
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Integrierte Systeme

Network on Chip Interface for
Scalable Distributed Shared Memory Architectures

Muhammad Aurang Zaib

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr.-Ing. Ulf Schlichtmann

Prüfende/-r der Dissertation: 1. Prof. Dr. sc.techn. Andreas Herkersdorf

2. Prof. Dr.-Ing. Dr. h. c. Jürgen Becker

3. ——————

Die Dissertation wurde am 21.06.2017 bei der Technischen Universität München eingereicht und
durch die Fakultät für Elektrotechnik und Informationstechnik am 18.01.2018 angenommen.

Abstract

Five decades ago, Gordon Moore predicted the doubling of transistors per unit chip area
every 12 months. Until the present day, the semiconductor industry has been successful
in following Moore’s prediction which has resulted in the form of state of the art Sys-
tem on Chip (SoC) architectures. This advancement in the semiconductor design tech-
nology has strongly influenced the architecture of individual components in a System on
Chip. The biggest example is the transformation in the Central Processing Unit (CPU)
architecture. Till the last decade, the higher clock frequency and the micro-architectural
enhancements were considered to be the possible means for getting better performance
from central processing units. Micro-processors up to multi-gigahertz clock frequency
and out-of-order execution support are the prime evidence of the previous design trends.
However, physical and architectural limitations for producing more sophisticated single
core processing systems have resulted in a paradigm shift, which advocates the deploy-
ment of multiple cores in the modern state of the art SoCs. This paradigm shift has also
revolutionized the way in which communication infrastructure and memory hierarchy
are realized in modern many-core architectures. Distributed interconnects like Network
on Chip (NoC) have replaced the conventional bus-based communication to match the
scalability requirements. In addition, memory is physically distributed in the architecture
to circumvent data access bottlenecks. However, better design productivity and bounded
Time-to-Market advocate the support for legacy shared memory applications in many-
core architectures. Therefore, Distributed Shared Memory (DSM) architectures are intro-
duced, which support both shared and distributed memory programming models and
hence deliver a good compromise between performance and productivity.

The emergence of Network on Chip based DSM architectures brings forward major chal-
lenges for efficiently exploiting the available parallelism in modern computing systems.
The first major challenge is the efficient management and utilization of Network on Chip
communication infrastructure. The management of Network on Chip refers to the alloca-
tion of communication resources between connection-oriented and connectionless traffic.
In DSM architectures, the communication patterns between different processing nodes are
highly dependent on application mapping and memory hierarchy. In addition, these pat-
terns may vary at run-time depending on the application’s communication behavior. Con-
ventional communication resource management methodologies result in sub-optimal per-
formance and high power consumption because they do not regard the above-mentioned
factors which affect run-time network traffic. Therefore, strategies are required which
offer optimized utilization of communication resources in distributed shared memory ar-
chitectures during execution of applications. The second important challenge is the re-
quirement of appropriate synchronization mechanisms when the application is mapped
on architectural nodes, which are interconnected via Network on Chip. State of the art
methods are heavily dependent on the system software to manage synchronization be-
tween remote nodes. In addition, these methods disregard communication latencies over

i

Network on Chip during the interaction of remote software instances. Therefore, in the
scenarios where the software layers expand the computation on remote processing nodes,
the synchronization delays lead to high performance overhead and hence mitigate the ad-
vantages of task level parallelism.

In order to address the two above-mentioned challenges, the design of the Network In-
terface (NI) gains importance. The network interface plays the role of a gateway between
processing cores (computation) and Network on Chip (communication). In this work,
a network interface architecture is presented, which proposes a novel self-optimization
based mechanism for run-time communication resource management. The proposed self-
optimization strategy reduces the communication latencies for applications and decreases
the energy consumption by improving utilization of Network on Chip resources in DSM
architectures. In order to address the synchronization overhead, the network interface
architecture is extended to offer hardware support for software instances which commu-
nicate over the Network on Chip. As the case studies for the synchronization support,
data transfer and task spawning operations between tiles are considered. A novel con-
cept is presented, which manages complete handshaking required during remote data
transfer operation in hardware. In addition, an innovative approach for task spawning is
proposed which offloads the software from handling synchronization events during task
spawning.

Simulation and FPGA prototyping frameworks are developed to validate the claims of
proposed methodologies. Real world case studies including video processing and matrix
multiplication applications are used to compare the performance of presented network
interface architecture with the state of the art designs. The evaluations related to com-
munication resource management show a reduction in average network packet latency
by 35% with the proposed concept when compared with the state of the art approach. In
addition, our methodology reduces the power consumption of the communication infras-
tructure by up to 33% for MPEG video processing application. The presented hardware
support for synchronization brings an improvement of 38% in comparison to the refer-
ence approach for the investigations related to remote task spawning. The hardware area
cost of the proposed enhancements is around 16% of the basic network interface size for
FPGA and ASIC platforms.

ii

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Dr.sc.techn. Andreas Herk-
ersdorf. He considered me to be the part of the elite group of researchers by giving me
the chance to work on this great research topic. In addition, he provided me his valuable
advice, inspiration, and encouragement throughout my Ph.D. study. I am truly grateful
for his help, not only in my research but also in my life. I have the highest regard for the
support that he provided me as a Mentor during my stay at the Institute. In addition, I
would also like to thank Prof. Dr.-Ing. Walter Stechele for his guidance and support dur-
ing my Ph.D. Additionally, I am grateful for his supervision during my work as a student
in the scope my internship and Werk student activities.

I would like to thank Prof. Jürgen Becker for being the co-examiner of my thesis and
for his valuable comments. I also want to thank Prof. ... for chairing the examination
committee.

In particular, I would like to thank Dr.-Ing. Thomas Wild, for the constructive discus-
sions and valuable inputs throughout my Ph.D. I truly believe that without his constant
support, the successful completion of my work would have been far more difficult. I am
grateful to the Invasive Computing colleagues for their support during my work in the
course of the Invasive Computing project. During my work in the Invasive Computing
project, I was fortunate to work with a group of talented and creative colleagues from
different institutes. At the first place, I would like to name Jan Heisswolf and Andreas
Weichslgartner. It was a tremendous experience for me to work together with them in the
B5 sub-project. In addition, working together as a team with Benjamin Oechslein, Jens
Schedel, Gabor Dresher, Christoph Erhardt, Manuel Mohr and Stephanie Friedrich for in-
tegrating and prototyping was a great experience. All the above-mentioned colleagues
expertise in different aspects of embedded systems design and the discussions with them
improved my professional skills in those aspects.

A lot of thanks goes to my colleagues and friends at LIS. LIS colleagues include Dirk
Gabriel, Thomas Goldbrunner, Christian Herber, Erol Koser, David May, Andreas Oelde-
mann, Felix Miller, Andre Richter, Preethi Parayil Mana Damodaran, Johny Paul, Ravi
Kumar Pujari, Michael Vonbon and Philipp Wagner and Stefan Wallentowitz. In partic-
ular, I want to thank Ravi Kumar Pujari, Johny Paul and David May for the constructive
discussions in Invasive Computing project meetings. I would also like to thank Stefan
Wallentowitz and Preethi Parayil Mana Damodara for their meaningful contribution to-
wards my work in Memory Hierarchy project meetings. Their comments helped in im-
proving my work. I also want to thank the members of the LIS Institute administration
for maintaining an excellent workplace and providing me their constant support. LIS ad-
ministration staff includes Verena Draga, Wolfgang Kohtz, Gabi Spörle, and Doris Zeller.

iii

Last but certainly not the least, I would like to thank my parents, my wife and my daugh-
ter, to whom this thesis is dedicated. My parents raised me up and tried their best to
provide me the best possible education and a healthy atmosphere at home. Especially,
my mother who provided me constant emotional support for all my ambitions in life. I
want to thank my lovely wife Huma for her love, constant support, encouragement, and
understanding during my work. My daughter has been the biggest source of the motiva-
tion for me to progress in life since last 4 years.

Munich, June 2017
Muhammad Aurang Zaib

iv

To my Parents, wife and daughter

v

Contents

1. Introduction 1
1.1. Motivation . 2

1.1.1. System on Chip . 3
1.1.2. Multi and Many-core Architectures 3
1.1.3. Distributed Shared Memory Architectures 5

1.2. Challenges in DSM Architectures and our Contributions 7
1.3. Outline . 8

2. Background and Related Work 11
2.1. Bus-based Communication Architectures . 11

2.1.1. Advanced High-Performance Bus (AHB) 12
2.2. Network on Chip . 14

2.2.1. Major Components . 15
2.2.1.1. Router . 15
2.2.1.2. Network Interface . 16

2.2.2. Topology . 17
2.2.3. Switching Schemes . 18
2.2.4. Virtual Channels . 19
2.2.5. Scheduling and Arbitration . 20
2.2.6. Flow Control . 20
2.2.7. Routing Mechanisms . 22
2.2.8. Deadlocks . 22
2.2.9. State of the art Network on Chip Architectures 23

2.2.9.1. Æthereal . 24
2.2.9.2. Xpipes . 24
2.2.9.3. Nostrum NoC . 25
2.2.9.4. Mango . 25
2.2.9.5. SCORPIO . 25

2.3. Conventional Communication Support in Network Interface 26
2.3.1. Tile and Network Protocol Translation 26

2.3.1.1. Tile bus Wrapper . 27
2.3.1.2. NoC Wrapper . 27

2.3.2. Remote Memory Access . 27
2.3.2.1. Remote Shared Memory Access 28
2.3.2.2. Remote Direct Memory Access 28

2.3.3. Quality of Service Support . 29
2.3.3.1. Guaranteed Service and Best Effort Traffic 29
2.3.3.2. Communication Resource Management 30

2.3.4. Inter-tile synchronization support for software layers 32

vii

Contents

2.4. Invasive Computing . 33
2.4.1. Concept . 33
2.4.2. Software . 35

2.4.2.1. Agent System . 35
2.4.2.2. Operating System . 36

2.4.3. Hardware . 37
2.4.3.1. Tiles . 38
2.4.3.2. Invasive Network on Chip 40

3. Communication Resource Management and Software Communication Support 43
3.1. Communication Resource Management . 43

3.1.1. AUTO_GS:Hardware-controlled GS connections 45
3.1.1.1. Monitoring communication locality 47
3.1.1.2. Analyzing communication history 48
3.1.1.3. Establishing AUTO_GS connections 48

3.1.2. Evaluation using SystemC Modeling and Simulation 49
3.1.2.1. Synthetic Traffic . 50
3.1.2.2. Real World Applications . 53

3.2. Inter-tile Software Synchronization Support 57
3.2.1. Data prefetching through asynchronous data transfer support 60
3.2.2. Hardware-assisted remote task spawning 62
3.2.3. Evaluation using SystemC Modeling and Simulation 65

4. Implementation of Communication Resource Management and Software Com-

munication Support 69
4.1. State of the Art Network Interface Components 69

4.1.1. Tile Interface Layer . 70
4.1.1.1. Remote Load/Store (RLS) Unit 73
4.1.1.2. Memory-mapped registers (MMR) Unit 74

4.1.2. Protocol Translation . 75
4.1.2.1. Tile-Network Protocol Translation 77
4.1.2.2. Network-Tile Protocol Translation 79

4.1.3. NI Buffers . 79
4.1.4. Link Interface Layer . 80

4.1.4.1. Packet Scheduling . 81
4.1.4.2. Packet Classification . 81

4.2. Hardware-controlled GS Connections (AUTO_GS) 83
4.2.1. Virtual Channel Reservation Table : 84
4.2.2. Communication Monitoring Unit . 85
4.2.3. Communication History Table . 85
4.2.4. Virtual Connection Manager . 85
4.2.5. Synthesis Results . 86

4.3. Inter-tile Software Synchronization Support 88
4.3.1. RDMA Signaling . 89
4.3.2. System i-let Generation . 89
4.3.3. Task i-let Generation . 90

viii

Contents

4.3.4. Synthesis Results . 92

5. Experimental Setup and Validation 95
5.1. Cycle Accurate Simulation Framework . 95
5.2. Hardware Prototyping . 96

5.2.1. Single FPGA prototype . 96
5.2.2. CHIP-IT Prototype . 98

5.3. Validation on RTL Simulation Framework . 98
5.3.1. Discussion of Results . 100

5.4. Validation on FPGA Prototype . 103
5.4.1. Discussion of Results . 103

6. Conclusion and Outlook 107
6.1. Conclusion . 107
6.2. Management of communication resources . 107
6.3. Synchronization support for remote software instances 108
6.4. Future work . 108

6.4.1. Configurable cache coherence support 108
6.4.2. Synchronization support during task execution 109

A. Appendix 111
A.1. AHB Bus Signals . 111
A.2. RTL Code Hierarchy . 112
A.3. Network Interface Driver Library . 113

Indexes 119
Figures . 119
Tables . 120

Abbreviations 123

Bibliography 129

ix

1. Introduction

Since five decades, the advancement in the semiconductor design technology has in-
creased the number of transistors on a single chip. Gorden Moore already predicted this
trend in the form of famous Moore’s law in 1965 [123]. According to this law, the number
of transistors on an integrated circuit doubles every 18 to 24 months. Figure 1.1 shows
the transistor count in state of the art processors with increasing years. The figure shows
clearly that the semiconductor industry has been successful in preserving Moore’s predic-
tion till the present year.

Figure 1.1.: Increasing transistor count on single chip according to Moore’s law [129]

Due to the successful evolution of the chip design technology, semiconductor manufac-
turers have been able to support continuously increasing scale of integration. Intel Core
i7 processors, which are based on 5th generation Broadwell-U micro-architecture, are fab-
ricated using 14 nm technology [138]. This processor was introduced in January 2015 and
consists of 1,3 Billion transistors representing the state of the art advancement in digital
design and fabrication. In general, it can be stated that the continuous evolution of semi-

1

1. Introduction

conductor industry is exhibited through the release of state of the art integrated circuits
with every coming year.

The advancement in semiconductor technology comes up with new challenges for chip
designers. Technology growth is responsible for some of these challenges, which are man-
ufacturing complexity, process variability, and static power dissipation. Another impor-
tant aspect, which deals with the system level design, is the increasing gap between the
technology growth and the design capabilities [61]. State of the art design tools, processes
and methodologies are considered to be the reason because of which the design produc-
tivity is unable to match pace with the technology advancement. As a result, system
developers are continuously working on novel approaches to address these concerns in
order to prevail the trend of producing powerful integrated circuits.

1.1. Motivation

In general, the introduction of every state of the art integrated circuit offers an oppor-
tunity for the application developers to generate better products. As a consequence of
the continuous evolution of modern integrated circuits, the electronic devices around us
are revolutionized. In the past, the functionality which was realizable on printed circuit
boards can now be fabricated on a single chip. Therefore, bigger machines are replaced
by smaller sized modules. This trend towards miniaturization of electronic devices with
the passing of the years is illustrated in the figure 1.2.

Figure 1.2.: Miniaturization of electronic devices based on integrated circuits [128]

The figure shows that handheld smartphones can perform the functionality which was
carried out by the big computing machines a few decades ago. Nowadays, the laptops
possess computing power which used to be possible on computing server in the past.

2

1.1. Motivation

Wrist watches and gadgets are equipped with the features, which were difficult to realize
on computers previously. This miniaturization trend in electronic devices has triggered
the innovation in commercial industry as well. This is due to the fact that in many in-
dustries, a major share of the technology comes from electronics. For example, the main
advancement in automobile industry comes from electronics in form of navigation, dis-
tance control or camera-based driver assistance [40] [71].

It is desired that this trend carries on in the future and hence leads to more and more
functionality per unit chip area. The wish to achieve this trend is also depicted in the
figure 1.2, where we see the current state of the art devices being replaced by surprisingly
small modules in future. This keeps the semiconductor designers and manufacturers mo-
tivated to come up with novel ideas and methodologies for designing next-generation
integrated circuits.

1.1.1. System on Chip

As stated in the previous section, increasing integration densities have resulted in reduc-
ing the sizes of electronic devices. This has mainly occurred because the basic building
blocks of digital design like processors and memories, could be packed in a smaller chip
area [5]. A System on Chip can be defined as an integrated circuit that consists of one
or more processing cores connected via an on-chip interconnect. In addition, it contains
on-chip memory for storing frequently accessed data and I/O interface(s) for communi-
cating with the external world. More advanced SoCs may also consist of components
like hardware accelerators which are incorporated to improve the execution of specific
tasks. Figure 1.3 illustrates an example of a System on Chip with different interconnected
components.

Researchers have proposed an approach, which emphasizes the reuse of the existing In-
tellectual Property (IP) blocks for System on Chip design. This methodology is referred
as platform-based design [122]. Platform-based design approach makes System on Chip
more suitable as compared to custom ASICs because they can deliver higher performance
with medium development effort. Therefore, SoCs are a preferred choice for investigating
novel computing concepts when realized on suitable prototyping platforms. Tradition-
ally, simulation and FPGA prototyping are used by developers to debug and verify the
functionality of System on Chip.

1.1.2. Multi and Many-core Architectures

The increasing number of transistors has been utilized in the past to improve the per-
formance by increasing the complexity of SoCs. The introduction of complex instruc-
tion set architecture, branch prediction and out-of-order execution are some of the exam-
ples where the IC complexity is increased to get better performance. Increased transistor
switching speed resulting from the technology miniaturization offered the second major
way to get better execution time. As a result, the clock frequency at which the integrated
circuits can be operated on, steadily increased. Therefore, micro-architectural enhance-

3

1. Introduction

Figure 1.3.: System on Chip based on OpenPIC softcore processor [92]

ments and increased clock frequency played an important role in the development of
state of the art processing systems.

In recent years, it was observed that the micro-architectural extensions and technology
improvement could hardly be used for further increasing the performance of single cores.
According to Pollack’s rule, the increase in design complexity of underlying hardware
architecture does not guarantee a linear increase in system performance [18]. Besides lim-
ited performance improvement, increasing the clock frequency results in generating more
complex and power hungry designs. This is due to the fact that the increasing clock speed
results in the transistors to switch faster and hence causing more power consumption. In
addition, the static power dissipation becomes the significant contributor to the overall
power dissipation with the shrinking transistor sizes [127].

Another important concern is the increase in wire latencies with respect to the gate delays
for advanced manufacturing technologies, which eventually put a limit on the achievable
clock frequency [84]. Keeping in view these aspects, it can be stated that the state of the
art transistor technologies have reached the limit where it is nearly impossible to realize
more powerful single core processors [46]. In addition, architectural enhancements like
superscalar pipelining for exploiting Instruction Level Parallelism (ILP) are not suitable
for a wide range of applications. Many real world applications benefit from Task Level
Parallelism (TLP), where tasks/threads are executed on multiple independent execution
units to increase the system’s overall performance.

All above-mentioned facts have led to the trend of building computing systems based on
multiple processing cores. The multi-core systems must not necessarily be clocked at the

4

1.1. Motivation

same frequency as the state of the art single core processors, but they improve overall
performance by exploiting task level parallelism. In addition, multi-core architectures
result in reduced design complexity and power consumption. Intelligent methodologies
are being researched for many-core platforms to save the power by turning off idle cores
at run-time [35]. Approaches like Dynamic Voltage Frequency Scaling (DVFS) and load
balancing can be applied to keep uniform heat dissipation across the chip. The uniform
heat dissipation improves the system reliability and reduces leakage currents.

Intel’s Xeon Phi Coprocessor [74] and Tilera’s Tile-Gx100 [120] are state of the art exam-
ples of existing many-core architectures. Tiled many-core architectures are introduced
by incorporating the concept of platform-based design to improve the design productiv-
ity. In addition to the above-mentioned commercial outcomes, significant work has been
done by the researchers in academia to develop novel frameworks for enabling rapid ex-
ploration of future many-core architectures [12], [135].

1.1.3. Distributed Shared Memory Architectures

The trend towards introducing multi and many-core processors has also affected the com-
munication requirements of System on Chip. Conventional bus based systems have cen-
tralized arbitration mechanisms which lead to the starvation problems for the connected
nodes. Starvation implies the scenario where free nodes are denied the access to the bus
because of an already in-progress transaction. In addition, bus-based architectures carry a
significant cost in form of the number of wires, which are required to connect a relatively
large number of components. Keeping in view the above-mentioned concerns, shared
bus based communication infrastructures are not considered as an appropriate choice for
many-core architectures. Distributed interconnects like Network on Chip are found to
be more suitable for many-core systems [7]. Distributed interconnect affects the commu-
nication between tasks, which are mapped on different tiles. Therefore, the application
architects have to think in advance about the communication behavior and the memory
access patterns of their program. As a result, the choice of the programming model in
terms of memory abstraction, shared memory or message passing, becomes an important
aspect of communication infrastructure design.

In shared memory model, the communication happens transparently from the program-
mer’s perspective. Therefore, the shared memory application developer is not much both-
ered about the communication related aspects like data access patterns and the delays in-
volved in fetching data. Before the emergence of many-core systems, much of the legacy
code was written by keeping in view shared memory model. On the other side, message
passing is established in distributed memory systems. In such systems, the communica-
tion is not completely transparent for the programmer. Depending on the locality of data,
different communication mechanisms have to be adopted by the application program-
mer in message passing systems. Keeping in view the different characteristics of both
programming models, it is clear that each of them poses different challenges towards the
design of underlying many-core architecture. Till the last decade, application develop-
ers used to deploy shared memory model predominantly for executing their applications
over single chip platforms. The motivation behind this was the possibility to reuse legacy
application code, developed for conventional x86-based shared memory architectures and

5

1. Introduction

as a result improving design productivity. On the other side, the message passing based
communication approach was only deployed in high-performance computing clusters in
the past. However, with ever increasing computational parallelism and novel communi-
cation methodologies, message passing has emerged as a scalable programming model
for single chip architectures in recent times.

Another important aspect of communication infrastructure design is the wide range of
variation in communication behavior of modern real world applications. The communi-
cation behavior of such applications is strongly influenced by the characteristics of the
underlying hardware platform. Therefore, it is difficult to strictly classify applications
whether they benefit from either shared memory or message passing based program-
ming model before they are actually executed on the given architecture. On the other
side, modern many-core systems are expected to support the execution of a wide range of
applications, each of which may benefit from either a shared memory or message passing
based programming style. These aspects regarding co-design of application and archi-
tecture motivate to look for a flexible methodology for supporting shared memory and
message passing programming models on many-core architectures.

In order to support both shared and message passing-based execution, researchers have
introduced distributed shared memory architectures [103]. Both shared memory and mes-
sage passing-based programming models can be efficiently supported on a DSM archi-
tecture. DSM architectures enable the shared memory programming paradigm by al-
lowing access to all memories present in the system through a global address space. In
addition, by distributing the memories in different nodes of architecture, the message
passing-based programming model is supported. As compared to a conventional dis-
tributed memory system, a DSM architecture provisions access to each memory in the
system through Non-Uniform Memory Access (NUMA) manner. Partitioned Global Ad-
dress Space (PGAS) programming model has come up as a preferable choice for program-
ming distributed shared memory architectures [142]. Both DSM and PGAS terminologies
are used in close conjunction with each other. However, for the sake of clarity, it is impor-
tant to mention here that the DSM refers to the type of architecture where the memories
are physically separated [139]. Whereas, the PGAS is a programming model which as-
sumes that the entire memory of the system is accessible through a global address space.
However, the address space itself is logically partitioned [141].

An example configuration of a single chip distributed shared memory architecture is
shown in the figure 1.4. In a many-core DSM architecture, Network on Chip is deployed
as a distributed interconnect which connects different nodes. The network interface is a
component which joins the System on Chip blocks within a tile to the NoC router. In a
DSM architecture, the physically shared memory may also be present in the form of off-
chip memory and could be realized as one or more memory tiles. In addition, the on-chip
memory is physically distributed among different nodes in the architecture as tile local
memory. Besides supporting shared memory and message passing programming mod-
els, the purpose of distributing memory in different architectural nodes is to prevent the
creation of data access hotspots.

6

1.2. Challenges in DSM Architectures and our Contributions

Compute

Tile

RouterRouter Router

RouterRouter

RouterRouter

Router

Router

Compute

Tile

Compute

Tile

Compute

Tile

Compute

Tile

Memory

Tile

Compute

Tile

I/O

Tile

Compute

Tile
Core 0

Bus

Network

Interface

Tile Local

Memory
L2

Cache

L1 Cache

Core 1

L1 Cache

Core N

L1 Cache

Figure 1.4.: Network on Chip based DSM architecture

1.2. Challenges in DSM Architectures and our Contributions

Distributed shared memory architectures are realized following a system-level design ap-
proach to support high computational parallelism in modern many-core systems. How-
ever, the performance gain which can be achieved on such computing platforms depends
heavily on the synergy between the application and the architecture. In particular, per-
formance improvement on the distributed architecture is limited by the part of the ap-
plication which runs in parallel on multiple cores, following Amdahl’s law [65]. In the
same direction, the advent of DSM architectures not only comes up with better perfor-
mance and increased designer productivity, it also brings forward additional challenges
for system designers. Distributed communication infrastructure, physically partitioned
memory hierarchy and the corresponding application mapping at run-time expose two
major challenges for the developers of DSM architectures:

• Distributed shared memory architectures define a memory hierarchy which is dif-
ferent as compared to the conventional state of the art architectures. The specific
memory hierarchy with physically distributed memory emphasizes the need for ap-
propriate application mapping strategies on the underlying many-core architecture.
However, the mapping of application tasks on the underlying processing resources
may vary depending on the application mapping algorithm and architecture status
at run-time. The variation in task allocation on processing resources results in con-
tinuously changing bandwidth requirements. As a result, communication patterns
are generated which can not be predicted statically. Network on Chip is deployed
as communication infrastructure in distributed shared memory platforms. Efficient
management of Network on Chip requires appropriate distribution of its resources
between connection-oriented and connectionless traffic. State of the art communi-
cation resource management mechanisms can not react on run-time traffic changes.
Therefore, these approaches result in degraded application performance and ineffi-
cient utilization of communication infrastructure.

7

1. Introduction

• Distributed nature of DSM architectures leads to a high amount of data communica-
tion between different software instances which are mapped on remote processing
nodes. The remote processing nodes are interconnected via Network on Chip. The
communication between remote nodes includes data transfer as well as the hand-
shaking between distributed operating system instances to manage/coordinate the
execution of applications on underlying processing resources. However, the com-
munication delays between different application instances, which are running on
different tiles, are large because of the transmission latencies over NoC. State of the
art communication and synchronization mechanisms disregard the characteristics
of distributed communication infrastructure and hence lead to high performance
overhead.

For real world applications to benefit from the available parallelism in distributed shared
memory architectures, it is essential to address above-mentioned challenges [64]. There-
fore, in the scope of this work, we have made contributions for tackling these problems.

• In order to address the first issue, we have proposed a novel concept which gath-
ers the communication history between remote tiles in the network interface and
then utilizes it to establish end-to-end connections. This concept enables optimized
management of communication resources by keeping in view the dynamic commu-
nication patterns. Our investigations show that the proposed approach results in
reduced communication latency as well as lesser energy consumption when com-
pared to state of the art methodologies [20].

• As the second contribution of this work, efficient mechanisms are introduced for re-
ducing the communication and synchronization overhead for the software instances
running on remote tiles. As a case study, data transfer and task spawning operations
between remote tiles are considered. The software is offloaded from synchroniza-
tion duties by introducing hardware support. The introduced hardware extensions
result in reducing the overall execution time of applications as compared to state of
the art reference [78].

Both contributions of our work are realized as hardware extensions in the network inter-
face design. Therefore, the outcome of this work is a network interface architecture which
is equipped with novel concepts for efficient communication resource management and
hardware support for communication and synchronization between remote tiles. The pro-
posed research contributions have been made in the scope of Invasive Computing [131].
Invasive computing incorporates the concept of resource-awareness for the management
of the future many-core system. Further details about this novel research paradigm would
be provided in chapter 2. It is worth mentioning that our contributions are not confined
to invasive computing and can be applied to state of the art many-core systems as well.

1.3. Outline

The work is organized as follows. The background and related work of this work are
explained in chapter 2. State of the art concepts related to on-chip communication are
presented in sections 2.1 and 2.2. Bus-based systems as a predecessor of Network on
Chip are discussed in section 2.1. Network on Chip is introduced in section 2.2. Ba-

8

1.3. Outline

sic Network on Chip components including the network interface and state of the art
NoC architectures are also discussed in the same section. Conventional communication
support in the network interface including mechanisms like protocol translation, shared
memory access, remote direct memory access and Quality of Service support, is presented
in section 2.3. The context of this work is discussed in section 2.4. In particular, the con-
cept of invasive computing and the major software layers are described in section 2.4.1
and 2.4.2 respectively. In section 2.4.3, the individual components of the heterogeneous
InvasIC architecture are presented.

Chapter 3 describes the proposed concept. Section 3.1 presents the approach to optimize
the communication resource utilization in DSM architectures. Section 3.2 narrates the pro-
posed support for communication and synchronization between remote software layers.
The implementation details related to the proposed network interface architecture are ad-
dressed in chapter 4. The layered architecture model of the network interface representing
the modular design approach is described in section 4.1. Section 4.1 also presents the state
of the art communication support in the network interface architecture. The implementa-
tion related to the proposed concepts is described in section 4.2 and 4.3.

The details about the experimental setup and evaluations are provided in chapter 5. Sec-
tions 5.1 and 5.2 provide the details about the RTL simulation and FPGA prototyping
frameworks. The validations of the proposed concepts on the respective simulation and
prototyping frameworks are provided in sections 5.3 and 5.4 respectively. Chapter 6 gives
the conclusion.

9

2. Background and Related Work

The modern Multiprocessor System on Chip (MPSoC) architectures consist of multiple
processing cores, customized hardware accelerators, on-chip and off-chip storage and
I/O interface(s). The components in an MPSoC architecture need to interact with each
other during the execution of applications. The communication may occur as a result of
different operations, e.g. data exchange in the form of either reading instructions from
memory or writing data to memory or synchronization messages for signaling various
events. Because of the presence of multiple processing instances, the overall performance
of the parallel architecture heavily relies on the throughput supported by the communi-
cation infrastructure.

MPSoC communication architectures exist in various configuration and topologies. How-
ever, in the scope of this work, we have considered two types of communication architec-
tures; 1) Bus-based communication architectures, 2) Network on Chip. It is done because
our proposed network interface architecture acts as a bridge between the two above-
mentioned communication architectures and the understanding of these communication
infrastructures is important for our concept. Bus-based designs lead towards the trend of
IP reuse and hence are very suitable to realize modern System on Chip as tiled many-core
architectures. On the other hand, Network on Chip addresses the required scalability for
many-core systems. The details about the two relevant SoC data exchange methodologies
is provided in the following sections.

2.1. Bus-based Communication Architectures

Buses are one of the most widely used means of communication on System on Chip ar-
chitectures because of their simplicity and effectiveness. There could be multiple physical
realizations of a bus, e.g. single shared bus, hierarchical bus etc. Each realization offers its
own advantages and disadvantages. In single shared bus topology, several components
are connected via a shared channel, hence reducing the implementation cost of intercon-
nect. The hierarchical bus consists of several shared buses which are interconnected by
bridges to create a hierarchy. A bus protocol/standard defines the characteristics of a
communication transaction. The goal of the bus protocol is to provide a bus architecture
specification, which is independent of the technology to enable IP reuse. Bus Master is
the component which starts a transaction whereas the slave corresponds to the compo-
nent which responds to the transaction initiated by the bus master. In addition, the bus
protocol defines the arbitration, which is necessary to determine the priority of access if
multiple requests arrive to use the shared medium.

In the past, several on-chip bus architecture standards have been proposed to address the
communication requirements of modern SoCs [111]. Some of the popular standards are

11

2. Background and Related Work

ARM Microcontroller Bus Architecure (AMBA) [39], IBM Coreconnect [70], STMicroelec-
tronics STBus [91], Opencore Wishbone [109], and Altera Avalon [25]. The master/slave
components which adhere to the same bus standard can be seamlessly integrated into
the architecture. This speeds up the SoC development by following the platform-based
design approach through reusing the IP blocks compliant to the deployed bus protocol.
AMBA is the most widely used on-chip communication standard. It consists of different
sub-protocols, which correspond to bus architectures requiring different communication
bandwidth. Widely known sub-protocols are Advanced Peripheral Bus (APB), Advanced
High-Performance Bus (AHB) and Advanced eXtensible Interface (AXI). In this work, the
details specific to AHB Protocol are described because this is the standard which we have
used in our work.

2.1.1. Advanced High-Performance Bus (AHB)

AHB bus standard is designed to interface components which require high communica-
tion bandwidth. Components like microprocessors, DMA and memory controllers are the
suitable candidates to be interconnected via AHB bus. A typical AMBA AHB bus system
is shown in the figure 2.1. In the figure, ARM processor and DMA accelerator are con-
nected to the AHB bus as master modules. Slave components are present as an on-chip
RAM and off-chip memory interface. Relatively low bandwidth components like UART,
Keyboard etc, are connected over an APB bus. Both Buses are connected via an AHB-APB
bridge, which also acts as a slave component.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-3

3.1 About the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements
of high-performance synthesizable designs. AMBA AHB is a new level of bus which
sits above the APB and implements the features required for high-performance, high
clock frequency systems including:

• burst transfers

• split transactions

• single cycle bus master handover

• single clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

3.1.1 A typical AMBA AHB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus, able to sustain the external memory bandwidth, on which the CPU and
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB
bus on which the lower bandwidth peripheral devices are located. Figure 3-1 shows
both AHB and APB in a typical AMBA system.

Figure 3-1 A typical AMBA AHB-based system

AMBA Advanced High-performance Bus (AHB)
* High performance
* Pipelined operation
* Burst transfers
* Multiple bus masters
* Split transactions

AMBA Advanced Peripheral Bus (APB)
* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
Memory Interface

AHB APB

PIO

UART

Keypad

AHB to APB Bridge

DMA bus
master

Figure 2.1.: A typical AMBA AHB-based System [126]

As stated above, an AHB bus system may consist of multiple components. In the fol-
lowing text, roles of different bus components are described keeping in view shared bus
topology:

• AHB Master : An AHB bus master initiates read and write transactions by provid-
ing the associated address and control information. In the case of shared bus, only
a single bus master is allowed to actively use the bus at a given time.

12

2.1. Bus-based Communication Architectures

• AHB Slave : Bus slave answers the read or write transaction when the correspond-
ing transaction lies in its address range. In addition, the bus slave signals the suc-
cess, failure or waiting status of the transaction through control signals.

• AHB Arbiter : An AHB bus arbiter ensures that only one bus master at a time is al-
lowed to initiate data transfers over the shared bus. Arbitration policies considering
priority or access fairness can be defined according to application requirements.

• AHB Decoder : The AHB decoder is used to decode the address contained in each
transfer and provide a select signal for the corresponding slave, which is the desti-
nation of the transfer.

