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SUMMARY 

Legionnaires´ disease is a life-threatening illness caused by the facultative intracellular 

bacterium Legionella pneumophila. This pathogen preferably uses amino acids, especially 

serine as prime carbon and energy source, but recent transcriptome and proteome data as well 

as genome analysis and labeling experiments suggest a greater metabolic capacity. 

Accordingly, expression of the glycerol kinase (glpK) and the glycerol 3-phosphate 

dehydrogenase (glpD) was found to be upregulated during infection of macrophages, 

indicating that glycerol represents an additional substrate in the nutrition of L. pneumophila. 

In the present thesis, the metabolic potentials of L. pneumophila and its close relative Coxiella 

burnetii were investigated. The goal of this study was to determine a general metabolic concept 

for these bacteria as an aspect of their survival strategy in their environmental niches. This is 

of special interest, as a broad knowledge about the metabolism of intracellular bacteria can be 

helpful to identify potential targets for the developments of new antibiotics. 

We found that glycerol does not enhance extracellular growth of L. pneumophila, but promotes 

intracellular replication in Acanthamoeba castellanii and macrophages dependent on glpD. 

Furthermore, a L. pneumophila glpD deletion mutant was outcompeted by the wild-type strain 

during coinfection in amoeba, illustrating the importance of further substrates besides amino 

acids during intracellular replication. For a detailed investigation of the glycerol metabolism 

in L. pneumophila, a novel minimal defined medium (MDM) was designed, which includes 

essential amino acids, proline and phenylalanine. Isotopologue profiling experiments were 

performed in MDM using [U-13C3]glycerol, [U-13C6]glucose or [U-13C3]serine as tracers in a 

time dependent manner. Glycerol and glucose were predominantly utilized by L. pneumophila 

at later growth phases for gluconeogenetic reactions and in the pentose phosphate pathway 

(PPP), since 13C-label was predominantly shuffled into histidine (His) and mannose (Man). On 

the other hand, serine was used at earlier time points predominantly in the tricarboxylic acid 

cycle (TCA cycle) for energy generation. Similar results were obtained using the same 13C-

tracers in in vivo labeling experiments with L. pneumophila wild-type and ΔglpD mutant 

bacteria in A. castellanii. Collectively, these data reflect a bipartite metabolism in which amino 

acids and especially serine are predominantly used for energy generation in early 

developmental stages, whereas glycerol and carbohydrates like glucose are mainly employed 
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in anabolic processes at later growth phases. Furthermore, the role of the central carbon storage 

regulator A (CsrA) in the adjustment of core metabolic fluxes within the bipartite metabolism 

of this pathogen was investigated. CsrA is crucial for the developmental switch from the 

replicative to the transmissive stage in the life cycle of L. pneumophila. Comparative labeling 

and oxygen consumption experiments were performed with the L. pneumophila wild-type and 

its CsrA knock down mutant to determine its role in the growth phase dependent metabolism. 

Isotopologue profiling experiments using [U-13C3]serine, [U-13C6]glucose or [U-13C3]glycerol 

demonstrated that CsrA induces serine incorporation and metabolism via the TCA cycle and 

glucose degradation via the Entner-Doudoroff pathway (ED pathway) during replication. 

Simultaneously, CsrA represses glycerol incorporation and catabolism via gluconeogenetic 

reactions and the PPP during the exponential growth phase. Using [1,2,3,4-13C4]palmitic acid 

as tracer, we demonstrated that this fatty acid can efficiently serve as a substrate for L. 

pneumophila nutrition. Thereby, the fatty acid is predominantly used for the biosynthesis of 

the storage compound polyhydroxybutyrate (PHB) via 13C2-acetyl-CoA. Notably, comparative 

labeling experiments using [1,2,3,4-13C4]palmitic acid with the wild-type and the CsrA knock 

down mutant revealed higher 13C-incorporation rates in the csrA mutant especially at earlier 

growth phases, indicating that CsrA is repressing fatty acid degradation and/or PHB 

biosynthesis, predominantly during exponential growth. Collectively, this study demonstrated 

the crucial role of CsrA in the life stage specific coordination of substrate usage and carbon 

flux regulation in L. pneumophila. 

As a bipartite metabolism might be a general strategy of intracellular bacteria, isotopologue 

profiling experiments with [U-13C3]serine, [U-13C6]glucose or [U-13C3]glycerol were also 

performed with C. burnetii RSA 439 NMII in a recently developed axenic medium. From 

today’s perspective, the metabolic potential of C. burnetii seems to be highly diverse. 

Nevertheless, metabolism of this pathogen is still only poorly investigated and predominantly 

inferred from genome analysis. This thesis now shows that similar to L. pneumophila, C. 

burnetii metabolizes all three above 13C-tracers in a bipartite type metabolic network. 

However, carbon fluxes and metabolic potential also differed in some aspects compared to L. 

pneumophila.  
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Taken together, this thesis expanded the understanding of L. pneumophila metabolism and 

proved that the bacteria use glycerol and fatty acids as substrates. The concept of a bipartite 

metabolism was established and the crucial role of CsrA in the regulation of growth phase 

dependent carbon fluxes was determined. Comparative analysis of the metabolic capacity in 

C. burnetii and L. pneumophila revealed a similar topology of a bipartite metabolic network, 

which could be the result of an effective adaption strategy of intracellular bacteria to replication 

and survival under intracellular conditions. 
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ZUSAMMENFASSUNG 

Die lebensbedrohliche Legionärskrankheit wird durch das fakultativ intrazelluläre Bakterium 

L. pneumophila verursacht. Dieses Pathogen bevorzugt Aminosäuren, im Speziellen Serin als 

Kohlenstoff- und Energiequelle. Jüngste Transkriptom- und Proteomdaten sowie 

Genomanalysen und Markierungsexperimente weisen jedoch auf ein weitaus größeres 

metabolisches Potential hin. Dementsprechend war die Expression der für den Abbau von 

Glycerol wichtigen Enzyme Glycerolkinase (glpK) und Glycerol-3-phosphat-Dehydrogenase 

(glpD) während der Infektion von Makrophagen hochreguliert, was darauf schließen lässt, dass 

Glycerol ein Substrat für die intrazelluläre Ernährung von L. pneumophila darstellt. In der 

vorliegenden Arbeit wurde das metabolische Potential von L. pneumophila sowie seines nahen 

Verwandten Coxiella burnetii mit dem Ziel untersucht, ein generelles Konzept im 

Metabolismus dieser Bakterien zu identifizieren, welches die jeweilige Überlebensstrategie in 

ihren Replikationsnischen reflektieren könnte. Dies ist von besonderem Interesse, da ein 

fundiertes Wissen über die metabolische Struktur von intrazellulär replizierenden Bakterien 

hilfreich bei der Identifizierung potentieller Angriffspunkte für die Entwicklung neuer 

Antibiotika ist. 

Wir konnten zeigen, dass Glycerol die intrazelluläre Replikation von L. pneumophila in 

Abhängigkeit von glpD in A. castellanii sowie in Makrophagen fördert, obwohl kein positiver 

Effekt auf das extrazelluläre Wachstum zu erkennen war. Des Weiteren unterlag eine L. 

pneumophila ∆glpD Mutante dem Wildtyp während der Co-Infektion in Amöben, was den 

Stellenwert weiterer Substrate neben Aminosäuren in der intrazellulären Ernährung von 

Legionellen hervorhebt. Zur eingehenden Untersuchung des Metabolismus von Glycerol in L. 

pneumophila wurde ein neues Minimalmedium (MDM) entwickelt, welches essentielle 

Aminosäuren sowie Prolin und Phenylalanine beinhaltet. Dieses Medium wurde für 

zeitabhängige Markierungsexperimente in Anwesenheit von [U-13C3]Glycerol, [U-

13C6]Glukose oder [U-13C3]Serin verwendet. L. pneumophila verstoffwechselte dabei Glukose 

und v.a. Glycerol bevorzugt während späteren Wachstumsphasen in Reaktionen der 

Glukoneogenese und des Pentosephosphatwegs (PPP), da die meiste 13C-Markierung in diesen 

Versuchen in His und Man detektiert werden konnte. Im Gegensatz dazu wurde Serin effektiv 

während frühen Wachstumsphasen verwendet und dabei bevorzugt im Citratzyklus zur 
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Energiegewinnung verstoffwechselt. Diese Ergebnisse konnten durch Infektionsexperimente 

unter Verwendung derselben 13C-Vorläufer mit dem L. pneumophila Wildtyp sowie der ΔglpD 

Mutante in A. castellanii in vivo bestätigt werden. Zusammengefasst konnte dadurch für L. 

pneumophila das Konzept eines zweigeteilten Metabolismus etabliert werden. Dabei werden 

in der replikativen Wachstumsphase bevorzugt Aminosäuren, wie z.B. Serin, zur 

Energiegewinnung im Citratzyklus verwendet, wohingegen Glycerol und Kohlenwasserstoffe 

wie Glukose speziell in späteren Wachstumsphasen in anabolen Reaktionen metabolisiert 

werden. Des Weiteren wurde die Rolle des „central carbon storage regulators A“ (CsrA) in der 

Koordination von Hauptkohlenstoffflüssen im zweigeteilten Metabolismus dieses Pathogens 

untersucht. CsrA ist der zentrale Modulator im Übergang von der replikativen zur 

transmissiven Wachstumsphase im Lebenszyklus von L. pneumophila. Zur Auflösung seiner 

Rolle im wachstumsphasenabhängigen Metabolismus wurden vergleichende 

Markierungsexperimente sowie Untersuchungen zum Sauerstoffverbrauch mit dem L. 

pneumophila Wildtyp sowie einer CsrA Knockdown-Mutante durchgeführt. In den 

Markierungsexperimenten mit [U-13C3]Serin, [U-13C6]Glukose oder [U-13C3]Glycerol konnte 

gezeigt werden, dass CsrA die Aufnahme von Serin und die Verstoffwechselung im 

Citratzyklus sowie den Metabolismus von Glukose über den Entner-Doudoroff 

Biosyntheseweg während der Replikation induziert. Gleichzeitig wird durch CsrA die 

Aufnahme und die Verstoffwechselung von Glycerol in der Glukoneogenese sowie über den 

PPP während der replikativen Wachstumsphase gehemmt. Zudem konnte durch 

Markierungsexperimente mit [1,2,3,4-13C4]Palmitinsäure gezeigt werden, dass Fettsäuren als 

Substrate in der Ernährung von L. pneumophila eine Rolle spielen. Die bei dem Abbau der 

Fettsäure entstehenden 13C2-acetyl-CoA Einheiten werden dabei fast ausschließlich für die 

Bildung des Speicherstoffs Polyhydroxybutyrat (PHB) verwendet. Vergleichende 

Markierungsexperimente in Anwesenheit von [1,2,3,4-13C4]Palmitinsäure mit dem L. 

pneumophila Wildtyp sowie der CsrA Knockdown-Mutante führten zu erhöhten 13C-

Anreicherungen in PHB im Experiment mit der csrA Mutante, speziell während der 

replikativen Wachstumsphase. Dies lässt auf eine inhibierende Rolle von CsrA im 

Fettsäurestoffwechsel und/oder in der Biosynthese von PHB während der exponentiellen Phase 

schließen. Zusammengefasst verdeutlicht diese Studie die essentielle Rolle von CsrA in der 
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Koordination der wachstumsphasenabhängigen Substratnutzung und in der Regulation von 

Kohlenstoffflüssen im Lebenszyklus von L. pneumophila. 

Zur Validierung des Modells des zweigeteilten Metabolismus als generelle Strategie für 

intrazellulär replizierende Bakterien wurden zudem Markierungsexperimente in Anwesenheit 

von [U-13C3]Serin, [U-13C6]Glucose oder [U-13C3]Glycerol mit C. burnetii RSA 439 NMII in 

einem vor kurzem entwickelten axenischen Wachstumsmedium durchgeführt. Aus heutiger 

Sicht zeigt C. burnetii ein hohes metabolisches Potential. Trotzdem ist das Wissen über das 

Stoffwechselnetzwerk dieses Pathogens bis dato begrenzt, da es fast ausschließlich auf 

genombasierten Analysen beruht. Mit Hilfe der in dieser Arbeit durchgeführten Versuche 

konnte die Verstoffwechselung der drei obigen 13C-Vorläufer in einem zweitgeteilten 

Metabolismus in C. burnetii gezeigt werden. Im Vergleich zu dem in L. pneumophila 

identifizierten metabolischen Konzepts waren jedoch auch Unterschiede in den 

Hauptkohlenstoffflüssen sowie in der metabolischen Kapazität zu erkennen. 

Zusammengefasst leistet diese Arbeit einen essentiellen Beitrag zum Verständnis des 

Stoffwechselnetzwerks und der Kohlenstoffflüsse in L. pneumophila. Zudem konnte gezeigt 

werden, dass dieses Bakterium Glycerol sowie Fettsäuren als Nahrungsquelle nutzt. Das 

metabolische Konzept eines zweigeteilten Metabolismus wurde etabliert und zudem die 

zentrale Rolle des posttranskriptionellen Regulators CsrA in der wachstumsphasenabhängigen 

Koordination der Hauptkohlenstoffflüsse demonstriert. Eine vergleichende Studie der 

Stoffwechselstrategie in C. burnetii zeigte eine dem in L. pneumophila präsenten zweigeteilten 

Metabolismus ähnliche Topologie. Diese metabolische Strategie könnte daher das Ergebnis 

einer effizienten Anpassungsstrategie dieser Bakterien sein, welche eine erfolgreiche 

Vermehrung sowie das Überleben in intrazellulären Nischen ermöglicht. 
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1 INTRODUCTION 

1.1 Evolution, lifestyle, and nutrition of intracellular pathogens 

1.1.1 Evolution and lifestyle of obligate and facultative intracellular pathogens 

In general, the term “intracellular” in combination with bacteria refers to pathogens which are 

able to reside and/or replicate inside a cell. However, since a high portion of these numerous 

pathogens also spend time in the extracellular milieu before or after the residence inside a host, 

the term “intracellular” mostly refers to a defined period in the life cycle of these pathogens 

(Casadevall, 2008). 

In addition, intracellular pathogens are organized in two groups: obligate and facultative. 

Thereby, the term “obligate intracellular” summarizes pathogens which are not able to live 

outside their host cells. This includes all kinds of viruses as well as bacterial pathogens like 

Chlamydia spp. or C. burnetii (Hackstadt and Williams, 1981b; Amann et al., 1997; 

Casadevall, 2008). On the other hand, facultative intracellular pathogens like fungi or bacteria 

such as L. pneumophila or Francisella tularensis are capable of replicating outside their hosts 

for example on biofilms (Casadevall, 2008; Hindre et al., 2008; Durham-Colleran et al., 2010). 

Additionally, obligates can be separated from the facultative pathogens via their action of 

infection, since they are required to be transferred directly from one host cell to another host 

while facultative bacteria can be acquired also from the environment (Casadevall, 2008).  

It is difficult to define the origin of an intracellular lifestyle for bacteria since no fossil is 

reported that could give a hint to the time point at which the capacity of replication or survival 

inside a host cell was acquired. Furthermore, there are various intracellular microbes which 

hardly differ from each other in their survival strategy and additionally feature very 

characteristic host-microbe interactions, which makes it challenging to carve out general 

strategies and solutions of the intracellular lifestyle (Casadevall, 2008). However, if we 

consider the endosymbiotic theory as origin of some organelles in eukaryotic cell it can be 

concluded that the intracellular survival is an ancient process which appeared prior to the 

appearance of eukaryotic cells (Margulis, 1971; 1973; Casadevall, 2008).  

Nevertheless, some basic requirements had to be present in the ancient cells to manage the 

establishment of this intracellular life. This concerns the difference in size of the invading cell 
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and the host cell or the availability of mechanisms that allowed the uptake of a cell or at least 

of some small particles. Also the possibility to survive autophagy mechanisms inside a host 

cell had to be present (Casadevall, 2008). This important membrane transport pathway is 

known to be crucial for the elimination of intracellular pathogens in eukaryotic cells and it is 

seen as an evolutionarily conserved defense strategy to avoid infection (Choy and Roy, 2013).  

