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Chapter 1

Introduction

1.1 Situation and Motivation

Robots have long arrived in our daily lives. Whether to produce what we buy and consume or to
facilitate tasks in our day. Humanoid robots, however, are not yet freely roaming our world, like
the lawnmower robot in the neighbors garden. Biped robots offer a great deal of advantages over
wheeled robots. Their locomotion is based on human locomotion and they are therefore able
to maneuver in human environment. This supposed advantage comes at the cost of high com-
plexity of planning and control systems necessary to fully utilize the physical capabilities. This
explains why biped humanoid robots are not yet able to operate outside of research facilities.
Flexible walking in complex and uneven terrain still poses fundamental problems that are being
researched around the world.
This thesis is part of the project "Walking in Uneven Terrain" 1 that is conducted at the Technical
University of Munich in the Department of Mechanical Engineering. The Chair of Applied Me-
chanics tackles problems arising from locomotion in the real world in this project, using the biped
robot Lola 2. Challenges are to allow flexible and robust walking. The aim of flexible walking
is to enable the humanoid robot to autonomously navigate in a previously unknown complex
environment with obstacles and platforms or stairs. Another central requirement is to achieve
these aims in real-time. Many improvements have been made to autonomously detect and avoid
obstacles in a cluttered environment in real-time [10, 11, 46]. The work in this thesis is aimed
at improving the ability to step onto platforms or stairs. Currently this cannot be achieved in a
flexible way, manual tuning is necessary. A previous student’s thesis explored the importance of
alternative foot trajectories, namely making use of the toe joint, in descending stairs [40]. So
far toe walking is not yet implemented on the humanoid robot Lola and can not be employed to
improve walking in uneven terrain.
A different approach to achieve flexible stepping on and off of platforms or stairs is done in this
thesis. The height of the Center of Mass (CoM) takes a central role in the planning and generation
of the overall robot trajectories. So far the potential influence on achieving improved walking pat-
terns by changing the vertical CoM trajectory has not been assessed on the humanoid Lola. This
will be done in this thesis.

1.2 Concept

Research into variable CoM trajectories is numerous. An overview of existing approaches is given
in chapter 2 together with a brief introduction to how the motion of a robot is planned during

1http://www.amm.mw.tum.de/en/research/current-projects/humanoid-robots/walkinguneventerrain/
2http://www.amm.mw.tum.de/en/research/current-projects/humanoid-robots/lola/



1.2 Concept 3

the so called pattern generation. The pattern generation system employed on the humanoid
Lola allows to freely command a vertical CoM trajectory. In chapter 3 the approach of how to
generate this trajectory is presented. The approach is a combination of different strategies already
investigated by other researchers. Based on kinematic observations and conclusions a favorable
trajectory is generated that is later subjected to numerical optimization. The performance of this
approach is then assessed using a simulation environment in MATLAB. This is described in chapter
4. The thesis is concluded in chapter 5.



Chapter 2

Overview and Related Work

It is hard to get an extensive overview of existing work in the field of humanoid robotics. The
amount of different approaches to the same problems leads to an ever increasing variety of solu-
tions. This chapter provides a short insight to pattern generation in humanoid robots. Section 2.1
showcases pattern generation by presenting common methods and their implications for a vari-
able Center of Mass (CoM) height. Section 2.2 explains why a vertical CoM variation is favorable
and how it can be included in pattern generation.

2.1 Pattern Generation

Pattern generation includes a multitude of tasks. Initially a set of high level input is given, such
as step length, step time and a sequence of footsteps [24]. This high level data depends on infor-
mation about the environment, the robots geometry and a possible operator [29]. The outcome
of pattern generation is a set of reference trajectories, generally for the feet and the CoM. These
trajectories are then used to derive the joint data for the robot.

One of the first tasks in pattern generation is to obtain the foot trajectories which are optimized
with respect to energy consumption, collision and obstacle avoidance [3, 5, 11, 43]. These topics
exceed the scope of this work and will not be covered further. The trajectories for both feet are
assumed to be given.

In bipedal walking it is essential to ensure dynamic stability of the robot. In short dynamic stability
means to avoid the robot tipping and falling over. The vast majority of pattern generation methods
rely on a Zero Moment Point (ZMP) based approach [3, 4, 13, 14, 16, 21, 25, 27, 28, 29, 30, 31,
32, 33, 36, 37, 38, 39, 44]. This approach will be briefly presented in the following to give a basic
idea. For further understanding please consult the respective literature.

Vukobratovic [45] first introduced the ZMP concept. Sardain [36] defines the ZMP as "the point
on the ground where the tipping moment acting on the biped, due to gravity and inertia forces,
equals zero, the tipping moment being defined as the component of the moment that is tangential
to the supporting surface." To achieve dynamic balance the ZMP needs to be inside the convex
hull of the robot’s contact points at all times [3]. Be wary that the terms dynamic balance and
dynamic stability are often incorrectly mixed in literature: dynamic balance can be correlated to
the ZMP concept, however, achieving dynamic balance does not directly imply dynamic stability
[3, 41].

For a given sequence of footsteps the ZMP trajectory can be planned within the respective support
polygon which will later be used to ensure balance. There are multiple solutions for choosing a
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favorable ZMP trajectory with different optimization goals, like a reduction of CoM velocities or
contact forces [3]. These methods will not be examined further in this work.

In order to be able to compute all joint trajectories of the humanoid robot by inverse kinematics,
foot trajectories and hip trajectories need to be determined [35]. A very common approach in
bipedal robotics is to derive the CoM trajectories, and thereby ultimately the hip trajectories, from
the governing Equation of Motions (EoMs) while ensuring balance in a ZMP based approach [16].
The formerly obtained ZMP trajectory can be regarded as a control system reference, whereas the
CoM trajectories are the system output.
In order to obtain this control law a multitude of underlying models have been derived. They
differ in complexity, accuracy and way of finding a mathematical solution. Furthermore different
control methods are deployed. This leads to a wide variety of approaches with a similar base.
In the following some of these approaches are discussed without a claim of completeness. The
motivation of this overview is to point out the implications for the height of the CoM in different
concepts. These implications are discussed further in Section 2.2.

An important milestone of a ZMP based approach in bipedal robots was the application of preview
control to the ZMP [16]. Kajita et al. introduced a simplified version of the popular Three-
Dimensional Linear Inverted Pendulum Mode (3D-LIPM) to model the walking movement and
combine it with the ZMP concept [17]. The equations of the 3D-LIPM can be derived from the
conservation of linear and angular momentum (2.1) (2.2) like it is done in [4].

mr̈CoM = F+mg (2.1)

L̇CoM = T− rCoM × F (2.2)

The vectors r̈CoM and rCoM stand for the CoM acceleration and position respectively. The vector
g denotes the gravity, LCoM is the angular momentum with respect to the CoM, m is the mass of
the robot and F and T are the total reaction force and torque respectively, applied to the stance
foot of the robot. Both are nonlinear equations. To obtain the 3D-LIPM equations it is assumed
that the change of angular momentum is negligible: LCoM ≈ const. Under this assumption the
simplified EoM for the CoM are obtained (2.3) (2.4).

mzCoM ẍCoM −mxCoM (z̈CoM + g) = Tx (2.3)

mzCoM ÿCoM −myCoM (z̈CoM + g) = −Ty (2.4)

In order to decouple these equations Kajita et al. assume constant height of the CoM:

zCoM = zc = const. (2.5)

This leads to the equations of the cart-table model (2.6)(2.7)[16]. Here zc denotes the constant
reference height of the CoM, px and py are the coordinates of the ZMP to be tracked.

xCoM −
zc

g
ẍCoM = px (2.6)
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yCoM −
zc

g
ÿCoM = py (2.7)

These equations are decoupled linear Ordinary Differential Equations (ODEs) and can therefore
even be solved analytically and with little computational effort. This allows for feasible and
smooth CoM trajectories [3]. Many implementations employ the cart-table model and assume a
constant CoM height [16, 22, 27, 30, 31].

The nonlinearity in the governing EoMs, allowing a variable CoM height, pose difficulties in pat-
tern generation. A high computational effort is necessary to solve these equations numerically.
Therefore humanoids are still limited concerning usage of variable CoM height trajectories in
real-time [44]. In Section 2.2 implementations with a variable CoM height are discussed.