Bus masters use a single address bus to transmit the addresses of the slaves to complete
the corresponding read and write transactions. The size of the address bus defines the
address space. Till the recent past, 32 bit wide address was considered sufficient for SoC
processing requirements. However, embedded processor with 64 bit address space have
been introduced in the last few years to meet the processing requirements in high-end ap-
plications [140] For data bus, AHB offers separate buses for read and write transactions.
It is done to avoid the use of buses as tri-state implementation keeping in view AMBA
specifications [126]. The width of data buses is configurable from 8 bits to 1024 bits, de-
pending on the SoC bandwidth requirements. The brief description of the important AHB
signals is provided in Appendix A.1.

The AHB bus offers following distinct features to support high bandwidth and low la-
tency data transfers:

• Burst Transfer : A burst operation is defined as a data transaction, initiated by a bus
master, to read or write multiple words of same data size. Burst transactions to the
consecutive addresses are referred as incremental bursts. When the start location
of the transaction is not aligned to the total size of the burst, such transfers are
called wrapping bursts. The number of words which are transferred in a single
burst transaction is referred as a beat. Four, eight, sixteen beat as well as bursts of
infinite length are supported on AHB bus. Burst transfers increase the data transfer
efficiency by transferring a large amount of data in a single transaction. Therefore,
the burst transfers are particularly useful in the applications like direct memory
access. Figure 2.2 shows the example of an incremental four-beat burst transfer on
AHB bus.

• Split Transfer : Split transfers improve the overall utilization of the bus by sep-
arating each read or write operation in two phases. The operation of the master
providing the address to a slave is named as Request phase whereas the slave re-
sponding with the corresponding answer is called Response phase. Split transfer
feature separates the execution of request and response phases. Therefore, in the
time when the master which initiated the request waits for its response, other mas-
ters can execute their requests on the bus. Hence, the blocking of the bus for the
entire duration of read or write operation can be avoided. Split transfers lead to bet-
ter bus utilization especially in the scenarios where slave component requires more
time to return the response. In addition, the split transfer support helps to resolve
different deadlock scenarios on AHB bus. These deadlocks may occur if the master
which initiated the request, holds the bus for the infinite duration of time.

13

2. Background and Related Work

AMBA AHB

3-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 3-8 Four-beat incrementing burst

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0] SEQ

INCR4

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

SEQ

Data
(0x3C)

Data
(0x3C)

HWRITE
HSIZE[2:0]

HPROT[3:0]

SEQ

0x38 0x3C 0x40 0x44

Control for burst
SIZE = Word

Data
(0x40)

Data
(0x44)

Data
(0x38)

Data
(0x38)

Data
(0x40)

Data
(0x44)

T7

Figure 2.2.: Four beat incremental burst transfer on AHB bus [126]

Describing further details of the AHB protocol is out of the scope of this work and can be
found in AMBA specifications [126].

2.2. Network on Chip

When the number of communicating nodes scale, shared-bus based architectures lead to
performance penalties which make them unsuitable for multi and many core systems.
Because of the communication bottlenecks of bus-based infrastructures, the real potential
of the multiple processor systems could never be exploited. Therefore, the idea of realiz-
ing Network on Chip gained attention when the system designers had to search for the
alternate communication infrastructure for next generation SoCs. Network on Chip are
realized by keeping in view the concepts of conventional off-chip networks and apply-
ing them to on-chip architectures [7]. However, in comparison to conventional networks,
NoC has distinctive characteristics like low communication latency and fewer power con-
sumption [33].

Network on Chip provide a systematic approach to reuse communication resources in
massively parallel SoC architectures. In addition, they enable integration of other archi-
tectural building blocks by providing a seamless communication interface [73]. A tiled
architecture with NoC as communication backbone is represented in the figure 2.3, which
shows how Network on Chip enable platform-based design approach for realizing many-
core systems.

14

2.2. Network on Chip

Processing

Tile

Router

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

Memory

Tile

I/O

Tile

NI NI

NI NI

NI

NI NI

NI NI

NINI NI

Router Router Router

Router Router Router Router

Router Router Router Router

Figure 2.3.: NoC based tiled architecture

In the following text, a brief introduction about the Network on Chip and its basic com-
ponents is provided for better understanding of our concept.

2.2.1. Major Components

As it is also clear from the figure 2.3, a Network on Chip generally consists of routers (also
referred as switches), which are connected by the links to form a network according to a
given network topology. The individual nodes, which are commonly referred to as tiles
in so-called tiled architectures, are attached via network interface modules.

2.2.1.1. Router

A router is responsible for forwarding the data from an input port to the output port. In
order to send the data from source to the destination node, the data transfer happens in
multiple routers which are present in that path. Packet switching and circuit switching
are two important methodologies for transferring data between routers. The details about
these data transfer schemes will follow in section 2.2.3. The micro-architecture of a state
of the art packet switching NoC router is shown in the figure 2.4.

Routers contain buffers which provide temporary storage to the input data until it can be
forwarded to the output. In the figure 2.4, the buffers are placed at the input port of the
router. In order to resolve congestion problem in the Network on Chip, virtual channels
are used, which require multiple buffers per input port. The details about virtual chan-
nels in NoC are provided in the section 2.2.4. Routers define routing strategies to deliver
the packet to the destination. Based on the routing decision, the output port can be allo-
cated to forward the data. Routing unit in the router micro-architecture is responsible for

15

2. Background and Related Work

Buffer

Routing Arbitration Scheduling

Buffer

Flow Control

Buffer

Buffer

Port 1

Port N Port N

Port 1

In
p

u
t
P

o
rt

s

O
u

tp
u

t
P

o
rt

s

Figure 2.4.: Micro-architecture of a Network on Chip router [53]

performing the routing decisions. In order to ensure lossless transmission by keeping in
view buffer fill status, flow control is incorporated. The data transmission at the output
port is managed by the scheduling unit. If multiple input ports want to forward the data
to the same output port, the selection of the input port is performed by the arbitration
unit. In addition, the arbitration unit contains a reservation table to maintain the connec-
tion record between given input and output ports. The crossbar contains the multiplexer
network which connects the input to the output ports according to the reservation table.

2.2.1.2. Network Interface

The network interface is the component which connects the nodes with the routers of the
NoC. Network interface decouples computation from communication by offering an ab-
straction, which is independent of the network implementation [13]. Thus, the network
interface is a protocol translator which maps the I/O protocol of the processing node or
tile into the protocol used by the NoC and the other way round [10]. Essentially, each
network interface has two interfaces: the NoC interface, which is used to connect with the
Network on Chip router, and the tile interface, which is used to attach the components of
the tile to the Network on Chip. The tile interface implements a standard point-to-point
or bus protocol allowing IP reuse across different platforms. The use of existing bus pro-

16

2.2. Network on Chip

tocols allows backward compatibility. The NoC interface of the NI is also responsible for
packetization and routing related functions. The different interfaces of a typical network
interface are shown in the figure 2.5.

Tile/Core

Tile/Core wrapper

NoC wrapper

NoC Router

Tile Interface

NoC Interface

NI

Figure 2.5.: Network interface ends

Network interface holds a very important position in NoC-based many-core architec-
tures because it is directly connecting to both computation and communication domains.
Besides playing the role of a protocol translator, network interface provides different
hardware/software interfaces to the applications to communicate over the Network on
Chip. In our concept, we have extended the role of network interface architecture to
provide communication resource management and software communication support as
additional services for improving system performance. The details of which will come in
the chapter 3. In the following text, the important details about the Network on Chip are
given, which are relevant for our concept.

2.2.2. Topology

The topology has an impact on performance and implementation cost of a Network on
Chip. Implementation cost of each router is affected by the topology because it derives
the number of ports in the router. In addition, the performance of the entire architecture
is affected by the topology because it drives the bandwidth which can be supported by
the network [17]. Figure 2.6 represents the major state of the art topologies for Network
on Chip.

17

2. Background and Related Work

2D-Mesh Ring

Torus Tree

Figure 2.6.: Major Network on Chip topologies

The selection of the topology also affects the Network on Chip floor planning. Floor plan-
ning of tiled architectures with regular topologies is easier to realize and results in lesser
average wire length as compared to irregular topologies. Hence, mesh topology is the
most widely used Network on Chip topology. However, researchers have proposed ir-
regular Network on Chip topologies which bring benefit for applications-specific archi-
tectures [105].

2.2.3. Switching Schemes

Switching technique is another important aspect which affects implementation cost and
throughput of a Network on Chip based system. Switching methodology influences many
design parameters of the Network on Chip. Switching mechanism defines the data flow
over the network and granularity of data transfer. The minimum granularity of data
which can be transferred over a Network on Chip is called flit. A flit represents the mini-
mum datagram which is used for switching or flow control. In a packet switching based
NoC, the communication happens in the form of packets. Several flits constitute a packet.
For applications, the communication unit between two instances over Network on Chip
is commonly referred as a message. A message may consist of one or more packets. There
are two basic modes for data transfer within a network:

• Circuit switching : In circuit switching methodology, an end-to-end connection is
established between transmitter and receiver before the actual data is sent [66]

18

2.2. Network on Chip

• Packet switching : In packet switching concept, the data can be sent without prior
connection setup. Packets may follow an independent route to the destination and
hence the delay experienced by them may also be different. Because of the higher
flexibility, packet switching is more widely deployed in Network on Chip.

In the scope of this work, we will discuss the details corresponding to packet switching
scheme as this is the approach which we have deployed in our concept. Within packet
switching, there are three important methodologies to address the data flow over Net-
work on Chip:

1. Store and Forward : In this approach, a packet is only forwarded from one router
to the next, if there is enough space available in the buffers of next router to store
the complete packet. This approach has an advantage that the packet transmission
between two routers never stops when it is started. This is due to the fact that it is
ensured that all flits within the packet would be accepted by the receiver. However,
the concept comes with the disadvantages of high overall delay and large buffer
size requirement.

2. Virtual Cut Through : In comparison to store and forward approach, this method-
ology does not require that the complete packet should be stored in one router in
order to wait for the readiness of the next router. If there is not enough space avail-
able in the next router, the whole packet has to be buffered. This approach offers the
advantage of reduced delay as compared to store and forward approach. However,
the disadvantage of large buffer size requirement still exist.

3. Wormhole : In this concept, the packet must not be completely stored in the router
buffer before it can be forwarded to the next router. Therefore, the receiving router
does not need to have buffer space for storing the entire packet. This approach
offers the advantages of both lesser buffer size and reduced latency as compared to
the other two approaches. However, the disadvantage is the possible blocking of
links by long packets which span through multiple routers.

As the buffer size is the most important consideration in the Network on Chip design,
wormhole switching is the most widely used switching methodology. In order to address,
the link blocking problem caused by wormhole switching, the concept of virtual channels
is introduced in NoCs.

2.2.4. Virtual Channels

The concept of virtual channels (VC) was already introduced for communication net-
works by Dally in 1992 [27]. Kavaldjiev et al. brought the concept of virtual channels
in the Network on Chip architectures [80]. A network interface architecture with VC
based design was presented by Bhojwani et al. [11]. Virtual channels enable the sharing
of the physical link by multiple traffic flows. In this way, the performance is improved by
increasing the overall link utilization [97]. In addition, virtual channels help in resolving
deadlocks over Network on Chip. The details about the deadlocks and the ways to resolve
them would be provided in section 2.2.8. However, virtual channels bring additional im-
plementation cost as well as the complexity, which includes the scheduling requirements
of virtual channels over the link.

19

2. Background and Related Work

2.2.5. Scheduling and Arbitration

Virtual channels are required to be scheduled for data transmission over the link. The
scheduling may also be referred as arbitration. In the following, the most relevant arbi-
tration schemes for Network on Chip are given:

• Time Division Multiplexing (TDM) : This scheme uses fixed size time slots which
are statically assigned to each traffic flow corresponding to a virtual channel. The
advantage of this approach is the less implementation cost and guaranteed through-
put for each traffic flow. The drawback of the approach is the reduced throughput
because of the scheduling of idle slots. The scheduling of the idle slots results in an
inefficient utilization of the available bandwidth.

• Priority : Priority based scheduling policies define precedence of certain traffic
flow(s) over other traffic streams while scheduling them on the physical link [31].
The drawback of priority scheduling is the starvation of traffic flows with low pri-
orities by the ones with higher priority.

• Round Robin : Round Robin is an arbitration scheme which ensures fairness in
terms of share of each traffic flow over the link as compared to priority based schedul-
ing. Compared to TDM, round robin arbitration does not take into account the idle
slots for scheduling. Not considering the idle slot, results in high implementation
cost for the arbiter. The efficient link utilization and fairness make round robin a
widely used scheduling strategy for Network on Chip.

• Weighted Round Robin : Weighted Round Robin (WRR) scheduling is a well-
established scheduling concept in ATM switches [77]. It is the extension of round
robin scheduling. Like round robin scheduling, it serves all traffic flows within one
scheduling cycle. However, the number of schedules per cycle for each traffic flow
can be different and depends on the weight which is assigned to the respective flow.
The length of a scheduling cycle is the sum of the assigned weights for all traffic
flows as described by the equation 2.1.

WRR_Cycle_sch = ∑ TF_Timeslotsi (2.1)

Where WRR_Cycle_sch represents the scheduling cycle of weighted round robin
scheduling and TF_Timeslotsi defines the number of time slots, which are assigned
to the traffic flow i. The WRR arbitration policy is illustrated in the figure 2.7. With
the possibility of assigning multiple time slots to a single traffic flow, Quality of
Service requirements can be achieved for individual applications.

2.2.6. Flow Control

Flow control is required over Network on Chip to ensure lossless communication between
transmitter and receiver. In Network on Chip, data can be lost because of two reasons; 1)
issues during the data transmission like the unavailability of buffer space in the receiver,
2) data being overwritten due to lack of synchronization between transmitter and receiver.
Therefore, flow control is required to be addressed at multiple layers in Network on Chip.

20

2.2. Network on Chip

TF_1

TF_2

TF_N

SL_1

SL_2

SL_N

WRR Arbiter

TF_1

TF_2

TF_N

Output Port

Input Traffic

Flows

Figure 2.7.: Weighted round robin arbitration policy

The flow control which is required at the link level between the neighboring routers or
between network interface and router is referred as link-level flow control. Whereas the
end-to-end flow control deals with the communication between transmitting and receiv-
ing nodes. However, we will discuss only link-level flow control in this section. This is
due to the fact that in our work, the end-to-end flow control is managed by the applica-
tion layer. Important state of the art flow control mechanisms used in Network on Chip
are following:

• Credit-based flow control : In this flow control methodology, the sender is allowed
to pro-actively transmit a certain amount of data without waiting for explicit ac-
knowledgment from the receiver. This specific amount of data is termed as credit,
which corresponds to the buffer space available in the receiver. Each time a flit is
transmitted, the credit is decremented in the transmitter. If the credit becomes zero,
it indicates the unavailability of space in receiver’s buffer. In this case, the trans-
mitter is not allowed to keep sending data and must wait until the credit becomes
available again. When the receiver has space available in its buffer, it signals back to
the transmitter. When the transmitter receives this signal, the credit is incremented
and the transmission can be continued.

• Acknowledge-based flow control : This protocol is based on explicit acknowledg-
ment before the data transmission which is indicated through signals/wires be-
tween transmitter and receiver. Therefore, the transmitter waits for the readiness
of the receiver before sending any data. The sender indicates the willingness to
transmit the data through a signal. When the receiver is able to accept the data, it
responds with an acknowledge signal. If the transmitter does not receive the ac-
knowledgment, the flits have to wait in the buffer of the transmitter till the time the
receiver is ready to accept them.

21

2. Background and Related Work

2.2.7. Routing Mechanisms

Routing is the process by which a packet finds its path from the source to the destina-
tion node. The routing mechanism strongly depends on the Network on Chip topology.
Choice of routing algorithm affects many aspects associated with the Network on Chip
design like power consumption, resource requirement, performance and deadlock reso-
lution. The important routing strategies in Network on Chip are given as follows:

• Source Routing : In this routing scheme, the transmitter defines the complete route
of the packet from source to the destination [96]. The routing information is en-
coded in the packet header by the network interface which is then processed by
each router in the path and the packet is forwarded accordingly. The routing is
done with the help of a static routing table placed within the routers. Because the
routing is performed in the source node, the complexity of the Network on Chip
routers can be reduced. The drawbacks of source routing are overhead of encoding
complete route in the header of each packet and the lack of scalability because of
the static route selection at the transmitter.

• Deterministic Routing : Deterministic routing uses static paths between the source
and the destination pair. However, as compared to the source routing, there is no
need to encode complete routing information in the packet header at the transmit-
ter. Each router in the path takes routing decision according to the defined routing
methodology. In comparison to the source routing, the deterministic routing is ben-
eficial as it avoids the need for large look-up tables in the network interface and
saves the route encoding overhead. The disadvantage of this approach is a small
degree of freedom for path selection which makes it less flexible in dynamic load
conditions. However, the deterministic routing offers low-cost implementation as
compared to the adaptive routing techniques. Considering above-mentioned facts,
deterministic routing schemes like XY routing are the most widely used routing
strategies in Network on Chip.

• Adaptive Routing : This routing algorithm can provide different paths between the
given source and destination node pair. Within the list of possible routes, the most
suitable path can be selected for transmission at run-time. The advantage of the
approach is the optimum route selection keeping in view dynamic load, power con-
sumption, and fault tolerance [69]. However, the adaptive routing comes up with
additional implementation cost and may lead to deadlocks in Network on Chip.

2.2.8. Deadlocks

In Network on Chip, a deadlock occurs when packets in the network are blocked because
they are waiting for an event which can never happen. There are two types of deadlocks
which may occur in Network on Chip:

• Routing-dependent deadlock : In this category, the deadlocks are included which
occur because of the inappropriate routing algorithm. Only Network on Chip routers
are involved in these deadlocks. Especially, wormhole switching is susceptible to
deadlocks because the packets are spread over multiple hops. The solution to these

22

2.2. Network on Chip

types of deadlocks is to choose a routing algorithm which is deadlock free. The basic
principle of having deadlock-free routing algorithm is to prohibit certain turns [68].
For example, XY routing avoids certain turns and hence is a deadlock free rout-
ing mechanism. Virtual channels are another way of resolving routing-dependent
deadlocks.

• Message-dependent deadlock : Message-dependent deadlocks may occur even if
Network on Chip operates with a routing algorithm which is deadlock free. Message-
dependent deadlocks arise because of the interdependency of different message
types, for example, request and response message dependency. These different
types of messages represent an abstraction through which different nodes commu-
nicate over the Network on Chip. An example of a message-dependent deadlock is
shown in the figure 2.8 where the communication between compute and memory
tiles is suspended because of read/write request and response message dependency.
Message-dependent deadlocks can be resolved by using a separate virtual channel
for each message type in the Network on Chip. Many advanced approaches have
been proposed to resolve message-dependent deadlocks [86] [99].

Compute

tile 1

Memory tile 1

T D D HD

H D T
Read/Write

Request Packet

Read/Write

Response Packet

T D D HD T

D

H D T H D T

D
D H

D
D

D
H

Memory tile 2

T D D HD

H D T H D T

Compute

tile 2

T
DDH

D
T

D
T

Figure 2.8.: Message-dependent deadlock example

2.2.9. State of the art Network on Chip Architectures

In this section, we review and discuss state of the art Network on Chip implementa-
tions [1]. Since our proposed concept is based on the network interface architecture,
therefore, we will focus more on the details which are related to the network interface
design.

23

2. Background and Related Work

2.2.9.1. Æthereal

Æthereal NoC developed by Phillips aims at achieving predictability in communication
infrastructure design. Therefore, guaranteed throughput and latency is supported over
Network on Chip to provide deterministic communication behavior [48] [121]. Æthereal
Network on Chip supports configuration of important parameters at run-time. Wormhole
routing with input port buffers is used to route the flits. In addition, it supports both
Best Effort (BE) and Guaranteed Throughput (GT) communication services [49]. A time-
division multiplexed circuit switching approach is employed for guaranteed throughput
communication.

Network interface implemented in Æthereal considers only shared-memory program-
ming model support [118]. Memory read and write operations are supported through
a transaction-based protocol. NI offers the standard bus interfaces like AXI and OCP to
connect other IP modules. The network interface architecture consists of two parts; the
NI kernel and the NI shell. NI kernel handles the Network on Chip communication-
related aspects like realizing the channels, preparing packets and scheduling them over
the link. In addition, it is responsible for end-to-end flow control between the communi-
cating nodes. NI shell is responsible for setting up narrowcast and multicast connections,
transaction ordering, and other high-level aspects, which are related to the protocol of-
fered to the applications. The NI kernel communicates with the NI shell via ports. Net-
work interface developed by Æthereal concedes higher latency as compared to the other
state of the art network interface architectures because of its generic implementation. In
addition, it does not address shared memory synchronization support, which is essential
for applications when they are executed over Network on Chip based architectures.

2.2.9.2. Xpipes

Xpipes is the Network on Chip architecture targeted at high-performance and reliable
communication for embedded multiprocessors [8] [26]. Xpipes Compiler is introduced
as a framework for automatically instantiating customized NoC components (switches,
network interfaces, and links) from the SystemC-based implementation. A static routing
protocol called ”street sign” routing along with wormhole switching are incorporated.
Static routing information is accessed by the header builder, which encodes this infor-
mation into the network packet header. Xpipes implements an error control logic, which
retransmits the data packets which are not acknowledged.

The Xpipes network interface architecture supports shared memory accesses. The pro-
posed architecture supports multiple outstanding write transactions but a single out-
standing read transaction to avoid deadlocks. However, the network interface of Xpipes
does not support more advanced communication features in order to reduce the system
complexity. It provides the standard OCP interface to the processing cores [37]. Network
interface sharing based methodologies are introduced which allow the network interface
to be shared by multiple nodes and hence result in less area consumption. For NI sharing,
dedicated hardware units are introduced in the architecture to merge and split different
traffic flows on a single network interface.

24

2.2. Network on Chip

2.2.9.3. Nostrum NoC

Nostrum NoC is a Network on Chip proposed to use packet switched communication
with the store and forward switching mechanism [94]. It supports both Best Effort and
Guaranteed Bandwidth (GB) traffic flows. In Nostrum NoC, guaranteed bandwidth traf-
fic class is supported by a concept called looped containers [93]. Looped containers are
realized by virtual circuits. These virtual circuits use an explicit time division multiplex-
ing mechanism, which is named as Temporally Disjoint Networks (TDN).

In Nostrum NoC, network interface functionality is divided in Network Interface (NI)
and Resource Network Interface (RNI) modules [125]. RNI manages the interface with the
processing cores whereas NI translates the incoming requests from processors according
to Nostrum protocol. RNI provides a wrapper functionality to AMBA AHB bus protocol.
Read and write to the memories are supported [2]. The Nostrum NoC does not address
the hardware support for software synchronization.

2.2.9.4. Mango

Mango is a clock-less Network on Chip which supports both guaranteed service and best
effort communication [15]. It uses a chain of virtual channels to establish virtual end-to-
end connections. These virtual end-to-end connections are the means to provide Quality
of Service. Router architecture is divided into two parts, which deal with guaranteed
service and best effort communication respectively. The Mango Network on Chip uses
wormhole switching and XY routing.

Network interface architecture by Mango NoC developers is OCP compliant [14]. NI
architecture consists of Core Interface (CI) and Network Interface (NI) components, which
establish the interface to processing cores and Network on Chip router respectively. The
synchronization between the clocked processing core and the clock-less network is also
performed by the network interface. In addition to shared memory accesses, the network
interface supports interrupts based on virtual wires. Interrupts are sent from source to the
destination node as special packets. On receiving the special packet, interrupt is raised at
the Core Interface end so that it can be processed by the respective processing core.

2.2.9.5. SCORPIO

The SCORPIO architecture is based on Network on Chip architecture with cache coher-
ence hardware support [32]. Cache coherence is supported through a snooping based
protocol which relies on distributed message ordering instead of global message order-
ing. The Network on Chip consists of two physical networks to separate message order-
ing from message delivery. The main NoC is an unordered network, which is responsible
for sending and receiving of the coherence requests. For each coherence message which
is dispatched on the main network, a notification message is sent on a separate NoC,
called notification network. The notification Network on Chip is buffer-less fixed latency
network to ensure in order delivery of notification messages.

25

2. Background and Related Work

Network interface serves both main and notification network routers. At the sending
end, it injects the data messages and the coherence requests into the main network. The
corresponding notifications are sent through the notification Network on Chip. On the
receiving side, the network interface calculates the global order of the cache coherence
sequence locally according to a consistent ordering rule and then forward these requests
to the cache controller. Therefore, the requests may arrive in any order but they are served
at the network interface of each node in the same order.

After discussing the state of the art Network on Chip realizations and in particular the
network interface designs, the role of the network interface in Network on Chip based
systems is characterized further in the following text.

2.3. Conventional Communication Support in Network Interface

The details about the Network on Chip components and the state of the art NoC imple-
mentation highlight that the services offered by the network interface design are defined
to meet the following objectives:

• Decouple computation (Processing cores) and communication (Network on Chip)

• Provide backward compatibility to tile interconnect protocol

• Hardware support for efficient communication and synchronization

First two design objectives are achieved through tile and network protocol translation,
which are detailed in the following section 2.3.1. Aspects specific to communication and
synchronization support are discussed in sections 2.3.2,2.3.3 and 2.3.4 respectively.

2.3.1. Tile and Network Protocol Translation

Transparent translation of the tile interconnect and NoC protocols is the prime responsi-
bility of the network interface. Bhojwani et al. [10] proposed following three strategies to
perform tile and network protocol translation:

• Software realization : The software realization of the protocol translation requires
the implementation of certain library functions. These library functions consist of
special commands/instructions, which are executed when the data is required to
be sent over the Network on Chip. This approach also requires extensions in the
Instruction Set Architecture (ISA) of the processor which initiates these requests.

• Processor micro-architecture enhancement : This approach requires a custom mod-
ule within the processor micro-architecture to trigger the IP interconnect to NoC
protocol translation. This module is customized according to the processor inter-
face and the Network on Chip router, which are deployed in that system.

• Protocol translation wrapper : The above-mentioned two strategies are less flexible
keeping in view the required instruction set adaptations or the micro-architecture
enhancements. Therefore, incorporating the network interface in the form of a
wrapper to interface the processing cores with the Network on Chip is the widely

26

2.3. Conventional Communication Support in Network Interface

used approach. This wrapper provides the functionality of protocol translation,
packetization, and de-packetizing of the NoC transactions.

The wrapper-based approach completely separates the computation and communication
domains and does not require custom extensions in the architecture of either the processor
or the Network on Chip. Protocol translation through wrapper-based approach requires
wrapper development for both tile interconnect and Network on Chip interfaces. Both
tile bus and NoC wrapper provide services corresponding to the transport layer in the
ISO-OSI reference model [150]. The details about these services are given in the following
sections.

2.3.1.1. Tile bus Wrapper

Tile bus wrapper can be considered as an implementation of the session layer in the OSI
network model. It transforms bus protocol transactions into packets corresponding to
Network on Chip protocol. Bus transactions include both request and response transfers.
The requests arriving at the tile bus are issued by the bus masters like processing cores
and hardware accelerators. Response transfers are issued by the bus slaves like memory
in reply to the bus requests. Protocol translation and the packetization are kept transpar-
ent by the tile bus wrapper from the bus masters and slaves. Backward compatibility is
achieved by customizing the tile bus wrapper for the state of the art bus standards. Re-
searchers have addressed the tile bus wrapper functionality of the network interface for
several on-chip bus protocols. Ebrahimi et al. have proposed a network interface architec-
ture with AMBA AXI wrapper [34]. Attia et al. have developed a low latency bus wrapper
for AMBA AHB protocol [3]. A socket based approach to provide wrapper interface for
two different bus protocols i.e. AMBA AXI and STBus is provided by Mereu et al. [90].
Olsen et al. have presented an OCP wrapper functionality [108].

2.3.1.2. NoC Wrapper

Network on Chip wrapper translates the incoming requests from NoC, which are arriving
in the form of packets, according to the bus protocol. NoC wrapper is designed to meet
the Network on Chip protocol requirements. Chang et al. proposed a Network on Chip
wrapper for custom NoC protocol [21]. Jung et al. present a network interface with NoC
wrapper for a custom on-chip network, SONA [76].

2.3.2. Remote Memory Access

The network interface supports mechanisms to enable real-time communication between
remote tiles. From the software perspective, the communication mechanisms could be
shared memory accesses or data exchange in the form of message passing. These different
ways of communication are handled by the software layers according to the correspond-
ing programming model. Memory communication is the most significant communication
mechanism supported by the network interface keeping in view the shared memory pro-
gramming model. Especially, it is important to access application data and code which

27

2. Background and Related Work

are placed in either on-chip or off-chip memory. Network interface enables access to the
tile external memory through implicit load/store based shared memory communication
as well as through efficient data transfer mechanisms like remote direct memory access
(RDMA).

2.3.2.1. Remote Shared Memory Access

Remote shared memory access support consists of provisioning load and store accesses
between tiles over Network on Chip. Remote load/stores represent shared memory ab-
straction primitives which enable transparent access to the external memory. These prim-
itives enable the use of legacy application code without caring about the underlying ar-
chitecture. If the external memories of other tiles or the global memory are mapped into
the address range of the network interface, they can be accessed transparently through
remote load/store requests. From the tile bus perspective, load/stores are transactions
which are blocking in nature. Therefore, bus master must receive the response for cur-
rent load/store request in order to proceed with the next bus transaction. Transactions
between master and slave components which cover shared memory accesses are repre-
sented in the figure. Remote load/store requests are realized using request and response
messages over Network on Chip.

NIMaster

Request

Response

NoC
NI

Slave

Request

Response

Figure 2.9.: Transactions representing interaction between master and slave for shared
memory access

Kavadias et al. have presented a network interface design which provides access mech-
anisms to both centralized and distributed shared memory [78]. In [78], shared memory
accesses between different tiles are cache coherent. Cache coherence is supported by pro-
viding L2 caches within the network interface architecture.

2.3.2.2. Remote Direct Memory Access

Remote direct memory access is the widely used approach for efficient data transfer be-
tween memories. Hardware engines are developed which allow direct memory to mem-
ory communication. Direct transfers are expected to provide both performance and en-
ergy advantages when compared with the load/store based accesses. In addition, RDMA
could be realized in the form of an asynchronous non-blocking protocol compared to
blocking load/store transactions.

In order to initiate an RDMA operation, software must pass certain arguments to the
hardware engine. Lee et al. present network interface with register interface for providing
DMA support to the applications [87]. In this work, the register interface is accessible

28

2.3. Conventional Communication Support in Network Interface

by OpenRISC processor [85]. In order to provision distributed memory programming,
direct memory access is supported for data copy operations between remote memories as
proposed by Kavadias et al. [78].

2.3.3. Quality of Service Support

The Quality of Service support for conventional networks is an established concept. Ac-
cording to QoS concepts for conventional networks, different traffic flows are served with
their desired priority level or so-called differentiated service classes [124]. NoC based
multiprocessor systems facilitate execution of concurrent applications over the underly-
ing architecture, which may have characteristic throughput and bandwidth requirements.
Therefore, it is crucial to support Quality of Service at NoC level subsequently in the
network interface as well. Since the introduction of Network on Chip, researchers have
investigated concepts to provide QoS guarantees [36].

Bolotin et al. have proposed a customized architecture, where different application classes
with different QoS requirements are served. The Quality of Service requirements are met
by using dedicated communication resources, which are allocated for the respective ap-
plications [16]. Virtual channels are the communication resources, which are available
in the Network on Chip and could be explicitly managed to support the traffic require-
ments of applications. End-to-end virtual channel reservation offers a simple and flexible
concept for delivering Quality of Service in a packet switched NoC [79].

2.3.3.1. Guaranteed Service and Best E�ort Tra�c

Guaranteed service and best effort represent two broad traffic classes which are available
to applications. The characteristics of the two traffic types can be detailed as follows:

• Best Effort : BE traffic does not make any commitment regarding Quality of Service.
It refers to basic connectionless traffic without guarantees [75]. Best effort commu-
nication is essential where the number of communication partners is not limited e.g.
multicast and broadcast communication.

• Guaranteed Service : Guaranteed service traffic ensures predetermined bandwidth
and latency to the applications, which require explicit QoS guarantees regardless of
other traffic over the network. GS traffic is supported through end-to-end connec-
tions which are realized either using TDM-based mechanisms or circuit-switching.
In the scenarios where the applications communicate with a limited number of part-
ners, GS connections reduce packet switching overhead for data transmission and
hence save the power consumption.

There are multiple ways in which GS and BE traffic flows are initiated and supported by
Network on Chip router and network interface. Rijpkema et al. have proposed a Network
on Chip architecture, where GS and BE traffic flows are handled within the same router
architecture [121]. Coexistence of GS and BE in a virtual channel based Network on Chip
is shown in the figure 2.10. In a virtual channel based NoC, GS connection is initiated by
issuing the Connection Header (CH) from source to the destination tile. The connection

29

2. Background and Related Work

header performs end-to-end virtual channel reservation. Afterward, the reserved virtual
channels are used by the data traffic between source and destination tiles. Best effort
communication does not require end-to-end virtual channel reservation.

Processing

Tile

Processing

Tile

Processing

Tile

NoC

Router

NoC

Router

NoC

Router

Processing

Tile

NoC

Router

VC 1
VC 2
VC 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

VC 1
VC 2
VC 3

NoC

Router

NoC

Router

H
T

GS-Connection

Setting up GS Connection

BE traffic

N
I N

I
N
I

N
I

N
I

N
I

Processing

Tile

Processing

Tile

CH

Figure 2.10.: GS and BE traffic flows over Network on Chip

2.3.3.2. Communication Resource Management

In Network on Chip, virtual channels are the shared communication resources which are
utilized by the concurrent applications. The applications with best effort communication
do not explicitly control the allocation of communication resources. Whereas in the case
of applications with QoS requirements, the allocation of communication resources is di-
rectly influenced by those applications. In state of the art approaches, the application or
the operating system has to be aware of the communication requirements of applications
before their execution on underlying platform [20]. An operating system or high layer
software instance initiates the request for guaranteed service communication on behalf of
applications. According to the traffic requirements, NoC router and the network inter-
face are capable of reserving virtual channels for offering throughput guarantees to the
corresponding applications. In addition, the role of the network interface is to provide a
configurable interface, which could be used by the applications for initiating and releasing
the reservation of communication resources.

