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Abstract

The onset of screening programs for abdominal aortic aneurysms (AAAs) (a balloon-like,
pathological dilation of the abdominal aorta) suggested a beneficial effect on overall mor-
tality rates associated to the risk of rupture of a AAA. Due to the associated increase
in asymptomatic findings, these programs raised the need for the definition of policies
for surveillance intervals of patients with small aneurysms (< 5 cm) that are not subject
to direct surgical intervention. But due to the high patient-specific character of AAA
expansion, common policies for surveillance intervals have not been established yet. In
this context, the use of computational models that are able to predict AAA growth on a
patient-specific basis is expected to contribute in the clinical management of patients and
to help in the determination of guidelines for surveillance. This expectation is nourished
by the availability of calibration techniques that enable a high degree of personalization
of parametrized continuum mechanical models of arterial growth. The calibration of
input parameters of such models is possible through measurements associated to output
quantities of the computational model. However, measurements are subject to an ob-
servation error that will necessarily be reflected in the calibrated model parameters and
consequently in the predictive quality of the model output. Whereas this error can be
induced by systematic effects that require a careful processing of measured data, it is
also subject to random effects. The quantification of this source of aleatoric uncertainty
that is reflected in the calibrated model parameters and in the model output is inevitable
for a reliable assessment of the predictive quality of a model.
To this end, the work presented in this thesis deals with the development of a Bayesian

calibration framework for parameters of computational models of arterial growth. Such
a formulation results in a description of the calibrated input parameters in terms of a
probability distribution. The propagation of this distribution to the model output – i.e.,
a patient-specific prediction of growth – allows a quantitative assessment of the quality of
the model output in terms of statistical quantities such as variance or credible intervals.
In this context, the main contribution of this thesis is given by the following aspects.
Measured data showing AAA growth is often given by longitudinal or follow-up image

data. The mapping between the model output in terms of a deformation and a corre-
sponding measured deformation encoded in a sequence of images is not straightforward.
On the contrary, such a mapping is associated to sources of significant systematic errors,
e.g., introduced through the application of image registration techniques to decode the
deformation from the sequence of image data. To avoid the propagation of this system-
atic error to the predictive quality of the model, the presented framework enables the
use of measurements defined as surfaces that can be directly extracted from image data
by means of segmentation. Moreover, the formalism of surface currents is applied as a
mathematically convenient description of surfaces and allows for a seamless integration
of measurements given as surfaces into a Bayesian formulation.
As a second aspect, a novel dimensionality reduction approach is proposed that ac-
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counts for a priori assumptions on the spatial structure of the input parameters given in
terms of functions with bounded total variation. This approach allows for the solution
of the Bayesian calibration problem via the application of advanced sampling techniques
that result in particle approximations of the distribution of the calibrated input param-
eters. Such approximations can be directly propagated through the model enabling the
probabilistic representation of the model output.
Finally, the application of the proposed framework to a large-scale, nonlinear, patient-

specific model of AAA growth is shown. For the first time, the present work demonstrates
the feasibility of a quantitative assessment of the quality of models for arterial growth
based on a probabilistic formulation. As an important consequence, the proposed frame-
work provides a basis for an information theoretic comparison of models for AAA growth,
which is able to guide future model development. Furthermore, the presented framework
enables the statistical testing of the predictive quality of models for AAA growth, which
is an inevitable prerequisite for the prospective application of the model in the clinical
management routine.
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Zusammenfassung

Das Aufkommen von Programmen zur Früherkennung abdomineller Aortenaneurysmen
(AAAs) (einer krankhaften ballonartigen Erweiterung der abdominellen Aorta) belegte
einen vorteilhaften Effekt auf die allgemeine Sterberate, die mit dem Rupturrisko eines
AAA einhergeht. Aufgrund des begleitenden Anstiegs von asymptomatischen Befunden
bedingten diese Programme die Notwendigkeit der Festlegung von Richtlinien zur Be-
stimmung von Untersuchungsintervallen von Patienten mit kleinen AAAs (< 5 cm), die
keinen direkten operativen Eingriff erfordern. Allerdings konnten derartige Richtlinien
aufgrund des hohen patientenspezifischen Charakters des Wachstums von AAAs bisher
nicht ermittelt werden. In diesem Zusammenhang ist zu erwarten, dass der Einsatz
computergestützter Berechnungsmodelle zur patientenspezifischen Vorhersage von AAA-
Wachstum einen Beitrag zum klinischen Patientenmanagement und zur Festlegung von
Untersuchungsintervallen leisten kann. Diese Erwartung wird durch die hohe Anpas-
sungsfähigkeit parametrisierter kontinuumsmechanischer Modelle des arteriellen Wachs-
tums durch Kalibrierung genährt. Die Kalibrierung solcher Modelle hinsichtlich ihrer
Eingangsgrößen wird durch Messungen von Modellausgangsgrößen ermöglicht. Aller-
dings unterliegen Messungen immer einem Messfehler, der sich zwangsläufig in den kalib-
rierten Parametern und daher auch in der Vorhersagekraft des Modells niederschlägt.
Neben systematischen Effekten, die eine sorgfältige Behandlung der Messdaten erfordern,
spielen zufällige Effekte eine große Rolle. Die Quantifizierung des Einflusses dieser Quelle
zufälliger Unsicherheit auf die kalibrierten Modellparameter sowie auf die Modellaus-
gangsgrößen stellt eine unabdingbare Notwendigkeit bei der zuverlässigen Einschätzung
der Vorhersagekraft eines Modells dar.
Die vorliegende Arbeit befasst sich daher mit der Entwicklung eines bayesschen An-

satzes zur Parameterkalibrierung computergestützter Modelle des arteriellen Wachstums.
Ein derartiger Ansatz resultiert in der Beschreibung der kalibrierten Parameters anhand
einer Wahrscheinlichkeitsverteilung. Die Fortpflanzung dieser Verteilung auf die Model-
lausgangsgrößen – das heißt konkret: auf eine patientenspezifische Wachstumsvorhersage
– ermöglicht eine quantifizierbare Einschätzung der Qualität der Modellausgangsgrößen
anhand statistischer Kenngrößen wie Varianz oder Intervallangaben. In diesem Zusam-
menhang liegt der Schwerpunkt der vorliegenden Arbeit auf den folgenden Aspekten.
Messdaten zu AAA-Wachstum liegen oftmals als Nachfolgeuntersuchungen bzw. als

Zeitreihenstudien in Form von Bilddaten vor. Die Abbildung zwischen Modellausgangs-
größen in Form von Deformationen und einer zugehörigen gemessenen Deformation, die
in einer Sequenz von Bildaten verschlüsselt ist, ist nicht trivial. Im Gegenteil: Eine der-
artige Abbildung unterliegt dem Einfluss systematischer Fehlerquellen, die zum Beispiel
durch die Anwendung von Methoden der Bildregistrierung zur Dekodierung der Defor-
mation aus sequentiellen Bilddaten hervorgerufen wird. Um die Fortpflanzung dieser
systematischen Fehler auf die Vorhersagekraft des Modells zu verhindern, werden in der
vorliegenden Arbeit Messungen in Form von Oberflächen definiert, die mittels Segmen-
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tierung direkt aus den Bilddaten gewonnen werden können. Darüberhinaus erlaubt die
Verwendung des mathematischen Formalismus der surface currents zur Beschreibung
von Oberflächen eine nathlose Einbettung von Oberflächenmessungen in den bayesschen
Ansatz.
Als zweiter Aspekt wird in dieser Arbeit ein neuartiger Ansatz zur Dimensionsreduk-

tion vorgeschlagen, der a priori Annahmen über die räumlische Struktur der Modellein-
gangsparameter, die durch eine Beschränktheit der totalen Variation charakterisiert ist,
berücksichtigt. Dieser Ansatz ermöglicht die Lösung des bayesschen Kalibrierungsprob-
lems durch die Anwendung moderner Stichprobenverfahren, die in einer partikelbasierten
Approximation der Wahrscheinlichkeitsverteilung der Modelleingangsparameter resul-
tiert. Durch die direkte Fortpflanzung durch das Modell ermöglichen derartige Approx-
imationen eine probabilistische Darstellung der Modellausgangsgrößen.
Abschließend erfolgt die Anwendung des vorgeschlagenen Ansatzes auf ein großes,

nichtlineares, patientenspezifisches Modell. Dies zeigt erstmals die Durchführbarkeit
einer quantitativen Abschätzung der Qualität von Modellen des arteriellen Wachstums
basierend auf einer probabilistischen Formulierung. Als wichtige Konsequenz bietet der
vorgeschlagene Ansatz daher die Grundlage für einen informationstheoretischen Vergleich
von Wachstumsmodellen, der als Richtlinie für die zukünftige Modellentwicklung dienen
kann. Darüberhinaus ermöglicht der vorgeschlagene Ansatz die Möglichkeit des statis-
tischen Testens der Vorhersagekraft des Wachstumsmodells, welches eine unabdingbare
Voraussetzung für den zukünftigen Einsatz des Modells in der klinischen Praxis darstellt.

iv



Contents

1. Introduction 1
1.1. Medical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Computer methods towards clinical application . . . . . . . . . . . . . . . 3

1.2.1. Modeling of AAA growth . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2. Model personalization . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3. Incorporation of uncertain and probabilistic effects . . . . . . . . . 5

1.3. Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4. Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Computational solid mechanics 13
2.1. Nonlinear solid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. The law of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Balance of momentum . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3. Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2. Incorporation of arterial growth . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3. Numerical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1. Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2. The finite element method . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3. Nonlinear solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4. Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5. Special features in AAA modeling . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1. Orthopressure load . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2. Prestressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. Mathematical formulation of the identification problem 33
3.1. General setting and assumptions . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1. Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2. Statistical identification problem . . . . . . . . . . . . . . . . . . . 37

3.2. Definition of similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3. Surfaces as measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1. Distance as closest point projection . . . . . . . . . . . . . . . . . . 44
3.3.2. Distance in terms of surface currents . . . . . . . . . . . . . . . . . 45

3.4. A priori assumptions and regularization . . . . . . . . . . . . . . . . . . . 51
3.4.1. Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2. Gaussian smoothness priors . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3. Markov random field priors . . . . . . . . . . . . . . . . . . . . . . 55
3.4.4. Comparison of priors . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5. Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



Contents

4. Numerical solution of the identification problem 63
4.1. Bayesian point estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1. Posterior mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2. Maximum a posteriori estimation . . . . . . . . . . . . . . . . . . . 65

4.2. Estimation of credible intervals . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3. Approximate inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1. Laplace approximation . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2. Variational Bayesian approach . . . . . . . . . . . . . . . . . . . . 68
4.3.3. Extension to nonlinear forward models . . . . . . . . . . . . . . . . 69

4.4. Numerical computation of estimates . . . . . . . . . . . . . . . . . . . . . 71
4.4.1. Limited-memory BFGS . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2. Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3. Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 76
4.4.4. Sequential Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 80

5. A two-stage approach towards predictive modeling of AAA growth 85
5.1. Existing approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2. A posteriori dimensionality reduction under TV prior assumptions . . . . 88

5.2.1. Patch-wise approximations . . . . . . . . . . . . . . . . . . . . . . 90
5.3. Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1. 1 dimensional example . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2. 50 dimensional example . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6. Analysis of the choice of similarity measure using synthetic data 101
6.1. Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1. Data registration via surface matching . . . . . . . . . . . . . . . . 103
6.1.2. Inverse problem setup . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2. Comparison of parameter estimates . . . . . . . . . . . . . . . . . . . . . . 105
6.2.1. Point-wise measurements . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2. Surface measurements . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7. Application to patient-specific data 109
7.1. Preparation of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2. Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1. Inverse problem specification . . . . . . . . . . . . . . . . . . . . . 112
7.2.2. Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.3. Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3. Towards prediction of future growth . . . . . . . . . . . . . . . . . . . . . 116
7.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.1. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8. Summary and outlook 121

A. Balance of angular momentum 125

vi



Contents

B. Push-forward of a surface current 127

C. Linearizations 129
C.1. Linearization of the surface current similarity . . . . . . . . . . . . . . . . 129
C.2. Explicit differentiation of the weak form . . . . . . . . . . . . . . . . . . . 131

C.2.1. Partial differentiation with respect to the displacements . . . . . . 131
C.2.2. Partial differentiation with respect to parameters of volumetric

growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D. Pseudo inverse and singular value decomposition 135
D.1. Singular value decomposition of M>M + QQ> . . . . . . . . . . . . . . . 136

E. Surface matching 139

F. Graph based total variation on non-uniform meshes 141

Abbreviations 145

Nomenclature 147

List of Figures 157

Bibliography 175

vii





1. Introduction

The field of biomechanics, as the application of mechanical principles in the analysis of
the function of biological processes, enabled a new perspective on human health [69]. The
contributions of these principles to the understanding of diseases have been intensified in
the last decades due to the immense acceleration in the development and the availability
of computational resources. In particular, continuum mechanical approaches to the field
of human soft tissue and cardiovascular diseases [101] have developed rapidly owing to
the high burden of cardiovascular diseases (e.g., atherosclerosis, cerebrovascular diseases,
aneurysms) to the modern society [see e.g. 75]. Thereby, computational modeling is used
to study a wide range of different aspects of the cardiovascular system. This is reflected
in the variety of modeling approaches ranging from fully resolved patient-specific fluid
structure interaction (FSI) models of the arterial network [228] over particular aspects
on the organ level, such as the heart [98, 125, 164, 198], the carotid artery [80, 120]
or aneurysms [61, 80, 105, 126, 136] (cerebral and abdominal), to reduced dimensional
representations of the cardiovascular system [64, 172].
An important aspect of model development is the eventual application of the model

as a predictive tool. A predictive model is thereby understood as a model which allows
for a quantification of the quality of the model output. Continuum mechanical models
are usually characterized by generic input → output relations. Thus, the quality of the
output depends on the case specific adaption of the input parameters. Due to the com-
plexity of the applied models, a direct measurement of the input properties is usually not
possible. This requires the determination of input parameters by calibration techniques
enabled by auxiliary measurements associated to the model output. Depending on the
field of research, this process is also referred to as data assimilation, model personaliza-
tion or parameter identification. The inherent uncertainty included in this process will
have a direct impact on the reliability and variability of the model output. A quantifi-
cation of the quality of the model is thus directly connected to the determination of the
propagation of the uncertainty in the input parameters to the model output.
A particular field of cardiovascular modeling, which has attracted much attention in

the last decades, is the modeling of abdominal aortic aneurysms (AAAs). The clinical
management of this condition centers around the assessment of the risk associated to
prophylactic interventions and the risk of fatal incidents. For example, the mortality
rate in the case of rupture of a AAA is in the range of 65% to 85% in men above 65
years of age [210]. Whereas overall mortality rates can be reduced by elective repair, it
is reported that early elective repair does not necessarily save lives [212]. In this difficult
conflict of interest, the use of computational models has already shown to be able to add
valuable information on the risk of rupture to the process of decision making [72, 148].
These approaches are based on deterministic criteria relating stress or strain information
at a specific point in time to a patient-specific risk of rupture. Therefore, these models
are not suited to predict the progression of a AAA on a patient-specific basis. However,
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1. Introduction

such information is an essential measure for the assessment of surveillance intervals and
the associated development of the risk of rupture. Thus, models representing the tran-
sient behavior of arterial growth are expected to be able to contribute to the clinical
management of AAA.
In this context, the presented work aims at the development of predictive models of

AAA growth with an application towards the use in the clinical management routine.
Given the direct impact such models can eventually have on decision making in a patient-
specific context, a rigorous quantification of the involved uncertainties is an inevitable
factor towards the application in clinical practice.

1.1. Medical background

An abdominal aortic aneurysm (AAA) is characterized by a permanent local distention
of the abdominal aorta. Whereas the precise cause for this phenomenon is still unclear,
there is some agreement that it is the result of a complex interplay of different factors:
degenerative biological processes in the arterial wall due to structural effects, aging,
diseases, infections and specific changes in hemodynamic conditions. Beside certain
genetic disorders being known to cause aneurysms [227] and a clear correlation of the
prevalence of AAA and age [117, 210], statistical evaluations revealed several risk factors
associated to the formation of a AAA, e.g.: smoking, hypertension, alcohol consumption,
atherosclerosis [132].

Clinical management and the risk assessment The rupture of a AAA is often lethal
and is associated to mortality rates up to 90% [117]. Symptomatic AAAs, characterized
by harbingers of rupture such as the sudden onset of pain in the abdomen or back,
should be immediately repaired [117]. However, most AAAs are asymptomatic and the
result of an incidental finding. Since elective prophylactic repair is also associated to
significant mortality [60, 133], physicians have to balance the risk of rupture with the risks
associated to elective repair. Thereby, decision making is mainly based on measurements
of the maximum diameter. This choice is justified by large trial data revealing a marked
increase in rates of yearly incidents of rupture for aneurysms with a maximum diameter
> 5.5 cm [133, 177]. Despite studies indicating more efficient indices for the potential of
rupture of a AAA [72, 148, 201], the maximum diameter criterion is the dominant index
used in the current clinical routine.

Assessment of AAA growth rates The use of the 5.5 cm criterion raises the need for
strategies and guidelines for small aneurysms < 5.5 cm. The finding of small aneurysms
has become more common since the introduction of screening programs which suggested
to have a beneficial effect on overall mortality [210, 212]. In this scenario, clinical research
centers around rates of expansion of AAAs. On the one hand, as a direct index for the
risk of rupture associated to rapid rates of expansion measured in terms of maximum
diameter: rates > 1 cm/yr are associated to a high risk of rupture [29]. On the other
hand, as a measure in the clinical management to allow for the assessment of surveillance
intervals. To this end, beside a plain quantification of growth rates in small aneurysms,
studies try to identify risk factors as predictors for growth [45, 195].

2



1.2. Computer methods towards clinical application

In contrast to the well established guideline towards aneurysm repair in the case of a
maximum diameter > 5.5 cm, clear guidelines for the definition of surveillance intervals
have not been established. On the contrary, suggested intervals vary widely from a few
months to several years [211]. In addition, the quantification of AAA expansion by means
of longitudinal measurements of the maximum diameter in time is also being questioned
[154]. Furthermore, growth cannot necessarily be predicted by linear extrapolation of
the maximum diameter [130] and it is also subject to a high inter-patient variability [28].
With the intention of the patient’s safety, these issues indicate the need for a much

more patient-specific assessment of AAA progression. By means of calibration and model
personalization, continuum mechanical approaches provide an opportunity towards a
more patient-specific treatment in the clinical management routine.

1.2. Computer methods towards clinical application

Despite great advances in the computational modeling of cardiovascular problems, a
broad application of these approaches in the clinical practice has not been established
so far. This fact is mostly due to the complexity of the questions to be answered in a
clinical setting and the expected reliability and validity of the answers provided by a
computational model. Nevertheless, efforts and advances towards a clinical application
have recently shown great potential. For instance, the remarkable progress made in the
context of AAA modeling has already shown to provide indices for the risk of rupture
superior to the 5.5 cm criterion used as a clinical standard [72, 148].

AAA and the risk of rupture From a mechanical point of view, the diameter criterion
can be justified from the representation of an AAA as a thin walled cylindrical structure.
This perspective enables estimations of the arterial wall stress by means of measurements
of pressure and diameter. It was shown that these estimations provide more sensitive
predictors on the rupture potential than the maximum diameter alone [90]. But given
the complex geometrical structure of a AAA, the cylindrical assumption is potentially
over simplifying. In fact, it was shown by Fillinger et al. [61] that patient-specific com-
putational models based on finite element (FE) analysis are able to provide estimations
of maximum wall stresses which are more decisive for the risk of rupture than the maxi-
mum diameter or the stresses estimated from the cylindrical assumption. Since then, FE
models with increasing complexity have been applied. Whereas the impact of increas-
ingly complex models is still under discussion [182], there is some agreement on the fact
that an aneurysm ruptures when wall stress exceeds wall strength [222]. Unfortunately,
wall strength is not a quantity which can be assessed in-vivo. Nevertheless, independent
studies found that statistical models of wall strength in combination with patient-specific
wall stress analysis outperforms pure stress based models [72, 148]. In this context, the
term rupture potential index (RPI), as some measure of the relation between wall stress
and wall strength, was coined.
A common basis in the assessment of the risk of rupture based on stress or strength is

a static point of view. In this sense, loading conditions and geometry for a specific point
in time are related to a ‘snap-shot’ estimation of a rupture potential. The patient-specific
transient behavior of growth of a AAA is not covered. Thus, a direct application of these
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1. Introduction

models in the assessment of surveillance intervals is not possible.

1.2.1. Modeling of AAA growth

As a consequence of the unclear biological causes leading to the formation of an aneurysm,
also the continuum mechanical modeling of arterial growth is still a controversially dis-
cussed topic [see e.g. 5, 101]. It is generally acknowledged that arterial expansion has
to be modeled as a combination of growth and remodeling (G&R). Whereas growth is
referring to the increasing mass of the tissue, remodeling describes the reorganization
of constituents in the arterial wall. Currently there are two main approaches to the
modeling of these phenomena.
Kinematic formulations [187] attempt a phenomenological description of the conse-

quences of the biological processes leading to growth. Although this approach is very
versatile and can be conveniently incorporated into existing continuum mechanical for-
mulations, the phenomenological character represents a major cause of criticism. In this
regard, the constrained mixture theory [102], and its numerous extensions and variants
[see e.g. 100], claims superiority by accounting for the composite structure of the arte-
rial wall and the steady turnover of the associated constituents in healthy tissue. As a
consequence, the modeling of arterial growth by means of the constrained mixture for-
mulation is always related to a ‘healthy’ state. Furthermore, the initiation of the process
of dilation of an artery is not intrinsically contained in this formulation but has to be
triggered manually [100].
Despite some illustrative applications to patient-specific data and claims to the ap-

plicability to patient-specific AAA data, the development of both approaches is mainly
carried out with respect to conceptual issues and their demonstration on simplified AAA-
like geometries. Consequently, neither of the two approaches has been validated with
respect to its predictive capabilities on the extrapolation of AAA expansion so far. Vali-
dation is thereby understood as the statistical testing of a hypothesis such as ‘the model
is able to predict AAA growth’ for a certain level of confidence. Beside a significant
cohort of patient-specific data, such a validation requires models with a certain maturity
with respect to their predictive capabilities. In this regard, the approaches by Baek et al.
[12], Zeinali-Davarani et al. [232] and Zeinali-Davarani et al. [231] provide major steps
towards a patient-specific estimation of AAA growth. These studies try to establish
patient-specific homeostatic conditions in a constrained mixture approach for models
of healthy aortas by an inverse approach. But, in a clinical setting, a corresponding
‘healthy’ state is never available. Rather, an already diseased aorta (i.e., an aneurysm)
is monitored by means of longitudinal or data. Computational modeling in such a setting
was first attempted by Tinkl [218].

1.2.2. Model personalization

Continuum mechanical formulations represent a generic and phenomenological approach
to biomechanical problems. To be used as a means in patient-specific modeling, ap-
plication specific specializations of the applied formulations have to be utilized. The
issue of model personalization is represented in many different aspects of the model.
Thereby, the use of patient-specific geometries is enabled by routinely available imaging
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technologies such as ultrasound (US), magnetic resonance imaging (MRI) or computed
tomography (CT). Other components of a model such as boundary conditions, consti-
tutive descriptions of elastic or inelastic properties (i.e., growth) are often intricate to
define on a patient-specific basis. This is mainly caused by the fact that in the cardio-
vascular field associated parameters cannot be measured in-vivo. This issue resulted in
the development of elaborate methods for model calibration.
These calibration methods invert the standard input → output relation of a model

by trying to identify model input from measurements associated to the model output.
Such inverse problems play an important role in almost every field of engineering or
science such as, e.g., geophysics [32, 175], weather forecast [203] or astrophysics [214]. In
the field of biomechanics, (model-based) elastography, i.e., the detection of normal and
diseased tissue from medical image data, is a very popular application of inverse problems
[55, 66, 170]. In the more specific situation of cardiovascular applications, the estimation
of elastic properties of arteries is also called vascular elastography. Among many different
topics, this field covers applications towards models of the healthy aorta [16, 20, 232]
and aneurysms (cerebral and abdominal) [14, 48, 126]. However, the general concept of
elastography is not constrained to an elasticity setting and the general approach is, e.g.,
also applied to electromechanical properties in cardiac mechanics [98, 198, 229]. This
general field of vascular elastography has recently been considerably influenced by the
sequential approach proposed by Moireau et al. [163]. This approach has been applied to
estimation problems in cardiac (electro-)mechanics [37, 150] or FSI models of the aorta
[20, 161].
In a clinical situation, measurements are often given by image data. The associa-

tion of such measurements to the output quantities of a computational model is not
straightforward and requires careful treatment [162]. It has recently been shown that a
proper treatment of the image data can highly influence the efficiency and the results of
a parameter identification framework [104, 112].

Calibration of models for AAA growth To be able to identify parameters for AAA
growth, the image data must capture the transient behavior of growth in time. Such data
is given by longitudinal data which provides images of at least two distinct points in time
showing growth of an aneurysm. In clinical practice however, neither of these images
shows a healthy reference state which could be used to assess the homeostatic conditions
necessary for a constrained mixture approach [see 12, 231, 232]. This identifiability issue
is accounted for by Tinkl [218] by introducing modeling assumptions imposed on the
initialization of growth from an already diseased state. This approach allows for an
identification of growth parameters and accordingly also a prediction of future growth.
However, the predictive use of growth models in the sense of a quantification of the
uncertainty associated to the prediction has not been considered so far.

1.2.3. Incorporation of uncertain and probabilistic effects

In the field of biomechanical applications and the intention of clinical applicability, the
reliability and quality of predictive models is of high importance. In practice, the model-
ing process is subject to various sources of uncertainty. This uncertainty will necessarily
result in a variability of the predictive model output. Thus, the assessment of the quality
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of a model necessitates a quantification of the variability of the output quantities of the
model. Conceptually, different sources of uncertainty can be distinguished [116]:

• The most obvious source of uncertainty is given by the lack of precise knowledge
or randomness of the input parameters of a model referred to as parameter uncer-
tainty. In the context of models of AAA growth, this uncertainty can by reduced
by exploiting medical image data. Random and systematic errors in the imaging
machinery and the bounded resolution of medical images are reflected in the def-
inition of the model geometry and the boundary conditions. Further sources of
uncertainties are given through the imperfect knowledge of constitutive properties
or growth parameters.

• In a calibration setting, the effects of parameter uncertainty typically interfere with
the observation error. A measurement process is usually subject to systematic and
random errors which will be reflected in the measured data. The use of these mea-
surements in the identification of input parameters will additionally be propagated
to the model output. In the context of AAA growth, the measurement is again
given by image data. It is therefore subject to the same sources of error as the
initial model geometry. However, the data must not necessarily be given by the
same image modality or the same spatial resolution. Thus, the specification of
measurement noise and geometric uncertainty of the initial model can differ.

• From an epistemological perspective, every model is subject to model limitations
bounding the predictive quality [219]. This source of error is referred to as model
inadequacy. Model limitations might also be reflected by the inability of a model
to capture a seemingly randomly fluctuating process. Thereby, the fluctuation can
either be truly random or the result of aspects of the physical process not covered
by the model. In this setting, model inadequacy is defined by the process mean,
and the remaining uncertainty is referred to as residual variability.

• In principle, a computer program represents a deterministic functional representa-
tion of the model. But due to the complexity of the implementation, a computer
program is never tested for arbitrary combinations of input parameters. Thus,
there is some de facto uncertainty introduced through the application of software,
which is referred to as code uncertainty.

Whereas these effects are characterized by distinct features, in practical situations, the
identification and quantification of a particular source of uncertainty is difficult. Thus,
to date, most approaches concentrate on a subset of possible uncertain effects. Thereby,
a very successful class of approaches adopts a Bayesian point of view. In this sense,
the concept of probability is also interpreted as the substantiation of a degree of belief.
Beside truly random relations, also the absence of accurate knowledge is modeled by
means of probabilistic formulations.
The implementation of probabilistic concepts in standard engineering processes is made

difficult by the complexity of the applied models. This complexity is reflected in two dif-
ferent but often associated effects. On the one hand, the complexity of a model is given
by sophisticated and possibly nonlinear functional descriptions. In many situations, this
requires a significant amount of computational effort in terms of time and resources for a
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single evaluation of a model. Given that reliable methods for uncertainty quantification
(UQ) require a considerable number of model evaluations, the computational effort as-
sociated to a single model evaluation represents a decisive bottleneck factor in practical
applications. On the other hand, the complexity of a model refers to the high dimension
of the input parameter space. If the input parameters are considered random, this in-
duces a high stochastic dimension for probabilistic formulations. But as a consequence of
the curse of dimensionality [see e.g. 25], many methods for UQ perform poorly in a high
dimensional setup. This poor performance is thereby often related to a drastic increase
in the number of model evaluations with increasing dimension of the input parameter
space.
Continuum mechanical cardiovascular models are often associated to both aspects of

complexity. The accurate representation of the physical processes requires highly resolved
nonlinear models. Consequently, the applied numerical techniques result in expensive
computational evaluations. Furthermore, input parameters, such as constitutive param-
eters or growth parameters, are subject to a priori unknown spatial distributions. An
accurate modeling of these distributions by means of finite dimensional representations
implies a high dimension of the input parameter space. This renders the application of
standard Bayesian methods [see e.g. 184] a great challenge and is a reason for the restraint
of a general transition towards probabilistic formulations in the field of cardiovascular
modeling.

Model complexity In principle however, Bayesian methods and techniques that are able
to handle complex models efficiently are being established. Thereby, issues related to
the computational effort associated to the model evaluation are approached by advanced
sampling techniques or the use of surrogate models.

• Advanced sampling: in order to overcome the inefficiency of standard Markov chain
Monte Carlo (MCMC) methods, hybrid monte carlo techniques try to improve the
convergence, and thereby the number of model evaluations, by employing insight
into the physical properties of models [56, 82, 141, 166]. Such schemes can also be
enriched by second order information [152], which is enabled by the availability of
efficient approaches to gradient and hessian computations based on the well estab-
lished adjoint theory [224]. Nevertheless, the necessary number of sequential model
evaluations might still render these approaches infeasible for large-scale models. In
this regard, techniques of sequential filtering try to exploit the sequential nature of
models [42, 50, 54]. This results in efficient schemes for transient physical systems
with an inherent sequential nature. However, the same strategy can also be ap-
plied to static systems whereby a sequential nature is introduced artificially [165].
The Kalman filter and its various variants represent a particular but very popular
approach to sequential filtering problems [202].

• Surrogate modeling: whereas advanced sampling techniques try to reduce the num-
ber of necessary model evaluations, the use of surrogate models tries to reduce the
computational cost associated to a single model evaluation. A surrogate model or
reduced order model is given by an approximation to the full order model (FOM)
such that a significant reduction in computational time is achieved. A popular
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approach are nonlinear model reduction techniques such as proper orthogonal de-
composition (POD) that employ a snapshot database of FOM solutions created
offline to construct a reduced basis for the model under certain optimality criteria
[23, 33, 70, 149, 167]. Another approach to the construction of reduced order mod-
els is given by coarse grid representations of FOMs based on spatial discretization
techniques like the classical finite element method (FEM). In contrast to approaches
based on POD, these techniques are not claiming optimality of the reduced order
representations but build on a statistical relation between coarse grid and fine grid
solutions [22, 122, 123].

Input dimensionality The aspect of high dimensional input spaces has recently been
influenced by advances in the field of machine learning and pattern recognition. With the
growth in digitization and storage capacities, methods and applications in these fields
are faced by the immense increase in data to be processed. The demand for inference
from this large amount of data requires the application of techniques for the robust
representation of the available data [18, 108, 138, 197, 215]. All these techniques are
applied to data sets being already available. However, in the setup of model calibration,
input data is not available but to be inferred from measurements associated to the model
output. In certain situations, this inference process can be directly perfomed on sparse
representations of the input space. Such sparse representations are available for certain
a priori assumptions on the structure of the input space [139]. But in general, dimension
reduction in the setting of inverse problems is significantly more difficult. Recently, this
problem was addressed by Franck and Koutsourelakis [66] in a framework for approximate
inference.

Uncertainty quantification in AAA modeling The biomechanics community has only
recently started to adopt probabilistic principles in the development of models. And
despite the influential work of Moireau et al. [163] in the general field of cardiovascular
(electro-)mechanics, the field of AAA modeling is mainly approached in a deterministic
setting. But it was pointed out that the consideration of parameter uncertainty can
increase the predictive capabilities of models applied in the computation of the risk of
rupture [176]. Furthermore, it has been shown by Biehler et al. [22] that UQ can be
efficiently performed for large-scale biomechanical problems and for models applied in
the assessment of the risk of AAA rupture.
Towards a clinical application of models for AAA growth, a probabilistic formulation is

inevitable. On the one hand, a rigorous quantification of uncertainty greatly increases the
reliability of models and allows for a proper assessment of their predictive capabilities.
On the other hand, given the ambiguity in the mathematical formulation of growth,
a probabilistic formulation allows for an information theoretic comparison of existing
models [111]. Thus, by incorporating longitudinal data and the associated observation
error, a decision towards the kinematic or the constrained mixture approach can be
performed on a formally sound basis. Despite these clear advantages, approaches towards
a probabilistic calibration of models for AAA growth have not been developed so far and
are thus subject to the work presented in this thesis.
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1.3. Objective of this thesis

The goal of this thesis is the development of a Bayesian parameter calibration frame-
work for predictive models of AAA growth. The requirements for such models to be of
predictive quality in a patient-specific setting result in large-scale nonlinear continuum
mechanical models. The patient-specific calibration of such models with respect to pa-
rameters describing the arterial growth necessitates high dimensional input spaces that
attend the need for a flexible spatial representation of parameters describing arterial
growth. In this setting, the main focus of the thesis is twofold: one aspect is the efficient
and accurate treatment of measurement data given by medical imaging technologies; the
other aspect is the handling of the high input dimensionality.

Efficient and accurate treatment of measurement data In the context of cardiovas-
cular modeling, data is often given by medical imaging technologies. To represent the
transient process of growth, longitudinal data showing at least two snapshots in time
are necessary. As a result, the information of growth is encoded in a series of images.
In contrast, primal variables in continuum mechanical formulations are often given as
displacement or velocity. In order to provide meaningful measurements for such models,
the deformation encoded in longitudinal image data has to be extracted. The process of
decoding is often performed by image registration. However, the information provided
by images usually does not allow for the determination of a unique deformation. Thus,
image registration itself is an inverse problem controlled by modeling assumptions and
regularization [160]. But these assumptions are not necessarily capable of representing
the true underlying physical processes depicted in the sequence of images. Consequently,
the application of image registration results in a measured deformation incorporating a
potential systematic error. In a parameter calibration framework, this error will be re-
flected in the calibrated model and thus it will affect the predictive quality of the model.
Since the predictive quality represents a decisive factor towards the clinical applicability,
a sensible treatment of the available image data is indispensable. To this end, this thesis
presents a calibration framework based on measurements given by surface data. Surface
data can be extracted from medical images by means of segmentation without the use
of image registration techniques. Thus, the systematic error accompanying image reg-
istration is effectively avoided. To close the association of the model output in terms
of displacements and a corresponding measurement given by surface information, the
mathematical formalism of surface currents is employed [221]. This formalism can be
seamlessly integrated into a Bayesian calibration framework since it enables a perspective
on surfaces as random variables.

Dimensionality reduction The need to represent parameters as spatially varying func-
tions is associated to a high dimension of the input space. But input parameters such as
constitutive or growth parameters are rarely associated to arbitrary fluctuating functions.
Rather, certain structural assumptions on the spatial variability are actually reflected in
sparse representations. However, these sparse representations are not necessarily avail-
able a priori. In the context of this thesis, parameters for AAA growth are assumed to
be represented by functions of bounded variation [83]. Such functions are globally char-
acterized by a bound in total variation (TV). Nevertheless, this bound does not restrict
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a distinct local variability of a function. Thus, functions of bounded variation are able
to represent ‘smoothly’ varying functions with distinct and locally bounded features.
In combination with FE models, such functions can be conveniently approximated by
element-wise constant functions resulting in the dimension of the input space given by
the number of elements in the discretization or in the respective partition of the dis-
cretization where the parameter is physically defined. However, such a high dimensional
representation renders a probabilistic treatment of the calibration problem by the ap-
plication of advanced sampling techniques highly inefficient. Furthermore, although not
a priori accessible, the setup of bounded variation suggest some sparsity of solutions in
the patient-specific case, which is not utilized by the element-wise basis. To this end,
a novel dimensionality reduction approach that is able to exploit the effective sparsity
of parameters on a patient-specific basis is proposed. It is shown that this approach
is capable to reflect the main covariance structure contained in the corresponding full
dimensional solution.
The numerical simulations shown throughout this thesis were realized using the parallel

in-house research code BACI which is jointly developed at the Institute for Computa-
tional Mechanics and the Mechanics and High Performance Computing Group of the
Technische Universität München [223]. Building on existing modules for the FE simu-
lation in the context of nonlinear solid mechanics and the simulation of arterial G&R,
a generic probabilistic calibration framework was implemented and used to conduct the
simulations presented in this thesis.

1.4. Organization of the thesis

Chapter 2 begins with the introduction of the continuum mechanical framework of quasi-
static nonlinear structural elasticity. The presentation covers all relevant aspects of non-
linear continuummechanics as well as the incorporation of the transient process of arterial
growth into the quasi-static framework such that the final problem can be formulated
as a sytem of partial differential equations (PDEs). After that, the FEM as a numerical
approach for the discrete representation of this system as a set of algebraic nonlinear
equations is briefly summarized and approaches for the solutions of this nonlinear sys-
tem are presented. The chapter is concluded by the introduction of a parametrization of
the system and some aspects specific to cardiovascular modeling.
Given a properly formulated model for the prediction of AAA growth, chapter 3 pro-

vides the Bayesian formulation of the parameter calibration problem. Beside a very
brief presentation of the concepts of Bayesian statistics, the main building blocks of
the Bayesian formulation are introduced and analyzed in detail. Thereby, the choice of
the representation of measured data as surfaces is motivated and a statistical model of
surfaces in the context of the surface current formalism is provided. Furthermore, the
definition of a prior model based on functions of bounded variation is given and ana-
lyzed with respect to other popular prior models. Finally, a Lagrangian formulation of
the inverse problem is presented which allows for the efficient computation of gradient
information by means of adjoint equations.
The solution of the calibration problem is outlined in chapter 4 covering the definition

of optimal solutions as well as the associated numerical computations in a Bayesian
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context. Thereby a self-contained presentation is targeted that completes the setup and
definition of the calibration problem given in the preceding chapters and enables the
concentration on the relevant and new aspects in the following chapters.
The main aspect of chapter 5 is the description and analysis of the proposed approach

to dimensionality reduction under total variation (TV) prior assumptions. The validity
of these assumptions in the case of AAA growth is motivated by a Bayesian argument and
a review on existing approaches to dimensionality reduction in the field of biomechanical
simulations is provided. The functionality of the approach is demonstrated on a small-
scale problem based on synthetic data before it is applied to a large-scale simulation
in chapter 7. The analysis in the small-scale regime thereby enables a quantitative
assessment of the predictive quality of the reduced basis approach in comparison to a
solution based on a full dimensional representation of the input space. This quality is
also shown in comparison to an often applied a priori dimensionality reduction technique
based on a patch-wise approximation of parameters.
Chapter 6 highlights the beneficial properties of the surface current formalism in the

context of systematic errors introduced through registration techniques. By using syn-
thetic data with a quantifiable source of systematic error representing a typical applica-
tion of image registration, the efficiency of the surface current formalism is demonstrated.
This chapter is partly based on the work presented by Kehl and Gee [112].
Chapter 7 shows the application of the dimensionality reduction approach to patient-

specific data. This allows the Bayesian calibration of a large-scale patient-specific model
of AAA growth based on longitudinal image data. By using the statistical model for
surface measurements, a predictive use of the model that accounts for the uncertainty
incorporated in the data is enabled. The validity of this model under various aspects of
modeling is discussed: beside the patient-specific character of the model, the alignment
of the image data and the validity of the statistical model for surface data are reviewed.
The summary of main results and achievements and possible directions for future

research are provided in chapter 8.
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This chapter introduces the general mechanical and mathematical concepts used to model
AAA growth in this thesis. The modeling of the complex physiological process of arterial
growth is thereby embedded in the continuum mechanical formulation of nonlinear elas-
ticity of solid structures. The approach pursued in this thesis follows the assumption that
the timescale of the process of vascular growth (months to years) is orders of magnitude
larger than the timescale of the pulsatile blood flow (seconds). Resolving the accurate
dynamical behavior of an artery during a heart cycle is therefore neither necessary nor
reasonable. Instead, the elastic properties of an artery are modeled by a quasi-static
description. After the presentation of the incorporation of the irreversible processes of
arterial growth in the elasticity framework, the chapter concludes with the introduction
of the numerical treatment of the mechanical system by means of the FEM and some
aspects relevant to patient-specific cardiovascular modeling.
The presentation of these concepts is not meant to be comprehensive, but aims at a

consistent introduction of the quantities of interest needed to arrive at a computationally
solvable set of equations. However, these equations are not the main target of the work
presented in this thesis but meant to be incorporated into a parameter identification
framework. Hence, the presentation also tries to back up certain concepts helpful in the
setup and the understanding of the associated inverse problem introduced in chapter
3. In particular, this includes the nonlinear solution process by means of continuous
incremental formulations which enable a consistent derivation of the adjoint equations
resulting from a Lagrangian formulation of the inverse problem, see chapter 3.5.
For details, the reader is referred to the respective literature cited throughout this

chapter. Generally, a comprehensive introduction to nonlinear solid mechanics is, e.g.,
given by Bonet and Wood [27], Holzapfel [99] or Truesdell and Noll [220]. An introduction
to the variational concepts used in the nonlinear elastic theory is given by Pedregal [174]
and a reference for the continuum formulations of kinematic relations is provided by
Donea et al. [53]. For the theoretical foundations of the FEM the reader is referred to
Larson and Bengzon [131] or Zienkiewicz et al. [233].

