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Abstract

Climate change leads to increasing global mean temperatures and with higher mean

temperatures also different extreme temperatures are expected in the future. These

extremes have larger impacts on ecology than a gradual rise of mean temperatures.

However, whether the change in temperature extremes has been in line with changes

in mean temperature or accompanied with additional changes in variability and sym-

metry is not yet clear. Moreover, climate extremes are multifactorial: Drought, for

instance, depends on precipitation and temperature, and identifying impacts strongly

depends on interactions between the critical causing variables.

In this thesis, the changes in temperature mean, variability, and extremes were quan-

tified simultaneously. Futhermore, impacts of climate variability on global crop yields

were identified. And finally, the ecological succession after an extreme event was

monitored. For this purpose, statistical methods were used, such as quantile re-

gression, mixed effects models, and generalized additive models, with a focus on

interactions and adequate error covariance structures, as well as automated image

analysis.

The obtained results led to the conclusion that temperature changed asymmetrically,

that is changes in hot or cold extremes were not identical and also not linked to mean

temperature changes. Regarding the effects of climate variability, interactions played

a key role for crop yields: Temperature and drought interactions caused a significantly

different temperature effect depending on moisture conditions, such that, depending

on crop, low water availability exacerbated or high water availability diminished the

effect of high temperatures. Thus, effects of temperature would be over- or underes-

timated if interactions were not considered. The succession in a spruce forest after

a major wind-throw was monitored using a combination of digital photography, re-

mote sensing, and turbulent CO2 exchange. The increased productivity shown in the

CO2 flux footprint was mirrored in trends of camera greenness and remotely sensed

vegetation indices.
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Zusammenfassung

Klimawandel bedeutet einen Anstieg der globalen Durchschnittstemperatur. Dieser

Anstieg, sprich höhere Temperaturen, wird Auswirkungen auf die zu erwartenden

Temperaturextreme in der Zukunft haben. Genau diese Extreme wirken sich stärker

auf die Ökologie aus als ein kontinuierlicher Anstieg der mittleren Temperatur. Zu

klären bleibt, ob sich die Temperaturextreme analog zur mittleren Temperatur verän-

dert haben oder ob sich zusätzlich die Variabilität und Symmetrie der Temperaturver-

teilung verändert haben und welchen Einfluss all dies auf Extreme hat. Zudem sind

Klimaextreme multifaktoriell: Dürre, zum Beispiel, hängt vom Niederschlag und der

Temperatur ab. Somit bedingen sich die damit zusammenhängenden Auswirkungen

durch die Wechselwirkungen zwischen den verursachenden Faktoren.

Die vorliegende Dissertation hat zum einen die Quantifizierung der Änderungen im

Mittelwert, Variabilität und Extreme der Temperaturverteilung zum Thema. Zum an-

deren werden die Einflüsse von Klimavariabilität hinsichtlich globaler Ernteerträge

bestimmt, sowie die Sukzession nach einem klimatischen Extremereignis. Hierfür

finden statistische Methoden, insbesondere Quantilregression, gemischte Modelle

und generalisierte addivitive Modelle, sowie eine neuartige Bildverarbeitung Anwen-

dung. Ein besonderes Augenmerk liegt dabei auf Interaktionen zwischen Erklärvari-

ablen und einer passenden Modellierung der Fehlerkovarianz.

Die Ergebnisse zeigen, dass sich Temperatur asymmetrisch verändert hat, das heißt

die Änderungen der kalten und warmen Extreme sind nicht identisch und stehen

nicht im Einklang mit den Veränderungen der mittleren Temperatur. Hinsichtlich der

Klimavariabilität waren Wechselwirkungen zwischen Temperatur und Dürre entschei-

dend für deren Einfluss auf Ernteerträge. Der Effekt von zu hohen Temperaturen war,

abhängig von der Feldfrucht, größer bei trockenen Bedingugnen und schwächer bei

feuchten Bedingungen. Werden die Wechselwirkungen nicht berücksichtigt, kommt

es zu einer Über- beziehungsweise Unterschätzung des Temperatureffektes. Schließlich

wurde die ökologische Sukzession in einem Fichtenwald nach einem Windwurf mithilfe

von Digitalfotografie, Fernerkundung und turbelentem CO2-Austausch nachverfolgt.

Die erhöhte Produktivität des Waldes, basierend auf den Messungen der CO2-Flüsse,

wurde ebenfalls durch Trends in Vegetationsindizes, die aus Kamera- und Fernerkun-

dungsdaten berechnet wurden, wiedergegeben.
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1. Introduction

Scientists divide the history of our planet into epochs such as the

Pleistocene, the Pliocene and the Miocene. Officially, we live in the

Holocene epoch. Yet it may be better to call the last 70,000 years the

Anthropocene epoch: the epoch of humanity. For during these

millennia Homo sapiens became the single most important agent of

change in the global ecology.

— Yuval Noah Harari, Homo Deus

The planet earth has seen many revolutions in its ecology during the 4.6 billion years

of its existence. The first large one was the emergence of cyanobacteria 2.1 billion

years ago, which were capable of producing their own food through photosynthesis

with oxygen as by-product. Consequently, the amount of oxygen in the atmosphere

increased from basically none to ~10% in a very short period of time, ecologically

speaking. This is one of the first examples that “living things” brought massive change

to their own environment. Cyanobacteria changed the atmosphere, almost eliminated

competitors, which could not survive with oxygen in the atmosphere, and changed the

course of what life on earth would become.

Today, it is Homo sapiens that brings massive change to the global ecology at -

speaking in ecological time frames - the speed of light. Technology has increased

the speed of change such that for an adult now it becomes unimaginable how the

world will look like when he will die - contrary to the previous hundreds and thousand

of years, where change happened slowly.

In contrast to previous ecological revolutions, the current agent of change, Homo

sapiens, also has the awareness of what he is doing. Anthropogenic climate change

is a fact, and even climate change deniers cannot deny how humans have changed

the planet. Since the earth provides the very foundation for human life, its future

should be treated with responsibility. Globalization unified humans across the planet,

economically, culturally, and personally. From tribes of hunters and gatherers to an-

cient city states to national states to supranational entities, the next logical step would

be a global community of Homo sapiens, which is required to deal with the global

problems humankind currently faces.

For such a community to take appropriate actions, a solid and unbiased information

basis is required, which science can provide. As such, science needs to engage in

open communication with society, elaborating on what is already known, and what is

Climate extremes and variability, and their ecological impacts 1



still unknown. The following thesis deals with the already known on climate change,

and elaborates on the still unknown of the changes in climate variability and extremes,

and their impacts on selected ecological systems.

1.1. Changes in temperature variability and extremes

Climate is what we expect, weather is what we get.

— Robert A. Heinlein

Temperature is one of the main factors in ecological studies, because it is a direct

driving force for many ecological systems and is closely linked to other driving pa-

rameters (Nemani et al. 2003). Thus it can serve as a versatile proxy. Impacts from

the hot tail of the temperature distribution operate through heat waves, which con-

tribute to human mortality (Patz et al. 2005) and crop failure (Olesen and Bindi 2002).

At the cold tail, increased variability affects species distribution (Gloning, Estrella, and

Menzel 2013) and population growth (Roland and Matter 2012). Correct assessment

of climate variability and extremes is important for the tools and methods required for

applied climate impact research, including the downscaling of climate model outputs,

risk assessment, and the determination of ecological climate change experimental

settings (Thompson et al. 2013).

How have the expectations on weather changed so far? With increasing mean global

temperatures, more warm and less cold weather should be expected, that is more

hot extremes and less cold extremes. The theoretical motivation to infer changes in

temperature extremes from the changes in mean and variability of the temperature

distribution gained much attraction through the IPCC (Intergovernmental Panel on

Climate Change) reports, especially since the third report (Folland et al. 2001).

This concept of the relationship between changes in mean, variance and extremes

is illustrated with schematic graphs of probability density functions (see Figure 1).

If only the mean temperature increases and variability stays constant, more warm

extremes and less cold extremes are expected. If, additional to the increase in mean

temperature, variability increases as well, much more warm extremes are expected

than with only an increase in mean temperature, and the change in cold extremes is

less.

In 2012 the SREX (Special Report on Extreme Events), published by the IPCC, see

IPCC (2012), extended the concept by including the possibility of changes in the sym-

metry (Figure 2). Such changes in symmetry would result in changes of extremes,

2 Climate extremes and variability, and their ecological impacts



2.7  Has Climate Variability, or have Climate Extremes, 
Changed?

2.7.1  Background 

Changes in climate variability and extremes of weather and
climate events have received increased attention in the last few
years. Understanding changes in climate variability and
climate extremes is made difficult by interactions between the
changes in the mean and variability (Meehl et al., 2000). Such
interactions vary from variable to variable depending on their
statistical distribution. For example, the distribution of
temperatures often resembles a normal distribution where
non-stationarity of the distribution implies changes in the
mean or variance. In such a distribution, an increase in the

mean leads to new record high temperatures (Figure 2.32a),
but a change in the mean does not imply any change in
variability. For example, in Figure 2.32a, the range between
the hottest and coldest temperatures does not change. An
increase in variability without a change in the mean implies an
increase in the probability of both hot and cold extremes as
well as the absolute value of the extremes (Figure 2.32b).
Increases in both the mean and the variability are also possible
(Figure 2.32c), which affects (in this example) the probability
of hot and cold extremes, with more frequent hot events with
more extreme high temperatures and fewer cold events. Other
combinations of changes in both mean and variability would
lead to different results.

Consequently, even when changes in extremes can be
documented, unless a specific analysis has been completed, it
is often uncertain whether the changes are caused by a change
in the mean, variance, or both. In addition, uncertainties in the
rate of change of the mean confound interpretation of changes
in variance since all variance statistics are dependent on a
reference level, i.e., the mean. 

For variables that are not well approximated by normal
distributions, like precipitation, the situation is even more
complex, especially for dry climates. For precipitation, for
example, changes in the mean total precipitation can be
accompanied by other changes like the frequency of precipi-
tation or the shape of the distribution including its variability.
All these changes can affect the various aspects of precipita-
tion extremes including the intensity of precipitation (amount
per unit time). 

This section considers the changes in variability and
extremes simultaneously for two variables, temperature and
precipitation. We include new analyses and additional data
compiled since the SAR which provide new insights. We also
assess new information related to changes in extreme weather
and climate phenomena, e.g., tropical cyclones, tornadoes,
etc. In these analyses, the primary focus is on assessing the
stationarity (e.g., the null hypothesis of no change) of these
events, given numerous inhomogeneities in monitoring. 

2.7.2  Is There Evidence for Changes in Variability or 
Extremes?

The issues involved in measuring and assessing changes in
extremes have recently been comprehensively reviewed by
Trenberth and Owen (1999), Nicholls and Murray (1999), and
Folland et al. (1999b). Despite some progress described
below, there remains a lack of accessible daily climate data
sets which can be intercompared over large regions (Folland et
al., 2000). Extremes are a key aspect of climate change.
Changes in the frequency of many extremes (increases or
decreases) can be surprisingly large for seemingly modest
mean changes in climate (Katz, 1999) and are often the most
sensitive aspects of climate change for ecosystem and societal
responses. Moreover, changes in extremes are often most
sensitive to inhomogeneous climate monitoring practices,
making assessment of change more difficult than assessing the
change in the mean.
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Figure 2.32: Schematic showing the effect on extreme temperatures
when (a) the mean temperature increases, (b) the variance increases,
and (c) when both the mean and variance increase for a normal distri-
bution of temperature.

Figure 1 Schematic showing the effect on extreme temperatures for a normal distribution of temperature when (a) the mean
temperature increases, (b) the variance increases, and (c) when both the mean and variance increase. Figure and caption are
Figure 2.32 in Folland et al. (2001).
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even if the mean stayed constant. Depending on how the symmetry changed, more

cold or warm extremes would be expected.

Following the IPCC reports, many studies examined trends in the variability of the ob-

served temperature changes (see Matiu, Ankerst, and Menzel (2016) for an overview

of published literature until 2014). They differed in multiple aspects:

1. Variability metric: Mostly used was the SD (Standard Deviation), which as-

sumes normality, or robust quantile-based metrics, and rarely other metrics.

2. Time base for variability metric: Seasonal, annual, or decadal.

3. Underlying data resolution: Mostly daily and monthly temperature values.

4. Time frame to detect trends: From several decades to up to more than 100

years.

5. Spatial extent: While trends could be calculated on a per station basis, some

studies aggregated over similar climatic regions.

All these differences make a unifying assessment difficult, which is why the debate on

how temperature variability has changed is ongoing (Alexander and Perkins 2013).

While extremes can be predicted from the mean, SD, and skewness of the temper-

ature probability density function (Ballester, Giorgi, and Rodó 2010), it is a rather

cumbersome approach to assess changes in extremes. Another approach would be

looking at the whole temperature distribution and the changes thereof, for example

with quantile regression (Barbosa, Scotto, and Alonso 2011; Lee, Baek, and Cho

2013; Reich 2012; Rhines et al. 2016).

But why is climate variability so important? Because at the very edge of climate vari-

ability lie climate extremes, which have large impacts on socio-economies (Easterling

et al. 2000), human health (O’Neill and Ebi 2009), and terrestrial ecosystems (Reyer

et al. 2013).

The study of extremes is complicated mainly by two issues. First, an extreme event

is multifactorial, which means it is an interplay of multiple causing factors. In the

example of drought, it is a lack of water, primarily caused by a lack of precipitation

(Mishra and Singh 2010). However, high temperatures and strong winds increase

evaporation and transpiration rates, together called evapotranspiration, leading to

increased loss of water. Moreover soil properties might accelerate or slow down the

rate of water loss (Qin, Hu, and Oenema 2015). Second, an extreme cause can have

an extreme impact, or not. The impacts depend on the system studied, whether it

is from society, economy or ecology, and how adapted and resilient the system is.

4 Climate extremes and variability, and their ecological impacts
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B.

or sub-national levels can substantially affect
livelihood options and resources and the capacity
of societies and communities to prepare for and
respond to future disasters. [2.2, 2.7] 

A changing climate leads to changes in the
frequency, intensity, spatial extent, duration,
and timing of extreme weather and climate
events, and can result in unprecedented
extreme weather and climate events. Changes
in extremes can be linked to changes in the mean,
variance, or shape of probability distributions, or all
of these (Figure SPM.3). Some climate extremes (e.g.,
droughts) may be the result of an accumulation of
weather or climate events that are not extreme
when considered independently. Many extreme
weather and climate events continue to be the
result of natural climate variability. Natural variability
will be an important factor in shaping future
extremes in addition to the effect of anthropogenic
changes in climate. [3.1]

Observations of
Exposure, Vulnerability,
Climate Extremes,
Impacts, and Disaster
Losses

The impacts of climate extremes and the potential
for disasters result from the climate extremes
themselves and from the exposure and vulnerability
of human and natural systems. Observed changes
in climate extremes reflect the influence of
anthropogenic climate change in addition to natural
climate variability, with changes in exposure and
vulnerability influenced by both climatic and non-
climatic factors.

Exposure and Vulnerability

Exposure and vulnerability are dynamic, varying across temporal and spatial scales, and depend on
economic, social, geographic, demographic, cultural, institutional, governance, and environmental factors
(high confidence). [2.2, 2.3, 2.5] Individuals and communities are differentially exposed and vulnerable based on
inequalities expressed through levels of wealth and education, disability, and health status, as well as gender, age,
class, and other social and cultural characteristics. [2.5]

Settlement patterns, urbanization, and changes in socioeconomic conditions have all influenced observed
trends in exposure and vulnerability to climate extremes (high confidence). [4.2, 4.3.5] For example, coastal
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Figure SPM.3 | The effect of changes in temperature distribution on
extremes. Different changes in temperature distributions between present and
future climate and their effects on extreme values of the distributions:
(a) effects of a simple shift of the entire distribution toward a warmer climate;
(b) effects of an increase in temperature variability with no shift in the mean;
(c) effects of an altered shape of the distribution, in this example a change in
asymmetry toward the hotter part of the distribution. [Figure 1-2, 1.2.2]

Figure 2 The effect of changes in temperature distribution on extremes. Different changes in temperature distributions
between present and future climate and their effects on extreme values of the distributions: (a) effects of a simple shift of the
entire distribution toward a warmer climate; (b) effects of an increase in temperature variability with no shift in the mean;
(c) effects of an altered shape of the distribution, in this example a change in asymmetry toward the hotter part of the
distribution. Figure and caption are Figure SPM.3 in IPCC (2012).
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Continuing the drought example from before and focusing on impacts on crop yields,

a drought of the same intensity can lead to a large range of yield losses depending on,

for example, whether irrigation is provided (Troy, Kipgen, and Pal 2015), how adapted

the crops are to drought conditions, or in what developmental stage the crops are.

1.2. Impacts of climate variability and extremes

Changes in temperature, water availability and atmospheric

composition will affect most plants, animals and micro-organisms in

some way. Any increase in climate variability, especially in extreme

events, would have greater ecological effects than a change in mean

conditions.

— Ecological Society of Australia

Extremes and variability have impacts on a wide range of systems, both natural and

man-made, and giving an extensive account on all possible impacts would be beyond

the limits of this thesis. Consequently, selected impacts will be presented, first on

crop yields (Section 1.2.1), which are important in a global context, and second the

ecological succession of a forest ecosystem (Section 1.2.2), which is representative

for a wider array of impacts.

1.2.1. Crop yields

Agriculture is the foundation for feeding the 7.5 billion people living on the planet as

of 2017. The associated concept of food security was defined by the World Summit

on Food Security in 2009 held at the FAO (Food and Agriculture Organization of the

United Nations) as follows (FAO 2009):

“Food security exists when all people, at all times, have physical, social

and economic access to sufficient, safe and nutritious food to meet their

dietary needs and food preferences for an active and healthy life. The four

pillars of food security are availability, access, utilization and stability.”

Climate affects all four pillars, but with different magnitudes (Porter et al. 2014). The

largest influence is on food availability or supply. Here, the supply of staple crops,

such as maize, rice, soybeans, and wheat is the most important, since they repre-

sent approximately 75% of the calories in human diets (Cassman 1999; Roberts and

Schlenker 2013).

At the same time, crop yields are largely affected by climate (Lobell, Schlenker, and

6 Climate extremes and variability, and their ecological impacts



Costa-Roberts 2011) and climate variability (Ray et al. 2015). Current estimates sug-

gest that a third of the global yield variability can be explained by climate variability,

and in substantial breadbaskets of the world this percentage can exceed 60% (Ray

et al. 2015).

The most important climate variables globally are temperature and precipitation (Lo-

bell and Field 2007; Lobell, Schlenker, and Costa-Roberts 2011; Lobell et al. 2011;

Lobell et al. 2013; Ray et al. 2015; Schlenker and Roberts 2009; Welch et al. 2010)

and to a lesser extent also radiation (Leng et al. 2016). Interactions between temper-

ature and precipitation, which can lead to varying effects of temperature depending

on moisture conditions, are important issues that need to be addressed (Hawkins

et al. 2013; Leng et al. 2016; Ray et al. 2015; Urban, Sheffield, and Lobell 2015).

1.2.2. Ecological succession after natural disturbances

Anthropogenic climate change is closely linked to the level of CO2 in the atmosphere.

Atmospheric CO2 is a part of the global carbon cycle, in which forests play an impor-

tant role. Intact forests act as strong carbon sinks (Grünwald and Bernhofer 2007),

and together with longer vegetation seasons induced by climate change (Dragoni et

al. 2011), they are regarded as one possibility to mitigate climate change impacts of

CO2 emissions. At the same time, natural disturbances such as fire, insect outbreaks

and storms are expected to increase with climate change, which would negatively im-

pact the forest performance regarding the carbon cycle (Seidl, Schelhaas, and Lexer

2011; Seidl et al. 2014).

Figure 3 This is an example of Secondary Succession by stages: 1. A stable deciduous forest community 2. A disturbance,
such as a wild fire, destroys the forest 3. The fire burns the forest to the ground 4. The fire leaves behind empty, but not
destroyed, soil 5. Grasses and other herbaceous plants grow back first 6. Small bushes and trees begin to colonize the area 7.
Fast growing evergreen trees develop to their fullest, while shade-tolerant trees develop in the understory 8. The short-lived
and shade intolerant evergreen trees die as the larger deciduous trees overtop them. The ecosystem is now back to a similar
state to where it began. Figure source is Murphy (2012).

Climate extremes and variability, and their ecological impacts 7



After a disturbance, succession sets in, which can lead to the recovery of an ecosys-

tem to nearly pre-disturbance conditions. In the example of a wild fire (see Figure 3),

which has left bare soil, grasses grow back first, followed by small bushes and trees,

until a stable forest community has developed back again.

Monitoring the succession after a natural disturbance, for instance, a major storm in

a forest is made easier with digital repeat photography, which provide a continuous

signal of the change. Images allow quantifying the successional change and can

be combined with turbulent CO2 measurements to identify the carbon balance of the

region. Using long-term series, the duration of processes can be estimated, such as

the time for the land cover to change and the time it needs for the area to switch from

carbon source to sink.

8 Climate extremes and variability, and their ecological impacts



2. Methods overview

An overview of the methods used in the publications will be given here, separated

in statistics, image analysis, and software used. The statistics part includes quantile

regression (Section 2.1.1), mixed effects models (Section 2.1.2), interactions (Section

2.1.3), generalized additive models (Section 2.1.4), and spatio-temporal modelling

(Section 2.1.5). The image analysis part comprises repeated digital photography

(Section 2.2.1) and thermography (Section 2.2.2). Finally, the software used for the

previously introduced methods will be presented (Section 2.3).

2.1. Statistics

...the statistician knows...that in nature there never was a normal

distribution, there never was a straight line, yet with normal and linear

assumptions, known to be false, he can often derive results which

match, to a useful approximation, those found in the real world.

— George E. P. Box

Selected statistical methods that are particularly useful in climatological and ecologi-

cal studies will be presented in the following sections.

2.1.1. Quantile regression

Quantile regression (Koenker 2005; Koenker and Bassett 1978) is a regression tech-

nique originating from the econometrics field, which does not assume a Normal or

any kind of distribution for the errors. In addition, it allows quantifying different effect

sizes of explanatory variables depending on the level of the response. Compared

to normal linear regression, which models solely the mean response, Quantile Re-

gression shifts the focus to all parts of the distribution by looking at multiple quantiles

thereof. Thus, it inherently enables the study of changing distributional properties,

such as for example variance or skewness. For a more mathematical description of

the basics of quantile regression, see Appendix A.

Coefficients from multiple quantile regression can be summarized in slope-quantile

plots (Figure 4). Higher coefficients for higher quantiles, for example, hint to het-

eroscedasticity, whereas if coefficients are similar for all quantiles (nearly horizontal

line in the slope-quantile plot), the covariate effect is the same over the whole distri-

bution.

Climate extremes and variability, and their ecological impacts 9
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Figure 4 Left: Quantile regression (solid black lines; 0.05, 0.25, 0.5, 0.75 and 0.95 quantile levels) and ordinary least squares
regression (OLS, dashed red line) for a set of 99 synthetic temperatures assuming constant variance (top) versus a one-sided
increase in variance for higher temperatures (bottom). Right: Linear trend values for quantile regression estimated at five
distinct quantiles 0.05, 0.25, 0.5, 0.75 and 0.95 (connected points with shaded 95% confidence bands) versus trend values for
OLS regression (dashed red line with dotted red lines representing 95% confidence bands).

The standard algorithm estimates quantile trends separately for each quantile and

thus could lead to the crossing of quantile trends. This is problematic, because cross-

ing quantile trend lines would contradict the definition of quantiles, for example if the

0.95 quantile trend line crossed the 0.90 quantile trend line at a certain time, then

for some years the estimated temperature at the 0.95 quantile would be below the

temperature at the 0.90 quantile, which is impossible via definition. A workaround

solution is constraining the estimation (Bondell, Reich, and Wang 2010).