The need of an efficient communication resource management approach in a virtual chan-
nel based NoC is depicted through a scenario in the figure 2.11. In the shown scenario,
the application instances A_1, A_2, A_3 and A_4 communicate via best effort traffic. Sim-
ilarly, application instances C_1, C_2 and C_3 also use best effort communication. Guar-
anteed service communication is deployed between application instances B_1 and B_2. In

30

2.3. Conventional Communication Support in Network Interface

the figure 2.11, software instance B_1 initiates the reservation of communication resources
between B_1 and B_2 before the start of actual data transfer. In this scenario, the commu-
nication resource allocation does not consider the application mapping on the underlying
platform. Therefore, the GS connection is established between two distant nodes i.e. B_1
and B_2, which requires reservation of a large number of virtual channels. This uncoor-
dinated resource assignment influences the performance of other concurrent applications
and results in the sub-optimal utilization of communication infrastructure. Hence, an
appropriate communication resource allocation scheme is required, which considers dy-
namic factors like application mapping and underlying platform status while performing
resource management. .

RouterRouter RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

Connection setup

GS-Connection

BE-Packet

Processing

Tile

Processing

Tile
Processing

Tile

Processing

Tile
Processing

Tile
Processing

Tile
A_1 A_2

A_4A_3B_1

B_2

N
I

N
I N

I

N
I

N
I

Application/software instance

N
I

N
I

N
I

N
I

C_1

C_2 C_3

Figure 2.11.: Network on Chip communication resource management

Researchers have followed different approaches to develop system level communication
resource management strategies. Bin et al. have advocated for a coordination based ap-
proach for distributing Network on Chip resources among applications. In that work, the
instance which coordinates the management of resources is implemented in software [88].
Software based communication resource allocation relies on the static knowledge about
the application’s communication characteristics. These mechanisms are unable to adapt

31

2. Background and Related Work

themselves according to run-time application mapping and communication bandwidth
requirements. On the other hand, hardware-based approaches advocate the need of a
hardware unit, which performs the management of communication resources in a cen-
tralized manner [51], [107], [83]. Centralized solutions are not scalable keeping in view
the run-time communication behavior of applications on distributed shared memory ar-
chitectures. Keeping in view above-mentioned considerations, we have proposed a dis-
tributed hardware-based scheme to allocate communication resources. The details of our
approach will follow in chapter 3.

2.3.4. Inter-tile synchronization support for software layers

In order to exploit task level parallelism, it is important that the software layers which are
being executed on different tiles, are able to synchronize without significant performance
overhead. In initial attempts, the system developers used remote memory access support
in the network interface for synchronization. However, keeping in view the communica-
tion and synchronization demands of real world applications, the remote memory access
support was found to be inappropriate for this job. Increasing architecture sizes have en-
couraged the development of novel methodologies to provide synchronization support
for software layers between remote nodes. Tota et al. have proposed an architecture with
synchronization support, which is based on a custom hybrid shared memory/message
passing approach [132]. In the proposed hybrid communication model, the data exchange
happens via shared memory whereas the synchronization is done through message pass-
ing. For message passing, basic synchronization primitives MPI_send(), MPI_receive()
and MPI_barrier() are implemented, which support direct processor to processor com-
munication. Synchronization for shared memory is not addressed in this concept. Dif-
ferent components of the hardware architecture are modified to support synchronization.
Processor pipeline is extended to support custom instructions for shared memory access
and message passing synchronization. Moreover, the interface between processor and
network interface is adapted to the proposed hybrid shared memory/ message passing
communication model. The work does not present the comparison with the other state
of the art approaches. In addition, it is not investigated that how the proposed hardware
enhancements can be beneficial for state of the art programming models.

Chen et al. have proposed a hybrid hardware-software solution to support a distributed
shared memory architecture [23]. The authors present a Dual Microcoded Controller
(DMC) module which contains multiple sub-modules for supporting operations like core
and network interfacing, virtual to physical address translation and synchronization. Syn-
chronization between remote network nodes is supported through test-and-set primitive.
The benchmarks which are used as test cases for supporting shared memory and mes-
sage passing execution are quite limited in scope. In addition, it is not addressed that
how this approach can be applied to real-world applications. Kavadias et al. presented
a hardware-software based approach to provide communication and synchronization in-
terface for software layers [78]. In this approach, direct memory access accelerator is used
for data transfer between nodes. According to this concept, software is performing and
controlling the synchronized accesses which are happening between remote tiles over
Network on Chip. Synchronization is done through state of the art locks and barriers.

32

2.4. Invasive Computing

The synchronization overhead over distributed interconnect while using software-based
synchronization is not addressed.

Above-mentioned hardware oriented approaches target customized programming mod-
els which limit their applicability to wide range of applications supporting state of the
art shared memory/message passing execution. Software controlled synchronization ap-
proaches have a disadvantage that the software has to poll the status of each respective
sub-operation in order to perform the next subsequent operation. Status polling results
in significant overhead on tile interconnect. In addition, it limits the system performance
as the software remains busy with the status polling and can not proceed with the actual
application processing. None of the above-mentioned approaches focus on the synchro-
nization support related to task spawning, which plays a vital role in exploiting the task
level parallelism of the underlying architecture. To the best of our knowledge, there is no
existing approach which addresses communication support for all stages of task spawn-
ing operation. In our work, we have focused on the synchronization support for task
spawning. In addition, our investigations are not restricted to a particular programming
model. The details of our concept for communication resource management and synchro-
nization support will follow in chapter 3.

2.4. Invasive Computing

In general, the concepts presented in this work are focused on the next generation dis-
tributed shared memory architectures. However, the proposals have been investigated
under the project named Invasive Computing, which refers to a novel paradigm for de-
signing and programming future parallel computing systems. The invasive comput-
ing paradigm is investigated in a Transregional Collaborative Research Center (TCRC)
funded by the Deutsche Forschungsgemeinschaft (DFG). The following text provides a
brief introduction to the basic concepts and the hardware architecture of the invasive com-
puting project.

2.4.1. Concept

Invasive computing is motivated by the trend for designing next generation many-core
architectures [131]. As it was pointed out in the introduction chapter that the number of
processing cores will increase in future architectures. Keeping in view this forecast, the
programming of architectures with a large number of processing cores gains importance.
Invasive computing tries to address this challenge by using resource-aware program-
ming. In past, concepts have been proposed which advocate the necessity of resource-
aware programming in parallel architectures [89]. However, the novelty of invasive com-
puting is to introduce resource-awareness in all system layers i.e. from the application to
the architecture. Invasive computing advocates the need for bargaining based resource
management between applications. Applications have the ability to dynamically adapt
their computation taking into account their computational requirements and the avail-
able hardware resources. The concept of invasive computing is shown in the figure 2.12.

33

2. Background and Related Work

Architecture

Temperature

LoadApplication 2
retreat

 invade

infect

Application 1

Frequency
Application 3

Invasive Run-time Support

System

Figure 2.12.: The concept of invasive computing

In invasive computing, the execution of an application can be partitioned in multiple
phases. Application requests for the resources in a phase named invade. The resource
requirements of the application are expressed in the form of constraints. The constraints
describe the quantity, properties, and type of resources desired by the application. For
example, the application requirements could relate to the processing frequency, load or
the temperature of processing cores. A higher layer software is responsible for finding
resources which match the application requirements. The Invasive Run-time Support
system is the name chosen for this software layer. Run-time support system takes into
account the status of the underlying hardware for acquiring the suitable resources for the
application. If appropriate resources are available, they are provided to the application as
a claim. A claim is a set of resources which are temporarily reserved for the application.
After these resources are allocated to the application, they are used by the application for
its computation.

The phase in which the application starts its execution on the acquired resources is called
infect. In the context of invasive computing, the unit of the workload which is executed
on the underlying processing core is named as an i-let. Once the application completes its
execution or the degree of parallelism reduces, the application enters into a phase called
retreat. In this phase, the acquired resources are either completely or partially released.
It is clear from the above description that the concept of invasive computing requires
enhancements in the conventional application as well as architecture layers.

An invasive application has to be structured in a way that it can express its execution
requirements in terms of desired platform resources. X10 language was adapted accord-
ing to the principles of invasive computing. Originally, X10 is a programming language
from IBM to program massively parallel architectures by using partitioned global address
space programming model [22]. The extended version of X10 for invasive computing is
named InvadeX10 [52]. InvadeX10 supports three basic invasive programming primitives
i.e. invade, infect and retreat. In addition, it provides means to express the resource re-

34

2.4. Invasive Computing

quirements for invasion by the use of the constraints. From the architecture perspective,
the hardware resources should be modified in order to support temporal reservation for
applications. In addition, the architecture should provide its current status to the higher
software layers for performing resource-aware decisions.

Software and hardware modifications require a compiler which generates the executable
for the invasive application to run on the underlying architecture. The front-end of ex-
isting X10 compiler was extended to support the invasive concepts and the constraint
system. The compiler front-end was also modified to support the code generation for ap-
plications, which are written in C language. In addition to the changes in the front-end
compiler, the back-end was implemented to support code generation for the invasive ar-
chitecture [19]. Further details of the above-mentioned contributions are out of the scope
of this work.

Novel simulation and design space exploration strategies to investigate several aspects re-
lated to software and hardware design in invasive computing were incorporated [146], [47].
An overview of the components involved in both software and hardware layers of inva-
sive computing is provided in the following sections.

2.4.2. Software

In invasive computing, the modified application organization and the architectural ex-
tensions require support from the software layers. The software layer for invasive com-
puting, which incorporates support for resource-awareness, is named Invasive Run-time
Support System (iRTSS). iRTSS represents the distributed software layer, which is highly
scalable and suitable for resource-awareness support in software. iRTSS further consists
of the OctoPOS, the agent system, and hardware abstraction layer. The layered model
showing different components of iRTSS and their positioning between application and
architecture is shown in the figure 2.13. The OctoPOS is the name chosen for the operat-
ing system developed for invasive computing. The agent system refers to the distributed
resource management layer whereas the hardware abstraction layer refers the interface
to the different hardware back-ends of invasive computing. The details of the important
components of iRTSS are described in the following text.

2.4.2.1. Agent System

The resource bargaining in the invasive computing is managed by a special component of
the iRTSS, referred as agent system [82]. Agent system is a resource management system
implemented in a distributed manner to enable scalability. In recent times, resource man-
agement methodologies which focus on resource bargaining are getting importance for
many-core architectures [112]. The agent system for invasive computing consists of mul-
tiple agent instances. Each agent instance is either responsible for the resources within
an architecture region or for the resources belonging to an application. Agent instances
communicate with each other for bargaining resources. This approach distributes the re-
source management overhead over the entire system to meet the scalability requirements
of next generation many-core architectures.

35

2. Background and Related Work

Application

X10 Runtime

System

Agent

System

OctoPOS

Hardware Abstraction

Layer

Figure 2.13.: Different layers of Invasive Run-time Support System

The agent system plays an important role during the invade phase. An invade request
is handed over from the invasive application to an instance of the agent system. This
request includes the constraints of the application for hardware resources. The agent in-
stance is now responsible for searching and allocating hardware resources, which suit the
application constraints. Therefore, the agent instance communicates with other agent in-
stances in the system and takes the status of the underlying platform into account. The
interfaces for communication and accessing status information are provided by the op-
erating system. When suitable resources are found, they are reserved for the requesting
application. Finally, the agent instance returns the set of available resources as a claim to
the application.

2.4.2.2. Operating System

The operating system in the invasive run-time support system is named as OctoPOS. It
connects higher software layers (applications, X10 run-time system, and agent system)
and the invasive architecture [104]. Invasive applications execute directly on the OctoPOS
operating system. One instance of this operating system is running on a particular core
within each tile of the architecture. The individual OctoPOS instances communicate with
each other to accomplish the functionality of a distributed operating system.

OctoPOS supports different types of hardware platforms. It can be executed on the SPARC
V8 architecture, an x86 architecture or as a user process within a Linux based system.
Keeping in view the characteristics of the invasive hardware architecture, OctoPOS has
to support additional hardware features. In addition, OctoPOS provides the library of
drivers for accessing all hardware components. Hardware drivers are required to uti-
lize different hardware features, for example, the invasion of hardware resources or data
transfer through direct memory access hardware accelerator. In a similar way, OctoPOS
provides an interface to the network interface which is used by the software layers to ben-

36

2.4. Invasive Computing

efit from the proposed contributions of our work. In chapter 4, the interface details of the
OctoPOS with proposed network interface would be presented.

2.4.3. Hardware

The hardware architecture which contains features to support the principles of invasive
computing is referred as InvasIC architecture. An incarnation of InvasIC architecture is
shown in the figure 2.14.

Memory

TCPA

iCore

Tile Local

Memory

CiC
MemoryI/O

CPU

CPU CPU

CPU

CiC

CPU

CPU CPU

CPU

CiC

CPU

CPU CPU

CPU

NoC

Router

N
I

iNoC

Router

N
I

iNoC

Router

N
I

iNoC

Router

iNoC

Router

N
I

iNoC

Router

N
I

iNoC

Router
iNoC

Router

N
I

iNoC

Router

N
I

Tile Local

Memory

CiC CiC

CPU

CPU CPU

CPU

N
I

Tile Local

Memory
Tile Local

Memory

Tile Local

Memory

CiC

CPU

CPU CPU

CPU

N
I

Tile Local

Memory

CPU

CPU CPU

Figure 2.14.: InvasIC architecture consisting of compute, memory and I/O tiles intercon-
nected through Network on Chip

InvasIC is a heterogeneous tiled many-core architecture, which consists of different types
of tiles including processing, memory and I/O tiles [63]. The processing tiles contain com-
pute elements including RISC processors, Tightly-Coupled Processor Arrays (TCPAs) and
reconfigurable RISC cores (i-Cores). All tiles are connected by the Invasive Network on
Chip (iNoC) in a 2D mesh topology. The proposed network interface design provides the
interface between the tile interconnect and the iNoC router. The architecture is imple-
mented as a distributed shared memory architecture. Following sections provide a brief
overview of different components of the InvasIC architecture.

37

2. Background and Related Work

2.4.3.1. Tiles

The invasive architecture consists of following different types of tiles:

Standard RISC Cores Tiles : The standard RISC core tiles also referred as loosely coupled
MPSoC tiles, consist of Leon3 processing cores [43]. Leon3 processors are based on SPARC
V8 instruction set architecture. These processing cores were selected to be used in the
project due to the less implementation complexity and open source availability [44]. The
number of processing cores in a tile is configurable. Figure 2.15 shows the architecture of
a standard RISC core tile. Each core contains a separate L1 data and instruction cache. The
L1 caches of the processors are connected to the tile bus. The tile bus follows AMBA AHB
protocol as detailed in the section 2.1.1. Tile local memory is also attached to the AHB
Bus, which contains frequently accessed application code or data. It is an SRAM-based
on-chip memory with single cycle access latency.

L2 cache is another component attached to the tile interconnect. It is shared between all
cores within the tile and is used for holding the data, which is fetched from remote tiles.
This data is accessed transparently by the network interface in case of an L2 cache miss.
For this purpose, remote memory access support is provided in the network interface.
The details of the remote memory access support will follow in the implementation chap-
ter. Besides remote memory access, the network interface offers an additional interface
to the tile bus. This interface is used by the software to configure the network interface
for services like remote direct memory access, Quality of Service communication and task
spawning synchronization support. Another component in the RISC core tile is the Core
i-let Controller (CiC) [117]. Incoming i-lets received from the remote tiles are forwarded
directly to the CiC by the network interface. CiC is the hardware module, which is respon-
sible for the assignment of i-lets to the processing core within the tile keeping in view the
underlying hardware status and application requirements.

i-Core Tiles : i-Core compute tiles include a special processing core named as an i-core.
This core in present in addition to the other standard Leon3 RISC cores. i-Core sup-
ports special instructions in addition to the standard ISA of the LEON3 SPARC V8 ar-
chitecture [62], [43]. These instructions are designed to accelerate the execution of certain
applications. Special instructions reconfigure the processor micro-architecture to extract
higher performance. i-Core combines the concepts of adaptive micro-architecture and
fine-grained reconfiguration to instantiate application-specific accelerators at run-time.
The reconfigurable fabric is an integral part of the i-Core functionality. It represents the
reconfigurable logic area which is loosely connected to the processor pipeline. The recon-
figurable fabric requires a dedicated high bandwidth connection to the tile local memory.
Once the reconfiguration is done, the accelerator in the reconfigurable fabric can be ac-
cessed through the special instructions. Depending on the application, significant perfor-
mance improvement can be achieved by using the i-Core special instructions.

Tightly-Coupled Processor Arrays Tiles : Tightly-coupled processing elements structured
in a 2D array manner constitute the TCPA tile [81]. Communication between the pro-

38

2.4. Invasive Computing

L1 Cache

AHB Bus

NI

Leon 3 Core

Tile Local

Memory

Leon 3 Core

L1 Cache

L2 Cache

iNoC Router

CiC

Figure 2.15.: Standard RISC Core Tile in InvasIC architecture

cessing elements is supported via point-to-point connections. TCPA structure is highly
suitable for the execution of loop parallel applications like pixel based image correla-
tion. Each processing element represents a Very Long Instruction Word (VLIW) processor
and a hardware unit named as invasion controller. The invasion controller enables the
hardware-assisted invasion of processing elements to minimize the overhead of invasion.
TCPA tile is connected with the iNoC router via the network interface. A LEON3 RISC
core is used to handle the communication between the TCPA and the remaining tiles in
the architecture. An AMBA AHB bus is used to connect the TCPA, the LEON3 core and
the network interface.

Memory and I/O Tiles : Memory tile contains the off-chip memory, whereas the I/O
tile provides an interface to the standard I/O peripherals. The off-chip memory of the
architecture is composed of multiple memory tiles. Each memory tile contains a DDR
controller to interface the external memory over an AHB Bus. The network interface con-
nects the memory tile to the Network on Chip router. A LEON3 core executes an OctoPOS
instance for handling communication with other tiles. I/O peripherals include Ethernet,
DVI, and custom AHB transactor interfaces. I/O tile enables the interface of such periph-
erals in a NoC based system. These peripherals are used to transfer data between the
external world and the architecture.

39

2. Background and Related Work

2.4.3.2. Invasive Network on Chip

Invasive Network on Chip is the communication infrastructure to connect different types
of tiles in the InvasIC architecture [53]. The architecture of an iNoC router is shown in the
figure 2.16. The Invasive Network on Chip is a packet switching based Network on Chip,

Output VC

Scheduling Unit

Dynamic VC

Reservation Unit

F
IF

O
_

1

Routing Unit

Router Output Port

Router Input Port

Output Register

GS Connection setup

Established GS Connection

BE Communication

Control flow signals

Control flow signals

F
IF

O
_

N

F
IF

O
_

2

Input Flow

Control Unit

Figure 2.16.: iNoC Router architecture

which also supports virtual channels. It uses wormhole switching to save buffer space
inside the routers. For each virtual channel, a FIFO is placed at the input port, which
provides the temporary storage for the flits before forwarding. Registers are placed at
the output ports to avoid long combinational path. iNoC router uses a meshed topology
with bidirectional links and supports XY routing. All aspects of the iNoC are designed
with a focus on scalability and distributed resource management. In addition, iNoC ad-
vocates the concept of distributed communication resource management to fulfill the ap-
plication’s requirements [59], [58]. State of the art packet switched router architecture
is enhanced to enable assignment of communication resources at run-time according to
applications demands.

iNoC supports the invasion of communication resources by providing Quality of Service
guarantees over the network. QoS is provided by establishing guaranteed service connec-
tions over the network. End-to-end virtual channel reservation is performed to establish a
GS connection [55]. Weighted round robin scheduling policy as described in section 2.2.5
is deployed to support scheduling of GS and BE traffic over the link. According to this ar-
bitration policy, different traffic flows can be assigned different weights according to their

40

2.4. Invasive Computing

QoS requirements. iNoC router uses VC reservation for GS communication. In addition
to distributed communication resource management and QoS, iNoC addresses important
communication aspects for next generation interconnects like resource monitoring and
fault tolerance [57], [54].

Distributed shared memory architectures face two important challenges for meaningful
exploitation of task level parallelism i.e. communication resource management and syn-
chronization support for software. Concerning communication resource management,
conventional approaches disregard the dynamics of underlying platform while assigning
virtual channels among applications, which leads to inefficient communication infras-
tructure utilization and sub-optimal performance. We have addressed these concerns in
our approach, which will be detailed in the next chapter. The state of the art methods
investigating synchronization support target customized programming models and ar-
chitectures. The applicability of these approaches for scalable DSM architectures and/or
standard shared memory and message passing programming models is not considered.
In addition, state of the art concepts do not address task spawning overhead. In this
work, our investigations have been carried out under the umbrella of invasive computing
paradigm. However, they are applicable to DSM architectures and programming models
in general. In addition, we have addressed synchronization support for task spawning,
which has not been addressed by state of the art concepts.

41

3. Communication Resource Management and

Software Communication Support

In this chapter, we will discuss our contributions to address the two very important chal-
lenges in the distributed shared memory architectures. Those challenges were briefly
described in the introduction chapter. The first challenge is efficient communication re-
source allocation between guaranteed service and best effort communication. Minimizing
the synchronization delays during inter-tile data transfer and task spawning operations
represents the second issue.

3.1. Communication Resource Management

The proposed communication resource allocation methodology is inspired from the self-
optimization principle and depends on the monitoring of real-time traffic data over the
underlying DSM platform. Following are the two factors which are the motivation to rely
on the monitoring information instead of using prior knowledge of application’s commu-
nication behavior in our concept.

1. Modern real world applications exhibit heterogeneous communication requirements
on the underlying architecture. As an example, we have considered a real world
application Video Object Plan Decoder (VOPD) [9]. Tasks and the communica-
tion between those tasks in the VOPD application are represented in the form of
a so-called application core graph in the figure 3.1. Application core graph repre-
sents computation tasks as nodes which can be mapped on independent process-
ing tiles in a many-core system. The communication along with the average rate
of data transfer between tasks is shown by the weighted edges in the graph. Fig-
ure 3.1 highlights the heterogeneity in communication requirements between differ-
ent application tasks. This diversity results in different communication bandwidth
requirements between the processing resources during the execution of the applica-
tion. Static knowledge about the application’s data flow behavior can not be used to
predict the communication bandwidth requirements in a given time interval which
is only a segment of the application’s lifetime.

2. In DSM architectures, platform resources are shared between concurrent applica-
tions. Figure 3.2 illustrates a scenario where three concurrent applications are run-
ning on the same underlying architecture and competing for computation and com-
munication resources. Concurrent applications make it difficult to predict the run-
time data flow patterns between tiles by relying on the static knowledge of individ-
ual application’s communication behavior.

43

3. Communication Resource Management and Software Communication Support

inv
scan

run
le de

stripe
mem

pad

iquan idct

vop
rec

27

vid 70

Arm

acdc
pred

vopd
mem

up
samp

362
362

49

357
16

353

300

16

313

94

313

500

362

Figure 3.1.: VOPD core graph with varying communication bandwidth requirements [9]

The above-mentioned two factors follow the same argumentation line which emphasizes
the presence of caches in the processing architectures. Caches improve the system per-
formance by taking into account the run-time access patterns instead of relying on prior
knowledge of application’s data access behavior. Keeping in view these aspects, it is evi-
dent that the state of the art methods which rely on the static information of application’s
data flow behavior, lead to the inaccurate characterization of run-time communication
behavior. As a consequence, the communication resource allocation performed by such
approaches results in the sub-optimal utilization of Network on Chip resources. It leads
to the conclusion that efficient communication resource management can not be ensured
without considering dynamic traffic behavior in DSM architectures.

Assigning communication resources by monitoring the underlying platform status re-
lates to the principle of self-optimization. However, dynamically changing communi-
cation patterns generated by applications pose a challenge for realizing a suitable self-
optimization approach. For software-based self-optimization approaches, the overhead
associated with dynamic traffic characterization and the subsequent resource manage-
ment is very high [115], [88]. This leads to the requirement of an hardware-based self-
optimization scheme for communication resource allocation. Therefore, the first impor-
tant constituent of our approach is hardware-controlled self-optimization.

In real world scenarios, it can be observed that most of the applications exhibit temporal
locality in terms of their communication behavior. This behavior is observable in the
form of end-to-end communication where a source node communicates with a subset of
destination nodes. Hence, exploiting the communication locality in data access patterns
is the second ingredient of our approach for managing Network on Chip resources. Based
on self-optimization and communication locality ideas, we have come up with a concept
which optimizes the utilization of communication infrastructure by allocating resources
on the basis of run-time traffic information [144]. The details about our approach are given
in the following section.

44

3.1. Communication Resource Management

Compute

Tile

Router

Compute

Tile

Router

Compute

Tile

Router

Memory

Tile

Router

Compute

Tile

Router

Compute

Tile

Router

Compute

Tile

Router

Compute

Tile

Router

Compute

Tile

Router

App_1bApp_1a App_2a

App_1c

 NI NI

 NI

App_2b

 NI

 NI

 NI NI

 NI NI

App_3a

App_3bApp_1d App_3c

App_3c

Figure 3.2.: Concurrent applications sharing an underlying DSM architecture

3.1.1. AUTO_GS:Hardware-controlled GS connections

The proposed hardware-controlled self-optimization mechanism to manage communica-
tion resources is established over a Network on Chip based DSM architecture. The pro-
posed concept is based on extending the state of the art network interface design in a man-
ner that it can support the setting up of guaranteed service connections autonomously.
According to our concept, communication locality between the tiles is detected by moni-
toring traffic patterns in the network interface of each tile for a configurable time interval.
On the basis of this monitoring information, the network interface gains the knowledge
about the temporal locality of communication requests which are sent by this tile. After-
ward, the network interface exploits this information to establish GS connections to the
tiles which are frequently accessed. The less frequently accessed tiles are served via best
effort traffic. Best effort communication is also the default communication mechanism in
the absence of guaranteed service connections. We have chosen the network interface for
our concept because it is the most suitable component to track the communication history
of a given tile. In addition, the support provided in the network interface architecture can
be configured to adapt itself according to dynamic communication behavior.

Proposed hardware-controlled GS connections lead to better utilization of communication
infrastructure which results in reducing the power consumption of the Network on Chip.
In addition, they lower the latency for the traffic which is routed towards the frequently
accessed nodes and hence minimizing the network congestion. Our concept enables the

45

3. Communication Resource Management and Software Communication Support

usage of GS connections between the nodes which show high communication affinity to
each other. In this manner, the benefits of low latency communication are made avail-
able to the best effort applications. Our methodology also ensures that the hardware-
controlled connections do not reserve all communication resources which may lead to
complete starvation of best effort traffic in the network. We have referred our approach
as AUTO_GS. The frequently accessed tiles are called hotspot tiles. The tiles which are ac-
cessed less frequently are referred as cold-spots. Our concept to assign GS connections to
the hotspots while serving the cold-spots via best effort resources by the network interface
is shown in the figure 3.3.

Router Router

 Tile

Router

GS connections to hotspots

Best Effort traffic to coldspots

N
I

 Tile

 Tile

Source

VC 1

 Tile

 Tile

 Tile

 Tile

 Tile

 Tile

hotspot

coldspot

hotspot

VC 2
VC 3
VC 4 Router Router

Router Router Router

VC 1
VC 2
VC 3
VC 4

Router

VC 1
VC 2
VC 3
VC 4 Router Router

N
I

N
I

N
I N

I
N
I

N
IN

I

V
C

 1
V

C
 2

V
C

 3
V

C
 4

V
C

 1
V

C
 2

V
C

 3
V

C
 4

V
C

 1
V

C
 2

V
C

 3
V

C
 4

Router

N
I

Figure 3.3.: Communication resource management through hardware-controlled GS con-
nections [144]

The proposed self-optimization approach for assigning communication resources consists
of three phases: 1) monitoring of communication temporal locality, 2) sorting the target
tiles in the order of higher communication locality, and 3) management of GS connec-
tions based on the monitoring information. The details about these concept phases are
provided in the following sections.

46

3.1. Communication Resource Management

3.1.1.1. Monitoring communication locality

In our concept, the monitoring of communication behavior is done on a packet basis.
Through monitoring, a history of communication for all packets which are leaving the
network interface is maintained. The history of communication is stored in the network
interface for a given time interval AUTO_GScycle which is set at the design time. The
lower bound on the monitoring interval is given by the following relation 3.1.

AUTO_GScycle ≥ Tsetup,worst_case + Trelease,worst_case (3.1)

The lower bound on the monitoring interval is defined by keeping in view the worst
case scenario where an already established connection between the two nodes located
at maximum hop distance is released and a new connection for the same hop distance
must be established. Tsetup,worst_case is the worst case connection setup time between two
nodes which are located at the maximum hop distance in the Network on Chip whereas
Trelease,worst_case refers to connection release time for the same hop distance. Tsetup,worst_case
is given by the following equation.

Tsetup,worst_case = Tsetup,worst_case_request + Tsetup,worst_case_ack (3.2)

Tsetup,worst_case_request and Tsetup,worst_case_ack describe the worst case connection request
and connection acknowledgment delays respectively. Worst case connection request and
connection release delays can be further elaborated by the following equation.

Tsetup,worst_case_request = Trelease,worst_case = hop_count_max × (Tarbitration,worst_case + Tproc)
(3.3)

hop_count_max represents the maximum hop distance over the Network on Chip. Tproc
specifies the processing delay for forwarding the flit including transmission, output port
reservation, and scheduling delays. Tarbitration,worst_case refers to the worst case arbitra-
tion delay experienced by a packet in the router. The worst case scenario occurs when a
given packet has to wait in the virtual channel buffer because all input ports want to send
packets to the same output port. This condition is represented by the following equation.

Tarbitration,worst_case = ((N − 1)× VC_CNT × pkt_size) (3.4)

Where N and VC_CNT refer to the number of router ports and number of virtual chan-
nels per port respectively. pkt_size denotes the number of flits in a packet. Successful
establishment of a GS connection requires an acknowledgment from the destination tile.
Acknowledgment for the connection setup consists of a single flit which is sent over a
separate physical network. This network is reserved for the connection acknowledgment
traffic. Worst case connection acknowledgment delay Tsetup,worst_case_ack is given by the
following equation.

Tsetup,worst_case_ack = hop_count_max × ((N − 1) + Tproc) (3.5)

Connection release is a non-blocking process i.e. no acknowledgment is required. The
implementation details of connection establishment and release processes are provided

47

3. Communication Resource Management and Software Communication Support

in section 4.2. AUTO_GScycle is set to a value which is the integer multiple of the sum of
Tsetup,worst_case and Trelease,worst_case delays as well as the subinterval of the application’s
execution time. Average flit injection rate of the application is another parameter which
influences the selection of the monitoring interval. The impact of the monitoring interval
selection on the performance of our concept is quantitatively evaluated in the section 3.1.2.

After the time AUTO_GScycle is passed, the communication history for the tiles is ana-
lyzed in the next phase. The previous communication history is cleared and the behavior
is sampled till the next time interval. The number of target tiles for which the communi-
cation history is maintained can be defined by the following relation.

Tilestotal ≥ AUTO_GSconn (3.6)

Total number of tiles in the architecture is given by the parameter Tilestotal . AUTO_GSconn
gives the number of tiles with whom the given tile may possibly communicate. This pa-
rameter represents the number of communication partners of the considered tile. Appli-
cation core graph, which was shown in the figure 3.1, is used to determine the number of
communication partners. The number of monitored communication partners is the sec-
ond important parameters of our concept. The quantitative evaluation of the parameter
AUTO_GSconn is also discussed in the section 3.1.2.

3.1.1.2. Analyzing communication history

In this phase, the communication history obtained during the first phase is analyzed and
the target tiles are sorted in the order of increasing communication locality. In addition,
it is checked if the individual entries qualify for being served via connection-oriented
traffic. A destination tile qualifies for an AUTO_GS connection if it receives the amount of
data which is above the given threshold of the communication bandwidth of the source
tile. The threshold for that data amount is represented by the number of packets per
measurement cycle time AUTO_GScycle and is represented by the relation 3.7.

Tiletgt_curr_data ≥ Link_BW/AUTO_GSconn × pkt_size (3.7)

Where Tiletgt_curr_data represents the data sent to the destination tile which is being eval-
uated as a candidate to be served via GS connection. Link_BW gives the total number
of flits sent out by the source tile in the monitoring interval. If a target tile satisfies the
condition represented by the relation 3.7, it is considered as a hotspot. The tiles which do
not qualify against this condition are marked as cold-spots.

3.1.1.3. Establishing AUTO_GS connections

In this phase, the GS connections are set up after the communication history analysis
phase is over. Connections are established to the tiles which were marked as hotspots.
Only those hotspot tiles are considered for new connections for which the GS connections

48

3.1. Communication Resource Management

do not exist. In order to prevent complete starvation of best effort traffic, one virtual chan-
nel is always left over for the BE communication. Equation 3.8 describes this condition.

AUTO_GSmax = VC_CNT − 1 (3.8)

AUTO_GSmax denotes the maximum number of AUTO_GS connections which can be
established. If there are more hotspots than the maximum allowed connections, the uti-
lization of existing AUTO_GS connections is evaluated according to the relation 3.7. In
the case where the established GS connection is found to be underutilized, it is released.
If there are more hotspot candidates than the AUTO_GSmax even after releasing the con-
nections to the cold-spots, the ones with higher data share Tiletgt_curr_data are served via
connection-oriented traffic. Once the GS connections are established for the hotspots,
they are allocated a fixed share of the link bandwidth. The remaining candidates are still
served via best effort traffic. The details specific to the implementation of our concept are
provided in section 4.2.

3.1.2. Evaluation using SystemC Modeling and Simulation

Cycle accurate parameterizable SystemC models of the network interface and NoC router
are implemented to evaluate the proposed AUTO_GS concept. SystemC-based frame-
work results in lesser modeling effort and faster simulation time as compared to the RTL
simulation. For AUTO_GS concept, the Network on Chip related parameters are set to
a fixed configuration. The purpose of this was to focus on the evaluation of AUTO_GS
parameters. A 10x10 mesh based Network on Chip is used for the investigation of the
AUTO_GS concept. Network on Chip router model represents the functionality of iNoC
as described in section 2.4.3.2. XY routing and wormhole switching are set as routing and
switching techniques respectively. Link transmission delay of 2 cycles, VC reservation de-
lay of 1 cycle and throughput of 1 flit/cycle/port is assumed. These numbers are chosen
to get results comparable to a hardware implementation. The number of virtual channels
in the network interface and NoC routers is set to 4. The VC buffer depth is configured to
hold 4 flits. In addition, the packet size of 6 flits is chosen. Best effort communication is
set a default for all virtual channels unless the GS communication is requested.

For each scenario, the results are obtained by taking an average of ten independent sim-
ulations over 106 cycles. Network on Chip clock frequency is set to 100MHz. Measure-
ments are started after a warm up time of 10,000 cycles. A protocol overhead of 1 flit per
packet is assumed for packet switching communication as compared to the connection-
oriented communication. This is a valid assumption, since additional information such as
source and destination network address contained in the head flit, need to be included in
each packet for best effort traffic. Compared to the best effort traffic, GS connections have
no protocol overhead once the connection is established. Two configurations are com-
pared against each other: As a reference, a software-controlled communication resource
management approach is considered [20]. It is named Reference in the evaluations. The
above-mentioned approach analyzes the run-time traffic information of the tiles in a cen-
tralized software instance. The nature of communication between different nodes, guar-
anteed service or best effort, is chosen according to the decisions of the software instance.