2.1. Nonlinear solid mechanics

Solid mechanics is the analysis of the deformation of solid bodies subject to certain forces.
The nonlinearity of this deformation is introduced through the potential nonlinearity of
the relations in the chain

stress↔ strain↔ deformation. (2.1)

The functional description of these relations follows a continuum mechanical approach
since the body of interest is modeled as a continuous mass. To account for the possible
occurrence of large deformations, a theory for finite deformations is pursued.

13



2. Computational solid mechanics

The body of interest is represented by a certain reference configuration Ω0 ⊂ R3

which is deformed reversibly under prescribed loads and/or irreversibly, e.g., due to
growth, into a current configuration Ωt ⊂ R3. Since the configurations are associated
to a specific set of mass, they are also termed material configurations. In contrast,
configurations that are associated to a fixed volumetric subset of the ambient euclidean
space are referred to as spatial configurations. In the context of medical applications,
these material configurations can be monitored by medical imaging technologies. Since
medical images span a larger space than the configuration of interest, e.g., in whole-body-
scans, it is reasonable to define Ω0 and Ωt as subsets in the space of images: Ω0 ⊂ ΩI

0

and Ωt ⊂ ΩI
t, see figure 2.1 for an illustration. The domain boundaries ∂Ωi, i ∈ (0, t),

Ωt
Ω0

∂Ωt,u
∂Ω0,u

∂Ω0,σ

∂Ωt,σ

ΩI
t

ΩI
0

Figure 2.1.: Illustration of the involved physical domains of interest Ω0 ⊂ ΩI
0 and Ωt ⊂ ΩI

t,
embedded in the euclidean space R3. As material domains they are labeled by
material coordinates X ∈ Ω0 and x ∈ Ωt.

are uniquely partitioned into the subsets ∂Ωi,u and ∂Ωi,σ, with

∂Ωi,u ∪ ∂Ωi,σ = ∂Ωi and ∂Ωi,u ∩ ∂Ωi,σ = ∅. (2.2)

To allow for a description of the configurations Ω0 and Ωt, a Lagrangian formulation
is applied which associates coordinates X and x to material points with X ∈ Ω0 and
x ∈ Ωt.
Given certain loads on the structure Ω0 and certain constraints on the deformation,

the identification of a current configuration Ωt is the main subject of interest in the solid
mechanical treatment. To this end, a kinematical description of the deformation (chapter
2.1.1) and a kinetic description of the current configuration (chapter 2.1.2) are coupled
by the definition of stress-strain relations (chapter 2.1.3).

A note on notational conventions

In the following chapters, a common Cartesian reference frame will be assumed such that
all tensorial quantities share a common vector-/matrix-representation. Given the vectors
a ∈ Rm and b ∈ Rm, with components ai and bi, as representation of 1-tensors, and the
matrices A ∈ Rm×m and B ∈ Rm×m, with components Aij and Bij , as representation
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of 2-tensors, the following conventions are used: the inner and outer vector products are
given by

a · b =

m∑
i=1

aibi, [ab]ij = aibj . (2.3)

In particular, the definition of the outer product holds also for the vectorial representation
of ∇a := { ∂

∂ai
}. For the matrix-vector product the convention

a ·B =
m∑
i=1

Bijai, B · a =
m∑
j=1

Bijaj , (2.4)

is used. These definitions render a specific differentiation between column- and row-
vectors irrelevant. Matrix-Matrix products are defined by

[AB]ij =

m∑
k=1

AikBkj , A : B = tr(AB), tr(A) =

m∑
i=1

Aii. (2.5)

2.1.1. The law of motion

One of the most fundamental principles in the continuum mechanical description of a
body is the definition of a deformation called the law of motion:

Definition 2.1.1 (Law of motion). Given a reference configuration Ω0 and a current
configuration Ωt, the diffeomorphic mapping

ϕ(X, t) : X 7→ x ∀ X ∈ Ω0,x ∈ Ωt, (2.6)
s.t. c(ϕ) = 0, (2.7)

is called law of motion. c represents a constraint on the deformation.

This mapping provides the basis for the kinematic description of the body of interest,
see figure 2.2. Most importantly, it implies the mapping between the tangent spaces
called deformation gradient :

Definition 2.1.2 (Deformation gradient). Given a mapping according to definition 2.1.1,
the associated mapping F(X) : TXΩ0 → Tϕ(X)Ωt is given by

F(X) :=
∂ϕ(X)

∂X
=
∂x

∂X
= F̂(x). (2.8)

Given the mapping (2.6) in terms of the displacement field U(X) as x = X + U(X),
the deformation gradient can be written as

F(X) = I +
∂U(X)

∂X
= I +∇XU(X). (2.9)

Furthermore, the constraint (2.7) can also be formulated in terms of the displacements.
Throughout the work presented in this thesis, this constraint is given by fixing the
boundaries ∂Ω0,u = ∂Ωt,u resulting in the Dirichlet boundary condition

c(ϕ) = ϕ(X)−X = 0 ⇐⇒ U(X) = 0 ∀X ∈ ∂Ω0,u. (2.10)
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Ω0, TXΩ0

Ωt, Tϕ(X)Ωt

ϕ(X)

F

Figure 2.2.: Illustration of the fundamental relations between the reference configurations Ω0

and the current configuration Ωt, and their respective tangent spaces TXΩ0 and
Tϕ(X)Ωt = TxΩt.

Since ϕ−1(x) can be represented by ϕ−1(x) = X = x − u(x) with u(x) = U(ϕ−1(x)),
this boundary constraint is equivalently expressed in the current configuration by

u(x) = 0 ∀x ∈ ∂Ωt,u. (2.11)

The deformation gradient plays the role of the fundamental measure of strain by
relating infinitesimal line elements dx ∈ TxΩt and dX ∈ TXΩ0. According to definition
2.1.2, this relation is given by

dx = F(X) · dX. (2.12)

Since the elements dx and dX imply a fixed spatial association, the relation (2.12) is
often abbreviated to dx = F · dX.
Despite the fundamental character of the deformation gradient, general stress-strain

relations (see chapter 2.1.3) are more conveniently described in quantities derived from
the basic relation (2.12). For instance, the shear of an infinitesimal area in terms of
the change in angle between infinitesimal line segments dx1,dx2 and dX1, dX2 can be
expressed in terms of the right Cauchy-Green tensor C(X) ∈ TXΩ0 × TXΩ0 via

dX1 ·C · dX2 = dx1 · dx2. (2.13)

Inserting (2.12) results in C = F>F. Thus, the right Cauchy-Green tensor captures the
relation of the scalar product in the spatial and the reference configuration. This can be
used to define the difference in angle as

dx1 · dx2 − dX1 · dX2 = dX1 · (C− I) · dX2. (2.14)

The tensor E(X) = 1
2(C(X)−I) is called Green-Lagrange strain tensor with E ∈ TXΩ0×

TXΩ0.
Restarting from (2.12) but expressing dX in terms of dx via dX = F−1 · dx leads

to the definition of the left Cauchy-Green tensor `(x) = F(x)F>(x) ∈ TxΩt × TxΩt

and accordingly the so called Euler-Almansi strain tensor e(x) = 1
2(1 − `−1(x)). As

a consequence, it can then be seen from equation (2.14) that the relation between the
Green-Lagrange tensor and the Euler-Almansi tensor is given in terms of the push-forward
ϕ∗[•] and pull-back ϕ−1

∗ [•] operations:

e(x) = ϕ∗[E] = F−>(x)E(ϕ−1(x))F−1(x), (2.15)

E(X) = ϕ−1
∗ [e] = F>(X)e(ϕ(X))F(X). (2.16)
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Variation of strain measures In anticipation of the kinetic description of balance equa-
tions in the sense of variational formulations (chapter 2.1.2), the variation of these mea-
sures of strain under an admissible variation δU of the displacement field U is of par-
ticular importance. This variation is given in terms of the Gâteaux differential [see e.g.
193]. For the variation of the deformation gradient δF(X)[δU], the application of the
directional derivative results in

δF(X)[δU] =
d

dε
(F[U + εδU]) |ε=0 = ∇XδU. (2.17)

Based on this result, the variation of the Green-Lagrange strains δE is obtained as

δE(X)[δU] =
1

2

(
(∇XδU)>F + F>∇XδU

)
. (2.18)

The variation of the Euler-Almansi strain δe(x)[δu] is given according to (2.15) by

δe(x)[δu] =
1

2

(
∇xδu + (∇xδu)>

)
, (2.19)

whereby the variations δu and δU are simply related via δu(x) = δU(ϕ−1(x)). The
notation ∇x(•) is thereby introduced in contrast to ∇X(•) to represent ∇x(•) = ∂•

∂x .

2.1.2. Balance of momentum

In classical mechanics, one possibility to arrive at a solvable set of the equations of motion
for the system of interest is given by the balance of momentum.

Balance of linear momentum In the case of quasi-static analysis, the balance of linear
momentum reduces to the equilibrium of forces. Since it must hold for arbitrary I ⊂ Ωt

with boundary ∂I, it can be written as∫
∂I

t(x) dΓ +

∫
I

b(x) dV = 0. (2.20)

Therein, the vector field b represents a body force (force/volume) and the vector field t
is assumed to be related to the so called Cauchy stress tensor σ ∈ T ∗xΩt × T ∗xΩt via the
relation

t(x) = n(x) · σ(x), (2.21)

with n being the field of outwards-pointing normals on ∂I. The assumption (2.21) is
a fundamental assumption in mechanics referred to as Cauchy theorem. It is further
assumed that the vector field t(x) is given at the boundary by

t(x) = t̂(x) ∀x ∈ ∂I ∩ ∂Ωt,σ. (2.22)

With the application of the divergence theorem to each of the 3 components of the
vector equation (2.20), the equilibrium of forces can be written as∫

I
(divσ(x) + b(x)) dV = 0. (2.23)

Therein, div • denotes the divergence operation div • = ∇x · •. In anticipation, it is
already noted that the divergence operator with respect to material coordinates will be
denoted by Div • = ∇X · •.
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Remark. For the evaluation of (2.20) and for the application of the divergence theo-
rem, it is implicitly assumed that the involved vector fields t and b posses the necessary
regularity.

Since equation (2.23) holds for arbitrary volumes I, it also holds for arbitrarily small
volumes and thus it also holds in a point-wise sense:

divσ(x) + b(x) = 0 ∀x ∈ Ωt. (2.24)

Balance of angular momentum In the quasi-static case, the balance of angular mo-
mentum for the arbitrary set I reduces to the equilibrium of torque. It is given with
respect to the origin of the Cartesian reference frame by∫

∂I
(x× t) dΓ +

∫
I
(x× b) dV = 0. (2.25)

Using the divergence theorem and some algebraic rearrangements, it can be shown that
this equilibrium is obtained by setting

σ = σ>, (2.26)

see appendix A. Under this constraint and in combination with the boundary conditions
(2.22) and (2.11), (2.24) constitutes the complete set of the equations of motion for the
body of interest. Due to the point-wise evaluation and the hard requirements on the
differentiability of the solution, these equations are also referred to as strong equations.

Variational formulation The FEM relies on a formulation with weaker differentiability
requirements given by the principle of virtual work. This can be obtained by a weighted
residual formulation of (2.24) given by∫

Ωt

(divσ(x) + b(x)) · δu(x) dV = 0 ∀δu. (2.27)

The test functions δu must thereby comply with the concept of admissible variations
[see e.g. 193]. Formally, this can be expressed as

∀u(x) ∈ U, û(x) = u(x) + δu(x) ∈ U, (2.28)

for some vector space U . A specific implication of this definition is that the test-functions
δu must comply with the Dirichlet boundary condition (2.11).
Using the identity div(σ · δu) = div(σ) · δu + σ : ∇δu in combination with the

divergence theorem allows to write (2.27) as∫
∂Ωt

(σ(x) · δu(x)) · n dΓ−
∫

Ωt

σ(x) : ∇xδu(x) dV +

∫
Ωt

b(x) · δu(x) dV = 0. (2.29)

Due to the symmetry σ> = σ, it is possible to identify

→ (σ · δu) · n = (σ · n) · δu = t · δu (2.30)

→ σ : ∇δu = σ :
1

2
(∇δu + (∇δu)>) = σ : δe. (2.31)
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2.1. Nonlinear solid mechanics

The virtual work in the spatial configuration is therefore given by

δW =

∫
Ωt

σ(x) : δe(x) dV −
∫

Ωt

b(x) · δu(x) dV −
∫
∂Ωt,σ

t̂(x) · δu(x) dΓ = 0. (2.32)

Such a formulation in the spatial configuration, i.e., an a priori unknown configuration,
is not the most convenient formulation from a computational point of view. More often,
a so called Total Lagrangian formulation is applied. In the Total Lagrangian formula-
tion, equation (2.32) is transformed as an integral over the reference configuration Ω0.
The necessary transformations of the infinitesimal measures of volume and surface are
established by the deformation gradient and are given by

dV = det(F(X)) dV0 = J dV0, (2.33)

dΓ = J
√

N(X) ·C(X)−1 ·N(X) dΓ0. (2.34)

The virtual work can thus be written in the reference configuration as

δW =

∫
Ω0

σ∗(X) : δe∗(X)J dV0 −
∫

Ω0

b(X)∗ · δU(X)J dV0

−
∫
∂Ω0,σ

t̂(X)∗ · δUJ
√

N ·C−1 ·N dΓ0 = 0. (2.35)

Thereby, the ∗-notation was used to highlight the change in functional dependency
f(ϕ(X)) = f∗(X). The Cauchy stress σ∗(X) and the Euler-Almansi strain e∗(X) still
represent quantities being related to the spatial configuration and thus it is more consis-
tent to express the internal virtual work in terms of stress/strain measures being defined
directly in the reference configuration. This is achieved by the definition of the second
Piola-Kirchoff stress tensor S ∈ T ∗XΩ0 × T ∗XΩt such that the energy conjugate pairing
S : E maintains the invariance of the infinitesimal virtual work:

dδW (X) = σ∗(X) : δe∗(X) dV = S(X) : δE(X) dV0. (2.36)

This invariance is achieved by the definition of the second Piola-Kirchoff tensor via the
pull-back of the cauchy-stress according to

S(X) := ϕ−1
∗ (σ) = JF(X)−1σ∗(X)F(X)−>. (2.37)

Finally, using b0 := Jb∗ and t0 := J
√

N ·CN t̂∗, the principle of virtual work expressed
in the reference configuration is given as

δW =

∫
Ω0

S(X) : δE(X) dV0 −
∫

Ω0

b0(X) · δU(X) dV0

−
∫
∂Ω0,σ

t0(X) · δU(X) dΓ0 = 0. (2.38)

This is the equation subject to the numerical solution approach presented in section
2.3. For the sake of completeness, the corresponding PDE expressed in the reference
configuration – obtained by the reversion of the procedure to obtain the virtual work
from the strong form – is given:

Div(FS) + b0 = 0 ∀X ∈ Ω0, (2.39)
(FS) ·N = t0 ∀X ∈ ∂Ω0,σ, (2.40)

U = 0 ∀X ∈ ∂Ω0,u. (2.41)
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2.1.3. Hyperelasticity

The missing link to solve (2.38) is given by the relation between stresses and deformation.
In the context of elasticity, such a relation is characterized by a path-independence
property. This property allows for the definition of an elastic potential Ψ̃(F(X),X) called
strain energy function (SEF). Observing the polar decomposition of the deformation
gradient F = RU into a rotational component R and a stretch component U, with
UU = C [see e.g. 27], the SEF is also conveniently expressed in terms of the Cauchy-
Green tensor C:

Ψ̃(F(X),X) = Ψ(C(X),X), (2.42)

Ψ̇ =
∂Ψ

∂C
: Ċ. (2.43)

With the work conjugate pairing S : E and Ė = 1
2Ċ, the work done by the stresses S

can be written as

Ψ(C(X),X) =

∫ t

t0

S : Ėdt → Ψ̇ = S :
1

2
Ċ. (2.44)

The comparison of (2.44) and (2.43) reveals the relation(
1

2
S− ∂Ψ

∂C

)
: Ċ = 0. (2.45)

If Ċ is not subject to particular constraints, this implies that the desired stress-strain
relation is given by

S = 2
∂Ψ

∂C
=
∂Ψ

∂E
. (2.46)

Isotropy Isotropic materials represent an important subclass of hyperelastic materials.
Isotropy is thereby characterized by the invariance of the constitutive behavior with
respect to the spatial direction in the reference configuration. This implies that the SEF
can be written in terms of the invariants I1 = tr(C), I2 = tr(CC), I3 = det(C) = J2 of
the right Cauchy-Green tensor C:

Ψ(C(X),X) = ΨI1,I2,I3(I1, I2, I3,X). (2.47)

Incompressibility Incompressible materials are characterized by conservation of volume
as a body undergoes a deformation. This is formally expressed by the condition J = 1
and accordingly J̇ = 0. Using the identity ∂ det(A)

∂A = det(A)A−1, this results in the
additional constraint on Ċ given as

JC−1 : Ċ = 0. (2.48)

Compliance with (2.45) implies the relation

∀ γ 1

2
S− ∂Ψ

∂C
= γJC−1. (2.49)
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2.2. Incorporation of arterial growth

By reformulation of the SEF with respect to the distortional component of the right
Cauchy-Green tensor Ĉ = J−1/3C as Ψ̂(C) := Ψ(Ĉ), it can be shown that the scalar γ
can be identified with the hydrostatic pressure p [see e.g. 27]. The general stress-strain
relation for an incompressible material hence emerges as

S = 2
∂Ψ̂(C)

∂C
+ pJC−1. (2.50)

Near incompressibility Nearly incompressible materials are often used to approximate
incompressible material behavior. In the modeling of this sort of materials, the constraint
J = 1 is not strictly enforced. Instead the overall SEF is defined as

Ψ(C) = Ψ̂(C) + Ψvol(J), (2.51)

whereby the volumetric strain energy function Ψvol acts as a penalty for volumetric
deformations. A very simple choice for the volumetric function is Ψvol = 1

2κ(J − 1)2.
This choice reflects the solution of the variational formulation (2.38) subject to the
incompressibility constraint by means of a perturbed Lagrangian formulation [233].

Polyconvexity The existence of solutions of the weak formulation (2.38) depends on
some specific properties of the SEF Ψ̃. In fact, it can be shown that the solution of
(2.38) corresponds to the minimization of the functional

W (U) =

∫
Ω0

Ψ̃(X,F(X)) dV (2.52)

with respect to U [see e.g. 174]. The existence of a minimizer of the functional (2.52) is
generally obtained under restrictions of the solution space and the requirement that the
SEF be polyconvex. Abridging the introduction of the theory, the concept of polycon-
vexity in 3 dimensions can be reduced to the requirement that the SEF can be expressed
in terms of a convex function Ψpcx via

Ψ̃(F) = Ψpcx(F, cofF,det F). (2.53)

A general introduction to this topic can be found in Dacorogna [43]. An analysis of some
common nearly incompressible formulations is given by Hartmann and Neff [92].

2.2. Incorporation of arterial growth

The continuum mechanical description of a material introduced in section 2.1.3 material-
ized from an elasticity argument. Functional adaption, i.e., the adaption of living tissue
to external stimuli [68], clearly is a process which cannot be cast in the framework of
elasticity. Thus, the incorporation of such irreversible processes necessitates an extension
of the presented continuum mechanical description.
Modern formulations of growth are often referring back to Thompson [216] who opined

on a mechanistic view on growth and the inherent connection between growth and form.
The reformulation of this line of thoughts in terms of a kinematic description of growth
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is often credited to Skalak et al. [204]. Motivated by this work, Rodriguez et al. [187]
introduced the concept of the multiplicative split of the deformation gradient to allow
for a continuum mechanical treatment of growth. The theoretical foundation of this
approach is based in the field of finite strain plasticity [134]. The multiplicative split

F = FgFe (2.54)

as the decomposition of the deformation gradient into an elastic component Fe and an
inelastic/growth component Fg implies the existence of an intermediate configuration
Ωg, see figure 2.3. It is important to highlight that this intermediate configuration need

Ω0, TXΩ0

Ωt, Tϕ(X)Ωt

F

Fg Fe

Ωg, Tφ(X)Ωg

Figure 2.3.: Illustration of the multiplicative split of the deformation gradient into a growth
component Fg and an elastic component Fe giving rise to an intermediate configu-
ration Ωg that need not necessarily be compatible (as might erroneously be deduced
from the drawing).

not be kinematically compatible to still obtain a compatible spatial configuration. As a
consequence, the mapping ϕg(X) : Ω0 → Ωg is not necessarily differentiable. Thus, Fg

cannot be defined via differentiation of ϕg. The concept of incompatible configurations
is also utilized in the modeling of residual stresses in living tissue [205].
Generally, the continuum mechanical treatment of growth of living tissue is a current

topic of research and is still controversially discussed. Whereas there has been some
agreement on the applicability of the multiplicative framework [see e.g. 71, 97, 128, 143,
208], it has also been questioned due to its phenomenological approach. Particularly with
respect to the accurate modeling of constant mass turnover, i.e., the constant formation
and degradation of mass of particular constituents of the tissue, the constrained mixture
theory [102] claims superiority at the cost of increased model complexity. Since the
focus of the work presented here is on parameter identification and predictive modeling,
the reader is referred to Ambrosi et al. [5] for a more detailed review on the current
state of growth modeling. Here instead, the incorporation and specification of a growth
model based on the multiplicative split (2.54) into the continuum mechanical framework
is pursued. A detailed introduction to this approach is also provided by Tinkl [218].

Isotropic growth Isotropic growth is a subclass of the multiplicative formulation ob-
tained by specifying growth in terms of the so called growth stretch ϑ(X) ∈ R. The
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2.2. Incorporation of arterial growth

growth stretch is used to uniformly define the deformation gradient Fg = ϑI such that
the overall deformation gradient is given by

F = ϑFe. (2.55)

Since growth itself is not supposed to induce stresses directly, the SEF is formally refor-
mulated with respect to a growth-free deformation according to

Ψe(C) := Ψ(Ce), (2.56)

with Ce = F>e Fe = 1
ϑ2 F>F = 1

ϑ2 C. For a fixed ϑ, the SEF Ψe admits the path
independent property necessary to allow for the definition according to (2.44). The
stress-strain relation resulting from an elastic deformation only is then given by

Se = 2
∂Ψe

∂Ce
. (2.57)

And the relation between the second Piola-Kirchhoff stress S and the elastic component
Se is given according to (2.56) by

Se = 2
∂Ψe

∂Ce
= 2

∂Ψ

∂C
:
∂C

∂Ce
= Sϑ2. (2.58)

To close the stress-strain relation, it remains to define the growth stretch ϑ. Again
there is no unified theory available, and the application of the multiplicative framework
is mainly based on ad-hoc formulae for the evolution of ϑ. These can be motivated by
analyzing the change of mass ṁ induced by the growth. The mass m of the body can be
expressed by

m =

∫
Ωt

ρt dV =

∫
Ωg

ρ∗∗t dVg =

∫
Ω0

ρ∗tJg dV0 =

∫
Ω0

ρ0 dV0, (2.59)

whereby incompressibility of the elastic deformation, i.e., Je = det(Fe) = 1, was assumed.
Using Jg = ϑ3, the change of mass ṁ is computed as

ṁ =

∫
Ω0

ρ̇0 dV0 =⇒ ρ̇0 = 3ϑ2ϑ̇ρt. (2.60)

Thus, with the elastic part of the overall deformation being incompressible, the change
in density ρ̇0 in the reference configuration is driven by the evolution of the stretch ratio
ϑ̇, motivating relations of the form

ϑ̇ = f(ϑ, ...). (2.61)

A popular choice is to express the evolution of ϑ on some measure of the pressure. E.g.,

ϑ̇ = f(ϑ,Ce : Se) = kϑ(ϑ)Ce : Se (2.62)

is a popular approach [97, 128]. Therein, the function kϑ is defined by

kϑ(ϑ) =

k
+
ϑ

[
ϑ+−ϑ
ϑ+−1

]m+
ϑ for Ce : Se > 0

k−ϑ

[
ϑ−ϑ−
1−ϑ−

]m−ϑ for Ce : Se < 0

(2.63)
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with the constants k+
ϑ , k

−
ϑ , ϑ

+, ϑ−,m+
ϑ and m−ϑ , which have to be defined on a patient-

specific basis. The predictive capabilities of such a model are highly related to the
identifiability of the parameters involved. Furthermore, these formulae don’t model the
biochemical processes in the living tissue but are merely the result of a top-down modeling
approach. Thus, with the goal of identifying parameters, it is reasonable to accumulate
the function kϑ(ϑ) from (2.63) in a single parameter cϑ resulting in

kϑ(ϑ) = cϑ. (2.64)

The resulting relation (2.62) can be further simplified by ignoring the dependency of the
measure of pressure such that the evolution of the growth stretch is directly given by

ϑ̇ = cϑ. (2.65)

With respect to the accurate modeling of the physical processes of growth, the simple
growth law (2.65) is clearly degenerated. However, with regard to predictive modeling
in the context of a parameter identification framework, it offers clear advantages. By
defining the parameter cϑ as the parameter to be identified, the identification process has
a direct flexible control over the volumetric growth stretch ϑ. In contrast to complicated
formulations such as (2.63), this increases the flexibility and can therefore have a benefi-
cial effect on the nature of the identification problem. Furthermore, the high number of
parameters in the formulation (2.63) can have a negative effect on the identifiability of
the parameters. Another important advantage of the simple formulation (2.65) is given
by its independence of a homeostatic (i.e., healthy) state.

2.3. Numerical approximation

The equations of motion (2.39)-(2.41) do generally not allow for analytic solutions, except
for very specific and simplified cases. Instead, approximate solutions can be obtained
by the application of numerical techniques. A well established numerical approach in
the field of structural mechanics to obtain approximate solutions is the FEM. Beside its
popularity in this particular field, it is a very general method to obtain so called weak
solutions of partial differential equations. This chapter aims at a brief introduction of
the method and the particular discretization techniques applied throughout the work
presented in this thesis. Detailed introductions to the topic are given by Zienkiewicz
et al. [233] or Larson and Bengzon [131]. For the application in the context of nonlinear
structural mechanics, the reader is referred to Bonet and Wood [27].

2.3.1. Weak formulation

Starting point for the FEM is a variational formulation of a PDE. In the context of
nonlinear structural elasticity, this is given by (2.38). In order for (2.38) to be valid,
it must be possible to evaluate the integrals, i.e., there are certain requirements on the
functions U and δU. The natural choice U, δU ∈ C2(Ω0) generally constitutes infeasible
requirements from a numerical point of view. With respect to the existence of solutions
of PDEs, the theory of Sobolev spaces provides a bases for the mathematical analysis
[see e.g. 30]. A fundamental result in the analysis of linear elliptic PDEs – the Lemma
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2.3. Numerical approximation

of Lax-Milgram [see e.g. 3] – is based on the theory of Sobolev spaces. But they are also
a key aspect in the mathematical analysis of the nonlinear elasticity problem (2.38). For
compactness of the presentation, in the following only the essential tools necessary to
arrive at a valid mathematical formulation are stated.
Using the multi-index notation α = (αi, ..., αd) and |α| = ∑d

i=1 αi, the notation

Dαϕ =

d∏
i=1

(
∂

∂xi
)αiϕ (2.66)

can be used to denote the classical partial derivative of any sufficiently smooth function
ϕ. The Sobolev space W p

k (Ω0) is defined as

W p
k (Ω0) := {v ∈ Lp(Ω0) : Dαv ∈ Lp(Ω0),∀ |α| ≤ k} (2.67)

The subclass of spaces W 2
k (Ω0) =: Hk(Ω0) represents an important family due to the

Hilbert space structure. For k = 1, the familiar space H1(Ω0) is obtained. This space is
a Hilbert space with inner product and norm

〈u, v〉H1 = 〈u, v〉L2 + 〈∇u,∇v〉L2 , (2.68)

‖u‖2H1 = ‖u‖2L2 + ‖∇u‖2L2 . (2.69)

With the trace operator γ : H1(Ω0) → L2(∂Ω0), the constrained space H1
0(Ω0) can be

defined for sufficiently smooth boundaries ∂Ω0 as

H1
0(Ω0) =

{
v ∈ H1(Ω0) : (γv)|∂Ω0,u = 0

}
. (2.70)

In the following, the shorthand notation v ∈ (H1
0(Ω0))3 is used to state that for a vector

field v each spatial component satisfies vi ∈ H1
0(Ω0). Finally, in the hyperelastic regime,

it can be shown that the integrals in the weak form (2.38) can be properly evaluated for
U, δU ∈ (H1

0(Ω0))3 [see e.g. 174]. The variational problem therefore takes the form: find
U ∈ V := (H1

0(Ω0))3 such that

δW (U, δU) = 0 ∀δU ∈ V (2.71)

2.3.2. The finite element method

To render the solution of the weak form (2.71) feasible, it is necessary to represent the
infinite-dimensional space V by a finite-dimensional approximation Vh. To this end, the
FEM uses a mesh K = {E} of elements E such that Ω0 =

⋃
E∈K E . The intersection

of two elements is either a face, an edge, a vertex or the empty set. The reasoning
behind this meshing is to enable the simple construction of piecewise polynomial function
spaces via the polynomials Pκ(E). By restricting the order κ of this polynomial spaces,
a finite dimensional approximation Vh is obtained. E.g., with the restriction to linear
polynomials (κ = 1), the space of piecewise linear continuous functions in Ω0 is given as

Vh :=
{
v : vi ∈ C0(Ω0), vi|E ∈ P1(E),∀E ∈ K

}
. (2.72)
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Introducing a nodal basis {Ni(X)}n
E
nod
i=1 (the shape functions), functions v ∈ (P1(E))3 can

be represented by

v(X) =

nEnod∑
i=1

Ni(X)di,∀X ∈ E . (2.73)

The di ∈ R3 are referred to as degrees of freedom (dofs) and represent the nodal values
of v(Xi), with the coordinate Xi of node i and the number nEnod of nodes of the element
E . Using this ansatz, the displacements U as well as the virtual displacements δU can
be approximated on the elemental level via

U(X) ≈ Uh(X) =

nEnod∑
i=1

Ni(X)di,

δU(X) ≈ δUh(X) =

nEnod∑
i=1

Ni(X)δdi,


∀X ∈ E . (2.74)

Using such an ansatz, continuity is enforced by the nodal connectivity of the mesh and
the association of a unique dof per node and direction. Since the boundary condition
(2.10) is not explicitly modeled by the polynomial spaces (2.72), this has to be taken
into account specifically. A convenient possibility in practice is to set

di = 0, δdi = 0, ∀Xi ∈ ∂Ω0,u. (2.75)

The explicit assignment of the dofs describing the variation δU is not necessary for a
solution of (2.71). Although, it is formally correct to comply with the admissibility of the
variation δU given by (2.28), which it is relevant for a well-posed adjoint formulation of
the inverse problem, see chapter 3.5. Inserting (2.74) with (2.75) into the weak formula-
tion (2.71) results in the finite dimensional approximation called Galerkin approximation:
find Uh ∈ Vh such that

δW (Uh, δUh) = 0 ∀δU ∈ Vh. (2.76)

Integration The integration of (2.76) can now be carried out on an elemental level
according to ∫

Ω0

(•) dV0 =
∑
E

∫
E
(•) dV0. (2.77)

This approach represents a particular advantage of the FEM. Despite not being com-
pulsory, the isoparametric concept allows for a generic and elegant way do perform this
task: the geometry is represented in terms of the same shape functions used for the
approximation of the displacements via

X(ξ) =

nEnod∑
i=1

Ni(ξ)Xi ∀ξ ∈ Eg. (2.78)
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The element-wise integration can therefore be performed with respect to the generic
element Eg according to∫

E
f(X) dV0 =

∫
Eg
f(X(ξ)) det(

∂X

∂ξ
) dVEg . (2.79)

The numerical integration [see e.g. 233] is now evaluated generically for every element E ,
whereby the mapping between the volume forms dV0 and dVEg , given by det(∂X

∂ξ ), can
be pre-evaluated for a fixed reference configuration Ω0.

Assembly Assembling all the element-wise degrees of freedom di and δdi in the system
vectors D and δD ∈ Rndof , the solution of (2.76) can finally be expressed in terms of the
nonlinear form

δD · f(D) = 0. (2.80)

Since this form has to hold for arbitrary δD complying with δU ∈ Vh, its solution is
equivalently given by the solution of the nonlinear system

f(D) = 0. (2.81)

2.3.3. Nonlinear solution

The solution of (2.81) is usually obtained using iterative methods such as Newton’s
method [see e.g. 113]. It is given by the iteration rule

Dk+1 = Dk + ∆Dk, (2.82)

∆Dk = −(f ′(Dk))−1f(Dk). (2.83)

Therein f ′(D) denotes the matrix [f ]ij = ∂fi
∂Dj

. In the context of the FEM, this matrix is
called stiffness matrix. Restating Newton’s method as fix-point iteration

Dk+1 = Dk − (f ′(Dk))−1f(Dk) =: h(Dk), (2.84)

it can be seen that the iteration converges if h represents a contraction, i.e., there exists
a constant L < 1 such that ‖h(a1)− h(a2)‖ ≤ L ‖a1 − a2‖. In the general setup of
nonlinear elasticity, this condition is only fulfilled for the initial guess D0 ‘close’ enough
to the solution D∗. Since such an initial guess is usually not available, a common heuristic
approach is to solve a sequence of nonlinear equations fα(D) = 0 with the solution of
one step of the sequence being used as the initial guess for the next step. A popular
example is the load control scheme. Thereby, the sequence fα is generated by sequentially
increasing the traction load t̂ according to

t̂α = αt̂, α = 0, ..., 1. (2.85)

Convergence for each subproblem fα thereby depends on the number of load-levels.
Parametrizing a load sequence represents only one instance of a general class called
parameter continuation methods [2].
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2. Computational solid mechanics

One such approach, which enables a more formal approach to the stability of nonlinear
solutions, is obtained by observing that the solution of a nonlinear system (2.81) coincides
with the steady state solution of the ordinary differential equation

dD

dt
= −f(D). (2.86)

Using an implicit time discretization and one step of Newton’s method per pseudo time
step τ results in the update scheme

∆Dk = −(τ−1
k + f ′(Dk))−1f(Dk). (2.87)

In combination with certain update strategies for the time step τk, e.g.,

τk = τk−1

∥∥f(Dk−1)
∥∥

‖f(Dk)‖ , (2.88)

this approach is known as pseudotransient continuation (PTC) [114]. The initial time
step τ0 thereby controls the convergence properties of the scheme. The Newton update
(2.83) is recovered for the limit τ →∞.

Newton-Galerkin method Whereas the update equations (2.83) and (2.87) were ob-
tained from a discretize-linearize strategy, the same results can be obtained from a
linearize-discretize strategy. In the context of weak solutions of PDEs, this approach
is called Newton-Galerkin method and it is used in this work for the Lagrangian formu-
lation of the inverse problem, see chapter 3.5. The Newton-Galerkin method is obtained
by linearizing the weak form (2.71) at a current displacement Uk as

δW (Uk, δU) + ∆δW (Uk, δU)[∆U] = 0 ∀δU ∈ V. (2.89)

For notational reasons, the symbol ∆ is thereby used to avoid the expression of the
variation of the virtual work of the form δδW .
The variation of the virtual work ∆δW (Uk, δU)[∆U] with respect to the direction

∆U is given by

∆δW (Uk, δU)[∆U] =

∫
Ω0

δS[∆U] : δE dV0

+

∫
Ω0

S : ∆δE[∆U] dV0

+

∫
∂Ω0

δt̂0[∆U] · δU dΓ0. (2.90)

Assuming the stresses S, strains E and the traction t̂ to be smooth functions of U, it is
possible to identify

∆δE[∆U] =
1

2

(
(∇XδU)>∇X∆U + (∇X∆U)>∇XδU

)
, (2.91)

δS[∆U] =
dS

dE
: δE[∆U] =: C : δE[∆U], (2.92)

δt̂0[∆U] =
dt̂

dU
∆U. (2.93)
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In the general case of growth, the functional dependency E 7→ S necessary to compute
(2.92) can be more intricate than in the standard elastic case. However, in the simple case
(2.65), the growth factor ϑ is not a function of kinematic quantities and thus the variation
δS reduces to the standard evaluation known from the hyperelastic regime, see appendix
C.2.1 for details on this differentiation. A detailed description of the incorporation of
more complex growth laws is provided in [218]. The body force b0 was ignored in the
above considerations but can be treated in the same manner as the traction force. The
identities (2.91)-(2.93) reveal that the differential virtual work (2.90) is a symmetric
bilinear form:

∆δW (Uk, δU)[∆U] = ∆δW (Uk,∆U)[δU]. (2.94)

Close enough to the solution, it allows the representation in terms of the positive definite
bounded linear operator K : V → V via

∆δW (Uk, δU)[∆U] = 〈K∆U, δU〉L2 . (2.95)

In anticipation of the Lagrangian formulation of the inverse problem (see chapter 3.5),
it is noted that the operator K admits an adjoint K† such that

〈K∆U, δU〉L2 = 〈∆U,K†δU〉L2 , (2.96)

whereby due to the symmetry (2.94) K† = K.
Using the Galerkin-approximation for δU ≈ δUh and ∆U ≈ ∆Uh and assuming that

Uk can be represented by a function from Vh, the solution of the incremental virtual
work (2.89) reads: find ∆Uh ∈ Vh such that

δW (Uk, δUh) + ∆δW (Uk, δUh)[∆Uh] = 0 ∀δUh ∈ Vh. (2.97)

Reformulating this in terms of the nodal degrees of freedom Dk, δDk and ∆Dk, the
incremental solution ∆Dk is given by solution of the linear system

K∆Dk = −f(Dk). (2.98)

The ndof × ndof -matrix K is thereby identified as the stiffness matrix f ′ from (2.83).

Newton-Krylov method In the context of the FEM, the matrix K is often sparsely
populated suggesting the use of Krylov-subspace methods for the solution of (2.83) or
(2.98) [see e.g. 192]. The resulting update scheme is then called Newton-Krylov method.

2.4. Parametrization

Since the modeling equations introduced in the chapters 2.1 and 2.2 are to be used
within a parameter identification framework, it is necessary to define a parametrization
θ. To accurately represent the real physical processes, these parameters are assumed
to vary spatially such that θ = θ(X) ∈ X (Ω0). Throughout the work presented here,
the parameters are assumed to enter the formulations either directly via a parametrized
strain energy function

Ψ(C(X),X) = Ψθ(C(X),X, θ(X)), (2.99)
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or indirectly as in the case of the kinematic growth modeling given by (2.65). By in-
troducing these dependencies into the weak formulation (2.71), the nonlinear problem is
formally given as: find U ∈ V such that

δW (U, δU, θ) = 0 ∀δU ∈ V. (2.100)

The physical requirement on the spatial variability of θ is often expressed in terms
of certain smoothness assumptions on θ(X). In some applications, these requirements
might even include the possibility of relatively sharp changes (or even discontinuities) at a
limited amount of locations. These requirements must be reflected in the choice of space
X (Ω0) which is used to model the functions θ. A common choice is X (Ω0) = L2(Ω0).
The parametrization of the SEF then has to comply with the polyconvexity conditions
on Ψ. Given such a parametrization, the solution of (2.100) can be expressed in terms
of the nonlinear mapping A : X (Ω0)→ V such that

U = A(θ). (2.101)

Equivalently, there exists a nonlinear mapping Ah : X (Ω0)→ Vh for the discrete version
(2.76) such that

Uh = Ah(θ). (2.102)

In order for the function θ(X) to be identifiable, i.e., solve (2.102) for θ given a solution
Uh, the infinite dimensional space X (Ω0) is infeasible. To this end, a finite dimensional
approximation has to be introduced whereby it has proven convenient to choose a space
of piecewise-constant functions. Given a mesh K this can be achieved by the definition:

Xh(Ω0) :=
{
v ∈ L2(Ω0) : v|E ∈ P0(E), ∀E ∈ K

}
. (2.103)

This is a convenient approach since it does not complicate the numerical integration on
the elemental level. Functions θh ∈ Xh(Ω0) ⊂ X (Ω0) can then be represented in terms
of the basis {gE(X)} with

gE(X) =

{
1 if X ∈ E
0 otherwise.