Replication of facultative or obligate intracellular bacteria usually takes place in the cytosol of 

their respective host cells or in a special compartment, a pathogen containing vacuole, which 

is established by the bacteria inside their hosts. The latter survival and replication strategy can 

be found e.g. with L. pneumophila or C. burnetii (Howe and Heinzen, 2006; Isberg et al., 

2009). However, some bacteria are also capable of escaping e.g. the phagosome or further 

compartments derived from the invasion procedure and replicate in the cytosol of their host 

cells, as is observed for Listeria monocytogenes or Shigella (Isberg et al., 2009). This fact leads 

to a further classification of facultative and obligate intracellular bacteria.  

Depending on the intracellular living mode of the bacteria, vesicular or within the cytosol, the 

intracellular environment offers different challenges. Firstly, phagosomal compartments 

exhibit extreme conditions since they include various degradation and antimicrobial proteins 

but also a reduced pH value and high amounts of free-radicals (Karupiah et al., 1999; 

Casadevall, 2008). The same is true in vacuolar compartments derived from internalization 

which is mediated by the bacteria due to fusion with endosomes and/or lysosomes (O'Riordan 

and Portnoy, 2002; Casadevall, 2008). Furthermore, the acquisition of sustainable amounts of 

nutrients is more complex in a vesicular compartment, since bacteria are separated by a 

membrane from the nutrient rich cytosol. Therefore, bacteria which are surviving in a vacuolar 

compartment must be capable of specific defense mechanism like prevention of fusion with 

e.g. lysosomes or other vesicles of endocytosis and additionally be able to establish the 

acquisition of sustainable amounts of nutrients from the cytosol e.g. via degradation of proteins 

in the cytosolic compartment and subsequent transport into the respective vesicular replication 

niche (O'Riordan and Portnoy, 2002; Casadevall, 2008). In general, the cytosol is seen as a 

nutrient rich milieu with less antimicrobial defense mechanisms leading to the question if this 

environment is permissive for growth of any bacteria (O'Riordan and Portnoy, 2002; 

Casadevall, 2008). However, experiments with a bunch of different extracellular and 
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intracellular bacteria, which were directly injected into the cytosolic compartment of 

mammalian cells showed that only microorganism usually replicating in the cytosol are 

capable to survive in this environment whereas bacteria which are usually replicating in a 

vacuolar compartment are not. This indicates that the survival strategy of escaping the 

phagosomal compartment and replication in the cytosol, which is only featured by very few 

bacterial pathogens, relies on specifically evolved mechanisms (Goetz et al., 2001).   

In general, resistance or replication inside a cell can result in three different kinds of interaction 

modes between the host and the invading pathogen. Firstly, the host could benefit from this 

process like it is observed for endosymbiotic bacteria. Secondly, the two antagonists could live 

together in a symbiotic way. Nevertheless, most of the time this interplay results in the death 

of the intracellular pathogen or in the damage of the host cell, thus the latter scenario defines 

the action of an intracellular pathogen (Casadevall, 2008). Thereby, the death of the invading 

bacteria is predominantly related to mechanisms of the immune defense system of the host 

whereas the death of the host cell is related to degrading mechanisms, which are established 

by the intracellular microbe, or to apoptosis (Casadevall and Pirofski, 1999).  

1.1.2 Nutritional adaption of intracellular pathogens 

Concepts of intracellular nutrition are manifold within the group of intracellular pathogens. 

This is due to very different types of microbes, which are adapted to various intracellular niches 

in different host cells, thereby using diverse nutrients from their hosts (metal ions, carbon, 

nitrogen or energy) at very different rates (Abu Kwaik and Bumann, 2015). However, every 

intracellular pathogen has to acquire enormous levels of energy (ATP) whether directly from 

their hosts or from catabolic processes via metabolites which are directly incorporated from 

the host cell, to provide sufficient amounts of energy for their replication processes (Orth et 

al., 2011). Simultaneously, the high efflux of the respective metabolites from the host to the 

microbe needs to be balanced by the host itself, otherwise nutrients would be exhausted very 

quickly (Orth et al., 2011; Kentner et al., 2014). This leads to unique metabolic adaptions of 

both antagonists in a complex metabolic network. Furthermore, the high efflux of the 

respective preferred nutrient also has to be established across the pathogen-containing vacuole 

in case of vacuolar replicating intracellular pathogens (Abu Kwaik and Bumann, 2015). Most 

of the time, amino acids represent the main energy sources of the latter group e.g. in case of L. 
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pneumophila (Pine et al., 1979; Ristroph et al., 1981; Tesh and Miller, 1981; Tesh et al., 1983) 

or Anaplasma phagocytophilum (Niu et al., 2012). Glucose in case of Brucella (Essenberg et 

al., 2002) or glycerol and fatty acids in case of Salmonella enterica (Steeb et al., 2013) can 

also serve as preferred carbon and energy supply for this group of intracellular microbes.  

The nutritional evolution of these pathogens, meaning the specific metabolic adaption to the 

intracellular lifestyle and the respective nutrient supply, is thereby probably related to the 

different prototrophies and auxotrophies of their respective host cells, especially concerning 

amino acids (Price et al., 2014; Abu Kwaik, 2015). The intracellular pathogen L. pneumophila 

predominantly uses amino acids, especially Ser and Cys, as preferred carbon and energy 

source, when replicating inside amoeba or human macrophages (George et al., 1980; Ristroph 

et al., 1981; Tesh and Miller, 1981; Eylert et al., 2010). Therefore, this microbe triggers host 

cell degradation of proteins to elevate amino acid concentrations in the cytosol (Price et al., 

2014). Subsequently, amino acids are carried into the replication vacuole via numerous 

transporters and amino acid permeases (Cazalet et al., 2004; Chien et al., 2004). Genome 

analysis and labeling experiments with L. pneumophila revealed, that this pathogen is 

auxotroph for Cys as well as for Arg, Ile, Leu, Met, Thr and Val (Cazalet et al., 2004; Chien 

et al., 2004; Eylert et al., 2010). Interestingly, their preferred host for replication in aquatic 

environments Acanthamoeba is also auxotroph for Arg, Ile, Leu, Met and Val (Ingalls and 

Brent, 1983; Price et al., 2014). Furthermore, Dictyostelium discoideum, which is another host 

of L. pneumophila, shows auxotrophy for 11 amino acids, including the same amino acids 

which were classified as auxotroph for L. pneumophila, except for Cys (Payne and Loomis, 

2006; Price et al., 2014). However, this amino acid is the most absent one in this amoebic host 

and in vitro growth experiments in a minimal defined medium devoid of Cys revealed reduced 

growth rates of D. discoideum (Franke and Kessin, 1977). Interestingly, L. pneumophila 

prefers Cys as carbon and energy source (George et al., 1980; Ristroph et al., 1981; Tesh and 

Miller, 1981). Similar microbial adaption of auxotrophy to their hosts have also been found in 

further intracellular pathogens like e.g. Francisella tularensis (Alkhuder et al., 2009), 

especially concerning Cys. Therefore, the synchronization of auxotrophies for certain amino 

acids between the intracellular microbe and their amoebic or mammalian host seems to be a 

general adaption process which is likely beneficial for the pathogens for their intracellular 

survival (Abu Kwaik and Bumann, 2013; Price et al., 2014).  
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Furthermore, intracellular pathogens feature different systems to enhance nutrient levels in 

their host cell. The general strategies which are used by most of the known intracellular 

pathogens to establish sufficient nutrient supply are predominantly based on targeting host 

protein degradation systems like e.g. proteasomes, autophagy or lysosomes. This finally leads 

to higher concentrations of low molecular weight nutrients, which are then incorporated and 

metabolized by the pathogen. The combination of these processes with further microbial 

strategies, which target alternative nutrient sources like e.g. glutathione, was recently termed 

as “nutritional virulence” (Abu Kwaik and Bumann, 2013). However, the respective carbon 

and energy sources need to be transported into the pathogen itself or additionally thought the 

vacuolar membrane in case of intracellular microbes that are replicating in a specific membrane 

bound compartment. Therefore, the microbe must establish numerous carbon transport systems 

to get access to sufficient amounts of nutrients.  

1.1.3 Nutrient transport systems of bacteria 

In general, beside the uptake of sufficient amounts of nutrients from the respective environment 

of the bacteria, transport systems are also important for the interaction between cells, iron 

acquisition or excretion of substrates (Mitchell, 1967). However, this chapter will concentrate 

on the most abundant transporter systems that play a certain role in bacterial nutrient 

acquisition. One important system of sugar transport in bacterial pathogens is the 

phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS), which was discovered 

in 1964 in Escherichia coli (Kundig et al., 1964). Extracellular sugars are thereby transported 

into the cell by simultaneously transferring one phosphoryl group derived from 

phosphoenolpyruvate (PEP) upon glucose or further carbohydrates like fructose, Man or 

galactose (Gal) (Kotrba et al., 2001; Deutscher et al., 2014). Phosphotransfer of the phosphoryl 

group from PEP onto hexose thereby occurs via a cascade reaction of three enzymes, which 

are termed enzyme I (EI), heat-stable or histidinephosphorylatable protein (HPr) and enzyme 

II (EII) (Kundig et al., 1964; Deutscher et al., 2006; Saier Jr, 2015). The EII comprises an 

enzyme complex, which is carbohydrate specific for one or more hexoses, whereas the 

cytoplasmic enzymes HPr and EI are universal participants of the PTS (Robillard and Broos, 

1999; Saier, 2000a; Kotrba et al., 2001). In general, the EII complex includes membrane 

associated domains as well as domains that are soluble in the cytosol. However, this complex 

is needed for the effective transport of the respective sugars through the membrane and 
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simultaneous phosphorylation, whereas the PEP/HPr/EI seems to be a general phosphoryl 

transfer system (Deutscher et al., 2006). Since the EII complexes are carbohydrate specific, 

bacteria have a set of different EIIs. For example, E. coli features fifteen different complexes 

of EII, but studies of further bacteria revealed numerous homologues like e.g. in Bacillus 

subtilis, where genome and further biological studies revealed similar numbers like in E. coli 

for this transport complex (Reizer et al., 1999; Deutscher et al., 2002; Deutscher et al., 2006). 

However, homologs are present in a bunch of bacterial pathogens (Barabote and Saier, 2005). 

The PTS is additionally crucial to the regulation of catabolic repression mechanisms and the 

regulation of carbohydrate metabolism in microbes (Stülke and Hillen, 1999; Deutscher et al., 

2006). Furthermore, it has been recently demonstrated, that the PTS is responsible for gene 

transcription as well as for the regulation of virulence factors in numerous bacteria e.g. in 

Borrelia burgdorferi or Vibrio cholerae (Wang et al., 2015; Khajanchi et al., 2016). In 

addition, an alternative PTS system called Nitrogen PTS system, which is not responsible for 

substrate transport but features a regulatory task, has been found in several bacteria (Powell et 

al., 1995; Reizer et al., 1996). 

Pore-forming membrane bound proteins (porins) represent a second big family of bacterial 

constructs, which facilitate the uptake of nutrients via the outer membrane (Koebnik et al., 

2000). Such hydrophilic channels were first reported in E. coli and termed OmpC and OmpF 

(Nikaido, 1996). Since then, numerous porins have been identified in Gram positive and Gram 

negative bacteria as well as in eukaryotic cells. These protein channels are responsible either 

for the uptake of a specific substrate or represent a non-specific gateway (Achouak et al., 

2001). Thereby, the amount of porins in the outer membrane of the bacteria is related to their 

environment e.g. to salt-concentrations or availability of certain nutrients, adjusting the 

permeability of the cell wall (Achouak et al., 2001). The direct link between the permeability 

of the outer membrane and persistence of intracellular pathogens inside their host was 

demonstrated e.g. for Mycobacterium smegmatis (Sharbati-Tehrani et al., 2005). Furthermore, 

they are crucial for the regulation of intracellular transition metal concentrations, since they 

ensure that sufficient amounts are available but simultaneously avoid harmful effects (Hood 

and Skaar, 2012).  
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A further big group of membrane transporters represent the major facilitator superfamily 

(MFS). These transporters are ubiquitary, thereby translocating single molecules or acting as 

symporter or antiporter (Marger and Saier, 1993; Piao et al., 2006). These types of transporters 

do not bind ATP, but translocation occurs via direct binding and subsequently conformational 

changes of this protein, thereby addressing a high number of different substrates (Pao et al., 

1998; Law et al., 2008). 

Same as the MFS, the ATP-binding cassette (ABC) transporters are also present in all living 

organisms (Higgins, 1992; Dean and Allikmets, 1995). These two groups of membrane 

transport systems are the most abundant ones present in microorganism, comprising almost 

fifty percent (Paulsen et al., 1998). However, in contrast to the MFS, ABC transporter systems 

do actively import or export small molecules or macromolecules, using the energy of ATP 

hydrolysis (Fath and Kolter, 1993). Nevertheless, both transporter systems show high diversity 

concerning their targeted substrates, including almost every biological important compound 

(Pao et al., 1998).  

In contrast, there are also numerous membrane transporters, which show a high substrate 

specialization e.g. nucleoside transporters. In general, two groups of these transporters have 

been described: concentrative nucleoside transporters and equilibrative nucleoside transporters 

(Molina-Arcas et al., 2009). Thereby, members of the latter group act as diffusion facilitators 

in both directions, whereas the unidirectional acting concentrative nucleoside transporters are 

energy consuming, utilizing the potential energy of a transmembrane sodium gradient 

(Baldwin et al., 2004; Gray et al., 2004; Molina-Arcas et al., 2009). However, nucleoside 

transporters are found in eukaryotes and prokaryotes, enabling the usage of nucleosides as 

carbon and nitrogen source (Acimovic and Coe, 2002). Remarkably, intracellular bacteria 

seem to use these kinds of carriers predominantly for “energy parasitism”, importing adenosine 

triphosphate (ATP) from the cytosol by simultaneously exporting adenosine diphosphate 

(ADP), thereby acting in the opposite direction than the well-known mitochondrial ADP/ATP 

carrier (Winkler and Neuhaus, 1999; Linka et al., 2003). Interestingly, high sequence 

similarities between these transport proteins and ATP/ADP carriers from chloroplast have been 

identified (Winkler and Neuhaus, 1999).  
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However, besides the transporter system discussed so far, many further transport proteins have 

been classified in bacterial pathogens, like e.g. decarboxylation-driven, oxidoreduction-driven 

or methyltransferase-driven active transporters (Saier, 2000b).  

1.1.4 Genome reduction as a concept of metabolic adaption and virulence  

The common idea of the evolutional process is, that it somehow results in more complex 

organisms, starting from simple protocells which have finally developed into humans. 

Therefore, the development of genomes in the direction of higher complexity is expected (Wolf 

and Koonin, 2013). However, some time ago it was found, that the opposite event takes place 

in numerous microorganisms, especially in intracellular bacteria, although they show a high 

diversity in their adaption and survival strategies inside their respective host cells (Moran, 

2002; Wolf and Koonin, 2013). However, genome-sequencing experiments in very different 

groups of bacteria like e.g. Alphaproteobacteria, Gammaproteobacteria, Mollicutes or 

Spirochaetes revealed, that all of them show genome reduction, indicating that this is a 

widespread ability of bacteria (McCutcheon and Moran, 2012). Simplification is therefore 

probably a general concept in the evolution from a free-living bacterium to an intracellular 

living pathogen (obligate or facultative), that leads to the deficiency of large parts of their 

genome (Gil et al., 2004; Fraser-Liggett, 2005; Casadevall, 2008). Up to 95% of bacterial 

genes can thereby be depleted, whereas a core set of genes related to basic cellular functions 

(host cell invasion or core metabolic functions) remain (Moran, 2002; McCutcheon and Moran, 

2012; Wolf and Koonin, 2013). 

However, bacterial symbionts predominantly show massive reduction in their genomes 

(McCutcheon and Moran, 2012). For example Mycoplasma features one of the smallest 

genomes evolved from a bacterial ancestor (Woese et al., 1980). Interestingly, the smallest 

bacterial genome overlaps extensively with viral genomes as well as with that of organelles. 

Therefore, the assignment of symbiotic intracellular pathogens and organelles is starting to 

blur (McCutcheon, 2010). However, mitochondria as well as chloroplasts are probably the 

result of extensive genome reduction processes, which directly demonstrates the significance 

of this process in evolution (Wolf and Koonin, 2013). 