2.1.2. Mixed effects models

Mixed effects models are a tool to analyze grouped data, such as longitudinal data,

repeated measures, or multilevel data (Pinheiro and Bates 2000). Such grouped

data arise in many observational studies or experimental designs, and require special

modelling of the within-group correlation.

Accounting for this withing-group correlation allows estimating the population level

response to covariates with much less error than ignoring the inherent structure (see

Figure 5).

In its simplest form, the data has an inherent grouping structure with, for example

i = 1..m higher level groups - let’s call them subjects for clarity - each having j = 1..ni

observations. If the interest was in estimating the influence of variable x on response

y, a mixed linear model would be

yij = β0 + β1xij + b0,i + b1,ixij + εij,

with β0 the population intercept, β1 the population response to x, b0,i the subject

10 Climate extremes and variability, and their ecological impacts
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Figure 5 Synthetic data showing the benefits of mixed effects model versus ordinary least squares (OLS). By accounting for
the inherent grouping structure and within-group correlation, the population slope (black) can be estimated with less
uncertainty. Note that population slope estimates are identical for OLS and mixed model, only the uncertainty is reduced.

intercepts that are normally distributed with b0,i ∼ N (0, σ2
0), b1,i the subject response

modifiers with b1,i ∼ N (0, σ2
1), and errors εij ∼ N (0, σ2). So the subject effects b are

not estimated individually, as opposed to using the subjects as factorial variables, but

the spread of the subject effects is estimated as variance of the normal distribution.

This could be rearranged to

yij = (β0 + b0,i) + (β1 + b1,i)xij + εij,

thus showing more clearly the relationship between the so-called fixed effects β and

random effects b.

Further generalizations include the modelling of the error term ε, allowing, for exam-

ple, for different error variances per group

V ar(εij) = σ2δi,

with δ1 = 1 and δ2..δm the variance ratios respective to the first group; or for errors

depending on covariates

V ar(εij) = σ2 exp(2δxij),

with δ estimated coefficient for the exponential variance relationship; and combina-

tions of the two and more (Pinheiro and Bates 2000).
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2.1.3. The importance of interactions for extremes

Since extremes are multifactorial, the impacts depend on the interaction of multiple

variables. The statistical estimation of interactions with, for example, linear regres-

sions requires product terms. Consider the following example of y being regressed

on x1 and x2 and their interaction term:

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

The estimated coefficients of such a regression are hard to interpret on their own,

because no coefficient can be looked at independently. For instance, the effect of x1
depends on β1, β2, β3 and x2.

So with interaction terms, visualization is a key component to judge the estimated

effects. One possibility is to use heatmaps or levelplots, however, it is not trivial to

visualize confidence intervals in these plots. It is possible to use additional separate

panels for heatmaps, or intermediate lines in levelplots, but both are not very intuitive.

Another option is to condition the interaction on one variable, say x2 and then plot the

effect of x1 conditionally on some meaningful values of x2 (see Figure 6).

In the above example, the effect of x1 on y for a given x2, say x2 = c, would be

y(x1) = β0 + β2c+ (β1 + β3c)x1.
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Figure 6 Scheme showing the visualization from an linear regression with an interaction term. The example has crop yield as
response and two covariates (temperature and precipitation) that are included with an interaction. Shown is the effect of
temperature conditioned on three levels of precipitation, which could be, for example, based on representative quantiles.
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2.1.4. Generalized additive models

In the framework of “let the data speak for itself”, imposing any functional relationship

between a response variable and some predictors is already a fundamental choice.

The widely used linearity works well because most processes can be considered

linear with the right focus and a sufficiently small scale. However, in certain situations,

more flexible solutions are desired.

Instead of estimating the linear slope in ordinary least squares regression, GAMs

(generalized additive models) allow estimating a semi-parametric functional relation-

ship between y and x,

y = f(x) + ε,

by using a penalized spline basis for f and determining the appropriate smoothness

of f using, for instance, cross-validation (Wood 2006). Contrary to polynomial or

spline-based functions, which require a specification of the exact degrees of freedom

(df), GAMs require only the maximum df to be specified. While this is still a choice

to be made, it is less severe than specifying the exact degree, since using a too high

maximum value will not have any impact compared to lower values. Only when the

maximum df supplied is close to the actual determined df, differences may arise. See

Figure 7 for a comparison of various polynomial fits to GAM models.

GAMs can also include multiple explanatory variables, functions with multiple argu-

ments, for instance latitude and longitude, and parametric terms. Options for the

smooth functions are to use cyclic functions, for instance to determine seasonality,

adaptive smoothers that allow a varying df depending on the covariate, and more

(see, for example, documentation in R-package mgcv).

All the benefits of GAMs come with a caveat: While uncertainty and formal hypothesis

testing exist, covariate effects still need to visualized in every case and no simple

coefficients, for example linear slopes, can be provided.

2.1.5. Analysis of spatio-temporal raster data

Special attention has to be given to both spatial and temporal correlation, when deal-

ing with spatio-temporal raster data. The spatial correlation manifests itself through

the fact that observations close in space have values more similar than observations

far away. With 2-dimensional isotopic data, this correlation is identified with respect to

the distance between observations. It can be measured with variograms, which plot

the variance of the observations depending on distance, and summarized with coef-

ficient such as Geary’s C or Moran’s I (Cressie 1993), similar to Pearson correlation

Climate extremes and variability, and their ecological impacts 13
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Figure 7 Comparison of ordinary least squares (OLS) regression with various polynomials to generalized additive models
(GAM). Points show sample data from image greenness depicting a year of observations of grass. In each panel a different
regression is shown with lines and 95% confidence intervals as shaded areas. The first six depict OLS regression using
polynomials with different degrees. The last three show GAM fits with maximum degrees of freedom specified as 5, 10, and 20
- the actual degrees of freedom were 3.99, 8.65, and 11.96, respectively. So in the first two GAM models, the actual degrees of
freedom are close to the maximum - 1 (for the intercept), signifying that more might be appropriate. Nevertheless, GAMs fit the
underlying data better than OLS, and especially the problems of OLS polynomials at their tails are not present for GAMs.

coefficient for standard bivariate data.

Temporal data can have autocorrelation, which is similar to spatial autocorrelation in

that observations close by in time have values that are more similar than observation

farther away in time. Climatological data such as temperature or snow further often

have some sort of seasonality.

With these two issues, identifying relationships between variables in a spatio-temporal

raster setting is not possible with simple regression techniques, since the assumption

of independent observations is violated. One possibility to deal with this is to account

for the spatial and temporal autocorrelation in the residuals with generalized least

squares (Pinheiro and Bates 2000). However, this is computationally often not fea-

sible with raster data, which, since the advent of satellite remotely sensed variables,

has large number of observations.
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Other options for dealing with spatial correlation include, but are not limited to:

• Removing the spatial correlation from the observed values. Side effects could be

that what gets removed in this process is related to topography, or other variables

of interest.
• Modelling the spatial correlation with other variables, such as latitude, longitude,

and altitude.
• Taking subsamples of the data, sufficiently small, so that no spatial correlation

exists any more. While this reduces the number of observations available, this is

rarely an issue with raster data, and has the additional benefit of having indepen-

dent validation data.

Similar options exist in the case of temporal autocorrelation and seasonality:

• Removing the temporal correlation from the observed values with for example au-

toregressive or moving average models (ARMA).
• Removing the seasonality for example with Fourier approximations or cyclic pe-

nalized splines.
• Stratifying the data in the temporal domain, and analyzing each stratum separately.

Sample spatial raster data from northern Italy is shown in Figure 8, depicting the

spatial correlation of deseasonalized climate values.

Climate extremes and variability, and their ecological impacts 15
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Figure 8 Sample spatial data from April 2004 and 2005 from South Tyrol (northern Italy) with Moran’s I. Maps show
deseasonalized values (denoted with prefix d) of NDVI (Normalized Difference Vegetation Index), Radiation (Rad), Snow cover
duration (SCD), mean temperature (Tmean), and residuals (Resid) of modelling dNDVI depending on the aforementioned
variables interacted with topography. Red indicates higher than average values, and blue lower than average. Moran’s I is a
measure of spatial autocorrelation, where 0 means independence, 1 perfect autocorrelation, and -1 perfect dispersion. 2004 is
a year colder than average with a little more snow cover; while 2005 is a year warmer than average with a lot less snow cover,
especially at higher altitudes, leading to higher than average NDVI values.
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2.2. Image analysis

The greatest value of a picture is when it forces us to notice what we

never expected to see.

— John W. Tukey

Image data is becoming increasingly available and popular since the advent of cheap

sensors, ease of wireless transmission, and satellite remote sensing. Digital images

are discrete quantifications of natural observations, and in the following two appli-

cations will be outlined, one is images in the visible red-green-blue spectrum (Sec-

tion 2.2.1), and the other in the invisible infra-red spectrum (thermal images, Section

2.2.2).

2.2.1. Repeated digital photography

Digital cameras offer a new possibility of monitoring the phenological development

by taking repeated images of the same scene each day using stationary cameras

(Richardson et al. 2007; Sonnentag et al. 2012). This allows to quantify the spring

green-up and fall coloring by calculating mean greenness of a specific ROI (Region

of Interest). In order to calculate mean greenness, the digital numbers (DN) of each

color channel of an RGB-image are extracted, and then the green DN is standardized

with the sum over all other DNs (red + green + blue), resulting in the so-called GCC

(Green Chromatic Coordinate).

But first, the images have to be preprocessed to remove low quality images that are

affected by fog, rain, or are otherwise flawed. This can be done manually, however, as

usually large amounts of image have to processed, also automatically using the blue

channel or envelopes with certain standard deviations (Filippa et al. 2016). Addition-

ally, for sites that are prone to snow, snowy images have to be masked out, since this

would bias the GCC in ways unrelated to phenology. Beside manually going through

all images or identifying snow with nearby meteorological stations measuring snow

depth, the BCC (blue chromatic coordinate = blue / (red + green + blue)) can be

used to create a classifier with a threshold around 0.30 depending on site and field

of view.

Another issue is the unintended movement of the camera which can change the field

of view. If these movements are not too large, images can be registered (pixels

mapped onto each other), so that a continuous scene is shown. Then the scene

available during the whole study period needs to be cropped.
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Spring green-up and fall coloring is then determined by fitting various kinds of double-

log functions with different flexibility in modelling the greenness that is present in

deciduous forest, evergreen forests, grass- and croplands. From these functions,

phenophases are extracted that correspond to the start and end of season (Gu et

al. 2009; Klosterman et al. 2014; White, Thornton, and Running 1997). Figure

9 shows an example of different fitting functions and different methods to extract

phenophases.

In this paragraph we have shown 4 different approaches to matematically

describe the seasonal trajectory of greenness, with additionally 5 methods to

extract phenophases on the obtained curves. The combination of curves and

phenophase methods leads to as many as 20 possible approaches to describe a

seasonal trajectory. Sometimes it could be useful to make a decision on which

curves and phenophases to use, without computing the uncertainty on all of

them. To do so we have designed two functions that provide a quick overview

on what would be the best fit and phenophase method for your actual trajectory.

Here is how to compute the 20 combinations of fit and uncertainty in a single

function:

> explored <- greenExplore(filtered.data$max.filtered)

explored is a list with 20 + 1 elements, i.e. the 20 combinations + a vector

containing the RMSEs from each of the 4 fittings. This object will only be used

as argument of the plotExplore() function (fig.10):

> plotExplore(explored)
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Figure 10: Overview of all combinations of curves and fits as obtained by the

plotExplore function

The plot in fig.10 shows the impact of different fittings (moving up-downwards)

25

Figure 9 Comparison of functions fitted to image greenness, and phenophase extraction methods. Image taken from the
vignette of R-package phenopix.

If the images have a complicated composition, such as many different species, or

vegetation interspersed with buildings or roads, manually choosing a ROI by draw-

ing polygons can be tedious and inaccurate. Recent advances allow a data-driven

solution, which splits the image in a pre-defined number of clusters using only the

information available in the images (Bothmann et al. 2017).

2.2.2. Quantifying thermal images of leaves and needles

Thermal imaging is a non-destructive method to measure drought stress in trees, in

contrast to other available methods that are time-consuming and/or destructive. Ther-

mal imaging uses the fact that evapotranspiration reduces surface temperature, and

thus under reduced water availability, evapotranspiration decreases and temperature

increases (Maes and Steppe 2012).

To calculate leaf or needle temperature for a tree or seedling requires identifying the
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ROI and more specifically the pixels that correspond to leaves or needles (Seidel et

al. 2016). Pixels at the edge of a leaf or needle then show a temperature which is

a mixture of the surrounding pixels. If these show other leaves or needles, it is not

problematic. However, if these show soil, sky, or another type of background, then in-

cluding these edge-pixels when calculating the temperature will introduce bias. Thus,

besides removing the background, it is also necessary to remove edge-pixels.

Image processing software offers some tools to achieve this automatically. For in-

stance, automatic thresholding can remove the background pixels, and edge finding

algorithms can detect edges. The edge finding works best if the image is as sharp

as possible, so an option is to sharpen the image beforehand. Then the background

and edge pixels can be removed, and the remaining pixels can be used to calculate

the mean temperature of all visible leaves or needles (Figure 10).

Figure 10 Separating background and needle-edge pixels in a thermal image of a spruce seedling. Left is a greyscale
thermography image of spruce seedling looking from the top, where lighter colour means higher temperature (the background
is two heating plates that were mounted directly above the pot around the tree-trunk to ease separation of the background).
Middle image shows the pixels that were identified as needle-edges by first sharpening the image and then applying an
edge-finding algorithm. Right image shows the remaining pixels after edges and background were removed. These pixels
were used to calculate the mean temperature. Note that on the right there are still some pixels that are not plant material, such
as a cable that was incidentally photographed and the intersection of the two heating plates (horizontal line in the middle).

This procedure has been applied in Seidel et al. (2016) in order to assess drought

responses in scots pine seedlings from various provenances in Europe.

2.3. Software used

For the statistical parts, the R programming language was used, and especially the

following packages:

• nlme (Pinheiro et al. 2017)
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• ggplot2 (Wickham, Chang, and RStudio 2016)
• effects (Fox et al. 2016) and lsmeans (Lenth 2017)
• sp (Pebesma et al. 2016) and raster (Hijmans et al. 2016)

The image analysis was done in Fiji, using custom Jython scripts, and with following

packages in R:

• EBImage (Pau et al. 2010) from the Bioconductor suite of tools
• phenopix (Filippa et al. 2016) and phenofun (Bothmann et al. 2017)
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3. Publications: Summaries and contributions

In God we trust. All others must bring data.

— W. Edwards Deming

The following publications provide the basis for this thesis:

(i) Michael Matiu, Donna P. Ankerst, and Annette Menzel (2016). “Asymmetric

Trends in Seasonal Temperature Variability in Instrumental Records from Ten

Stations in Switzerland, Germany and the UK from 1864 to 2012”. International

Journal of Climatology 36.1, pp. 13–27. DOI: 10.1002/joc.4326

(ii) Michael Matiu, Donna P. Ankerst, and Annette Menzel (2017). “Interactions

between Temperature and Drought in Global and Regional Crop Yield Variability

during 1961-2014”. PLOS ONE 12.5, e0178339. DOI: 10.1371/journal.

pone.0178339

(iii) Michael Matiu, Ludwig Bothmann, Rainer Steinbrecher, and Annette Menzel

(2017). “Monitoring Succession after a Non-Cleared Windthrow in a Norway

Spruce Mountain Forest Using Webcam, Satellite Vegetation Indices and Tur-

bulent CO2 Exchange”. Agricultural and Forest Meteorology 244–245, pp. 72–

81. DOI: 10.1016/j.agrformet.2017.05.020

In the following, a summary of the obtained results along with details on the particular

contributions are given. In the contributions, authors are abbreviated with their initials,

for example, Michael Matiu as MM.

The entire articles can be found in Appendix C.
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3.1. Observed changes in temperature variability and extremes

Michael Matiu, Donna P. Ankerst, and Annette Menzel (2016). “Asymmetric Trends

in Seasonal Temperature Variability in Instrumental Records from Ten Stations in

Switzerland, Germany and the UK from 1864 to 2012”. International Journal of Cli-

matology 36.1, pp. 13–27. DOI: 10.1002/joc.4326

Summary

The increases in mean temperature associated to climate change are widely acknowl-

edged, but the question how variability and extremes have changed has remained

unanswered so far. In the present article, nine stations from the Alpine region in

Europe and one from the UK with long-term daily temperature data were analyzed.

Measures of variability, that is the spread of the temperature distribution, were com-

pared, such as the SD, and multiple quantile ranges. Additionally, quantile regression

was used to identify the simultaneous changes in the whole temperature distribu-

tion. Increases in the mean or median of temperature showed uniformly accelerating

warming in all stations, seasons, and time frames, except for Tmin in winter in the

recent period (1973-2012). Variability changes were not as ubiquitous. Long-term

trends (1864-2012) showed increases in Tmax and Tmin variability in summer and

decreases in Tmin variability in the other seasons. However, during the recent 40

years (1973-2012), summer variability did not change, but winter and spring vari-

ability increased for Tmin and Tmax, and fall variability decreased for Tmin. More

importantly, changes in variability were asymmetric, that is either in the part above or

below the median, thus making predictions of the extreme changes based alone on

mean and variability inadequate. With quantile regression, it could be shown that the

increases of winter variability during 1973-2012 were mainly because of increase in

the warmer tail of the distribution, and no changes in temperature below the median.

Similarly, for spring, all temperatures above the .25 quantile increased uniformly, while

coldest temperature changed little if at all.

Contributions

MM downloaded and prepared the data. DPA suggested the statistical methods.

MM analyzed the data and wrote the manuscript together with DPA. DPA and AM

discussed and commented on the manuscript.
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3.2. Impacts of climate variability on global crop yields

Michael Matiu, Donna P. Ankerst, and Annette Menzel (2017). “Interactions between

Temperature and Drought in Global and Regional Crop Yield Variability during 1961-

2014”. PLOS ONE 12.5, e0178339. DOI: 10.1371/journal.pone.0178339

Summary

Climate change alters crop yields and crop distribution globally, whereas climate vari-

ability is the most important factor determining year-to-year crop yield variability. In

this study, country-level crop yields were merged with crop area adjusted growing

season temperature and SPEI (Standardized Precipitation Evapotranspiration Index)

in order to quantify the effects of climate variability and interactions on yields of top-

producing countries and global yields. For this, yields and climate variables were

detrended, then yields were regressed on quadratic forms of temperature, SPEI, and

interaction terms using mixed effects models in order to estimate global sensitivites

from country-level variables and country-level sensitivities from sub-country data. It

could be shown that heat and dryness was damaging to maize, soybeans, and wheat

yields, and to a lesser extent also for rice yields. But as a result of interactions, heat

was more damaging in dry than in wet conditions. For global maize and soybeans

yields, temperature effects were insignificant at average SPEI levels, but high tem-

peratures under extreme dry conditions were associated to yield reductions of 11.6%

and 12.4%, respectively. For the USA, sub-country data at the state level was used

to estimate the country-level sensitivities, showing that temperature effects on maize

and soybeans yields were stronger in dry than in normal conditions, and for soybeans

also less in wet than in normal. Another type of interactions considered were effects

of consecutive dry or hot years, which reduced yields further for rice and soybeans in

Viet Nam and soybeans in the USA.

Contributions

MM downloaded and prepared the data. DPA assisted in the choice of analytical

methods. MM analyzed the data and wrote the manuscript. DPA and AM discussed

and commented on the manuscript.
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3.3. Monitoring succession in a wind-throw disturbed forest

Michael Matiu, Ludwig Bothmann, Rainer Steinbrecher, and Annette Menzel (2017).

“Monitoring Succession after a Non-Cleared Windthrow in a Norway Spruce Mountain

Forest Using Webcam, Satellite Vegetation Indices and Turbulent CO2 Exchange”.

Agricultural and Forest Meteorology 244–245, pp. 72–81. DOI: 10.1016/j.agrformet.

2017.05.020

Summary

Extreme events disturb forest ecosystems in their productivity and possibility to cap-

ture atmospheric CO2. In this study, the succession after a major wind-throw was

observed using digital repeat photography and compared to satellite-derived veg-

etation indices, NDVI, EVI (Enhanced Vegetation Index), and PPI (Plant Phenology

Index) as well as flux tower measurements of GPP (Gross Primary Production). Web-

cam ROIs were automatically defined using a data-driven approach, identifying three

distinct regions showing spruce, grass, and a transition region which initially showed

grass and became overgrown by spruce. Satellite measurements displayed a clear

break after the storm and had increasing trends afterwards. These trends were mir-

rored in image greenness (GCC) of the transition ROI and GPP. Measured NEE (Net

Ecosystem Exchange) identified the time it took for the ecosystem to switch from car-

bon source to carbon sink to be eight years. Estimates of SOS (Start of Season) and

EOS (End of Season) were derived from GCC, GPP, satellite indices, and compared

to climatological growing season indices and traditional phenological observations.

Satellite SOS was most similar to the grass ROI, while GPP-SOS was most simi-

lar to PPI and the grass ROI. Some climatological indices identified spruce and grass

SOS, while phenological observations matched to some extent GPP-SOS. Estimates

of EOS showed almost no correspondence.

Contributions

The image data was available at the chair from a previous study, flux data was pro-

vided by RS, and ancillary data organized by MM. MM analyzed the data, with assis-

tance from LB for the image data, and RS for the flux data. MM wrote the manuscript.

RS, LB and AM commented and discussed on the manuscript.
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4. Discussion

Man is an animal who more than any other can adapt himself to all

climates and circumstances.

— Henry David Thoreau, Walden

In the following chapter, the findings of the four presented studies are set in a broader

perspective. Futhermore, main results are discussed and hints to future directions are

mentioned.

4.1. Changes in temperature variability and extremes

Global mean temperatures have increased by 0.85 ◦C since 1880 (IPCC 2013). In

the same period, temperatures in Europe have increased by 1.5 ◦C (European Envi-

ronment Agency 2017). Other regions in the world have experienced other warming

rates. These regional differences arise because of different warming rates of sea

and land, ice-albedo feedbacks, and because of climate change induced changes

in weather patterns. In addition to these regional differences, warming has not been

uniform across seasons (Cohen et al. 2012) and differed between minimum and max-

imum temperatures (Caesar, Alexander, and Vose 2006).

A plethora of climate indices can be derived from daily temperature and precipitation

measurements, such as percentile-based temperature and precipitation extremes,

duration of cold/warm/dry/wet spells, and threshold indices, for example, ice days,

frost days, summer days, and tropical nights (Alexander et al. 2006). Each of these

indices is useful for particular sectors of ecology or society.

But not every index is meaningful for all climates, and similarly, the global mean tem-

perature is not meaningful for all regions. It is difficult to synthesize the findings on all

climate indices into a complete picture, and at the same time difficult to infer changes

in climate indices and extremes from trends in temperature means and variances.

The findings of Matiu, Ankerst, and Menzel (2016, Section 3.1) corroborate these

claims. By using quantile regression, changes in the whole temperature distribution

were quantified simultaneously. The most striking findings were that (1) variability has

changed indeed and (2) the changes in variability were asymmetric. The integrated

view helped gaining a better understanding of the past changes, but will not solve the

quest for answering the variability issue (Alexander and Perkins 2013).
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However, the asymmetries found in the changes of the temperature variability argue

against using symmetric measures of variability, such as the commonly used SD

(Beniston and Goyette 2007; Collins et al. 2000; Donat and Alexander 2012; Griffiths

et al. 2005; Parker et al. 1994; Rusticucci and Barrucand 2004; Scherrer et al. 2005;

Song, Pei, and Zhou 2014). With symmetric measures it is impossible to detect

particular features, such as changes in either the hot or cold tail of temperatures but

not both (Matiu, Ankerst, and Menzel 2016; Reich 2012; Rhines et al. 2016).