(2.104)

Assembling the nele constants βi defining the polynomials P0(E) in the vector θ ∈ Rnele
and the basis functions in the vector G(X) ∈ Rnele , θh(X) can be written as

θh(X) = G>(X)θ =

nele∑
E∈K

gE(X)βi. (2.105)

This approximation can then be inserted into the nonlinear mapping (2.101) and (2.102):

U = A(θh(θ)) =: A(θ), (2.106)
Uh = Ah(θh(θ)) =: Ah(θ). (2.107)

Thereby, the mappings A : Rnele → V and Ah : Rnele → Vdh have been defined implicitly.
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2.5. Special features in AAA modeling

Beside the incorporation of arterial growth, the computational mechanical framework
introduced above generally holds for the modeling of quasi-static elasticity. To be used
as a physiologically meaningful macroscopic model for the description of the mechanics
of AAAs, particular features have to be considered.

2.5.1. Orthopressure load

Generally, the traction-load t̂(x) onto the luminal surface of an AAA is generated by
the dynamics of the blood-flow. The blood-flow itself is caused by the pulsatile ejection
of blood from the heart. Thus, an accurate determination of the resulting traction-load
requires to consider the dynamical response of the full cardiovascular system. However,
the timescale of the process of vascular growth (months to years) is orders of magnitude
larger than the timescale of the pulsatile dynamics of blood flow (seconds). Hence, with
respect to a particular state within the heart-cycle, the dynamics of growth is assumed
not to be affected by the small timescale of blood flow dynamics. Consequently, for the
any particular state, it is assumed that the bulk of the load is given by the static pressure
p caused by the ejection of blood from the heart and the windkessel effect generated by
the elastic arteries. Assuming further that the blood pressure remains constant during
the simulated period of growth, the traction load is given by

t̂(x) = −pn(x) ∀x ∈ ∂Ωt,σ. (2.108)

2.5.2. Prestressing

The formulation of hyperelasticity in terms of an elastic potential usually refers to a
stress-free reference configuration such that

∂Ψ

∂E

∣∣∣∣
E=0

= 0. (2.109)

In cardiovascular applications where the configuration Ω0 is created from medical images,
this assumption does not necessarily hold. Particularly with respect to longitudinal
imaging of AAAs, the imaged state usually corresponds to end-diastolic conditions. Thus,
the image represents an equilibrium state, the so called prestressed state, subject to
approximately diastolic pressure pdia.
In principle, the computation of a stress-free reference configuration Ωz can be real-

ized by the same approach as pursued for the standard forward analysis. But with the
reference configuration Ω0 being known, an inverse deformation ϕ−1

z : Ω0 7→ Ωz is sought
instead of a deformation ϕ : Ω0 7→ Ωt, see figure 2.4. This problem is also known as
inverse design or inverse elasticity problem. However, the formulation of stress-strain
relations with respect to the stress-free reference configuration Ωz renders the computa-
tion of the inverse deformation more intricate than the standard forward analysis [see
e.g. 77, 142].
To avoid these intricacies, a number of approaches have been developed to approx-

imate the inverse elasticity problem [46, 77, 225]. These approaches have in common
that, instead of computing the deformation ϕz explicitly, they only try to build up its
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Ωt

ϕz

Ωz

Ω0

Ω̂z

ϕ
ϕ̂z

Figure 2.4.: Illustration of the relations between a stress-free configuration Ωz, the reference
configuration Ω0, the current configuration Ωt and a virtual configuration Ω̂z used
to approximate ϕz by ϕ̂z.

associated deformation gradient Fz. To enable forward simulation from the prestressed
state using the balance equation formulated with respect to the stress-free configuration
Ωz, the total deformation gradient Ft : TXzΩz → TxΩt is now given by

Ft =
∂ϕ(X)

∂X

∂ϕz(Xz)

∂Xz
= FFz (2.110)

with the coordinates Xz ∈ Ωz being the material coordinates associated to the stress-free
configuration Ωz. Given an approximation F̃z ≈ Fz, the effect of the true deformation
ϕz can be approximated.
For the work presented in this thesis, the modified updated Lagrangian formulation

(MULF) [77] is used to compute the approximated deformation gradient F̃z. This method
postulates that the mapping ϕz is similar to the mapping ϕ obtained from a standard
forward analysis whereby the stress-strain relation is formulated stress-free with respect
to the reference configuration Ω0 under a constant pressure load

t0(X) = pdiaN(X),∀X ∈ ∂Ω0,σ. (2.111)

For cylindrical geometries and specifically also for simulations of AAAs, this approach
has shown to yield stresses which are in good agreement with the exact inverse elasticity
solution [76].
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3. Mathematical formulation of the
identification problem

The objective of this chapter is the mathematical formulation of the parameter identifi-
cation problem associated to the nonlinear problem formulated in chapter 2 and made
explicit in chapter 2.4. It is defined by the inversion of the mapping given by (2.101) as

θ 7→ A(θ). (3.1)

The basis for the inversion of this equation is given by some observation Z ∈ Z of the
actual state Û of the system. Thereby the relation between the state and the observa-
tion is expressed in terms of the state-to-observation mapping (also called observation
operator) C : V → Z. The naive approach of solving the identification problem directly
via

δW (C−1(Z), δU, θ) = 0 ∀δU (3.2)

suffers from severe disadvantages. These disadvantages are induced by the model inade-
quacy and the observation error. On the one hand, the modeling set forth in chapter 2
describes the real physical processes of arterial tissue in an approximate manner. Thus,
given an ‘exact’ distribution θ∗ of the parameters θ, the modeling error causes a potential
discrepancy between the model output and the real system state resulting in

Û 6= A(θ∗). (3.3)

On the other hand, errors in the measurement process result in a discrepancy between
the measurement Z and the state Û to be measured such that

Z 6= C(Û). (3.4)

This measurement error can be so severe that the measurement is not even compatible
with neither the system state Û nor the model output A(θ∗). Furthermore, the direct
solution of (3.2) is only feasible if a unique relation between the measurements Z and the
corresponding state Û is available. Formally, this requirement results in the availability
of the inversion of the observation operator. In the specific application presented in this
thesis, such a setting would be given by measurements of full-field displacement data.
However, as outlined in chapter 3.2, such data is usually difficult to obtain.
These circumstances are the reason why classical identification problems are more

conveniently cast in an optimization framework. A popular approach is the so called
output least squares formulation given by

argmin
θ
‖Z− C(A(θ))‖2Z (3.5)
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[see e.g. 15]. Whereas this formulation resolves the issue of incompatibility of the mea-
surements Z, it still suffers from ill-conditioning in the sense that small changes in Z
might lead to dramatic changes in the best fit parameters θ∗. To control these variations,
the output least squares formulation is usually stated in the regularized form:

argmin
θ

(
‖Z− C(A(θ))‖2Z +R(θ)

)
. (3.6)

The regularization R(θ) is a functional R(θ) : X → R+
0 controlling the norm of the

solution θ∗. Classical regularization methods often refer back to A. N. Tikhonov [see e.g.
217]. In the context of least-squares optimization, the choice

R(θ) = α ‖θ‖2 (3.7)

is often referred to as Tikhonov functional. A variety of different problems can be cast into
the least-squares framework (3.6) [see e.g. 26]. These sort of problems are mathematically
well understood and there exists a broad range of algorithms and solution techniques for
a variety of specific problems [see e.g. 169].
The identification problem formulated in terms of an optimization problem results in a

so called point-estimate as optimal solution. Such a formulation neglects the variability
in the optimal solution induced by measurement noise and inherent variability in the
population. To take these effects into account, the identification problem has to be for-
mulated in a probabilistic sense. Such a formulation is available through the application
of the Bayesian paradigm that is utilized in the remainder of this thesis. After introduc-
ing the statistical notation to allow for the Bayesian formulation in chapter 3.1, chapter
3.1.2 introduces the application of the Bayesian formulation to the specific parameter
identification problem of interest. The main building blocks of this setup are covered
in chapter 3.2 and chapter 3.4. This encompasses the definition of the statistical rela-
tion between the computational model A(θ) and the measurements Z. This definition
is closely related to the mathematical description of the measurement space Z and a
measure of distance in this space. Furthermore, it covers the formulation of a priori as-
sumptions on the statistical universe of the parameters θ. Finally, chapter 3.5 introduces
a reformulation of the identification problem allowing for a convenient computation of
gradient information.

3.1. General setting and assumptions

The implementation of the Bayesian paradigm with respect to statistical inference is
given by Bayes’ theorem which is closely linked to the concept of conditional probability.
To be able to cast the identification problem in a statistical setting, these concepts are
briefly introduced and the necessary notation is fixed. For a detailed introduction to the
applied concepts, the reader is referred to general literature on probability theory and
statistics such as Billingsley [24], Rohatgi and Saleh [188] or Schay [194].
In the following, a probability space (S,F , P ) is employed. It is constituted by a

sample space S, a σ-algebra F of events and a probability measure P such that the
probability measure P satisfies

(i) 0 ≤ P (A) ≤ 1, ∀A ∈ F ,
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(ii) P (S) = 1,

(iii) P (
⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) for the mutually disjoint sets Ai ∈ F .

A fundamental concept in probability theory is that of conditional probability.

Definition 3.1.1 (Conditional probability). On the probability space (S,F , P ), with
A,B ∈ F and P (B) > 0, the conditional probability P (A|B) is given by

P (A|B) =
P (A ∩ B)

P (B)
. (3.8)

By the symmetry P (A∩B) = P (B∩A), this definition directly implies Bayes’ theorem:

P (B|A) =
P (A|B)P (B)

P (A)
. (3.9)

3.1.1. Random variables

A random variable X is defined as a measurable function on the sample space S such
that events ∈ F can be described in terms of sets such as

(a) {s ∈ S : X(s) = x}

(b) {s ∈ S : X(s) ≤ x}

(c) {s ∈ S : X(s) ∈ B}

for some real value x ∈ Rn and the Borel set B on Rn. These sets are often stated in
short as {X = x}, {X ≤ x} or {X ∈ B}. Throughout this thesis, random variables are
indicated by the use of a serif-free front.

The discrete case In discrete sample spaces, the association of a function pX(x) =
P ({X = x}) =: P (X = x) is straightforward and usually pX is referred to as probability-
(mass) function of the random variable X. Since in finite dimensions also (a) represents
a proper set, the conditional probability P (X = x|Y = y) is well defined as long as
P (Y = y) 6= 0.

The continuous case In the continuous case, the probability P (X = x) = 0 due to
compliance with the axiom (ii). Anyhow, for a proper set A ∈ F , e.g., A = {X ∈ B}, the
probability P (X ∈ B) can be expressed in terms of the Lebesgue integral on Rn according
to

P (X ∈ B) =

∫
B
P (dx) =

∫
B
pX(x)dx (3.10)

In this setup, the function pX : S → [0,∞[ is referred to as probability density func-
tion and must comply with the 3 axioms of probability (i)-(iii). Equivalently, the joint
probability density pX,Y(x, y) describes the joint probability P (X ∈ B,Y ∈ D) = P (X ∈
B ∩ Y ∈ D) via

P (X ∈ B,Y ∈ D) =

∫
B

∫
D
pX,Y(x, y)dxdy. (3.11)
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In this setting, the conditional probability P (X ∈ B|Y = y) is undefined in terms of
definition 3.1.1 since P (Y = y) = 0. Instead, it is defined as the limit

P (X ∈ B|Y = y) := lim
ε→0+

P (X ∈ B|Y =]y − ε, y + ε]), (3.12)

provided it exists [see 188, p. 109]. By inserting this into the definition 3.1.1, it can be
shown that a conditional probability density function pX|Y is given by

pX|Y(x|y) =
pX,Y(x, y)

pY(y)
(3.13)

such that the probability P (X ∈ B|Y = y) can be evaluated according to

P (X ∈ B|Y = y) =

∫
B
pX|Y(x|y)dx. (3.14)

The function pX|Y(x|y) represents a probability density with respect to the random vari-
able X. Seen as a function of y it is called likelihood since it does not represent a density.
Noticing that the conditional density (3.13) can be constructed similarly for pY|X(y|x)
and that the joint probability density is symmetric, Bayes’ theorem in terms of densities
emerges as a direct consequence as

pX|Y(x|y) =
pY|X(y|x)pX(x)

pY(y)
. (3.15)

Expected value and variance A random continuous variable X is entirely defined by
the associated density pX(x). However, this description is too elusive to identify the
characteristic properties of a random variable. Therefore, often summarizing statistics
are used to characterize random variables. The most prominent summary is the expected
value

Ex[X] :=

∫
S
xpX(x)dx, (3.16)

provided the integral converges absolutely. It can be seen as a measure of the center
of the distribution pX. A measure of the dispersion of the distribution is given by the
covariance

COVx[X] := Ex[(x− Ex[X])(x− Ex[X])]. (3.17)

In a multidimensional setting, X = {X1, . . . ,Xn}, this information is difficult to visualize.
Results on the variability of a distribution are therefore more conveniently reported
in terms of marginal densities pXi(xi). Thus, the variance of Xi is given as the one-
dimensional covariance

Vxi [Xi] = Exi [(xi − Exi [Xi])
2] = [COVx[X]]ii. (3.18)

To quantify this dispersion in the same units as the random variable itself, a specification
in terms of the standard deviation

SDx[X] =
√
Vx[X] (3.19)
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is more convenient. Furthermore, given a random variable X with probability density pX
and a function f : X 7→ f(X) with unknown density pf(X), the expected value Ef(x)[f(X)]
is given by

Ef(x)[f(X)] =

∫
S
f(x)pX(x)dx. (3.20)

Variance Vf(x)[f(X)] and standard deviation SDf(x)[f(X)] are obtained equivalently.

Remark. In the probabilistic literature, it is common to ambiguously use the symbol p
to denote different probability distributions such that Bayes’ theorem (3.15) is also stated
as

p(x|y) =
p(y|x)p(x)

p(y)
. (3.21)

Thereby, the specific functional relation of a distribution has to be derived from the argu-
ment. Whenever misinterpretation is impossible, this convention is also applied through-
out this thesis.

3.1.2. Statistical identification problem

Bayes’ theorem (3.15) provides the basis for the statistical formulation of the identifi-
cation problem. To this end, the observations Z ∼ p(Z) and the parameters θ ∼ p(θ)
are interpreted as random variables with Z ∈ Z and θ ∈ Rnp . The dimension np of
the identification problem is thereby introduced to decouple the strict association of the
parameters θ to the coefficients of the element-wise basis (2.105). This allows for a more
flexible interpretation of the parameters θ in terms of a different basis or in the sense of
an assembly of different physical parameters. In this setting, the identification problem
is given by the posterior density p(θ|Z) which is defined by the application of Bayes’
theorem:

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
. (3.22)

In the context of statistical inference, the densities p(Z|θ), p(θ) and p(Z) are often
referred to as likelihood (as a function of θ), prior and evidence, respectively.
The practical application of (3.22) requires the formulation of a statistical relation

θ 7→ Z such that the likelihood function p(Z|θ) can be defined. Furthermore, knowledge
on the statistical universe of the parameters θ must be available in terms of a prior p(θ).
In the limit, this knowledge can also be non-informative. In this case, the data Z must
provide enough information such that (3.22) represents a probability density.
In contrast to the classical optimization problem (3.5), the solution of the identification

problem is now given as a probability density. This fact directly reveals the ambiguity in
the definition of a single optimal solution. In order to define some notion of optimality
(see chapter 4) it is often sufficient to observe the proportionality

p(θ|Z) ∝ p(Z|θ)p(θ). (3.23)

The remainder of this chapter is concerned with the specific definitions of the likelihood
function p(Z|θ) and the prior-density p(θ) such that the relation equation (3.23) is well
defined. To this end, it is assumed that the randomness in the observations Z is entirely
created by noise in the measurement process. Furthermore, it is assumed that this noise is
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represented by a normally distributed random variable ζ with zero mean and covariance
ΣZ:

ζ ∼ N (0,ΣZ). (3.24)

Throughout this thesis, the measurement covariance ΣZ is assumed to be known or to
be inferred from the measurement process a priori. Therefore, it represents a user input
to the problem usually given in the form ΣZ = σ2I.
Given the specific definition of the measurement noise (3.24), the observation Z is

related to the computational model via the additive noise model

Z = C(A(θ)) + ζ. (3.25)

Whenever the compound application F (θ) := (C ◦A)(θ) is not of particular interest in
a specific context, this relation is often stated more concisely as

Z = F (θ) + ζ. (3.26)

The generic function F : Rnp → Z is also referred to as model (and also computational
model) but not to be confused with the parameter-to-state mapping (3.1). Despite the
simplified form, it has to be kept in mind that the functional dependence θ 7→ F (θ) is
not explicitly available. A rearrangement of (3.26) gives rise to the likelihood in terms
of a Gaussian probability density

p(Z|θ) =
1√

(2π)m |ΣZ|
exp(−1

2
‖Z− F (θ)‖2

Σ−1
Z

). (3.27)

Using the simplification ΣZ = σ2I and a generic similarity measure D : Z × Z → R+
0 ,

the likelihood can be written as

p(Z|θ) =
1√

(2πσ2)m
exp(− 1

2σ2
D(Z, F (θ))). (3.28)

In order for this generic formulation to represent a Gaussian probability distribution, the
similarity measure D must be induced by a scalar-product in Rm<∞. The presentation
throughout this thesis is therefore restricted to a setup defined by

D(Z, F (θ)) := 〈Z− F (θ),Z− F (θ)〉Z ≡ 〈fZ(Z− F (θ)), fZ(Z− F (θ))〉Rm , (3.29)

whereby fZ : Z → Rm is seen as a generic function that maps from a potentially
continuous space Z to some discrete space Rm. Its existence is implied by proper choices
of similarity measures D and vice versa.

Remark. It is to be mentioned, that the additive noise model (3.26) is not the only one
and more possibilities exist [110, 116]. The choice for a specific model has to be made in
combination with an experimental setup.

The assumption on the availability of a priori knowledge of parameters of the mea-
surement noise is not a necessary assumption and does not affect the validity of Bayes’
theorem (3.23). In fact, from a fully Bayesian perspective noise-parameters such as the
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measurement variance σ2 are seen as additional unknown random variables. They are
modeled by an additional prior p(σ) such that Bayes’ theorem is given by

p(θ, σ|Z) =
p(Z|θ, σ)p(θ)p(σ)

p(Z)
. (3.30)

Furthermore, in case the model-parameters θ represent some physically meaningful quan-
tity, they can usually be applied through different models. The particular mapping F (θ)
only represents one single possible model M (epistemologically wrong) that enters the
likelihood as an additional argument to be conditioned on. Assembling model- and
noise-parameters into a single vector

Θ = (θ, σ2), (3.31)

Bayes’ theorem conditioned on the model M reads

p(Θ|Z,M) =
p(Z|Θ,M)p(Θ)

p(Z|M)
. (3.32)

The evidence p(Z|M) plays a key role in Bayesian model selection, e.g., via Bayes factors
[111]. Due to the fact that the measurement noise is not modeled as a random variable
throughout this thesis, θ is used instead of Θ for notational convenience in the following.
But noticing the similarity between (3.22) and (3.32), θ can always be understood as an
assembly in the sense of (3.31).

Remark. The description of a priori knowledge through prior probabilities usually intro-
duces additional parameters, so called hyper-parameters. Within the Bayesian paradigm,
these can again be modeled by priors, so called hyper-priors. The resulting formulation
is then referred to as ‘hierarchical Bayes’.

The remaining ingredients to complete the setup of the identification problem are
twofold. In chapter 3.2, the definition of an observation space Z and accordingly the
definition of a similarity measure on the elements of that space completes the definition
of the likelihood. Chapter 3.4 introduces the modeling of the prior density to account
for the statistical universe of the parameters θ.

3.2. Definition of similarity

In practical applications, observations are rarely available in terms of the primal vari-
ables of some model to be fitted. In the particular setting of AAA growth, the raw
measurements are given in terms of medical images. Thereby different technologies such
as MRI, CT or US are commonly used.

Information from medical imaging A typical example of a longitudinal CT study
showing the same patient with a time-lag of approximately 2 year is given in figure 3.1.
An image I0 can formally be defined as a function I0 : ΩI

0 → R such that I0(X) is the
(gray-scale) value at the pixel being located at the position X ∈ ΩI

0. Similarly, an image It
is defined as function It : ΩI

t → R. Beside the raw pixel-value information, the additional
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3. Mathematical formulation of the identification problem

Figure 3.1.: A transverse slice of a patient’s longitudinal CT study1with a time-lag in between
the left and the right scan of 2 years. The boundaries of the computational do-
mains Ω0 and Ωt are highlighted in magenta. The corresponding boundaries of the
domains ΩI

0 and ΩI
t covered by the images are highlighted in yellow.

information encoded in longitudinal image data is given by a deformation depicted by the
changes of the morphological structures captured in the images. Assuming, for the time
being, the existence of this deformation as a smooth invertible mapping ϕI(X) : X 7→ x
∀X ∈ ΩI

0 and ∀x ∈ ΩI
t given by

x = ϕI(X) = X + V(X), (3.33)

two images I0 and It could be related via interpolation according to

I0(ϕ−1
I (x)) = It(x). (3.34)

This assumption is referred to as brightness constancy assumption [see e.g. 160]. The
task of finding the mapping ϕI is covered by the large mathematical field of image
registration. This field is centered around the fact that the desired mapping ϕI is not
uniquely given by the image data in almost all practical applications. As a consequence,
the direct interpolation problem (3.34) is not well-posed. This issue is addressed by a
vast amount of different formulations and numerical approaches. A common element
of all these approaches is given by the application of certain modeling assumptions or
regularization techniques to render the interpolation problem well-posed. But these
assumptions are rarely capable of accurately representing the true physical processes
being imaged. On the contrary, usually over-simplistic models are applied. Hence,
the application of image registration results in inherent systematic deviations of the
estimated mapping ϕ̂I from the true mapping ϕI. By using the estimation ϕ̂I as a
measurement Z in the parameter identification problem (3.23), it is therefore expected
that the systematic errors are propagated to the parameters θ.

1
Medical images are courtesy of the Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Tech-
nische Universität München. The use of clinically induced CT-imaging was approved by the ethics commission of the TUM
School of medicine; ‘M-AAA-rker Studie’ (Nr. 1897/07, 27.9.2007, Amendment 19.3.2012).
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3.2. Definition of similarity

Images as measurements In an attempt to avoid the propagation of the systematic
errors in ϕ̂I, it seems appealing to tackle the parameter identification problem directly
in defining the space of measurements Z to be constructed by the set of functions repre-
senting the images in ΩI

0 and ΩI
t. Assuming it is possible to evaluate It(ϕ(X)) by using

the deformation ϕ from equation (2.6) associated to the solution of the nonlinear forward
problem (2.101), the parameter identification problem could be stated as: Find θ such
that ∫

ΩI
0

(I0(X)− It(ϕ(X)))2 dV0 → min . (3.35)

This approach results in an optimal control formulation where the controlling parameters
are given by the parametrization of the forward problem according to chapter 2.4. Despite
its appeal, the need to be able to perform the interpolation It(ϕ(X)) directly reveals that
this approach is constrained to situations in which ΩI

0 = Ω0, i.e., the image domain and
the computational domain match exactly. This is clearly not the situation presented in
figure 3.1. In principle, this constraint can be bypassed by the definition of an extension
operator Ext : ∂Ω0 → ΩI

0 \ Ω0. But this extension operator clearly involves modeling
assumptions which will again be reflected in the optimal parameters θ. Thus, the initial
intention is undermined. In the setup of conforming domains of the images and the
computational model, this approach was first proposed by Miga [158] but using the
concept of mutual information as a similarity measure on the space of images [see e.g.
226].

Issues with longitudinal data Due to the limitations of the formulation (3.35), applying
image registration as a tool to provide measurements from image data is still predominant
in practical applications. But analyzing the images showing AAA growth in figure 3.1,
it becomes clear that the interpolation assumption (3.34) is not just slightly violated
but heavily corrupted. This fact alone is not an issue since mappings between images
from different modalities inherently violating the brightness constancy assumption can
very well be obtained by state-of-the-art image registration technologies such as mutual
information image registration. It is the change in morphology in parts of the image
that makes any attempt to obtain a meaningful transformation between the two raw
images unreasonable. Thus, the basic assumption on the mapping ϕI is not fulfilled. A
remedy to this dilemma is provided by performing a segmentation of the structure of
interest and applying the registration step to these segmented images, see figure 3.2 for
an illustration. Representing the estimated deformation ϕ̂(X) via a smooth displacement
field V̂ ∈ VI according to

x = ϕ̂(X) = X + V̂(X), (3.36)

it is principally possible to define this displacement field on the domain Ω0 as the mea-
surement Z. More practically, by defining the operator CI : VI → Rndof to map the
measured displacement field to the degrees of freedom of the mesh K of Ω0, a similarity
measure to be used in the likelihood (3.27) is given by

D(V̂,A(θ)) =
∥∥∥CI(V̂)− C(A(θ))

∥∥∥2

Σ−1
Z

. (3.37)

In some sense, a segmentation as presented in figure 3.2 provides a compression of infor-
mation. Thereby the information inside segmented areas is clearly reduced, whereas at
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3. Mathematical formulation of the identification problem

Figure 3.2.: 2D-illustration of image registration on a segmented set of 3D-images showing an
aneurysm with intraluminal thrombus (ILT) (light gray), luminal area (white) and
surrounding tissue (dark gray). Left: initial aneurysm represented by a segmented
image Is0. Middle: Grown aneurysm represented by a segmentation Ist . Right: One
possible mapping ϕ̂−1 instantiating the relation Ist (x) ≈ Is0(ϕ̂−1(x)).

the transitions between different structures, i.e., surfaces in a 3D image, the information
of the original images is almost completely preserved. This variation in accuracy of the
information is also reflected in the registered deformation and it is often more convenient
to define

D(V̂,A(θ)) =
∥∥∥CI,γ(V̂)− C(A(θ))

∥∥∥2

Σ−1
Z

. (3.38)

The operator CI,γ : VI → Rn
γ
dof as well as the state-to-observation operator C : Rndof →

Rn
γ
dof represent a mapping to the discrete degrees of freedom of the boundary ∂Ω0.

Surfaces as measurements Although being restricted to the boundary, the measure-
ment CI,γ(V̂) might still be incompatible with the model output A(θ). Due to the
inflexibility of the measure (3.38) with respect to the hard point-wise correspondences
CI,γ(V̂)↔ C(A(θ)), this incompatibility can lead to highly ill-conditioned identification
problems. Furthermore, this incompatibility will be reflected in the posterior distribution
p(θ|Z) leading to a misinterpretation of the variability of the parameters θ. Analyzing
medical image data of AAAs more closely, it is revealed that the structural information
encoded by the image is actually not given in terms of volume information. Rather,
different structures are distinguished by sharp transitions in the pixel values. In a 3D
image, these transitions are identified as surfaces, see figure 3.3. Since surface data is
naturally decoded from medical images by means of segmentation during the creation
of some sort of computational model, it is natural to try to compare different models
directly in terms of surfaces. In the area of parameter identification, this concept was
brought forward by Moireau et al. [162].

Since a mathematically rigorous formulation of a distance in spaces created by surfaces
can be rather involved, chapter 3.3 is entirely devoted to this topic.
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3.3. Surfaces as measurements

Figure 3.3.: Zoom into patient-specific CT data showing a small aneurysm with its enclosing
surface colored in magenta. Different structures can clearly be distinguished only
by means of sharp transitions/gradients. E.g., the aneurysm can clearly be distin-
guished from the surrounding tissue.

3.3. Surfaces as measurements

In order to define measures of distance in a space of surfaces, it is necessary to fix a
notion of the concept of surfaces. A mathematically precise definition of the concept of
surface is ambiguous. In this thesis, a surface is understood in the context of topological
structures and differential geometry. More precisely, surfaces have already been used
throughout this thesis without further specification as the boundaries ∂Ω0 or ∂Ωt of the
domains Ω0 and Ωt. The notion of surface will be solely used in this setup and can thus
be defined as a two-dimensional differentiable manifold embedded in the 3-dimensional
euclidean space R3. These particular manifolds are also referred to as regular surfaces.
Though sufficient for the applications presented here, it is to be noted that the concept
of surfaces is not constrained to this setting. For a broader perspective, the reader is
referred to the respective literature [see e.g. 11, 52].

Definition 3.3.1 (Regular surface, from do Carmo [52]). A subset S ⊂ R3 is a regular
surface if for every point x ∈ S there exists a neighborhood Vx and a mapping φα : Uα ⊂
R2 → Vx ∪ S such that

(1) φα is a homeomorphism

(2) the differential (dφα)q : TqUα → R3 is injective for all q ∈ Uα.

The pairing (Uα, φα) is called a parametrization and the whole family of parametriza-
tions (Uα, φα) is called a differentiable structure on S if

⋃
α φα(Uα) = S. This technical

definition has important implications: given two parametrizations (Uα, φα) and (Uβ, φβ),
the change of coordinates φ−1

β ◦φα is differentiable. This differentiability provides a basis
for the field of differential geometry.
As far as concerned in this thesis, the most important implication of the properties of

the parametrizations φα is given by the definition of a metric structure: let the mapping
φα be given by φα : (s, t) ∈ U ⊂ R2 → S, the so called metric tensor g is defined as

g :=

(
〈∂φ∂s ,

∂φ
∂s 〉 〈

∂φ
∂s ,

∂φ
∂t 〉

〈∂φ∂t ,
∂φ
∂s 〉 〈

∂φ
∂t ,

∂φ
∂t 〉

)
. (3.39)

43



3. Mathematical formulation of the identification problem

Given such a parametrization, the integral of a function f along the surface S, the surface
integral, is given by ∫

S
f(X) dΓ :=

∫∫
U
f(φα(s, t))

√
det(g) dsdt, (3.40)

[see e.g. 127]. The determinant det(g) can also be expressed in terms of the tangent
vectors ν := ∂φ

∂s and η := ∂φ
∂t as

det(g) = ‖ν × η‖2 . (3.41)

By definition of the surface normal n := (ν × η)/
√

det(g), the integration of a vector
field w across the surface S is given according to∫

S
(w · n) dΓ =

∫∫
U

w(φ(s, t)) · (ν × η) dsdt. (3.42)

From the right hand side, it can be seen that the integrand represents a linear form ω on
the tangent vectors ν and η. Furthermore, if the vector field w varies smoothly on S, ω
is a so called differential 2-form. As a function of φ, such forms represent densities on a
2-dimensional manifold such as the surface S. Thus, they are naturally integrated by∫

S
(w · n) dΓ =:

∫
S
ω. (3.43)

This provides a basis for the formalism of surface currents that enables to see surfaces
as elements of a Hilbert space. With the encompassing benefit of providing norms and
thus metrics, the Hilbert space structure can be naturally used to define the likelihood
3.27. But before delving into this topic, a conceptually easier measure of similarity on
surfaces is presented.

3.3.1. Distance as closest point projection

A classical measure to compute a distance between two surfaces is given by the so called
closest point projection, see figure 3.4. This measure can be computed for 2 surfaces S

Pi

S

T

di

Figure 3.4.: Illustration of the closest point projection.

and T represented by their respective triangulations.
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3.3. Surfaces as measurements

Definition 3.3.2 (Triangulation). Given a surface S, a triangulation TS of S is given
as the set TS = {τSi }NSi=1 defined on the set of point {xxx Si }

Np
S

i=1, whereby a triangle τSi
is given as the triplet τSi := (xxx Si,1,xxx

S
i,2,xxx

S
i,3) such that a triangle’s center is computed

as cSi := 1
3

∑3
j=1 xxx Si,j and a triangle’s (unnormalized) normal is computed as ñSi :=

(xxx Si,2 − xxx Si,1)× (xxx Si,3 − xxx Si,1).

Given a triangulation TS for the surface S and a triangulation TT for the surface T ,
the minimal projected distance for each point xxx Si ∈ TS to the triangulation TT is given
by

di = min
τTj

|ñTj · xxx Si − ñTj · xxx j,1|√
‖ñTj ‖

s.t. xxx Si − di
ñTj√
‖ñTj ‖

∈ τ j . (3.44)

A global distance D(S, T ) can then be defined as the sum

D(S, T ) =

Np
S∑

i=1

di. (3.45)

Despite its simplicity, the projected distance measure suffers from several disadvan-
tages hindering its practical applicability. Beside the non-uniqueness and the irrelevancy

Pi

S

Tdid′
i

T

S

Figure 3.5.: The two main disadvantages of the closest point projection on discretized surfaces
[see also 104]. Left: the non-uniqueness of the projection point. Right: Capturing
of irrelevant shape characteristics.

of the projection point, see figure 3.5, it can also happen that the solution to 3.44 is
undefined due to incompatibilities of the constraint. Given that algorithmic measures
are applied to resist these issues, (3.45) is a popular choice of measuring similarity be-
tween surfaces. In the area of parameter identification, it was made popular by Moireau
et al. [162] and has been variously applied [see e.g. 21, 37]. Anyhow, it was observed
by Imperiale et al. [104] that the inherent disadvantages of the closest point projection
can lead to inefficient estimators and that the usage of the surface current formalism is
capable to improve on this problem.

3.3.2. Distance in terms of surface currents

Surface currents represent a distributional perspective on surfaces. More specifically,
a surface is seen in the sense of distributions of de Rham called currents [47]. These
currents are classical distributions acting on the space of differential forms. Formally,
an m-current is a linear functional on the space of m-forms. In particular, a 2-current
is called surface current and it is naturally defined by a 2-form ω via S =

∫
S ω. Surface
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3. Mathematical formulation of the identification problem

currents have been introduced in the context of the large deformation diffeomorphic
metric mapping (LDDMM) framework [see e.g. 57] for surface matching by Vaillant
and Glaunès [221] extending the work of Glaunès et al. [84] on the pairing of classical
distributions. In the field of parameter identification, they have been introduced as a
measure by Imperiale et al. [104]. For a mathematically profound introduction to the
general topic of matching of distributions and surface currents, the reader is referred to
Glaunès [85] and Durrleman [58].
A surface current S(ω) ∈ W∗ is a linear functional on the space of test functions

w ∈ W defining the differential 2-form ω given by (3.42). It is given by the integral

S(ω) :=

∫
S

w · n dΓ. (3.46)

WithW being given as a Hilbert space and by the application of the Riesz representation
theorem, every current S admits a dual representation KS

n ∈ W such that

∀w ∈ W S(ω) = 〈KS
n,w〉W . (3.47)

Thus, a norm in the space of currents W∗ is defined via the dual space norm

‖S‖2W∗ = 〈KS
n,K

S
n〉W =

∫
S
KS

n · n dΓ. (3.48)

Fixing a space W such that (3.46) is well defined, the dual space norm can be used to
construct a similarity measure on surfaces. Considering the surface S to be given by the
model S = C(A(θ)) and a measured surface Z, a distance in the space of currents is
given by

D(Z, S) =
1

2
‖Z− S‖2W∗ . (3.49)

Push-forward action on currents Given the diffeomorphism ϕ : Ω0 → Ωt associated to
the solution of the nonlinear problem (2.102) and a surface S ⊂ Ω0, the relation between
the natural push-forward of the surface ϕ(S) ⊂ Ωt and the push-forward current ϕ(S)(ω)
is given in terms of the pull-back on the 2-form ϕ−1

∗ (ω) via

ϕ(S)(ω) = S(ϕ−1
∗ (ω)). (3.50)

This results as a direct consequence of (3.40) and the integration under a change of
coordinates, see appendix B for details. Given a model boundary ∂Ω0, or a subset Γ
thereof, the push-forward action (3.50) formally defines the compound action C ◦A on
currents via

C ◦A(θ) = ϕ(Γ)(ω). (3.51)

Reproducing kernel Hilbert spaces Following Vaillant and Glaunès [221], the explicit
computation of the integral in (3.48) is based on a formulation of the space W as a
reproducing kernel Hilbert space (RKHS). The theory of RKHSs can be traced back to
Aronszajn [8] and has a huge range of applications in modern computer science, especially
in the area of machine learning [181].
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Definition 3.3.3 (Reproducing kernel Hilbert space). A reproducing kernel Hilbert space
Hk is a Hilbert space of functions f : X 7→ R over a set X such that for each x ∈ X the
evaluation functional δx(f) = f(x) is a bounded linear functional, i.e.,

∀f ∈ Hk |δx| ≤M ‖f‖ . (3.52)

By the application of the Riesz representation theorem, this definition implies the
existence of a unique representerKx ∈ Hk establishing the so called reproducing property

f(x) = 〈Kx, f〉Hk ∀f ∈ Hk. (3.53)

Since Kx ∈ Hk, it holds that Kx(y) = 〈Kx,Ky〉 = k(x, y). The symmetric positive
definite function k is called a kernel and the unique relation between a kernel and it’s
RKHS was established by Aronszajn [8]. It is stated here as given by Rasmussen and
Williams [181]:

Theorem 3.3.1 (Moore-Aronszajn theorem). For every positive definite function k :
X ×X 7→ R there exists a unique RKHS, and vice versa.

The application of theorem 3.3.1 and the reproducing property (3.53) finally allow
for an evaluation of the integral (3.48) via choosing a positive definite function k to
represent the space W of test functions w. Since the test functions are vector-valued,
the reproducing property has to be stated for a vector-valued RKHS [see e.g. 35]: For
every v ∈ R3 and x ∈ X

〈w(x),v〉R3 = 〈w,Kxv〉W ∀w ∈ W. (3.54)

Remark. The application of the reproducing property to vector-valued spaces actually
requires matrix-valued representers Π(x, ·). Throughout this thesis, these representers
are chosen to be separable in the sense that Π(x, ·)v = Kxv [see e.g. 4].

Applying the reproducing property to the integrand in (3.48) results in

KS
n · n̂ = 〈KS

n,Kxn̂〉W =

∫
S
Kxn̂ · n dΓ =

∫
S
Kxn dΓ · n̂ ∀n̂ ∈ R3. (3.55)

Thus, the dual representation KS
n of a current S is given by

KS
n =

∫
S
Kxn dΓ =

∫
S
k(x, ·)n dΓ. (3.56)

This enables the computation of the inner product in the space of currents between two
surfaces S1 and S2. By using (3.56) in (3.48), this inner product is given by

〈S1, S2〉W∗ = 〈KS1
n ,KS2

n 〉W =

∫
S1

∫
S2

nS1(x) · k(x, y)nS2(y) dΓ dΓ. (3.57)
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3. Mathematical formulation of the identification problem

Accordingly, the computation of a distance between the two elements S1 and S2 is given
by

‖S1 − S2‖2W∗ =

∫
S1

∫
S1

nS1(x) · k(x, y)nS1(y) dΓ dΓ

− 2

∫
S1

∫
S2

nS1(x) · k(x, y)nS2(y) dΓ dΓ

+

∫
S2

∫
S2

nS2(x) · k(x, y)nS2(y) dΓ dΓ. (3.58)

Discretization in space For the numerical computation of the distance in the space
of currents, (3.58) has to be approximated by a discretization. Following Vaillant and
Glaunès [221], a one point integration is employed by using a triangulation TS . As a
consequence, a current S(ω) given by the dense span of Dirac currents δn

x = w(x)·n(x) dΓ
can be approximated by a finite sum:

S(ω) =
∑
x∈S

δn
x ≈ Sh(ω) =

NS∑
i=1

δñi
ci =

NS∑
i=1

w(ci) · ñi, (3.59)

where ñi is the i-th triangles normal with length equal to the triangle’s area. A norm on
the discrete current Sh(ω) is then given as the approximation to (3.57) as

‖S‖W∗ ≈ ‖Sh‖ =

NS∑
i=1

NS∑
j=1

ñi · k(ci, cj)ñj . (3.60)

Assembling each of the 3 spatial components of the normals ñi in the NS-vectors ñ1, ñ2

and ñ3, the notation can be simplified to

‖Sh‖ :=
3∑
i=1

ñi ·K · ñi, (3.61)

whereby the elements of the NS ×NS matrix K are given by [K]ij = k(ci, cj).