The deleted genes or gene sets are often related to central biosynthetic pathways which are 

responsible e.g. for the biosynthesis of sugars or amino acids, since the respective end product 
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can be probably taken up easily from the hosts which are offering a rich nutrient source 

(Casadevall, 2008). The obligate intracellular growing Rickettsia show e.g. loss of genes 

involved in amino acid biosynthesis, purine biosynthesis or the formation of sugars (Renesto 

et al., 2005). Furthermore, genes related to DNA repair mechanisms are often depleted, though 

a specific set of repair genes always is retained in the genome in the respective pathogens 

(Moran et al., 2008).  

In general, the intracellular bacteria might benefit from this process of genome reduction, since 

it increases the fitness of the bacteria inside the host due to improvements in the bacterial-host 

interactions (pathoadaption) (Casadevall, 2008). This is for example seen in Shigella spp., 

which has lost the lysine decarboxylase enzyme, which converts lysine to cadaverine. This 

reaction product normally inhibits certain violence factors of bacteria. Due to this gene loss, 

the inhibitory effect is depleted, which leads to an improved virulence and therefore probably 

enhanced fitness of Shigella in the interaction with its host (Maurelli et al., 1998). Interestingly, 

the presence of this gene is characteristic for non-pathogenic bacteria and it is present in most 

of the E. coli strains (Edwards and Ewing, 1972). Furthermore, a high number of intracellularly 

living microbes have lost their mobility due to the loss of flagellation. This might be beneficial, 

since the flagellin protein might be recognized by the immune system. However, the loss of 

this protein could also be a result of changes in the bacterial metabolism (Pallen and Wren, 

2007; Casadevall, 2008).  

Nevertheless, gene acquisition by the intracellular pathogens from the eukaryotic host is also 

possible, as it was discovered e.g. for L. pneumophila. Amoeba represent the preferred host of 

this microbe. However, it could be shown that L. pneumophila feature numerous eukaryotic-

like genes, which are probably derived from their amoeba host though horizontal gene transfer 

(Cazalet et al., 2004).  

1.2 Legionella pneumophila 

1.2.1 History and clinical relevance 

L. pneumophila is a Gram negative, flagellated, facultative intracellular bacterium, which 

owned its name from its first epidemic outbreak in 1979 in Philadelphia. Thereby, 180 people 

got infected during a convention of the American Legion and developed pneumonia symptoms. 

In consequence, 29 people died due to the infection with this pathogen, which was identified 
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3 years later (Brenner et al., 1979). The disease was therefore termed Legionnaires´ disease 

while the causative agent was named Legionella pneumophila (Fraser et al., 1977; McDade et 

al., 1977). However, the first isolation occurred earlier in 1943 from guinea pigs as a bacteria, 

which showed high similarity to Rickettsia (Tatlock, 1944). Furthermore, a second 

documented isolation from a sick guinea pig occurred only four years later in 1947 (McDade 

et al., 1979). Interestingly, this guinea pig got infected by human blood derived from a patient, 

who showed symptoms of pneumonia (McDade et al., 1979). In addition, Drozanski was able 

to isolate a further strain in 1954 from a soil sample, which was a first demonstration that this 

bacteria has the ability for amoeba infection (Drozanski, 1956). All these strains where 

identified as L. pneumophila several years later in 1996 (Hookey et al., 1996). 

In general, L. pneumophila is widespread in natural aquatic systems, normally replicating in 

numerous free-living protozoan hosts (Rowbotham, 1980; Steinert et al., 2002; Steinert and 

Heuner, 2005; Valster et al., 2010). Until now, 14 different amoeba species like e.g. A. 

castellanii or Hartmannella vermiformis, two ciliated protozoa species and furthermore one 

slime mold species have been identified as potential hosts for this intracellular pathogen 

(Rowbotham, 1980; Fields, 1996). L. pneumophila is often found in human made artificial 

aquatic systems like air conditioners, water towers or whirlpools (Fields, 1996; Nguyen et al., 

2006). Therefore, these bacteria are able to replicate at temperatures between 25°C and 42°C, 

but prefer a replication temperature of 35°C, which is higher than the normal ambient 

temperature (Katz and Hammel, 1987). This explains the increased presence of this microbe 

in artificial water systems, which often offer higher water temperatures, what subsequently 

leads to higher transmission rates upon humans (Fields et al., 2002). Due to the inhalation of 

contaminated aerosols derived from these artificial bacterial reservoirs, L. pneumophila is also 

able to infect human alveolar macrophages, thereby causing the severe pneumonia 

Legionnaires´ disease (Fraser et al., 1977; Fields, 1996; Nguyen et al., 2006). Since a direct 

transfer from one person to another was not reported for a long time, human alveolar 

macrophages have been seen as the dead end of L. pneumophila replication (Ensminger et al., 

2012). Nevertheless, in 2016 a first person-to-person transition was reported (Correia et al., 

2016).  

The infection with L. pneumophila does not necessarily lead to any disease symptoms 

(Boshuizen et al., 2001). However, immunodeficient patients can develop severe pneumonia, 
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or a weaker flu like infection (Fraser et al., 1977; Glick et al., 1978). Currently, more than 50 

members of the Legionella species have been identified and almost half of them can cause 

human illness. However, most of the clinical cases are related to infections with L. 

pneumophila or L. longbeachae (Newton et al., 2010; Hilbi et al., 2011). 

1.2.2 Infection of host cells and developmental life cycle  

As mentioned before, L. pneumophila is an intracellular pathogen, which replicates in various 

protozoan hosts, but is also able to survive extracellularly in biofilms (Rowbotham, 1980; 

Fields, 1996; Declerck, 2010). In both cases, this microbe alters between at least two 

morphological forms, that differ in e.g. shape or motility (Molofsky and Swanson, 2004). This 

biphasic life cycle of L. pneumophila comprises a non-virulent replicative phase, in which the 

bacteria appear as rod shaped, non-motile and metabolically active microbes. In the second 

growth phase, the transmissive stage, L. pneumophila appears as a shorter thicker rod, which 

is motile, stress resistant and infectious (Rowbotham, 1986; Byrne and Swanson, 1998; 

Molofsky and Swanson, 2004; Brüggemann et al., 2006). The developmental switch is thereby 

triggered by the respective environment and nutrient conditions. This means that, after host 

cell invasion, the nutrient rich surrounding triggers the expression of replicative traits, leading 

to proliferating and metabolically active bacteria. In contrast, if nutrients are getting limited, 

the expression of transmissive traits is induced, leading to shortened and motile microbes, 

which are now able to leave their host cell and infect new ones, subsequently developing into 

the replicative form (Byrne and Swanson, 1998; Molofsky and Swanson, 2004; Brüggemann 

et al., 2006; Faucher et al., 2011). This biphasic life cycle can be remodeled in broth culture, 

were L. pneumophila switches between an exponential phase form (EPF) and a stationary phase 

form (SPF). Thereby, the EPF resembles the replicative phase form (RPF) inside a host cell 

and the SPF resembles the virulent and motile transmissive form, also called the mature 

infections form (MIF), which is developed in vivo (Molofsky and Swanson, 2004; Robertson 

et al., 2014). The two morphological forms which developed during replication in vitro (EPS) 

or in vivo (RPF) do not differ from each other, whereas the in vitro infectious form (SPF) is 

not as resistant to e.g. antibiotics, does not show as many inclusions of the bacterial storage 

compound PHB and is furthermore not as infectious as the in vivo developed MIF (Faulkner 

and Garduno, 2002; Garduno et al., 2002). Therefore, the SPF is presumably more similar to 

the transmissive forms which are produced in biofilms in the natural replication cycle of this 
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pathogen (Robertson et al., 2014). However, further developmental forms like e.g. a non-

cultivatable spore like form or a filamentous form, have been reported, which indicates that 

the life cycle of L. pneumophila rather resembles a developmental network (Al‐Bana et al., 

2014; Robertson et al., 2014). 

The infection of protozoan hosts as well as of macrophages by L. pneumophila occurs via 

phagocytosis (Horwitz, 1984). This process and furthermore the establishment of a special 

replication compartment inside the host cell, the so-called Legionella-containing vacuole 

(LCV), is dependent on a functional Icm/Dot (intracellular multiplication/defective organelle 

trafficking) type IV secretion system (T4SS), which enables the translocation of more than 300 

effectors (Ensminger and Isberg, 2009; Zhu et al., 2011; Isaac and Isberg, 2014; Burstein et 

al., 2016). The indispensability of this secretory machinery in this microbe was demonstrated 

via deletion mutants, which were unable to replicate inside a host cell and in contrast were 

soon degraded by the host cell lysosomal system (Roy and Isberg, 1997; Zink et al., 2002). 

The numerous translocated effectors target various cellular processes of the host cell, thereby 

also inducing the recruitment of endoplasmic reticulum-derived compartments, which are used 

to establish the replication niche (LCV) of L. pneumophila (Shin and Roy, 2008). Furthermore, 

the effector proteins directly target signaling molecules in the host, like small GTPases or 

phosphoinositide lipids as well as ubiquitination of apoptosis related factors (Hubber and Roy, 

2010; Rolando and Buchrieser, 2012; Haneburger and Hilbi, 2013; Rothmeier et al., 2013; 

Hoffmann et al., 2014a). Also secretory mechanisms of the host cell as well as retrograde 

trafficking mechanisms are manipulated by this predator (Hubber and Roy, 2010; Rolando and 

Buchrieser, 2012; Horenkamp et al., 2014; Weber et al., 2014). However, most of the functions 

of this high number of effector proteins are still unknown, although some show functional 

redundancy, which is probably related to the adaption to various host systems (O’Connor et 

al., 2011; Isaac and Isberg, 2014). However, L. pneumophila features further secretory systems 

besides the well-studied Icm/Dot T4SS. It was shown that also a type V, a Lss type I and a Lss 

type II secretory system is present in this intracellular pathogen. It was furthermore 

demonstrated that the latter one is also essential for intracellular replication of this microbe in 

amoeba and macrophages (Hales and Shuman, 1999; Liles et al., 1999). 
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1.2.3 CsrA as a key player in the developmental regulatory network 

During the developmental switch from the transmissive to the replicative phase or the other 

way around, L. pneumophila undergoes a transcriptional switch, which leads to morphological 

and metabolic changes, which are characteristic for the respective growth phase (Brüggemann 

et al., 2006; Faucher et al., 2011). Thereby, the availability of certain nutrients like amino 

acids, iron or nucleosides represent a key regulatory trigger, inducing changes in the 

developmental life cycle (Byrne and Swanson, 1998; Wieland et al., 2005; Cianciotto, 2007; 

Faucher et al., 2011; Fonseca et al., 2014). However, various regulatory proteins have been 

identified in L. pneumophila, interacting within a complex regulatory network, which is under 

the control of the life stage specific appearance of this intracellular pathogen. One of the key 

players for the developmental switch is CsrA, which acts on a post-transcriptional level. During 

replication, this protein induces the expression of replicative traits by simultaneously 

repressing transmissive traits, like motility or virulence (Molofsky and Swanson, 2003; 

Vakulskas et al., 2015). Nevertheless, further regulatory factors take part in the developmental 

system of L. pneumophila, which are, amongst others also responsible for the regulation of 

CsrA. This network will schematically be described in the following passage. 

Under nutrient starvation, the production of the second messenger guanosine-3´,5´-

bispyrophosphate (ppGpp) is induced, which leads to further downstream regulatory processes 

(Hammer and Swanson, 1999; Dalebroux et al., 2010). Thereby, this alarmone is synthesized 

via two enzymes. The first one is RelA, which is induced due to low amino acid concentrations 

leading to higher amounts of uncharged tRNAs, which are recognized by this ribosome-

associated enzyme due to accumulation at the ribosome (Dalebroux et al., 2009; Dalebroux et 

al., 2010). The second ppGpp synthesizing protein is SpoT, which is induced when the 

concentration of short chain fatty acids increases, thereby directly linking reduced fatty acid 

biosynthesis with the induction of virulence traits (Edwards et al., 2009). In consequence of 

high levels of the alarmone ppGpp, activity and stability of the central regulator RpoS is 

induced. This alternative sigma factor represents a further key regulator, besides CsrA, for the 

developmental switch of L. pneumophila (Bachman and Swanson, 2001; Zusman et al., 2002; 

Molofsky and Swanson, 2003). Besides others, RpoS is responsible for gene regulation, 

activation of the quorum sensing system or the induction of the two-component system 

LetA/LetS (Hammer and Swanson, 1999; Bachman and Swanson, 2001; Tiaden et al., 2007; 
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Hovel-Miner et al., 2009; Dalebroux et al., 2010). It has been shown earlier, that the latter one, 

the two-component system LetA/LetS, is crucial for the induction of transmissive traits 

(Hammer et al., 2002). Furthermore, experiments with a LetA deletion mutant demonstrated 

that besides the significance of this system in intracellular replication in A. castellanii 

numerous icm/dot virulence genes showed altered expression in a LetA dependent manner 

(Gal-Mor and Segal, 2003). However, the most important effect of the induction of LetA/LetS 

via RpoS is, that in consequence the transcription of the three small non-coding RNAs RsmX, 

RsmY and RsmZ is induced, which leads to the downregulation of CsrA (Rasis and Segal, 

2009; Sahr et al., 2009; Sahr et al., 2012). As mentioned above, CsrA acts as a post-

transcriptional regulator, thereby activating genes important for replication while 

simultaneously repressing transmissive trait proteins. In presence of high amounts of the three 

non-coding RNAs, the concentration of CsrA is reduced due to the binding of this central 

regulator by RsmX, RsmY and RsmZ. In consequence, this leads to the induction of the 

developmental switch towards the transmissive phenotype while simultaneously replicative 

traits are repressed (Rasis and Segal, 2009; Sahr et al., 2009; Sahr et al., 2012). Beside these 

non-coding RNAs, further systems are responsible for the adjustments of CsrA levels in L. 

pneumophila. One is the two-component system PmrA/PmrB, which itself is regulated by 

RpoS (Hovel-Miner et al., 2009). PmrA/PmrB depletion mutants showed reduced levels of 

CsrA and replication defects, confirming its role in this regulatory network (Al-Khodor et al., 

2009). Another participant in this network, that determines the developmental switch of L. 

pneumophila by the adjustment of CsrA concentrations, is the integration host factor (IHF) 

(Morash et al., 2009). Its expression is again controlled by RpoS and it enhances, together with 

the LetA/LetS two-component system, the production of the small non-coding and CsrA 

binding RNAs (Zhao et al., 2007). 

1.2.4 Metabolic potential of L. pneumophila 

Early metabolic studies revealed, that amino acids represent the main carbon and energy source 

for the facultative intracellular pathogen L. pneumophila, whereas especially serine but also 

threonine were supposed to be the major metabolic substrates (Pine et al., 1979; George et al., 

1980; Tesh and Miller, 1981). This was in agreement with later investigations, which 

demonstrated high activities for the serine dehydratase enzyme (lpp0854) as well as for the 

pyruvate carboxylase enzyme (lpp0531), again highlighting the importance of this amino acid 
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as nutrient for this microbe (Keen and Hoffman, 1984). Thereby, serine is presumably taken 

up via the serine transporter Lpp2269 (Cazalet et al., 2004; Eylert et al., 2010). Recent labelling 

experiments with 13C-serine revealed, that this amino acid is indeed incorporated and 

metabolized in high rates, subsequently feeding energy generating metabolic pathways, but 

also serving as precursor for de novo biosynthesis of amino acids and PHB (Eylert et al., 2010; 

Gillmaier et al., 2016). 

Nevertheless, experiments in defined media as well as labeling experiments revealed, that this 

pathogen is also auxotroph for several amino acids including arginine, cysteine, isoleucine, 

leucine, methionine, valine, serine and threonine (Pine et al., 1979; George et al., 1980; Tesh 

and Miller, 1981; Eylert et al., 2010). This is in agreement with later conducted genome 

analysis experiments with several strains of L. pneumophila as well as with L. longbeachae 

(Cazalet et al., 2004; Chien et al., 2004; Steinert et al., 2007; Cazalet et al., 2010; D'Auria et 

al., 2010). However, the dependency on amino acids as nutrients is also reflected in the genome 

of this pathogen, where a bunch of amino acid and protein transporters like e.g. ATP dependent 

transporters, permeases or proteases have been identified (Cazalet et al., 2004; Chien et al., 

2004).  