49

3. Communication Resource Management and Software Communication Support

For the second configuration, the proposed hardware support in the network interface is
considered. The configuration related to our concept is referred as AUTO_GS.

3.1.2.1. Synthetic Tra�c

Synthetic traffic is used as input stimuli for the following investigations. We have used
two different traffic patterns, which are widely used in Network on Chip related evalu-
ations [100] [106] [45]. The first type of traffic pattern is known as uniform random in
which each node sends data to other nodes in the architecture with same data rate. How-
ever, the selection of the nodes in the architecture is done on a random basis. The other
traffic pattern is the hotspot, which belongs to the class of non-uniform traffic patterns
and exploits the communication locality between network nodes. In hotspot traffic pat-
tern, each node sends a major percentage of its traffic to a given set of node(s). Whereas,
the remaining percentage of the traffic is uniform random. The data rate is controlled by
the parameter called flit injection rate. Flit injection rate is defined in flits/cycle/node. It
can be varied per node between 0 and 1 flit per cycle.

For synthetic traffic based evaluations, the number of communication partners per node
AUTO_GSconn is varied. Keeping in view the above-mentioned Network on Chip param-
eters for simulation, AUTO_GScycle is set to 4160 clock cycles according to the relation 3.1.
It comes out to be 41.6µsec regarding the clock frequency of 100MHz. Keeping in view
the number of virtual channels, AUTO_GSmax is fixed to 3 for following investigations.
One virtual channel is always reserved for best effort traffic.

At the start, when no GS connections exist, best effort is the default communication mech-
anism. The software-based Reference configuration and the proposed hardware-based
AUTO_GS concept monitor the frequently used communication flows and establish GS
connections to them. In three simulation scenarios, the number of communication part-
ners i.e. AUTO_GSconn is varied. Within each scenario, the flit injection rate is increased
linearly. We have compared the utilization of Network on Chip in both Reference and
AUTO_GS configurations. The utilization is measured in terms of the number of flits
which are transmitted. Figure 3.4 shows the total number of flits transmitted by the
Reference and AUTO_GS mechanisms for both uniform and hotspot traffic types. Refer-
ence_uniform and Reference_hotspot denote the results of the Reference configuration for
the two applied traffic types. AUTO_GS_uniform and AUTO_GS_hotspot represent the
values of AUTO_GS configuration for uniform and hotspot traffic patterns respectively.

AUTO_GS configurations perform better than the corresponding Reference configura-
tions for both uniform and hotspot traffic. The difference between Reference and the
proposed concept comes from the fact that the AUTO_GS configuration utilizes low pro-
tocol overhead GS communication in more efficient manner. AUTO_GS hardware sup-
port requires smaller time to make decisions for communication resource management
and thus routes more traffic via connection-oriented communication. For a given num-
ber of communication partners, the number of flits increase with the increase in injec-
tion rate for all configurations. The increase in the transmitted data at higher injection
rates is more observable for uniform traffic as compared to the hotspot traffic. This
is due to the reason that the traffic is uniformly distributed in the uniform traffic pat-
tern and the number of virtual channels which can be used for connection-oriented traf-

50

3.1. Communication Resource Management

fic are limited. When the number of communication partners are increased from 4 to
8, the amount of traffic in increased to 38% for Reference_uniform. As compared to
AUTO_GS_uniform, AUTO_GS_hotspot reduces the NoC utilization to a greater extent
especially when the number of communication partners increase. This happens due to
the fact that hotspot traffic leads to skewed communication patterns in which some nodes
receive a larger share of traffic. These nodes become ideal candidates for being served
via the AUTO_GS connections and hence result in getting more benefit from AUTO_GS
concept. When AUTO_GSconn is set to 8, the NoC utilization can be reduced up to 20% in
AUTO_GS_hotspot configuration compared to the Reference_hotspot.

0.2 0.4 0.6 0.8

1

1.5

2

2.5

· 106

flit injection rate

To
ta

lN
um

be
r

of
Fl

it
s

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(a) AUTO_GSconn = 4

0.2 0.4 0.6 0.8

1

1.5

2

2.5

· 106

flit injection rate

To
ta

lN
um

be
r

of
Fl

it
s

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(b) AUTO_GSconn = 6

0.2 0.4 0.6 0.8

1

1.5

2

2.5

· 106

flit injection rate

To
ta

lN
um

be
r

of
Fl

it
s

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(c) AUTO_GSconn = 8

Figure 3.4.: Network utilization for synthetic traffic

Figure 3.5 shows the average packet latency analysis for the described evaluation setup.
AUTO_GSconn is varied between three different values from 4 to 8. Within each scenario,
flit injection rate is scaled linearly from 0.2 to 0.8. For a given number of communica-

51

3. Communication Resource Management and Software Communication Support

tion partners, higher packet latency is observed with the increase in injection rate as the
network starts getting saturated. In general, both Reference configurations show higher
average packet latency compared to the AUTO_GS configurations. This is due to the fact
that the Reference configurations require more time in order to react to the run-time traffic
changes as compared to the AUTO_GS hardware support. As a consequence, Reference
configurations route larger share of traffic through best effort communication instead of
using GS connections. The high share of best effort communication results in the increased
hop latency which is due to the additional reservation delay of 1 cycle per node for each
packet. Whenever the best effort head flit enters into a router, the buffer inside the router
has to be temporarily reserved for this packet. In the case of GS communication, the
reservation is required only at the start of the connection. Therefore, the subsequent flits
do not experience the reservation latency. Both Reference and AUTO_GS configurations
show lesser packet latency for uniform traffic as compared to the hotspot traffic because
the hotspot traffic leads to higher network congestion. For injection rate of 0.8, AUTO_GS
shows latency reduction of up to 28% as compared to the Reference for hotspot traffic.
When the number of communication partners is increased from a lower value to a higher
value, average packet latency reduces for a given injection rate. This is due to the reason
that the outgoing traffic gets distributed between a relatively higher number of nodes.

Finally, the energy consumption for data transmission is analyzed for the Reference and
AUTO_GS configurations. For this purpose, the term Communication Related Energy
(CRE) consumption is introduced. CRE is defined as the energy consumption, which is
directly related to the data transmission in the network. The energy consumed by the
Network on Chip router and the network interface is measured by post-synthesis power
analysis. Value change dump files are used to get the toggle rates. Afterward, Synopsys
Power Compiler is used to estimate the power.

The simulation parameters, which were used for the network utilization and latency eval-
uations, are also used for the energy consumption measurements. The number of mon-
itored communication flows per node are varied from 4 to 8. The most frequently used
flows are detected and GS connections are set up for them. However, the number of con-
nections which can be established is limited to 3 according to the equation 3.8. In our case,
the idle energy consumption for the NoC router was measured to be 7.5mW. Whereas the
network interface consumes the idle energy of 6.1mW. Idle energy consumption consists
of the static power as well as dynamic power resulting from the clock signal. The dif-
ference between the total and the idle energy consumption is the communication-related
energy consumption, which is plotted in figure 3.6. The communication-related energy
has been focused in these results as this is the energy consumption which is influenced by
our concept. Static energy consumption is agnostic from the concept and hence has not
been analyzed.

AUTO_GS configuration saves more interconnect power compared to the Reference. In
the case of injection rate of 0.8, AUTO_GS can reduce the CRE by 26% compared to the
Reference configuration for hotspot traffic. The reduction in the saved energy relies on
the fact that the amount of best effort communication is higher in the Reference configu-
ration as compared to the AUTO_GS. Best effort communication consumes more energy
because of the reservation process which has to be done for every best effort packet in
each subsequent router in the path. In addition, the best effort protocol overhead leads to

52

3.1. Communication Resource Management

0.2 0.4 0.6 0.8

10

20

30

40

50

flit injection rate

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(a) AUTO_GSconn = 4

0.2 0.4 0.6 0.8

10

20

30

40

50

flit injection rate

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(b) AUTO_GSconn = 6

0.2 0.4 0.6 0.8

10

20

30

40

50

flit injection rate

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(c) AUTO_GSconn = 8

Figure 3.5.: Average packet latency for synthetic traffic

the transmission of additional flits which results in higher energy consumption as com-
pared to GS traffic. With the increase in injection rate, the difference between the two ap-
proaches becomes more observable as shown in the figure 3.6. AUTO_GS_hotspot shows
more energy saving as compared to AUTO_GS_uniform because of the higher number of
flits using the connection-based traffic.

3.1.2.2. Real World Applications

Four real world applications are selected for the investigation of AUTO_GS concept: Video
Object Plan Decoding (VOPD), MPEG4 video decoding, Picture-In-Picture (PIP) and Multi-
Windows Display (MWD). These high-end video processing applications possess diverse
communication requirements and are widely used for System on Chip performance eval-
uations [133] [98]. Bertozzi et al. represented the communication behavior of these appli-

53

3. Communication Resource Management and Software Communication Support

0.2 0.4 0.6 0.8

0

2

4

6

8

· 10−6

flit injection rate

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(a) AUTO_GSconn = 4

0.2 0.4 0.6 0.8

0

2

4

6

8

· 10−6

flit injection rate

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(b) AUTO_GSconn = 6

0.2 0.4 0.6 0.8

0

2

4

6

8

· 10−6

flit injection rate

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference_uniform
AUTO_GS_uniform
Reference_hotspot

AUTO_GS_hotspot

(c) AUTO_GSconn = 8

Figure 3.6.: Communication related energy consumption for synthetic traffic

cations in the form of application core graphs [9]. They have also proposed the mapping
of the application tasks on the processing cores through an algorithm, which optimizes
the communication between the cores. We have used the same application task mapping
in our simulation framework which is proposed by the above-mentioned state of the art
concept. The application task mapping results in the allocation of a given number of cores
to each application. Mapping of an application to the number of processing cores and the
application execution time while using only best effort communication are provided in the
table 3.1. Each application is mapped independently to the center of the mesh for each
simulation run. The number of monitored communication flows AUTO_GSconn is chosen
by keeping in view the assigned processing cores to each application. AUTO_GScycle is
changed to three different values in respective different scenarios to check its impact on
the performance of our concept. In the first scenario, AUTO_GScycle is set to 41.6µsec,
which represents the lowest possible value of monitoring interval according to the rela-

54

3.1. Communication Resource Management

Application Number of cores Execution time (ms)
VOPD 12 5.6
MPEG 14 6.3

PIP 8 4.3
MWD 14 5.7

Table 3.1.: Real world video processing applications

tion 3.1. Subsequently, the monitoring interval is increased to multiple of this value in
two further scenarios. Monitoring interval is always less than the execution time of each
application. The remaining simulation parameters are chosen to be the same as in the case
of synthetic traffic evaluations.

Figure 3.7 shows the total amount of traffic which is generated by the four applications
over the network. AUTO_GS configuration leads to significantly less traffic for real world
applications when compared with the Reference configuration. In the Reference configu-
ration, a centralized software instance decides to use GS or BE communication depend-
ing on the monitoring information. In the proposed AUTO_GS configuration, the hard-
ware support in the network interface is responsible for assigning the communication
resources. Hardware-controlled GS connections react faster to the run-time traffic condi-
tions as compared to the Reference and hence major share of the traffic uses connection-
oriented communication. The difference in the amount of traffic reduction between the
two configurations is different for each application, which depends on its communica-
tion behavior. MPEG and VOPD applications have higher communication demands and
possess heterogeneous communication requirements between different nodes in compar-
ison to other two applications. Therefore, both of these applications show more reduction
in network utilization compared to PIP and MWD, when AUTO_GS concept is applied.
When the monitoring interval is increased in three different scenarios, the saving in the
amount of traffic is reduced for MPEG application. Other applications do not show an
observable difference when monitoring interval is changed. This is due to the fact that
the MPEG application shows more variation in its communication behavior over time as
compared to other applications.

Figure 3.8 shows the average packet latency while executing the four applications. All
applications profit from AUTO_GS concept in terms of packet latency. The packet latency
of MPEG in the case of the Reference is higher as compared to the other applications. This
is due to the fact that the MPEG generates higher network load. AUTO_GS brings a re-
duction of 35% in packet latency for MPEG application. In the case of VOPD application,
the average packet latency is reduced by 26% in AUTO_GS configuration as compared to
the Reference configuration. MWD and PIP being low bandwidth applications profit rel-
atively less from our concept as compared to MPEG and VOPD. The impact of increasing
monitoring interval can be observed in the form of increased average packet latency for
MPEG application. Similar to network utilization evaluations, other applications do not
see the observable difference in packet latency when the monitoring interval is changed.

Figure 3.9 shows the energy consumption for the applications. The communication-related
energy consumption was analyzed for each application as explained in the evaluations for
synthetic traffic. The PIP and MWD applications, which have relatively low bandwidth

55

3. Communication Resource Management and Software Communication Support

MPEG MWD PIP VOPD

0

1

2

3

4

· 105

To
ta

lN
um

be
r

of
Fl

it
s

Reference AUTO_GS

(a) AUTO_GScycle = 41.6µsec

MPEG MWD PIP VOPD

0

1

2

3

4

· 105

To
ta

lN
um

be
r

of
Fl

it
s

Reference AUTO_GS

(b) AUTO_GScycle = 83.2µsec

MPEG MWD PIP VOPD

0

1

2

3

4

· 105

To
ta

lN
um

be
r

of
Fl

it
s

Reference AUTO_GS

(c) AUTO_GScycle = 124.8µsec

Figure 3.7.: Network utilization for real world applications

requirements, reduce their communication-related energy consumption by around 25% if
AUTO_GS configuration is deployed. VOPD and MPEG show a reduction of around 30%
and 33% in consumed energy as compared to the Reference configuration. The amount
of energy saving reduces with the increase in monitoring interval for MPEG application
following the same reason as stated in network utilization and packet latency results. The
evaluations which are presented above, highlight that hardware managed GS connections
lead to better utilization of communication resources and reduce the communication la-
tencies suffered by applications. In addition, energy consumed by the communication
infrastructure is reduced. The details of the hardware extensions in the network interface
design which correspond to the proposed concept are provided in section 4.2.

56

3.2. Inter-tile Software Synchronization Support

MPEG MWD PIP VOPD

10

15

20

25

30

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference AUTO_GS

(a) AUTO_GScycle = 41.6µsec

MPEG MWD PIP VOPD

10

15

20

25

30

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference AUTO_GS

(b) AUTO_GScycle = 83.2µsec

MPEG MWD PIP VOPD

10

15

20

25

30

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference AUTO_GS

(c) AUTO_GScycle = 124.8µsec

Figure 3.8.: Average packet latency for real world applications

3.2. Inter-tile Software Synchronization Support

Modern real-world applications benefit from task level parallelism. Through task level
parallelism, applications are able to distribute their workload on underlying process-
ing resources. However, the amount of computational workload in such applications is
not the same during entire execution time. There is a phase where the application goes
through the sequential execution on a single processing resource. Sequential execution
represents the state of the application which does not benefit from the distribution of
workload on processing resources as stated by Amdahl’s law [65]. However, sequential
execution is followed by the parallel execution, which desires fine-grained parallelism
and hence more computation power is required at this stage. In parallel execution, better
performance can be achieved through task level parallelism i.e. by spawning tasks on the
available processing resources. The behavior of real world applications with sequential
and parallel execution is shown in the figure 3.10.

57

3. Communication Resource Management and Software Communication Support

MPEG MWD PIP VOPD

0

0.2

0.4

0.6

0.8

1

· 10−6

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference AUTO_GS

(a) AUTO_GScycle = 41.6µsec

MPEG MWD PIP VOPD

0

0.2

0.4

0.6

0.8

1

· 10−6

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference AUTO_GS

(b) AUTO_GScycle = 83.2µsec

MPEG MWD PIP VOPD

0

0.2

0.4

0.6

0.8

1

· 10−6

En
er

gy
co

ns
um

pt
io

n
[J

ou
le

]

Reference AUTO_GS

(c) AUTO_GScycle = 124.8µsec

Figure 3.9.: Communication related energy consumption for real world applications

In order to exploit the available parallelism on a many-core DSM architecture, an appli-
cation may spawn multiple tasks/processes which can be mapped on the available cores
either within the same compute tile or in different compute tiles. The processes mapped
within the same compute tile communicate over the shared system bus whereas the pro-
cesses which are distributed in different tiles communicate over Network on Chip. When
tasks belonging to the same application are spawned on the processing nodes which be-
long to different tiles, they suffer from communication delays. The communication over-
head between remote tasks plays a significant role in defining overall application perfor-
mance. One part of the communication overhead comes from the fact that the remote tasks
need to exchange data between them. Another important part of the overhead is associ-
ated with distributing and executing the computation workload over the distributed pro-
cessing resources. We named the operation of distributing computation workload over
different tiles as remote task spawning.

58

3.2. Inter-tile Software Synchronization Support

Sequential

Execution

Parallel

Execution

Sequential

Execution

Figure 3.10.: Task level parallelism in real world applications

In a DSM architecture, software layers include distributed operating system and run-time
resource management system as introduced in the section 2.4.2. These software layers are
required to manage the execution of applications over the distributed platform resources.
However, in order to perform the above-mentioned job in an efficient manner, the soft-
ware needs appropriate support from the underlying architecture. Communication sup-
port to facilitate the execution of applications which are mapped on different tiles is the
basic requirement towards hardware architecture. Communication support can further
be classified into data communication support and task synchronization support for ap-
plications. Data communication support includes remote memory access mechanisms as
detailed in section 2.3.2. Task synchronization mechanisms are required during workload
distribution and execution. In the scope of this work, we have focused on synchronization
needed for remote task spawning operation. For data communication and inter-tile syn-
chronization during task spawning, conventional software dominated mechanisms incur
large performance overhead. Therefore, in order to exchange data or to achieve synchro-
nization between communicating processes mapped on different tiles, efficient hardware
supported mechanisms are desired which offload the software from these duties.

As this work has been carried out in the scope of invasive computing, the software layers
are considered, which are described in section 2.4.2. However, the scope of our contribu-
tions is not limited to invasive computing and can be applied to any distributed shared
memory based platform. In invasive computing, the communication requirements of an
application are expressed by the so-called constraints. These constraints are evaluated
by the operating system at run-time, taking in consideration the current utilization of

59

3. Communication Resource Management and Software Communication Support

the hardware resources including communication infrastructure. The operating system
contains low-level driver like sub-routines to configure the communication resources ac-
cording to the application requirements. Network on Chip including routers and network
interface have to support these communication demands accordingly.

Hardware support for remote load/store accesses is required for legacy shared memory
programming model. In addition to remote load/stores, modern System on Chip architec-
tures are equipped with remote direct memory access accelerators to increase the transfer
efficiency of data copy operations. The above-mentioned mechanisms are supported in
most of the state of the art DSM architectures. These mechanisms for data communication
are realized targeting high performance for low abstraction communication transactions
on the underlying architecture. Therefore, direct utilization of these strategies by the ap-
plication software results in the high development effort as well as large performance
overhead [38]. Keeping in view these aspects, we have designed communication support
for software layers in our work. In the scope of assisting software layers over the DSM
architectures, the first contribution of this work is the efficient asynchronous data trans-
fer hardware support which can perform programmable data transfer operations over
Network on Chip. In addition, the above-mentioned hardware support is capable of han-
dling data transfer signaling internally without requiring software involvement. In order
to investigate the data transfer hardware support, we have used the proposed methodol-
ogy for data prefetching in invasive computing [60]. Details about the data prefetching
concept and the associated evaluations will follow in section 3.2.1. The synchronization
support for software layers in DSM architectures during task spawning is the second con-
tribution offered by this work [145]. We have introduced remote task spawning hardware
support to offload the software during workload distribution. Details of the proposed
contribution for remote task spawning will follow in section 3.2.2.

3.2.1. Data prefetching through asynchronous data transfer support

Data access delays make a significant share of overall execution time over Network on
Chip based systems. This is due to the fact that the application has to suffer from large
communication and synchronization delays while transferring data between remote tiles.
Therefore, in order to extract maximum performance from a distributed shared memory
architecture, the application developer has to exploit data locality by avoiding frequent
NoC accesses. Caches exploit data locality and hence result in improving the system per-
formance. However, because of the limitation of available on-chip memory, caches are
helpful for smaller data sets. In addition, cache coherence becomes a major challenge
over a distributed interconnect like Network on Chip when the data is shared between
multiple tiles and needs to be frequently modified [113]. The above-mentioned consider-
ations highlight the importance of mechanisms which ensure the placement of frequently
accessed large data sets close to the processor by supporting low-overhead data transfer
operations between tiles.

DSM architectures contain tile local memory in each compute node as shown in the fig-
ure 2.15. This memory can be accessed with significantly lesser latency as compared to
the remote memory. However, the limited size of this memory because of being on-chip
SRAM, emphasizes the need for its efficient utilization. Researchers have proposed to del-

60

3.2. Inter-tile Software Synchronization Support

egate the management of this data storage to the application developer [72]. Application
controlled memory management relieves operating system from memory handling oper-
ations and hence results in extracting better performance from the local storage. In this
manner, the frequently accessed data can be placed in the local memory and the costly
data transfers over Network on Chip can be avoided. However, this kind of memory
management requires changes in both software and hardware levels. On the software
side, the tile local memory handling at the application level should be allowed by the
operating system. On the hardware front, the architecture should support direct mem-
ory access transfers between remote memory and the tile local memory with minimum
software involvement.

In Invasive Computing, an efficient prefetching methodology is conceived to manage data
in tile local memory. For real world applications like matrix multiplication or video fea-
ture detection, which operate on large sets of data, it is not possible to make the entire
data set available in the tile local memory. Therefore, in order to reduce data access de-
lays, the required data sets should be prefetched parallel to the application execution. The
prefetching ensures the availability of frequently accessed data in the tile local memory
and hence reduces the number of memory accesses outside the tile boundary. As a part of
the prefetching support at the software level, the invasive computing proposes changes
in the development language. X10 language, which is incorporated in invasive comput-
ing, contains explicit alloc and free function calls. These functions enable the application to
have control of the memory management. In order to initiate a data transfer operation to
the tile local memory, LocalMemory constraint is introduced in X10. Figure 3.11 shows an
example X10 code, which shows the data transfer to tile local memory using the prefetch-
ing mechanism. In this example, the application developer uses the future construct to
initiate the data transfer as a prefetching operation. The force primitive waits for the
data transfer to finish and is used for the synchronization within the application. Keeping

val src = TileLocalMemory.alloc[int](cs);
val address = id.ordinal * cs;
val future = data.fetch(address , src);
... // continue with the processing while the data is being copied

into tile local memory
val dest = future.force();
assert src == dest;
... // use the tile local data in `src `

Figure 3.11.: Example code showing the data transfer through prefetching in X10

in view the above-mentioned prefetching methodology, it becomes essential that the effi-
cient mechanisms for asynchronous data transfer between tiles are supported. In state of
the art systems, direct memory access is incorporated to move data between memories.
The DMA support improves the performance by offloading the software from the data
transfer operation. With the introduction of Network on Chip, DMA accelerators are de-
veloped which transfer data between different remote nodes [134], [114], [16]. However,

61

3. Communication Resource Management and Software Communication Support

the above-mentioned approaches require large software contribution to program DMA
accelerator and supervise data transfer handshake. In the above-mentioned research con-
tributions, the subroutines to program the DMA accelerators are heavy operating system
calls, which incur large overhead resulting from memory management and data transfer
handshake. Therefore, the overhead to utilize the DMA support is significant and may
result in performance degradation [4].

In order to support asynchronous data transfer, our approach requires operating system
software and hardware changes. As stated above, operating system delegates the man-
agement of tile local memory to applications [104]. Therefore, the memory management
overhead for data transfer between different tiles through DMA is minimal. In addition,
the duty of supervising handshake between different tiles for direct memory access oper-
ation is handed over to hardware. Describing further details of the software contributions
is not in the scope of this work. On the hardware side, we have introduced an intelligent
support on the top of state of the art DMA accelerator which supervises the handshake
for data transfer operation without operating system involvement. The DMA support has
been positioned inside the network interface, which makes this service uniformly avail-
able to all cores in the tile. Application software on the sender side configures the DMA
unit via memory-mapped registers. Therefore, the direct memory access support is eas-
ily accessible and the overhead to initiate a DMA operation is very less. The introduced
hardware support in the network interface performs the bookkeeping of DMA operation
internally. This means that the software is completely offloaded from supervising the sta-
tus of direct memory access on both transmit and receive sides. Direct memory access
support in the network interface is capable of transferring data through both best effort
and guaranteed service communication. If the Network on Chip is supporting Quality of
Service communication for the application, the DMA unit transparently uses the reserved
virtual channels for transferring data and hence satisfies the QoS requirements.

3.2.2. Hardware-assisted remote task spawning

We have considered the task spawning operation as a case study to demonstrate the need
for efficient synchronization methodologies between remote tiles in DSM architectures. In
order to highlight the overheads associated with the existing remote task spawning con-
cepts, we have considered an example. The example presents the state of the art software
controlled task spawning operation between two tiles through a message sequence chart.
This message sequence chart is shown in the figure 3.12. In the considered example, the
task spawning model is assumed, which requires copying of complete code and data as-
sociated with the spawned task from source to the destination tile. As represented in the
figure 3.12, the remote task spawning could be divided into three sub-operations/steps.
In the first step, a software instance on the source tile initiates the remote direct mem-
ory access operation to move the task data. When the data transfer is completed, the
task pointer which points to the start address of the code in the destination tile is sent
by the source tile. Afterward, the software clears the memory on the source tile which
was allocated for the spawned task. In such conventional task spawning methodologies,
software triggers each subsequent sub-operation after the completion of its predecessor
step. Sending of task data and pointer are the operations which require network access

62

3.2. Inter-tile Software Synchronization Support

Processor

Source Tile

Tile local Memory

Destination Tile

task_pointer_dst

write_task_pointer_dst_ack

write_task_pointer_dst

dma_transfer

Network Interface Network Interface

write_task_data

dma_ack

dma_status = ‚0’

…………………

dma_status = ‘1’

configure_dma

poll_dma_status

transfer_task_data

send_task_pointer_dst

spawn_task_remote

poll_task_status

send_task_pointer_dst

trig_task_pointer_src

task_status = ‚0’

…………………

task_status = ‘1’

Software

overhead

Software

overhead

Figure 3.12.: Message sequence chart showing software dominated inter-tile task spawn-
ing

and hence suffer from large communication delays. These communication delays result in
performance overhead because the software is waiting for the completion of task spawn-
ing sub-operations and can not proceed with actual application processing. The impact of
task and data pointer exchange delays on the system performance is quantitatively eval-
uated in the section 3.2.3. Keeping in view above-mentioned aspects, efficient means are
required to handle task spawning operations in Network on Chip based architectures.

In Network on Chip based DSM architectures, network interface links computation ele-
ments (tiles) and the communication infrastructure (NoC). Therefore, keeping in view its
functional significance, we propose hardware support for inter-tile task spawning inside
the network interface. According to our concept, the network interface provides the re-
quired communication and synchronization support during task spawning. The network
interface performs the synchronization related to remote task spawning by handling dif-
ferent phases in hardware and thus offloads the software from synchronization duties.
In addition, the presented hardware support handles the synchronization by keeping in
view the distributed nature of NoC and thus relieves the tile interconnect from status
polling requests. Inter-tile task spawning supported by proposed methodology is pre-
sented in the figure 3.13.

In our approach, software is only required to initiate the task spawning request by config-
uring task spawning hardware support in the network interface. Afterward, the proposed
support initiates the transfer of task data by configuring remote direct memory access.
Upon successful completion of the DMA operation, the task pointer is sent to the desti-
nation tile. When task pointer is sent to the destination, the software on the source side
is informed through an interrupt to indicate the completion of task spawning request.
The proposed approach delivers higher performance when compared with conventional
software-driven approaches because of the fact that hardware holds a larger share of syn-
chronization duties. In addition, only an extension of the network interface architecture
is required instead of modifying many architectural components in comparison to state of
the art hardware based methodologies. The overview of state of the art approaches was
provided in section 2.3.4.

63

3. Communication Resource Management and Software Communication Support

Processor

Source tile

Tile local memory

Destination tile

task_pointer_dst

dma_transfer

Network interface Network interface

write_task_payload

dma_ack

dma_status = ‚0’

task_status = ‘0’

.…………………

dma_status = ‘1’

task_status = ‘0’

configure_dma

spawn_task_remote

(transfer_task_data,

 send_task_pointer_dst,

 trig_task_pointer_src)

dma_status = ‘1’

task_status = ‚0’

………………….

dma_status = ‘1’

task_status = ‘1’

trig_task_pointer_src

write_task_pointer_dst

task_pointer_dst_ack

send_task_pointer_dst

Figure 3.13.: Message sequence chart with network interface managed inter-tile task
spawning [145]

For remote task spawning operation, the network interface uses the direct memory ac-
cess support to move the task data to the destination tile. On the other side, sending of
task pointer is the latency sensitive operation which requires the transfer of fixed pay-
load size message. Handling such latency-sensitive communication with conventional
network message types reduces performance [149]. Therefore, it is beneficial that task
pointers are handled as special network messages in the network interface. In invasive
computing, the communication between agent instances to collect resource information
and bargain resources represents another use case which benefits from the usage of special
network messages. The need for low latency communication with smaller payload size is
not necessarily restricted to software-software communication. In state of the art many-
core architectures, hardware accelerators assist operating system in task assignment and
scheduling duties [116] [136]. The communication between software and such hardware
accelerators across the Network on Chip is latency sensitive and has a big impact on the
system performance. The example of such communication is the sending of task pointers
i.e. i-lets from the operating system to the CiC module in invasive computing.

To address the above-mentioned communication requirements, we have introduced the
notion of two special message. A system message is the first kind among these message
types, which is issued by the network interface to enable fast and low latency communi-
cation between software instances. We have named these message as system i-let in our
concept. A system i-let is initiated by writing the memory-mapped registers of the net-
work interface. At the receiving tile, an interrupt is issued on the arrival of a system i-let.
This mechanism allows an efficient interaction of software instances which are mapped
on distributed computation resources by minimizing the effect of latency introduced by
the Network on Chip. In order to perform low latency task pointer exchange between
different tiles, another special message type is introduced. In the scope of our work,
these messages are named as task i-lets.At the sender tile, the sending of task pointer
is triggered by writing to the memory-mapped registers of the network interface. At the

64

3.2. Inter-tile Software Synchronization Support

receiving tile, task i-lets are passed to the hardware accelerator which performs task as-
signment. In Invasive computing, CiC is the unit which assigns task i-lets to different
processing cores keeping in view the application requirements and hardware status [117].
The implementation details of the system-ilet and task-ilet are provided in the section 4.3.

3.2.3. Evaluation using SystemC Modeling and Simulation

In order to investigate the software communication support, we evaluated the proposed
concept for asynchronous data transfer and task spawning. The evaluations are per-
formed in the SystemC based modeling and simulation framework. For the following
investigations, only best effort communication mechanism in Network on Chip is used.
The modeling of communication constraints and the constraint evaluation performed by
the operating system, as discussed in section 3.2, is done at an abstract level. Abstracted
behavioral models of processing cores and applications are used for traffic generation.
The remaining parameters are kept the same as described in section 3.1.2.

The communication graphs of four multimedia applications, which were introduced in
section 3.1.2.2 are used: Video Object Plan Decoding, MPEG4 video decoding, Picture-In-
Picture, and Multi-Windows Display. In the first step, hardware support for asynchronous
data transfer is evaluated as detailed in section 3.2.1. Each application is executed indi-
vidually on the simulation platform. The applications use direct memory access hard-
ware support for transferring data between tiles. For the following investigations, the
proposed approach in which the network interface is equipped with the proposed data
transfer support is referred as NIPF. The configuration without the proposed hardware
support is named Reference. Reference configuration also uses the RDMA for data trans-
fer. However, the DMA support in the Reference configuration is not capable of handling
the handshaking of data transfer operation between source and destination nodes. The
difference between Reference and NIPF comes from the proposed synchronization sup-
port for asynchronous data transfer.

Figure 3.14 shows the normalized execution time of the applications for data transfer
support evaluation under different load situations. Varying load situations are created
through changing the flit injection rate of the background traffic. Uniform random traf-
fic injected by the nodes of the architecture, which are not occupied by the investigated
application, makes the background traffic. Flit injection rate is changed from 0.2 to 0.8 in
four different scenarios. As described in section 3.1.2.2, the under-investigation video ap-
plications have different communication characteristics. PIP and MWD benefit relatively
less from proposed hardware support because of being low bandwidth applications. In
comparison MPEG and VOPD show improvement in execution time by a higher amount.
The results show that NIPF can improve the execution time by 30% compared to the Ref-
erence configuration. The additional latency in the Reference comes from the fact that the
software is involved in supervising the status of data transfer operation on both sender
and receiver sides. In four different scenarios related to the load changes, it can be ob-
served that the high bandwidth applications show higher performance gain compared to
the other applications when the background traffic increases.

65

3. Communication Resource Management and Software Communication Support

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NIPF

(a) background_traffic_injection_rate = 0.2 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NIPF

(b) background_traffic_injection_rate = 0.4 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NIPF

(c) background_traffic_injection_rate = 0.6 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NIPF

(d) background_traffic_injection_rate = 0.8 Flits/Cy-
cle/Node

Figure 3.14.: Execution time of real world applications for data prefetching evaluations

In the next step, the task spawning hardware support is evaluated in the simulation
framework. Similar to the previous scenarios, each application is executed individually
on the platform. The initial number of cores assigned to each application is chosen ac-
cording to the table 3.1. During execution, each application spawns its computation to
twice the number of cores which were initially assigned to it. The applications use task
spawning mechanism to spawn their computation as detailed in section 3.2.2. The pro-
posed approach in which the network interface is equipped with task spawning support
is referred as NITS. The configuration without the proposed hardware support in the net-
work interface is named Reference. Reference configuration handles the synchronization
between software instances for task spawning in software.

Figure 3.15 shows the normalized execution time of the applications for task spawning
under different load situations. Background traffic with varying flit injection rate is gen-
erated in four different scenarios. The results depict that NITS improves the execution
time by 47% compared to the Reference configuration. MPEG and VOPD benefit from

66

3.2. Inter-tile Software Synchronization Support

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NITS

(a) background_traffic_injection_rate = 0.2 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NITS

(b) background_traffic_injection_rate = 0.4 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NITS

(c) background_traffic_injection_rate = 0.6 Flits/Cy-
cle/Node

MPEG MWD PIP VOPD

0

0.5

1

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Reference
NITS

(d) background_traffic_injection_rate = 0.8 Flits/Cy-
cle/Node

Figure 3.15.: Execution time of real world applications for task spawning evaluations

the proposed support by larger proportion because of their higher throughput require-
ments as compared to other applications. The performance degradation in the Reference
configuration comes from the fact that the software is involved in supervising the status
of task spawning sub-operations. In four different scenarios for the background traffic
variation, it can be observed that the higher throughput applications show more perfor-
mance improvement compared to the low throughput application when the network load
increases.

