if the point belongs to the coordinate neighborhood of the configuration
coordinates r ∈ Q and task coordinates r ∈ X , respectively. The intersection of the two
coordinate patches Q ∩ X is assumed to be non-empty such that for r ∈ Q ∩ X one can
express the relation of the configuration coordinates q and task coordinates x in the form

x = x(q) := ΦX ◦Φ−1
Q (q) , (2.1)

with the inverse transformation

q = q(x) := ΦQ ◦Φ−1
X (x) . (2.2)

Definition 2.2 (Differentiable manifold). If additionally to the requirements of Defini-
tion 2.1, the functions of (2.1) and (2.2) are of class C∞, i. e., infinitely times differentiable
∀r ∈ Q ∩ X , the manifold M is called a n-dimensional differentiable manifold.

In the following, it is assumed that differentiable manifolds are treated, where the above
requirements are satisfied by definition.

2In some particular cases, the task-coordinates correspond end-effector positions of a manipulator.
3More precisely, it is a topological space [Fra03].
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2.2. Tensors on manifolds

If one is concerned with velocities, forces, and inertias of nonlinear systems represented
in different coordinate neighborhoods, the notion of a tensor is essential. First, a general
tensor is defined from a view point of coordinate transformations and then particular
tensors are introduced, which are required to model, analyze, and control the class of
systems considered here. Finally, the non-tensorial concept of an affine connection is
briefly treated, which typically appears in nonlinear Euler-Lagrange dynamics.

2.2.1. Tensors and tensor fields

To describe general tensorial quantities, the concept of a matrix, i. e., a two-index quan-
tity, is not sufficient anymore. Therefore, lower-case Latin indices such as j, h, k, . . . are
considered. Additionally, the following summation convention is used: if the same index
appears twice in a term, summation over that index is implied. Since we are concerned
with n-dimensional manifolds, the summation range is 1 . . . n.

The following general definition of a tensor is taken from [LR89]:

Definition 2.3 (Tensor). A set of nr+s quantities Qh1···hrk1···ks constitute the components
of a tensor of type (r, s) (r contravariant, s covariant)4 at a point r of a differentiable
manifold M, if, under the coordinate transformation (2.1), these quantities transform
according to the law

Xj1···jr
l1···ls =

∂xj1

∂qh1
· · · ∂x

jr

∂qhr
∂xk1

∂ql1
· · · ∂x

ks

∂qls
Qh1···hrk1···ks . (2.3)

Most of the tensors required in this thesis can be treated in the context of matrix
operations. However, the index notation is advantageous, since it intrinsically denotes the
type of the tensor5. Since the matrix notation is more common in robotics and control
theory, both notations will be introduced and the index notation will only be used if the
context requires it.

Two types of vectorial quantities are considered:

Definition 2.4 (Velocity vector). A set of n quantities q̇h constitute the components of a
vector of type (1, 0) (contravariant vector) at a point r of a differentiable manifold M, if,
under the coordinate transformation (2.1), these quantities transform according to the law

ẋj =
∂xj

∂qh
q̇h . (2.4)

The transformation law of a velocity vector q̇ can be expressed as the matrix operation

ẋ = J(q)q̇ , (2.5)

where

J(q) :=
∂x(q)

∂q
(2.6)

represents the Jacobian matrix of the coordinate transformation (2.1).

4Note that the indices of tensorial quantities are not horizontally aligned to preserve the order: first
contravariant (superscript) and second covariant (subscript).

5Note that tensors of rank r+ s > 2 cannot be expressed in matrix notation anymore. An example is the
curvature tensor of a manifold which consist of rank 3.
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2. Differential Geometric Fundamentals of Mechanics

The velocity is a particular example of a so-called tangent vector. The set of all tangent
vectors at a point r of the manifold forms a n-dimensional vector space, the so-called
tangent space Mr.

Definition 2.5 (Co-vector (force)). A set of n quantities τ h constitute the components of
a vector of type (0, 1) (covariant vector) at a point r of a differentiable manifold M, if,
under the coordinate transformation (2.1), these quantities transform according to the law

f j =
∂qh

∂xj
τ h . (2.7)

The inverse of the transformation law (2.7), i. e., the so-called pull-back, can be expressed
as the matrix operation

τ = J(q)Tf , (2.8)

where the Jacobian matrix J(q) is defined by (2.6).

The force is a general example of a so-called co-tangent vector (or briefly co-vector).
The set of all co-vectors at a point r of the manifold forms also a n-dimensional vector
space, the so-called dual tangent space M⋆

r.

Remark 2.1 (Gradient). A particular example of a co-vector is the gradient. Let U be a
scalar field on a subset S of the manifold M. Suppose that S is not contained in a single
coordinate patch such that the point r ∈ W is in a coordinate overlap, r ∈ Q ∩ X . The
partial derivatives ∂U(qk)/∂qh constitute the components of a covariant vector which can
be immediately seen by applying the chain rule

∂U(xl)

∂xj
=
∂qh

∂xj
∂U(qk(xl))

∂qh
. (2.9)

The comparison of (2.9) and (2.7) reveals that the gradient ∂U(qk)/∂qh is a co-vector.
Its transformation can be analogously expressed as the matrix operation6

∂U(x)

∂x

T

= J(q)−T
∂U(q)

∂q

T

,

where the dependency on q can be removed by (2.2).

An additional important tensorial quantity appearing in the dynamics of nonlinear me-
chanical systems is the so-called inertia tensor. This tensor of type (0, 2) can be charac-
terized by a quotient theorem as described in [LR89]:

Theorem 2.1 ([LR89]). If the n2 quantities M hk are such that for any contravariant
vector q̇h at a point r of the manifold M, M hkq̇

hq̇k is a scalar, then the symmetric parts
1
2 (M hk +M kh) of M hk are the components of a tensor of type (0, 2).

The following can be deduced from this theorem:

Corollary 2.1. If in addition to the requirements of Theorem 2.1, the quantities M hk are
symmetric, i. e., M hk =M kh, then M hk are the components of a type (0, 2) tensor.

Remark 2.2 (Inertial tensor). If the quantities M hk of Corollary 2.1 are such that the
scalar M hkq̇

hq̇k is positive definite, then the components M hk are sometimes referred to
as inertia tensor.

In Riemannian geometry, the inertia tensor has a particular meaning which is also of
major importance for the analysis and construction of Lyapunov stability.

6The transposed operator (·)T denotes that the gradient ∂U(q)/∂q is a row in matrix notation.
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2.2.2. Riemannian metric

The concept of a metric for the differentiable manifold M allows to measure the length
of vectors and co-vectors, the angle between two vectors (of equal type), or the arc length
of a curve [Arn13]. The following definitions of the notion of a metric will be performed
based on the length of a contravariant vector. Thereby, only matrix operations (instead
of index operations) will be conducted.

Definition 2.6 (Length of a vector). Let q̇ be a contravariant vector in the tangent space
Mr of a point r of the manifold M, for which the coordinates of that point r are q.
Then, analogously to the expression of a length in Euclidean space, the length of that
vector, denoted ‖q̇‖, can be expressed by the modulus of a function f(q, q̇) which is:

1. sufficiently smooth7 in all its arguments,

2. invariant under any coordinate transformation on M, and

3. positively homogeneous of the first degree in the argument q̇, i. e.,

f(q, cq̇) = cf(q, q̇) , ∀c > 0 . (2.10)

Such a function f(q, q̇) can be constructed by differentiating one half of this squared
function w. r. t. the vector q̇ which yields [LR89]

1

2

∂2f2(q, q̇)

∂q̇2 =
∂f(q, q̇)

∂q̇

T ∂f(q, q̇)

∂q̇
+ f(q, q̇)

∂2f(q, q̇)

∂q̇2 (2.11)

Since, Euler’s theorem on homogeneous functions implies that

∂f(q, q̇)

∂q̇
q̇ = f(q, q̇) ,

∂2f(q, q̇)

∂q̇2 q̇ = 0 ,

it follows from (2.11) that

f2(q, q̇) = q̇T
1

2

∂2f2(q, q̇)

∂q̇2 q̇ , (2.12)

which suggests the notation

f2(q, q̇) = q̇TM(q, q̇)q̇ ,

where

M (q, q̇) :=
1

2

∂2f2(q, q̇)

∂q̇2 . (2.13)

As a result, the length ‖q̇‖ of any tangent vector q̇ of Mr can be considered as the positive
square root of

‖q̇‖2 := |q̇TM(q, q̇)q̇| .
7By sufficiently smooth it is meant that f(q, q̇) is of Cr, r ≥ 5 [LR89]. Note that if r ≥ 5, the curvature
tensor associated with f(q, q̇) is at least one times continuously differentiable.
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From condition 2 of Definition 2.6 and by successive differentiation taking Schwarz’ the-
orem (on the symmetry of the second-order partial derivatives) and Corollary 2.1 into
account, it can be easily verified that the n× n-matrix M defined in (2.13) is a tensor of
type (0, 2). Requiring additionally that M depends exclusively on positional coordinates
of the manifold M such as q and that

det (M ) 6= 0 , (2.14)

the notion of a Riemmanian metric can be introduced:

Definition 2.7 (Riemannian metric [Fra03]). Let ~v be a tangent vector represented in
a coordinate-free fashion. Then, a Riemannian metric on a manifold M assigns a pos-
itive definite inner product (quadratic form) 〈~v,~v〉 to each tangent space Mr. In local
coordinates q of the coordinate neighborhood Q, the inner product can be expressed as

〈q̇, q̇〉 = q̇TM(q)q̇ , (2.15)

where M (q) is called a metric tensor.

The notion of a tensor has been introduced based upon its transformation under a
change of coordinates so far. However, from the concept of a metric it becomes clear that
tensors are intrinsic quantities which can be introduced in a coordinate-free fashion. In
particular, for the Definition 2.7 of the Riemannian metric which is an invariant quantity,
it is necessary to introduce the vector as a coordinate-independent quantity denoted by
~(·). This intrinsic concept of a metric leads us directly to the definition of the Riemannian
manifold.

Definition 2.8 (Riemannian manifold [Fra03]). A differentiable manifold equipped with a
Riemannian metric is called a Riemannian manifold.

Remark 2.3. The definition of a Riemannian metric does not necessarily require the
inner product in Definition 2.7 to be positive. If the positive definiteness condition is
relaxed such that the inner product is only non-degenerate anymore8 than the manifold
equipped with this metric is called a pseudo-Riemannian manifold.

This thesis considers only metrics, where the positive definiteness condition of Re-
mark 2.2 is satisfied.

2.2.3. Covariant differentiation

In general, the derivation of the Euler-Lagrange equations representing, e. g., the dynamics
of multi-body systems requires to differentiate a vector field on a differentiable manifold
M. The process of differentiation on a manifold is a generalization of the ordinary process
of differentiation in R

n. The main difference becomes clear by considering (for a moment)
the example of a vector field v(q) in R

n defined along a parameterized curve q = q(t) ∈ R
n

with time t [Fra03]. The ordinary derivative of this vector field along the curve is defined
by

dv(t)

dt
= lim

∆t→0

v(t+∆t)− v(t)

∆t
, (2.16)

8This implies that the metric tensor is only regular, i. e., det(M) 6= 0 (cf. (2.14)).
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2.2. Tensors on manifolds

where it can be seen that vectors at the different points q(t + ∆t) and q(t) are related.
This makes only sense in an affine space, where a vector can be translated parallel. If one
is concerned with a vector field v(q) on a general manifold M, then the vectors in (2.16)
are even in the different tangent spaces v(t +∆t) ∈ Mq(t+∆t) respectively v(t) ∈ Mq(t).
An important implication of this state of affairs is that the (time) derivatives

v̇h =
∂vh

∂qk
q̇k (2.17)

of a vector field vh(q(t)) on a manifold M do not represent the components of a con-
travariant vector. Since q̇k are of type (1, 0), the partial derivatives ∂vh/∂qk would need
to be of type (1, 1). However considering the transformation of the vector field

wj (x) =
∂xj

∂qh
vh(q) , (2.18)

it can be seen, by partial differentiation,

∂wj

∂xk
=

∂2xj

∂ql∂qh
∂ql

∂xk
vh +

∂xj

∂qh
∂ql

∂xk
∂vh

∂ql
(2.19)

that ∂vh/∂ql is even not tensorial (cf. Definition 2.3).
The circumstance that the ordinary derivative of a vector field on a general manifold is

not tensorial motivates the introduction of a more general concept of differentiation.

Definition 2.9 (Covariant derivative of a vector field). Let vh(qk) be a contravariant
vector field on a differentiable manifold M. Then, the partial covariant derivative w. r. t.
qk can be expressed as

∇kv
j =

∂vh

∂qk
+ Γh

j
kv
h , (2.20)

where the three-index symbols Γh
j
k are the connection coefficients on the differentiable

manifold M.

The notion of covariant differentiation involves the components of an affine connection
Γh

j
k. Thereby, it is assumed that the manifold is equipped with such a connection. In

accordance with the example of ordinary differentiation (2.16), the affine connection (to
be defined later) specifies how to relate vectors of distinct (neighboring) tangent spaces of
a general manifold. This process of translation is sometimes referred to as transportation
by parallel displacement.

Definition 2.10 (Local parallelism of vectors). Let vj (qk) be an arbitrary contravari-
ant vector at the point r(qk) ∈ M, a unique vector vj + dvj at the neighboring point
r(qk + dqk) ∈ M is defined such that the covariant differential of the vector field is zero,
i. e.,

Dvj = ∇kv
jdqk = dvj + Γh

j
kv
hdqk = 0 , (2.21)

where Γh
j
k is to be evaluated at r(qk), while dqk refers to the displacement from r(qk) to

r(qk + dqk). The vector vj + dvj constructed at r(qk + dqk) is said to be parallel to the
vector vj at r(qk) if dvj satisfies the condition (2.21).

33



2. Differential Geometric Fundamentals of Mechanics

The process of covariant differentiation—leading to the concept of parallelism—is de-
fined for a general tensor field on an affinely connected space9:

Definition 2.11 (Covariant derivative of a tensor field). The partial covariant derivative
of a general type (r, s) tensor field Qj1···jr l1···ls,

∇kQ
j1···jr

l1···ls =
∂Qj1···jr l1···ls

∂qk
+

r∑

α=1

Γm
jα
kQ

j1···jα−1mjα+1···jr
l1···ls

−
s∑

β=1

Γlβ
m
k
Qj1···jr l1···lβ−1mlβ+1···ls

, (2.22)

1. is a type (r, s + 1) tensor field,

2. The covariant derivative is a linear operator, i. e., given the real numbers a and b,

∇m

(

aXj1···jr
l1···ls + bY h1···hr

k1···ks

)

= a∇mX
j1···jr

l1···ls + b∇mY
h1···hr

k1···ks .

3. The covariant derivative of the product of two tensor fields follows a rule formally
identically to the product rule of ordinary partial differentiation, i. e.,

∇m

(

Xj1···jr
l1···lsY

h1···hr
k1···ks

)

=

∇mX
j1···jr

l1···lsY
h1···hr

k1···ks +Xj1···jr
l1···ls∇mY

h1···hr
k1···ks .

Note that the above properties do not completely specify the connection coefficients.

Definition 2.12 (Connection coefficients [LR89]). Any set of three-index symbols Γh
l
k is

said to constitute the components of an affine connection on the differentiable manifold
M if they transform under a change of coordinates (2.1) by

⋆Γm
j
p(x) =

∂xj

∂ql
∂qh

∂xm
∂qk

∂xp
Γh

l
k(q)−

∂2xj

∂qh∂qk
∂qh

∂xm
∂qk

∂xp
. (2.23)

In case of a Riemannian manifold of Definition 2.8, there is a particular connection that
relates parallel displacement with the Riemannian metric of Definition 2.7.

Definition 2.13 (Riemannian connection). The metric tensor M hj(r), det(M hj(r)) 6= 0
for all r ∈ M, defines a connection on the Riemannian manifold as introduced by Defini-
tion 2.8. In local coordinates q of the coordinate neighborhood Q, its connection coefficients
are given by the Christoffel symbols of the first kind and second kind

Γhlk =
1

2

(
∂M lk

∂qh
+
∂M hl

∂qk
− ∂M hk

∂ql

)

(2.24)

and

Γh
j
k =M jlΓhlk , (2.25)

respectively, where the contravariant tensor of rank two in (2.25), M jl represents the
inverse of the metric tensor M jl.

9An affinely connected space is a manifold equipped with an affine connection.
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Especially the motion of our Euler-Lagrange systems considered here, takes place on a
differentiable manifold equipped with a Riemannian connection. Such a so-called Levi-
Civita connection has some important implications. A property of paramount importance
for the stability analysis of nonlinear Euler-Lagrange systems relies on the following lemma:

Lemma 2.1 (Ricci’s lemma [LR89]). The covariant derivative of the metric tensor w. r. t.
the connection (2.25) vanishes identically:

∇kM jh = 0 , ∇kM
jh = 0 . (2.26)

Proof. Permuting the indices h and l in (2.24) and adding the result

Γlhk =
1

2

(
∂M hk

∂ql
+
∂M lh

∂qk
− ∂M lk

∂qh

)

to (2.24) and exploiting the symmetry property of Corollary 2.1, yields the identity

Γhlk + Γlhk =
∂M hl

∂qk
. (2.27)

Furthermore, it follows from (2.22) of Definition 2.11 that the covariant derivative of the
tensor field M hl(q) w. r. t. the Christoffel symbols (2.25) is given by

∇kM hl =
∂M hl

∂qk
− Γhlk − Γlhk , (2.28)

where the inverse of the relation (2.25) has already been used. By considering the identity
(2.27) in (2.28) it follows directly that ∇kM hl = 0. The result ∇kM

hl = 0 can be obtained
analogously.

An additional important implication of the Riemannian connection is the property that
parallel displacement preserves scalar products.

Remark 2.4. Let v and w be vectors at the same point r of the Riemannian mani-
fold equipped with a metric connection as introduced by Definition 2.13. Then, the scalar
product 〈v,w〉 is preserved under transportation by parallel displacement, i. e., for a dis-
placement from r(qk) to r(qk + dqk),

d 〈v,w〉 = 0 . (2.29)

Proof. According to statement 2 of Definition 2.6, the scalar product of the vectors v and
w is an invariant. Therefore, it can be written

d 〈v,w〉 = D 〈v,w〉 = D
(
vTMw

)

=
(
DvT

)
Mw + vT (DM)w + vTM (Dw) = 0 .

The first and the third term in the three-term expression of the above equation are zero
due to Definition 2.10. The second term is zero as a consequence of Lemma 2.1, since
DM jh = ∇kM jhdq

k = 0.

The concept of covariant differentiation of tensors on affinely connected spaces of the
Riemannian manifold will be extensively exploited for the derivation of the Euler-Lagrange
equation, describing the dynamics of the class of systems considered here.
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2.3. Euler-Lagrange equations

The class of systems considered in this thesis satisfies certain Euler-Lagrange differential
equations. These equations can be derived from Hamilton’s principle [Gol65] by means of
methods from the calculus of variations. To demonstrate the invariance property of the
Euler-Lagrange equations under a change of coordinates, tensor calculus (on manifolds)
will be exploited. On the basis of the notion of covariant differentiation, the matrix
components form will be derived, which is common in robotics. Due to its fundamental
importance, the Euler-Lagrange equations representing our physical systems of interest
will be related geometrically to the concept of a Riemannian manifold.

2.3.1. Hamilton’s principle

The following derivation introduces the Euler-Lagrange equations from a pure calculus
point of view10. Afterwards, the result will be related to the physical problem which leads
to Hamilton’s principle.

Consider the problem of finding the path, where a given line integral along the path11

possess an extremum.

Theorem 2.2 ([Arn13]). Let C be a curve on the differentiable manifold M passing
through the points r(t1) and r(t2), where t1 ≤ t ≤ t2 is a parameter. Assume that the
curve C can be expressed in local coordinates q of the coordinate neighborhood Q. Then,
the curve C : q = q(t) is an extremum of the line integral

J =

∫ t2

t1

L(q(t), q̇(t))dt (2.30)

of all curves passing through the points q1 = q(t1) and q2 = q(t2), if and only if

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (2.31)

along the curve q(t).

Remark 2.5 (Lagrangian). The function L(q(t), q̇(t)) of Theorem 2.2 is defined on a
path q = q(t), where q̇ = dq(t)/dt. This function is referred to as Lagrange function or
Lagrangian.

Remark 2.6. Note that the Lagrange functions L(q(t), q̇(t)) considered here correspond
to mechanical systems which obviate an explicit dependency on time t. This stands in
contrast to the general theory usually considered in calculus of variations [LR89].

The proof of Theorem 2.2 is intended to replace its explanation.

Proof. Let us parameterize the variation of the path w. r. t. the extremum path by α such
that

q(t, α) = q(t, 0) + αη(t) , (2.32)

10The derivation uses mainly matrix notations. Index notations are only considered if the content makes
it unavoidable.

11In calculus, this kind of functions are called functionals, since their domain is the infinitesimal space of
curves [Arn13].

36



2.3. Euler-Lagrange equations

where q(t, 0) denotes the extremum path. The functions η(t) are defined to vanish at t1
and t2. As a result the path integral (2.30) depends also on α such that the condition for
an extremum is

dJ(α)

dα

∣
∣
∣
∣
α=0

= 0 . (2.33)

Then, considering the family of paths (2.32) in (2.30) and differentiating the resulting
integrand, it is found that

dJ

dα
=

∫ t2

t1

(
∂L

∂q

∂q

∂α
+
∂L

∂q̇

∂q̇

∂α

)

dt . (2.34)

Integrating the second integral by parts, i. e.,

∫ t2

t1

∂L

∂q̇

∂q̇

∂α
dt =

∫ t2

t1

∂L

∂q̇

∂2q

∂t∂α
dt

=
∂L

∂q̇

∂q

∂α

∣
∣
∣
∣

t2

t1

−
∫ t2

t1

d

dt

(
∂L

∂q̇

)
∂q

∂α
dt

and taking into account that all the varied paths pass through the points q(t1) and q(t2),
i. e., the first term of the partial integrated expression vanishes, it follows that (2.34)
reduces to

dJ

dα
=

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
∂q

∂α
dt . (2.35)

Now, introducing the differential quantities,

δq :=
∂q

∂α

∣
∣
∣
∣
α=0

dα , (2.36)

referred to as virtual displacement, respectively

δJ :=
∂J

∂α

∣
∣
∣
∣
α=0

dα , (2.37)

referred to as the infinitesimal variation of J about the extremum path, it can be deduced
that

δJ =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)

δqdt = 0 . (2.38)

The virtual displacements δqi in (2.38) are independent since the variables qi are indepen-
dent. Therefore, from the fundamental lemma of the calculus of variation [JLJ98] it can
be concluded that in order that the path q(t) constitutes an extremum to the fundamental
integral (2.30), it is necessary that the Euler-Lagrange equations

E(L) =
d

dt

∂L

∂q̇
− ∂L

∂q
(2.39)

vanish identically along the path.

Hamilton’s principle of least action follows directly from Theorem 2.2:
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Theorem 2.3 ([Arn13]). Motions of the mechanical system E(L) = 0 (where the Euler-
Lagrange equations E(L) are defined by (2.39)) coincide with extrema of the line integral

J =

∫ t2

t1

Ldt

where L = T − U is the difference between the kinetic and potential energy.

Proof. The proof of the above theorem is a direct consequence of Theorem 2.2.

Note that the above Theorem is referred to as “Hamilton’s principle of least action”.
This is as the action q(t) is a minimum value of the action integral

∫ t2
t1
Ldt in many cases

[Arn13, p. 60]. In the sequel of this thesis physically motivated Lagrange functions as in
Theorem 2.3 will be considered, where the action is a minimum.

2.3.2. Tensorial properties

The path integral (2.30) of Theorem 2.2 respectively 2.3 is of fundamental importance for
the control systems considered here. Therefore, it will be investigated if this path integral
is invariant under a change of coordinates (2.1). This is the case if the Lagrangian is a
scalar relative to (2.1), i. e., if

L⋆(xj, ẋj) = L(qh(xj), q̇h(xj , ẋj)) (2.40)

for all values of (xj , ẋj). According to Remark 2.1 this would be the case if ∂L/∂qh would
represent the components of the gradient co-vector which is not true as will become clear
immediately.

Remark 2.7. The derivatives ∂L/∂qh do not form the components of a tensor. This can
be seen by differentiating the relation (2.40) w. r. t. xj :

∂L⋆

∂xj
=

∂L

∂qh
∂qh

∂xj
+
∂L

∂q̇h
∂q̇h

∂xj
=

∂L

∂qh
∂qh

∂xj
+
∂L

∂q̇h
∂2qh

∂xj∂xl
ẋl , (2.41)

where in the last step the identity

∂q̇h

∂xj
=

∂2qh

∂xj∂xl
ẋl (2.42)

which can be derived from

q̇h =
∂qh

∂xj
ẋj = q̇h(xj , ẋj) , (2.43)

has been exploited.

The above state of affairs motivates the introduction of a generalized gradient of L:

Definition 2.14. The Euler-Lagrange equations

E(L) =
d

dt

∂L

∂q̇
− ∂L

∂q

represent a generalized gradient of the Lagrangian L.
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Lemma 2.2. The Euler-Lagrange equations E(L) constitute the components of a covariant
vector.

Proof [LR89]. Consider the derivative of the relation (2.40) w. r. t. ẋj ,

∂L⋆

∂ẋj
=

∂L

∂q̇h
∂q̇h

∂ẋj
=

∂L

∂q̇h
∂qh

∂xj
, (2.44)

where in the last step the identity

∂q̇h

∂ẋj
=
∂qh

∂xj
(2.45)

resulting from (2.43) has been substituted. Differentiate the result (2.44) with respect to
time and take the relation (2.42) into account, i. e.,

d

dt

(
∂L⋆

∂ẋj

)

=
d

dt

(
∂L

∂q̇h

)
∂qh

∂xj
+
∂L

∂q̇h
∂q̇h

∂xj
=

d

dt

(
∂L

∂q̇h

)
∂qh

∂xj
+
∂L

∂q̇h
∂2qh

∂xj∂xl
ẋl . (2.46)

Then, subtracting (2.41) from the result, yields the relation

d

dt

(
∂L⋆

∂ẋj

)

− ∂L⋆

∂xj
=
∂qh

∂xj

[
d

dt

(
∂L

∂q̇h

)

− ∂L

∂qh

]

(2.47)

which is clearly the transformation law of a covariant vector (cf. (2.7)).

2.3.3. Matrix components

In this thesis, the particular class of Euler-Lagrange systems as introduced by Theorem 2.3
is considered extensively. In local coordinates q of the coordinate neighborhood Q (of the
manifold M), the Lagrangian comprises

L(q, q̇) = T (q, q̇)− U(q) , (2.48)

the kinetic energy

T (q, q̇) =
1

2
q̇TM (q)q̇ (2.49)

and potential energy U(q), where the latter depends only on the positional coordinates
q. Note that the former expression is related to the Riemannian metric introduced by
Definition 2.7. The Euler-Lagrange equations corresponding to the Lagrangian (2.48) can
be written in the form

E j(L) =
d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
(2.50)

Taking (2.49) into account, it follows that

∂T

∂q̇j
=M hj q̇

h ,

∂T

∂qj
=

1

2

∂M hk

∂qj
q̇hq̇k
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such that the first two terms of the Euler-Lagrange equations (2.50) can be rewritten as

E j(T ) =
d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
=M hj q̈

h +
∂M hj

∂qk
q̇hq̇k − 1

2

∂M hk

∂qj
q̇hq̇k (2.51)

=M hj q̈
h + Γhjkq̇

hq̇k (2.52)

=M hj

(

q̈h + Γl
h
k q̇
lq̇k
)

, (2.53)

where in the last two steps the Christoffel symbols (2.24) respectively (2.25) have been
consulted, i. e.,

(
∂M hj

∂qk
− 1

2

∂M hk

∂qj

)

q̇hq̇k =
1

2

(
∂M hj

∂qk
+
∂M hj

∂qk
− ∂M hk

∂qj

)

q̇hq̇k (2.54)

=
1

2

(
∂M jk

∂qh
+
∂M hj

∂qk
− ∂M hk

∂qj

)

q̇hq̇k (2.55)

= Γhjkq̇
hq̇k . (2.56)

As can be seen from (2.55), the Christoffel symbols constitute a particular factorization
of the term

(
∂M hj/∂q

k − 1
2∂M hk/∂q

j
)
q̇hq̇k. This factorization suggests the introduction

of the so-called Coriolis/centrifugal matrix:

Definition 2.15 (Coriolis/centrifugal matrix). The product

Chj(q, q̇) = Γhjk(q)q̇
k (2.57)

is said to constitute the components of the n× n Coriolis/centrifugal matrix.

On the basis of this definition and Remark 2.2, the Euler-Lagrange equations (2.52) can
be expressed as

E(T ) = M(q)q̈ +C(q, q̇)q̇ , (2.58)

where the following proposition of Lemma 2.1 holds:

Proposition 2.1. Given the components of the Coriolis/centrifugal matrix introduced by
Definition 2.15, then the identity

Ṁ = C +CT (2.59)

holds along a path q = q(t).

Proof. Rewriting (2.59) in index notion, i. e.,

∂M hj

∂qk
q̇k = Γhjkq̇

k + Γjhkq̇
k ,

∂M hj

∂qk
= Γhjk + Γjhk ,

it can be immediately seen that the last equation equals (2.27) of Lemma 2.1.

Finally, the concept of covariant differentiation can be recapitulated from the Euler-
Lagrange equations (2.53):
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Remark 2.8. Note that the Euler-Lagrange equations (2.53) can be expressed as the co-
variant derivative

E j(T ) =M hj
Dq̇h

Dt
(2.60)

or in matrix notation as

E(T ) = M
Dq̇

Dt
. (2.61)

The entire Euler-Lagrange system (2.50) can be compactly written as

E j(L) =M hj
Dq̇h

Dt
+
∂U

∂qj
. (2.62)

It should be further noted that since the Euler-Lagrange co-vector resulting from Hamilton’s
principle of least action (cf. Theorem 2.3) can be exclusively derived based on tensorial
operations, its components are intrinsic (physical) quantities which can be formulated in
coordinate-free fashion.

2.3.4. Geometrical interpretation

The Euler-Lagrange equations, where the Lagrangian consists only of kinetic energy, i. e.,
L = T , can be interpreted from a view-point of Riemannian geometry. Using the indirect
approach adopted from [LR89] it can be shown that any path on a Riemannian manifold,
or equivalently, any trajectory of a physical system which consists of kinetic energy only
and satisfies the Euler-Lagrange equations

E(T ) =
Dq̇

Dt
= 0 , (2.63)

is a geodesic of the Riemannian space (according to Definition 2.8). A geodesic is an
extremum to the path integral

J =

∫ t2

t1

f(q, q̇)dt , (2.64)

where f(q, q̇) measures the length of the vector q̇ according to Definition 2.6. In most
cases (or all cases considered in this thesis), this extremum is a minimum such that the
corresponding Euler-Lagrange equations define the ”shortest” path connecting two points
on the Riemannian manifold.

In the following, it will be shown that an extremum of

J =

∫ t2

t1

T (q, q̇)dt (2.65)

is equivalently also an extremum of (2.64). Therefore, it is noted that the kinetic energy,

T (q, q̇) =
1

2
f(q, q̇)2 =

1

2
q̇TM(q)q̇ , (2.66)

is one-half the squared length of the vector q̇. From this relation it is found that

f
∂f

∂q̇
=
∂T

∂q̇
,

df

dt

∂f

∂q̇
+ f

d

dt

(
∂f

∂q̇

)

=
d

dt

(
∂T

∂q̇

)
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and using (2.39) that

fE(f) = E(T )− df

dt

∂f

∂q̇
. (2.67)

Furthermore, differentiating the relation (2.66) taking Lemma 2.1 into account, i. e.,

2f
df

dt
=

d

dt

(
q̇TMq̇

)
=

D

Dt

(
q̇TMq̇

)
= 2q̇TM

Dq̇

Dt

it follows using the extremum condition of the kinetic energy integral (2.65), (2.63) that

f
df

dt
= 0

which is equivalent to

f(q, q̇) = c = const. (2.68)

Considering this result and (2.63) in (2.67) it follows that E(f) = 0 if E(T ) = 0. Accord-
ingly an extremum of the kinetic energy path integral (2.65) is equivalently a geodesic of
the Riemannian manifold, i. e., it is the shortest path connecting two points on a Rieman-
nian manifold.

2.4. Submanifolds

In general, the motion of the considered Euler-Lagrange systems takes place on a n-
dimensional manifoldMn. However, if (holonomic) constraints are imposed on the system,
the motion evolves on a lower dimensional manifold. Such constraints can be, e. g., contact
or periodicity constraints.

An example of a submanifold is to constrain the motion on a sphere such that it evolves
on the equator. A sphere is a two-dimensional manifold, while the equator is a circle, i. e.,
it is an one-dimensional submanifold. If a trajectory evolving on the equator is such that
the arc length increases over time, then the corresponding motion is periodic.

2.4.1. Embedded submanifolds

The definition and the main theorem of an embedded submanifold, i. e., a submanifold of a
manifold, are exactly as in case of a submanifold of euclidean space, if the point set of the
manifold is replaced by the euclidean space. Therefore, only the former case is considered.

Definition 2.16 (Submanifold). An embedded submanifold Wn−r ⊂ Mn of a manifold
Mn can be locally described by the r differentiable functions

φ1(q) = 0
...

φr(q) = 0

(2.69)

which depend on the coordinates q of the coordinate neighborhood Q. These functions are
independent in a sense that the Jacobian matrix ∂φ/∂q has rank r at each point of the
locus (2.69).
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Note that the same submanifold could also be defined in terms of different coordinates
as long as the coordinate patches are intersecting in the region of interest. This can be
done by introducing the differential of a map between manifolds.

Definition 2.17 (Differential of a map [Fra03]). The differential φ⋆ of the map φ : Mn →
Vr is the linear transformation φ⋆ : Mn

r → Vr
φ(r) defined as follows. Let r = r(t) be a

parameterized curve on the manifold Mn and let v ∈ Mn
r , where v = ṙ, be the velocity

vector. Then,

φ⋆v =
dφ(r(t))

dt
,

is the velocity vector of the image curve φ(r) on Vr. In local coordinates q of Mn and y

of Vr, this linear transformation is the Jacobian matrix

φ⋆ =
∂φ

∂q
(r) =

∂y

∂q
(r) . (2.70)

On the basis of this definition, the main theorem on embedded submanifolds can be
introduced.

Theorem 2.4 ([Fra03]). Let φ : Mn → Vr be a map between manifolds of different
dimensions n > r and suppose that for some s ∈ Vr the inverse map φ−1(s) ⊂ Mn is not
empty. Suppose further that the differential of the map φ⋆ introduced by Definition 2.17 has
rank r at each point of φ−1(s). Then, φ−1(s) defines a (n − r)-dimensional submanifold
of Mn.

The notion of an embedded submanifold can be used to constrain the motion of an
Euler-Lagrange system as will be shown next.

2.4.2. Hamilton’s principle with holonomic constraints

Consider the case where the motion of a mechanical system is constrained to move on
a submanifold Wn−r of Mn. This happens, e. g., when a free floating system gets in
contact with the ground and the impact is such that the contact point is constrained
to maintain its position. The submanifold is defined by r constraint functions φj which
satisfy the assumptions of Theorem 2.4. In the following, the case is considered where
these functions depend on the local coordinates q for simplicity12. The following result is
a well-known modification of the Theorem 2.2 respectively 2.3 (see, e. g., [SC70]).

Theorem 2.5. Motions of the constraint mechanical system, where the Lagrangian L is
defined by Theorem 2.3,

d

dt

∂L

∂q̇
− ∂L

∂q
= −λT

∂φ

∂q
(2.71)

satisfying

φ(q) = 0 , (2.72)

12In general, the constraints φ can be expressed w. r. t. to any coordinates of the manifold M as long as
the corresponding coordinate patch covers the region of interest.
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coincide with extrema of the action integral

J⋆ =

∫ t2

t1

(
L+ λTφ

)
dt =

∫ t2

t1

L⋆dt , (2.73)

where λ are suitable chosen Lagrange multipliers.

Proof. To proof the above theorem, a similar variation as in the proof of Theorem 2.2 will
be considered, i. e.,

δJ⋆ =

∫ t2

t1

(
∂J⋆

∂α
dα+

∂J⋆

∂λ
dλ

)

dt = 0 . (2.74)

From the second term of the integrand it follows directly that

∂L⋆

∂λ
= 0 =⇒ φ(q) = 0 , (2.75)

which shows that the constraints are satisfied. The first term of the integrand in (2.74)
leads to the Euler-Lagrange equations

∂L⋆

∂q
− d

dt

∂L⋆

∂q̇
= 0 , (2.76)

for the modified Lagrangian L⋆. Substituting L⋆ = L+ λTφ from (2.73) leads to

∂L

∂q
− d

dt

∂L

∂q̇
=

d

dt

(

λT
∂φ

∂q̇

)

− λT
∂φ

∂q
. (2.77)

Since the constraint functions φ(q) depend only on q, i. e., the first term on the right hand
side vanishes, the above equations equal (2.71).

Remark 2.9 (Initial conditions and degrees of freedom). The constrained Euler-Lagrange
system (2.71) represents n second-order differential equations. They give rise to 2n integra-
tion constants of which 2r are determined by the constraint equations (2.72) and their time
derivative φ̇ = 0. The remaining 2(n − r) integration constants are determined by initial
conditions. One may say that r of n degrees of freedom are eliminated by the holonomic
constraints (2.72). The latter statement coincides with the definition of a submanifold
(cf. Theorem 2.4).

2.5. Conclusion

This chapter introduces the notion of a differentiable manifold from a dynamics and con-
trol perspective of multi-body mechanical systems. On this differentiable manifold the
concept of tensors are derived based on their transformation properties under a change
of coordinates. A particular tensor is the inertia matrix which constitutes a metric to
measure the length on a Riemannian manifold. The necessity of dynamics derivations to
differentiate vector fields on a manifold leads to the concept of covariant differentiation
which assumes that the manifold is equipped with an affine connection. Introducing the
coefficients of a Riemannian connection (which are known as the Christoffel symbols), the
Euler-Lagrange equations describing the dynamics of the mechanical systems of interest
are compactly derived from Hamilton’s principle of least action by means of common tools
of the calculus of variation. Due to its tantamount importance in the dynamics of legged
and periodic locomotion, the notion of a submanifolds is briefly introduced. Therefore, this
chapter forms the foundations for the analysis and the derivation of mechanical periodic
motion control systems.
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CHAPTER 3

Modeling and Basic Control

Compliantly actuated mechanical systems represent a sub-class of under-actuated Euler-
Lagrange dynamics, where directly and indirectly actuated degrees of freedom are con-
nected via elastic elements. The capability of such dynamics to convert between kinetic
and elastic potential energy are the cause for an intrinsic oscillatory behavior. The pri-
mary goal of this thesis is analyzing and controlling such multi-dimensional, nonlinear
oscillations. To this end, first, a general description of under-actuated Euler-Lagrange
dynamics is presented. Then, this formulation is specified in greater detail via the concept
of static controllability, which yields conditions on the potential of the Lagrangian, and
defines the compliantly actuated systems of interest. The intrinsic oscillatory behavior
of such dynamics can be excited and altered by changing its equilibrium configurations
and damping properties. Therefore, basic joint-level control methods are proposed which
can be applied to access these properties by controlling configuration variables and their
transient behavior without changing the structure of the plant-inherent Lagrangian.

3.1. Under-actuated Euler-Lagrange systems

The most general class of dynamics considered here are the so-called under-actuated Euler-
Lagrange systems [ASWE+10, ASOP12], satisfying

d

dt

(
∂L(z, ż)

∂ż

)

− ∂L(z, ż)

∂z
= τ gen − d(z, ż) , (3.1)

where the left hand side is a consequence of Hamilton’s principle of least action (Theo-
rem 2.3). Thus, the Lagrangian

L(z, ż) = T (z, ż)− U(z) (3.2)

is the difference of the kinetic energy T (z, ż) and potential energy U(z). By the term
”under-actuated” it is meant that the local coordinates z = (θT , qT )T ∈ R

m+n of the
configuration manifold Mm+n can be divided into directly actuated states θ ∈ R

m and
indirectly actuated states q ∈ R

n at position level, where m and n are positive integers.
Accordingly, the generalized forces τ gen = (uT , τ Text)

T ∈ R
m+n can be divided into the
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control input u ∈ R
m and the externally applied generalized force τ ext ∈ R

n. Finally, the
non-conservative, generalized force d(z, ż) is assumed to be dissipative:

Assumption 3.1. For any continuous path z = z(t) on the configuration manifold
Mm+n, żTd(z, ż) > 0 for all ż 6= 0 and d(z, ż) = 0 only if ż = 0 holds.

This assumption is the only restriction invoked for the general under-actuated Euler-
Lagrange system (3.1).

According to Remark 2.2 and Definition 2.15, the under-actuated Euler-Lagrange system
(3.1) can be expressed in terms of the matrix components

M̄(z)z̈ + C̄(z, ż)ż +
∂U(z)

∂z

T

= τ gen − d(z, ż) , (3.3)

where M̄(z) is the symmetric, positive definite (m + n) × (m + n) inertia matrix and
C̄(z, ż) is the (m+n)× (m+n) Coriolis/centrifugal matrix introduced by Definition 2.15,
where the following property can be deduced from Proposition 2.1:

Corollary 3.1. For any continuous path z = z(t) on the configuration manifold Mm+n,

the matrix ˙̄M−2C̄ is skew symmetric in a sense that żT
(

˙̄M − 2C̄
)

ż vanishes identically.

This property is of major importance in the stability and passivity analysis of gen-
eral Euler-Lagrange systems. It holds for any sub-class of the Euler-Lagrange systems
introduced in the remainder of this chapter.

Proof. The proof of the above corollary follows directly from Proposition 2.1 and a lemma

(see, e. g., [VdS12]) which states that the matrix ˙̄M − 2C̄ is skew symmetric if and only

if the equality ˙̄M = C̄ + C̄
T
holds.

3.1.1. Compliantly actuated mechanical system

A particular sub-class of under-actuated Euler-Lagrange systems which is in the main focus
of the following investigations is given by the so-called compliantly actuated mechanical
systems. Thereby, the potential energy U(z) is further specified.

Definition 3.1 (Compliant actuation). The under-actuated Euler-Lagrange system as
introduced by (3.3) is said to constitute a compliantly actuated mechanical system if the
potential energy

U(z) = Ug(z) + Ue(z) (3.4)

comprises a gravitational potential Ug(z) (which is allowed to vanish on the entire manifold
Mm+n) and a positive semi-definite elastic potential

Ue(z) ≥ 0 , ∀z ∈ R
m+n , (3.5)

where for at least one h ∈ {1, . . . ,m} and for at least one j ∈ {1, . . . , n}, the ”elastic
coupling”,

∂2Ue

∂θh∂qj
=

∂2Ue

∂qj∂θh
6= 0 ,

∂2Ue

∂θh
2 > 0 ,

∂2Ue

∂qj2
> 0 , ∀z ∈ R

m+n (3.6)

is non-zero (and finite).
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θh−1uh−1

θh

uh

qj

qj+1

Figure 3.1.: Compliant actuation and static controllability of the state qj by the control
input uh via θh.

Note that the above definition implies that the elastic potential Ue is such that at least
one of the indirectly actuated states qj is statically controllable via a directly actuated state
θh at position level. Loosely speaking, at least one of the actuator inertias is connected
at least to one of the link inertias via a spring (cf. Fig. 3.1). An example of a not fully
statically controllable system is given by the elastic pendulum, where a point-mass is
suspended on a radially acting spring.

In the following, the compliantly actuated system is specified further such that the
number of statically controllable indirectly actuated states p equals or is lower than the
number of directly actuated states m at position level. Furthermore for the simplicity
of the description, it is assumed that all of the indirectly actuated states are statically
controllable, i. e., p = n. Then, properties naturally arising for mechanical systems—
when rigid bodies are connected via springs—are assumed. Therefore, basic definitions to
evaluate the boundedness of matrices are introduced in advance.

Definition 3.2. Given a square and symmetric real matrix A, then the minimum and
maximum eigenvalue of A are denoted by λmin(A) and λmax(A) ≥ λmin(A), respectively.

Definition 3.3. Given any real matrix A, then the minimum and maximum singular
value of A are denoted by σmin(A) and σmax(A) ≥ σmin(A), respectively.

Assumption 3.2. The gradient ∂Ue/∂q is strictly monotonic in q in a sense that there
exists constants c1, c2 > 0 such that

inf
z∈Rm+n

λmin

(
∂2Ue(θ, q)

∂q2

)

> c1 , (3.7)

sup
z∈Rm+n

λmax

(
∂2Ue(θ, q)

∂q2

)

< c2 , (3.8)

keep bounded.

This property ensures that given any fixed θ, the equations1 −(∂Ue/∂q)
T = τ have

always a unique solution for q. The assumption which ensures that given any fixed q,
−(∂Ue/∂q)

T = τ have always a unique solution for θ can be formulated similarly.

1The negative sign is a convention that the generalized elastic force τ is an ”applied” force.
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Assumption 3.3. The gradient ∂Ue/∂q is strictly monotonic in θ in a sense that there
exists constants c3, c4 > 0 such that

inf
z∈Rm+n

σmin

(
∂2Ue(θ, q)

∂q∂θ

)

> c3 , (3.9)

sup
z∈Rm+n

σmax

(
∂2Ue(θ, q)

∂q∂θ

)

< c4 , (3.10)

keep bounded.

The above property also implies that all of the indirectly actuated states are statically
controllable. This in turn means that the generalized force produced by the springs is
controllable which is a requirement for the control approaches presented in Sect. 3.3.

Assumption 3.4. The gradient ∂Ue/∂θ is strictly monotonic in θ in a sense that there
exists constants c5, c6 > 0 such that

inf
z∈Rm+n

λmin

(
∂2Ue(θ, q)

∂θ2

)

> c5 , (3.11)

sup
z∈Rm+n

λmax

(
∂2Ue(θ, q)

∂θ2

)

< c6 , (3.12)

keep bounded.

The remaining assumptions guarantee the existence of a unique static equilibrium and
are therefore imposed on the potential function including gravity.

Assumption 3.5. There exists constants c7, c8 > 0 such that

inf
z∈Rm+n

λmin

(
∂2U(θ, q)

∂q2

)

> c7 , (3.13)

sup
z∈Rm+n

λmax

(
∂2U(θ, q)

∂q2

)

< c8 , (3.14)

keep bounded.

Loosely speaking, condition (3.13) ensures that the compliantly actuated system does
not collapse statically under the influence of gravity, if the actuator positions are hold to
constant.

Assumption 3.6. There exists constants c9, c10 > 0 such that

inf
z∈Rm+n

σmin

(
∂2U(θ, q)

∂q∂θ

)

> c9 , (3.15)

sup
z∈Rm+n

σmax

(
∂2U(θ, q)

∂q∂θ

)

< c10 , (3.16)

keep bounded.

These assumptions suggest the definition of a static equivalent of the indirectly actuated
states at position level as introduced in the following.
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Definition 3.4. Let

fq(θ, q) :=
∂U(θ, q)

∂q

T

, (3.17)

then the mapping q̄ : R
m → R

n are such that

fq(θ, q̄(θ)) = 0 , ∀θ ∈ R
m . (3.18)

Remark 3.1. As a result of the implicit function theorem, the existence of the functions
q̄ = q̄(θ) is guaranteed due to Assumption 3.5.

Considering an argumentation adopted from [ASOP12] (and if m = n) it can be shown
that q̄ = q̄(θ) is a diffeomorphism.

Proposition 3.1. In case m = n, the mapping q̄ : R
n → R

n introduced by Definition 3.4
is a global diffeomorphism.

Proof. In order to show that the mapping q̄ : R
n → R

n is a diffeomorphism, the Jacobian
∂q̄(θ)/∂θ needs to be shown to be always nonsingular, i. e., it has to be shown that

sup
θ∈Rm

∥
∥
∥
∥
∥

(
∂q̄(θ)

∂θ

)−1
∥
∥
∥
∥
∥
<∞ , (3.19)

keeps bounded2 from above [Zei86, Corollary 4.41, p. 174]. By differentiating condition
(3.18) it can be seen that the Jacobian matrix of the mapping q̄ takes the form

J q̄(θ) :=
∂q̄(θ)

∂θ
= −

(

∂2U(θ, q)

∂q2

∣
∣
∣
∣
q=q̄

)−1
∂2U(θ, q)

∂q∂θ

∣
∣
∣
∣
q=q̄

. (3.20)

The inverse of this Jacobian matrix

∥
∥J q̄(θ)

−1
∥
∥ ≤

∥
∥
∥
∥
∥
∥

(

∂2U(θ, q)

∂q∂θ

∣
∣
∣
∣
q=q̄

)−1
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∂2U(θ, q)

∂q2

∣
∣
∣
∣
q=q̄

∥
∥
∥
∥
∥
≤ c8/c9 , (3.21)

keeps bounded due to Assumptions 3.5 and 3.6.

Remark 3.2. Proposition 3.1 can be extended to the more general case: m > n. This
can be accomplished by introducing m − n holonomic constraints φ(θ) = 0, where the
constraint Jacobian matrix ∂φ(θ)/∂θ is of full rank (cf. Theorem 2.4).

The remaining assumption on the potential U(θ, q) is made mainly for the case of
classical actuator position PD control.

Assumption 3.7. There exists a constant c11 ∈ R such that

inf
z∈Rm+n

λmin

(
∂2U(θ, q)

∂θ2

)

> c11 . (3.22)

2The matrix norm ‖ · ‖ is assumed to be the induced Euclidean norm.

49
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This assumption is not required (for the stability analysis), if instead of the actua-
tor configuration, the homeomorphic static equivalent of the indirectly actuated states
(cf. Definition 3.4) is considered as control variable.

