
Results  
• Difficult raw data patterns & their classification 

 
 
 
 
 
 
 

 
• Use of Data Augmentation boosts accuracy for 

Two-Class-Classification (OFF/DYS) – F1 score up 
to 92% 
 
 
 
 
 
 
 
 
 
 
 
 

• Generalization for Nine-Class-Classification 
(GMS-9) using MDS-UPDRS III.14 (Level of Global 
Spontaneous Movement Loss) and mAIMS II.5 
(Severity of Dyskinesia in affected hand) as 
mapping – F1 score >60% 
 
 
 
 
 
 
 
 
 

• High inter-subject variability is a bottleneck for 
generalization 

• Precision Approach: Individual models using a 
pretrained generalized model boost accuracy 
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Background  
• Brady-hypokinesia and dyskineasia characterize 

movement in people with PD (PwP) 
• Motor fluctuations are the hallmark of later PD 

stages 
• Currently, the motor state is evaluated by a 

rater or the patient opening numerous paths to 
biased assessments 

• Ideally,  the motor state could be detected 
using an objective assessment in free-living 
situations with sufficient temporal resolution 

• Deep learning has so far only be applied to data 
retrieved from PwP in test-based controlled 
setups, e.g. task-based 

• To date, no objective detection of the motor 
state has been validated 

• Commercially available mobile devices, such as 
smartphones or wristbands, carry motion 
sensors and can be imperceptibly worn over 
long time periods 
 

Challenges in working with PD motion data 
• Noisy Labels (due to symptom changes within 

given rating  time intervals) 
• High-Inter-Subject Variability 
• Motion Interference (due to voluntary motion) 
• Noisy Motion Data (due to limited sensor quality) 

Objectives  
• Proof-of-concept study to classify 

movement of people with Parkinson’s 
Disease (PD) recorded with a wrist-worn 
motion sensor in free-living situations 

• Using Deep Learning (LSTM/CNN) for the 
development of an objective measure to 
quantify the PD motor state 

Methods  
• We obtained approval from the ethics 

committee of the TU Munich (Az. 234/16 S) 
• We recruited 30 patients (see table 1) with PD 

and 8 age-matched healthy controls (HC) 
• Patients were continuously clinically evaluated 

during the time they wore the sensor by a 
certified rater, which were >230 hours of 
recordings 

• Clinical ratings included severity of brady-
hypokinesia (MDS-UPDRS III.14) and dyskinesia 
(mAIMS) 

• Sensor raw data (3D Acc, 3D Gyro) was recorded 
using a Microsoft band 2 (MS, Redmont, WA, 
USA)  with a sampling frequency of 62.5 Hz 
running the STM LSM6DS2 Accelerometer / 
Gyroscope module 

• Data was transferred to a storage device using a 
Bluetooth 4.1 interface, and analyzed off-line 

• Data Augmentation methods as described in Um 
et al. were introduced for preprocessing 
 
 
 
 
 
 
 
 
 
 

• Data analysis included the use of various deep 
learning methods (CNN/LSTM), see Fig. 2 
 
 
 
 
 
 
 

• On a second poster we describe details of the 
preprocessing methodology and the data 
process  Pichler et al. Poster 1355 
 

 
  

Discussion 
• Sensor data from low-cost devices are effective 

to detect the motor signals from healthy 
controls and people with Parkinson’s disease 

• Relevant technical issues have to be addressed 
before the data can be analyzed 

• Deep Learning proves to be a powerful 
instrument to classify motion data 

• The temporal and manifestation resolution of 
the achieved  classification is unprecedented. 

• Generalization can be a hard task: Individual 
Calibration will be key (Precision Approach) 
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Conclusions  
• We describe a novel approach for the 

objective classification of the PD motor 
state, the core characteristic of the 
disease, using Deep Learning and a low-
cost commercially available sensor device  

• This method is not limited to a controlled 
test setup, but can be applied in free-
living situations and thus potentially 
allows for full seamless integration of the 
IoT technology into the daily lives of 
patients 

• The precision and temporal resolution of 
the measurements is unprecedented, and 
could be used for numerous clinical 
indications 

• Individual models will enable more 
accurate monitoring of the PD motor state 

Table 1 – PwP cohort 
• Age [yrs]        67 ± 10 

• Hoehn & Yahr stage     2 (2:2) 

• Disease dur. [yrs]      11 ± 5 

• MoCA  [points]      26 ± 3 
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Figure 3: Examples of bradykinesia (white) and dyskinesia (yellow) data in a 1 min window. (a) and 
(b) show stereotype examples of bradykinesia and dyskinesia while (c) and (d) show the opposite 
patterns. The blue, red, green represent X, Y, Z signals from the accelerometer, respectively. 

Figure 4a (left): Training curves for No Aug, Rot, Perm, and Rot+Perm. The curve of Rot+Perm 
shows a good generalization performance by a regularization effect. 
Figure 4b (right): The results of PD motor state classification with various data augmentation 
methods 

Figure 1: Various data 
augmentations that are 
used in the experiments: 
jittering, scaling, 
cropping, sampling, 
rotating, permutating 
data signals. The second 
and fourth rows show 
several examples 
generated by the 
combination of rotation 
and permutation. 

Figure 2: 
Architecture of a 7-
layer CNN with a 
global average 
pooling (GAP) layer 
at the end is used for 
the experiments. 

Figure 5 (left): GSM-9 – Motor fluctuations of one patient over 3 hours – comparison between 
predicted label (using a multilayer CNN+LSTM) vs. clinical label by certified rater (nine-class-classif.) 
Figure 6 (right): The results of PD motor state classification with various deep learning methods 
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