2.2 Variable Center of Mass (CoM) Height

As computational power constantly rises, more and more complex tasks can be achieved in hu-
manoids. This leads to the exploration of formerly untouched problems. In recent years this
lead to an increasing amount of researchers exploring the possibilities and caveats of a variable
CoM height. The variety of different approaches, however, shows that "online generation of biped
walking motions in three dimensions [...] to introduce some desired vertical motion of the body,
is still largely an open problem in humanoid robotics today", as Brasseur et al. state it [2].

2.2.1 Motivation

Enabling this vertical motion brings several advantages to humanoid walking. The arising com-
plexity of tasks necessitates making use of these advantages. One important motivation to allow
variable CoM height is to achieve a higher efficiency by more human-like walking [9, 23, 26].
The lower energy consumption also yields reduced loads and torques [9, 22, 23, 25].

Another major advantage is a greater kinematic flexibility. This includes larger possible strides
[23], improved maneuverability on stairs [7, 15, 33] and in general on uneven terrain [13, 29,
47]. Kinematic constraints like the existence of the inverse solution, joint limits and the knee
singularity can be avoided with greater ease by allowing an adoptable CoM height [23].

The higher accuracy of more sophisticated models accounting for the coupling of the governing
EoMs additionally leads to a reduced ZMP error and therefore improves the balance [25, 33].
Chevallereau and Aoustin even show that vertical oscillations of the CoM induce a self stabilization
[6].

2.2.2 Modeling Approaches

Regardless of all possible advantages of a variable CoM height the problem persists that the nonlin-
ear EoMs are still today numerically expensive to solve [44]. This difficulty is resolved in different
ways. To limit the scope, methods not suitable for real-time execution are not considered here
[14, 20, 38]. Hereafter I present various concepts, without a claim of completeness. Many actual
implementations combine some of these methods together. Here, however, the approaches will
be presented briefly and isolated.
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One way to enable a variable CoM height is "assuming that the small change of the torso height
does not affect the dynamic balance" [29]. The dynamic balance is then obtained by using simpler
models like Linear Inverted Pendulum Model (LIPM). The deviation of the torso or CoM height
from the constant reference height is then modeled as a disturbance. Li et al. analyzes the
resulting error to the ZMP control [22]. Accordingly the relative effect of the height variation
∆z/zc on the error is small compared to a variation in the acceleration ∆z̈/g. The use of smooth
CoM trajectories in z-direction therefore reduces the error in this approach [22, 33]. Li et al.
confirm even walking with an improved efficiency in a dynamic simulation using this method
[22]. Park et al. provide experimental results of enabling a bipedal robot to walk upstairs by
adjusting the CoM height [33]. Also in [29] the application of this assumption proves suitable for
a full-size humanoid robot to walk over platforms in experiments.

In a different approach Lack assumes a known reference CoM height that is being followed per-
fectly by the robot [21]. The nonlinear governing EoMs hereby become linear with respect to
the Center of Pressure (CoP) position and the spin angular momentum [9]. The author uses
these simplifications to obtain an efficient solution of the nonlinear inverted pendulum dynamics
by applying Model Predictive Control (MPC) and Quadratic Programming (QP). The results are,
however, not backed by any dynamic simulations nor experiments. Through the application of
MPC and QP also Van Heerden achieves real-time performance while allowing a variable CoM
height [44]. The author showed the feasibility of his approach in simulations.

Another popular solution is to formulate surface constraints within which the nonlinear problem
can be simplified. Both [25] and [48] derive a parametric surface representation to confine the
CoM trajectory. Morisawa et al. [25] express the CoM motion as a parametric surface described by
a spline surface. This leads to a parametric reduction to two functions of time. Consequentially the
calculation of the solution is simplified. A numerical solution is obtained using Newton’s method.
Both simulation and experiment confirm stable stair walking, however, online applicability is not
mentioned. Zhao and Sentis [48] reduce the dimensionality of the equations by introducing non
planar surfaces. These are piecewise linear surfaces that confine the 3D movement of the CoM.
This approach yields decoupled equations for the saggital and lateral planes. The equations are
solved using numerical integration. The results are not validated neither in simulation nor in
experiment, merely motion capturing is used to validate the planner.

A relatively new theory, the so called Divergent Component of Motion (DCM) is applied in hu-
manoid robotics with the aim to allow the solution of more complex models while accounting
for a variable CoM height [8, 15, 41, 42]. The terms Capture Point (CP) [34] and extrapolated
center of mass [12] are also used synonymously to DCM. The CoM dynamics can be separated
into a converging and diverging part and therefore stable and unstable components [42]. Orig-
inally derived from the LIPM the control in this approach focuses on the diverging part of the
dynamics, since the stable part will converge also without control [42]. Both Hopkins et al. [15]
and Takenaka et al. [42] prove the feasibility of their approach in experiments.

Finally the method incorporated with the humanoid robot Lola allowing for variable CoM height
is the so called collocation method [4]. In general this approach numerically solves (partial)
differential equations by finding a set of functions that satisfy the governing equations at a finite
amount of points. In the method described by Buschmann cubic splines are used to approximate
the nonlinear EoMs that describe a three point mass system.

mbzb ÿb −mb yb(z̈b + g) = − Tx

+ml yl1(z̈l1 + g)−mlzl1 ÿl1

+ml yl2(z̈l2 + g)−mlzl2 ÿl2

(2.8)
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The indexes b, l1 and l2 denote respectively the three different mass points for the body and both
legs. By solving this equation via spline collocation instead of finite difference method the order
of the problem can be reduced by magnitudes. The nonlinear equation (2.8) can hence be solved
in real-time to allow arbitrary CoM height trajectories.

2.2.3 Trajectory Design

Numerous approaches to design the CoM height reference trajectory exist in literature. Differ-
ent strategies are applied, ranging from heuristics derived from human walking to optimization
problem formulations. In the following the terms CoM height, torso height and hip height will
be used to describe the general concept of vertical motion of the body. In order to provide a
better overview, the approaches are categorized, however, please note that the categories are not
mutually exclusive.

Heuristic

Many vertical CoM trajectories are generated in a heuristic manner. Both Chevallereau et al.
and Li et al. model the vertical CoM motion as a cosine oscillation around an average height z0
similarly to what can be observed in humans [6, 23]. In both implementations the wavelength
corresponds to the step length and the cosine is a function of the horizontal CoM position. Li et
al. correlate motion along the z axis and the x axis. They emphasize the usage of a sinusoidal
function of position rather than time to avoid "a distorted sinusoidal pattern in the Cartesian
space, as the horizontal velocity ẋhip is not constant". Chevallereau et al. additionally assume a
decoupled dependency of motion along the z axis with the lateral CoM position (2.9). While both
works show the advantages of enabling vertical oscillations in even walking, the methods do not
consider uneven terrain.

zcom = z0 + fx(cos(xcom)) + f y(cos(ycom)) (2.9)

To allow climbing of stairs Park et al. generate the CoM trajectory in z direction as a 6th order
polynomial [33]. They define boundary conditions and design parameters that are tuned in sim-
ulation to reduce the ZMP error. This yields an almost linear function which the authors used for
simplicity. Drawbacks of this simplification are not examined.

Hong and Lee deploy varying trajectories in dual and single stance [13]. While a constant CoM
height is assumed in single stance, the dual support phase is modeled through a cubic spline. This
interpolation allows a shift to different CoM heights. The authors do not give a rationale as to
how this solution is motivated apart from allowing a shift in height. The ability to stably walk in
uneven terrain is shown in simulation.

Optimization

The basic approach in [37] consists of cosine functions of time for the variable hip height.

zcom(t) = β0 + β1cos(
2πt

L
) + β2cos(

4πt
L
) (2.10)

The periodic vertical motion is motivated yet again by the human hip height trajectory. The
parameters L for the step period, β0 for the hip height offset, β1 and β2 for the cosine amplitudes
are optimized. Subjected to a derivative-free stochastic optimization algorithm maximizing a
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fitness function they are obtained in an offline calculation. The feasibility of the derived variable
CoM height is shown in simulation for even walking. By comparing constant with variable height
the authors show an improved performance using (2.10).

Maximum Height

Miura et al. choose the waist height trajectory in a way that "straightens the leg as much as possi-
ble unless it exceeds the maximum distance Lmax " [24]. Initially a constant CoM height is assumed
and thereafter the leg lengths are computed. Whenever they exceed the maximum length Lmax
of a fully stretched leg, the waist is lowered to reduce the leg length. The resulting trajectory
suffers from discontinuities at the transitions between dual and single stance phase. The authors
therefore smooth the trajectory in an optimization with respect to a cost function constraining
joint angles and velocities. The aim of the publication was to accurately imitate human-like mo-
tion and therefore the benefits of the variable CoM height are not explicitly mentioned other than
successfully demonstrating even walking in an experiment.