The climate stations used in the study of Matiu, Ankerst, and Menzel (2016, see

Section 3.1) were the Hadley Centre Central England Temperature series and mul-

tiple stations from the European Alps covering a large altitudinal range from 273 to

2502 m a.s.l. These provide only a limited regional assessment based on a small

number of stations, similar to other studies in Europe (Barbosa, Scotto, and Alonso

2011) and South Korea (Lee, Baek, and Cho 2013). However, Rhines et al. (2016)

showed the potential of quantile regression for large scale application. Their study

covered 3220 stations in North America, and results from the single stations were

spatially smoothed with thin-plate regression splines to provide geographically explicit

changes at the continental scale. Results indicate large reductions in winter variabil-

ity due to arctic amplification as well as asymmetric changes in spring, summer, and

fall for both daily minimum and maximum temperatures (Rhines et al. 2016).

Another finding from Matiu, Ankerst, and Menzel (2016) concerned the differences in

variability trends between time periods, that is linear trends from 1864 to 2012, 1933

to 2012, and 1973 to 2012. While mean temperatures did not change linearly in the

recent 150 years (Trenberth et al. 2007), using linear trends provides an appoxima-

tion of the speed of change during the respective period. However, with changes in

variability, trends did not only differ in size, but also in sign, compared to the trends

in mean temperature, which were all positive, and only showed accelerating warming

with more recent periods. This implies that changes in mean and variability were

not linked consistently during the recent 150 years, but the type of linkage changed,

too.

Impacts from changes in temperature variability also depend on the differences be-

tween minimum, mean, and maximum temperatures. Extreme daily maximum and

minimum temperatures have stronger impacts than extreme mean temperatures. But,

interestingly, trends differed for minimum and maximum temperatures. Such a mis-

match could have severe consequences, for example, in the case of late frost damage

of plants (Menzel, Helm, and Zang 2015). For instance, higher temperatures lead to

a faster development of plants and earlier flowering (Menzel et al. 2006). But if trends
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in minimum temperature extremes do not match, then late frost events could lead to

major damages and even crop failures, if the frost event falls into the critical flowering

period.

4.2. Impacts of climate variability on global crop yields

Since the 1960s the agricultural productivity increased steadily through the adop-

tion of modern varieties (Evenson and Gollin 2003, also called the green revolution),

fertilizers, pesticides, and mechanization. Agricultural management and inputs thus

played a key role in determining past yield trends and will most likely remain important

also in the future (Pradhan et al. 2015). Furthermore, yield trends were influenced by

climate change (Lobell, Schlenker, and Costa-Roberts 2011). Projections of climate

change effects on yields indicate largely yield reductions and only limited benefits

(Gregory, Ingram, and Brklacich 2005; Porter et al. 2014). But while the influence

of climate trends on past yield trends is small compared to the other inputs, such

as varieties, fertilizers, and pesticides, climate variability is the main driving force for

year-to-year yield variability.

Yield variability is linked to the stability of food prices (Reidsma et al. 2010), and thus

of crucial importance in the context of food security. The study presented in Section

3.2 quantified the climate variability effects associated to yield variability. Of particular

importance were the interactions between temperature and SPEI (a drought index),

which are summarized in Table 1. The effects of temperature and SPEI were not

independent such that the yield effects of hot and dry conditions were not simply the

sum of the individual effects.

For maize yields, the sum of individual hot and dry effects would have been -8.9%,

but the actually estimated effects with interactions were -11.6%. For wheat yields,

the difference was slightly less with -8.2% and -9.2%, respectively, as for rice yields

with -1.1% and -2.0%. For soybeans yields, interaction effects were opposite, that

is the combined effect of hot and dry conditions -12.4% was less than the sum of

individual effects -14.2%. Thus not accounting for interaction effects would underes-

timate the effect of combined heat and drought for maize, rice, and wheat yields and

overestimate it for soybeans yields.

On the other hand, for hot and wet conditions, effects without interaction would have

been overestimated for maize and underestimated for rice, soybeans, and wheat.

For wheat, yield reductions due to hot conditions (-4.2%) were reduced under wet
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conditions to an insignificant -2.8%, although wet conditions in average temperatures

were also insignificant. Soybeans profited most from wet conditions under average

temperatures (7.1%) compared to the other crops and yield effects even increased to

8.1% under hot conditions, albeit hot temperatures had negative effects in average

and dry conditions.

Table 1 Climate variability effects on global crop yields. Summary of the effects presented in Section 3.2, hereby focusing on
the importance of interactions for assessing the impacts of hot and dry, as well as hot and wet conditions on global crop yields.
The column <hot + dry> is simply the sum of the values in columns <hot> and <dry>, while the column <hot & dry> shows the
actual effects of hot and dry conditions because of interactions; hot and wet analogously.

Crop Effects of

hot dry hot + dry hot & dry

given avg. wetness given avg. tempera-
ture

sum of hot and dry ef-
fects, assuming no in-
teractions

combined hot and dry
effects because of in-
teractions

Maize -1.1% (-2.9 0.7) -7.8% (-10.7, -4.9) -8.9% -11.6% (-14.3 -8.9)

Rice -0.7% (-2.5, 1.1) -0.4% (-2.2, 1.4) -1.1% -2.0% (-4.2, 0.2)

Soybeans -3.5% (-7.4, 0.5) -10.7% (-13.6, -7.7) -14.2% -12.4% (-17.1, -7.4)

Wheat -4.2% (-6.8, -1.6) -4.0% (-6.8, -1.1) -8.2% -9.2% (-12.4, -5.9)

hot wet hot + wet hot & wet

given avg. wetness given avg. tempera-
ture

sum of hot and wet ef-
fects, assuming no in-
teractions

combined hot & wet
effects because of in-
teractions

Maize -1.1% (-2.9 0.7) 5.2% (1.9, 8.7) 4.1% 3.0% (-1.1, 7.4)

Rice -0.7% (-2.5, 1.1) 0.4% (-1.4, 2.3) -0.3% 0.6% (-1.8, 3.1)

Soybeans -3.5% (-7.4, 0.5) 7.1% (3.8, 10.6) 3.6% 8.1% (1.3, 15.5)

Wheat -4.2% (-6.8, -1.6) -1.2% (-4.3, 2.0) -5.4% -2.8% (-7.0, 1.7)

Maize yields were shown to depend strongly on drought and hot temperatures. The

yield increases in the Midwest-USA during 1995 and 2012 were accompanied by

an increased susceptibility to drought, even after accounting for agronomic changes

(Lobell et al. 2014). Rainfed maize crucially depended on precipitation during the

reproductive and grain-filling stages (Nielsen, Vigil, and Benjamin 2009). Addition-

ally, heat stress, which was quantified by excess degrees above a certain threshold,

was shown to be detrimental for USA maize (Lobell et al. 2013) and French maize

(Hawkins et al. 2013). The present study (Section 3.2) also identified strong effects

of drought, but not such a strong dependence on heat. This might be because the

SPEI already includes potential evapotranspiration and thus heat induced water loss.
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Moreover, because of interactions between temperature and SPEI, their single inde-

pendent effects were not as strong as combined.

Previous global studies of rice yields also coped with small effect sizes and high

uncertainties (Lobell and Field 2007; Lobell, Schlenker, and Costa-Roberts 2011),

as found in Section 3.2. These difficulties might stem from the sometimes ques-

tionable data quality in the reports found in the FAO data. Moreover, while maize,

rice, and wheat can all be grown in multiple seasons, maize and wheat yields from

the secondary growing season were only minor compared to the main growing sea-

son (Lobell, Schlenker, and Costa-Roberts 2011), however, for rice, the second sea-

son contributed large parts to the annual yields, and up to 50% are not uncommon

(Matthews et al. 1995).

Water availability was the main limiting factor for soybean yields in Brazil (Sentelhas

et al. 2015; Zanon, Streck, and Grassini 2016) and northern China (Yin et al. 2016).

For other main producing regions, it was water availability combined with temperature

that was associated best to soybean yields, such as in the USA (Leng et al. 2016;

Ray et al. 2015), Argentina (Llano and Vargas 2016; Penalba, Bettolli, and Vargas

2007), southern China (Zhang et al. 2015), and India (Lal et al. 1999). However,

the interactions between temperature and water availability responsible for positive

temperature effects under wet conditions, as found in Section 3.2, were not reported

for soybean yields before.

Wheat is heavily irrigated in the top producing countries India and China (see Figure

11), where wheat yield variability was mainly associated to temperature variability

(Lobell, Sibley, and Ivan Ortiz-Monasterio 2012; Rao et al. 2015). Whereas in other

top producing countries, it was precipitation variability or drought, for instance in Rus-

sia (Alcamo et al. 2007; Licker et al. 2013), the USA (Maltais-Landry and Lobell

2012), and France (Ceglar et al. 2016; Licker et al. 2013). For global averages as in

Section 3.2, both temperature and drought had similar effect sizes.

The presented effects of climate variability on crop yields concern the availability pillar

of food security. However, crop yields also feed intro crop prices, which influence the

access pillar of food security. The real prices of food, that is adjusted for inflation,

have decreased steadily since the 1960s, mainly because of the reasons that yields

have increased. However, food crises and hunger arise because of unexpected price

spikes. How prices respond to supply and demand is measured by price elasticities

(Roberts and Schlenker 2013).
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Figure 11 Irrigation rates for wheat in major producing countries. Shown are rates of irrigated area to total harvested area.
The small numbers indicate the year of the last report. Source of the data is FAO (2016)

The economic market on staple crops was largely inelastic, since the demand for

food cannot change rapidly, but supply could be modulated through stocks (Wright

2011). The introduction of biofuels caused some mixture of the elastic fuel mar-

ket with the inelastic food market (Wright 2014), which was used to explain recent

food price spikes. While price spikes also increase incomes of farmers (Swinnen

and Squicciarini 2012), they mainly contribute to hunger in the already food insecure

countries. Besides biofuels, other explanations for price spikes include low stocks,

harvest failures, and food commodity speculation (Piesse and Thirtle 2009).

The impact of climate variability on price variability of staple crops is an interesting

research question. In theory, climate variability leads to yield variability, which leads to

price variability. One question would be whether economic responses such as using

trading networks (Bren d’Amour et al. 2016; Wu and Guclu 2013) could dampen or

completely undermine the effects of climate on food prices. For instance, in the case

of wheat and soybeans, inter-hemispheric trade was shown to reduce production

shocks by 25-50% (Lybbert, Smith, and Sumner 2014). But climate variability could

influence prices also directly, for instance, if price expectations changed because

of the expected consequences of severe drought or other extreme events. Prices

respond stronger to yield changes, if stocks are low (Wright 2011). Since stock ratios

have declined recently, it becomes more likely that climate induced yield variability

might be feeding into price variability. However, a rigorous scientific evaluation is yet

lacking.
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4.3. Ecological succession following an extreme storm in a forest
ecosystem

The advent of cheap digital cameras enabled continuous monitoring of phenology in

a vast array of locations (Henneken et al. 2013; Julitta et al. 2014; Keenan et al. 2014;

Klosterman et al. 2014; Menzel, Helm, and Zang 2015; Toomey et al. 2015; Wingate

et al. 2015). In the study in Section 3.3 such a phenocam was used in an innovative

way to monitor the succession after a major wind-throw. This was made possible

with new statistical developments that allowed a data-driven approach to select ROIs

(Bothmann et al. 2017) and thus enabled to identify the successional processes.

In course of the succession GPP increased. This was mirrored in trends of webcam

greennees and remotely sensed vegetation indices. These common trends lead to

positive correlations between seasonal GPP and proxies. Such a correlation was not

observed in non-disturbed evergreen forests using webcam (Toomey et al. 2015) or

satellite vegetation indices (Verma et al. 2014).

With the webcam images it was possible to distinguish between grass and spruce

trees, while GPP measurements provide an integrated signal over the whole ecosys-

tem. The seasonality of GPP was most similar to the remotely sensed vegetation

indices, which also provide an integrated signal, but also to the ROI that showed

grass or the grass-to-spruce transition ROI. An interesting question that was not part

of the study of Matiu et al. (2017) would be whether it is possible to infer the contribu-

tions of the various species to the CO2 fluxes inside an ecosystem, for instance using

webcam imagery.

Soon after the wind-throw, the forest area had become infested with bark beetles,

and this resulted in large cuttings to prevent a further spreading. While bark bee-

tle induced tree mortality can be tracked using remotely sensed vegetation indices

(Bright, Hicke, and Meddens 2013), in the present study no such links were observed.

This is most probably because the successional processes outweigh any bark beetle

damages.

For forest managers, knowledge of the timing of bark beetle flights is of crucial im-

portance. Usually, the first flight occurs when daytime temperatures reach a certain

threshold (16.5 ◦C) and weather conditions are suitable for flying (Baier, Pennerstor-

fer, and Schopf 2007). However, Zang et al. (2015) showed that phenology can

be used as proxy to predict onset of bark beetle flight, in some cases even better
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than with complex bark beetle models. The findings of Matiu et al. (2017) corrob-

orate these results, since phenological observations on spruce May sprouting were

strongly related to timing of the first bark beetle flight in four out of six years. Com-

pared to climatological indices, which had no relationship at all to bark beetle flight,

phenology was thus superior, however, it should be noted that the sample size was

small consisting of only six years.

Large differences between the three remotely sensed vegetation indices, NDVI, EVI,

and PPI were identified in Matiu et al. (2017). The study site has two characteristics

that complicate observations by vegetation indices. First, it was covered almost com-

pletely with spruce trees before the storm, and afterwards with a mixture of spruce,

grass and dead wood. Such a dense cover with evergreen needleleaf leads, for in-

stance, to saturation in NDVI (Huete et al. 2002). Second, due to its location, the

study site usually has a continuous snow cover from December to March hampering

the validness of vegetation indices. The PPI has been proposed as an alternative es-

pecially for these two issues (Jin and Eklundh 2014). Matiu et al. (2017) found that out

of the three mentioned indices, the PPI performed best in terms of correspondence

to GPP and camera derived greenness (GCC).

With climate change, extreme events are expected to increase (Seneviratne et al.

2012). It then becomes increasingly important to monitor the impacts and recovery

of natural systems. Remote sensing is ideally suited, since it provides a continuous

signal and also allows, to a certain amount, to look at past conditions. However, the

spatial and temporal resolution of remote sensing is yet limited. Webcams provide a

much closer look at our environment, with higher detail and dense temporal coverage.

The vast array of publicly available cameras (for example see http://amos.cse.

wustl.edu/ for cameras mainly located in the USA) is supplemented by selected

high-quality imagery (http://www.foto-webcam.eu/) - also freely available. The

study in Section 3.3 provides a proof-of-concept of how webcams and remote sensing

can be combined to monitor ecological processes.
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5. Conclusion

Each organism interacts with its environment. It not only shapes its environment

but it also gets shaped by it. Interactions between climatic factors as well as between

climatic and non-climatic factors are crucial for a better understanding of the influence

of climate variability and extremes on ecology.

The results obtained in this thesis led to a better understanding of climate change in-

duced distributional changes in temperature. Because of the asymmetries involved, it

is not trivial to infer changes in temperature extremes from changes in mean and vari-

ability. In order to understand the evolution of temperature a wholesome approach is

needed, such as quantile regression, which models the whole distribution simultane-

ously.

Regarding impacts of climate variability on crop yields, the importance of interactions

between temperature and drought was elaborated. These interactions prevented an

over- or underestimation of the combined influence of temperature and drought on

crop yields. Consequently, adaptation measures need to take these interactions into

account. Specifically, the importance of temperature varies not only by region, but

also by present and future conditions of moisture availability.

Furthermore, climate variability encapsulates extremes, which have far more severe

consequences on ecosystems than changing mean conditions. For the first time,

impacts of such an extreme event have been monitored using digital repeat photog-

raphy in combination with remote sensing and turbulent CO2 measurements. Specif-

ically, the ecological succession in a forest after a major wind-throw. This opens up

new opportunities to observe successional processes and enables a more precise

estimation of their duration. As a result, the obtained findings are useful for the un-

derstanding and managing of disturbed forest areas.

To sum up, the conducted research in course of this dissertation presented statisti-

cal techniques and image analysis methods that were used to solve climatological

and ecological issues. More importantly, these methods and techniques enlarge the

methodological scope and thus represent further opportunities for related research.

In the long run, we only hit what we aim at.

— Henry David Thoreau, Walden
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A. Mathematical background

In the following a formal mathematical derivation of regression quantiles, which were

introduced in Section 2.1.1, will be provided.

Regression Quantiles

Given a random variable Y with arbitrary distribution function fY , the τ -th quantile is

defined as the inverse of the cumulative distribution function FY

QY (τ) = F−1Y (τ) for τ ∈ (0, 1).

If we have a sample of observations (y1, . . . , yn), the sample quantiles divide the

observations in proportions. The 0.25-th quantile, for example, is the value yi, for

which one quarter of observations lie below, and three quarters lie above. The most

commonly used quantile, the 0.5-th (also called median), then divides the observa-

tions into two subsets of equal proportion, half below and half above the median.

The obvious way to determine the sample quantile thus seems to rely on sorting and

ordering of the observations. Specifically, let Y = (y1, . . . , yn)
T denote a vector of

observations and let FY be the empirical cumulative distribution function. Then the

τ -th quantile is

QY (τ) = F−1Y (τ) = inf
yi
{FY (yi) ≥ τ} i = 1, . . . , n.

The sample mean may, next to the obvious way, also be determined via minimizing

the residual sum of squares

min
µ∈R

n∑
i=1

(yi − µ)2.

The same is possible for quantiles. A extended summary, following Koenker and

Hallock (2001), will be given here. The median is the solution to minimizing the sum

of absolute residuals

min
ξ∈R

n∑
i=1

|yi − ξ|,

which yields from the symmetry of the absolute value function. This can be general-

ized to all quantiles by using asymmetrically weighted absolute residuals. The tilted
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absolute value function, from now on called check or loss function, is

ρτ (x) := x
(
τ I{x≥0} − (1− τ) I{x<0}

)
= x(τ − I{x<0}).

Then minimizing

r(ξ) :=
∑
i

ρτ (yi − ξ)

over ξ ∈ R yields as solution the τ -th quantile. This can be seen by taking directional

derivatives w.r.t. ξ, which exist although ρτ (·) is not differentiable. The right derivative

is

r′+(ξ) := lim
h↘0

r(ξ + h)− r(ξ)
h

= lim
h↘0

n∑
i=1

ρτ (yi − (ξ + h))− ρτ (yi − ξ)
h

=
n∑
i=1

lim
h↘0

1

h

[
(yi − ξ − h)

(
τ − I{yi−ξ−h<0}

)
− (yi − ξ)

(
τ − I{yi−ξ<0}

)]
=

n∑
i=1

lim
h↘0

1

h

[
−h
(
τ − I{yi−ξ−h<0}

)
+ (yi − ξ)

(
τ − I{yi−ξ−h<0}

)
− (yi − ξ)

(
τ − I{yi−ξ<0}

)]
=

n∑
i=1

[
I{yi≤ξ} − τ

]
=

n∑
i=1

I{yi≤ξ} − nτ.

The last sum can be interpreted as the difference between the number of yi’s below

ξ and the proportion of observations that should be below the τ -th quantile. Similarly,

the left derivative is

r′−(ξ) = lim
h↘0

r(ξ − h)− r(ξ)
h

= lim
h↘0

n∑
i=1

ρτ (yi − (ξ − h))− ρτ (yi − ξ)
h

=
n∑
i=1

[
τ − I{yi<ξ}

]
= nτ −

n∑
i=1

I{yi<ξ}.

So, depending on ξ, we have r′+(ξ) = −r′−(ξ) or r′+(ξ) − 1 = −r′−(ξ). If we put

that into one equation, we get r′+(ξ) ≥ −r′−(ξ), which implies that r′+ and r′− can

never be < 0 at the same time, but they can both be ≥ 0. When both directional

derivatives are positive, we have a local minimum, and because r(ξ) is the sum of

convex functions, that minimum is global. It is obvious that ξ must be the τ -th quantile

such that r′+(ξ) ≥ 0 ≤ r′−(ξ).

Further let x̃i be a vector with dimension p of known covariates for each observation

i = 1, . . . , n and xi = (1, x̃Ti )
T . Then the design matrix X of all xi includes the

intercept and has dimension n × (p + 1). The conditional quantile is then defined
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as

QY (τ |X) = Xβ(τ)

where β(τ) is a vector of coefficients that depends on τ . By generalizing the afore-

mentioned, the solution to

min
β(τ) ∈ Rp+1

∑
i

ρτ (yi − xTi β(τ))

is known as regression quantiles, for which Koenker and Bassett (1978) derived effi-

cient solving algorithms and asymptotic theory.
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ABSTRACT: While the rise in global mean temperature over the past several decades is now widely acknowledged, the issue
as to whether and to what extent temperature variability is changing continues to undergo debate. Here, variability refers to
the spread of the temperature distribution. Much attention has been given to the effects that changes in mean temperature have
on extremes, but these changes are accompanied by changes in variability, and it is actually the two together, in addition to
all aspects of a changing climate pattern, that influence extremes. Since extremes have some of the largest impacts on society
and ecology, changing temperature variability must be considered in tandem with a gradually increasing temperature mean.
Previous studies of trends in temperature variability have produced conflicting results. Here we investigated ten long-term
instrumental records in Europe of minimum, mean and maximum temperatures, looking for trends in seasonal, annual and
decadal measures of variability (standard deviation and various quantile ranges) as well as asymmetries in the trends of extreme
versus mean temperatures via quantile regression. We found consistent and accelerating mean warming during 1864–2012.
In the last 40 years (1973–2012) trends for Tmax were higher than for Tmin, reaching up to 0.8 ∘C per 10a in spring. On
the other hand, variability trends were not as uniform: significant changes occurred in opposing directions depending on
the season, as well as when comparing 1864–2012 trends to those of 1973–2012. Moreover, if variability changed, then it
changed asymmetrically, that is only in the part above or below the median. Consequently, trends in the extreme high and
low quantiles differed. Regional differences indicated that in winter, high-alpine stations had increasing variability trends for
Tmax especially at the upper tail compared to no changes or decreasing variability at low altitude stations. In contrast, summer
variability increased at all stations studied.
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1. Introduction

Evidence of global warming of the climate system has
been unequivocal: there have been warmer and/or fewer
cold days and additionally warmer and/or more frequent
hot days in the recent decades [Intergovernmental Panel
on Climate Change (IPCC), 2013]. In addition to mean
warming, countries across the world are currently facing
an increase in the frequency and intensity of temperature
extremes, which is of great concern since extreme events
have had and will continue to have the greatest impact on
socio-economies (Easterling et al., 2000), human health
(e.g. O’Neill and Ebi, 2009), and terrestrial ecosystems
(e.g. Trigo et al., 2006; Gloning et al., 2013; Reyer et al.,
2013). However, temperature extremes are more sensi-
tive to changes in variability rather than changes in mean
conditions (Katz and Brown, 1992) and asymmetry, that

* Correspondence to: M. Matiu, Fachgebiet Ökoklimatologie, Technis-
che Universität München, Freising, Germany.
E-mail: matiu@wzw.tum.de

is the skewness of the distribution, also plays a crucial
role in predicting extremes (Ballester et al., 2010). Pre-
vious studies implementing schematic graphs of normally
distributed temperatures have illustrated how increases in
mean temperature, variance, and both could affect extreme
temperatures at the tails of the temperature distribution
(Beniston and Goyette, 2007; Figure 2.32 in Folland et al.,
2001; Meehl et al., 2000). However, recently, the special
report on extreme events (SREX) of the IPCC updated the
schematic graph to include the possibility of changes in
symmetry (see Figure SPM.3 in IPCC, 2012). But the latest
Assessment Report (AR5) of the IPCC, published shortly
after the SREX, shows again the older symmetric depiction
(Figure 1.8 in Cubasch et al., 2013). Since the beginning
of the ‘variability issue’ many climate-related publications
have attributed changes in the frequency and intensity of
extreme events to both warming and increased variability.
The recent accumulation of high-profile extreme events,
such as the European heat waves in 2003 and 2006–2007,

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
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the Australian summer of 2012–2013, the Northern Hemi-
sphere 2010 heat wave, and the Europe 2009 and Argentina
2007 cold waves, have perpetuated this hypothesis.