Random variables in the space of discrete currents To be able to setup the statisti-
cal model (3.23), it is necessary to define random variables with associated probability
density in the space of currents. Formally, a definition of a current as a random Gaus-
sian variable is given through the projection of a current as an element of an infinite
dimensional Hilbert space to a finite dimensional subspace. Whereas this definition is
substantiated by the concept of Gaussian processes, see chapter 3.4.1, a practical ap-
proach is pursued at this point. This approach is enabled by the finite dimensional
representation (3.59) of a current. For a detailed introduction to random variables in the
space of currents, the reader is referred to Durrleman [58].
Initially, it is assumed that the normals ñi are random variables with uncorrelated

spatial components. The joint probability density of the random vectors n1, n2 and n3

associated to the component-wise vectors ñ1, ñ2, ñ3 can consequently be given as

pn1,n2,n3(n1,n2,n3) = pn1(n1)pn2(n2)pn3(n3). (3.62)
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3.3. Surfaces as measurements

If the elements in ni are further assumed to be normally distributed variables with mean
ñi and covariance ΣZ, the probability density pni is given by

pni(ni) ∝ exp(−1

2
(ni − ñi) ·Σ−1

Z · (ni − ñi)). (3.63)

Accordingly, the joint probability is computed by

pn1,n2,n3(n1,n2,n3) ∝ exp(−1

2

3∑
i=1

(ni − ñi) ·Σ−1
Z · (ni − ñi)). (3.64)

Setting Σ−1
Z = K, it is immediately identified from (3.61) that

pn1,n2,n3(n1,n2,n3) = pSh(S) ∝ exp(
1

2
‖S − Sh‖2). (3.65)

As a consequence, a discrete random current Sh, which is distributed according to

Sh ∝ exp(
1

2
‖S − Sh‖2), (3.66)

is in fact a normally distributed random variable entirely defined by the field of normals
ñi and a kernel function k (the kernel of the associated RKHS of test functions w).

Remark. To directly control the variance of the random currents, it is useful to use
kernels with

k(x, y) = 1 ⇐⇒ x = y. (3.67)

Scaling such kernels by a factor σ−2
N , the probability density of the associated current is

given by p(S) ∝ exp(−‖S‖
2
W∗

2σ2
N

).

Fixing a kernel Definition 3.3.3 and theorem 3.3.1 allow the use of a variety of different
kernel functions [see e.g. 181]. Generally, specific applications require specific choices
of kernels. The application in the context of the current formalism utilizes the RKHS
theory as a means to define the spaceW of test functions w. Thus, the choice of a kernel
specifies a particular way of testing a surface. Throughout this thesis, this testing is
defined in terms of the Gaussian kernel

k(x, y) = σ−2
N exp(−‖x− y‖

2

2σ2
W

). (3.68)

In the setting of random variables in the space of currents, the factor σN specifies the
variance of a random current. It can directly be interpreted as the variance of the field
of normals defining the random current. The scale σW characterizes the spatial scale
of the covariance structure on the field of normals. Accordingly, σW can be seen as
a spatial scale at which the space of test functions distinguishes features of a surface.
For large scales σW , the matrix K defining a discrete current’s probability distribution
becomes increasingly ill-conditioned. This issue is intensified for currents defined by fine
triangulations. From the current’s perspective, the discretization size implicitly defines
the spatial scale of distinct surface features. Thus, the spatial scale σW of the kernel and
the discretization size should not differ by orders of magnitude.
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Likelihood in terms of currents The definition of Gaussian random variables in the
space of currents and the transformation of currents under some push-forward action
ϕ(•)(ω) finally allows to substantiate a likelihood-function in terms of measurements of
surfaces. Given a measured surface Z corresponding to some model boundary Γ, the
likelihood p(Z|θ) is given by

p(Z|θ) ∝ exp(−‖Z− ϕ(Γ)‖2W∗
2σ2

N

). (3.69)

Given a triangulation TZ of the surface Z and a triangulation TΓ of the surface ϕ(Γ)
according to definition 3.3.2, the norm defining the likelihood (3.69) is approximated
according to (3.59) by

‖Z− ϕ(Γ)‖2W∗ ≈
∑
τZi

∑
τZj

ñZi · k(cZi , c
Z
j )ñZj

−2
∑
τZi

∑
τΓ
j

ñZi · k(cZi , c
Γ
j )ñΓ

j

+
∑
τΓ
i

∑
τΓ
j

ñΓ
i · k(cΓ

i , c
Γ
j )ñΓ

j . (3.70)

Throughout the work presented in this thesis, the triangulation TΓ is directly obtained
from the mesh associated to the FE discretization. Therefore, the triangles are either
given directly as faces of linear tetrahedral elements or by subdivision of linear hexahedral
elements. Thus, the coordinates defining the triangles in TΓ are coupled to the degrees
of freedom D defining the approximate solution Uh given by (2.102) in a one-to-one
relation.

Visualization of random currents In order to get an intuition of the concepts intro-
duced above, a geometrically simple example given by a cylindrical oriented surface is
analyzed. For the purpose of visualization, only a 2-dimensional slice is depicted. Two
different discretizations (coarse and fine) of this surface are shown in figure 3.6. The
current representations of these discretizations are entirely defined by the kernel (3.68)
with σN = 0.02 mm and σW = 0.5 mm. Figure 3.7 shows a random realization for each
of the two discretizations. It can be seen by inspection of the respective dual representa-
tion Kn that the spatial scale of the action S(w) of the current on some test function is
defined by the scale σW of the kernel k. This action is independent of the discretization
of the surface. The magnitude of this action is defined by the variance σ2

N . However, it
is important to note that the physical interpretation of the variance σ2

N on real data is
only meaningful with respect to a discretization size that is able to reflect the random
variation of the surface. I.e., σ2

N describes the variance of normal vectors corresponding
to a discretization whose randomness can be described in the sense of (3.66). This issue
is important when the discretization size is defined by the requirements of the compu-
tational model and not just seen as a means of data representation. The effects of this
aspect in a situation using real data are discussed in detail in chapter 7.
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Figure 3.6.: A 2-dimensional slice of an open cylindrical surface and its discretization (blue).
Left: fine discretization with 15 ‘triangles’ (or line elements). Right: Coarse dis-
cretization with 7 ‘triangles’ (or line elements). Additionally, the respective currents
are visualized in terms of the field of normals ñ (black) and the dual representation
Kn. Arrow lengths of the vector field Kn are scaled for the purpose of visualiza-
tion. It can be seen that the spatial scale of the current is not determined by the
discretization but by the kernel k.

Computational aspects For a dense kernel k(x, y), the computation of (3.70) is a
O(NΓNZ + N2

Γ) operation, with NZ and NΓ being the size of TZ and TΓ. Since it is
to be evaluated frequently as part of the computational model, the efficiency of this
evaluation is inevitable.
A straight forward approach is given by truncation of the kernel. Although ‘density’

of the kernel implies infinite support, depending on the spatial scale of the kernel, this
support does not necessarily contribute significantly to the summations in (3.70). How-
ever, a truncation k(x, y) < ε→ k(x, y) = 0 reduces the accuracy of the linearization of
(3.70), see appendix C.1. On the other hand, for dense kernels with small spatial scale,
the accuracy is affected due to cancellation and round-off errors anyway. The impact
of such effects can in principle be ameliorated by using sparse kernels, i.e., kernels with
bounded support.
Nevertheless, the approach pursued in this thesis is based on the use of modern com-

puter architecture. In this respect, the efficiency of the evaluation of (C.11) is improved
by the use of modern shared-memory programming models such as Pthreads, open multi-
processing (OpenMP) or CUDA. To this end, the implementation used for the work in
this thesis utilizes the Kokkos library from the Trilinos project [95] that provides a
portable abstraction layer.

3.4. A priori assumptions and regularization

In order for Bayes theorem (3.22) to be applicable, it is necessary to define the ‘a priori’-
knowledge on the parameters θ in a functional relation p(θ), the prior. As a probability
density, this functional relation represents the statistical universe of the parameters. In
many practical situations, a mathematically rigorous formulation of this relation is diffi-
cult. On the one hand, in a multi-dimensional setting, prior knowledge is often vaguely
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Figure 3.7.: Currents from figure 3.6 corrupted with normally distributed noise ∝ N (0, σ2
N ).

Comparing the two noisy samples from the coarse and the fine discretization, it
can be seen, as for the uncorrupted currents from figure 3.6, that also the noise in
the space of currents is determined by the spatial scale σW and the magnitude σN
of the kernel k. However, the effect on the normals only has a physically meaningful
interpretation where the discretization size fits into the noise model (3.66).

expressed in terms of certain structural requirements on the solution. These require-
ments can be given by assumptions on the heterogeneity (e.g., in case of anisotropy) or
smoothness of the solution. On the other hand, committing to a certain functional de-
pendency of the prior might introduce additional parameters, so called hyperparameters,
which have to be modeled again by (hyper-)priors. In this light, it has been suggested
that the construction of prior models has to put the focus on the gross value of the
probability density [44]. Given a set E of expectable values and a set U of unexpectable
values, the prior should suffice to the relation

p(x)� p(x′) ∀x ∈ E, x′ ∈ U. (3.71)

In the following, several popular choices of prior models are presented. For a more
detailed introduction to prior models used in inverse problems, the reader is referred to
Kaipio and Somersalo [110]. Insight into the general topic of prior modeling is, e.g., given
by Berger [19] or D’Agostini [44].

3.4.1. Gaussian prior

A very popular class of priors is generated by the normal distribution N . A random
variable x ∈ Rnp is said to be normally distributed if its probability density is given by
the multivariate normal distribution

N (x|µ,Σ) =
1

((2π)np |Σ|)1/2
exp

(
−1

2
(x− µ) ·Σ−1 · (x− µ)

)
, (3.72)

with mean µ, the symmetric positive definite (SPD) np × np covariance matrix Σ and
the determinant of the covariance |Σ|. Beside being represented by a relatively simple
explicit formula, its popularity stems mainly from two important facts:
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3.4. A priori assumptions and regularization

1. For large data sets of independently and identically distributed variables, the Cen-
tral Limit theorem establishes the important relation between the arithmetic mean
and the normal distribution [see e.g. 59]. This implies that Gaussian densities can
often be used to approximately describe statistics of a large amount of independent
observations.

2. Under certain circumstances, the use of Gaussian priors results in explicitly tracta-
ble formulas for the posterior. In cases where, for a fixed likelihood, the posterior
falls in the same family of functions as the prior, the prior is called a conjugate
prior. For certain families of functions these relations are tabulated.

Gaussian process In the absence of specific knowledge on the covariance structure of
the signal x, the covariance matrix is often simply given by Σ = σ2

gI. Confidence in
the scale of variability is thereby given by the variance σ2

g . However, a signal can also
be associated to a certain spatial structure which will potentially be reflected in the
covariance structure. E.g., this is the case when the random signal is given by the model
parameters x = θ that are defined as the spatial distribution of growth parameters on
the domain Ω0. If in line with prior knowledge, it might be reasonable to expect that
the notion of distance in the space will be reflected in a correlation of parameters defined
on that space. Generally, given a finite index set J and a d-dimensional space Rd, the
spatial association of the signal x can be given in terms of the random function y(s) as

x = {y(si)}i∈J, si ∈ Rd. (3.73)

Thereby, the symbol s is used as a spatial coordinate to avoid confusion with x as a
general random variable. Given a covariance function kΣ : Rd×Rd → R, the covariance
matrix can be defined by

[Σ]ij = kΣ(si, sj). (3.74)

If this definition holds for any finite index set J, the function y(s) is referred to as Gaus-
sian process. For d ≥ 2, it is also more specifically referred to as Gaussian random
field. As can be seen from the definition of the covariance matrix, a Gaussian process
represents an infinite-dimensional extension of a multivariate normally distributed ran-
dom variable. The specific choice of the covariance function kΣ depends on the assumed
spatial correlation structure. Beside the constraint that the covariance matrix Σ has to
remain SPD for any set J, there exists a multitude of possible choices [see e.g. 181]. A
very popular covariance function is the squared exponential kernel

kΣ(s1, s2) := σ2
g exp(−

‖s1 − s2‖2Rd
2`2

), (3.75)

with the spatial scale of the kernel given by `.

Remark. The extension of a scalar valued Gaussian process/field to the vector valued
case reveals that the considerations (3.62) - (3.66), which lead to the definition of discrete
random currents, are formalized by modeling the field of normals n as a vector valued
Gaussian random field with the precision matrix Σ−1 defined by the kernel (3.68).
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3. Mathematical formulation of the identification problem

3.4.2. Gaussian smoothness priors

The term Gaussian smoothness prior is used in a context where a certain structural
information such as smoothness or anisotropy is encoded in the a priori knowledge.
These priors are typically defined by

px(x) ∝ exp

(
− 1

2σ2
s

‖L · x‖2
)
, (3.76)

where the differential operator L : Rnp 7→ Rk incorporates the structural information. In
situations where k < np or ker(L) 6= {0}, the matrix L>L is not necessarily invertible and
a direct interpretation in terms of a Gaussian density is therefore not straightforward. In
case of ker(L) 6= {0}, the smoothness prior (3.76) does not even represent a probability
density since ∫

Rnp
exp

(
− 1

2σ2
s

‖L · x‖2
)

dx =∞. (3.77)

A normalization is therefore not generally possible rendering this sort of priors improper.
The rationale behind the name Gaussian smoothness is given by the fact that (3.76)
emerges as a limiting process of some Gaussian density.
Let an orthonormal basis for ker(L) be given by the columns of the np × nker-matrix

Q = [qi, . . . ,qnker ] with nker = dim(ker(L)). Then the factor space Rnp\Q := Rnp \ ker(L)

is given by Rnp\Q = {v ∈ Rnp |v ·Q = 0}. The integration of (3.77) over this factor space
is bounded: ∫

Rnp\Q
px(x)dx <∞. (3.78)

Furthermore, let a signal y be given in terms of the basis Q, a vector of random coefficients
hi and a constant vector y0 ∈ ker(L) such that

y =

nker∑
i=1

qihi + y0 = Q · h + y0. (3.79)

If the coefficients h are chosen to satisfy h ∼ N (0, a2I), then E[y] = y0 and Cov(y) =
a2QQ>. An (improper) prior py(y) is then given by

py(y) ∝ exp

(
− 1

2a2
y ·QQ> · y,

)
. (3.80)

Finally, a re-parametrization of the random signal x can be considered such that

z = x + y, (3.81)

whereby x ∼ px(x) and y ∼ py(y). Since x and y are mutually independent, a new prior
pz(z) is given by

pz(z) = px,y(x,y) = px(x)py(y). (3.82)

Inserting the definitions of px(x) and py(y) into (3.82) results in

pz(z) ∝ exp

(
−1

2

(
1

σ2
s

x · L>L · x+
1

a2
y ·QQ> · y

))
= exp

(
−1

2
z ·
(

1

σ2
s

L>L +
1

a2
QQ>

)
· z
)
. (3.83)

54



3.4. A priori assumptions and regularization

The matrix M :=
(

1
σ2
s
L>L + 1

a2 QQ>
)
is invertible as a direct consequence of the anal-

ysis provided in appendix D.1. Thus, (3.83) represents a Gaussian probability density
justifying the naming Gaussian smoothness.
One popular example for an a priori assumed structural information is smooth differ-

entiability. In this case, the operator L is given by a discretized version of the Laplace-
operator ∇· (∇•). Since fixing data on some part of the boundary is usually not justified
by a priori knowledge, the operator is left with the natural boundary condition resulting
in the mentioned singular structure. The kernel of L is then represented by a constant
mode. If the formulation (3.83) is used, confidence in an a priori chosen absolute level
y0 of this constant mode is expressed by the variance a2.

Remark. The limiting case a → ∞ recovers the original definition of the Gaussian
smoothness prior, in which properness of the posterior is left to be imposed entirely by
the data. Depending on the data, this approach can be justified from an application point
of view.

3.4.3. Markov random field priors

The prior models introduced so far impose the assumption of a regularly varying spatial
variation of a signal. In some applications, this regularity is not necessarily justified. For
instance, signals might be expected to be bounded, but this boundedness is not expected
to be spatially uniform. In light of (3.71), the priors introduced in chapter 3.4.1 and
chapter 3.4.2 might impose too strict assumptions. A very popular approach to model
prior knowledge in these scenarios is the concept of total variation (TV) made popular
by Rudin et al. [190]. For the application of image denoising the TV functional was
used to account for the irregular and ‘blocky’ character occurring in images. Whereas in
image denoising the basic problem to solve is mostly linear, TV regularization has also
been applied to nonlinear problems in PDE-constrained optimization [see e.g. 38].
The concept of total variation is defined in terms of functions of bounded variation

[83]:

Definition 3.4.1 (Total variation). Let Ω ⊆ Rn be an open set and let f ∈ L1(Ω). Let
C1

0 be the differentiability class C1 of functions with vanishing support at ∂Ω:

TV (f) = sup

{∫
Ω
f∇ · gdx : g ∈ (C1

0 (Ω))n, ‖g(x)‖ ≤ 1, ∀x ∈ Ω

}
. (3.84)

A function f is said to have bounded variation if TV (f) < ∞. Explicit formulas
exist for the computation of TV (f) if more restrictive spaces are considered. E.g., for
f ∈ C1(Ω) it follows from the integration by parts that

TV (f) =

∫
Ω
|∇f |dx. (3.85)

In order to render this metric applicable in gradient based solution methods, i.e., to
account for the non-differentiability, a smoothed approximation can be applied, see figure
3.8:

TVε(f) =

∫
Ω

√
|∇f |2 + εdx. (3.86)
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3. Mathematical formulation of the identification problem

Although well-defined for C1-functions, it is convenient to degenerate the original defi-
nition of TV even further to allow for a more flexible setup of functions. Mainly this is
motivated by the fact that it is useful to represent functions by piece-wise constant ap-
proximations for computational convenience. Particularly in terms of FE discretization
of the forward problem, an element-wise constant parametrization is appealing. Thereby
the connectivity between elements defines a unidirectional graph structure and the so-
lution to the inverse problem (3.22) can be represented as discrete signal defined on the
vertices of this graph.
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Figure 3.8.: Illustration of the smoothing properties of the parameter ε in the smoothed TV
approximation (3.86). With increasing ε, the singularity in df

dx |x=0 is increasingly
smoothed out. Choosing ε small is desirable with respect to the exactness of the
approximation. On the other hand, finding min f(x) in the context of Quasi-Newton
methods (especially with inexact line searches) becomes an increasingly oscillatory
process with decreasing ε. Choosing a value for ε is a trade off between the exact
representation of the TV functional (3.85) and an affordable numerical solution
process.

Definition 3.4.2. Let J be an index set with dim(J) = nV . Let G = (V,E,w) be a
weighted unidirectional graph with the indexed set of vertices {Vi}i∈J, edges E ⊆ J × J
and the non negative symmetric weight function wG(i, j) = wG(j, i) ∀ (i, j) ∈ E. A graph
structure is then defined by the adjacency matrix WG with entries

[WG]ij =

{
wG(i, j) if (i, j) ∈ E,
0 otherwise.

(3.87)

For a signal x ∈ RnV defined on the vertices of the graph G, a graph-based approxi-
mation of the TV functional is given by

TVw(x) = ‖∇wx‖1,2 =
∑
i

∑
j

wG(i, j)(xj − xi)2 + ε2

1/2

(3.88)

[see e.g. 96]. This formulation is very flexible with respect to the parametrization of the
signal to be represented while still allowing for the beneficial properties of the original
TV functional [38].
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The definition of a prior probability density over functions of bounded variation is
available via the interpretation of (3.88) as the energy of a Markov random field (MRF)
[see e.g. 206]. Formally, an MRF on the graph G defines a probability density that can
be factorized over the maximal cliques of the graph. Given the vertex set {Vi}i∈J, the set
of maximal cliques {ιi}nclii=1 is comprised of the maximal cliques ιi = {k ∈ J |w(i, k) 6= 0}.
For a signal x = {xi, . . . , xn} defined on the vertex set V , these cliques define the
overlapping partitions

xi = {xj : j ∈ ιi}. (3.89)

The signal x is called an MRF if the conditional probability density π(xj |x\xj) can be
written as

π(xj |x\xj) = π(xj |xj). (3.90)

Given a potential ψ(xi) defined over the cliques ιi, the probability density of the MRF
is given according to the Hammersley-Clifford theorem [91] as product over the potential
function ψ(xi) ≥ 0

p(x) =
1

Z

ncli∏
i=1

ψ(xi). (3.91)

The partition function Z accounts for the normalization of p(x). Since the potential ψ
is positive, it is conveniently given in terms of an energy H, with ψ = exp(−H), such
that the density can be written as the sum over the energy

p(x) =
1

Z
exp

(
−

ncli∑
i=1

H(xi)

)
. (3.92)

Identifying the energy H(xi) = (
∑

j∈ιi w
G(i, j)(xj − xi)2 + ε2)1/2, it can be seen that

the probability density associated to the TV functional is given by

p(x) =
1

Z
exp

(
−αtv ‖∇wx‖1,2

)
. (3.93)

So the TV prior represents one instance of a much more versatile class of priors [see e.g.
34].
By inspection of the energy H, it can be seen that it is invariant with respect to

translational modes of the signal x. Consequently, the TV prior (3.93) suffers from the
same improperness as the Gaussian smoothness prior (3.76). Due to the nonlinearity,
an interpretation as the limit of a Gaussian density is not possible. But then non-
integrability can be approached by the same subspace integration as introduced in chapter
3.4.2. So if the data is not invariant with respect to arbitrary constant modes of the
parameters, the inverse problem represented by (3.22) is still well-posed.

3.4.4. Comparison of priors

To get an intuition of the effects the priors presented above will have on the posterior, it is
instructive to visualize samples drawn randomly from the respective prior distributions.
For the Gaussian probability densities (3.72) and (3.83) this can be accurately achieved
by means of state-of-the-art random number generating algorithms such a the Mersenne-
Twister engine [155] and methods of non-uniform random variate generation [51]. These
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3. Mathematical formulation of the identification problem

methods are available in many modern software packages and libraries such as MATLAB,
Python or C++ (since C++11), just to name a few. For the TV prior (3.88), standard
methods for variate generation are not at hand and methods for sampling such as MCMC
methods, see chapter 4.4.3, have to be applied.
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Figure 3.9.: 4 samples drawn from each of the prior models presented in the chapters 3.4.1,
3.4.2 and 3.4.3. Upper Left : Gaussian prior without any structural information,
i.e., Σ = σ2

gI (σg = 1.0). Upper right : Gaussian prior with covariance structure
given by the squared exponential kernel (` = 3.0). Bottom left : Smoothness prior
given by a discrete Laplace operator with Neumann boundary conditions. Bottom
right : Total variation prior with the structural information encoded by the graph
structure of the signal.

For the purpose of visualization, a signal x ∈ R100 on a simple 1-dimensional domain
Ω = [1, 100] is considered, see figure 3.9. Given a uniform discretization of Ω into 99
sub-intervals [si, sj ], the signal is defined as a function of the coordinates si. This allows
for the definition of the discrete operator L as a finite-difference version of the Laplace
operator. Furthermore, it defines a graph structure of neighboring coordinates necessary
for the computation of the energy of the random field in the TV prior. 4 samples of each
of the priors (3.72) (uncorrelated and correlated), (3.83) and (3.88) are shown in figure
3.9. For visual comparison, all scale factors have been chosen such that the resulting
variates reside in the interval [−4, 4].
Obviously, the Gaussian prior (with µ = 0 and Σ = σ2

gI, σg = 1.0) does not favor any
particular structural information. Signals are only expected to be drawn in a certain
range around the mean more likely than outside. E.g., the probability of the signal x
to reside inside the interval A = [µ − 3σg,µ + 3σg] is P (x ∈ A) ≈ 0.997100 ≈ 0.74.
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In contrast, the variates from the Gaussian process prior exhibit a clear correlation.
This correlation is induced by the spatial correlation of the squared exponential kernel
(` = 3.0). The resulting signals are fluctuating with a certain spatial frequency controlled
by the scale `. The smoothness prior and the TV prior represent a different interpretation
of ‘smoothness’. The smoothness-prior (σ2

s = 0.025) imposes a smooth structure in the
sense of smooth differentiability. Since it favors signals with low ‘second derivative’, likely
variates will vary smoothly and at low frequency. In contrast, the TV prior (αtv = 1.0,
ε2 = 0.001) favors signals with bounded variation. This allows variates to have a much
more flexible and irregular structure. In particular, it results in likely samples to be
allowed to have certain distinct features, but the amount of such features is bounded.

3.5. Lagrangian formulation

Popular approaches for the numerical exploration of the posterior are introduced in
detail in chapter 4. Nevertheless, one aspect of the so called maximum a posteriori
(MAP) solution is already introduced at this point since it involves a reformulation of
the inverse problem. It is therefore rather associated to the setup of the inverse problem
than to its numerical solution. By defining

J (U(θ),θ) :=
1

2σ2
D(Z, F (θ))− log p(θ), (3.94)

c.f. chapter 3.1.2, it can be seen that the maximization of the posterior (3.23) is obtained
by

argmax
θ

p(Z|θ)p(θ) ≡ argmin
θ
J (U(θ),θ). (3.95)

Given enough regularity of the posterior, efficient numerical approaches almost always
make use of gradient information dJ

dθ to compute the solution to (3.95). But due to
the complex relation θ 7→ F (θ), the computation of this gradient information is usually
accompanied by a significant computational cost. In the low-dimensional regime, it is
often feasible to compute approximations of the gradient dJ

dθ by means of finite differences
(FDs) via

dJ
dθi

=
d(− log p(θ1, . . . , θi, . . . , θn|Z))

dθi
(3.96)

≈ − log p(. . . , θi + ∆i, . . . |Z) + log p(θ|Z)

∆i
, (3.97)

whereby ∆i represents an incremental variation in the i-th component of the vector of
parameters θ. Beside the fact that the accuracy of FD methods is bounded by cancel-
lation and round-off errors in the floating-point arithmetic [137], it is highly inefficient
in a high-dimensional regime. This inefficiency results from the fact that the necessary
number of evaluations neval of the posterior is directly coupled to the dimension of the
parameters according to

neval = np + 1. (3.98)

Given that gradient based optimization schemes can easily take in the order of 100-
1000 iterations to converge to an optimum, such a computational cost per iteration is
prohibitive for many applications.
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In the context of PDE-constrained optimization, a remedy to this problem is provided
by adjoint approaches. These can be derived from a Lagrangian formulation of the
inverse problem. To highlight its properties, the derivation starts from a description
using a continuous formulation:

L̃(U(θ), θ) :=
1

2σ2
D(Z, F̃ (θ)) +R(θ), (3.99)

whereby the model F̃ := (C ◦ A)(θ), with F̃ : X → Z, is the continuous counterpart to
the model F . This formulation can be extended by the weak form (2.71) in the sense of
a constraint to give the Lagrangian:

L(U(θ),λ, θ) := L̃(U(θ), θ) + δW (U,λ, θ). (3.100)

Thereby, the test functions δU are replaced with the symbol λ, to avoid confusion of the
test functions δU with the variation of the displacements δθU due to a variation in the
parameters. Given the solution U = A(θ), the weak form is always evaluated to

δW (U,λ, θ) = 0 ∀θ. (3.101)

Consequently, the following equivalence holds:

argmin
θ
L̃(U(θ), θ) ≡ argmin

θ
L(U(θ),λ, θ), ∀λ. (3.102)

Given (3.101), it must further hold that

∆δW (U,λ, θ)[δθ] = 0 ∀δθ. (3.103)

This guarantees the equivalence

δL̃(U(θ), θ)[δθ] = δL(U(θ),λ, θ)[δθ] ∀λ, δθ. (3.104)

With the definition of the Gateaux derivative δΦ
δv of some functional Φ(v) defined by the

duality pairing 〈 δΦδv , δv〉 := δΦ(v)[δv] [see e.g. 89], the equivalence (3.104) directly implies

δL̃
δθ

=
δL
δθ
. (3.105)

In contrast to classical constrained-optimization, the Lagrange parameters λ are free
parameters in the Lagrangian formulation (3.100). This degree of freedom can be utilized
to efficiently compute the derivative δL

δθ . To this end, the variation δL(U(θ),λ, θ)[δθ] is
expanded to

δL(U(θ),λ, θ)[δθ] =
1

2σ2
〈 δD
δθU

, δθU〉

+ 〈δR
δθ
, δθ〉

+ ∆UδW (U,λ, θ)[δθU]

+ ∆θδW (U,λ, θ)[δθ] ∀λ, δθ. (3.106)
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3.5. Lagrangian formulation

Since the variation δθU can only be computed through the nonlinear solution of (2.101),
a straight-forward computation of (3.106) is difficult. However, by using the free choice
in λ, the computation of δθU can be avoided by choosing λ such that

1

2σ2
〈 δD
δθU

, δθU〉+ ∆UδW (U,λ, θ)[δθU] = 0 ∀ δθU. (3.107)

Therein, the second term is readily identified with the differential virtual work (2.90).
Since the use of the test functions λ and the variation δθU is exchanged with respect
to the differential virtual work (2.90), (3.107) is referred to as adjoint equation in the
sense of (2.96). The solution is usually obtained under the same discretization as the
incremental forward problem. In this context, well-posedness is given by the application
of the boundary conditions (2.75) for the dofs δd describing the Lagrange parameters
λ. For the evaluation of the first term in (3.107), it is noted that the dependency of the
similarity measure on the displacements is given by D(Z, C(U)) = D(Z, F̃ (θ)). Using
(3.29), it can be seen that the right hand side of the linear adjoint equation is given by

− 1

2σ2
〈 δD
δθU

, δθU〉 =
1

σ2
〈Z− C(U), δC(U)[δθU]〉Z . (3.108)

For similarity measures in the sense of point-wise displacement measurements such as
(3.37) or (3.38), the observer variation δC(U)[δθU] is trivial since the observation oper-
ator is just a linear operator and thus

δC(U)[δθU] = CδθU. (3.109)

For similarity measures in terms of surface currents such as (3.58), the observation is
defined through the push-forward action (3.50). This leads to a more involved definition
which is detailed in appendix C.1.
Upon inserting the solution λ of the adjoint equation (3.107) into (3.106), the variation

of the Lagrangian δL is obtained as

δL(U(θ),λ, θ)[δθ] = 〈δR
δθ
, δθ〉+ ∆θδW (U,λ, θ)[δθ] ∀ δθ. (3.110)

These remaining terms can usually be evaluated economically due to the explicit depen-
dencies on the parameters θ. Whereas for the regularization this evaluation depends on
the specific choice of prior, for the virtual work the formal application of the directional
derivative results in

∆θδW (U,λ, θ)[δθ] =

∫
Ω0

δθS[δθ] : δE dV0 +

∫
Ω0

S : ∆θδE[δθ] dV0. (3.111)

Due to the explicit parametrization, see chapter 2.4, the variation of the stresses δθS[δθ]
and the variation of the strains ∆θδE[δθ] are given by

δθS[δθ] =
∂S

∂θ
δθ, (3.112)

∆θδE[δθ] =
∂δE

∂θ
δθ. (3.113)
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3. Mathematical formulation of the identification problem

The functional description of these terms is specific to the physical meaning modeled by
the parameters θ. With respect to the application of arterial growth modeled by (2.65),
the detailed linearization is provided in appendix C.2.2.
Finally, to arrive at a discrete gradient of the negative log-posterior (3.94), the contin-

uous parameters θ are represented in terms of the element-wise basis (2.105) such that
δθ = G>δθ. The differential δL̂[δθ] is then given by

δL̂(U(θ),λ,θ)[δθ] = δL(U(θ),λ,G>θ)[G>δθ]

=
dR

dθ
G>δθ +

∫
Ω0

(
∂S

∂θ
: δE + S :

∂δE

∂θ
)G> dV0 · δθ. (3.114)

Comparing this to the definition of the Gateaux derivative, the discrete gradient is ob-
tained as

dL
dθ

=
δL
δθ

=
dR

dθ
G> +

∫
Ω0

(
∂S

∂θ
: δE + S :

∂δE

∂θ
)G> dV0. (3.115)

Assuming that the regularization was defined by any of the prior-models p(θ) presented
in chapter 3.4 such that

dR

dθ
G> = −d log p(θ)

dθ
, (3.116)

the desired equivalence
dJ
dθ

=
dL
dθ

(3.117)

is established.
In contrast to the approximation (3.96), the gradient (3.115) can be computed by the

solution of one additional linear problem (3.107). This process is independent of the
dimension of the parameter vector θ. This independence represents a huge advantage
compared to the FD approximation. Furthermore, for a certain discretization of the
forward problem, the gradient (3.115) can in principle be evaluated exact up to machine
precision. Prerequisite is the exact solution of the adjoint equation which is dependent
on the solution U = Ah(θ) obtained through the nonlinear solution (2.84). In contrast
to the nonlinear solution ipso facto, the convergence tolerance of the nonlinear solution
process in combination with an adjoint formulation is not governed by the desired ac-
curacy of the primal solution U but by the accuracy of the gradient dL

dθ . Whereas an
analytic assessment of this accuracy is difficult, it is revealed by practical application
that the accuracy of the nonlinear solution of the forward problem can have a signifi-
cant influence on the accuracy of the gradient. In general, the convergence tolerance for
the nonlinear solution has to be chosen with respect to machine precision to obtain the
gradient as accurate as possible. If the adjoint equation is solved by means of iterative
methods, the same arguments hold for the convergence of this iterative solution.
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4. Numerical solution of the
identification problem

This chapter is concerned with the introduction to formulations and numerical ap-
proaches of statistical inference based on the posterior (3.22). Since the posterior is
defined in terms of the computational model F (θ), the functional relation θ 7→ p(θ|Z) is
not given explicitly. However, a point-wise evaluation for a specific realization θ = θ1 is
always possible through the evaluation of the computational model F (θ1). Given that
this evaluation is associated with a considerable computational cost, an exploration of
the posterior on the sample space Rnp is out of question. Instead, it is necessary to draw
conclusions on the probabilistic characteristics of the parameters θ in a more efficient
way. Depending on the field of application, this task is approached by a great variety of
different formulations and numerical techniques. The presentation in this chapter aims
at a concise but consistent introduction that motivates the algorithmic choices made with
respect to large-scale patient-specific modeling, see chapter 7. The applied formulations
can be introduced following a decision theoretic approach [19].
In this context, sought descriptions of characteristic properties are referred to as esti-

mators θ̂(Z). Through the conditioning of the posterior on the data Z, these estimators
are also functions of the data. And due to the randomness in the data, an estimator is
itself a random variable. A particular realization of an estimator is called an estimate
θ̂. The definition of an estimator through single valued ‘optimal’ estimates leads to the
concept of point estimators. Thereby, different definitions of optimality result in point
estimators with different properties. However, due to their single valued character, these
estimators fail to reveal the inherent variability of the parameters. This information
is provided by interval estimators. The term ‘interval’ is thereby also used to refer to
regions in a multidimensional setting.
In the setting of model calibration, the identified parameters are only a means to

exploit a calibrated computational model to generate further information. A description
of the parameters in terms of estimators is therefore not the primary interest. Given that
the information provided by the calibrated model is represented by a function f(θ), the
interest actually lies in inference based on the distribution pf(θ)(f(θ)). Since the point-
wise exploration of this distribution suffers from the same constraints as the exploration
of the posterior, summarizing statistics such as the expected value E[f(θ)] or the variance
V[f(θ)] are desired. In the context of this thesis, the function f will eventually represent a
prediction in AAA growth that is made based on an identified set of parameters θ. More
specific, f could represent quantities like maximal growth of an aneurysm or changes
in maximum diameter. Since the maximum diameter is still the prevalent surrogate in
clinical decision making, the variability in such a prediction is clearly of high importance
to assess the reliability of conclusions drawn from these predictions.
The multitude of information that can be deduced from the identification problem is
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4. Numerical solution of the identification problem

also reflected in the number of different numerical algorithms necessary to extract the
desired information from the available data. Depending on the estimator, the application
of algorithms ranges from classical optimization techniques [see e.g. 169] to Monte Carlo
based techniques for sampling and integration [see e.g. 185].
The remainder of this chapter is concerned with the introduction of the specific es-

timators in the chapters 4.1, 4.2 and 4.3. The algorithmic techniques utilized to arrive
at specific estimates based on these estimators are described in chapter 4.4. Due to
the setup of the identification problem in the Bayesian setting, the presentation is only
concerned with Bayesian estimation techniques. For a comprehensive introduction to
statistical inference and estimation theory, the reader is referred to classical literature
on estimation theory such as Lehmann and Casella [135], Koch [119] or Olive [171].

4.1. Bayesian point estimators

The intention of a point estimator is to represent the information provided by the poste-
rior in an ‘optimal’ way. The particular definition of optimality thereby leads to a variety
of different estimators. In Bayesian analysis, a notion of optimality can be derived from
decision theoretic arguments [19]. To this end, a loss-function L : Rnp×Rnp → R+ is
introduced. This loss function allows for the qualification of an estimator with respect to
the true unknown parameters via L(θ̂(Z),θ). Since this functional depends on the un-
known parameters θ, it is more reasonable to analyze the posterior expected loss defined
by

Eθ|Z[L(θ̂(Z),θ)] =

∫
Rnp

L(θ̂(Z),θ)p(θ|Z)dθ. (4.1)

Definition 4.1.1 (Bayes estimator). A Bayes estimator is an estimator θ̂(Z) that min-
imizes the posterior expected loss defined in (4.1).

Particular definitions of the loss-function L give rise to specific estimators described
in the following, see figure 4.1.

θ
θ̂map θ̂pm

p(θ|Z)
q(θ)

Figure 4.1.: Illustration of different estimators to be identified from the posterior. The
maximum a posteriori estimate θ̂map and the posterior mean estimate θ̂pm
represent very popular instances of point-estimators. Another class of esti-
mators centers around inference on θ based on an approximate but explicitly
given classes of probabilities q(θ).
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4.1. Bayesian point estimators

4.1.1. Posterior mean

A very popular choice for the loss L is the squared error loss

L(θ̂(Z),θ) =‖θ̂(Z)− θ‖2Rnp . (4.2)

Under this definition, a minimization of (4.1) with respect to θ̂ results in the posterior
mean (PM)

θ̂pm(Z) =

∫
Rnp

θp(θ|Z)dθ = Eθ|Z[θ] (4.3)

as the ‘optimal’ estimator [see e.g. 94]. The popularity of this estimator stems mainly
from two facts: on the one hand, estimators derived from the squared error loss (4.2) are
unbiased estimators in the sense

EZ|θ[θ̂(Z)] = θ ∀θ; (4.4)

on the other hand, a direct measure of the estimator’s accuracy in terms of the mean
squared error is given by the posterior (co)-variance

Eθ|Z[(θ̂(Z)− θ)2] = Vθ|Z[θ] (4.5)

[see 19, p. 136]. Furthermore, the computation of the posterior variance usually does
not require additional computational effort given a method to compute the PM.

4.1.2. Maximum a posteriori estimation

Another possible choice for the loss function is the so called ‘0-1’ loss given by

L(θ̂(Z),θ) =

{
0 ‖θ̂(Z)− θ‖ ≤ ε
1 ‖θ̂(Z)− θ‖ > ε.

(4.6)

In the limit ε → 0, this results in the maximum posterior mode being the ‘optimal’
estimator given by

θ̂map(Z) = argmin
θ

p(θ|Z) (4.7)

[see e.g. 94]. Since the location of the posterior maximum is independent of the model-
evidence p(Z), it is equivalently characterized by

θ̂map(Z) = argmin
θ

p(Z|θ)p(θ). (4.8)

A clear advantage of the MAP estimator is the significant simplification in computational
effort. Whereas the PM estimator requires the application of numerical integration
techniques, the MAP estimator reduces to an optimization problem, which is generally
easier to compute [19].
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4. Numerical solution of the identification problem

4.2. Estimation of credible intervals

If used in a self-contained manner, the point-estimators introduced in chapter 4.1 are
only partially Bayesian. Although exploiting the full posterior information, they fail at
providing insight into the variability of the conditional distribution of the parameters
θ|Z. Within a Bayesian setting, point estimates are usually augmented with interval
estimates that are referred to as credible interval (CI). In principle, the definition of a
credible region/set as an extension of a CI to multiple dimensions is straightforward. In
practice however, CIs are mainly referred to as sections from the marginal probability
densities. This is mainly due to limited possibilities of presenting multidimensional data
on the one hand, but primarily due to complications in the numerical computation for
high dimensional problems. Splitting the random parameters θ into the set (θi,θ\i), i.e.,
one scalar parameter of interest θi and the vectorial remainder θ\i of the vector θ, the
marginal density p(θi) is given by

p(θi) =

∫
Rnp−1

p(θ|Z)dθ\i =

∫
Rnp−1

p(θi,θ\i|Z)dθ\i. (4.9)

A credible interval for the parameter θi can then be defined [see e.g. 94]:

Definition 4.2.1 (Credible interval). Given a marginal density p(θi) as defined in (4.9),
a α · 100%-credible interval is given by the set (θl, θu) such that∫ θu

θl

p(θi)dθi = α (4.10)

whereby α ∈ [0, 1] is a fixed number.