In [18] Nishiwaki and Kagami perform the variation of the CoM height in a similar fashion. Their
"basic strategy in this paper is keeping the torso as high as possible while satisfying the existence
of the inverse kinematics solution and the limit of the knee joint velocity". The authors also in-
clude kinematic constraints in the generation of the torso height trajectory. They limit the vertical
velocity and acceleration to obtain a smooth trajectory.
Their first step in the torso trajectory design process is the computation of the maximum kine-
matically feasible height. With the knowledge of the positions of right ankle joint (xra, yra, zra)
and right hip joint (xrh, yrh) the maximum right hip height can be derived according to (2.11).
Lmax denotes the distance between hip and ankle joints with a fully stretched knee.

zrh,max = zra +
q

L2
max − (xrh − xra)2 − (yrh − yra)2 (2.11)

Taking into account the left leg limits as well as torso posture, the overall maximum torso height
allowing an inverse kinematics solution can be obtained.
Another limitation to the maximally feasible torso height is comprised of the knee joint velocity
limit. The minimum of these two maximum heights serves as the basis for the height trajectory
generation.
In the following the torso trajectory is designed considering both the maximally possible height
and the vertical velocity and acceleration limits. In an iterative approach this is done by taking
into account future height limits while staying within allowed velocity and acceleration ranges at
all times. The result is a smooth trajectory that closely follows the maximum height. Nishiwaki
and Kagami confirm the performance of the generated trajectory with experiments on a full-size
humanoid robot.

In a newer publication Nishiwaki et al. formulate the torso height trajectory differently, yet with
the same intention of "keeping the torso high" [29]. The approach was derived experimentally in
simulations and real experiments. Cubic splines are used to interpolate between three heuristi-
cally defined support points per step sequence, at the start, middle and end. Each step sequence
starts and ends in the middle of the dual support phase, when both feet are in contact with the
ground. The interpolation points at the beginning and end of each step sequence are calculated
so that the maximum torso height is closely approached without violating the knee singularity.
The vertical velocity at those points is zero. The remaining middle control point assures a high
torso position for when the swing leg is approximately under the torso. Similarly the height of
the middle control point is derived by closely avoiding the maximum torso height.
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The authors show the feasibility of the online trajectory generation method for uneven terrain in
experiments.



Chapter 3

Vertical Center of Mass (CoM) Trajectory Genera-
tion

A new approach to generate the vertical CoM trajectory is presented in the following. The for-
merly employed trajectory lacks adaptability. Solely the set points at the beginning and end can
be adapted, the transient behavior in between is not utilized. This limits the maneuverability es-
pecially in complex environments like the presence of stairs or platforms. So far it is only possible
for Lola to ascend platforms by carefully tuning the trajectory manually. By replacing the current
implementation with a more elaborate module it is hoped to achieve a greater flexibility in the
kinematic maneuverability along with other advantages mentioned in 2.2.1.
In the scope of the overall pattern generation system the vertical CoM generation has only few in-
terfaces to the rest of the system. The single output and therefore influence on the behavior of the
system is the generated zCoM ,re f trajectory that serves as input to the module assuring dynamic
balance. Inputs are limited as well, already due to the availability of information at this stage in
the pattern generation process. The vertical CoM generation system only takes foot trajectories
and high level stepping information, such as step length, step height and initial conditions as
input.
Figure 3.1 visualizes the underlying idea of the system. The current reference trajectory is a con-
stant curve, or in the case of ascending and descending a platform a simple smooth interpolation
between start and end set points. The newly proposed method replaces this basic module in the
overall pattern generation process. In contrast to the former method the new approach considers
both high level walking information as well as task space trajectories such as the foot trajectories.
This allows a better adaptability to the current scenario which becomes particularly important for
climbing stairs and platforms. The trajectory generation is organized in a few submodules. First
the maximally feasible hip height zmax is calculated based on geometric constraints as an upper
bound to the trajectory being generated. Next an initial trajectory for the hip height is derived
satisfying zmax . This initial solution is then subjected to optimization to obtain an even more
favorable final solution for zCoM ,re f .
An important remark has to be made to distinguish between hip and CoM trajectory. The spline
collocation method as described in [4] uses the notation of the CoM. As stated in equation (2.8)
the CoM presentation is then split up to model three distributed masses in the two feet and the
body. In the approach described in this chapter a trajectory for the hip height will be obtained.
In order to ultimately include the derived method into the pattern generation system a transfor-
mation is necessary to obtain the corresponding CoM trajectory.
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zCoM ,re f

Foot trajectories

Balance via spline collocation
xCoM
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Foot trajectories

Balance via spline collocation

zmax zhip,ini t min
z

f (z)

xCoM ,est

Figure 3.1: Overview of newly proposed trajectory generation system and section of pattern generation that gets
replaced

3.1 Current Situation and General Assumptions

Before being able to derive the maximum hip height from geometric equations it is necessary
to make an assumption that allows to integrate the proposed method into the overall pattern
generation system. Figure 3.1 helps visualizing the alterations made.
The block "Pattern Generation Extract" shows a part of the overall system which is of interest in
the scope of this work. Currently a quintic spline is used to obtain the vertical CoM trajectory. This
polynomial is obtained by simply interpolating between start and end set point and is represented
by the block "Current". This trajectory serves as a necessary input to the Boundary Value Problem
(BVP) ensuring balance. The BVP is then solved by the spline collocation method. The outputs of
the calculations are the horizontal CoM trajectories.
The newly proposed approach replacing the current vertical CoM reference is not able to use these
outputs, as the block "Proposed" will replace the "Current" block, before the horizontal trajectories
are obtained. They are, however, necessary to compute the maximum hip height and cost function
for the optimization problem.
Consequently an iterative approach would be necessary to break this circular dependency. Instead
elements similar to the current implementation are contained in the "Proposed" block. They serve
as a first iteration which precede the new elements and provide them with an estimated xCoM ,est ,
similarly to how Nishiwaki and Kagami perform in [30]. In doing so, an error is introduced into
the generation of the vertical CoM trajectory, since the optimized result and the estimate will most
certainly not be equal.
The underlying assumption to justify the introduced error without reducing it via further iteration
is that the change in the CoM height is a disturbance that does not affect dynamic balance of the
robot [29]. Similarly in [30] Nishiwaki and Kagami state that "the effect of changing the torso



3.2 Step Phase 13

height to dynamics can be neglected" by limiting the maximum acceleration. Also Li et al. find in
an error analysis that the error in the dynamic solution is determined by the error in the second
derivative of the torso height rather than the error in the height itself [22]. Consequently it
is assumed that smooth initial and final trajectories have a limited effect on the solution for the
horizontal CoM trajectories. Please note that the dynamic balance will not be affected at all in this
approach because the horizontal CoM trajectories are only used internally in the newly proposed
module and will be recalculated with zCoM ,re f as before. The only source of concern is that the
error ex = xCoM ,est − xCoM could have a possible but limited effect on a change in zCoM ,re f , i.e. a
no longer valid trajectory was used in the derivation of the vertical trajectory. This might result in
a not optimal solution for zCoM ,re f or even the violation of kinematic limits, which can be assessed
by also recalculating the kinematic limits.

3.2 Step Phase

The overall pattern generation system operates in the scope of the so called step phase. Every
performed step gets planned in this entity. A step phase starts and ends in the middle of a dual-leg
support phase, where both feet are in contact with the ground. During a step phase the swing leg
advances to perform the step. The time, during which only the so called stance leg is in contact
with the ground, is defined as the single stance phase. A further distinction could be made for the
respective phases, which will be omitted here. Figure 3.2 illustrates a qualitative step sequence
with the dashed poses qualifying as start and end poses. The following calculations will all be
performed in an inertial coordinate system with origin in the current stance foot. For simplicity
of the calculations the origin of this coordinate system will be moved to the ankle joint of the
stance foot, as can be seen in figure 3.3. Step phases where the feet are either moved from a
parallel stance or to a parallel stance are regarded as special cases and therefore not considered
in the scope of this work. The step duration T = 1s is used in all of the calculations for the sake
of convenience.