Remark 3.3 (Variable stiffness actuation). It is worth mentioning that no assumptions
have been made yet on the number of directly and indirectly actuated states at position
level m and n, respectively. In particular, the additional degrees of freedom in case m > n
can be exploited to alter the characteristics of the generalized spring force, i. e., the relation
between a displacement ∆q w. r. t. an equilibrium point q0 and the resulting generalized
force

τ = − ∂Ue(θ, q)

∂q

∣
∣
∣
∣

T

q=q0+∆q

. (3.23)

The possibility to independently alter the ”shape” of the elastic potential in addition to
its minimum is known as the principle of variable stiffness actuation (VSA), see, e. g.,
[ASEG+08].

The concept of variable stiffness actuation is a special case of the more general concept
of compliant actuation treated here. The former is circumstantial for this thesis and
therefore will not be treated in detail.

Finally, for simplicity and for readability, the derivation of the basic joint-level control
approaches treated in this thesis assumes the case, where the number of directly actuated
states m equals the number of statically controllable indirectly actuated states p and the
number of indirectly actuated states n, at position level respectively, i. e., m = p = n.

3.1.2. Reduced compliantly actuated mechanical system

The general model (3.3) taking Definition 3.1 into account can be decomposed as
[
B(z) S(z)
S(z)T M(z)

](
θ̈

q̈

)

+ C̄(z, ż)ż +
∂Ug

∂z

T

+
∂Ue

∂z

T

=

(
u

τ ext

)

− d(z, ż) , (3.24)

where B is the (m×m) inertia matrix of the actuators, M is the (n × n) inertia matrix
of the links, and S represent the inertia coupling. The general model (3.24) is required
to describe, e. g., the inertial coupling through linkages in parallel to elasticities (cf. the
elbow joint of the DLR Hand Arm System [GASB+11]).

On the basis of the following assumptions, the model (3.24) can be reduced [Spo87]:

Assumption 3.8. The rotors of the actuators are modeled as uniform rotational symmet-
ric rigid bodies, where the rotation and symmetry axes of each actuator coincide.

This assumption is valid for many compliantly actuated robotic systems having solely
rotational electric motors as actuators and no multi-bar linkages with parallel elastic ac-
tuation. In particular, assumption 3.8 implies that the inertia matrix M̄(q) as well as the
gravity potential Ug(q) depend exclusively on the indirectly actuated states at position
level q and the inertia of the actuators B is constant (see, [DT96] for a proof), i. e.,

[
B S(q)

S(q)T M(q)

](
θ̈

q̈

)

+ C̄(q, q̇)ż +

(

0
∂Ug

∂q

T

)

+
∂Ue

∂z

T

=

(
u

τ ext

)

− d(z, ż) . (3.25)

Since also the metric tensor M̄(q) defines a Riemannian connection according to Defini-
tion 2.13, the Coriolis/centrifugal matrix C̄(q, q̇) can be computed such that it depends
solely on q and q̇.
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3.2. Actuator position control

Assumption 3.9. The kinetic energy of the rotors of the actuators is dominated by the
relative motion w. r. t. their parent links such that the part of the kinetic energy of the
rotors corresponding to the motion of the parental links can be neglected.

This assumption is valid in case of many robotic manipulators, where gear boxes with
high transmission ratios reduce the angular velocity of the rotors of the actuators and in
case, where the actuators are placed on non-moving or slowly-moving parts of the robot,
e. g., in case of legged robots, where the links of the legs are actuated via motors in the
trunk. According to Assumption 3.9, the model (3.25) reduces further to

Bθ̈ +
∂Ue

∂θ

T

+ dθ(z, ż) = u , (3.26)

M(q)q̈ +C(q, q̇)q̇ +
∂Ug

∂q

T

+
∂Ue

∂q

T

+ dq(z, ż) = τ ext , (3.27)

where the generalized dissipative force has been subdivided into
[
dθ(z, ż)
dq(z, ż)

]

:= d(z, ż) . (3.28)

If it is further assumed in (3.26) and (3.27) that

dθ = dθ(z, θ̇) , θ̇
T
dθ(z, θ̇) > 0 ,∀θ̇ 6= 0 , dθ(z, θ̇) = 0 ⇐⇒ θ̇ = 0 , (3.29)

dq = dq(q, q̇) , q̇Tdq(q, q̇) > 0 ,∀q̇ 6= 0 , dq(q, q̇) = 0 ⇐⇒ q̇ = 0 , (3.30)

than the system (3.26) and (3.27) is further feedback linearizable by static state feedback
while the general model (3.24) requires dynamic state feedback to achieve the same result
[DT96].

Assumption 3.9 and 3.8 are particularly important for damping injection into the indi-
rectly actuated state dynamics via generalized actuator force input presented in Sect. 3.3.3.

3.2. Actuator position control

Due to losses in the conversion from electrical to mechanical power at a required general-
ized force and velocity level3 which are reflected in the dynamic model by a term of the
form (3.29), the most efficient way to move the indirectly actuated inertial degrees of free-
dom of the general mechanical system (3.24) is to move the actuators as few as possible.
This motion can be controlled directly by controlling the configuration coordinates of the
actuators, i. e., by driving the actual to the desired positions θ → θdes. It is worth men-
tioning that by controlling the generalized force acting on the indirectly actuated inertial
degrees of freedom, i. e., ∂Ue/∂q, it is not transparent how much the actuators move and
how much losses are produced. A further advantage of actuator position control is given
by the property that under certain controller-gain assumptions, the singular-perturbed,
controlled actuator dynamics [KKO86] can be neglected.

In the following, the problem of driving the actual actuator configuration θ of the system
(3.24) implying Assumptions 3.5 and 3.6 to a desired configuration θdes is considered. This
can be achieved by a PD control of the form

u = −KPθ̃ −KDθ̇ , (3.31)

3Note that the losses are especially high, when gear-boxes with high transmission ratios are present.
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3. Modeling and Basic Control

where θ̃ := θ−θdes is defined as the control error and KP,KD are symmetric and positive
definite n × n controller gain matrices. Note that the control (3.31) requires no model-
knowledge of potential forces of the plant. The resulting closed-loop dynamics takes the
form

M̄(z)z̈ + C̄(z, ż)ż +

[
KDθ̇ +KPθ̃ + fθ(θ, q)

fq(θ, q)

]

=

[
0

τ ext

]

− d(z, ż) , (3.32)

where

fθ(θ, q) =
∂U(θ, q)

∂θ

T

, (3.33)

fq(θ, q) =
∂U(θ, q)

∂q

T

. (3.34)

3.2.1. Equilibrium condition

In case of free motion, i. e., τ ext = 0, the static equilibrium conditions ż = 0 of the
closed-loop dynamics (3.32) become

KPθ̃ + fθ(θ, q) = 0 , (3.35)

fq(θ, q) = 0 . (3.36)

The equations (3.35) and (3.36) have exactly one solution z⋆ = (θ⋆, q⋆), where q⋆ = q̄(θ⋆)
according to Definition 3.4, if the potential

UP(z) = U(θ, q) +
1

2
θ̃
T
KPθ̃ (3.37)

is a strictly convex function defined on R
2n. Strict convexity of UP can be shown by

showing that the Hessian of the potential

HP(z) :=
∂2UP

∂z2
=

[
∂2U
∂θ2 +KP

∂2U
∂q∂θ

∂2U
∂q∂θ

∂2U
∂q2

]

(3.38)

is positive definite. This in turn leads to a lower bound on the controller gain matrix

KP +
∂2U

∂θ2 ≻ ∂2U

∂q∂θ

(
∂2U

∂q2

)−1
∂2U

∂q∂θ

T

, (3.39)

where by the relational operator in the above equation it is meant that

λmin

(

KP +
∂2U

∂θ2

)

> λmax

(

∂2U

∂q∂θ

(
∂2U

∂q2

)−1
∂2U

∂q∂θ

T
)

, ∀z ∈ R
2n . (3.40)

According to Assumptions 3.5, 3.6 and 3.7 the condition on KP, (3.40) can be expressed
as

λmin

(

KP +
∂2U

∂θ2

)

> c210/c7 (3.41)

or more precisely if ∂2U/∂θ2 is a definite matrix the condition (3.40) can be expressed as

λmin (KP) > c210/c7 − c11 . (3.42)

This result can be summarized as follows.
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3.2. Actuator position control

Proposition 3.2. The closed-loop system (3.32) has an unique equilibrium point z = z⋆
and ż = 0, if the controller gain matrix KP satisfies condition (3.42).

Proof. A sketch of a proof is given above.

Remark 3.4. It can be easily verified from (3.35) that in the limit case

lim
λmin(KP)→∞

θ⋆ = θdes . (3.43)

Due to changing static equilibrium conditions, e. g., discontinuously changing contact
situations appearing in legged systems, the assumption of the limit case mentioned in
Remark 3.4 is practically the most relevant case.

3.2.2. Stability

Stability of the closed-loop dynamics (3.32) can be deduced based in a simpler Lyapunov
function as in the case of the actuator position PD controls including gravity compensation
based on desired values as proposed by [Tom91].

Proposition 3.3. The equilibrium point {z = z⋆, ż = 0} of the closed-loop dynamics
(3.32), where KP is chosen according to condition (3.42) and τ ext = 0, is globally asymp-
totically stable in a sense of Lyapunov.

Proof. Consider a Lyapunov function candidate

V (z, ż) = T (z, ż) + VP(z) , (3.44)

comprising the kinetic energy T (z, ż) = 1
2 ż

TM̄ (z)ż of the open-loop system (3.24) and
the potential energy of the closed-loop dynamics (3.32)

VP(z) = UP(z)− UP(z⋆) . (3.45)

Herein, UP(z) is a potential function given by (3.37) which is strictly convex since KP

is chosen according to condition (3.42). The additional constant term UP(z⋆) in (3.45)
has the value of the potential function at the minimum z⋆ of UP(z) such that VP(z)
is positive definite in z. Since the kinetic energy T (z, ż) is positive definite in ż, the
sum, V (z, ż) = T (z, ż)+VP(z), considered as Lyapunov function candidate (cf. (3.44)) is
positive definite in the system states (z, ż). In order to show that V (z, ż) is a Lyapunov
function, its derivative along the solution of (3.32) has to be shown to be at least negative
semi-definite. This can be done by direct calculations

V̇ (z, ż) = żTM̄(z)z̈ +
1

2
żT ˙̄M(z)ż + żT

∂U(z)

∂z

T

+ θ̇
T
KPθ̃

= żT
[

−C̄(z, ż) +
1

2
˙̄M(z)

]

ż − θ̇
T
KDθ̇ − żTd(z, ż)

= −θ̇
T
KDθ̇ − żTd(z, ż) ≤ 0 , (3.46)

where in the last step Corollary 3.1 has been used. Note that V̇ (z, ż) is non-positive due
to Assumption 3.1. As a result, the equilibrium point {z = z⋆, ż = 0} is stable in a sense
of Lyapunov [SL91, Theorem 3.2, p. 62].

53



3. Modeling and Basic Control

This result can be extended to the case of asymptotic stability: By hypothesis of As-

sumption 3.1, −θ̇
T
KDθ̇ − żTd(z, ż) = 0 only if ż = 0. But ż = 0 implies that

z̈ = −M̄(z)−1

[
KPθ̃ + fθ(θ, q)

fq(θ, q)

]

which is non-zero as long as z 6= z⋆ according to Proposition 3.2. The system cannot
remain in the set R = {z, ż ∈ R

2n | ż = 0} except at the equilibrium point {z = z⋆, ż =
0} since the largest invariant set in R is the equilibrium point {z = z⋆, ż = 0} itself.
Therefore, the system is locally asymptotically stable according to La Salle’s invariance
principle [SL91, Theorem 3.4, p. 69].

Furthermore, the potential energy UP(z) is a strictly convex function in z (due to
Assumption 3.5, 3.6, and Proposition 3.2) and the kinetic energy T (z, ż) is a strictly
convex function in ż. Thus, the sum V (z, ż) is strictly convex in z and ż. Since this
result holds globally, V (z, ż) is radially unbounded, i. e., V (z, ż) → ∞ if ‖z‖ → ∞ or
‖ż‖ → ∞ and the above argumentation holds globally (cf. [SL91, Theorem 3.5, p. 73]).
Therefore, in case of free motion, i. e., τ ext = 0, the equilibrium point {z = z⋆, ż = 0} of
the system (3.32) is globally asymptotically stable.

Remark 3.5 (Robustness). Besides the lower-bound on the gain matrix KP, the controller
(3.31) requires no model parameter knowledge of the plant. In particular, KP can be chosen
a priori conservatively high enough such that any static and dynamic model errors can be
completely avoided in the feedback loop. Thus, the simple control approach (3.31) is the
most robust solution for the class of statically controllable under-actuated Euler-Lagrange
systems described by (3.24).

3.2.3. Singular perturbed reduced closed-loop system

An additional implication of the high-gain control (3.31) which allows to consider a reduced
order closed-loop dynamics equations of (3.32) can be deduced from the singular pertur-
bation theory [KKO86]. This is an approximate method applicable for systems which have
a so-called two-times-scales property. Thereby, the basic idea is to split up the dynamics
in two coupled subsystems comprising a fast and a slow part. Under certain assumptions
(see, e. g., so-called Tychonov’s theorem [Kha02]), the dynamics of the fast subsystem can
be neglected. A comprehensive description of the method is out of the scope of this thesis.
However, the proposed fundamental control concept is based on the singular perturbed
reduced dynamics of (3.32), therefore in the following, the idea is briefly sketched.

For the simplicity of notation consider the reduced model (3.26), (3.27) under the actu-
ator position PD control (3.31),

Bθ̈ +KDθ̇ +KPθ̃ + fθ(θ, q) + dθ(z, ż) = 0 (3.47)

M(q)q̈ +C(q, q̇)q̇ + fq(θ, q) + dq(z, ż) = τ ext . (3.48)

By introducing KP = Kǫ/ǫ, the actuator dynamics (3.47) can be brought to the singular
perturbation form

ǫθ̈ + ǫB−1
[

KDθ̇ + fθ(θ, q) + dθ(z, ż)
]

= −B−1Kǫθ̃ , (3.49)

which in the limit case ǫ→ 0 results in B−1Kǫθ̃ ≈ 0, i. e., θ ≈ θdes. Thus, the dynamics
(3.47), (3.48) reduces approximately to

M(q)q̈ +C(q, q̇)q̇ + fq(θdes, q) + dq(q,θdes, q̇) = τ ext . (3.50)
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3.3. Damping injection into the indirectly actuated state dynamics

Note that an analogous singular perturbation reduction can also be performed for the
more general closed-loop dynamics (3.32).

3.3. Damping injection into the indirectly actuated state

dynamics

Compliantly actuated mechanical systems are generally designed such that friction and
damping effects acting in parallel to the springs connecting actuators and links are as small
as possible. The reason for this design criterion is the concept to couple the actuators and
the links mainly via elasticities. This energy transmission path would become inefficient
if it is subjected to non-negligible dissipative losses. In particular, elastic transmissions
with low friction and damping properties often display a weakly damped behavior seen
from the indirectly actuated coordinates, since, e. g., in robotic systems the bearing of the
spring mechanisms can often not be strictly separated from the bearing of the connected
links. Therefore, low damping in the elastic transmission results often in low damping of
the indirectly actuated states dynamics. However, as will be discussed later in Sect. 5.3.3,
control approaches which mainly exploit the natural system dynamics require a certain
amount of damping (in the indirectly actuated state dynamics) to regulate model uncer-
tainties and external disturbances (see, the author’s previous work [LPAS14]). Thus a
method is required to exclusively inject damping w. r. t. to the indirectly actuated states4

by control.
Several control methods to achieve a desired dynamics of the indirectly actuated state

variables for compliantly actuated mechanical systems have been considered so far. Solu-
tions based on the feedback of only directly actuated variables (i. e., states of the actuator
dynamics) have been introduced in [Tom91], [OKL95], [ZDLS04], and [OASK+04] for flex-
ible joint robots5 and have been further extended to the case of nonlinear elasticities in
[ASOP12]. Since these control methods consider only variables in the feedback which are
collocated with the control input, they perform very robustly against model uncertainties,
but in turn have limitations in the convergence properties of the indirectly actuated states.
A further class of controllers which aim at improved convergence properties of the indi-
rectly actuated states utilize a full-state feedback as it has been introduced for constant
joint stiffness in [ASH01] and extended to the case of nonlinear elasticities in [PAS11]. An-
other related approach which addresses the gain scheduling design of full-state feedback
control in VSA has been reported in [SMCT+13]. As the methods in [ASH01], [PAS11],
[SMCT+13] suggest only a design of the state feedback gains, the approach does not rely
on the knowledge of an accurate dynamics model. However, while the approach of [ASH01]
is supported by a stability statement, in [PAS11] and [SMCT+13], a stability analysis is
not provided. This is as the stability statement in [ASH01] relies on the assumption of con-
stant stiffness. As such, the theory cannot be straightforwardly generalized to the case of
nonlinear elastic transmissions as appearing in variable stiffness mechanisms [VASB+13].

Further methods to achieve desired dynamics of the indirectly actuated states for the
under-actuated mechanical system are based on cascaded structures [OASKH03], integra-
tor backstepping [OL99], [Ott08, Chap. 6.2], extensions of the well known Slotine and Li

4Note that actuator side damping can be implemented directly via the control input which is also used
for the actuator PD control (3.31). Also note that damping acting between the indirectly and directly
actuated states is not desired since it counteracts the efficiency of the elastic energy transmission.

5The terminology of flexible joint robots refers in literature to robots with serial, linear springs in the
power train.
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controller [SW88] to the flexible joint case [Spo89], and feedback linearization [DLL98],
[PMDL08], [DLF10]. A comprehensive overview of the first three methods are given in
[BOL95]. To achieve the desired dynamics of the indirectly actuated states, these meth-
ods substantially change the original dynamics of the plant. The approach introduced
in [OASKH03] first decouples the dynamics of the generalized elastic forces from the dy-
namics of the indirectly actuated states and then implements a desired behavior of the
indirectly actuated states via a tracking controller for the generalized elastic force acting
on the indirectly actuated inertial degrees of freedom. The approaches of [OL99] and
[Ott08, Chap. 6.2] apply the constructive design method of integrator backstepping to
the case of flexible joint robots. Assuming the knowledge of a complete model of the
plant, the methods in [OASKH03], [OL99], and [Ott08, Chap. 6.2] are theoretically well-
founded, since they are accompanied by a comprehensive stability analysis. Additionally,
they can be straightforwardly generalized to the case of nonlinear elasticities. However,
the knowledge of a complete model of the plant is a strong assumption from a point of
view of controller robustness. This becomes evident if structural changes of the original
plant dynamics are performed based upon the knowledge of a complete model of the plant.

The methods proposed in the following, achieve an additional damping term in the indi-
rectly actuated state dynamics, while preserving the structure of the kinetic and potential
energy of the plant. First, the desired indirectly actuated state dynamics including the
additional generalized damping force is formulated in terms of the reduced model (3.27).
Then, on the basis of the singular perturbation assumption of Section 3.2.3, a simple
method is presented, which requires only model-knowledge of the elastic potential of the
plant to achieve the desired additional damping term. Finally, the control input which
implements the desired damping via the actuator dynamics (3.26) is introduced. This
approach preserves the structure of the original plant dynamics (3.26), (3.27), except for
the desired damping term [KLOAS16]. Therefore, the solution to eliminate the steady-
state control error under the influence of gravity [ASOP12] can be directly adopted. Both
control approaches are accompanied with a stability proof.

3.3.1. Problem statement

Consider the dynamics of the indirectly actuated coordinates (3.27) under the assumption
(3.30),

M(q)q̈ +C(q, q̇)q̇ + dq(q, q̇) + fq(θ, q) = τ ext . (3.51)

The goal is to achieve an additional damping term

dq,inj = dq,inj(q, q̇) , q̇Tdq,inj(q, q̇) > 0 ,∀q̇ 6= 0 , dq,inj(q, q̇) = 0 ⇐⇒ q̇ = 0 , (3.52)

such that the indirectly actuated state dynamics takes the form

M(q)q̈ +C(q, q̇)q̇ + dq(q, q̇) + fq(η, q) + dq,inj(q, q̇) = τ ext . (3.53)

A comparison of (3.51) and (3.53) reveals that the family of mappings ηq,q̇(θ) : R
n ×R

n,
as implicitly defined by

fq(θ, q) = fq(η, q) + dq,inj(q, q̇) , (3.54)

implement the additional damping term (3.52). As a result of Assumption 3.6, for any
q, q̇ ∈ R

n, (3.54) can be uniquely solved either for η or for θ.
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3.3. Damping injection into the indirectly actuated state dynamics

Proposition 3.4. The family of mappings ηq,q̇(θ) : R
n → R

n defined by (3.54) under
Assumption 3.6, where the constants q, q̇ ∈ R

n parametrize the mappings, represent global
diffeomorphisms.

Proof. In order to show that for any constant q, q̇ ∈ R
n, ηq,q̇(θ) : R

n → R
n is a diffeo-

morphism, the Jacobian ∂η(θ)/∂θ needs to be shown to be always nonsingular, i. e., it
has to be shown that

sup
θ∈Rn

∥
∥
∥
∥
∥

(
∂ηq,q̇(θ)

∂θ

)−1
∥
∥
∥
∥
∥
<∞ , (3.55)

keeps bounded6 from above [Zei86, Corollary 4.41, p. 174]. By differentiating condition
(3.54) w. r. t. θ (taking into account that η = ηq,q̇(θ)) it can be seen that the Jacobian
matrix of the mappings ηq,q̇(θ) take the form

Jη(θ) :=
∂ηq,q̇(θ)

∂θ
=

(

∂2U(θ, q)

∂θ∂q

∣
∣
∣
∣
θ=η

)−1
∂2U(θ, q)

∂θ∂q
. (3.56)

The inverse of this Jacobian matrix

∥
∥Jη(θ)

−1
∥
∥ ≤

∥
∥
∥
∥
∥

(
∂2U(θ, q)

∂q∂θ

)−1
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∂2U(θ, q)

∂q∂θ

∣
∣
∣
∣
θ=η

∥
∥
∥
∥
∥
≤ c10/c9 , (3.57)

keeps bounded due to Assumptions 3.6.

Remark 3.6. In the following, the family of mappings ηq,q̇(θ) will be denoted as η(θ, q, q̇)
while keeping in mind that for any constant q, q̇ ∈ R

n, there is a bijective relation between
θ and η.

Remark 3.7. The above proof can be straightforwardly extended to the case where the
injected damping term dq,inj = dq,inj(θ, q, q̇) depends also on the actuator positions θ.
This would lead to boundedness conditions on the partial derivatives ∂dq,inj/∂θ. Such a
dependency occurs in case of nonlinear, spring load or stiffness7 dependent damping.

Due to the change of coordinate defined by (3.54), the problem of damping injection
into the indirectly actuated state dynamics can be solved by regulating (η, q) instead of
(θ, q). Thereby, the structure of the plant potential U is preserved. This agrees with
the basic idea to change the natural dynamics of the plant only to a minimum extend by
control.

3.3.2. Implementation via actuator position input

Consider the actuator position PD controlled dynamics (3.50) under the assumption (3.30)
where the two time-scales property of Section 3.2.3 holds, i. e.,

M(q)q̈ +C(q, q̇)q̇ + fq(θdes, q) + dq(q, q̇) = τ ext . (3.58)

6The matrix norm ‖ · ‖ is assumed to be the induced Euclidean norm.
7The dependency on θ due to the stiffness occurs only if the intrinsic stiffness properties are such that
they also depend on θ.

57



3. Modeling and Basic Control

The control input of the above system is the actuator position θdes. It can be easily verified
that the input transformation

θdes = gq(fq(ηdes, q) + dq,inj(q, q̇), q) , (3.59)

leads to the desired closed-loop dynamics

M(q)q̈ +C(q, q̇)q̇ + fq(ηdes, q) + dq(q, q̇) + dq,inj(q, q̇) = τ ext . (3.60)

Thereby, the inverse mapping gq(τ , q) : R
n × R

n → R
n in (3.59) is defined such that

θ = gq(τ , q), if and only if τ = fq(θ, q). Note that Proposition 3.4 provides a sufficient
condition for the global existence of the input transformation (3.59). Further note that by
virtue of (3.52) it follows from (3.59) that if q̇ = 0 or equivalently if dq,inj = 0, ηdes = θdes.

In case of free motion, i. e., τ ext = 0, the system (3.60) can be shown to be asymptotically
stable for any constant actuator reference positions ηdes ∈ R

n. The problem of selecting
ηdes such that a desired equilibrium configuration qdes is achieved will be addressed in
Sect. 3.3.3.

Proposition 3.5. The equilibrium point {q = q̄(ηdes), q̇ = 0} of the system (3.60), where
τ ext = 0, is globally asymptotically stable.

Proof. Consider a Lyapunov function candidate of the form

V (q, q̇) = T (q, q̇) + U(ηdes, q)− U(ηdes, q̄(ηdes)) , (3.61)

where for any constant ηdes ∈ R
m, U(ηdes, q) is minimal at q = q̄(ηdes) according to

Definition 3.4 and Assumption 3.5. Since the kinetic energy T (q, q̇) = 1
2 q̇

TM (q)q̇ is
positive definite in q̇ and U(ηdes, q) − U(ηdes, q̄(ηdes)) is positive definite in q, V (q, q̇)
is positive definite in (q, q̇). In order that V (q, q̇) is a Lyapunov function, its derivative
along the solution of (3.60) has to be at least negative semi-definite. The straight forward
computation taking Corollary 3.1 into account yields

V̇ (q, q̇) = q̇T (dq(q, q̇) + dq,inj(q, q̇)) ≤ 0 , (3.62)

where the negative semi-definiteness can be concluded due to the assumptions on the
dissipation terms (3.30) and (3.52). As a result the equilibrium point {q = q̄(ηdes), q̇ = 0}
of the system (3.60) is stable in a sense of Lyapunov [SL91, Theorem 3.2, p. 62].

This result can be extended to the case of asymptotic stability: By hypothesis of the
assumptions (3.30) and (3.52), q̇T (dq(q, q̇) + dq,inj(q, q̇)) = 0 only if q̇ = 0. But q̇ = 0

implies that q̈ = −M(q)−1fq(ηdes, q) which is non-zero as long as q 6= q̄(ηdes). The
system cannot remain in the set R = {q, q̇ ∈ R

m | q̇ = 0} except at the equilibrium point
{q = q̄(ηdes), q̇ = 0} since the largest invariant set in R is the equilibrium point itself.
Therefore, the system is locally asymptotically stable according to La Salle’s invariance
principle [SL91, Theorem 3.4, p. 69].

Furthermore, due to Assumption 3.5, U(ηdes, q) is a strictly convex function in q and
the kinetic energy T (q, q̇) is a strictly convex function in q̇. Thus, V (q, q̇) is a strictly
convex function of (q, q̇). Since this result holds globally, V (q, q̇) is radially unbounded,
i. e., V (q, q̇) → ∞ if ‖q‖ → ∞ or ‖q̇‖ → ∞, the above argumentation holds globally
(cf. [SL91, Theorem 3.5, p. 73]). Therefore, in case of free motion, i. e.τ ext = 0, the
equilibrium point {q = q̄(ηdes), q̇ = 0} of the system (3.60) is globally asymptotically
stable.
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3.3. Damping injection into the indirectly actuated state dynamics

3.3.3. Implementation via generalized actuator force input

In the following, a method is presented which achieves the additional damping term
dq,inj(q, q̇) (defined by (3.52)) for the plant dynamics (3.26), (3.27) under assumptions
(3.29), (3.30) via the generalized actuator force input u. The proposed controller extends
the author’s previous work [KLOAS16]8 to the case of general potential functions U(θ, q)
(cf. Sect. 3.1.1 under assumption m = n = p) such as bi-articular mechanisms, where
∂U(θ, q)/∂q 6= −∂U(θ, q)/∂θ and combines the result with the method of [ASOP12].

Consider the actuator dynamics

Bθ̈ + fθ(θ, q) = u , (3.63)

where for the potential force fθ(θ, q) the notation (3.33) is used. The indirectly actuated
state dynamics (3.53) (containing the injected damping term dq,inj(q, q̇)) can be achieved
by choosing the control input u such that the actuator dynamics (3.63) under the change
of coordinates (3.54) takes the form:

Bη̈ + fθ(η, q) = ū . (3.64)

Herein, ū ∈ R
n is the control input of the dynamics (3.64), (3.53), which implements

the additional damping term dq,inj(q, q̇). The required control input u can be derived by
differentiating the change of coordinates (3.54) twice w. r. t. time. The first derivative can
be expressed as

Jη(θ,η, q)θ̇ + γ(θ,η, q, q̇, q̈) = η̇ , (3.65)

where the Jacobian matrix Jη(θ,η, q) is defined by (3.56) and

γ(θ,η, q, q̇, q̈) =

(
∂fq(η, q)

∂η

)−1 [(∂fq(θ, q)

∂q
−
∂fq(η, q)

∂q

)

q̇ − ḋq,inj(q, q̇)

]

(3.66)

can be interpreted as a bias of the velocity mapping (3.65). The time derivative of (3.65),

Jη(θ,η, q)θ̈ + J̇η(θ,η, q)θ̇ + γ̇(θ,η, q, q̇, q̈) = η̈ ,

evaluated along the solution of (3.63) and (3.64) (i. e., substituting θ̈ and η̈ by (3.63) and
(3.64), respectively) yields the control law

u =fθ

(
gq

(
fq(η, q) + dq,inj(q, q̇), q

)
, q
)

+BJη(θ,η, q)
−1
[

B−1 (ū− fθ(η, q))− J̇η(θ,η, q)θ̇ − γ̇(θ,η, q, q̇, q̈)
]

, (3.67)

which leads to the closed-loop dynamics (3.64), (3.53).

Remark 3.8. The control approach (3.67) can be straightforwardly extended to the case,
where actuator-side friction of the form (3.29) is considered. However, this requires the
knowledge of an explicit friction model9. Considering a priori observer based friction com-
pensation as proposed by [TASLH08] would avoid this problem and validates the assumption
made for the actuator dynamics (3.63).

8More precisely, the regulation case of [KLOAS16] without dynamic gravity cancellation is considered.
9Considering actuator-side friction in the control law (3.67) requires to compute the term dθ(η, q, η̇).
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Steady-state solution

In the following, the problem of regulating the indirectly actuated state variables q of the
system (3.64), (3.53) at a desired configuration qdes is considered. This can be achieved
by a PD-like feedback of the control input collocated variables q̄(η), η̇:

ū = fθ(η, q̄(η))− J q̄(η)
TKP (q̄(η)− qdes)−KDη̇ . (3.68)

Herein, q̄(η) and the corresponding Jacobian matrix J q̄(η) are defined by Definition 3.4
and (3.20) (replacing the argument θ by η), respectively and KP,KD are symmetric and
positive definite controller gain matrices. The control law (3.68) equals formally the con-
troller proposed in [ASOP12]. The difference to the cited work is that (3.68) is formulated
in terms of η, which already implements the additional damping term dq,inj(q, q̇) injected
into the indirectly actuated state dynamics.

In case of free motion, i. e., τ ext = 0, the static equilibrium conditions ˙̄z = (η̇, q̇) = 0

of the closed-loop dynamics (3.64), (3.53), and (3.68) become

fθ(η, q) =fθ(η, q̄(η))− J q̄(η)
TKP (q̄(η)− qdes) , (3.69)

fq(η, q) =0 . (3.70)

Due to Definition 3.4, the only solution of (3.70) is q = q̄. Substituting this result into
(3.69) it follows that q̄ = qdes. Since q̄(η) is a diffeomorphism (cf. Proposition 3.1),
η = ηdes results. Therefore, it can be concluded that (3.69) and (3.70) have exactly the
only solution η = ηdes and q = qdes.

Stability and passivity

In the following, the stability and passivity properties of the system (3.64), (3.53), and
(3.68) are analyzed based upon considerations of [ASOP12]. Thereby, the configuration
variables are denoted by z̄ = (η, q).

Proposition 3.6. In case of free motion, i. e., τ ext = 0, the equilibrium point {z̄ =
z̄des, ˙̄z = 0} of the closed-loop dynamics (3.64), (3.53), and (3.68) is globally asymptoti-
cally stable.

Proof. Consider a Lyapunov function candidate of the form

V (z̄, ˙̄z) = T (z̄, ˙̄z) + U(η, q) + VC(η, q̄(η)) , (3.71)

which comprises the kinetic and potential energy T (z̄, ˙̄z) = 1
2

(
η̇TBη̇ + q̇TM(q)q̇

)
and

U(η, q) of the dynamics (3.64), (3.53), respectively and a ”candidate storage function”,

VC(η, q̄(η)) = −U(η, q̄(η)) +
1

2
(q̄(η)− qdes)

T
KP (q̄(η)− qdes) , (3.72)

for the controller (3.68). In order to show that V (z̄, ˙̄z) is a Lyapunov function, it is
required to show that V (z̄, ˙̄z) is positive definite in its arguments and that the derivative
V̇ (z̄, ˙̄z) along the solution of (3.64), (3.53), and (3.68) is at least negative semi-definite.

The first term of (3.71) is positive definite in ˙̄z, i. e., T (z̄, ˙̄z) > 0, for all ˙̄z 6= 0 and
T (z̄, ˙̄z) = 0 if and only if ˙̄z = 0, for all z̄ ∈ R

2n. In order to show that V (z̄, ˙̄z) is positive
definite in all its arguments, it remains to show that U(η, q) + VC(η, q̄(η)) > 0, for all
z̄ 6= z̄des and U(η, q) + VC(η, q̄(η)) = 0 if and only if z̄ = z̄des. To this end, consider first
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3.3. Damping injection into the indirectly actuated state dynamics

the difference ∆Uq(η, q) = U(η, q) − U(η, q̄). From Assumption 3.5 (i. e., U(η, q) is a
strictly convex function of q) and Definition 3.4 (i. e., fq(η, q̄(η)) = 0) for any given η) it
follows that ∆Uq(η, q) > 0 for all q 6= q̄, which follows from the fact that U(η, q) has the
only extremum, which is a minimum, at q = q̄, for any given η. Additionally, the strict
convexity Assumption 3.5 in combination with the mean value theorem implies

∣
∣U(η, q1)− U(η, q2)− fq(η, q2)

T (q1 − q2)
∣
∣ ≥ 1

2
c7 ‖q1 − q2‖2 ,

for all η, q1, q2 ∈ R
n, where for q1 = q and q2 = q̄(η), the above relation reduces to

∆Uq(η, q) ≥
1

2
c7 ‖q − q̄‖2 .

Considering this result in (3.71), (3.72) it follows that

V (z̄, ˙̄z) ≥ T (z̄, ˙̄z) +
1

2
c7 ‖q − q̄‖2 + 1

2
(q̄(η)− qdes)

T
KP (q̄(η)− qdes) ≥ 0 . (3.73)

It can be seen that the equality holds only if q = q̄ = qdes. According to Proposition 3.1,
the mapping q̄(η) is a diffeomorphism. This in turn implies η = ηdes. It can be concluded
that V (z̄, ˙̄z) = 0, if and only if {z̄ = z̄des, ˙̄z = 0} holds.

In order that V (z̄, ˙̄z) is a Lyapunov function, it remains to show that V̇ (z̄, ˙̄z) is at least
negative semi-definite. Consider therefore the Hamiltonian of the system (3.64), (3.53),

H(z̄, ˙̄z) = T (z̄, ˙̄z) + U(η, q) . (3.74)

Its derivative along the solution of (3.64), (3.53) can be expressed as

Ḣ(z̄, ˙̄z) = −q̇T (dq(q, q̇) + dq,inj(q, q̇)) + ūT η̇ . (3.75)

Consider further the derivative of the ”candidate storage function” of the controller (3.72),
which is given by

V̇C(η, q̄(η)) =− η̇T
(
fθ(η, q̄(η))− J q̄(η)

TKP (q̄(η)− qdes)
)

(3.76)

=− ūT η̇ − η̇TKDη̇ , (3.77)

since

∂U(η, q̄(η))

∂η
= fη(η, q̄(η))

T + fq(η, q̄(η))
TJ q̄(η) = fη(η, q̄(η))

T , (3.78)

according to Definition 3.4 (i. e., fq(η, q̄(η)) = 0). The sum of both derivatives yields,

V̇ (z̄, ˙̄z) = −q̇T (dq(q, q̇) + dq,inj(q, q̇))− η̇TKDη̇ ≤ 0 , (3.79)

which is negative semi-definite due to the assumptions on the dissipation terms (3.30) and
(3.52).

It follows that V (z̄, ˙̄z) is a Lyapunov function of the system (3.64), (3.53), and (3.68).
As a result the equilibrium point {z̄ = z̄des, ˙̄z = 0} is stable in a sense of Lyapunov [SL91,
Theorem 3.2, p. 62].

This result can be extended to the case of asymptotic stability: By hypothesis of assump-
tions (3.30), (3.52), and the positive definiteness of KD, −q̇T (dq(q, q̇) + dq,inj(q, q̇)) −
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η̇TKDη̇ = 0 only if q̇ = 0 and η̇ = 0. But q̇ = 0 implies that q̈ = −M(q)−1fq(η, q),
which is non-zero as long as q 6= q̄(η). Additionally, η̇ = 0 implies that

η̈ = B−1
(
fθ(η, q̄(η))− fθ(η, q)− J q̄(η)

TKP (q̄(η)− qdes)
)
,

which is non-zero as long as q 6= q̄(η) 6= qdes. Since q̄(η) is a diffeomorphism (cf. Propo-
sition 3.1), the statement q 6= q̄(η) 6= qdes is equivalent to z̄ 6= z̄des. Therefore, the
system cannot remain in the set R =

{
z̄, ˙̄z ∈ R

2n | ˙̄z = 0
}
except at the equilibrium point

{z̄ = z̄des, ˙̄z = 0}, since the largest invariant set in R is the equilibrium point itself.
Therefore, the system is locally asymptotically stable according to La Salle’s invariance
principle [SL91, Theorem 3.4, p. 69].

Furthermore, from (3.73) and the fact that q̄(η) is a diffeomorphism (cf. Proposi-
tion 3.1), it follows that V (z̄, ˙̄z) is radially unbounded, i. e., V (z̄, ˙̄z) → ∞ if ‖z̄‖ → ∞ or
‖ ˙̄z‖ → ∞ and thus the above argumentation holds globally [SL91, Theorem 3.5, p. 73].
Therefore, in case of free motion, i. e., τ ext = 0, the equilibrium point {z̄ = z̄des, ˙̄z = 0}
of the system (3.64), (3.53), and (3.68) is globally asymptotically stable.

Passivity of the closed-loop dynamics (3.64), (3.53), and (3.72) can be deduced by
considering the Lyapunov function given by (3.71) as storage function.

Proposition 3.7. The system (3.64), (3.53), and (3.68) can be represented as a passive
map from the generalized external force τ ext to the generalized velocity q̇ (which in most
robotic systems represents the velocity of the bodies in interaction with the environment).

Proof. Consider a storage function S := V , where V is defined in (3.71) and (3.72). Its
derivative along the solution of the system (3.64), (3.53), and (3.68) satisfies

Ṡ = −q̇T (dq(q, q̇) + dq,inj(q, q̇))− η̇TKDη̇ + q̇Tτ ext ≤ q̇Tτ ext . (3.80)

Therefore, according to [VdS12, Definition 2.2.1, p. 19], the system (3.64), (3.53), and
(3.68) represents a passive map from τ ext to q̇.

3.4. Summary

This chapter proposes a formulation of compliantly actuated mechanical systems as a
sub-class of under-actuated Euler-Lagrange dynamics. This formulation is as general as it
includes the case, where not all of the indirectly actuated states at position level are stati-
cally controllable. On the basis of this general model, a PD control in terms of the directly
actuated states is presented which asymptotically stabilizes all statically controllable states
without model parameter knowledge of the plant. For the PD controlled plant, a singular
perturbation argumentation is presented, which allows to neglect the closed-loop actuator
dynamics under certain controller gain assumptions. Even though this result is deemed
as known in the robotic control community (yet not published, from the author’s best
knowledge), it forms the foundation of the analysis and control methodologies proposed
in this thesis, since it allows to stabilize the statically controllable states of compliantly
actuated mechanical systems, even in the presence of statically not-controllable states ap-
pearing in locomotion dynamics (such as the inverted pendulum dynamics). Moreover, a
unified control framework to inject damping into the statically controllable state dynamics
is proposed, which preserves the structure of the system-inherent Lagrangian. Two differ-
ent implementation of the damping injection are proposed: implementation via actuator
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position input and via generalized actuator force input. The former implementation is
based on the singular perturbation result. It achieves the additional damping term and
maintains the global asymptotic stability property, even in case where the original plant
dynamics is not statically feedback-linearizable due to inertial couplings. The damping
injection implementation via the generalized actuator force input considers the complete
(statically feedback-linearizable) plant dynamics. A link-side tracking control variant of
the damping-injection controller is presented in the author’s previous work [KLOAS16].
Herein, a comprehensive, experimental validation of the approach is performed with the
compliantly actuated robot DLR Hand Arm System [GASB+11]. As in case of the for-
mer implementation, it preserves also the structure of the Lagrangian and therefore, the
method of [ASOP12] to control the steady-state behavior of the indirectly actuated states
can be directly applied. The proposed superposition completes the approach of [ASOP12]
in a way that in addition to constructive energy shaping control it achieves desired damp-
ing, which directly influences the convergence behavior of all statically controllable states.

63





CHAPTER 4

Limit Cycle Control

Solving the problem of energy efficient limit cycle generation in planar, compliantly ac-
tuated systems represents a major step towards the main goal at hand. However, due to
the generally nonlinear structure of the underlying second-order differential equation, this
problem is not trivial and is far from being completely understood. A novel switching-
based control principle is derived here, which is based upon observations of humans con-
trolling an equivalent simulated dynamical system in a force-feedback setup. The resulting
controller is able to generate a limit cycle without the knowledge of model-parameters of
the plant. Due to the switching nature of the control law, the corresponding closed-loop
dynamics represents a hybrid dynamical system of which the stability analysis yields novel
interpretations of ordinary existence and convergence statements for continuous dynamics
in the hybrid case.

4.1. Problem statement

Consider the planar, second-order system

Mq̈ + d(q − θ, q̇) +
∂U(φ)

∂φ

∣
∣
∣
∣
φ=q−θ

= 0 . (4.1)

Herein, q, q̇ ∈ R and θ ∈ R represent the indirectly actuated states and the control input,
respectively, andM > 0 denotes the inertia constant. The dynamics (4.1) may be regarded
as the actuator PD controlled, singularly perturbed, compliantly actuated system (3.50),
where n = 1. To reduce the complexity of the analysis, the following assumptions are
made in (4.1):

Assumption 4.1. The potential U(φ) : R → R is a strictly convex, two-times continuously
differentiable, positive definite, and even function in φ, i. e., ∂2U(φ)/∂φ2 > 0 for all φ ∈ R,
U(φ) > 0 for all φ 6= 0, U(φ) = 0 only if φ = 0 and U(−φ) = U(φ) for all φ ∈ R.

Assumption 4.2. The generalized damping force d(φ, q̇) : R
2 → R, which is continuously

differentiable in its arguments, is dissipative in a sense that d(φ, q̇)q̇ > 0 for all q̇ 6= 0
and d(φ, q̇) = 0 only if q̇ = 0, for all φ ∈ R. Additionally, d(φ, q̇) is an odd and strictly
increasing function of q̇, i. e., d(φ,−q̇) = −d(φ, q̇).
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Compared to the model (3.50) with n = 1, the assumptions added for the planar system
(with two state variables) (4.1) are basically conditions on the symmetry of the potential
and damping terms, which halve the amount of cases to be distinguished in the following
analysis of such nonlinear dynamics. Thereby, as will become clear during analysis of
Sect. 4.6 and 4.7, the generality of the results is not lowered to a large extent.

The stability properties of the dynamics (4.1) with θ = const. rely only on the positive
definiteness of U(φ) and d(φ, q̇)q̇ in φ and q̇, respectively. This can be seen from the proof
of the following proposition:

Proposition 4.1. Let x = (q − θ, q̇) ∈ R
2 be the state of the dynamics (4.1). Then,

for θ = const., the origin x = 0 of (4.1) under Assumption 4.1 and 4.2 is globally
asymptotically stable.

Proof. The proof of this proposition is provided in the Appendix A.1.

The objectives of this chapter are:

• Deriving a control such that the state trajectory is periodic;

• Exploiting mechanical resonance effects of the system.

To understand the challenging character of this problem in the case of nonlinear springs,
consider a sinusoidal control signal θ(t) = θ̂ cos (ωt) with amplitude θ̂ and frequency ω and
compare qualitatively the behavior of the system (4.1) consisting of a linear spring with
potential function

U(φ) =
1

2
klinφ

2 (4.2)

and a cubic spring as an example of a nonlinear elasticity with potential function

U(φ) =
1

2
klinφ

2 +
1

4
kcubφ

4 , (4.3)

where klin > 0 and kcub > 0 denote the linear and cubic spring constants, respectively,
and linear damping in both cases, i. e., d(φ, q̇) = d0q̇ with d0 > 0 constant-

4.1.1. Linear spring

The resulting system is a forced, linear oscillator

Mq̈ + d0q̇ + klinq = θ̂ cos (ωt) .

A resonance oscillation can be achieved either by exciting the system with a frequency
close to the natural frequency or, in case of a variable stiffness actuator joint, with a linear
and adjustable spring by adjusting the stiffness such that the resulting natural frequency
is close to the desired frequency of the task and excitation.
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Figure 4.1.: Amplitude-frequency characteristics of a forced, nonlinear oscillator.

4.1.2. Nonlinear, cubic spring

The system represents a forced, nonlinear, parametrically excited oscillator with multi-
frequency excitation [NM79]

Mq̈ + d0q̇ +

(

klin +
3kcubθ̂

2

2

)

q + kcubq
3 + 3kcubθ̂

(

θ̂

2
cos (2ωt)− cos (ωt) q

)

q

︸ ︷︷ ︸

parametric excitation

=

(

klin +
3kcubθ̂

2

4

)

θ̂ cos (ωt) +
kcubθ̂

3

4
cos (3ωt)

︸ ︷︷ ︸

multi-frequency excitation

.

Approximative solutions can be obtained partly using perturbation methods [Nay73],
[PKB11]. The qualitative behavior is discussed in [NM79]:

• Cubic nonlinearity: the system exhibits multiple resonances; The amplitude and fre-
quency of the steady-state response depend on the excitation (amplitude, frequency)
and the initial conditions (Fig. 4.1).

• Parametric excitation: the system consists of rapidly varying parameters; small
excitation amplitudes can produce large responses, even if the excitation frequency
is not close to the linear, natural frequency.

• Multi-frequency excitation: more than one type of excitation may occur simultane-
ously.

These observations highlight that there is a substantial difference between the well-known
linear case and the nonlinear case, making the prediction of periodic motions a non-trivial
problem.

4.2. Related approaches

The related methods solving the problem of Sect. 4.1 can be mainly classified in two basic
principles:

• the Van der Pol oscillator and
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elastic element

rigid links

Figure 4.2.: Human induces periodic motions for a rod consisting of rigid links, which are
connected via nonlinear, elastic elements.

• the central pattern generator (CPG).

On the basis of the seminal work of Van der Pol [VdP26], several control methods
to implement a limit cycle behavior in robotic systems have been proposed by [SD08],
[GOAS13], and the author’s previous work [LGP+13a]. These controllers implement the
limit cycle generation by a nonlinear damping term (which, e. g., can be achieved applying
the method of Sect. 3.3) that increases the system energy along trajectories inside the
limit cycle and decreases the system energy outside the limit cycle. Thereby, the original
dynamics of the plant is substantially changed: In particular, applying this approach to
robotic systems entails additional energy losses in the actuators even in phases of positive
damping, since the nonlinear damping is generated artificially by control. Moreover, the
Van der Pol oscillator based control systems are exposed to theoretical difficulties, since
the stability analysis of such systems assumes that the damping force inherent in any real
plant is canceled a priori.

The CPG based approach has been invented by Ijspeert et al. [Ijs01], [BI04], [IC07] to
control periodic motions of systems with usually a large number of degrees of freedom.
As observed in neuro-control units of amphibians, periodic trajectories are generated by
nonlinear (phase-)coupled oscillators. The periodic motion replicating this behavior in a
robotic system is generated in an isolated (feed-forward) unit, the CPG, and commanded to
the plant as desired joint positions. In contrast to the motivation of the work at hand, the
natural plant dynamics is disregarded and rigid robot designs without resonance behavior
are considered. An extension to the classical CPG approach which applies to compliantly
actuated systems is given by the so-called adaptive frequency oscillators (AFO) [BI08].
The central control unit of the AFO is the Hopf oscillator [Hop42] of which the positional
state can be the control input θ of the compliantly actuated system (4.1) and the indirectly
actuated state of the plant (q, q̇) can be superimposed to the dynamics of the Hopf oscillator
as feedback. Since the steady-state solution of the Hopf oscillator represents a harmonic
limit cycle, the closed-loop dynamics of a nonlinear, AFO controlled system suffers exactly
from the theoretical problems as discussed in Sect. 4.1.2.

4.3. Main controller idea

This section derives a control principle to stabilize periodic motions for compliantly ac-
tuated systems of the form (4.1) inspired by human experiments. Despite the current
theoretical difficulties discussed in Sect. 4.1, humans are able to stabilize periodic motions
easily, even in the presence of strong nonlinearities. This can be easily verified by sim-
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ple experiments, where a human induces oscillations into a rod (see, Fig. 4.2). Stable
oscillations could be very easily achieved even for the case of large deflections (i. e., in
the presence of strong nonlinearities). The human does not need a long training phase to
do so. This demonstrates the ability of humans to control periodic motions of nonlinear
compliantly actuated systems. From these observations it is hypothesized that:

• The motor control of humans is able to stabilize periodic motions even in the presence
of strong nonlinearities.

• The underlying control law has a simple and very robust structure.

On the basis of experimental observations from strategies used by humans, a control
principle will be derived that confirms these hypotheses.

Accessing and measuring control and feedback signals of humans during natural motions
is difficult and largely unresolved [HSH+96]. Therefore, this problem is circumvented by
using hardware in the loop simulations with human control. Using a force feedback device,
a human operator can be coupled in the feedback control loop with either a robotic plant
or a simulated system. The latter allows to adjust the system parameters arbitrarily as
done in the following experiments.