The detection-attribution algorithm (Hegerl et al., 2004),
previously used to estimate the anthropogenic influence
on warming of mean temperatures, was extended to tem-
perature extremes using extreme value theory. A signifi-
cant human influence was found globally for warming of
the warmest night, coldest days and coldest nights (Chris-
tidis et al., 2005; Shiogama et al., 2006) as well as for the
warmest days (Christidis et al., 2011). Regional extreme
temperatures were also significantly influenced by humans
(Zwiers et al., 2010; Min et al., 2013; Wen et al., 2013)
and land use change was found to be of particular impor-
tance for changes in warm extremes (Christidis et al.,
2013). By analyzing six temperature reconstructions, Ryb-
ski et al. (2006) found that part of the recent warming
could not be attributed to natural variability.

Notwithstanding an accumulation of observed data on
extreme events, the question of whether such events
have been caused by shifts in mean temperature alone
versus additionally by shifts in variability remains to
date unresolved. There is still an ongoing debate con-
cerning whether and how variability has changed on a
global scale (Easterling et al., 2000; Hansen et al., 2012;
Rhines and Huybers, 2013). Correct assessment of cli-
mate variability and extremes is of paramount impor-
tance for the tools and methods required for applied
climate impact research, including the construction of
weather generators, the downscaling of model outputs, risk
assessment, and the determination of experimental settings
for ecological climate change impact studies (Thompson
et al., 2013).

As a first step for ascertaining the role of variability
in the rise of extreme temperature events, one needs to
understand if and how variability has changed over the
past decades. This goal is not trivial for several reasons.
First, variability of observations may be described on
different time scales, such as daily, monthly, or yearly
and over different time spans, such as over a decade or
several decades. Simple measures for variability translate
to approximate measures of the spread of a probabil-
ity distribution describing the theoretic behavior of the
observations, such as the commonly used normal distri-
bution. They include, but are not limited to, the sample
variance (sample standard deviation), which assumes
symmetric behavior around the mean, and sample quantile
ranges, such as the difference between the 0.975 and
0.025 sample quantiles, which describe the interior 95%
portion of the underlying probability distribution. More
complicated measures of variability could be charac-
terized by examining full probability densities that are
not assumed to be normal, such as flexible mixtures of
distributions for bimodal or skewed observations. Once
the definition of variability has been established a sec-
ond complication is that the rate of extreme events may
depend in a complicated manner on changes in both the
mean and the variability. For example, in their theoretical
framework, Rahmstorf and Coumou (2011) concluded

that the number of heat waves depended non-linearly on
the ratio of the warming trend to the short-term standard
deviation. Furthermore, the long-term correlations also
have an influence on extreme value statistics (Eichner
et al., 2006).

Numerous studies have analyzed changing trends in
variability and arrived at different conclusions; a collec-
tion of these are listed in Table 1. Based on re-analysis of
global data and concentrating on inter-annual fluctuations,
Huntingford et al. (2013) found varying regional patterns
but no overall change in temperature variability over the
past 44 years. Similar results were found using gridded
station data (Parker et al., 1994; Donat and Alexander,
2012). Focusing only on the June-July-August (JJA) sum-
mer season, Hansen et al. (2012) demonstrated an increase
in variability globally over the past 60 years. Scherrer et al.
(2005) confirmed an increase in variability during the sum-
mer season in Europe, a decrease in winter and spring, and
no change in fall. Based on recent historical station data,
Klein Tank et al. (2005) showed patterns of increasing
and decreasing variability of mean temperatures in Europe
depending on station and season, while Simolo et al.
(2012) found that minimum and maximum temperatures
showed no change except for summer maximum temper-
atures in one of three regions. In the case of Australia
(Collins et al., 2000) overall decreases were found only
for minimum temperatures, while for mean and maximum
temperatures, trend signs showed regional heterogeneity.
For the East Asia and south Pacific regions (Griffiths
et al., 2005), no overall change was found, although some
stations showed significant decreases in variability of min-
imum and maximum temperatures. In a comprehensive
station network in the United States, China, former Soviet
republic and Australia, mean temperature variability did
not change, although it declined for some stations (Karl
et al., 1995). For Argentina, Rusticucci and Barrucand
(2004) found decreasing variability of minimum and
maximum temperatures in summer (DJF) and increasing
variability in winter (JJA), although most changes were not
significant. For the Tibetan Plateau, overall inter-annual
variability of mean temperatures increased, however,
some stations also showed no change or decreases (Song
et al., 2014). Two stations in Switzerland showed no
change in variability of minimum and maximum tem-
peratures over 104 years (Beniston and Goyette, 2007).
Based on more than 100 years of station data, Della-Marta
et al. (2007) observed an increase in variability of
maximum temperatures during the summer season in
Western Europe.

It is difficult to compare the results of these studies due
to the different temperature measures and datasets used.
Therefore, using high-quality homogenized temperature
records of ten stations in Europe dating back 150 years,
this report investigates the effects of different time bases
for the variability measures, time frames to detect trends,
statistical models and measures of variability for three
variables (daily minimum, mean, and maximum tempera-
ture) on qualitative and quantitative inferences concerning
changes in variability.

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
on behalf of the Royal Meteorological Society.
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Table 2. Summary of station details. Station name is followed by country abbreviation in parentheses (CH=Switzerland,
DE=Germany, GB=United Kingdom). The last column shows the number of years of available data for minimum/mean/maximum
temperatures. Geographic coordinates of HadCET are an indicator of the series’ regional cover. Group abbrevations: High-Alps

(High), northern Low-Alps (Low) and Rest comprises Lugano in the southern Alps as well as Central England.

Station ID Station name Longitude Latitude Altitude[m a.s.l.] Group Years of data [min / mean / max]

BAS Basel / Binningen (CH) 7∘35’E 47∘32’N 316 Low 115/149/115
BER Bern / Zollikofen (CH) 7∘28’E 46∘59’N 552 Low 149/149/149
DAV Davos (CH) 9∘51’E 46∘49’N 1594 High 123/137/123
HadCET Central England (GB) 0∘-3∘Wa 51∘–54∘Na 0-200a Rest 135/135/135
Hopei Hohenpeissenberg (DE) 11∘01’E 47∘48’N 1000 High 131/131/131
LUG Lugano (CH) 8∘58’E 46∘00’N 273 Rest 148/149/148
LUZ Luzern (CH) 8∘18’E 47∘02’N 454 Low 127/132/127
NEU Neuchâtel (CH) 6∘57’E 47∘00’N 485 Low 148/149/148
SAE Säntis (CH) 9∘21’E 47∘15’N 2502 High 121/129/112
SMA Zürich / Fluntern (CH) 8∘34’E 47∘23’N 555 Low 131/149/131

aApproximate.

2. Data and methods

2.1. Data

Minimum, mean, and maximum daily temperature data
were available for eight Swiss stations with long-term
records (115–149 years) from the SwissMETEO website
(Begert et al., 2005). In addition, data from the Hadley
Centre Central England Temperature (HadCET) compos-
ite time series (Parker et al., 1992) and the oldest mountain
climate station in southern Germany, Hohenpeissenberg
(DWD, German Meteorological Service), were available
for analysis with 135 and 131 years of data, respectively.
The HadCET series is a composite of multiple stations
in central England. The region spans a roughly trian-
gular area between London, Bristol and Lancashire; for
a complete list of stations see Parker et al. (1992). The
ten stations were roughly grouped according to altitude
and whether they lay North or South to the Alps-ridge
into three categories: High-Alps, northern Low-Alps and
Rest (Lugano in the Southern Alps and Central England).
Table 2 provides summary data for the individual stations
and Figure 1, a map. The collective dataset comprised
daily temperature readings starting with 1864 and ending
with 2012.

Except for minimum temperatures at the Swiss stations,
all temperature series were homogenized in order to
reduce non-meteorological effects, such as changes in
site location, measurement devices, measurement times
etc.; the processes are described in detail in the original
and subsequent reports (Parker et al., 1992; Begert et al.,
2005; Parker and Horton, 2005). No statistical outliers
were found and no further data standardization was per-
formed due to the high quality standards of the data.
A small amount of the daily data was missing (<0.5%
per station and temperature variable, i.e. minimum, mean
or maximum temperature), which was filled by single
imputation (Rubin, 1978; Baraldi and Enders, 2010).
Single rather than multiple imputation was used follow-
ing the recommendation that the number of necessary
imputations be set as the percent of missing information,
which in this case was less than 1% (Bodner, 2008; White
et al., 2011). To perform the imputation of missing values,

Figure 1. Map of available stations. Top panel shows the eight Swiss
stations and Hohenpeissenberg (Hopei), bottom left is a rough repre-
sentation of the area covered by the Hadley Centre Central England
Temperature (HadCET) series. Station names are provided in Table 2.

linear models were fit with the missing temperature
variable as outcome, e.g. maximum temperature, and the
other temperature variables as predictors, e.g. mean and
minimum temperature, within 10 years with no missing
outcomes or predictors. Rather than using the mean from
the regression, the missing value was replaced with a
randomly sampled value from a normal distribution with
predicted mean and variance from the imputation regres-
sion, corresponding to imputation from the predictive
distribution (Brick and Kalton, 1996).

Analyses were done on seasonal, annual and decadal
scale. The daily observations were grouped into meteoro-
logical seasons: December-January-February (DJF, win-
ter), March-April-May (MAM, spring), June-July-August
(JJA, summer) and September-October-November (SON,
fall). Incomplete winter seasons (at the start and end of
the series) were removed. The most recent decade was
2003–2012 preceded by 10-year periods (1993–2002, and
so forth). An incomplete decade at the beginning of the
series was removed from the decadal analysis. Increasing

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
on behalf of the Royal Meteorological Society.
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Figure 2. (a) Densities of daily mean temperatures from 1961 to 1990 at the Basel station according to season and for the whole year. Vertical dashed
lines denote the mean of the distribution. (b) Histograms of daily mean temperatures in summer (JJA) for the Basel station for 3 distinct years.
Superimposed are range bars: Standard implies the mean as center point and 1.64 times the standard deviation as a 90% confidence interval as would
be estimated assuming a normal distribution. Robust has the median as its center point and the span between the 0.05th and the 0.95th quantiles as

the interval limits (i.e. empirical 90%).

temperature within a decade might inflate the decadal vari-
ability measures. We also calculated the decadal variability
measures after de-trending each year with its annual mean,
but found results to be identical to the original measures,
and thus used the raw values for the analysis.

2.2. Methods

In the following, measures for temperature variability are
defined. We first motivate the distinction between sea-
sonal and annual measures of variability. Then robust
quantile-based variability measures are compared to the
symmetric standard deviation. Afterwards we describe
the structure of the linear mixed effects model used to
detect changes in variability over time. In order to study
how changes in variability and mean relate to changes in
extremes, we use quantile regression, as described further
below.

2.2.1. Seasonal vs. annual variability

Changes in seasonal variability of temperatures may not
correspond to similar changes in annual variability. Con-
sequently, it is critical to compare the same type (seasonal
versus annual) when discussing results in the context of
other studies. To illustrate, Figure 2(a) shows the daily
mean temperature distribution of Basel from 1961 to 1990.
The mean of the annual temperature distribution is approx-
imately equal to the average over the four means of the
seasonal temperature distributions. This fact is supported
by principles in statistics, that the grand mean (in this case
over the annual temperatures) is equal to the mean of the
sub-means (in this case over the component seasons), if the
sub-means are of equal size. However, the same general
principle does not hold statistically for the variance by the
law of total variance, also known as Eve’s law. Specifically,
the variance of temperatures on the annual scale depends

on both the seasonal variances as well as the seasonal
means. To see this, picture in Figure 2(a) shifting either
the individual season means or increasing or decreasing
the individual season variances: both will affect the over-
all spread of the annual distribution in any multitude of
ways. Thus we used seasonal as well as annual measures
of variability in all our analyses.

2.2.2. Normal-based vs. asymmetric and robust
approaches to variability

In addition to or in lieu of the commonly used standard
deviation (SD), there are more robust measures to quantify
variability that can also handle asymmetrical distributions.
These do not assume a symmetric normal distribution
where variability for temperatures above the mean is
assumed to be the same as that for temperatures below the
mean, so that a single measure, the SD, applies to both.
Rather, they rely on sample quantiles of the observed tem-
peratures, say the difference between the 2.5th and 97.5th
largest temperatures in the observed dataset (all observed
temperatures are ordered from smallest to largest to make
this ranking). We term these approaches as robust because
they yield the same results as SD-based symmetric con-
fidence intervals (CIs), such as 95% CIs (mean± 2× SD),
when the distribution of temperatures does indeed follow
a normal distribution, but also yield accurate results when
the true distribution of temperatures does not follow a
normal distribution, and in fact under whatever the true
underlying distribution of temperatures happens to be
(see Stigler (2010) for a history of robust statistics).
These approaches are also robust to outliers, which are
individual temperature values that are extremely high or
low. The 0.025 quantile of the dataset (that temperature
below which 2.5% of the observations fall below it) is not
affected whether the lowest temperature in the dataset was
its observed value or an extreme event with 10∘ below

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
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it. Figure 2(b) shows specific examples of how robust
asymmetric interval ranges can differ from symmetric
CIs. For our analyses we used both, the SD as well as
robust and potentially asymmetric quantile ranges.

2.2.3. Modeling changes in mean temperature and
variability over time

Climate change affects all aspects of the temperature distri-
bution, from central mean or median aspects, to variabil-
ity, to extremes. In this section we study trends in mean,
median, and variability measures, in the next, we look at
associations between these changes. We begin with mean
trends, using as response variables the seasonal, annual and
decadal means calculated from daily minimum, mean and
maximum temperature values. We used data from all sta-
tions together in one mixed-effects model:

Yst,t =
(
𝛽0 + b0,st

)
+
(
𝛽1 + b1,st

)
∗ t + 𝜀st,t ,

b0,st ∼ N
(
0, 𝜎2

0

)
, b1,st ∼ N

(
0, 𝜎2

1

)
,

𝜀st,t ∼ N
(
0, 𝜎2

𝜀

)
,

where Yst,t is the seasonal/annual/decadal mean at station
st at time t, 𝛽0 is the common intercept of all stations, b0,st
is the deviation of each station from the common intercept
(treated as a random variable in the model), 𝛽1 is the com-
mon time trend in Y for all stations, b1,st is the deviation of
each station from the common time trend (treated as a ran-
dom variable in the model), t is the time of Y (for seasonal
and annual means it is the year centered at the median year
1945 and divided by ten; for decadal means it is the decade;
thus time trends are per decade in all three cases) and 𝜀st,t is
the independent normally distributed within-station error.
The deviations of each station from the common inter-
cept and trend (b0,st and b1,st, respectively) account for
differences among the stations in terms of both the mean
and trend with time in Y. We additionally fit the model
restricted to the last 80 and 40 years of available data, as the
last third of the data (1972–2012) corresponded to a period

of strong temperature increase that occurred since the
mid-1970s, and the last 80 years (1933–2012) additionally
included a previous period of slight cooling. Residual plots
were inspected to verify model assumptions. The residu-
als had significant autocorrelation up to order 3, thus an
autoregressive process of order 3 was added to the model
residuals, i.e. 𝜀st,t = 𝜑1𝜀st,t− 1 +𝜑2𝜀st,t− 2 +𝜑3𝜀st,t− 3 + ust,t
with estimated autoregressive coefficients 𝜑1, 𝜑2, 𝜑3 and
independent within-station errors ust,t ∼ N

(
0, 𝜎2

𝜀

)
.

A more robust estimate of mean conditions is the
median, thus we repeated the above process with seasonal,
annual and decadal medians of daily temperatures (replace
Y in the model above with the median instead of the mean).

The same model structure was used to detect changes
in variability. We took the standard deviation (SD) and
three different quantile ranges to account for different
measures of the variability of the temperature distri-
bution: the central 50% region (difference between the
0.75 and 0.25 quantile, Q75-25), the central 90% region
(0.95–0.05 quantile, Q95-05) and the central 95% region
(0.975–0.025 quantile, Q975-025). In order to detect pos-
sible asymmetries related to changes in the spread or vari-
ability of the probability distribution, we further divided
the central 90% region into a lower 45% region (0.05–0.50
quantile, Q50-05) measuring the spread of the lowest tem-
peratures and an upper 45% measure (0.50–0.95 quantile,
Q95-50) measuring the spread of the highest temperatures
to better identify how variability changed, e.g. by a sym-
metric increase in variability for low and high tempera-
tures, for only high temperatures, and so forth. With all
measures of variability, the model residuals were not auto-
correlated, thus the models were fit without the autore-
gressive error structure. Table 3 provides a summary of all
measures used as model outcome variables.

Qualitative statements on changes in extremes could
be derived by examining trends in mean temperature
and variability together. If, for example, mean temper-
ature increased, then there would be more warm and
less cold extremes. If additionally variability increased

Table 3. Summary of measures used to detect changes in mean conditions and variability over time. Each of these was calculated out
of daily minimum, mean and maximum temperatures on a seasonal, annual and decadal basis. They served as response variable (Y)
in the mixed-effects model. Last column shows whether the model residuals had significant autocorrelation and if so, up to what lag.

Measure Description Autocorrelation

Mean sample mean Yes, up to lag 3
Median sample median (i.e. the 0.50 quantile) Yes, up to lag 3
SD sample standard deviation; for a normal-distributed sample, the interval of ±1 SD around

the mean holds approximately 68% of observations
No

Q75-25 difference between the 0.75 and 0.25 quantile; length of the interval that contains the
central 50% of observations

No

Q95-05 difference between the 0.95 and 0.05 quantile; length of the interval that contains the
central 90% of observations

No

Q975-025 difference between the 0.975 and 0.025 quantile; length of the interval that contains the
central 95% of observations

No

Q50-05 difference between the 0.50 and 0.05 quantile; length of the interval that contains 45% of
observations below the median, without the lowest 5%

No

Q95-50 difference between the 0.95 and 0.50 quantile; length of the interval that contains 45% of
observations above the median, without the highest 5%

No

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
on behalf of the Royal Meteorological Society.

Climate extremes and variability, and their ecological impacts 65



20 M. MATIU et al.

symmetrically, there would be even more warm extremes,
as well as more cold extremes than with merely an
increase in mean temperature. This approach has multiple
drawbacks. First, only qualitative and not quantitative
statements are possible. Secondly, relating trends in mean
to variability results in many possibilities, especially if
variability changes asymmetrically, such as only in the
warmer part. Thus we propose an alternative method:
quantile regression.

2.2.4. Joint assessment of changes in mean temperature,
variability and extremes via quantile regression

Changes in the distribution of minimum, mean and max-
imum temperatures were detected by simultaneously
examining trends in multiple quantiles thereof. Assuming
that the temperature distribution is characterized by the
set of 19 equally spaced quantiles (0.05, 0.10, … , 0.95),
time trends of these quantiles could identify changes in
distribution, for example, if the higher quantiles increased
and the lower quantiles decreased, then the spread of the
distribution has increased and thus also variability has
increased. Also changes in extremes (i.e. the extreme
quantiles 0.05 and 0.95) could be related to changes in
mean temperature (i.e. the median; 0.50 quantile).

We used quantile regression (Koenker and Bassett,
1978; Koenker, 2005) to estimate linear time trends of
the seasonal and annual distribution of minimum, mean
and maximum temperatures for each station. To estimate
time trends, we used the total amount of data which was
available at each station (see Table 2) and in a second step
only the last 40 years (1973–2012), in order to distin-
guish between long- and short-term trends. Trends were
estimated simultaneously for 19 quantiles (0.05, 0.10,
… , 0.95) with the algorithm specified in Bondell et al.
(2010) in order to ensure non-crossing of the quantile
trend lines. Crossing quantile trend lines would contradict
the definition of quantiles, e.g. if the 0.95 quantile trend
line crossed the 0.90 quantile trend line at a certain time,
then for some years the estimated temperature at the
0.95 quantile would be below the temperature at the 0.90
quantile, which is impossible via definition.

All statistical analyses were performed in R ver-
sion 3.1.0 (RCoreTeam, 2008). The quantreg-package
(Koenker, 2008) was used for quantile regression and
the nlme-package (Pinheiro et al., 2013) for linear mixed
effects models. Statistical significance was assumed at the
0.05 level unless otherwise stated.

3. Results

3.1. Overall trends in mean temperature and variability
measures

Time trends of mean temperatures, median temperatures
and all the measures of variability, such as SD and
robust intervals (Q75-25, Q95-05, Q975-025, Q50-05 and
Q95-50) across all stations included in the study are shown
in Figure 3 for Tmax and Tmin, the temperature variables

of interest, and Supplementary Figures S1 for Tmean. We
first present mean and median trends followed by trends in
variability. We conclude with a few remarks on the indi-
vidual station level.

3.1.1. Mean/Median trends

Seasonal, annual and decadal mean and median trends of
daily Tmax were all significantly positive. For the period
1864–2012 they were between 0.09 and 0.15 ∘C per 10a
(all p< 0.001) and for the period 1933–2012 they were
between 0.13 and 0.21 ∘C per 10a (all p< 0.001). For the
last 40 years (1973–2012) warming was not as uniform
over seasonal, annual and decadal measures as compared
to the longer periods, however still significantly positive.
Trends of annual and decadal means were 0.46 ∘C per
10a (0.41, 0.50; 95% confidence interval), while trends of
annual and decadal medians were higher with 0.67 ∘C per
10a (0.59, 0.75) and 0.65 ∘C per 10a (0.58, 0.71), respec-
tively. Seasonal trends differed even more, as for instance
mean winter Tmax rose at only 0.14 ∘C per 10a (0.02, 0.26)
compared to mean spring Tmax, which rose at 0.80 ∘C per
10a (0.73, 0.87). In summary, mean and median trends
show consistent and accelerating warming of maximum
temperatures from 1864 to 2012 and seasonally diverging
trends in the period 1973–2012. Tmin trends exhibited the
same patterns in general, however, during 1864–2012 win-
ter and summer Tmin warmed more than Tmax, e.g. the
mean winter Tmin trend was 0.16 (0.11, 0.20) compared to
0.10 ∘C per 10a (0.07, 0.13) for Tmax. In the 1973–2012
period the opposite was true, i.e. Tmin warmed less than
Tmax in all seasons, as well as on annual and decadal scale.
This effect was most apparent in spring, where the mean
Tmin trend [0.46 ∘C per 10a (0.36, 0.56)] was approx-
imately half of the Tmax trend [0.80 ∘C per 10a (0.73,
0.87)], and in winter, where mean Tmin did not change
at all (p= 0.95) compared to small increases in Tmax
(0.14 ∘C per 10a, p= 0.02).