Figure 3.2: Step sequences



14 3 Vertical CoM Trajectory Generation

3.3 Maximum Hip Height

Maximum hip height refers to the height of the hip joint that is maximally feasible without violat-
ing geometric constraints. Ultimately the knee joint singularity prevents the humanoid robot from
being able to walk with a fully stretched leg [18, 25, 29]. Similarly by a geometric constraint the
distance between hip joint and ankle joint cannot be greater than the length of the fully stretched
leg. This upper bound therefore is a valuable information in obtaining a vertical trajectory.

z

x

xhip

xswing

Figure 3.3: Kinematically feasible maximum height

According to the assumption made in 3.1 the maximum hip height is computed without changing
the x-coordinate of the hip joint which correlates with the CoM. As assumed before the change in
height does not affect the x-direction. This reflects the negligible effect on the dynamic balance.
The maximum hip height can then be derived similarly to (2.11) with the following equations.

zsw,max = zswing +
q

L2
max − (xhip − xswing)2 (3.1)

zst,max = zstance +
q

L2
max − (xhip − xstance)2 (3.2)

zmax = min(zsw,max , zst,max) (3.3)

Figure 3.3 illustrates the distances used in these equations. The length Lmax corresponds to the
distance between ankle and hip joint for an almost fully stretched knee. Similarly to [18] the
minimum knee angle is set to 0.1[rad]. Lmax can be derived as follows, where ls = 0.43m is the
length of the shank of Lola and lt = 0.44m is the length of the thigh.

Lmax =
Æ

(ls + lt cos(0.1))2 + (ltsin(0.1))2 (3.4)
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Figure 3.4: Maximum hip height for swing and stance leg for 3 steps upstairs with ∆z = 0.1m

Figure 3.4 shows the result for the maximum hip height during stair ascent. For the three steps
performed it can be distinguished between the height derived from stance and swing leg. The
maximum hip height for the stance leg varies only by the hip joint advancing with the torso. Mid
stance the height barely changes at all, since the torso slowly advances above the foot. Towards
the beginning and end of the step period the height reduces. The maximum hip height derived
from the swing leg shows a greater variation. Initially the torso continues to move away from the
swing leg, until the leg lifts off the ground and thereby reduces the distance to the hip joint. Even-
tually the swinging foot is closer to the hip joint yet again and the maximum hip height derived
from the swing leg surpasses the stance leg calculation. According to (3.4) the lower boundary
of the two curves makes up the overall maximum hip height. While the hip height stays below
this reference, the knee will not be fully stretched.

3.4 Initial Hip Trajectory

3.4.1 Requirements

In order "to avoid excessive forces that could damage and/or destabilize the robot, connections
should be C2-smooth" for CoM trajectories [3]. As stated in 3.1 a smooth initial estimate for
zCoM ,ini t limits the effect on the horizontal CoM trajectories. Based on these requirements for
robot trajectories in general and the CoM height trajectory in particular a cubic spline repre-
sentation is chosen. The current trajectory for the CoM height uses quintic polynomials. This
parametrization also provides C2-smooth trajectories. The drawback of this representation is,
that the first and second derivative have to be known at the set points. A common assumption
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for fully determining quintic splines therefore is, to set these two properties to zero at the set
points. Both options are not desirable for the use in this approach. Cubic splines are by definition
C2-continuous at curve segment connections, i.e. the resulting curves are continuous up to the
second derivative, without having to be specified. They are defined in 3.4.2.
The initial trajectory is required to be executed directly without optimization if need be. To be
integrated in the real-time control of the robot there has to be an available valid solution at all
times in case the optimization fails or an execution-time limit is reached. This necessitates a care-
ful choice of the initial solution regarding violation of kinematic limits. These requirements are
ensured by the proper choice of constraints introduced in 3.4.3.

3.4.2 Cubic Splines

Cubic splines are a popular choice when it comes to trajectories in robotics [3, 19, 29, 43]. The
standard definition of cubic splines will be reviewed here briefly, corresponding to the notation
used in [43].
A cubic spline interpolates a trajectory defined by a series of N support points with given locations
zk with their respective time points tk:

(t0, z0), (t1, z1), ..., (tk, zk), ..., (tN−1, zN−1) (3.5)

The trajectory consists of piecewise cubic polynomials interpolating between two consecutive
waypoints and takes the following form:

fk(t) = ak + bk(t − tk) + ck(t − tk)
2 + dk(t − tk)

3, k = 0, ..., N − 2 (3.6)

f (t) =











f0(t) if t0 ≤ t < t1
...

fN−2 if tN−2 ≤ t < tN−1

(3.7)

There are 4(N − 1) parameters ak, bk, ck, dk that have to be found to find a unique solution for
f (t). In order to enforce C2 continuity, 3(N − 2) constraints are defined. They ensure continuity
of positions, velocities and accelerations at the transition between neighboring cubic polynomials.

fk(tk+1) = fk+1(tk+1) (3.8)

ḟk(tk+1) = ḟk+1(tk+1) (3.9)

f̈k(tk+1) = f̈k+1(tk+1), k = 0, ..., N − 3 (3.10)

In order to fully determine the cubic spline trajectory (N + 2) additional constraints need to be
imposed. Commonly the support points mentioned in equation (3.5) are used in interpolation
constraints, providing N additional constraints.

fk(tk) = zk, k = 0, ..., N − 2

fN−2(tN−1) = zN−1
(3.11)

A common approach to impose the remaining two constraints is to set so called natural bound-
aries. The curvature at the beginning and end of the trajectory is constrained to zero. This is
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often done to facilitate solving the linear system of equations. The resulting matrix of dimen-
sion R4(N−1)x4(N−1) is tridiagonal hence the corresponding system of equations can be solved
efficiently.
The initial solution for the hip height trajectory in this work, however, will neither involve nat-
ural boundaries, nor the interpolation constraints formulated in equation (3.11). The following
subsection discusses the alternative formulation of (N +2) equations to fully determine the cubic
spline parameters.

3.4.3 Constraints and Support Points

The initial solution needs to qualify for serving as input to the subsequent steps in the pattern
generation procedure. This and the observation that the optimization problem seems to suffer
from local minima lead to a critical importance of choosing appropriate constraints and support
points. Another key to a good initial solution is the adaptability to different stepping scenarios, i.e.
even walking vs. stepping on or off a platform. Therefore a generic initial solution considers high
level walking information like step size and height. The current choice for the missing (N + 2)
constraints for the initial trajectory fuse together these aspects and observations and learnings
made during the search for a feasible formulation.

Support Points

The amount of remaining imposable constraints (N + 2) is dependent on the amount of support
points N . To be able to formulate the three initial conditions and allow three additional con-
straints four support points are needed per step period and need to be identified in at first. While
the z-values of the support points are later subjected to optimization, the timings are not mod-
ified. Choosing the point in time is therefore crucial. In 3.5.1 an extension to consider future
steps is introduced. This results in more support points and cubic spline segments. The following
describes the procedure for a time horizon of just one considered step phase. In each additional
step phase included the support points and constraints are identified respectively.

(t0, z0)
(t1, z1)

(t2, z2) (t3, z3)
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Figure 3.5: Choice of support points, here upstairs with ∆z = 0.15m
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Figure 3.5 exemplarily shows the maximum height, a possible initial solution and the correspond-
ing support points for a step with step height ∆z = 0.1m and step time T = 1s. Two waypoints
always lie at the beginning (t0 = 0s) and end (t3 = 1s) of each step period. Two additional
support points need to be determined in between.
At the time t1 = 0.1s the maximum height is minimal. This minimum appears both for stepping
up and down platforms and results from the swing foot being lifted from the ground for upstairs
or touching down for downstairs. By choosing this point in time both adaptability to the stepping
situation and a consideration of the maximum height are achieved.
The second intermediate support point is chosen with human walking in mind. Figure 3.2 shows
a qualitative step sequence. The torso is highest in an even walking cycle during single stance.
This maximum occurs when the swing foot approximately passes the CoM [23]. To simplify the
computation this is assumed to occur when the swing foot moved half way from initial to final
position of the step period at t2 = 0.4[s] in this case. Nishiwaki et al. achieve good results with
choosing this mid swing moment as a control point for their torso height trajectory [29].