This definition enables to fix the probability of the parameter θi|Z to be contained
in the interval [θl, θu] with a probability α. But without further specification, there are
infinitely many such intervals in the domain of the marginal probability density p(θi).
One possibility is to constrain the interval to be equi-tailed. Such a constraint necessitates
the computation of the (1−α)/2- and (1+α)/2-quantiles. Another possibility to arrive at
unique intervals under certain regularity conditions is the use of highest posterior density
(HPD) intervals.

Definition 4.2.2 (Highest posterior density interval). For a certain level α, an HPD
interval of the marginal distribution p(θi) is the credible interval I with

p(θi) ≥ p(θ̃i) ∀ θi ∈ I, θ̃i 6∈ I. (4.11)

The existence of a HPD depends on the properties of the posterior density. For in-
stance, in the case of multimodal densities, the HPD interval does not necessarily exist.
The analytic evaluation of CIs or HPD intervals is generally only possible in certain

simple cases due to the involved integrations. In practice, they are estimated by means of
Monte Carlo (MC) techniques, see chapter 4.4.2. In the work presented in this thesis, the
posterior variability is always reported in terms of the posterior variance and the reader
is referred to Chen et al. [40, chapter 7] for a detailed description of the approximation
of Bayesian intervals by means of MC methods.
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4.3. Approximate inference

4.3. Approximate inference

Anticipating one of the shortcomings of the numerical techniques presented in chapter 4.4,
it has to be mentioned that some techniques can pose almost insuperable computational
barriers. In particular, these are the techniques based on numerical integration and
sampling. To overcome these shortcomings, huge effort is made most notably in the field
of machine learning [see e.g 25] to reduce the computational cost by developing methods
for approximate inference.
Variational Bayes (VB) techniques (see chapter 4.3.2) constitute one such class of

methods. By computing optimal approximations q(θ) of the posterior p(θ|Z), VB meth-
ods try to render the evaluation of integrals such as in (4.3) or in the evaluation of
the evidence in (3.32) feasible. With the intention of identifying parameters for com-
plex computational models, these methods have also been extended to be applicable in
combination with models incorporating nonlinear ‘input-output’-relations (see chapter
4.3.3). These extensions can also be seen as generalizations to the well-known Laplace
approximation described in the following.

4.3.1. Laplace approximation

In the context of statistical inference, the Laplace approximation usually refers to ap-
proximations of the posterior by a normal distribution [209]. This is equivalent to a
quadratic approximation to the log-posterior at the MAP point [145]. To this end, the
posterior is represented as

p(θ|Z) =
1

Z
q(θ), (4.12)

and log q(θ) is approximated in terms of the second-order Taylor expansion at the MAP
point

log q(θ) ≈ log q(θ̂map) +
��

��
�
��*0

d log q

dθ

∣∣∣∣
θ̂map

· (θ − θ̂map)

+
1

2
(θ − θ̂map) ·

d2 log q

dθ2

∣∣∣∣
θ̂map

· (θ − θ̂map) (4.13)

[see e.g. 25, 145]. Due to the definition of the MAP point as an extremal point of the
posterior, the first-order term in (4.13) vanishes. The matrix

H := −d2 log p(θ|Z)

dθ2 (4.14)

is usually called hessian matrix. Provided that H is positive definite, q(θ) can be repre-
sented by the Gaussian distribution

q(θ) = N (θ̂map,H
−1). (4.15)

This distribution is also shown in figure 4.1. The normalizing constant

Z =

∫
p(Z|θ)p(θ)dθ = p(Z) (4.16)

67



4. Numerical solution of the identification problem

can then be approximately computed by

Z ≈ q(θ̂map)
(2π)np/2

|H|1/2
. (4.17)

This approximation of the evidence p(Z) makes Laplace’s method a popular tool for
model evaluation, e.g., by means of the Bayes factor [111]. The use of the Gaussian-
approximation at the MAP estimate can be justified from an asymptotic perspective
where a large amount of data is available. Nevertheless, there is no guarantee on the
quality of the approximation and the Gaussian distribution might not represent the
posterior well in a particular situation [25].

4.3.2. Variational Bayesian approach

VB methods also aim at statistical inference based on an approximation q(θ) of the
posterior p(θ|Z). In contrast to the Laplace approximation – where the approximation
q(θ) is a posteriori fitted in terms of a fixed Gaussian distribution – optimality of the
approximations in the VB approach is obtained from a variational argument a priori. To
this end, similarity between probability distributions p1 and p2 is measured by means of
the Kullback-Leibler divergence [129]:

DKL(p1‖p2) =

∫
p1(x) log

p1(x)

p2(x)
dx. (4.18)

The evaluation of a minimum of such a functional with respect to an argument p1 or p2

lends itself towards variational calculus motivating the name variational Bayes. Although
not being a metric since DKL(p1‖p2) 6= DKL(p2‖p1), the application of (4.18) reveals very
useful properties. This can be seen by a rearrangement of the Kullback-Leibler divergence
of some approximation q(θ) from the posterior p(θ|Z):

DKL(q(θ)‖p(θ|Z)) =

∫
q(θ) log

q(θ)

p(θ|Z)
dθ (4.19)

=

∫
q(θ) log

q(θ)

p(Z,θ)
dθ + log p(Z) (4.20)

=: −G(q) + log p(Z). (4.21)
→ log p(Z) = G(q) +DKL(q(θ)‖p(θ|Z)). (4.22)

Since the model-evidence p(Z) is fixed with respect to q, the minimization of (4.19) is
equivalent to a maximization of the functional G(q). Thus, G(q) provides a lower bound
for p(Z) [see e.g. 25].
In order to arrive at tractable relations by performing the minimization of (4.19), the

VB method usually assumes that the posterior can be factorized over partitions θi of the
parameters θ according to

q(θ) =

N∏
i

qi(θi). (4.23)
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This approximation, known as mean field approximation, has its foundation in the mean
field theory of statistical physics [173]. The minimization of (4.19) is then performed
with respect to the single components qi according to the classical variational argument

argmin
qi

DKL(q(θ)‖p(θ|Z)) ⇐⇒ δDKL(q‖p)[δqi] ≡ 0. (4.24)

Thereby, no a priori assumptions on the single components qi are made, which is an
often advocated advantage of the VB approach referred to as free-form optimization [9].
The solution of the minimization problem (4.24) results in

log qi(θi) = Eqj 6=i [log p(Z,θ)] + const (4.25)

[see e.g. 25]. Thereby, Eqj 6=i refers to the expectation computed with respect to the
probability density qj 6=i =

∏
j,j 6=i qj(θj). With a clever choice of the partitions θi and/or

with the choice of conjugate priors for the likelihood p(Z|θ), the integral Eqj 6=i [p(Z,θ)]
becomes analytically tractable and the components qi(θi) can often be identified with
some specific distribution [180].
Starting from the mean field approximation, the original identification problem is split

into N conceptually simple optimization problems (4.25). The cyclic dependency be-
tween the sub-problem suggests an iterative update procedure: starting from an initial
guess θ0, the partitions are updated sequentially, and new parameters θi are used in the
optimization for the next partition. This procedure is then repeated until convergence.
This approach is very similar to the expectation-maximization scheme known from op-
timization of latent variable models [see e.g. 25]. In fact, it can be shown that the VB
approach represent a generalization of expectation-maximization [17].
The VB approach is a relatively recent development in the field of statistical infer-

ence and it has been proven particularly useful for parameter identification. Often,
partitioning the parameters into model- and noise-parameters already results in feasible
computations. Also for Bayesian graphical networks or hierarchical Bayesian models,
the hierarchy provides a natural way of partitioning [106]. Furthermore, the good con-
vergence properties being inherited from the expectation-maximization scheme make the
use of VB methods appealing. The general advantage of the VB approach over the con-
ceptually easier Laplace approximation is twofold. On the one hand, VB provides a much
richer class of approximations, whereas the Laplace approximation is restricted to opti-
mal solutions being represented as Gaussian distributions. On the other hand, VB gives
a lower bound for the evidence, whereas the approximation quality of the Laplace ap-
proximation can generally not be assessed. For a detailed introduction and illustrations
of the approach, the reader is referred to Bishop [25], MacKay [145] and Beal [17].

4.3.3. Extension to nonlinear forward models

The advantage of the VB approach is mainly connected to the availability of good parti-
tions θi such that the optimal distribution qi can be identified from (4.25). Under certain
circumstances, this identification might not be possible. A particular case is given by
likelihoods given in terms of complex nonlinear forward models. In order to also handle
nonlinear models within the VB framework, it can be combined with the Laplace ap-
proximation [67]. One possible approach suggested by Chappell et al. [39] is to use the
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4. Numerical solution of the identification problem

computational model in a linearized version

F (θ) ≈ F (θm) + J(θ − θm), (4.26)

with the matrix [J]ij = dFi(θ)
dθj

∣∣∣
θm

. Considering solely the model-parameters θ as single

partition, the minimization problem (4.25) reduces to

log q(θ) = log p(θ|Z) + log p(θ) + const. (4.27)

Using the generic definition of the likelihood (3.27) and the assumption of a Gaussian
prior p(θ) ∼ N (θ0,Σ0) over the parameters, the log-posterior can be expanded to

log q(θ) = − 1

2σ2
(Z− F (θ)) · (Z− F (θ))− 1

2
(θ − θ0) ·Σ0 · (θ − θ0) + const. (4.28)

Inserting the linearization (4.26) and accumulating all terms that are constant with
respect to θ in the constant remainder, one obtains

log q∗(θ) = −1

2
θ · ( 1

σ2
J>J + Σ0) · θ

+θ · ( 1

σ2
J> · ((Z− F (θm)) + J · θm) + Σ0 · θ0) + const. (4.29)

In order to identify the ride hand side as the logarithm of some specific probability
density function, the logarithm of a Gaussian density logN (x|m,Σ) is expanded to

logN (x|m,Σ) = −1

2
x ·Σ · x + x ·Σ ·m + const. (4.30)

By comparison to (4.29) it is possible to identify

Σ =
1

σ2
J>J + Σ0, (4.31)

Σm =
1

σ2
J> · ((Z− f(θm)) + J · θm) + Σ0 · θ0. (4.32)

This again suggests an iterative procedure: starting from an initial guess of θ0
m, m is

iteratively obtained as the solution of the linear system (4.32), and the next linearization
point is updated as θn+1

m ← m. This iteration can be readily identified as a Gauss-
Newton algorithm for the solution of a regularized least-squares formulation [see e.g.
146]. Except for the Gauss-Newton approximation, this iteration will converge to the
Laplace-approximation (4.15) with the covariance H approximated by

H ≈ 1

σ2
J>J + Σ0. (4.33)

This specific interpretation of the nonlinear-VB approach arises as the limiting case of a
fixed a priori known noise variance σ2 and a Gaussian prior on θ. Whereas this limiting
case is of course not representative for the nonlinear VB approach, it reveals its two main
disadvantages. On the one hand, the lower bound on the evidence p(Z) is weakened due
to the linear model approximation. On the other hand, the nonlinear VB is no longer an
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expectation maximization scheme and thus suffers from the same disadvantages as the
Gauss-Newton algorithm. I.e., it is stable only close enough to the solution and generally
requires extensions such as the Levenberg-Marquard algorithm [see e.g. 151].
Furthermore, the computation of the linearization J used in (4.26) poses a signifi-

cant computational effort. Especially for high dimensional complex nonlinear models
F (θ) in combination with high-dimensional data Z, the linearization J is exactly that
quantity whose computation is avoided by state-of-the art Quasi-Newton methods, see
chapter 4.4.1. The resulting Gauss-Newton approximation as a replacement for the ex-
act quadratic approximation of the log-likelihood is also know to be inaccurate for large
residuals (Z−F (θ)). This fact can be directly observed from the exact second derivative

d2 log p(Z|θ)

dθ2 =
1

σ2
(J>J− (Z− f(θ))

d2f

dθ2 ). (4.34)

As a remedy, the exact hessian to the log-likelihood H, which can be obtained by adjoint
approaches either exactly or approximately, can be used instead [66, 67, 175].

4.4. Numerical computation of estimates

This chapter introduces the numerical techniques and algorithmic implementations used
in this thesis to compute estimates from the estimators introduced in the preceding
chapter. Depending on the estimator, conceptually different techniques are necessary.
Whereas the computation of a MAP estimate requires methods for optimization, a PM
estimate requires methods for integration and sampling. Both approaches are affected
by the potentially high dimension of the parameters θ and the high computation cost in
terms of evaluation time associated to the solution of the computational model F (θ).
The following presentation is not intended as a comprehensive introduction to numer-

ical optimization and integration in general but as the description of the state-of-the-art
techniques that are used in the large-scale regime and applied in this thesis. To compute
the MAP estimate, the (limited-memory) Broyden-Fletcher-Goldfarb-Shanno method is
introduced in chapter 4.4.1 as state-of-the-art optimization algorithm for large-scale non-
linear problems. The computation of the PM estimate will be performed by means of
Monte Carlo techniques presented in the chapters 4.4.2 - 4.4.4.

4.4.1. Limited-memory BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [31, 62, 86, 200] is a popular
method for the solution of nonlinear equations as arising from optimization problems
[153]. One instance of such a problem is given by the necessary conditions to be fulfilled
by the MAP estimate θ̂map from (4.8):

d(− log p(Z,θ))

dθ
= 0. (4.35)

In order to keep the notation simple and in line with available literature, this system of
equations in θ will be represented by the generic system

∇h(x) = 0 (4.36)
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whereby the function h : Rnp → R is used to represent − log p(Z,θ) as a function
of the parameters θ. The BFGS method is a particular member of a class of methods
named Quasi-Newton methods. A Quasi-Newton method is characterized by the iterative
update rule

xn+1 = xn − τn(Bn)−1 · ∇h(xn). (4.37)

The matrix Bn is an approximation to ∇2h(xn) and τn is a line search parameter. A
Quasi-Newton scheme creates a sequence {Bn} of SPD matrices following a general line
search paradigm:

(1) d← −(Bn)−1 · ∇h(xn) (4.38)
(2) xn+1 ← xn + τnd (4.39)
(3) Bn+1 ← xn+1,Bn (4.40)

Thereby, the line search parameter τ is subject to certain conditions such that the update
onBn in step (3) generates a contraction for (4.37) [115]. These conditions depend on the
update strategy for Bn. In the class of secant methods, this update strategy is generated
from the secant equation

Bn+1 · sn = yn (4.41)

with sn = xn+1−xn and yn = ∇h(xn+1)−∇h(xn). To determine a unique Bn+1 from
(4.41), it is necessary to impose additional conditions. These can be imposed in terms
of a similarity condition between the iterates Bn and Bn+1. To this end, the solution
to (4.41) is formulated as the optimization problem

min ‖Bn+1 −Bn‖W s.t. B>n+1 = Bn+1, Bn+1 · sn = yn. (4.42)

The choice of the norm ‖·‖W then leads to different Quasi-Newton methods. In the BFGS
method, this norm is chosen as a weighted Frobenius norm ‖A‖W :=

∥∥W 1/2AW 1/2
∥∥
F

and instead of imposing conditions on the approximate hessian Bn, the secant equation
is reformulated in term of the inverse hessian B−1

n resulting in the minimization problem

min
∥∥B−1

n+1 −B−1
n

∥∥
W

s.t. B−>n+1 = B−1
n+1, B

−1
n+1 · yn = sn. (4.43)

Under the condition yn ·sn > 0, this leads to the rank-two update formula for the inverse
hessian

B−1
n+1 = (I +

snyn
yn · sn

)B−1
n (I +

ynsn
yn · sn

) +
snsn
sn · sn

(4.44)

[see e.g. 115]. To guarantee that B−1
n+1 is SPD, a line search strategy is necessary to

ensure yn · sn > 0. This can be achieved by a variety of different approaches. A line
search algorithm in the context of Quasi-Newton methods generally tries to solve the
sub-problem

min
τ
χ(τ) := min

τ
h(xn + τd) (4.45)

such that updates like (4.44) are valid. Throughout the work presented in this thesis,
a relatively simple approach based on polynomial models χκ (with order κ) of χ(τ) has
proven extremely robust [115]. This algorithm is based on the sufficient decrease [7]
condition

h(xn + τd)− h(xn) < c1τ∇h(xn) · d (4.46)
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with the small constant c1 typically chosen to c1 = 1.0e−4 [see e.g. 169]. In order to solve
the minimization problem (4.45), a sequence of cubic polynomial models is constructed.
Based on the information χ(0) = h(xn), χ′(0) = ∇h(xn) · d and χ(τ0) = h(xn + τ0d),
this sequence is initialized by the quadratic model

χ2(τ) = τh(xn) + τ∇h(xn) · d+
h(xn + τ0d)− h(xn)− τ0∇h(xn) · d

τ2
0

τ2. (4.47)

The minimizer of this quadratic model is given by

τ+ =
τ2

0∇h(xn) · d
h(xn + τ0d)− h(xn)− τ0∇h(xn) · d . (4.48)

It is subsequently used for the next iteration τi ← τ+ to provide the additional infor-
mation χ(τi) = h(xn + τid). Based on this additional information, the cubic model

χ3(τ) = τh(xn) + τ∇h(xn) · d+ τ2c2 + τ3c3 (4.49)

is constructed. The constants c2 and c3 can be identified from the solution of the linear
system [

τ2
i τ3

i

τ2
i−1 τ3

i−1

] [
c2

c3

]
=

[
h(xn + τid)− h(xn)− τi∇h(xn) · d

h(xn + τi−1d)− h(xn)− τi−1∇h(xn) · d

]
. (4.50)

The minimizer τ+ is then readily obtained as

τ+ =
−c2 +

√
c2

2 − 3c3χ′(0)

3c3
(4.51)

and can be used as a next iterate. The outline of the resulting algorithm is depicted in
algorithm 1. Such an algorithm benefits from local super-linear convergence [115]. Re-
initializing the algorithm in case yn·sn < 0 may lead to repeated steepest gradient descent
steps in non strictly convex regions. Theoretically this can be considered inefficient and
there are more elaborate solutions available [see e.g. 169]. In practice though, algorithm
1 has proven to be very robust due to its simplicity, which is a clear advantage over more
efficient line search strategies that come at the cost of increased algorithmic complexity.

The use of Quasi-Newton methods in nonlinear optimization is very appealing since
they don’t need second order derivatives. Instead, hessian approximations are con-
structed solely based on gradient information. This represents a particular advantage for
large-scale optimization. In comparison to other methods used in this field, like the non-
linear conjugate gradient method [63], the benefit of Quasi-Newton methods is mainly
given by the super-linear convergence properties. A drawback of the BFGS update (4.44)
is the high storage cost of the generally non-sparse inverse hessian B−1. Although it is
possible to use its symmetry, the storage of approximately n2

p/2 entries of B−1 can be-
come infeasible for large parametric dimension np. The limited-memory BFGS (LBFGS)
method addresses this issue efficiently by the incorporation of two important features:

• the approximation B−1
n is not constructed from all increments yn and sn but only

from the ms most recent.
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n = 0; Bn ← I
d← −B−1

n ∇h(xn)
while |∇h(x)| > tol do

i← 0; τi ← 1.0
while not sufficient decrease (4.46) do

if i == 0 then
τ+ ← min

τ
χ2(τ)

else
τ+ ← min

τ
χ3(τ)

end if
τi+1 ← min(max(βlτi, τ+), βhτi)
i← i+ 1

end while
xn+1 ← xn + τid
if yn · sn > 0 then

Update B−1
n+1 according to (4.44)

d← −B−1
n+1∇h(xn+1)

else
Bn+1 ← I

end if
n← n+ 1

end while

Algorithm 1: Line search BFGS algorithm. The factors βl and βh with 0 < βl < βh < 1,
e.g., βl = 0.1, βh = 0.5, are safeguarding against step sizes becoming too
low or too high due to inefficient proposals by the polynomial models.

• the approximation B−1
n is never explicitly constructed, but its action B−1

n · v on
some vector v is directly computed from the increments yn and sn.

These features can be implemented in the so called two-loop recursion formula [168], see
algorithm 2. In contrast to the standard BFGS update (4.44), the two-loop recursion
allows the initial scaling B0

n to vary between iterations. A method that has proven to
be efficient is given by the choice B0

n = γnI with

γn =
yn · sn
yn · yn

. (4.52)

This choice tries to estimate the scaling of the true hessian along the latest search di-
rection such that the step length will be τn+1 ≈ 1 [140]. The amount of storage for the
two-loop recursion is given by the ms most recent increments yn and sn. Although loos-
ing super-linear properties, the convergence of the LBFGS method is reportedly superior
to that of nonlinear CG already for small ms (ms = 3, 5, 7, 10). This makes LBFGS the
method of choice for large-scale nonlinear problems [169].
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d← ∇h(xk)
for i = k, . . . , k −ms do

ai ← (si · d)/(yi · si)
d← d− aiyi

end for
d← B0

n · d
for i = k −ms, . . . , k do

b← (yi · d)/(yi · si)
d← d+ si(ai − b)

end for
Result : d ≡ B−1

k · ∇h(xk)

Algorithm 2: Two-loop recursion algorithm to compute a direction d at an iteration k of
algorithm 1.

4.4.2. Monte Carlo methods

MC methods cover a wide spectrum of different applications. The most prominent ones
are optimization and integration. Often, the MC method [156] is referred to as a method
for the evaluation of general intervals given by

Ex[f(x)] =

∫
Rn
f(x)p(x)dx. (4.53)

Depending on the definition of the function f(x), this integral can represent the PM (4.3)
or the posterior variance (4.5). In this case f(x) would be given by f(x) = x or f(x) =
(x−E[x])2. Moreover, f(x) can represent any output quantity of the computational model
such that (4.53) can be used to compute statistics over the model output as outlined in
the introduction to chapter 4.
Given a sample (x1, . . . , xN ) ∼ p, the integral (4.53) is approximated by the empirical

average

f̄ =
1

N

N∑
i=1

f(xi = xi). (4.54)

Since for large N , the error f̄ − E[f(x)] is O(1/
√
N), convergence of this approximation

can be observed by the variance estimate

V[f̄ ] = Vx[f(x)] (4.55)

[185], which is a consequence of the central limit theorem [see e.g. 59]. The general
independence of the convergence of MC methods on the dimension of x constitutes
the biggest advantage over classical integration techniques such as Simpson’s rule or
numerical quadrature [see e.g. 178]. However, the applicability of the plain MC method
(4.54) is restricted to the availability of a sample (x1, . . . , xN ) ∼ p. In the situation
presented in this thesis, the generation of samples from the posterior p(θ|Z) is not possible
by standard random variate generation techniques [see e.g. 51]. To account for this, (4.53)
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is more generally given by

Ex[f(x)] =

∫
Rnp

f(x)
p(x)

η(x)
η(x)dx. (4.56)

As a consequence, choosing an importance distribution η(x) that allows for the generation
of a sample (xη1, . . . , x

η
N ) ∼ η, the MC estimate f̄ of E[f(x)] can be computed by the

weighted average

f̄ =
1

N

N∑
i=1

wif(xηi = xi) (4.57)

with the weight-function w(xi) = p(xi)/η(xi) and wi := w(xi). Given that supp(p) ⊂
supp(η), the estimate (4.57) theoretically converges to (4.53) for every importance distri-
bution η(x) [185]. In practice however, the amount of samples needed is highly sensitive
to the choice of importance functions. Furthermore, although convergence in f̄ is es-
tablished, the variance of the estimate f̄ can be infinite in situations where the ratio
p(x)/η(x) is not bounded [81]. To this end, a popular approach for variance reduction
is to replace the estimate (4.57) by

f̄w =

∑N
i=1wif(xηi = xi)∑N

i=1wi
, (4.58)

which is justified since 1/N
∑N

i=1wi → 1 for N → ∞ [185]. Still, choosing a proper
importance density η is crucial to the applicability of (4.58). This eventually renders
importance sampling inapplicable in situation where this choice cannot be feasibly per-
formed. Since plain importance sampling is not considered to be used throughout this
thesis due to these difficulties, the reader is referred to Robert and Casella [185] or Rubin-
stein and Kroese [189] for a detailed discussion on the selection of importance functions.
In this thesis, sequential Monte Carlo techniques are used to generate an importance
distribution sequentially. Since these techniques build on Markov chain properties, the
Markov chain Monte Carlo method is briefly described in the following.

4.4.3. Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) techniques, similar to importance sampling, also
rely on auxiliary probability distributions. Although, in contrast to importance sampling,
the exact choice of this auxiliary distribution is less important. MCMC methods draw
on the stationary properties acquired by certain classes of Markov chains whereby the
auxiliary distributions play the role of transition probabilities between successive element
of the chain. Formally, given a probability space (S,F , P ), a (discrete time) Markov chain
{Φn}∞n=1 is a sequence of random variables Φn ∈ S for which the Markov property holds,
i.e.,

P (Φn+1 ∈ A|Φn = xn,Φn−1 = xn−1, . . . ,Φ0 = x0) = P (Φn+1 ∈ A|Φn = xn). (4.59)

A similar property was already introduced as the defining property of a MRF being
defined on a graph structure, cf. chapter 3.4.3. In the context of Markov chains, this
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property is understood in the sense of discrete sequential random events Φn. Despite
being seemingly oversimplifying, such chains have proven extremely successful in mod-
eling a great variety of different state-space systems, see Meyn and Tweedie [157] for an
overview. The exceedingly successful application of Markov chains in MC techniques as
a means of sampling and integrating is raised by ergodicity and stationarity of certain
Markov chains. These properties establish the convergence of the time average

1

N

N∑
i=1

f(Φi) →
N→∞

Eπ[f(Φ)], (4.60)

whereby π is the so called stationary distribution of the Markov chain. The goal in using
MCMC techniques in the Bayesian setting introduced in chapter 3.1 is to construct a
Markov chain with stationary distribution π(θ) ≡ p(θ|Z), and then apply (4.60) to
evaluate quantities like the PM (4.3) or the posterior variance (4.5). In the following,
the basic concepts that allow for this approximation are briefly introduced and one
popular algorithmic implementation (Metropolis-Hastings) is described. For an extensive
introduction into the context of MCMC techniques, the reader is referred to Robert and
Casella [185]. An overview with respect to application in a Bayesian setting is also given
in Robert [183]. Information on the general properties of Markov chains can be found in
Jerrum [107] or Meyn and Tweedie [157].
A Markov chain is generally characterized by the transition between successive ele-

ments. This transition is defined by the transition kernel.

Definition 4.4.1 (Transition kernel). On a measurable space S with σ-algebra F , a
transition kernel K : S × F → R is given by the following properties:

(i) ∀x ∈ S, K(x, ·) : F → R is a probability measure.

(ii) ∀A ∈ F , K(·,A) : S → R is measurable.

For a continuous state space S, the kernel represents a conditional density such that the
Markov property (4.59) can be expressed by

P (Φn+1 ∈ A|Φn = xn) =

∫
A
K(xn, dx). (4.61)

A Markov chain is called homogeneous if the transition from n → n + 1 is given by the
same kernel for all n. Starting from an initial x0 and using the abbreviation x1, . . . , xn =:
x1:n, the joint probability density px1:n|x0

is given by

px1:n|x0
(x1:n|x0) =

N∏
i=1

K(xi−1, xi). (4.62)

Setting K(1)(x0,A) = K(x0,A), a transition kernel K(n) for n transitions at once is ob-
tained by marginalizing over the states of the n − 1 intermediate steps resulting in the
recursion formula

K(n)(x0,A) =

∫
S
K(n−1)(y,A)K(x0, dy). (4.63)
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To allow for the convergence result (4.60), these multi-step transition kernel must belong
to Markov chains with certain properties. One possible starting point to define these
properties is given by the stopping time

tA := inf{n ≥ 1 : Φn ∈ A} (4.64)

and the number of visits to the set A

iA :=
∞∑
i=1

IA(Φn). (4.65)

The probabilities Px(tA < ∞) and Px(iA = ∞) describe the probabilities of finite stop-
ping times and infinite number of visits to a set A ∈ F given a certain initial state x ∈ S.
These quantities are used to define irreducibility [see 185, chapter 6.3] and recurrence
[see 185, chapter 6.4] of a Markov chain. Simply stated, these properties establish that a
chain can and will reach every ‘reasonably sized’ set A from every initial state x ∈ S. For
a detailed definition of these properties, the reader is referred to the respective literature.
The result of the technical elaborations used to establish the necessary ergodic properties
is given by the following definition [185, proposition 6.33 and proof]:

Definition 4.4.2 (Harris recurrent chain). If for every A ∈ F , Px(tA <∞) = 1 for all
x ∈ S, then Px(iA =∞) = 1 for all x ∈ S, and the chain {Φn} is called Harris recurrent.

The second important concept is that of a stationary distribution of a Markov chain.
Stationarity is established by the existence of an invariant probability measure π such
that

π(A) =

∫
S
K(x,A)π(dx) ∀ A ∈ F . (4.66)

If the distribution π exists, it is referred to as stationary distribution of the chain. To
check in practice whether a distribution π is stationary for a particular transition kernel,
the detailed balance condition

K(x, y)π(x) = K(y, x)π(y) (4.67)

provides a sufficient condition [185, theorem 6.46]. Given a Harris recurrent aperiodic
(i.e., Px(tA = 1) > 0) chain, it can be shown that the chain converges according to

lim
n→∞

‖
∫
S
K(n)(x, ·)µ(dx)− π(·)‖ = 0, (4.68)

for every initial distribution µ [185, theorem 6.51]. Thereby π is a unique stationary
distribution of the chain, and ‖·‖ is understood as the TV norm on measures [24]. It can
be shown that (4.68) directly establishes the desired property (4.60).

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [93] is one instance of the class of MCMC-based
algorithms. In order to construct a chain with a desired stationary distribution π(x), it
uses a proposal distribution qpp(x|y). The main requirement on this proposal density is
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Require: x = Φn

Generate y ∼ qpp(y|x)

%(x, y) = min{π(y)
π(x)

qpp(x|y)
qpp(y|x) , 1}

if ρ(x, y) ≥ 1 then
Φt+1 = y

else
Generate a ∼ U(0, 1)
if ρ(x, y) ≥ a then

Φn+1 = y
else

Φn+1 = x
end if

end if

Algorithm 3: Metropolis-Hastings kernel.

that it must be possible to easily generate samples from it. The algorithmic outline of
the transition kernel to generate the next sample Φn+1 from the current sample Φn in
the chain is given in algorithm 3.
Formally, the transition kernel corresponding to the Metropolis-Hastings algorithm is

given by
Kmh(x, y) = %(x, y)qpp(y|x) + (1− r(x))δx(y), (4.69)

with r(x) =
∫
%(x, y)qpp(y|x)dy and the acceptance probability

%(x, y) = min{π(y)

π(x)

qpp(x|y)

qpp(y|x)
, 1}. (4.70)

Whereas the transition probabilities represented by this kernel cannot be evaluated in
practice due to the intractable integrals, it can easily be checked that the detailed bal-
ance condition (4.67) is fulfilled. Thus, by construction, π is the stationary distribution
corresponding to the kernel (4.69). With the minimal necessary condition

supp(π) ⊂
⋃

x∈supp(π)

supp(qpp(·|x)) (4.71)

such that it is generally possible for the chain to visit every possible state x ∈ supp(π),
this allows for a variety of different proposal densities. These are usually selected from
a family of distributions with certain tunable location and scale parameters [41]. The
efficiency of the chain, i.e., the speed of convergence, is then influenced by a proper
choice of a family of proposal densities and an appropriate scaling. A popular subclass
of MCMC methods are so called random walks. A random walk is characterized by
proposals such as

qpp(y|x) = q̃pp(y − x) = q̃pp(z) (4.72)

with the update y = x + z. If the proposal density q̃pp is chosen to be Gaussian, the
particular Markov chain is called Gaussian random walk. For certain classes of target
densities π, optimal convergence of the chain can be controlled by means of the acceptance
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rate, i.e., the ratio of accepted versus dismissed samples. By using a Gaussian random
walk, the scaling parameter of the Gaussian distribution can be used to control the
acceptance ratio whereby it has been found that an acceptance rate of ≈ 1/4 is optimal
for a multidimensional target [186].
MCMC methods for integration and sampling arose with the emergence of computa-

tional power in the last century and have since then been established as the state-of-
the-art tool in the high dimensional regime. In the area of Bayesian computation, their
flexibility allowed for development of models with ever increasing complexity. Whereas
MCMC methods themselves are in principle not affected by the ‘curse of dimensionality’,
the choice of good proposal densities becomes often more complicated with increasing
dimension. This can severely affect the convergence of the chain. Furthermore, Markov
chains are built up sequentially. The application of sophisticated and complex models
such as described in chapter 2 can impose high computational efforts in terms of overall
computational time. As a consequence, MCMC methods can become impractical. This
issue is addressed by sequential Monte Carlo (SMC) methods.

4.4.4. Sequential Monte Carlo

Sequential Monte Carlo tries to combine both, the flexibility of MCMC methods with
the embarrassing parallelity of importance sampling. To this end, instead of targeting
a single posterior distribution, SMC targets a sequence of distributions {πn}tn=1. Such
sequences are either given naturally by sequential filtering problems [see e.g. 49, 54], or
they can be created artificially as, e.g., in global optimization by simulated annealing
[see e.g 165]. Throughout this thesis, the sequence is constructed as a transition from an
initial distribution π0 to a target distribution π via the intermediate distributions

πn(x) = π0(x)1−λnπ(x)λn , (4.73)

with 0 < λ1 < · · · < λt = 1 [see 50]. Such a sequence enables the following rationale:
given the initial distribution π0 can be readily approximated via (importance) sampling,
the sequence (4.73) is such that a sequence of importance distributions {ηn}tn=1 can be
created according to

ηn(x) =

∫
S
ηn−1(y)Kn(y, x)dy. (4.74)

The subscript n, in contrast to (4.63), indicates that Kn is an indexed transition kernel
for step n. I.e., the transition kernel is allowed to change for every transition n→ n+ 1.
Starting from a set of particles {xi0}Ni=1 ∼ η0(x) (in the simplest case η0 = π0) and
evolving each particle xi0 → Xi1 using the kernel Kn=1, the resulting set of particles is
distributed according to {xi1}Ni=1 ∼ η1(x). In the next step this set of particles is then
evolved using Kn=2 and so on. This approach is also known as sequential importance
sampling. To apply it in practice, it is necessary to evaluate the importance distribution
ηn(xn) given by

ηn(xn) =

∫
Sn
η0(x0)η1:n(x1:n)dx0:n−1 =

∫
Sn
η0(x0)

n∏
i=1

Ki(xi−1, xi)dx0:n−1 (4.75)

for each particle xin. This however is only possible for very simple transitions. For
instance, a Metropolis-Hastings kernel such as (4.69) does not allow for this evaluation.
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At this point, SMC techniques [50] can be used to compensate for this deficiency in the
construction of plain sequential importance sampling.
In the following, the sequence of target distributions is represented via

πn(x) =
ςn(x)

Zn
. (4.76)

To circumvent the computation of (4.75), SMC sampling uses an artificial joint target
distribution π̃n(x1:n) = ς̃n(x1:n)/Z1:n with

ς̃(x0:n) = ςn(xn)

n−1∏
i=0

Li(xi+1, xi). (4.77)

Thereby, the backward Markov kernel Li : S × F → R describes a backward transition
i+ 1→ i equivalent to the (forward) Markov kernel from definition 4.4.1. This represen-
tation enables to use importance sampling for the joint distribution π̃(x0:n) by means of
the joint importance distribution ηn(x0:n) = η0(x0)η1:n(x1:n). This feature of the SMC
approach avoids the explicit marginalization in (4.75). Since π̃(x0:n) admits πn(xn) as a
marginal by construction, its importance approximation also provides estimates for the
approximation of πn(xn) [78].
For an initial set of weighted particles {wi

0, x
i
0}Ni=1 with xi0 ∼ η0(x) (whereby in the

simplest case η0 = π0, the initial weights simplify to wi
0 = 1), a path xi0:t for each par-

ticle through the dim((S)t)-dimensional space is created by sequential evolution of each
particle using the forward kernel Kn. Accordingly, this evolution generates a sequence of
weight-functions {wn}tn=1 with elements

wn(x0:n) =
ς̃n(x0:n)

ηn(x0:n)
(4.78)

=
ςn(xn)

∏n−1
i=0 Li(xi+1, xi)

η0(x0)
∏n
i=1 Kn(xi−1, xi)

(4.79)

=
ςn(xn)Ln−1(xn, xn−1)

ςn−1(xn−1)Kn(xn−1, xn)︸ ︷︷ ︸
w̃n(xn,xn−1)

ςn−1(xn−1)
∏n−2
i=0 Li(xi+1, xi)

η0(x0)
∏n−1
i=1 Kn(xi−1, xi)︸ ︷︷ ︸

wn−1(x0:n−1)

. (4.80)

Thus, the current weights wn(x0:n) can be obtained by the incremental update

wn(x0:n) = w̃n(xn, xn−1)wn−1(x0:n−1) (4.81)

whereby the incremental weights depend on the backward kernel Li. The optimal choice
of these kernels with respect to the variance of the weights wn is again infeasible. But it
is shown by Del Moral et al. [50] that a good approximation is given by

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
(4.82)

if Kn is a MCMC kernel as introduced in sec. 4.4.3 and πn−1 ≈ πn. This choice results
in the incremental weights

w̃n(xn, xn−1) =
ςn(xn−1)

ςn−1(xn−1)
. (4.83)
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4. Numerical solution of the identification problem

As a consequence of πn(xn) being the marginal distribution of π̃0:n(x0:n), a particle
approximation πNn is given by

πn(x) ≈ πNn (x) =
N∑
i=1

wi
nδxn(x) (4.84)

with the normalized weights wi
n = wi

n−1w̃n(xin, x
i
n−1)/

∑N
j=1 wj

n−1w̃n(xjn, x
j
n−1). As a

result, approximations of expected values such as Eπn [f(x)] are equivalently obtained.
With the potential decrease in discrepancy between the importance distribution ηn

and the target distribution πn with increasing time n, also the variance of the estimates
based on the particle approximation πNn increases. To account for this, the particle basis
is resampled whenever the discrepancy between ηn and πn, commonly measured by the
effective sample size (ESS) [141], exceeds some threshold Tred. The ESS (0 < ESS < N)
as a measure of degeneracy of the particle approximation is given by

ESSn =

(
N∑
i=1

(W i
n)2

)−1

. (4.85)

A common choice for the threshold is Tred = N/2 [see e.g. 123]. A very simple resampling
strategy, the multinomial scheme, is to choose the new particles according to the particle
approximation {Xi

n−1}Ni=1 ∼ πNn .
To preserve the approximation quality of the backward kernel (4.82), it is crucial to find

a step size ∆λn = λn+1−λn such that πn+1 ≈ π. On the one hand, the approximation will
be better for smaller step sizes. On the other hand, in order to bound the computational
effort, the step size cannot be arbitrarily small. Furthermore, it is to be expected that
choosing a single constant step size appropriate for the whole sequence results in an
inefficient scheme due to too small steps in slowly evolving regions of the sequence. It
was therefore proposed by Koutsourelakis [123] to use an adaptive step size control.
Thereby, the sequence of steps is determined by an acceptable reduction in ESS such
that

ESSn = ξESSn−1 (4.86)

with the user defined reduction factor ξ. Throughout the applications presented in this
thesis, ξ = 0.95 is chosen according to Koutsourelakis [123]. A summary of the final
algorithm is given in algorithm 4.
SMC methods provide a very general and powerful framework for a broad range of

statistical inference problems. The application to the Bayesian parameter identification
problem enables a fully probabilistic analysis of very complex and sophisticated nonlinear
models without the a priori restrictions of the approximate analysis presented in chapter
4.3. Although this benefit is accompanied by an increased computational cost, this cost
can be handled by the inherent parallelity of the algorithm. This parallelity is given
by the possibility to evaluate each particle independently during the rejuvenation step.
Assuming that the rejuvenation process represents the majority of the computational
cost within one time step, which is justified for complex nonlinear models, the overall
computational time scales almost perfectly with the parallel distribution of particles.
By construction, the initial distribution π0 is less important to the overall efficiency

of the algorithm than the importance distribution η is to plain importance sampling.
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4.4. Numerical computation of estimates

n← 0, λn ← 0;
{xi0}Ni=1 ∼ π0, {wi

0 = 1/N};
while λn < 1 do

n← n+ 1;
Find λn, s.t. ESSn ≈ ξESSn−1 AND λn ≤ 1;
if ESSn < Tred then

Resample: {xin−1}Ni=1 ∼ πNn ;
end if
Rejuvenate: {xin}Ni=1 ∼ Kn(xn−1, ·);

end while

Algorithm 4: Sequential Monte Carlo algorithm according to Del Moral et al.
[50](Remark 1). Common choices for the ESS reduction factor ξ and the
resampling threshold Tred are ξ = 0.95 and Tred = N/2.