The whole metabolic potential of L. pneumophila for the usage of further substrates, like 

carbohydrates or fatty acids besides amino acids, remained unclear for a long time, although 

enzymes of all core metabolic pathway e.g. the glycolytic pathway, the TCA cycle, the non-

oxidative part of the PPP, with the exception of a transaldolase, or the ED pathway are present 

in the genome of this pathogen (Cazalet et al., 2004; Chien et al., 2004; Cazalet et al., 2010). 

In addition, early studies with 14C labeled glucose and further substrates like glycerol or acetate 

indicated the usage of these precursors by L. pneumophila, although glucose did not support 

bacterial growth in vitro (Pine et al., 1979; Warren and Miller, 1979; Weiss et al., 1980; Tesh 

et al., 1983). Furthermore, the preferred degradation pathway of glucose was unclear. 

However, it was suggested that L. pneumophila uses more efficiently the PPP and the ED 

pathway for glucose degradation than glycolytic reactions (Weiss et al., 1980; Tesh et al., 

1983). Using isotopologue profiling experiments it could finally be demonstrated that this 

microbe is indeed able to efficiently incorporate and metabolize glucose predominantly via the 

ED pathway (Eylert et al., 2010). Mutants concerning enzymes of this biosynthetic pathway 

were unable to efficiently metabolize this hexose and furthermore showed significant 
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replication defects inside Acantamoeba castellanii, also highlighting the importance of this 

metabolic pathway (Harada et al., 2010). Besides glucose, L. pneumophila is also able to use 

exogenous polysaccharides as carbon source. Experiments with the eukaryotic-like 

glucoamylase (GamA) revealed, that this enzyme enables the effective degradation and 

therefore metabolisation of glycogen and starch probably during intracellular replication in A. 

castellanii, although this enzyme is not essential for in vitro or in vivo  replication (Herrmann 

et al., 2011). In addition, this bacterium is equipped with a chitinase as well as with an 

endoglucanase, which enables the degradation of cellulose and underlines the importance of 

polysaccharides in the L. pneumophila nutrition (DebRoy et al., 2006; Pearce and Cianciotto, 

2009). 

Early in vitro studies indicated, that L. pneumophila uses glycerol as carbon source (Tesh et 

al., 1983). These findings were emphasized by following transcriptome experiments, which 

showed that genes responsible for glycerol metabolism e.g. glpK or glpD were highly 

upregulated during intracellular replication in macrophages (Faucher et al., 2011). 

Furthermore, a mutant concerning glpD in L. oakridgensis was not able to replicate in A. 

castellanii (Brzuszkiewicz et al., 2013). However, the metabolic potential of L. pneumophila 

for glycerol metabolism remained unknown. Nevertheless, it was demonstrated for further 

intracellular pathogens that glycerol nutrition plays a central role in the metabolic concept of 

e.g. Listeria monocytogenes (Grubmüller et al., 2014) or Salmonella enterica (Steeb et al., 

2013). 

Currently, the metabolic potential of fatty acids as nutrients is not well studied for L. 

pneumophila. However, genes involved in the biosynthesis as well as in the degradation of 

fatty acids have been found to be present due to genome analysis (Cazalet et al., 2004; Chien 

et al., 2004). In addition, this pathogen features numerous phospholipases which are largely 

known to be involved in L. pneumophila virulence and are predominantly expressed in the mid 

exponential or transmissive growth phase (Flieger et al., 2000; Flieger et al., 2004; Schunder 

et al., 2010). Thereby, the cell-associated hemolytic phospholipase A (PlaB), which preferably 

hydrolyzes long-chain fatty acids with more than twelve carbon atoms, represents the main 

hydrolytic activity of this intracellular pathogen. In general, the hydrolytic potential of L. 

pneumophila could be crucial in L. pneumophila pathogenicity (Bender et al., 2009). 

Furthermore, short chain fatty acids seem to trigger the switch between the two growth phases, 
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the replicative and the transmissive phase, again indicating that fatty acid metabolism and 

virulence are linked in this pathogen (Edwards et al., 2009). Further studies now suggest a 

metabolic role of fatty acids in the core metabolism of L. pneumophila, especially concerning 

the biosynthesis of the bacterial carbon and energy storage compound PHB (Edwards et al., 

2009; Hayashi et al., 2010; Gillmaier et al., 2016). 

1.3 Coxiella burnetii 

1.3.1 History and clinical relevance 

The intracellular pathogen C. burnetii was first described in 1937 as the causative agent of a 

newly recognized fever which appeared in numerous abattoir workers in Queensland, Australia 

(Derrick, 1937). In the same year the causative organism was defined as a new type of the 

Rickettsia species (Burnet and Freeman, 1937) and subsequently the first isolation from ticks 

occurred in 1938 in the USA (Davis et al., 1938). However, due to genomic and phylogenetic 

studies this pathogen is no longer categorized in the α-proteobacteria Rickettsia group but was 

identified as a γ-proteobacteria with L. pneumophila as its closest relative (Roux et al., 1997; 

Seshadri et al., 2003; Beare et al., 2009). Nevertheless, recent studies revealed that these two 

intracellular pathogens developed in a rather distant evolutionary process (Pearson et al., 2013; 

Duron et al., 2015). Thereby, an endosymbiont of ticks was recently identified as the ancestor 

of C. burnetii (Duron et al., 2015). 

It is now known that this obligate intracellular Gram negative bacterium is distributed 

worldwide and capable of infecting various hosts including diverse vertebrate and invertebrate 

species as well as a multitude of mammalian tissues (Babudieri, 1959; Weber et al., 2013; 

Larson et al., 2016). In humans, this pathogen causes a worldwide-distributed zoonosis called 

Q-fever, which is characterized by typical flu-like symptoms, but could also lead to pneumonia 

in its acute form or to hepatitis and endocarditis if the infection becomes chronical (Maurin 

and Raoult, 1999; Arricau-Bouvery and Rodolakis, 2005; van Schaik et al., 2013; Larson et 

al., 2016). Human outbreaks of Q-fever are predominantly related to infected goats, sheep or 

dairy cattle which spread C. burnetii into the environment via contaminated fluids like milk, 

urine, amniotic fluids or feces (Raoult et al., 2000; Angelakis and Raoult, 2010). Therefore, 

humans mainly get infected via the direct contact to infected animals due to the inhalation of 

contaminated aerosols. Besides that no direct contact to a farm animal can also lead to an 

infection due to the fact that this very robust bacteria can be spread by the wind and is thereby 
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able to cover long distances (Raoult et al., 2000). Oral infection (via contaminated food) as 

well as direct human to human transfer has also been reported but appear rarely (Marrie and 

Raoult, 1997; Raoult et al., 2000). Animals predominantly carry chronical infections of C. 

burnetii but predominantly do not show any symptoms (Maurin and Raoult, 1999). 

Distribution between animals generally occurs via tick bites (Philip et al., 1966). The fact, that 

only one bacterium is sufficient to cause an infection and its ability to form very robust 

bacterial spores, makes this pathogen a type-B bioweapon (Fournier et al., 1998; Madariaga et 

al., 2003; Cogliati et al., 2016).  

1.3.2 Infection and developmental life cycle 

As mentioned above, the intracellular pathogen C. burnetii can form specific small-cell 

variants (SCVs), which are capable to survive long time-periods in the environment due to 

high robustness to various harsh environmental conditions e.g. heat or dryness (Coleman et al., 

2004; Coleman et al., 2007). After host cell invasion the transition into the large-cell variants, 

which are metabolically active, is induced (Coleman et al., 2004).  

Alveolar macrophages represent the prime target of C. burnetii in the natural host cell invasion, 

but these bacteria are also capable of subsequently invading further cells and tissues (Khavkin 

and Tabibzadeh, 1988; Stein et al., 2005; Calverley et al., 2012; Graham et al., 2013; Graham 

et al., 2016). For example, adipocytes serve as a reservoir for the persistence of this pathogen 

whereas trophoblasts are favored targets of C. burnetii in female hosts (Sánchez et al., 2006; 

Bechah et al., 2014). The internalization of host cells occurs passively due to invasion studies 

with macrophages and fibroblasts, which revealed that internalization of both, living or dead 

C. burnetii, was comparably effective (Baca et al., 1992; Tujulin et al., 1998). This is in 

agreement with experiments with protease treated C. burnetii, which were subsequently unable 

to invade host cells, indicating that proteins on the surface of this bacteria act as invasins (Baca 

et al., 1992). Using a microscopy-based high-throughput screening, the surface protein OmpA 

could recently be identified as an invasin of this intracellular pathogen (Martinez et al., 2014). 

After the invasion process, this pathogen establishes a replicative niche in the respective host 

cell, which is termed Coxiella-containing vacuole (CCV) and which occupies most of the 

cytosolic space at later developmental stages (Howe et al., 2003; Larson et al., 2016). This 

phagolysosome-like replication compartment is unique compared to the replication niches of 

other intracellular bacteria due to the acidic conditions which are present in the CCV (Howe et 
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al., 2010; Schulze‐Luehrmann et al., 2016). The CCV also differs to the replication 

compartment of the close relative L. pneumophila, the LCV, which is predominantly derived 

from the endoplasmic reticulum and comprises a neutral environment (Hubber and Roy, 2010). 

However, C. burnetii depends on acidic conditions since they trigger the developmental switch 

from the SCV to the LCV and therefore induce metabolic activity of the pathogen as well as 

the induction of protein expression of various effectors, which are involved in numerous 

infection processes as well as inhibition of apoptosis (Howe et al., 2003; Coleman et al., 2004; 

Voth et al., 2007; Larson et al., 2016).  

Intracellular survival, acquisition of sufficient amounts of nutrients and in particular the 

establishment of the specific intracellular replication compartment CCV is dependent on a type 

IVB secretion system (T4BSS), which is a homologue of the secretion system used by 

L. pneumophila (Seshadri et al., 2003; Beare et al., 2011; Carey et al., 2011). Both systems 

translocate high numbers of effector proteins into the host cell. Up to now, more than 300 

effector proteins are known for L. pneumophila (Burstein et al., 2016; Hofer, 2016) whereas 

the secretion system of C. burnetii is responsible for the translocation of a smaller number of 

60 effector proteins, most of which the function is still not known of (Chen et al., 2010; Carey 

et al., 2011; Newton et al., 2013; Weber et al., 2013).  

Intracellular nutrient acquisition as well as vacuolar expansion during maturation of the CCV, 

which takes place over several days, is furthermore dependent on extensive fusion with 

autophagosomes (Winchell et al., 2014). Furthermore, this pathogen interacts with endocytic 

and secretory pathways (Larson et al., 2016). However, during the maturation process the host 

cell morphology is only minimally effected since this pathogen is adapted to maintain host cell 

viability (Coleman et al., 2004).  

1.3.3 Role of CsrA in the regulatory network of C. burnetii 

Currently, only four regulatory two-component systems have been identified for C. burnetii, 

which illustrate a small number compared to other Gram-negative intracellular bacteria 

(Seshadri et al., 2003; Beare et al., 2009). However, the two-component system GacA/GacS, 

which is a homolog of the two-component system LetA/LetS of L. pneumophila, is present 

(Seshadri et al., 2003; Chien et al., 2004; Beare et al., 2009). The LetA/LetS system is crucial 

in the CsrA-regulatory cascade in L. pneumophila, which was already discussed in section 

1.2.3. In short, CsrA induces replicative traits by simultaneously repressing transmissive traits 
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on a post-transcriptional level during the replicative phase in L. pneumophila (Molofsky and 

Swanson, 2003). Nutrient limited conditions lead to the production of the alarmone ppGpp 

under the control of SpoT and RelA. Subsequently, activity and stability of the alternative 

sigma factor RopS is induced, which leads besides others to the induction of the two-

component system LetA/LetS (Molofsky and Swanson, 2003; 2004). The LetA/LetS system is 

then responsible for the production of small non-coding RNAs, which bind and therefore 

inactivate CsrA, leading to the activation of transmissive traits (Rasis and Segal, 2009; Sahr et 

al., 2009; Sahr et al., 2012). Since one or two genes for all of these regulators are conserved in 

C. burnetii isolates (spoT: CBU0303; relA: CBU1375; rpoS: CBU1609; csrA: CBU0024 and 

CBU1050), a similar role to that in L. pneumophila appears likely. Therefore, also the function 

of GacA/GacS in C. burnetii is probably similar to that of the LetA/LetS system in L. 

pneumophila (Seshadri et al., 2003; Mercante et al., 2006; Beare et al., 2009). Furthermore, 

the two-component system QseB/QseC of C. burnetii seems to be similar to the PmrA/PmrB 

system of L. pneumophila, which is also part of the CsrA-regulatory cascade in L. pneumophila 

(Seshadri et al., 2003; Al-Khodor et al., 2009; Beare et al., 2009; Hovel-Miner et al., 2009). 

In addition, it is also important in the regulation of the Dot/Icm type IV secretion in both 

pathogens (Zusman et al., 2007; Beare et al., 2009). On the other hand, the two-component 

system CpsA/CpxR, which is present in L. pneumophila and also involved in the Dot/Icm T4SS 

regulation, could not be found in the genome of C. burnetii until now (Feldman et al., 2005; 

Beare et al., 2009). Nevertheless, the developmental switch between the different 

morphological forms (SCV and LCV) in the biphasic life cycle is likely regulated by the 

interplay within the CsrA-regulatory network, similar to that reported for L. pneumophila 

(Coleman et al., 2004). 

1.3.4 Metabolic potential of C. burnetii 

Since the possibility to grow this intracellular pathogen in an axenic medium has only been 

developed recently, the metabolic potential of C. burnetii is only poorly understood (Omsland 

et al., 2009; Omsland et al., 2011; Omsland et al., 2013). However, the composition of the 

newly developed Acidified Citrate Cysteine Medium 2 (ACCM-2) as well as genome based 

analysis give a first idea about the preferred nutrients and the metabolic concept of this 

pathogen (Seshadri et al., 2003; Omsland et al., 2009; Omsland et al., 2011). Compared to 

other intracellular bacteria, the process of genome reduction is at an early stage, since a high 
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percentage (more than 89.1%) of the genome is still coding for proteins (Andersson and 

Kurland, 1998; Seshadri et al., 2003). Enzymes of the glycolytic cascade, gluconeogenesis, the 

PPP and the TCA cycle as well as some enzymes of the ED pathway are present in the genome 

of C. burnetii (Seshadri et al., 2003). However, in contrast to its close relative L. pneumophila, 

which preferably uses the ED pathway for glucose degradation, C. burnetii seems to prefer 

glycolytic reactions, although a classical hexokinase has not been identified based on genome 

analysis of this pathogen (McDonald and Mallavia, 1971; Hackstadt and Williams, 1981a; 

Hackstadt and Williams, 1981b). Anyway, the activity of a hexokinase as well as the 

conversion of glucose 6-phosphate (Glu-6-P) to 6-phosphogluconate (6-PG) and ribulose 5-

phosphate have been demonstrated, although the respective enzymes have not been identified 

based on genome analysis (Consigli and Paretsky, 1962; Paretsky et al., 1962; McDonald and 

Mallavia, 1970). Furthermore, also the shikimate/chorismate pathway is present in C. burnetii, 

although enzymes for the final steps in the biosynthesis of aromatic amino acids have not been 

identified (Seshadri et al., 2003; Walter et al., 2014). Nevertheless, enzymes for the production 

of further amino acids and fatty acids and the biosynthesis of vitamins and nucleic acids are 

present, whereas enzymes of the glyoxylate pathway are not (Seshadri et al., 2003). 

Additionally, C. burnetii features a transporter for long chain fatty acids (CBU1242) as well 

as two sugar transporters (CBU0265 and CBU0347) and numerous amino acid and peptide 

transporters (Seshadri et al., 2003; Kuley et al., 2015). In combination with the composition 

of the recently developed axenic medium ACCM-2, which comprises high amounts of amino 

acids and peptides, this suggests that amino acids are among the major substrates of this 

pathogen (Seshadri et al., 2003; Sandoz et al., 2016). However, also further substrates seem to 

be used by C. burnetii, since glucose is present in ACCM-2 and since enzymes responsible for 

the degradation of glycerol are present in its genome (Seshadri et al., 2003; Omsland et al., 

2009; Omsland et al., 2011).  