Constraints

The next step is to formulate the missing (N + 2) constraints. Initially the trajectory is required
to be smoothly connected to the motion concurrently being executed [3]. The initial conditions
for the height trajectory then make up three constraints:

f0(t0) = z0 (3.12)

ḟ0(t0) = ż0 (3.13)

f̈0(t0) = z̈0 (3.14)

There are (N − 1) remaining constraints. For just one step phase with N = 4 support points this
results in three constraints. The constraint for the support point at t1 considers both high level
step data and observations made during assessing the feasibility of the obtained initial solution.
Looking at how the choice of a height trajectory affects the joint limits a critical region was iden-
tified. To force the hip height trajectory to follow the slope of the maximum height after the
minimum, for upstairs movement a constraint for the derivative is imposed at the second support
point. For downstairs movement the initial trajectory needs to follow the slope leading up to the
minimum. The derivative in equation (3.15) is adopted to a ratio of difference in maximum hip
height at the beginning and end of the step phase to the step time∆tstep. Thereby an adaptability
to different step scenarios and maximum hip height is ensured.

ḟ0(t1) =
zmax(t3)− zmax(t0)

∆tstep
ptune (3.15)

The tuning parameter ptune is a proportionality factor that is determined once. It allows to avoid
an overshooting of the subsequent spline segments that could lead to a violation of the limit im-
posed by the maximum hip height. If ptune is set too low the cubic spline does not follow the
maximum hip height close enough. The result is a violation of the ankle joint angle, as can be
seen in figure 3.6 on the right with ptune = 0.2.
The last two constraints are both imposed to the support point at the end of the step phase t3. To-
gether they ensure a periodicity of the initial solution, especially important for when more than
one step period is considered. Additionally the high level information about step height ∆z is
included. The derivative in equation 3.17 is imposed under the assumption only that the consec-
utive step phases are equal, i.e. one step follows another one. The initial velocity at the beginning
of the first step phase is considered already optimal and the initial value for the following step is
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Figure 3.6: Choice of tuning parameter ptune

assumed to be equal because of periodicity.

f2(t3) = f0(t0) +∆z = z0 +∆z (3.16)

ḟ2(t3) = ḟ0(t0) = ż0 (3.17)

In total the equations (3.8)-(3.10) and (3.12)-(3.17) form a system of 4(N−1) equations that fully
determines the 4(N − 1) parameters ak, bk, ck, dk in (3.6). For a step sequence of n step phases
considered this amounts to N = 3n+1 support points and therefore to a system of equations with
dimension 12n.
Figure 3.7 visualizes the constraints for the example of two steps upstairs with a step height of
∆z = 0.05m. The total amount of N = 7 support points in this case require N +2= 9 constraints
additionally to the smoothness constraints that are not displayed in the picture. The resulting
initial solution can then be fully described by the support points obtained from this system of
equations. These support points are then subjected to optimization, described in the following
section as the optimization parameters z.

3.5 Optimization

The overall aim for the new formulation of the torso height trajectory is to improve locomotion,
in particular in uneven terrain. The optimization of the trajectory formulated in 3.4 takes an
important role in reaching this goal. The parameters being optimized are the height values zk of
each support point but the first since it has to take the initial value z0.

minimize
z

f (z)

subject to zk ≤ zmax ,k, k = 1, . . . , N − 1.
(3.18)

The cost function f (z) is introduced in 3.5.2. The inequality constraint in (3.18) limits the opti-
mization parameters not to exceed the maximum height.
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Figure 3.7: Initial conditions for upstairs movement with ∆z = 0.05m for n= 2 Steps

Another measure to improve the height trajectory is to include more than the upcoming step
phase into the optimization.

3.5.1 Extended Time Horizon

This approach is motivated by Nishiwaki and Kagami, who elegantly include multiple future steps
into the design of a torso height trajectory [30]. By broadening the time horizon to consider more
than just the current step period, the authors are able to take into account future kinematic limits.

In this work n> 1 steps are included into the trajectory generation process. The optimal amount
of future steps to be embedded is assessed in 4.2. Every additional step that is incorporated
leads to an increased dimension of the optimization problem. Figure 3.8 shows the result in
the hip height for three different step sequences. For the times from t = 0 to t = 3 all three
cases follow the same walking command, one even step and two steps upstairs. Starting at time
t = 3s the walking commands for each case differ. The commands for the last two steps are either
downstairs, upstairs or even walking. Including the knowledge about the following steps leads to
the ability to improve the trajectory. In figure fig:horizonSteps this can be seen in the third step
from t = 2s to t = 3s when the trajectories already differ although the command is still the same.
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3.5.2 Cost Function

The cost function f (z) in (3.18) is a scalar function of the optimization parameters.

f : RN−1 7→ R , z ∈ RN−1 (3.19)

The scalar cost function value penalizes undesired trajectories derived from the optimization pa-
rameters z by higher return values. Conversely the evaluation of the cost function provides a way
to measure how well the objectives are satisfied. A careful design of the cost function is necessary
to allow a convergence to any optimal solution.

Objectives

Objectives for the optimization can be formulated in the cost function. Three essential goals are
pursued here.

f (z) = wvel cvel(z) +wanglecangle(z) +wzmax
czmax

(z) (3.20)

In order to minimize the joint velocities cvel(z) penalizes the square of joint velocities that re-
sult from a the current hip height. This is a common approach in robotics [19] and aims at an
optimized energy consumption. The second term cangle(z) seeks to ensure that the joint angle
limits for knee and ankle are not violated. The violation of these kinematic constraints strongly
increases the cost. Both joint angles and joint angle velocities are obtained using a simple 2D
model introduced in 3.5.3. The third term czmax

(z) is designed similarly to punish the violation
of the maximum hip height. The factors wi are the weighting factors that give a further design
possibility for the cost function.

Calculation

The different costs ci(z) in (3.20) are calculated in a discretized way. At first the cubic spline
representation for the hip height trajectory is obtained from the optimization parameters, which
initially represent the initial solution from section 3.4.
The joint velocity cost is then obtained using a simple 2D geometric model described in 3.5.3.
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This model computes joint angles q for ankle, knee and hip for a given configuration determined
by hip and feet trajectories. The angle velocities q̇ are then derived via finite central difference.
Ultimately the joint velocity cost is computed as follows:

cvel(z) =
∑

i

q̇(t i)
T q̇(t i) (3.21)

Every robot joint has a limited working range. In this case limits for the ankle and knee joints are
considered. In order to provide a differentiable cost function and to prevent the trajectory from
approaching these limits cangle(z) takes a value unequal to zero already in a certain range around
the limits.

cangle(z)i, j =











c j
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− q j(t i) + (q j,min + q j,mar gin)
�4

for q j < q j,min + q j,mar gin

0 for q j,min + q j,mar gin ≤ q j ≤ q j,max − q j,mar gin

c j

�

q j(t i)− (q j,max − q j,mar gin)
�4

for q j > q j,max − q j,mar gin

(3.22)

The function (3.22) is exemplarily visualized in figure 3.9 for the ankle angle limits of q j,min =
−49◦, q j,max = 43.8◦ and a margin value of 0.1[rad]. Here q j(t i) depicts the angle j at time t i ,
the factor c j is used to scale the cost function to take the value 10 at the limit.
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Figure 3.9: Angle limit cost function

The total cost for angle violations is obtained by summing over all considered discrete times t i
and all included joints q j , in this case the two knee and the two ankle joints.

cangle(z) =
∑

j

∑

t i

cangle(z)i, j where j ∈ [ankle0, ankle1, knee0, knee1] (3.23)

The cost czmax
(z) is obtained in a similar manner. The formerly computed maximum hip height

zmax is the upper limit. The margin at what the cost function becomes active is zmar gin = 0.02[m].
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3.5.3 Underlying Geometric Model

The simple geometric 2D model used for calculating the angles for the cost function is largely
adopted from [40]. The lateral movement of the robot is omitted, as well as any rotations of
the foot, meaning, the sole is always horizontal. The low detail of the model requires a later
validation of the derived values with a more complex model. A low complexity of the model,
however, is desirable, since the optimization process leads to a high number of function calls.
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Figure 3.10: 2D geometric model for obtaining joint angles and velocities

Figure 3.10 shows 2D sketches of the robot in different postures. Together with the sign of hx , the
distance from the origin in the ankle joint to the hip joint projected in x direction, the derivation of
the joint angles differs. The height difference between ankle joint and hip joint is denoted by hz .
The 2D distance between hip and ankle can then easily be derived via Pythagoras: h=

Æ

h2
x + h2

z .
With the knowledge of h one can easily obtain the angles in the triangle of the three leg joints.