As sketched in Fig. 4.3, the real time simulation of (4.1) was interconnected with a
direct drive (torque controlled) motor with a handle mounted on the rotor. This motor
acts as force feedback device. An optical encoder provides the angular position of the
motor as control signal θ(t) for the simulated compliantly actuated system (4.1). The
generalized elastic force ψ(φ) = −∂U(φ)/∂φ computed by the simulation is commanded
to the current controller of the force feedback device and thereby provides feedback to
the human operator. This setup allows to emulate arbitrary dynamical systems that
are controlled by a single position input / force output, and interface them to a human
operator.

In a series of experiments, the oscillatory behavior of the compliantly actuated system
(4.1) has been analyzed. A nonlinear cubic spring (cf. (4.3)) was considered, where the
ratio of linear and cubic spring constants was chosen as kcub/klin = 70. To comply with the
range of maximum torques of the force feedback device τmax = ±1Nm, inertia, damping,
and spring parameters were adjusted. The dynamical system (4.1) was integrated (forward
Euler method, time steps 0.001 s) on the same real time computer on which the force
feedback device was controlled. Additionally, the motion of the pendulum was visualized
on a screen. Several skilled participants1 were tested. To initialize the tests, subjects were
instructed to grasp the handle of the force feedback device and to rest in a centered, initial
position (cf. Fig. 4.3), while the integrator was reset. Then, subjects were asked to move
the handle to induce oscillations. The goal was to excite and stabilize periodic motions.

The experimental results revealed that humans can easily excite and sustain periodic
motions, even in the presence of strong nonlinearities. All subjects have been applying
similar strategies which can be summarized by the following very simple principle:

When a certain spring deflection (torque) is detected, the human operator countered it
by moving the motor (control signal) in the opposite direction of the link deflection and
thereby inducing energy into the system. In the remainder of this chapter, this strategy
is formalized in a control law and properties of the resulting closed-loop dynamics are
analyzed in detail.

1Participants were involved in the experimental background.

69



4. Limit Cycle Control

force feedback
device

real-time
simulated
system
(4.1)

position θ

torque ψ

display

link position q

Figure 4.3.: Experimental setup to include a human in the control loop of a real-time
simulated compliantly actuated system. Haptic feedback is provided by a
force feedback device. Visual feedback is given by a display showing a real-
time simulation of a robot.

4.4. Controller design

On the basis of observations made in Sect. 4.3, a switching based control law of the form

θ(q(t), θ−) =







θ̂ if q(t)− θ− < −ǫφ
0 if |q(t)− θ−| < ǫφ

−θ̂ if q(t)− θ− > ǫφ

(4.4)

is postulated. Herein, θ− ∈ {−θ̂, 0, θ̂} denotes the state of the function θ(q(t), θ−) before
the switching instance, i. e., θ(q(t), θ−) is piecewise continuous from the right in time t.
The switching amplitude θ̂ > 0 and the threshold value ǫφ > 0 are controller parameters.

Depending on the ratio θ̂/ǫφ, two basic switching behaviors can be distinguished:

θ̂ < 2ǫφ , (4.5)

θ̂ ≥ 2ǫφ . (4.6)

In case of (4.5), the function θ consists of three discrete states. The order of occurrence
of these states is determined by the flow of the dynamics (4.1), being (0,−θ̂, 0, θ̂). In
case of (4.6), the situation arises, where due to the switching, the condition for the next
switching is fulfilled. Thereby, the function θ is defined such that the subsequent switching
(corresponding to the new condition) occurs instantaneously. As a result, the switching
function corresponding to parameters given by (4.6) can be expressed as

θ(q(t), θ−) =

{
θ̂ if q(t)− θ− < ǫφ

−θ̂ if q(t)− θ− > −ǫφ
. (4.7)

Thereby, the switching function consists of two discrete states only, i. e., θ ∈ {θ̂,−θ̂}.

Remark 4.1. According to Propositon 4.1, the origin {φ := q − θ = 0, q̇ = 0} of the
dynamics (4.1) is globally asymptotically stable. Since additionally, in case of (4.6), the
potential energy right after the switching is at a higher level than the potential energy
at the next switching condition, i. e., U(2θ̂ − ǫψ) > U(ǫψ) or U(−2θ̂ + ǫψ) > U(−ǫψ),
reaching the switching conditions is always guaranteed (Lemma 4.1). However, in case of
(4.5), situations arise, where the potential energy right after the switching is at a lower
level than the potential energy at the next switching condition, i. e., U(θ̂ − ǫφ) < U(ǫφ) or

U(−θ̂+ǫφ) < U(−ǫφ) such that reaching the switching conditions is not always guaranteed.

Since the goal is to generate a stable limit cycle, the following analysis will focus on the
controller (4.7) such that the following assumption is satisfied:
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Assumption 4.3. The switching parameters θ̂ and ǫφ are in the set

(θ̂, ǫφ) ∈ {(θ̂, ǫφ) ∈ R≥0 × R≥0 | θ̂ ≥ 2ǫφ} .

4.5. Hybrid dynamical system

The continuous dynamics (4.1) under the discontinuous control law (4.7) can be considered
as an autonomous-impulse hybrid system. By expressing it in the framework of general
hybrid dynamical systems [BBM98] it takes the form:

H = [Σ,A,g] . (4.8)

The dynamical system is represented by

Σ = [X ,f ] , (4.9)

where by selecting as states x1 = q − θ and x2 = q̇, the continuous state space is given by

X = X1 ∪ X2 ∪ X3 ∪ X4 ,

X1 =
{

x ∈ R
2 |x1 ≥ 2θ̂ − ǫφ, x2 ≥ 0

}

,

X2 =
{
x ∈ R

2 |x1 ≥ ǫφ, x2 ≤ 0
}
,

X3 =
{

x ∈ R
2 |x1 ≤ −

(

2θ̂ − ǫφ

)

, x2 ≤ 0
}

,

X4 =
{
x ∈ R

2 |x1 ≤ −ǫφ, x2 ≥ 0
}
,

(4.10)

and the continuous dynamics is given by

ẋ = f(x) =

[
x2

− 1
M

(

d(x1, x2) +
∂U(x1)
∂x1

)

]

, x ∈ X . (4.11)

When the state x of the continuous dynamics reaches the autonomous jump set

A = A1 ∪ A2 ,

A1 =
{
x ∈ R

2 |x1 = ǫφ, x2 ≤ 0
}
,

A2 =
{
x ∈ R

2 |x1 = −ǫφ, x2 ≥ 0
}

(4.12)

the state is reset according to the autonomous jump transition map

x+ = g(x) =

(

−sign(x1)
∣
∣
∣2θ̂ − ǫφ

∣
∣
∣

x2

)

, x ∈ A . (4.13)

The qualitative behavior of the hybrid dynamical system H (4.8)–(4.13) in the state-
plane is shown in Fig. 4.4. By starting with an initial state x0 ∈ X , the solution x(x0, t)
flows continuously according to ẋ = f(x) until it (possibly) reaches the jump set A. If
x ∈ A, the state jumps to x+ = g(x) and then the solution continuously flows further
with the reseted ”initial condition” x+ ∈ X0, where

X0 = g(A) , (4.14)

denotes the jump destination set.
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x2

x1

X0

X0

A2

A1

x0

X1

X2X3

X4

g(x)

g(x)

Figure 4.4.: Graphical representation of the hybrid dynamical system H (4.8)–(4.13) in
the state-plane.

4.6. Hybrid closed orbits

Nontrivial closed orbits of continuous dynamical systems ẋ = f(x) with f(0) = 0 corre-
spond to solutions x(t) ∈ R

n/{0}, where there exists a T > 0 for all t ∈ R≥0 such that
x(t+ T ) = x(t) (see, e. g., [Str94, p. 146]). This definition can be extended to the case of
hybrid dynamical systems of the form (4.8):

Definition 4.1. Nontrivial hybrid closed orbits correspond to complete solutions (com-
prising continuous and discrete portions) x(t) ∈ R

n/{0} of the hybrid dynamical system
H = [Σ,A,g], where there exists a T > 0 for all t ∈ R≥0 such that x(t+ T ) = x(t).

This section proves the existence and uniqueness of such a solution for the particular
hybrid system (4.8)–(4.13).

Theorem 4.1. Given is the hybrid dynamical system (4.8)–(4.13) under Assumption 4.1,
4.2, and 4.3. There exists an unique, non-constant closed orbit according to Definition 4.1.

The proof of this theorem, but also the convergence statement provided in the next
section, are based on the following two lemmas:

Lemma 4.1. The solutions x(t) of the continuous dynamics (4.11) under Assumption 4.1,
4.2, and 4.3 are such that for any initial state x0 ∈ X , the state x reaches the jump set
A.

Proof of Lemma 4.1. On the basis of Proposition 4.1 it will be shown that any solution of
(4.11) which starts with initial conditions x0 ∈ X cannot flow to somewhere else than to
the jump set A.

First, it will be shown that any solution starting with initial state x0 ∈ X1 flows to
X2. Then, it will be shown that any solution starting with initial state x0 ∈ X2 converges
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to the jump set A1 (cf. Fig. 4.4). To this end, consider possible flowing directions at a
point x ∈ X1. Since x ∈ X1 implies x1 > 0 and x2 ≥ 0, but x1 > 0 and x2 ≥ 0 only
if ẋ1 = f1(x) = x2 ≥ 0 and ẋ2 = f2(x) = − 1

M (d(x1, x2) + ∂U(x1)/∂x1) < 0—where the
latter inequality holds by virtue of Assumption 4.2 and 4.1 (i. e., d(x1, x2) ≥ 0 ⇐⇒ x2 ≥
0,∀x1 ∈ R and ∂U(x1)/∂x1 > 0 ⇐⇒ x1 > 0)—any trajectory x(t) ∈ X1 of (4.11) can
flow only in the non-negative x1-direction and in the strictly negative x2-direction (since
ẋ1 ≥ 0 and ẋ2 < 0). Additionally, according to Proposition 4.1, the origin x = 0 of the
system (4.11) is globally asymptotically stable. This implies that the distance to the origin
measured by the Hamiltonian

H(x) = T (x2) + U(x1) (4.15)

of (4.11), where T (x2) =
1
2Mx22, is non-increasing. Therefore, any solution starting with

initial conditions x0 ∈ X1 flows to X2. Then, consider all solutions starting with initial
conditions x0 ∈ X2. Since x ∈ X2 is equivalent to x2 ≤ 0, but x2 ≤ 0 only if ẋ1 =
f1(x) = x2 ≤ 0, any trajectory x(t) ∈ X2 of (4.11) can flow only in the non-positive x1-
direction. Furthermore, global asymptotic stability of the origin implies that the system
cannot remain somewhere else than at the origin itself. But for any x ∈ A1, the distance
to the origin is greater than zero, i. e., H(x ∈ A1) > H(0) = 0. Therefore, any solution
starting with initial conditions x0 ∈ X2 reaches A1, when it is approaching the origin.
Finally, it should be noted:

Remark 4.2. The hybrid dynamical system (4.8)–(4.13) possesses the central symmetries,
X3 = −X1, X4 = −X2, f(−x) = −f(x), A2 = −A1, and g(−x) = −g(x).

This is a direct consequence of Assumption 4.1, 4.2, and the symmetry of the switching
function (4.7). Therefore, the above result holds also for the continuous flow sets X3 and
X4, respectively.

As a result, any solution of the continuous dynamics (4.11) starting with initial condi-
tions x0 ∈ X reaches the jump set A. This completes the prove.

Lemma 4.1 guarantees that complete solutions of the hybrid system (4.8)–(4.13) starting
with initial conditions x0 ∈ X are continued forever. This property in combination with
Remark 4.2 allows to reduce the analysis to one-half of the oscillation cycle.

The idea of the proof of Theorem 4.1 is based on the balance of energies. A particularly
important part of the proof is based on the energy exchange during the continuous portion
of the hybrid trajectory.

Definition 4.2. Let

H(x0) = T (x0) + U(x0) = T (x(x0, t0)) + U(x(x0, t0)) , ∀x0 ∈ X0

be the Hamiltonian comprising the kinetic and potential energy of the continuous dynamics
(4.11) right after the jump, where t0 ∈ R≥0 denotes the initial time of the continuous
trajectory and let

H(x−) = T (x−) + U(x−) = T (x(x0, t1)) + U(x(x0, t1)) , ∀x− ∈ A

be the Hamiltonian at the end of the same continuous trajectory, where t1 > t0 denotes
the terminal time of the continuous trajectory (i. e., the time-instance right before the next
jump).
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Lemma 4.2. The unsigned energy µ : R≥0 → R≥0,

µ(|x0,2|) := − (H(x−)−H(x0)) = −
∫ t1

t0

Ḣ(x(t))dt =

∫ t1

t0

d(x1(t), x2(t))x2(t)dt , (4.16)

dissipated along continuous trajectories as defined by Definition 4.2 of the dynamical sys-
tem (4.9) under Assumption 4.1, 4.2, and 4.3 is a function of the initial velocity |x0,2|
which is:

(i) continuous,

(ii) strictly monotonously increasing.

Proof. The statements (i) and (ii) will be proven in the order as stated in the lemma.
In order to show continuity, it is recognized that µ can be expressed as the difference

of the Hamiltonians H(x0)−H(x−) of the continuous dynamics (4.11). The Hamiltonian
H(x) = T (x2) + U(x1) is continuous in its arguments, since T (x2) =

1
2Mx22 and U(x1) is

continuous in x2 and x1 (cf. Assumption 4.1), respectively. Therefore, H(x0) is continuous
in |x0,2|. The term H(x−) depends on the solution x− = x(x0, t1) (cf. Definition 4.2) of
the dynamical system (4.9), which in turn depends on the initial condition x0. Since due
to Assumption 4.1 and 4.2, the continuous dynamics (4.11) is continuously differentiable
in x which implies that f(x) is also locally Lipschitz continuous in x, solutions x(x0, t)
are continuous in x0 [Kha02, Theorem 3.5, p. 97]. Therefore, the function µ is continuous
in its argument |x0,2|, which proves statement (i).

Strict monotonicity of µ can be shown by comparing the energy dissipated along two
continuous trajectories x′(t) and x′′(t) with initial conditions x′

0,x
′′
0 ∈ g(A2) such that

0 ≤ x′0,2 < x′′0,2, which both evolve from the jump destination set g(A2) to the next jump
set A1, and showing that for any x′0,2 < x′′0,2,

∫ t′1

t′0

d(x′1(t), x
′
2(t))x

′
2(t)dt <

∫ t′′1

t′′0

d(x′′1(t), x
′′
2(t))x

′′
2(t)dt (4.17)

holds. In order to validate that the above inequality is satisfied, the integrands of (4.17)
could have been compared at equal time instances of the trajectories. However, since
the durations of both trajectories are in general not equal, i. e., t′1 − t′0 6= t′′1 − t′′0, it is
advantageous to eliminate the explicit time dependency of the dissipated power integral
(4.16) by the change of integration variables x2dt = dx1 (as proposed in the author’s
previous work [LAS14b]) which yields

∫ t1

t0

d(x1(t), x2(t))x2(t)dt =

∫ x⋆1

2θ̂−ǫφ

d(x1, x2(x1))dx1 +

∫ ǫφ

x⋆1

d(x1, x2(x1))dx1 . (4.18)

The first integral corresponds to the energy dissipated along the trajectory starting at the
jump destination set position 2θ̂− ǫφ and evolving to the x1-intercept denoted by x⋆1, i. e.,
evolving between the borders of the portion X1 and X2 of the continuous state space. The
second integral corresponds to the energy dissipated along the trajectory starting at x⋆1
and evolving to the next jump set position ǫφ, i. e., evolving in X2. The above separation of
integrals regarding X1 and X2 is always possible, since any trajectory starting in the jump
destination set g(A2) reaches the next jump set A1 by virtue of Lemma 4.1. Therefore, the
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change of integration variables (4.18) can be applied to the integrals of inequality (4.17)
such that (4.17) takes the form

∫ x⋆′1

2θ̂−ǫφ

d(x1, x
′
2(x1))dx1 +

∫ ǫφ

x⋆′1

d(x1, x
′
2(x1))dx1

<

∫ x⋆′′1

2θ̂−ǫφ

d(x1, x
′′
2(x1))dx1 +

∫ ǫφ

x⋆′′1

d(x1, x
′′
2(x1))dx1 , (4.19)

where x⋆′1 and x⋆′′1 represent the x1-intercepts of the images of x′(t) and x′′(t), respectively.
As shown in the continuity proof above, the dynamics (4.11) is Lipschitz continuous and
therefore solutions of (4.11) are uniquely determined by its initial conditions [Kha02,
Theorem 3.2, p. 93]. From uniqueness it follows in turn that

x⋆′1 < x⋆′′1 , (4.20)

x′2(x1) < x′′2(x1) , ∀x1 ∈ [2θ̂ − ǫφ;x
⋆′
1 ] and x ∈ X1 , (4.21)

x′′2(x1) ≥ 0 , ∀x1 ∈ [x⋆′1 ;x
⋆′′
1 ] and x ∈ X1 , (4.22)

x′′2(x1) ≤ 0 , ∀x1 ∈ [x⋆′′1 ;x⋆′1 ] and x ∈ X2 , (4.23)

x′′2(x1) < x′2(x1) , ∀x1 ∈ [x⋆′1 ; ǫφ] and x ∈ X2 . (4.24)

(Intuitively speaking, the image of x′(t) represents the ”inner half-orbit” of the image of
x′′(t).) According to (4.20), each of the integrals on the right hand side of (4.19) can be
further separated in two parts:

∫ x⋆′′1

2θ̂−ǫφ

d(x1, x
′′
2(x1))dx1 =

∫ x⋆′1

2θ̂−ǫφ

d(x1, x
′′
2(x1))dx1 +

∫ x⋆′′1

x⋆′1

d(x1, x
′′
2(x1))dx1 , (4.25)

∫ ǫφ

x⋆′′1

d(x1, x
′′
2(x1))dx1 =

∫ x⋆′1

x⋆′′1

d(x1, x
′′
2(x1))dx1 +

∫ ǫφ

x⋆′1

d(x1, x
′′
2(x1))dx1 . (4.26)

Then, since the generalized dissipative force d(x1, x2) is strictly monotonously increasing
in x2 (Assumption 4.2), the relations (4.21)–(4.24) imply that

∫ x⋆′1

2θ̂−ǫφ

d(x1, x
′
2(x1))dx1 <

∫ x⋆′1

2θ̂−ǫφ

d(x1, x
′′
2(x1))dx1 , (4.27)

∫ x⋆′′1

x⋆′1

d(x1, x
′′
2(x1))dx1 > 0 , (4.28)

∫ x⋆′1

x⋆′′1

d(x1, x
′′
2(x1))dx1 > 0 , (4.29)

∫ ǫφ

x⋆′1

d(x1, x
′
2(x1))dx1 <

∫ ǫφ

x⋆′1

d(x1, x
′′
2(x1))dx1 , (4.30)

from which taking (4.25) and (4.26) into account it follows that the assumption of (4.19)
and consequently also (4.17) is satisfied. It can be concluded that the energy dissipated
along the continuous portion of the trajectory flowing between the borders of X1 ∪ X2 is
a strictly monotonously increasing function of the initial velocity x0,2. Due to the central
symmetry of the hybrid system (4.8)–(4.13) (cf. Remark 4.2) an analogous result can be
obtained for trajectories flowing between the borders of X3∪X4. It can be concluded that
the energy dissipated along any trajectory starting in X0 and flowing to A is a strictly
monotonously increasing function of the initial velocity |x0,2|, which validates statement
(ii).
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Remark 4.3. Unboundedness of the dissipation function µ(|x0,2|) can be achieved, if the
Assumptions 4.1 and 4.2 are strengthened such that d(φ, q̇)q̇ ≥ dminq̇

2, for all φ ∈ R and
q̇(t)2 ≥ q̇(0)2 exp(−αt) for all t ≥ 0, where dmin, α > 0 are constants. That is,

∫ δ

0
d(φ, q̇)q̇dt ≥ dmin

∫ δ

0
q̇2dt ≥ dminq̇(0)

2

∫ δ

0
exp(−αt)dt = dminq̇(0)

2 1− exp(−αδ)
α

,

from which it follows that

lim
|q̇(0)|→∞

∫ δ

0
d(φ, q̇)q̇dt = ∞ , ∀δ > 0 .

Since the continuous dynamics (4.11) is locally Lipschitz, there exists a finite δ > 0 (i. e.,
the solution of (4.11) is continuous in time) such that it can be concluded that µ(|x0,2|) is
unbounded in its argument.2

Proof of Theorem 4.1. In the following, it will be shown that the hybrid system (4.8)–
(4.13) has a unique solution of which the image in the state-plane is a hybrid closed orbit.

Consider therefore the total energy exchange of half an oscillation cycle, e. g., consider
the total energy exchange of a hybrid trajectory starting in the jump set x− ∈ A2, reseting
to the jump destination set x0 ∈ g(A2) and then flowing continuously to the next jump
set x(x0, t1) ∈ A1 (cf. Fig. 4.4):

∆H = U(x0)− U(x−) + U(x(x0, t1))− U(x0) + T (x(x0, t1))− T (x0) . (4.31)

Remark 4.4. The jump set {x ∈ A |x2 6= 0} and the jump destination set {x ∈ X0 |x2 6=
0} represent both one-dimensional submanifolds of the continuous state space X ⊂ R

2

with (local) coordinate x2 ∈ R/{0} defined by the constraints x1 = −sign(x2)ǫφ and x1 =

sign(x2)(2θ̂ − ǫφ) according to Definition 2.16 of Sect. 2.4, respectively.

From the above constraints it follows that the jump sets A1,A2 and consequently the
jump destination sets g(A1),g(A2) are defined such that x1 = const. in each set, i. e.,
x ∈ A1 =⇒ x1 = ǫφ, x ∈ A2 =⇒ x1 = −ǫφ, x ∈ g(A1) =⇒ x1 = −(2θ̂ − ǫφ), and

x ∈ g(A2) =⇒ x1 = 2θ̂ − ǫφ. Accordingly, (4.31) can be expressed as

∆H = U(2θ̂ − ǫφ)− U(−ǫφ) + U(ǫφ)− U(2θ̂ − ǫφ) + T (x(x0, t1))− T (x0) , (4.32)

where the first two differences on the right-hand side are constant. The first difference
U(2θ̂ − ǫφ) − U(−ǫφ) represents exactly the energy injected by the jump and the second

difference U(ǫφ)− U(2θ̂ − ǫφ) represents the potential energy exchange of the continuous
trajectory (flowing from the initial set X0 to the jump set A). Since the hybrid system
(4.8)–(4.13) is symmetric (cf. Remark 4.2) and in particular, the potential function U is
even in its argument (cf. Assumption 4.1), it follows that

∆U := U(2θ̂ − ǫφ)− U(−ǫφ) = −
(

U(ǫφ)− U(2θ̂ − ǫφ)
)

= c , (4.33)

where c is a positive constant. This reduces the total energy exchange (4.31) to

∆H = T (x(x0, t1))− T (x0) . (4.34)

2The author would like to thank Cosimo Della Santina for discussions and ideas which lead to this
statement.
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Therefore, by virtue of Lemma 4.1 and the central symmetry (cf. Remark 4.2), the exis-
tence and uniqueness of a hybrid closed orbit can be proven, by showing that there exists
a unique initial condition x0 ∈ X0 such that ∆H = 0 or equivalently by showing that:

(∃!x0 ∈ X0) [T (x(x0, t1)) = T (x0)] . (4.35)

By substituting (4.33) in (4.32) it can be seen that condition (4.35) implies that the amount
of energy c injected by the jump has to equal the amount of energy dissipated along the
continuous portion of the trajectory, i. e.,

−
∫ t1

t0

Ḣ(t)dt =

∫ t1

t0

d(x1(t), x2(t))x2(t)dt = c , (4.36)

where Ḣ represents the derivative of the Hamiltonian H which corresponds to the contin-
uous dynamics (4.11) as introduced by (4.15). The problem of proving condition (4.35)
reduces to showing that there exists a unique initial state x0 ∈ X0 such that the amount
of energy dissipated during the continuous portion of the trajectory equals the constant
c. In particular, since according to Remark 4.4, the set X0 represents a one-dimensional
manifold in a sense that for all x ∈ X0, x1 = sign(x2)(2θ̂−ǫφ) is determined by x2, only an
initial velocity |x0,2| needs to be found. Furthermore, since from Lemma 4.2 it is known
that the dissipated energy in (4.36) is a continuous and strictly monotonously increasing3

function of the initial velocity |x2,0|, it can be concluded that for certain controller pa-

rameters θ̂ > 0 and ǫφ > 0 (satisfying Assumption 4.3) there exists a unique initial state
x0 ∈ X0 such that ∆H = 0, which validates condition (4.35).

Remark 4.5. In the limit case |x2,0| = 0, µ(0) = H(x0) − H(x(x0, t1) = c(θ̂, ǫφ) −
T (x2(x0, t1)) ≤ c(θ̂, ǫφ) = const. since T (x2(x0, t1)) > 0 for all x2 6= 0. From this it

follows that for any controller parameters θ̂ > 0 and ǫφ > 0 satisfying Assumption 4.3,
there exists an unique initial velocity |x2,0| such that condition (4.35) holds.

Therefore, it can be finally concluded that given any controller parameters θ̂ > 0 and
ǫφ > 0 satisfying Assumption 4.3, there exists an unique hybrid closed orbit for the system
(4.8)–(4.13).

Remark 4.6 (Poincaré-Bendixson theorem). The initial state xs
0 which satisfies condi-

tion (4.35) defines two closed, bounded regions R1 = {x ∈ X1 ∪ X2 |H(x) ≤ H(xs
0)} and

R2 = {x ∈ X3 ∪ X4 |H(x) ≤ H(−xs
0)} consisting of nonsingular points of the continu-

ous dynamics (4.11) such that some positive half-paths P1 and P2 of the hybrid system
(4.8)–(4.13) lie within R1 and R2, respectively. Additionally, R1 and R2 do not contain
equilibrium points. If the bounded regions R1 and R2 were ”connected” such that the posi-
tive half-paths P1 and P2 can be considered as a single, positive half-path P, then P is itself
a closed phase path according to the Poincaré-Bendixson theorem [JS07, Theorem 11.1,
p. 383].

Due to this remark, the above result may be regarded as an extension of the well-known
Poincaré-Bendixson theorem for continuous planar dynamics to the case of reset-induced,
hybrid dynamical systems.
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Figure 4.5.: Periodic orbit of the hybrid dynamical system (4.8)–(4.13).

4.7. Hybrid limit cycles

This section derives a stability statement for the hybrid dynamical system (4.8)–(4.13).
Consider the hybrid closed orbit represented by the set

L = {x(x0, t) ∈ X | t ∈ R≥0,H(x0)−H(x−) = c,x0 ∈ X0,x− ∈ A} , (4.37)

where H(x0) and H(x−) denote the Hamiltonian right after the jump and right before the
next reset, respectively (cf. Definition 4.2). An example of (4.37) is shown in Fig. 4.5. The
existence and uniqueness of L is implied by Theorem 4.1. In the following, the convergence
properties of the system (4.8)–(4.13) w. r. t. L will be analyzed.

Convergence w. r. t. L is a set convergence problem, which cannot be directly treated
by the concept of Lyapunov stability for equilibrium points. In contrast to asymptotic
stability w. r. t. a point, it needs to be shown that the image of any trajectory (of the system
(4.8)–(4.13)) converges to the set L. A convergence statement for trajectories is given
by the so-called contraction analysis introduced by Lohmiller and Slotine [LS98]. The
convergence statement of the following theorem builds upon the idea of contraction analysis
by extending its concepts to the case of hybrid trajectories, where the corresponding
continuous Euler-Lagrange dynamics are planar4. The main differences of classical and
”hybrid” contraction analysis and the definition of the latter are provided in advance of
the theorem.

Remark 4.7. Classical contraction analysis considers a virtual displacement of neigh-
boring trajectories5, i. e., it considers the infinitesimal difference of trajectories measured
at fixed time. Contraction is concluded in the region, where the squared length of the

3The idea of monotonicity of the dissipated energy has also been recognized in [BFDLZ16].
4By planar it is meant that the dynamics consist of two states, i. e., x ∈ R

2

5Trajectories are neighboring if their images are contained in a contraction region, which is usually defined
by an open ball [LS98].
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4.7. Hybrid limit cycles

virtual displacement is strictly decreasing [LS98]. Since the continuous portions of hy-
brid trajectories are in general not of equal duration, a comparison at fixed time would
fail. Therefore, the proposed ”hybrid” contraction analysis considers as displacement the
distance of neighboring trajectories measured at fixed position x1.

This motivates the following definition of hybrid contraction for planar Hamiltonian
dynamics which implies convergence:

Definition 4.3. Let the jump destination set X0 ⊂ X and the jump set A ⊂ X be one-
dimensional submanifolds of the continuous state space X defined such that x ∈ X0 ⇐⇒
x1 = const. for all sign(x2) = const. and x ∈ A ⇐⇒ x1 = const. for all sign(x2) = const.
hold, respectively. Let x′(t) ∈ X and x′′(t) ∈ X be neighboring trajectories (i. e., the
images of both trajectories are contained either in X1 ∪ X2 or X3 ∪ X4) of the same con-
tinuous dynamics with Hamiltonian H(x) which evolve from x′(x′

0, t
′
0),x

′′(x′′
0, t

′′
0) ∈ X0

to x′(x′
0, t

′
1),x

′′(x′′
0 , t

′′
1) ∈ A. Let the signed distance of x′′(t) w. r. t. x′(t) in the jump

destination set X0 and in the next jump set A be measured by the difference of correspond-
ing Hamiltonians ∆H+ = H(x′′

0) − H(x′
0) and ∆H− = H(x′′(x′′

0 , t
′′
1)) − H(x′(x′

0, t
′
1)),

respectively. Then, the trajectories are said to be contracting if for any initial velocity
x′0,2 6= x′′0,2

|∆H−| < |∆H+| (4.38)

holds.

Theorem 4.2. The image of any trajectory of the hybrid dynamical system (4.8)–(4.13)
under Assumption 4.1 and 4.2 starting with initial condition x0 ∈ X will contract w. r. t.
the hybrid closed orbit L defined by (4.37), according to Definition 4.3 and thus converge
to L.

Proof. In order to show that the images of all trajectories of the complete system (4.8)–
(4.13) starting with initial state x0 ∈ X0 converge to L, it will be shown that the images
of their continuous portions converge to L.

Lemma 4.1 implies that any trajectory starting with initial state in the continuous
state space, i. e., x0 ∈ X , reaches the jump set A such that the complete solution of the
hybrid system (4.8)–(4.13) is continued forever. Therefore, it can be assumed without
loss of generality that all continuous trajectories start in the jump destination set X0, i. e.,
x(x0, t0) = x0 ∈ X0, and end in the next jump set A, i. e., x(x0, t1) ∈ A, where t1 > t0 ≥ 0
are defined as in Definition 4.2. The above problem reduces to showing that the images of
these trajectories converge to L as the system evolves from X0 to A and therefore enables
considering the convergence argument introduced by Definition 4.3.

Consider the trajectory corresponding to the hybrid closed orbit xn(t) ∈ L as nominal
trajectory. Consider further two neighboring trajectories x(t) ∈ X and x(t) ∈ X for which
|x0,2| < |xn0,2| and |x0,2| > |xn0,2| hold, respectively. (Intuitively speaking, the images of
x(t) and x(t) correspond to the ”inner” and ”outer” paths of L, respectively.) In the
following, each of the neighboring trajectories x(t) and x(t) are compared to the nominal
trajectory xn(t) by testing condition (4.38) of Definition 4.3, separately.

Let ∆H+ = H(x0) − H(xn
0) and ∆H− = H(x(x0, t1)) − H(xn(xn

0 , t
n
1)) represent the

signed distance of x(t) w. r. t. xn(t) in the jump destination set X0 and in the next jump set
A, respectively (cf. Definition 4.3). Since x0 ∈ X0 ⇐⇒ x0,1 = const. for all sign(x0,2) =
const. and x ∈ A ⇐⇒ x1 = const. for all sign(x2) = const., U(x0) = U(xn

0) and

79



4. Limit Cycle Control

U(x(x0, t1)) = U(xn(xn
0 , t

n
1)) hold for the potential energy. Since |x0,2| < |xn0,2| and due

to uniqueness of solutions of continuous dynamics, T (x0) < T (xn
0) and T (x(x0, t1)) <

T (xn(xn
0 , t

n
1)) hold for the kinetic energy. This implies that ∆H+ < 0 and ∆H− < 0.

Therefore, in this case, the condition for contraction (4.38) of Definition 4.3, |∆H−| <
|∆H+|, takes the form:

∆H+ < ∆H−

H(x0)−H(xn
0) < H(x(x0, t1))−H(xn(xn

0 , t
n
1))

H(x0)−H(x(x0, t1)) < H(xn
0)−H(xn(xn

0 , t
n
1))

−
∫ t1

t0

Ḣ(x(t))dt < −
∫ tn1

tn0

Ḣ(xn(t))dt . (4.39)

The last inequality represents the relation of the amount of energy dissipated along the
continuous trajectories x(t) and xn(t), where |x0,2| < |xn0,2| holds. Since from Lemma 4.2 it
is known that the energy dissipated along the continuous trajectories of the system (4.8)–
(4.13) (evolving from X0 to A) is a strictly monotonously increasing function of the initial
velocity |x0,2|, inequality (4.39) holds true. It can be concluded that the trajectories x(t)
and xn(t) satisfy condition (4.38) and are therefore contracting according to Definition 4.3.

Let ∆H+ = H(x0) − H(xn
0) and ∆H− = H(x(x0, t1)) − H(xn(xn

0 , t
n
1)) represent the

signed distance of x(t) w. r. t. xn(t) in the jump destination set X0 and in the next jump
set A, respectively (cf. Definition 4.3). Since also in this case x0 ∈ X0 ⇐⇒ x0,1 = const.
for all sign(x0,2) = const. and x ∈ A ⇐⇒ x1 = const. for all sign(x2) = const., U(x0) =
U(xn

0) and U(x(x0, t1)) = U(xn(xn
0 , t

n
1)) hold for the potential energy. Since |x0,2| >

|xn0,2| and due to uniqueness of solutions of continuous dynamics, T (x0) > T (xn
0) and

T (x(x0, t1)) > T (xn(xn
0 , t

n
1)) hold for the kinetic energy. This implies that ∆H+ > 0 and

∆H− > 0. Therefore, in this case, the condition for contraction (4.38) of Definition 4.3,
|∆H−| < |∆H+|, takes the form:

∆H+ > ∆H−

H(x0)−H(xn
0) > H(x(x0, t1))−H(xn(xn

0 , t
n
1))

H(xn(xn
0 , t

n
1))−H(xn

0) > H(x(x0, t1))−H(x0)

−
∫ tn1

tn0

Ḣ(xn(t))dt < −
∫ t1

t0

Ḣ(x(t))dt . (4.40)

The last inequality represents the relation of the amount of energy dissipated along the
continuous trajectories x(t) and xn(t), where |x0,2| > |xn0,2| holds. Due to the strict
monotonicity of the dissipated energy (cf. Lemma 4.2) also (4.40) holds true. It can be
concluded that the trajectories x(t) and xn(t) satisfy condition (4.38) and are therefore
contracting according to Definition 4.3.

The above considered cases imply that the initial velocity |x0,2| 6= |xn0,2| is arbitrary.
As a result it can be concluded that the image of any neighboring trajectory x(t) of the
hybrid system (4.8)–(4.13) converges to the hybrid closed orbit L.

Remark 4.8. Since the images of complete neighboring trajectories which converge to the
hybrid closed orbit, are not closed, the hybrid closed orbit itself is the only isolated path of
the system. Therefore, according to the definition of [Str94, Chapt. 7, pp. 196], the hybrid
closed orbit is said to be a limit cycle. Since the image of any neighboring trajectory of the
hybrid dynamical system (4.8)–(4.13) spirals into the hybrid closed orbit, the limit cycle is
said to be globally attractive.
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4.8. Summary

4.8. Summary

This chapter proposes a switching based control principle (4.7) which generates an unique
and globally attractive limit cycle in planar, compliantly actuated mechanical systems of
the form (4.1). The controller is solely based on measurements of the state at position level,
i. e., it requires only the value of the deflection of the elastic element and no differentiation
of measured signals, and it requires no parameter-knowledge of a model of the plant to
compute the feedback. Since additionally the control principle is such that it switches
based on a non-zero threshold value, the controller is robust against sensor-noise and
ideally robust against model-parameter uncertainties. This is in contrast to limit cycle
controller based on the Van der Pol oscillator, which need to feedback the full state of the
plant, and require at least the model-knowledge of the dissipative and elastic element to
compute the controller output.

The argumentation in the proof of Theorem 4.1 reveals that the proposed controller
solely inputs energy into the compliantly actuated system. In particular, the amount of
energy inputed by the controller equals exactly the amount of energy dissipated along
the trajectory of the limit cycle. Assuming that the energy transfer from the actuator to
the elastic element is associated with substantial losses in both directions (i. e., when the
actuator performs work on the elastic element and vice versa), which is the case when, e. g.,
gear boxes are present, then, the control principle is energy efficient in a sense that it injects
the minimum amount of energy into the plant which is required to sustain the limit cycle.
This stands in marked contrast to implementations based on the Van der Pol oscillator,
where the actuator performs either positive or negative work on the elasticity depending
on whether the state of the system is inside or outside of the limit cycle, respectively. A
particularly interesting feature of the proposed controller is given by the fact that under
certain switching parameter assumption, the resulting control maximizes the energy of the
limit cycle for given constant energy input. This can be validated by following a similar
argumentation as for the optimal control results of [ÖH13] or the analysis in [SLOAS17].

It can be concluded that from a point of view of robustness and energy efficiency, the
proposed switching based limit cycle control represents an advantageous alternative to
controller implementations based on the Van der Pol oscillator principle.

A further contribution of this chapter is given by the stability analysis of which the main
results are summarized in Theorem 4.1 and 4.2. A main difference of the existence and
convergence statements of these theorems compared to ordinary analysis tools as given,
e. g., by Lyapunov’s stability methods for equilibrium points, results from the property
of the closed-loop dynamics (4.1), (4.7) to be a hybrid dynamical system. Thereby, the
proof of existence of a unique hybrid closed orbit and the corresponding convergence
statement may be regarded as extensions of the well-known Poincaré-Bendixson theorem
and Lohmiller’s and Slotine’s contraction analysis [LS98] to hybrid settings. As such, from
the author’s point of view, the hybrid stability analysis represents a valuable contribution
to the theory of nonlinear systems for itself.
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CHAPTER 5

Oscilioulation Modes

The natural or free motion of a mechanical system is the time evolution of configurations,
which occurs, when the system state is displaced from its equilibrium. If the mechanical
system is conservative, and if its Lagrangian comprises kinetic as well as potential energy,
then the natural motions can be oscillatory. The probably simplest example of such a
system, which displays natural oscillatory motions, is given by the mass-spring system.
Its natural motions are even periodic, i. e., the same set of configurations (mass positions)
is retraced repeatedly. Therefore, the image of the trajectory in the phase-space is (home-
omorphic to) a circle (Fig. 5.1a). By adding a damper in parallel to the spring, natural
motions of the resulting mass-spring-damper system can be still oscillatory but not peri-
odic. That is, solely subsets of configurations are retraced repeatedly, and the image of the
trajectory in the phase-space spirals to the origin (Fig. 5.1b). It can be easily verified that
in case of periodic motions, the two-dimensional (2-D) state on the orbit is determined by
a single parameter, e. g., the inscribed angle. In contrast, to describe the 2-D state of a
general oscillation (with varying amplitude), two parameters are required, e. g., polar an-
gle and radius, although the corresponding second-order differential equation is scalar too.
The importance of this distinction becomes evident when turning to multi-dimensional,
natural oscillatory motions, as can be displayed by the compliantly actuated multibody
systems of interest, where the actuators are hold at constant positions. Periodic motions of
such a multi-degrees-of-freedom (DOF) system are still governed by a single second-order
equation, since the complete state evolves on a 1-D circle, which can be parametrized by a
single parameter. This circle is embedded in a 2-D surface, i. e., a 2-D submanifold of the
state space (Fig. 5.1c). Now generalizing the definition of general oscillatory motions from
the scalar to the multi-dimensional case reveals, that the system configuration evolves
on a 1-D curve, i. e., a 1-D submanifold of the configuration space. Since for general
oscillatory motions, the amplitude of the oscillation on this curve is allowed to vary, an
additional condition is required to determine the complete state by a single parameter.
This condition is given by the differentiability of the 1-D submanifold (cf. tangent-vectors
in Fig. 5.1d), which provides the directional relation between configuration and velocity
such that the oscillatory motion can be described by a single, scalar, second-order equa-
tion. In summary, periodic motions can be described on 2-D submanifolds of the state
space or under certain conditions (Theorem 5.3) on 1-D, differentiable submanifolds of
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Figure 5.1.: Definition of oscillatory and periodic motions on modal manifolds.

the configuration space, while general oscillatory motions require the latter. Thus, the
goal of analyzing and exploiting the natural oscillatory behavior of compliantly actuated
multibody systems, motivates the introduction of the concept of oscillation modes, which
are said to be invariant, 1-D, differentiable submanifolds of the configuration space.

In the literature [Ros66], [Ran71], [Ran74], [CVS90], [SP93], the problems of natural os-
cillatory and periodic motions are both treated by the concept of so-called normal modes.
This reduction of dynamics originates in the analysis of periodic solutions of nonlinear but
conservative mass-spring systems [Ros66], [Ran71], [Ran74], [CVS90]. The corresponding
dynamics takes only velocity independent forces into account, i. e., the mass matrix is
constant and no dissipative forces are present. Therefore, corresponding periodic solu-
tions (if they exist) can be parametrized by 1-manifolds. Although [Ran74] and [CVS90]
present explicit parameterizations for two-DOF systems of constant inertia but nonlinear
and coupled springs, the dynamics of nonlinear, elastic multibody systems has not been
considered so far. The general definition of normal modes [SP93] parametrizes the motion
in terms of a single coordinate-velocity pair (2-manifold). As such, this definition contains
also the case, where, e. g., Coriolis/centrifugal terms appear. However, the procedure pro-
posed in [SP93] involves solutions of nonlinear, coupled partial differential equations, of
which obtaining explicit solutions is even more difficult than solving the original dynamics
itself. Therefore, existing approaches focus on the approximation of normal modes, mainly
for continuous mechanical systems such as in [SP94], [BPS95], [PPS02], which are rather
circumstantial for the multibody problem at hand.

The goal of this chapter is to parameterize the natural, oscillatory motions of nonlinear,
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elastic multibody systems by an 1-D submanifold of the configuration space for subclasses
of systems which allow such parameterizations. In Sect. 5.1 a definition of such oscillation
modes is derived, by first revisiting the well-known concept of eigenmodes for linear sys-
tems based upon its differential geometric implications (Sect. 5.1.1) and then transferring
the gained insights to the nonlinear domain. This results in the notion of eigenmodes of
nonlinear dynamics as proposed in Sect. 5.1.2 [LFAS17]. Although the concept of so-called
modal lines has already been recognized in [CVS90], the definition of eigenmodes at hand
is more general, since it allows to take dynamics into account, which contains configura-
tion dependent inertias and damping forces. A general definition of nonlinear oscillation
modes is proposed in Sect. 5.1.3. In comparison to normal modes [SP93], this definition
seems to be restrictive, since it considers only motions which can be parameterized by 1-D,
differentiable submanifold of the configuration space, rather than by 2-D submanifolds of
the state space. However, as discussed above, this restriction becomes necessary as soon
as general oscillations, e. g., with decaying amplitudes are considered. Sect. 5.2 proposes
a methodology to embody desired eigenmodes, e. g., corresponding to a task, in the non-
linear dynamics of elastic multibody systems, by design. Thereby, the approach yields a
practically relevant and realizable example, which serves as “ground truth” to investigate
and classify periodic orbits as provided in Sect. 5.3 [LPAS14].

5.1. Definition

The following definitions of oscillation modes are concerned with natural dynamics, i. e.,
the behavior of compliantly actuated mechanical systems as introduced in Sect. 3.1.1,
where their directly actuated degrees of freedom are hold at constant positions. Consider
therefore the dynamics

M(q)q̈ + b(q, q̇) = −∂U(q)

∂q

T

(5.1)

which corresponds to the PD controlled, compliantly actuated system (3.50) under the sin-
gular perturbation assumption of Sect. 3.2.3. The solely formal differences of (5.1) w. r. t.
(3.50) are: θdes of (3.50) is chosen to be constant such that according to Definition 3.4 of
Sect. 3.1.1,

∂U(q)

∂q

∣
∣
∣
∣
q=q̄0(θdes)

= 0 , (5.2)

and the generalized Coriolis/centrifugal and damping forces are summarized in the bias
term

b(q, q̇) = C(q, q̇)q̇ + d(q, q̇) , (5.3)

where the dependency on θdes is omitted, since desired actuator positions θdes are con-
stants.

5.1.1. Eigenmodes of linear dynamics

The concept of eigenmodes of linear dynamics is well-known from linear oscillation and
control theory. However, its physical and geometrical interpretation provides insights
about the notion of oscillation modes in the nonlinear case.
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To this end, consider the linearization of the dynamics (5.1)

M(q0)∆q̈ = −K(q0)∆q (5.4)

at the equilibrium position q0 = q̄0(θdes) as defined by (5.2). The Hessian of the potential
energy

K(q0) =
∂2U(q)

∂q2

∣
∣
∣
∣
q=q0

(5.5)

is referred to as the stiffness at the equilibrium position q0, and the bias terms (5.3) are
neglected in the first instance. The relevance of velocity dependent forces for eigenmodes
will be discussed later.

To solve the system of linear, second-order differential equations (5.4), the complex
(harmonic) ansatz ∆q(t) = wẑ exp(ωt) with amplitude ẑ and frequency ω gives rise to
the generalized eigenvalue problem

λM(q0)w = K(q0)w (5.6)

s.t. ‖w‖2 = 1 . (5.7)

Herein, the eigenvalue λ = ω2 represents the squared eigenfrequency of the oscillation
corresponding to the eigenvector w. Due to the normalization (5.7), where ‖w‖2 represents
the squared length of w measured w. r. t. to a certain metric S (cf. Definition 2.6 and 2.7
of Sect. 2.2.2), the eigenvector w determines only the direction of oscillation. In general,
the generalized eigenvalue problem (5.6), (5.7) possesses n distinct solutions {λi,wi} for
i = 1 . . . n, each comprising a (squared) oscillation frequency and direction, which are
referred to as the eigenmodes of the linear dynamics (5.4).

The generalized eigenvalue equations (5.6) can be interpreted according to Newton’s
third law as balance of inertial and elastic forces, λMwz and Kwz, respectively: Any
displacement z ∈ R in the direction of an eigenvector w, ∆q = wz, leads to an elastic
force which causes an acceleration of the system in same direction as the displacement, i. e.,
∆q̈ = −λ∆q = −M−1K∆q. In particular, the resulting acceleration ∆q̈ is proportional
to the displacement ∆q, where the constant of proportionality is λ. As such, any solution
of the linear dynamics (5.4) starting with an initial displacement in the direction of w,
∆q(0) = wz(0), evolves strictly along w, since the system accelerates exclusively along
w.

A sufficient condition for the existence of eigenmodes of linear dynamics (5.4) follows
from the following lemma taken from [HJ85, Theorem 7.6.6, p. 466]:

Lemma 5.1. Given a n×n, positive definite matrix A and a n×n symmetric matrix B,
then there exists a nonsingular matrix W such that the matrices W TAW and W TBW

are both diagonal.

By letting A , M and B , K, this lemma implies that there exists n indepen-
dent eigenvectors W = [w1 . . .wn] and corresponding eigenvalues λ1 . . . λn satisfying the
generalized eigenvalue equations (5.6), since M is positive definite by definition (cf. Re-
mark 2.2 of Sect. 2.2.2) and K is symmetric according to Schwarz’s theorem on mixed
partial derivatives.

Consider now also the linearization of the generalized velocity dependent bias terms
(5.3),

D(q0)∆q̇ =
∂d(q, q̇)

∂q̇

∣
∣
∣
∣
q=q0,q̇=0

∆q̇ , (5.8)

86



5.1. Definition

in the linear dynamics (5.4), which yields

M(q0)∆q̈ = −K(q0)∆q −D(q0)∆q̇ . (5.9)

Then, for certain matrices D(q0), any displacement z ∈ R and any velocity ż ∈ R in
the direction of an eigenvector w (of (5.6)), ∆q = wz and ∆q̇ = wż, respectively, cause
an acceleration of the system in equal direction as the displacement and velocity, i. e.,
∆q̈ = wz̈ = −M−1 (K∆q +D∆q̇) = −M−1 (Kwz +Dwż), where z̈ ∈ R represents
the acceleration amplitude. Therefore, any solution of the linear damped dynamics (5.9)
starting with initial states in the direction of w, ∆q(0) = wz(0) and ∆q̇(0) = wż(0),
evolves strictly along w, since the system accelerates exclusively along w.

A sufficient condition regarding the structure of the matrix D is a direct consequence
of Lemma 5.1:

Corollary 5.1. Given the matrices of Lemma 5.1 and a n× n matrix D, then W TDW

is a diagonal matrix if D = c1A+ c2B, is a linear combination of A and B.

Proof. The proof follows directly from Lemma 5.1, i. e.,

W TDW = W T (c1A+ c2B)W = c1W
TAW + c2W

TBW .

The above interpretation reveals that eigenmodes of linear dynamics (5.9) are solutions
which evolve on an 1-D submanifold of the n-dimensional configuration space. Thereby,
Lemma 5.1 and Corollary 5.1 provides sufficient conditions for their existence.

Remark 5.1. The linear dynamics of the form (5.9) features n eigenmodes, if there exists
a nonsingular n×n matrix W such that the i-th scalar differential equation of (5.9) under
the change of coordinates z = W−1∆q,

z̈i = hi(zi, żi) , (5.10)

where

h(z, ż) = −
(
W TMW

)−1 (
W TKWz +W TDWż

)
, (5.11)

depends exclusively on zi and żi for each i = 1 . . . n.

Although, the concept of eigenmodes of linear dynamics is well-known from linear os-
cillation and control theory, its geometrical interpretation provides substantial insights
relevant for the definition of oscillation modes in the nonlinear case.