However, in practice, providing a good initial distribution significantly reduces the num-
ber of steps in the sequence of distributions (4.73) and accordingly also the variance in
potential estimates. Additionally, with increasing dimension of the problem, this effect
becomes more pronounced due to the ‘curse of dimensionality’. The same arguments
apply to the choice of forward kernels Kn. For complex models, these choices are crucial
for the successful application of the SMC algorithm. A possible approach that makes
use of dimensionality reduction is presented in chapter 5.

Computational aspects Using the advantage of the inherent parallelity provided by
the SMC algorithm requires an efficient software implementation. This is of particular
importance with increasing model complexity which is often reflected in increased compu-
tational time. To this end, the implementation developed within the scope of this thesis
uses the hierarchical parallel layout shown in figure 4.2. Depending on the available hard-
ware architecture, the particles representing states in the sample space are distributed
equally among different parallel groups. Within each of the parallel groups, the particles
are evaluated sequentially. Thus, for a fixed number of particles, the computational time
is inversely proportional to the number of parallel groups. This proportionality is only
slightly deteriorated by the increase in communication overhead. The communication
between the groups results from the resampling step, see algorithm 4, which necessitates
a redistribution of particles among the parallel groups whenever the ESS falls below the
resampling threshold Tred.
If required by the evaluation of the surface current similarity measure, see chapter

3.3.2 page 51, the implementation allows for a hybrid OpenMP/message passing interface
(MPI)-parallel layout where each MPI rank is pinned to a certain number of threads.
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4. Numerical solution of the identification problem
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Figure 4.2.: Parallel layout for the efficient implementation of the SMCalgorithm. Particles
(�) are assigned to parallel groups. Within each group, particles are evaluated on
an MPI-parallel layout. Thereby, each MPI rank (©) can be pinned to a certain
number of threads (4). Communication among the different parallel groups and
within a parallel group is managed by MPI communication. The thread parallel
level can, e.g., be implemented with OpenMP.
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5. A two-stage approach towards
predictive modeling of AAA growth

The intention of this chapter is the description of the concepts for numerical solution
introduced in chapter 4 in view of a parameter identification framework for AAA growth
as introduced in the chapters 2 and 3. The aspect of a specific choice of a similarity
measure is thereby left to be discussed in chapter 6.
A crucial prerequisite for the predictive modeling of AAA growth is the mathematical

description of a priori knowledge in the prior-distribution. Whereas there are attempts to
create such a knowledge base for population parameters [199], existing approaches for the
inverse identification of spatial distributions of patient-specific growth parameters rely
on prior distributions implicitly defined by sparse spatial representations of parameters
[232]. Studies regarding the patient-specific inverse modeling of AAA are scarce and there
is no common agreement on a population wide definition of priors for growth parameters.
As a consequence, at this stage any choice of prior represents a personal belief in the
statistical population of growth parameters.
In light of the prior models presented in chapter 3.4, this belief is expressed in terms of

certain smoothness assumptions on the spatial distribution of parameters. The following
reasoning thereby adapts to the qualitative specification of priors (3.71). In this regard,
both, the Gaussian process prior with squared exponential kernel and the smoothness
prior represent functions with regular spatial variation. Functions with certain specific
but localized features are thus rendered unlikely. However, a ‘classical’ AAA is not
unlikely to be a localized phenomenon with respect to the entire aorta. Whereas this
does not imply the local character to be necessarily reflected in a spatial distribution
of parameters describing such a phenomenon, it is clearly undesirable to define this
possibility to be unlikely a priori. Hence, the choice of the more flexible TV prior
represents a reasonable a priori model in the sense of (3.71) since it allows for a local
character without enforcing it.
In order for the graph-based approximation of the TV norm (3.88) to accurately

represent functions with bounded variation from the continuous setting (3.85) and its
smoothed version (3.86) respectively, the graph structuring the underlying domain has to
be accurate. I.e., its vertices have to cover the domain of the parameters θ (given by the
reference configuration Ω0) accurately and uniformly. This requirement can conveniently
be achieved by fixing the graph structure to be defined by the elements of the FE mesh
and their connectivity, see appendix F. Hence, the dimension np of the inverse problem
is given by the discretization size nele.
In principle, the resulting np-dimensional problem could be tackled by any of the nu-

merical techniques presented in chapter 4. In practice, their plain application is often
rendered infeasible. Whereas the approximate methods suffer from unquantifiable bounds
on the quality of the approximation in the case of nonlinear models, MC methods are
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5. A two-stage approach towards predictive modeling of AAA growth

implicitly affected by the ‘curse of dimensionality’. For importance sampling based meth-
ods, this is reflected in the difficulty of finding appropriate importance distributions. For
SMC methods, this problem is mirrored in the definition of initial distributions. Similar
difficulties arise in the definition of proposal densities for the application of MCMC meth-
ods. Furthermore, standard MCMC methods are inherently sequential methods. Thus
for computational models with an evaluation time in the order of minutes to hours, a
sequential evaluation in the order of 10.000 - 100.000 evaluations as required by standard
MCMC methods is not an option.
In this light, applications of the inverse modeling in the context of large-scale non-

linear computational models can be approached differently. On the one hand, with the
increasing influence of methods from machine learning to the field of model-based in-
verse problems, approximate inference has seen rapid improvements. In particular, VB
approaches have been shown to be able to result in good approximations also for non-
linear problems [39, 66]. On the other hand, methods for dimensionality reduction are
used to render sampling based approaches feasible. These methods are based on the
assumption that low dimensional representations of the input parameter space can be
found that reflect the major contributions to the posterior density. The resulting reduced
dimensional problem - whereby the aspect of a reduced representation solely refers to
the dimension of the input parameters - allows for the solution of large-scale, nonlinear
inverse problems by means of SMC techniques. Such an approach is presented in the
following.

5.1. Existing approaches for dimensionality reduction in
cardiovascular modeling

To the author’s best knowledge, there are no existing approaches to the inverse modeling
of AAA growth based on longitudinal data that explicitly account for the probabilistic
nature of the problem. Although there are attempts towards the inverse modeling of
patient-specific AAA growth based on the constrained mixture theory [230, 231, 232],
these approaches are neither accounting for the inherent probabilistic nature of the in-
verse problem nor based on longitudinal data. A non-probabilistic approach using lon-
gitudinal data was presented by Tinkl [218].
However, inverse modeling and uncertainty quantification in the general field of biome-

chanical modeling and especially in the field of cardiovascular modeling experienced
significant advances in recent years. Thereby a variety of different problems were ap-
proached. These approaches differ further by the different mathematical formulations
and the according numerical techniques. Nevertheless, the applied approaches to cope
with the problem dimension can be roughly grouped into a few main categories:

• Identification problems formulated as classical optimization problems in line with
(3.6) are not in need of dimensionality reduction if used in combination with effi-
cient adjoint approaches as described in chapter 3.5 [see e.g. 170]. These formula-
tions are usually not intended to be used in a probabilistic sense.

• Rule-based approaches enforce some particular rule as a mapping from a high-
dimensional to a low-dimensional parameters space a priori. As, e.g., in the case of

86



5.1. Existing approaches

cardiac models, these rules can be physiologically motivated [37, 164] whereby the
rule is motivated from clinical research [36]. Furthermore, rules can be expressed in
terms of certain sparsity assumptions which are enforced as part of the identification
problem by means of primary model output. An example of such rules is, e.g.,
given by clustering approaches based on computed strain maps [14, 118]. Also, the
a priori assignment of patches to represent the solution [20, 21, 161, 218] or the
enforcement of certain polynomial representations of the solution [232] can be seen
as a rule-based dimensionality reduction.

• If the definition of the prior admits an orthogonal decomposition, a truncated rep-
resentation of the prior represents a natural choice for a reduced dimensional basis
in the sense of a principle component analysis (PCA). Such approaches are natu-
rally possible for Gaussian priors by a factorization of the covariance matrix. In
the setting of Gaussian process priors, sparse representations are formalized by
the representer theorem [see e.g. 196]. In the context of inverse problems, such
formulations have been used by Koutsourelakis [123].

• High problem dimension is also an issue in the approximate inference methods,
e.g., due to high storage requirements of np × np hessian matrices. As a rem-
edy, sparse representations of the Laplace approximation can, e.g., be tackled by
matrix-free representations of the covariance matrix [32]. One instance of such a
sparse representation is, e.g., given by the two-loop recursion formula used in the
LBFGS algorithm, see chapter 4.4.1. Very recently, VB approaches with built-
in identification of reduced dimensional representations have also been proposed
[66, 124].

The implementation of one of the existing strategies to reduce the stochastic dimension
for the identification of AAA growth is not straightforward, which is reflected in the
following aspects:

• In contrast to cardiac mechanics, a rule-based model for parameter reduction is not
available and the most simple rule in the sense of an a priori assignment of patches
suffers from severe disadvantages. On the one hand, given that a spatial scale of
variation of the true parameters is know providing an estimate of a patch size, it
is still unclear whether a particular patch-wise approximation is consistent with
the true solution in terms of the location of the patches. On the other hand, it is
unclear whether a patch-wise basis is able to cover the main covariance structure
of the true solution. Since this covariance structure will be reflected in predictions
of AAA growth, this is an important aspect with respect to predictive modeling.

• The TV prior does not allow for an a priori decomposition due to its nonlinearity.
Thus, in contrast to Gaussian priors, it does not admit a reduced basis in terms of
an a priori truncated representation.

• Although nonlinear VB approaches have shown that the resulting approximations
are in good agreement to the true posterior for certain scenarios [39, 66], their
performance highly depends on the nonlinearity of the model.
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5. A two-stage approach towards predictive modeling of AAA growth

In conclusion, existing methods for dimensionality reduction cannot be applied directly
in the inverse modeling of AAA growth. However, although not a priori accessible, some
sparsity in the input parameters is expected due to the assumed boundedness in variation
that is expressed by the choice of the TV prior. In the following, an approach is proposed
that tries to exploit this sparsity. To evaluate its performance, it is contrasted with a
patch-wise approximation of the solution.

5.2. A posteriori dimensionality reduction under TV prior
assumptions

In this chapter, a novel PCA-like approach [see e.g. 108] is suggested. It uses a decom-
position

θ = θ0 + P ·ψ (5.1)

with the reduced dimensional parameters ψ ∈ Rnr and the dictionary P ∈ Rnp×Rnr . The
approach is based on the assumption that a parametrization (5.1) with nr << np can
be found. The dictionary P is comprised of pair-wise orthonormal columns representing
a basis for the reduced dimensional space Rnr such that P>P = I. This setup defines
a linear monotonic mapping hP : ψ 7→ θ. From a probabilistic point of view, it is
most important that this mapping captures the main covariance structure in the high-
dimensional layout. Assuming that this covariance structure is sufficiently represented
by the Laplace approximation, a factorization of the associated covariance matrix would
yield the desired basis, as discussed by Bui-Thanh et al. [32]. However, the resulting dense
np × np covariance matrices cannot be handled in the large-scale regime and methods
to approximate the action of the covariance matrix are usually applied. Hence, the
quality of the basis would be directly coupled to the quality of the approximation of
the covariance matrix. For instance, the requirements on the covariance approximation
are relatively low to still obtain good convergence in the LBFGS scheme that is applied
throughout this thesis. As a consequence, a factorization of the resulting approximate
covariance might not be optimal.
In order to decouple the numerical solution and the dimension reduction, a different

approach is proposed here. Motivated by the work of Babacan et al. [10], a local quadratic
approximation of the TV functional (3.88) is utilized. Using the inequality1

√
v ≤ v + z

2
√
z
∀z (5.2)

with
√
v = (v + z)/(2

√
z) ⇐⇒ v = z and setting v =

∑
j WG

i,j(xj − xi)2 + ε2, it can be
seen that the TV norm is bounded by

TVw(x) ≤
∑
i

(∑
j WG

i,j(xj − xi)2 + ε2
)

+ zi
√
zi

. (5.3)

1This inequality is easily verified from linearization of
√
v around z.

88



5.2. A posteriori dimensionality reduction under TV prior assumptions

This bound is quadratic in x and as such allows for a representation in terms of a
symmetric operator Ltv(zi) such that

TVw(x) ≤ x · Ltv(zi) · x+
∑
i

ε2 + zi√
zi

+ const (5.4)

Given the eigendecompostion
Ltv(zi) = YΛY> (5.5)

with the matrix of eigenvectors Y and the matrix of eigenvalues Λ, a reduced basis P
can be constructed by

P = Ynr , (5.6)

where Ynr represents the columns of Y corresponding to the nr smallest eigenvalues.
Given that the TV prior represents a class of desirable solutions, the rationale behind
this choice is that the quadratic approximation (5.4) is still capable of representing
the characteristics of these desirable solutions. The dominant properties should then be
captured by the eigenvectors corresponding to the small eigenvalues since these represent
modes of least action for the operator Ltv(zi). See figure 5.6 for an illustration of this
idea in practice. Since the operator (5.5) depends on the point of linearization, the
factorization (5.5) is unique only up to the choice of zi. A natural choice is to set zi = v
and to evaluate v at the MAP estimate. This choice then suggests a 2-stage approach:

1. Find the MAP estimate θ̂map and the associated Laplace approximation (4.15).
By using a Quasi-Newton method such as the LBFGS method, the covariance H−1

will only be available in terms of its approximate action on some vector v. This
aspect is notationally accounted for by using the symbol H̃−1v in the following.
Anyhow, this product is never computed in terms of a matrix-vector product but
in terms of the two-loop-recursion algorithm 2, see chapter 4.4.1. Set θ0 = θ̂map.
Find a reduced dimensional basis given by (5.4)-(5.6). Initialize ψ = 0.

2. Find the PM and the posterior variance, or any other posterior statistic, by MC
techniques such as SMC with a parametrization given by (5.1). Due to the mono-
tonic behavior of the linear one-to-one mapping hP defined by (5.1), the posterior
p(ψ|Z) is given by the change of variables for probability densities

pθ(θ|Z) = |P| pψ(ψ|Z) ∝ p(Z|hP(ψ))p(hP(ψ)). (5.7)

Again, since the change in functional dependency is expected to be clear from the
argument, the labeling indices are omitted resulting in p(θ|Z) ∝ p(ψ|Z). The two
important ingredients for a successful application of the SMC algorithm are the
initial distribution π0 and an appropriate choice of transition kernels Kn. For the
initial distribution the already available Laplace approximation projected to the
reduced dimensional parameters is a natural candidate. With the linear transfor-
mation (5.1), this projection is given by

π0(ψ) = N (0,P>H̃−1P). (5.8)

Again, the product H−1
P := P>H̃−1P is not computed as a dense matrix-matrix

product but column-wise, which is feasible since nr << np. Additionally, assuming
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5. A two-stage approach towards predictive modeling of AAA growth

that the Laplace approximation reasonably captures the dimensions of the true
posterior, it can be made use of as a proposal density in the sense of (4.72) according
to

q(x|y) = N (y, σPH−1
P ). (5.9)

Thereby σP is an adjustable scaling parameter such that an optimal acceptance
ratio of the transition kernel is obtained.

The proposed approach incorporates several beneficial properties:

• Step 1 of the approach can be achieved by state-of-the-art large-scale optimization.
Quasi-Newton methods, routinely resulting in approximate Laplace approxima-
tions, can thereby additionally be used to initialize step 2. This approximation
will have a direct effect on the efficiency of step 2. Anyhow, the dimensionality
reduction relies solely on the existence of the MAP estimate which can be found
by a great variety of different algorithmic setups.

• As can be seen from (5.3), the sparsity pattern of the linear operator Ltv is entirely
defined by the spatial connectivity of the parameters θ. E.g., for an element-wise
layout, the sparsity pattern is defined by the connectivity of the elements of the
FE mesh. Depending on the specific definition of this connectivity, see appendix
F, this results in extremely sparse graph structures. Thus, the eigendecomposition
can be performed by standard large-scale sparse eigenanalysis [see e.g. 6].

• The Laplace approximation, which cannot be considered a good approximation in
general [25, 144], is only used in the sense of preconditioning for the second step.
So even in situations where the Laplace approximation is not suitable to be used as
direct importance distribution for the posterior, globalization strategies like SMC
can make use of it in a meaningful way.

5.2.1. Patch-wise approximations

In the setting of TV prior assumptions, the representation of a point estimate such as
the MAP solution in terms of a priori patches seems to be justified at first sight. Such
a patch-wise solution can also formally be represented by (5.1). Let a patch be defined

by a connected set of elements Ki = {Ek}n
Ki
ele
k=1 of the mesh K, see chapter 2.3, such that

• Ki ⊂ K,

• K =
⋃Np
i=1Ki,

• Ki ∩ Kj = ∅ ∀i 6= j,

with the number of patches Np and the number of elements nKiele per patch Ki. In this
case, the columns of the dictionary P = [p1, . . . ,pnr ] are comprised of the vectors

pi = {v ∈ Rnp : vk = 1/

√
nKiele ⇐⇒ Ek ∈ Ki, vk = 0 ⇐⇒ Ek 6∈ Ki}. (5.10)

Obviously, an a priori definition of such a patch-wise basis is only possible if the patch
size is chosen small enough so that, justified by prior knowledge, the spatial variations of

90



5.3. Proof of concept

the solution can be represented. If not justified by expert knowledge, this might not be
possible in general. In the sense of the a posteriori dimensionality reduction introduced
above, it is also possible to fit a patch-wise basis to the MAP estimate. This then results
in an ‘optimal’ distribution of patches. Here, it is therefore suggested to construct the
a posterior patches based on a histogram of the MAP estimate. Let a histogram of the
MAP estimate with bins mi be given such that

nele =

nbin∑
i=1

mi (5.11)

with nbin being the number of bins and the set M := {m1, . . . ,mnbin} being the set
of bins with decreasing magnitude, i.e., m1 > m2, · · · > mnbin ≥ 0. Patches can then
be created by the association of element-wise values θ̂map,E to the ‘closest’ bin mj and
an inter-connectivity check within each patch. The creation of the patch-wise basis is
outlined in algorithm 5.

Given a set of ordered bins M = {m1, . . . ,mnbin};
i = 1; Choose a tolerance tolp;
repeat

Find element-wise association to the bins:
∀E ∈ K, dE ← argmin

j
(
∣∣∣mj − θ̂map,E

∣∣∣), s.t. j ≤ i;
Create sets Kj = {E ∈ K : dE = j};
Split each set Kj into subsets of interconnected elements;
Create basis according to (5.10);
ψ ← P>θ̂map;
c← ‖θ̂map −Pψ‖/‖θ̂map‖;
i← i+ 1;

until c > tolp OR i ≤ nbin

Algorithm 5: Patch creation algorithm.

Therein, the check for inter-connectivity between all the elements within one patch is
performed by standard search algorithms such as the Breadth-first-search algorithm [see
e.g. 191]. By choosing a low tolerance ξ, the approximation quality with respect to the
MAP estimate can be controlled. However, the requirement on the resulting basis to
represent the main posterior covariance structure is not necessarily guaranteed and can
lead to wrong probabilistic interpretations. This will be shown by the following example.

5.3. Proof of concept

The intention of the following proof of concept is twofold: First, it is used to generate
an intuition of the functionality of the SMC algorithm 4 with respect to the choice
of different initial distributions. Second, it is shown that the proposed dimensionality
reduction approach results in feasible reduced dimensional approximations that can be
efficiently used for predictive modeling.
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Figure 5.1.: Geometrically simplified model geometry mimicking a segment of the aorta (left).
Ground truth/reference solution of the growth parameter cϑ ∈ {0.5, 2.0} [1/t̄] for
the creation of synthetic measurement data (right). Growth is considered over a
generic time period t̄.

To this end, a geometrically simplified model is employed, see figure 5.1. In combina-
tion with the continuum mechanical model described in chapter 2 and with the growth
model (2.65) in particular, this model mimics the setup in a patient-specific simulation of
arterial growth. In this context, the geometry shown in figure 5.1 can be interpreted as a
segment from the aorta. Along this segment, the model is discretized with 50 hexahedral
elements. To model the constitutive properties of the arterial wall, a simple but widely
used model proposed by Raghavan and Vorp [179] is applied. It is given in a nearly
incompressible formulation by

ΨAAA(Ĉe) = α(̂I1,e − 3) + β(̂I1,e − 3)2 + Ψvol(Ce). (5.12)

Therein, Î1,e represents the first invariant of the distortional component of the elastic (i.e.,
growth-free) right Cauchy-Green tensor Ĉe = J

−1/3
e Ce = (J

−1/3
e /ϑ2)C. The volumetric

penalty is chosen as
Ψvol(Ce) =

κ

4
(2 lnJe + J2

e − 1). (5.13)

The parameters for these constitutive relations are taken from Maier et al. [148] resulting
in α = 0.174 MPa, β = 1.881 MPa and κ = 104.4 MPa. For the simulation of growth,
a patch-wise spatial distribution cϑ,P of the growth parameter cϑ is prescribed as shown
in figure 5.1. Growth is simulated over a generic time period t̄. Prior to the growth
simulation, the model is prestressed by the application of an orthonormal pressure on
the inner surface ΓI of the arch in the initial configuration. By applying a pressure of
p = 1.066e−2 MPa ≈ 80 mmHg, diastolic conditions are sought. Thereby, the MULF
approach [77] is applied to project the pressurized state to the initial configuration, see
chapter 2.5. The overall nonlinear solution is controlled by the load-control scheme given
in figure 5.2.
To define a synthetic inverse problem, the solution of the forward problem A(θ = cϑ,P )

is used to construct a measurement in the space of currents via the measured surface
Z = ϕA(cϑ,P )(ΓO) as the push-forward of the model surface ΓO given the parameters
cϑ,P . To avoid the most obvious version of the inverse crime [110], this measurement
is blurred with centered Gaussian noise (σN = 0.1 mm) in the space of currents, see
chapter 3.3.2. The spatial scale of the kernel defining the space of test functions W is
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Figure 5.2.: Load control scheme. In the first 25 steps, the load is incrementally increased to a
pressure of p = 80 mmHg whereby MULF is applied. Growth is then initiated from
this prestressed state. Step 26 represent a state corresponding to measured data
(i.e. a state from which a measurement is synthetically created). Step 27 computes
a prediction of further growth.

chosen to σW = 0.5 mm. Assuming the noise variance σN to be known, the likelihood is
then given in terms of (3.69).

5.3.1. 1 dimensional example

In a first step, the above model is used to analyze the functionality of the SMC algorithm
4. To this end, the parametrization of the growth parameter along the segment of
the aortic arch is a priori set to be uniformly constant and thus given by one single
parameter. This allows to explore the posterior in a structured way. Thus, expectations
and variances computed from integration rules can serve as exact reference solutions.
Without any restrictions to the analysis, the posterior is assumed to be entirely defined
by the likelihood at this point. The structured evaluation of the posterior on the interval
cϑ ∈ [1.2, 1.35] in 300 steps, see figure 5.3, allows to compute the reference solution

E[cϑ] ≈ 1.266 1/t̄, SD[cϑ] ≈ 1.002e−2 1/t̄. (5.14)

The results of the application of the SMC algorithm 4 are given in table 5.1 for different
initial distributions π0, see figure 5.3. On the one hand, a very ‘bad’ initial guess with
respect to mean and variance is chosen as π0 = N (1.0, 1.0). On the other hand, a ‘good’
initial guess is provided by the Laplace approximation π0 = N (θ̂map ≈ 1.266, H̃−1 ≈
3.769e−3). The Laplace approximation is computed by the BFGS algorithm 1 (con-
vergence tolerance tol = 1.0e−6, storage size ms = 10; convergence was achieved after
5 iterations). The deviation between the approximate Laplace approximation and the
almost Gaussian posterior density is due to the very few Quasi-Newton iterations and
the corresponding rough hessian approximation. To reduce the variance in the statisti-
cal estimates, multiple runs of the SMC algorithm (N = 5), each with 96 particles, are
performed simultaneously and the resulting estimates are averaged over the number of
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Figure 5.3.: Sampled posterior density (blue) and initial distributions for the SMC algorithm.
A very uninformative Gaussian distribution N (1.0, 1.0) (red, scaled by a factor of
20 for visualization) and an approximation of the Laplace approximation given by
N (1.266, 3.769e−3) (green).

runs [see e.g. 50]. Based on the final particle approximation, statistical estimates of the
primal solution of the forward problem – i.e. the deformation due to growth in terms
of displacements u – are additionally reported in table 5.1. Therefore, the displacement
umaxy in y-direction at x, y = (0.0 mm, 18.5 mm) (see figure 5.1) is monitored at the end
of the calibration phase.

initial distribution π0 E[θ](±SD[θ]) [1/t̄] E[umaxy ](±SD[umaxy ]) [1/t̄] numiter
N (1.0, 1.0) 1.266(±1.119e-02) 1.167(±9.985e-03) 42.8

N (1.266, 3.769 · 10−3) 1.267(±8.668e-03) 1.168(±7.738e-03) 17.0

Table 5.1.: Statistical estimates obtained by the application of the SMC algorithm with differ-
ent initial distributions that highly influence the average number of iterations and
consequently the computational cost.

As expected, the final approximations are of equal quality for both initial guesses.
Compared to the bad initial guess, the Laplace approximation as initial guess allows for
a significant reduction in the average number of iterations per SMC run. In this particular
example, the Laplace approximation represents a relatively good approximation to the
posterior. But even samples from the bad initial guess cover the domain of the posterior
reasonably well enough to allow the SMC algorithm to converge quickly. In multiple
dimensions though, this discrepancy is expected to worsen rendering the application of
the SMC algorithm with uninformed initial distributions infeasible.

5.3.2. 50 dimensional example

In a second step, the predictive capabilities of the proposed dimensionality reduction
approach are analyzed. Therefore, a spatially varying solution of the growth parameter
cϑ is allowed by using the element-wise basis (2.105). The expected blocky structure
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of the solution is modeled by the TV prior (3.93) (αtv = 1.0, ε = 1.0e−2). With
a problem dimension of np = 50, this setup does not constitute a large-scale inverse
problem. However, the dimension is already high enough to render the application of
plain MCMC highly inefficient. Furthermore, the dimension is high enough to allow
for meaningful reduced dimensional approximations. At the same time, the dimension
is low enough to allow for the plain application of the SMC algorithm without any
dimensionality reduction providing a reference solution. The predictive quality of this
full-space solution can then be compared against a reduced-dimensional solution. The
predictive quality is thereby measured in the sense of the predictive capabilities of the
calibrated model to provide an informed extrapolation of future growth. This prediction
is monitored as the growth/displacement uy(s) in y-direction along path A (see figure
5.1) after the prediction step (see figure 5.2). The displacement uy(cϑ) is a function of the
parameters and as such its probabilistic interpretation is clearly of interest. Furthermore,
since uy(s) is a function of the parameters only through the solution of the forward
problem, it captures the influence of the covariance structure of the parameters. Thus, it
provides a natural means to qualify reduced dimensional approximations. The solution
of the identification problem is reported in terms of posterior-mean EI [cϑ] and posterior
standard deviation SDI [cϑ]. The predictive qualities are assessed in term of expected
value EI [uy] and standard deviation SDI [uy] of the predicted growth uy. The index
I ∈ (θ, q(θ),ψp,ψtv) thereby refers to the evaluation of the statistics with respect to
the full-dimensional parameter layout indicated by I = θ, the Laplace approximation
indicated by I = q(θ) and the reduced dimensional layouts indicated by I = ψp for
the patch-wise approximation and I = ψtv for the approximation based on the TV
approximation.

Reference solution The identified parameters of the full-dimensional solution and the
associated prediction are shown in figure 5.4. The Laplace approximation is computed
with the BFGS algorithm 1 (convergence tolerance tol = 1.0e−8; storage size ms = 200;
although 52 iterations were sufficient to achieve convergence). The SMC algorithm was
then started from this Laplace approximation as initial distribution with 5 simultaneous
runs each comprised of 3024 particles. Such a particle approximation, with ≈ 60 particles
per parametric dimension, showed excellent agreement in terms of mean and variance
with a MCMC solution.
It can be seen from figure 5.4 that the exact solution is reasonably well covered by both,

the mean of the Laplace approximation and the PM computed with SMC. The relative
good alignment of the PM solution and the MAP solution suggest that the posterior
density is more or less symmetric. The prediction uy has a minimum of sensitivity,
measured in terms of variance, at the center of the arch. Given that the surface current
similarity measure can very well detect mismatch in out-of-surface direction but that it is
insensitive with respect to a mismatch in in-surface direction, this reflects the expected
behavior. The often mentioned capability of a reduced dimensional approximation to
‘capture the main posterior covariances’ can subsequently be measured in terms of the
capability to reproduce the predictive solution uy with respect to mean and variance.
In the following, the two parameter reduction techniques proposed in chapter 5.2 are
analyzed in this regard.
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Figure 5.4.: Parameters cϑ (left) and prediction uy (right) using an element-wise basis for the
spatial representation of the parameters. The results from the particle approxi-
mation of the posterior obtained via the SMC algorithm are given in green. The
Laplace approximation is given for comparison in blue. Intervals are given as ±1σ-
regions and ±3σ-regions around the mean, respectively.

Patch-wise dimensionality reduction First, the ‘optimal’ patch-wise approximation is
applied. Using a histogram of the MAP solution with nbin = 10 bins, algorithm 5 stopped
after 2 iterations with an approximation tolerance

tolp = ‖θ̂map −Pψ‖/‖θ̂map‖ = 10%. (5.15)

The two resulting patches match the patches of the reference solution exactly. For the
application of the SMC algorithm, 120 particles were used per run resulting again in
60 particles per parametric dimension. The initial distribution was set to the projected
Laplace approximation according to (5.8).
It can be seen from figure 5.5 (left) that this patch-wise approximation represents a

reasonable approximation of the PM. However, the standard deviation does not reflect
the variability of the full-space solution any longer. In itself, this does not necessarily
disqualify the reduced basis, given it could still represent the main posterior covariance
structure. However, from the inspection of the prediction uy, see figure 5.5 (right), it
becomes clear that the patch-wise basis fails in this respect. Whereas the prediction
mean Eψp [uy] is still very close to the full-space solution, the prediction standard devi-
ation SDψp [uy] is even worse than the standard deviation approximated by the Laplace
approximation SDq(θ)[uy]. It is clear that such an approximation is not suited to draw
probabilistic conclusions. This holds especially in situations where the definition of
patches is made a priori.

TV-based dimensionality reduction The improvements offered by the dimensionality
reduction based on the decomposition of the linearized TV functional are able to over-
come the deficiencies of the patch-wise approximation. A motivation for the approach
based on the TV decomposition is given by the inspection of the eigenspectrum of the
linear operator (5.5) evalutated at the MAP point, see figure 5.6. The eigenspectrum
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Figure 5.5.: Parameters cϑ (left) and prediction uy (right) using a patch-wise basis with 2
patches. The results from the particle approximation of the posterior obtained
via the SMC algorithm are given in green. The Laplace approximation in terms
of the element-wise basis is given for comparison in blue. Intervals are given as
±1σ-regions and ±3σ-regions around the mean, respectively. The variability of the
patch-wise approximation is drastically reduced compared to the reference solution
shown in figure 5.4.

stagnates in terms of eigenvalues at the end of the spectrum. This indicates that there is
a set of eigenvectors to which the operator applies a similar action. Furthermore, since
these are the eigenvectors with low eigenvalue, they are associated to higher prior densi-
ties, i.e., likely solutions from the a priori point of view. This suggests that the operator’s
action on desirable solutions can be well approximated by the reduced set of eigenvec-
tors corresponding to these distinct eigenvalues. Furthermore, it implies that solutions
favored by the linearized TV prior can be reasonably represented by these eigenvectors.
Additionally, it can be seen from the shape of these eigenvectors that they indicate the
‘singularity’/jump in the MAP solution. From a practical point of view, these facts make
this choice of basis promising.

The results obtained with a reduced basis constructed from the linearized TV prior
are given in figure 5.7. The smallest 10 eigenvectors are used to construct the reduced
approximation according to (5.6). The SMC-algorithm was started from the projected
Laplace approximation with 756 particles per run, which again results in ≈ 60 particles
per parametric dimension. The PM Eψtv [cϑ] shows similar characteristics as the full-
space PM Eθ[cϑ]. The posterior standard deviation SDψtv [cϑ] is in the range of the
standard deviation SDq(θ)[cϑ] from the Laplace approximation. However, the quality of
the prediction uy is very similar to the full-space solution in terms of mean and variance.
This aspect is shown in more detail in figure 5.8.

These results suggest that the information provided by the linearized TV prior is well
suited to represent the main posterior covariance structure. Furthermore, the sparsity of
solutions favored by the TV prior is reflected in the linearization (5.4) and can be used
to construct a reasonably reduced dimensional approximation.
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5.4. Conclusion

In this chapter, a practical approach to dimensionality reduction under TV prior assump-
tions was proposed. The reduction of the dimensionality is thereby enabled in terms of
the eigendecomposition of the linear operator associated to the quadratic approximation
of the TV norm at the MAP estimate. The applicability of this approach is not con-
strained by the dimensionality of the problem but by the spatial variation of the MAP
solution. However, this variation is a priori expected to be bounded as a consequence of
the choice of the TV prior. Thus, given efficient algorithms for the computation of the
MAP solution, the proposed approach can be readily applied in the large-scale regime.
The obtained reduced dimensional basis then allows the use of MC techniques such as
SMC which can be efficiently applied in the regime of sophisticated and computationally
expensive models. This application is shown in chapter 7.
It was demonstrated on a simple example that the efficiency of the SMC algorithm

in the context of an artificially created sequence of distributions depends on the quality
of the initial distributions. Throughout the work presented in this thesis, the Laplace
approximation, or a Quasi-Newton approximation thereof, is used. However, in situations
where the Laplace approximation is not suitable, i.e., for highly unsymmetric posterior
densities or multimodal posterior densities, the initial distribution can be obtained from
more sophisticated posterior approximations [see e.g. 65, 66].
Furthermore, the proposed dimensionality reduction approach was compared against

the widely used patch-wise approximation of the spatial variation of parameters. It was
shown that the patch-wise approximation can result in misleading probabilistic conclu-
sions. In this regard, the proposed approach is able to sustain the predictive capabilities
of the model under a reduced dimensional approximation. Thus, a practical alternative
was presented that is able to overcome the deficiencies of a patch-wise approximation.
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6. Analysis of the choice of similarity
measure using synthetic data

As indicated in the introduction, one major aspect for UQ in the setting of model cal-
ibration is introduced through the observation error. By using the relation (3.26), this
observation error is entirely modeled by the generic error term ζ. Its physical interpre-
tation depends on the definition of the space of measurements Z. The difficulties in this
definition were highlighted in chapter 3.2. In particular, it was shown that the use of
image registration can introduce a significant systematic error that is not modeled by the
Gaussian assumption (3.24). This fact will lead to a bias in the calibrated parameters
and accordingly in the predictive capabilities of the calibrated model. Being constrained
to the definition of measurements given by point-wise displacement data, this bias could
theoretically be accounted for by incorporating a model for image registration in the
computational model C ◦A(θ). However, models for image registration are in the same
order of complexity than the computational model for AAA growth itself. Thus, such an
approach is clearly undesirable and adds unnecessary and probably infeasible complexity
to the calibration problem. Rather, it was proposed that the systematic error associated
to image registration can be avoided by defining measurements in terms of surface data.
To highlight this effect, this chapter provides an analysis based on synthetic data.

To this end, measured data is generated from a computational model and subjected to
both, random and systematic errors. The propagation of these errors to the identified
parameters under different definitions of the space of measurements is then analyzed.
More specific, the computational model is intended to mimic growth of a synthetic AAA.
The data generation is then given by the growth of this model under a certain set of
parameters as the deformation of the model subject to random noise. The systematic
error is introduced by generating the final measured deformed model from a registration
step that maps the undeformed model to the noise corrupted deformed model. This
measured deformation is then used within the parameter identification in two different
ways. On the one hand, it is applied in terms of point-wise displacements at the discrete
degrees of freedom of the FE model boundary. On the other hand, it is applied in the
sense of discrete surface currents (3.59) as the deformed model boundary itself. Since
model errors are excluded, this setup allows for a relative quantification of the quality of
the results obtained under these two definitions of the space of measurements.
The presentation is thereby not intended towards a quantification of model inadequacy

in a probabilistic sense. Rather, it concentrates on the avoidance of the propagation of
artificially introduced systematic errors through image registration. For an introduction
towards the incorporation of model inadequacy, the reader is referred to Kennedy and
O’Hagan [116]. The work presented in this chapter is partly based on a similar analysis
shown previously by Kehl and Gee [112].
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6. Analysis of the choice of similarity measure using synthetic data

6.1. Data generation

The synthetic AAA model is shown in figure 6.1. Its geometry incorporates an asymmet-
ric distribution of intraluminal thrombus (ILT) and a thin layer of 1 mm of aneurysmatic
arterial wall. Its diameter in the descending aorta is 22 mm from where it enlarges to
mimic a rather large aneurysm with a maximum diameter of 72 mm. For the compu-
tational model, symmetry in longitudinal and lateral direction is used and, despite not
being completely physiological, Dirichlet conditions according to (2.39) are prescribed
at the proximal inlet of the aneurysm. For later reference, the luminal (inner) model
surface is referred to as ΓI and the outer model surface is referred to as ΓO.

Figure 6.1.: Discretization of the synthetic AAA model which utilizes symmetry in lateral and
longitudinal direction. The model incorporates an asymmetric distribution of ILT
and a patch-wise distribution of the growth parameter cϑ (cϑ,P ∈ {0.05, 1.0, 2.0})
in the arterial wall.

The ILT is modeled as a coupled compressible neo-Hookean material [99] whose strain
energy function is given in terms of the first invariant I1,e of the elastic component Ce

of right Cauchy-Green tensor according to

ΨILT = c1(I1,e − 3) +
c1

β1
(Je−2β1 − 1) (6.1)

with c1 = 18.0 kPa and β1 = 4.5 taken from Maier et al. [148]. The arterial wall is
modeled as the nearly-incompressible neo-Hookean type material given in (5.12) and
(5.13).
For the simulation of growth according to (2.65), a patch-wise spatial distribution cϑ,P

of the growth parameter cϑ is prescribed as shown in figure 6.1. Growth is simulated
over a generic time period t̄. Prior to the growth simulation, the model is prestressed by
the application of an orthonormal pressure on the inner surface ΓI of the synthetic AAA
in the initial configuration. By applying a pressure of p = 1.0666e−2 MPa ≈ 80 mmHg,
diastolic conditions are sought. Thereby, the MULF approach is applied to project
the pressurized state to the initial configuration [77]. The overall nonlinear solution is
controlled by the load-control scheme given in figure 5.2 whereby the prediction-phase is
not of interest for this example. Except for the simplification in geometry, this setup very
closely resembles the approach pursued in state-of-the-art patient-specific computational
experiments.
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6.1. Data generation

A synthetic measurement is given by the solution of the forward problem A(θ = cϑ,P )
as

DΓO := C(A(cϑ,P )) + ζ, (6.2)

whereby ζ is a vector of white Gaussian noise (σ = 0.1, which corresponds to a signal-
to-noise ratio (SNR) ≈ 30%) and C is the restriction to the degrees of freedom on ΓO.
The associated push-forward of the model surface ΓO is given by

Γ
A(cϑ,P )
O := ϕA(cϑ,P )+ζ(ΓO), (6.3)

i.e., the outer model surface deformed via the displacements DΓO . The current repre-
sentation of this surface is given according to (3.50).