α= acos

�

l2
1 + l2

2 − h2

2l1l2

�

(3.24)

γ1 = acos

�

h2 + l2
2 − l2

1

2hl2

�

(3.25)

γ2 = acos

�

l2
1 + h2 − l2

2

2l1h

�

(3.26)

Differing with the sign of hx the joint angles for the three leg joints can be derived from the
angles in (3.24)-(3.26) and some basic trigonometry. The cases depicted in 3.10(a) and (b) can
be combined in the following equations.

hx ≤ 0 qankle = 90◦ − γ2 − acos
�

hx

h

�

qknee = 180◦ −α

qhip = 180◦ − γ1 − atan
�

‖
hx

hz
‖
�

(3.27)
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The equations corresponding to the conformation in 3.10(c) slightly differ.

hx > 0 qankle = −γ2 − acos
�

hz

h

�

qknee = 180◦ −α

qhip = 180◦ − γ1 + atan
�

‖
hx

hz
‖
�

(3.28)



Chapter 4

Evaluation

4.1 Assumptions and Test Environment

The actual robot Lola is controlled in a framework implemented in C++ and running on a QNX
based system. So far the implementation described in chapter 3 has not been integrated into the
overall framework and therefore its performance will be evaluated in a MATLAB simulation. The
simulation only provides the most basic interface that the generation of the vertical hip height
needs, such as trajectories for the feet and horizontal Center of Mass (CoM). The simplified envi-
ronment in this simulation and some assumptions made are described in the following section.

4.1.1 Input Trajectories

One of the important assumptions to be made are the trajectories for the feet both in x- and z-
direction which would normally be provided by the step planner. Additionally the trajectory for
the CoM in x-direction is necessary. In the framework this trajectory is obtained from calculations
to ensure dynamic balance via spline collocation.

zCoM ,re f

xhip

x f oot
z f oot

In Out

MATLAB model

Figure 4.1: Input and output for MATLAB model

Foot Trajectory in x Direction

The foot trajectories in x are represented by quintic splines which are C2- continuous. For each
step phase there are three segments, the first and last during which the foot is at rest. During the
second segment the foot is moved from start to end set point. As a result from the representation
by quintic splines both velocity and acceleration at the set points can be defined to be zero. This
is necessary to minimize the risk of slipping. The difficulty in choosing an appropriate trajectory
are the timings. For the testing environment the timings were obtained empirically. Goals were
to avoid collision with possible stairs and to roughly obtain a ratio of 40% swing to 60% stance
phase similar to what can be observed on humans [1].
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Figure 4.2: Foot trajectory in x-direction with ∆x = 0.5m

Figure 4.2 shows the resulting foot trajectory for a step length of ∆x = 0.5m. Step length here
refers to the distance between consecutive stance legs, meaning that the swing leg has to cover
double the distance. Note that the illustrated trajectory describes the swing foot and is measured
in the inertial coordinate system with origin in the stance foot.

Foot Trajectory in z Direction

In z-direction the foot trajectories are represented by quintic splines as well. Similar reasoning
applies, however, five segments are used per step phase. At the beginning and end there are
resting segments, analog to the trajectory in x-direction. In z-direction the trajectory interpolates
between three set points. The height of these set points depends on the overall movement. For
ascending or descending a possible collision with the stairs has to be avoided. In the case of
even walking it is only necessary to lift the foot to a predefined clearance distance away from
the ground. Accordingly there are two transition segments. The first in order to move from the
starting set point to the height at which the foot is also advancing in x-direction. In the second
transition segment the foot returns to the final height where it will touch ground. In between
those two transitions the foot is kept at a constant height. Also for the z f oot trajectory the timings
are difficult to determine. Together with the trajectories in x-direction they were determined
empirically. It was assured, that the foot is always lifted before advancing.
Figure 4.3 visualizes the resulting trajectory for upstairs walking with step height ∆z = 0.1.
Refer to figures A.2 and A.1 in the appendix for the trajectories obtained for even walking and
downstairs walking respectively.

Hip Trajectory in x Direction

As described in section 3.1 the horizontal trajectory for the CoM is necessary to derive the initial
solution for the hip height. Similarly to what was stated at the beginning of chapter 3 the compu-
tations in MATLAB will be performed using hip coordinates rather than the CoM coordinates. A
transformation between these two notations will be necessary prior to an integration into Lola’s
framework.
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Figure 4.3: Foot trajectory in z-direction for upstairs with ∆z = 0.1

Hence, the hip trajectory would be ideally derived from the horizontal CoM solution that en-
sures dynamic balance. In this test environment a hip trajectory is derived based on some basic
assumptions. Just as in the framework the curve is represented by cubic splines. This assures
C2-smoothness. The hip advances by one step length ∆x per step phase. The initial position at
the beginning of the step phase is assumed to be between the two supporting legs. The movement
between the two set points is derived from observing the simulated balanced even walk of Lola.
The torso and thereby the hip advances faster during the dual-leg support phase at the beginning
and end of each step phase, to shift weight between supporting feet. In the single support phase
the torso moves slowly above the stance foot. The resulting hip trajectory in x-direction is plotted
in figure 4.4, together with the corresponding swing foot trajectory.
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Figure 4.4: Foot and hip trajectory in x-direction
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The plot shows a greater slope and thereby hip velocity in x-direction when the foot is not ad-
vancing.

4.1.2 Solver

The approach laid out in chapter 3 to generate the hip height trajectory is implemented using
MATLAB. The optimization can therefore make use of the MATLAB Optimization Toolbox. For
unconstrained minimization the function "fminunc" is offered. The gradient based "quasi-newton"
algorithm provided within this toolbox is used to optimize the support points with respect to
the cost function. The gradients are obtained numerically by forward finite differences. The
implementation makes use of a cubic line search procedure and approximates the Hessian. For
more detail consult the MATLAB documentation and the literature presented there1.

4.1.3 Shortcomings

It is not ideal to evaluate the performance of the vertical hip trajectory generation in the test
environment described. The following discussion of results is done to allow some conclusions
towards the planned implementation in the robot framework and to give ideas about possible
difficulties. The findings and results should, however, best be read with the shortcomings in mind
that the current evaluation suffers from:

Input Trajectories
The first problem stems from the choice of input trajectories to the system. The trajectories
are generated with the real system in mind but they have not been validated with trajectories
from the pattern generation system of Lola’s control system.

Dynamic Effects
Dynamic effects can also not be covered in the scope of this analysis. Possibly some of the
obtained trajectories are not feasible to be executed on the real robot. The dynamic lim-
its, i.e. maximum accelerations, might prevent the robot to follow the proposed reference
trajectory.

2D
A general assumption made for sake of simplicity is the operation in two dimensions. Many
of the calculations done in the proposed approach for a new vertical hip trajectory do not
consider lateral robot movement. These simplifications need to be verified.

4.2 Optimal Amount of Predicted Steps

In order to obtain a better solution following steps can be included in the optimization. By doing
so future occurring kinematic constraints can be anticipated beforehand. This can then have a
retrospective effect on the trajectory of the current step phase. A number of simulations were
performed varying the amount of steps included in the preview period. The results with differing
step lengths ∆x for even, upstairs and downstairs walking are visualized in figures 4.5, 4.7 and
4.8 respectively. The performance of the solution is measured in the cost function value obtained
for a single fully optimized step phase according to section 3.5.2.
Figure 4.5 shows the performance of optimized hip trajectories in the case of even walking. The
step length∆x was varied between∆x = 0.3 and∆x = 0.6. For each step length five simulations

1http://mathworks.com/help/optim/ug/fminunc.html
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Figure 4.5: Performance of converged solution depending on steps considered in preview period for even walking

were performed with a preview period ranging from one to five steps. The five separate solutions
for each step length are directly comparable since the step command is the same. The lower the
cost function value is, the better the constraints defined in 3.5.2 are satisfied. For even walking
and a small step length of 0.3m or 0.4m there is hardly any performance difference. For bigger
steps the solutions improve strongly by considering two steps in the optimization as opposed to
just one. Including more steps than two, however, only slightly changes the objective function
value.
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Figure 4.6: Trajectory generation failure for preview horizon of one step, displaying trajectories for two steps

Figure 4.6 shows why the optimization failed for a preview period of just one step in the case of
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∆x = 0.5m for even walking. The initial solution for the first step phase for 1s ≤ t < 2s is feasi-
ble and the optimized solution obtained is by means of the cost function a "good" solution. The
resulting hip height trajectory would be feasible for the scope of the optimization which is in this
case just the current step. The walking motion however continues and the following step starts
with almost initially infeasible initial conditions. The C2-continuity constraint dictates that the
cubic spline in the second step phase needs to begin with the same position, velocity and acceler-
ation that the preceding segment ended. In this case the spline parameters cannot be optimized
to generate a feasible solution and the result is an oscillating cubic spline with high amplitudes.
The trajectory for the successful optimization gives a reference of how the result looks if the fol-
lowing step is included into the optimization. Here the lack of knowledge about the following
step becomes troublesome.
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Figure 4.7: Performance of converged solution depending on steps considered in preview period for upstairs
movement (∆z = 0.1m)