3.1.2. Trends in measures of temperature variability

Contrary to mean and median, trends in temperature
variability did not point in the same direction for each
time base, time frame and temperature variable (Figure 3).
For instance, during the period 1864–2012, variability of
Tmax did not change for winter, spring, fall, annual and
decadal measures (p> 0.05), only in summer all variabil-
ity measures showed a significant increase in variability
(all p< 0.01). For the period 1973–2012, however, the
opposite is true: summer variability did not change (all
measures p> 0.05), but winter, spring, annual and decadal
variability increased and fall variability decreased (all
measures except Q75-25; p< 0.01). While there were
high differences in trends between the four measures of
variability for each time base, e.g. annual SD increased at
0.12 ∘C per 10a (0.06, 0.17) and annual Q95-05 increased
at 0.45 ∘C per 10a (0.26, 0.63), the trends of each of the
four measures were of similar magnitude between time
bases, i.e. the seasons, year and decade. For instance, SD
increased at 0.12 ∘C per 10a (0.06, 0.18) in winter, 0.09 ∘C
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Figure 3. Estimated common time trend coefficients for linear mixed effects models of various distributional measures of maximum temperatures
(Tmax; red triangles) and minimum temperatures (Tmin; blue circles) versus time of all stations, depending on the time base used to compute the
measures (columns) and the time frame for trend estimation (rows). Error bars show 95% confidence intervals. Trends in solid lines are significant at
the 0.05 level, while the transparent ones are not, i.e. zero is within the confidence bounds. SD= Standard deviation, quantile-based measures start

with Q, followed by the bounds (e.g. Q95-05 is the range between the 0.95 and the 0.05 quantile).

per 10a (0.03, 0.14) in spring and 0.15 ∘C per 10a (0.08,
0.22) when calculated on a decadal base; Q95-05 increased
at 0.42 ∘C per 10a (0.23, 0.60) in winter and spring, and
0.56 ∘C per 10a (0.34, 0.78) when calculated by decade. In
summary, there were opposing variability trends for max-
imum temperatures of the 1864–2012 period compared to
those of the recent 1973–2012 period, and seasonal diver-
gence of variability trends in the recent period. Variability
trends for Tmin were close to Tmax during the last 40 years
(1973–2012), but not so for the 1864–2012 period, where
variability of Tmin decreased in winter, spring, fall and
on the annual time base (all measures except Q75-25,
p< 0.05) compared to no changes in Tmax variability.

3.1.3. Asymmetric changes in temperature variability

The increase in Tmax summer variability during
1864–2012 was accompanied by an increase in vari-
ability of the colder part of temperatures but not in the
warmer part, as Q50-05 increased and Q95-50 did not
change (p< 0.001 and p= 0.19). Annual variability dur-
ing the same period did not change, however, Q50-05
increased at 0.06 ∘C per 10a (0.01, 0.10) and Q95-50
decreased to −0.03 ∘C per 10a (−0.05, 0.00), i.e. changes
in the variability of the colder and warmer part of Tmax

canceled each other out in terms of total variability. This
further implies that the distribution of annual temperatures
did not become wider as such, but changed shape. Even
more asymmetric changes were found for Tmax during
the period 1973–2012, where either only one of the two
measures (Q50-05 and Q95-50) changed, or both changed
but in opposite directions. For instance winter and spring
Q95-50 of Tmax showed no change (both p> 0.05), only
Q50-05 increased at 0.32 (0.16, 0.47) and 0.53 ∘C per 10a
(0.34, 0.72), respectively. In other words, the increased
variability [Q95-05 trend of 0.42 ∘C per 10a (0.23, 0.60)]
is only because variability of the colder part of temper-
atures increased, but not in the warmer part. Based on
annual measures of Tmax, variability of the colder part
increased much stronger [0.62 ∘C per 10a (0.43, 0.80)]
than variability of the hotter part decreased [−0.17 ∘C per
10a (−0.28, −0.06)]. This yielded a smaller net increase
in total variability Q95-05 [0.45 ∘C per 10a (0.26, 0.63)],
which masked the asymmetric changes.

Q50-05 and Q95-50 trends of Tmin were different than
corresponding trends of Tmax in few cases, most notably
during the last 40 years (1973–2012). Variability of winter
Tmin during 1864–2012 and 1973–2012 changed sym-
metrically, as variability of the upper and lower part did

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
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Figure 4. Modelled trends and raw values of Q95-05 (difference between 0.95 and 0.05 quantile) for each station according to time base and
temperature variable for all years of data. Stations were grouped into High-Alps (red), northern Low-Alps (blue) and South-Alps/England (green).
Overall trends for all stations combined are shown in black (95% confidence bands grey), if they are significant (see also values for Q95-05 in

Figure 3 and S1).

not change for the 1864–2012 period (both p> 0.05)
and increased simultaneously during 1973–2012 (both
p< 0.05). Additionally, summer Tmin variability as well
as asymmetry did not change (all p> 0.1), but fall showed
the strongest sign of asymmetry, as Q50-05 increased at
0.26 ∘C per 10a (0.08, 0.44), while Q95-50 decreased to
−0.24 ∘C per 10a (−0.36, −0.13), which lead to no change
in the total variability (all four measures had p> 0.1). In
summary, variability of the upper and lower part of temper-
atures rarely changed in the same direction, i.e. changes in
total variability were driven by changes in either variabil-
ity of colder or warmer temperatures and in few cases no
change in total variability was caused by opposing effects
of the upper and lower variability, which canceled each
other out.

3.1.4. Individual stations

Individual station trajectories in the Q95-05 measure
of variability across all years of data and all three

temperature variables are shown in Figure 4. For Tmin,
variability trends of the individual stations were almost
identical to the overall trend, however, baseline Q95-05
was different: high alpine stations had the highest and
Central England (HadCET) had the lowest baseline rate
of Q95-05 due to the maritime influence, for instance,
annual variability (Q95-05) in 1945 was 23.1 ∘C in
Davos (DAV) and 15.3 ∘C in Central England (HadCET).
The same applied to winter, spring and summer Tmean
trends. Fall and yearly Tmean and all of Tmax trends
revealed more differences among the individual stations
as well as a greater magnitude of variation from the
overall trend. For winter, spring and fall Tmax, individual
stations showed opposing behavior: in High-Alps sta-
tions variability increased, while in the other stations it
decreased, e.g. spring Q95-05 trend was 0.08 ∘C per 10a
at Hohenpeissenberg (Hopei) and −0.07 ∘C per 10a at
Lugano (LUG).

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 13–27 (2016)
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Figure 5. Slope-quantile plots from quantile regression of temperature versus time for the ten stations and different seasons, as well as for the whole
year as time base. Time trends were estimated for the 0.05, 0.10, … , 0.95 quantiles. Colors code the different temperature variables (Tmin= blue
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not cross the dashed zero line, and not significant if they cross it. See Supplementary Figure S2 for an explanation of slope-quantile plots.

3.2. Simultaneous changes in temperature mean and
variability and their effect on extremes

We used quantile regression to model changes in the full
temperature distribution of each station, characterized by
time trends of the 0.05, 0.10, … , 0.95 quantiles of Tmin,
Tmean and Tmax, in contrast to the previous section,
which dealt with overall trends in ranges of quantiles.
Seasonal and annual quantile trends are summarized in
terms of slope-quantile plots for each of the ten stations
(Figure 5).

The stations at high elevation (DAV, SAE and Hopei)
exhibited an increasing variability of the Tmax distribution
during 1864–2012, as lower quantiles had smaller trends
than high quantiles, i.e. coldest Tmax warmed less than
hottest Tmax. For instance coldest summer Tmax, i.e. the
0.05 quantile, at Saentis (SAE) increased at 0.11 ∘C per
10a (0.07, 0.15), while the hottest temperatures, i.e. the
0.95 quantile, increased at 0.28 ∘C per 10a (0.24, 0.33).
Actually, coldest Tmax did not change for the high-Alpine
stations in some seasons and annually, where e.g. 0.05
quantile trends were not significantly different from zero
(p> 0.05). Thus the increase in variability totally offset
the effect of mean warming for coldest Tmax at these
high elevation sites. This effect also occurred for Tmin
at the highest site (SAE) in all seasons except winter, i.e.
coldest Tmin did not warm in spring, summer and fall (all
p> 0.05).

Sites at lower elevation (BAS, BER, LUZ and NEU)
showed an increase in variability mainly for Tmax in

summer, which was due to smaller warming trends of the
lowest quantiles compared to the median. Higher quantiles
had trends similar to the median, thus for these stations the
increase in hot Tmax extremes is in accordance to median
(or mean) trends. For instance with summer Tmax at BER,
the trend of the 0.05 quantile was−0.01 ∘C per 10a (−0.04,
0.02), which is lower than the median trend of 0.09 ∘C
per 10a (0.07, 0.12), which itself is almost identical to the
trend of the 0.95 quantile 0.09 ∘C per 10a (0.06, 0.12).

For LUG, which is located south of the Alps ridge, trends
for Tmin were higher than for Tmax for all quantiles and
seasons. Additionally, winter, spring and fall Tmin showed
reduced variability, as warming of the coldest temperatures
was higher than for hottest temperatures, for example in
winter the 0.05 quantile of Tmin increased at 0.31 ∘C per
10a (0.27, 0.34), while the 0.95 quantile increased less at
only 0.14 ∘C per 10a (0.12, 0.17).

Restricting the analyses to the last 40 years (Figure 6)
yielded trends that differed more between quantiles
and seasons, thus implying asymmetric changes in the
temperature distribution. For instance, in spring lowest
temperatures warmed much less than median and higher
temperatures, and especially for Tmin, most stations
(except BER and LUG) showed no change at all in lowest
temperatures (0.05 quantile trends: all p> 0.05). Summer
trends showed significant warming in all parts of Tmin
and Tmax (trends for all quantiles positive, all p< 0.05)
except for HadCET. Still asymmetries occurred especially
for Tmax, as median trends were in most cases lower than
trends at the coldest and highest quantiles, e.g. at SMA
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Figure 6. Same as Figure 5, but only for the last 40 years of available data (1973–2012).

the median trend was 0.50 ∘C per 10a (0.31, 0.69) and
trends for the 0.05 and 0.95 quantile were 0.68 (0.44, 0.93)
and 0.67 ∘C per 10a (0.42, 0.9), respectively. Fall trends
showed the opposite, i.e. median trends were higher than
trends at the lowest and highest quantiles, as e.g. Tmax at
NEU had a median trend of 0.60 ∘C per 10a (0.34, 0.86)
compared to 0.30 (0.00, 0.60) and 0.03 ∘C per 10a (−0.22,
0.28) trends of the 0.05 and 0.95 quantile. In summary,
the temperature trends were not the same for the colder
and warmer parts of seasonal temperatures, and especially
in the last 40 years, extreme temperatures did not change
according to median trends.

4. Discussion

Conclusions from this analysis of roughly 150 years of
data from ten different stations in Europe were that vari-
ability of temperature did change over this period, but
not equally in all seasons and that the change in temper-
ature variability was not symmetric in most cases. The
asymmetry makes it harder to relate mean temperature
trends to variability trends in their compound effect on
changes in extreme temperatures. Looking directly at
trends in multiple temperature quantiles, changes in mean,
variability and extremes and their interdependencies were
simultaneously compared.

We used multiple measures of variability and found that
time trends for the different measures followed the same
direction, however, their magnitude varied (Figure 3).
The standard deviation (SD) had the smallest absolute
trends out of the four measures and hence the shortest
confidence bands, followed by the robust 50% quantile

range (Q75-25) with slightly larger trends and confidence
intervals. The 90% (Q95-05) and 95% (Q975-025) quan-
tile ranges had the largest absolute trends and confidence
intervals. The differences in magnitude and confidence
bands of trends tracked the size of the variability measure:
SD was the smallest variability measure due to the nor-
mality approximation, followed by the quantile ranges,
whose length increased with the quantile size. After stan-
dardizing the outcome (to zero mean and unit standard
deviation), there was no longer a difference between the
magnitude of trends (see Supplementary Figure S3).

But the notion of temperature variability has shortcom-
ings since it is a compound measure that combines both
the effects in the lower and upper parts of the tempera-
ture distribution. Our comprehensive analysis showed that
changes in temperature variability can be more precisely
characterized by isolating changes in the upper and lower
ends of the temperature distribution, i.e. by changes in the
coldest temperatures versus changes in the warmest. The
observation of no trend in variability could be the result
changes in opposite directions at the upper and lower ends
that have canceled each other out. The most commonly
used measure of SD based on the assumption of an under-
lying symmetric normal distribution failed in this regard,
as e.g. during 1973–2012 summer SD of Tmax showed
no change (p= 0.14), while the variability of the lower
part (Q50-05) decreased and variability of the upper part
(Q95-50) increased (both p< 0.01; see also Figure 3).

By separating variability into an upper and lower part, we
found that asymmetries occurred on different time scales.
First, trends in mean and variability were not uniform
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across seasons (Figure 3), thus the annual temperature dis-
tribution did not have symmetric changes in variability,
as the upper and lower variability measures had oppos-
ing trends, e.g. during 1864–2012, where variability of the
upper part of annual temperatures increased and variability
of the lower part decreased (both p< 0.05). This is in
accordance to previous studies, which found that changes
differed by season (see e.g. Caesar et al., 2006 and Scher-
rer et al., 2005). On the other hand, using an annual or
decadal time base to compute variability measures made
almost no difference in the estimated trends (Figure 3).
Secondly, seasonal variability of the upper and lower parts
of the temperature distribution did not change simultane-
ously and in the same direction (Figure 3), thus changing
the shape of the seasonal distribution of minimum and
maximum temperatures. Third, Tmax and Tmin had differ-
ent time trends in mean and variability, especially during
the 1973–2012 period, implying that warm and cold tem-
peratures changed at different rates. Similar conclusions
were reported by Alexander et al. (2006) and Brown et al.
(2008), who analyzed a global dataset of extreme tempera-
ture indices and found higher warming rates for minimum
than for maximum temperatures. However, trends of min-
imum temperatures reported in our study should be taken
with caution, especially for the longer periods, as the min-
imum temperature series from 8 of 10 studied stations
were not homogenized. In sum, we draw a similar conclu-
sion to that reported in Seneviratne et al. (2012), namely
that in addition to mean and variability, multiple aspects
of the temperature distribution play an important and
regionally varying role toward predicting extreme events
in climate.

An appealing alternative to separately reporting tem-
perature changes in terms of mean and variability is the
simultaneous quantile regression analysis, which do not
assume a symmetric Normal distribution for temperature,
but rather analyze trends at multiple quantiles ranging from
the lowest temperatures to the highest (Figures 5 and 6).
Thus median trends, asymmetric changes in variability and
trends in extreme quantiles could be compared directly.
This approach could be extended in the future in order
to analyze overall trends instead of station-specific trends.
Extending the study area to all of Europe and other con-
tinents would provide further insight whether asymmetric
changes in variability are a special feature of the Alpine
region in Europe, or a more general phenomenon.
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Abstract
Inter-annual crop yield variation is driven in large parts by climate variability, wherein the cli-

mate components of temperature and precipitation often play the biggest role. Nonlinear

effects of temperature on yield as well as interactions among the climate variables have to

be considered. Links between climate and crop yield variability have been previously stud-

ied, both globally and at regional scales, but typically with additive models with no interac-

tions, or when interactions were included, with implications not fully explained. In this study

yearly country level yields of maize, rice, soybeans, and wheat of the top producing coun-

tries were combined with growing season temperature and SPEI (standardized precipitation

evapotranspiration index) to determine interaction and intensification effects of climate vari-

ability on crop yield variability during 1961–2014. For maize, soybeans, and wheat, heat

and dryness significantly reduced yields globally, while global effects for rice were not signifi-

cant. But because of interactions, heat was more damaging in dry than in normal conditions

for maize and wheat, and temperature effects were not significant in wet conditions for

maize, soybeans, and wheat. Country yield responses to climate variability naturally differed

between the top producing countries, but an accurate description of interaction effects at the

country scale required sub-national data (shown only for the USA). Climate intensification,

that is consecutive dry or warm years, reduced yields additionally in some cases, however,

this might be linked to spillover effects of multiple growing seasons. Consequently, the effect

of temperature on yields might be underestimated in dry conditions: While there were no sig-

nificant global effects of temperature for maize and soybeans yields for average SPEI, the

combined effects of high temperatures and drought significantly decreased yields of maize,

soybeans, and wheat by 11.6, 12.4, and 9.2%, respectively.

Introduction

Climate change alters global food production, with impacts dependent upon crop, region,

magnitude of warming, changes in precipitation patterns and extreme events, production
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technology, and adaptation measures [1]. Past evidence has shown climate change to more

likely incur damage rather than draw benefits for crop yields [2–5], with induced yield losses

only able to be partly offset by endogenous economic responses [6].

The intention to mitigate climate change took a significant step forward during the 2015

United Nations Climate Change Conference in Paris. But irrespective of the future success of

such efforts, year-to-year climate variability is unlikely to diminish, and hence neither will its

impacts on food [7]. Climate variability accounts for up to 60% of yield variability in major

parts of the world [8] and is thus an important factor in food stability. Low yield variability is

desirable, because it leads to more stable food production and farmer income [7]. However,

changes in yield variability have been positively associated with changes in climate variability

[9], suggesting that food stability might continue to deteriorate if climate variability continues

to increase, for example, as a consequence of failures to mitigate climate change [10].

The most influential climate variables affecting yields on a global scale are temperature and

precipitation, with some studies indicating that they act nonlinearly [2,8,11–15]. Interactions

between temperature and precipitation might lead to reduced sensitivity to heat if enough

water is available [16], and thus higher relative importance of heat [17]. So while the impor-

tance of climate interactions is acknowledged [12] and in some cases included in the models

[8,17,18], they are rarely described in detail because of their complexity. This study proposes a

way to visualize interaction effects, and quantify interacting effects by conditioning one vari-

able on quantiles of the other. Another type of climate interactions are intensification effects

from consecutive dry or warm years [19], which can be assessed by interaction terms of climate

variables with their lagged values from previous years.

To this end, this study aims to quantify the interaction between temperature and drought

variability in crop yield variability for the four most important crops worldwide (maize, rice,

soybeans, and wheat) both at the global and country scale, in order to assess the (1) effects of

temperature and drought interactions on yield, (2) differences between crops, and (3) differ-

ences between the global climate sensitivities and that for major producers.

Materials and methods

Yearly country-level data on crop production (tons from 1961 to 2014) and harvested area (ha

from 1961 to 2014) was available from the Food and Agriculture Organization of the United

Nations (FAO, available at http://faostat.fao.org/default.aspx). Yield was then defined as the

ratio of production and harvested area. Additionally, the FAO provided globally aggregated

data on world production of crops (in tons from 1961–2014, FAO), which was used to deter-

mine the top producing countries. The focus was on the primary staple crops that constitute

large parts of the human diet: maize, rice, soybeans and wheat, and restricted to countries that

had at least an average share of 1% to global production during 1961–2014.

FAO data is annually reported separately by each country, with the consequence that data

quality might be inhomogeneous. If countries reported exactly the same values of production

for two or more consecutive years, only data from the years after or before the last occurrence

of identical values were used (Argentina maize until 2011, India soybeans from 1972 onwards,

United Kingdom wheat from 1991 onwards). Furthermore, yield time series that showed con-

stant trends over multiple years, were also discarded (Iran wheat, Turkey wheat) and some

extremely improbable values were removed (~1/10 production of France maize in 2014 com-

pared to 2013; double or half yields from one year to the next of Paraguay soybeans before

1969). A summary of the FAO data used for the analysis can be found in S1 Table.

Monthly temperature on a 0.5˚ grid was taken from the CRU TS 3.23 data set [20], while

1-month SPEI (Standardized Precipitation Evapotranspiration Index) values on the same

Temperature and drought interactions in crop yield variability
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temporal and spatial resolution were obtained from the SPEIbase v.2.4 [21], which is also

based on the CRU TS 3.23 data set. The SPEI is calculated by taking the difference between

precipitation and potential evapotranspiration and thus including the impact of temperature

on water demand. Values are then standardized for each month and location using log-logistic

distributions. Using precipitation instead of SPEI produced qualitatively similar results but

lower accuracy. Explanations for the latter could be that the SPEI describes wet- and dryness

more accurately on a global scale since it accounts for the varying rates of evapotranspiration

as well as being standardized. Including both in the modelling induced collinearity, since pre-

cipitation and SPEI were highly correlated, thus only SPEI was used.

In order to merge the climate and crop data, the climatic variables were aggregated to

match the temporal (yearly) and spatial (country) resolution of the crop yields in a two-step

procedure. First, the day-of-year of planting and harvesting from the crop calendar of Sacks

et al. [22] was used to derive yearly growing season means of temperature and SPEI for each

0.5˚ grid. Averages were calculated using all monthly climate values between the days of

planting and harvesting; for example, if planting was March 2 (or 29) and harvesting Septem-

ber 23 (or 5), monthly temperatures and SPEI from March to September inclusive were

included in the average. Second, the 0.5˚ grid growing season averages were aggregated to

crop-area weighted country means, for which crop area weights were taken from planted

area estimates [23]. While there is some evidence of advancing planting dates in the recent

decades, for example in the central USA maize is planted two weeks earlier compared to

when it was routinely planted in the early 1980s [24], for other regions like central Europe

advancements in crop planting dates are less prominent (e.g. only 0.4 days earlier per decade)

[25], consequently using monthly climate data adjusted to a fixed cropping season still

seemed appropriate.

Maize, rice and wheat are all grown in multiple seasons. For maize only the main season

was used, since the second season constituted a non-significant share of total yields. For rice,

the second season contributed large shares to total yields in some countries, so yields were

averaged over the two growing season climates, with weights as given in [26]. Since the distinc-

tion of winter and spring wheat in the crop calendar was somewhat arbitrary, and as wheat is

dormant and rather insensitive to climate conditions in winter, the four months before harvest

of the main season were used as the growing season [2].

The logarithm was applied to yields, which turns absolute into relative effects, since climate

affects yield in relative and not absolute terms. In other words a 1˚C difference in temperature

should have the same effect irrespective if yields are 5 ton/ha or 1 ton/ha. Using logged yield is

standard practice [2,4,13–15], and also removes the issues of the skewed yield distribution and

heteroscedascity (increased yield variance for higher yields).

Since the focus is on climate variability and its effects on yield variability, trends in climate

and yield could confound the estimated relationship and induce spurious correlations if con-

current trends existed. Thus yield, temperature and SPEI were detrended using separate mod-

els for each crop-country combination. For temperature and SPEI, penalized regression

splines (mgcv-package in R) were used, with a maximum basis dimension of 5 (the actual basis

dimension is determined by cross-validation) and the possibility to penalize to zero when

there is no trend. The length of the yield time-series varied between 23 and 54, so the maxi-

mum basis dimension was set to number of years divided by ten, but not below 3. Inspecting

residuals, some crop-country yield time series (S2 Table) were poorly fit, so in order to have

appropriate models the basis dimension was doubled. This flexible approach was chosen over

linear, quadratic or cubic trends, because it could handle multiple types of non-linearity and

removed the need for selecting the most appropriate polynomial.

Temperature and drought interactions in crop yield variability
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For each crop, detrended time-series data of all countries were included into one mixed

model to explain log detrended yields:

logdYieldc;t ¼ ðaþ acÞ þ ðbþ bcÞClimatec;t þ ðgþ gcÞClimate:Interactionsc;t
þ ðdþ dcÞClimate:Intensificationc;t;t� 1 þ �c;t

where

• c is a country index and t is for year (1961–2014).

• dYieldc,t is the detrended yield in country c and year t.

• Climatec,t consists of detrended temperature (dTemp) and SPEI (dSPEI), as well as quadratic

terms which implied optimal temperatures/SPEI for yield, while permitting negative effects

for low and/or high temperatures or SPEI values: ðbþ bcÞClimatec;t ¼ ðb1 þ b1;cÞdTempc;tþ
ðb2 þ b2;cÞdTemp2

c;t þ ðb3 þ b3;cÞdSPEIc;t þ ðb4 þ b4;cÞdSPEI2c;t.