5.1.2. Eigenmodes of nonlinear dynamics

The geometrical interpretation of the generalized eigenvalue problem provided in the pre-
vious section allows to contribute a novel, intuitive extension of the concept of eigenmodes
for general nonlinear dynamics of the form (5.1). In the following definition, the configu-
ration manifold is assumed to be Euclidean space (i. e., q ∈ R

n with identity metric).
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Definition 5.1. Let q0 be the equilibrium configuration of the system (5.1) and let w

be the components of a constant vector of Euclidean space (i. e., w ∈ R
n). Let further

∆q = q−q0 = wz and q̇ = wż be a displacement and a generalized velocity of amplitudes
z ∈ R and ż ∈ R along w, respectively. Then, w = const. is an eigenvector of the nonlinear
dynamics (5.1), if for any z ∈ R and ż ∈ R there exists a scalar z̈ = z̈(z, ż) ∈ R (which
represents the amplitude of acceleration along w, i. e., q̈ = wz̈) such that

M(q0 +wz)wz̈ = −b(q0 +wz,wż)− ∂U(q)

∂q

∣
∣
∣
∣

T

q=q0+wz

(5.12)

is satisfied.

An eigenvector w according to Definition 5.1 together with a metric S such that ‖w‖2 =
1 (cf. Definition 2.7 of Sect. 2.2.2) defines a linear transformation of the form ∆q =
q− q0 = wz and q̇ = wż, where z ∈ R and ż ∈ R are referred to as modal coordinate and
velocity, respectively. The set of all motions of the nonlinear dynamics (5.1), which can be
parameterized by z and ż, exclusively, is referred to as an eigenmode of (5.1). By recalling
the concept of invariant sets for dynamical systems (e. g., known from Lyapunov’s stability
theory [SL91, Definition 3.9, p. 68], a condition for the existence of eigenmodes can be
formulated as follows.

Theorem 5.1. Let (q, q̇) ∈ (⊆ R
n)×R

n be the state of the nonlinear dynamics (5.1) with
equilibrium position q0 and let w ∈ R

n be a constant vector. Let further W̄ = ker
(
wT
)

be a n× (n− 1) matrix of rank n− 1 such that W̄
T
w = 0. If w satisfies condition (5.12)

of Definition 5.1, then, the tangent bundle T W of the subset of configurations

W :=
{

q ∈⊆ R
n |W̄ T

(q − q0) = 0
}

(5.13)

represents an invariant set of the nonlinear dynamics (5.1). (The subset W is referred to
as an eigenmode of (5.1)).

Note that since the constraints at velocity level are related to the constraints at position
level by differentiation w. r. t. to the independent variable of time, eigenmodes represent
1-D, differentiable submanifolds of the configuration space ⊆ R

n.

Proof. Consider the dynamics (5.1) with equilibrium position q0. Assume that the system
starts at an initial position q(0) = q0 +wz(0) at rest, i. e., q̇(0) = 0. The initial displace-
ment wz(0) w. r. t. the equilibrium position q0 causes a potential force which implies an
acceleration

q̈ = −M(q0 +wz(0))−1 ∂U(q)

∂q

∣
∣
∣
∣

T

q=q0+wz(0)

according to (5.1). Since w is an eigenvector of (5.1), condition (5.12) of Definition 5.1
implies an initial acceleration along w, i. e., q̈ = wz̈(0) such that the state of the system
evolves along w, i. e., q(t) = q0 + wz(t) and q̇(t) = wż(t). Since for any displacement
q(t)−q0 = wz(t) and for any velocity q̇(t) = wż(t) condition (5.12) implies an acceleration
along w, i. e., q̈(t) = wz̈(t) for all t > 0, all solutions of the dynamics (5.1) starting with
initial conditions q(0) = q0+wz(0) and q̇(0) = 0 are such that the state (q, q̇) remains in
the set T W defined by (5.13) for all future time t > 0. By virtue of condition (5.12), this
result holds also in case of nonzero initial velocities q̇(0) = wż(0) 6= 0. Therefore, it can
be concluded that the set T W (defined by the eigenmode W of the nonlinear dynamics
(5.1)) is an invariant set of the dynamical system (5.1).
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The n−1 holonomic, linear constraints W̄
T
(q − q0) = 0 in (5.13) define a 1-D submani-

fold of the configuration space R
n (cf. Definition 2.16 of Sect. 2.4). Thereby, this 1-manifold

defines together with its tangent spaces a 2-D invariant set of states corresponding to the
nonlinear dynamics (5.1). As will be justified immediately, it is not necessary that the
n− 1 constraints, defining such an invariant 1-manifold, are linear. In general, the n − 1
constraints, defining the 2-D, invariant subset TW of (⊆ R

n)×R
n can be nonlinear, which

leads to the concept of general oscillation modes.

5.1.3. A general definition

The idea of general oscillation modes can already be explained by the concept of eigen-
vectors of nonlinear dynamics as proposed above:

Consider n linearly independent vectors wi for i = 1 . . . n such that the matrix W =
[w1 . . .wn] is nonsingular. Suppose that the j-th column of W for j ∈ {1, . . . , n}, wj is
an eigenvector of the nonlinear dynamics (5.1) according to Definition 5.1. The matrix
W defines a linear coordinate transformation of the form q − q0 = Wz such that the
dynamics (5.1) under this change of coordinates can be expressed as

z̈ = h(z, ż) = −
[
W TM(z)W

]−1

[

W Tb(z, ż) +
∂U(z)

∂z

T
]

. (5.14)

Since wj is an eigenvector of the dynamics (5.1), Theorem 5.1 implies that the tangent
bundle T Wj of the subset of configurations

Wj =
{

q ∈ R
n |w†

i (q − q0) = 0,∀i ∈ {1 . . . n}/{j}
}

(5.15)

where






w
†
1
...

w
†
n




 :=

[
w1 . . . wn

]−1
,

is an invariant set of (5.1), which can be completely parameterized by the modal coordinate
and velocity, zj ∈ R and żj ∈ R, respectively. The property that zj and żj parametrizes
all coordinates and velocities in the invariant set T Wj, respectively, implies in turn that
if zi = żi = 0 for all i ∈ {1 . . . n}/{j}, then,

z̈i = hi(z, ż) = 0

for all i ∈ {1 . . . n}/{j} and for all zj , żj ∈ R, and obviously, the dynamics in T Wj

z̈j = hj(zj , żj)

depends exclusively on the corresponding modal coordinate and velocity, zj and żj , re-
spectively.

It is worth mentioning that in case zi 6= 0 and żi 6= 0, the modal acceleration z̈j depends
in general on the complete state (z, ż), i. e., z̈j = hj(z, ż). This stands in marked contrast
to eigenmodes of linear dynamics as investigated in Sect. 5.1.1, where the dynamics of
each eigenmode is completely decoupled in a sense that the acceleration of each mode
depends only on its own state, independently of whether the system state evolves in the
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corresponding invariant set or not. The linear constraints defining invariant sets T Wj to
be regular planes of (⊆ R

n)× R
n make the concept of eigenmodes, although of nonlinear

dynamics, still a particular case, since the images of trajectories of nonlinear dynamics are
in general also nonlinear. Note further that the configuration space needs not to be the
Euclidean space ⊆ R

n. These considerations motivate a more general concept of oscillation
modes:

Definition 5.2. Consider the system of second-order dynamics

q̈ = g(q, q̇) (5.16)

with (local) configuration coordinates q ∈⊆ R
n, velocities q̇ ∈ R

n, respectively, and a
unique equilibrium point at the origin such that g(q, q̇) = 0 ⇐⇒ q = q̇ = 0. Let

z = z(q) ∈⊆ R
n (5.17)

be a diffeomorphism such that the inverse J(q)−1 of the Jacobian matrix J(q) = ∂z(q)/∂q
keeps bounded from above, i. e., supq∈⊆Rn

∥
∥J(q)−1

∥
∥ < ∞. If the dynamics (5.16) under

the change of coordinates,

z̈ = h(z, ż) = J(z)−1g(z, ż) (5.18)

features the property that there exists an j ∈ {1, . . . , n} and constants ci such that if zi = ci
and żi = 0,

hi(z, ż) = 0 , (5.19)

for all i ∈ {1, . . . , n}/{j} and for all zj ∈⊆ R żj ∈ R, then the following holds true:
The 1-D, differentiable submanifold of the configuration space with local coordinates

q ∈⊆ R
n,

Zj := {q ∈ (⊆ R
n) | zi(q)− ci = 0,∀i ∈ {1, . . . , n}/{j}} , (5.20)

defines a 2-D, invariant subset T Zj of the state space (⊆ R
n)×R

n, which is said to be an
oscillation mode of the nonlinear dynamics (5.16).

By applying this definition to the dynamics of the compliantly actuated system at hand
(5.1), particular insights regarding the structure of the change of coordinates (5.17) can
be gained:

Theorem 5.2. Consider the dynamics (5.1) under the change of coordinates (5.17):

z̈ = h(z, ż) = −M̄(z)−1

[

b̄(z, ż) +
∂U(z)

∂z

T
]

, (5.21)

where M̄(z) = J(q)−TM (q)J(q)−1, b̄(z, ż) = J(q)−T
[

b(q, q̇)−M(q)J(q)−1J̇(q)q̇
]

,

and ∂U(z)/∂z = (∂U(q(z))/∂q)∂q(z)/∂z.1 Then, this dynamics satisfies condition
(5.19) of Definition 5.2, if for all

(z, ż) ∈ T Z̄j := {(z, ż) ∈ (⊆ R
n)Rn | zi = ci, żi = 0,∀i ∈ {1, . . . , n}/{j}} ,

all the following statements are true:

1Since z(q) is a diffeomorphism, q and q̇, or z and ż can be considered as equivalent representations of
the dependencies, respectively.
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1. Let M̄ij be the component in the i-th row and j-th column of the matrix M̄ , then,
M̄ij = 0 for all i ∈ {1, . . . , n}/{j}.

2. Let b̄i be the i-th component of the co-vector b̄, then, b̄i = 0 for all i ∈ {1, . . . , n}/{j}.

3. Let ∂U/∂zi be the i-th component of the co-vector ∂U/∂z, then, ∂U/∂zi = 0 for all
i ∈ {1, . . . , n}/{j}.

Proof. In the following, sufficiency of the statements 1–3 will be proven. Moreover, argu-
ments for their necessity will be discussed. Since the theorem hypothesizes only sufficiency,
the latter should be regarded merely as a conjecture. In the following argumentation, the
index set I := {1, . . . , n}/{j} will be used extensively.

Consider the terms h1 = M̄
−1

b̄ and h2 = M̄
−1

(∂U/∂z)T . The term h1(z, ż) depends
on z and ż, and the term h2(z) depends solely on z. Since both terms appear as sum
in (5.21), but Zj is a differentiable 1-manifold, condition (5.19) is satisfied if and only if
h1i = 0 and h2i = 0 for all i ∈ I, independently.

Suppose that statement 2 and 3 are true and assume further that b̄j 6= 0 and ∂U/∂zj 6= 0
(which are valid assumptions for (z, ż) ∈ T Z̄j). Then, statement 1 is sufficient, if h1i = 0
and h2i = 0 for all i ∈ I. This can be shown by direct calculations, i. e., h1k = M̄−1

kl b̄l = 0,
since b̄l = 0 for all l ∈ I and M̄−1

kl = 0 for l = j and for all k ∈ I by virtue of statement 1
to be true. The proof for h2i works analogously by replacing above b̄l by ∂U/∂zl. Necessity
can be shown by contradiction: suppose that h1r = 0 for b̄j 6= 0 (which is a valid assumption
for (z, ż) ∈ T Z̄j). Suppose further that for an arbitrary r ∈ I, M̄−1

rj 6= 0. Then, M̄−1
rj 6= 0

and b̄j 6= 0 is equivalent to h1r = M̄−1
rl b̄l 6= 0, which contradicts the original assumption.

Since r ∈ I is arbitrary, the above assumption leads to a contradiction for any r ∈ I.
Furthermore, it is recognized that M̄kk > 0 for all k = 1 . . . n, which results from the fact
that M(q) is positive definite and z(q) is a diffeomorphism. Therefore, by hypothesis of
statement 2 and 3 to be true, h1i = 0 and h2i = 0 are satisfied for all i ∈ I if and only
if statement 1 is true. This proofs also sufficiency of statement 2 and 3. It remains to
show that for h1i = 0 and h2i = 0 for all i ∈ I, it is necessary that statement 1, 2, and 3
simultaneously hold true. To this end, consider the case where statement 1 is not satisfied,
i. e., there exists an r ∈ I for which M̄−1

rj 6= 0. Suppose further that b̄r 6= 0. Note that

since b̄ is bilinear in ż, b̄r 6= 0 implies that b̄r depends on żj which is assumed to be non-
zero and varying (for (z, ż) ∈ T Z̄j). A necessary condition for hr = h1r + h2r = 0 is that
M̄−1
rj b̄j+M̄

−1
rr b̄r = 0 for all (zj , żj) ∈ (⊆ R)×R. This is equivalent to M̄−1

rj /M̄
−1
rr = −b̄r/b̄j

for independently varying zj and żj . From b̄ = C̄ż and from ˙̄M = C̄+C̄
T
(Definition 2.15

and Proposition 2.1), it follows that b̄r 6= 0 implies M̄−1
rj 6= const.. It might become

evident that M̄−1
rj /M̄

−1
rr = −b̄r/b̄j cannot be always satisfied for independently varying zj

and żj .

Theorem 5.2 reveals that the main difficulty of proving the existence of oscillation modes
is finding a diffeomorphism, which satisfies all its conditions. However, it can be easily veri-
fied that Theorem 5.1 represents a particular case of Theorem 5.2, where the corresponding
change of coordinates is linear. The following section proposes a novel methodology, which
enables to embody even desired eigenmodes in nonlinear dynamics of the form (5.1), as
will be also verified by practically relevant and realizable examples.
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5.2. Embodiment in nonlinear dynamics

The concept of oscillation modes forms the basis for periodic motions in nonlinear systems
of second-order dynamics, e. g., of the form (5.1). However, the shape of such invariant
submanifolds generally differs from the desired shape of paths of a given task. In the
following, a method is proposed which tackles this problem by exploiting the degrees of
freedom in the mechanical design of compliantly actuated systems such that oscillation
modes are imposed to match the desired modes of a given task. Thereby, the general goal
can be formulated as follows:

Problem 5.1. Consider the task coordinates x ∈⊆ R
n, which are related to the configura-

tion variables q ∈⊆ R
n by the generally nonlinear change of coordinates x = x(q). Assume

that the terms of the dynamics (5.1) depend additionally on N design parameters ζ ∈ R
N

such as kinematics, inertial, and elastic parameters. The problem is finding parameters ζ

such that the oscillation modes of the dynamics (5.1),

Zj = {q ⊆∈ R
n |xi(q)− ci = 0,∀i ∈ {1, . . . , n}/{j}} (5.22)

match to desired modes Zdes
j of a given task.

This formulation reveals that solving the general problem of oscillation mode matching
implies equivalent properties of the task and modal coordinate transformations, x(q) and
z(q) (cf. Definition 5.2), respectively. As can be seen from Theorem 5.2, finding a dif-
feomorphism z(q) represents already a highly nonlinear and challenging process for itself.
However, finding a change of coordinates z(q) with equivalent ”differential” properties
as x(q) is even harder. By utilizing the concept of eigenmodes for nonlinear dynamics
as introduced in Sect. 5.1.2, the Problem 5.1 can be drastically simplified, since solely a
linear transformation needs to be found, where, e. g., statement 1 of Theorem 5.2 holds
true by definition.

Problem 5.2. Consider the dynamics (5.1). Assume that the terms of (5.1) depend
additionally on N design parameters ζ ∈ R

N . Then, given desired eigenvectors of the
task wdes

j for j ∈ J ⊆ {1, . . . , n}, find parameters ζ̂ satisfying certain physical and design

constraints for which wj(ζ̂) are eigenvectors according to Definition 5.1 and wj(ζ̂) →
wdes
j , for all j ∈ J ⊆ {1, . . . , n}.

The proposed methodology to solve this problem is referred to asmodal dynamics match-
ing.

5.2.1. Modal dynamics matching methodology

There are two main remaining aspects which make it still difficult to solve the Problem 5.2:
(i) due to the generally nonlinear transformation x = f(q) between configuration and task
coordinates, the direction of desired eigenvectors wdes

j expressed in the tangent space of
the configuration manifold is not a priori known. (ii) For a general nonlinear dynamics
(5.1), the condition (5.19) of Definition 5.1 is highly nonlinear in the displacement wjzj .
Therefore, seeking a solution to Problem 5.2, the following algorithmic steps are proposed:

1. Transform the entire problem under a change of coordinates x = f(q) to the task-
space. Then, the i-th row of the j-th desired eigenvector w̄des

i,j = 1 if i = j and

w̄des
i,j = 0 otherwise. Therefore, the j-th desired eigenvector is align with the j-th

task-velocity component ẋj .
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2. Solve the problem

argmin
ζ1

Nq∑

i=1

∑

j∈J

1

2

∥
∥
∥w̄j(qi, ζ1)− w̄des

i

∥
∥
∥

2
(5.23)

corresponding to the linearized dynamics (5.4) (expressed in task-coordinates x) for
a subset ζ1 ⊂ ζ of N1 design parameters. This problem is subject to a generalized
eigenvalue problem of the form (5.6), (5.7). It is evaluated at relevant configurations
qi ∈ Q = {q1, . . . , qNq

} of the task. Note that this problem can be further simplified
by recalling that the potential U(q) = Ug(q) + Ue(q) comprises the gravitational
and elastic potential, respectively. Then, problem (5.23) can be solved only for the
Hessian of the elastic potential K(q) = ∂2Ue/∂q

2, while the gravity force ∂Ug/∂q
is treated as bias term in the next algorithmic step.

3. To remove the remaining coupling terms (omitted due to the linearization), substi-
tute the parameters ζ̂1 solving problem (5.23) in (5.6), (5.7) (expressed in configuration-
coordinates q) to obtain the linear transformation q = Wz, whereW =

[
w1 . . .wn

]
.

Then, consider this change of coordinates in Definition 5.2 in order to satisfy state-
ment 3 of Theorem 5.2 by determining the remaining design parameters ζ2.

An algorithm to solve step 2) is provided in Appendix A.2.1.

5.2.2. Modal dynamics matching example

The following example aims at validating that task-relevant eigenmodes exist and can be
embodied in the nonlinear dynamics of an elastic multibody system.

Model

Consider the model of a three-segment leg during stance phase which is assumed to be
attached to a body (trunk) with translational degrees of freedoms in the plane (Fig. 5.2).
The thigh is connected to the trunk by a rotational joint with coordinate q1. The shank is
hinged to the thigh with relative coordinate q3. There is a pulley concentric with the hip
joint with relative coordinate q2 which couples to the knee joint such that q3 = β(q2− q1),
where β is a parameter.2 The foot is hinged to the shank. Thereby, the relative angle of this
ankle joint is measured between the foot and the shank and is denoted by q4. The kinematic
constraint q4 = −q3 keeps the foot segment parallel to the thigh and thereby implements
a pantograph mechanism which is known from biomechanics literature [WHI+00]. The
segment lengths of thigh, shank, foot, are denoted by l1, l2, l3 and their inertial parameters
(mass, center of mass position, and mass moment of inertia) are labeled as mi, ci, and I

c
i ,

for i = 1, 2, 3, respectively. The center of mass of each segment is assumed at ci = li/2.
A point contact is assumed which in the tree-segment case is located at the tip of the
foot. This mechanism has also two kinematics degrees of freedom. The orientations of
the thigh and of the pulley concentric to the hip joint relative to the trunk are considered
as minimum set of coordinates q = (q1, q2) ∈ R

2, respectively. These degrees of freedom
are assumed to be actuated via springs of which the generalized elastic force are derived
from the potential Ue(q) = Ue(q1) + αUe(q2), where, e. g., Ue(qi) = klinq

2
i /2 + kcubq

4
i /4,

with parameters of the elasticity α, klin > 0 and kcub ≥ 0. The complete set of design
parameters comprises: ζ = (mt,m1,m2,m3, l1, l2, l3, I

c
1 , I

c
2 , I

c
3 , klin, kcub, α, β).

2If the kinematic constraint is implemented by pulleys and cables, then β = rhip/rknee represents the
ratio of radii of the hip and knee pulley, respectively.
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q4 = −q3

q1

q2
mt

contact point

Ue(q1)

αUe(q2)

q3 = β(q2 − q1)

m2, l2, Ic2

m1, l1, Ic1

m3, l3, Ic3

Figure 5.2.: Three-segment pantograph leg mechanism attached to a trunk with very high
inertia.

Task-oriented coordinates

Typical tasks of segmented legs can be conveniently represented in polar coordinates,
which are motivated by fundamental template dynamics models of legged locomotion such
as the spring loaded inverted pendulum (SLIP). The SLIP model consists of a translational
spring which connects the total body mass concentrated at the hip with the pivot point
on the ground. This translational degree of freedom is commonly referred to as the leg
axis. In some variants of the SLIP model, the orientation of the leg axis w. r. t. the
ground can be (compliantly) actuated under the assumption of very high trunk inertia.
The corresponding rotational degree of freedom is known to represent the leg or polar
angle. Note that these task-oriented coordinates can be used to describe all gaits, where
the contact between the foot and the ground can be geometrically modeled as a point.
Therefore, the polar coordinates will form the basis for the modal leg design procedure
presented in the following.

Design procedure

This example aims at validating the following two features of the eigenmode matching
procedure:

1. The methodology enables to find design solutions which match to the desired task
dynamics and simultaneously satisfy the implementation constraints such as non-
zero link inertia.

2. Design degrees of freedom which are redundant for the eigenvector matching problem
(5.23) can be exploited to achieve modal invariance for terms which are nonlinear
even expressed in configuration coordinates q such as gravitational and elastic forces.

On the basis of the latter consideration, a subset of N1 = n(n− 1) = 2 design parameters
needs to be chosen as optimization variables for the eigenvector matching procedure, while
the remaining design parameters need to be fixed. Therefore, a geometric analysis reveals
that the parameter assumption l2 = l1 + l3 leads to the task-oriented (polar) coordinates

x = x(q) =

( (

1− β
2

)

q1 +
β
2
q2

(l1 + l3)
√

2 (1 + cos (β (q2 − q1)))

)

,
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where the polar angle x1 depends linearly on q. Furthermore, the link lengths l1 and
l3 can be selected, e. g., according to workspace considerations. The mass of the trunk
mt will not affect the eigenvectors and can be assumed to be constant. The remaining
leg segment parameters mi and Ici , for i = 1, 2, 3 influence only the gravity and inertial
properties and klin, kcub, and α only the elastic behavior of the system. According to the
remark on algorithmic step 2 (cf. algorithm solving Problem 5.2), only the elastic potential
Ue is considered for the eigenvector search. Since the matching procedure requires to
decouple the modal inertial matrix (cf. statement 2 of Theorem 5.2) and needs to achieve
the modal invariance property for the elastic dynamics (cf. statement 4 of Theorem 5.2),
one parameter of each category needs to be selected as optimization variables, e. g., ζ1 =
(Ic1 + Ic3, α) for the considered example, while the remaining parameters are fixed.

The case of linear elasticity: kcub = 0

The application of algorithm step 2 for solving Problem 5.2 reveals that constant eigen-
vectors which ideally match the desired ones can be found for a wide range of the fixed
parameters m1,m2,m3, l1, l3, I

c
2 , klin, β. In particular, it results in implementable values

of Ic1 + Ic3 > 0 and α > 0. From inspection of the symbolic expressions3 appearing in the
eigenvector matching procedure, it can be seen that the family of design parameters

Ic1 + Ic3 =
3m1 +m2

4
l21 +

2m1 +m2

2
l1l3

− 3m2 +m3

4
l23 + Ic2 , (5.24)

α =
β

2− β
(5.25)

leads to globally matching, constant eigenvectors. Substituting the design parameters
(5.24), (5.25) into the inertia and stiffness matrix expressed w. r. t. configuration variables
M(q) and ∂2Ue(q)/∂q

2, respectively, and using the result to solve the corresponding
generalized eigenvalue problem, it can be seen that also the eigenvectors

W =

[

1 β
β−2

1 1

]

(5.26)

of the globally matching three-segment leg dynamics are constant. Note that this is the
case, even though the inertial parameters are non-zero.

Remark 5.2. Although under parameter conditions (5.24) and (5.25), the generalized
eigenvectors of M(q) and ∂2Ue(q)/∂q

2 are constant for any q ∈ R
2 (cf. (5.26)), the

eigenvalues of (5.6),

λ1 =
klin

(2− β) (Θ1 +Θ2 cos (β (q2 − q1)))
,

λ2 =
klin

β (Θ1 −Θ2 cos (β (q2 − q1)))
,

where Θ1 > Θ2 > 0 are constants (defined in Appendix A.3), depend nonlinearly on the
configuration q3 = β (q2 − q1).

3This size of problems can still be treated with computer algebra software such as Maple
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It can be concluded that the problem of (5.23) is solved accordingly.

Remark 5.3. The application of algorithm step 3 (cf. algorithm solving Problem 5.2) to
the gravitational bias term b̄g(z) = (∂Ug(z)/∂z)

T reveals that for

m3 = (m1l1 +m2 (l1 − l3)) /l3 , (5.27)

b̄g(z) = − Θ3

l1 + l2
g0




sin
(
β(z1−z2)−2z1

β−2

)

+ sin
(
β(z1+z2)−2z1

β−2

)

β
β−2

(

sin
(
β(z1+z2)−2z1

β−2

)

− sin
(
β(z1−z2)−2z1

β−2

))





such that b̄g,1(z) = 0 for all z ∈ {z ∈ R
2 | z1 = 0}.

The above results motivate the following proposition of Theorem 5.2. Thereby, the
considered components corresponding to the dynamics expressed in q coordinates (5.1),
are provided in (A.7)–(A.10).

Proposition 5.1. Let the matrix W of (5.26) define a linear transformation of the form
z = W−1q. Then, the dynamics (5.1) with components (A.7)–(A.10), features an oscil-
lation mode with corresponding 2-D invariant subset of the state space,

T Z2 :=
{
(q, q̇) ∈ R

4 | z1(q) = 0, ż1(q̇) = 0
}
, (5.28)

according to Definition 5.2.

Proof. In order to prove this proposition, it will be shown that the statements of Theo-
rem 5.2 hold true.

The inertia matrix (A.7) expressed in z coordinates,

M̄(z) =




2
(

Θ1 +Θ2 cos
(

2β
β−2z2

))

0

0 2β2

(β−2)2

(

Θ1 −Θ2 cos
(

2β
β−2z2

))



 (5.29)

is diagonal and therefore statement 1 is true, for any z ∈ R
2.

Let T Z̄2 :=
{
(z, ż) ∈ R

4 | z1 = 0, ż1 = 0
}
. Then, the Coriolis/centrifugal matrix (A.8)

expressed in z coordinates takes form

C̄(z, ż) =
2Θ2β

β − 2
sin

(
2β

β − 2
z2

)[−ż2 −ż1
ż1

β2

(β−2)2
ż2

]

(5.30)

such that

C̄(z, ż)ż =
2Θ2β

β − 2
sin

(
2β

β − 2
z2

)(

0
β2

(β−2)2
ż22

)

(5.31)

for any (z, ż) ∈ Z̄2 and therefore statement 2 is true. The elastic force (A.10) expressed
in z coordinates takes the form

∂Ue(z)

∂z

T

=

(
2klin
2−β z1
2βklin
(2−β)2

z2

)

, (5.32)

where it can be seen that for any z2 ∈ R, ∂Ue(z)/∂z1 = 0, if and only if z1 = 0. Then,
together with the result of Remark 5.3 it can be finally concluded that statement 3 is also
true.

Therefore, all conditions of Theorem 5.2 are satisfied such that T Z2 represents an
invariant set for the dynamics (5.1) with components (A.7)–(A.10).
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5.3. Classification of periodic orbits

The case of nonlinear elasticity: kcub > 0, β = 1

A particular case of constant eigenvectors of the three segment leg with nonlinear (cubic)
elasticities is given if the kinematic coupling parameter β is chosen unity, i. e., β = 1.
It is found that the elastic force expressed in z coordinates features the following modal
invariance properties (cf. statement 3 of Theorem 5.2):

∂Ue(z)

∂z

T
∣
∣
∣
∣
∣
∀z1∈R,z2=0

=

(
2
(
klinz1 + kcubz

3
1

)

0

)

,

∂Ue(z)

∂z

T
∣
∣
∣
∣
∣
z1=0,∀z2∈R

=

(
0

2
(
klinz2 + kcubz

3
2

)

)

,

This result provides evidence for the existence of oscillation modes in the dynamics of
elastic multibody systems even with nonlinear elasticities.

This practically relevant example validates that using the methodology of modal dynam-
ics matching, an elastic multibody system can be found of which the dynamics consists of
oscillation modes, which match to a certain task. Thereby, the obtained design parameters
are implementable as, e. g., the inertial parameters of bodies can be chosen to be non-zero.
This example constitutes one of the first proofs of existence of invariant oscillation modes
in practically implementable, nonlinear, elastic multibody systems. As such, this example
forms the basis of investigations of periodic orbits provided in the next section.

5.3. Classification of periodic orbits

In the conservative case, the definitions proposed in Sect. 5.1 reveal that the existence of
oscillation modes implies also the presence of periodic orbits which correspond to centres
(cf. [JS07, Theorem 11.3, p. 390]). In the dissipative case, oscillation modes ensure the
existence of limit cycles (cf. Theorem 4.1 and 4.2 of Chapt. 4) (under appropriate energy
regulation control). Thereby, the following central question about periodic orbits arises:
Are oscillation modes necessary for the existence or excitability of periodic orbits?

A general oscillation mode is defined by an 1-D, differentiable submanifold of the n-
D configuration space. Considering also the associated tangent spaces, the invariant set
of states corresponding to an oscillation mode is fully determined by its 1-manifold. An
implication of this definition allows to define a criterion based upon it can be excluded that
a periodic orbit evolves in an oscillation mode, without relying on an explicit description
of the corresponding 1-manifold:

Theorem 5.3. If the image of a trajectory of configuration variables is neither homeo-
morphic to a circle, an open interval, a closed interval, nor to an half-open interval, this
motion corresponds not to an oscillation mode.

Note that the essential statement is that an oscillation mode can only be either a line
(without self-intersection) or a circle.

Proof. According to Definition 5.2, an oscillation mode is said to be an 1-D, differentiable
submanifold of the n-D configuration space, i. e., an oscillation mode is defined by n − 1
holonomic constraints of the n configuration variables. Since any submanifold is itself a
manifold [Fra03, p. 18], it has to be shown that any 1-manifold is either a circle, an open
interval, an closed interval, or an half-open interval, or is homeomorphic to one of them.
But this follows exactly from the classification theorem [Gal87].
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5. Oscilioulation Modes

If a periodic orbit satisfies any assumption of Theorem 5.3, the method of elimination
reveals that the orbit can be at most a 2-D submanifold of the 2n-D state space, e. g.,
defined by 2n−2 non-holonomic constraints of the 2n state variables. These considerations
motivate the classification of periodic orbits which will be investigated as given in Table 5.1:

linear nonlinear

holonomic (one-manifold) Sect. 5.3.2 Sect. 5.3.3

non-holonomic (two-manifold) Sect. 5.3.4

Table 5.1.: Classification of periodic orbits

5.3.1. Excitation of periodic orbits

Consider the dynamics of the form

M(q)q̈ + b(q, q̇) = −∂U(θ, q)

∂q

T

(5.33)

which corresponds to (5.1) with the only difference that θ := θdes is considered as con-
trol input such that for a given θ the equilibrium position is q = q̄(θ) according to
Definition 3.4 of Sect. 3.1.1. The system (5.33) is non-conservative in a sense that the dis-
sipative term d(q, q̇) defined in (5.3) satisfies d(q, q̇) 6= 0 for all q̇ 6= 0. For θ = const., the
equilibrium point {q = q̄(θ), q̇ = 0} of (5.33) is globally asymptotically stable (cf. Propo-
sition 3.2 in combination with the singular perturbation assumption of Sect. 3.2.3) such
that any trajectory of the system (5.33) is not closed, since for any initial condition the
state converges to the equilibrium point. Therefore, to obtain a closed orbit, energy needs
to be injected periodically (cf. the approach of Chapt. 4). The method proposed in the
following, aims at indicating periodic motions in non-conservative dynamics of the form
(5.33). The only assumption made about a possible periodic orbit is as follows:

Assumption 5.1. Let θ0 be a constant control input. Then, a displacement ∆θ = θ−θ0 =
w∆θw along a generalized eigenvector w of the linearization of the dynamics (5.33) at
the equilibrium position q = q̄(θ0) (cf. (5.4) and (5.6)–(5.7)) with amplitude ∆θw ∈ R,
accelerates the system (5.33) such that its state moves “mainly” on a periodic orbit of the
corresponding conservative system.

As such, persistent excitation of possible periodic motions can be achieved by a switching-
based control law of the form (cf. Sect. 4.4)

θ = θ0 +w







θ̂w if ∂U(θ−,q)
∂q w < −ǫw

0 if
∣
∣
∣
∂U(θ−,q)

∂q w

∣
∣
∣ ≤ ǫw

−θ̂w if ∂U(θ−,q)
∂q w > ǫw

, (5.34)

where θ− represents the controller state before the switching, and 1 ≫ ǫw > 0 and θ̂w > 0
are threshold and switching amplitude constants, respectively. Note that in the limit case
ǫw = 0, the controller would switch exactly at positions, where (∂U(θ, q)/∂q)w = 0.
However, at these positions, the sign of the switching function (5.34) is not determined
and therefore it is required to chose the threshold ǫw unequal but close to zero.
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5.3. Classification of periodic orbits

5.3.2. Periodic orbits in eigenmodes

In Assumption 5.1, the auxiliary term “mainly” has been utilized, which seems to be rather
imprecise. The reason for that statement is to avoid any assumption about the existence of
oscillation modes. In contrast, if the dynamics (5.33) consists of an eigenvector according
to Definition 5.1, then, Assumption 5.1 can be reformulated as a corollary of Theorem 5.1.

Corollary 5.2. Consider the dynamics (5.33) with potential energy U(θ, q) = Ug(q) +
Ue(q−θ). Assume that there exists a θ0 such that w is an eigenvector of (5.33) according
to Definition 5.1. Then, for any initial state in the invariant set

T W :=
{

(q, q̇) ∈ (⊆ R
n)× R

n |W̄ T (
q − q̄(θ0)

)
= 0,W̄

T
q̇ = 0

}

(5.35)

as defined by (5.13), i. e., (q(0), q̇(0)) ∈ T W, the control input (5.34) excites the system
such that resulting motions remain in T W for all future time, i. e., (q(t), q̇(t)) ∈ T W for
all t > 0.

Proof. For any displacement along w with amplitude z ∈ R, ∆q = q − q̄(θ0) = wz, there
exists an acceleration amplitude z̈ ∈ R such that q̈ = wz̈ according to Definition 5.1. But
this implies that for any displacement of the control input along w with amplitude θ̂w ∈ R,
∆θ = θ− θ0 = wθ̂w, there exists also an acceleration amplitude z̈ ∈ R such that q̈ = wz̈,
since Ue(q − θ). Therefore, the assumptions of Corollary 5.2 are proven based upon a
direct consequence of Theorem 5.1.

An example of a dynamics satisfying the conditions of Corollary 5.2 is given by the
compliantly actuated system (5.33) with components (A.7)–(A.10) provided in the Ap-
pendix A.3. Considering a damping term, e. g., of the form

d(q, q̇) =

(

d0q̇1
β
β−2d0q̇2

)

(5.36)

with constant d0 > 0, this dynamics consists of an eigenvector w =
(
β/(β − 2) 1

)T

according to Definition 5.1 for a wide range of model-parameters as exemplary provided
in Table 5.2. In particular, combining the result of Corollary 5.2 with a straightforward
extension4 of Theorem 4.2, it can be shown that one can always excites a limit cycle along
the mode of a dissipative dynamics.

5.3.3. Periodic orbits in nonlinear oscillation modes

The following analysis investigates the effect of damping on the excitability of periodic
orbits in cases, where linear displacements according to the switching law (5.34) lead to
incompatible accelerations regarding oscillation modes. This is the case, e. g., when only
a nonlinear representation of the oscillation mode is known.

4The extension requires to consider a configuration depend, scalar inertia which does not conceptually
change the proof, since it increases only the number of continuous dynamical subsystems which need
to be considered.
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5. Oscilioulation Modes

Construction of a nonlinear oscillation mode

So far, only eigenmodes could be identified from practical examples. However, for the basic
understanding of nonlinear oscillations, it is crucial to know, if also nonlinear modes can
exist for real systems, and if the modal excitation approach, as proposed in Sect. 5.3.1,
applies also for this general case. The first part of this question, namely the existence
of nonlinear modes, is validated by constructing the following simple example. Consider
the dynamics (5.33) with components (A.7)–(A.10) which consists of an eigenvector w =
(
β/(β − 2) 1

)T
according to Definition 5.1. Consider further the kernel of wT , W̄ =

ker
(
wT
)
=
(
1 1

)T
which defines the 2-D, invariant subset of the state space R

4,

T W :=
{
(q, q̇) ∈ R

4 | q1 − q̄1(θ) + q2 − q̄2(θ) = 0, q̇1 + q̇2 = 0
}
, (5.37)

corresponding to the eigenmode defined by w. The 1-D curve representing an eigenmode
expressed in terms of the configuration variables q is by definition a straight line. In the
considered case, the parametric representation takes the form

qw(θ, z) =

(

q̄1(θ) +
β
β−2z

q̄2(θ) + z

)

, (5.38)

where z ∈ R denotes the parameter of the manifold. If one would, however, have taken a
different set of coordinates to describe the dynamical system, e. g.,

x = x(q) =

(
(q1)

3

q2

)

, (5.39)

the mode would have a nonlinear shape

xw(θ, z) = x(q̄(θ) +wz) =

((

q̄1(θ) +
β
β−2z

)3

q̄2(θ) + z

)

, (5.40)

in these coordinates. Note that eigenmodes of nonlinear dynamics are defined w. r. t. an
equilibrium configuration which in case of compliantly actuated systems (5.33) depends
on the control input θ, i. e., q0 = q̄(θ) (cf. Corollary 5.2). Therefore, also the considered
manifold representing the eigenmode (5.38) under the nonlinear change of coordinates
(5.39) depends on θ, but is known and exists for any θ for which w is an eigenvector of
the corresponding dynamics.

Influence of damping on the excitability of periodic orbits

The following simulations investigate the influence of damping on the excitability of pe-
riodic orbits in oscillation modes, where only a nonlinear representation is assumed to
be known. In order to relate the dissipative properties of the oscillation mode and the
remaining, transverse dynamics5, viscous damping of the form

d(q0, q̇) = W−T
M

[
2ξ1
√

λ1(q0) 0

0 2ξ2
√

λ2(q0)

]

W−1
M (5.41)

5The portion of the dynamics which can be expressed in terms of coordinates representing the holonomic
constraints, is referred to as transverse dynamics, cf., e. g., the definition in [SFG10].
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5.3. Classification of periodic orbits

reflected inertia Θ1 0.006771 kgm2

reflected inertia Θ2 0.006250 kgm2

gravitational constant g0 0m/s2

pulley ratio β 1

linear spring constant klin 1.75Nm/rad

cubic spring constant kcub 0.25Nm/rad3

Table 5.2.: Inertial and elastic parameters of dynamics (5.33) with components (A.7)–
(A.10) featuring an eigenmode considered in simulation.

can be considered. The matrix WM of generalized eigenvectors of ∂2U/∂q2(q = q0)
and M(q0) is normalized w. r. t. M(q0), i. e., W

T
MM(q0)WM = I such that ξ1 ∈ [0; 1]

and ξ2 ∈ [0; 1] represent normalized damping factors corresponding to the transverse and
eigenmode dynamics, respectively. It is expected that for high damping of the transverse
and low damping of the eigenmode dynamics, periodic motions can be achieved which
evolve largely in the oscillation mode, although its shape is nonlinear. This hypothesis is
tested in simulations, where ξ2 = 0.1 is fixed, while ξ1 is varied accordingly, i. e., (ξ1/ξ2) ∈
{1, 5, 10}: In detail, the simulation model comprises the dynamics ((5.33) with (A.7)–
(A.10), (5.41), the model-parameters provided in Table 5.2), and the switching law (5.34),
all expressed under the change of coordinates (5.39). For all simulations, the switching
threshold and amplitude are selected ǫw = 0.001Nm and θ̂w = 1.25 rad, respectively,
and the initial control input θ̄

0
= x(q0 = q̄(θ0)), configuration x0 = x(q0 = q̄(θ0)),

and velocity ẋ0 = w̄1 rad/s, with w̄ = ∂x(q)/∂q(q̄(θ0))w, are chosen depending on
θ0 = (−1, 1)70π180 rad such that during simulation, the Jacobian matrix ∂x(q)/∂q becomes
expectedly not singular.

Fig. 5.3 depicts the motion of the last four simulated oscillation cycles in (a) the phase
planes x1(t) vs. ẋ1(t) and x2(t) vs. ẋ2(t) and (b) the configuration plane x1(t) vs. x2(t):

• The images of trajectories, as shown in (a), represent isolated paths, even though
four oscillation cycles are plotted. This clearly indicates the excitation of periodic
orbits, for all damping settings (ξ1/ξ2) ∈ {1, 5, 10}.

• By increasing the damping of the transversal dynamics, the periodic motion ap-
proaches the nonlinearly appearing oscillation mode (cf. (b)). In particular, when
the damping of the transversal dynamics is ten-times higher than of the oscillation
mode, i. e., ξ1/ξ2 = 10, then, the configuration variables move mainly in that 1-D
submanifold. This finding is further supported by the observation that the distance
of the actual w. r. t. the theoretical switching position decreases, when the damping
of the transversal dynamics increases.

• When the damping of eigenmode and transversal dynamics is equal and low, i. e.,
ξ2 = ξ1 = 0.1, the image of the trajectory in the configuration plane intersects
itself (cf. (b)). Since a self-intersecting curve is neither homeomorphic to a circle,
an open interval, a closed interval, nor to a half-open interval, it cannot represent
an 1-manifold. By virtue of Theorem 5.3, this in turn reveals that in case of low
damping of the transversal dynamics, a periodic orbit results, but it is not contained
in an oscillation mode according to Definition 5.2.

The above result reveals that, as soon as all modal conditions are fulfilled, a straightfor-
ward way to excite a nonlinear mode is to transform to the coordinates given by inverting
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Figure 5.3.: Effect of damping on the excitation of periodic motions in nonlinear oscillation
modes by means of a linear displacement θ̄ = θ̄

0 ± w̄θ̂w. Triangle-markers
denote actual switching points. For increased damping of the transversal
dynamics, the actual switching position approaches the theoretical one.

102



5.3. Classification of periodic orbits

mass m1 0.5 kg

mass m2 0.5 kg

link length l 0.1m

linear spring constant klin 2.0Nm/rad

cubic spring constant kcub 0.25Nm/rad3

Table 5.3.: Inertial and elastic parameters of the double pendulum example considered in
simulation.

the modal function such that the nonlinear mode appears as a straight line. This way, an
exact solution is obtained to excite and sustain oscillations evolving in the mode of the
system.

5.3.4. Non-holonomic periodic orbits

The example of the previous section reveals that due to the presence of damping, peri-
odic motions of the compliantly actuated systems (5.33) can be excited by means of the
nonrestrictive, linearization based Assumption 5.1. In particular, the corresponding sim-
ulation results give rise to seek for conceptually different periodic orbits which evolve not
in holonomic oscillation modes.

Consider, e. g., the dynamics of elastic, planar double pendulums. The relative angle of
the first link w. r. t. to an inertial frame and the relative angle of the second link w. r. t.
the first link are measured by the configuration variables q1 and q2, respectively. When
all configuration variables are zero, i. e., q = 0, both links are aligned. The lengths of all
links are assumed to be equally l and its masses m1,m2 are assumed to be concentrated
at half the link-lengths. In all joints cubic springs with equilibrium positions θi and equal
spring constants klin, kcub > 0 are considered such that the potential energy takes the form
U(q − θ) =

∑2
i=1

1
2klin(qi − θi)

2 + 1
4kcub(qi − θi)

4. Linear, viscous damping of the form
dq̇i is assumed, where d ≥ 0. Therefore, the dynamics consists of the structure of (5.33).
In the following simulations, the inertial and elastic parameters given in Table 5.3 are
considered.

Centres

The example of Sect. 5.3.3 revealed that the exact excitation of non-conservative oscillation
dynamics (based on displacements) requires explicit knowledge of oscillation modes. Since
for the elastic double pendulum dynamics at hand, even their existence is not yet ensured,
it is obvious to investigate periodic motions in form of centres first: Centres are defined
for autonomous phase-planar systems (i. e., for a second-order dynamics). A centre is a
stable equilibrium point surrounded in its immediate neighborhood by closed paths [JS07,
p. 10]. From this definition it becomes evident, that a centre corresponds to a level-set
of the total energy, which implies that the system is conservative, i. e., d = 0. Therefore,
the energy level is fully determined by the initial state. In order to avoid assumptions on
the shape of centres so far as it is possible, an initial state needs to be chosen, where the
dynamics behaves locally like in a linear mode. Considering the equilibrium position of
the springs θ = 0 implying q̄(θ) = 0, the initial configuration q(0) = 0 is such that for
any velocity q̇ ∈ R

2, the Coriolis/centrifugal matrix vanishes identically, i. e., C(0, q̇) = 0,
and the system is in steady motion, i. e., q̈ = 0, since the potential force is also zero, i. e.,
∂U/∂q(q = 0) = 0. Furthermore, at q = 0, the Hessian matrix of the potential energy
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does not depend on the spring deflection q − θ, i. e., ∂2U/∂q2(q = 0) = diag((klin, klin)).
This suggests to chose the initial velocity along one of the generalized eigenvectors wi,
for i = 1, 2, of ∂2U/∂q2(q = 0) and M (q = 0) (cf. (5.6)–(5.7)), i. e., q̇(0) = wiv0 with
v0 ∈ R.

Fig. 5.4 shows the results of simulations which investigate the existence and structure of
centres for different initial velocity amplitudes v0 ∈ R along the first eigenvector w1(q = 0)
(corresponding to the lower eigenvalue λ1(q = 0) < λ2(q = 0)). In order to indicate
periodicity, ten oscillation cycles are plotted for each initial velocity amplitude v0:

• Whilst taking into account that numerical integration is subject to noise, the con-
sidered elastic pendulum dynamics displays periodic orbits for initial velocity am-
plitudes v0 ∈ {5, 20} rad/s as depicted in (a). For remaining velocity amplitudes
v0 ∈ {10, 15, 17, 19, 21} rad/s, the motion is quasi-periodic in a sense that images of
state-trajectories evolve in error-bands. This is even the case for values of v0 close
to but not exactly 20 rad/s (which corresponds to a periodic orbit).

• The motion of configuration variables q1(t) vs. q2(t) evolves approximately on 1-D
curves, but their shape differs for different initial velocity amplitudes v0 (cf. (b)).
Due to this non-holonomic behavior, these periodic orbits cannot be described by
differentiable 1-manifolds.

In contrast, as shown in Fig. 5.5, taking again into account that numerical integration
is subject to noise, the elastic double pendulum dynamics displays periodic orbits for
any of the considered initial velocity amplitudes v0 ∈ {15, 30, 45, 60} along the second
eigenvector w2(q = 0) (cf. (a)). In particular, the motion of the configuration variables
q1(t) vs. q2(t) evolves on the same straight line, even though the initial velocity amplitude
v0 is varied (cf. (b)). This strongly indicates the existence of an eigenvector according to
Definition 5.1, although an analytic expression could not be found yet. Furthermore, as
illustrated in (c), the shape of this (possible) oscillation mode, expressed w. r. t. Cartesian
coordinates describing the position of the pendulum tip, can approximately be represented
by the even parabola function x2 = a2x

2
1−a0. Such a shape can be exploited for the control

of elastic, legged systems as presented in Sect. 6.4.

Non-conservative periodic orbits

The example of Sect. 5.3.3 revealed that viscous damping has a stabilizing effect on periodic
motions. This result together with the evidence of periodic and quasi-periodic orbits with
even non-holonomic structure gained above, motivates the investigation of the elastic
double pendulum dynamics in the non-conservative case.

Consider again the elastic pendulum dynamics with parameters as given in Table 5.3,
but where in contrast to the previous example the damping constant is chosen to be
d = 0.05Nms/rad. The resulting dissipation can be counter-acted by the excitation control
(5.34).

Fig. 5.6 shows the results of simulations investigating the excitability of periodic mo-
tions for different switching amplitudes θ̂w ∈ {0.5, 0.75, 1.0} rad along the first eigenvector
w1(q = 0). The phaseplots, q1(t) vs. q̇1(t) and q2(t) vs. q̇2(t), of the last seven (simulated)
oscillation cycles as depicted in (a), reveal that the elastic double pendulum dynamics can
be excited with different switching amplitudes θ̂w to display periodic orbits. However, the
motion of configuration variables q1(t) vs. q2(t) evolves on curves, which at least for the
greatest switching amplitude θ̂w are homeomorphic neither to a circle nor to an interval
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(a) Phaseplot expressed w. r. t. configuration coordinates. Periodic and quasi-periodic orbits (within
an error band) can be observed.
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Figure 5.4.: Centres of the elastic double pendulum for different initial conditions along
the first eigenvector of the linearized dynamics at equilibrium position q̄ = 0.
For each initial velocity, ten oscillation cycles are shown.
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Figure 5.6.: Periodic orbits of the elastic double pendulum excited along the first eigen-
vector of the linearized dynamics at equilibrium position q̄ = 0 using the
switching law (5.34). For each switching amplitude, seven oscillation cycles
are shown.
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(cf. (b)) such that according to Theorem 5.3, these motions corresponds not to oscillation
modes.