1.4 Aims of the thesis 

The two closely related bacteria L. pneumophila and C. burnetii represent two examples of 

intracellular replicating pathogens featuring a biphasic life cycle (Coleman et al., 2004; 

Molofsky and Swanson, 2004; Beare et al., 2009). During their life cycle, both bacteria are 

exposed to numerous extra- and intracellular niches, thereby undergoing different 

morphological changes, which are controlled by a complex CsrA-dependent regulatory 
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network (Coleman et al., 2004; Molofsky and Swanson, 2004). This regulatory network is 

triggered by the nutritional composition of the environment which changes permanently during 

the life cycle (Byrne and Swanson, 1998; Wieland et al., 2005; Cianciotto, 2007; Faucher et 

al., 2011; Fonseca et al., 2014). Since there is not much known about nutrition and the 

metabolic potential of L. pneumophila and C. burnetii, the aim of this thesis was the 

metabolically characterization and the investigation of a general metabolic concept in a growth 

phase dependent manner. Thereby, also the role of CsrA in the regulation of substrate usage 

and of metabolic fluxes in L. pneumophila was studied.  

To investigate the relevance of glycerol in the nutrition of L. pneumophila, a ΔglpD mutant 

was used in extra- and intracellular growth assays comparative to the wild-type. Furthermore, 

an new minimal defined medium (MDM) was developed and used to perform growth phase 

dependent isotopologue profiling experiments with [U-13C3]glycerol, [U-13C3]serine and [U-

13C6]glucose as tracers. Based on these experiments, detailed information about the glycerol 

catabolism in comparison with further substrates could be obtained. Furthermore, in vivo 

infection experiments were performed with all three 13C-tracers in A. castellanii. 

The importance of CsrA in the regulation of the metabolic network and main carbon fluxes in 

a growth phase dependent manner was determined using comparative labeling and oxygen 

consumption experiments with the L. pneumophila wild-type and a CsrA knock down mutant. 

Isotopologue profiling experiments were performed with [U-13C3]serine, [U-13C6]glucose and 

[U-13C3]glycerol as tracers in a time dependent manner. In addition, the importance of fatty 

acids as further substrates of L. pneumophila and the role of CsrA in the regulation of fatty 

acid degradation and carbon flux was investigated performing labeling experiments with 

[1,2,3,4-13C4]palmitic acid with the L. pneumophila wild-type and the CsrA knock out mutant. 

In total, the crucial role of CsrA in the life stage specific coordination of substrate usage and 

carbon flux in L. pneumophila could be demonstrated. 

In order to compare the metabolic concept of L. pneumophila to further intracellular pathogens, 

nutrient usage and metabolic fluxes in its close relative C. burnetii were analyzed. Therefore, 

in vitro labeling experiments were performed in a recently developed axenic medium, using 

[U-13C6]glucose, [U-13C3]serine and [U-13C3]glycerol as tracer. Similar metabolic concepts 

could be a result of effective adaption and survival strategies to their respective intracellular 
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replicative niches and help to understand the complex interactions between intracellular 

pathogens and their host, which could in consequence give essential information for the 

development of new antibiotics. 
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2 MATERIALS AND METHODS 

2.1 Materials  

2.1.1 Laboratory Equipment 

Table 2-1: Laboratory Equipment  

Item  Manufacturer 

Benchtop centrifuge A-14 
Jouan GmbH (Unterhaching, 

Germany) 

Centrifuge Biofuge primo R Heraeus (Traunstein, Germany) 

Drying oven E28 
Binder GmbH (Tuttlingen, 

Germany) 

Freeze-dryer 

 

Alpha 2-4 LD plus 

Vacuum pump: RC 5 

 

Christ (Osterrode, Germany) 

Vacuurbrand GmbH & Co. KG 

(Staufen, Germany) 

GC/MS 

Gas Chromatograph GC-2010 

Mass Spectrometer QP-2010 

Auto Injector AOC-20i 

Auto Sampler AOC-20s 

GC Column: EquityTM-5, FUSED SILICA 

Capillary Column, 30 m x 0.25 mm x 

0.25 µm film thickness 

Shimadzu (Neufahrn, Germany) 

Shimadzu (Neufahrn, Germany) 

Shimadzu (Neufahrn, Germany) 

Shimadzu (Neufahrn, Germany) 

SUPELCO (Bellefonte, USA) 

 

 

Glass beads 0.25 – 0.55 mm Roth (Karlsruhe, Germany) 

Heating block Techne DRI-Block® DB 2A 
Thermo-DUX GmbH (Wertheim, 

Germany) 

Magnetic stirrer MR Hei-Standard Heidolph (Schwabach, Germany) 

Micro scales VWR-503B, (0.001 g – 500 g) VWR (Radnor, USA) 

Ribolyser  Hybaid (Kalletal, Germany) 

Rotary evaporator 

Rotavapor-R 

Diaphragm vacuum pump 

Water bath 

Büchli (Flawil, Switzerland) 

Vacuubrand GmbH & Co. KG 

(Wertheim, Germany) 

Heidolph (Schwabach, Germany) 

Thermostat IKATRON® ETS-D4 fuzzy 
IKA-Werke GmbH & Co. KG 

(Staufen, Germany) 

Ultrasonic bath USC 300T VWR (Radnor, USA) 

Vortex mixer Reax 2000 
Heidolph Elektro GmbH & Co. 

KG (Kelheim, Germany) 



2. MATERIALS AND METHODS 

___________________________________________________________________________ 

40 

 

2.1.2 Software used 

Table 2-2: Software used 

Software  Manufacturer 

Adobe Illustrator Adobe Illustrator CS4 
Adobe Systems GmbH (Munich, 

Germany) 

ChemOffice 2015  
ChemDraw Professional 15.0 

ChemFinder 15.0 

CambridgeSoft (Massachusetts; 

USA) 

CorelDRAW Graphics 

Suite X7 (64-bit) 
CorelDRAW X7 (64-bit) Corel GmbH (Munich, Germany) 

EndNote EndNote Version X8 (Windows) 
Clarivate Analytics (New York, 

USA) 

GCMS Solution 

GCMS Analysis Editor 

GCMS Postrun Analysis 

GCMS Real Time Analysis 

Shimadzu Corporation (Kyoto, 

Japan) 

GraphPad Prism Prism 4.03 (Windows) 
GraphPad Software (La Jolla, 

USA) 

Microsoft Office 2013 

Excel 2013 

Word 2013 

PowerPoint 2013 

Microsoft (Redmond, USA) 

 

2.1.3 Chemicals 

Labeled precursors ([U-13C6]glucose, [U-13C3]glycerol, [U-13C3]serine and [1,2,3,4-

13C4]palmitic acid) were received from Isotec/Sigma-Aldrich (St. Louis, USA) or Cambridge  

Isotope  Laboratories (Tewksbury, USA). 

Further chemicals used in this work where received from AppliChem GmbH (Darmstadt, 

Germany), BD Biosciences (Franklin Lakes), Bio-Rad (Munich, Germany), Eppendorf 

(Hamburg, Germany), Merck (Darmstadt, Germany), Carl Roth GmbH & Co. KG (Karlsruhe, 

Deutschland), Sigma-Aldrich (St. Louis, USA), Thermo Fisher Scientific (Waltham, USA) 

and VWR (Radnor, USA).  

All the solvents used were at least of HPLC grade. 

2.2 Methods 

2.2.1 Experiments with L. pneumophila JR32 Philadelphia-1 serogroup 1 and its ΔglpD 

mutant 

Construction of a L. pneumophila JR32 ΔglpD mutant, development of the MDM, extracellular 

growth of L. pneumophila, infection assays with A. castellanii and Murine Raw 264.7 
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macrophages as well as in vitro and in vivo cultivation in presents of 13C tracers ([U-

13C6]glucose, [U-13C3]serine and [U-13C3]glycerol) were performed by Christian Manske at the 

Max von Pettenkofer Institut at the Ludwig-Maximilians Universität in Munich under the 

supervision of Prof. Dr. Hubert Hilbi. Sample preparations, GC/MS measurements, 

establishment of a new isotopologue profiling method for analyzing polar metabolites, 

isotopologue analysis and calculations (see sections 2.2.4.1-2.2.4.5) were performed by Ina 

Häuslein in the laboratory of Prof. Dr. Wolfgang Eisenreich (TUM). The experimental setups 

of all experiments were developed and evaluated by Christian Manske and Ina Häuslein under 

the supervision of Prof. Dr. Hubert Hilbi and Prof. Dr. Wolfgang Eisenreich. For further details 

see „Häuslein, I., Manske, C., Goebel, Eisenreich, W., and Hilbi, H. (2015). Pathway analysis 

using 13C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella 

pneumophila. Molecular Microbiology 100, 229-246”. 

2.2.2 Experiments with L. pneumophila Paris and its csrA mutant 

Construction of a csrA mutant of L. pneumophila Paris, bacterial cultivation, oxygen 

consumption experiments and labeling experiments with [U-13C6]glucose, [U-13C3]serine, [U-

13C3]glycerol and [1,2,3,4-13C4]palmitic acid were performed by Tobias Sahr at the Institut 

Pasteur in Paris. Sample preparations, GC/MS measurements, isotopologue analysis and 

calculations (see sections 2.2.4.1-2.2.4.5) were performed by Ina Häuslein in the laboratory of 

Prof. Dr. Wolfgang Eisenreich (TUM). The experimental setups were developed and evaluated 

by Tobias Sahr and Ina Häuslein under the supervision of Prof. Dr. Carmen Buchrieser and 

apl. Prof. Dr. Wolfgang Eisenreich. Further details will be published in „Häuslein, I., Sahr, 

T., Escoll, P., Klausner, N., Eisenreich, W., and Buchrieser, C., (2017). Legionella 

pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism”. 

2.2.2.1 Bacteria, cells and growth conditions 

L. pneumophila strains were grown in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES)-

buffered yeast extract broth or an ACES-buffered charcoal-yeast extract (BCYE) agar under 

aerobic conditions at 37°C (Table 2-3 and 2-4).  

In case of labeling experiments, L. pneumophila was grown at 37°C in a carbon enriched 

minimal defined media (CE MDM) (Table 2-5). 
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Table 2-3: Composition and operating instructions for the preparation of ACES-buffered yeast extract broth 

ACES-buffered yeast extract broth (Horwitz and Maxfield, 1984) 

Component [g/L] 
Dissolve ACES and yeast extract in 900 mL ddH2O. L-Cysteine 

and Fe(NO3)3 are dissolved in 10 mL ddH2O respectively and 

added dropwise. Adjust pH to 6.9 using 10 M KOH and fill up 

to 1 L using ddH2O. Add antibiotics at the indicated 

concentrations if needed. Medium is filter sterilized through a 

0.2 µm filter and store it at 4°C in the dark. 

ACES 10.00 

Yeast extract 10.00 

L-cysteine 0.40 

FeN3O9 x 9 H2O 0.25 

 

Table 2-4: Composition and operating instructions for the preparation of BCYE agar 

BCYE agar (Feeley et al., 1979) 

Component [g/L] 
Dissolve ACES and yeast extract in 900 mL ddH2O. Adjust pH 

to 6.9 using 10 M KOH and fill up to 1 L with ddH2O. Weigh 

out agar and activated charcoal, add ACES/yeast extract 

solution and autoclave. L-Cysteine and Fe(NO3)3 are dissolved 

in 10 mL ddH2O respectively, filter-sterilized and added 

dropwise to the cooled down solution. Add antibiotics at the 

indicated concentrations if needed. The mixture is distributed 

standard petri dishes and dried for 1 day at room temperature. 

Agar plates can be stored in the dark at 4°C. 

ACES 10.00 

Yeast extract 10.00 

Activated charcoal 2.00 

Agar 15.00 

L-cysteine 0.40 

FeN3O9 x 9 H2O 0.25 

 

Table 2-5: Composition and operating instructions for the preparation of CE MDM 

CE MDM 

Component [g/L] 
 

All components are weigh out and dissolved in 950 mL ddH2O, 

except of Fe-pyrophosphate. Adjust pH to 6.9 with 10 M KOH, 

dissolve Fe-pyrophosphate and fill up to 1 L using ddH2O 

afterwards. Filter sterilise and store in the dark at 4°C. 

 

 

ACES 10.00 

L-arginine 0.35 

L-cysteine 0.40 

L-isoleucine 0.47 

L-leucine 0.64 

L-methionine 0.20 

L-threonine 0.33 

L-valine 0.48 

L-serine (6 mM) 0.65 
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L-proline 0.115 

L-phenylalanine 0.35 

D-glucose (11 mM) 1.98 

Glycerol (50 mM) 4.60g (3.7 mL) 

NH4Cl 0.315 

NaCl 0.05 

CaCl2 x 2 H2O 0.025 

KH2PO4 1.18 

MgSO4 x 7 H2O 0.07 

Fe-pyrophosphate 

hydrate 
0.25 

 

2.2.2.2 Constructions of a csrA mutant strain 

The construction of the csrA mutant strain of L. pneumophila Paris was performed by Tobias 

Sahr at the Institut Pasteur in Paris by inserting an apramycin-resistance cassette after the 

amino acid Tyr48 of the lpp0845 gene encoding the major CsrA in L. pneumophila Paris 

(Lomma et al., 2010; Sahr et al., 2017). 

2.2.2.3 Oxygen consumption experiments 

Oxygen consumption experiments with the L. pneumophila Paris wild-type and the csrA 

mutant strain were performed by Tobias Sahr at the Institut Pasteur in Paris according to the 

following protocol: L. pneumophila were cultivated in BYE to exponential phase (OD600 = 2 - 

2.5) at 37°C and 170 rpm in a light-protected and humidity-controlled incubator shaker. After 

centrifugation, bacteria were resuspended to a final concentration of OD600 = 0.1 using 

Phosphate-Buffered Saline (PBS) (Table 2-6). Following, 90 μL of the resuspended bacterial 

cells were transferred to wells of the Poly-D-lysine- (PDL) coated Microplate. To coat XF Cell 

Culture Microplate (Seahorse Bioscience), 15 μL of 1 mg/mL PDL in 100 mM Tris-HCl 

(Table 2-7) was added to each well. After drying overnight, the XF Cell Culture Microplate 

was washed two times with ddH2O.  
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Table 2-6: Composition and operating instructions for the preparation of PBS 

PBS (10 x stock solution) 

Component [g/L] 

All components are dissolved in 950 mL ddH2O. Adjust pH to 

7.4 using 1 M NaOH or 1 M HCl and fill up to 1 L afterwards. 

Autoclave and store at room temperature. 

MgSO4 x 7 H2O 80.00 

CaCl2 2.00 

Sodium citrate x 2 H2O 14.20 

Na2HPO4 x 7 H2O 2.40 

 
 

 

Table 2-7: Composition and operating instructions for the preparation of 100 mM Tris-HCl buffer 

100 mM Tris-HCl  

Tris Base 12.11 g/L 
Tris Base is dissolved in 900 mL ddH2O. Adjust pH to 8.4 using 1 M HCl 

and fill up to 1 L afterwards. Autoclave and store at room temperature. 

 

Attachment of bacterial cells occurred via 10 min centrifugation at 4,000 rpm using a benchtop 

swinging bucket centrifuge. The volume in each well was raised to 175 μL by adding PBS 

afterwards.  

Bacterial respiration was measured in oxygen consumption rates (OCR) according to the 

manufacturer instructions. For quantification, a XFe96 Extracellular Flux Analyzer (Seahorse 

Bioscience) was used. To assure uniform cellular seeding, basal OCR were measured for 

approximately 30 min prior to the injections.  

The final concentration of the different substances added was as follows: L-serine, L-alanine 

and L-glutamate: 0.1 g/L; D-glucose, glycerol, butanoate, α-ketoglutarate (α-KGL) and 

pyruvate: 0.2 g/L; palmitate, oleate and arachidonic acid: 0.1 mM. 

2.2.2.4 Labeling experiments with L. pneumophila Paris wild-type and csrA mutant 

For labeling experiments with [U-13C3]serine, [U-13C6]glucose, [U-13C3]glycerol and [1,2,3,4-

13C4]palmitic acid as 13C-precursor, L. pneumophila strains were grown in CE MDM. Thereby 

the amount of the respective unlabeled compound was displaced with 6 mM [U-13C3]serine, 

11 mM [U-13C6]glucose and 50 mM [U-13C3]glycerol respectively. In case of labeling 

experiments with [1,2,3,4-13C4]palmitic acid, CE MDM was supplemented with additional 

0.02% (0.8 mM) of this 13C-precursor. The respective L. pneumophila strain was grown over 

night in 50 mL unlabeled CE MDM. The inoculum was suspended in 50 mL of CE MDM 



  2. MATERIALS AND METHODS 

___________________________________________________________________________ 

45 

 

comprising the respective 13C-tracer and diluted to an OD600 of 0.1. For every labeling 

experiment, bacteria were harvested at E (OD600 = 0.35) and PE (OD600 = 0.80) growth phase 

by centrifugation at 5000 g for 5 min at 4°C. Cells were autoclaved for 30 min at 120°C, freeze-

dried and stored at –80°C until further analysis. 