• Climate.Interactions c,t are interaction terms between detrended temperature and SPEI. The

interaction terms accommodated different temperature effects depending on SPEI, for

example, allowing a 1˚C change in temperature to have a different impact on yield for dry

compared to wet conditions: ðgþ gcÞClimate:Interactionsc;t ¼ ðg1 þ g1;cÞdTempc;tdSPEIc;tþ
ðg2 þ g2;cÞdTemp2

c;tdSPEIc;t þ ðg3 þ g3;cÞdTempc;tdSPEI2
c;t þ ðg4 þ g4;cÞdTemp2

c;tdSPEI2
c;t.

• Climate.Intensification c,t,t-1 are previous year temperature and SPEI, and their interaction

terms with current year values. These allow for intensification effects of consecutive warm,

cold, dry, or wet years: (δ + δc)Climate.Intensification c,t,t−1 = (δ1 + δ1,c)dTempc,t−1 + (δ2 + δ2,c)

dSPEIc,t−1 + (δ3 + δ3,c)dTempc,t−1dTempc,t + (δ4 + δ4,c)dSPEIc,t−1dSPEIc,t.

In the above model, α is the global intercept, and β, γ, and δ are slopes for climate variables,

while coefficient vectors with subscript c accommodate different sensitivities for each country

using a random effects specification, that is (αc,βc,γc,δc)*N(0,S) with S ¼ I13ðs
2
1
; . . . ; s2

13
Þ and

I13 identity matrix of dimension 13. Residual variability was not homogenous across countries,

thus a different error variance per country was included, that is Var(� c,t) = σ2ϕc with estimated

variance ratios ϕc(c� 2) relative to the first country with ϕ1 = 1. To arrive at a parsimonious

description, non-significant variables were removed.

To compare global climate sensitivities to country effects, single country time series were

modelled using the same variables as above (without random effects) for the five top producers

of each crop (Table 1). For model selection, non-significant variables were excluded until the

minimum BIC (Bayesian Information Criterion) was attained.

For each crop, interacting climate effects were evaluated as fitted values holding all other

variables constant that were not part of the interaction. For example, to show the effects of

temperature and SPEI, the fitted values for temperature were evaluated at three quantiles of

the SPEI distribution denoting extreme dry (0.05 quantile), normal (0.50, median), and

extreme wet (0.95) conditions. Similarly climate intensification effects were evaluated over

current year temperature/SPEI given three quantiles (as above) of previous year temperature/

SPEI. The effects (fitted values) on the log scale were exponentiated, so they became ratios, and

then one was subtracted so they became relative differences.

Robustness of the models was evaluated by cross validation, specifically by LOOCV (leave-

one-out-cross-validation). Additionally LOOCV errors were calculated for models without

interaction terms (but where variables could be linear or quadratic), and for models where all

variables were included only linearly (thus without interactions).

Temperature and drought interactions in crop yield variability
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As a sensitivity analysis, state-level data for the USA was used to derive the national sensitiv-

ity of yields to climate using the same random effects specification as above for the global sen-

sitivity. State-level yields (bu/acre) for maize, soybeans, and wheat were available from the

National Agricultural Statistics Service of the United States Department of Agriculture (Quick

Stats, available at: https://www.nass.usda.gov/Quick_Stats/index.php) for the same study

period (1961–2014). No data had to be removed using the quality criteria adopted above for

the FAO data. To ensure comparability, the same work-flow procedure was adopted: state-

level climate was derived using the same data sources (the crop calendar data contains infor-

mation at the state scale); detrending and modelling as above; although yield units differ (bu/

acre vs t/ha), modelling results are on the %-scale, so no conversion was needed. For the yield

detrending of the state time series, three crop-state combinations had to have double the basis

dimension (Arizona maize, Maryland wheat, and Oregon maize).

State level yields and climate variables of the USA were aggregated to country averages

using the production in each state as weights. Then the same models as for country level data

from the FAO were run, in order to compare results obtained from sub-country data to results

from country averages.

To quantitatively assess the potential impact of measurement error in FAO yield data on

statistical significance of higher-order effects in the model, such as interactions, a simulation

study was performed. Noise was added to the detrended log yields by calculating the standard

deviation (sd) of each crop-country time series and then adding normally distributed random

noise with mean 0 and sd ranging from 1, 2, 3 . . . to 50% of the initial sd to ensure the same

percent relative error across the different crop by country time series. The original models

were then refit to the noisy data. The addition of random noise was repeated 100 times for

each %-level of added noise, yielding 100 simulations of p-values corresponding to the signifi-

cance of the highest order term(s), whether they being interaction, quadratic, or linear terms,

Table 1. The top five producers by crop as of 2014.

Crop Country Production [million ton] Share in global production [%]

Maize USA 361 29.2

China 216 17.4

Brazil 80 6.5

Ukraine 28 2.3

India 24 1.9

Rice China 208 21.9

India 157 16.6

Indonesia 71 7.5

Bangladesh 52 5.5

Viet Nam 45 4.7

Soybeans USA 108 33.7

Brazil 87 27.1

Argentina 53 16.7

China 12 3.8

India 11 3.3

Wheat China 126 14.8

India 94 11.0

Russia 60 7.0

USA 55 6.5

France 39 4.6

https://doi.org/10.1371/journal.pone.0178339.t001

Temperature and drought interactions in crop yield variability
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depending on model. The 100 replications of p-values corresponding to a specific percent rela-

tive noise were presented in terms of stacked bar charts.

Results

What follows is a description of the interaction effects found globally and for the five top pro-

ducing countries, discussed in turn for each crop, followed by an assessment of the intensifica-

tion effects by previous year climate variability. Then a sensitivity analysis of using state-level

data is presented for the USA.

If not otherwise stated, effects for high and low temperature and SPEI are for the respective

5 and 5% quantiles. Percent effects on yields are followed by 95% confidence intervals in

brackets, or ns if not significant.

Effects of climate variability and interactions on crop yields

Maize. Globally, maize yields decreased by -7.8% (-10.7, -4.9) in dry and increased by

5.2% (1.9, 8.7) in wet conditions for average temperatures (Fig 1B), but temperature was non-

significant for average SPEI (Fig 1A). However, considering interactions, higher temperatures

were linked to decreased yields under dry conditions of -11.6% (-14.3, -8.9), but not under wet

conditions (Fig 1C).

For the USA, the top producer of maize, low and high temperatures were linked to yield

changes of 4.7% (0.1, 9.5) and -4.1% (-8.3, 0.2) (Fig 1A), and both dry and wet conditions were

associated to yield decreases, however, stronger for dry with -10.4%, (-14.8, -5.9) than wet with

-3.5%, (-5.7, -1.3) (Fig 1B).

For China, no significant temperature effect was found, only a modest effect of -3.0% (-5.5,

-0.4) of dry and 2.8% (0.2, 5.4) of wet conditions (Fig 1B).

For Brazil, only dry conditions were associated to yield reductions of -9.1% (-12.9, -5.2),

while wet conditions and temperature were not significant (Fig 1A and 1B).

For Ukraine, temperature variability was negatively associated to maize yield variability

with 9.6% (2.8, 16.8) for cold and -8.6% (-14.1, -2.7) for warm conditions (Fig 1A).

For India, the temperature-SPEI interaction was highly significant. While SPEI had no sig-

nificant effect at average temperatures (Fig 1A), for high temperatures dry conditions were

associated to yield decreases of -12.7% (-17.2, -8.0) and wet conditions to yield increases of

10.6% (0.9, 21.2) (Fig 1C).

Rice. Globally, rice yield variability showed some dependence on temperature and SPEI

variability (Fig 2A–2C), however, effects between the 5 and 95% quantile of climate variables

were non-significant at p = 0.05. However, at the country scale, effects of climate variability

were clearer.

For China, temperature variability was not significant (Fig 2A), but dry and wet conditions

were associated to yield increases of 2.0% (1.0, 3.0) and 2.2% (1.1, 3.2), respectively (Fig 2B).

For India, high temperatures and dry conditions were associated to yield decreases of -3.9%

(-6.5, -1.3; Fig 2A) and -3.4% (-5.8, -1.0; Fig 2B). On the other hand, low temperatures and wet

conditions were associated to yields increases of 3.4% (0.9, 5.9; Fig 2A) and 4.0% (1.2, 6.9; Fig 2B).

For Bangladesh, low temperatures and dry conditions were linked to yield decreases of

-3.1% (-5.8, -0.4; Fig 2A) and -3.7% (-5.9, -1.4; Fig 2B) for average SPEI and temperature con-

ditions, respectively. Considering interacting effects, extreme wet conditions were linked to

yield decreases for both low and high temperatures of -8.3% (-13.0, -3.5) and -4.3% (-7.6, -0.8)

but not for average temperatures (Fig 2C).

For Viet Nam, dry and wet conditions were linked to yield changes of -2.8% (-4.6, -0.9) and

3.0% (1.0, 5.2) (Fig 2B), while temperature was non-significant for average SPEI (Fig 2A).

Temperature and drought interactions in crop yield variability
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However, because of interactions, high temperatures were associated to yield changes of -5.5%

(-8.7, -2.1) for dry conditions and 5.6% (1.6, 9.9) for wet conditions (Fig 2C).

Soybeans. Globally, soybeans yield variability was more associated to SPEI variability,

with yield effects of 7.1% (3.8, 10.6) and -10.7% (-13.6, -7.7) for wet and dry conditions, respec-

tively (Fig 3B). The effect of temperature was small (Fig 3A), as well as the interaction effect,

leading for example to yield decreases of -12.4% (-17.1, -7.4) for hot and dry conditions

(Fig 3C).

Fig 1. Climate variability effects on maize yield variability. Black lines show the effects of changes in

detrended temperature (A, C) and changes in SPEI (standardized precipitation evapotranspiration index, B)

on changes in mean maize yield globally and for the five top producing countries. Increasing lines mean that

higher temperatures (A, C) or SPEI (B) were associated with greater increases in mean yields, while

decreasing lines imply association with decreases in mean yields. Dashed and dotted lines in (C) indicate

significant interaction effects. All lines are estimates from the regression models, and the absence of a line

indicates non-significance of an association. Shades around the lines indicate pointwise confidence intervals

for the mean change in maize yield as estimated from the regression models. Small vertical lines denote the 5

and 95% quantile of detrended temperature (A) and SPEI (B). Countries are ordered according to their total

production from the top producer USA downwards.

https://doi.org/10.1371/journal.pone.0178339.g001

Temperature and drought interactions in crop yield variability
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For the USA, only SPEI was significant, and yields effects were -5.7% (-9.4, -2.0) for dry

conditions and 4.5% (1.2, 7.8) for wet conditions (Fig 3B).

For Brazil, soybean yields were also only affected by dry and wet conditions with -8.1%

(-12.5, -3.5) and 8.8% (3.3, 14.4), respectively (Fig 3B).

For Argentina, high temperatures were associated to yield decreases of -14.9% (-20.2, -9.3),

while the effect of low temperatures was non-significant (Fig 3A). Dry and wet conditions

were linked to -10.7% (-15.9, -5.0) and 8.8% (4.0, 13.9) yield changes (Fig 3B).

For China, only SPEI was significantly linked to soybean yields, with -3.1% (-5.9, -0.1) and

2.8% (0.0, 5.7) changes in yields for dry and wet conditions (Fig 3B).

For India, temperature variability was negatively associated to soybean yields with 16.8%

(5.4, 29.3) for cold and -11.8% (-18.4, -4.7) for warm conditions (Fig 3A), and SPEI was posi-

tively associated with -12.2% (-21.4, -2.0) for dry and 10.7% (1.2, 21.0) for wet conditions (Fig

3B). However, the combined influence resulted in yield effects of -17.3% (-28.5, -4.4) for hot

and dry, and 18.0% (0.6, 38.3) for hot and wet, and non-significant effects for cold and dry,

and cold and wet (Fig 3C).

Wheat. Globally, wheat yields were changed by 4.4% (1.7, 7.2) for cold, by -4.2% (-6.8,

-1.6) for warm (Fig 4A), by -4.0% (-6.8, -1.1) for dry, and non-significant for wet conditions

Fig 2. Climate variability effects on rice yield variability. Same as Fig 1, but for rice. Indonesia omitted,

because of no significant effects to show.

https://doi.org/10.1371/journal.pone.0178339.g002

Temperature and drought interactions in crop yield variability
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(Fig 4B). Interaction effects lead to increased effects of -9.2% (-12.4, -5.9) of high temperature

under dry conditions and non-significant temperature effects under wet conditions (Fig 4C).

For China, both low and high temperatures were linked to yield decreases of -4.5% (-7.0,

-1.9) and -3.3% (-5.1, -1.4) (Fig 4A).

For India, low and high temperatures were linked to yield changes of 3.2% (0.4, 6.2) and

-3.5% (-6.5, -0.5) (Fig 4A).

For Russia, high temperatures were linked to yield decreases of -13.5% (-22.9, -3.1; Fig 4A),

while low temperatures and SPEI were non-significant at p = 0.05 (Fig 4A and 4B).

For the USA, dry conditions were associated to yield decreases of -4.5% (-7.7, -1.3), and

above average SPEI was non-significant (Fig 4B).

For France, cold temperatures were associated to yield increases of 4.3% (0.7, 7.9; Fig 4A),

and wet conditions to yield decreases of -6.0% (-9.3, -2.6; Fig 4B).

Fig 3. Climate variability effects on soybeans yield variability. Same as Fig 1, but for soybeans.

https://doi.org/10.1371/journal.pone.0178339.g003

Temperature and drought interactions in crop yield variability
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Effects of previous year climate variability

Previous year climate variability was associated globally to rice and soybeans yield variability,

and for selected countries to rice, soybeans and wheat yield variability (Fig 5). For rice, pre-

vious year temperature was positively associated to yields, such that warm temperatures

increased next year yields by 0.9% (0.3, 1.5) globally (Fig 5A), by 0.9% (-0.1, 2.0) for China (Fig

5B), and by 2.4% (0.1, 4.7) for Bangladesh (Fig 5C). Rice yields in Viet Nam were positively

associated to previous year SPEI (Fig 5E), and interactions between the previous and current

year SPEI resulted in additionally decreased yields for dry conditions if the previous year was

also dry with total yield effects of -6.2% (-9.2, -3.1), and no significant effect of current year

SPEI, if the previous year was wet (Fig 5H). Soybean yields were linked positively to previous

year SPEI with wet conditions followed by yield increases of 2.7% (-0.1, 5.5) globally (Fig 5F)

and of 5.6% (0.5, 10.9) for Brazil (Fig 5G). Wheat yields in the USA were negatively associated

Fig 4. Climate variability effects on wheat yield variability. Same as Fig 1, but for wheat.

https://doi.org/10.1371/journal.pone.0178339.g004

Temperature and drought interactions in crop yield variability
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to previous year temperature, and high temperatures reduced yields in the following year by

-3.2% (-6.5, 0.1) (Fig 5D).

Overall, far fewer climate interactions were significant for single country time series than

for the global sensitivity. To check, whether this might be related to the low number of obser-

vations available to determine single country sensitivities as opposed to pooling the countries

using a random effects specification to determine global sensitivities, the analysis was repeated

for the USA, but using state-level data.

Sensitivity check USA: Interactions determined from state level yields

As a comparison, instead of using country averages for yields and climate, for the USA, data at

the state level were used to estimate the national yield sensitivity to climate variability (Fig 6).

Effects of climate variability were naturally more detailed, but also more interactions were

observed than with only country averages.

Fig 5. Previous year climate variability effects on crop yield variability. The figure shows how detrended crop yields

are affected by previous year (lag) detrended temperature (A-D) and previous year SPEI (standardized precipitation

evapotranspiration index, E-G). For rice in Viet Nam also interaction effects with current year climate variability are shown

(that is yield effects of current year detrended SPEI given the 5% and 95% quantile of previous year detrended SPEI, H).

Small vertical lines denote the 5 and 95% quantile of detrended temperature and SPEI. Crop-country combinations are

missing if previous year temperature and SPEI were non-significant. Shaded areas correspond to 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0178339.g005
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For maize, dry conditions and high temperatures reduced yields by -8.5% (-10.3, -6.6; Fig

6B) and -5.8% (-7.6, -3.9; Fig 6A), but lower than average temperature and higher than average

SPEI only had small effects on yields that slowly levelled off (Fig 6A and 6B). Regarding inter-

actions, dry conditions reduced yields less at high and low temperatures than at average tem-

peratures, however, yield losses for dry and warm conditions amounted to -12.6% (-14.9,

-10.2) (Fig 6C). Wet conditions had positive effects of 4.4% (2.4, 6.4) at average temperatures

(Fig 6B), but non-significant effects at low and high temperatures (Fig 6C).

For soybeans, dry conditions and high temperatures were associated to yield decreases of

-11.9% (-13.9, -9.9; Fig 6B) and -5.9% (-8.3, -3.4; Fig 6A) for average conditions, and their

combined effect amounted to -18.2% (-20.8, -15.5; Fig 6C). Similar to maize, wet conditions

were linked to yield increases of 5.5% (3.2, 7.9) only for average temperatures, but not for low

and high temperatures (Fig 6C). Previous year temperature had negative effects on yields (Fig

Fig 6. Climate variability effects on crop yield variability for the USA, determined by state level yield statistics. The figure shows how detrended

USA yields are affected by detrended temperature (A), SPEI (standardized precipitation evapotranspiration index, B), previous year temperature (D) and

previous year SPEI (F) given mean conditions; and how the temperature sensitivity differs by SPEI (for extreme dry and wet conditions denoted by the 5%

and 95% quantile of SPEI, C), how the temperature sensitivity differs by previous year temperature (for extreme cold and hot conditions denoted by the 5%

and 95% quantiles, E), and how the SPEI sensitivity differs by previous year SPEI (G). Black lines indicate main effects from the regression models, dashed

and dotted lines indicate interaction effects, and absence of lines mean absence of significant effects. Small vertical lines denote the 5 and 95% quantile of

detrended temperature and SPEI. Shaded areas correspond to 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0178339.g006
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6D) and SPEI positive (Fig 6F), but because of interactions, these effects were only present if

the current year was warm or dry, but not if it was cold or wet (Fig 6E and 6G).

For wheat, yield decreases associated with high temperatures were -4.3% (-5.6, -3.0; Fig

6A), with dry conditions -1.8% (-4.1, 0.5) and with wet conditions -3.4% (-5.6, -1.1) (Fig 6B),

and yield increases associated with low temperatures were 2.5% (1.1, 3.9; Fig 6A). Previous

year temperature and SPEI were negatively associated with wheat yields (Fig 6D and 6F).

Because of interactions of current and previous year temperature, the negative effect of previ-

ous year temperatures held only if the current year was cold, but not if warm (Fig 6E).

Next, climate variability effects determined by state level data were compared to effects esti-

mated from country averages, which were aggregated from state-level yields and climate (S1

Fig). While they agreed in general, estimating country effects from state-level data was more

useful, in that it contained more detailed climate effects. For maize, yield reductions from dry

and warm conditions were of similar magnitude if determined from national or state level

data, however, the national level data showed negative effects of wet conditions, which were

not present for state level data. For soybeans, yield effects of dry and wet conditions agreed

between national and state level data, but with national data, effects of temperature, interac-

tions of temperature and SPEI, and previous year temperature were lacking. For wheat,

national and state level data agreed for the effect of dry conditions and temperature lag, but

disagreed for the effect of wet conditions. Also state level data showed additional effects of tem-

perature, interaction of current and previous year temperatures, and the previous year SPEI.

Model validation and simulation of errors in FAO yield data

To check the accuracy and robustness of the presented model results, cross validation errors

were computed for a suite of models (Table 2), that include the original models and models

without interactions, as well as models where all terms are included only linearly. For the

global models, RMSE (root mean square errors) of the full models were lower than that of the

simpler models for maize and wheat, while for rice and soybeans, RMSEs were similar. For the

country level models, removing interactions and/or quadratic effects resulted in larger errors

across all crops and countries. Using state-level yields for the USA models resulted in similar

errors for the full and no interaction models, and higher errors for linear only models.

Errors in yield data would not bias results but induce uncertainty on the estimated effects,

thus leading to a loss of significance as measured by higher p-values exceeding 0.05. For this

reason, simulation analyses were performed to check for the influence of measurement error

in the FAO yield data on the estimated significance of the highest order term (interaction,

quadratic, or linear). For the global models, the highest order interaction terms started to lose

significance (p> 0.05 for maize, rice, wheat, and p> 0.1 for soybeans) after adding approxi-

mately 15% noise on maize yields, 10% on rice and soybeans yields, and 25% on wheat yields

(S2 Fig). After adding 50% of noise, the highest order terms remained still significant in ~ 65%

of the models for maize, 40% for rice, 25% for soybeans, and 75% for wheat. For models at the

country level, results varied more among countries and crops (S3 Fig). Highest order terms

lost significance on average after adding 18% noise, while at 50% noise, ~ 65% of the highest

order terms remained significant.

Discussion

According to the FAO, maize, rice and wheat account for more than two thirds of the world’s

food energy intake, albeit with varying importance across regions. The top five producing

countries account for roughly half of the global yield for maize (57%) and rice (56.2%),

whereas soybean production is more concentrated (84.6%) and wheat production more
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distributed (43.9%). Thus impacts of climate variability on these crops in the top producing

countries should have sizeable downstream effects on the global population. The two most

populated countries, China and India, are among the top 5 producers of all 4 crops studied,

the USA for 3 and Brazil for 2.

Yield effects of climate variability

The demonstrated assessment of the nonlinear combined effects of temperature and drought

(SPEI) on crop yields focused on climate variability. Thus corresponding estimated percent-

ages of changes reported in this study should be regarded as indicators of sensitivity and ulti-

mately vulnerability. This lies in contrast to the interpretation of reported yield changes in

recent decades which depend on perceived climate trends (see e.g. [2]). Consequently, whereas

previous studies revealed temperature linked changes in crop yields, this study did not find

significant global effects of temperature for maize and soybean yields for average SPEI, but

significant effects of drought that were further aggravated in the presence of high tempera-

tures. These combined effects significantly decreased yields of maize, soybeans, and wheat by

11.6, 12.4, and 9.2%, respectively. Among the top producers, maize and soybean yields were

Table 2. Cross validation results. Reported are root mean square error (RMSE) and median absolute error (MAE) of leave-one-out-cross-validation

(LOOCV) of each model presented in the study (Full), of models without interaction terms (NoInter), and where additionally all variables enter only linearly

(OnlyLin). OnlyLin models are thus nested within NoInter, which are nested within Full. If nested models had the same formula as the more complex model

(e.g. no interactions in the full model or only linear terms when interactions were removed), cells were left empty.

Crop Level RMSE MAE

Full NoInter OnlyLin Full NoInter OnlyLin

Maize Global 0.118 0.119 0.120 0.048 0.050 0.050

Rice Global 0.045 0.045 0.045 0.023 0.023 0.024

Soybeans Global 0.113 0.113 0.113 0.063 0.060 0.063

Wheat Global 0.108 0.108 0.111 0.051 0.052 0.052

Maize Brazil 0.069 0.072 0.040 0.049

China 0.052 0.040

India 0.082 0.089 0.058 0.064

USA 0.087 0.095 0.059 0.068

Ukraine 0.086 0.057

Rice Bangladesh 0.037 0.039 0.041 0.023 0.021 0.027

China 0.022 0.023 0.016 0.015

India 0.053 0.035

Viet Nam 0.042 0.046 0.025 0.023

Soybeans Argentina 0.094 0.097 0.052 0.051

Brazil 0.100 0.066

China 0.061 0.034

India 0.131 0.157 0.154 0.118 0.126 0.120

USA 0.066 0.028

Wheat China 0.052 0.055 0.032 0.031

France 0.067 0.072 0.055 0.054

India 0.061 0.040

Russia 0.102 0.109 0.065 0.075

USA 0.063 0.062 0.048 0.048

Maize USA from state 0.133 0.133 0.135 0.071 0.070 0.071

Soybeans USA from state 0.130 0.130 0.133 0.076 0.076 0.079

Wheat USA from state 0.129 0.129 0.130 0.076 0.076 0.075

https://doi.org/10.1371/journal.pone.0178339.t002
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predominantly affected by drought (reductions of maize yields between 3.0 and 10.4%, soy-

beans 3.1 to 12.2%), whereas for wheat higher temperatures were more important (yield reduc-

tions between 3.5 and 13.5%). Rice was least affected by climate variability, both in terms of

significant global and regional effects as well as via effect sizes. A more detailed comparison of

the single crop results to previous studies underlines the strong variation in sensitivities, both

between crops and regions.