In contrast, as shown in Fig. 5.7, the elastic pendulum dynamics displays periodic or-
bits for any switching amplitude θ̂w ∈ {0.5, 0.75, 1.0} rad along the second eigenvector
w2(q = 0) (cf. (a)). In particular, the motion of configuration variables q1(t) vs. q2(t)
evolves on curves which are either homeomorphic to (half-open) intervals considering half
oscillation cycles between switching positions or homeomorphic to circles considering com-
plete oscillation cycles (cf. (b)) such that corresponding periodic orbits can be parametrized
by 1-manifolds. This again strongly indicates the existence of an eigenvector of the elastic
double pendulum dynamics according to Definition 5.1.

Remark 5.4. Simulations of elastic n-pendulum dynamics with n > 2 reveal that if
damping is present, excitations along eigenvectors corresponding not to the lowest eigen-
value (at equilibrium position) result in periodic orbits which can be parametrized by one-
dimensional, differentiable manifolds.

5.4. Summary

This chapter investigates the existence and excitability of oscillatory and periodic motions
in the natural dynamics of compliantly actuated systems. The initial conjecture about
the existence of natural, configuration-recurrent oscillations motivates a novel definition of
oscillation modes, which is based upon 1-D, differentiable submanifolds of the configuration
space. Thereby, the concept of eigenmodes of nonlinear dynamics has been proposed as
a particular, linear class of oscillation modes. Although, the existence of so-called modal
lines has been shown to exist in a class of systems consisting of constant masses but
nonlinear elasticities before [CVS90], the proposed method of modal dynamics matching
yields practically relevant and realizable examples of nonlinear, elastic multibody systems
consisting of eigenmodes, which include also Coriolis/centrifugal effects.

The classification of periodic orbits of elastic mutlibody systems reveals that cases exist
which cannot be described by the concept of oscillation modes. In particular, it has been
shown by simulation that the elastic double pendulum dynamics displays centres with even
a non-holonomic structure on the one hand. This is in accordance with topological results
stating that every dynamical system having a closed configuration space displays a periodic
motion [Fra03, Sect. 10.2d]. However, the comparison of the excitability of periodic orbits
by linear displacements (as proposed in Chapt. 4) reveals that exact excitations of natural
motions rely on the existence and knowledge of oscillation modes on the other hand.
Although, the necessity of oscillation modes for the existence of periodic motions remains
an open research topic so far, the examples at hand already validate the importance of
this concept for energetically efficient robotic applications.

In Chapt. 4, a switching-based limit cycle controller and a corresponding convergence
analysis have been derived for a second-order system. Since in oscillation modes, the dy-
namics of elastic multibody systems reduce to exactly this type of second-order dynamics,
the control and convergence analysis of Chapt. 4 can directly be applied.
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Figure 5.7.: Periodic orbits of the elastic double pendulum excited along the second eigen-
vector of the linearized dynamics at equilibrium position q̄ = 0 using the
switching law (5.34). For each switching amplitude, seven oscillation cycles
are shown.
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CHAPTER 6

Modal Control

Compliantly actuated multibody systems feature the property of converting between ki-
netic and (elastic) potential energy back and forth. The compliance in the power-train
allows joint motion even when the actuators do not move. In that case, the elastic ele-
ments perform the movement. If the system is controlled properly, the intrinsic, generally
oscillatory behavior of the plant, can be exploited particularly in highly dynamical explo-
sive or periodic motion tasks. Since in compliantly actuated systems, the power input to
links is routed via the springs, a common wisdom of the mechanical design is to achieve
as few friction as possible. This however entails the tendencies of the nonlinear dynamical
system to display “chaotic” or impractical (w. r. t. a given task) natural motions, which
make the control a challenging task. In the previous chapter, a theory has been introduced
which enables to analyze and to alter the natural oscillatory behavior of such plants. The
aim of this chapter is to address the problem of controlling multi-DOF compliantly actu-
ated systems to perform a certain oscillatory or periodic task, while exploiting the natural
dynamics behavior of the plant which can be described by its oscillation modes.

Explosive multi-joint motions of compliantly actuated robotic arms, such as throwing
of a ball, have typically been achieved by numerical optimal control approaches [BHV11],
[BPH+12], [HHAS12], [BPH+13]. These methods are mainly applied to systems with only
two joints involved in the motion, as computational costs and the number of local minima
explode with the number of degrees of freedom.

The natural oscillatory dynamics of compliantly actuated systems can be especially
exploited in intrinsically periodic tasks of robotic arms such as hammering and pick-and-
place, or in legged systems by tasks such as walking, jumping, and running. In particular
for such motions, the power of the links is not limited by the power of the actuators, since
the energy can be input cyclically in sequential portions into the plant. However, a major
difficulty of controlling multi-DOF periodic motions in such systems is given by the fact
that even if a Hamiltonian dynamics is achieved, e. g., by regulating the total energy to a
constant level [GOAS13], the existence of a periodic orbit is not guaranteed. This means,
e. g., when the total energy of a system is a quadratic form, then the only thing one can
say about solutions is that they evolve on an paraboloid of one dimension less than the
state space. In contrast, if the Hamiltonian dynamics of interest is planar (i. e., the state
space is 2-D), then the volume of constant energy has the shape of a (planar) ellipse, which
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6. Modal Control

necessarily also represents a periodic solution of the system. From these considerations it
becomes clear that by guaranteeing the state of a compliantly actuated system to evolve
in a 2-D manifold accomplishes a sufficient condition for the existence of periodic motions.

In the past, numerous methods have been developed to achieve invariant and even attrac-
tive 2-D manifolds in the state space of mechanical systems by control [GAP01], [CEU02],
[WGK03], [DS03], [GOAS13]. The pioneering work of Grizzle et al. [GAP01] and its
further development proposed in [CEU02] are based upon the concept of zero dynamics
(ZD) control [Isi95]. The central idea is to generate a lower-dimensional, attractive subset
(which is called zero manifold) in which the analysis of periodic solutions is drastically
simplified. These methods are introduced in the context of bipedal locomotion control.
By incorporating also the effect of impacts, which typically occur for dynamic gaits, the
notion of hybrid zero dynamics (HZD) is introduced in [WGK03]. In particular, the ap-
proaches presented in [GAP01], [CEU02], [WGK03] apply to rigid-body control systems
with a degree of under-actuation1 of one. A common property of ZD and HZD methods
is that stable periodic orbits are designed based on a Poincaré map approach, of which
a comprehensive explanation is provided in [WGC+07]. The numerical, simulation based
search for controls which generate periodic solutions is avoided by the methods presented
in [DS03] and [GOAS13]. Duindam and Stramigioli propose a controller which achieves
asymptotic convergence w. r. t. a desired curve in the configuration space of fully actuated
rigid-body systems. Considering the same class of plants, a control method to achieve
an attractive 1-D manifold of the configuration space is based on a semi-definite Lya-
punov function approach [GOAS13]. Although the HZD and Lyapunov function based
methods generalize to the compliantly actuated system case, as shown in [SPG13] and
[GO16], respectively, the natural oscillatory behavior of the plant is not explicitly taken
into account.

Further related approaches to generate coordinated, periodic motions of robotic multi-
body systems especially with plant-inherent elasticities in the joints are based upon adap-
tive frequency oscillators (AFO) [BI08], periodic motion tracking and simultaneous stiff-
ness adaptation [UGK14], or inter-limb synchronization control [FvdSS14]. The method of
AFOs presented in [BI08] exploits the concept of central pattern generators (CPG) [Ijs01].
Although the CPG considered in [BI08] adapt to an inherent frequency of the plant, the
distribution of amplitudes, which are commanded to the joint actuators, needs to be man-
ually tuned. Therefore, the resulting periodic excitation corresponds not necessarily to
an oscillation mode of the plant. The control approach proposed in [FvdSS14] applies to
systems composed of variable stiffness joints. A synchronization of periodic motions of
different joints is achieved by considering their stiffnesses as control input.

In this chapter, control methods are proposed which induce oscillatory or periodic mo-
tions, and additionally exploit the natural oscillatory dynamics of the compliantly actuated
systems to a large extent. Thereby, a major design goal is to replace the dynamic shap-
ing based invariant manifolds, as outlined above, by plant inherent oscillation modes as
introduced in Chapt. 5. Since oscillation modes are particular properties of elastic multi-
body systems (which need to be embodied in the mechanical design) on the one hand,
but a general purpose robotic system needs to be versatile on the other hand, four dif-
ferent control concepts are proposed, which exploit the natural dynamics of compliantly
actuated systems to different extent: In Sect. 6.1 the method of modal globalization is
proposed [LGP+13a]. It considers the natural oscillatory dynamics locally, and designs

1The degree of under-actuation is the difference in the number of degrees of freedom and independent,
scaler control inputs.
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the control input such that they become valid globally. Modal shaping, as introduced in
Sect. 6.2, exploits the concepts of Cartesian impedance control [OASK+04], [ASOH04],
[Ott08] to design an 1-D submanifold in which the configuration variables are controlled to
evolve [LGDAS14]. In that constraints manifold, the intrinsic oscillatory dynamics of the
plant is maintained. In Sect. 6.3, the concept of modal adaptation is proposed [LGP+13b].
This method offers the capability to control periodic motions in inherent oscillation modes
with at most the knowledge about the elastic and gravity model of the plant. Finally, in
Sect. 6.4 a control concept is introduced, which exploits the nonlinearity of the elastic
multibody system to match the direction of local eigenvectors to a given task [LAS16].

6.1. Modal globalization

Oscillation modes are intrinsic properties of the natural dynamics of compliantly actuated
systems. Therefore, their existence and particularly their global validity are in general not
guaranteed. The method of modal globalization control aims at high energetic efficiency in
the generation of motion, although oscillation modes are not existent or known. Thereby,
the idea is to consider the motion in the vicinity of an equilibrium point, where the preva-
lence of oscillation modes is guaranteed at least locally (cf. Sect. 5.1.1), and controlling
the plant such that corresponding invariance properties become valid globally.

6.1.1. Controller design

Consider the dynamics

M (q)q̈ +C(q, q̇)q̇ +
∂U(θ, q)

∂q

T

= 0 , (6.1)

which corresponds to the conservative, indirectly actuated state dynamics of the compli-
antly actuated system as introduced by (3.27) in Sect. 3.1.1. In order not to presume any
stabilizing effect on (excitable) periodic motions (cf. Sect. 5.3), dissipative forces are not
considered in the dynamics (6.1).

Let θ = θ0 = const. such that q0 = q̄(θ0) (Definition 3.4) represent the equilibrium
position of interest. Then, the generalized eigenvectors W (q0) =

[
w1(q0), . . . ,wn(q0)

]
of

the local stiffness and inertia matrix K(q0) =
∂2U(q)
∂q2

∣
∣
∣
q=q0

and M(q0), respectively, define

invariant directions of oscillation in the vicinity of q0 (cf. Sect. 5.1.1). A dynamics which
preserves the modal invariance properties of the linearization, but which is structurally
much closer to the original dynamics (6.1), can be obtained by considering a change of
coordinates of the form

∆q = q − q0 = W (q)z , (6.2)

where z ∈ R
n. This coordinate transformation is based on solutions of the generalized

eigenvalue problem (5.6)–(5.7) (defined in Sect. 5.1.1), {λi(q),wi(q)} for i = 1 . . . n, eval-
uated at the current configuration q such that the desired closed-loop dynamics can be
expresses as

z̈i + 2ξi
√

λi(q)żi + λi(q)zi = 0 , ∀i = 1 . . . n . (6.3)

The eigenvectors W (q) =
[
w1(q), . . . ,wn(q)

]
underlying this modal dynamics are normal-

ized such thatW (q)TM(q)W (q) = I and consequentlyW (q)TK(q)W (q) = diag (λi(q)).
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To influence the convergence properties of each of the modal dynamics (6.3) separately, a
modal damping term of the form

D(q)q̇ = W (q)−Tdiag
(

2ξi
√

λi(q)
)

W (q)−1q̇ (6.4)

is assumed to be assigned by control. Thereby, the normalized damping factors ξi ∈ [0; 1]
can, e. g., be chosen low or zero for a desired mode and high for all other modes. This
way,model uncertainties and disturbances can be handled by control.

The control law can be derived by transforming the plant dynamics (6.1) under the
change of coordinates (6.2) and comparing the result with the desired modal dynamics
(6.3). This yields,

−∂U(θ, q)

∂q

T

= −D(q)q̇ −K(q)∆q +W (q)−T C̃(q, q̇)ż + γ(q, q̇, q̈) , (6.5)

where the terms

W (q)−T C̃(q, q̇)ż + γ(q, q̇, q̈)

= C(q, q̇)q̇ + 2M (q)Ẇ (q)ż +
(

M (q)Ẅ (q) +D(q)Ẇ (q)
)

z
(6.6)

are responsible for the modal globalization process.

Assumption 6.1. The matrix K(q) is assumed to be bounded from above such that to-
gether with the positive definiteness of K(q) and M(q), the corresponding eigenvalues
are bounded from below and above by positive constants λi,min > 0 and λi,max > λi,min,
respectively, i. e.,

inf
q∈Rn

λi (K(q),M (q)) > λi,min (6.7)

sup
q∈Rn

λi (K(q),M (q)) < λi,max (6.8)

for all i = 1 . . . n.

This assumption forms the precondition for the exponential stability proof proposed
in the next section. An alternative control law, which avoids the boundedness condition
on K(q) but still achieves globally valid oscillation modes, allows currently to proof only
asymptotic stability:

Remark 6.1. The control law

−∂U(θ, q)

∂q

T

= −D(q)q̇ −K(q)∆q +W (q)−T
(

C̃(q, q̇)− diag
(

C̃ii(q, q̇)
))

ż + γ(q, q̇, q̈)

(6.9)

leads to the closed-loop dynamics

1

λi(q)
z̈i −

λ̇i(q)

2λi(q)2
żi +

2ξi
√

λi(q)
żi + zi = 0 . (6.10)

For ξi > 0, asymptotic stability of the equilibrium point z = ż = 0 can be easily proven by

a candidate Lyapunov function of the form V (z, ż) =
∑n

i=1
1
2

(
1
λi
ż2i + z2i

)

analogously to

the proof of Proposition 4.1 provided in Appendix A.1.
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6.1.2. Exponential stability

The proof of exponential stability is based upon a particular class of strict Lyapunov
functions with constant Hessians.

Theorem 6.1. Consider the dynamics

z̈ + 2ξ
√

λ(t)ż + λ(t)z = 0 , (6.11)

where ξ ∈ (0; 1] is constant and λ ∈ (λmin;λmax) is bounded by strictly positive constants
λmin < λmax. If for a given ξ ∈ (0; 1],

λmax

λmin
≤
(

ξ2 + 1 + ξ
√

ξ2 + 1

ξ2 + 1− ξ
√

ξ2 + 1

)2

(6.12)

is satisfied, then the origin x = (z, ż) = 0 of the dynamics (6.11) is globally exponentially
stable, uniformly in time t.

Proof. The origin x = 0 of the system (6.11) is exponentially stable, if there exists a
continuously differentiable function V : R≥0 × R

2 → R such that

a1‖x‖2 ≤ V (t,x) ≤ a2‖x‖2 (6.13)

V̇ (t,x) ≤ −a3‖x‖2 (6.14)

for all t ≥ 0 and for all x ∈ R
2, where a1, a2 and a3 are positive constants [Kha02,

Theorem 4.10, p. 154].
Condition (6.13) can be validated by considering a candidate Lyapunov function of the

form

V (x) =
1

2
xT
[
c2 c1/2
c1/2 1

]

x . (6.15)

Herein, c1 and c2 are constants satisfying

c2 > c21/4 (6.16)

such that V (x) > 0 for all x 6= 0. The Hessian of V (x), ∂2V (x)/∂x2, is constant and
positive definite (by definition (6.16)) such that condition (6.13) is satisfied by selecting
a1 = mini∈{1,2} λi

(
∂2V (x)/∂x2

)
> 0 and a2 = maxi∈{1,2} λi

(
∂2V (x)/∂x2

)
≥ a1.

The derivative of V (x) along the solution of (6.11),

V̇ (t,x) = −1

2
xTH(λ(t))x , (6.17)

where

H(λ(t)) =

[
c1λ(t) λ(t) + c1ξ

√

λ(t)− c2
sym. 4ξ

√

λ(t)− c1

]

, (6.18)

satisfies condition (6.14), if the matrix H(λ(t)) is positive definite for all λ ∈ [λmin;λmax].
This in turn is the case if and only if the leading principal minors of H are strict positive,
i. e.,

c1λ > 0 , (6.19)

det (H(λ)) > 0 (6.20)
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for all λ ∈ (λmin;λmax). Condition (6.19) can be satisfied for any c1 > 0, since λ is strictly
positive. It remains to show that there exists c1, c2 > 0 for which in addition to (6.16),
also condition (6.20) holds for all λ ∈ (λmin;λmax).

The determinant of condition (6.20) represents a polynomial of degree of 2:

p(λ) = −λ2 + 2ξc1λ
3
2 +

[
2c2 −

(
1 + ξ2

)
c21
]
λ+ 2ξc1c2λ

1
2 − c22 . (6.21)

Since the coefficient of the term of highest degree is negative and the degree of the poly-
nomial is even, it follows that lim

λ→∞
p(λ) = lim

λ→−∞
p(λ) = −∞. It can be verified by direct

calculation that p(λ) has at most two real roots

λmax /min =

(

ξc1 + β ±
√

[(ξ2 − 1) c1 + 2ξβ] c1

)2

4
, (6.22)

where β := 4c2−c21 > 0 according to condition (6.16). If the radicand
[(
ξ2 − 1

)
c1 + 2ξβ

]
c1

is nonnegative, then the polynomial (6.21) has exactly two (positive) real roots implying
that p(λ) = det (H(λ)) > 0 for all λ ∈ (λmin;λmax). It remains to validate condition
(6.12). To this end, define

α(c1, β) =
λmax

λmin
=

(

ξc1 + β +
√

[(ξ2 − 1) c1 + 2ξβ] c1

)2

(

ξc1 + β −
√

[(ξ2 − 1) c1 + 2ξβ] c1

)2 (6.23)

according to (6.22). By differentiation it can be seen that

(
∂α(c1,β)
∂c1

∂α(c1,β)
∂β

)

= 0 ⇐⇒ c1 = ξβ . (6.24)

By substituting this result in (6.23), it turns out that2

αmax =
λmax

λmin
=

(

ξ2 + 1 + ξ
√

ξ2 + 1

ξ2 + 1− ξ
√

ξ2 + 1

)2

(6.25)

is only a function of ξ. This validates condition (6.12) of the theorem.

Remark 6.2. One of the bounds on λ,

λmax /min =
β2
(

ξ2 + 1± ξ
√

ξ2 + 1
)2

4
(6.26)

can be chosen independently of the ratio of eigenvalue bounds αmax defined in (6.25).

The matrix H(λ(t)) is positive definite for all λ ∈ (λmin;λmax), V̇ (t,x) < 0 for all x 6= 0

and for all t ∈ R≥0. Thus, condition (6.14) can be satisfied by selecting

a3 = inf
λ∈(λmin;λmax)

[

min
i∈{1,2}

λi (H(λ))

]

> 0 .

Since conditions (6.13) and (6.14) hold also for ‖x‖ → ∞, the origin x = 0 of the system
(6.11) is globally exponentially stable.
2By considering the Hessian of α(c1, β) it can be seen that the extremum c1 = ξβ is a maximum.
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Proposition 6.1. Given are ξi ∈ (0; 1] for i = 1 . . . n. If in addition to Assumption 6.1,

λi,max

λi,min
≤




ξ2i + 1 + ξi

√

ξ2i + 1

ξ2i + 1− ξi

√

ξ2i + 1





2

(6.27)

holds for all i = 1 . . . n, then the origin z = ż = 0 of the system (6.3) is globally exponen-
tially stable.

Proof. By replacing the dependency of λi on the configuration variables q by time t, i. e.,
λi(q) = λi(t), Theorem 6.1 can be applied to the i-th subsystem in (6.3), separately.

6.1.3. Energy based limit cycle generation

In this section, a method is presented to generate a limit cycle along a globalized mode
of the system (6.1). The controller regulates the energy corresponding to the considered
mode to a desired level, similar to what was done in [GOAS13]. The approach can be
regarded as an alternative to the method proposed in Sect. 4.4.

Consider the dynamics of the k-th globalized mode in the form of Remark 6.1,

1

λk(t)
z̈k −

λ̇k(t)

2λk(t)2
żk +

2ξk
√

λk(t)
żk + zk = 0 , (6.28)

where the dependency of λk on the configuration variables q is replaced by time t, i. e.,
λk(q) = λk(t). (The remaining n − 1 subsystems can also be considered in the form of
(6.3).) The goal is to find a (nonlinear) damping coefficient ξk such that the Hamiltonian
of the k-th mode

H(t, zk, żk) =
1

2λk(t)
ż2k +

1

2
z2k , (6.29)

regulates to the constant desired value Hdes > 0. From the derivative of H(t, zk, żk) along
the solution of (6.28),

Ḣ(t, zk, żk) = − 2ξk
√

λk(t)
ż2k , (6.30)

it can be seen that this is achieved if

ξk =

√

λk(t)

2
kHH̃(t, zk, żk) , (6.31)

where kH > 0 represents a controller gain and H̃(t, zk, żk) = H(t, zk, żk)−Hdes.

Theorem 6.2. The system (6.28) and (6.31) displays an asymptotically stable limit cycle

L =
{
(zk, żk) ∈ R

2 |H(t, zk, żk) = Hdes

}
.

Proof. Consider the continuously differentiable function

V (t, zk, żk) =
1

2
H̃(t, zk, żk)

2 (6.32)
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as candidate Lyapunov function satisfying V (t, zk, żk) = 0 only if (zk, żk) ∈ L and
V̇ (t, zk, żk) = −kHH̃(t, zk, żk)

2ż2k ≤ 0 for all t ∈ R≥0 and for all (zk, żk) ∈ R
2. Since,

additionally, V (t, zk, żk) is bounded from below and above by positive definite functions

S1(zk, żk) =
1

2

(
1

2λk,max
ż2k +

1

2
z2k −Hdes

)2

,

S2(zk, żk) =
1

2

(
1

2λk,min
ż2k +

1

2
z2k −Hdes

)2

,

on R
2, respectively, i. e.,

S1(zk, żk) ≤ V (t, zk, żk) ≤ S2(zk, żk) ,

(where λk,min and λk,max exist by Assumption 6.1,) L is uniformly stable according to
[Kha02, Theorem 4.8, p. 151].

To prove attractiveness of L, Barbalat’s lemma (see, e. g., [SL91, Lemma 4.3, p. 125])
can be applied: It has already been shown that V (t, zk, żk) is bounded from below and
that V̇ (t, zk, żk) is negative semi-definite. It remains to show that V̇ (t, zk, żk) is uniformly
continuous in time t. This can be done by showing that

V̈ (t, zk, żk) = −2kHH̃(t, zk, żk)
2żk (kH + z̈k)

is bounded, which is the case since (6.28) and (6.31) is stable. Therefore, it follows that

lim
t→∞

V̇ (t, zk, żk) = 0 . (6.33)

Let Bǫ(L) be a neighborhood of L such that {zk = 0, żk = 0} /∈ Bǫ(L). Since, L is stable,
initial conditions can be always chosen such that the solution remains in Bǫ(L). Moreover,
(6.33) implies that either żk → 0 or H(t, zk, żk) → Hdes as t → ∞. But since the system
cannot converge to {zk 6= 0, żk = 0} and {zk = 0, żk = 0} /∈ Bǫ(L), it can be concluded
that the solution must converge to L.

6.2. Modal shaping

To achieve high performance and efficiency, oscillation modes corresponding to the dynam-
ics of certain tasks can be embodied into a compliantly actuated system. However, there
might be also other (less important) tasks a robotic system should be able to perform,
whose dynamics cannot be (simultaneously) embodied into the plant. For that purpose,
a method is required which achieves the dynamics behavior of these additional tasks by
control. This shaping of dynamics to increase the versatility of the compliantly actu-
ated system implies losses of performance and efficiency. The proposed method of modal
shaping aims at minimizing the control effort and the corresponding energetic losses by
exploiting the intrinsic oscillator behavior of the plant for motion generation in the shaped
mode. The basic idea of modal shaping is to constrain the motion of the configuration
variables to an 1-D submanifold corresponding to the desired task by control, but consider
the intrinsic oscillatory behavior of the compliantly actuated system for motion generation
in this mode.

The approach is introduced for so-called floating base systems, where not all of the
indirectly actuated degrees of freedom are statically controllable (cf. Sect. 3.1.1). However,
the case of so-called fixed base systems (where all of the indirectly actuated degrees of
freedom are statically controllable) is trivially contained.
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link i
qi

floating base

{B}
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F k

Rb
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ν
ω

θi

τi

Figure 6.1.: Kinematic description of compliantly actuated free-floating base systems

6.2.1. Compliantly actuated free-floating base system

Consider the kinematic structure of a floating base system, which can be defined as shown
in Fig. 6.1. The (absolute) position and orientation of the base link frame {B} with respect
to an inertial frame {I} can be described by rb ∈ R

3 and Rb ∈ SO(3), respectively, and
the configuration of the kinematic chains attached to the base link can be represented
by so-called joint coordinates q ∈ R

n, where n denotes the number of indirectly actuated,
statically controllable degrees of freedom. The generalized velocity of the complete system

v =
[
ωT ṙTb q̇T

]T
comprises the angular and translational velocity of the base link,

ω ∈ R
3 and ṙb ∈ R

3, respectively, and the joint velocity q̇ ∈ R
n. The dynamics of the

floating base system can be expressed in the form

M(Rb, q)v̇ + b(Rb, q,v) +

(

0

d(q̇) + ∂Ue(θ,q)
∂q

T

)

=
∑

k

Jk(q)
TF k , (6.34)

whereM (Rb, q) denotes the symmetric and positive definite (n+6)×(n+6) inertia matrix,
b(Rb, q,v) ∈ R

(6+n) represents the generalized bias forces containing Coriolis/centrifugal
and gravity effects, and d(q̇) ∈ R

n are generalized dissipative forces satisfying d(q̇)T q̇ > 0
for all q̇ 6= 0. The term on the right hand side of (6.34) includes contact wrenches
F k ∈ R

6 acting at contact points k, with corresponding Jacobian matrices Jk(q). The last
n equations of (6.34) are assumed to be in the singular perturbation form of Sect. 3.2.3
such that the actuator coordinates θ ∈ R

n represent the control input. In particular,
the elastic potential Ue(θ, q) satisfies Assumption 3.2 and 3.3 such that there exists a
diffeomorphism q̄e : R

n → R
n satisfying

∂Ue(θ, q)

∂q

∣
∣
∣
∣
q=q̄e(θ)

= 0 , ∀θ ∈ R
n ,

analogously to Definition 3.4 of Sect. 3.1.1. Additionally, Assumption 3.3 ensures that
given any q ∈ R

n,

τ = −∂Ue(θ, q)

∂q

T

(6.35)

can be uniquely solved for θ = θ(τ , q). Thus, θ and τ ∈ R
n can be considered as equivalent

control inputs.
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6.2.2. 1-D task manifold

Consider as an intermediate step the coordinates x ∈ R
m, with m ≤ n, defined by the

mapping

x(q, q̄e(θ0)) : R
n × R

n → R
m . (6.36)

These coordinates are assumed to be defined such that they describe the task. Since the
goal is to achieve a certain elastic behavior, it is advantageous to define this coordinates
w. r. t. an equilibrium configuration q̄e(θ0) = const. such that q = q̄e(θ0) implies x = 0.
Then, the mapping

φ(x) : R
m → R

m−1 (6.37)

with full rank Jacobian matrix Jφ(x) = ∂φ(x)/∂x such that φ(x) = 0 defines an 1-D
submanifold of the task-space R

m,

Z := {x ∈ R
m |φ(x) = 0} . (6.38)

Remark 6.3. A natural choice of task-coordinates for legged floating base systems is given
by x(q) := rBC(q) − rBC(q̄e(θ0)), where rBC(q) : R

n → R
3 represents the position of the

total center of mass (COM) of the floating base system w. r. t. the body-fixed frame of the
base link {B}. In that case, the 1-manifold defined by (6.38) represents an 1-D curve along
which the displacement of the COM is constraint to evolve.

The elastic force acting in the co-tangent spaces of the 1-manifold defined by (6.38)
can be derived from the elastic potential Ue(θ0, q) = Ue(θ0, q(x(φ))) by considering the
(elastic) forces in the constraint direction first:

τφ = −
[
∂Ue(θ0, q(x(φ)))

∂q

∂q

∂x

∂x

∂φ

]T

= −∂x
∂φ

T ∂q

∂x

T ∂Ue(θ0, q)

∂q

T

. (6.39)

The last factor on the most right hand side of this equation equals the generalized elastic
force expressed in configuration coordinates as defined by (6.35). It can be seen that this
force is successively transformed to task and constraint coordinates by the transposed
of the Jacobian matrices ∂q/∂x ∈ R

n×m and ∂x/∂φ ∈ R
m×(m−1) corresponding to the

inverse of the mappings (6.36) and (6.37), respectively. In order to resolve the redundancy
in the problem of successive transformation of forces to lower-dimensional subspaces as
appearing in (6.39), the Jacobian matrices of the mappings (6.36) and (6.37) can be
augmented to become invertible [PCY99], i. e.,

(
dx
dnx

)

= Jaug
x dq , Jaug

x =

(
Jx

Jnx

)

∈ R
n×n , (6.40)

(
dφ
dnφ

)

= J
aug
φ dx , J

aug
φ =

(
Jφ

Jnφ

)

∈ R
m×m . (6.41)

The inversion of these augmented Jacobian matrices (which is required to evaluate (6.39))
can be simplified by considering the following lemma, which is proven in [Ott08, Sect. A.5].

Lemma 6.1. Let

Jaug =

(
J

Jn

)

(6.42)
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be a n× n matrix, where J ∈ R
m×n with m < n is of rank m. If the (n−m)× n matrix

Jn is chosen as

Jn =
(
ZSZT

)−1
ZS ,

where the nullspace base matrix Z of rank n−m satisfies JZT = 0 and the n× n matrix
S represents a positive definite metric, then, the inverse of (6.42) can be written in the
form

(Jaug)−1 =
[

S−1JT
(
JS−1JT

)−1
ZT
]

.

Applying this lemma to the matrices in (6.40) and (6.41) yields the Jacobian matrices
required in (6.39),

∂q

∂x
= S−1

x JTx
(
JxS

−1
x JTx

)−1
, (6.43)

∂x

∂φ
= S−1

φ JTφ

(

JφS
−1
φ JTφ

)−1
. (6.44)

Additionally, these inversions yield also expressions for the portions of the elastic potential
forces in the nullspaces of the task and constraint co-tangent spaces,

τ nx = −Zx
∂Ue(θ0, q)

∂q

T

(6.45)

and

τz = −Zφ

∂q

∂x

T ∂Ue(θ0, q)

∂q

T

, (6.46)

respectively. In particular, τ z represents exactly the portion of the elastic potential force
in the co-tangent spaces of the desired 1-manifold defined by (6.38).

6.2.3. Controller design

The controller at task-coordinate level comprises the two terms

τ x = JTφτ
des
φ + JTnφτ

des
z . (6.47)

The first term of (6.47),

τdes
φ = −Dφφ̇−Kφφ , (6.48)

with Dφ and Kφ being (m− 1)× (m− 1) symmetric and positive definite gain matrices,
implements the attractiveness of the desired 1-manifold. In other words, the controller
term (6.48) forces the motion of the task-coordinates x to approach the 1-D submanifold
Z defined by (6.38). The second term of (6.47) can be exploited to implement a limit
cycle in the 1-manifold Z, e. g., using the switching based control strategy of Sect. 4.4,

τdesz = τz +∆τz(τz) , (6.49)
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where τz is defined by (6.46) and

∆τz(τz) =







+τ̂z if τz > ǫτz
0 if |τz| < ǫτz

−τ̂z if τz < −ǫτz
(6.50)

represents the switching function. Herein, ǫτz > 0 and τ̂z > 0 denote the constant switching
threshold and amplitude, respectively. Note that, without this limit cycle controller,
i. e., τdesz = τz, only the portion of the elastic potential force in the co-tangent spaces
of the desired 1-manifold (6.46) would be implemented. This in turn would lead to an
exclusive, intrinsic elastic behavior for motions of the compliantly actuated system in that
submanifold.

In case of redundancy of the configuration-space w. r. t. to the task-space, i. e., m < n,
the task controller (6.47) determines the control input τ of the plant (6.34) with (6.35)
only up to n−m dimensions. In other words, there exists infinite actuator configurations
θ which implement the generalized force of the task τ x.

Resolving redundancy solely by nullspace projection

The redundancy in the implementation of the task controller (6.47) in the control input τ
can be resolved by projecting the intrinsic, generalized elastic potential force ∂Ue(θ0, q)/∂q
into the co-tangent space of the nullspace of the task, i. e.,

τ = JTx τ x − JTnxZx
∂Ue(θ0, q)

∂q

T

, (6.51)

cf. (6.40) and (6.45). This implementation preserves the equilibrium configuration q̄e(θ0)
as far as ∂Ue(θ0, q)/∂q generates no force interfering with the task control (6.47).

If the constraint is exactly satisfied, i. e., φ(x) = φ̇(x) = 0, and if additionally the
limit cycle controller is not active, i. e., ∆τz(τz) = 0, then, τ = −∂Ue(θ0, q)/∂q such that
the constant actuator configuration θ = θ0 implements the control input (6.51). This
is in accordance with the initial goal of minimizing the effort of modal shaping control.
Moreover, it is worth mentioning that the controller (6.51) requires no knowledge of the
contact state of the floating base system (6.34). While this might be an advantage from a
robustness point of view on the one hand, it does not allow to incorporate conditions on
the contact forces such as friction cone constraints on the other hand. This motivates the
alternative implementation proposed in the following.

Resolving redundancy by optimal contact force distribution

An alternative approach to implement the task control (6.47) in the control input τ is to
distribute the contact forces of the floating base system (6.34) via optimization. Consider
therefore a stacked vector of contact forces

f c =






f1
...

fnc




 ∈ R

3nc , (6.52)
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where nc is the number of contact points.3 The contact forces are related to the control
input τ by the mapping

τ = J c(Rb, q)
Tf c , (6.53)

where J c(Rb, q) =
∂rc(q)
∂q represents the Jacobian matrix of the mapping rc(q) : R

n → R
3nc

relating the configuration variables q to the absolute positions of the contact points rc.
Using the relation (6.53), the problem of finding a control input τ transforms into the
problem of distributing the contact forces f c such that they implement the task control
(6.47) subject to certain constraints on the contact forces itself. This can be achieved by
minimizing, e. g., a quadratic cost function of the form

E(f c) = α1

∥
∥JTc f c − JTx τ x

∥
∥
2
+ α2

∥
∥JTc f c − JTnxτ nx

∥
∥
2
+ α3 ‖f c‖2 , (6.54)

where the first term aims at implementing the task control (6.47), the second term aims at
preserving the equilibrium configuration q̄e(θ0), and the third term performs a regulation,
with weighting constants α1 ≫ α2 ≫ α3 > 0. Considering unilateral and Coulomb friction
constraints, i. e.,

f i ∈ Fi :=
{

f i ∈ R
3 |
√

f2ix + f2iy ≤ µfiz , fiz ≥ 0
}

, (6.55)

where µ ≥ 0 denotes the Coulomb friction coefficient,4 the optimization problem

minE(f c) s.t. f i ∈ Fi , ∀i ∈ {1, . . . , nc} (6.56)

can be solved to determine f c which using (6.53) yields the control input τ .
Note that if the Coulomb friction constraints (6.55) and the regulation term of the cost

function (6.54) are removed, i. e., fc ∈ R
3nc and α3 = 0, then, the control law (6.51) is

obtained.

6.3. Modal adaptation

The existence of oscillation modes forms the basis for configuration recurrent (oscillatory)
or periodic motions. By exploiting such natural oscillation dynamics, the energetic effi-
ciency and performance (for a given input power) can be maximized. This can be achieved
by controlling the compliantly actuated system in one of its oscillation modes. However,
any control in a mode requires the knowledge of its geometric shape. Since, oscillation
modes are intrinsic dynamics properties of the plant, this knowledge cannot be a priori
assumed. Even if oscillation modes are embodied in the (mechanical) design (e. g., by ap-
plying the methodology proposed in Sect. 5.2), model uncertainties need to be taken into
account. In robotic systems, model uncertainties might also be caused by picking a load,
or due to changing and (partially) unknown, environmental contact conditions. There-
fore, the method of modal adaptation control aims at identifying the geometric shape of
an oscillation mode. The basic idea is to excite an oscillation by injecting (potential)
energy (cf. Sect. 4.4) along an initial guess of the oscillation mode, and then, improve the

3Note that the contact forces f i are geometrically related to the contact wrenches F k as introduced in
(6.34).

4Using a polyhedral approximation of the friction cone, the constraint (6.55) can be expressed in linear
form.
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estimate by adapting to the resulting natural motion. By presuming the attractiveness of
oscillation modes given by damping effects (as validated in Sect. 5.3.3), which are present
in any physical system, it can be expected that the motion as well as the estimate of the
geometric shape converges successively to the oscillation mode.

6.3.1. Control input on oscillation mode

Consider the dynamics of the compliantly actuated system (5.33) investigated also in
Sect. 5.3.1, i. e.,

q̈ = g(q, q̇,θ) = −M(q)−1

[

b(q, q̇) +
∂U(θ, q)

∂q

T
]

. (6.57)

The configuration q ∈ R
n is assumed to be statically controllable via the control input

θ ∈ R
n, i. e., the potential function U(θ, q) satisfies Assumption 3.5 and 3.6 of Sect. 3.1.1.

Assume there exists a control input θ = θ0 = const. for which the dynamics (6.57)
features an oscillation mode Z ⊂ R

n, i. e., an invariant, 1-D submanifold of the configu-
ration space R

n such that once the state (q, q̇) is in T Z, it remains there for all future
time (cf. Definition 5.2 of Sect. 5.1.3). Let the oscillation mode Z be embedded as an
1-manifold S ⊆ R, such that the generally nonlinear, differentiable mapping,

F : Z → S , (6.58)

yields an 1-D parametrization s = F (q) of Z. Then, the induced scalar dynamics

s̈ =
∂

∂q

(
∂F (q)

∂q
q̇

)

q̇ +
∂F (q)

∂q
g(q, q̇,θ0) (6.59)

is equivalent to the original dynamical system (6.57) for all (q, q̇) ∈ T Z, since F is a
diffeomorphism of Z onto S.
Remark 6.4. The exact knowledge of F provides an explicit, scalar, second-order differ-
ential equation as given by (6.59). Therefore, finding F solves the problem of reducing the
dimensionality of the original dynamics (6.57) from n-D to 1-D as treated in [KM94].

The above derivation reveals how to reduce the n-D natural dynamics of the compliantly
actuated system, i. e., (6.57) with θ = θ0, to the 1-D dynamics of its oscillation mode.
However, in order to exploit this intrinsic dynamical behavior by control, it needs to be
investigated whether Z remains an invariant submanifold when the control input θ is
changed w. r. t. θ0, i. e., θ 6= θ0, and if there exists an 1-D modal control manifold for
which selecting the control input θ in the subset Z, still represents an oscillation mode
of the compliantly actuated system (6.57). Therefore, recall that the potential function
U(θ, q) satisfies Assumption 3.5 and 3.6 of Sect. 3.1.1. This implies the existence of a
diffeomorphism q̄(θ) : R

n → R
n (cf. Definition 3.4 and Proposition 3.1 of Sect. 3.1.1) such

that given any θ ∈ R
n,

∂U(θ, q)

∂q

∣
∣
∣
∣
q=q̄(θ)

= 0 . (6.60)

In particular, condition (6.60) defines the equilibrium configuration of the system (6.57)
q̄(θ) in terms of the control input θ. Since, the oscillation mode Z is defined w. r. t. an
equilibrium configuration, it is advantageous to determine also the corresponding modal
control manifold in terms of q̄(θ).
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Definition 6.1. Let Z be an oscillation mode of the compliantly actuated system (6.57),
satisfying Assumption 3.5 and 3.6 defined w. r. t. a constant control input θ = θ0 =
q̄−1(q0) according to Definition 5.2. Then, the set C := q̄−1(Z) is said to be a modal
control manifold corresponding to Z, if for any (other) θ ∈ C, the subset Z remains an
oscillation mode of the controlled system (6.57).

From Definition 6.1, it becomes evident that controlling the system (6.57) in its oscilla-
tion mode Z requires the inverse mapping of F ,

G : S → Z , (6.61)

of which the existence is ensured, since F is a diffeomorphism. Assuming that the com-
pliantly actuated system (6.57) features in addition to Z also a modal control manifold C
(according to Definition 6.1), the modally controlled dynamics on S can be expressed by

s̈ =
∂

∂q

(
∂F

∂q

∂G

∂s
ṡ

)
∂G

∂s
ṡ+

∂F

∂q
g

(

G(s),
∂G

∂s
ṡ, q̄−1(G(s̄des))

)

, (6.62)

where s̄des ∈ S represents the control input, which by hypothesis of Definition 6.1 is
“compatible” with the oscillation mode Z. Thereby, the corresponding control input θ (of
the original system (6.57)) is given by composing the inverse mappings G and q̄−1, i. e.,

θ =
(
q̄−1 ◦G

)
(s̄des) ∈ C . (6.63)

Note that the property of the compliantly actuated system (6.57) to feature an oscillation
mode Z implies not necessarily the existence of a corresponding modal control manifold
C. The existence of C represents an additional “symmetry” assumption imposed on the
potential function U(θ, q).

Assumption 6.2. The potential function U(θ, q) is symmetric w. r. t. the oscillation
mode Z in a sense that given any constant modal configuration s ∈ S/{s̄0}, where θ0 =
q̄−1(G(s̄0)) denotes the constant control input for which Z is defined, the potential force
satisfies

∂U(q̄−1(G(s̄)),q)
∂q

∣
∣
∣

T

q=G(s)
∥
∥
∥
∥

∂U(q̄−1(G(s̄)),q)
∂q

∣
∣
∣

T

q=G(s)

∥
∥
∥
∥

= const. , (6.64)

for all s̄ ∈ S/{s̄0}.

The above assumption enables to change the static equilibrium within the oscillation
mode. This property is constituted by potential functions, where the elastic and gravita-
tional part satisfy the modal condition independently (cf. Theorem 5.2 and Corollary 5.2).

6.3.2. Adaptation of oscillation modes

In the following, it is assumed that the mappings (6.58) and (6.61) (required to control the
system (6.57) in Z) are not (exactly) known. In that case, a basis function approach can
be considered to approximate (6.58) and (6.61) as shown in [Kra91].5 Without going into

5In [Cyb89] it has been shown that the superposision of nonlinearly parametrized sigmoidal functions can
approximate any nonlinear function up to an arbitrary precision [Kra91].
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details of function approximation theory, it is assumed that the mappings (6.58) and (6.61)
are determined by a generally large number nζ of parameters ζ ∈ R

nζ , i. e., s ≈ F (q, ζ)
and q ≈ G(s, ζ). Based on this assumption, one can consider the projection point of the
configuration q into the embedded 1-manifold corresponding to the parameters ζ,

q̂ = (G ◦ F )(q, ζ) . (6.65)

Then, given a series of observations q(r) in the time interval r ∈ [0; t] and assuming that
the parameters ζ(t) are constant during the observations [0; t], the problem of estimating
ζ(t) can be formulated as minimizing the average of the squared distance between q(r)
and its projection point q̂(r) over the observation interval [0; t], i. e.,

ζ̂(t) = min
ζ(t)

J(ζ(t)) , (6.66)

where

J(ζ(t)) =
1

t

∫ t

0
‖q(r)− (G ◦ F )(q(r), ζ(t))‖2 dr . (6.67)

This problem can be solved by means of common methods of numerical optimization. In
particular, these techniques can be applied recursively, e. g., by implementing an extended
Kalman filter approach [ACPS07]. However, the basis functions which approximate the
mappings (6.58) and (6.61) with sufficient accuracy depend in general nonlinearly on their
parameters. Therefore, the accurate adaptation of general oscillation modes entails the
common difficulties of nonlinear programming such as finding the global minimum of
(6.67). Note that estimating an exact representation of the oscillation mode implies that
the functional (6.67) vanishes identically.

The problem of modal adaptation simplifies drastically, if the (nonlinear) compliantly
actuated system (6.57) features an eigenvector according to Definition 5.1 of Sect. 5.1.

6.3.3. Adaptation of eigenmodes

Consider the compliantly actuated system (6.57). Assume that there exists a control
input θ = θ0 = const. for which this system features an eigenvector w according to
Definition 5.1 of Sect. 5.1.2. The constant vector w defines an eigenmode W ⊂ R

n, which
according to Theorem 5.1 of Sect. 5.1.2 represents an invariant, 1-D submanifold of the
configuration space R

n. In particular, the 1-D embedding F : W → S of the submanifold
W parametrizes a straight line. Therefore, F and also its inverse mapping G : S → W is
linear, i. e.,

q = G(s) = ws+ q̄(θ0) , (6.68)

where q̄(θ0) satisfies the static equilibrium condition (6.60). To derive the linear embed-
ding F , consider the n × (n − 1) matrix W̄ = ker

(
wT
)
= const. of rank n− 1 satisfying

W̄
T
w = 0 (cf. Theorem 5.1 of Sect. 5.1.2). Additionally, assume (without loss of gener-

ality) that the matrix W̄ is chosen such that the augmented n× n matrix W =
[
w W̄

]

is orthogonal, i. e., W−1 = W T . Then, F can be expressed as

s = F (q) = wT [q − q̄(θ0)] . (6.69)

From (6.68) and (6.69), it becomes clear that if the compliantly actuated system (6.57)
features also a modal control manifold C = q̄−1(W) according to Definition 6.1, then the
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6.3. Modal adaptation

knowledge of the (constant) eigenvector w enables to control the system in its embedded
1-manifold S.

In the following, the case is considered where the eigenvector w is not (exactly) known.
Therefore, an algorithm is derived which enables to adapt the eigenvector w, and con-
sequently also the mappings (6.68) and (6.69), based on observations of displacements
q̃(k) = q(k)− q̄(θ0) at discrete time k ∈ N.

Let w(k− 1) be an initial estimate of the eigenvector such that using (6.68) and (6.69),
the projection point of the displacement q̃(k) on the estimate of the embedded eigenmode
S is given by

ˆ̃q(k) = w(k − 1)s(k) (6.70)

where

s(k) = w(k − 1)T q̃(k) . (6.71)

Consider an observation interval [1; k] wherein the estimated eigenvector w(k) is assumed
to be held constant. Then, the problem of estimating w(k) can be formulated as find-
ing a w(k) which minimizes the average of the squared distance between the observed
displacement q̃(j) and its projection point ˆ̃q(j) over the observation interval j ∈ [1; k],
i. e.,

ŵ(k) = min
w(k)

J(w(k)) , (6.72)

where

J(w(k)) =
1

k

k∑

j=1

‖q̃(j) −w(k)s(j)‖2S(j) (6.73)

and the n × n matrix S(j) represents a time-varying, symmetric, and positive definite
metric.6

The problem (6.72) and (6.73) is well-known as principal component analysis (PCA).
Thereby, the estimate ŵ(k) represents the principal vector corresponding to the leading

singular value of the matrix of observations Q̃(k) =
[
q̃(1) . . . q̃(k)

]T ∈ R
k×n [BH89]. In

[OBL00], a solution to the adaptation problem is proposed, which is based on a standard
recursive least-squares (RLS) procedure. A possible alternative implementation can be
obtained by considering a Kalman filter (KF) based approach, as shown, e. g., in [ACPS07].
However, the RLS based method leads to the most simplest and computationally cheapest
realization of recursive PCA. Therefore, it will be considered for modal adaptation. Note
that the contribution of this thesis is to link the method of recursive PCA with the
problem of controlling nonlinear, compliantly actuated systems in its eigenmodes. Due
to the tantamount importance of modal adaptation for the control of nonlinear elastic
multibody systems, a brief derivation will be provided in the following, although the
details have already been described, e. g., in [ACPS07].

Let w(0) = const. be an initial guess of the eigenvector and let w(j − 1) = w(0) such
that in (6.73), s(j) = w(0)T q̃(j), for j = 1 . . . k. Then,

∂J(w(k))

∂w(k)
= 0 ⇐⇒ ŵ(k) =

Q̃(k)T s(k)

s(k)T s(k)
, (6.74)

6The metric can be chosen S(j) = γk−jI, where γ ∈ (0; 1] is a constant forgetting factor, which takes
the non-stationary environment into account. For simplicity, here, γ is chosen unity without loss of
generality.
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6. Modal Control

where s(k) =
[
s(1) . . . s(k)

]T ∈ R
k×1, solves the problem (6.72) and (6.73) in a sense

of least-squares. Now, assume that at time k, a new observation q̃(k) becomes available
such that Q̃(k) and s(k) can be partitioned in

Q̃(k) =

(
Q̃(k − 1)
q̃(k)T

)

(6.75)

and

s(k) =

(
s(k − 1)
s(k)

)

, (6.76)

respectively. Then, considering this partitioning in (6.74), it follows that

ŵ(k) =
Q̃(k − 1)T s(k − 1) + q̃(k)s(k)

s(k)T s(k)
(6.77)

=
w̃(k − 1) + q̃(k)s(k)

‖w̃(k)‖ (6.78)

= β(k)ŵ(k − 1) + α(k)q̃(k)s(k) , (6.79)

where in the second step, the property ‖ŵ(k)‖ = 1 is taken into account (i. e., ŵ(k) =

w̃(k)/ ‖w̃(k)‖), and in the last step, the substitutions α(k) =
(
s(k)T s(k)

)−1
and β(k) =

(
s(k − 1)T s(k − 1)

)
α(k) are performed. By choosing β(k) = 1− α(k)s(k)2 in (6.79), the

simple principal component analyzer, which is known as Oja’s rule [Oja82], i. e.,

ŵ(k) = ŵ(k − 1) + α(k)s(k) [q̃(k)− s(k)ŵ(k − 1)] , (6.80)

is obtained.

Remark 6.5. By selecting α(t) ∝ 1/t, the time continuous counterpart of Oja’s rule
(6.80) is given by

d

dt
ŵ(t) = R(t)ŵ(t)−

(
ŵ(t)TR(t)ŵ(t)

)
ŵ(t) , (6.81)

where R(t) =
∫ t
0 q̃(r)q̃(r)

Tdr.