2.2.3 Experiments with C. burnetii RSA 439 NMII 

Bacterial cultivation and labeling experiments with [U-13C6]glucose, [U-13C3]serine and [U-

13C3]glycerol were performed by Franck Cantet at the Infectious Disease Research Institute in 

Montpellier. GC/MS measurements, isotopologue analysis and calculations (see sections 

2.2.4.1-2.2.4.5) were performed by Ina Häuslein under the supervision of Prof. Dr. Wolfgang 

Eisenreich (TUM). The experimental setups of all experiments were developed and evaluated 

by Franck Cantet and Ina Häuslein under the supervision of Dr. Matteo Bonazzi and apl. Prof. 

Dr. Wolfgang Eisenreich. For further details see “Häuslein, I., Cantet, F., Reschke, S., Chen, 

F., Bonazzi, M., and Eisenreich, W. (2017). Multiple substrate usage of Coxiella burnetii to 

feed a bipartite metabolic network. Frontiers in Cellular and Infection Microbiology 7.” 

2.2.4 Sample preparation and derivatization for GC/MS based isotopologue profiling 

2.2.4.1 Sample preparation of protein derived amino acids, DAP and PHB 

For isotopologue profiling of protein derived amino acid, DAP and PHB, 1 mg of the freeze 

dried bacterial cell pellet was resolved in 0.5 mL of 6 N HCl. Following, the sample was 

incubated for 24 h at 105°C, as described earlier (Eylert et al., 2010). Removal of the HCl 

occurred under a stream of nitrogen at 70°C. The remaining residue was resolved in 200 µL 

acetic acid. Purification of the sampled was done via a cation exchange column of Dowex 

50Wx8 (H+ form, 200-400 mesh, 5 x 10 mm). For this purpose, the column was washed 

previously with 1 mL of MeOH and 1 mL ddH2O. After addition of the sample the column 

was evolved with 2 mL of ddH2O (eluate 1) and 1 mL of 4 M ammonium hydroxide (eluate 

2). Both samples were dried at 70°C under a steam of nitrogen. The remaining residue of eluate 

1 was used for PHB analysis, whereas the residue of eluate 2 was used for the analysis of 

protein derived amino acids and DAP. 

For derivatization of 3-hydroxybutyrate (3-HBA), derived from hydrolysis of PHB during 

treatment with HCl, 100 µL of N-methyl-N-(trimethylsilyl)-trifluoroacetamide were added to 

the dried samples of eluate 1. Samples were incubated overnight at 60°C in a shaking incubator 
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at 110 rpm. The resulting trimethylsilyl (TMS) derivative of 3-HBA was used in following 

GC/MS analysis and calculations for isotopologue profiling.   

For analysis of protein derived amino acids and DAP, 50 µL dry acetonitrile and 50 µL N-(tert-

butyldimethylsilyl)-N-methyl-trifluoroacetamide were added to the dry residue of eluate 2. 

Samples were incubated for 30 min at 70°C. The resulting tert-butyl-dimethylsilyl (TBDMS) 

derivatives were used in following GC/MS analysis and calculations for isotopologue 

profiling.  

The amino acids tryptophan, arginine, methionine and cysteine could not be analyzed due to 

degradation by acid hydrolysis. Furthermore, conversion of glutamine and asparagine to 

glutamate and aspartate occurred due to acid hydrolyzation. Therefore, results for aspartate and 

glutamate correspond to asparagine/aspartate and glutamine/glutamate, respectively. 

2.2.4.2 Sample preparation of methanol-soluble polar metabolites including fatty acids 

For isotopologue profiling of methanol-soluble polar metabolites, approximately 5 mg of the 

freeze-dried bacteria were mixed with 0.8 g of glass beads (0.25-0.05 mm) and 1 mL of pre-

cooled 100% methanol. Mechanical cell lysis occurred for 3 x 20 s at 6.5 m/s using a ribolyser 

(Hybaid). Samples were immediately cooled down on ice for 5 min. After centrifugation at 

2.300 × g for 10 min the supernatant was dried under a stream of nitrogen. 50 µL of dry 

acetonitrile and 50 µL N-(tert-butyldimethyl-silyl)-N-methyl-trifluoroacetamide containing 

1% tert-butyl-dimethyl-silylchlorid were added to the remaining residue and incubated at 70°C 

for 30 min. The resulting TBDMS derivates of methanol-soluble polar metabolites and fatty 

acids were used in following GC/MS analysis and calculations for isotopologue profiling.   

2.2.4.3 Sample preparation of Man and Gal 

For isotopologue profiling of Man and Gal, 5 mg of the freeze-dried bacteria sample were 

methanolized by adding 0.5 mL of methanolic HCl (3 M). The samples were kept at 80°C over 

night. Following, the supernatant was dried at 25°C under a stream of nitrogen. 1 mL acetone 

containing 20 µL concentrated H2SO4 was added to the remaining residue and kept at 25°C for 

1 h. After the addition of 2 mL of saturated NaCl and 2 mL of saturated Na2CO3, extraction 

occurred 2 x with 3 mL ethyl acetate. Organic phases were combined and dried under a stream 

of nitrogen. The dry residue was incubated overnight at 60°C with 200 µL of a 1:1 mixture of 

dry ethyl acetate and acetic anhydride. Reagents were removed under a stream of nitrogen and 
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the remaining residue was resolved in 100 µL anhydrous ethyl acetate. Resulting 

diisopropylidene/acetate derivatives were used for GC/MS analysis and calculations for 

isotopologue profiling.  

2.2.4.4 Sample preparation of cell wall-derived glucosamine (GlcN) and muramic acid 

(Mur) 

For isotopologue profiling of GlcN and Mur, approximately 15 mg of the freeze-dried bacterial 

sample was used in cell wall hydrolyzation with 0.5 mL of 6 M HCl overnight at 105°C. 

Afterwards, solid components were removed by filtration. Subsequently, the filtrate was dried 

under a stream of nitrogen. 100 µL of hexamethyldisilazane (HMDS) was added to the 

remaining residues and kept at 120°C for 3 h. Resulting TMS-derivatives were used for GC/MS 

analysis and calculations for isotopologue profiling. 

2.2.4.5 Gas chromatography/mass spectrometry 

Samples were prepared as mentioned in sections 2.2.4.1-2.2.4.4 and subsequently used in 

GC/MS-analysis using a QP2010 Plus gas chromatograph/mass spectrometer equipped with a 

30 m long and 0.25 mm wide fused silica capillary column comprising a 0.25 μm film 

thickness. For m/z detection, a quadrupole detector working with electron impact ionization at 

70 eV was used. Detailed information is listed in Table 2-1. For sample analysis, an aliquot 

(0.1 to 6 μL) of the respective derivatized samples (sections 2.2.4.1-2.2.4.4) were injected (1:5 

split mode) at an interface temperature of 260°C and a helium inlet pressure of 70 kPa. For 

isotopologue profiling, GC/MS measurements were run in Selected Ion Monitoring mode (SIM 

mode), with a sampling rate of 0.5 s. GCMS-Solution software (Table 2-2) was used for data 

collection and analysis. Samples were measured three times respectively to generate technical 

replicates. Overall 13C-excess values (13C-excess) and isotopologue distribution in the 

respective metabolites where calculated as described previously (Eylert et al., 2008). This 

includes (i) the detection of unlabeled derivatized metabolites via GC/MS analysis, (ii) the 

evaluation of the absolute 13C enrichments and distributions in the respective labeled 

metabolites of the experiment and (iii) correction of the absolute 13C-incorporation by 

subtracting the heavy isotopologue contributions due to the natural abundances to calculate 

13C-excess and isotopologue distribution. 
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To analyze protein-derived amino acid and the cell wall component DAP (section 2.2.4.1), the 

column was held at 150°C for 3 min after sample injection. Following, the column was 

developed with a temperature gradient of 7°C min-1 to a final temperature of 280°C which was 

held for further 3 min. TBDMS-derivatives of alanine (6.7 min), glycine (7.0 min), valine (8.5 

min), leucine (9.1 min), isoleucine (9.5 min), proline (10.1 min), serine (13.2 min), 

phenylalanine (14.5 min), aspartate (15.4 min), glutamate (16.8 min), lysine (18.1 min), 

histidine (20.4 min), tyrosine (21.0 min), and the cell wall component DAP (23.4 min) were 

detected and isotopologue calculations were performed with m/z [M-57]+ or m/z [M-85]+.  

For the analysis of 3-hydroxybutyric acid derived from PHB (section 2.2.4.1), the column was 

held at 70°C for 3 min after sample injection. Afterwards, the column was developed with a 

first temperature gradient of 10°C/min to a final temperature of 150°C followed by a second 

temperature gradient of 50°C min−1 to a final temperature of 280°C, which was held for further 

3 min. The respective TMS-derivative of 3-hydroxybutyric acid, was detected at a retention 

time of 9.1 min. Isotopologue calculations were performed with m/z [M-15]+ fragments.  

For analysis of methanol-soluble metabolites including fatty acids (section 2.2.4.2), the silica 

column first was kept at 100°C for 2 min after the injection of the sample. Following, the 

column was developed with a first temperature gradient of 3°C min−1 to a final temperature of 

234°C. Afterwards, column development occurred with a second temperature gradient of 1°C 

min−1 to a final temperature of 237°C, followed by a third gradient of 3°C min−1 until the final 

temperature of 260°C was reached. TBDMS-derivatives of lactate (17.8 min), succinic acid 

(27.5 min), fumaric acid (28.7 min), malic acid (39.1 min), palmitic acid (44.0 min), stearic 

acid (49.4 min) and citric acid (53.3 min) were detected. Isotopologue calculations were 

performed with m/z [M-57]+ respectively. 

For the analysis of diisopropylidene/acetate derivatives of Man and Gal (section 2.2.4.3), the 

silica column was hold at 150°C for 3 min after the injection of the sample. This was then 

followed by a first temperature gradient of 10°C min−1 until a final temperature of 220°C. 

Afterwards, the column was developed with a second temperature gradient of 50°C min−1 until 

the final temperature of 280°C was reached, which was then held for further 3 min. 

Isotopologue calculations were performed with m/z 287 [M-15]+, since these fragments still 

contain all six C-atoms of the hexoses. 
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For analysis of the cell wall sugars GlcN and Mur as TMS-derivatives (section 2.2.4.4), the 

silica column was held at 70°C for 5 min after sample injection. This was followed by a 

temperature gradient of 5°C min−1 to a final temperature of 310°C. The final temperature was 

held for 1 min. Isotopologue calculations of the respective TMS-derivatives were performed 

with m/z [M-452]+ and m/z [M-434]+. Retention times and mass fragments that were used for 

calculations of overall 13C-exces values and isotopologue composition are shown in Table 2-8. 

Table 2-8: Retention times and mass fragments used for isotopologue calculations 

Metabolite RT a [min] [M-15]+ [M-57]+ [M-85]+ [M-176]+ 

Ala 6.7  m/z 260   

Gly 7.0  m/z 246   

Val 8.5  m/z 288   

Leu 9.1   m/z 274  

Ile 9.5   m/z 274  

Pro 10.1  m/z 286   

Ser 13.2  m/z 390   

Phe 14.5  m/z 336   

Asp 15.4  m/z 418   

Glu 16.8  m/z 432   

Lys 18.1  m/z 431   

His 20.4  m/z 440   

Tyr 21.0  m/z 466   

DAP 23.4  m/z 589   

PHB 9.1 m/z 233    

Lactate 17.8  m/z 261   

3-Hydroxybutyric acid 21.6  m/z 275   

Succinic acid 27.5  m/z 289   

Fumaric acid 28.7  m/z 287   

Malic acid 39.1  m/z 419   

Palmitic acid 44.0  m/z 313   

Stearic acid 49.4  m/z 341   

Citric acid 53.3  m/z 591   

Man 8.7 m/z 287    

GlcN 32.6 m/z 452    

Mur 36.7    m/z 434 
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3 RESULTS 

3.1 Pathway analysis using 13C-glycerol and other carbon tracers reveals 

a bipartite metabolism of Legionella pneumophila 

Häuslein, I.#, Manske, C.#, Goebel, W., Eisenreich W.†, and Hilbi, H†. (2015). Molecular microbiology 100, 229-246. 

In this section, L. pneumophila JR32 was used for all experiments. L. pneumophila is an 

intracellular pathogen which can replicate in numerous protozoan hosts in its natural 

environment, thereby showing a biphasic life cycle which comprises a transmissive and a 

replicative phase (Molofsky and Swanson, 2004; Steinert and Heuner, 2005; Hoffmann et al., 

2014b). This bacterium can accidentally infect human alveolar macrophages, causing a life-

threatening pneumonia called Legionnaires´ disease (Molofsky and Swanson, 2004). Although 

it is known that amino acids, especially serine, represent the main carbon and energy source of 

L. pneumophila (Pine et al., 1979; Ristroph et al., 1981; Tesh and Miller, 1981; Tesh et al., 

1983), carbon metabolism of this pathogen is only poorly investigated. However, recent 

proteome and transcriptome data indicated that L. pneumophila can use glycerol as further 

substrate (Faucher et al., 2011). This agrees with genome based analysis and recent labeling 

experiments, confirming a greater metabolic potential of L. pneumophila (Cazalet et al., 2004; 

Chien et al., 2004; Steinert et al., 2007; Cazalet et al., 2010). In this work, it was shown that, 

although glycerol does not support extracellular growth of L. pneumophila, this substrate 

promotes replication inside A. castellanii or macrophages dependent on glpD. The importance 

of glycerol as an intracellular substrate was also demonstrated in competition assays with the 

L. pneumophila wild-type and a mutant strain lacking glpD, since the mutant was outcompeted 

upon coinfection. For a detailed analysis of the glycerol metabolism in comparison to carbon 

metabolism of further substrates in L. pneumophila, in vitro labeling experiments were 

performed with [U-13C3]glycerol and further 13C-precursors ([U-13C6]glucose and [U-

13C3]serine) in the newly developed MDM comprising essential amino acids, proline and 

phenylalanine. The results of the labeling experiments revealed a bipartite metabolism in which 

serine is predominantly used in the TCA cycle for energy generation during replication 

whereas further carbon sources like glucose and glycerol are shuffled into gluconeogenetic 

reactions at later growth phases. This bipartite metabolism is also present during intracellular 

replication, since similar results were obtained during in vivo labeling experiment with L. 

pneumophila wild-type and the ΔglpD mutant in A. castellanii using the same three 13C-tracers. 
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3.2 Regulation of core metabolic fluxes by CsrA in L. pneumophila 

Häuslein, I., Sahr, T., Escoll, P., Klausner, N., Eisenreich, W., and Buchrieser, C., (2017). Submitted 

3.2.1 Introduction 

The central role of CsrA in the regulatory network, which determines the developmental switch 

from the replicative to the transmissive phase dependent on e.g. nutrient availability or 

population density, is well known for L. pneumophila (Byrne and Swanson, 1998; Molofsky 

and Swanson, 2003; Rasis and Segal, 2009; Manske and Hilbi, 2014). Thereby, this regulator 

acts on a post-transcriptional level, repressing virulence traits by simultaneously inducing 

replicative traits during exponential growth (Molofsky and Swanson, 2003; Rasis and Segal, 

2009). It has been shown recently that the respective CsrA related regulatory mechanisms to 

alter RNA stability or the transcription effectivity are various (Sahr et al., 2017).  

As described in section 3.1, L. pneumophila features a bipartite metabolism in which amino 

acids like serine are used for energy generating processes in the TCA cycle, whereas 

carbohydrates like glucose and glycerol are shuffled into the upper part of metabolism serving 

anabolic reactions. This bipartite metabolism is furthermore growth phase dependent, since 

serine is preferred at early developmental stages by L. pneumophila as carbon and energy 

source, whereas glucose and especially glycerol are used at later growth phases (see section 

3.1).  