Maize yields in the USA have been reported to respond strongly to drought [27,28], and in

addition to extreme temperatures [14]. In contrast, this study did not find such a strong tem-

perature link (only -4.1%), probably because SPEI already incorporates evapotranspiration,

thus accounting for higher evaporative demand as well as temperature induced soil water

depletion, the main source of the yield decreases associated with extreme heat [14]. The nega-

tive effect of too wet conditions found in this study may potentially be due to flooding and

heavy precipitation events having caused lack of soil aeration or crop damage [29].

It is reported that China maize yield variability depends on temperature and precipitation

variability, although there is large spatial variability [30]. Hence, the use of country averages

might have obscured variability effects in this study where dry conditions only amounted to a

yield reduction of 3.0%. Increased precipitation has been linked to higher yields of maize in

Brazil [31,32]. In this study, above average SPEI was not associated with increased yields, but

below average SPEI was associated with a 9.1% yield reduction.

The large and highly significant effect of temperature variability on maize in Ukraine might

be linked to its continental climate with large temperature variations [33]. However, the effect

found in this study was rather large (-8.6%) compared to other regions in Europe as well as in

global studies [11,34]. Based on only 23 years of data, the estimates should be taken with caution.

Maize is grown in many parts of India with diverse climates: in the north the yield is mostly

temperature dependent and in the rest it is mostly precipitation and only partly temperature

dependent [8]. Therefore, country averages need to be interpreted carefully. Nonetheless, find-

ings from this study (-12.7% for dry and hot conditions) match those of [35], where reductions

in precipitation were shown to be harmful to maize yields for high temperatures, while

increases in precipitation benefitted maize yields.

For rice, previous global studies similarly encountered the large uncertainties and small

effect sizes observed here [2,11]. In northern China, temperature variability was linked to rice

yields, while in the central and southern parts precipitation was mainly limiting [8]. Also

depending on the region, precipitation was correlated positively or negatively to rice yields

[30], which could possibly explain, why in this study of country averages, both dry and wet

conditions were associated with increased yields.

Rice is planted widely across India. In rainfed areas rice yields have been linked to precipita-

tion variability, and in irrigated areas, to temperature and partly also to precipitation [8].

Increased temperatures were associated with yield decreases [36], similar to the findings of this

study. However, the influence of climatic variables differed strongly for winter and monsoon

rice [37], suggesting the need for more detailed analyses on the multiple growing seasons.

For Indonesia, no significant effects of climate variability were found in this study, which

may be due to data quality issues. Significant associations between temperature and yield vari-

ability have recently been reported for sub-country data [8] and significant negative impacts of

temperature have been found in the vicinity of Indonesia, for trial farms in the Philippines, for

example [38].

Rice in Bangladesh is heavily irrigated, so temperature has been found to be more impor-

tant [8], and with positive impacts [39]. However, some areas are still prone to drought [40].

The strong decreases in yield for extreme wet conditions found in this study may be due to

extreme events, such as cyclones, that are more frequent in these regions of the world [41,42].

Temperature and drought interactions in crop yield variability
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For rice in Viet Nam, negative effects of temperature and positive effects of rainfall have

been reported in a regional study [43], with impacts also dependent upon the wet- and dry-

season [44]. These findings concur with the large effects of high temperature under wet and

dry conditions revealed in this study.

In central and eastern parts of the USA, temperature variability has been found to be the

main driver of soybean yield variability, while for other parts of the country, precipitation and

precipitation combined with temperature have served as the primary drivers [8,12]. This study

did not find a temperature effect on country averages, which may be in part because heat

induced soil water depletion might be accounted for by the SPEI. However, based on state-

level data there is a temperature effect of -5.9% for warm conditions.

The strong effects of SPEI variability on soybeans in Brazil (-8.1%) found in this study are

in concordance with water supply being the main limiting factor [45,46]. Regional studies of

soybean yields in Argentina showed that high temperatures and precipitation were the major

influence on soybean yields [31,47], which matches the significant effects of both temperature

and SPEI found in this study. While soybeans growing in the northern parts of China were

mostly drought affected [48], in the southern growing regions they also depended on tempera-

ture in addition to precipitation [8,49].

Strong effects of heat and rainfall on soybean yields in India (-11.8% and -12.2%) are in

concordance to a regional study [50]. However, to our knowledge, the positive effects from

interactions of high temperatures under wet conditions found in this study are new.

Wheat is grown in large parts of China. In central China wheat yields have been associated

with precipitation variability [8,30]. However, such effects were non-significant and perhaps

not detectable at the country level as used in this study.

Extreme heat is a major factor determining wheat yields in India [51,52], also confirmed by

this study, and the lack of a significant link to SPEI in this study could be because wheat is

almost completely irrigated (96% as of 2013, [53]). Russia’s wheat producing area is concen-

trated in the central and eastern part, which is heavily affected by heat and drought [54,55]. No

significant link to SPEI was found in this study, which could be due to the country level analy-

sis as well as the low number of years (22) of data.

According to the literature, wheat growing in the USA was found to depend largely on pre-

cipitation [8,56], similar to the findings of this study.

Adverse effects of wet conditions on wheat yields in France, as found in this study, seem

counterintuitive at first glance, but could be caused, for example, by negative effects of soil

moisture at planting and harvesting, or waterlogging during dormancy [57].

When comparing sensitivities among the major crop producers, it is notable that India

appeared to be more vulnerable to drought for growing maize, rice and soybeans than China,

whereas the temperature sensitivity of wheat was comparable. India and China are both large

countries with similar population size and food consumption habits, however China has less

cultivated area, uses less fertilizer and has a higher per area productivity. Most likely, the higher

proportion of rainfed agriculture in India (for maize ~80% in India versus ~50% in China, for

rice ~43% in India versus virtually none in China, see [53]) results in the lower productivity as

well as in the higher vulnerability to drought revealed by this study. A point which can not be

clarified in this study is whether short-lived pollutants such as ozone contributed to the yield

losses in dry and hot summers, since intensive trophospheric ozone formation is most prone

to such weather situations. Such toxic substances directly impact crop growth, for example,

black carbon and ozone were identified as major factors for rice and wheat yield losses in India

[58].While climate intensification effects, that is interactions between current and previous

year climate, have been proposed a few years ago [19], we are unaware of any studies incorpo-

rating them. This study found mostly links of previous year climate with rice yields, and some
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for soybeans and wheat. It should be noted that, for example, multiple growing seasons might

cause spurious effects of previous year climate, so while this study serves as an initial effort to

characterize climate intensification, future studies should account for multiple growing sea-

sons more carefully.

Sustainability and food security

The green revolution led to large increases in crop yields worldwide since the 1960s [59], due

to the adoption of new varieties, fertilizers, pesticides, and increased mechanization. While

anthropogenic input and management played, and still play, a key role in sustaining long-term

trends in crop yields [60], year-to-year variation of yields is largely determined by weather [9].

And while crop yields increased globally since the 1960s, crop yield variability did not increase,

on the contrary, it primarily decreased [9]. Nevertheless, climate variability causes large fluctu-

ations in crop yields, and with climate change a new player enters the stage of determining

long-term crop yields.

Staple crops cover large parts of the human diet, and higher variability in yields leads to less

stable production, higher price fluctuations and smaller incomes for food producers. The

strong vulnerability of global maize, soybeans and wheat yield to combined effects of heat and

drought as revealed in this study will threaten food security in the long run under progressing

climate change. For most crops, the significant climate impacts affect all top producers. Conse-

quently, only regionally alternating extreme events may level out the worst consequences.

However, even then, regional effects on local prices are still likely, a second factor threatening

food security.

Achieving food security is the second of the UN sustainable development goals. The global

ecological footprint of agriculture stands in the way of sustainably fulfilling the increasing

demand for food. Much research has been devoted to closing yield gaps, that is the difference

between the actual yields and the potential yields given same climatic constraints [61–63]. This

would eliminate the need for agricultural expansion by managing the existing agricultural

areas better, for instance by increasing nutrient and water efficiency [61], or by spatially reallo-

cating crops to where they are economically best profitable [62].

The immense need of water for agriculture, combined with massive groundwater depletion

[64], and climate change induced water scarcity [65], calls for additional measures, such as

improving crop water productivity or crop water use efficiency [66], which would increase

yields, and at the same time provide more water for people and ecological services.

Future climatic variability, which implies more heat and drought, could be coped with by

breeding and improving crop varieties such that they have an increased tolerance to heat and

drought stress [67] and adapting planting dates [68]. But while these are yet theoretical ideas,

practical implementations, such as conservation agriculture, could already be used to deal with

these issues.

Conservation agriculture, compromising minimal soil disturbance, permanent soil cover

and appropriate rotation, can reduce canopy temperature, increase water efficiency, reduce

greenhouse gas emissions, and could also be more profitable from an economic perspective,

however, it requires high initial investments in new machinery and high levels of skill and

knowledge [69].

Limitations

Some caveats should be noted. Using a mean growing season climate obscures effects of intra-

seasonal effects, such as short heat waves or dry periods in critical plant growth stages. Intra-

seasonal climate variability was reported to have different impacts depending on the timing of
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the events [57]. Since intra-seasonal weather has been averaged over in the calculations of this

study, the reported estimates might be seen as indication of the climate variability effects for

the whole plant growing period. Similarly, the use of country averages obscures regionally

varying impacts. However it allows the assessment of the effects of climate variability on crop

yields globally. In order to have at the same time a spatially finer resolved assessment, much

more detailed data would be required.

Another limitation of this study is that it did not control for other factors affecting yield var-

iability, such as agricultural management practices, pests, socioeconomic conditions, and con-

flicts. How much water is available to crops can strongly be influenced by irrigation, which can

alleviate the impacts of extreme temperatures [16]. Besides that, water availability is related to

soil properties and the management thereof [70–72], however, these could be assumed to be

mostly independent of climate variability. The occurence of pests on the other hand is related

to climate and climate variability [73,74]. The growing of crops and the socio-economy are

closely linked and interdependent [75], especially in areas where agriculture is the main source

of livelihood. While climate variability may also directly affect the socio-economic conditions,

its main effects are on crop yields. The socio-economic conditions, such as supply chain infra-

structure, market availability, labour and health issues, then act on top of the effects of climate

variability, and can both enhance or reduce the effects of climate variability [76,77].

Since the focus of this study was on year-to-year climate variability and not climate change,

long-term trends in both crop yields and climate were removed, such that time is not a con-

founding variable anymore. Consequently, impacts of climate change on crop yields [78] or

impacts of climate change on climate variability [9] could not be considered.

Conclusion

Using a random effects specification, the multitude of spatial observations on a short time

scale were leveraged to determine the interacting climate variability effects on global crop

yields from country data, or country yields from sub-country data. In order to estimate

detailed interaction effects, sub-country data were necessary to estimate country sensitivities.

Interactions between temperature and SPEI led to a stronger temperature sensitivity of the

global maize and wheat yields in dry than normal conditions, and no temperature sensitivity

of global soybean yields for wet compared to normal conditions. Using state-level data, USA

yields of maize and soybeans were more sensitive to temperature in dry than normal condi-

tions, and soybean yields were less sensitive to temperature in wet than normal conditions.

Furthermore, for rice in Viet Nam and soybeans in the USA, consecutive dry years additionally

reduced yields, as did consecutive warm years for USA soybeans.

Climate variability accounts for large parts of yield variability, and by not accounting for

interactions between temperature and moisture, the effect of temperature on yields might be

overestimated in wet conditions and underestimated in dry conditions.

Supporting information

S1 Fig. Climate variability effects on crop yield variability for the USA, determined by

national level yield aggregated from state level data. The same as Fig 6, but here effects were

estimated from national level yield data as opposed to state level yield data in Fig 6.

(TIFF)

S2 Fig. Significance of highest order term in mixed model of global yields after adding ran-

dom noise on FAO data. Shown on the y-axis is the percentage of significance levels of the

highest order interaction term (listed at the top of each panel) for each crop depending on
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noise level added to yields (on the x-axis). Generally speaking, as one adds more noise to the

yields (moves to the right of the x-axis) the interaction term becomes less statistically signifi-

cant, e.g. higher amounts of red indicating p-value > 0.05.

(TIFF)

S3 Fig. Significance of highest order term in linear models of country yields after adding

random noise on FAO data. Shown is the percentage of significance levels of the highest

order terms (interaction, quadratic, or linear, as listed at the top of each panel) for each crop

and country depending on noise level added to yields.

(TIFF)

S1 Table. Time series length of FAO yield data: After (before) quality checks. Maximum

number 54 corresponds to full time series length (1961–2014). Quality criteria: if countries

reported the identical values in 2 consecutive years, then all years prior or after were excluded;

manual visual inspection (see methods for further details).

(DOCX)

S2 Table. Country crop time series that needed higher dimension for yield detrending. See

methods for details.

(DOCX)
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45. Sentelhas PC, Battisti R, Câmara GMS, Farias JRB, Hampf AC, Nendel C. The soybean yield gap in

Brazil–magnitude, causes and possible solutions for sustainable production. J Agric Sci. 2015; 153:

1394–1411.

46. Zanon AJ, Streck NA, Grassini P. Climate and Management Factors Influence Soybean Yield Potential

in a Subtropical Environment. Agron J. 2016; 108: 1447.

47. Penalba OC, Bettolli ML, Vargas WM. The impact of climate variability on soybean yields in Argentina.

Multivariate regression. Meteorol Appl. 2007; 14: 3–14.
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A B S T R A C T

Forests cover approximately 30% of the world’s land area and are responsible for 75% of terrestrial gross pri-
mary production. Disturbances, such as fire, storm or insect outbreaks alter the dynamics and functioning of
forest ecosystems with consequences, in terms of species distribution and/or gross primary production, not fully
understood. Large forest areas are intensively managed and natural disturbances are yet rare events but expected
to increase with climate change. Here, we used digital repeat photography to observe the ecological succession
in a windthrow disturbed forest in the Bavarian Forest National Park (Germany) and compared it to satellite-
derived vegetation indices (NDVI, EVI, and PPI) as well as turbulent CO2 exchange. A data-driven clustering of
the webcam images identified three regions of interest: spruce, grass and a transition region that showed grass in
the beginning and became successively overgrown by spruce. The succession was mirrored in trends of annual
maxima of gross primary production (GPP), satellite vegetation indices and derived image greenness (green
chromatic coordinate, GCC) in the transition region. These trends were also responsible for a positive link be-
tween seasonal GPP and proxies. Start and end of growing season were estimated from GCC, NDVI, EVI, PPI, and
GPP, compared to each other, and were linked partly to climatological growing season indices and phenological
observations. This study demonstrates the suitability and benefits of a webcam in monitoring forest recovery
after a severe windthrow event, thus offering a versatile tool that helps to understand successional and phe-
nological processes after a disturbance.

1. Introduction

Forests play an important role in the global carbon cycle (Dixon
et al., 1994; Luyssaert et al., 2010) and intact forests ecosystems act as
strong carbon sinks (Grünwald and Bernhofer, 2007). With longer ve-
getation seasons, caused by anthropogenic climate change, a further
increase of productivity is expected (Dragoni et al., 2011). However,
climate change induced increases in the frequency of disturbances, such
as fire, insect outbreaks, and storms, also negatively impacts forest
growth (Seidl et al., 2011). Such disturbances can switch an ecosystem
from a carbon sink to a carbon source and have the potential to offset
any climate change or forest management induced benefits (Seidl et al.,
2014). Observing and understanding consequences of disturbances thus
plays a key role in understanding ecosystem functioning under climate
change.

Major efforts are underway to observe ecosystem carbon fluxes (see
FLUXNET, https://fluxnet.ornl.gov/), and also disturbed forest ecosys-
tems are monitored (Lindauer et al., 2014). However, the recently im-
plemented techniques are cost-intensive, depend on flatness of the
terrain, homogeneity of the vegetation cover in the footprint area as
well as atmospheric conditions (see e.g. Foken et al., 2012), and are
thus not ideally suited for large scale observations. An alternative ap-
proach is to exploit the links between canopy carbon uptake (net eco-
system exchange, NEE) and phenology (Richardson et al., 2013;
Wingate et al., 2015).

One approach is the use of digital repeat photography to directly
track the phenological development (Migliavacca et al., 2011). Digital
cameras offer many advantages to traditional phenological research
(Sonnentag et al., 2012), and are suited to predict NEE dynamics and
total productivity but not yet for all plant functional types (Toomey
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et al., 2015). Phenocams (digital cameras used to monitor phenology)
are a new but promising technology, mirrored in the large amount of
recently published research (Henneken et al., 2013; Julitta et al., 2014;
Keenan et al., 2014; Klosterman et al., 2014; Menzel et al., 2015; Morris
et al., 2013; Nijland et al., 2014; Petach et al., 2014; Toomey et al.,
2015; Wingate et al., 2015).

Remote-sensing of phenology via satellites is another possibility (Fu
et al., 2014; Jeganathan et al., 2014; Jeong et al., 2011), and could
provide large-scale links between vegetation and CO2 cycles
(Barichivich et al., 2013). However, the correspondence to ground
observations is differing by plant species and season (Klosterman et al.,
2014; Liang et al., 2011; Misra et al., 2016), and this is where pheno-
cams could fill the gap between automated satellite and manual field
observations. Phenocams can also be used to monitor events at the
species level, or even for single individual trees (Menzel et al., 2015).
Thus, they can provide much higher spatial information than integrated
measures, such as satellite observations or turbulent flux measure-
ments.

Phenology is climate sensitive (Dose and Menzel, 2006; Menzel
et al., 2006; Richardson et al., 2013), so climatological growing season
indices (Linderholm, 2006) seem like another natural choice to estimate
the vegetation season (Menzel et al., 2003; Zhang et al., 2004) or
carbon uptake (Barford et al., 2001). Bark beetle flight activity was also
linked to phenology (Zang et al., 2015) and climate (Baier et al., 2007),
and bark beetle induced tree mortality can have severe consequences on
forest leaf area index and gross primary production (Bright et al.,
2013).

But how climatological indices, phenological observations, pheno-
logical estimates derived from near-surface and satellite remote-sen-
sing, bark beetle flight and turbulent carbon exchange are interrelated
in disturbed ecosystems is rarely addressed.

To this end, we combined time series of digital camera images with
satellite-derived vegetation indices, eddy-covariance measurements of
CO2, climate, phenological observations and bark beetle counts in a
windthrow disturbed forest in order to analyze (1) whether it is possible
to observe succession using digital camera images, (2) if and to which
degree webcam greenness, satellite retrieved vegetation indices, and
turbulent CO2 exchange observations match, (3) how their seasonality
is related amongst each other and to climatological growing season
indices or phenological observations.

2. Materials and Methods

2.1. Study site

The study site Lackenberg (Fig. 1) is located in the Bavarian Forest
National Park (Bayerischer Wald) in south-eastern Germany (13.305°E,
49.100°N, 1308 m a.s.l.). The national park is forested on 98% of its
area with a mixed forest dominated by spruce, fir and beech. However,
at the altitude of the Lackenberg site, nearly all trees are Norway spruce
(Picea abies (L.) H. Karst). The area has been heavily damaged by the
storm Kyrill on January 18, 2007, and has not been cleared thereafter
because of the forest management policy of the national park. The
windthrow area at this site is approximately 26.8 ha. Almost all larger
trees were uprooted during the storm. The main vegetation, besides

surviving spruce trees and newly emerging young trees, consists of
grasses (Deschampia flexuosa (L.) Trin., Luzula sylvatica (Huds.) Gaudin,
Juncus effuses L.), fern (Athyrium distentifolium Tausch ex Opiz), few
blue berries (Vaccinium myrtillus L.) and very few rowan berries (Sorbus
aucuparia L.). In 2009 a tower was set up in the middle of the wind-
throw area, with instruments to measure turbulent CO2 exchange
(Lindauer et al., 2014), and in 2010 a webcam was mounted.

2.2. Webcam images setup

From May 2010 to July 2016, digital images were taken by a dual-
sensor security webcam Mobotix M12 (Mobotix AG, Langmeil,
Germany), which records near-infrared (NIR) and standard RGB images
at the same time with slightly different fields of view. The camera was
run in full automatic mode (exposure, aperture, and white balance) and
was set up according to standard recommendations (Richardson et al.,
2007; Sonnentag et al., 2012): camera facing north; gray scale re-
flectance panel (Fluorilon, Avian Technologies, New London, NH, USA)
in field of view; multiple images taken each day between 12am and
1pm CET. We hoped to use the gray panel and the NIR image to cal-
culate a pseudo-NDVI (normalized difference vegetation index), which,
however, did not yield any sensible results. Because of hardware
failure, at the end, only one backup image per day, taken at midday,
with 640 × 480 pixels was available for analyses throughout the whole
period. Additionally, not all images were (fully) transmitted due to
network failures and we discarded all images that were empty or only
partially transmitted.

The camera was moved multiple times during the study period,
resulting in different views of the study site. Images were registered
using open-source image-processing software Fiji (www.fiji.sc) in order
to show the same view over the whole study period (see Fig. S1). Then,
images were cropped to the common region excluding the gray panel,
which was not registered successfully because it was too near to the
camera compared to the background forest.

2.3. Automatic extraction of webcam image regions of interest (ROI)

For further analyses the webcam images were segmented into re-
gions of interest (ROIs) with an approach proposed by Bothmann et al.
(2017), which defines ROIs in an automated and data-driven way. The
so-called ‘unsupervised ROI approach' (uROI) is implemented in the R
package phenofun (Bothmann, 2016) and works as follows.

Let xt denote a three-color RGB image with m*n pixels at time t
(with a total of T images), ∈

× ×xt
m n 3that is ∈xt

mn3 First, each
image is rearranged into a long vector ∈xt

mn3 . Then the entire image
data is stored in a matrix X, where each column of X corresponds to one
image, that is = … ∈

×X x x( , , )T
mn T

1
3 . Then, a truncated version of a

singular value decomposition (SVD) of X is carried out to reduce di-
mensionality by only computing the first p singular vectors. This leads
to a decomposition of X into X = UDV', with

  ∈ ∈ ∈
× × ×U D V, , 'mn p p p p T3 , where the columns of U are the ei-

genvectors of XX' and may be called eigenimages. Then, U is rearranged
into a matrix ∈

×U mn p3 , such that each pixel is described by 3p
variables. Based onU , the pixels are clustered with a k-means clustering
algorithm leading to a pre-specified number of K clusters. After testing

Fig. 1. Aerial images of the study site (courtesy of
the Bavarian Forest National Park). The white dot in
the middle is the location of the tower, where the
webcam and other instruments were mounted. The
windthrow area is located between the two roads,
roughly a circle with 400 m radius around the tower.
The strip left of the windthrow area besides the
dense forests, was cleared in 2009 and 2010 after a
massive bark beetle infestation in order to prevent a
further spreading.
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multiple values for p and K, p = 24 and K= 3 were found to show the
most cohesive and meaningful clustering results.

2.4. Extracting greenness from webcam images

To adjust for the varying scene illumination, we used the green
chromatic coordinate (GCC = green/[red + green + blue]) as mea-
sure of greenness (Sonnentag et al., 2012) and applied the spline-fil-
tering procedure described in Migliavacca et al. (2011), using 2 (instead
of 3) standard deviations for thresholding.