67

4. Implementation of Communication Resource

Management and Software Communication

Support

In this chapter, we have specified the implementation details of the network interface
architecture. At first place, the details related to the state of the art NI functionality are
described. The state of the art network interface functionality includes features like tile
and network protocol translation and Quality of Service support. In later sections, the
hardware extensions corresponding to our proposed concepts are narrated. Section 4.2
provides the implementation aspects specific to the communication resource management
concept. Hardware realization related to the software communication support is given
in the section 4.3. Implementation of the network interface design is carried out in the
hardware description language VHDL [101].

4.1. State of the Art Network Interface Components

Since our concepts require extensions in state of the art network interface architecture, we
have followed a layered design approach. The layered design approach allows seamless
integration of the different features on the top of basic network interface functionality.
Network interface architecture is decomposed into following layers; 1) tile interface layer
defines the interface with tile interconnect, 2) protocol translation layer performs the tile-
network and network-tile translation in transmit and receive datapaths respectively, 3)
NI Buffers provide clock domain crossing and isolation of tile interface and NoC interface
layers, 4) link interface layer establishes the interface with the Network on Chip. The
network interface design with all its functional layers is shown in the figure 4.1.

Concerning the design of the network interface, the above-mentioned layered approach
offers following advantages.

• Computation and communication domain isolation which is a big motivation for
using a distributed communication infrastructure (Network on Chip)

• Independent refinement of individual network interface design layers

• Support for different NI flavors i.e. network interface for compute tiles, memory
and I/O tiles.

• Reduced design complexity

• Transparent utilization of services offered by protocol translation and link interface
layers by all modules in the tile interface

69

4. Implementation of Communication Resource Management and Software Communication Support

NI Buffers

Tile Interconnect

NoC

Router

Tile Interface Layer

Link Interface Layer

Protocol Translation Layer

Figure 4.1.: Layered design approach for network interface architecture

Figure 4.2 represents the block diagram of state of the art network interface architecture
following the above-mentioned layered approach. In the following section, the imple-
mentation details of the components within the individual layers of the network interface
architecture are provided.

4.1.1. Tile Interface Layer

Tile interface provides the communication abstraction to the applications running on dif-
ferent tiles. In other words, tile interface acts as a tile bus wrapper. We have divided
the tile interface layer into two partitions. Each partition in the tile interface corresponds
to a distinct functional unit. One of the functional units is the Remote Load/Store (RLS)
unit which services conventional remote shared memory accesses. Whereas the other unit
is the Memory-Mapped Registers (MMR) unit. The memory-mapped registers unit con-
sists of sub-modules, which are mapped to different address ranges and support different
functionalities. As shown in the figure 4.2, state of the art components in MMR unit are

70

4.1. State of the Art Network Interface Components

Packet

Classifier

Tile-Network Protocol

Translation

Tile Interconnect

 F
IF

O

V
C

_
1

Packet

Scheduler

F
IF

O

V
C

_
N

F
IF

O

V
C

_
1

 F
IF

O

V
C

_
N

F
IF

O

C
trl

F
IF

O

C
tr

l

Tile Interface TX

Network-Tile Protocol

Translation

GS Communication

BE Communication

NoC Control traffic

Tile Traffic

NoC data traffic

RLS

Unit

RDMA

Unit

QoS

Unit

Tile Interface RX

RLS

Unit

QoS

Unit

RDMA

Unit

Tile

Interface

Layer

Protocol

Translat-

-ion

Layer

NI

Buffers

Link

Interface

Layer

Figure 4.2.: Block diagram of network interface architecture with state of the art commu-
nication support

QoS and RDMA units. The block diagram of the network interface architecture with par-
titioned tile interface layer is shown in the figure 4.3.

Both RLS and MMR units in the tile interface share services in the protocol translation
layer of the NI. Each RLS and MMR unit has a distinct interface on the shared bus. Both
interfaces are mapped to two different address ranges in the memory map: the shared
memory address range and the memory-mapped registers address range. For this pur-
pose, the memory map of the system is divided into the two respective memory access
domains. Table 4.1 shows such memory map, which is also deployed in invasive com-
puting. Shared memory address range is further divided into global shared memory and
distributed shared memory. The address range for global shared memory is used to ac-
cess the memory which is shared by all tiles (for example, off-chip DDR memory). The
address range of distributed shared memory domain is divided among all tiles to make
all tile local memories accessible from each tile. Memory-mapped registers address range
contains registers which can be configured to support different services. A separate sec-
tion is reserved for I/O devices, which are shared between all tiles.

71

4. Implementation of Communication Resource Management and Software Communication Support

Tile-Network

Translation

Tile Interconnect

Network-Tile

Translation

RLS Unit

Transmit

MMR Unit

Transmit

Shared Memory

Address Range

Memory-mapped Registers

Address Range

RLS Unit

Receive

MMR Unit

Receive

Tile Out Tile In

Tile

Inteface

Protocol

Translation

Interface to Egress FIFOs Interface from Ingress FIFOs

Figure 4.3.: Network interface with partitioned tile interface

Memory access domain Start Address
(MSB)

End Address
(MSB)

Global shared memory 0x0000 0x7FFF
Distributed
shared mem-
ory

Tile 0 0x8000 0x80FF
Tile 1 0x8100 0x81FF
Tile...

Memory-mapped registers 0xC000 0xDFFF
I/O area 0xE000 0xFFFF

Table 4.1.: Memory map realized for distributed shared memory Invasive architecture

The shared memory address range is mapped in a way that it goes through the L2 cache.
The shared memory interface of the NI is used for load/store transactions through the
L1 and L2 cache hierarchy. It supports read and write transactions to remote tiles trans-
parently. The other interface, which is directly connected to the shared bus, is mapped
to the memory-mapped registers address range. The memory-mapped registers interface
is used by the software to write into the registers placed in the network interface. An
example of the compute tile can be seen in the figure 2.15 where the discussed network
interface is incorporated. The details of the micro-architecture of RLS and MMR units is
provided in the following text.

72

4.1. State of the Art Network Interface Components

4.1.1.1. Remote Load/Store (RLS) Unit

Remote load store unit is the partition in the tile interface which handles all remote shared
memory accesses originating from the tile. RLS unit is further divided into RLS Trans-
mit and RLS Receive sub-modules to accomplish the shared memory access support on
transmit and receive side datapaths respectively. RLS Transmit module processes remote
load/store requests, which are received via tile bus and triggers the tile-network proto-
col translation. Similarly, the respective receive module is triggered by the network-tile
translation whenever a corresponding request arrives in the receive datapath. As shown
in the figure 2.15, the network interface receives the physical address for remote access as
it is placed after the L2 cache. Virtual to physical address translation is already performed
at the Memory Management Unit (MMU) level. Therefore, the functionality of the RLS
unit is agnostic to the details of virtual to physical address translation. The hardware
implementation of remote shared memory access support is shown in figure 4.4.

Receive

Request

Remote

Request

Receive

Remote

Request

Prepare

Request Payload

Receive

Remote

Response

Remote

Response

Write

Payload

Wait for

Response

Trigger

Tile-Network

Translation

Remote

Request

Request

Table

Return

Response

Request

Bus

Prepare

Request

Payload

Put

Request

Receive

Response

Send

Response

Prepare

Response Payload

Transmit

Data

Path

Receive

Data

Path

Figure 4.4.: Finite State Machine (FSM) of RLS unit to support multiple outstanding re-
quests

We have implemented remote memory access support for a single word as well as for
bursts of configurable size. On the transmit side, remote shared memory requests are
received over the bus and stored in a Request Table. Request Table enables serving of
multiple outstanding requests through the split transfer AHB bus protocol. Afterward,
the request payload is prepared and then forwarded to the tile-network translation to
generate the network packet. The network packet corresponding to this request is named

73

4. Implementation of Communication Resource Management and Software Communication Support

as RLS_Req. RLS unit waits for the response of the request from the remote destination
tile. However, the tile bus is released according to the split transfer protocol. This brings
the benefit that other masters may still utilize the tile bus and thus helps in achieving
better throughput. In addition, releasing the tile bus before getting the response becomes
essential in the scenarios where message dependencies may result in a deadlock. When
the response from the destination tile arrives, it is matched in the Request Table and the
corresponding master is signaled to receive the response. On the receive side in the des-
tination tile, network-tile translation forwards remote shared memory requests to RLS
Receive unit. After receiving the request, request payload is prepared and a bus request
is initiated on the tile bus. When the slave in the destination tile returns the response, re-
sponse payload is prepared and forwarded to the tile-network translation for generating
response packet. This response packet is named RLS_Resp. When the response arrives on
the receive datapath of the source tile, network-tile translation forwards it to the transmit
side datapath and the response is returned to the master which had initiated the request.

4.1.1.2. Memory-mapped registers (MMR) Unit

Memory-mapped registers unit is the module which contains memory-mapped registers
and the associated implementation for supporting the different state of the art services
in the network interface. Depending on the functionality, which network interface has
to provide, MMR unit is further decomposed into sub-modules. Similar to RLS unit, the
corresponding transmit and receive side support for each sub-module is realized. In this
section, we have given the details of the MMR sub-modules, which realize state of the art
Quality of Service and remote direct memory access support in our design.

Quality of Service (QoS) Unit :

We have used iNoC as the communication infrastructure for our prototype. iNoC sup-
ports packet switched communication over virtual channels. Virtual channels can be used
for both best effort and guaranteed service traffic types. The data communication which
does not require QoS guarantees uses BE traffic. GS traffic is supported through end-
to-end connections providing Quality of Service guarantees. End-to-end connections are
set up by reserving the virtual channels in the entire communication path. The maximum
number of guaranteed service connections which can be established are VC_max-1, where
VC_max represents available virtual channels. The reason behind this restriction is that
one virtual channel is always left for best effort traffic to prevent complete blocking of
communication.

In order to establish a guaranteed service connection, memory-mapped registers inside
the network interface need to be configured. Details of the registers, which are required
to be written for GS connection setup, are given by the table 4.2. Dst_naddr_reg is used
by the tile-network protocol translation layer to encode the network address in the GS
head flit. The Quality of Service related parameters of requested guaranteed service con-
nection are expressed by setting Sl_reg register. Once the above-mentioned registers are
written, the head flit is issued to establish the GS connection. The head flit travels from
the source to the destination tile and performs the virtual channel reservation in the sub-
sequent routers and the network interface units.

74

4.1. State of the Art Network Interface Components

Register Description
Dst_naddr_reg Register holds 32 bit Destination Network Ad-

dress of the tile to which GS connection is estab-
lished

Sl_reg Register holds the following characteristics of the
GS connection
Bit 6: Uni/Bidirectional connection (Establish GS
connection in both transmit and receive directions)
Bit 5: Replaceable connection (Connection can be
replaced for self-optimization)
Bit 4: 1:Establish connection/0:Release connection
Bits 3-0: Service Level which defines the number
of time slots which are allocated for scheduling the
virtual channel reserved for the connection

Table 4.2.: NI memory-mapped registers for QoS support

Remote Direct Memory Access (RDMA) :

RDMA is the hardware engine realized in the network interface to support the transfer of
data between remote tiles. Multiple concurrent DMA operations between tiles are sup-
ported by the implemented hardware accelerator. The tile interface of the remote direct
memory access unit is shown in the figure 4.5. To initiate a data transfer, memory-mapped
registers are configured. Once the required parameters are written into the registers, AHB
Transmit Master reads the DMA payload and forwards it to the tile-network translation.
In order to avoid the usage of large buffers, the reading of data and the packetization are
implemented as pipelined processes. For concurrent DMA operations, RDMA Transmit
and Receive Tables are introduced.

In order to initiate a DMA transfer, the memory-mapped registers which need to be con-
figured are shown in the table 4.3. Remote direct memory access Transmit receives the
configurations written by the software and stores them in an RDMA Transmit Table. In
addition, RDMA Transmit commands the AHB Transmit Master to read payload from
Transmit Message Buffer and triggers the tile-network protocol translation to send RDMA
payload as network packets. RDMA Receive is the component which triggers AHB Re-
ceive Master to write the received payload in the Receive Message Buffer. Transmit and
Receive Message Buffers are part of the tile local memory in the transmit and receive tiles
respectively.

4.1.2. Protocol Translation

Protocol translation layer is divided between the tile-network translation and network-
tile translation modules in the transmit and receive datapaths respectively. Tile-network
translation is also referred as Packetization as it converts the requests from tile interface
layer to network packets. On the other hand, the network-tile translation is called De-
packetization.

75

4. Implementation of Communication Resource Management and Software Communication Support

 RDMA

Transmit

RDMA

Transmit Table

Tile Interconnect

AHB Master

 RDMA

Receive

Transmit

Message Buffer

AHB

Transmit Master

Receive

Message Buffer

Interface to Egress FIFOs Interface from Ingress FIFOs

Tile-Network

Translation
Network-Tile

Translation

RDMA

Receive Table

AHB

Receive Master

Figure 4.5.: Block diagram of tile interface in RDMA unit

Register Description
rdma_msg_id_reg Register holding the unique id corresponding to

the remote DMA transfer operation
rdma_payload_length_reg Amount of data as payload length to be read from

Transmit Message Buffer in words
rdma_src_reg Start address in the tile local memory of the source

tile from where the DMA payload has to be read
rdma_dst_reg Destination address in the tile local memory of the

destination tile where the DMA payload has to be
written

Table 4.3.: NI memory-mapped registers for data transfer through DMA

76

4.1. State of the Art Network Interface Components

4.1.2.1. Tile-Network Protocol Translation

Tile-network translation is responsible for translating the requests from RLS and MMR
units and generating network packets from the corresponding requests, which are then
forwarded over the Network on Chip. AMBA AHB 2.0 is used as the tile interconnect in
the invasive computing [126]. In our case, iNoC is used as the Network on Chip, which
is the virtual channel based network supporting both guaranteed service and best effort
communication [57]. The details about the iNoC are already provided in section 2.4.3.2.

The network packet corresponding to best effort communication is shown in the figure 4.6.
In best effort traffic, the communication between the source and destination happens in
the form of packets. Each packet contains head and tail flits in addition to the payload
flits corresponding to the specific request. In order to ensure transparent utilization of
protocol translation layer by the modules in the tile interface layer, the corresponding
request type is encoded in a special flit. This flit is named as request type flit in our im-
plementation. RLS_Req and RLS_Resp are the possible request types for remote shared
memory access. Whereas, GS_Req and RDMA_Req are the corresponding request types
for GS connection and remote DMA transfer. An additional flit is used to encode the re-
quest type to transparently use the tile interface layer by the protocol translation layer for
both guaranteed service and best effort communication. In addition, the request type flit
contains the number of payload flits which follow it. The number of payload flits may
vary depending on the request type. The head flit carries the routing information for the
packet in the network. Whereas the tail flit indicates the end of the packet.

Payload flitsRequest type

flit
Head flit Tail flit

Figure 4.6.: Network packet corresponding to connection-less best effort communication

Guaranteed service communication is shown in the figure 4.7. Guaranteed service com-
munication is realized through end-to-end virtual channel based connections. For GS
transmission, head and tail flits mark the start and end of the whole communication. Af-
ter the successful reservation, payload flits can be sent from the source to the destination
without any overhead flits. In this case, the overhead flits are the head and tail flits which
would have been present in each packet in case of best effort communication. The GS
connection is established by sending a head flit from the source network interface to the
destination network interface. The head flit performs the reservation of virtual channels
in the source and destination network interface units as well as in the routers, which exist
in the path. Once the head flit is received by the destination tile and the reservation of
virtual channels is successfully done, the acknowledgment flit is sent. Once the connec-
tion has been established, it can be used transparently by all messages which are routed
to the same destination tile. GS connection is terminated by sending a tail flit which is re-

77

4. Implementation of Communication Resource Management and Software Communication Support

sponsible for releasing the resources in the network interface and the subsequent routers.

Payload flitsRequest type

flit

Head flit

Tail flit

GS Connection

Established

GS Connection

Released

Wait for

connection

acknowledgement

Figure 4.7.: Connection oriented guaranteed service communication

1 0

Source

Network Address

Destination

Network Address

Head

Bit

Tail

Bit

BE=0

GS=1

Flow

Type

1

Ctrl.

Bit

SL

Service

level

Figure 4.8.: Head flit format

0 0
RLS_Req, RLS_Resp

GS_Req,RDMA_Req

Request specific

information

Req TypeHead

Bit

Tail

Bit

0

Ctrl.

Bit

Figure 4.9.: Request type flit format

The formats of the head, request type and tail flits are shown in the figure 4.8, 4.9 and 4.10
respectively. Head flit indicates the start of transmission. The head flit is 33 bits wide
assuming 32 bit datapath width of Network on Chip. The most significant bit in the
head flit is named Ctrl bit. The Ctrl bit is set to ’1’ when the network interface sends

78

4.1. State of the Art Network Interface Components

0 1

Payload (optional)Head

Bit

Tail

Bit

1

Ctrl.

Bit

Figure 4.10.: Tail flit format

head and tail flits to the router. Otherwise, this bit is kept ’0’, during the transmission of
request type and payload flits. In the head flit, Destination and Source Network Address
fields specify the network id of the source and destination tiles respectively which are
important for guiding the packet over Network on Chip. Request type flits are interpreted
by the destination tile network interface. These flits contain Req Type field which is used
to uniquely encode different request types (like RLS_Req and RLS_Resp) so that they
can be classified in the receive datapath. In addition, this flit contains request specific
information which is important to process the request on the receiver side. For example,
the total number of payload flits contained in the message are also specified, which may
vary in the case of remote direct memory access request. The tail flit is processed by the
router to acknowledge the end of the current packet in best effort communication and the
release of connection in case of GS transmission. Tail flits may also contain the payload.

In our implementation, Packetization is pipelined and is triggered immediately when it
is requested by the tile interface layer. Therefore, it does not produce additional perfor-
mance overhead.

4.1.2.2. Network-Tile Protocol Translation

On the receive side, network-tile translation processes the incoming requests from the
network which are temporarily stored in the network interface buffers in receive data
path. Network-tile translation interprets the Req Type field in the request type flit and
triggers RLS and MMR units in the receive datapath accordingly. In addition, the id of the
sender of the request is stored in case the reply of the message has to be sent.

4.1.3. NI Bu�ers

Network interface buffers are realized by keeping in view the following design con-
straints.

• Virtual channel based packet switched communication requires the independent
storage of packets inside the network interface. The packets may correspond to
a particular traffic flow i.e. GS/BE communication or a specific message type i.e.
remote shared memory access/RDMA.

• A mechanism is required to provide clock domain separation between computation
(tiles) and communication (Network on Chip).

79

4. Implementation of Communication Resource Management and Software Communication Support

• Back pressure management within the network interface for tile and network inter-
face layers.

Therefore, First in First out (FIFO) memories are incorporated in the network interface
datapath to achieve the above-mentioned design objectives.

Each FIFO realizes an independent virtual channel. The network interface and the router
architecture support dynamic sharing of virtual channels between guaranteed service and
best effort traffic. In other words, each virtual channel in the Network on Chip can either
be used by GS or BE traffic respectively. The virtual channels which are not occupied by
the guaranteed service traffic can be used by best effort communication. However, there is
at least one virtual channel which is always kept for BE communication in order to avoid
reservation of all virtual channels by the guaranteed service traffic. This restriction on the
number of GS connections prevents the complete starvation of best effort communication.

If a GS channel exists to a particular destination tile, a FIFO/virtual channel is classified
to store the requests which are sent to that tile only. However, in the case of best effort
communication, FIFOs are not reserved to store packets which are sent for a particular
destination tile. In addition, accesses corresponding to different request types may share
the same FIFO. For example, remote load/store requests and RDMA can share the same
FIFO in the network interface. As the name suggests, the output of the FIFO always car-
ries the oldest flit in the buffer. In order to provide clock domain separation, FIFO can be
read and written at different clock frequencies. Although, in our current implementation,
tile interconnect and the Network on Chip are clocked at the same frequency. In the trans-
mit datapath, packets are written into the FIFOs from tile interface layer and read from
the link interface layer. In the receive datapath, roles of tile interface and link interface are
reversed while accessing the FIFOs.

4.1.4. Link Interface Layer

Link interface layer establishes the interface of protocol translation layer to the Network
on Chip. iNoC is the on-chip network which we have deployed for connecting different
tiles [56]. Wormhole switching is used by the iNoC to minimize the buffering require-
ments. iNoC offers two communication channels which represent orthogonal physical
networks; a data channel and a control channel. The data channel is used for conventional
data traffic including both guaranteed service and best effort communication. Whereas
control channel represents another physical network layer which is used for delivering
network internal messages. For example, the acknowledgment flit for GS channel estab-
lishment is routed over the control channel. It is done to avoid message-dependent dead-
locks and reduce delays in GS connection establishment. In addition, the control channel
is used for transferring the information related to the Network on Chip utilization, which
can be used by software layers to perform application mapping [137].

For data channel, the link interface can be further divided into packet scheduling and
packet classification modules, keeping in view its functionality in transmit and receive
datapaths respectively.

80

4.1. State of the Art Network Interface Components

4.1.4.1. Packet Scheduling

Packet scheduler module is responsible for sending data from transmit virtual channels
in the network interface datapath to the output link. Therefore, it has to perform two
functions; 1) scheduling of the virtual channel over the output link keeping in view the
availability of data and Quality of Service requirements 2) establishment of the flow con-
trol between the network interface and the neighboring router for data transmission.

Scheduling over the output link is carried out in a scheduling cycle, which is defined by
the equation 4.1.

Cyclesch = ∑ VC_Timeslotsi (4.1)

Where Cyclesch represents the scheduling cycle and VC_Timeslotsi defines the number
of time slots, which are assigned to the virtual channel i. The total number of time slots
define the bandwidth over the output link as given by the equation 4.2.

Linkbw = ∑ Timeslotj × dataj (4.2)

Where dataj represents the data which is sent over the link in the Timeslotj. Linkbw de-
fines the link bandwidth. Each virtual channel is allocated the number of time slots in
the scheduling cycle according to its QoS requirements. Each virtual channel, which is
being used for the best effort communication, is allocated a single time slot. In the case of
guaranteed service virtual channel, the number of allocated time slots are defined in the
service level register when the connection is being initiated.

Weighted round robin scheduling as detailed in section 2.2.5 is deployed as a scheduling
strategy in the transmit datapath of the network interface. This scheduling policy ensures
fairness between virtual channels and enforces Quality of Service requirements. Each vir-
tual channel is served by the output link for the number of time slots which are allocated
to it. A virtual channel is a candidate to be scheduled over the link if it has data to be trans-
mitted and the receiving buffer is ready to accept data. The scheduling of only candidate
virtual channels over the output link ensures the maximum throughput in comparison
to a TDM-based scheduling. The availability of data is indicated, when the FIFO in the
transmit datapath which corresponds to the virtual channel is not empty. Credit-based
flow control is used to ensure availability of buffer space in the subsequent router. As
described in section 2.2.6, credit-based flow control makes it possible to pipeline the links
between the routers without significant performance degradation. Credit counters are im-
plemented in the packet scheduler, which represent the available credits for the respective
virtual channels.

4.1.4.2. Packet Classi�cation

Incoming data from the Network on Chip in the receive datapath is handled by the packet
classifier. It receives incoming data from the Network on Chip and stores them in the
respective receive datapath FIFOs. Similar to the transmit datapath, credit-based flow
control is implemented to store the incoming data. The scheduling of FIFOs in the receive
datapath is done by using a round robin arbitration policy. The granularity of scheduling
on the receive side is the complete incoming request instead of flits. WRR scheduling

81

4. Implementation of Communication Resource Management and Software Communication Support

policy can not be implemented for the receive side virtual channels because the complete
request has to be served over the bus.

Figure 4.11 represents the block diagram of the network interface architecture including
the hardware extensions which correspond to our concepts. AUTO_GS concept requires

Packet

Classifier

Tile-Network Protocol

Translation

Tile Interconnect

 F
IF

O

V
C

_
1

Packet

Scheduler

F
IF

O

V
C

_
N

F
IF

O

V
C

_
1

 F
IF

O

V
C

_
N

F
IF

O

C
trl

F
IF

O

C
tr

l

Tile Interface TX

Network-Tile Protocol

Translation

GS Communication

BE Communication

NoC Control traffic

Tile Traffic

NoC data traffic

RLS

Unit

QoS

Unit

RDMA

Unit

Tile Interface RX

RLS

Unit

QoS

Unit

RDMA

UnitTile

Interface

Layer

Protocol

Translation

Layer

NI

Buffers

Link

Interface

Layer

AUTO_GS

Unit

ITSS

 Unit

ITSS

 Unit

Figure 4.11.: Block diagram of proposed network interface architecture

modifications only in the transmit datapath of the network interface and are represented
by the AUTO_GS unit in the figure 4.11. The inter-tile synchronization support is high-
lighted through the ITSS unit in both transmit and receive datapaths. The implementation
details of the proposed extensions will follow in the next sections.

82

4.2. Hardware-controlled GS Connections (AUTO_GS)

4.2. Hardware-controlled GS Connections (AUTO_GS)

According to the concept of hardware-controlled communication resource management,
presented in section 3.1.1, AUTO_GS methodology establishes guaranteed service con-
nections keeping in view dynamic communication patterns. Therefore, the network in-
terface architecture is extended with traffic monitoring and autonomous GS connection
management capabilities.

The block diagram of the network interface transmit datapath with the AUTO_GS hard-
ware support is shown in the figure 4.12. The figure shows the combination of both

Tile-Network

Protocol

Translation

NoC Port

FIFO

VC_N

FIFO

VC_1

GS Communication

Legend :

Tile Interface

TX

Virtual

Connection

Manager

VC

Reservation

Table

Communication

Monitoring

Unit

NI Common Components AUTO_GS Components

BE Communication

Tile data

Communication

History

Table

P
a

c
k

e
t

S
c

h
e

d
u

le
r

Figure 4.12.: Network interface transmit datapath block diagram with AUTO_GS support

state of the art components and the introduced hardware extensions corresponding to
the AUTO_GS concept. Tile interface TX checks for the existence of a reserved connection
to the destination tile in each incoming request. In both cases, the tile-network protocol
translation unit is triggered to generate flits or packets for connection-based or connec-
tionless traffic respectively. Afterward, the data is placed in the respective FIFOs. The
packet scheduler is responsible for scheduling the different FIFOs over the network inter-
face output link. Implementation details specific to the above-mentioned state of the art
components are already given in the previous sections.

Among the proposed extensions, the VC Reservation Table contains the identifiers (ids) of
destination tiles to which a virtual channel based end-to-end connection exists. The pack-
ets which are being sent out over the network are monitored by the Communication Mon-
itoring Unit. The Communication History Table holds the communication history of the tile
in the form of a list, which contains the destination tiles to whom the packets are sent out.
The list is sorted in the order of increasing number of packets. The Virtual Connection Man-
ager is the module which ensures the establishment/replacement of hardware-controlled
GS connections. The following sub-sections provide a detailed description of the modules
which are implemented to support the AUTO_GS concept.

83

4. Implementation of Communication Resource Management and Software Communication Support

4.2.1. Virtual Channel Reservation Table :

In the network interface architecture, the status information of the tile’s virtual channels
is stored in VC Reservation Table. VC Reservation Table can be accessed by the software
through memory-mapped registers for QoS communication. For the sake of AUTO_GS
concept, the entries in the VC Reservation Table are also made accessible to the Virtual
Connection Manager hardware block. Table 4.4 provides the details of the registers which
can be accessed for inquiring the existence of a reserved connection to a given destination
tile.

Register Description
vc_dst_reg Register holds 32 bit Destination Network Ad-

dress of the tile to which the existence of a GS con-
nection is inquired

vc_dst_status_reg Read only register which returns the VC sta-
tus corresponding to destination tile written in
vc_dst_reg.

Table 4.4.: NI memory-mapped registers showing existence of VC based connection to a
given tile

In addition, the reservation status of an individual virtual channel can be read through
the status registers, which are given in the table 4.5. Table 4.5 has entries equal to the
number of available virtual channels. Depending on the status of the available VCs and

Register Description
vc0_status_reg Register holding the status of the virtual channel

number 0
vc1_status_reg Register holding the status of the virtual channel

number 1
.

Table 4.5.: NI memory-mapped registers showing the reservation status of individual vir-
tual channels

the on-going guaranteed service connection reservation, virtual channel can have one of
the following statuses:

• VC_Free : Virtual channel is not reserved for any GS connection and can be used
for establishing a new connection or for best effort communication.

• RSV_ONGOING : GS connection establishment is on-going and the end-to-end
connection is not yet acknowledged.

• RSV_SUCCESS : GS connection is successfully established.

• RSV_FAILED : GS connection is failed because of unavailable of virtual channels.

84

4.2. Hardware-controlled GS Connections (AUTO_GS)

4.2.2. Communication Monitoring Unit

The Communication Monitoring Unit (CMU) monitors the data which is sent out over the
network by the packet scheduler. In the case of best effort communication, the head flit
of each packet is monitored. For tracking the utilization of existing hardware-controlled
GS connections, the packet count is incremented when the number of transmitted flits
equals to best effort packet size. Initially, no GS connections are existing and the entire
traffic is served via best effort communication. CMU checks the Destination Network
Address field contained in the head flit of each outgoing packet and tries to find it in
the Communication History Table. If the Destination Network Address is not found in
the Communication History Table i.e. the packet is being sent to a destination tile for
the first time, it is registered in the table as a new entry. The number of entries in the
Communication History Table is restricted by the parameter AUTO_GSconn. However,
if the entry corresponding to Destination Network Address already exists in the table,
the packet count for this entry is incremented. In this way, the Communication Mon-
itoring Unit is responsible for maintaining the communication history of the tile in the
network interface. Communication history is gathered for a configurable time interval
AUTO_GScycle. After AUTO_GScycle is passed, Communication Monitoring Unit stops
collecting the history and triggers the Communication History Table to start analyzing
the communication history. Afterward, Communication Monitoring Unit waits for the
signal AUTO_GS_SAMPLE from Virtual Connection Manager to start monitoring again.

4.2.3. Communication History Table

Communication History Table (CHT) maintains the packet count field for all the tiles to
whom the data is sent from the current tile. CHT starts sorting its entries upon receiv-
ing AUTO_GS_SORT signal from Communication Monitoring Unit. A simple sorting
algorithm is implemented in a sequential manner to reduce the implementation cost of
hardware. Entries to be sorted are stored in a RAM. A control FSM is implemented which
loops over all RAM locations and performs the sorting. The entries are sorted in the order
of high packet count value. It means that the tile to which the most packets are sent is
placed at the top of the table. While performing the sorting, the entries are also evaluated
for their qualification for GS connection. If the entry qualifies for a GS connection, it is
marked as a hotspot by setting the Hotspot field to ’1’. Otherwise, it is marked as cold-
spot i.e. Hotspot field set to ’0’. After the Communication History Table is finished with
the sorting, it triggers Virtual Connection Manager with AUTO_GS_CONNECT signal to
start establishing GS connections according to the sorted entries.

4.2.4. Virtual Connection Manager

Virtual Connection Manager (VCM) is the module which is responsible for managing the
hardware-controlled GS connections when triggered by Communication History Table.
In the first step, each entry in the Communication History Table is evaluated, if a GS con-
nection to this particular target tile already exists. This is done by checking the target
tile id in the VC Reservation Table. If the entry already exists in the VC Reservation Ta-

85

4. Implementation of Communication Resource Management and Software Communication Support

ble, Virtual Connection Manager skips it and proceeds further to process next entry in the
Communication History Table. However, if a hotspot entry is encountered to which a con-
nection is not found in VC Reservation Table, VCM triggers the tile-network translation
for generating a head flit which establishes the GS connection to the target tile.

The situation may occur where a hotspot entry is still left in the Communication His-
tory Table but the number of allowed connections are already established. In this case,
the Virtual Connection Manager searches for the previously established GS connections
to cold-spots. In the first step, Virtual Connection Manager checks for the existence of a
GS connection to a cold-spot entry in VC Reservation Table. In the case where GS connec-
tions exist to more than one cold-spots, the one with the least packet count value is chosen
for replacement. Afterward, the tile-network protocol translation is triggered to issue tail
flit for the corresponding cold-spot entry. If all available GS connections are assigned to
hotspots but still there are hotspot entries left in the Communication History Table, those
are skipped over by the Virtual Connection Manager. When the Virtual Connection Man-
ager is finished with the management of guaranteed service connections, Communication
Monitoring Unit is signaled to start collecting the communication history again. The time
to analyze communication history and AUTO_GS connection setup is minimal because of
being a hardware implementation. However, the optimum performance of the AUTO_GS
concept in a given scenario depends on the appropriate selection of monitoring interval
i.e. AUTO_GScycle. The interplay of hardware modules to implement the AUTO_GS con-
cept is shown in the figure 4.13.

Tile-Network

Protocol

Translation
VCM

VC Reservation Table

Existing entries

AUTO_GS_

CONNECT

New entries

CHT

Entries

CMU

Communication

History

AUTO_GS_

SORT

AUTO_GS_

SAMPLE

Packet

Scheduler
GS head/

tail trigger
Traffic

information

CHT

Figure 4.13.: Interplay of hardware modules for AUTO_GS concept

4.2.5. Synthesis Results

The network interface with the AUTO_GS components has been implemented using VHDL.
An HDL implementation is required to obtain accurate numbers for resource require-
ments, power consumption, and the achievable clock frequency. These numbers are then
important to compare different implementation alternatives accurately with respect to en-
ergy and resource efficiency. Hardware extensions corresponding to AUTO_GS concept
can be enabled and disabled through a parameter at design time. In addition, the number

86

4.2. Hardware-controlled GS Connections (AUTO_GS)

of monitored connections AUTO_GSconn and monitoring interval AUTO_GScycle param-
eters can be configured before synthesis.

The implementation cost of the introduced hardware extensions is measured in terms of
area and clock frequency. The network interface used for synthesis has the same features
and characteristics as the one which was used for SystemC based simulation framework.
A Xilinx Virtex-5 VLX330 FPGA is used as a target prototyping chip. Synopsys Synplify
Premier G-2012.09 is used for synthesis. After the synthesis, place and route is performed
by Xilinx P&R tools. Table 4.6 shows the synthesis results of a single network interface
unit after P&R with AUTO_GSconn and AUTO_GScycle set to 2 and 4160 respectively.