Some of these findings apply also for the upstairs scenario 4.7. While a good solution can be
obtained with just one considered step for the smallest step size of ∆x = 0.3m, an increased
step size requires at least two. For two to four steps in the preview period the magnitude of the
objective function value obtained is the same. The only exception occurs for four previewed steps
and a step length of∆x = 0.3m. Whereas the solution yielded by the optimization is still feasible,
i.e. does not violate any kinematic constraints, it is less favorable regarding the joint velocities.
The objective function value for four previewed steps is by the order of one magnitude higher
than that for three steps. Examining the initial trajectories in this particular case has showed that
they were not already feasible and violated kinematic constraints. Generally the optimization
procedure is able to yield a feasible solution also starting from an infeasible one. Including more
steps when the initial trajectory per step is not sufficiently good amplifies this problem for each
following step. This can lead to a deviation from the local minimum that the optimization is
unable to recover. This is discussed further in section 4.4. For similar reasons the increase by an
order of a magnitude occurs from four to five previewed steps for step lengths ∆x = 0.4m and
∆x = 0.5m.
From figure 4.8 it can be concluded that for downstairs movement the solutions of only pre-
viewing one step are also not favorable. Including two steps in the preview period brings great
improvement again, regardless of the step length. Again the problem of a strong increase of the
objective function value for a higher number of previewed steps is apparent.
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Figure 4.8: Performance of converged solution depending on steps considered in preview period for downstairs
movement (∆z = −0.1m)

0 500 1000 1500 2000 2500
cost function calls

10−3

10−2

10−1

f(
z)

1 step
2 steps
3 steps
4 steps
5 steps

Figure 4.9: Convergence rate for even walking with ∆x = 0.4m

For the variation of step scenario and step length only using two or three previewed steps yields
good solutions throughout the assessment. Another means for choosing how many following steps
are best considered is the convergence behavior. Figures 4.9, 4.10 and 4.11 show the decrease
of the objective function per function calls to the cost function for upstairs, even and downstairs
movement respectively. The optimization time scales with the amount of function calls. It is
therefore favorable to achieve convergence to a feasible solution for a low number of function
calls. The setup that includes two previewed steps in the optimization in general converges faster
and even up to double the speed as for three steps. The amount of future steps included in the
optimization directly scales with the amount of optimization variables. For each additional step
three additional support points are being optimized. Consequently more considered step phases
lead to an increased optimization effort.
For the remainder of the evaluation a preview period of two steps into the future is chosen and re-
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Figure 4.10: Convergence rate for upstairs scenario with ∆x = 0.5m
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Figure 4.11: Convergence rate for downstairs scenario with ∆x = 0.5m

garded as optimal. While achieving an equally good solution as considering three steps the lower
amount of optimization variables reduces the execution time for only considering two steps.

4.3 Comparison to Current Approach

The goal of the proposed approach is to kinematically improve movements by generating a more
favorable hip height trajectory that avoids kinematic limits. In this section the new trajectory will
be compared to the approach currently employed. The evaluation of the results is presented for
different step scenarios.
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4.3.1 Even Walking

During even walking kinematic limits are not as problematic as they are during ascending or
descending platforms or stairs. The height trajectory currently used is a constant height for even
walking and this is sufficient in that case. It is not the main target of this new approach of
generating a vertical hip height to improve the performance of even walking. Nevertheless the
capabilities of doing so are assessed in the following.
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Figure 4.12: Comparison of height trajectories for step size ∆x = 0.4m

Figure 4.12 shows the the optimized and the current height trajectory for a step size of∆x = 0.4m.
Kinematic limits that are represented by the maximum hip height are not near the constant hip
height and therefore pose no problems. The obtained optimized solution takes a sinusoidal form
varying around the constant height trajectory. The hip height is highest mid phase during the
single stance phase. This is similar to what can be observed in humans. During the single stance
phase the leg is stretched further to increase the height and reduce the load on the knee. It also
holds true for robots that a reduced knee joint angle leads to lower torques, as Li et al. state in
[23]. The dynamic effects of this new trajectory cannot be assessed in the scope of this simulation.
In a dynamic simulation or experiments it could be analyzed if a reduction of about∆qknee = −2◦

leads to a notable improvement. In this particular scenario the difference between the constant
height and the optimized height in terms of cost function value is rather small. The optimized
trajectory achieves a value 5.39% lower than that of the constant height.
For larger step lengths the kinematic limits take on greater importance as can be seen in figure
4.13. In this particular scenario of a step length of ∆x = 0.6m the maximum hip height is much
lower. As a result the constant hip height even violates this constraint. The optimized trajectory,
however, avoids the kinematic limit by lowering the hip height. The reason for this violation
can be seen in figure 4.14. The currently employed constant height trajectory leads to a knee
joint singularity for the swing leg. By using a lower hip height during the single stance phase
the optimized trajectory avoids the knee singularity and remains at a sufficient distance to the
knee angle limit. Therefore the proposed height trajectory generation method could also offer
improvements to even walking in the case of long step lengths.
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Figure 4.13: Comparison of height trajectories for step size ∆x = 0.6m
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Figure 4.14: Comparison of knee joint angles of swing leg for step size ∆x = 0.6m

4.3.2 Upstairs

Ascending platforms or stairs flexibly is not possible using the current height trajectory. A manual
tuning of parameters is necessary to achieve this task. Currently a quintic spline is employed
to interpolate between the set points at beginning and end of the step phase, being ∆z apart
in height. This trajectory and the one obtained by optimization are plotted in figure 4.15. One
observation from the plot is that the optimized curve during the single stance phase reaches a
height of more than 0.10m higher than the quintic spline, while staying within the bounds of the
maximum hip height.
With the increased height the knee angle of the stance leg is more than halved at t = 2.5s as can
be seen in figure 4.16. Although this leads to increased knee joint velocities in the stance leg, the
vastly reduced knee angle lead to reduced torques [23].
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Figure 4.15: Comparison of height trajectories for upstairs movement with step size ∆x = 0.4m
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Figure 4.16: Comparison of joint angles and velocities for upstairs movement with step size ∆x = 0.4m

Looking at the joint angle of the swing foot ankle in figure 4.16 reveals a reason for the failure of
the current height trajectory in upstairs walking. The joint angles and velocities correspond to the
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step phase with 2s ≤ t < 3s from figure 4.15. In the first half of the step the ankle angle obtained
for the quintic spline falls below the minimally feasible angle and the robot is therefore unable
to perform the desired movement. The increased height of the optimized trajectory avoids the
violation of the lower joint angle limit and additionally reduces the swing leg ankle joint velocity
peaks. While kinematically possible it cannot be assessed if the strong increase and decrease of
hip height necessary to follow the optimized trajectory is dynamically feasible here. This is subject
to further investigation in a dynamic simulation.
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Figure 4.17: Intermediate stepping poses for upstairs movement with optimized trajectory

Figure 4.17 shows the resulting movement of the optimized trajectory. The red curve represents
the hip height trajectory in cartesian space. The poses correspond to points in time of figure 4.15.
At t = 2s the robot is in mid dual-stance. The leg in blue on the lower stair is the swing leg of the
upcoming step. The ankle joint of this swing leg is the critical joint in this maneuver. The ankle
joint angle decreases further if the hip advances in x-direction without simultaneously increasing
the hip height sufficiently. An alternative solution would be to raise the heel off the ground while
maintaining contact with the foot pad. This solution is motivated by human walking. Currently
heel off walking is not implemented on the humanoid robot Lola.