Theorem 6.3. [Oja82] If the n × n matrix R(t) is at least positive semi-definite, and
if the largest eigenvalue of R(t) has multiplicity one, then, the normalized eigenvector
r corresponding to the largest eigenvalue of R(∞) represents an asymptotically stable
equilibrium point of the dynamical system (6.81). That is, if ŵ(0)T r > 0 or ŵ(0)T r < 0,
then ŵ(t) converges to r or −r as t→ ∞, respectively.

6.3.4. Modally adaptive periodic motion control

In the following, the concepts of modal adaptation and switching based limit cycle control
(Sect. 4.4) are combined.
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6.3. Modal adaptation

Oscillation modes

Consider the compliantly actuated system (6.57). Assume that the system features an
oscillation mode Z and a corresponding modal control manifold C = q̄−1(Z) according to
Definition 5.2 and 6.1, respectively. Then, defining the control input of the system (6.57)
by (6.63), i. e.,

θ = q̄−1
(

G
(

s̄des, ζ̂
))

, (6.82)

s̄des(s(t), s̄des− ) = s̄0 +







+ˆ̄s if s(t)− s̄des− < −ǫφs
0 if

∣
∣s(t)− s̄des−

∣
∣ < ǫφs

−ˆ̄s if s(t)− s̄des− > ǫφs

, (6.83)

implements the switching based control (4.4) of Sect. 4.4 on the embedded 1-manifold
S. In (6.83), s̄des− represents the state of the switching function s̄des(s(t), s̄des− ) before
the switching instance, and ˆ̄s > 0 and ǫφs > 0 are switching amplitude and threshold,

respectively. The dependency of the inverse mapping G(·, ζ̂) on ζ̂ indicates that the
controller (6.82) and (6.83) is based on an estimate of S. Therefore, by presuming a
certain attractiveness of the oscillation mode Z,7 the switching control (6.82) and (6.83)
can be combined with an algorithm which adapts to ζ̂ by minimizing the cost function as
introduced in (6.73). This enables not only the generation of periodic motions, but also
offers the capability of identifying oscillation modes.

Eigenmodes

The problem of modally adaptive periodic motion control simplifies, if the oscillation mode
Z represents an eigenmode W according to Definition 5.1 and Theorem 5.1, i. e., Z = W.
If the compliantly actuated system (6.57) features an eigenmode W and a corresponding
modal control manifold C = q̄−1(W) according to Definition 6.1, the control (6.82) and
(6.83) reduces to

θ = q̄−1
(

q̄(θ0) + ŵ(t)s̄des
)

, (6.84)

s̄des(s(t), s̄des− ) =







+ˆ̄s if s(t)− s̄des− < −ǫφs
0 if

∣
∣s(t)− s̄des−

∣
∣ < ǫφs

−ˆ̄s if s(t)− s̄des− > ǫφs

, (6.85)

where the initial control input θ0 = const. is assumed to satisfy θ0 ∈ C. The control (6.84)
and (6.85) depends on the mappings (6.69) and (6.68), which implement the limit cycle
control (4.4) of Sect. 4.4 on the embedded 1-manifold S corresponding to the eigenmode
W. Since, these mappings are linear and fully determined by the constant eigenvector w,
Oja’s rule (6.80) represents a simple but effective algorithm to adapt the eigenmode W.

Remark 6.6. By virtue of Remark 6.5, the difference equation (6.80) can be approxi-
mated by the differential equation (6.81), or (6.80) can be directly replaced by (6.81), if
a continuous-time frame work can be assumed. If the correlation matrix R(t) is at least
positive semi-definite and the largest eigenvalue of R(t) has multiplicity one, Theorem 6.3

7Local attractiveness of Z is a result of damping inherent any physical plant, cf. Sect. 5.3.3.
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ensures that (6.81) features an asymptotically stable fixed-point r representing the normal-
ized eigenvector corresponding to the largest eigenvalue of R(∞). Therefore, assuming a
certain attractiveness of the eigenmode W and initializing ŵ in the corresponding region
of attraction, it can be expected that the control (6.84) and (6.85) excites a motion q̃(t)
with (unique) maximum variance in the direction of w. This implies not only that the
conditions on the eigenvalues of R(t) are satisfied, but also gives rise to r ≈ w. As a
result, ŵ converges to w as t → ∞ such that the n-D dynamical system (6.57) collapses
to the scalar dynamics (6.62). However, this in turn would allow to conclude the existence
of an asymptotically stable limit cycle according to Theorem 4.1 and 4.2.

Remark 6.7. The modally adaptive periodic motion control (6.84), (6.85) and (6.80)
requires the knowledge of the mapping q̄(θ) and its inverse, which can be computed based
on a model of the potential energy U(θ, q). However, for a practically important subclass
of compliantly actuated systems (6.57), the approximation q̄(θ) ≈ θ suffices to generate a
periodic motion in W. This subclass contains the cases, where the potential energy can be

separated in U(θ, q) = Ug(q)+Ue(q−θ), and each of the terms
∂Ug(q)
∂q and ∂Ue(q−θ)

∂q satisfies
the eigenvector condition of Definition 5.1, independently. For such systems, the control
(6.84), (6.85) and (6.80) uses no model-parameter knowledge to compute the feedback. In
any case, the controller depends only on measurements at position level, i. e., q(t), and no
(numerical) derivatives of measured signals are required. Therefore, the control method is
very robust against model uncertainties and sensor noise.

6.4. Modal matching

Oscillation modes (as defined in Sect. 5.1) are 1-D, invariant submanifolds, which describe
the natural, oscillatory behavior of n-D elastic multibody dynamics w. r. t. an equilibrium
configuration. While, the solutions of n-D, linear spring mass systems can always be de-
composed in terms of n eigenmodes (independently of the equilibrium configuration), the
number of oscillation modes which a nonlinear, compliantly actuated system may feature
is not necessarily determined by its dimensionality n. This is as the inertial properties
of such systems depend nonlinearly on the configuration, and even the static equilibrium
conditions are nonlinear. The proposed method of modal matching control aims at ex-
ploiting the additional “degree of freedom” resulting due to these nonlinearities in order to
match and control the natural oscillatory behavior of compliantly actuated systems w. r. t.
a given task. The concept of modal matching is based on the idea of controlling the local
eigenvectors rather than considering globally valid oscillation modes. On this basis, the
modal matching methodology introduces an algorithm to find equilibrium configurations
for which a local eigenvector matches to the desired direction of the task. Additionally, a
corresponding differential mapping is proposed, which enables to continuously control the
direction of these local eigenmodes. The approach is predestined to control the oscilla-
tory behavior during the stance phase of highly dynamical gaits. Therefore, the matching
algorithm and continuous control methods are derived based upon the general model of
compliantly actuated, legged, free floating base systems, which are subject to contact con-
straints. This trivially contains also the case of compliantly actuated, fixed-base systems.
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6.4. Modal matching

6.4.1. Task dynamics formulation via constraints

Consider the compliantly actuated, free floating base system, which can be partitioned in
the form

M (xb, q)

(
Dẋb

Dt
Dq̇
Dt

)

+





∂U(θ,xb,q)
∂xb

T

∂U(θ,xb,q)
∂q

T



 = 0 . (6.86)

The system (6.86) is defined on an affinely connected Riemannian space with metric tensor

M(xb, q) =

[
Mbb(xb, q) Mbq(xb, q)
Mbq(xb, q)

T Mqq(xb, q)

]

(6.87)

and corresponding Riemannian connection according to Definition 2.7 and 2.13. Its global
coordinates comprise the base and statically controllable configuration variables, xb ∈ R

nb

and q ∈ R
n, respectively, for which nb ≤ n is assumed. In particular, the base coordinates

xb are assumed to be selected such that they represent the desired task. The potential
function U(θ,xb, q) = Ug(xb, q)+Ue(θ, q) consists of the gravity potential Ug(xb, q) and
the elastic potential Ue(θ, q). Additionally, U(θ,xb, q) satisfies Assumptions 3.5 and 3.6
in a sense that for any xb ∈ R

nb , q is statically controllable via the control input θ ∈ R
n.

The proposed formulation of the task dynamics is based upon physical constraints.
Consider therefore the mapping φ : R

nb × R
n−nb × R

n → R
n satisfying

φ(xb, l, q) = 0 (6.88)

Remark 6.8. In case of legged systems, the functions φ comprise contact points corre-
sponding to legs in stance, but may contain also configurations of legs in swing.

The additional coordinates l ∈ R
n−nb are introduced to explicitly resolve the problem

of over-actuation. They have to be chosen such that n− nb constraints are “relaxed”.

Remark 6.9. A natural choice of l for legged systems is given by the relative distance
between contact points corresponding to different legs in stance.

Assumption 6.3. The n × n Jacobian matrices ∂φ(xb,l,q)
∂q and

[
∂φ(xb,l,q)

∂xb

∂φ(xb,l,q)
∂l

]

of

the constraint mapping φ(xb, l, q) are invertible for all q ∈ R
n and (xb, l) ∈ X , where

X ⊂ R
n.

Based on this assumption, the task dynamics can be derived by introducing the Lagrange
multipliers λ ∈ R

n, which incorporate the constraints (6.88) in (6.86) (cf. Sect. 2.4), i. e.,

[
MbbMbq

]

(
Dẋb

Dt
Dq̇
Dt

)

+
∂U(θ,xb, q)

∂xb

T

=

(
∂φ(xb, l, q)

∂xb

)T

λ , (6.89)

0 =

(
∂φ(xb, l, q)

∂l

)T

λ , (6.90)

[
MT

bqMqq

]

(
Dẋb

Dt
Dq̇
Dt

)

+
∂U(θ,xb, q)

∂q

T

=

(
∂φ(xb, l, q)

∂q

)T

λ . (6.91)
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The Lagrange multipliers λ in (6.89)–(6.91) can be eliminated by substituting (6.91) in
(6.89) and (6.90), which yields,

([
MbbMbq

]
+ΦT

qb

[
MT

bqMqq

])

(
Dẋb

Dt
Dq̇
Dt

)

= −∂U(θ,xb, q)

∂xb

T

−ΦT
qb

∂U(θ,xb, q)

∂q

T

,

(6.92)

ΦT
ql

[
MT

bqMqq

]

(
Dẋb

Dt
Dq̇
Dt

)

= −ΦT
ql

∂U(θ,xb, q)

∂q

T

. (6.93)

The transposed of the Jacobian matrices,

Φqb(xb, l, q) = −
(
∂φ(xb, l, q)

∂q

)−1(∂φ(xb, l, q)

∂xb

)

, (6.94)

Φql(xb, l, q) = −
(
∂φ(xb, l, q)

∂q

)−1(∂φ(xb, l, q)

∂l

)

, (6.95)

transform (pull-back) not only forces (co-vectors) from q to xb and l coordinates, Φqb

and Φql map (push-forward) also the velocities (vectors) in the opposite direction, e. g.,
ẋb and l̇ to q̇, respectively. Since the covariant time derivatives of vector fields are again
vectors, they transform accordingly such that

Dq̇

Dt
= Φqb

Dẋb

Dt
, (6.96)

Dq̇

Dt
= Φql

Dl̇

Dt
(6.97)

hold. Therefore, the constrained dynamics (6.92) and (6.93) can be compactly expressed
in terms of the “extended” task coordinates x = (xb, l) ∈ X , i. e.,

M̄ (x, q)
Dẋ

Dt
= −∂U(θ,xb, q(x))

∂x

T

, (6.98)

where the constrained inertia matrix and potential force, which are required later, are
given by

M̄ =

[

Mbb +MbqΦqb +ΦT
qbM

T
bq +ΦT

qbMqqΦqb MbqΦql +ΦT
qbM qqΦql

(
MbqΦql +ΦT

qbM qqΦql

)T
ΦT

qlM qqΦql

]

(6.99)

and

∂U(θ,xb, q(x))

∂x

T

=





∂U(θ,xb,q)
∂xb

T
+ΦT

qb
∂U(θ,xb,q)

∂q

T

ΦT
ql
∂U(θ,xb,q)

∂q

T



 , (6.100)

respectively.

Remark 6.10. The derivation of the constrained task dynamics formulation exploits the
concept of covariant differentiation as introduced in Sect. 2.2.3. This leads to a very
compact notation, as the Coriolis/centrifugal terms are “hidden” in the operator D. Con-
sidering, e. g., the affinely connected Riemannian manifold with metric tensor M̄(x), then,
the covariant differential of the vector field ẋ(x) can be expressed as

Dẋj = dẋj + Γh
j
kẋ

hdxk = 0 , i, j, k = 1 . . . n ,

where Γh
j
k denotes the Christoffel symbols of the second kind, which are associated with

the metric tensor M̄(x) (cf. Definition 2.10 and 2.13).
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According to Assumption 6.3, q and q̇ can always be expressed in terms of x and
ẋ such that the dependencies of the components in (6.98) could have been replaced,
respectively. However, since the modal matching algorithm proposed in the following
section aims at including also solutions which not satisfy the constraints (6.88) identically,
this replacement is not performed. Instead, the unconstrained coordinates χ = (x, q) ∈
R
2n are introduced.

6.4.2. Modal matching algorithm

In this section, an algorithm is derived which matches the local eigenvectors of constrained
dynamics of the form (6.98) to a given task. Consider therefore the linearization of (6.98)
w. r. t. to an equilibrium position x̄(q̄(θ)),

M̄(χ̄)ẍ+ K̄(χ̄) [x− x̄(q̄(θ))] = 0 . (6.101)

Herein, K̄(χ̄) = ∂2U(θ,xb, q(x)/∂x
2 represents the local stiffness matrix at the point

of linearization χ̄ = (x̄(q̄), q̄). The ordinary time derivative ẍ of ẋ results due to the
linearization of the covariant derivative Dẋ/Dt. Assuming algebraic and geometric mul-
tiplicity of one, the generalized eigenvalue problem corresponding to K̄(χ̄) and M̄(χ̄)
(cf. (5.6) and (5.7)),

λM̄(χ̄)w = K̄(χ̄)w (6.102)

s.t. ‖w‖2 = 1 , (6.103)

yields as solution n generalized eigenvectors wi(χ̄) ∈ {w ∈ R
n | ‖w‖2 = 1}, for i = 1 . . . n.

Based on wi(χ̄), the problem of modal matching can be formulated as follows:

Problem 6.1. Given is the desired eigenvector wdes expressed w. r. t. the task coordinates
x. Let w(j)(χ̄) be the eigenvector which has minimum distance to the desired eigenvector
wdes, i. e., k = mini∈[1;n] (‖wi(χ̄)−wdes‖). Then, the problem of modal matching can be
formulated as finding an equilibrium configuration χ̄ satisfying the constraints (6.88) for
which w(j)(χ̄) = wdes.

In the following, the algorithm which solves this problem is derived. Thereby, the
simplified notation w := w(j) is used.

Consider the differential mapping

dw =
∂w(χ̄)

∂χ̄
dχ̄ (6.104)

and approximate dw ≈ wdes−w and dχ̄ ≈ χ̄(j+1)− χ̄(j). Then, a recursion of the form

χ̄(j + 1) = χ̄(j) +

[
∂w

∂χ̄
(χ̄(j))

]†

(wdes −w) (6.105)

can be considered to find a ˆ̄χ which minimizes the error w̃ = wdes − w. In (6.105),
the operator (·)† denotes the generalized inverse of a matrix. This is required since the
linear system of equations (6.104) is under-determined, i. e., ∂w/∂χ̄ is a n×2n matrix. In
particular, the matrix ∂w/∂χ̄ is of rank n−1, since the length of the eigenvector is identity
(cf. condition (6.103)). This rank-deficiency can be resolved by introducing a mapping of
the form y(w) : R

n → R
n−1, where y = y(w) is a representation of the direction of w
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(see, Appendix A.2.2). The differential of this mapping takes the form dy = ∂y(w)
∂w dw.

Applying the chain rule results in

∂y

∂w
dw =

∂y

∂w

∂w

∂χ̄
dχ̄ , (6.106)

where the (n− 1)× 2n Jacobian matrix (∂y/∂w)(∂w/∂χ̄) is of rank n− 1. Note that the
Jacobian matrix in (6.106) does not account for the constraints (6.88), which represent an
implicit relation between q̄ and x̄. The constraints (6.88) can be incorporated differentially
by

[
∂y
∂wdw
0

]

= J(χ̄)dχ̄ (6.107)

where

J(χ̄) =

[
∂y
∂w

∂w
∂χ̄

∂φ
∂χ̄

]

(6.108)

is now a (2n − 1) × 2n matrix. Therefore, the linear system of equations (6.107) is still
under-determined. The degree of freedom in the solution of (6.107) can be exploited to
span an 1-D subspace.8 In case of mode matching it represents the vector space where
changes in the configuration dχ̄ do not vary the eigenvector w. The remaining nullspace
can be resolved by augmenting the Jacobian [PCY99]:

Jaug =

(
J

Z

)

, (6.109)

where the 1 × 2n matrix Z represents a basis spanning the nullspace of J such that
JZT = 0. Finally, the mode matching algorithm can be compactly described by the
following formula:

χ̄(j + 1) = χ̄(j) + γJaug(χ̄(j))
−1





∂y
∂w (wdes −w(j)(χ̄(j)))

0n×1

Z(χ̄(j)) (χ̄des − χ̄(j))



 . (6.110)

Herein, χ̄des denotes the desired equilibrium configuration satisfying the constraints (6.88),
i. e., φ(χ̄des) = 0, and γ > 0 represents the step size of the iteration. Note that χ̄des is
maintained with lower priority compared to achieving the desired eigenvector wdes and
keeping the constraints (6.88).

Remark 6.11. The closed-form computation (i. e., avoiding finite differences) of the aug-
mented Jacobian in (6.110) requires to compute the closed-form differentiation of the eigen-
vector w w. r. t. the optimization parameters χ̄. This can be achieved using the procedure,
which is provided in Appendix A.2.3.

6.4.3. Local eigenvector control

The eigenvector Jacobian matrix ∂w/∂χ constitutes a differential relation between the
configuration χ and the eigenvector w. This relation can be exploited to continuously

8Note that there exist infinitely many possibilities to span the nullspace of J .
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control the eigenvector, e. g., by introducing a potential which stabilizes the direction y

of the eigenvector w w. r. t. an equilibrium y0. In order to implement such a behavior,
consider the elastic potential Ue(θ, q) and assume that q = q(y). Then, analogously to
(6.39), the elastic force on the manifold of the eigenvector direction y can be expressed as

τ y = −
[
∂Ue(θ, q(y))

∂q

∂q

∂y

]T

. (6.111)

The n× (n− 1) Jacobian matrix ∂q/∂y can be derived by substituting the differential of
the constraints (6.88),

dφ =
∂φ(x, q)

∂x
dx+

∂φ(x, q)

∂q
dq = 0 , (6.112)

in the expression of the differential of y, i. e.,

dy =
∂y(w)

∂w

[
∂w(x, q)

∂x
dx+

∂w(x, q)

∂q
dq

]

(6.113)

=
∂y(w)

∂w

[

∂w(x, q)

∂q
− ∂w(x, q)

∂x

(
∂φ(x, q)

∂x

)−1 ∂φ(x, q)

∂q

]

dq (6.114)

= J̄(q)dq . (6.115)

This yields the (n− 1)× n Jacobian matrix J̄(q) = ∂y/∂q of which the inverse is needed
to compute τ y in (6.111). Again, the 1-D nullspace can be resolved by augmenting J̄ by

a 1× n matrix Z̄ 6= 0 satisfying J̄ Z̄
T
= 0 such that

J̄aug(q) =

[
J̄(q)
Z̄(q)

]

(6.116)

is invertible. Therefore, the elastic force on the manifold of the eigenvector direction y is
given by

[
τ y(θ, q)
τw(θ, q)

]

= −J̄aug(q)
−T ∂Ue(θ, q)

∂q

T

, (6.117)

where τw ∈ R represents the portion of the elastic force, which does not change the
direction of the eigenvector w. Then, given an equilibrium configuration q0 (which may
be the result of the modal matching procedure of Sect. 6.4.2) and a desired eigenvector
direction ydes, a positive definite potential of the form Uy(y − ydes) : R

n−1 → R can be
implemented by

τ (θ, q) = −∂Ue(θ, q)

∂q

T

= J̄aug(q)
T

(
τ des
y (y)

τw(q̄
−1(q0), q)

)

. (6.118)

Thereby,

τdes
y (y) = −∂Uy(y − ydes)

∂y

T

(6.119)

represents the control of the eigenvector direction, and in particular, the force which does
not affect the eigenvector direction,

τw(q̄
−1(q0), q) = −Z̄(q)

∂Ue(q̄
−1(q0), q)

∂q

T

, (6.120)

is completely realized by the original elastic potential of the plant Ue.
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6.5. Validation

In this section, the modal control approaches are validated in simulations and experiments
on compliantly actuated robotic systems. In addition to the proof of concept, the par-
ticular focus lays on establishing the basic qualification of the proposed modal control
methods for dynamic legged locomotion. The concepts of modal globalization and adap-
tation control as introduced in Sect. 6.1 and 6.3, respectively, are general methods which
can be exploited to efficiently generate periodic motions in compliantly actuated robotic
legs as well as arms. They are experimentally tested on the variable stiffness actuator
(VSA) robotic arm, DLR Hand Arm System [GASB+11] also due to its availability. Fur-
thermore, a comprehensive experimental verification including an optimality analysis of
modal adaptation based control for a robotic leg with compliantly actuated joints is pro-
vided in [SLOAS17]. A key feature of modal shaping control (Sect. 6.2) is the resolution
of (elastic) over-actuation (i. e., the number of statically controllable variables is greater
than the number of degrees of freedom) which typically appears in multi-legged systems.
Therefore, modal shaping control is validated on a compliantly actuated quadruped model
in simulation. The modal matching algorithm and the derived local eigenvector control
(Sect. 6.4) are predestined tools for jumping and running control in elastic, segmented
legged systems. A proof of concept of modal matching based control is performed on a
compliantly actuated, single leg model in simulation.

6.5.1. Experiments on the DLR Hand Arm System

The DLR Hand Arm System shown in Fig. 6.2 is a prototypical variable stiffness actuator
(VSA) robotic system, which is comprehensively described in [GASB+11]. The arm (ex-
cluding the lower arm rotation and the wrist) consists of a 4 degrees of freedom kinematic
chain (three orthogonal rotation axes in the shoulder, one for the elbow). Thereby, each
joint is equipped with a VSA mechanism implemented as a main motor in series with a
nonlinear spring and a much smaller motor to adjust the stiffness characteristic, where the
positional coordinates are denoted by θ and σ, respectively (cf. Fig. 6.2b). The order of
nonlinearity introduced due to the mechanically implemented floating spring joint [WH08]
is depicted in Fig. 6.2c for several stiffness presets. In the case of the lowest preset σ = 0
the variation of the stiffness over the minimum and maximum spring deflection is about
1400%. Here, the stiffness presets of all joints are held to constant values during all ex-
periments, i. e., σ = const. are regarded as parameters. The rigid body dynamics satisfies
Assumption 3.8 and 3.9 such that the fully justified model

Bθ̈ +
∂Ue(q − θ)

∂θ

T

= u , (6.121)

M(q)q̈ +C(q, q̇)q̇ +
∂Ug(q)

∂q

T

+
∂Ue(q − θ)

∂q

T

= τ ext , (6.122)

can be considered.9

9Dissipative forces are omitted in this model, since damping and friction in parallel to the elasticity and
on the link-side are negligible by mechancal design. Furthermore, a friction compensation as proposed
in [TASLH08] can be presumed on the motor side.
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Figure 6.2.: Description of the arm of the DLR Hand Arm System. (a) highlights the VSA
joints implemented as sketched in (b). (c) depicts the stiffness characteristic
for adjuster positions σ = {0, 0.02, . . . , 0.18}. Herein, the most outer curve
corresponds to σ = 0.

Modal globalization based periodic motion control

The modal globalization based limit cycle controller (6.5) in combination with (6.31) has
been tested in experiments on the DLR Hand Arm System. Since, (6.5) presumes the
elastic torques,

τ = f e(θ − q) := −∂Ue(q − θ)

∂q

T

=
∂Ue(q − θ)

∂θ

T

(6.123)

as control input, a decoupling based approach to track desired elastic torques τdes has
been considered.10

The controller is based upon the transformation of the motor dynamics (6.121) under
the change of coordinates θ = f−1

e (τ ) + q, which yields

B

[
∂f−1

e (τ )

∂τ
τ̈ +

d

dt

(
∂f−1

e (τ )

∂τ

)

τ̇

]

+Bq̈ + τ = u . (6.124)

Selecting the control input in (6.121) as

u = Bq̈ +B
d

dt

(
∂f−1

e (τ )

∂τ

)

τ̇ + τ des +B
∂f−1

e (τ )

∂τ

(
τ̈ des −Dτ

˙̃τ −Kττ̃
)
, (6.125)

leads to the decoupled error dynamics of the elastic torque,

¨̃τ +Dτ
˙̃τ +

[

Kτ +

(
∂f−1

e (τ )

∂τ

)−1

B−1

]

τ̃ = 0 , (6.126)

10The method is an extention of [OASKH03] to the case of nonlinear elasticities.
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Figure 6.3.: Phase plots of modal (top) and joint (bottom) motion: (a) first mode, low
VSA stiffness; (b) first mode, high VSA stiffness; (c) second mode; (d) external
disturbance.

where τ̃ = τ−τdes denotes the tracking error, and Kτ and Dτ are symmetric and positive
definite controller gain matrices.

The modal globalization control (6.5) has been implemented by selecting τdes in (6.125)
as

τ des =
∂Ug(q)

∂q

T

−D(q)q̇ −K(q)∆q +W (q)−T C̃(q, q̇)ż + γ(q, q̇, q̈) , (6.127)

where D(q)q̇ = W (q)−Tdiag
(

2ξi
√

λi(q)
)

W (q)−1q̇. For all experiments the desired

stiffness has been set to K = I4×4150.0Nm/rad, and the modal damping factors have
been chosen

ξk =

√

λk(t)

2
kH

[

H̃(t, zk, żk)−
λ̇k(t)

2λk(t)2

]

(6.128)

to generate a limit cycle on the k-th (globalized) mode according to (6.31) and ξi = 1 for
the remaining modes, i. e., i ∈ [1; 4]/{k}. The parameters of the torque tracking control
(6.125) have been set to Kτ = diag(10, 5, 5, 5) 1/t{s}2 and Dτ = diag(2ξτωτ,i) 1/t{s},
where ξτ = 1 and ωτ = (Kτ +

(
∂f−1

e (τ )/∂/τ
)−1

B−1)1/2. To overcome the numerical
computation of higher derivatives of measured signals, only the desired joint torque τdes

and the first derivative τ̇des had been considered in (6.125). The limit cycle control (6.128)
has been applied either to the first or second mode. Thereby, the desired total energy has
been set to Hdes = 0.08 J or Hdes = 0.035 J, respectively, and the corresponding gain has
been selected kV = 1.5. In order to induce the limit cycle motion, the robotic arm has
been manually pushed from one of the initial configurations: qdes = (−π/6, 0, 0, π/3) for
the first and qdes = (π/6, π/6, π/12, π/3) for the second mode.
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Figure 6.4.: Measured and desired elastic torque corresponding to the second mode motion
depicted in Fig. 6.3c.

The experimentally recorded first mode motions for the stiffness presets σ = σmin (low
stiffness) and σ = 0.5σmax (high stiffness) are shown in Fig. 6.3a and 6.3b. For both
stiffness presets the modal motion is similar. This is as the desired dynamics is the same.
In both cases, the motion of the first mode asymptotically approaches the limit cycle,
while the motion of the remaining modes stays within a small region around the origin of
the modal state space. The motion in terms of link positions involves mainly the first and
fourth joint. Second mode motions are shown in Fig. 6.3c. This mode involves the motion
of all joints. The corresponding tracking performance of the elastic torque controller is
shown in Fig. 6.4. During the regulation phase (where the robot maintains in the initial
configuration), a constant tracking error can be observed. This can be due to friction (not
considered in the elastic torque tracking control). In order to reduce the tracking error
during the high acceleration phases of the desired torque, the second time derivative τ̈des

can be provided. Furthermore, the attractive behavior of the modal limit cycle is depicted
in Fig. 6.3d. Thereby, the robotic arm has been externally disturbed by catching and
releasing the wrist manually during motion. The motion converges back to the limit cycle
in less than a half an oscillation cycle.

To verify the efficiency of the proposed approach, a performance measure based on
power considerations is introduced. Consider the total power of the VSA robot dynamics
(6.121), (6.122), and (6.123):

Ptot = τTtotq̇
︸ ︷︷ ︸

Plink

+ uT θ̇
︸︷︷︸

Pmotor

+
∂Ue(θ, q)

∂q
q̇

︸ ︷︷ ︸

Pstf

+Pdis . (6.129)

Herein, Plink (where τ tot = τ +τ ext) and Pmotor denote the power of the links and motors,
respectively. The power transmitted via the springs is denoted by Pstf and Pdis represents
the dissipated power. The generated motion is periodic. Since, the link variables q are
statically controllable via the motor coordinates θ, also the input and output power is
periodic. Additionally, the power flow w. r. t. the motors is subject to substantial losses in
both directions. An efficiency measure which accounts for the periodicity and the losses
of motor power can be defined as the ratio of root-mean-square (RMS) values of the input
and output power, i. e.,

ηRMS(t) =

√
∫ t
0 Plink(r)2dr

√
∫ t
0 Pmotor(r)2dr

. (6.130)

The performance in case of low and high VSA stiffness presets is compared for equal desired
modal limit cycle dynamics. Thereby, ηRMS(t) has been evaluated for the experimental
recordings corresponding to motions shown in Fig. 6.3a and Fig. 6.3b. The time evolutions
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Figure 6.5.: Efficiency of modal globalization based control. (a) Comparison of the mea-
sures ηRMS for high and low VSA stiffness presets. (b) Link and motor position
corresponding to the more efficient VSA stiffness preset.

of ηRMS,low(t) and ηRMS,high(t), which are plotted in Fig. 6.5a, are qualitatively similar for
both cases and can be explained as follows. During the resting phase, the motor and
link power is zero, and consequently the performance measures are meaningless. As the
robot is externally disturbed ηRMS ≫ 1 due to the external power input. Then, the
controller is active and the value undercuts ηRMS = 1 before it approaches the stationary
values of ηRMS,low ≈ 1.8 and ηRMS,high ≈ 2.3. In the stationary phase, the effective motor
power is lower than the link power. The difference is provided by the elastic elements.
Simply speaking, the motor performs less motion than the link as shown in Fig. 6.5b.
In particular, matching the VSA stiffness to the desired dynamics leads to increasing
efficiency. Therefore, it can be concluded that the modal globalization based limit cycle
generation is efficient w. r. t. the power exchange.

Modally adaptive periodic motion control

The modally adaptive periodic motion control (6.80), (6.84), and (6.85) has been verified
in experiments with the DLR Hand Arm System. Since, (6.84) defines the motor position
θ as control input, a PD controller of the form (cf. (3.31))

u = −KP (θ − θdes)−KDθ̇ (6.131)

is considered. For all experiments the controller gains are set to the maximally realizable
values of KP = I4×46000Nm/rad and KD = I4×4250Nms/rad such that the singular
perturbation assumption of Sect. 3.2.3 is satisfied, i. e., θ ≈ θdes. The switching function
(6.85) is implemented based on feedback of the elastic torque (6.123) along w:

τs = −wT ∂Ue(q − θ)

∂q

T

, (6.132)

θs(τs(t)) =







+θ̂s if τs(t) > ǫτs
0 if |τs(t)| < ǫτs

−θ̂s if τs(t) < −ǫτs
. (6.133)
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This implementation neglects the influence of gravity such that the control input (6.84)
becomes

θ = θ0 +wθs . (6.134)

In particular, it allows to propose a physical interpretation of the switching parameters
ǫτs > 0 and θ̂s > 0:

Remark 6.12. Consider the case where τs crosses −ǫτs from above. Assume without loss
of generality that θ0 = 0. Then, the energy injected due to the switching is given by

∆Ue = Ue(q +wθ̂s)− Ue(q) =
∂Ue(φ)

∂φ

∣
∣
∣
∣
φ=q+c1wθ̂s

wθ̂s , (6.135)

with q ∈ A, where the jump set

A :=

{

q ∈ R
n | ∂Ue(q)

∂q
w = ǫτs

}

(6.136)

represents a (n − 1)-D submanifold of the n-D configuration space. The latter equality
in (6.135) follows from the mean value theorem, where c1 ∈ [0; 1]. The difference of the
elastic torque along w due to the switching can be expressed as

∆τs =
∂Ue(q +wθ̂s)

∂q
w − ∂Ue(q)

∂q
w (6.137)

=
∂Ue(q +wθ̂s)

∂q
w − ǫτs (6.138)

= wT ∂2Ue(φ)

∂φ2

∣
∣
∣
∣
φ=q+c2wθ̂s

wθ̂s , (6.139)

where equality (6.138) exploits q ∈ A. In (6.139), the mean value theorem with c2 ∈ [0; 1] is
applied again. By virtue of Assumption 3.2, the Hessian of the elastic potential (sometimes
referred to as the local stiffness) ∂2Ue(φ)/∂φ

2 keeps positively bounded away from zero and
from above. Therefore, there exists constants c4 > c3 > 0 such that

c3 < wT ∂
2Ue(φ)

∂φ2 w < c4 (6.140)

holds for all φ ∈ R
n. However, this implies that

max
c1∈[0;1]

(

∂Ue(φ)

∂φ

∣
∣
∣
∣
φ=q+c1wθ̂s

w

)

=
∂Ue(φ)

∂φ

∣
∣
∣
∣
φ=q+wθ̂s

w , (6.141)

which by substituting in (6.135), while taking (6.139) and (6.140) into account, yields the
upper bound for the injected energy

∆Ue ≤
∂Ue(q +wθ̂s)

∂q
wθ̂s = wT ∂2Ue(φ)

∂φ2

∣
∣
∣
∣
φ=q+c2wθ̂s

wθ̂2s + ǫτs θ̂s ≤ c4θ̂
2
s + ǫτs θ̂s . (6.142)
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Figure 6.6.: Convergence of eigenvector adaptation: measured link position q(t) and motor
position θ(t) (left); instantenous eigenvector w(t) (right).
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Figure 6.7.: Comparison of energy efficiency for the generation of periodic motions based
on modally adapted and trivial excitations: (a) phase plot of joint motion
for the modally adaptive control; (b) phase plot of joint motion for the triv-
ial excitation; (c) evaluation of the efficiency measure ηRMS comparing both
approaches.

In case of the DLR Hand Arm System at hand, the elastic potential is joint-wise decou-
pled and equal, i. e., Ue(q − θ) =

∑4
i=1 Ue,joint(qi − θi). Since, ‖w‖ = 1 by definition, it

follows that c4 = maxφ∈R

(
∂2Ue,joint(φ)/∂φ

2
)
.11

The first experiment validates the convergence property of the eigenvector adaptation

(6.80). Therefore, the (trivial) initial condition w(0) =
[
1 0 0 0

]T
is considered.

Fig. 6.6 shows the measured motor position θ(t), link position q(t), and the instanta-
neous output of the eigenvector adaption w(t). It can be clearly seen that the modal

weights w(t) converge to w =
[
0.85 0.00 0.00 0.52

]T
within less than 5 s.

Further experiments with the DLR Hand Arm System compare the energy efficiency
of #1 eigenvector adaptation based periodic motion control (6.80), (6.134), and (6.133),

with #2 an excitation based on the constant, (trivial) weight w0 =
[
1 0 0 0

]T
. Note

that the latter has been utilized in the empirical study of periodic motions in [LPAS14].
The threshold is set to ǫτs = 5.0Nm for both experiments. The switching amplitudes
are adjusted to θ̂s = 0.03 rad and θ̂s = 0.02 rad for experiment #1 and #2, respectively,
such that the injected energy due to the switchings is approximately equal across the
experiments (cf. Remark 6.12). Fig. 6.7a and 6.7b depict phase plots of joint motions
for experiment #1 and #2, respectively. Although, the energies injected by control are

11A particular corrolary of Remark 6.12 is given if Ue = 1/2k(q−θ)T (q−θ). Then, ∆Ue = 1/2kθ̂2s +ǫτs θ̂s,
as recognized in [SLOAS17].
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Figure 6.8.: Modally adaptive periodic motion control with disturbances of environmen-
tal contacts: (a) experimental setup; (b) commanded motor and resulting
link motion expressed in Cartesian end-effector coordinates; (c) phase plot of
Cartesian end-effector motion (quasi-periodic steady state).

approximately equal for both experiments, the oscillation amplitudes of the adaptive con-
trol are higher than for the trivial excitation. The increased efficiency of the adaptive
control is further validated by evaluating the efficiency measure (6.130) for measurements
of both experiments. Fig. 6.7c shows the results. It can be seen that the efficiency in case
of the adaptive approach is higher than with the trivial excitation. Therefore, it can be
concluded that the eigenvector adaptation based periodic motion generation increases the
energy efficiency.

Finally, the ability of the control (6.80), (6.134), and (6.133) to stabilize periodic motions
is validated, even when contacts with the environment occur. Therefore, the robotic arm
is placed in an initial configuration as shown in Fig. 6.8a. The threshold ǫτs and the
switching amplitude θ̂s are adjusted such that the end-effector gets in contact with the
environment. To initially start the oscillations, the end-effector is manually deflected
and released. In Fig. 6.8b, it can be seen that after the initial disturbance the motion
in the x- and y-directions approaches a quasi-periodic steady state within less than three
oscillation cycles. The phase plot of Cartesian end-effector displacements ∆r vs. velocities
ṙ is shown in Fig. 6.8c for the steady state phase of the oscillation. Herein, the impact
can be observed, which is manifested by an abrupt change of the velocity in the (positive)
y-direction. Fig. 6.8c further reveals that even in the presence of periodically occurring
contacts, the controller stabilizes periodic motions within a small error band. From this
experiment with the robotic arm, it can be conclude that the control approach might
be also applicable for systems with compliantly actuated legs. Hereby, hopping, jumping,
walking and running constitute periodic motions of oscillatory systems that are dominated
by contact sequences.

6.5.2. Simulations of a compliantly actuated quadruped model

In the following, computer simulations of a compliantly actuated quadruped model are
presented. They have the purpose to validate the applicability of modal control concepts
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trunk mass 5.000 kg

trunk inertia x 0.0052 kgm2
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trunk inertia z 0.0208 kgm2

trunk COM center of leg pivots

thigh/shank mass 0.100 kg

thigh/shank inertia 0.00004 kg

thigh/shank COM center of segment

Figure 6.9.: Rigid body model of a compliantly actuated quadruped.

hip 1 hip 2 knee

stiffness 8.0Nm/rad 4.0Nm/rad 4.0Nm/rad

damping 0.16Nms/rad 0.04Nms/rad 0.04Nms/rad

Table 6.1.: Visco-elastic parameters of the quadruped model shown in Fig. 6.9 considered
for modal-shaping-based jumping.

to legged locomotion, but also aim at supporting the mechanical design of such robotic
systems at an early stage of development. The considered quadruped model as shown in
Fig 6.9 consists of four legs and a total number of n = 12 hinge joints (two perpendicular
hinge joints in each hip and one in each knee). Each joint is actuated via a linear spring
of the form τi = ki (θi − qi), and linear, viscous friction of the form di(q̇i) = d0i q̇i acts link
side. Ground contact points are considered at the tips of each leg. Thereby, a Coulomb
friction constant of µ = 0.75 is assumed for all contact points. The trunk is modeled as a
free floating rigid body with the shape of cuboid, where the legs are attached to the lower
rectangle. The forward dynamics is computed based on the articulated body algorithm
[Fea08] and a point version of the compliant contact model [AF10]. The resulting ordinary
differential equations are integrated in Matlab/SimulinkR© using a variable step solver.

Modal shaping based directed jumping control

The methodology of modal shaping can be utilized to implement directed jumping on
multi-legged robotic systems. This is validated in simulations, where the control (6.47)–
(6.50) is applied to the compliantly actuated quadruped model with parameters as listed
in Table 6.1. Thereby, the position of the total center of mass (COM) w. r. t. the trunk is
considered as task coordinates x = (xx, xy, xz). To implement directed jumping motions,
linear constraints of the form φ1(x) = c1xx + c2xz = 0 and φ2(x) = c3xy + c4xz = 0 can
be considered. The corresponding 1-D submanifold represents a straight line passing
through the origin. Herein, ψ1 = atan2(c1, c2) and ψ2 = atan2(c3, c4) represent the
angles between the x-axis respectively y-axis and the line. The proportional and derivative
gains of the constraint controller (6.48) are set to Kφ = diag(2, 2) 105N/m and Dφ =
diag(1, 1) 104Ns/m, respectively.12 The parameters of switching control (6.50) are ǫτz =

12Note that the high magnitude of the gains results due to the scaling of the COM coordinates. Loosely
speaking, displacing the low-weight legs displaces the center of mass only marginally.
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Figure 6.10.: Modal shaping based, directed quadrupedal jumping: absolute total COM
motion (top); angles of linear constraints (bottom).
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Figure 6.12.: Comparison of contact force and contact point motion for implementations
of vertical jumping with (a) unconstrained contact forces (b) friction cone
constraints.
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hip 1 hip 2 knee

stiffness 8.0Nm/rad 4.0Nm/rad 8.0Nm/rad

damping 0.16Nms/rad 0.04Nms/rad 0.04Nms/rad

Table 6.2.: Visco-elastic parameters of the quadruped model shown in Fig. 6.9 considered
for modal-adaptation-based jumping.

500N and τ̂z = 3500N. Additionally, the output of the switching function (6.50) is filtered

by means of a second order transfer function ∆τoutz (r)
∆τ inz (r)

= 1
T 2
v r

2+2Tvr+1 , where r denotes the

Laplace variable, and the time constant is set to Tv = 0.01 s.
The following simulations validate that modal shaping based jumping control can be

implemented solely by the nullspace projections (6.51). The direction of the linearly
constrained submanifold is varied in order to control the spatial direction of the jumping
motion. Fig. 6.10a depicts a 3-D phase plot of the floating base motion and the direction
of the line defined by the constraints. The phase plot shows the relation between the
vertical velocity and position along the horizontal position of the total COM. The trunk
motion of the quadruped approaches initially a periodic motion in the vertical direction,
then evolves to a forward hopping motion and finally approaches the initial vertical motion
again. Fig. 6.10b depicts the total COM position for 3-D jumping. The quadruped starts
with a vertical jumping motion and then evolves to a forward and sideward movement.
This demonstrates the capability of the proposed method to control the direction of the
jumping motion. Additionally, Fig. 6.11 shows the contributions of the constraints and
switching control to the realization of vertical jumping. It can be observed that the motion
of the motors is dominated by the filtered output of the switching control (6.50). The
contribution of the constraints controller to the control input is negligible. In that case,
the submanifold line is vertical and the constraint is trivially satisfied. Therefore, this
validates the basic design goal of modal shaping to change the intrinsic dynamics behavior
of the plant to a minimal extent by control. Finally, the influence of implementing modal
shaping control via contact force distribution (6.56) is evaluated for a vertical jumping
motion. Thereby, a lower Coulomb friction constant of µ = 0.5 is assumed. To reach the
limit of friction cone constraints, also the parameters of the switching control (6.50) are
increased to ǫτz = 2000N and τ̂z = 5500N. In Fig. 6.12, the normal vs. tangential contact
force and the vertical vs. horizontal movement of the tip of one leg is compared to the
implementation without contact force constraints. It can be seen that without the contact
force distribution, the contact force reaches the limit of the friction cone and a horizontal
movement of the tip of the leg occurs (sliding contact). This is avoided with the controller
implementation via the contact force optimization (6.56).

Modal adaptation based vertical jumping

The performance of eigenvector adaptation based vertical jumping control is validated for
the compliantly actuated quadruped model shown in Fig. 6.9 with visco-elastic parameters
provided in Table 6.2. Thereby, the controller implementation (6.80), (6.84), and (6.85)
is considered. The parameters of the switching controller are chosen ǫφs = 0.2 rad and
ˆ̄s = 1.0 rad. The initial weights of the adaptation controller are selected based on the
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Figure 6.13.: Modally adaptive jumping control of a compliantly actuated quadruped.
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hip 1 hip 2 knee

initial equilibrium configuration

foreleg left (FL) 5 deg 30 deg −65 deg

foreleg right (FR) −5 deg 30 deg −65 deg

hindleg left (HL) 5 deg −30 deg 65 deg

hindleg right (HR) −5 deg −30 deg 65 deg

changed equilibrium configuration

foreleg left (FL) 15 deg 30 deg −75 deg

foreleg right (FR) −15 deg 30 deg −75 deg

hindleg left (HL) 15 deg −30 deg 75 deg

hindleg right (HR) −15 deg −30 deg 75 deg

Table 6.3.: Equilibrium configurations of the quadruped model shown in Fig. 6.9.

differential kinematic relations in the initial configuration provided in Table 6.3, i. e.,

wj(0) =
∂rj
∂qj

(q̄0
j)

−1





0
0
1





∥
∥
∥
∥
∥
∥

∂rj
∂qj

(q̄0
j )
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


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0
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



∥
∥
∥
∥
∥
∥

−1

,

where rj ∈ R
3 denotes the position of the foot w. r. t. to pivot point of the j-th leg, for

j ∈ {FL,FR,HL,HR}. Note that also here the approximation q̄(θ) ≈ θ is made.
A vertical jumping motion is simulated. To demonstrate the adaptation properties

of the controller, the central equilibrium configuration is changed during the simulation
experiment. This switching of controller parameters to values also given in Table 6.3
is performed at t ≈ 6 s (when all legs are lifted). The modal invariance properties are
analyzed by considering a linear mapping z : R

n → R
n based on the actually estimated

vector w(t), i. e., z = W−1
(
q − q̄0

)
, where the n × n matrix W =

[
w(t) ker

(
w(t)T

)]

spans an orthogonal basis. Fig. 6.13a and 6.13b depict phase plots of modal motion
corresponding to the first three modes. Thereby, Fig. 6.13a and 6.13b show the last four
oscillation cycles before the change of controller parameters at t = 6 s and at the end
of simulation t = 12 s, respectively. It can be seen that for the initial as well as for
the changed parameter setting, the motion of the system converges to a periodic orbit
mainly in the first mode. The contributions in the second and third mode are negligible
compared to the first mode motion (cf. also Fig. 6.13e). The evolution of the first three
components of the eigenvector w(t) are depicted in Fig. 6.13f. The time-plots of the
vertical trunk and joint motions (where the latter correspond to the left foreleg) are
shown in Fig. 6.13c and Fig. 6.13d, respectively. It can be observed that the amplitude of
the vertical trunk oscillation increases as the central equilibrium configuration is changed.
This can be explained by the increased leg abduction (cf. motion of q1 in Fig. 6.13d),
which leads to an increased stiffness in the direction of the first mode such that the energy
injected by switching control (6.85) is also increased. Note that except for the initial
guess of the eigenvector w(0) (which is based only on a geometric model of the legs), the
controller requires no model-parameter knowledge to adapt to periodic jumping motions.
This, clearly demonstrates the advantageous adaptation properties of modally adaptive
periodic motion control applied to compliantly actuated, multi-legged jumping systems.
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hip damping 0.015Nms/rad

knee damping 0.03Nms/rad

Figure 6.14.: Model of compliantly actuated single leg system.

6.5.3. Modal matching based jumping control

The methodology of modal matching as proposed in Sect. 6.4 is predestined to control
highly dynamical locomotion (such as jumping or running) in compliantly actuated legged
systems. This is exemplary validated by a realization of forward jumping control in single
leg. As shown in Fig. 6.14, the considered system consists of a base body which is free
to translate in the sagittal plane and a two-segment leg with compliant actuation in the
hip and knee joint. In more detail, the free floating dynamics has the structure of (6.86)
with base and joint coordinates xb ∈ R

2 and q ∈ R
2, respectively. The elastic potential

is assumed to be quadratic, i. e., Ue(q − θ) = 1/2
∑2

i=1 ki(qi − θi)
2, where k1 > 0 and

k2 > 0 denote constant stiffness parameters, and θ ∈ R
2 represents the control input.

Additionally, linear, viscous friction of the form di(q̇i) = d0i q̇i for i = 1, 2 acts link side.
Following the concept of virtual legs as proposed by Raibert in [Rai86], the presented
single leg example can be straightforwardly extended to multi-legged systems by linking
all legs which are simultaneously in stance.

Finite state machine

The jumping controller comprises a collection of feedback control actions, which are em-
bedded in a finite state machine (FSM). Thereby, the transition between discrete states
are triggered based on continuous state dependent events. As depicted in Fig. 6.15, the
state machine has the following states:

• flight phase,

• stance phase,

• and push-off phase,

which also represent the phases of the controlled jumping motion. These phases are
triggered by events which occur when the continuous system state hit the boundary of
corresponding switching manifolds:

• The flight phase is triggerd by the takeoff event TO which occur when the normal
component f cn of the contact force defined in Fig. 6.14 hits zero from above.

• The touchdown event TD triggers the stance phase when the foot hits the ground,
i. e., when the distance between the contact point and the ground rcn (see, Fig. 6.14)
hits zero from above.
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flight phase

stance phasepush-off phase

TDTO

τw > ǫτw

Figure 6.15.: Jumping control finite state machine.

• The elastic force τw ∈ R defined in (6.111) initiates the push-off phase, when the
threshold ǫτw is crossed from below.

Note that the above events incorporate continuous state feedback in the control. In the
following, the control actions of the flight, stance, and push-off phase are derived. They
lead to a continuing jumping cycle, as will be shown by a simulation presented after the
controller derivation.