ASIC FPGA
Synthesized Entity Area LUTs Registers

(µm2)

NI (without AUTO_GS Extensions) 43579 4937 1868
Communication monitoring unit 1541 102 61

Communication history table 1663 121 58
Virtual connection manager 932 113 91

Table 4.6.: ASIC TSMC 45 nm and FPGA Virtex-5 VLX330 synthesis Results with
AUTO_GSconn = 2, AUTO_GScycle = 4160

Compared to the NI with basic functionality, the version with proposed extensions re-
quires only 336 LUTs and 210 Register bits. The synthesis results show that the proposed
hardware extensions have a very small footprint at the target FPGA device (< 1%). The
similar observation for area consumption is also valid regarding ASIC synthesis. In ad-
dition, the introduced hardware support brings small area overhead when compared to
the network interface with basic functionality. For Basic NI, the clock frequency of up
to 183 MHz could be achieved on the FPGA platform. The clock frequency is decreased
to 174MHz with the hardware extensions. This is mainly due to the increased critical
path length inside the network interface because of the Communication Monitoring Unit.
On ASIC platform, the network interface could be synthesized with a target frequency of
1500 MHz. The network interface with proposed hardware modules brings the maximum
achieved frequency down to 1425 MHz.

In order to observe the impact of AUTO_GS parameters on implementation cost, we
performed further investigations with different AUTO_GSconn and AUTO_GScycle val-
ues. Table 4.7 shows the resource utilization of AUTO_GS hardware modules with a
varying number of monitored connections. The area consumption results for chang-
ing values of monitoring interval are provided by the table 4.8. In general, increas-
ing either of AUTO_GSconn and AUTO_GScycle raises the area cost of AUTO_GS imple-
mentation. Communication History Table is directly influenced by AUTO_GSconn and
AUTO_GScycle parameters. Setting the number of monitored connections or monitor-
ing interval to bigger value results in higher logic element utilization in Communication
History Table module. Communication History Table uses RAM for storing the commu-
nication history. For ASIC synthesis, the memory is always implemented using logic cells.
On the FPGA platform, the RAM is realized using Lookup Tables (LUTs) as the default

87

4. Implementation of Communication Resource Management and Software Communication Support

implementation. In order to save logic elements in FPGA, another possible implementa-
tion could be chosen at design time which uses BRAM blocks for storing communication
history. AUTO_GS hardware synthesized with either using logic elements or BRAMs is
represented with LE and BRAM suffixes in the tables 4.7 and 4.8 respectively. However,
synthesizing with BRAM option reduces the maximum achievable frequency on FPGA
platform to 150 MHz.

The implementation cost of Communication Monitoring Unit and Virtual Connection
Manager is not affected from the AUTO_GScycle value. The Communication Monitoring
Unit is agnostic to monitoring interval because it samples the communication statistics
on a packet basis. Similarly, the functionality of Virtual Connection Manager is not de-
pendent on AUTO_GScycle as it is explicitly triggered by Communication History Table
through AUTO_GS_CONNECT signal. However, the higher AUTO_GSconn value makes
the area cost of both of these modules slightly larger. This is due to the fact that the
higher amount of logic elements are consumed when more number of connections are to
be monitored.

ASIC FPGA
Synthesized Entity Area LUTs Registers BRAM

(µm2)

AUTO_GS_LE (AUTO_GSconn = 4) 4456 360 225 -
AUTO_GS_LE (AUTO_GSconn = 6) 5090 403 248 -
AUTO_GS_LE (AUTO_GSconn = 8) 5965 469 267 -

AUTO_GS_BRAM (AUTO_GSconn = 8) 5965 242 267 2

Table 4.7.: AUTO_GS synthesis results with different AUTO_GSconn values and
AUTO_GScycle = 4160

ASIC FPGA
Synthesized Entity Area LUTs Registers BRAM

(µm2)

AUTO_GS_LE (AUTO_GScycle = 8320) 4310 350 210 -
AUTO_GS_LE (AUTO_GScycle = 12480) 4596 371 210 -
AUTO_GS_LE (AUTO_GScycle = 16640) 4904 395 210 -

AUTO_GS_BRAM (AUTO_GScycle = 16640) 4904 226 210 2

Table 4.8.: AUTO_GS synthesis results with different AUTO_GScycle values and
AUTO_GSconn = 2

4.3. Inter-tile Software Synchronization Support

As stated in section 3.2, we have considered the asynchronous data transfer and remote
task spawning scenarios for investigating the synchronization support for software lay-

88

4.3. Inter-tile Software Synchronization Support

ers. Hardware support for inter-tile synchronization was represented by the ITSS unit in
the figure 4.11. ITSS unit can be further divided into RDMA Signaling, System i-let Gener-
ation and Task i-let Generation units. The implementation work for the above-mentioned
hardware blocks is described in the following text.

4.3.1. RDMA Signaling

The prefetching concept to use remote direct memory access in the network interface is
already discussed in the chapter 3. The important characteristic, which is introduced in
the RDMA hardware, is the support for the efficient signaling mechanism.

In order to offload the software from polling status of data transfer operations, it is essen-
tial that the RDMA unit is able to handle the bookkeeping for data transfer in hardware.
Otherwise, the software has to poll the status of previously initiated DMA operations.
Remote data transfer operation is done using state of the art RDMA unit in the network
interface. However, in order to signal the DMA completion, RDMA Signaling in the re-
ceive datapath initiates a special packet to the source tile which indicates the end of the
DMA operation on the receive side. Upon the reception of DMA completion message
on the source tile, RDMA Signaling support issues a maskable interrupt to inform the
software. Table 4.9 illustrates the registers, which tell about the completion of RDMA
operation on both source and destination tiles.

Register Description
rdma_src_status_reg Register indicating the completion of data copy

operation on the source tile
rdma_recv_status_reg Register indicating the completion of RDMA op-

eration on the source tile after receiving the DMA
completion packet from destination tile

Table 4.9.: NI memory-mapped registers for DMA Status

4.3.2. System i-let Generation

In order to support efficient communication between higher layer software instances which
are running on remote tiles, we have introduced special network messages named as
system-ilets. Table 4.10 shows the registers which are required to be configured for send-
ing the system i-let. The number of system i-let payload registers is currently fixed to 8.
Upon writing the last payload register, the tile-network protocol translation is triggered
for sending the system i-let towards the destination tile.

Upon receiving system i-let on the receive side, the network interface sends an interrupt
to a processing core for immediately serving the request contained in the system i-let. The
system i-let payload is written at the memory location pointed by the operating system.
The processing of system i-let in the receive datapath is done in a blocking manner i.e.
network interface can only proceed for serving the next system i-lets when the operating

89

4. Implementation of Communication Resource Management and Software Communication Support

Register Description
sys_ilet_src_status_reg Status register indicating the flow control for sys-

tem i-lets
’0’: System i-let transmission possible at source
side
’1’: System i-let transmission not possible at source
side

sys_ilet_dst_id_reg Address Pointer in the destination tile, where the
system i-let has to be sent

sys_ilet_payload_reg1 System i-let payload register 1
.

Table 4.10.: NI memory-mapped registers for sending system i-let at source tile

system is ready to process it. The memory-mapped registers, which are made available
in the network interface receive datapath for processing a system i-let, are shown in ta-
ble 4.11.

Register Description
sys_ilet_dst_status_reg This register contains the status of the system i-

let operation on the receive side. Network inter-
face sets a flag in the register and then polls it till
the operating system clears the flag to indicate the
completion of system i-let processing

sys_ilet_dst_ptr_reg Register containing the start address in the tile lo-
cal memory, where the current system i-let pay-
load has to be written

Table 4.11.: NI memory-mapped registers for processing system i-let at destination tile

4.3.3. Task i-let Generation

In order to exchange task pointers between applications running on different tiles, special
network messages are used which are named as task i-lets. In the scope of invasive com-
puting, the memory-mapped registers inside the network interface must be configured to
send the task i-let. The memory-mapped registers for sending task i-let are shown in the
table 4.12. Upon receiving the task i-let, the network interface writes the task i-let payload
in the CiC. CiC is responsible for assigning tasks to different processing cores in the tile.
The number of payload registers in a task i-let is currently fixed to 4.

Figure 4.14 shows the transmit datapath of the network interface with the proposed hard-
ware extensions. RDMA Signaling, System i-let Generation and Task i-let Generation rep-
resent the hardware modules for software communication support. Figure 4.15 shows the

90

4.3. Inter-tile Software Synchronization Support

Register Description
task_ilet_dir_status_reg Status register indicating the flow control for task

i-lets
’0’: Task i-let transmission possible at source side
’1’: Task i-let transmission not possible at source
side

task_ilet_dir_msg_id_reg Message identifier indicating unique id of the task
pointer

task_ilet_dir_payload_reg1 Task i-let payload register 1
.

Table 4.12.: NI memory-mapped registers for sending task i-let

corresponding software communication support in the receive datapath of the network
interface.

T
il
e

-N
e

tw
o

rk

P
ro

to
c

o
l
T

ra
n

s
la

ti
o

n

T
ile

 B
u

s

P
a

c
k

e
t

S
c

h
e

d
u

li
n

g

FIFO

VC_N

Tile Out

FIFO

VC_1

RDMA

Signaling

Task i-let

Generation

System-ilet

Generation

Memory-

mapped

address

range

RDMA

Unit

RDMA_ack

trig

Figure 4.14.: Network interface transmit datapath with software communication support

Keeping in view the case studies of asynchronous data transfer and remote task spawn-
ing, the interplay of the above-mentioned hardware components is important. For asyn-
chronous data transfer, the software instances communicate through system i-lets to ac-
quire the data pointer of the remote memory location, where the data has to be copied.
Afterward, the remote direct memory access is initiated by configuring the state of the art
RDMA unit in the network interface. RDMA Signaling unit is responsible for managing
the status of the DMA operation. The software is informed about the completion of the
DMA operation through a maskable interrupt. In this manner, software is relieved from
polling the status of remote data transfer operation. Therefore, the proposed hardware
support assists in realizing the data prefetching by offloading the software as detailed in
the section 3.2.1.

For remote task spawning, the software on the sender side configures the network inter-
face with the required DMA data pointers and task pointer in the start. Afterward, the
network interface triggers the RDMA unit and the Task i-let Generation units internally
to perform different sub-operations, which are required in the remote task spawning as

91

4. Implementation of Communication Resource Management and Software Communication Support

detailed in section 3.2.2. The bookkeeping of sub-operations is done in the network in-
terface internally. Therefore, the software is offloaded from handling the synchronization
which is required in the remote task spawning operation. The experiments and the corre-
sponding results of the task spawning case study are presented in the section 5.3.

N
e

tw
o

rk
-T

il
e

P
ro

to
c

o
l
T

ra
n

s
la

ti
o

n

P
a

c
k

e
t

C
la

s
s

if
ic

a
ti

o
n

 B
u

s
 A

rb
ite

r

Task i-let

Generation

FIFO

VC_N

FIFO

VC_1

Tile In

System i-let

Generation

T
ile

 I
n

te
rc

o
n

n
e

c
t

tile bus

master

interface

RDMA

Signaling

RDMA

Unit

RDMA_ack

trig

Figure 4.15.: Network interface receive datapath with software communication support

4.3.4. Synthesis Results

Table 4.13 shows the resource utilization of a single network interface with and without
proposed software communication support for both ASIC and FPGA platforms respec-
tively. For ASIC synthesis, a 45 nm standard cell library from TSMC (tcbn45gsbwpwc)

ASIC FPGA
Synthesized Entity Area LUTs Registers

(µm2)

NI (without Software Communication Support) 43579 4937 1868
RDMA Signaling 1784 181 86

System-ilet Generation 3121 408 174
Task-ilet Generation 2235 309 109

Table 4.13.: ASIC TSMC 45 nm and FPGA Virtex-5 VLX330 synthesis Results

with worst case operating conditions is used. Synopsys Design Compiler (F-2011.09-SP4)
is taken for ASIC synthesis. The target device for the FPGA synthesis is Xilinx Virtex-
5 VLX330 which is also used for prototyping. Synopsys Synplify Premier (G-2012.09) is
used for FPGA synthesis. After the synthesis, place and route for FPGA is done by Xilinx
P&R tools. The results depict that the proposed hardware support for software communi-
cation offers a low area footprint. The area overhead of communication support is around
16% for both ASIC and FPGA implementations in comparison to the network interface
without corresponding support. In addition, the proposed hardware can be synthesized

92

4.3. Inter-tile Software Synchronization Support

with the maximum achievable frequency of 1500 MHz for ASIC implementation which is
comparable to the interconnect frequency of the state of the art many-core architectures
like SCC [67].

93

5. Experimental Setup and Validation

In this chapter, the details about the RTL simulation framework will be provided, which
was used for the investigation of the proposed concepts in the network interface. FPGA
prototypes which are built to explore the performance improvements offered by our net-
work interface enhancements are also described. In addition, the results related to the
proposed extensions would be provided and discussed.

5.1. Cycle Accurate Simulation Framework

A cycle accurate RTL simulation framework is built to investigate the proposed concepts.
An RTL implementation helps to evaluate the proposed concepts at the suitable design
abstraction as all system components including software are present to have fair perfor-
mance comparison. RTL simulation framework enables the investigation of the scenarios
which could not be realized on the FPGA prototype because of the implementation cost.
The network interface is implemented in VHDL whereas the NoC router is realized in
SystemVerilog [102]. Simulation framework supports a large number of configuration op-
tions. These configurations options are controlled through parameters which are defined
at design-time. A selection of the most important parameters of the simulation framework
from the network interface perspective is provided in the table 5.1.

Parameter Description
DIM_X X Dimension of the architecture
DIM_Y Y Dimension of the architecture

FLIT_SIZE Flit size or link width (bits)
NoC_BUFFER_DEPTH Number of flits which can be stored in a Router VC

Buffer
NI_BUFFER_DEPTH Number of flits which can be stored in a NI VC

Buffer
VC Number of virtual channels per port
TS Number of time slots which define the scheduling

cycle

Table 5.1.: Important parameters of the RTL simulation framework

Simulation framework is managed through tcl [110] and shell language scripts to ease
the description of simulation scenario and underlying architecture. Modelsim simulation
tool is used to elaborate the scripts, compile the sources and run the simulation [50]. Ap-
plication code is loaded as a SRAM image file which can be accessed by the processor(s)

95

5. Experimental Setup and Validation

in the tile. Collection and representation of simulation data are done in a semi-automatic
manner to illustrate the results appropriately.

5.2. Hardware Prototyping

An FPGA prototype enables the verification of the proposed concepts. Real world appli-
cations are executed on the FPGA prototype for presented network interface architecture.
In this work, we have used two FPGA prototyping solutions to validate our concepts. The
details about the prototyping platforms are detailed in the following text.

5.2.1. Single FPGA prototype

Single FPGA prototype is used for investigations on relatively smaller architecture sizes.
Xilinx ML605 development board was chosen for the single FPGA-based prototyping.
This board contains a Xilinx Virtex-6 LX240T FPGA. The external interfaces like JTAG,
UART and Ethernet are also available on the development board. The JTAG interface is
used for programming and debugging on the FPGA board. This development board of-
fers simpler and less time-consuming design flow for generating bitstreams of the under-
lying architecture as compared to multi-FPGA prototype, which will be described later.
In addition, the debugging of the design on the single FPGA prototype is easier which
makes the iteration cycle for the changes smaller.

The tiled architecture prototype is shown in the figure 5.1. The architecture consists of an
incarnation of the Network on Chip. Each of the NoC routers connects to one of the tiles,
developed for the InvasIC architecture. In our case, 4 tiles can be realized on the single
FPGA prototype. Where each compute tile contains two LEON3 processing cores. One
memory tile is present to establish the interface with DDR memory. The details about
the InvasIC architecture and the subsequent components are already provided in the sec-
tion 2.4.3. The realized network interface is used in each tile to connect the processing
cores with the Network on Chip router.

The important parameters for the network interface and Network on Chip are chosen
according to the settings shown by the table 5.2. The description of the above parameters
is provided in table 5.1. The prototype uses the memory map, defined in the table 4.1.

Parameter Value
DIM_X 2
DIM_Y 2

FLIT_SIZE 32
NoC_BUFFER_DEPTH 4
NI_BUFFER_DEPTH 512

VC 4
TS 8

Table 5.2.: FPGA prototype network interface and Network on Chip parameters

96

5.2. Hardware Prototyping

i-NoC
Router

i-NoC
Router

Core
0

L1 Core
1

L1

L2-Cache

NI

TLM

Core
0

L1 Core
1

L1

L2-Cache

NI

TLM

DDR

i-NoC
Router

Core
0

L1 Core
1

L1
L2-Cache

NI

TLM

i-NoC
Router

Core
0

L1 Core
1

L1
L2-Cache

NI

TLM

Figure 5.1.: Tiled architecture prototype on a single FPGA platform

Due to large resource utilization of the involved components in the architecture, the real-
izable tiled architecture size on single FPGA is relatively small. The main limitation for
increasing the architecture size is the limited amount of memory which is available on the
FPGA in the form of block RAMs. Block RAMs are used to realize the caches and the tile
local memory in the architecture. Hence, the size of the caches and the tile local memories
is limited in the prototyped architecture. On-chip storage in the form of tile local memo-
ries and caches is desired to keep the binaries and frequently accessed data. Limitation in
the cache and TLM sizes reduces the performance which can be demonstrated on the pro-
totyped architecture. In addition, the number of benchmarks, which can be executed on
the underlying platform, becomes limited. The number of the physical interfaces which
can be used for debugging on the development board are also limited. Table 5.3 gives an
overview of the important configurations related to the caches and memories of the single
FPGA prototype.

The clock frequency of the prototype is set to 50 MHz. The tile architecture with the con-
figuration shown in the figure 5.1 consumes 39% of the registers available on the LX240T
FPGA. Whereas, 71% of the FPGA lookup tables are required for the design. The limiting
factor is the block RAM utilization, which is 89%.

97

5. Experimental Setup and Validation

Memory Type Value
L1D Cache (Sets, Linesize, Lines) 2, 4, 4
L1I Cache (Sets, Linesize, Lines) 2, 8, 8
L2 Cache (Sets, Linesize, Lines) 2, 32, 8

Tile Local Memory 512kB
DDR3 Memory Size 1 GB

Table 5.3.: FPGA prototype memory configurations

5.2.2. CHIP-IT Prototype

As discussed in the section 5.2.1, the single FPGA prototype has limited capabilities with
respect to the size of the architecture. Therefore, a scalable prototyping approach is re-
quired to enable prototyping and evaluation of many-core architectures [6], [41], [42]. A
professional multi-FPGA prototyping solution manufactured by the company Synopsys,
the CHIPit Platinum Edition, is used to prototype relatively larger tiled architecture [130].
In order to overcome the limitation of on-chip memory, SSRAM boards can be connected
to the system. Global shared memory is available in the form of DDR memory. The pro-
totyping platform consists of six Virtex-5 LX330 FPGAs as reconfigurable logic resources.

The prototyping solution provides standard I/O interfaces like DVI, Ethernet, and UART
through extension boards. In addition, a custom interface in the form of Universal Multi-
Resource (UMR) bus is present which offers scalable communication possibilities between
the logic on the prototyping system and the software executed on the host computer. The
UMR interface makes the debugging of the tiled architecture a lot convenient. Therefore,
the CHIPit prototyping system can be used to realize a larger architecture. A mesh ar-
chitecture of maximum size 3x2 could be implemented. The maximum size is selected
keeping in view the six FPGAs and the symmetry of the tiled architecture. Currently, one
tile is mapped on a single FPGA to uniformly access the SSRAM memory boards. Clock
frequency is set to 25 MHz because of the DDR memory controller limitation. Figure 5.2
shows the multi-FPGA prototype on CHIPit platform.

5.3. Validation on RTL Simulation Framework

In this section, we have presented our investigations related to the software communi-
cation support on RTL simulation framework. Both case studies for software communi-
cation support i.e. remote data transfer for prefetching and remote task spawning are
individually evaluated. In the RTL simulation framework for tiled architecture, the in-
terface between software and hardware is modeled and simulated at finer abstraction
level as compared to the SystemC-based framework which was discussed in section 3.2.3.
AUTO_GS concept is independent of software interfaces and hence it is not considered
for following investigations.

The tiled architecture modeled at RTL level including the proposed network interface
architecture is implemented. The details about the simulation framework are already

98

5.3. Validation on RTL Simulation Framework

Memory & I/O

TCPA

iCore

Tile Local

Memory

CiC

CPU

CPU CPU

CPU

iNoC

Router

N
I

N
I

N
I

N
I

Tile Local

Memory

CiC CiC

CPU

CPU CPU

CPU

N
I

Tile Local

Memory

CiC

CPU

CPU CPU

CPU

N
I

Tile Local

Memory

CPU

CPU CPU

iNoC

Router
iNoC

Router

iNoC

Router
iNoC

Router
iNoC

Router

FPGA 6FPGA 5FPGA 4

FPGA 1 FPGA 2 FPGA 3

SSRAM

Memory

Modules

JTAG

Interface

Ethernet

Interface

UMR

Bus

Figure 5.2.: Tiled architecture prototype on CHIPit platform

given in the section 5.1. iNoC RTL model with mesh topology and XY-routing is used for
the following investigations. The size of the platform is configurable. We have applied
uniform and hotspot traffic models which are common traffic benchmarks for the system
evaluations where the NoC-based platforms are deployed [119] [23].

In the first step, hardware support for remote data transfer is evaluated. In the uniform
scenario, each tile prefetches the data from every other tile in the architecture through
direct memory access operation. The order in which the tiles perform the prefetch op-
eration is defined. The amount of payload, which is prefetched is fixed. All tiles start
at the same time. For the hotspot scenario, all tiles transfer data to the same destination
tile. The corner tile (0, 0) is chosen as the common destination tile. The simulation is
stopped after all tiles are finished. We have compared our concept with the state of the
art approach proposed by Varghese et al. [134]. The methodology used by Varghese et al.
is named as Reference (Ref). In the Reference configuration, the synchronization related
to the data transfer is managed by the software. Our approach in which the signaling
for remote data transfer is handled by the network interface is named as NIPF. In both
configurations, data transfer is done through the direct memory access hardware engine.

In the second step, the proposed task spawning hardware support is investigated. In the
uniform case, each tile spawns a given number of tasks on every other tile in the architec-

99

5. Experimental Setup and Validation

ture in a defined sequence. Each spawned task corresponds to a defined computational
workload. Task spawning consists of communication between the source and destination
tile in the form of three steps as mentioned in the section 3.2.2. All tiles start commu-
nicating at the same time. trig_task_pointer_src operation indicates the completion of a
task spawning request. For the hotspot scenario, all tiles attempt to spawn tasks on the
same destination tile. The corner tile (0, 0) is chosen as the hotspot. The simulation is
stopped after all tiles are finished. We have compared our approach with state of the art
approach proposed by Kavadias et al. [78]. The approach presented by Kavadias et al. is
named as Reference (Ref). In state of the art approach, the synchronization related to task
spawning is handled by the software. Our approach in which the task spawning is done
by the hardware support in the network interface is named as NITS. Both approaches use
RDMA hardware engine to move task data between tiles. The payload which is trans-
ferred as task data during task spawning is kept fixed.

5.3.1. Discussion of Results

Figures 5.3 and 5.4 show the comparison of the execution time for remote data transfers
between the two configuration for uniform and hotspot traffic respectively. The architec-
ture size is increased in different iterations to get further insight on the performance of
the proposed hardware support.

Ref_
2x

2

NIP
F_2

x2

Ref_
3x

3

NIP
F_3

x3

Ref_
4x

4

NIP
F_4

x4

Ref_
5x

5

NIP
F_5

x5

Ref_
6x

6

NIP
F_6

x6

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

Figure 5.3.: Execution time of uniform scenario for data prefetching support evaluations

Represented execution time is normalized with respect to the execution time in Reference
configuration. The execution time of the benchmarks is further categorized in the com-
putation time and the synchronization time. The time which is spent on the processing

100

5.3. Validation on RTL Simulation Framework

Ref_
2x

2

NIP
F_2

x2

Ref_
3x

3

NIP
F_3

x3

Ref_
4x

4

NIP
F_4

x4

Ref_
5x

5

NIP
F_5

x5

Ref_
6x

6

NIP
F_6

x6

0

0.5

1
N

om
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Computation Time
Synchronization Time

Figure 5.4.: Execution time of hotspot scenario for data prefetching support evaluations

of the task workload and queuing delays in the architecture is indicated as computation
time. The latency which results from the synchronization overhead for data transfer op-
eration between remote tiles is marked as synchronization time. In the uniform scenario,
the increase in synchronization time is linear with the increasing architecture size. Our ap-
proach gives the maximum performance gain of up to 26% as compared to Reference in
the uniform scenario. The results for hotspot scenario show a higher increase in synchro-
nization time when the architecture size is increased. Our approach gives a performance
improvement of up to 32% in comparison to Reference. The improvement comes from the
fact that the software is offloaded from managing the status of data transfer completion.
The hardware support introduced inside the network interface handles the bookkeep-
ing of the data transfer status and indicates the completion of data transfer through an
interrupt to the software. The simulation scenarios which have a higher degree of paral-
lelism, i.e., more data transfer operations are performed between remote tiles in a bigger
architecture configuration, the synchronization time makes the larger share of the over-
all execution time in Reference configuration. In our approach, the tile interconnect is
not loaded with status polling requests from software which results in the corresponding
performance improvement.

Figures 5.5 and 5.6 show the investigations related to task spawning support for both the
uniform and hotspot scenarios. The execution time of the Reference and the proposed
approach is compared with increasing architecture size.

Similar to the evaluations related to remote data transfer, the execution time is classified
in computation time and the synchronization time. The computation time refers to the de-
lay which is agnostic from the proposed hardware extensions. The latency which comes

101

5. Experimental Setup and Validation

Ref_
2x

2

NIT
S_

2x
2

Ref_
3x

3

NIT
S_

3x
3

Ref_
4x

4

NIT
S_

4x
4

Ref_
5x

5

NIT
S_

5x
5

Ref_
6x

6

NIT
S_

6x
6

0

0.5

1
N

om
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

Computation Time
Synchronization Time

Figure 5.5.: Execution time of uniform scenario for task spawning support evaluations

Ref_
2x

2

NIT
S_

2x
2

Ref_
3x

3

NIT
S_

3x
3

Ref_
4x

4

NIT
S_

4x
4

Ref_
5x

5

NIT
S_

5x
5

Ref_
6x

6

NIT
S_

6x
6

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

Figure 5.6.: Execution time of hotspot scenario for task spawning support evaluations

from the synchronization time during remote task spawning operation is called synchro-
nization delay. The results for hotspot scenario show a higher increase in synchronization

102

5.4. Validation on FPGA Prototype

time with the increasing architecture size. In the uniform scenario, an improvement of
up to 28% in execution time is observed. Our approach gives a performance gain of up
to 38% in comparison to Reference for hotspot scenario. The simulation scenarios which
have a higher degree of parallelism, i.e., more number of tasks are spawned to remote tiles
in a bigger architecture configuration, the status polling requests make a significant share
of traffic on tile interconnect and hence result in higher synchronization time in the Refer-
ence configuration. Our approach offloads the software from checking the status of task
spawning sub-operations. Hence, the tile interconnect is not loaded with status polling
requests which results in the corresponding performance improvement in our configura-
tion.

5.4. Validation on FPGA Prototype

In addition to the simulation framework, we investigated the proposed hardware exten-
sions for software communication support on the FPGA prototype. A parallel implemen-
tation of an integer matrix multiplication application is executed on the target platform
to demonstrate the benefits of proposed concepts. For the following investigations, the
matrix size is varied in three different configurations. Larger matrix size scenarios gener-
ate higher workload on the underlying system as compared to the scenarios with smaller
matrix size. Multi-FPGA prototyping system as described in section 5.2.2 is used for pro-
totyping. A 1 GB DDR memory is used as global shared memory which is present as a
memory tile among other compute tiles in the architecture. The matrices and the code
of the parallel application are loaded in the global shared memory before the execution.
Each compute tile consists of 4 LEON3 Sparc V8 cores [43]. In addition, each compute
tile contains an 8 MB tile local memory in which the corresponding task data and code
are copied from global shared memory during execution. iNoC is used as the Network on
Chip for exchanging data between different tiles. The network interface is used to connect
the tiles with the Network on Chip.

For data transfer evaluations, the application code and matrices are copied from the mem-
ory tile to the respective tile local memories through remote direct memory access hard-
ware accelerator. Task pointers pointing to the address of application code in tile local
memory are statically assigned. After the execution is completed, each tile writes its re-
sults back to the memory tile. For task spawning, the memory tile spawns tasks of matrix
multiplication application to each tile in the architecture. During task spawning, the ap-
plication code and the task data i.e. matrices are copied from the memory tile to the tile
local memories through RDMA unit. However, instead of using static values, task point-
ers carrying the start address of the application code in the tile local memory are sent via
Task i-lets. Finally, each tile writes the computation results back to the memory tile.

5.4.1. Discussion of Results

Figure 5.7 shows the execution time of matrix multiplication for different architecture
sizes corresponding to asynchronous data transfer scenario. As compared to the simu-
lation framework, only certain configurations of architecture sizes can be realized on the

103

5. Experimental Setup and Validation

FPGA platform because of prototyping area limitation. Ref and NIPF refer to the state
of the art and the proposed configurations respectively. Both configurations are individ-
ually executed in different architecture size variants on the FPGA prototype. Execution
time is normalized with respect to the corresponding Reference configuration. The com-
putation time represents the time taken by the software on the processing cores for matrix
multiplication. Computation time is the same in both compared configurations. The syn-
chronization time represents the delay for managing the status of data transfer operation.

Ref_
2x

1

NIP
F_2

x1

Ref_
2x

2

NIP
F_2

x2

Ref_
3x

2

NIP
F_3

x2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(a) Matrix_size = 32x32

Ref_
2x

1

NIP
F_2

x1

Ref_
2x

2

NIP
F_2

x2

Ref_
3x

2

NIP
F_3

x2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(b) Matrix_size = 64x64

Ref_
2x

1

NIP
F_2

x1

Ref_
2x

2

NIP
F_2

x2

Ref_
3x

2

NIP
F_3

x2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(c) Matrix_size = 128x128

Figure 5.7.: Execution time of matrix multiplication application for data prefetching sup-
port evaluations

Our approach gives a speedup of up to 16% as compared to the Reference. The speedup
comes from the fact that the matrices can be prefetched from the global shared memory
to the tile local memory without blocking the software execution. The introduced hard-
ware support offloads the software from signaling operations required during remote
data transfer. The synchronization overhead makes a larger share of overall execution

104

5.4. Validation on FPGA Prototype

time in case of bigger matrix sizes. Therefore, it can be observed that the scenarios with
larger matrix size show more improvement as compared to the ones with smaller matrix
size.

Ref_
2x

1

NIT
S_

2x
1

Ref_
2x

2

NIT
S_

2x
2

Ref_
3x

2

NIT
S_

3x
2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(a) Matrix_size = 32x32

Ref_
2x

1

NIT
S_

2x
1

Ref_
2x

2

NIT
S_

2x
2

Ref_
3x

2

NIT
S_

3x
2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(b) Matrix_size = 64x64

Ref_
2x

1

NIT
S_

2x
1

Ref_
2x

2

NIT
S_

2x
2

Ref_
3x

2

NIT
S_

3x
2

0

0.5

1

N
om

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

Computation Time
Synchronization Time

(c) Matrix_size = 128x128

Figure 5.8.: Execution time of matrix multiplication application for task spawning support
evaluations

Figure 5.8 shows the execution time of matrix multiplication application for the task
spawning case study. Ref and NITS refer to the state of the art and the proposed con-
figurations respectively. Our methodology reduces the synchronization time and thus
delivers a performance improvement of up to 19% as compared to the Reference config-
uration. The synchronization time is reduced by using efficient handshaking and signal-
ing mechanisms by our concept. In the Reference configuration, software supervises the
entire synchronization required for different phases of task spawning. In our methodol-
ogy, the bookkeeping of each sub-operation is handled by the specific hardware support.
Therefore, the software is offloaded from synchronizing events between remote tiles and

105

5. Experimental Setup and Validation

can proceed with the matrix multiplication processing. In addition, it can be observed
that our approach becomes more beneficial in scenarios with higher workload i.e. larger
matrix sizes. The reason being larger synchronization overhead in these scenarios as com-
pared to the scenarios with smaller matrix sizes.

Looking at the results, it can be observed that the achieved speedup resulting from our
contributions increases as we move to bigger architecture configurations and larger work-
load scenarios. These scenarios exploit the task level parallelism at a finer granularity.
Therefore, it can be stated that our concepts provide better scalability as compared to the
state of the art approaches when the degree of parallelism increases.

106

6. Conclusion and Outlook

6.1. Conclusion

Distributed shared memory architectures have revolutionized the way in which mod-
ern many-core systems could be programmed. They make it possible for the application
developers to play around with both legacy shared memory and message passing pro-
gramming models and tune their applications on the underlying architecture. This helps
in reducing Time-to-Market and hence increases the overall productivity of the develop-
ment cycle. However, the introduction of distributed shared memory approach comes up
with two important challenges; 1) management of resources in underlying communica-
tion infrastructure and 2) synchronization overhead between software instances running
on remote tiles. In this work, we come up with an approach in which architectural sup-
port is provided in the network interface to tackle the above-mentioned challenges. In the
following sections, we conclude our findings and provide a future outlook of this work.

6.2. Management of communication resources

Network on Chip contains virtual channels as communication resources which are shared
between concurrent traffic flows and can be used to increase network throughput. Effi-
cient management of communication resources is one of the most important challenges
for Network on Chip based architectures. Network on Chip management points to the
assignment of virtual channels between guaranteed service and best effort communica-
tion. State of the art methods allocate communication resources without considering the
impact of their decisions on the utilization of underlying communication infrastructure.
In distributed shared memory systems, communication between application instances re-
sults in traffic patterns which are difficult to predict before execution. Therefore, state of
the art approaches for communication resource management result in inefficient virtual
channel utilization and hence reduced overall performance.

We have proposed a concept which relies on self-optimization principles to assign virtual
channels between concurrent communication flows. Our approach regards dynamically
changing communication patterns while performing communication resource allocation.
Traffic is monitored at run-time and end-to-end connections are established on the basis
of monitoring data to optimize the usage of communication infrastructure. Connections
based on current traffic scenario are named as AUTO_GS connections. Proposed concept
is implemented in the form of hardware extensions in the network interface architecture.
The effectiveness of the approach is demonstrated with experiments using synthetic traf-
fic and real world applications. Our evaluations highlight that the assignment of virtual

107

6. Conclusion and Outlook

channels through our concept leads to better results in terms of communication infras-
tructure utilization, latency, and power consumption. Proposed hardware extensions are
prototyped for FPGA and ASIC platforms. RTL implementation results depict that the
hardware modules corresponding to our concept are synthesizable with reasonable area
cost at the target platforms without significant reduction in the maximum achievable fre-
quency.