The role of CsrA in the regulation of core carbon fluxes derived from different substrates 

within this bipartite metabolism was now investigated by oxygen consumption experiments as 

well as by labeling experiments using four different 13C-precusrors: [U-13C3]serine, [U-

13C6]glucose, [U-13C3]glycerol and [1,2,3,4-13C4]palmitic acid. Experiments were performed 

with L. pneumophila Paris and its CsrA knock down mutant.  

3.2.2 Oxygen consumption experiments 

All experiments in this section were performed with L. pneumophila Paris and the respective 

csrA mutant. To evaluate changes in core metabolic fluxes in L. pneumophila dependent on 

CsrA, bacterial respiration of the wild-type compared to the csrA mutant were analyzed by 

measuring the oxygen consumption rates (OCR) as it was described in section 2.2.2.3. For this 

purpose, both bacterial strains were grown in presents of various carbon sources: L-serine, L-

alanine and L-glutamate were used in a final concentration of 0.1 g/L. For experiments with 



  3. RESULTS 

___________________________________________________________________________ 

71 

 

D-glucose, glycerol, butanoate, α-ketoglutarate, and pyruvate a concentration of 0.2 g/L was 

used. Palmitic acid was used in a concentration of 0.025 g/L. Results of these experiments are 

shown in Figure 3-1. Furthermore, experiments with oleic acid and arachidonic acid were 

performed with a concentration of 0.1 g/L (Figure 5-1).  

 

Figure 3-1: Oxygen consumption experiments. Bacterial respiration, expressed as OCR, was quantified using an XFe96 

Extracellular Flux Analyzer according to the manufacturer instructions (Seahorse Bioscience). Basal OCR was measured prior 

to the injection to assure uniform cellular seeding (see section 2.2.2.3). Oxygen consumption experiments were performed 

with L. pneumophila wild-type and the csrA mutant in presence of serine (0.1 g/L), alanine (0.1 g/L), glutamate (0.1 g/L), 

glucose (0.2 g/L), pyruvate (0.2 g/L), α-ketoglutarate (0.2 g/L), glycerol (0.2 g/L) butanoate (0.2 g/L) and palmitic acid 

(0.025 g/L) (Adapted from Tobias Sahr, Institute Pasteur in Paris). 

High respiration rates were obtained with L. pneumophila wild-type in presence of serine, 

alanine and glutamate, confirming that amino acids, especially serine are the preferred carbon 

source of this pathogen for energy generation (George et al., 1980; Eylert et al., 2010). The 

OCR in the comparative experiments with the csrA mutant was significantly downregulated in 

case of serine and alanine, indicating that CsrA induces their utilization in conjunction with 

respiration in the wild-type. However, respiration rates of the mutant strain in the experiment 

with glutamate was not reduced. In addition, oxygen consumption of L. pneumophila wild-
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type slightly increased using pyruvate and α-KGA and only to a minor amount with glucose 

and glycerol, indicating that the latter ones are not used in high rates for bacterial respiration. 

Similar experiments with the csrA mutant revealed lower OCR with pyruvate and α-KGA but 

not with glucose and glycerol. Therefore, CsrA seems to have a positive effect on metabolism 

and/or uptake of pyruvate and α-KGA in conjunction with respiration (Figure 3-1). 

Oxygen consumption experiments with palmitic acid resulted in increased OCR, indicating the 

usage of this substrate in respiration by L. pneumophila wild-type. This was also observed to 

a lesser extent using butanoate but not in experiments with unsaturated fatty acids (arachidonic 

acid and oleic acid, Figure 5-1). Furthermore, comparative experiments with the csrA mutant 

revealed a positive effect of CsrA on the metabolism and uptake of palmitic acid and butanoate 

(Figure 3-1).  

In summary, OCR of L. pneumophila wild-type and its csrA mutant using different substrates 

show reduced respiration dependent on the CsrA knock down. Thereby, CsrA seems to induce 

utilization of serine, alanine, pyruvate and α-KGA in conjunction with respiration. On the other 

hand, the CsrA knock down has only minor effects on the utilization of glucose and glycerol. 

Furthermore, L. pneumophila seems to use palmitic acid and butanoate as substrate although 

metabolism and carbon fluxes from these compounds have not been reported so far for this 

pathogen. For a more detailed understanding of carbon fluxes and their regulation by CsrA, 

comparative labeling experiments with the L. pneumophila wild-type and its csrA mutant were 

performed, using 13C-serine, 13C-glucose, 13C-glycerol and 13C-palmitic acid as 13C-tracers (see 

section 3.2.2). 

3.2.3 Differential analysis of metabolism in L. pneumophila and its csrA mutant  

For a detailed investigation of the role of CsrA in the regulation of central carbon fluxes derived 

from different substrates in the bipartite metabolic network of L. pneumophila, isotopologue 

profiling experiments were performed with the wild-type (L. pneumophila Paris) and the csrA 

mutant. Labeling experiments were performed in CE MDM using [U-13C3]serine, [U-

13C6]glucose, [U-13C3]glycerol and [1,2,3,4-13C4]palmitic acid. Harvest of bacterial cell 

occurred at exponential growth phase (E phase) and post-exponential growth phase (PE phase) 

to evaluate the growth phase dependent effect of CsrA, since this regulator is crucial for the 

developmental switch from the replicative to the transmissive stage (Molofsky and Swanson, 
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2003; Vakulskas et al., 2015). Overall 13C-excess values and isotopologue compositions were 

determined in key metabolites as reported earlier (Eylert et al., 2008) for each time point of 

cell harvest. 13C-Excess values for all labeling experiments are summarized in Figure 3-2. 

Isotopologue patterns in the key metabolites Ala (derived from pyruvate), Glu (derived from 

the TCA cycle), His (derived from the PPP) and Man (derived from gluconeogenetic reaction) 

are summarized in Figure 3-3. Isotopologue distributions of further analyzed metabolites are 

shown in Figure 5-2, 5-3, and 5-4. For numerical values see Table 5-1, 5-2, 5 -3 and 5-4.  

 

Figure 3-2: Overall excess values (mol%) in key metabolites from experiments with the L. pneumophila wild-type and its 

csrA mutant in CE MDM in presents of (A) 6 mM [U-13C3]serine, (B) 11 mM [U-13C6]glucose, (C) 50 mM [U-13C3]glycerol 

or (D) 0.8 mM [1,2,3,4-13C4]palmitic acid. Bacterial harvest occurred at the exponential (E) and post-exponential (PE) growth 

phase respectively. 13C-Excess values (mol%) in protein-derived amino acids, diaminopimelic acid (DAP), 

polyhydroxybutyrate (PHB), mannose (Man), glucosamine (GlcN), muramic acid (Mur), lactate (LACT) and stearic acid 

(STE) where determined by isotopologue profiling. Data calculation is based on two independent biological experiments (x3 

technical replicates). For numerical values, see Table 5-1, 5-2, 5-3, and 5-4. 
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Figure 3-3: Relative isotopologue distributions (%) detected in key metabolites from experiments with the L. pneumophila 

wild-type and its csrA mutant. For labeling experiments, bacteria were grown in CE MDM using (A) 6 mM [U-13C3]serine, 

(B) 11 mM [U-13C6]glucose, (C) 50 mM [U-13C3]glycerol or (D) 0.8 mM [1,2,3,4-13C4]palmitic acid as 13C-tracers. Bacteria 

harvested occurred at E phase and post-exponential PE phase growth phase. Shown are the relative fraction (in%) of 

isotopologues. Thereby, M+X represents the mass of the unlabeled metabolite plus X labeled 13C-atoms. Data are means and 

standard deviations (SDs) of six values (3 technical replicates x 2 biological replicates). For numerical values, see Table 5-1, 

5-2, 5-3, and 5-4. 

3.2.3.1 Differential analysis of serine metabolism in L. pneumophila and its csrA mutant  

The fact that serine is the preferred amino acid serving as main carbon and energy source for 

L. pneumophila is underlined by early investigations, demonstrating high activities of the 

serine dehydratase enzyme (Lpp0854) as well as of the pyruvate carboxylase enzyme 

(Lpp0531) (Keen and Hoffman, 1984). Besides numerous amino acid transporters and 

proteases, which have been identified in the genome of this bacteria, the putative serine 

transporter protein Lpp2269 is probably responsible for serine incorporation in L. pneumophila 

(Cazalet et al., 2004; Eylert et al., 2010). The central role of this substrate for energy generation 

in this pathogen was furthermore confirmed by resent labeling experiments (Eylert et al., 2010; 

Gillmaier et al., 2016). However, additional carbon fluxes into PHB biosynthesis have also 

been identified (Gillmaier et al., 2016). 
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Differential analysis of L. pneumophila wild-type and its csrA mutant using isotopologue 

profiling experiments in a growth phase depended manner were now performed to evaluate the 

role of CsrA in serine metabolism. Therefore, both strains were grown in CE MDM 

supplemented with 6 mM [U-13C3]serine and harvested at E and PE phase. Overall 13C-

enrichments of protein derived amino acids, DAP, PHB, Man, GlcN and Mur are shown in 

Figure 3-2A. The respective isotopologue distribution is shown in Figure 3-3A and 5-2. 

The amino acids Ala, Asp, Glu, Gly, Lys, Ser and His, the cell wall component DAP as well 

as the carbon storage compound PHB showed high 13C-Excess values in all experiments. 

Furthermore, 13C-label was detectable in the cell wall sugars GlcN and Mur as well as in Man. 

These data confirm that the bipartite metabolism is present in L. pneumophila wild-type as well 

as in the mutant (see section 3.1), since highest 13C-enrichments were found in Ala (besides 

Ser) and not in His or Man, since Ser is predominantly shuffled into the TCA cycle for energy 

generation. In both bacterial strains 13C-lable increased from E to PE growth phase in Ala, Asp, 

Glu, Lys, DAP and PHB. Otherwise, Gly, His as well as detected sugars showed similar or 

slightly decreased enrichments in E and PE phase in both strains. The decrease of labeling in 

these metabolites indicate a reduced carbon flux from serine into gluconeogenetic reaction 

and/or into the PPP at later growth phases.  

Comparative analysis of L. pneumophila wild-type and the csrA mutant revealed reduced 13C-

label in the detected metabolites during exponential growth. 13C-enrichments in Asp, Glu, Gly, 

Lys and DAP were only slightly reduced whereas higher labeling was detectable in His as well 

as in Man, GlcN and Mur. Same effects were observable at later growth phases, but to a lesser 

extent. In total, these results reflect a downregulated uptake and metabolism of serine 

dependent on csrA. Since major differences have been observed in metabolites related to 

gluconeogenetic reactions and the PPP in E and in PE growth phase, CsrA seems to have a 

distinctive regulatory effect on the carbon flux from serine into these pathways. However, 

metabolites related to the TCA cycle did only show small differences compared to the wild-

type, indicating a smaller regulatory effect of CsrA on carbon flux from serine towards the 

TCA cycle (Figure 3-2A). 

These results were confirmed by the respective isotopologue distributions in marker 

metabolites reflecting distinct metabolic pathways (Figure 3-3A). Thereby, similar or slightly 
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different isotopologue patterns are observable in Ala and Glu in the wild-type compared to the 

csrA mutant, reflecting lower regulatory effects of CsrA on serine metabolism and carbon flux 

into the biosynthesis of these amino acids. This was not the case for His and Man, since 

experiments with the csrA mutant revealed clear differences in their isotopologue patterns, 

especially during the E phase. Especially the amount of M+6 but also of M+5 label was 

significantly reduced in the experiments with the mutant. These highly labeled isotopologues 

resulted from an intense carbon flux from serine into gluconeogenetic reaction and into the 

PPP, since a combination reaction of two fully labeled C3-precursors is required for their 

formation. In detail, high amounts of fully labeled glyceraldehyde 3-phosphate (GAP) needs 

to be generated, which is subsequently used in gluconeogenetic reactions for the biosynthesis 

of Man and in the PPP for His formation. In addition, high amounts of M+6 label in His is a 

result of an intense carbon flux of serine into ATP biosynthesis, since one carbon atom of ATP 

is needed for His biosynthesis. Since experiments with the L. pneumophila csrA mutant strain 

revealed reduced amounts of M+5 and M+6 isotopologues in both, His and Man, carbon flux 

from serine into gluconeogenetic reactions and into the PPP was reduced in these experiments. 

3.2.3.2 Differential analysis of glucose metabolism in L. pneumophila and its csrA mutant  

Genome analysis of L. pneumophila reveals the metabolic potential of this pathogen to use 

glucose as substrate (glycolysis and ED pathway), since related enzymes have been identified 

(Chien et al., 2004; D'Auria et al., 2010). However, this substrate as well as polysaccharides 

did not support extracellular growth of this pathogen (Pine et al., 1979; Warren and Miller, 

1979). Nevertheless, the usage of glucose by L. pneumophila was proven recently using 

labeling experiments. (Eylert et al., 2010; Gillmaier et al., 2016). It was furthermore 

demonstrated, that degradation predominantly occurs via the ED pathway and only to a minor 

amount via glycolytic reactions (Eylert et al., 2010; Harada et al., 2010). In addition, the 

preferred usage of glucose in gluconeogenetic reaction and in the PPP as well as the low carbon 

flux from glucose into energy generating processes in the TCA cycle has been demonstrated 

(see section 3.1). Interestingly, L. pneumophila does not comprise a complete PPP since only 

genes for the transketolase (lpp0154) and no transaldolase has been identified. Furthermore, a 

direct link between the PPP and the ED pathway is missing, since the 6-phophogluconate 

dehydrogenase is missing in the genome of L. pneumophila (Chien et al., 2004).  
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To now evaluate the role of CsrA in the glucose metabolism, differential analysis of L. 

pneumophila wild-type and its csrA mutant was performed using labeling experiments in a 

growth phase dependent manner. Therefore both strains were grown in CE MDM 

supplemented with 11 mM [U-13C6]glucose and harvested at E and PE phase. Overall 13C-

enrichments of protein derived amino acids, DAP, PHB, Man, GlcN and Mur are shown in 

Figure 3-2B. The respective isotopologue distribution are shown in Figure 3-3B and 5-3. 

In contrast to labeling experiments with 13C-serine, highest enrichments were detectable in His 

and the sugars Man, GlcN and Mur. Lower 13C-lable occurred into Ala, Asp, Glu, Lys, DAP 

and PHB. These results again confirm the bipartite metabolism in L. pneumophila (see section 

3.1). 13C-Excess was higher at PE growth phase in almost every metabolite in the wild-type 

and in the csrA mutant. Only 13C label in Man and GlcN remained constant or was slightly 

reduced in the csrA mutant from E to PE phase (Figure 3-2B). 

Amino acids related to the TCA cycle such as Ala, Asp, Glu, Lys as well as DAP and PHB 

revealed similar 13C-enrichments in the exponential growth phases in experiments with L. 

pneumophila wild-type and with its csrA mutant. This was different in metabolites related to 

gluconeogenetic reactions (Man and GlcN) as well as in His, which is a marker metabolite of 

the PPP, since partly higher labeling was detectable in these metabolites in experiments with 

the mutant during E phase. This indicates that carbon flux directed towards the TCA cycle was 

not affected in this early growth phase in the mutant, whereas metabolic flux into 

gluconeogenetic reactions and into the PPP was slightly increased. At later growth phases, 

metabolites related to the TCA cycle (Ala, Asp, Glu, Lys), DAP and PHB showed reduced 13C 

incorporation in the experiments with the csrA mutant, whereas His, Man and GlcN 

incorporated slightly higher similar 13C-enrichments. Only Mur showed slightly reduced 

overall enrichment values. In summary, the CsrA knock down seems to predominantly effect 

the carbon flux from glucose into the TCA cycle on both growth phases, whereas carbon flux 

into gluconeogenetic reactions and into the PPP seems to be induced dependent on the CsrA 

knock down (Figure 3-2B).  

This is also reflected in the respective isotopologue distributions in the key metabolites Ala 

(derived from pyruvate), Glu (TCA related), His (derived from PPP) and Man 

(gluconeogenetic reactions), as shown in Figure 3-3B. Induced carbon flux from glucose into 
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the PPP and gluconeogenetic reactions is thereby reflected in increased amounts of M+5 

isotopologues in His and M+6 isotopologues in Man during E and PE growth of the L. 

pneumophila csrA mutant. M+6 isotopologue in Man can thereby be directly formed from fully 

labeled glucose or via combination of two fully labeled C3 precursors, which are built 

previously from degradation reactions of fully labeled glucose via glycolysis or the ED 

pathway. M+5 isotopologues in His can result from fully labeled fructose 6-phosphate (Fru-6-

P), which is used in reactions of the PPP. Again, also the combination of two fully labeled C3 

precursors in gluconeogenetic reactions can result in M+5 labeling. In total, this indicates an 

induced carbon flux from glucose into the biosynthesis of sugars and into the PPP in the csrA 

mutant. 