Foot placement during flight phase

In the first instance, the aim of the flight phase control is to reconfigure the leg such that
after the touchdown, the trunk moves along the desired local eigenvector. The direction of
the translational velocity of the base, i. e., αv,TD = angle(ẋb(TD)) is assumed to be known
a priori. Note that αv,TD can be predicted based on the takeoff velocity angle αv,TO by
assuming a frictionless ballistic flight phase. In particular, αv,TO can be predicted based
on the joint velocity q̇ just before the takeoff by solving the time derivative of the contact
constraints (6.88). Then given αv,TD, the touchdown configuration (foot placement) can
be obtained based on the modal matching algorithm (6.110), where the desired local
eigenvector is selected as wdes = wdes(αv,TD). In case of the two-segment leg example
considered here, the degrees of freedom of the rigid-body system during the contact phase
are n = 2. Therefore, the one-to-one correspondence xb(q) : R

2 → R
2 can be presumed.

As a consequence, the direction coordinate of the eigenvector y ∈ R is scalar, and the
augmented Jacobian of (6.110) simplifies to

Jaug(q) =

[
∂y(w)
∂w

∂w(q)
∂q

Z(q)

]

(6.143)

where the 1× 2 matrix Z(q) 6= 0 satisfies ∂y(w)
∂w

∂w(q)
∂q Z(q)T = 0. In particular, due to the

low dimensionality of the eigenvector matching problem, the reduced recursion

q̄(j + 1) = q̄(j) + γJaug(q̄(j))
−1

[
∂y
∂w (wdes −w(q̄(j)))
Z(q(j)) (q̄des − q̄(j))

]

can be considered. Fig. 6.16a depicts an example simulation result of the mode matching
procedure. In the shown case, the motion of the hip is largely along the desired eigenvector.
Note that due to the mode matching procedure, the segmented leg behaves like a spring
loaded telescopic leg as considered in the pogo-stick model of Raibert [Rai86] or the spring
loaded inverted pendulum model [Bli89].
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Figure 6.16.: Eigenvector matching based control actions: (a) touchdown velocity in eigen-
vector direction; (b) eigenvector direction deviates from touchdown velocity
by modal angle of attack β.

For directed (forward) jumping motions, velocity angles at touchdown and takeoff can
be assumed to display equal magnitude but opposite signs. Therefore, the instantaneous
eigenvector needs to be tilted from the touchdown to the takeoff direction. This tilting
can be naturally achieved by means of the eigenvector matching based reconfiguration.
Therefore, the relative angle β = y(qj(TD))− αv,TD is introduced, which is referred to as
angle of attack (see, Fig. 6.16b). The angle of attack β represents a control input which
indirectly influences the tilting momentum. It can be utilized to control the horizontal
jumping velocity. Since, the touchdown respectively takeoff angle, i. e., αv,TD = −αv,TO,
is representatively for the locomotion velocity, it can be considered as control variable. In
order to regulate αv,TO, the repetitive control law

β(o+ 1) = β(o)− kα

(

αv,TO − αdes
v,TO

)

is proposed. Herein, kα > 0 denotes an update gain, αdes
v,TO is the desired velocity angle at

takeoff, and o represents the iteration variable of the o-th jumping cycle. Note that this
concept generalizes also the foot placement algorithm of Raibert [Rai86] as introduced for
a telescopic leg to the case of a two-segment leg.

Stance phase control

The stance phase is in charge of weight bearing and stabilizing the tilting of the instanta-
neous eigenvector. Both tasks can be realized by shaping the elastic potential according to
the control law (6.118)–(6.120). By considering the equilibrium configuration q0 = q̄(TD)
resulting from the eigenvector matching procedure described above, the plant inherent
elastic force

τw(θ0 − q) = −Z(q)
∂Ue(q − θ0)

∂q

T

(6.144)

implements the task of weight bearing. Herein, the influence of gravity on the equilibrium
configuration is neglected, i. e., θ0 ≈ q0. To achieve a stable transition from the direction
of the eigenvector at touchdown to the direction at push-off, symmetry w. r. t. the vertical
line is assumed, i. e., ydes = 0. Considering further a quadratic potential Uy(y) = 1/2kyy

2
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Figure 6.17.: Motion of modal matching based jumping: (a) complete jumping cycle be-
tween two consecutive touchdown events; (b) phase plot of trunk motion (9
jumping cycles, positional state reset to zero at touchdown).

with constant stiffness ky > 0, the entire control of the stance phase takes the form

τ des = Jaug(q)
T

(

−kyy
−Z(q)∂Ue(q−θ0)

∂q

T

)

, (6.145)

where Jaug and Z are defined in (6.143). This controller is implemented by selecting the
input as

θ = θdes = f−1
e (τ des) + q , (6.146)

where fe(θ − q) := −(∂Ue(q − θ)/∂q)T .

Push-off initiation

The push-off phase is triggered when the elastic force τw(θ0−q) defined by (6.144) crosses
the threshold ǫτw > 0 from below. This follows the concept of switching based limit
cycle generation as proposed in Sect. 4.4. The control action of the push-off phase is a
pure switching of the actuator position in the direction of the instantaneous eigenvector
w(q(PO)), i. e.,

θ = θdes(PO) +

(
∂xb(q)
∂q

)−1
w(q(PO))

∥
∥
∥
∥

(
∂xb(q)
∂q

)−1
w(q(PO))

∥
∥
∥
∥

θ̂w . (6.147)

Herein, θ̂w > 0 is a constant switching amplitude, and θdes(PO) represents the output of
the stance phase controller (6.145) and (6.146) at time instance PO where the push-off
phase is triggered. This control action is responsible for the energy input required to
sustain the periodic jumping motion.

Simulation results

The concept of modal matching based jumping control is validated in simulation. There-
fore, the forward dynamics of the closed-loop system, comprising the above described,
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Figure 6.18.: Convergence behavior of the takeoff angle w. r. t. its desired value of 25 deg.

hybrid controller and the compliantly actuated, single leg system of Fig. 6.14, is inte-
grated using a variable step solver of MATLAB/SimulinkR©.13

Fig. 6.17a shows a complete jumping cycle between two consecutive touchdown events
in the steady-state phase of motion. Interestingly, during the stance phase, the hip moves
approximately along a path with the shape of a parabola. The slope at takeoff and
touchdown fits to the slope of the parabola corresponding to the ballistic flight phase. This
gives rise to the conjecture that modal matching based jumping control implements a 1-D,
hybrid manifold. In particular, this is achieved by merely shaping the elastic potential
of the plant w. r. t. to the directional coordinates of the local eigenvector. Fig. 6.17b
shows a phase plot of trunk motion, where the positional state is reset to zero at each
touchdown, i. e., xb−xb(TD) vs. ẋb. Nine complete jumping cycles are plotted. It can be
observed that the horizontal velocity is almost constant. The average locomotion velocity
is 0.68m/s with a maximum deviation of 0.07m/s. This is already an indicator for efficient
locomotion. Fig. 6.18 depicts the convergence behavior of the takeoff angle, which is a
control variable of the repetitive low gain control. It can be observed that the controller
is able to regulate the system to the desired value of 25 deg.

6.6. Summary

This chapter contributes several methodologies to exploit the natural oscillatory dynamics
of compliantly actuated systems in the control. Since energy efficiency and task versatility
are generally opposing aims, four different control approaches are proposed, which achieve
either the former or latter goal to a larger extent.

The method of modal globalization control, as presented in Sect. 6.1 relies not on the
existence of global oscillation modes. Therefore, this concept realizes decoupled, scalar
oscillatory dynamics of any statically controllable compliantly actuated system. Since the
plant inherent inertia and local stiffness matrix are maintained, energy efficiency in the
generation of limit cycles can be gained. Additionally, a constructive controller design is
provided which allows to prove exponential decay of oscillations in undesired modes.

The method, as introduced in Sect. 6.2, provides a tool to design a 1-D, attractive
submanifold corresponding to a desired task. The task manifold may consist of any shape
as long as the embedded curve is diffeomorphic to a circle or a line. The method is
advantageous from view point of versatility in the realization of tasks. To implement the
virtual constraints corresponding to the tasks in a real-hardware system, an appropriate
torque interface at joint level needs to be provided. Although, this comes in general at the

13The forward dynamics of the rigid-body system is computed based on the articulated body algorithm
[Fea08] and a point version of the compliant contact model [AF10].

153



6. Modal Control

price of efficiency, it has been shown by simulation that the approach contains the case of
stabilizing an inherent oscillation mode of the plant.

One of the core contributions of this thesis is the concept of modally adaptive periodic
motion control, as proposed in Sect. 6.3. It provides a method to successively excite
periodic motions in an oscillation mode and simultaneously adapt to the corresponding
embedding. This is achieved with at most the parameter-knowledge of a model of the
plant inherent potential force. In particular, the adaption and excitation control requires
only measurements of states at position level, i. e., differentiation of measured signals is
avoided. Therefore, the method is very robust against model uncertainties and noise.
This is validated in experiments on a variable stiffness robotic arm. In case of adaptive
periodic motion control in an eigenmode of the nonlinear dynamical system, as defined in
Sect. 5.1.2, ideas of a convergence proof are provided. A rigorous stability analysis may
require to combine the hybrid system techniques considered in Chapt. 4 with the statistical
methods utilized in [Oja82] to prove Theorem 6.3. As such, the complete proof opens a
separate research topic for itself. A further scientifically interesting outcome of the method
is the hypothesis that the modally adaptive periodic motion control is implemented in the
neural circuits of biological systems, of which a first conceptual validation is provided in
[SLAS16].

The method of modal matching, as introduced in Sect. 6.4 exploits the nonlinear de-
pendency of the dynamics of compliantly actuated systems on the configuration to match
the direction of local eigenvectors to a given task. Based on modal matching, an effec-
tive method proposed to control highly dynamic locomotion in compliantly actuated legs.
This is validated by a simulation, where an almost constant forward movement (velocity)
is achieved. The modal matching algorithm, which has been found in the course of the
controller design, can also be utilized to find the equilibrium configurations corresponding
to an oscillation mode.

The modal control concepts proposed in this chapter, provide a toolbox for natural
dynamics based explosive and periodic motion control. The outcome of this chapter will
be applied within the advanced control of compliantly actuated legged system treated in
Chapt. 7.
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CHAPTER 7

Application to Legged Locomotion

The tasks of legged locomotion such as walking, jumping, or running are intrinsically cyclic
or even periodic (in the steady-state phase). Therefore, the concept of oscillation modes
presented in Chapt. 5 and the corresponding methods of modal control, as introduced in
Chapt. 6, are predestined to approach high performance and energetic efficiency in the
execution of such tasks.

The benefits of springs in legged locomotion have been validated in the conceptual work
of Alexander [Ale90]. The hypothesis that the high-dimensional, nonlinear dynamics of
complex legged animals collapses to template models of strongly reduced order, like the
spring loaded inverted pendulum (SLIP) model [Bli89] and extensions [SGGB02], [GSB06],
[MRS08], [MLG+10], [RBM+10], is further supported by experimental results [FK99].
In particular, the authors of the review article [HFKG06] hypothesize that embodying
these template models as invariant (and attracting) submanifolds (cf. oscillation modes,
Chapt. 5) into the high order multibody dynamics of articulated legged systems is a key
aspect of energy efficient and performant locomotion.

In this chapter, compliantly actuated legged robots are presented, which have such
template models of locomotion embodied. The compliantly actuated quadruped Bert,
which will be introduced in Sect. 7.1, features oscillation modes in which the dynamics
behave like the fundamental SLIP model.1 It is shown that these oscillation modes can
be exploited to implement the gaits of pronking and trotting by computationally simple
and robust modal control. Sect. 7.2 presents the compliantly actuated biped C-Runner.
Under a certain selection of elasticities, the system features a quasi-static oscillation mode
in which the scalar dynamics represents a complete dynamic walking stride. Furthermore,
a bi-articular stiffness setting is proposed, which features an input and output decoupled
elastic behavior in locomotion task-oriented coordinates. This can be exploited in bipedal
running control.

1The SLIP has two kinematic degrees of freedoms. Therefore, the union of two 1-D invariant subsets is
meant by the oscillation modes in which the configuration variables of the SLIP model evolve.
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7. Application to Legged Locomotion

7.1. Quadrupedal locomotion

The fastest mammals on earth are quadrupeds.2 As discussed in the introduction of
this chapter, it is very likely that such a high performance is the result of a very opti-
mized, system inherent locomotion dynamics. In the last decades, numerous quadrupedal
robots have been developed, which are based upon hydraulic/pneumatic actuators [Rai85],
[RBN+08], [STG+11], [SBB+15], electrically powered direct drives [SWC+13], [SWC+15]
and compliantly actuated systems [STV+13], [HGB+12], [HGJ+16].3 The quadruped
reported in [Rai85] is composed of hydraulically/pneumatically powered telescopic legs,
which closely resemble the dynamics of a spring-mass system. On the basis of such a
system, in [Rai86], [Rai90], fundamental control principles of legged locomotion have been
found and demonstrated to perform effectively in experiments. These findings are further
augmented and successfully validated on systems, which exploit also the advantageous
properties of segmented legs such as versatility regarding locomotion in uneven terrain
[RBN+08], [GCH+13], [HGH+14], [GCH+14]. All the mentioned quadrupedal robots have
demonstrated remarkable dynamic walking and running performance. Thereby, a common
approach is to implement a certain interaction or virtual model behavior by joint torque
control, while exploiting physical elasticities mainly to absorb high frequency external
forces, which occur due to ground impacts of the feet. An exception is MIT’s cheetah
[SWC+13] with its electrical direct drives of low inertia and friction. As a result of elec-
tric energy storage capabilities and a very optimized power train, MIT’s cheetah achieves
already high energetic efficiency. However, the efficiency of storing energy in mechanical
springs is potentially higher than electrical energy recuperation, therefore in this thesis,
concepts are proposed to implement the dynamics of (quadrupedal) locomotion gaits in
the mechanical design.

7.1.1. Bert: a compliantly actuated quadruped with modal legs

The purpose of building the compliantly actuated quadruped Bert is achieving a robotic
system which has the fundamental dynamics of legged locomotion embodied in the me-
chanical design. The main difference of Bert compared to other quadrupedal robot designs
reported so far (as outlined above) is the embodiment of SLIP dynamics in its articulated
legs. The parameters yielding such a dynamical behavior can be found by applying the
eigenmode embodiment procedure presented in Sect. 5.2. In order to meet the additional
versatility requirements, i. e., preserving the capability of climbing over an obstacle or
crawling through a rock crevice, a segmented leg design is considered.

Modal leg design

For the first proof of concept, the mechanically simplest mechanism of a two-segment leg
is selected as structural model. In more detail, the model of a two-segment leg during
stance is considered, as shown in Fig. 7.1a. The leg is assumed to be attached to the main
body (trunk) with very high inertial properties such that its rotation can be neglected,
i. e., the trunk has only the two translational degrees of freedom of the plane.4 The thigh

2The cheetah can reach a peak velocity of 120 km/h and the antelope approaches a maximum speed of
88 km/h over a distance of 800m.

3This is only a representative selection of quadrupedal robots.
4Note that this assumption holds especially for quadrupeds, where the fore- and hindlegs are configured
symmetrically and the center of mass (COM) of the trunk is located at the center of pivot points of
the legs.
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7.1. Quadrupedal locomotion

is connected to the trunk by a rotational joint with coordinate q1. The shank is hinged to
the thigh with relative coordinate q3. There is a pulley concentric with the hip joint with
relative coordinate q2 which couples to the knee joint such that q3 = q2 − q1. A point-foot
is considered which is constrained during stance phases to touch the ground such that the
configuration of the system is determined by the minimum set of configuration coordinates
q = (q1, q2) ∈ R

2. Assuming that each leg segment has equal length a > 0 and equal mass
ml > 0 concentrated at the segment center, and assuming further that hip joint and pulley
are actuated via linear springs with spring constants k1 > 0 and k2 > 0, the dynamics of
the structural two-segment leg model can be expressed in the form

M (q)q̈ +C(q, q̇)q̇ = −∂Ug(q)

∂q

T

−K (q − θ) , (7.1)

where the 2× 2 inertia and stiffness matrices have the form

M(q) = a2
[
mt +

ml

4

(
mt +

ml

2

)
cos (q2 − q1)

sym. mt +
5ml

4

]

(7.2)

and

K =

[
k1 0
0 k2

]

, (7.3)

respectively.
The goal is to match the dynamics, as described above, to the one of the SLIP model.

Consider therefore the stance phase dynamics of the SLIP model expressed in polar coor-
dinates,

mC

{[
x22 0
0 1

](
ẍ1
ẍ2

)

+ x2

[
ẋ2 ẋ1
−ẋ1 0

](
ẋ1
ẋ2

)

+ g0

(
− sin(x1)x2
cos(x1)

)}

= −
(

0
∂Ue(x2−r0)

∂x2

)

.

(7.4)

As schematically sketched in Fig. 7.1b, x ∈ R× R≥0 denotes the position of the mass mC

w. r. t. to the pivot point on the ground expressed in a polar coordinate system. Thereby,
x1 represents the polar angle and x2 denotes the radius. Due to this choice of coordinates,
the elastic potential Ue(x2 − r0) depends only on the displacement in the radial direction
(w. r. t. to the rest length r0 > 0). Note that the nonlinear SLIP dynamics features an
eigenmode W := {x ∈ R × R≥0 |x1 = 0} according to Definition 5.1.

To match the structural dynamics model of the two-segment leg (7.1)–(7.3) to the desired
SLIP dynamics (7.4), (7.1)–(7.3) is transformed under the change of coordinates

x̂ = f(q) =

( q1+q2
2

a
√

2 (1 + cos (q2 − q1))

)

. (7.5)

Thereby, x̂ ∈ R× [0; 2a] denotes the position of the hip w. r. t. to the contact point in polar
coordinates. Then, choosing as design parameters the mass of the legs ml and the ratio
of stiffness k2/k1, i. e., ζ1 = (ml, k2/k1), it is found that global matching of eigenvectors is
achieved ifml = 0 and k := k1 = k2, i. e., ζ̂1 = (0, 1). Substituting these design parameters
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q3 = q2 − q1

q1

q2

mt

a

a

contact point

k1

k2

(a)

x1

x2

mC

(b)

Figure 7.1.: Matching the dynamics of a two-segment leg to the SLIP model: (a) two-
segment leg; (b) SLIP.

in (7.1)–(7.3) and transforming the resulting dynamics under the change of coordinates
(7.5), yields

mt

{[
x̂22 0
0 1

](
¨̂x1
¨̂x2

)

+ x̂2

[
˙̂x2 ˙̂x1

− ˙̂x1 0

](
˙̂x1
˙̂x2

)

+ g0

(
− sin (x̂1) x̂2

cos (x̂1)

)}

= −k
(

2 [x̂1 − θx1 ]
1√

4a2−x̂22
[ρ(x̂2)− ρ(θx2)]

)

,

(7.6)

where

ρ(y) := ∓ arccos

(

1− y2

2a2

)

(7.7)

represents an abbreviation related to the knee angle q3 = q2−q1 = ∓
[

arccos
(

1− x̂22
2a2

)

− π
]

,

of which the negative or positive sign selects the solutions q3 > 0 or q3 < 0, respectively,
and θx = f(θ) denotes the transformed control input. Indeed, by equating mt = mC and
x̂ = x, it can be seen that the inertial dynamics of the matched two-segment leg model
(7.6) and the slip model (7.4) are equivalent. This is not very surprising, since the inertia
of the leg segments is set to zero, i. e., ml = 0. Note that the example of Sect. 5.2.2
does not require to make this assumption, but the mechanism is significantly more com-
plex. The assumption of zero leg mass, as made in (7.6), is consistent with the common
wisdom of designing the leg segments as light-weight as possible, and results in a much
less complex mechanical design (compared to the example of Sect. 5.2.2). In particular,
the decoupled structure of the elasticity as in the SLIP model (7.4) is maintained for the
segmented leg, cf. (7.6). For θx1 = 0, the nonlinear dynamics of the two-segment leg (7.6)
features an eigenmode Ŵ := {x̂ ∈ R × [0; 2a] | x̂1 = 0} for any θx2 ∈ [0; 2a]. Note that
for a symmetric positioning of legs and a symmetric distribution of the trunk inertia, the
eigenmode Ŵ can be maintained for the complete quadruped, even in case of two-segment
legs with non-zero inertias. This will be validated later after introducing the quadrupedal
system design.
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(a)

0.3m

0.18m

(b)

servo drive

spring

0.16m

(c)

total mass 2.5 kg

mass of a leg 0.1 kg

spring stiffness 2Nm/rad

max. energy spring 4 J

joint range hip (foreleg) −75 deg ≥ q1 ≥ 105 deg

joint range knee (foreleg) −120 deg ≥ q2 − q1 ≥ 120 deg

joint range hindleg symmetric

(d)

Figure 7.2.: Compliantly actuated quadrupedal robot Bert: (a) complete robotic system;
(b) dimensions; (c) leg mechanism.

Quadrupedal system design

The complete quadrupedal system is dimensioned in view of dynamic locomotion capabil-
ities. To this end, the task of vertical jumping serves as a reference. For the dimensioning,
a single leg is considered. First, the servo motor of the series elastic actuators (SEA)
are selected. This yields the maximum torque and velocity of the actuator (on motor
side) and an estimate of the main body weight. Then, the leg-segment lengths and spring
stiffnesses are determined in a series of computer simulation based optimizations of the
jumping height. In this procedure, the insights of the modal leg design, as derived above,
are taken into account such that only two parameters (i. e., the length of thigh and shank
a and the stiffness of both actuated degrees of freedom k) need to be found. In order to
maximally exploit the potential energy storing capabilities of SEAs, it is assumed that
very low, viscous damping acts only at link side. This assumption reveals the require-
ment to implement the SEA with as few friction as possible in parallel to the spring. In
order to satisfy also the low weight assumption made for the simulation model, the SEA
is realized by a torsional spring. The resulting mechanical implementation of the compli-
antly actuated, modal leg design, as shown in Fig. 7.2c, is also advantageous regarding
the installation space, and determines the width of shoulder and hip of the quadruped
(Fig. 7.2b). The length of the quadrupedal system is selected such that the gallop gait is
possible, i. e., fore-feet and hind-feet motions can intersect.

The arrangement of the legs as well as the inertial properties of the main body are cho-
sen to be symmetric such that the complete quadrupedal system features an eigenmode,
which can be exploited for vertical bouncing motions. This can be validated by inves-
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x
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equilibrium configuration

(a)
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Figure 7.3.: Acceleration field of the compliantly actuated quadruped Bert in stance: (a)
due to potential forces; (b) Coriolis/centrifugal accelerations.

tigating the acceleration fields for displacements w. r. t. to an equilibrium configuration
of the eigenmode and the field of Coriolis/centrifugal accelerations as shown in Fig. 7.3a
and 7.3b, respectively. In more detail, the task dynamics of the complete quadrupedal
system is considered in the formulation of Sect. 6.4.1, where all four feet are constrained
at positions on the ground perpendicular to hip and shoulder rotation axes5. A sym-
metric equilibrium configuration is selected, in which the main body is parallel to the
ground plane. The condition of Definition 5.1 related to potential forces is tested by an-
alyzing the direction of acceleration for translational displacements of the trunk w. r. t.
a ground fixed coordinate system (Fig. 7.3a). The condition of Definition 5.1 related to
Coriolis/centrifugal forces needs to be satisfied simultaneously to the one corresponding
to the potential forces. Therefore, the Coriolis/centrifugal acceleration is tested for dif-
ferent velocities expressed in polar coordinates at several configurations (Fig. 7.3b). The
directions of the velocities correspond to the relative displacements of the robot w. r. t. the
initial configuration considered for the potential force test. For instance, if the relative
displacement is solely polar (angular), then also the tested velocity consists only of a polar
component, etc. Both fields display vertical lines of accelerations such that the existence
of an eigenmode can be deduced (according to Definition 5.1 and Theorem 5.1).

Servo motors

The quadruped Bert is designed to perform energetically efficient locomotion. A significant
source of energy consumption (in electrically driven robotic systems) is given by the servo
motors. Especially the implementation of the corresponding control system might have a
large impact on the stand-by power consumption. As such, the mechatronic design of Bert
builds upon a customized solution of electrical servo drives. The starting point is the off-
the-shelf high torque servo Savöx SV-1270TG. This servo contains a core-less, brushed,
direct current (DC) motor, which is designed to produce high torques and velocities.
Brushed DC motors can be controlled with computationally cheaper control algorithms
than, e. g., the brush-less DC motors (which are commonly used in robotic systems), since
the electric commutation is implemented mechanically. This in turn requires less powerful

5Since all contact points of the legs can move only in parallel planes, only 10 rather than 12 constraints
are feasible, i. e., all four contact points are constrained in vertical and forward/backward direction,
but only either the two left or right feet are constrained in lateral direction.
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7.1. Quadrupedal locomotion

max. active torque 1.3Nm

max. stall torque 3.0Nm

max. velocity 10.0 rad/s

mech. efficiency: output / motor power 0.6

elect. efficiency: output / elect. input power 0.4

communication rate of USB isochronous transfers 1 kHz

Table 7.1.: Technical characteristics of the customized servo unit.

and power-consuming central processing units (CPU) for their control. In order to satisfy
the requirements from a control perspective such as the capability to implement link-side
damping via the motors, the build-in electronics of the off-the-shelf servo is replaced by
a customized one. The developed electronics has the option to connect an additional
position sensor, which can be utilized to implement control loops based on measurements
of the spring deflection on board. The technical characteristics of the developed servo unit
are listed in Table 7.1.

7.1.2. Control of dynamic locomotion gaits

The dynamics of multi-legged locomotion such as pronking and trotting can be approx-
imated by a spring-mass model [BF93]. As validated above (cf. Fig. 7.3a and 7.3b), for
symmetric leg configurations and contact situation, the compliant quadruped at hand fea-
tures an oscillation mode, which corresponds to such bouncing motions. This intrinsic
dynamics behavior can be directly exploited in the stance phase and combined with well-
studied foot-placement strategies [Rai86] to achieve dynamic locomotion gaits. However,
the spring-mass or SLIP model is conservative, while the dynamics of the real quadrupedal
system is subject to energetic losses due to impacts and friction in the joints. To excite
and sustain the intrinsic oscillatory behavior of the real plant, a control method based
on switching of motor positions, as introduced in Chapt. 4, can be applied along the
eigenmodes. Accordingly, the locomotion controllers presented in the following switch the
position of the motors triggered by events which depend solely on states at position level.

Pronking

A fundamental difference of the SLIP and the modal leg dynamics is that for the latter, the
polar angle x̂1 is statically controllable during stance (cf. the right hand sides of (7.4) and
(7.6)). This additional input variable θx1 can be utilized to control the pendulum motion
of the trunk in a pronking gait. In [LSFAS15], it has been demonstrated for a single-leg
system that the simple switching law

θ(θ−, q) =







f−1(−αl, r0) +wŝ if wT ∂Ue(θ−,q)
∂q

T
> ǫτw

f−1(αl, r0) if wT ∂Ue(θ−,q)
∂q

T
< ǫτw

, (7.8)

(where f−1 denotes the inverse mapping of (7.5) and θ− is the state of θ before the
switching instance) suffices to stabilize a periodic hopping motion. The control (7.8)
switches only between two equilibrium configurations. The corresponding motor positions
are parametrized in polar coordinates by the landing angle αl ∈ (−π/2;π/2), the radial
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rest length r0 > 0, and the switching amplitude ŝ > 0 along the eigenvector

w = sign(q2 − q1)

(
1
−1

)

. (7.9)

The transitions between the two controller states are triggered by approximating the
touchdown and takeoff event by thresholding the generalized elastic force on the eigen-

mode wT ∂Ue(θ−,q)
∂q

T
w. r. t. a constant ǫτw > 0 from below (touchdown) and above (take-

off), respectively. Therefore, the complete control is determined by only four, intuitive
parameters. In particular, the parameter corresponding to the angle of attack αl can be
considered to regulate the average locomotion velocity v w. r. t. a desired value vdes, e. g.,
by an iterative law of the form

αl(j) = αl(j − 1) + kv(v(j) − vdes) , (7.10)

which updates αl once per jumping cycle j with a low gain kv > 0. The control (7.10)
is similar to the step-length adaptation as proposed by Raibert [Rai85]. The difference
w. r. t. Raibert’s controller is that (7.10) cumulates the control-error instead of considering
a proportional and feed-forward term, as proposed in [Rai86].

The single-leg hopping control (7.8) can be directly transfered to the quadrupedal system
by “linking” the input of all legs to a single, “virtual” leg, as proposed in [Rai86]. In case
of pronking on spot, this results in a motion, which evolves ideally in the eigenmode of
the plant, although the quadrupedal system is composed of articulated legs with non-zero
mass.6 As such, this pronking control is potentially efficient w. r. t. the jumping height.
However, if the goal is to travel forward, there are different quadrupedal gaits, which are
way more efficient depending on the desired locomotion speed [HT81].

Trotting

The trot control, which will be proposed in the following, serves as an example to show how
the natural oscillatory dynamics of the quadrupedal system can be exploited to achieve
forward locomotion. The running trot is a dynamic gait, where diagonal pairs of legs move
in phase. While one leg pair is in stance and transports the COM forward in locomotion
direction, the other leg pair swings towards the touchdown configuration. The gait can
display a flight phase in between the alternation of these functionalities. In that case, the
total COM need to oscillate in vertical direction, since during the flight phase, the height of
the total COM cannot be constant due to gravity. However, from a view point of energetic
efficiency (regarding forward locomotion), the vertical oscillation amplitude needs to be
kept as low as possible, since due to friction (which is present in any physical system),
any radial motion of the stance legs is subject to energetic losses, although kinetic energy
(of the flight phase) is partially stored in the corresponding springs. This consideration
reveals that a potential source to gain efficiency is given in the generation of the polar
leg motion, and motivates a controller design based upon the natural oscillatory dynamics
predominantly in this polar direction of the legs, cf. (7.6).7

The gait control can be described by a finite state machine (FSM), which switches the
equilibrium configurations of the legs (Fig. 7.4). The link and motor positions of all legs

6This is based on the assumption that the quadrupedal system is symmetric w. r. t. the vertical axis.
7Note that for implementation based on the SLIP dynamics, e. g., via virtual model control [PDP97], the
motors performing the polar leg motion would require to move as fast as the corresponding links, since
there is no elasticity acting in the polar direction to perform the movement.
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Stance phase A:

ᾱA : −αsw → αst

ᾱB : αst → −αsw

Stance phase B:

ᾱB : −αsw → αst

ᾱA : αst → −αsw

Extension B:

r̄B : r0 − r̂ → r0

Liftoff A:

r̄A : r0 → r0 − r̂

αA > ǫαfl

αA > ǫαex

Extension A:

r̄A : r0 − r̂ → r0

Liftoff B:

r̄B : r0 → r0 − r̂ αB > ǫαfl

αB > ǫα

αA > ǫα

αB > ǫαex

Leg pair A: FR and LH

Leg pair B: FL and RH

x̄ =

(

ᾱ
r̄

)

= f(θ)

Figure 7.4.: Finite state machine controlling quadrupedal trot.

are expressed in polar coordinates (7.5). Diagonal leg pairs are considered as “linked”. The
gait generation is based on the idea to excite an antiphasic, elastic pendulum motion of the
stance and swing leg pair by moving the motors as few as possible. This can be achieved
by switching the polar equilibrium configuration of the stance and swing legs to αst and
−αsw, respectively. Thereby, the sum of the parameters αst ≥ 0 and αsw ≥ 0 determines
the static polar step length. The current stance phase is initiated depending on the polar
angle of the previous leg pair in stance. Thereby, the threshold ǫα > 0 determines also
the actual dynamic step length. It becomes evident that there might be an optimal value
for ǫα, which for a given static step length (which determines the switching amplitude)
maximizes the actual dynamic step length. In between the main two (finite) states of the
stance phase, two more states are required, which initiate the radial extension and flexion
of the swing and stance leg, respectively. Since, the effective inertia of the stance legs is
much greater than of the swing legs but the stiffness is equal, also the time constant of
oscillation of the former is greater. Loosely speaking, this means that the swing legs move
faster than the one in stance. As such, the extension of the swing legs need to be initiated
before the legs in stance are lifted. This can be achieved by setting the rest length of the
swing legs to the initial leg length r0 ∈ (0; rmax], when the polar angle of the legs in stance
hits the threshold ǫαex < ǫα from below. The liftoff is initiated by reducing the initial rest
length of the stance legs by an amount of r̂ ∈ (0; r0), when the polar angle of the same
leg pair crosses the threshold ǫαfl

> ǫαex (where ǫαfl
< ǫα) from below. Note that for the

legs in stance, their rest length is only decreased, which means that at most the potential
energy is removed in the radial direction. However, although the radial oscillation is not
directly excited, the energy storing capabilities in vertical direction can be exploited by
selecting αst > αsw.

7.1.3. Experiments

The performance and efficiency of the quadrupedal pronk and trot controllers, as proposed
in Sect. 7.1.2, are validated in real hardware experiments with the compliantly actuated
quadruped Bert (Sect. 7.1.1). Thereby, the focus is on the energetic efficiency of the gait
generation, which can be measured by the cost of transport (COT).
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Figure 7.5.: Performance and efficiency of locomotion controllers tested in experiments
with the quadrupedal robot Bert. The absolute position of the main body rb
is plotted for (a) pronking; (b)trotting.
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Cost of transport

The COT is defined as the energy expenditure per unit weight of moving at a given velocity
on a level path for a unit distance [Tuc75], i. e.,

COT =
Pin

mtotg0v
, (7.11)

where Pin is the power required to move the unit mass mtotg0 (weight times gravitational
constant) at a velocity v. In general, the power Pin as well as the velocity of movement v
are varying over time. In particular, v can be zero such that the COT, as defined by (7.11)
is undefined. Therefore, it is advantageous to average the power Pin and the velocity v
over time such that (7.11) can be redefined as

COT =

∫ T
0 Pin(t)dt

mtotg0
∫ T
0 v(t)dt

=
Ein

mtotg0d
, (7.12)

where Ein > 0 is the energy required to transport the unit mass mtotg0 over the distance
d > 0, and T > 0 denotes the duration of observation. The COT has been introduced
in [Tuc75] to compare the efficiency of locomotion among gaits and species of biological
systems. Thereby, the power input is estimated by measuring rates of exchange of oxygen
and carbon dioxide. To compare (mobile) robotic and biological systems, for the former,
one need to consider the total power which is supplied to the complete system, e. g.,
the electrical power provided by the batteries. A further important efficiency measure is
given by the “intermediate” COT based on the mechanical power input by the motors,
i. e., Pm = τTmθ̇, where τm denotes the motor torques. It can be considered to compare
different control methods, actuator principles (e. g., rigid versus compliant actuation), and
design concepts of multibody systems such as the class of dynamics featuring oscillation
modes.

Although it is planned for future versions, the current prototype of the quadrupedal
robot Bert features no synchronized measurement of the electrical input power, nor of the
motor torques. The total electrical power required for static stance, can be estimated from
averaged voltage and current measurement of the power supply (Pel ≈ 10.8W). However,
for the highly dynamical power consumption, as expected for the generation of dynamic
locomotion gaits, this method would not lead to reasonable results. A common method
to estimate the (fluxgate) torque of electrical motors is done by measuring the current of
the motor windings. However, in case of the coreless motors used in the servo drives, the
electrical time constant is in the order of 5µs, which makes the observation of the current
unrealizable. Thus, the mechanical power input generated by the motors is approximated
by using the power input in the elasticities Pe = τTe θ̇ (where τTe = −∂Ue(θ, q)/∂q) and an
estimate of the mechanical efficiency ηm ≈ 0.6 of motor and gearbox based on estimates of
the acting friction, i. e., Pm ≈ Pe/ηm. Since energy recuperation is not implemented in the
servo electronics yet, only positive power is taken into account. Therefore, the measures
considered to evaluate the energetic efficiency of the quadrupedal locomotion controllers
are

COTm ≈ 1

ηm
COTe , (7.13)

COTe =

∫ T
0 max(τ e(t)

T θ̇(t), 0)dt

mtotg0d
. (7.14)

They will be referred to as the (approximated) mechanical and elastic COT, respectively.
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Pronking

The pronk gait can be used to overcome obstacles. A reasonable performance and efficiency
measure takes also the jumping height into account. In the experimental evaluation of
the pronking controller, the jumping distance is considered as performance measure and
reference length for the COT. It is defined as the geometric mean of the horizontally
traveled distance d and the jumping height h = hmax − h̄ of the considered stride, where
h̄ denotes the height of the main body in static stance, i. e., djump =

√
d2 + h2. To this

end, the controller parameters are tuned manually to maximize the jumping distance
djump: the landing angle is selected to be αl = −0.04 rad, the initial rest length is set to
r0 = 0.15m, the modal switching amplitude and threshold are chosen to be ŝ = 0.6 rad
and ǫτw = 0.35Nm, respectively. This results in a jumping distance of djump = 0.107 as
indicated in Fig. 7.5a. An elastic and mechanical COT of 0.63 and 1.05 are achieved for
this jump, respectively.

Trotting

The experiment presented in the following aims at validating the performance and effi-
ciency of the natural dynamics based trot control. Thereby the focus is on steady state
locomotion. In order to approach a phase with approximately constant movement veloc-
ity, the polar angle of the swing leg pair is initially increased step-by-step until a desired
value is reached, i. e., αsw = 0.025 rad + j0.005 rad ≤ 0.525 rad, where j ∈ N iterates
over the steps. All remaining controller parameters are selected as a function of αsw: To
exploit the natural radial oscillation properties, the polar equilibrium angle of the stance
legs is set to αst = 1.25αsw. The displacement of the initial rest length is selected by
r̂ = 0.035m + 0.03 m

radαsw. Especially, it turned out that a larger displacement for the
hindleg, i. e., r̂hind = 1.3r̂ while r̂fore = r̂, has a stabilizing effect on the pitch motion of the
main body. The thresholds of the swing leg extension and stance leg flexion are chosen
to be ǫαex = 0.1αsw and ǫαfl

= 0.3αsw, respectively, such that both switchings occur after
mid-stance, while the swing legs extend before the stance legs flex. The threshold for the
interchange of swing and stance leg pairs is selected as a quadratic function of the static
polar angle of the legs in swing (with minimum at αsw = 0), i. e., ǫα = 0.6αsw+0.3 1

radα
2
sw.

This results in an locomotion velocity (as averaged over three steps) of vmean = 0.66m/s
(Fig. 7.5b). Thereby, an elastic and mechanical COT of 0.37 and 0.62 are achieved, re-
spectively.

A preliminary estimate of the total COT can be obtained based upon the mean efficiency
for the conversion from electrical to elastic power, which for the servo units is ηel ≈ 0.4.
Considering further the electrical power consumption of the main computer, which is
PCPU ≈ 10W, the total COT of the trot with the quadruped Bert can be approximated
by
∫ T
0 (Pe/ηel + PCPU)dt/(mtotg0d) = 1.53. Compared to other legged robots such as

BigDog (COT = 15) and ASIMO (COT = 2), this value is already significantly lower.
The COT of the compliantly actuated robot iSprawl is with 1.7 also higher than the
value of Bert at hand. However, the MIT Cheetah achieves a COT of 0.51, which is the
result of a very optimized mechatronic design [SWC+13].8 Note that the current COT
values estimated for Bert will be verified with a new version of the power supply and
motor-controller electronics, which will permit direct measurement of the input power.

8The COT values are taken from [SWC+13].
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7.2. Bipedal locomotion

The main difference in the dynamics of bipedal and quadrupedal systems is the distribution
of inertias between the main body and the legs. A single leg of a human contributes to
the total body mass with about 15% [HCH76], while the fore- and hindleg of a cheetah
weights only about 4.3% and 8.6% of the total body mass [HH85], [KH13], respectively. As
such in human like locomotion, the relatively slow motion of the leg segments contributes
significantly to the dynamics of the gait. This motivates to investigate how the concept
of oscillation modes (Chapt. 5) can be exploited in the design and control of compliantly
actuated bipedal robots.

In the last decades, numerous bipedal robots and methods to control these systems have
been developed. Achievements in the design of humanoid robots can be traced back to
WABOT-1 (one of the first modern humanoids) [YSIT99], which formed the basis of many
subsequent bipedal systems such as ASIMO [HHHT98],[HO07], the HRP series [AKK+05],
or Wabian-2R [OAS+06] (just to mention a representative selection). These rigidly ac-
tuated robotic systems have been demonstrated to successfully perform bipedal walking
gaits. Thereby, classical control approaches based on the inverted pendulum model and
the zero moment point (ZMP) [VB05], [KT91], [Wie06] have been utilized. Since rigid
robots cannot handle high peak forces on the one hand, but also the ZMP is a static
criterion for balancing on the other hand, these systems are mainly able to perform only
quasi-static rather than dynamic walking gaits. In order to overcome the limitations re-
garding mechanical robustness, but also to increase the energetic efficiency respectively
performance of the locomotion gait, Alexander [Ale90] suggests the introduction of elastic
elements. They help to reduce the impact forces at the gear-box of the drives and offer the
capabilities of saving energy during weight bearing and for the generation of swing motions
of the legs [Ale90]. On the basis of these insights, several bipedal robots built upon compli-
ant actuators have been introduced [HCR07], [GHM+09], [TLSC11], [ESNV12], [GH12],
[TMD+13]. Thereby, the dynamic locomotion gaits are realized, e. g., by virtual model
control [PDP97], [PP98], [HRHS10], or the compliant hybrid zero dynamics framework of
Sreenath et al. [SPG13].

For all of the mentioned bipedal systems, walking or even running have been demon-
strated so far. However, the natural oscillatory behavior of the plant has not been explicitly
taken into account neither in the mechanical design nor in the control. In this section,
novel concepts are proposed, which allow to analyze, design, and control the natural os-
cillatory behavior of compliantly actuated bipedal systems w. r. t. task-relevant decoupled
elasticities and oscillation modes.

7.2.1. C-Runner: a compliantly actuated biped

The main purpose of C-Runner is the investigation of different concepts of compliant
actuation in bipedal locomotion. Therefore, the mechanical design is modular rather
than highly integrated. This allows to realize several elastic couplings such as mono- and
biarticular springs on the same basic test platform. In order to enable the comparison
of performance and efficiency with its biological counterpart, the size and weight of the
robotic system is in a human-like scale. The main focus is on the basic dynamics of bipedal
locomotion. Therefore, all joint axes (including the main body rotation) are parallel and
the system is guided to move on a circle. All technical characteristics of C-Runner (which
are relevant for this thesis) are provided in Fig. 7.6. A comprehensive system description
is given in [LWL+16].
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total mass 54 kg

mass of thigh, shank, foot 6, 6, 1.3 kg

segment lengths of thigh, shank, foot 0.4, 0.4, 0.17m

distance ankle joint and heel 0.05m

max. motor velocity (gear output) 5.2 rad/s

max. motor torque (gear output) 145Nm

possible stiffness of springs 240, 500, 670Nm/rad

Figure 7.6.: Compliantly actuated bipedal robot DLR C-Runner.

7.2.2. Task-oriented coordinates

In this section, a set of task-oriented coordinates is introduced, which aim at simplifying
the analysis and the control of the natural oscillatory dynamics of the compliantly actuated
bipedal system.

Single leg coordinates

The kinematics of a single leg can be described by a serial chain of main body, thigh,
shank, and foot (Fig. 7.7a). The thigh is connected to the main body by the rotational
hip joint, where the relative angle is denoted by q1. The shank is hinged to the thigh and
the foot is rotationally connected to the thigh, where the relative knee and ankle joint
angles are denoted by q2 and q3, respectively. The joint angles are all zero, when the foot
is parallel on the ground and the ankle, knee, and hip joints are vertically aligned with
the COM of the main body (in the mentioned order). Assuming equal lengths of shank
and thigh, the set of task-oriented coordinates of the single leg,

x(q) =





q1 +
1
2q2

l(q2)
1
2q2 + q3



 (7.15)

can be considered (Fig. 7.7b). These coordinates are based on the line linking the hip
and ankle joint, which is referred to as the leg axis. The first task coordinate x1 ∈ R

represents the relative angle of the leg axis and the main body. It is zero, if the COM of
the main body, the hip and ankle joint are aligned in the mentioned order. The second
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Figure 7.7.: Task-oriented coordinates: (a) joint configuration of a single leg; (b) task-
oriented coordinates of a single leg; (c) bipedal task coordinates.

task coordinate x2 ∈ R is any representation of the “length” of the leg axis l(q2). A natural
choice is given by the Euclidean distance

l(q2) = a
√

2 + 2 cos(q2) , (7.16)

where a > 0 denotes the equal segment lengths of thigh and shank. However, the mapping
(7.16) is not bijective. As such, for some applications it can be advantageous to simply
select the identity mapping l(q2) = q2. The third task-coordinate x3 ∈ R represents the
relative angle of the foot and the leg axis. It is zero, if the leg axis is perpendicular to the
contact line of the foot (and the hip is above the ground).

In Sect. 7.2.4, a compliant actuation design will be proposed, which achieves an input
and output decoupling of the elastic forces expressed in these task-oriented coordinates
(7.15).

Bipedal coordinates

On the basis of the task-oriented representation of the configuration for the single leg
(7.15), coordinates can be introduced for the bipedal system, which decouple the polar
step length and the orientation of the legs w. r. t. the main body. To this end, assume that
the task-oriented coordinates of the right and left leg are defined as

y(q) =

(
x(q1...3)
x(q4...6)

)

=











q1 +
1
2q2

l(q2)
1
2q2 + q3
q4 +

1
2q5

l(q5)
1
2q5 + q6











. (7.17)

Then, the proposed set of bipedal task-oriented coordinates considers the relative angle
between the leg axes

α =
y4 − y1

2
(7.18)
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Figure 7.8.: Quasi-static oscillation mode of the bipedal system in the single support phase.

and the mean of the angles of the leg axes w. r. t. the main body

γ =
y1 + y4

2
, (7.19)

such that the complete change of coordinates takes the form (Fig. 7.7c)

z(q) =











α
γ
z3
z4
z5
z6











=











1
2

(
q4 +

1
2q5 − q1 − 1

2q2
)

1
2

(
q1 +

1
2q2 + q4 +

1
2q5
)

l(q2)
1
2q2 + q3
l(q5)

1
2q5 + q6











. (7.20)

These coordinates form the basis to design an 1-manifold of the single support phase,
which will be considered for the dynamic walking control presented next.

7.2.3. Dynamic walking

Walking is a gait, where at least one of the feet is in contact with the ground. Bipedal
walking consists of a single and double support phase: In the single support phase, the
stance leg bears and transports the total center of mass (COM) in walking direction. At the
same time, the swing leg moves towards the configuration, which the stance leg had at the
beginning of the step. During the double support phase, the functionalities of the previous
stance and swing leg are interchanged. This phase is often modeled as instantaneous, see,
e. g., [GAP01], such that walking can be regarded as concatenation of single support
phases. The basic idea of the proposed dynamic walking control is to exploit the natural
dynamics of the compliantly actuated bipedal system for the generation of motion during
the single support phase. This presumes that the plant features a corresponding oscillation
mode.

Quasi-static single support mode

A (planar) bipedal system with feet consisting of two contact points (corresponding to
heel and toe) can display single support situations, where either only one or both contact
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points are constrained to the walking surface. In particular, the contact situation may
also change during stance. This would result in a structural change of the continuous
dynamics such that the natural oscillatory behavior cannot evolve in a single oscillation
mode. For simplicity, although not required from a theoretical point of view9, in the
following exemplary analysis the case is considered, where the stance foot is completely
fixed to the ground. Additionally the stiffness of the elastic potential is assumed to be
sufficiently high, such that the configuration q ∈ R

6 of the single support dynamics is
statically controllable via the motor position θ ∈ R

6 in the entire “relevant” configuration
space (cf. Definition 3.4 and Proposition 3.1). The resulting compliantly actuated fixed-
base system can be expressed in terms of the bipedal task coordinates (7.20), i. e.,

M̄(z)z̈ + b̄(z, ż) +
∂U(θ,z)

∂z

T

= 0 . (7.21)

This step is not essential, but simplifies the geometric interpretation of possible modes.
To identify a quasi-static oscillation mode of such a system, the following procedure can

be applied:

1. Select an equilibrium configuration z0 and fix the corresponding actuator configu-
ration θ0 = z̄−1(z0) (Definition 3.4);

2. Select a step size ∆r > 0;

3. Find displacements ∆z(j) =
∑j

i=1w(i)∆r, where w(i) ∈ R
n satisfying ‖w(i)‖ = 1

represents the direction of a vector in R
n, such that for any j = 1 . . . Nsteps, the quasi-

static acceleration is aligned with the incremental displacement of step j. That is,
for all j = 1 . . . Nsteps, there exists a scalar r̈(j) ∈ R such that

−M(z0 +∆z(j))−1 ∂U(θ0,z)

∂z

∣
∣
∣
∣

T

z=z0+∆z(j)

= wj r̈(j) (7.22)

is satisfied. If for a desired numerical accuracy, the condition (7.22) cannot be
satisfied, the step size ∆r can be decreased (for the current iteration step).

This procedure yields a discrete approximation of a quasi-static oscillation mode expressed
by the sequence z(j) = z0+∆z(j), which represents a (discrete) curve in the configuration
space of the system.

Remark 7.1. The term “quasi-static oscillation mode” refers to the assumption that the
velocity is zero, i. e., ż = 0. In other words, the curve represents an invariant subset of
static displacements. In order to obtain a “dynamic” oscillation mode, further require-
ments on the Coriolis/centrifugal acceleration need to be satisfied. However, for rather
low velocities, this is a good approximation of the system.

In case of the example at hand, the above procedure yields the quasi-static oscillation
mode as depicted in Fig. 7.8 (which is denoted by Ẑ). The inertial model of the compli-
antly actuated biped C-Runner, as introduced in Sect. 7.2.1, is considered (i. e., the inertial
parameters appearing in the gravitational potential and in the inertia matrix are derived

9Oscillation modes require the existence of an equilibrium configuration. But this fixed point needs not
to be stable (cf. Definition 5.2).
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from the mechanical design data). In the knee and ankle joints, linear springs with imple-
mentable stiffness values of k2 = 670Nm/rad and k3 = 500Nm/rad are considered, respec-
tively.10. For the spring in the hip joints a stiffness value of k1 = 50Nm/rad is determined
by utilizing the eigenvector matching procedure as proposed in Sect. 5.2.11 As such the con-
sidered elastic potential has the form Ue(q−θ) = 1

2

∑3
i=1 ki(qi−θi)2+ 1

2

∑6
i=4 ki−3(qi−θi)2.