6.3. Synchronization support for remote software instances

With increasing task level parallelism, the synchronization overhead between software
instances running on different tiles becomes significant in defining overall system per-
formance. Therefore, software synchronization support in single chip distributed shared
memory architectures is the second contribution of this work. In particular, the synchro-
nization overhead between software layers during remote data transfer and remote task
spawning operations has been focused. State of the art approaches for synchronization
support require software involvement at every stage of the remote data transfer operation,
which results in performance degradation. To the best of our knowledge, the performance
overhead associated to synchronize software instances during remote task spawning op-
eration over DSM architectures has not been addressed by any state of the art approach.

We have proposed the strategy to offload software from handshaking operations, which
are required during data transfer between remote tiles. The hardware support inside net-
work interface architecture has been extended to supervise the status of remote data trans-
fers. Secondly, we have introduced hardware extensions for managing synchronization
activities, which are required at multiple stages of the remote task spawning operation.
Simulation framework, as well as the FPGA prototype, are used for concept evaluation.
Real world applications are executed on the target platforms to validate the usefulness of
our concept. Results show that the proposed hardware support leads to lesser execution
time and reduced energy consumption on the underlying architecture when compared
with the state of the art approaches. Synthesis results highlight the low footprint require-
ments of the proposed hardware modules on FPGA and ASIC targets.

6.4. Future work

The proposed network interface architecture with its novel ingredients is being used in the
Trans-regional Collaborative Research Center 89 ’Invasive Computing’ [131]. The future
work which is described in the following will be addressed in the second phase of this
research project.

6.4.1. Con�gurable cache coherence support

Shared memory model continues to be the dominant programming paradigm in the mod-
ern many-core architectures. The fact that the memory is physically distributed makes

108

6.4. Future work

the cache coherence an important challenge for deploying shared memory programming
model on distributed shared memory systems. State of the art methods with software-
based cache coherence lead to higher performance overhead in distributed shared mem-
ory architectures. Therefore, cache coherence hardware support is essential to benefit
from shared memory programming. Conventional methods for supporting system-wide
cache coherence result in poor performance due to the overhead of cache coherence pro-
tocol over distributed communication medium. Hence, it becomes vital to devise intel-
ligent strategies which ensure better performance by reducing the overhead of cache co-
herence support over Network on Chip. In recent times, researchers have focused on
developing new methodologies to support cache coherence on distributed on-chip sys-
tems [28] [30] [24]. As a future work, it is planned to explore novel strategies for cache
coherence hardware support for distributed shared memory platforms.

A concept is under investigation which enables the management of cache organization in
an application-aware manner. According to this methodology, cache coherence support
within the architecture would be configured through high level "Hints" from the operat-
ing system. This approach has been named as region-based cache coherence. Region-based
cache coherence concept configures the hardware support for cache coherence selectively
in the architecture nodes, where it is desired. The group of nodes where the cache co-
herence is configured is named as a region. This concept provisions that the coherence
traffic can be handled at a high priority level only within the region. This aspect helps in
reducing the overhead of cache coherence support in comparison to the schemes which
advocate system-wide cache coherence. Region-based cache coherence concept is shown
in the figure 6.1. In addition, the idea of considering the utilization of cached data while
providing cache coherence support is being considered [29]. The cache hierarchy, as well
as the communication infrastructure, will be extended to support the configurable cache
coherence. In particular, the focus of our future work will be on the hardware extensions,
which are required in the network interface architecture.

6.4.2. Synchronization support during task execution

To exploit available parallelism over the given platform, an application spawns multiple
tasks which are mapped on the available cores either within the same compute tile or
in different compute tiles. Tasks which are mapped in different tiles result in higher ex-
ecution time because they need to communicate over Network on Chip. In the current
work, we have presented concepts to reduce the synchronization overhead during data
transfer and task spawning between remote tiles. Besides the above-mentioned phases,
remote tasks also require synchronization support during other phases of their execution.
The access to a shared object is the common example where the remote tasks need to syn-
chronize. In situations, where underlying platform lacks the appropriate synchronization
support, the overall performance gain from task level parallelism reduces because of the
synchronization overhead. Therefore, efficient mechanisms are needed which address
inter-tile synchronization during task execution [95].

Software based synchronization methods are static and do not consider the characteris-
tics of underlying architecture. Therefore, these methods can not harness fine-grained
parallelism. In addition, software-based synchronization leads to degraded performance

109

6. Conclusion and Outlook

CPU CPU

CPU CPU

N
I Memory

TCPA

N
I

Memory

N
I

MemoryI/O

N
I

CPU CPU

CPU i-Core

TCPA

CPU CPU

CPU CPU

Memory

CPU CPU

CPU i-Core

CPU CPU

CPU i-Core

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
I N

I Memory

N
I Memory

N
I Memory

N
I

Region 1

Region 2

Figure 6.1.: Region-based cache coherence

over Network on Chip based architectures. This is due to the fact that the actual appli-
cation execution is suspended the majority of the time because of communication delays
for exchanging messages over NoC. Hence, hardware-assisted synchronization mecha-
nisms are desired which offload the software from supervising operations which result
in inter-tile communication [148]. Hardware extensions can be introduced which en-
able conventional synchronization mechanisms like MUTEX, test-and-set or compare-
and-swap between the tiles and result in lesser synchronization overhead as compared
to pure software based implementation [143]. Network interface architecture can be ex-
tended to support the exchange of light weight synchronization messages between remote
tiles. In addition, dedicated hardware support can be developed in the network interface
to perform lock operations and hence offloading the software from executing costly lock
sub-routines [147].

110

A. Appendix

A.1. AHB Bus Signals

Important AHB signals with their description is provided in the table A.1

Signal Name Source Description
HADDR[31:0] Master 32 bit address bus

HWDATA[31:0] Master Data bus for write operations, can have size from
32 to 1024 bits

HTRANS[1:0] Master Type of the current transfer, can be Non-
Sequential, Sequential, Idle or Busy

HSIZE[2:0] Master Size of the current transfer, transfers are supported
from size of 8 bits to 1024 bits

HBURST[2:0] Master Type of the burst transfer, four, eight and sixteen
beat burst transfers are supported

HBUSREQ Master Indication of master to the arbiter that it wants an
access of the bus

HRDATA[31:0] Slave Data bus for read operations, can have size from
32 to 1024 bits

HREADY Slave High status of this signal indicates completion of
the transfer, can be held LOW to extend the trans-
fer

HRESP[1:0] Slave Status of the transfer, can be Okay, Error, Retry or
Split

HSPLIT Slave used to indicate that which master should repeat
the split transaction

HGRANT Arbiter This signal indicates that which master is granted
access to the bus

HMASTER[3:0] Arbiter This signal from arbiter is used by the bus slaves
which support split transfer to determine that
which master is performing the transfer

HSEL Decoder Status of the transfer, can be Okay, Error, Retry or
Split

Table A.1.: Important AHB signals [126]

111

A. Appendix

A.2. RTL Code Hierarchy

RTL Code hierarchy of the network interface is presented in Figure A.1.

network_adapter.vhd

(NA top level)

ina_package.vhd

(NA package file)

tile_interface.vhd

(Interface to AHB Bus)

NoC_interface.vhd

(Interface to iNoC)
ina_afifo_custom.vhd

(Transmit, receive

data FIFOs)

tile_interface_tx.vhd

(Tile Interface transmit

data path)

ina_ctrl_fifo.vhd

(Transmit, receive

control FIFOs)

afifo.vhd

(RTL FIFO

Entity)

ctrl_flit_gen.vhd

(control flit generation)

tile_interface_tx_ls.vhd

(Load/Store AHB

Interface)

tile_interface_tx_mp.vhd

(Memory_mapped

registers AHB Interface)

vc_lut_tx.vhd

(Virtual Channel Lookup

table)

flit_generation.vhd

(Data flit generation)

dma_tx_module.vhd

(Transmit side AHB

Master Interface)

tile_interface_rx.vhd

(Tile Interface receive

data path)

tile_interface_rx

_ls_mp_fsm.vhd

(Receive data request

classification)

tile_interface_rx

_ls_resp_src_fsm.vhd

(Load/Store response

processing)

tile_interface_rx

_ls_req_fsm.vhd

(Load/Store request

processing)

ahbmst.vhd

(Receive side AHB

Master Interface)

ctrl_rx_fsm.vhd

(Receive control request

classification)

ctrl_flit_degen.vhd

(Receive control request

processing)

tile_interface_rx

_reservation_to_tx.vhd

(Bidirectional GS

connection establishment)

tile_interface_rx

_lngmsg_req.vhd

(DMA request

processing)

tile_interface_rx

_lngmsg_resp_src.vhd

(DMA response

processing)

tile_interface_rx

_sys_ilet_req.vhd

(System ilet request

processing)

tile_interface_rx

_norm_ilet_req.vhd

(Normal ilet request

processing)

tile_interface_rx

_norm_ilet_resp_src.vhd

(Normal ilet response

processing)

NoC_interface_tx.vhd

(NoC Interface transmit

data path)

afifo.vhd

(RTL FIFO

Entity)

NoC_interface_rx.vhd

(NoC Interface receive

data path)

NoC_interface_tx_data.vhd

(Transmit data FIFO

scheduling)

NoC_interface_tx_ctrl.vhd

(Transmit control FIFO

scheduling)

NoC_interface_rx_data.vhd

(Receive data FIFO

scheduling)

NoC_interface_tx_ctrl.vhd

(Receive control FIFO

scheduling)

Figure A.1.: Network interface code hierarchy

112

A.3. Network Interface Driver Library

A.3. Network Interface Driver Library

include < s t d i o . h>
include < s t d l i b . h>

define SRC_ADDR 0 x80010000
define DST_LOCAL_ADDR 0 x80010000
define DST_GLOBAL_ADDR 0 x41010000
define DST_GLOBAL_ADDR1 0 x40010000
define DDR_ADDR 0 x00000000
define DATA_SIZE 0x20

v o l a t i l e unsigned i n t * t i l e _ i d = (v o l a t i l e unsigned i n t *) 0 x80E00000 ;

/ * GS R e s e r v a t i o n R e g i s t e r s * /

v o l a t i l e unsigned i n t * Dst_naddr_reg = (v o l a t i l e unsigned i n t *) 0 x80E00108 ;
v o l a t i l e unsigned i n t * S l_reg = (v o l a t i l e unsigned i n t *) 0x80E0010C ;

/ * r e g i s t e r s f o r r e a d i n g c o n n e c t i o n s t a t u s , b a s e d on d e s t i n a t i o n i d * /
v o l a t i l e unsigned i n t *VC_DST_REG = (v o l a t i l e unsigned i n t *) 0 x80E00400 ;
v o l a t i l e unsigned i n t *VC_DST_STATUS_REG = (v o l a t i l e unsigned i n t *) 0 x80E00404 ;

/ * r e g i s t e r s f o r r e a d i n g c o n n e c t i o n s t a t u s , vc b a s e d * /

v o l a t i l e unsigned i n t *VC0_STATUS_REG = (v o l a t i l e unsigned i n t *) 0 x80E00500 ;
v o l a t i l e unsigned i n t *VC1_STATUS_REG = (v o l a t i l e unsigned i n t *) 0 x80E00504 ;
v o l a t i l e unsigned i n t *VC2_STATUS_REG = (v o l a t i l e unsigned i n t *) 0 x80E00508 ;
v o l a t i l e unsigned i n t *VC3_STATUS_REG = (v o l a t i l e unsigned i n t *) 0x80E0050C ;

/ * Long Msg R e g i s t e r s * /

v o l a t i l e unsigned i n t * LngMsg_msg_id_reg = (v o l a t i l e unsigned i n t *) 0 x80E00300
;

v o l a t i l e unsigned i n t * LngMsg_Payload_length = (v o l a t i l e unsigned i n t *) 0
x80E00304 ;

v o l a t i l e unsigned i n t * LngMsg_Payload_addr = (v o l a t i l e unsigned i n t *) 0
x80E00308 ;

v o l a t i l e unsigned i n t * LngMsg_Payload_Dst_addr = (v o l a t i l e unsigned i n t *) 0
x80E0030C ;

v o l a t i l e unsigned i n t * LngMsg_status_reg = (v o l a t i l e unsigned i n t *) 0
x80E00320 ;

v o l a t i l e unsigned i n t * LngMsg_status_recv_reg = (v o l a t i l e unsigned i n t *) 0
x80E00324 ;

/ * Normal i− l e t d e s t i n a t i o n I n d i r e c t R e g i s t e r s * /

v o l a t i l e unsigned i n t * norm_i let_dst_ indir_msg_id_reg = (v o l a t i l e unsigned i n t

*) 0 x80E00600 ;
v o l a t i l e unsigned i n t * n o r m _ i l e t _ d s t _ i n d i r _ d s t _ i d _ r e g = (v o l a t i l e unsigned i n t

*) 0 x80E00604 ;

113

A. Appendix

v o l a t i l e unsigned i n t * norm_i le t_dst_ indir_payload_reg1 = (v o l a t i l e unsigned
i n t *) 0 x80E00610 ;

v o l a t i l e unsigned i n t * norm_i le t_dst_ indir_payload_reg2 = (v o l a t i l e unsigned
i n t *) 0 x80E00614 ;

v o l a t i l e unsigned i n t * norm_i le t_dst_ indir_payload_reg3 = (v o l a t i l e unsigned
i n t *) 0 x80E00618 ;

v o l a t i l e unsigned i n t * norm_i le t_dst_ indir_payload_reg4 = (v o l a t i l e unsigned
i n t *) 0x80E0061C ;

v o l a t i l e unsigned i n t * n o r m _ i l e t _ d s t _ i n d i r _ s t a t u s _ r e g = (v o l a t i l e unsigned i n t

*) 0 x80E00620 ;

/ * Normal i− l e t s o u r c e I n d i r e c t R e g i s t e r s * /

v o l a t i l e unsigned i n t * norm_i le t_src_ indir_msg_id_reg = (v o l a t i l e unsigned i n t

*) 0 x80E00700 ;
v o l a t i l e unsigned i n t * norm_i le t_src_ indir_payload_reg1 = (v o l a t i l e unsigned

i n t *) 0 x80E00710 ;
v o l a t i l e unsigned i n t * norm_i le t_src_ indir_payload_reg2 = (v o l a t i l e unsigned

i n t *) 0 x80E00714 ;
v o l a t i l e unsigned i n t * norm_i le t_src_ indir_payload_reg3 = (v o l a t i l e unsigned

i n t *) 0 x80E00718 ;
v o l a t i l e unsigned i n t * norm_i le t_src_ indir_payload_reg4 = (v o l a t i l e unsigned

i n t *) 0x80E0071C ;
v o l a t i l e unsigned i n t * n o r m _ i l e t _ s r c _ i n d i r _ s t a t u s _ r e g = (v o l a t i l e unsigned i n t

*) 0 x80E00720 ;

/ * Normal i− l e t d i r e c t R e g i s t e r s * /

v o l a t i l e unsigned i n t * norm_ilet_dir_msg_id_reg = (v o l a t i l e unsigned i n t *) 0
x80E00800 ;

v o l a t i l e unsigned i n t * norm_i le t_d i r_ds t_ id_reg = (v o l a t i l e unsigned i n t *) 0
x80E00804 ;

v o l a t i l e unsigned i n t * norm_i let_dir_payload_reg1 = (v o l a t i l e unsigned i n t *) 0
x80E00810 ;

v o l a t i l e unsigned i n t * norm_i let_dir_payload_reg2 = (v o l a t i l e unsigned i n t *) 0
x80E00814 ;

v o l a t i l e unsigned i n t * norm_i let_dir_payload_reg3 = (v o l a t i l e unsigned i n t *) 0
x80E00818 ;

v o l a t i l e unsigned i n t * norm_i let_dir_payload_reg4 = (v o l a t i l e unsigned i n t *) 0
x80E0081C ;

v o l a t i l e unsigned i n t * n o r m _ i l e t _ d i r _ s t a t u s _ r e g = (v o l a t i l e unsigned i n t *) 0
x80E00820 ;

/ * System i− l e t R e g i s t e r s * /

v o l a t i l e unsigned i n t * s y s _ i l e t _ d s t _ i d _ r e g = (v o l a t i l e unsigned i n t *) 0
x80E00904 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 1 = (v o l a t i l e unsigned i n t *) 0
x80E00910 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 2 = (v o l a t i l e unsigned i n t *) 0
x80E00914 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 3 = (v o l a t i l e unsigned i n t *) 0
x80E00918 ;

114

A.3. Network Interface Driver Library

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 4 = (v o l a t i l e unsigned i n t *) 0
x80E0091C ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 5 = (v o l a t i l e unsigned i n t *) 0
x80E00920 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 6 = (v o l a t i l e unsigned i n t *) 0
x80E00924 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 7 = (v o l a t i l e unsigned i n t *) 0
x80E00928 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ p a y l o a d _ r e g 8 = (v o l a t i l e unsigned i n t *) 0
x80E0092C ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ s r c _ s t a t u s _ r e g = (v o l a t i l e unsigned i n t *) 0
x80E00930 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ d s t _ s t a t u s _ r e g = (v o l a t i l e unsigned i n t *) 0
x80E00940 ;

v o l a t i l e unsigned i n t * s y s _ i l e t _ d s t _ p t r _ r e g = (v o l a t i l e unsigned i n t *) 0
x80E00944 ;

main () {

i f ((* t i l e _ i d == 0)) {
p r i n t f (" TILE%d : Hello !\n" , * t i l e _ i d) ;

v o l a t i l e unsigned i n t * s tore_addr ;
v o l a t i l e unsigned i n t * ddr_addr ;
unsigned i n t idx , i t e r ;
unsigned i n t i , j ;

/ * * * * * * * * * Wri t ing known p a t t e r n a t L o c a l DMA Address f o r DMA T e s t i n g * * * * * *
* /

p r i n t f (" S tore a t DMA Address f i r s t . . . \ n") ;
for (idx =0; idx <DATA_SIZE ; idx ++) {
store_addr = (unsigned i n t *) (SRC_ADDR+idx * 4) ;

* s tore_addr = (DST_LOCAL_ADDR+idx * 4) ;
}

p r i n t f (" S tore complete . . . \ n") ;

/ * * * * * * * * * * * * * * * * * * Connec t i on R e s e r v a t i o n t e s t * /

* Dst_naddr_reg = DST_GLOBAL_ADDR; / / t y p e c a s t i n g r e q u i r e d d o e s not work
o t h e r w i s e

* S l_reg = 0 x00050001 ; / / SL = 1 , i n v a d e = 1 , b i d i r e c t i o n a l = 0
p r i n t f (" I n i t i a t e d Connection Reservat ion\n") ;

/ * Read Connec t i on S t a t u s * /

*VC_DST_REG = DST_GLOBAL_ADDR;
p r i n t f (" Connection S t a t u s i s %x \n" , *VC_DST_STATUS_REG & 0 xE0000000) ;

/ * Connec t i on s t a t u s may be c h e c k e d by c h e c k i n g t h e s t a t u s o f VCs i n d i v i d u a l l y * /
p r i n t f (" Connection S t a t u s i s %x \n" , *VC0_STATUS_REG & 0 xE0000000) ;

/ * * * * * * * * * * * * * * * I n i t i a t i n g DMA o v e r r e s e r v e d c o n n e c t i o n * * * * * * * * * * * * * * * * /

115

A. Appendix

while (* LngMsg_status_reg ! = 0) ;

* LngMsg_msg_id_reg = 0x0 ;

* LngMsg_Payload_length = DATA_SIZE ;

* LngMsg_Payload_addr = SRC_ADDR;

* LngMsg_Payload_Dst_addr = DST_GLOBAL_ADDR;
while (* LngMsg_status_recv_reg ! = 0) ;
p r i n t f ("DMA Request I n i t i a t e d to T i l e 1\n") ;

/ / Connec t i on r e l e a s e t e s t

* Dst_naddr_reg = DST_GLOBAL_ADDR;

* S l_reg = 0 x00040001 ; / / SL = 1 , i n v a d e = 0 (r e t r e a t) , b i d i r e c t i o n a l = 0
p r i n t f (" I n i t i a t e d Connection Release\n") ;

/ * * * * * * * * * * * * * * * * * Read Connec t i on s t a t u s a f t e r r e l e a s i n g * * * * * * * * * * * * * * * * * * /

*VC_DST_REG = DST_GLOBAL_ADDR;
p r i n t f (" Connection S t a t u s i s %x \n" , *VC_DST_STATUS_REG & 0 xE0000000) ;

p r i n t f (" Connection S t a t u s i s %x \n" , *VC0_STATUS_REG & 0 xE0000000) ;
p r i n t f (" Connection S t a t u s i s %x \n" , *VC1_STATUS_REG & 0 xE0000000) ;
p r i n t f (" Connection S t a t u s i s %x \n" , *VC2_STATUS_REG & 0 xE0000000) ;
p r i n t f (" Connection S t a t u s i s %x \n" , *VC3_STATUS_REG & 0 xE0000000) ;

/ * Sending System i− l e t wi th dummy p a y l o a d * * * * * * * * * * * * * * * /

while (* s y s _ i l e t _ s r c _ s t a t u s _ r e g ! = 0) ;
p r i n t f (" System i−l e t I n i t i a t e d to T i l e 1\n") ;

* s y s _ i l e t _ d s t _ i d _ r e g = 0 x41000000 ;

* s y s _ i l e t _ p a y l o a d _ r e g 1 = 0x1 ;

* s y s _ i l e t _ p a y l o a d _ r e g 2 = 0x43 ;

* s y s _ i l e t _ p a y l o a d _ r e g 3 = 0x44 ;

* s y s _ i l e t _ p a y l o a d _ r e g 4 = 0x45 ;

* s y s _ i l e t _ p a y l o a d _ r e g 5 = 0x46 ;

* s y s _ i l e t _ p a y l o a d _ r e g 6 = 0x47 ;

* s y s _ i l e t _ p a y l o a d _ r e g 7 = 0x48 ;

* s y s _ i l e t _ p a y l o a d _ r e g 8 = 0x49 ;

/ * Normal i− l e t which i s f o l l o w i n g DMA t r a n f e r b e f o r e , Task spawning s u p p o r t * /
p r i n t f (" i−l e t Enqueue Des t ina t ion I n d i r e c t Request I n i t i a t e d to T i l e 1\n") ;

* norm_i let_dst_ indir_msg_id_reg = 0x0 ;

* n o r m _ i l e t _ d s t _ i n d i r _ d s t _ i d _ r e g = 0 x41800000 ;

* norm_i le t_dst_ indir_payload_reg1 = 0x1a ;

* norm_i le t_dst_ indir_payload_reg2 = 0x2b ;

* norm_i le t_dst_ indir_payload_reg3 = 0 x3c ;

* norm_i le t_dst_ indir_payload_reg4 = 0x4d ;

/ * Normal i− l e t s o u r c e I n d i r e c t * * * * * /
p r i n t f (" i−l e t Enqueue Source I n d i r e c t Request I n i t i a t e d to T i l e 1\n") ;

* norm_i le t_src_ indir_msg_id_reg = 0x0 ;

* norm_i le t_src_ indir_payload_reg1 = 0 x5e ;

116

A.3. Network Interface Driver Library

* norm_i le t_src_ indir_payload_reg2 = 0 x6f ;

* norm_i le t_src_ indir_payload_reg3 = 0x7A ;

* norm_i le t_src_ indir_payload_reg4 = 0x8B ;

/ * Normal i− l e t D e s t i n a t i o n I n d i r e c t * * * * * * * * * /
while (* n o r m _ i l e t _ d i r _ s t a t u s _ r e g ! = 0) ;
p r i n t f (" i−l e t Enqueue (d i r e c t) I n i t i a t e d to T i l e 1\n") ;

* norm_ilet_dir_msg_id_reg = 0x2 ; / / Msg−i d f o r i n d i r e c t i− l e t s can be
d i f f e r e n t

* norm_i le t_d i r_ds t_ id_reg = 0 x41800000 ;

* norm_i let_dir_payload_reg1 = 0x9C ;

* norm_i let_dir_payload_reg2 = 0x10D ;

* norm_i let_dir_payload_reg3 = 0x11E ;

* norm_i let_dir_payload_reg4 = 0x12F ;

}

i f ((* t i l e _ i d == 1)) {
p r i n t f (" TILE%d : Hello !\n" , * t i l e _ i d) ;
v o l a t i l e unsigned i n t * ddr_addr ;
unsigned i n t i , j ;
for (j =0 ; j <1000000; j ++) ; / / known d e l a y

/ * * * * * * * * * * * * * * * * * * * V e r i f y i n g DMA w r i t t e n d a t a * /
for (i =0 ; i <DATA_SIZE ; i ++) {

ddr_addr = (unsigned i n t *) (DST_LOCAL_ADDR+ i * 4) ;
i f (* ddr_addr == ddr_addr)

j = 1 ;
e lse {
p r i n t f (" Error a t Address 0x%x\t , 0 x%x\n" , ddr_addr , * ddr_addr) ;
j = 0 ;

}
}

i f (j ==1)
p r i n t f (" Test S u c c e s s f u l \n") ;

}

i f ((* t i l e _ i d == 2)) {

p r i n t f (" TILE%d : Hello !\n" , * t i l e _ i d) ;
}

i f ((* t i l e _ i d == 3)) {
p r i n t f (" TILE%d : Hello !\n" , * t i l e _ i d) ;

}

return 0 ;

}

117

List of Figures

1.1. Increasing transistor count on single chip according to Moore’s law [129] . . 1
1.2. Miniaturization of electronic devices based on integrated circuits [128] . . . 2
1.3. System on Chip based on OpenPIC softcore processor [92] 4
1.4. Network on Chip based DSM architecture . 7

2.1. A typical AMBA AHB-based System [126] 12
2.2. Four beat incremental burst transfer on AHB bus [126] 14
2.3. NoC based tiled architecture . 15
2.4. Micro-architecture of a Network on Chip router [53] 16
2.5. Network interface ends . 17
2.6. Major Network on Chip topologies . 18
2.7. Weighted round robin arbitration policy . 21
2.8. Message-dependent deadlock example . 23
2.9. Transactions representing interaction between master and slave for shared

memory access . 28
2.10. GS and BE traffic flows over Network on Chip 30
2.11. Network on Chip communication resource management 31
2.12. The concept of invasive computing . 34
2.13. Different layers of Invasive Run-time Support System 36
2.14. InvasIC architecture consisting of compute, memory and I/O tiles inter-

connected through Network on Chip . 37
2.15. Standard RISC Core Tile in InvasIC architecture 39
2.16. iNoC Router architecture . 40

3.1. VOPD core graph with varying communication bandwidth requirements [9] 44
3.2. Concurrent applications sharing an underlying DSM architecture 45
3.3. Communication resource management through hardware-controlled GS con-

nections [144] . 46
3.4. Network utilization for synthetic traffic . 51
3.5. Average packet latency for synthetic traffic 53
3.6. Communication related energy consumption for synthetic traffic 54
3.7. Network utilization for real world applications 56
3.8. Average packet latency for real world applications 57
3.9. Communication related energy consumption for real world applications . . 58
3.10. Task level parallelism in real world applications 59
3.11. Example code showing the data transfer through prefetching in X10 61
3.12. Message sequence chart showing software dominated inter-tile task spawn-

ing . 63

119

List of Figures

3.13. Message sequence chart with network interface managed inter-tile task spawn-
ing [145] . 64

3.14. Execution time of real world applications for data prefetching evaluations . 66
3.15. Execution time of real world applications for task spawning evaluations . . 67

4.1. Layered design approach for network interface architecture 70
4.2. Block diagram of network interface architecture with state of the art com-

munication support . 71
4.3. Network interface with partitioned tile interface 72
4.4. Finite State Machine (FSM) of RLS unit to support multiple outstanding

requests . 73
4.5. Block diagram of tile interface in RDMA unit 76
4.6. Network packet corresponding to connection-less best effort communication 77
4.7. Connection oriented guaranteed service communication 78
4.8. Head flit format . 78
4.9. Request type flit format . 78
4.10. Tail flit format . 79
4.11. Block diagram of proposed network interface architecture 82
4.12. Network interface transmit datapath block diagram with AUTO_GS support 83
4.13. Interplay of hardware modules for AUTO_GS concept 86
4.14. Network interface transmit datapath with software communication support 91
4.15. Network interface receive datapath with software communication support . 92

5.1. Tiled architecture prototype on a single FPGA platform 97
5.2. Tiled architecture prototype on CHIPit platform 99
5.3. Execution time of uniform scenario for data prefetching support evaluations 100
5.4. Execution time of hotspot scenario for data prefetching support evaluations 101
5.5. Execution time of uniform scenario for task spawning support evaluations . 102
5.6. Execution time of hotspot scenario for task spawning support evaluations . 102
5.7. Execution time of matrix multiplication application for data prefetching

support evaluations . 104
5.8. Execution time of matrix multiplication application for task spawning sup-

port evaluations . 105

6.1. Region-based cache coherence . 110

A.1. Network interface code hierarchy . 112

120

List of Tables

3.1. Real world video processing applications . 55

4.1. Memory map realized for distributed shared memory Invasive architecture 72
4.2. NI memory-mapped registers for QoS support 75
4.3. NI memory-mapped registers for data transfer through DMA 76
4.4. NI memory-mapped registers showing existence of VC based connection

to a given tile . 84
4.5. NI memory-mapped registers showing the reservation status of individual

virtual channels . 84
4.6. ASIC TSMC 45 nm and FPGA Virtex-5 VLX330 synthesis Results with AUTO_GSconn

= 2, AUTO_GScycle = 4160 . 87
4.7. AUTO_GS synthesis results with different AUTO_GSconn values and AUTO_GScycle

= 4160 . 88
4.8. AUTO_GS synthesis results with different AUTO_GScycle values and AUTO_GSconn

= 2 . 88
4.9. NI memory-mapped registers for DMA Status 89
4.10. NI memory-mapped registers for sending system i-let at source tile 90
4.11. NI memory-mapped registers for processing system i-let at destination tile . 90
4.12. NI memory-mapped registers for sending task i-let 91
4.13. ASIC TSMC 45 nm and FPGA Virtex-5 VLX330 synthesis Results 92

5.1. Important parameters of the RTL simulation framework 95
5.2. FPGA prototype network interface and Network on Chip parameters 96
5.3. FPGA prototype memory configurations . 98

A.1. Important AHB signals [126] . 111

121

Abbreviations

AHB advanced high-performance bus

AMBA advanced microcontroller bus architecture

APB advanced peripheral bus

ARM advanced RISC machines

ASB advanced system bus

ASIC application-specific integrated circuit

ASP advance peripheral bus

BE best-effort

BU buffer utilization

CiC core ilet controllers

CISC complex instruction set computer

CMOS complementary metal oxide semiconductor

CMP chip multiprocessor

CPU central processing unit

CRE communication related energy

CS circuit switching

DDR double data rate

DEMUX demultiplexer

DFT discrete Fourier transform

DMA direct memory access

DSE design space exploration

DSM distributed shared memory

DSU debug support unit

DVFS dynamic voltage and frequency scaling

DVI digital visual interface

123

Abbreviations

ECC error-correcting code

EPIC explicitly parallel instruction computing

EVC express virtual channel

FEC forward error correction

FI frequency island

FIFO first in - first out

�it flow control digit

FPGA field programmable gate array

FPU floating-point unit

FSM finite state machine

GPU graphics processing unit

GS guaranteed service

GT guaranteed throughput

HDL hardware description language

HLS high-level synthesis

HPC high-performance computing

HRE heterogeneous reconfigurable engine

i-NoC invasive network on chip

i-NI invasive network interface

I/O input/output

IDN input/output dynamic network

IET independent execution time

IP intellectual property

IRA input reservation arbitration

iRTSS invasive run-time support system

ISA instruction set architecture

ITRS International Technology Roadmap for Semiconductors

JTAG joint test action group

LAN local area network

LU link utilization

124

LUT look up table

MC memory controller

MDN memory dynamic network

MPB message passing buffer

MPI message passing interface

MPPA multi-purpose processor architecture

MPSoC multiprocessor system on a chip

MPU message passing unit

NA network adapter

NI network interface

NoC network on chip

NUMA non-uniform memory access

OPRA output port reservation arbitration

ORT output reservation table

OS operating system

PAR place and route

PCB printed circuit board

PCI peripheral component interconnect

PE processing element

PGAS partitioned global address space

PIO programmed input/output

PMU power management unit

PS packet switching

QoS quality of service

RAM random-access memory

RaR request-and-response

RB ring bus

RE resource element

RGMII reduced gigabit media independent interface

RISC reduced instruction set computer

125

Abbreviations

RMP resource management policy

RMU resource management unit

RR round-robin

RSR reservation success rate

RT round-trip

RTP round-trip packet

SAF store and forward

SCC Single-chip Cloud Computer

SDM spatial division multiplexing

SER soft error rate

SET single event transient

SEU single event upsets

SL service level

SLN second layer network

SMU shared memory unit

SoC system on a chip

SPMD single program, multiple data

SRAM static random-access memory

SSRAM synchronous static random access memory

STN static network

TC transmission control

TCPA Tightly-Coupled Processor Array

TDM time division multiplexing

TDMA time division multiple access

TDN tile dynamic network

TGFF task graphs for free

TLM tile local memory

TMR triple modular redundancy

TS time slot

TSV through-silicon via

UART universal asynchronous receiver transmitter

UDN user dynamic network

126

UMR Universal Multi-Resource

UPF unified power format

USB universal serial bus

VC virtual channel

VCD value change dump

VCI virtual component interface

VCT virtual cut through

VCU virtual channel utilization

VFI voltage-frequency islands

VI voltage island

VLIW very long instruction word

VLSI very-large-scale integration

VN virtual network

VNCU virtual network control unit

VNMU virtual network management unit

WC worst case

WRR weighted round-robin

XAUI 10 gigabit media independent interface

127

Bibliography

[1] AGARWAL, A., C. ISKANDER and R. SHANKAR: Survey of network on chip (noc) ar-
chitectures & contributions. Journal of engineering, Computing and Architecture,
3(1):21–27, 2009.

[2] ANDRZEJEWSKI, M.: AMBA bus emulation in the Nostrum NoC using best effort com-
munication. PhD thesis, Citeseer, 2005.

[3] ATTIA, B., W. CHOUCHENE, A. ZITOUNI, A. NOURDIN and R. TOURKI: Design and
implementation of low latency network interface for network on chip. In Design and Test
Workshop (IDT), 2010 5th International, pp. 37–42. IEEE, 2010.

[4] AUGONNET, C., S. THIBAULT, R. NAMYST and P.-A. WACRENIER: StarPU: A uni-
fied platform for task scheduling on heterogeneous multicore architectures. In European
Conference on Parallel Processing, pp. 863–874. Springer, 2009.

[5] BADAWY, W. and G. JULIEN: System-on-Chip for Real-Time Applications. The Springer
International Series in Engineering and Computer Science. Springer US, 2003.