6.1.1. Data registration via surface matching

To introduce a systematic error into the data generation, a registration step is applied.
Thereby, the practical situation where the measurements DΓO are extracted from longi-
tudinal image data is emulated. Since the synthetic model is not based on image data,
this registration step cannot be performed in the sense of image registration as introduced
in chapter 3.2. Instead, a registration algorithm is applied that operates on surface data
directly. To this end, the surface matching algorithm introduced in Vaillant and Glaunès
[221] is used here. It applies the LDDMM framework [see e.g. 57]. Since the specific
properties of such an algorithm are not of interest for the effect to be shown, the reader
is referred to appendix E for an introduction of the surface matching framework. In sum-
mary, for two surfaces T1 ⊂ ΩI

0 and T2 ⊂ ΩI
t embedded in the ambient space Ω̂ = ΩI

0∪ΩI
t,

the surface matching tries to find a diffeomorphism ϕR(x̂) with ϕR(x̂) = x̂ + VR such
that an energy functional based on the surface current distance

‖T2 − ϕR(T1)‖W∗ (6.4)

is minimized, see (E.3) for details. Consequently, when applied to the model surfaces ΓO

and the deformed model surface Γ
A(cϑ,P )
O , the matching results in an optimal mapping

ΓO 7→ Γ
A(cϑ,P )
O with respect to the norm ‖·‖W∗ . The quality of this mapping is depicted

in figure 6.2. It can be seen that the bulk of point-wise distances between Γ
A(cϑ,P )
O and

ϕR(ΓO) is < 0.1 mm. This indicates that the surface matching accurately performs
the mapping ΓO 7→ Γ

A(cϑ,P )
O . However, the in-plane accuracy of the registration, which

cannot be detected by the surface current norm ‖·‖W∗ , might be severely corrupted. This
setup closely resembles the application of image registration as outlined in chapter 3.2
where uniqueness of deformations is enforced by modeling assumptions not necessarily
in line with the underlying physical processes.
The deformation resulting from the application of the surface matching algorithm

allows for two different definitions of measurements. On the one hand, the point-wise
measurement

VR,ΓO := CR,ΓO(VR) (6.5)

is generated by restricting the registered deformation to the associated nΓ
dof degrees of

freedom of the boundary ΓO. This defines a likelihood in terms of the similarity measure
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(3.38) via

− log p(θ|Z) = − log pD(cϑ|VR,ΓO) =
1

2σ2
D

‖C(A(cϑ))−VR,ΓO‖2
Rn

Γ
dof
. (6.6)

On the other hand, the registered surface

ΓRO := ϕR(ΓO) (6.7)

can be used as a measurement in the space of currents. According to (3.69), a negative
log-likelihood is given by

− log p(θ|Z) = − log pW (cϑ|ΓR0 ) =
1

2σ2
N

‖ϕA(cϑ)(ΓO)− ΓRO‖2W∗ . (6.8)

Both likelihood functions could have been equivalently defined if the measurements
VR,ΓO had been obtained from image registration. This highlights the use of the sur-
face matching algorithm as an emulation of systematic errors introduced through the
application of image registration.

6.1.2. Inverse problem setup

The result of the registration step is the creation of a registered displacement measure-
ment VR,ΓO that closely resembles the result of a measurement process in applications
involving image registration. Furthermore, by just changing the definition of the space
of measurements from point-wise displacement measurements to surface measurements,
the same measurement is obtained as a measured surface ΓRO. Since both measurements
are subject to the exact same systematic error, the resulting parameter estimates can be
compared. A prerequisite for this comparison is the consistent determination of the noise
parameters σD and σN . Obviously, σD is best chosen to be the standard deviation of the
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6.2. Comparison of parameter estimates

synthetically applied measurement noise ζ. The consistent choice of σN , which describes
the measurement noise transformed into the space of currents, is not straightforward
due to the complicated relation of the noisy push-forward relation of the associated cur-
rent ϕA(cϑ,P )+ζ(ΓO)(ω). Furthermore, normally distributed noise in the space of discrete
currents is defined by a covariance structure on the normals defining the surface, see
chapter 3.2. It is therefore unlikely that white Gaussian noise on the measurements DΓO

transfers to the correct noise fitting into the assumptions defining the current likelihood
(6.8). Hence, a comparison of the two different parameter estimation problems in terms
of an absolute quantification of the deviation of the estimates from the ground truth is
not possible.
However, the purpose of the comparison was to quantify the susceptibility of the

applied measures of similarity with respect to the systematic error contained in the mea-
surements. This can still be achieved since there is a systematic error free measurement
DΓO and Γ

A(cϑ,P )
O for each of the measurements VR,ΓO and ΓRO respectively. By simply

replacing the measurements in (6.6) and (6.8) with their systematic error free counter-
parts, the resulting estimation problems, or the corresponding estimates, constitute a
reference solution for each of the two problems (6.6) and (6.8). The susceptibility of
each of the problems can now be measured in terms of the deviation of the solution
from the respective reference solution. Due to the relative character of this measure of
susceptibility, the comparison is independent of the choice of the noise parameters σD
and σN . In the following, these are set to σD = 0.18 mm and σN = 1.0 mm resulting in
similar values for the log-likelihood functions (6.6) and (6.8) such that the effect of the
prior assumptions is similar for each of the problems.
To complete the setup of the parameter identification problem, the TV prior (3.93)

(αtv = 0.1, ε = 1.0e−2) is assumed over the parameters. Details on the graph structure
defining the adjacency matrix are given in appendix F. In combination with the two
different likelihood functions given by (6.6) and (6.8), this constitutes the two different
parameter estimation problems to be compared.

6.2. Comparison of parameter estimates

The following analysis is carried out by means of the MAP estimates which are computed
using the LBFGS algorithm 1 and 2 (convergence tolerance tol = 1.0e−6, storage size
ms = 200), see chapter 4.4.1. The solutions are parametrized using the element-wise
basis (2.105).

6.2.1. Point-wise measurements

The MAP estimate corresponding to (6.6) is denoted by cϑ,D. The associated reference
solution, which is obtained by replacing VR,ΓO with DΓO , is denoted by c̃ϑ,D. Both
solutions are depicted in figure 6.3.
It can be seen that the reference solution c̃ϑ,D clearly shows the 3 different patches

from the ground truth, see also figure 6.4 (left). Due to the inverse-crime nature of
this reference solution, the deviation from the ground truth is entirely defined by the
synthetic noise vector ζ. Since the measurements VR,ΓO and DΓO differ solely by the
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6. Analysis of the choice of similarity measure using synthetic data

Figure 6.3.: Reference solution c̃ϑ,D (left) and solution cϑ,D (right). The clear difference between
the two is entirely caused by the propagation of the systematic error contained in
the measurements VR,ΓO

.

systematic error component, the deviation shown by cϑ,D is caused exclusively by this
systematic error. As can also be seen in figure 6.4 (right), this leads to a drastic deviation
from the ground truth. To quantify the influence of the systematic error component, a
relative error ∆D is computed as

∆D =
‖cϑ,D − c̃ϑ,D‖
‖c̃ϑ,D‖

≈ 0.41. (6.9)
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Figure 6.4.: Reference solution c̃ϑ,D (left) and solution cϑ,D (right) in comparison to the ground
truth cϑ,P . The estimated solutions are grouped according to the ground truth. The
group-wise mean is indicated by the red lines. For visualization, random horizontal
jitter is applied within each group.

6.2.2. Surface measurements

The MAP estimate corresponding to (6.8) is denoted by cϑ,W . The associated reference
solution, which is obtained by replacing ΓRO with Γ

A(cϑ,P )
O , is denoted by c̃ϑ,W . Both

solutions are depicted in figure 6.5.
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Figure 6.5.: Reference solution c̃ϑ,W (left) and solution cϑ,W (right). Although visually almost
indistinguishable, the difference between the two is entirely caused by the propa-
gation of the systematic error contained in the measurements ΓR

O.

Both solutions, which are visually almost indistinguishable, show the patch-wise char-
acter of the ground truth, see also figure 6.6. As for the displacement-based solutions,
the difference, although small, is exclusively caused by the systematic error in which
ΓRO differs from Γ

A(cϑ,P )
O . The propagation of this difference is measured in terms of the

relative error ∆W as

∆W =
‖cϑ,W − c̃ϑ,W ‖
‖c̃ϑ,W ‖

≈ 0.02. (6.10)

0.05 1.0 2.0
ground truth cϑ,P [1/t̄]

0.0

0.5

1.0

1.5

2.0

2.5

in
ve

rs
e

so
lu

ti
on

c̃ ϑ
,W

[1
/t̄

]

0.05 1.0 2.0
ground truth cϑ,P [1/t̄]

0.0

0.5

1.0

1.5

2.0

2.5

in
ve

rs
e

so
lu

ti
on

c ϑ
,W

[1
/t̄

]

Figure 6.6.: Reference solution c̃ϑ,W (left) and solution cϑ,W (right) in comparison to the ground
truth cϑ,P . The estimated solutions are grouped according to the ground truth. The
group-wise mean is indicated by the red lines. For visualization, random horizontal
jitter is applied within each group. Both solutions clearly represent the patch-wise
character of the ground-truth.

6.3. Discussion

The results presented in chapter 6.2.1 and chapter 6.2.2 indicate that the same system-
atic error contained in both measurements VR,ΓO and ΓRO is propagated differently by
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6. Analysis of the choice of similarity measure using synthetic data

the different measures of similarity in (6.6) and (6.8). By measuring this propagation
with respect to a similarity-measure-specific reference solution, obtained from measure-
ments free of systematic error, an objective comparison between the susceptibility of the
respective measures of similarity is possible. Given the relative errors ∆D and ∆W , a
quantitative measure of the error propagation is presented. It is revealed from (6.9) and
(6.10) that the error propagation through the displacement-based similarity measure is
an order of magnitude larger than the error propagation through the surface current
based similarity measure.
On the one hand, this is due to the hard point-wise correspondences in terms of the

component-wise associations {VR,ΓO}i ↔ {DΓO}i. This correspondence was already
identified as a source of ill-posedness for the classical optimization problem (3.5). The
effect shown here is just a manifestation of this ill-posed character, which is reflected
in a high sensitivity of the MAP solution with respect to systematic errors. On the
other hand, the surface current norm ‖·‖W∗ is specifically tailored to be insensitive with
respect to in-surface errors by relaxing these point-wise correspondences. Since image
registration is well-known to be more accurate in the direction of steep image gradients
[see e.g. 162] - eventually segmented as surfaces - the use of the surface current based
likelihood (6.8) is advocated in scenarios involving registration.
With respect to patient-specific data and the intention of a probabilistic analysis, the

derivation of the likelihood-function (6.8) from the assumption of normally distributed
random currents is an issue to be addressed. Computational methods, like the FEM,
make heavy demands on the smoothness of model boundaries: to allow for the mesh
generation on the one hand and to fit into the modeling assumptions imposed by the
computational methods on the other hand. As a consequence, the resulting smooth
representations of the model boundaries don’t reflect the variability in the available
image data. Rather, the whole process of mesh generation is prone to the incorporation
of systematic errors. This issue will be discussed in more detail in chapter 7.
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The enhancement of clinical decision making by computational methods depends on the
personalization of these methods on a patient-specific basis. With respect to the predic-
tion of AAA growth by means of a continuum mechanical model as presented in chapter
2, this personalization spans a great variety of different aspects. The most obvious aspect
is the use of patient-specific geometries, which are usually directly obtained from medical
imaging. Further patient-specific model characteristics are, e.g., given by the surround-
ing tissue, the loading, stress-free reference configurations with respect to prestress and
residual stresses, spatial distributions of material parameters or homeostatic conditions.
Whereas all these aspects can play a significant role in the accurate mechanical model-
ing of AAA growth, it is impossible to a priori assess their influence on the predictive
capabilities of a computational model. But predictive value is not a quality inherent
to a specific model. Rather, it is defined by its purpose. Thus, a model with obvious
deficiencies in terms of patient-specific modeling can still provide relevant results. For
instance, it has already been shown that merely the use of patient-specific geometries
in combination with population averaged material properties can statistically contribute
to the prediction of AAA rupture [72, 148]. These studies are based on well-established
constitutive equations with available populations parameters [73, 74, 179].
Among others, one reason for the failure of the application of such approaches to AAA

growth is the lack of a common mathematical formulation of growth. As a consequence,
population averaged parameters for particular growth models have not been established.
Such attempts are further complicated by intricate mathematical formulations of some
models and the difficulty to measure the involved parameters for a sufficiently large
population. Thus, predictive capabilities of theoretical models of arterial growth have
not been assessed so far. Nevertheless, it was already shown that they are in principle
applicable to patient-specific geometries [128, 230]. In such a setting, also the inference
on parameters of growth models for healthy aortas was already attempted. To this end,
for a given imaged state subject to prestressed conditions, inverse approaches have been
applied to identify parameters of constrained mixture models subject to the condition
that the imaged state reflects homeostasis [232]. Exemplary growth of these models, in-
duced by arbitrary manual destruction of the homeostatic balance, has then been shown.
Given that in the pathology of AAAs, the imaged state will not picture homeostasis but
already the homeostatic breakdown, it is unclear to the author how such approaches can
be extended to practical cases.
For the first time, the aspect of a patient-specific prediction of AAA growth was

addressed by Tinkl [218]. Based on longitudinal data of a AAA, an inverse approach
was pursued with the intention of prediction of future growth. However, the lack of
knowledge of the homeostatic conditions revealed issues with respect to the identifiability
of parameters of the constrained mixture model. Whereas this issue could be ameliorated
by the introduction of assumptions on the transient behavior of the turn-over of material

109



7. Application to patient-specific data

components, it generally renders the state-of-the-art constrained mixture theory a great
challenge for inverse approaches.
Furthermore, none of the available approaches towards patient-specific AAA growth

accounts for the inherent probabilistic nature of the identification problem. However, for
a reliable assessment of the predictive value, the quantification of uncertainty contained
in computed predictions can be important. Hence, this chapter describes the application
of the approach introduced in chapter 5 to patient-specific data.
As in the previous chapters, thereby the simple growth law (2.65) is applied. With

respect to approaches based on the constrained mixture theory, the gain in identifia-
bility of the parameters due to the independence on an explicit homeostatic reference
configuration compensates for the loss in accurate physiological modeling. Hence, this
approach creates patient-specific calibrated models that can eventually be tested for their
predictive capabilities.

7.1. Preparation of the data

The data is available in terms of CT data of a 68 year old male patient with a relatively
small aneurysm having a maximum diameter of ≈ 3 cm, see figure 7.1. The resolution

Figure 7.1.: Sagittal view of the CT data1of the presented case.

of the CT data is 0.79 mm× 0.79 mm in the transversal plane and 5 mm in out-of-plane
direction. In contrast to the impression given in figure 7.1 of a homogeneous resolution,
the resolution in the out-of-plane direction is reduced by a factor of ≈ 6.3. This represents
a typical situation in clinical CT imaging of AAAs, where the accuracy in imaging has
to be balanced with the duration of the examination and the exposure to radiation [87].
Longitudinal data for this patient is given with a time lag t̄ = 2 years. During this period,
the change in maximum diameter was approximately 0.5 mm, see figure 7.8. Compared
to trial data of small AAAs (3 − 3.5 cm) with a mean growth rate of 1.65 ± 2.41 mm
during the first year of a 5 year follow-up period [45, Table 2], the present case can be
considered typical, although below average.

1
Medical images are courtesy of the Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Tech-
nische Universität München. The use of clinically induced CT-imaging was approved by the ethics commission of the TUM
School of medicine; ‘M-AAA-rker Studie’ (Nr. 1897/07, 27.9.2007, Amendment 19.3.2012).
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Based on a segmentation of the image data resulting in the luminal volume and in
a thin layer of ILT, smoothed geometric reconstructions are obtained. For a detailed
description of this process, the reader is referred to Maier [147]. Subsequently, the
resulting ILT volume is meshed with an unstructured mesh of hexahedral elements and
a mesh size of ≈ 1mm. The arterial wall, which cannot be detected from the CT data,
is then extruded to this mesh. Thereby, a uniform wall thickness of 1mm is assumed
according to Maier et al. [148], see figure 7.2 (left). The resulting mesh contains 14,856

Figure 7.2.: Left: Patient-specific geometry as a mesh with arterial wall (green) and ILT (gray).
Right: Surfaces dividing ILT and arterial wall as the entities to be compared in the
parameter identification. Model surface Γ (gray) and the longitudinal measurement
Z (pink)

elements distributed equally between the ILT and the arterial wall. The same meshing
procedure is pursued on the longitudinal data so that the respective surfaces dividing ILT
and arterial wall can be used in the similarity measure for the parameter identification,
see figure 7.2 (right). To account for the misalignment of the patient in the CT scanner
between the two snapshots, the segmented surfaces have been mutually aligned with
respect to the rigid body modes prior to meshing, see appendix E.
The constitutive modeling of the elastic behavior of the wall and the ILT is equivalent

to that of the synthetic AAA model in the chapters 5 and 6. For the wall, modeled by
(5.12) and (5.13), this choice is motivated by the evidence that the used model is well
suited to represent diseased arterial tissue [179]. As discussed comprehensively by Maier
[147], accurate modeling of the ILT is a topic of ongoing research. It’s development via
accumulation and deposition of coagulated blood is often modeled by constitutive laws
which explicitly account for a layered structure [73]. Since the accurate modeling of ILT
is not at the core focus of this thesis and the ILT in the present patient is only existent
as a very thin layer, the simple model (6.1) is used here. This model has previously been
used in the context of AAA modeling in Maier et al. [148].
The definition of boundary conditions depends on the partial character of the model

of the AAA as a segment of the aorta. Thus, the determination of the behavior of the
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model at the segment interfaces in advance is a problem of circular reasoning. Rather, the
deformation at the proximal and distal model surfaces should be inferred from the data
as well. In a first attempt towards a predictive simulation setup, this possibility is not
exploited and the model is fixed at the inlet and outlet surfaces. Further simplifications
are applied to the model by ignoring the effects of surrounding tissue. Although it was
shown by Moireau et al. [161] that this information can be obtained for a patient-specific
aorta model from motion-MRI data, such data is not available in the present case. A
diastolic pressure of 80 mmHg is assumed to act on the luminal surface. As introduced
in chapter 2.5, this is motivated by the assumption that the cyclic effects of blood flow
play a minor role for the loading conditions with respect to the fixed diastolic point in
time that is monitored over the growth period. With the intention of mimicking the
diastolic conditions during imaging, the load control scheme shown in figure 5.2 is used.

7.2. Parameter estimation

Due to the beneficial properties of the treatment of surface data in the sense of currents
described in chapter 6, the parameter identification problem is set up in the context of
measurements provided as surfaces.

7.2.1. Inverse problem specification

To this end, the model surface Γ and the measured surface Z, depicted in figure 7.2,
are used in the definition of the likelihood via (3.69) and (3.70) (σ2

N = 2.0 mm2, σ2
W =

0.25 mm2). The kernel scale σW reflects a user defined assumption over the spatial
features to be detected by the norm (3.70). As described in chapter 3.3.2, page 49, this
choice is also related to the discretization size of the triangulation of the surfaces and
cannot be chosen arbitrarily large due to degeneration of the likelihood function (3.69).
The noise variance σ2

N is chosen according to an expected variation of the surface
segmentation. The discretization size of the model surfaces is implied by the accurate
resolution of the computational model and the eventual discrete model is the result of a
model generation process with the intention of smooth surface representations. This in-
corporates a great deal of smoothing operations [147, appendix A]. The resulting variation
in the normals of the surfaces of the computational model can be very roughly estimated
from planar sections of the model to σ2

N ≈ 0.002 mm2. However, as already indicated
in chapter 3.3.2, page 50, this variation does not reflect the uncertainty incorporated in
the image data. Given the low spatial resolution in z-direction of 5 mm, a triangulation
that accurately represents the available data is expected to have a discretization size
> 5 mm. An accurate determination of the variability of such a triangulation is not
straightforward since it has to account for the propagation of the error in the imaging
machinery to the segmented surface. With the image resolution between 0.79 mm and
5 mm, the noise level is roughly estimated to lie in the same order of magnitude as the
image resolution and is set to σ2

N = 2.0 mm2.
As argued in the introduction to this chapter, the phenomenological growth law (2.65)

is used to model growth. Following the argumentation brought forward in chapter 5, the
TV prior (3.93) (αtv = 0.5, ε2 = 1.0e−2) is assumed over the parameters cϑ. Details on
the graph structure defining the adjacency matrix are given in appendix F.
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7.2.2. Numerical solution

To solve the specified inverse problem, the two-stage approach proposed in chapter 5
is applied. It starts from the general representation of growth parameters in terms of
the element-wise basis (2.105). Thus, the initial dimension of the inverse problem is
np = 7428 since growth is only considered in the arterial wall.
The computation of the first stage is performed by the LBFGS algorithm described

in chapter 4.4.1 (convergence tolerance tol = 1.0e−8, storage ms = 300, convergence
achieved after 279 iterations). In contrast to a standard application of the LBFGS
algorithm, a large storage capacity is chosen to enable the approximation of the Laplace
approximation as accurate as possible. The resulting MAP estimate ĉϑ,map and the
corresponding standard deviation SDq[cϑ] from the Laplace approximation are shown in
figure 7.3.

Figure 7.3.: MAP estimate (left) and standard deviation computed from the Laplace approxi-
mation (right). The results are visualized as the volumetric growth ϑ = cϑt̄ for the
time period t̄ = 2 years.

The MAP solution clearly shows the characteristic features of functions of bounded
variation, which is a prerequisite for the application of the dimensionality reduction
approach presented in chapter 5.2. The core feature of this approach is the determination
of a reduced basis from the significant eigenvectors of the linearized TV operator (5.5).
In the synthetic data example presented in chapter 5.3, a significant set of eigenvectors
could be naturally detected from a subset of rapidly decaying eigenvalues, see figure
5.6. For the inverse problem on real patient-specific data presented in this chapter, the
eigenspectrum of the first 50 eigenmodes of the linearized TV operator is shown in figure
7.4 (left). This spectrum does not show a distinct set of eigenvalues that could be utilized
for the definition of a basis. To define a set of eigenvectors, it is therefore necessary
to quantify the approximation quality of the reduced basis. In a predictive model, this
approximation quality can be measured in terms of the computed prediction. To this end,
the standard deviation of the primal solution u – i.e., the displacements due to growth –
under a reduced dimensional representation of the Laplace approximation according to
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(5.8) is monitored over the size of the basis. This is motivated by the assumption that
the variability in the prediction is essentially influenced by the main covariance structure
in the parameters. In fact, it can be seen that the standard deviation of the prediction
(approximated with N = 1680 particles) converges quickly, see figure 7.4 (right). Based
on this convergence, the size of the reduced basis was chosen to nr = 30.
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Figure 7.4.: Left: Eigenspectrum of the first 50 eigenvectors corresponding to the smallest eigen-
values of the linearized TV operator. Right: Convergence of the standard deviation
of the growth displacements u(cϑ) under the projected Laplace approximation (5.8).
For the purpose of visualization, displacements in x, y, z-direction at 3 randomly
chosen locations of the model are monitored. N = 1680 particles are used for the
approximation of the standard deviation.

Given this reasonably designed reduced basis, particle approximations of the projected
posterior (5.7) can be computed by means of the SMC algorithm described in chapter
4.4.4. Thereby, the approximation is based on a set of N = 1680 particles. This choice
results in ≈ 60 particles per parametric dimension, which showed excellent performance
for the examples shown in chapter 5.3. The exact number of particles also has to be
chosen with respect to the available parallel layout, see chapter 7.2.3. The projected
Laplace approximation is used as initial distribution, which proved to be a feasible ap-
proach for the synthetic example in chapter 5.3. The resulting particle approximations
of the PM and the posterior standard deviation are shown in figure 7.5. The PM solu-
tion is qualitatively similar to the MAP solution. But a change of 15% in terms of the
maximum value indicates a significant quantitative difference between the MAP solution
and the PM solution. However, the impact of this difference on the quality of the fit at
the MAP or the PM estimate is negligible. For the MAP solution, the quality of the fit
is reported in terms of the projected distance (3.45), see figure 7.6. It can be seen that
the fit is accurate in the area of the aneurysm sac, whereas there are a few distinct sites
where the initial distance seems to be not sufficiently reduced. The posterior standard
deviation shows a characteristic as already indicated by the Laplace approximation, cf.
figure 7.3. Whereas the absolute values differ by a factor of 2, it is expected that the
underlying particle approximation captures the main covariance structure represented
by the posterior as shown in the analysis provided in chapter 5.
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Figure 7.5.: Expected value E[cϑ] and standard deviation SD[cϑ] from the reduced dimensional
approximation. The results are visualized as the volumetric growth ϑ = cϑt̄ for the
time period t̄ = 2 years.

7.2.3. Computational aspects

The evaluation time of the computational model described in chapter 7.1 is in the order
of minutes. As can be seen from the load control scheme shown in figure 5.2, thereby
the majority of the computational effort is invested into the prestressing computation.
But the modeling of growth does not affect the prestressed state and vice versa. So for
repeated evaluations of the model for different sets of growth parameters, the nonlinear
solution process can be restarted from the prestressed state. This very simple form of a
parameter continuation scheme effectively reduces the computational burden. E.g., on
2 cores of a Intel R© Xeon R© Processor E5-2697 v3 processor on the ‘Phase 2’ partition
of SuperMUC2, the evaluation time takes approximately 30 s. 2 threads per core are
assigned for the evaluation of the measure (3.70) using OpenMP through Trilinos’ Kokkos
package.
Despite this reduction in evaluation time, the sequential evaluation of such a model

using MCMC techniques, see chapter 4.4.3, can easily become infeasible. E.g., the overall
computation time for 20,000 - 50,000 MCMC steps is in the range of 7 - 17 days. Such
time ranges are impractical towards the application in the clinical management routine.
The application of the SMC algorithm in combination with the parallel layout shown
in figure 4.2 can improve this issue. Therefore, the 1680 particles used for the particle
approximation are distributed into 840 parallel groups. These groups are distributed on
60 nodes on the ‘Phase 2’ partition of SuperMUC. This allows for the evaluation of the
particles within a group as described above. The application of the SMC algorithm 4
(see chapter 4.4.4) with the adaptive step-size control (4.86) results in 192 time steps
and an overall computation time of ≈ 15 h for 322,560 model evaluations. With respect
to a sequential evaluation of the same number of model evaluations, this represents a
speed-up factor of ≈ 180.

2https://www.lrz.de/services/compute/supermuc/systemdescription/
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(I) (II) (I) (II)

Figure 7.6.: Projected distances di according to (3.44) of the initial undeformed computational
model surface Γ to the measured data Z (I) and of the fitted deformed model
ϕ(Γ) to the measured data Z (II). (Left: posterior perspective; Right: anterior
perspective)

7.3. Towards prediction of future growth

The main focus of the presented framework is to enable a predictive use of the parame-
trized computational model of AAA growth. Despite the immense computational effort
for the evaluation of descriptive statistics of the posterior distribution over the param-
eters such as the PM or the posterior standard deviation, these quantities are of minor
interest in itself. In particular, this holds for parameters of phenomenological descrip-
tions that cannot be interpreted in terms of explicit physical parameters. Nevertheless,
the calibrated model presented in chapter 7.2 allows for an informed extrapolation of
future growth. And given a particle approximation of the posterior distribution over the
parameters, statistics of this extrapolation as a function f(cϑ) can be readily evaluated
by means of (4.54) or (4.58).
In the simplest case, the function f(cϑ) can be chosen to represent the primal variables

u(cϑ) of the computational model after the prediction step. The expected value and
standard deviation of a prediction of growth in terms of the deformation u are shown in
figure 7.7 for a prediction period of further 2 years.
In a clinical context, the information content of predictive models and of available

data is often condensed to a drastically reduced set of variables. With respect to AAA
growth, the prevailing descriptive variable is given by the maximum diameter [28, 207].
In order for computational models to be eventually applied in the clinical management
process, it will be important to show their predictive capabilities with respect to the
maximum diameter and to validate the results on a sufficiently large cohort of patients.
As a step towards this goal, the changes in maximum diameter for the present patient are
presented in figure 7.8. The determination of the variability of the predicted maximum
diameters is straightforward, and can be evaluated by directly defining the maximum
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Figure 7.7.: Prediction of growth in terms of model displacements u after +2 years from the
time point of the follow-up imaging.

diameter as the function f(cϑ).

7.4. Discussion

Given the probabilistic nature of the problem, a general validation of the presented
approach cannot be based on the application to a single patient but must be performed
with respect to a statistically significant cohort of patients. However, the results shown
in the previous chapters already reveal a few characteristics that are to be discussed since
they might have to be taken into consideration in a statistical validation of the model.
The MAP solution as well as the PM solution, see figures 7.3 and 7.5, show the charac-

teristic properties of functions of bounded variation. In this sense, they are characterized
by localized features such as a clearly distinct site of growth in the area of the aneurysm
sac. Whereas this does of course not justify the correctness of the prior assumptions,
it is an indication towards their validity. Furthermore, it enables the dimensionality re-
duction approach presented in chapter 5, and consequently it allows for a probabilistic
treatment of the identification problem by means of particle approximations. These ap-
proximations enable the computation of statistics of output quantities of the model and
accordingly also the predictive use of the model.
Beside the predictive use of the calibrated model, the particle approximation of the

posterior can also be used in the context of model selection [121] since it enables the
computation of the evidence p(Z|M) as introduced in (3.32). Using an approach based
on Bayes factor [111], the model evidence could be used to formally compare the ap-
plied volumetric growth formulation against the constrained mixture formulation. In
this view, an indication of the quality of the applied model was already shown in figure
7.6. But this quality of the fit cannot be assumed to be entirely induced by the mathe-
matical formulation of growth. On the one hand, it might result from model deficiencies
in terms of surrounding tissue, loading, Dirichlet boundary conditions at the inlet and
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Figure 7.8.: Maximum diameters during growth, located at the aneurysm sac and measured
along the indicated direction. Undeformed model (black): 31.9 mm, measure-
ment after 2 years: 32.6 mm (pink), fitted model (green): 32.6 mm and +2 years-
prediction (blue): 33.2 mm.

outlets or the lack of patient-specific elastic properties of the tissue. On the other hand,
the fine discretized model represents a level of detail not justified by the available image
data. It is therefore likely that the local deviations seen in figure 7.6 are artificially
created due to a potentially wrong and over-complete representation of the data. Within
the current formalism, the discrepancy between the scale of accuracy of the image data
and the apparent scale of accuracy of the smooth computational model can in theory
be conveniently accounted for by the spatial scale σW of the the kernel (3.68). But in
practice, the choice of σW is bounded by the size of the surface discretization due to the
increasing ill-posedness of the likelihood (3.69) with increasing σW . In this regard, the
choice σ2

W = 0.25 mm2 is rather made to account for the well-posedness of the problem
than to reflect the expected spatial correlation structure. Thus, it is desirable to decou-
ple the surface representations for the evaluation of the likelihood in terms of currents
from the smooth surface representation needed for the computational model. One pos-
sible approach to be implemented in future work is to define the surfaces representing
the data from a coarsening strategy applied to the surfaces of the computational model.
E.g., a coarse triangulation can be created by the assignment of triangles from the fine
triangulation to volume cells of a regular grid over a bounding volume. Within a sub vol-
ume, a new coarse triangle is then created by averaging all triangle centers and normals.
This results in an easy and deterministic functional relation between the coarse and the
fine triangulation. The computation of the tangent currents needed for a Lagrangian
formulation of the identification problem, see chapter 3.5 and appendix C.1, is therefore
not significantly complicated. The loss of connectivity of such a triangulation is not an
issue for the current formalism. On the contrary, connectivity of the surface of the AAA
model is a projection of a priori knowledge to the representation of the model. This
assumption is not necessarily reflected in the raw pixel-wise information provided by the
images. Thus, a disconnected triangulation represents an advantage with respect to the
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representation of variability given by the image data and it fits well into the assumption
of Gaussian noise in the space of currents, cf. chapter 3.3.2, page 50.
In the present case, the difference in position of the patient in the CT scanner between

the imaging of the initial data and the imaging of follow-up data was taken into account
by an alignment of the follow-up model to the computational model with respect to
the rigid body modes. As can be seen from figure 7.2, this results in a locally perfect
alignment of the two surfaces in certain regions. In particular, the intersection of model
and follow-up data lateral to the aneurysm sac is clearly propagated to the prediction of
growth, see figure 7.7. The intensity of this effect can be influenced by the spatial scale of
the kernel and is therefore also connected to the size of the surface discretization. Thus,
the use of coarser surface representations as advocated above will also reduce the influence
of a potential misalignment. However, this should not mask the fact that the rigid
alignment of the follow-up model is not as deterministic as assumed for the application
in the exemplary case studied in this chapter. Rather, it is subject to uncertainties that
should be incorporated into the parameter identification problem. Given that the rigid
body modes can be parametrized by 6 degrees of freedom (3 translations, 3 rotations),
the increase in complexity of the identification problem is only moderate.
As can be seen from figure 7.8, simply measuring the changes in diameter can result

in a misleading assessment of growth. In the present patient, the translation of the
aneurysm sac is in the same order of magnitude as the enlargement in diameter. Thus,
the effects of growth are to a similar extent expressed in a change of turtuosity of the
AAA. However, the quantification of this effect should not be attempted without taking
the uncertainties of the rigid alignment of the measurement data to the model data into
consideration

7.4.1. Concluding remarks

This chapter showed the feasibility of the application of state-of-the-art numerical tech-
niques in combination with a newly proposed approach for parameter reduction to models
with applicability in a clinical management context. Thereby major components towards
model selection and model validation in a clinical trial situation were presented. This
incorporates the probabilistic approach to the personalization of patient-specific models
and the propagation of the probabilistic nature to important measures used in a clinical
situation, like the maximum diameter. This measure defines the current standard for the
assessment of AAA growth [28]. Further, it is subject to modeling attempts by means of
statistical mixed effect models [207]. Thus, the proposed computational framework has
to be validated also with respect to its capabilities regarding the prediction in maximum
diameter. But beyond such a contraction of information, the proposed approach presents
a much more versatile source of information on the patient-specific progression of AAA
growth. The benefit of this information in the clinical management of AAA has to be
shown in future work.
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8. Summary and outlook

The work presented in this thesis addressed the development of computational models
of arterial growth towards clinical application. In particular, the modeling of the growth
of AAAs was motivated by the need for policies of surveillance intervals in the clinical
management of asymptomatic patients. The need for such policies is raised by the onset of
screening programs that suggested a beneficial effect on overall mortality rates. However,
common policies for surveillance intervals have not been established so far. Due to the
possibility of tailoring a computational model to patient-specific scenarios by means of
calibration, it is expected that such models can significantly contribute to a patient-
specific management in the clinical routine. In this context, the focus of the thesis was
directed towards the development of methods and approaches for the calibration and the
quantification of the predictive capabilities of computational models based on existing
continuum mechanical formulations of arterial growth. The application of a Bayesian
point of view enabled the propagation of uncertain input parameters to a probabilistic
quantification of the model output. In this setting, the work presented in this thesis was
concerned with two major aspects: the effective and sensible treatment of measurement
data that is necessary for the calibration process; and an approach for dimensionality
reduction of the input space of the model to enable an efficient probabilistic assessment
of the predictive qualities of the model.
The need for a specific treatment of the measurement data was motivated by a detailed

analysis of the raw measured data. In the context of AAA growth, such data is typically
available as longitudinal image data and thus the mapping of the model output to the
image data, and vice versa, was identified as a non-trivial operation. It was shown how
the formalism of surface currents is able to overcome the involved difficulties in an elegant
and efficient way. These properties were demonstrated on a model using synthetic data.
Thereby, it could be shown that the use of surface currents in a calibration framework
avoids the effects of systematic errors introduced through image registration applied to
the raw measured images. Moreover, it was shown how the formalism of surface currents
can be integrated seamlessly in a Bayesian parameter identification framework by offering
a perspective on surfaces as random variables. Thus, beside its elegant treatment of
the relevant data provided by the measured images, the surface current formalism also
provides a possibility to characterize the uncertainty in the data. This perspective is of
particular importance for the application of the framework to patient-specific data. In
principle, the vector space structure of the space of surface currents as a RKHS decoupled
the representation of a discrete current from the size of the triangulation of the associated
surface. It was shown that a random current is not defined by the size of the triangulation
but the spatial scale σW of the kernel associated to the RKHS. In practice however, the
choice of this scale is implicitly bounded by the size of the triangulation due to an increase
in ill-posedness of the definition of a probability density on currents with increasing
scale σW (for a fixed size of the triangulation). In chapter 7, it was therefore proposed
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8. Summary and outlook

to decouple the representation of the boundary of the computational model from the
representation of the data. An implementation of this approach however is left to future
work. In this context, it will also be necessary to investigate the Gaussian assumption
imposed on the randomness of the image data represented in terms of surfaces.
For the solution of the Bayesian calibration problem, techniques of advanced sampling

for sophisticated nonlinear computational models were described in detail. However,
due to the need for accurate spatial representations of the input parameters and the
implied high dimension of the associated input space, the plain application of these
sampling techniques was rendered highly inefficient. Since this inefficiency is a direct
consequence of the curse of dimensionality, a novel approach for dimensionality reduction
was proposed that is able to maintain the main covariance structure associated to the high
dimensional input space. Given that this covariance structure is reflected in the model
output, the proposed approach enabled the predictive use of the model by providing
a fully probabilistic quantification of the model output. The quality of the proposed
approach was demonstrated numerically on a small-scale example.
Finally, the application of the presented framework to patient-specific data demon-

strated the feasibility of the approach in the large-scale regime. With regard to the
patient-specific simulation of AAA growth [218, 230, 231, 232], the presented application
is the first to demonstrate a fully probabilistic use of a model that is capable to pre-
dict AAA growth based on patient-specific longitudinal data. Thereby, as a first step,
a simple and purely kinematic formulation for the modeling of arterial growth was ap-
plied. Whereas this application can clearly be questioned, the probabilistic formulation
of the calibration problem allows for a statistical testing of the applied model. Thus,
the quantitative evaluation of the model output in terms of a prediction of growth can
be performed. Guided by such an assessment of the predictive quality, also future im-
provements and developments of the model can be based on a sound argumentation.
In this sense, the proposed approach provides a starting point for application-oriented
model development and can serve as a reference for more elaborate models of arterial
growth. More elaborate models can thereby also encompass the incorporation of addi-
tional patient-specific properties of the model (e.g., with respect to boundary conditions)
or the use of element technology.

Perspectives for future work

The work presented in this thesis introduced major steps towards the applicability of
models of AAA growth in the clinical practice. Beside the showcase application provided
in chapter 7 and an evaluation of the model on a patient-specific basis, the application
of the model in the clinical practice requires the evaluation of its predictive capabilities
in a statistical sense. I.e., a hypothesis such as ‘the model is capable to predict AAA
growth’ must be statistically tested. Moreover, to be applied to statistical testing, a
mathematically clear definition of such an hypothesis has to be defined. With the prob-
abilistic character of the model output given in terms of particle approximations, such a
definition can, e.g., be defined by means of CIs over the model output. In the context of
clinical management of AAAs with the classical measure of growth given by changes in
the maximum diameter, the distribution of the model output can also be defined in terms
of the maximum diameter. However, as observed by Martufi et al. [154], this measure
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only provides limited information about AAA expansion. In this light, the formalism of
currents can again be utilized to define a measure which quantifies growth of an entire
AAA. Moreover, the interpretation of a current as a random variable readily allows for
the computation of the distribution over the model output given by a surface current.
This distribution can then be used to define a hypothesis which is tested on a significant
cohort of patients.
To enable such a statistical testing, data for at least 3 points in time is necessary for a

large amount of patients. Whereas the presentation in chapter 7 relied on CT data, the
presented approach works equivalently with US that is also a common technology in the
screening of AAA. However, the reduced quality of US data will necessarily be reflected
in the quality of the prediction of growth. It is also possible that the initial model is
given by CT data and longitudinal data is provided by means of US. Generally, the main
requirement is that the data allows for a segmentation of the AAA geometry.
Although, a statistical evaluation requires a significant amount of data preparation and

the intensive use of computational resources, it will eventually also provide a justification
for or against the use of the kinematical description of growth. Furthermore, it creates
the already mentioned reference for future model development.
Beside the informed extrapolation of AAA growth, the calibrated model provides a

model-based extraction of information from the image data. The information contained
in this data is thereby reflected in the calibrated growth parameters and propagated to the
prediction of future growth. Compared to the common lossy compression of image data in
measurements of changes in maximum diameter, the information content provided by the
predictive model is expected to be richer. With respect to the classification of stable and
rupture prone aneurysms, it can therefore be expected that such information can provide
a more sensible classification than the maximum diameter alone. One possible aspect to
investigate in this regard in future work is the information provided by the deformation
of the calibrated model. Whereas the feature space constructed by the deformation
of the model is clearly of too high dimension, low-dimensional representations of this
feature space might capture significant information for a classification of AAAs. Such
low-dimensional representations can be conveniently extracted by means of the PCA.
The work presented in this thesis concentrated on the uncertainty associated to the

calibration of parameters of models for growth introduced through the observation er-
ror. Other sources of parametric uncertainty have been left out of consideration at this
stage. However, the modeling of AAA is associated to multiple source of parametric un-
certainty: uncertainty in parameters of the applied constitutive relations, uncertainty in
the initial model geometry, uncertainty in the wall thickness or uncertainty in the bound-
ary conditions. The comprehensive consideration of all these sources of uncertainty goes
beyond the approach presented in this thesis and requires multi-fidelity techniques such
as proposed by Biehler et al. [22].
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A. Balance of angular momentum

Using the skew-symmetric matrix Mx to represent the cross product x× • given by

Mx :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (A.1)

the rotational equilibrium (2.25) can be written as∫
∂I

Mx · (σ> · n) +

∫
I
(x× b) dV = 0. (A.2)

The application of the divergence theorem to each of the 3 components of this balance
equation gives ∫

I
div((Mxσ

>)>) + (x× b) dV. (A.3)

By definition of the vector

vσ := [σ23 − σ32, σ31 − σ13, σ12 − σ21], (A.4)

the expansion of the first term in (A.3) can be written as∫
I
div((Mxσ

>)>) dV =

∫
I

vσ + Mx · divσ dV

=

∫
I

vσ + x× divσ dV. (A.5)

Thus, the rotational equilibrium is given by∫
I

vσ dV +

∫
I

x× (divσ + b) dV = 0. (A.6)

With the equilibrium of forces given by (2.24), rotational equilibrium is enforced by

vσ = 0 ⇐⇒ σ = σ>. (A.7)
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B. Push-forward of a surface current

Given a invertible matrix M, and two vectors a1 and a2 the following identity holds:

(Ma1)× (Ma2) = det(M)M−>(a1 × a2). (B.1)

Given two surfaces S ∈ Ω0 and T ∈ Ωt with parametrizations φ1 : U → S and
φ2 : U → T according to definition (3.3.1), the integration of a function f : R3 → R
along T is given by ∫

T
f(x) dΓ =

∫∫
U
f(x(s, t))‖∂φ2

∂s
× ∂φ2

∂t
‖dsdt. (B.2)

In the case of a surface current, the function to be integrated is given by

f(x) := w(x) · n(x) = w(x) · (∂φ2

∂s ×
∂φ2

∂t )

‖∂φ2

∂s ×
∂φ2

∂t ‖
. (B.3)

Inserting this definition into the integral equation (B.2) results in the current T (ω)
associated to the surface T given by

T (ω) =

∫
T

w(x) · n(x) dΓ =

∫∫
U

w(x(s, t)) · (∂φ2

∂s
× ∂φ2

∂t
)dsdt. (B.4)

Given a diffeomorphism ϕ : S 7→ T , the corresponding push-forward current ϕ(S)(ω) is
given by

ϕ(S)(ω) :=

∫∫
U

w(x(s, t)) · (∂φ2

∂s
× ∂φ2

∂t
)dsdt (B.5)

=

∫∫
U

w(x(s, t)) · (∂φ2

∂φ1

∂φ1

∂s
× ∂φ2

∂φ1

∂φ1

∂t
)dsdt (B.6)

=

∫∫
U

w(x(s, t)) · det(
∂φ2

∂φ1
)
∂φ2

∂φ1

−>
(
∂φ1

∂s
× ∂φ1

∂t
)dsdt (B.7)

=

∫
S

w(ϕ(X)) · JF−>N(X) dΓ, (B.8)

whereby ∂φ2

∂φ1
= F and det(F) = J can be identified and in the 2nd step (B.1) was used.