The foot of the right leg is assumed to be fixed to the ground.12 Due to this fixation, the
relative angle of the stance leg w. r. t. to the vertical line β equals the corresponding angle
of the ankle joint (in task coordinates), i. e., β = z4. The equilibrium configuration is set
to α0 = β0 = γ0 = z0,3 = z0,6 = 0 and z0,5 = 5deg. This corresponds approximately to the
mid-stance configuration (i. e., where the total COM is vertically aligned with the ankle
joint of the stance foot). Due to the high ratio of stiffness and inertia in the knee and ankle
joint of the swing leg, and since the stance leg is set to a singular rest configuration, it can
be expected that oscillations contribute mainly to the degrees of freedom measured by α, β
and γ. As such, only displacements in these directions are considered in the identification
procedure of the quasi-static oscillation mode. The estimated curve of displacements which
cause exclusively tangential accelerations is weakly nonlinear (Fig. 7.8). The nonlinearity
is mainly a result of gravity (since the generalized inertia matrix is almost constant and
the stiffness of the elastic potential is exactly constant). The vector corresponding to the
major principal component of the curve is wα = −0.29, wβ = −0.34 and wγ = 0.89. This
reveals that the quasi-static oscillation of the mode contributes approximately equally to
the relative and absolute leg angle. By presuming that the swing foot is kept parallel to
the walking surface, such a behavior corresponds to a symmetric step, where the takeoff
and touchdown angle of the swing leg differs only in the sign. The contribution of the
main body oscillation in the mode is dominant. This can be observed in the experimental
validation of the dynamic walking controller introduced next. The main differences be-
tween the conceptual model investigated above and the experimental implementation are:
firstly, the stance foot cannot be assumed to be fixed in experiments. Secondly, the mode
is assumed to be linear in the experiment (which is a rather weak assumption, since the
oscillation mode is almost linear).

Control of a dynamic walking gait

The dynamic walking control aims at exploiting the quasi-static single support mode Ẑ
as identified above. Assuming that the system features additionally also a corresponding
modal control manifold according to Definition 6.1, the system can be controlled to evolve
in the mode by constraining z̄ = z̄(θ) := z(q̄(θ)) in Ẑ. This can be achieved using a high
gain motor PD control, e. g., of the form (3.31), and selecting θdes = z̄−1(z̄des) such that
z̄des is in the mode.

The estimated single support mode contains approximately no contribution of motion
in the leg axis and in the ankle joint of the swing leg (i. e., along z5 and z6 if the right leg
is in stance). However, these degrees of freedom need to be controlled to obtain ground
clearance and to ensure that at the interchange of leg functionalities, the foot of the swing
leg is configured appropriately (e. g., parallel to the walking surface). A further important
aspect for the realization in a real system is given by friction, which is present on the
motor side (gear box), in the spring mechanism and in the joints. An approach to excite
the single support motion in the quasi-static mode, which simultaneously achieves the

10Springs with these stiffness values are available for the real hardware system.
11The most compliant spring currently available for C-Runner has a stiffness of 240Nm/rad.
12This choice is arbitrary by symmetry.
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desired swing leg behavior, is proposed in the author’s previous work [LASRL16]. To this
end, an 1-manifold for the reference values is designed, which implements the constraints
of the quasi-static single support mode as well as the “rigid body motion” of the swing
leg axis and foot. This control manifold is parametrized by a single, motor configuration
dependent variable. By controlling this variable, the complete step can be controlled.
Possible choices of such a parametrization are given by virtual equilibrium position of the
relative leg angle and the absolute angle of the stance leg, i. e., ᾱ(θ) or β̄(θ), respectively.
Both represent the “progress” of the step. However, the latter parametrization β̄(θ) relies
on the assumption that the stance foot is fixed to the ground, and therefore ᾱ(θ) represents
a more robust choice. By considering the linear approximation of the nonlinear mode, the
control of the single support takes the form

z̄
right
des =







ᾱdes = α(q)− uα
γ̄des = −ϕdes

z̄3,des = ρ0
z̄4,des = ᾱ(θ)
z̄5,des = ρ0 + ρ(ᾱ)
z̄6,des = −ᾱ(θ)

(7.23)

if the right leg is in stance, and

z̄left
des =







ᾱdes = α(q) + uα
γ̄des = −ϕdes

z̄3,des = ρ0 + ρ(ᾱ)
z̄4,des = ᾱ(θ)
z̄5,des = ρ0
z̄6,des = −ᾱ(θ)

(7.24)

if the left leg is in stance. The progress of the step is controlled by the new control input
uα ∈ R≥0, which “pushes” the system along the single support manifold. Note that the
term ᾱdes = α(q) in (7.23) and (7.24) implements “zero torque” for the degree of freedom
of the relative leg angle.13 The constants ϕdes ∈ R and ρ0 in (7.23) and (7.24) determine the
equilibrium orientation of the main body and the rest length of the stance leg, respectively.
The function ρ(ᾱ) implements the flexion of the swing leg to ensure ground clearance. As
such, ρ(ᾱ) needs to be zero at the boundaries of the step and of maximum magnitude
at the nominal mid-stance, i. e., ρ(ᾱ) = 0 if |ᾱ| = α0 and |ρ(ᾱ)| = ρmax if ᾱ = 0, where
α0 > 0 denotes the nominal (polar) step length. If the mapping l in (7.20) is chosen unity,
i. e., l(q2,5) = q2,5, the flexion of the swing leg can be implemented by

ρ(ᾱ) = ρflexion cos
(

max
(

min
(

ᾱα0
π

2
, α0

)

,−α0

))

, (7.25)

where the constant ρflexion determines the flexion of the knee (at nominal mid-stance).
To generate the motion of the complete gait, the transition between the single support

controls (7.23) and (7.24) need to be controlled. A continuous evolution of the reference
values can be achieved by switching based on the manifold parameter ᾱ. In particular, if
uα is continuous and zero at the transition, the symmetry of the control manifolds (7.23)

13An exact implementation of the quasi-static single support mode would require a spring with stiffness of
k1 = 50Nm/rad in the hip joints, which is not available for the hardware system yet. If the appropriate
spring could be implemented in the system, the corresponding portion of the control would reduce to
ᾱ = uα.
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and (7.24), z̄right
des (−ᾱ) = z̄left

des(ᾱ) and vice versa, can be exploited by thresholding ᾱ w. r. t.
the nominal step length α0, i. e., the transitions from right to left stance and from left to
right stance are performed if −α0 and α0 are crossed from above and below, respectively.
However, a step should be initiated only if the corresponding leg is in stance. This can
be achieved by holding the reference values at the end of the single support phase (i. e.,
when the threshold is reached) until the touchdown of the next stance foot is detected.
This has the effect of (oscillatory) retraction. The motion of the single support phase can
be initiated by setting the control input for the manifold parameter to a constant value
uα = u0α, when the touchdown is detected.

Note that in the gait control, as proposed above, there is neither feedback of the orien-
tation of the bipedal system w. r. t. the gravitational acceleration nor the walking surface.
Additionally, since the control is based on the concept of exploiting the natural dynamics
of the plant, also the contact forces are not explicitly controlled. That is, there is no con-
trol mechanism implemented, which prevents the robot from falling. As such, a method is
proposed, which enables to “dynamically balance” the system by a control action on the
single support manifold. To this end, the state of mid-stance is detected, i. e., where the
total COM is vertically aligned with ankle joint of the stance leg. Then, depending on the
relative leg angle at this state αmid−stance(q), the control input uα is corrected according
to

∆uα = kmid−stance
αmid-stance(q)

|α0|
∆umax

α , (7.26)

where kmid-stance and ∆umax
α are positive constants. The controller (7.26) updates the

control input once per step (at mid-stance). Thereby, an adaption of the length of the
current step is achieved. This low-gain control action is able to “dynamically balance”
the bipedal system. In particular, it excites the system only on its quasi-static oscillation
mode.

Experiments

The performance and efficiency of the dynamic walking control, as described above, is
validated in experiments on the compliantly actuated, bipedal robot DLR C-Runner in-
troduced in Sect. 7.2.1. To this end, the nominal (polar) step length is set to α0 = 15deg
and the rest angle of the knee joint is chosen to be ρ0 = 40deg. In order to ensure ground
clearance, the relative flexion angle of the swing leg is set to ρflexion = 25deg. Initial
tests revealed that the gait can be sustained by setting the nominal input on the control
manifold to u0α = 8.5 deg and by choosing the parameters of the mid-stance correction
controller to be ∆umax

α = 3deg and kmid−stance = 4. The controlled system reaches a mean
locomotion velocity (averaged over two steps) of vmean = 0.61m/s. Thereby, a mechanical
COT based upon the energy expenditure of the motors (i. e., Pin = τTmθ̇ in (7.12)) of 0.55
is estimated based on measurements of the motor velocities, the motor torques, and the
absolute position of bodies (for the total COM motion). Fig. 7.9a depicts the motion of
the total COM and the feet during two steps. The motion of the swing foot displays a
retraction phase. Additionally, the foot strikes down with the heel, rolls over the foot
during the stance phase, and lifts off with the toes. As can be seen in Fig. 7.9b, the
travel distance of the links (dashed lines) substantially exceeds the travel distance of the
motors (solid lines). In particular, during the retraction phase (where the motor position
is constant), the distribution of oscillation amplitudes matches approximately with the
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Figure 7.9.: Motion of a complete stride (two steps) recorded during a dynamic walking
experiment on DLR C-Runner: (a) total COM and feet; (b) time evolution of
virtual equilibrium and link configuration in bipedal task coordinates.

quasi-static single support mode, as identified above. This validates the exploitation of
the natural oscillatory dynamics in the generation of the gait.

7.2.4. Running

Running is a dynamic locomotion gait with alternating stance and flight phases. This
implies that the total COM oscillates in the direction of gravity. To achieve the loco-
motion, the legs need to swing forward as well as backward. Since, both motions are
oscillatory, an energetically efficient implementation of the gait requires the usage of elas-
tic elements [Ale90]. As proposed by Raibert in [Rai86], the bouncing oscillation of the
COM can be realized by an elasticity in the direction of the leg axis. The swing leg mo-
tion can be implemented by a polar acting spring [Ale90]. In this section, a concept of
bi-articular compliant actuation is introduced, for which the elastic behavior is decoupled
w. r. t. these fundamental directions of the running gait. Based on this concept, a switching
based control to generate a bipedal running gait is proposed [LRSAS14].

Bi-articular compliant actuator design

The bi-articular actuator design is based upon a kinematic structure of the three segment
leg as treated in Sect. 7.2.2, i. e., where the segment length of thigh and shank is equal
(cf. Fig. 7.7a). The key finding is a particular linkage of the actuator and joint configura-
tions, which yields an input and output decoupled behavior in task-oriented coordinates
(7.15) of the articulated leg. Simply speaking, each task-relevant direction is associated
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Figure 7.10.: Bi-articular coupling of a human-like three-segment leg which leads to de-
coupled properties in task-oriented coordinates.

with only a single actuator. To this end, consider the mapping φ : R
3 × R

3 → R
3, where

φ1(θ1, q1, q2) = 2 (q1 − θ1) + q2 , (7.27)

φ2(θ2, q2) = q2 − θ2 , (7.28)

φ3(θ3, q2, q3) = q2 + 2 (q3 − θ3) . (7.29)

The mapping (7.27)–(7.29) can be implemented as kinematic constraints, φ(θ, q) = 0.
This results in independent relations between each of the task-oriented coordinates xi
(defined by (7.15)) and the actuator configurations θi, i. e.,

x1 = q1 +
1

2
q2

φ1=0
= θ1 −

1

2
q2 +

1

2
q2 = θ1 ,

x2 = l(q2)
φ2=0
= l(θ2) ,

x3 =
1

2
q2 + q3

φ3=0
=

1

2
q2 + θ3 −

1

2
q2 = θ3 .

As visualized by Fig. 7.10, the coupling (7.27) implements a 2 : 1-lever-arm ratio between
the actuator in the hip and the knee joint. This leads to a decoupling of the leg angle
(cf. Fig. 7.7b). The constraint (7.28) realizes a 1 : 1-lever-arm ratio between actuator and
knee joint, which is responsible for actuating motions along the leg axis. The coupling
(7.29) implements a 1 : 2-lever-arm ratio between the actuator in the knee and the ankle
joint. This leads to a decoupled behavior of the angle of the ankle joint which is measured
relative to the leg axis. In summary, to each actuator DOF, only one of the task-oriented
coordinates (Fig. 7.7b) is related such that each task direction can be controlled inde-
pendently. In particular, one can consider each of the mappings φi in (7.27)–(7.29) as
deflections of independent elastic potential functions of the form

Ue(θ, q) = U1(φ1(θ1, q1, q2)) + U2(φ2(θ2, q2)) + U3(φ3(θ3, q2, q3)) . (7.30)

In that case, an input and output decoupled property of the elastic force is achieved. This
can be proven by direct calculations, where the inverse of the change of coordinates (7.15)
and its Jacobian matrix is utilized, which are provided here for readability:

q(x) =





x1 − 1
2 l

−1(x2)
l−1(x2)

x3 − 1
2 l

−1(x2)



 ,
∂q(x)

∂x
=






1 −1
2
∂l−1(x2)
∂x2

0

0 ∂l−1(x2)
∂x2

0

0 −1
2
∂l−1(x2)
∂x2

1




 . (7.31)
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To this end, consider the generalized elastic force in task coordinates, which by applying
the chain rule takes the form

∂Ue(θ, q(x))

∂x
=
∂Ue(q)

∂q

∂q(x)

∂x
. (7.32)

Due to the particular structure of the potential (7.30), the first factor on the right hand
side of (7.32) can be rewritten as

∂Ue(θ, q)

∂q1
=
∂U1(φ1)

∂φ1

∂φ1(θ1, q1, q2)

∂q1
= 2

∂U1(φ1)

∂φ1
∂Ue(θ, q)

∂q2
=
∂U1(φ1)

∂φ1

∂φ1(θ1, q1, q2)

∂q2
+
∂U2(φ2)

∂φ2

∂φ2(θ2, q2)

∂q2
+
∂U3(φ3)

∂φ3

∂φ3(θ3, q2, q3)

∂q2

=
∂U1(φ1)

∂φ1
+
∂U2(φ2)

∂φ2
+
∂U3(φ3)

∂φ3
∂Ue(θ, q)

∂q3
=
∂U3(φ3)

∂φ3

∂φ3(θ3, q2, q3)

∂q3
= 2

∂U3(φ3)

∂φ3
.

Substituting this result together with the Jacobian matrix of (7.31) in (7.32), yields

∂Ue(θ, q(x))

∂x1
= 2

∂U1(φ1)

∂φ1
,

∂Ue(θ, q(x))

∂x2
=
∂l−1(x2)

∂x2

[

−∂U1(φ1)

∂φ1
+
∂U1(φ1)

∂φ1
+
∂U2(φ2)

∂φ2
+
∂U3(φ3)

∂φ3
− ∂U3(φ3)

∂φ3

]

=
∂l−1(x2)

∂x2

∂U2(φ2)

∂φ2
,

∂Ue(θ, q(x))

∂x3
= 2

∂U3(φ3)

∂φ3
.

Then, by expressing (7.27)–(7.29) in terms of x (i. e., by utilizing q(x) of (7.31)), it can
be finally seen that

∂Ue(θ, q(x))

∂x1
= 2

∂U1(φ1)

∂φ1

∣
∣
∣
∣
φ1=2(x1−θ1)

=: fx,1(x1 − θ1) , (7.33)

∂Ue(θ, q(x))

∂x2
=
∂l−1(x2)

∂x2

∂U2(φ2)

∂φ2

∣
∣
∣
∣
φ2=l−1(x2)−θ2

=: fx,2(l
−1(x2)− θ2) , (7.34)

∂Ue(θ, q(x))

∂x3
= 2

∂U3(φ3)

∂φ3

∣
∣
∣
∣
φ3=2(x3−θ3)

=: fx,3(x3 − θ3) . (7.35)

This means that for each i = 1, 2, 3, the component of the generalized elastic force which
is dual to ẋi, fx,i(xi, θi), depends only on xi and θi.

Control of a running gait

Due to the input and output decoupled property of the generalized elastic force w. r. t.
the task-oriented coordinates (7.15), as shown by (7.33)–(7.35), each of the subtask of
a legged locomotion gait can be associated with a single control input θi. This will be
exemplary shown for a bipedal running gait. The concept of the controller is to switch
between simple time-continuous and constant control actions based on state dependent
events. These events are either the touchdown TD, takeoff TO or an thresholding of
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the elastic force along the axis of the stance leg, τ stx,2 := −fx,2(l−1(xst2 ) − θst2 ). For the
latter type of events, it is distinguished, whether τ stx,2 crosses the value of ǫτx,2↑ > 0 or
ǫτx,2↓ > 0 from below or above, respectively. The corresponding events are referred to as
axial spring loading or unloading, respectively. For simplicity, the effect of gravity on the
virtual equilibrium configuration of the system is neglected, i. e., θ1 = x̄1, θ2 = l−1(x̄2) and
θ3 = x̄3. This avoids to consider a contact state dependent gravity model in the feedback.
In order to control the absolute orientation of the main body ϕ (and its time derivative
ϕ̇) only during the stance phase, the elastic torque (dual to ẋst1 ) is considered as control
input instead of θst1 , i. e., θ

st
1 = (fx,1)

−1(τdesx,1 ) + xst1
A half cycle of the proposed running gait control (from the TD of one leg to the TD

of the other leg) comprises five finite states: spring loading, main body stabilization, mid-
stance, pushoff initiation, and landing. All quantities of the leg, which is in stance or
swing phase during the considered half cycle, are denoted by the superscript (·)st or (·)sw,
respectively.

Spring loading The transition to that state is triggered by the touchdown event TD. The
main purpose of this state is to assure the ground contact, which is required to stabilize
the main body by control. This can be achieved by loading the spring along the leg axis
w. r. t. the rest length l0 > 0, which the current stance leg has displayed already during
the last flight phase and by setting the rest angle of the stance foot to its configuration
at TD, i. e., θst2 = l−1(l0) and θst3 = −ϕ(TDst) − xst1 (TD

st), respectively. Since in this
phase, the contact state is not ensured, the hip torque of the stance leg compensates
only for gravity, i. e., τdesx,1 = τg(ϕ), where τg(ϕ) contains the model of the gravitational
torque of the main body. The control inputs corresponding to the hip joint and axis of the
stance leg are held to the constant values of the previous (finite) state, θsw1 = xsw1 (TOsw)
and θsw2 = l−1(lflexion) with 0 < lflexion < l0, respectively. The swing foot is kept statically
parallel to the ground, i. e., θsw3 = −ϕ−xsw1 . This control action is active over the duration
of the complete step.

Main body stabilization The transition to this state occurs, when the ground contact
is assured. This is detected by thresholding the axial spring compression τ stx,2 from below
w. r. t. ǫτx,2↑. During this phase, the main task of the stance leg is stabilizing the orientation
of the main body w. r. t. a reference ϕdes. This is achieved by PD control with gravity
compensation τdesx,1 = τg(ϕ) + kP(ϕ− ϕdes) + kDϕ̇, where kP > 0 and kD > 0 are constant
controller gains. In order to bear the torque required for the stabilization of the main
body, the resting angle of the ankle joint is adjusted such that the stance foot is statically
parallel to the locomotion surface, i. e., θst3 = −ϕ(EN) − xst1 (EN), where EN denotes the
time instance of the current (finite) state entry. At the same time, the angle of the
swing leg is already prepared for the upcoming touchdown (although the bipedal system
is still in stance). To this end, a foot placement algorithm similar to what was proposed
in [Rai86] is considered. The “low gain” control is based upon measurements of the
duration and averaged velocity of the previous stance phase, Ts = t(TO) − t(TD) and

vmean = 1
Ts

∫ t(TO)
t(TD) vb(r)dr, respectively:

fp(vmean, vdes, ϕ, x
sw
2 ) = −ϕ− arcsin

(
xf(Ts, vmean, vdes)

xsw2

)

, (7.36)

xf(Ts, vmean, vdes) =
vmeanTs

2
+ kv (vmean − vdes) . (7.37)
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7.2. Bipedal locomotion

The first term of the foot placement control (7.37) implements a feed-forward action,
which is based on the assumption of a symmetric stance phase evolution. The latter term
in (7.37) realizes a proportional control to regulate vmean to vdes, where kv > 0 denotes
a constant gain. The algorithm is implemented in the hip joint of the swing leg, i. e.,
θsw1 = fp(vmean, vdes, ϕ, x

sw
2 ), according to (7.36) and (7.37). The foot-placement control

remains active until the next touchdown event (of the current swing foot) occurs.

Mid-stance The mid-stance is detected by thresholding the axial spring compression τ stx,2
from below w. r. t. ǫ′τx,2↑. Alternatively, the zero-crossing of the rate of change of τ stx,2 can be

utilized. This (finite) controller state is responsible for preparing the pushoff by unloading
the spring corresponding to the ankle of the stance leg. This is achieved by continuously
adjusting the corresponding rest angle to θst3 = −ϕ− xst1 . Note that this has the effect of
“zero torque” control.

Pushoff initiation The pushoff is initiated in the phase, where the axial spring of the
stance leg decompresses. This can be detected by thresholding the corresponding elastic
force τ stx,2 with ǫτx,2↓ from above. The control action, which initiates the pushoff, adds a

constant offset β̂ > 0 to the resting angle, for which the stance foot is statically parallel to
the locomotion surface, i. e., θst3 = β̂−ϕ−xst1 . Simultaneously, the main body stabilization
is deactivated, i. e., τdesx,1 = τg(ϕ). All other control tasks remain unchanged.

Landing The flight phase is triggered by the takeoff event TO. At the entry instance of
this (finite) state, the previous stance leg is flexed to prepare for the subsequent swing
phase, and the previous swing leg is extended to prepare for the following stance phase,
i. e., θst2 = l−1(lflexion), and θ

sw
2 = l−1(l0), respectively. Additionally, the rest angles of hip

and ankle (of the previous stance leg) are set to their link-side values at the takeoff event,
i. e., θst1 = xst1 (TO) and θst3 = β̂ − ϕ(TO) − xst1 (TO), respectively. At the exit instance of
this controller state, i. e., at the touchdown event of the next stance leg, the labels (·)st
and (·)sw can be considered as interchanged in between the legs.

Simulations

The bi-articular compliant actuator concept and its application to bipedal running is
validated by simulations. To this end, a bipedal system is considered, which features a
human-like mass distribution with a total body mass of m = 80kg, comprising 0.75m for
the trunk, 0.0625m for each thigh, 0.0375m for each shank, and 0.025m for each foot.
Thighs and shanks have segment lengths of b = 0.5m. Each foot has a segment length
of 0.2m. The ankle joint of each foot is located at 25% of the foot length measured
w. r. t. the heel. The COM of the trunk is 0.3m above the hip. The COM of thighs
and shanks are at 40% of the segments lengths (proximal) and the COM of each foot
is at 30% of the forefoot length measured w. r. t. the ankle joint. For the bi-articular
compliant actuators, quadratic potential functions of the form Ue,leg = 1

2

∑3
i=1 kiφ

2
i are

considered for each leg. Thereby, initial simulation tests revealed that stable running can
be achieved by selecting the stiffness values as k1 = 200Nm/rad, k2 = 1000Nm/rad, and
k3 = 600Nm/rad. For the link-side damping matrix, the same structure as for the stiffness
matrix ∂2Ue,leg/∂qleg

2 is assumed (where qleg ∈ R
3 denotes the joint variables of one leg).

Thereby, the linear, viscous friction coefficients are assumed to be d1 = d3 = 10Nms/rad,
and d2 = 25Nms/rad. The forward dynamics of the resulting system is computed based
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Figure 7.11.: Bipedal running based on the task-oriented, input and output decoupled
bi-articular actuator design: (a) visualization of a complete gait cycle; (b)
motion of joint configuration (five cycles); (c) velocity tracking and running
uphill a constant slope with constant, desired velocity.

on the articulated body algorithm [Fea08] and a point version of the compliant contact
model [AF10]. The resulting ordinary differential equations (including the control) are
integrated in Matlab/SimulinkR© using a variable step solver.

The parameters of the stabilization controller for the main body are set to kP =
1000Nm/rad and kD = 200Nms/rad, and the desired orientation is ϕdes = 0. To in-
dicate the axial spring loading, the maximum compression and the unloading, threshold
values of ǫτx,2↑ = 400N, ǫ′τx,2↑ = 1150N and ǫτx,2↓ = 600N are found by manual search,
respectively. Simulation tests revealed that by selecting a rest length for the stance leg
of l0 = 0.99 · 2b and for the swing leg of lflexion = 0.9 · 2b, ground clearance of the swing
foot can be assured. The amplitude of the pushoff in the ankle is set to β̂ = 1

6π rad. The
proportional gain, as required for the control of the locomotion velocity (7.37), is chosen
to be kv = 0.2 s (which corresponds to almost the highest possible value).

All simulations started with an initial guess of the stance duration of Ts = 0.2 s. On the
basis of this initial guess and the reference values ϕdes and vdes, the initial condition x

st
1 (0) is

computed by (7.36) and (7.37). The remaining initial configurations are set to xst2 (0) = l0,
xst3 (0) = −(ϕdes + xst1 (0)), x

sw
1 (0) = −xst1 (0), xsw2 (0) = lflexion, and xsw3 (0) = −(ϕdes +

xsw1 (0)). To obtain the corresponding joint angles, the inverse change of coordinates (7.31)
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is considered. The initial actuator configurations result from (7.27)–(7.29). The initial
conditions of the main body are chosen such that for ϕ(0) = ϕdes = 0, the landing foot
almost touches the ground. All initial conditions at velocity level except the vertical
velocity of the main body are set to zero.

The first simulation test aims at investigating the steady-state behavior of the closed-
loop system. To this end, a desired locomotion velocity of vdes = 2m/s is selected.
Fig. 7.11a shows a stroboscopic picture of a complete gait cycle. Fig. 7.11b shows the
motion of the joint configuration of one leg. Five cycles in the steady-state phase of
the running motion are plotted. The periodicity of the motion can be clearly seen. The
following two simulations demonstrate the convergence behavior of the closed-loop system.
Fig. 7.11c depicts the results of both simulations starting with the same initial conditions.
In the first simulation, the desired locomotion velocity is linearly increased in the time
interval of 20 s to 30 s from vdes = 2m/s to vdes = 3m/s. In the second simulation, the
system runs uphill a constant slope of 8.75%, while the desired locomotion velocity is set
to vdes = 2m/s. Both tests clearly demonstrate the ability of the system to converge to
different periodic orbits of bipedal running, even in case of an inclination w. r. t. gravity.

7.3. Summary

In this chapter it is demonstrated that the concept of oscillation modes and corresponding
control approaches, as proposed in this thesis, can be effectively applied to real world
tasks of legged locomotion. Thereby, the contribution is twofold: the theory of oscillation
modes supports the design of the mechanical system, and yields simple and robust yet
effective controls to achieve the rather “complex” behavior of dynamic locomotion gaits.
The concept of eigenmodes of nonlinear dynamics and the corresponding method of its
embodiment forms the basis of the compliantly actuated quadruped Bert. On the basis of
the quadrupedal pronk and trot gait, it is validated theoretically as well as experimentally
that the dynamics of the fundamental SLIP model can be embodied in articulated legged
multibody systems. The presented examples of bipedal dynamic walking (experimentally
validated) and running (verified by simulation) show how the notion of nonlinear oscillation
modes and input/output decoupling of elasticities can be exploited in the system (i. e.,
stiffness selection) as well as controller design, respectively. As the current quadrupedal
and bipedal robotic systems serve only as test platforms for a first proof of concept, and
since the parameters of the controllers are not tuned optimally yet, a substantial increase
regarding performance and energetic efficiency can be expected in future versions of system
designs and corresponding experimental tests. Moreover, a further application of a modal
control approach to legged locomotion is presented in [SLOAS17]. Herein, the modally
adaptive periodic motion, as presented in Sect. 6.3, is applied to a compliantly actuated
single-leg hopper which features an oscillation mode. Thereby, it is shown by numerical
optimal control as well as in a statistically significant experiment on the real-hardware
that the proposed modally adaptive control (Sect. 6.3) is optimal w. r. t. the maximization
of the jumping height for constant energy input. Finally, it is worth mentioning that
in this thesis, the focus was on the high performance and energetically efficient tasks of
legged locomotion. In parallel, a project has been initiated, which aims at validating
versatility w. r. t. different gaits and movement in difficult terrain by means of the same
robotic system as used for the high performance tasks. For example, the actuators of
the quadruped Bert are currently revised such that a torque interface at joint-level can
be provided, which is, e. g., required to realize the modal shaping approach (Sect. 6.2)
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on the hardware. By showing performance and energetic efficiency as well as versatility
on the same compliantly actuated legged system, a rigorous validation of the concept of
oscillation modes will be obtained.
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CHAPTER 8

Conclusion, Discussion and Outlook

The introduction of elastic elements in classically rigid robotic and mechanical systems
yields a variety of potential advantages such as energetic efficiency, mechanical robustness,
and realizability of versatile tasks. At the same time, the resulting nonlinear oscillatory
behavior gives rise to fundamental research questions such as the existence or even the
unpredictability of resonance-like motions in the single degree of freedom case. Intuitively
and from simple considerations, it is clear that elastic multibody systems display peri-
odic motions. However, the initial ideas that, e. g., linear modal analysis generalizes to
the nonlinear case, had been merely a conjecture. As such, the theoretical evidence on
how to efficiently control compliantly actuated systems was sparse. The ultimate goal of
this thesis was to deepen the understanding and to learn how to control such nonlinear
oscillatory systems strong focus on the practical feasibility and relevance w. r. t. robotic
tasks. Thereby, the aim was to convert intuitive observations into theoretical foundations.
Towards the vision to approach or even surpass the performance and energetic efficiency of
biological systems by robots, the very basic insights and comprehensions of such nonlinear
dynamics are indispensable. The approach of this dissertation is solving this holistic prob-
lem in the areas of limit cycle generation, dimensionality reduction of nonlinear dynamics
and robust modal control. This closes the loop from intuitive observations over theoretical
understanding to application and back to experimental verification.

8.1. Conclusion and discussion

In this section, the main findings and results reported in this thesis are summarized and
discussed.

8.1.1. Limit cycle control

Due to the unpredictability of steady-state solutions of forced nonlinear oscillations, the
generation of resonance-like limit cycles is already challenging in the single-DOF case. In
Chapt. 4, a switching-based control principle is introduced, which is shown to be able to
generate a unique and attractive closed orbit in a large class of physically relevant, planar
Euler-Lagrange dynamics. The controller achieves that solely by a thresholding feedback
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of state measurements at position level. By switching based on a non-zero threshold
value, the controller is robust against sensor noise. In particular, the control principle can
be implemented such that no model-parameter knowledge is required in the feedback. This
stands in contrast to limit cycle controllers based on the Van der Pol oscillator respectively
energy regulation principle. They need to feedback the full state (position and velocity).
Additionally, they require at least the model-knowledge of dissipative and potential forces
of the plant to compute the control. For the stability analysis of the switching-control-
based closed-loop system, non-standard statements are proposed to prove the existence,
uniqueness, and attractiveness of resulting hybrid closed orbits. The basic argument is
a balance of energy input by the controller and energy dissipated by the plant along
the continuous portion of the hybrid, periodic trajectory. The control principle is such
that during the dissipative motion, the controller output is constant (natural oscillation).
Therefore, by assuming that any motion of the motor (control input) is associated with
energetic losses, it can be concluded that the proposed limit cycle control is energetically
efficient in a sense that it injects the minimum amount of energy, which is required to
sustain the limit cycle. The question of energetic efficiency of the controller principle
can be (partially) answered by the finding that the structure of the proposed controller
is similar to the optimal control which maximizes any unsigned linear combination of
the state for a bounded control input (injected energy) [ÖH13]. In addition to solving
the problem of energy-efficient limit cycle generation, novel existence, uniqueness and
attractiveness statements are found. They may be regarded as extensions of the well-
known Poincaré-Bendixson theorem and Lohmiller’s contraction analysis for a particular
but practically relevant class of planar, hybrid Euler-Lagrange systems.

8.1.2. Oscillation modes

Dimensionality reduction is a concept to ensure the existence of periodic motions in conser-
vative multibody systems. Additionally, it suggests a way to control nonlinear-oscillations
in non-conservative, compliantly actuated robotic systems. However, dimensionality re-
duction in case of the nonlinear dynamics at hand represents a highly challenging and
mostly unresolved problem. As such, state-of-the-art methods are either not applicable
or not feasible (w. r. t. obtaining closed-form solutions or sufficiently accurate approxima-
tions). In Chapt. 5, a novel concept has been proposed to describe the natural oscillatory
or periodic behavior of multibody systems with elasticities. The general definition of
what are called oscillation modes of nonlinear dynamics is introduced as invariant, one-
dimensional and differentiable submanifolds of the configuration space. In a certain coor-
dinate system, the one-dimensional curves of invariant configurations appear as straight
lines. Such so-called modal lines have been shown to exist for systems of constant iner-
tia but nonlinear and coupled springs. However, the algebraically testable conditions of
the proposed theorem on oscillation modes allowed to introduce a methodology to em-
body desired one-dimensional dynamics of a given task in the mechanical design of elastic
multibody systems. This way it was possible to find examples of such nonlinear dynamics
featuring oscillation modes, which include also Coriolis/centrifugal effects. To the best of
the author’s knowledge, these are the first examples reported so far, in which the existence
of one-dimensional, invariant manifolds for nonlinear, multibody systems with elasticities
are validated. Nevertheless, from a theoretical point of view, the definition of oscilla-
tion modes is less general than the one of normal modes proposed by Shaw and Pierre
in [SP93]. However, the conditions on the existence of oscillation modes are merely of
algebraic form. This stands in marked contrast to the Shaw and Pierre definition of nor-
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mal modes, where the proof of existence involves a system of nonlinear partial differential
equations. In particular, as validated in the application from Chapt. 7, the proposed def-
inition of oscillation modes captures a relevant class of system and task dynamics such as
the mass-spring template model, which has been empirically shown to be fundamental in
legged locomotion [Bli89]. The nonlinear dynamics of the pantograph leg, as presented in
Sect. 5.2.2, is structurally equivalent to the dynamics of the SLIP model for a large range
of realistic geometric and inertial parameters of the leg segments.

8.1.3. Modal control

The concept of oscillation modes forms a basis for natural oscillatory and periodic mo-
tions in compliantly actuated systems. However, the exploitation of such plant-inherent
motions in robotic tasks demands appropriate control. This thesis contributes four ap-
proaches which achieve the generally opposing goals of feasibility, versatility, robustness,
and energetic efficiency to different extent.

The concept of modal globalization (Sect. 6.1) is to consider the intrinsic oscillatory
behavior of compliantly actuated systems locally (linearization) and to design the control
such that it becomes valid globally. As such, by this control strategy, it is possible to
realize decoupled, scalar, oscillatory dynamics for any statically controllable compliantly
actuated system, since the method relies solely on the positive definiteness of the linearized
plant dynamics. Although the controller performs dynamics shaping, energetic efficiency
can be gained, as the plant-inherent inertia and the local stiffness matrix are maintained.
This has been validated in experiments with the DLR Hand Arm System. An additional
theoretical finding is the controller gain design and corresponding strict Lyapunov function
approach, which allows to guarantee exponential decay of oscillations in undesired modes.

The method of modal shaping control, as introduced in Sect. 6.2, increases the versa-
tility of possible tasks, where high performance and energetic efficiency are of paramount
importance. The controller allows to realize any one-dimensional, attractive task mani-
fold, as long as the shape of the embedded curve is diffeomorphic to a circle or a line. This
comes generally at the price of performance and energy efficiency. However, it has been
shown by simulation that the control method covers the case of stabilizing an inherent
oscillation mode of the plant.

Oscillation modes are intrinsic properties of the plant. Even if their existence is guaran-
teed, e. g., by embodiment in the mechanical design, the knowledge of their exact geomet-
ric shape cannot be presumed due to model uncertainties. The method of what is called
modally adaptive periodic motion control, as proposed in Sect. 6.3, solves this robustness
issue, and represents therefore one of the core contributions of this thesis. The basic con-
cept is to excite an oscillation based on an initial guess of the shape of the mode and then
successively adapt to the oscillation mode and simultaneously improve the excitation by
observations of resulting motions. This is achieved with at most the model knowledge
of the potential function of the plant, and solely feedback of measurements of the state
at position level. Several experiments with the DLR Hand Arm System revealed that
even the model-parameter knowledge of the potential can be neglected in the controller
implementation, i. e., merely the deflection of springs (instead of potential forces) can be
considered in the control. Therefore, it can be concluded that the method is very robust
against model uncertainties and sensor noise. In particular, investigations initiated and
related to this thesis have shown by simulations and experiments for a task of a jumping
leg, that the proposed modally adaptive periodic motion is closely optimal regarding the
jumping height [SLOAS17].
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Finally, the proposed methodology of modal matching (Sect. 6.4) exploits the nonlinear
configuration dependency of the dynamics of multibody systems to match and control the
direction of local eigenvectors to a desired task. On the basis of this concept, an effective
method is introduced to control highly dynamic locomotion in compliantly actuated legs.
The controller is conceptually validated by simulations of a jumping leg, where almost
constant forward movement (instantaneous locomotion velocity) is achieved. Therefore,
the method of modal matching closes the gap between the goals of task versatility and
energetic efficiency.

8.1.4. Legged locomotion

Legged locomotion is an intrinsically oscillatory or even periodic task such that the ap-
plication of the theory of oscillation modes, as introduced in Chapt. 5, and corresponding
cyclic motion and modal control methods (Chapt. 4 and 6) potentially leads to high perfor-
mance and energetic efficiency. The benefits of springs in legged locomotion have already
been recognized by energetic considerations of Alexander [Ale90]. In particular, there is
plenty of empirical evidence that high-dimensional, nonlinear dynamics of complex legged
animals collapses to template models of highly reduced order. Additionally, such fun-
damental low-order dynamics models of locomotion such as the spring loaded inverted
pendulum (SLIP) have been implemented in robotic systems by virtual model control.
Nevertheless, the theoretical question, how the SLIP model (consisting of a constant point
mass and a radially acting spring) can be intrinsically realized in the already geometrically
nonlinear multibody system of an articulated leg, has not been answered yet. Section 5.2.2
provides a closed-form example, which validates that the dynamics of the SLIP model can
be embodied in the mechanical design of a physically realizable mechanism of a panto-
graph leg. By this finding, the hypothesis of biologists about templates and anchors, as
mentioned above, is substantiated from a theoretical point of view. Chapter 7 further
validates the theoretical and methodological results by implementations in real robotic
systems, applications to tasks of legged locomotion and finally by conducted experiments.
Thereby, the contributions of Chapt. 7 are twofold: First, it is shown how the theory of
oscillation modes can be applied to support the mechanical design of compliantly actu-
ated quadrupedal and bipedal robotic systems. Secondly, simple and robust controllers
are proposed, which exploit the embodiment of oscillation modes to implement the rather
“complex” behavior of dynamic locomotion gaits, and their performance and efficiency
is validated in a series of experiments. This closes the loop from empirical findings over
theoretical foundations back to relevant applications and their experimental validation.

8.2. Outlook

The ultimate goals, as defined in the problem statement of this thesis (Sect. 1.2), were gain-
ing the understanding for natural motions of highly nonlinear, elastic multibody systems
and exploiting the acquired insights to increase performance and efficiency in the execution
of robotic tasks. Towards these aims, it was possible to contribute to the research areas
of limit cycles, dimensionality reduction of nonlinear dynamics, and multi-dimensional
oscillatory and periodic motion control. In addition to these theoretical contributions, a
first proof of concept of the introduced methodologies was performed by implementations
in robotic systems and real-hardware experiments. Due to the richness and “complexity”
of the nonlinear systems and tasks at hand, the problem of understanding and exploiting
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natural nonlinear oscillations is for sure not completely solved yet. However, the investi-
gations reported in this thesis yielded further relevant theoretical problem statements in
the field of nonlinear system analysis and control, interdisciplinary hypotheses as well as
engineering issues, which will be briefly discussed in the following paragraph.

The switching-based limit cycle control (Chapt. 4) has been derived from observations
of human motor control and turned out to be a robust and efficient method to excite and
sustain periodic motions in a broad class of one-dimensional nonlinear systems. Qualita-
tive comparisons of the controller structure with analytical optimal control results suggest
a matching of principles. Therefore, the mathematical proof of optimality would strongly
impact the scientific relevance of the proposed control method on the one hand, but would
possibly also help to derive other related feedback structures from existing feed-forward
controls on the other hand. Section 5.3 addresses the existence of closed energy-level sets
and the excitability of periodic orbits in non-conservative, nonlinear systems. To this end,
a classification theorem for periodic motions is proposed, which is based on classical results
of point-set topology. Utilizing this straightforwardly testable statement in a simulation
study revealed that the multi-pendulum with elasticities in the joints displays also periodic
motions, which cannot be described by the concept of a one-dimensional, differentiable
manifold. In particular, it has been observed that the geometric shape of the curve of
configuration evolutions depends on the magnitude of the applied initial velocity. This
observation suggests a non-holonomic structure of resulting centres and raises the question
of underlying physical principles which lead to the periodicity. Further related research
issues have been initiated by the discovery of the modally adaptive periodic motion con-
trol, as introduced in Sect. 6.3. The equivalence of the modal adaptation law and the
well studied recursive principle component analyzer, known as Oja’s rule, in combination
with the hybrid excitation control induct a fundamentally novel stability theory, which
may combine the concepts of stochastic convergence, bounded-input-bounded-output sta-
bility, and the hybrid-dynamical-system statements proposed in Chapt. 4. Besides these
theoretical outcomes, the finding of the modally adaptive concept initiated a hypothesis
of motor control in biological systems, of which first conceptual validation results have
been obtained within a doctoral research project launched in parallel to the investigations
of this thesis [LAS14a], [SLAS16].

The experiments, as provided in the context of dynamic legged locomotion (Chapt. 7),
serve as a first proof of concept. They reinforce the evidence that by the vigorous efforts
currently put in the engineering part of the mechatronic design (e. g., in the development
of the electrical drives), a rigorous validation of the proposed theory can be performed,
such that versatile legged robots will become able to approach or even surpass the biolog-
ical archetypes regarding performance and energetic efficiency. The author’s vision is to
contribute the theory to create a system being able to reach areas, where neither biological
nor current technical system could go before. Maybe, one day, such a legged robot will
support the discovery of extra-terrestrial life in planetary exploration missions.
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APPENDIX A

Appendix

A.1. Proof of Proposition 4.1

Consider as candidate Lyapunov function the Hamiltonian H(x) of the system (4.11), i. e.,

V (x) := H(x) = T (x2) + U(x1) , (A.1)

where T (x2) =
1
2Mx22. The function V (x) is positive definite in x since U(x1) is positive

definite in x1 (cf. Assumption 4.1) and T (x2) is positive definite in x2 by definition. The
derivative along the solution of (4.11), V̇ (x) = −d(x1, x2)x2 ≤ 0, is non-positive due to
Assumption 4.2. As a result the origin x = 0 is stable in a sense of Lyapunov [SL91,
Theorem 3.2, p. 62]. By hypothesis of Assumption 4.2, −d(x1, x2)x2 = 0 only if x2 = 0.
But x2 = 0 implies that ẍ1 = − 1

M ∂U(x1)/∂x1 which is non-zero as long as x1 6= 0
according to Assumption 4.1. The system cannot remain in the set R = {x ∈ R

2 |x2 = 0}
except at x = 0 since the largest invariant set in R is the origin x = 0 itself. Therefore, the
system is locally asymptotically stable according to La Salle’s invariance principle [SL91,
Theorem 3.4, p. 69]. Since V (x) is radially unbounded, i. e., V (x) → ∞ if ‖x‖ → ∞, the
above argumentation holds globally. As a result, the origin x = 0 of the system (4.11) is
globally asymptotically stable [SL91, Theorem 3.5, p. 73].

A.2. Algorithms

A.2.1. Solving the linearized modal matching problem

The problem (5.23) can be solved by applying Newton’s method for nonlinear algebraic
equations. Thereby, an iteration step ∆ζ1 is given by the solution of the system of linear
equations

Nq∑

i=1

∑

j∈J

1

2
Hj (wj(qi, ζ1))

(
wj(qi, ζ1)−wdes

j

)

=
1

γ

Nq∑

i=1

∑

j∈J

1

2
Hj (wj(qi, ζ1))Gj(qi, ζ1)∆ζ1
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where γ > 0 controls the step length and J ⊆ {1, . . . , n}. Due to the normalization
condition (5.7), the Jacobian matrices

Gj(qi, ζ1) =
∂wj(qi, ζ1)

∂ζ1
. (A.2)

are rank deficient, i. e., rank(Gj(qi, ζ1)) = n − 1, even in cases n ≤ N1. This problem
of rank deficiency can be solved by transforming the components of the eigenvectors to
coordinates yj = y(wj) ∈ R

n−1 representing the direction of the eigenvector wj . The
corresponding Jacobian matrix can be expressed as H(wj) = ∂y(w)/∂w|w=wj

. Such a
representation can be the angular part of n-spherical coordinates as given in Sect. A.2.2.
Moreover, the computation of the Jacobian matrices defined in (A.2) requires to differen-
tiate the eigenvectors wj w. r. t. the optimization variables ζ1. Therefore, a closed-form
method is provided in Sect. A.2.3.

A.2.2. n-spherical coordinates

Given is the eigenvector w ∈ R
n. The components w can be expressed as the angular part

of n-spherical coordinates y = y(w) ∈ R
n−1, where

yi(w) = arccos




wi

√
∑n

j=iw
2
j



 , (A.3)

for i = 1 . . . (n − 1). The corresponding Jacobian matrix can be computed by H =
∂y(w)/∂w ∈ R

(n−1)×n. The components of H are given by

Hi,j =

w2
i

(
∑n

k=iw
2
k)

3
2

− 1√
∑n

k=i w
2
k

√

1− w2
i

∑n
k=i w

2
k

,

for i = 1 . . . (n− 1) and j = i,

Hi,j =
wiwj

(∑n
k=iw

2
k

) 3
2

√

1− w2
i

∑n
k=iw

2
k

,

for i = 1 . . . (n− 2) and j = (i+ 1) . . . n,

Hn−1,n−1 = sign(wn−1)

w2
n−1

(
∑n

k=n−1 w
2
k)

3
2
− 1√

∑n
k=n−1 w

2
k

√

1− w2
n−1

∑n
k=n−1 w

2
k

,

Hn−1,n = sign(wn−1)
wn−1wn

(∑n
k=n−1w

2
k

) 3
2

√

1− w2
n−1

∑n
k=n−1 w

2
k

,

and Hi,j = 0, otherwise.
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A.2.3. Derivatives of generalized eigenvectors

Given are two symmetric matrices K,M ∈ R
n×n with M positive definite. Consider

the generalized eigenvalue problem (5.6), (5.7), given in Sect. 5.1.1. Assume that all
quantities in the above equations are functions of the variables ζ = (ζ1, . . . , ζN ). The goal

is to compute the Jacobian matrix ∂w
∂ζ =

[
∂w
∂ζ1

. . . ∂w
∂ζN

]

. Therefore, it is shown how to

compute ∂w/∂ζi: Derive both sides of (5.6) and rearrange the equation as

(K − λM)
∂w

∂ζi
=
∂λ

∂ζi
Mw −

(
∂K

∂ζi
− λ

∂M

∂ζi

)

w (A.4)

Pre-multiplying (A.4) by wT from the left and taking into account that wT (K−λM) = 0

(cf. (5.6)), leads to the derivative of λ as

∂λ

∂ζi
=

wT
(
∂K
∂ζi

− λ∂M∂ζi

)

w

wTMw
. (A.5)

To compute ∂w/∂ζi, (A.5) is substituted into (A.4):

(K − λM)
∂w

∂ζi
=

(
MwwT

wTMw
− I

)(
∂K

∂ζi
− λ

∂M

∂ζi

)

w . (A.6)

Since the matrix (K − λM ) is singular by definition, one equation in (A.6) has to be
replaced by the derivative of (5.7) in Sect. 5.1.1, 2wT ∂w

∂ζi
= −1

2w
T ∂S
∂ζi

w such that the
resulting system of linear equations becomes regular.

A.3. Dynamics components of the pantograph leg featuring an

eigenmode

The dynamics components provided in the following correspond to the three-segment
pantograph-leg mechanism derived in Sect. 5.2.2. They are expressed w. r. t. configuration
coordinates (joint angles).

M(q) =

[
2 (1− β) [Θ1 +Θ2 cos (β (q2 − q1))] + β2Θ1 sym.

β [(1− β)Θ1 +Θ2 cos (β (q2 − q1))] β2Θ1

]

(A.7)

C(q, q̇) = βΘ2 sin (β (q2 − q1))

[
(β − 1) (q̇2 − q̇1) −β (q̇2 − q̇1)− q̇1

q̇1 0

]

(A.8)

∂Ug(q)

∂q

T

=
Θ3

l1 + l2
g0

(
(β − 1) sin (q1 + β (q2 − q1))− sin (q1)

−β sin (q1 + β (q2 − q1))

)

(A.9)

∂Ue(q − θ)

∂q

T

=

(

klin (q1 − θ1) + kcub (q1 − θ1)
3

β
β−2

[

klin (q2 − θ2) + kcub (q2 − θ2)
3
]

)

(A.10)

Herein, the following inertias are abbreviated:

Θ1 =
(

mt +m1 +
m2

4

)

(l1 + l3)
2 + Ic2 (A.11)

Θ2 =
((

mt +
m1

2

)

l1 +
(

mt +m1 +
m2

2

)

l3

)

(l1 + l3) (A.12)

Θ3 =
(

mt +m1 +
m2

2

)

(l1 + l3)
2 (A.13)
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All geometric and inertial parameters are labeled in Fig. 5.2 and satisfy the conditions
repeated in the following:

l2 = l1 + l3 ,

Ic1 + Ic3 =
3m1 +m2

4
l21 +

2m1 +m2

2
l1l3

− 3m2 +m3

4
l23 + Ic2 ,

α =
β

2− β
,

m3 = (m1l1 +m2 (l1 − l3)) /l3 .
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