[6] BECKER, J., S. FRIEDERICH, J. HEISSWOLF, R. KOENIG and D. MAY: Hardware proto-
typing of novel invasive multicore architectures. In Design Automation Conference (ASP-
DAC), 2012 17th Asia and South Pacific, pp. 201–206. IEEE, 2012.

[7] BENINI, L. and G. D. MICHELI: Networks on chips: a new SoC paradigm. Computer,
2002.

[8] BERTOZZI, D. and L. BENINI: Xpipes: a network-on-chip architecture for gigascale
systems-on-chip. Circuits and Systems Magazine, IEEE, 4(2):18–31, 2004.

[9] BERTOZZI, D., A. JALABERT, S. MURALI, S. MEMBER, R. TAMHANKAR, S. MEM-
BER, S. STERGIOU, S. MEMBER, L. BENINI and G. D. MICHELI: NoC synthesis flow
for customized domain specific multiprocessor Systems-on-Chip. IEEE Transactions on
Parallel and Distributed Systems, 2005.

[10] BHOJWANI, P. and R. MAHAPATRA: Interfacing cores with on-chip packet-switched net-
works. In VLSI Design, 2003. Proceedings. 16th International Conference on, pp. 382–387.
IEEE, 2003.

[11] BHOJWANI, P. and R. N. MAHAPATRA: Core network interface architecture and latency
constrained on-chip communication. In Quality Electronic Design, 2006. ISQED’06. 7th
International Symposium on, pp. 6–pp. IEEE, 2006.

[12] BINKERT, N., B. BECKMANN, G. BLACK, S. K. REINHARDT, A. SAIDI, A. BASU,
J. HESTNESS, D. R. HOWER, T. KRISHNA, S. SARDASHTI et al.: The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[13] BJERREGAARD, T. and S. MAHADEVAN: A survey of research and practices of network-

129

Bibliography

on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

[14] BJERREGAARD, T., S. MAHADEVAN, R. G. OLSEN and J. SPARSØ: An OCP com-
pliant network adapter for GALS-based SoC design using the MANGO network-on-chip.
In System-on-Chip, 2005. Proceedings. 2005 International Symposium on, pp. 171–174.
IEEE, 2005.

[15] BJERREGAARD, T. and J. SPARSO: A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In Design, Automation and Test in
Europe, 2005. Proceedings, pp. 1226–1231. IEEE, 2005.

[16] BOLOTIN, E., I. CIDON, R. GINOSAR and A. KOLODNY: QNoC: QoS architecture
and design process for network on chip. Journal of systems architecture, 50(2):105–128,
2004.

[17] BONONI, L. and N. CONCER: Simulation and analysis of network on chip architectures:
ring, spidergon and 2D mesh. In Proceedings of the conference on Design, automation
and test in Europe: Designers’ forum, pp. 154–159. European Design and Automation
Association, 2006.

[18] BORKAR, S. and A. A. CHIEN: The future of microprocessors. Communications of the
ACM, 54(5):67–77, 2011.

[19] BRAUN, M., S. BUCHWALD, M. MOHR and A. ZWINKAU: An x10 compiler for inva-
sive architectures. KIT, Fakultät für Informatik, 2012.

[20] CARARA, E., G. M. ALMEIDA, G. SASSATELLI and F. G. MORAES: Achieving com-
posability in NoC-based MPSoCs through QoS management at software level. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2011, pp. 1–6. IEEE,
2011.

[21] CHANG, J., Y. JONGSU and K. JUNSEONG: Design a switch wrapper for SNA on-chip-
network. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 89(6):1615–1621, 2006.

[22] CHARLES, P., C. GROTHOFF, V. SARASWAT, C. DONAWA, A. KIELSTRA,
K. EBCIOGLU, C. VON PRAUN and V. SARKAR: X10: an object-oriented approach to
non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

[23] CHEN, X., Z. LU, A. JANTSCH and S. CHEN: Supporting distributed shared memory
on multi-core network-on-chips using a dual microcoded controller. In Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 39–44, 2010.

[24] CHENG, L., J. B. CARTER and D. DAI: An adaptive cache coherence protocol optimized
for producer-consumer sharing. In High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on, pp. 328–339. IEEE, 2007.

[25] COPORATION, A.: Avalon interface specifications, 2005.

[26] DALL’OSSO, M., G. BICCARI, L. GIOVANNINI, D. BERTOZZI and L. BENINI: Xpipes:
a latency insensitive parameterized network-on-chip architecture for multi-processor SoCs.
In Computer Design (ICCD), 2012 IEEE 30th International Conference on, pp. 45–48.
IEEE, 2012.

[27] DALLY, W. J.: Virtual-channel flow control. Parallel and Distributed Systems, IEEE

130

Bibliography

Transactions on, 3(2):194–205, 1992.

[28] DAMODARAN, P. P., S. WALLENTOWITZ and A. HERKERSDORF: Distributed coopera-
tive shared last-level caching in tiled multiprocessor system on chip. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–4. IEEE, 2014.

[29] DAMODARAN, P. P. M., A. ZAIB, T. WILD, S. WALLENTOWITZ and A. HERKERS-
DORF: Sharer Status-based Caching in tiled Multiprocessor Systems-on-Chip. In High
Performance Computing (HPC), 2015, 2015.

[30] DAS, A., M. SCHUCHHARDT, N. HARDAVELLAS, G. MEMIK and A. CHOUDHARY:
Dynamic directories: A mechanism for reducing on-chip interconnect power in multicores.
In Proceedings of the Conference on Design, Automation and Test in Europe, pp. 479–484.
EDA Consortium, 2012.

[31] DAS, R., O. MUTLU, T. MOSCIBRODA and C. R. DAS: Application-aware prioritization
mechanisms for on-chip networks. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pp. 280–291. IEEE, 2009.

[32] DAYA, B. K., C.-H. O. CHEN, S. SUBRAMANIAN, W.-C. KWON, S. PARK, T. KR-
ISHNA, J. HOLT, A. P. CHANDRAKASAN and L.-S. PEH: SCORPIO: a 36-core research
chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp.
25–36. IEEE, 2014.

[33] DE MICHELI, G. and L. BENINI: Networks on chips: technology and tools. Academic
Press, 2006.

[34] EBRAHIMI, M., M. DANESHTALAB, N. SREEJESH, P. LILJEBERG and H. TENHUNEN:
Efficient network interface architecture for network-on-chips. Proc. of 27th IEEE Norchip,
pp. 1–4, 2009.

[35] ESMAEILZADEH, H., E. BLEM, R. S. AMANT, K. SANKARALINGAM and
D. BURGER: Dark silicon and the end of multicore scaling. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, pp. 365–376. IEEE, 2011.

[36] FARUQUE, A., M. ABDULLAH, T. EBI and J. HENKEL: Run-time adaptive on-chip
communication scheme. In Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM In-
ternational Conference on, pp. 26–31. IEEE, 2007.

[37] FERRANTE, A., S. MEDARDONI and D. BERTOZZI: Network interface sharing tech-
niques for area optimized NoC architectures. In Digital System Design Architectures,
Methods and Tools, 2008. DSD’08. 11th EUROMICRO Conference on, pp. 10–17. IEEE,
2008.

[38] FLICH, J. and D. BERTOZZI: Designing network on-chip architectures in the nanoscale
era. CRC Press, 2010.

[39] FLYNN, D.: AMBA: enabling reusable on-chip designs. Micro, IEEE, 17(4):20–27, 1997.

[40] FREEMAN, C. and L. SOETE: The economics of industrial innovation. Psychology Press,
1997.

[41] FRIEDERICH, S., J. HEISSWOLF and J. BECKER: Hardware/software debugging of large
scale many-core architectures. In Integrated Circuits and Systems Design (SBCCI), 2014

131

Bibliography

27th Symposium on, pp. 1–7. IEEE, 2014.

[42] FRIEDERICH, S., J. HEISSWOLF, D. MAY and J. BECKER: Hardware prototyping and
software debugging of multi-core architectures.

[43] GAISLER, A.: Leon3 processor. Nanoscale Integration and Modeling (NIMO) Group,
2010.

[44] GAISLER, J., E. CATOVIC, M. ISOMAKI, K. GLEMBO and S. HABINC: GRLIB IP core
user manual. Gaisler research, 2007.

[45] GEBALI, F., H. ELMILIGI and M. W. EL-KHARASHI: Networks-on-chips: theory and
practice. CRC press, 2011.

[46] GEER, D.: Chip makers turn to multicore processors. Computer, 38(5):11–13, 2005.

[47] GERNDT, M., F. HANNIG, A. HERKERSDORF, A. HOLLMANN, M. MEYER,
S. ROLOFF, J. WEIDENDORFER, T. WILD and A. ZAIB: An integrated simulation frame-
work for invasive computing. In Specification and Design Languages (FDL), 2012 Forum
on, pp. 209–216. IEEE, 2012.

[48] GOOSSENS, K., J. DIELISSEN and A. RADULESCU: Æthereal network on chip: concepts,
architectures, and implementations. Design & Test of Computers, IEEE, 22(5):414–421,
2005.

[49] GOOSSENS, K., P. WIELAGE, A. PEETERS and J. VAN MEERBERGEN: Networks on
silicon: Combining best-effort and guaranteed services. In date, p. 0423. IEEE, 2002.

[50] GRAPHICS, M.: ModelSim, 2007.

[51] GROT, B., J. HESTNESS, S. W. KECKLER and O. MUTLU: Kilo-NOC: a heterogeneous
network-on-chip architecture for scalability and service guarantees. ACM SIGARCH
Computer Architecture News, 39(3):401–412, 2011.

[52] HANNIG, F., S. ROLOFF, G. SNELTING, J. TEICH and A. ZWINKAU: Resource-aware
programming and simulation of MPSoC architectures through extension of X10. In Pro-
ceedings of the 14th International Workshop on Software and Compilers for Embedded Sys-
tems, pp. 48–55. ACM, 2011.

[53] HEISSWOLF, J.: A Scalable and Adaptive Network on Chip for Many-Core Architectures.
PhD thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014, 2014.

[54] HEISSWOLF, J., S. FRIEDERICH, L. MASING, A. WEICHSLGARTNER, A. ZAIB,
C. STEIN, M. DUDEN, J. TEICH, A. HERKERSDORF and J. BECKER: A Novel NoC-
Architecture for Fault Tolerance and Power Saving. In Proceedings of the second Interna-
tional Workshop on Multi-Objective Many-Core Design (MOMAC) in conjunction with
International Conference on Architecture of Computing Systems (ARCS), 2016.

[55] HEISSWOLF, J., R. KÖNIG and J. BECKER: A scalable NoC router design providing QoS
support using weighted round robin scheduling. In Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on, pp. 625–632.
IEEE, 2012.

[56] HEISSWOLF, J., A. WEICHSLGARTNER, A. ZAIB, S. FRIEDERICH, L. MASING,
C. STEIN, M. DUDEN, R. KLOPFER, J. TEICH, T. WILD et al.: Fault-tolerant com-
munication in invasive networks on chip. In Adaptive Hardware and Systems (AHS), 2015

132

Bibliography

NASA/ESA Conference on, pp. 1–8. IEEE, 2015.

[57] HEISSWOLF, J., A. ZAIB, A. WEICHSLGARTNER, M. KARLE, M. SINGH, T. WILD,
J. TEICH, A. HERKERSDORF and J. BECKER: The invasive network on chip-a multi-
objective many-core communication infrastructure. In Architecture of Computing Systems
(ARCS), 2014 27th International Conference on, pp. 1–8. VDE, 2014.

[58] HEISSWOLF, J., A. ZAIB, A. WEICHSLGARTNER, R. KÖNIG, T. WILD, J. TEICH,
A. HERKERSDORF and J. BECKER: Hardware-assisted decentralized resource manage-
ment for networks on chip with qos. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pp. 234–241. IEEE,
2012.

[59] HEISSWOLF, J., A. ZAIB, A. WEICHSLGARTNER, R. KÖNIG, T. WILD, J. TEICH,
A. HERKERSDORF and J. BECKER: Virtual networks–distributed communication re-
source management. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 6(2):8, 2013.

[60] HEISSWOLF, J., A. ZAIB, A. ZWINKAU, S. KOBBE, A. WEICHSLGARTNER, J. TE-
ICH, J. HENKEL, G. SNELTING, A. HERKERSDORF and J. BECKER: CAP: Com-
munication aware programming. In Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, pp. 1–6. IEEE, 2014.

[61] HENKEL, J.: Closing the SoC design gap. Computer, 36(9):119–121, 2003.

[62] HENKEL, J., L. BAUER, M. HÜBNER and A. GRUDNITSKY: i-Core: A run-time adap-
tive processor for embedded multi-core systems. In International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA 2011), 2011.

[63] HENKEL, J., A. HERKERSDORF, L. BAUER, T. WILD, M. HÜBNER, R. K. PUJARI,
A. GRUDNITSKY, J. HEISSWOLF, A. ZAIB, B. VOGEL et al.: Invasive manycore archi-
tectures.. In ASP-DAC, pp. 193–200, 2012.

[64] HERKERSDORF, A., J. PAUL, R. K. PUJARI, W. STECHELE, S. WALLENTOWITZ,
T. WILD and A. ZAIB: Potentials and Challenges for Multi-Core Processors in Robotic
Applications.. In GI-Jahrestagung, pp. 2749–2764, 2013.

[65] HILL, M. D. and M. R. MARTY: Amdahl’s law in the multicore era. Computer, (7):33–
38, 2008.

[66] HILTON, C. and B. NELSON: PNoC: a flexible circuit-switched NoC for FPGA-based
systems. IEE Proceedings-Computers and Digital Techniques, 153(3):181–188, 2006.

[67] HOWARD, J., S. DIGHE and Y. H. ET. AL.: A 48-Core IA-32 message-passing processor
with DVFS in 45nm CMOS. In ISSCC, 2010.

[68] HU, J. and R. MARCULESCU: Exploiting the routing flexibility for energy/performance
aware mapping of regular NoC architectures. In Design, Automation and Test in Europe
Conference and Exhibition, 2003, pp. 688–693. IEEE, 2003.

[69] HU, J. and R. MARCULESCU: DyAD: smart routing for networks-on-chip. In Proceed-
ings of the 41st annual Design Automation Conference, pp. 260–263. ACM, 2004.

[70] IBM: CoreConnect Bus Architecture, June 2015.

[71] INFINEON: Automotive - Innovative automotive electronics by Infineon, Jan. 2016.

133

Bibliography

[72] ISSENIN, I., E. BROCKMEYER, M. MIRANDA and N. DUTT: Data reuse analysis tech-
nique for software-controlled memory hierarchies. In Design, Automation and Test in Eu-
rope Conference and Exhibition, 2004. Proceedings, vol. 1, pp. 202–207. IEEE, 2004.

[73] JANTSCH, A., H. TENHUNEN et al.: Networks on chip, vol. 396. Springer, 2003.

[74] JEFFERS, J. and J. REINDERS: Intel Xeon Phi coprocessor high-performance programming.
Newnes, 2013.

[75] JOVEN MURILLO, J., J. CARRABINA I BORDOLL et al.: HW-sw components for parallel
embedded computing on noc-based mpsocs. Universitat Autònoma de Barcelona„ 2010.

[76] JUNG, E. B., H. W. CHO, N. PARK and Y. H. SONG: Sona: An on-chip network for
scalable interconnection of amba-based ips. In Computational Science–ICCS 2006, pp.
244–251. Springer, 2006.

[77] KATEVENIS, M., S. SIDIROPOULOS and C. COURCOUBETIS: Weighted round-robin
cell multiplexing in a general-purpose ATM switch chip. Selected Areas in Communica-
tions, IEEE Journal on, 9(8):1265–1279, 1991.

[78] KAVADIAS, S. G., M. G. KATEVENIS, M. ZAMPETAKIS and D. S. NIKOLOPOULOS:
On-chip Communication and Synchronization Mechanisms with Cache-integrated Net-
work Interfaces. In Proceedings of the 7th ACM International Conference on Computing
Frontiers, CF ’10, 2010.

[79] KAVALDJIEV, N., G. J. SMIT, P. T. WOLKOTTE and P. G. JANSEN: Providing QoS
guarantees in a NoC by virtual channel reservation. In Reconfigurable Computing: Archi-
tectures and Applications, pp. 299–310. Springer, 2006.

[80] KAVALDJIEV, N. K., G. J. M. SMIT and P. G. JANSEN: A virtual channel router for
on-chip networks. 2004.

[81] KISSLER, D., F. HANNIG, A. KUPRIYANOV and J. TEICH: A highly parameterizable
parallel processor array architecture. In Field Programmable Technology, 2006. FPT 2006.
IEEE International Conference on, pp. 105–112. IEEE, 2006.

[82] KOBBE, S., L. BAUER, D. LOHMANN, W. SCHRÖDER-PREIKSCHAT and J. HENKEL:
DistRM: distributed resource management for on-chip many-core systems. In Proceedings
of the seventh IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pp. 119–128. ACM, 2011.

[83] KUMAR, A., L.-S. PEH, P. KUNDU and N. K. JHA: Express virtual channels: towards
the ideal interconnection fabric. In ACM SIGARCH Computer Architecture News, vol. 35,
pp. 150–161. ACM, 2007.

[84] KUMAR, R., V. ZYUBAN and D. M. TULLSEN: Interconnections in multi-core archi-
tectures: Understanding mechanisms, overheads and scaling. In Computer Architecture,
2005. ISCA’05. Proceedings. 32nd International Symposium on, pp. 408–419. IEEE, 2005.

[85] LAMPRET, D., C.-M. CHEN, M. MLINAR, J. RYDBERG, M. ZIV-AV,
C. ZIOMKOWSKI, G. MCGARY, B. GARDNER, R. MATHUR and M. BOLADO:
Openrisc 1000 architecture manual. Rev, 1:15, 2007.

[86] LANKES, A., T. WILD, A. HERKERSDORF, S. SONNTAG and H. REINIG: Comparison
of deadlock recovery and avoidance mechanisms to approach message dependent deadlocks in

134

Bibliography

on-chip networks. In Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE International
Symposium on, pp. 17–24. IEEE, 2010.

[87] LEE, S. E., J. H. BAHN, Y. S. YANG and N. BAGHERZADEH: A generic network in-
terface architecture for a networked processor array (NePA). In Architecture of Computing
Systems–ARCS 2008, pp. 247–260. Springer, 2008.

[88] LI, B., L. ZHAO, R. IYER, L.-S. PEH, M. LEDDIGE, M. ESPIG, S. E. LEE and
D. NEWELL: CoQoS: Coordinating QoS-aware shared resources in NoC-based SoCs. Jour-
nal of Parallel and Distributed Computing, 71(5):700–713, 2011.

[89] LORINCZ, K., B.-R. CHEN, J. WATERMAN, G. WERNER-ALLEN and M. WELSH:
Resource aware programming in the pixie os. In Proceedings of the 6th ACM conference on
Embedded network sensor systems, pp. 211–224. ACM, 2008.

[90] MEREU, G.: Conception, Analysis, Design and Realization of a Multi-socket Network-on-
Chip Architecture and of the Binary Translation support for VLIW core targeted to Systems-
on-Chip, 2007.

[91] MICROELECTRONICS, S.: STBus interconnect.

[92] MICROTEC, A.: A°AC OpenPIC System on Chip library, Nov. 2015.

[93] MILLBERG, M., E. NILSSON, R. THID and A. JANTSCH: Guaranteed bandwidth using
looped containers in temporally disjoint networks within the Nostrum network on chip.
In Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings,
vol. 2, pp. 890–895. IEEE, 2004.

[94] MILLBERG, M., E. NILSSON, R. THID, S. KUMAR and A. JANTSCH: The Nostrum
backbone-a communication protocol stack for networks on chip. In VLSI Design, 2004.
Proceedings. 17th International Conference on, pp. 693–696. IEEE, 2004.

[95] MONCHIERO, M., G. PALERMO, C. SILVANO and O. VILLA: Efficient synchronization
for embedded on-chip multiprocessors. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 14(10):1049–1062, 2006.

[96] MUBEEN, S.: Evaluation of source routing for mesh topology network on chip platforms.
2009.

[97] MULLINS, R., A. WEST and S. MOORE: Low-latency virtual-channel routers for on-
chip networks. In ACM SIGARCH Computer Architecture News, vol. 32, p. 188. IEEE
Computer Society, 2004.

[98] MURALI, S., L. BENINI and G. DE MICHELI: Mapping and physical planning of
networks-on-chip architectures with quality-of-service guarantees. In Proceedings of the
ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005., vol. 1, pp.
27–32. IEEE, 2005.

[99] MURALI, S., P. MELONI, F. ANGIOLINI, D. ATIENZA, S. CARTA, L. BENINI,
G. DE MICHELI and L. RAFFO: Designing message-dependent deadlock free networks
on chips for application-specific systems on chips. In Very Large Scale Integration, 2006
IFIP International Conference on, pp. 158–163. IEEE, 2006.

[100] MURRAY, J., P. WETTIN, P. P. PANDE and B. SHIRAZI: Sustainable Wireless Network-
on-Chip Architectures. Morgan Kaufmann, 2016.

135

Bibliography

[101] NAVABI, Z.: VHDL: Analysis and modeling of digital systems. McGraw-Hill, Inc., 1997.

[102] NIKHIL, R.: Bluespec System Verilog: efficient, correct RTL from high level specifications.
In Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. Proceedings. Sec-
ond ACM and IEEE International Conference on, pp. 69–70. IEEE, 2004.

[103] NITZBERG, B. and V. LO: Distributed shared memory: A survey of issues and algorithms.
Computer, 24(8):52–60, 1991.

[104] OECHSLEIN, B., J. SCHEDEL, J. KLEINÖDER, L. BAUER, J. HENKEL, D. LOHMANN
and W. SCHRÖDER-PREIKSCHAT: OctoPOS: A parallel operating system for invasive
computing. In Proceedings of the International Workshop on Systems for Future Multi-
Core Architectures (SFMA). EuroSys, pp. 9–14, 2011.

[105] OGRAS, U. Y. and R. MARCULESCU: Application-specific network-on-chip architecture
customization via long-range link insertion. In Computer-Aided Design, 2005. ICCAD-
2005. IEEE/ACM International Conference on, pp. 246–253. IEEE, 2005.

[106] OGRAS, U. Y. and R. MARCULESCU: " It’s a small world after all": NoC performance
optimization via long-range link insertion. IEEE Transactions on very large scale inte-
gration (VLSI) systems, 14(7):693–706, 2006.

[107] OGRAS, U. Y. and R. MARCULESCU: Prediction-based flow control for network-on-chip
traffic. In Proceedings of the 43rd annual design automation conference, pp. 839–844.
ACM, 2006.

[108] OLSEN, R. G.: OCP based adapter for network-on-chip. PhD thesis, Technical Univer-
sity of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2005.

[109] OPENCORES: SoC Interconnection: Wishbone, June 2015.

[110] OUSTERHOUT, J. K.: Tcl: An embeddable command language. Citeseer, 1989.

[111] PASRICHA, S. and N. DUTT: On-chip communication architectures: system on chip in-
terconnect. Morgan Kaufmann, 2010.

[112] PASTRNAK, M., P. H. DE WITH and J. VAN MEERBERGEN: Realization of qos manage-
ment using negotiation algorithms for multiprocessor noc. In Circuits and Systems, 2006.
ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, pp. 4–pp. IEEE, 2006.

[113] PETROT, F., A. GREINER and P. GOMEZ: On cache coherency and memory consistency
issues in NoC based shared memory multiprocessor SoC architectures. In Digital System
Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Confer-
ence on, pp. 53–60. IEEE, 2006.

[114] POLETTI, F., A. POGGIALI, D. BERTOZZI, L. BENINI, P. MARCHAL, M. LOGHI and
M. PONCINO: Energy-efficient multiprocessor systems-on-chip for embedded computing:
Exploring programming models and their architectural support. IEEE Trans. Computers,
56(5):606–621, 2007.

[115] PORRMANN, M., M. PURNAPRAJNA and C. PUTTMANN: Self-optimization of MP-
SoCs targeting resource efficiency and fault tolerance. In Adaptive Hardware and Systems,
2009. AHS 2009. NASA/ESA Conference on, pp. 467–473. IEEE, 2009.

[116] PUJARI, R. K., T. WILD and A. HERKERSDORF: A hardware-based multi-objective
thread mapper for tiled manycore architectures. In Computer Design (ICCD), 2015 33rd

136

Bibliography

IEEE International Conference on, pp. 459–462. IEEE, 2015.

[117] PUJARI, R. K., T. WILD, A. HERKERSDORF, B. VOGEL and J. HENKEL: Hardware
assisted thread assignment for RISC based MPSoCs in invasive computing. In Integrated
Circuits (ISIC), 2011 13th International Symposium on, pp. 106–109. IEEE, 2011.

[118] RADULESCU, A., J. DIELISSEN, S. G. PESTANA, O. P. GANGWAL, E. RIJPKEMA,
P. WIELAGE and K. GOOSSENS: An efficient on-chip NI offering guaranteed services,
shared-memory abstraction, and flexible network configuration. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 24(1):4–17, 2005.

[119] RAHMANI, A.-M., A. AFZALI-KUSHA and M. PEDRAM: A novel synthetic traffic pat-
tern for power/performance analysis of network-on-chips using negative exponential distri-
bution. Journal of Low Power Electronics, 5(3):396–405, 2009.

[120] RAMEY, C.: Tile-gx100 manycore processor: Acceleration interfaces and architecture. In
Proceedings of the 23th Hot Chips Symposium, 2011.

[121] RIJPKEMA, E., K. GOOSSENS, A. RĂDULESCU, J. DIELISSEN, J. VAN MEERBERGEN,
P. WIELAGE and E. WATERLANDER: Trade-offs in the design of a router with both guar-
anteed and best-effort services for networks on chip. IEE Proceedings-Computers and
Digital Techniques, 150(5):294–302, 2003.

[122] SANGIOVANNI-VINCENTELLI, A.: Defining platform-based design. EEDesign of EE-
Times, 2002.

[123] SCHALLER, R. R.: Moore’s law: past, present and future. Spectrum, IEEE, 34(6):52–59,
1997.

[124] SEMERIA, C.: Supporting differentiated service classes: queue scheduling disciplines. Ju-
niper networks, pp. 11–14, 2001.

[125] SHIPILOV, D.: Design and implementation of the resource-network interface for networks-
on-chip. PhD thesis, Citeseer, 2004.

[126] SPECIFICATION, A.: ARM, Ltd, 2001.

[127] SRINIVASAN, J.: An overview of static power dissipation. CiteSeer public search engine
and digital libraries for scientific and academic papers in the fields of computer and
information science, pp. 1–7, 2011.

[128] STINGASFEYD: Microbots: Automation Revolution Continues with Miniaturized Elec-
tronics, Feb. 2014.

[129] STINGASFEYD: Did Moore’s law calculate correctly?, Apr. 2015.

[130] SYNOPSYS: End-to-End Prototyping, Oct. 2015.

[131] TEICH, J., J. HENKEL, A. HERKERSDORF, D. SCHMITT-LANDSIEDEL,
W. SCHRÖDER-PREIKSCHAT and G. SNELTING: Invasive computing: An overview. In
Multiprocessor System-on-Chip, pp. 241–268. Springer, 2011.

[132] TOTA, S. V., M. R. CASU, M. R. ROCH, L. ROSTAGNO and M. ZAMBONI: MEDEA: a
hybrid shared-memory/message-passing multiprocessor NoC-based architecture. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010, pp. 45–50. IEEE,
2010.

137

Bibliography

[133] VAN DER TOL, E. B. and E. G. JASPERS: Mapping of MPEG-4 decoding on a flexible
architecture platform. In Electronic Imaging 2002, pp. 1–13. International Society for
Optics and Photonics, 2001.

[134] VARGHESE, A., B. EDWARDS, G. MITRA and A. P. RENDELL: Programming the
Adapteva Epiphany 64-core Network-on-chip Coprocessor. In Parallel & Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2014 IEEE International, pp. 984–992. IEEE,
2014.

[135] WALLENTOWITZ, S., A. LANKES, A. ZAIB, T. WILD and A. HERKERSDORF: A frame-
work for open tiled manycore system-on-chip. In Field Programmable Logic and Applica-
tions (FPL), 2012 22nd International Conference on, pp. 535–538. IEEE, 2012.

[136] WALLENTOWITZ, S., T. WILD and A. HERKERSDORF: HW-OSQM: reducing the im-
pact of event signaling by hardware-based operating system queue manipulation. In Inter-
national Conference on Architecture of Computing Systems, pp. 280–291. Springer, 2013.

[137] WEICHSLGARTNER, A., J. HEISSWOLF, A. ZAIB, T. WILD, A. HERKERSDORF,
J. BECKER and J. TEICH: Position Paper: Towards Hardware-Assisted Decentralized
Mapping of Applications for Heterogeneous NoC Architectures. In Architecture of Com-
puting Systems. Proceedings, ARCS 2015-The 28th International Conference on, pp. 1–4.
VDE, 2015.

[138] WIKIPEDIA: List of Intel Core i7 microprocessors — Wikipedia, The Free Encyclopedia,
2015. [Online; accessed 21-May-2015].

[139] WIKIPEDIA: Distributed shared memory — Wikipedia, The Free Encyclopedia, 2016. [On-
line; accessed 4-August-2016].

[140] WIKIPEDIA: Intel Atom — Wikipedia, The Free Encyclopedia, 2016. [Online; accessed
17-November-2016].

[141] WIKIPEDIA: Partitioned global address space — Wikipedia, The Free Encyclopedia, 2016.
[Online; accessed 4-August-2016].

[142] YELICK, K., D. BONACHEA, W.-Y. CHEN, P. COLELLA, K. DATTA, J. DUELL, S. L.
GRAHAM, P. HARGROVE, P. HILFINGER, P. HUSBANDS et al.: Productivity and per-
formance using partitioned global address space languages. In Proceedings of the 2007
international workshop on Parallel symbolic computation, pp. 24–32. ACM, 2007.

[143] ZAIB, A.: Intelligent Hardware Support for Hybrid Message Passing in Tiled Multicore
Architectures, 2010.

[144] ZAIB, A., J. HEISSWOLF, A. WEICHSLGARTNER, T. WILD, J. TEICH, J. BECKER and
A. HERKERSDORF: AUTO-GS: Self-Optimization of NoC Traffic through Hardware Man-
aged Virtual Connections. In Digital System Design (DSD), 2013 Euromicro Conference
on, pp. 761–768. IEEE, 2013.

[145] ZAIB, A., J. HEISSWOLF, A. WEICHSLGARTNER, T. WILD, J. TEICH, J. BECKER
and A. HERKERSDORF: Network Interface with Task Spawning Support for NoC-Based
DSM Architectures. In Architecture of Computing Systems–ARCS 2015, pp. 186–198.
Springer, 2015.

[146] ZAIB, A., P. RAJU, T. WILD and A. HERKERSDORF: A Layered Modeling and Sim-

138

Bibliography

ulation Approach to investigate Resource-aware Computing in MPSoCs. arXiv preprint
arXiv:1405.2917, 2014.

[147] ZAIB, A., T. WILD, A. HERKERSDORF, J. HEISSWOLF, J. BECKER, A. WEICHSLGAR-
TNER and J. TEICH: Efficient Task Spawning for Shared Memory and Message Passing in
Many-core Architectures. Journal of Systems Architecture, 2017.

[148] ZHU, W., V. C. SREEDHAR, Z. HU and G. R. GAO: Synchronization state buffer:
supporting efficient fine-grain synchronization on many-core architectures. In ACM
SIGARCH Computer Architecture News, vol. 35, pp. 35–45. ACM, 2007.

[149] ZIMMER, C. and F. MUELLER: Low contention mapping of real-time tasks onto tilepro
64 core processors. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2012 IEEE 18th, pp. 131–140. IEEE, 2012.

[150] ZIMMERMANN, H.: OSI reference model–The ISO model of architecture for open systems
interconnection. Communications, IEEE Transactions on, 28(4):425–432, 1980.

139

	Introduction
	Motivation
	System on Chip
	Multi and Many-core Architectures
	Distributed Shared Memory Architectures

	Challenges in DSM Architectures and our Contributions
	Outline

	Background and Related Work
	Bus-based Communication Architectures
	Advanced High-Performance Bus (AHB)

	Network on Chip
	Major Components
	Router
	Network Interface

	Topology
	Switching Schemes
	Virtual Channels
	Scheduling and Arbitration
	Flow Control
	Routing Mechanisms
	Deadlocks
	State of the art Network on Chip Architectures
	Æthereal
	Xpipes
	Nostrum NoC
	Mango
	SCORPIO

	Conventional Communication Support in Network Interface
	Tile and Network Protocol Translation
	Tile bus Wrapper
	NoC Wrapper

	Remote Memory Access
	Remote Shared Memory Access
	Remote Direct Memory Access

	Quality of Service Support
	Guaranteed Service and Best Effort Traffic
	Communication Resource Management

	Inter-tile synchronization support for software layers

	Invasive Computing
	Concept
	Software
	Agent System
	Operating System

	Hardware
	Tiles
	Invasive Network on Chip

	Communication Resource Management and Software Communication Support
	Communication Resource Management
	AUTO_GS:Hardware-controlled GS connections
	Monitoring communication locality
	Analyzing communication history
	Establishing AUTO_GS connections

	Evaluation using SystemC Modeling and Simulation
	Synthetic Traffic
	Real World Applications

	Inter-tile Software Synchronization Support
	Data prefetching through asynchronous data transfer support
	Hardware-assisted remote task spawning
	Evaluation using SystemC Modeling and Simulation

	Implementation of Communication Resource Management and Software Communication Support
	State of the Art Network Interface Components
	Tile Interface Layer
	Remote Load/Store (RLS) Unit
	Memory-mapped registers (MMR) Unit

	Protocol Translation
	Tile-Network Protocol Translation
	Network-Tile Protocol Translation

	NI Buffers
	Link Interface Layer
	Packet Scheduling
	Packet Classification

	Hardware-controlled GS Connections (AUTO_GS)
	Virtual Channel Reservation Table :
	Communication Monitoring Unit
	Communication History Table
	Virtual Connection Manager
	Synthesis Results

	Inter-tile Software Synchronization Support
	RDMA Signaling
	System i-let Generation
	Task i-let Generation
	Synthesis Results

	Experimental Setup and Validation
	Cycle Accurate Simulation Framework
	Hardware Prototyping
	Single FPGA prototype
	CHIP-IT Prototype

	Validation on RTL Simulation Framework
	Discussion of Results

	Validation on FPGA Prototype
	Discussion of Results

	Conclusion and Outlook
	Conclusion
	Management of communication resources
	Synchronization support for remote software instances
	Future work
	Configurable cache coherence support
	Synchronization support during task execution

	Appendix
	AHB Bus Signals
	RTL Code Hierarchy
	Network Interface Driver Library

	Indexes
	Figures
	Tables

	Abbreviations
	Bibliography