The study site is prone to fog and snow, which renders measures of
greenness inadequate. To account for snow, we used snow depth from a
meteorological station nearby (see below) and the blue chromatic co-
ordinate (BCC = blue/[red + green + blue]). High BCC values occur if
pixels are saturated or over-exposed, which is the case for snow.
Manually inspecting the images, we found a BCC threshold of 0.3 good
for indicating snow. Since snow melts faster if on trees than if on
ground, we evaluated the BCC for each ROI, and masked GCC values, if
snow depth was> 0 cm and the BCC of the respective ROI was> 0.3.

To account for fog, we calculated the blurriness of each image, by
applying an edge-finding algorithm, and counting the edge pixels. For
this we applied the “Find Edges” tool in software ImageJ, which uses a
Sobel edge detector (see also ImageJ online documentation for details
on the convolution kernels used). This resulted in a rough measure of
the quality of the images, with low values indicating fog (few edges)
and high values indicating sharp images. This blur metric was used as
weights for modelling as shown below.

2.5. Vegetation indices from remote sensing

Based on MODIS it was possible to extract vegetation indices from
January 2001 to June 2016, thus also covering the period before the
storm. Three vegetation indices were derived from MODIS collection
version 5, the NDVI (normalized difference vegetation index), EVI
(enhanced vegetation index) and PPI (plant phenology index), which
are all differently affected by snow (Jin and Eklundh, 2014). NDVI and
EVI were available in 16 day time intervals at 250 m spatial resolution
from product MOD13Q1, which also comprises their pixel reliability
(QA Code). Values with QA codes 2 and 3, that is snow and clouds, were
masked out. PPI was calculated according to Jin and Eklundh (2014),
using nadir-viewing reflectances from product MCD43A4, which are
available in 8 day time intervals at 500 m spatial resolution. Solar ze-
nith angle, necessary to calculate the PPI, was available from ancillary
data set MCD43A2, which also comprises a quality code, and a snow
flag. Only snow-free values were used for modelling below. Other
constants in the PPI formula were set as to the same values as in Jin and
Eklundh (2014).

To minimize random error in MODIS values and ensure better
comparability to the flux footprint of the site, NDVI and EVI values
were averaged over a 3 × 3 pixel area centered on the location of the
tower, and PPI values over a 2 × 2 pixel area. Fig. S2 compares average
values to single pixel and 5 × 5 (NDVI and EVI) and 3 × 3 (PPI) pixel
areas.

2.6. Estimating gross primary production (GPP) from turbulent CO2

exchange

For assessing net ecosystem exchange (NEE) for the years 2010 to
2015 the setup described by Lindauer et al. (2014) was used. NEE
(originally in mmol/m2s, then converted to gC/m2s) was calculated
according to Foken et al. (2012) using the measured eddy-covariance
data processed by the data analysis software TK3 (Mauder et al., 2013).
Only high quality data (flagged 0 or 1 in TK3) was retained. For outlier
removal, the data was split into 1.5 hour intervals over 25 consecutive
days, yielding up to 75 values of 30 min fluxes. For each of these sets,
flux values were removed that were 3*MAD (median absolute

deviation, adjusted by 1.4826 for asymptotic normality) above or below
the median.

Further processing of the flux data was performed using standard
procedures (Reichstein et al., 2005) implemented in the REddyProc
package in R (Reichstein and Moffat, 2015) in 2-year blocks
(2010–2011, 2012–2013, and 2014–2015) to account for succession.
These included ustar filtering (with estimated thresholds 0.35, 0.36,
0.28 m s−1 for the three periods, while Lindauer et al. (2014) used
0.3 m s−1 as threshold for the same site, however, for a different period:
2009–2013), gap-filling of net-ecosystem-exchange (NEE), and parti-
tioning into gross primary production (GPP) and ecosystem respiration
(Reco) using soil temperature to estimate Reco. Finally, daily means were
calculated.

2.7. Meteorological data and climatological growing season indices

Auxiliary daily air temperature, precipitation and snow depth was
available in approximately 12 km distance at similar altitude at the
climate station Großer Arber (49.113°N, 13.134°R, 1436 m a.s.l.) from
the German Meteorological Service (DWD). From June 2014 onwards,
snow depth was available only every second day; the missing values
were interpolated as mean of the previous and next day.

Over the last 30 years, the mean annual temperature was 3.67 °C
and mean annual precipitation was 1480 mm. The region is covered
with snow throughout December to March/April, but snow might start
as early as October and stay until May (see Fig. S3 for meteorology
during the study period).

Temperature was also directly measured at the study site, but it
contained several gaps during the study period, so we decided to use
the complete station data from the DWD to calculate climatological
growing season indices. There is no universal definition for climatolo-
gical growing season indices (Walther and Linderholm, 2006), so our
choice fell on the most widely used ones: Last frost (after which no
minimum temperature below 0 °C), first five consecutive days above
5 °C mean temperature, first frost, and first five consecutive days below
5 °C. As snow is also a major influence at this site, we calculated two
indices based on the snow depth data: first and last day of continuous
snow cover, where continuous means at least 20 days of snow
depth> 0 cm in order to remove short snow episodes before or after
the main snow season.

2.8. Phenological data

Data from a bark beetle trap (pheromone-baited slot trap) near the
study site (Bampferfleck, 49.094°N, 13.302°E, 1228 m a.s.l.), was made
available from the national park administration (contact: Franz Baierl)
for the years 2010 to 2015. The trap with Ips typographus bark beetles
was usually emptied once a week from start/mid of May to mid of
September, depending on snow and weather conditions.

Phenological data on May sprouting of Norway spruce, first flow-
ering of meadow foxtail (Alopecurus pratensis L.) and full flowering of
cock’s-foot/orchard grass (Dactylis glomerata L.) were also provided by
the German Meteorological Service for Großer Arber.

2.9. Modelling time series of GCC, NDVI, EVI, PPI and GPP, and extracting
phenological dates

GCC, NDVI, EVI, PPI and GPP were modelled with penalized splines
(Wood, 2016) using all available years. Weights were included for GCC
(the blur metric), and for NDVI, EVI and PPI (mean of all pixel quality
codes in reverse order times the number of pixels available per value).
The function space for the penalized splines was set to have 12 degrees
of freedom per year (or 1 df per 30 days) as maximum basis dimension
(similar to the values in Bradley et al., 2007), as this threshold was low
enough to capture the seasonal dynamics but not too high to include
short-term variability. The penalized spline approach was chosen over
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fitting parametric functions, such as double-logistic curves (as e.g. in Gu
et al., 2009; Klosterman et al., 2014), because it allowed the in-
corporation of weights, was more flexible, and allowed a continuous
signal over multiple years (the parametric double-log have to be fit
separately to each year). Fig. S4 shows a comparison of the different
approaches to model the time series, in which the estimated curves are
similar in standard cases, but differ for more complicated seasons, and
where the double-log curves fit the underlying data worse than the
penalized splines.

From the modelled time series the days of start (SOS), end (EOS),
and peak of season (POP) were extracted using the threshold method
(White et al., 1997). SOS and EOS are defined as the time, when 50% of
the maximum amplitude, that is difference between annual maxima and
minima, are reached. While other methods exist to extract phenological
dates, for example based on first derivatives or more complicated
heuristics (Gu et al., 2009; Klosterman et al., 2014), we chose the
threshold approach, because it yielded the most robust and meaningful
estimates for all variables (GCC, NDVI, EVI, PPI and GPP) in all years
(see Fig. S5 for a comparison).

2.10. Intra- and interannual correlations of GPP with proxies

Intraannual correlations of GPP with satellite vegetation indices and
webcam GCC were performed by taking 16 day means of GPP, GCC, and
PPI to match the temporal resolution of NDVI and EVI. Then Pearson
correlation coefficients were calculated between all variables using all
values from all years available.

To check how well remotely sensed vegetation indices and webcam
greenness capture interannual variation in GPP, seasonal (Apr–Oct,
May–Sep) means were calculated for the six years (2010–2015). As the
webcam suffered from multiple hardware and connection failures, Apr-
Oct means were only available for 2011 and 2014, and May-Sep means
only for 2011–2014.

3. Results

3.1. Succession

The data-driven clustering of the webcam images resulted in iden-
tifying three distinct image regions (ROIs, see Fig. 2). The first cluster
corresponds to the area that was covered by spruce trees during the
whole study period. The second cluster was initially showing grass and
became successively overgrown by spruce trees (and parts of a decid-
uous broadleaf in the bottom-right corner of the image). The third
cluster corresponds to grass that remained visible until the end of the
study period, however, a small fraction of pixels in this cluster also were
covered with spruce at the end. The proportions of the three clusters to
the total image area are 39% (spruce), 39% (grass to spruce), and 22%
(grass).

The remotely sensed vegetation indices (NDVI, EVI and PPI) were
available also before the storm, and show a clear break after the
windthrow (Fig. 3). NDVI annual maxima after the storm were lower
than before, but steadily increased afterwards with a significant linear
trend (p < 0.05). EVI values did not depict a clear seasonality before
the storm, only afterwards. Annual maxima of EVI stayed constant until
2010 and increased steadily thereafter. PPI also showed a clear in-
creasing trend in annual maxima after the storm (p < 0.05).

The recovery of the forest stand after the windthrow resulted in an
increased primary production, going from 603 gC m−2 y−1 in 2010 to
862 gC m−2 y−1 in 2015, while at same time net ecosystem exchange
decreased from 285 gC m−2 y−1 in 2010 to −26 gC m−2 y−1 in 2015,
thus indicating a switch in the ecosystem from carbon source to sink
from 2014 to 2015.

At the same time, peak annual GPP increased from 4.182 gC m−2

d−1 in 2010 to 6.939 gC m−2 d−1 in 2015 (Table 1). This trend was
mirrored in increasing annual maxima of NDVI, EVI, and PPI. Also the

webcam derived index (GCC) showed an increase in annual maxima for
the grass-to-spruce transition ROI from 0.368 in 2010 to 0.378 in 2015,
while the other two ROIs had no apparent trend.

3.2. The seasonal course of GCC, NDVI, EVI, PPI, GPP and bark beetles

Time series of webcam GCC showed a strong seasonality for all three
ROIs (Fig. 4). In general, the spruce ROI time series showed an increase
early in the year around doy (day of year) 100, when the snow season
ended, and a second smaller increase after May sprouting. After
reaching its annual peak, GCC decreased slowly until the snow season
started again, after which came a steep decrease to the annual
minimum.

Grass GCC had a more pronounced peak-shape, with a steeper in-
crease, that was later than the spruce increase, followed by a steeper
decrease, which was earlier than the spruce decrease. In 2012 and 2014
the decrease was not as steep as in the other years.

The grass-to-spruce GCC time series resembled a mixture of the
grass and spruce GCC time series with changing weights: In 2010 it had
more of a peak shape like the grass GCC time series, and year after year
it became more similar to the spruce GCC time series.

Remotely sensed vegetation activity (NDVI, EVI and PPI) also
showed a strong seasonality. NDVI and EVI were similar and resembled
the spruce GCC time series. PPI showed shorter seasons, which started
later and ended earlier than NDVI and EVI, and resembled a mixture of
the grass and spruce GCC series.

Gross primary production (GPP) seasonality matched the greenness
seasonality with its steep increase in spring and a less steep decrease
after reaching its peak. In 2014, it showed a longer lasting productive
summer, which was mirrored also in NDVI, EVI, PPI and GCC time
series. However, GPP was in general more similar to PPI than NDVI or
EVI.

Bark beetle counts were high from 2010 to 2013, and then de-
creased sharply in 2014 and 2015. In 2010 and 2011 one major peak
was attained in early July and end of May, respectively. For 2012 to
2014 two peaks corresponding to two beetle generations were visible:
The first was end of June and the second beginning of August for 2012
and 2013, and two weeks earlier for 2014. In 2015 counts were much
lower and no peaks obviously visible. This interannual variability was
not matched by either GCC, satellite vegetation indices or GPP.

The common seasonality induced high correlations between GCC
time series, satellite vegetation indices and GPP (Fig. S6). NDVI cor-
related similarly to all GCC ROIs (0.71-0.74), EVI correlated higher
with grass (0.79) and grass-to-spruce (0.77) than spruce (0.67), and PPI
more with grass and grass-to-spruce (both 0.84) than with spruce
(0.67). GPP correlated highest with grass-to-spruce GCC (0.87), fol-
lowed by PPI (0.82), grass GCC (0.82) and EVI (0.80).

3.3. Interannual variation in GPP and vegetation indices

Seasonal GPP was compared to satellite and webcam proxies
(Fig. 5). GPP increased from year to year in the study period due to the
succession, as did remotely sensed vegetation indices and the grass-to-
spruce GCC (see Table 1), resulting in high correspondence of seasonal
GPP with seasonal NDVI, EVI, PPI, grass-to-spruce GCC, and grass GCC.
Only spruce GCC showed a negative relationship to GPP, due to a de-
creasing trend in seasonal spruce GCC.

3.4. Comparison of growing season indices

Estimates of start (SOS) and end of season (EOS) dates varied con-
siderably within visual GCC derived indices, but also compared to GPP,
climatological indices, or traditional phenological observations (Fig. 6;
see also Figs. S7 and S8 for scatterplots comparing all SOS and EOS
dates). GCC derived SOS of spruce was 20–48 days earlier than grass,
while spruce-EOS was 28–99 days later than grass-EOS. Grass-to-
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spruce-SOS was closer to grass-SOS for 2011 and 2012 and closer to
spruce-SOS for 2014 and 2015. In each year the order in SOS was
spruce, grass-to-spruce and grass. For EOS the order was reversed.

SOS of NDVI, EVI and PPI were most similar to grass, with NDVI-
SOS on average 7 days earlier, EVI-SOS 2 days earlier, and PPI-SOS
7 days later than grass-SOS; while for EOS no correspondence was
found. SOS of GPP matched best with PPI, which was on average 4 days
later, and grass, which was 1 day earlier, while GPP-EOS had no cor-
respondence to other EOS dates.

Of the climatological indices for SOS, the 5-days-above–5 °C date
and the last day of continuous snow cover were good indicators of
spruce-SOS, while the last frost corresponded best to grass-SOS, albeit
being on average 9 days after grass-SOS. For EOS climatological indices,
the only correspondence was between spruce-EOS and the 5-days-
below–5 °C date.

The phenological observations of P. abies, A. pratensis, and D. glo-
merata were highly correlated with each other within years, where P.
abies was on average 20 days earlier than A. pratensis, and A. pratensis
15 days earlier than D. glomerata. They were also correlated to GPP-

SOS, where P. abies was on average 8 days later than GPP-SOS, and the
other two accordingly to their difference to P. abies.

Start of bark beetle flight matched the phenology of P. abies very
good for 2011, 2013, 2014 and 2015 (differences less than 6 days), but
in 2010 and 2012 differences were 21 and 30 days. Climatological in-
dices and the other variables had no apparent relationship to start dates
of bark beetle flight.

Length of season (LOS = EOS minus SOS) had no apparent corre-
spondence between the variables, except for a high correlation between
the length of the snow-free season and the LOS determined by the 5-
days–5 °C rules.

4. Discussion

Our study showed the benefits of webcam observations in mon-
itoring the succession of a windthrow disturbed forest. The windthrow-
caused uprooting of the taller spruce trees has left space for grasses and
other vegetation to grow between the dead-wood (Fig. 2) causing a
clearer seasonality of remotely sensed NDVI and EVI than before

Fig. 2. Sample images from June of each year (2010–2016, top to bottom) showing the succession in the study site (first column). The other images show overlays of the three
automatically extracted regions of interest (ROI) for each sample image. The three ROIs represent, from left to right, spruce, grass to spruce, and grass.
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(Fig. 3). Furthermore, younger spruce trees and emerged seedlings now
made use of the more favorable growth conditions as mirrored in in-
creasing trends of GPP. Since the spruce needles are greener (in terms of
GCC) than grasses, also the webcam derived index GCC showed an
increasing trend.

While GPP, NDVI, EVI, PPI and webcam indices all showed an in-
creasing trend in productivity and greenness following the recovery of
the forest (Table 1), only by GPP measurements it is possible to estimate
the carbon sink/source strength, as well as the time when the ecosystem
switches from source to sink or vice versa. Our estimates of annual net
ecosystem exchange (NEE) for the years 2010 to 2013 are 286, 239,
272, and 118 gC m−2, which are slightly different from the estimates in
Lindauer et al. (2014): 255, 221, 240, and 167 gC m−2 but well within
their uncertainty ranges. The differences may arise from different time
windows used to calculate the ecosystem respiration as well as from the
gap-filling. Thus our estimated values of NEE for 2014 and 2015 (47
and −26 gC m−2) indicate that the windthrow area changed from
carbon source to a sink around 2015 or shortly thereafter.

The three satellite-derived vegetation indices, NDVI, EVI, and PPI,
differed considerably in their seasonal time series (Fig. 4) as well as in
the estimated start and end of season dates (Fig. 6). NDVI and EVI are
more similar to each other than compared to the PPI, which may be
because of the different spatial and temporal resolutions (NDVI and EVI
have 250 m pixels in 16 day intervals, and PPI has 500 m in 8 day

intervals) and spatial aggregation (3 × 3 pixels for NDVI and EVI, and
2 × 2 pixels for PPI). However, the snow masked pixels agree in all
three indices (Fig. 4) during the study period 2010–2016. This is not the
case for the period before the storm hit the area (Fig. 3), during which
the indices differed even more, and also NDVI and EVI were less similar
to each other than in the period after the storm. So it is likely that these
differences arise rather from the different algorithms used to calculate
the indices (Jin and Eklundh, 2014; Klosterman et al., 2014) and their
varying performance for different land covers (Huete et al., 2002).

The interannual variability of seasonal GPP values was positively
associated to the NDVI, EVI, PPI, grass-to-spruce GCC, and grass GCC
proxies in this study because of concurrent trends due to the succession
(Fig. 5), while GPP was negatively associated to spruce GCC because of
opposite trends. The seasonality of GPP matched best to the PPI,
especially compared to NDVI or EVI, which confirms the findings of Jin
and Eklundh (2014) that the PPI correlates better with GPP than NDVI
or EVI for evergreen needleleaf forests.

The fraction of the webcam images showing grass was initially 61%
in 2010 and declined to 22% in 2016. The surrounding of the study area
is dominated by spruce trees, and the actual proportion of grass in the
surroundings is smaller than in the webcam images (inferred from site
knowledge), which explains why NDVI, EVI, and partly also PPI, were
so closely related to the spruce part of the image concerning seasonality
(Fig. 4). However, concerning SOS dates, NDVI, EVI, and PPI were more
similar to the grass part (Fig. 6). So although the image composition
might not depict the true proportion of the surrounding vegetation, by
using different ROIs also underrepresented vegetation types could be
analyzed, which is not yet possible with satellite measurements. An
interesting question for further research would be if CO2 fluxes could be
attributed to different species by using webcam information.

The timing of the first bark beetle flight was not related to webcam,
NDVI or climatological indices. Bark beetles start flying when daytime
temperatures are above 16.5° and weather conditions (for example no
precipitation) are suitable (Baier et al., 2007). Climatological indices
derived from snow or 5 °C threshold were thus not useful in de-
termining first flight, and neither was the onset of photosynthesis, de-
rived from GCC, satellite vegetation indices, or GPP time series. How-
ever, phenological observations on spruce were useful in predicting
bark beetle flight for 4 out of 6 six years. Zang et al. (2015) also showed

Fig. 3. Remotely sensed normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and plant phenology index (PPI) at study site. Solid line is the modelled time
series (see Methods for details). Dashed vertical line is when the storm hit the area (January 2007). Small lines at the bottom indicate when the webcam was operational.

Table 1
Annual maxima of GPP (gross primary production, gC m−2 d−1), NDVI (normalized
difference vegetation index), EVI (enhanced vegetation index), PPI (plant phenology
index), and GCC (green chromatic coordinate) of the three automatically derived image
regions. The maximum value is taken from the modelled time series, which are lower than
the original measured values.

Year GPP NDVI EVI PPI GCC
Spruce Grass-to-spruce Grass

2010 4.182 0.670 0.339 0.510 0.375 0.368 0.364
2011 4.063 0.657 0.389 0.672 0.381 0.374 0.363
2012 4.724 0.676 0.405 0.817 0.378 0.373 0.357
2013 5.621 0.733 0.488 1.579 0.378 0.376 0.364
2014 6.181 0.728 0.439 1.065 0.377 0.377 0.359
2015 6.939 0.734 0.463 1.817 0.376 0.378 0.372
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that phenology predicted flight activity better than thermal sums.
While bark beetles can have significant impacts on GPP and leaf

area index (Bright et al., 2013), we could not detect any links between
bark beetle occurrence and GPP or vegetation indices. However, initial
infestation with bark beetles started soon after the windthrow and was
followed by efforts from the national park to control the outbreak at its
boundaries. The succession definitively overweighs the influence of the

bark beetle infestation on GPP and vegetation indices.
The use of climatological growing season indices is based on tem-

perature being a limiting factor for vegetation (Walther and
Linderholm, 2006). However, depending on the region, other factors,
such as photoperiod, precipitation, frost, or snow, might be more im-
portant. The limiting factors for this study site were depending on the
species, since temperature and snow were correlated to spruce

Fig. 4. Time series of green chromatic co-
ordinate (GCC) of webcam image regions;
remotely sensed normalized difference ve-
getation index (NDVI), enhanced vegetation
index (EVI) and plant phenology index
(PPI); gross primary production (GPP); bark
beetle counts; and snow cover (black if
snow depth> 0 cm). Grey points in the
GCC, NDVI, EVI, and PPI time series in-
dicate values with snow, which were
masked out.

Fig. 5. Mean seasonal values of GPP (gross primary production) versus satellite and webcam proxies. Points are labelled with last digit of the year (that is 0 = 2010,…, 5 = 2015). Grey
dashed line represents a linear regression. Missing points in the webcam proxies (spruce, grass-to-spruce, grass) are due to lack of data. Other abbrevations: normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), plant phenology index (PPI).

M. Matiu et al. Agricultural and Forest Meteorology 244–245 (2017) 72–81

78

Climate extremes and variability, and their ecological impacts 103



greenness, whereas frost was correlated to grass greenness.

5. Summary and conclusion

Webcam images were used to monitor the succession in a wind-
throw disturbed spruce forest. By automatically splitting the image in
three regions of interest − spruce, grass, and grass grown over by
spruce − the development of each vegetation class could be tracked
separately, thus supplementing integrated observations derived from
satellite or turbulent CO2 exchange.

From the field of view of the camera 39% of the pixels showed grass
in 2010 and became overgrown by spruce in 2016. This transition ROI
showed an increasing trend in GCC, which was mirrored in increasing
trends of GPP and satellite NDVI, EVI, and PPI. The seasonality of GPP
was best matched by grass-to-spruce GCC and PPI. Interannual varia-
tion of seasonal GPP was positively correlated to grass-to-spruce GCC,
NDVI, EVI and PPI, due to common trends induced by the succession.
Climatological growing season indices based on temperature and snow
could indicate SOS and EOS of spruce, while phenological observations
correlated with GPP-SOS and timing of bark beetle flight.

An extensive network of scientific cameras is currently documenting
the phenological development and is steadily growing into a global
network (Brown et al., 2016), which could be further extended by
tapping into the even wider availability of public non-scientific web-
cams (Graham et al., 2010; Jacobs et al., 2009; Morris et al., 2013).
These phenocams and webcams could supplement satellite phenology
to offer an unprecedentedly detailed look at our earth in order to ob-
serve phenology, infer vegetation activity, monitor disturbances and
assess a possible recovery.
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