Pfister FMJ14, Kuli¢

1Schon Klinik Minchen Schwabing, Dept. Neurology and Clinical Neurophysiology, Munich
2 Technical University of Munich, Chair of Information-oriented Control, Munich
3 University of Waterloo, Dept. Electrical and Computer Engineering, Waterloo, Canada

4 Ludwig-Maximilians-Universitat, Faculty of Mathematics, Computer Science and Statistics, Munich
> Ludwig-Maximilians-Universitat, Dept. Neurology, Munich
®Technical University of Munich, Computer Aided Medical Procedures, Munich

Background

* Brady-hypokinesia and dyskineasia characterize
movement in people with PD (PwP)

* Motor fluctuations are the hallmark of later PD
stages

* Currently, the motor state is evaluated by a
rater or the patient opening numerous paths to
biased assessments

* |deally, the motor state could be detected
using an objective assessment in free-living
situations with sufficient temporal resolution

* Deep learning has so far only be applied to data
retrieved from PwP in test-based controlled
setups, e.g. task-based

* To date, no objective detection of the motor
state has been validated

* Commercially available mobile devices, such as
smartphones or wristbands, carry motion
sensors and can be imperceptibly worn over
long time periods

Challenges in working with PD motion data

* Noisy Labels (due to symptom changes within
given rating time intervals)

* High-Inter-Subject Variability

* Motion Interference (due to voluntary motion)

* Noisy Motion Data (due to limited sensor quality)

Table 1 — PwP cohort

* Age [yrs] 67+ 10
e Hoehn & Yahr stage 2 (2:2)
* Disease dur. [yrs] 11+£5
e MoCA [points] 26+ 3

Methods

* We obtained approval from the ethics
committee of the TU Munich (Az. 234/16 S)

 We recruited 30 patients (see table 1) with PD
and 8 age-matched healthy controls (HC)

* Patients were continuously clinically evaluated
during the time they wore the sensor by a

certified rater, which were >230 hours of
recordings
* Clinical ratings included severity of brady-

hypokinesia (MDS-UPDRS 111.14) and dyskinesia
(MmAIMS)

* Sensor raw data (3D Acc, 3D Gyro) was recorded
using a Microsoft band 2 (MS, Redmont, WA,
USA) with a sampling frequency of 62.5 Hz
running the STM LSM6DS2 Accelerometer /
Gyroscope module

* Data was transferred to a storage device using a
Bluetooth 4.1 interface, and analyzed off-line

* Data Augmentation methods as described in Um
et al. were introduced for preprocessing
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* Data analysis included the use of various deep
learning methods (CNN/LSTM), see Fig. 2
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the experiments.

* On a second poster we describe details of the
preprocessing methodology and the data
process = Pichler et al. Poster 1355

Figure 1: Various data
augmentations that are
used in the experiments:

Results

* Difficult raw data patterns & their classification
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Figure 3: Examples of bradykinesia (white) and dyskinesia (yellow) data in a 1 min window. (a) and
(b) show stereotype examples of bradykinesia and dyskinesia while (c) and (d) show the opposite
patterns. The blue, red, green represent X, Y, Z signals from the accelerometer, respectively.

* Use of Data Augmentation boosts accuracy for

Two-Class-Classification (OFF/DYS) — F1 score up
to 92%
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Figure 4a (left): Training curves for No Aug, Rot, Perm, and Rot+Perm. The curve of Rot+Perm
shows a good generalization performance by a regularization effect.

Figure 4b (right): The results of PD motor state classification with various data augmentation
methods

 Generalization for Nine-Class-Classification

(GMS-9) using MDS-UPDRS 111.14 (Level of Global
Spontaneous Movement Loss) and mAIMS I1.5
(Severity of Dyskinesia in affected hand) as
mapping — F1 score >60%
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Figure 5 (left): GSM-9 — Motor fluctuations of one patient over 3 hours — comparison between
predicted label (using a multilayer CNN+LSTM) vs. clinical label by certified rater (nine-class-classif.)
Figure 6 (right): The results of PD motor state classification with various deep learning methods

* High inter-subject variability is a bottleneck for

generalization

* Precision Approach: Individual models using a

pretrained generalized model boost accuracy
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Discussion

Sensor data from low-cost devices are effective
to detect the motor signals from healthy
controls and people with Parkinson’s disease
Relevant technical issues have to be addressed
before the data can be analyzed

Deep Learning proves to be a powerful
instrument to classify motion data

The temporal and manifestation resolution of
the achieved classification is unprecedented.
Generalization can be a hard task: Individual
Calibration will be key (Precision Approach)
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