4.3.3 Downstairs

In the case of downstairs movement similar problems occur. Figure 4.18 compares the trajectories
in the optimized and currently used generation method. The planned heights differ as much as
0.10m. The optimized trajectory covers more of the allowable range of hip heights and closely
approaches the upper bound given by the maximum hip height. Please note that the trajectories
do not start at the same initial height in this plot. In the first step phase not illustrated both
trajectories start with the same initial height. This first step is used to allow the optimized hip
height trajectory to adapt to a steady state hip height. The currently used quintic spline cannot
start at the same height z = 1.45m at time t = 1s because the trajectory would then violate the
maximum hip height.
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Figure 4.18: Comparison of height trajectories for downstairs movement with step size ∆x = 0.4m
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Figure 4.19: Comparison of joint angles and velocities for downstairs movement with step size ∆x = 0.4m

Comparing the joint angles and velocities for one step phase in particular in figure 4.19 yields
findings similar to before in the upstairs case. The optimized trajectory leads to a greatly reduced
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stance knee angle of up to 42◦ lower than for the current trajectory. In contrast to the upstairs
case this deviation is already at the beginning of the step phase. The minimally reached knee
joint angle is with about qknee,st = 14◦ still far enough away from the knee singularity. As before
the possible advantage of lower knee angles leading to lower torque can only be mentioned but
not assessed.
The threat of ankle angle limits being violated in downstairs walking is present as well. The cur-
rently used quintic spline trajectory exceeds the lower angle limit of qankle,min = −49◦ by more
than 10◦. The optimized trajectory yields a technically feasible ankle joint trajectory. With a
safety margin of as low as 0.3◦, however, this might not be favorable. Also for downstairs motion
the peaks of the ankle joint velocity can be reduced by employing the optimized trajectory rather
than the currently used one.
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Figure 4.20: Intermediate stepping poses for downstairs movement with optimized trajectory

The visualization of intermediate stepping poses of the robot in figure 4.20 gives a rationale for
why the possible ankle joint limit violation occurs. Directly after the beginning of the step phase
at t = 2s the lowest difference between limit and ankle angle is reached. In the pose correspond-
ing to this time t = 2s the swing leg is represented by the blue leg on the higher step. While
the hip advances forward to shift weight from the former stance leg to the new stance leg, the
swing leg is lifted from the higher stair. Both movements lead to a further reduction of the ankle
angle. Without being able to use a heel lift off motion this can only be counteracted by increasing
the hip height. The currently employed quintic spline is monotonically decreasing for downstairs
movement and therefore unable to do so.
In comparison to upstairs movement the downstairs movement is more problematic concerning
the ankle joint limit. The joint limit violation is prone to occur in the swing leg during the tran-
sition of weight from old to new stance leg. In the downstairs case, however, this swing leg is
on higher ground and therefore the allowable hip height is limited by the stance leg standing on
lower ground. This limits the ability to increase the height and also leads to an increased ankle
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joint angle from the start. It also explains why the joint limit in the ankle can only be closely
avoided by the optimized trajectory in 4.19.

4.4 Discussion

4.4.1 Input Trajectories

During the search for feasible initial input trajectories to the simulation, a high dependency on the
foot trajectory timings has been observed. Exemplarily this will be discussed for a change in the
timings of the foot trajectory in z-direction. The example is displayed in figure 4.21 for the case
of upstairs walking with ∆z = 0.1m. The time when the peak height is reached differs by 0.1s.
In the results presented prior to this section a timing of thigh = 0.5s was used. Both trajectories
are valid in terms of avoiding collision with the stairs.
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Figure 4.21: Changed input trajectory z f oot for upstairs step with ∆z = 0.1m

The resulting influence on the optimization problem of finding an appropriate height trajectory
can best be seen in figures 4.22 and 4.23. The color indicates the cost at each point in time for
a range of hip heights. Both joint angle violations and maximum hip height violation are consid-
ered. The joint velocity cost cannot be scanned in this manner, since its value is dependent on
transient behavior. Above the maximum hip height the cost function becomes active and takes a
value greater than zero. With lower heights the cost function becomes active for when joint angle
limits are violated. The two peaks occurring at t = 1.3s and t = 2.3s represent the violation of
the ankle joint limit. The timings correspond to the observations made in figure 4.16. The cost
function scan obtained with the modified trajectory with timing thigh = 0.4s yields a reduced
range of feasible solutions. The resulting contour plot shows a smaller corridor remaining for the
hip height trajectory to pass through without violating the ankle joint limit.
Other timings of the input trajectories assumed for the simulation in the MATLAB environment
have similar effects. Their validity has not been verified with trajectories from Lola’s pattern gen-
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Figure 4.22: Cost function scan with thigh = 0.5s for two upstairs steps with ∆z = 0.1m
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Figure 4.23: Cost function scan with thigh = 0.4s for two upstairs steps with ∆z = 0.1m

eration system. A verification of the results obtained in this simulation is therefore necessary.

4.4.2 Flawed Initial Solution

It was found that the initial solution is not feasible for all scenarios. Figure 4.24 shows a scenario
for when this occurs. The trajectories for three upstairs steps with a preview period of n = 4 are
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visualized. At step two the initial solution violates the maximum hip height for the first previewed
step. The optimization still yields a feasible solution. For step three the initial solution obtained
for the first previewed step is also not favorable. The resulting optimized solution does not take
the usual form and lacks periodicity for the previewed steps. The results in section 4.2 show that
for a lower amount of previewed steps, i.e. n= 2 and n= 3 the optimization is still able to find a
favorable solution. For more than three previewed steps this does not always hold true. A possible
explanation is the global influence of support points in the cubic splines, i.e. changing a support
point influences all following spline segments. More previewed steps increase the amount of
support points and an unfavorable initial solution can lead to the convergence to a different local
minimum. A review of the constraints established to derive a feasible initial solution is necessary.
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4.4.3 Performance

For all investigated scenarios the new height trajectory generation method could improve the
performance compared to the currently employed formulation. The knee singularity could be
avoided for large step lengths in even walking. During upstairs and downstairs walking joint
limits are not violated as they would be with the currently used approach. Furthermore knee
angles could be reduced which could lead to a reduction in torques acting on the robot joints.
Considering the shortcomings mentioned in section 4.1.3 these results and their applicability to
the particular scenarios should be taken qualitatively rather than quantitatively. The general
potential of the proposed hip height trajectory generation to achieve improvements particularly
for uneven walking has been shown.



Chapter 5

Conclusion

A new approach to generate a variable hip height trajectory was proposed in this work. The prin-
cipal aim was to improve the locomotion of the humanoid robot Lola in uneven terrain. Ongoing
research in the respective field was presented and categorized for its applicability. The scope of
the existing robot control framework was briefly presented to explore implications for the pro-
posed system.
According to the given environment and motivated by different publications a new approach was
developed combining some of their concepts to generate the vertical hip trajectory. In order to
consider kinematic limits the concept of the maximum hip height was adopted. It was included in
an optimization based approach of finding a feasible trajectory. The initial solution for this opti-
mization problem was derived following the requirement to be kinematically feasible. To achieve
this, a representation using cubic splines was chosen and constrained according to kinematic lim-
its and the observation of characteristics. The goal of the optimization was formulated based on
both the maximum hip height and a simple geometric model to assure low execution time while
staying within the allowable range of solutions. Another optimization goal was to minimize joint
velocities of the robot. To further improve the results the scope of the optimization was extended
to following steps.
In order to assess the feasibility of the proposed method a simulation environment implemented
in MATLAB was formulated. Several simplifying assumptions were necessary for this evaluation.
As input to the proposed method robot trajectories for feet and hip were assumed. Multiple sce-
narios were simulated for walking in even and uneven environment. The new approach was able
to yield kinematically feasible results in all subjected scenarios. A comparison to the currently
used hip height trajectory showed lower joint velocities for the new formulation.
In the context of the simplifying assumptions made this can be seen as a step towards imple-
menting and testing the proposed method on the actual robot. Before achieving this some open
problems remain. Finding a feasible initial trajectory, especially for kinematically challenging
stepping scenarios with big step lengths or heights, has proven to be difficult. This issue needs to
be resolved, by either reiterating the formulation of the initial solution constraints or by assuring
convergence in real-time. In order to integrate the obtained trajectory into the existing frame-
work a transformation from hip height to Center of Mass (CoM) height has to be formulated.
After successfully incorporating the trajectory generation method in the control system of Lola
further verification is necessary. Simulations and experiments can show if the assumptions made
are applicable. The implications of considering motion in 2D rather than 3D and the dependency
on the feet and horizontal CoM trajectories could possibly be adopted to. A stronger restriction
applies, if the dynamic limits of the robot are exceeded by the newly proposed trajectory. The
simple model did not account for dynamic effects.
Regarding the many possibilities of improvement by employing a variable CoM height a successful
integration into the pattern generation system of the humanoid robot Lola is considered favorable
even if some restrictions may apply.
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Additional Plots
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Figure A.1: Foot trajectory in z-direction for downstairs with ∆z = −0.1
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