By noticing that the integrand ϕ−1
∗ (ω) := w(ϕ(X)) · JF−>N(X) dΓ is the pull back of

ω = w(x) · n(x) dΓ, the formal relationship

ϕ(S)(ω) = S(ϕ−1
∗ (ω)) (B.9)

is established.
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C. Linearizations

C.1. Linearization of the surface current similarity

The formal definition of the Gateaux derivative δD
δU via the variation δD(Z, C(U))[δU]

by

〈δD
δU

, δU〉 = −〈Z− C(U), δC(U)[δU]〉Z (C.1)

given in (3.108) introduces the question of how to compute the variational observation
δC(U)[δU]. Since the similarity measure is not an explicit function of the parameters θ,
the notation was simplified δθU→ δU. In the case of surface currents, i.e., Z =W∗, the
observation operator represents the projection from the primal solution U to the space
of currents. Thus, for a particular model surface Γ, the observation is formally defined
by (3.50) resulting in

C(U) := ϕ(Γ)(ω). (C.2)

The functional dependency of this push-forward current on the deformation ϕ(X) =
X+U(X) is given by (B.8). However, the computation of the variation δC(U)[δU] then
involves the variation of the determinant δJ(U)[δU] as well as the variation of the inverse
transpose deformation gradient δF−>(U)[δU], which results in intricate computations.
To circumvent these computations, the dependency of the deformation is already con-
tained in the differential structure defining the current of the deformed surface ϕ(Γ)(ω)

as given by (B.5). In particular, this dependency is given by the tangent vectors ∂φ2(U)
∂t

and ∂φ2(U)
∂s via φ2 = ϕ(φ1) = φ1 + U. This results in the variation of the unnormalized

normal according to

δñ(U)[δU] =
d

dε

(
∂φ1 + U + εδU

∂s
× ∂φ1 + U + εδU

∂t

) ∣∣∣∣
ε=0

=

(
∂δU

∂s
× ∂φ2

∂t

)
+

(
∂φ2

∂s
× ∂δU

∂t

)
=:

∂ñ

∂U
δU, (C.3)

and the variation of the test functions w(x) = w(ϕ(X)) = w(X + U) according to

δw(U)[δU] = ∇ϕw(x)δU. (C.4)

Thereby ∇ϕ = ∂
∂x is used to highlight the differentiation with respect to the deformed

coordinates x = ϕ(X). Although unnecessary for the application to the test functions
w, it is important for more complex dependencies on the deformation. To allow for the
variation of the push-forward current C(U), it is seen in the sense of the Dirac currents
δn
x , cf. (3.59). This enables the formal application of the directional derivative

∆δn
x (U)[δU] = ∇ϕw(x)δU · ñ(x) + w(x) · ∂ñ(x)

∂U
δU (C.5)
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whereby again the symbol ∆ was used to avoid the notation δδn
x for the variation of the

Dirac current. Denoting the dual representation of the differential current δC(U)[δU] =∑
x ∆δn

x with KδC
n , this allows for the definition of the norm

‖δC(U)[δU]‖2W∗ = 〈KδC
n ,KδC

n 〉W

=
∑

x∈C(U)

∇ϕKδC
n (x)δU · ñ(x) +KδC

n (x) · ∂ñ(x)

∂U
δU. (C.6)

To identify the dual representation KδC
n , the reproducing property (3.54) is applied to

the last term in (C.6) resulting in

KδC
n (x) · ∂ñ

∂U
δU = 〈KδC

n (x),Kx
∂ñ

∂U
δU〉W

=
∑
x

∇ϕ(Kx
∂ñ

∂U
δU)δU · n(x) +Kx

∂ñ

∂U
δU · ∂ñ(x)

∂U
δU.

=

(∑
x

∇ϕKxδU · ñ(x) +Kx
∂ñ(x)

∂U
δU

)
· ∂ñ

∂U
δU. (C.7)

Kx is thereby used to indicate the matrix kernel KxI. The dual representation KδC
n can

thus be identified with

KδC
n =

∑
x

∇ϕKxδU · ñ(x) +Kx
∂ñ(x)

∂U
δU. (C.8)

Due to the definition of the representer Kx(y) = k(x, y), see Theorem (3.3.1), the ap-
plication ∇ϕKx is not necessarily the plain spatial gradient of Kx(y) motivating the
notation ∇ϕ. Denoting the dual representation of the current Z(ω) by Kz

n and the dual
representation of the current C(U) by KC

n , (C.1) is given by

〈δD
δU

, δU〉 = −〈Kz
n,K

δC
n 〉W + 〈KC

n ,K
δC
n 〉W . (C.9)

Inserting KδC
n into the definition (3.48) results in

〈δD
δU

, δU〉 =−
∑
y∈Z

ñz(y) ·
∑

x∈C(U)

∇ϕKx(y)δU(x) · ñC(x)

−
∑
y∈Z

ñz(y) ·
∑

x∈C(U)

Kx(y)
∂ñC(x)

∂U
δU(x)

+
∑

y∈C(U)

ñC(y) ·
∑

x∈C(U)

∇ϕKx(y)δU(x) · ñC(x)

+
∑

y∈C(U)

ñC(y) ·
∑

x∈C(U)

Kx(y)
∂ñC(x)

∂U
δU(x). (C.10)

For this variation to produce the exact gradient with respect to the discretized norm
(3.70), the same triangulations should be used for the computation of the norm as well
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as for computation of the gradient. Furthermore, since the adjoint equation (3.107) is
solved based on the discretization of the nonlinear problem (2.101), the right hand side for
the adjoint equation is given by the gradient δD

δD . Using the approximations introduced
with (3.70) in combination with the approximation U ≈ Uh according to (2.74) results
in the approximation

〈δD
δU

, δU〉 ≈ 〈δD
δD

, δD〉

≈
∑
τZi

∑
τΓ
j

ñZi ·
dk(cZi , c

Γ
j )

dcΓ
j

dcΓ
j

dD
δD ñΓ

j

+
∑
τZi

∑
τΓ
j

ñZi · k(cZi , c
Γ
j )

dñΓ
j

dD
δD

−
∑
τΓ
i

∑
τΓ
j

ñΓ
i ·

dk(cΓ
i , c

Γ
j )

dcΓ
j

dcΓ
j

dD
δD ñΓ

j

−
∑
τΓ
i

∑
τΓ
j

ñΓ
i ·

dk(cΓ
i , c

Γ
j )

dcΓ
i

dcΓ
i

dD
δD ñΓ

j

−
∑
τΓ
i

∑
τΓ
j

ñΓ
i · k(cΓ

i , c
Γ
j )

dñΓ
j

dD
δD. (C.11)

The variation δD is a constant vector and can thus be pulled out of the summations
within every of the five terms. The gradient dD

dD = δD
δD is therefore directly identified

from the definition 〈 δDδD , δD〉. The exactness of this gradient with respect to the norm
(3.70) can be checked by direct differentiation of (3.70).

C.2. Explicit differentiation of the weak form

C.2.1. Partial differentiation with respect to the displacements

The variation of the weak from (2.100) with respect to the displacement U is given by
(2.91), (2.92) and (2.93). In the following these terms are specified for a parametrization
given by the growth stretch ϑ. For a growth law such as (2.62), it is important to
highlight that the dependency on the displacement in the parametrized weak form is
actually given by

δW (U, δU, ϑ) = δW (U, δU, ϑ(U)). (C.12)

The dependency ϑ(U) is thereby made explicit through a time discretization of the
growth law given by

ϑn = ϑn−1 + ∆tf(ϑ,Ce,Se). (C.13)

Thereby, the choice for an explicit or an implicit scheme is intentionally left open by not
specifying time indices for the arguments to the function f . Given that Se = 2 ∂Ψe

∂Ce
, the
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growth stretch ϑ can be entirely defined as a function fϑ(Ce) that represents the solution
of (C.13):

ϑ = fϑ(Ce). (C.14)

The variation of the variational Green-Lagrange strain ∆δE[δU] is already entirely
specified by (2.91) and the variation of the traction t0 has no dependency on ϑ(U).
However, the variation of the stresses δS[∆U] is affected by the growth and therefore
its computation deviates from a classical hyperelastic formulation. This is seen from the
expansion

S(E(ϑ), ϑ) =
1

ϑ2
Se(Ee(ϑ)), (C.15)

whereby ϑ is itself still a function of E through (C.14). From this follows the gradient

∂S

∂E
=

(
− 2

ϑ3
Se +

1

ϑ2

∂Se
∂Ee

:
∂Ee

∂ϑ

)
dϑ

dE
+

1

ϑ2

∂Se
∂Ee

:
∂Ee

∂E
. (C.16)

With the elastic Green-Lagrange strain given by

Ee(ϑ) =
1

2
(

1

ϑ2
C− I), (C.17)

the partial derivative ∂Ee
∂ϑ is given as ∂Ee

∂ϑ = − 1
ϑ3 C and ∂Ee

∂E = 1
ϑ2 I. This finally results

in the expression
∂S

∂E
= − 1

ϑ

(
2S +

1

ϑ4
Ce : C

)
dϑ

dE
+

1

ϑ4
Ce. (C.18)

The specific implementation of a growth law is thereby only reflected through the term
dϑ
dE = 2 dϑ

dC . For the simple growth law (2.65), the first term in (C.18) vanishes since
dϑ
dE = 0. As a result, since 1

ϑ4Ce = C, the standard term from hyperelasticity is obtained.

C.2.2. Partial differentiation with respect to parameters of volumetric
growth

The partial variation of the weak form (2.100) with respect to the parametrization θ is
given by (3.112) and (3.113). In the following these terms are specified for a parametriza-
tion given by the growth stretch ϑ. The displacements U are not explicit functions of
the growth stretch ϑ since the relation U(θ) is only given implicitly through the solution
of the nonlinear problem. Thus, the derived kinematical quantities are constant under
a partial variation δϑ, F = const, C = const and E = const. Consequently, it follows
directly from (2.18) that

∆θδE[δθ] = 0. (C.19)

However, the corresponding elastic kinematic quantities exhibit an explicit dependency
on the growth stretch through the definition of isotropic volumetric growth (2.55) result-
ing in the elastic Green-Lagrange strains

Ee(ϑ) =
1

2
(

1

ϑ2
C− I). (C.20)

The stress S as a function of the growth stretch ϑ is therefore given by

S(E) =
1

ϑ2
Se(Ee) =

1

ϑ2
Se(Ee(ϑ)) (C.21)
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and the variation δϑS[δϑ] is computed from the derivative

∂S

∂ϑ
= − 2

ϑ3
Se(Ee) +

1

ϑ2

∂Se
∂Ee

:
∂Ee

∂ϑ
=

= − 1

ϑ

(
2S +

1

ϑ4
Ce : C

)
. (C.22)

The differentiation with respect to parameters of some particular growth law is then
simply given by the application of the chain rule.
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D. Pseudo inverse and singular value
decomposition

This chapter summarizes the necessary results from matrix algebra and properties of the
singular value decomposition (SVD) that allow to identify the smoothness prior (3.83) as
a Gaussian probability density. For references with respect to matrix algebra, the reader
is referred to classical literature such as Golub and Van Loan [88] or Gentle [79].
A unitary matrix is a square matrix whose transpose is also its inverse. It is defined

by
UU> = I. (D.1)

For a n×m-matrix M, the SVD is given by

M = UΛV> (D.2)

with the unitary n×n-matrix U, the unitary m×m-matrix V and the diagonal n×m-
matrix Λ. The diagonal entries of Λ are the so called singular values of M. Given this,
it follows directly that

MM> = UΛΛ>U>, (D.3)

M>M = VΛ>ΛV>. (D.4)

The columns of U, the so called left-singular vectors, form an orthonormal set of the
eigenvectors of MM> and the columns of V, the so called right-singular vectors, form
an orthonormal set of the eigenvectors of M>M. The diagonal elements of Λ are thus
identified with the square roots of the eigenvalues of MM> and M>M, respectively. If
rank(M) = p < min(m,n) (i.e., there a diagonal elements in Λ that are zero) the SVD
can be written more compactly as

M = UrΛrV
>
r (D.5)

with the n×p-matrix Ur and the m×p-matrix Vr being comprised of the singular vectors
associated to non-zero singular values. The p×p-matrix Λr is comprised of the diagonal
of non-zero singular values.
The so called pseudo-inverse M+ is given in terms of the SVD according to

M+ = VΛ+U> (D.6)

whereby the pseudo-inverse Λ+ is obtained by inverting the diagonal elements and taking
the transpose. The pseudo-inverse of a product (AB)+, with B = A>, is given as

(AB)+ = B+A+. (D.7)

135



D. Pseudo inverse and singular value decomposition

And the pseudo inverse of an invertible matrix A is identical to the inverse

A+ = A−1. (D.8)

In case M is a symmetric n×n matrix given by M = QQ> and Q is a n×k-matrix
with Q = USV>, the pseudo inverse M+ is computed via

M+ =
(
QQ>

)+
=
(
VS>U>

)+
VSU>

= U
(
SS>

)+
U>. (D.9)

In the special case where the columns of Q are given by a set of k orthonormal basis
vectors qi, the pseudo inverse M+ reduces to

M+ = QQ>. (D.10)

D.1. Singular value decomposition of M>M+QQ>

Let M be a n×n-matrix and let Q be a full-rank n×k-matrix. And let the respective
SVDs be given as

M = UMSMV>M (D.11)

Q = UQSQV>Q. (D.12)

Then the sum M>M + QQ> can be written in a block-matrix version as

A := M>M + QQ> =
[
VM ,UQ

] [S>MSM 0
0 SQS>Q

] [
VM ,UQ

]> (D.13)

=
[
VM ,UQ

] [S̃M 0

0 S̃Q

] [
VM ,UQ

]>
. (D.14)

This is generally not a SVD since the matrix [VM ,UQ] is not unitary. In the special
case k < n, rank(M) = n− k and with the constraint

VM,r⊥UQ,r, (D.15)

the matrices SM , SQ, VM and UQ can be replaced by their compact representations
SM,r, SQ,r, UQ,r and VM,r, according to (D.5). The resulting matrix [VM,r,UQ,r] is
then square. Let [VM,r,UQ,r] be given in terms of its columns as

[VM,r,UQ,r] = [v1, ...,vn−k,vn−k+1, ...,vn] , (D.16)

it can be seen that [VM,r,UQ,r] is also unitary since

v>i vj =

{
1 if i = j,

0 if i 6= j.
(D.17)
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D.1. Singular value decomposition of M>M + QQ>

Thus, A admits an inverse A−1 given in terms of the eigendecomposition

A−1 = ŨΛ̃
−1

Ũ−1, (D.18)

with the identifications

Ũ = [VM,r,UQ,r] and Λ̃ =

[
S̃M,r 0

0 S̃Q,r

]
. (D.19)

Unrolling the block-matrices appearing in (D.18), the inverse A−1 is given by

A−1 = M+
(
M+

)>
+
(
QQ>

)+
. (D.20)

Under the conditions resulting in (D.10) the last term can be replaced accordingly.
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E. Surface matching

The examples shown in chapter 6 and in chapter 7 make use of the surface matching
algorithm introduced by Vaillant and Glaunès [221]. For the sake of completeness of the
presentation, it is summarized here. For a detailed description, the reader is referred to
Vaillant and Glaunès [221] and the references therein.
The problem of finding a diffeomorphism that uniquely maps between surfaces is con-

ceptually very similar to the image registration problem described in chapter 3.2. This
similarity stems from the fact that the information provided by the images, or the sur-
faces, does usually not allow for the determination of a unique mapping. This issue
is accounted for by modeling assumptions and regularization. To this end, the surface
matching introduced by Vaillant and Glaunès [221] is embedded in the LDDMM frame-
work [see e.g. 57, 159].

Large deformation framework Using the notation introduced in chapter 2.1, the sur-
face matching is considered on the ambient space Ω̂ := ΩI

0 ∪ ΩI
t. For coordinates x̂ ∈ Ω̂,

the LDDMM framework parametrizes a time dependent deformation ϕR : t× Ω̂ → Ω̂ via
a velocity field vt according to the evolution equation

∂ϕR(t, x̂)

∂t
= vt(ϕR(t, x̂)) (E.1)

with ϕR(t = 0, x̂) = x̂. Given a Hilbert space with inner product 〈·, ·〉VR and a smooth
velocity field v ∈ VR such that ∫ 1

0
‖vt‖VR dt <∞, (E.2)

then ϕR,1 := ϕR(t = 1, x̂) is a diffeomorphism uniquely characterized by the associated
velocity field vt [159, 221].

Surface matching problem Given a metric between two surfaces S and T defined by
the formalism of surface currents described in chapter 3.3.2, an optimal deformation ϕ∗R
is defined as the minimizer of the functional∫ 1

0
‖vt‖2VR dt+

1

σ2
R

‖ϕR,1(S)− T‖2W∗ . (E.3)

If the space of velocities is specified as reproducing kernel Hilbert space, uniquely defined
by its kernel kVR(x̂j , x̂i) (see chapter 3.3.2), minimizer of (E.3) have a representation
given by

v∗t (x̂) =
∑
i

kVR(x̂i, x̂)αt,i (E.4)
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E. Surface matching

with the momentum vectors αt,i ∈ R3 [see e.g. 109]. E.g., for the x̂i defined as the
points of a triangulation TS of the surface S, cf. definition 3.3.2, the minimization of
(E.3) is performed with respect to the Np

S ×Nt momentum vectors α. Nt is the number
of discrete time steps used to solve (E.1).

Rigid matching If a rigid deformation between surfaces S and T is sought, the parame-
trization (E.1) can be replaced by the rigid body deformation

ϕrig(x̂) = R · x̂ + x̂m (E.5)

with the 3× 3 rotation matrix R and the translation vector x̂m. The minimization with
respect to the 6 degrees of freedom of rotation and translation can usually be computed
unregularized by the direct minimization of

‖ϕrig(S)− T‖2W∗ . (E.6)
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F. Graph based total variation on
non-uniform meshes

The definition of the graph based version of the TV functional

TVw(b) =
∑
i

∑
j

wG(i, j)(bj − bi)2 + ε2

1/2

, (F.1)

cf. (3.88), allows for a very flexible representation of functions with bounded variation
on complex domains. The spatial ‘structure’ of the domain has to be encoded in the
adjacency matrix [WG]ij = wG(i, j). Thereby, the term ‘structure’ refers to the spatial
connectivity as well as the spatial scale of this connectivity. The former is represented
by the connectivity pattern of the adjacency matrix WG, the latter by the values of its
entries, the so called edge-weight. For signals being defined on a mesh, this structure is
naturally given by the mesh-connectivity, see figure F.1. A representation of signals in

bj

bjbj

bj

bi

bj

bjbj

bj

bi

bj

bj

bj

Figure F.1.: Different connectivity setups for an element-wise parameter layout.

terms of the element-wise basis (2.105) lends itself towards the definition of the vertices
of the graph underlying the adjacency matrix WG to be the elements of the mesh. The
most straightforward definition of the connectivity among these vertices, i.e., the edges
of the graph, is then given by the faces dividing one element from another. At the same
time, a face’s area can directly be used as a measure of the scale of connectivity in the
definition of the edge-weights wG, see figure F.1 (left). Another possibility of connectivity
is given by the definition of edges given by any lower dimensional entity (faces, lines,
nodes). However, the natural definition of the spatial scale via a unique entity defining
edges is lost. Instead, the edge-weight can be defined via the spatial distance between
element centers in this case, see figure F.1 (right). Throughout the work presented in
this thesis, the connectivity of the adjacency matrix is defined solely via element faces
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F. Graph based total variation on non-uniform meshes

since this choice generates graphs that are sparser compared to the graphs defined from
connectivity given by faces, lines and nodes.
By denoting the area aij as the area of the face dividing element Ei from element Ej ,

the edge-weight wG(i, j) can be defined by

wG(i, j) =

{
â
aij

⇐⇒ aij 6= 0

0 otherwise,
(F.2)

whereby the average area â =
∑nf

i=1 ai is computed as the average of all nf internal faces
ai. This definition is motivated by the regularizing effect of the norm (3.88) on a function
defined as element-wise constant function on a mesh. For the convenience of easy meshing
or in the case of mesh size adaptivity, meshes are not necessarily homogeneous. But this
inhomogeneity should not affect the regularizing properties of the TV norm. In fact, in
the sense of the inverse problem set up in chapter 3, the resulting solution should be
penalized in a spatially uniform manner by the TV regularization. This is achieved by
(F.2), which is shown in the following using synthetic data.
To this end, the synthetic model introduced in chapter 6 is used, see figure 6.1. This

model incorporates an inhomogeneous distribution of the mesh size, see figure F.2, due
to the structured meshing with hexahedral elements.

Figure F.2.: Local mesh size in terms of element volume.

The synthetic inverse problem is defined in terms of measurements given as surface
data and the likelihood given by (6.8). This measured surface is constructed by the
solution of the forward problem D = A(θ = cϑ,P ) and its respective push-forward action
on the outer model surface ϕA(cϑ,P )(ΓO). In contrast to the problem setup in chapter 6,
synthetic noise is applied on this surface in the sense of centered Gaussian noise in the
space of currents (σ2

N = 0.001 mm2, σ2
W = 1.0 mm2), see chapter 3.2. The spatial scale

of this noise is not defined by the discretization of the surface but by the spatial scale
σW of the kernel defining the space W, see figure 3.7. Despite the change in the size of
the triangulation of the model surfaces, the action of the synthetic noise is propagated in
a spatially uniform manner via the application of the surface current perspective. Thus,
beside the jumps at the patch boundaries, the inverse solution is expected to show a
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constant spatial variability, given that the prior penalizes uniformly. This property is
verified for the MAP solution of the inverse problem defined by the likelihood in terms
of currents and the TV prior (3.93) (αtv = 1.0, ε = 1.0e−2). For its definition, the use
of (F.2) is contrasted with a uniform weight function given by

wG(i, j) =

{
1 ⇐⇒ aij 6= 0

0 otherwise.
(F.3)

The corresponding MAP solutions are labeled cϑ,U for the uniform edge-weights according
to (F.3) and cϑ,A for the area weighted edge-weights according to (F.2), see figure F.3. It

Figure F.3.: MAP solutions cϑ,U corresponding to the uniform edge-weights (left) and cϑ,A
corresponding to the area weighted edge-weights (right). Both solutions reflect the
patch-wise character from the reference solution.

can be seen that both solutions reflect the patch-wise character of the ground truth cϑ,P .
Visually, a difference in the spatial variability within each of the patches is difficult to
detect due to the small local variability compared to the overall range of values covered
by the solution. However, this overall range cancels out by analyzing the spatial gradient1

|∇cϑ|, see figure F.4. It can be seen that the spatial gradient, except for the transition
between the patches, shows the uniform distribution for the solution obtained with area
weighted edge-weights. The solution obtained with uniform edge-weights shows a much
higher gradient in regions with a significantly reduced element size.
This example demonstrated that the use of the area weighted edge-weight (F.2) avoids

the effects of a heterogeneous mesh size to be reflected in the modeling of prior infor-
mation. In contrast, the uniform weight function (F.3) does not account for the spatial
variability of smoothness implied by a variation in mesh size. Therefore, definition (F.2)
is applied throughout this thesis.

1The gradient is approximated by projecting the element-wise constant cell data to the point data and
followingly using the elemental shape functions to interpolate the gradient at the cell center. This
gradient is computed by Paraview’s GradientOfUnstructuredDataSet function using vtkCellderiva-
tives.

143



F. Graph based total variation on non-uniform meshes

Figure F.4.: Spatial gradient norm |∇cϑ,U | corresponding to the uniform edge-weight (left) and
spatial gradient norm |∇cϑ,A| corresponding to the area weighted edge-weights
(right). The gradient at the transition between the patches is not shown due to
the large magnitude which is outside the chosen color range.
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Abbreviations

AAA Abdominal aortic aneurysm
BFGS Broyden-Fletcher-Goldfarb-Shanno
CI Credible interval
CT Computed tomography
ESS Effective sample size
FD Finite difference
FE Finite element
FEM Finite element method
FOM Full order model
FSI Fluid structure interaction
G&R Growth and remodeling
HPD Highest posterior density
ILT Intraluminal thrombus
LBFGS Limited memory BFGS
LDDMM Large deformation diffeomorphic metric mapping
MAP Maximum a posteriori
MC Monte Carlo
MCMC Markov chain Monte Carlo
MPI Message passing interface
MRF Markov random field
MRI Magnetic resonance imaging
MULF Modified updated Lagrangian formulation
OpenMP Open Multi-Processing
PCA Principle component analysis
PDE Partial differential equation
PM Posterior mean
POD Proper orthogonal decomposition
PTC Pseudotransient continuation
RKHS Reproducing kernel Hilbert space
RPI Rupture potential index
SEF Strain energy function
SMC Sequential Monte Carlo
SNR Signal-to-noise ratio
SPD Symmetric positive definite
SVD Singular value decomposition
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Abbreviations

TV Total Variation
UQ Uncertainty quantification
US Ultrasound
VB Variational Bayes
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Nomenclature

General

(·)> Transpose of (·)
δA[δB] Variation of A under admissible variation δB
∆A[δB] Variation of A under admissible variation δB, used if A = δC

Nonlinear structural elasticity

Domains and boundaries

Ω0 Reference configuration
Ωt Current configuration
ΩI

0 Ambient space/image domain (Ω0 ⊂ ΩI
0)

ΩI
t Ambient space/image domain (Ωt ⊂ ΩI

t)
Ωg Intermediate configuration resulting from growth
Ωz Stress-free configuration
∂Ωi Boundary of a configuration Ωi, i ∈ (0, t, g)
TxΩi Tangent space of Ωi at x, x ∈ (X,x), i ∈ (0, t)
T ∗xΩi Dual to the tangent space TxΩi

dV0,dV,dVg Volume measure for Ω0, Ωt, Ωg

dΓ0, dΓ Volume measure for ∂Ω0, ∂Ωt

N Normal vectors on ∂Ω0

n Normal vectors on ∂Ωt

X Material coordinates ∈ Ω0

x Material coordinates ∈ Ωt

Xz Material coordinates ∈ Ωz

Kinematic description

ϕ Diffeomorphic deformation Ω0 7→ Ωt

ϕz Diffeomorphic deformation Ωz 7→ Ω0

c Constraint on ϕ
ϕ∗(•) Push-forward action associated to ϕ
ϕ−1
∗ (•) Pull-back action associated to ϕ

F Deformation gradient in Ω0

F̂ Deformation gradient in Ωt

Fz Deformation gradient associated to prestress
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Nomenclature

F̃z Approximation of Fz

J Determinant of F
U Displacement field in Ω0

u Displacement field in Ωt

C Right Cauchy-Green tensor (in Ω0)
E Green-Lagrange strain tensor (in Ω0)
` Left Cauchy-Green tensor (in Ωt)
e Euler-Almansi strain tensor (in Ωt)
e∗ Euler-Almansi strain tensor in Ω0

δU,λ,∆U Admissible variation of U(X)
δu Admissible variation of u(x)

Kinetic description and virtual work

I Arbitrary subset I ⊂ Ωt

t Traction in Ωt

t̂ Prescribed traction at ∂Ωt

t0 Prescribed traction at ∂Ω0

σ Cauchy stress in Ωt

σ∗ Cauchy stress in Ω0

S Second Piola-Kirchhoff stress in Ω0

b Body force (force/current volume) in Ωt

b∗ Body force (force/current volume) in Ω0

b0 Body force (force/reference volume) in Ω0

p Pressure
pdia Diastolic pressure (≈ 80 mmHg)
δW Virtual work

Hyperelasticity

Ψ, Ψ̃,ΨI1,I2,I3 Strain energy (density) function
Ψ̂ Distortional strain energy function
Ψvol Volumetric strain energy function
Ii Invariants (i ∈ (1, 2, 3)) of C

Ĉ, Ĉe Distortional component of C, Ce

Îi, Îi,e Invariants (i ∈ (1, 2, 3)) of Ĉ, Ĉe

C Elasticity tensor in Ω0

Ce Elastic component of C in Ω0
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Isovolumetric growth

ϕg Non-diffeomorphic deformation Ω0 7→ Ωg due to growth
Fg Growth component of F
Fe Elastic component of F
Jg Determinant of Fg

Je Determinant of Fe

ϑ Growth stretch in Ω0

Ce Elastic component of C
Ψe Elastic strain energy function
Se Second Piola-Kirchhoff stress due to elastic deformation in Ω0

m Mass
ρt Density (mass/current volume) in Ωt

ρ∗∗t Density (mass/current volume) in Ωg

ρ∗t Density (mass/current volume) in Ω0

ρ0 Density (mass/reference volume) in Ω0

k+
ϑ , k

−
ϑ Parameters of specific growth evolution functions

ϑ+, ϑ− Parameters of specific growth evolution functions
m+
ϑ ,m

−
ϑ Parameters of specific growth evolution functions

cϑ Parameter of specific growth evolution functions

Finite element method

C2 Differentiability class of order 2
α Multi index
Dα(·) Partial derivatives
Lp Lebesgue spaces
W p
k (Ω0) Sobolev spaces

Hk(Ω0) Hilbert spaces W2
k(Ω0)

γ Trace operator H1(Ω0)→ L2(∂Ω0)
H1

0(Ω0) Hilbert space H1(Ω0) with evaluation at the boundary
V Extension of H1

0 to d dimensions
K Mesh discretizing Ω0

E Element of K
nele Number of elements in K
Pκ(E) Class of polynomials in E with order κ
Vh Finite dimensional approximation of V
Uh Finite dimensional approximation of U
δUh Finite dimensional approximation of δU
Ni Shape function associated to node i
nEnod Number of nodes per element E
di Coefficients for shape function Ni associated to Uh

δdi Coefficients for shape function Ni associated to δUh

Eg Generic reference element
ξ Coordinates describing Eg
dVEg Volume measure of the generic element Eg
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Nomenclature

D Assembled vector of nodal coefficients di
δD Assembled vector of nodal coefficients δdi
ndof Number of degrees of freedom, i.e. dim(D)
nγdof Number of degrees of freedom associated to ∂Ω0

f Nonlinear system resulting from discretization of δW

Nonlinear solution

Dk Solution at nonlinear iteration k
∆Dk Increment at nonlinear iteration k
fα Instance of sequence of nonlinear problems f

t̂α Instance of a sequence of traction loads t̂
τk Artificial time / line search parameter
K Symmetric linear operator representing ∆δW (U, δU)[∆U]
K Discretization of K (stiffness matrix)

Parametrization

θ Parametrization of the weak form
Ψθ Parametrized strain energy function
δWθ Parametrized virtual work
X Parameter space
θh Discrete parametrization
Xh Discretization of X
gE Basis functions for Xh
G> Vector of basis functions gE
θ Vector of basis coefficients
A Nonlinear operator X → V
Ah Nonlinear operator X → Vh
A Discrete nonlinear operator Rnele → Vh

Inverse problem

General

Z Measurement space
Z Generic measurement ∈ Z
C Generic observation operator V → Z
Û Real state of the system modeled by U
R Regularization
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Statistical quantities

(S,F , P ) Probability space
X,Y,Φ Random variables
A,B Sets ∈ F
B,D Borel sets on Rn
pX Probability density function of a random variable X
EX[·],Ex[·] Expected value of (·) wrt. density pX(x)
VX[·],Vx[·] Variance of (·) wrt. density pX(x)
SDX[·] Standard deviation of (·) wrt. density pX
N (x|µ,Σ) Normal distribution with mean µ, and covariance Σ
U(a, b) Uniform distribution on the interval [a, b]

Statistical identification problem

np Dimension of the parameter identification problem
p(Z|θ) Likelihood
p(θ) Prior
p(Z) Evidence
p(θ|Z) Posterior
ζ Measurement noise
ΣZ Measurement covariance matrix
σ Measurement noise standard deviation
F Computational model Rnp → Z
D Similarity measure
Θ Stacked vector of model parameters θ and noise parameters σ
M Class of computational models

Similarity measures on images

ϕI Diffeomorphic deformation ΩI
0 7→ ΩI

t

V Smooth displacement field associated with ϕI

VI Space of displacements V
I0 Image in ΩI

0

It Image in ΩI
t

ϕ̂I Estimation of ϕI from image registration
V̂ Smooth displacement field associated with ϕ̂I

CI Observation operator VI → Rndof

CI,γ Observation operator VI → Rn
γ
dof

Similarity measures on surfaces

U Open interval U ⊂ R2

s, t Coordinates of U
TqU Tangent space to U at q ∈ U
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Nomenclature

φα, φβ Surface parametrization
ν,η Tangent vectors
g Metric tensor
ω Differential 2-form
w Vector field associated to ω
nS Field of normals of a surface S
ñS Field of unnormalized normals n dΓ of a surface S

TS Triangulation of a surface S
xxx Si Point of the triangulation TS
τSi Triangle i of the triangulation TS
cSi Center of triangle τSi
ñSi Normal of triangle τSi
NS Number of triangles in TS
Np
S Number of vertices in TS

di Closet point projection

S(ω) Surface current associated to the surface S
W∗ Space of surface currents
W Dual space to W∗
KS

n Dual representation of a surface current S(ω)
δn
x Dirac current

Hk Reproducing kernel Hilbert space
δx Linear evaluation functional Hk → R
Kx Generic representer ∈ Hk of δx
k Kernel defining Hk
σW Spatial scale of the kernel k
σN Variance of a random current

K Kernel matrix
ñi Stacked vector of the i-th spatial component of all ñ
ni Random variable ñi

Prior assumptions

σg Spatial scale of the Gaussian prior
kΣ Covariance function
` Spatial scale of kΣ

x,y, z,y0 Vectors ∈ Rn
x, y, z Random vectors
L Structural information encoding discrete linear operator
σs Spatial scale of the smoothness prior
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Q Basis for ker(L)
qi Columns of Q
hi Random coefficients for Q
h Vector of random coefficients hi
Rnp\Q Factor space Rnp \ ker(L)

TV Total variation
TVε Smoothed total variation
TVw Graph based total variation
ε Smoothing factor
J Index set
G Graph
V Vertices of the graph G
E Edges of the graph G
wG Weight function associated to the edges of the graph G
WG Matrix of edge-weights
ιi Maximal clique of the graph G
ψ Clique potential
H Clique energy
αtv Scaling for the total variation prior

Lagrangian formulation

F̃ Computational model X → Z
J negative log-posterior
L̃ Lagrangian
L Augmented Lagrangian

Numerical solution

Estimators

θ̂(Z) Estimator
θ̂ Estimate
L Loss-function
θ̂pm(Z) Posterior mean estimator
θ̂map(Z) Maximum a posteriori estimator
θi i-th entry of θ
θ\i Remainder vector θ \ θi

Approximate inference

q Approximate posterior
H Hessian matrix
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Nomenclature

DKL Kullback-Leibler divergence
G Lower bound on p(Z)
J Jacobian matrix

LBFGS

h Representation of − log p(θ|Z)
d Search direction
B Approximate hessian
s Solution increment
y Gradient increment
χ Line search problem
c1 Sufficient decrease parameter
χκ Polynomial models of χ with order κ
c2, c3 Coefficients for χ3

τ+ Optimal line search parameter
βl, βh Safeguard parameters
ms Size of vector storage
γn Initial hessian scaling

Monte Carlo methods

η Importance densities
w Weight function
π Stationary distribution, target distribution
K Markov kernel
Kmh Metropolis-Hasting transition kernel
tA Stopping time for the set A
iA Number of visits to the set A
IA Indicator function of the set A
qpp, q̃pp Proposal densities
% Metropolis-Hastings acceptance probability

π0 Initial distribution
λn Sequence parameters
ςn Unnormalized density
π̃n Artificial probability distributions
ς̃n Unnormalized π̃n
L Backward Markov kernel
w̃ Incremental weight function
ESS Effective sample size
ξ ESS reduction factor
Tred Resampling threshold
w Normalized weights
πNn Particle approximation of πn
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Predictive approach

P Dictionary of basis vectors
pi Column i of P
ψ Reduced dimensional parameters
Ltv Linear operator representing the total variation bound
Y Matrix of eigenvectors
Λ Matrix of eigenvalues
Ynr Matrix of significant eigenvectors
H̃−1 Approximate action of the hessian H

H−1
P Projected inverse hessian

σP Scaling factor for H−1
P

Ki Patch of connected elements from the mesh K
Np Number of patches
nKiele Number of elements per patch Ki
M Set of bins mi of a histogram
nbin Number of bins
θ̂map,E Entry of θ̂map associated to element E
tolp Tolerance for patch creation
dE Element to patch association
ψp Reduced parameters associated to patch-wise basis
ψtv Reduced parameters associated to TV decomposition

Synthetic data model

ΨAAA Strain energy function for aneurysmatic wall
ΨILT Strain energy function for intraluminal thrombus
α, β Stiffness parameters for ΨAAA

c1, β1 Stiffness parameters for ΨILT

κ Bulk modulus
ΓO,ΓI Model surfaces
cϑ,P Patch-wise distribution of growth stretch
t̄ Generic time period of growth
A Path along aortic arch model
s Coordinate of path A
uy(s) Displacement along path
umaxy Maximal displacement in y-direction

Surface matching

Ω̂ Ambient space ΩI
0 ∪ ΩI

t

x̂ Coordinate in the ambient space Ω̂
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Nomenclature

ϕR Diffeomorphic deformation from surface matching
v Velocity field
VR Kernel space of velocity fields
kVR Kernel associated to VR
α Field of moments parametrizing v
ϕrig Rigid deformation
R Rotation matrix
x̂m Translation vector

DΓO Dofs associated to the surface ΓO
nΓ
dof Number of dofs DΓO

VR Displacement field associated to ϕR
VR,ΓO VR evaluated at the dofs DΓO

CR,ΓO Observation operator VR 7→ VR,ΓO

pD Likelihood in terms of displacement data
pW Likelihood in terms of surface data
cϑ,D, cϑ,W Inverse solutions corresponding to pD, pW
c̃ϑ,D, c̃ϑ,W Reference solutions corresponding to pD, pW
∆D Relative error of cϑ,D
∆W Relative error of cϑ,W
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