3.2.3.3 Differential analysis of glycerol metabolism in L. pneumophila and its csrA mutant  

Recent transcriptome data showed that genes responsible for glycerol degradation (lpp1369: 

glpK, lpp2257: glpD) are upregulated in L. pneumophila during intracellular replication in 

macrophages (Faucher et al., 2011). Also, early experiments using [U-14C3]glycerol indicated 

the usage of glycerol by L. pneumophila (Tesh et al., 1983). Labeling experiments using [U-

13C3]glycerol, which were performed in this work, now proofed that this intracellular pathogen 

indeed uses glycerol as a substrate predominantly at later growth phases. Thereby, carbon flux 

from glycerol is almost restricted to gluconeogenetic reactions and the PPP (see section 3.1). 

To elucidate the regulatory role of CsrA in the glycerol metabolism, differential analysis of L. 

pneumophila wild-type and its csrA mutant was performed using labeling experiments in a 

growth phase depended manner. Therefore wild-type bacteria and the csrA mutant were grown 

in CE MDM supplemented with 50 mM [U-13C3]glycerol and harvested at E and PE phase. 

Overall 13C-enrichments of protein derived amino acids, DAP, PHB, Man, GlcN and Mur are 

shown in Figure 3-2C. The respective isotopologue distributions are shown in Figure 3-3C 

and 5-4. 

Like in the experiments with fully labeled glucose, highest 13C-enrichment values were again 

found in the sugars Man, GlcN and Mur, which are derived from gluconeogenetic reactions, 

as well as in His, which is derived from the PPP. This again confirms the bipartite metabolism, 

which is present in L. pneumophila (see section 3.1). Notably, 13C-labeling increased in every 

metabolite in the experiments with both strains from E to PE phase except for His in the 
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experiment with the csrA mutant. There enrichment values remain constant from E to PE 

growth phase (Figure 3-2C).  

Compared to the wild-type, 13C-enrichments increased in every metabolite in the experiment 

with the mutant in E phase as well as in PE phase. However, CsrA knock down resulted in 

dramatically increased incorporation of 13C-label into His. Thereby, overall 13C-excess values 

increased from 45% in the wild-type to 13.79% in the csrA mutant in the E phase, whereas an 

increase from 6.40% in the wild-type to 13.99% in the csrA mutant was detectable in PE phase. 

Furthermore, the detected sugars (Man, GlcN and Mur), which are predominantly derived from 

the bacterial cell wall, also showed dramatically increased labeling related to the CsrA knock 

down mutation. In total, these results indicate that glycerol is already used in earlier growth 

phases in the csrA mutant, whereas it is predominantly used at later growth phases in the L. 

pneumophila wild-type. In addition, the uptake as well as the catabolism of glycerol is 

dramatically induced in the csrA mutant, emphasizing the crucial role of CsrA in the regulation 

of carbon fluxes derived from this substrate. In L. pneumophila wild-type, CsrA seems to 

repress the uptake and degradation of glycerol during E phase, which leads to a downregulated 

carbon flux in general. However, carbon flux into gluconeogenetic reactions and into the PPP 

seem to be particularly affected (Figure 3-2C). 

This agrees with the respective isotopologue compositions in key metabolites (Ala, Glu, His 

and Man), which are illustrated in Figure 3-3C. Thereby, the upregulated incorporation and 

catabolism of glycerol in absence of CsrA is e.g. reflected in the increased amount of M+3 

label in Ala, since this indicates direct formation of a fully labeled pyruvate intermediate, 

which is built from a fully labeled 13C-glycerol molecule. Same is true for isotopologue 

distributions in TCA cycle related amino acids, which showed an increased amount of M+2 

label, which is derived from M+2 labeled acetyl-CoA in the csrA mutant. Higher amounts of 

fully labeled acetyl-CoA in absents of CsrA is again built from a fully labeled pyruvate which 

is derived from fully labeled 13C-glycerol, and subsequently shuffled into reactions of the TCA 

cycle. Major differences in the isotopologue composition have also been detected in His and 

Man, metabolites which are related to the PPP and to gluconeogenetic reactions, respectively. 

Thereby, higher amounts of M+6 isotopologues in Man as well as of M+5 isotopologues in 

His have been observed in E and PE growth phase in absence of CsrA. These highly labeled 
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metabolites can only be formed in combination reactions of two fully labeled C3-precursors in 

gluconeogenetic reactions to generate M+6 in Man, as it was mentioned for the labeling 

experiments with 13C-glucose. Same is true for M+5 labeling in His, which can be the result of 

fully labeled Fru-6-P entering the PPP. Furthermore, also combination reaction in the PPP 

including two fully labeled C3-precursors can result in M+5 label in His.  

These data clearly show that in absence of CsrA, glycerol uptake and metabolism is 

dramatically upregulated. Besides an increased carbon flux towards the TCA cycle, especially 

the carbon flux into gluconeogenetic reaction and into the PPP was dramatically affected. This 

indicates, that CsrA is responsible for the repression of glycerol metabolism in L. pneumophila 

wild-type, especially during the exponential growth phase.  

3.2.3.4 Differential analysis of palmitic acid and PHB metabolism in L. pneumophila and 

its csrA mutant 

The carbon and energy storage compound PHB was first discovered in the 1920s in Bacillus 

megaterium (Lemoigne, 1926). Until now, numerous bacteria were identified using this 

compound for energy storage (Anderson and Dawes, 1990; Anderson et al., 1990; Steinbüchel 

and Schlegel, 1991; Poirier, 2002; Kadouri et al., 2005). Also L. pneumophila uses PHB for 

energy storage and long-term survival (James et al., 1999; Al‐Bana et al., 2014). Thereby, PHB 

is stored in cytoplasmic inclusions or granules, which predominantly appear at later growth 

phases of this pathogen (James et al., 1999; Garduno et al., 2002). The biosynthetic route which 

appears in most of the PHB building bacteria starts from two acetyl-CoA molecules, which are 

used to build (R)-3-hydroxybutanoyl-CoA, which is subsequently used to form PHB 

(Steinbüchel and Schlegel, 1991; Poirier, 2002; Gillmaier et al., 2016). Investigations of the 

PHB metabolism in L. pneumophila during this work (see section 3.1) in combination with 

earlier studies using labeling experiments revealed, that the acetyl-CoA molecules, which are 

used for PHB formation, are predominantly derived from serine catabolism. However, also 

glucose served as a substrate for its biosynthesis (Gillmaier et al., 2016). Interestingly, during 

early growth phases serine is preferably used for PHB formation, whereas carbon supply into 

PHB from glucose mainly occurs at later developmental stages (Gillmaier et al., 2016). The 

respective regulatory mechanism, which is responsible for the adjustment of carbon supply and 

biosynthesis of this carbon and energy storage compound in a growth phase dependent manner, 

is still unknown.  
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An extensive characterization of the csrA mutant, which was also used in this work, revealed 

higher PHB concentrations during exponential and stationary growth phase (Sahr et al., 2017). 

Furthermore, transcriptome and proteome analysis in combination with RNA-Co-

immunoprecipitation experiments followed by deep sequencing of the wild-type and the csrA 

strain uncovered numerous direct targets of CsrA, which are involved in PHB biosynthesis 

(Figure 5-7) (Sahr et al., 2017). This emphasizes the role of this regulator in the growth phase 

dependent formation of PHB. However, since the extensive differential analysis of the carbon 

fluxes in L. pneumophila wild-type and its csrA mutant using the three 13C-precursors [U-

13C3]serine, [U-13C6]glucose and [U-13C3]glycerol didn´t result in upregulated 13C-enrichments 

in PHB (see section 3.2.3.1 - 3.2.3.3), the increased amount of this storage compound in the 

mutant is presumably synthesized from a further substrate. 

Therefore, differential carbon flux analysis with L. pneumophila wild-type and its csrA mutant 

using [1,2,3,4-13C4]palmitic acid as 13C-tracer was performed, since all genes needed for fatty 

acid degradation are present in this pathogen based on genome analysis (Chien et al., 2004). 

Nevertheless, usage of fatty acids by L. pneumophila has not been investigated until now. 

However, the acetyl-CoA molecules, which are derived from fatty acid degradation could serve 

as precursors for PHB biosynthesis in this pathogen. For this purpose, both bacterial strains 

were grown in CE MDM supplemented with 0.8 mM [1,2,3,4-13C4]palmitic acid and harvested 

at E and PE phase. Overall 13C-enrichment values and isotopologue compositions were 

determined for protein derived amino acids, DAP and PHB as well as for lactate and stearic 

acid (Figure 3-2D and Figure 3-3D). 

13C-label in the experiments using [1,2,3,4-13C4]palmitic acid as 13C-tracer was exclusively 

transferred into the carbon storage compound PHB in the experiments with the L. pneumophila 

wild-type and the csrA mutant. On the one hand, this clearly shows for the first time the 

effective incorporation and degradation of a fatty acid by this pathogen. On the other hand, the 

acetyl-CoA molecules which are derived from fatty acid degradation are indeed directly used 

to form PHB in L. pneumophila. Besides that, small but significant 13C-label was also 

detectable in Glu in the experiment with the wild-type. Since Glu is directly derived from an 

intermediate of the TCA cycle, this indicates that the acetyl-CoA monomers derived from 

degradation of [1,2,3,4-13C4]palmitic acid are also partly shuffled into the TCA cycle. 
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Interestingly, the csrA mutant showed slightly increased carbon flux from 13C-palmitic acid 

into the TCA cycle during exponential growth, since 13C-enrichment in Glu was increased 

compared to the wild-type (wild-type: 0.50%, csrA mutant: 0.78%). Furthermore, a minor 

carbon flux into the biosynthesis of stearic acid was also detectable in the csrA mutant. More 

importantly, overall enrichment values in the storage compound PHB increased in both growth 

phases in the csrA strain compared to the wild-type (E phase-wild-type: 2.79%, E phase- csrA 

mutant: 4.93%; PE phase-wild-type: 3.36%, PE phase-csrA mutant: 6.32%) (Figure 3-2D and 

Table 5-4). 

In summary, these data indicate that fatty acids might be preferably serve as a carbon source 

for PHB biosynthesis in L. pneumophila. The comparative analysis with a CsrA knock down 

strain furthermore demonstrated that this regulator is involved in the regulatory network, which 

determines the growth phase dependent formation of the carbon and energy storage compound 

PHB. 

3.2.4 Comparative analysis of carbon fluxes from 13C-serine, 13C-glucose and 13C-

glycerol in L. pneumophila wild-type and csrA mutant 

All experiments in this section were performed with L. pneumophila Paris and the respective 

csrA mutant. For a more detailed elucidation of the changes in the carbon flux derived from 

the three different substrates [U-13C3]serine, [U-13C6]glucose and [U-13C3]glycerol dependent 

on the CsrA knock down, ratios were calculated from 13C-excess values in specific marker 

metabolites. Following marker metabolites have been chosen to represent the carbon flux into 

specific biosynthetic pathway: His, Ala and Glu. His served as a marker for 13C-carbon flux 

into the PPP, since it is synthesized from PRPP, an intermediate biosynthetic pathway. Since 

Ala is synthesized directly from pyruvate and Glu is derived from α-ketoglutaric acid, these 

marker metabolites represent 13C-carbon flux directed towards the TCA cycle. Both ratios 

“13C-excess (mol%) His/Ala” and “13C-excess (mol%) His/Glu” were calculated for the 

experiments with the L. pneumophila wild-type and its csrA mutant for E and PE phase for 

labeling experiments with [U-13C3]serine, [U-13C6]glucose and [U-13C3]glycerol, respectively. 

High carbon fluxes directed towards energy generation in the TCA cycle is thereby indicated 

by small values of these ratios, whereas high values show an intense carbon flux towards 

gluconeogenetic reactions and the PPP (Figure 3-4).  



  3. RESULTS 

___________________________________________________________________________ 

83 

 

Calculations for carbon fluxes in the labeling experiment with 13C-serine revealed small values 

for both ratios at E and PE growth phase in both, the wild-type and the csrA mutant. This is in 

accordance with previous described results (see section 3.1) and again illustrates the extensive 

carbon flux from this substrate toward energy generation in the TCA cycle. Nevertheless, small 

differences were detectable comparing the wild-type to the csrA mutant, since ratios are 

slightly reduced in the mutant, indicating that the carbon flux from serine towards the TCA 

cycle was partly upregulated compared to the wild-type. In combination with reduced overall 

enrichment values that had been observed in the experiments with the csrA mutant (see section 

3.2.3.1) this illustrates a downregulated uptake and metabolism of serine in the mutant by a 

mountainously more restricted carbon flux towards the TCA cycle for energy generation. This 

indicates that CsrA induces serine metabolism and usage for energy generation in the wild-

type. However, at later growth phases, where the amount of active CsrA is reduced in the 

bacterial cell due to binding to non-coding small mRNAs (Rasis and Segal, 2009; Sahr et al., 

2009; Sahr et al., 2012), carbon flux from serine into gluconeogenetic reactions and the PPP is 

downregulated (Figure 3-4). 

Ratios calculated for the experiments performed with [U-13C6]glucose as a tracer were high in 

both growth phases in the experiments with the L. pneumophila wild-type and with its CsrA 

knock down mutant. This agrees with previously discussed results (see section 3.1) and again 

shows the presence of a bipartite metabolism in this pathogen. In this bipartite metabolism 

glucose is predominantly shuffled into the PPP, ED pathway and gluconeogenetic reactions. 

Since values for both ratios, “13C-excess (mol%) His/Ala” and “13C-excess (mol%) His/Glu” 

increased in both growth phases in the experiment with the csrA mutant, carbon flux from 

glucose is more directed towards anabolic processes in this strain. Simultaneously, 

incorporation and metabolism of glucose is slightly reduced in the mutant strain (see section 

3.2.3.2). This indicates that carbon flux from glucose differs in the L. pneumophila wild-type 

from E to PE phase. The presence of CsrA, glucose is also partly used for energy generation 

in the TCA cycle while absence of CsrA results in a more restricted usage in the upper part of 

metabolism (Figure 3-4). 
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Figure 3-4: Comparative analysis of carbon fluxes in L. pneumophila wild-type and its csrA mutant. Bacterial cultivation 

occurred in CE MDM using (a) 6 mM [U-13C3]serine, (b) 11 mM [U-13C6]glucose or (c) 50 mM [U-13C3]glycerol as 13C-tracer. 

Harvest of cell cultures occurred at E phase and PE growth phase. (A) Overall 13C-excess values (%) in the key metabolites 

Ala (derived from pyruvate), Glu (TCA cycle) and His (PPP). Shown are data from two independent experiments. (B) Shown 

are ratios of 13C-excess in His (PPP) to Ala (pyruvate) or Glu (TCA cycle) for E and PE phase, respectively. For numerical 

values, see Table 5-9 and 5-10. 

Comparing the ratios of the labeling experiments with 13C-serine, 13C-glucose and 13C-

glycerol, highest values for both ratios were obtained in the experiment with [U-13C3]glycerol. 

This again demonstrates that carbon flux from this substrate is almost restricted to 

gluconeogenetic reactions and the PPP in the bipartite metabolism of L. pneumophila (see 

section 3.1). However, experiments with the csrA mutant showed increased values for both 

ratios in the E and PE growth phase. This clearly shows that carbon flux is even more directed 

to gluconeogenesis and PPP in absence of CsrA. Simultaneously, incorporation and 

metabolism of glycerol was upregulated extensively (see section 3.2.3.3) in the csrA strain. 

This clearly shows that this regulator is responsible for the repression of glycerol metabolism 

especially during exponential growth in the L. pneumophila wild-type (Figure 3-4).  
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3.3 Multiple substrate usage of Coxiella burnetii to feed a bipartite 

metabolic network  

Häuslein, I., Cantet, F., Reschke, S., Chen, F., Bonazzi, M., and Eisenreich, W. (2017). Frontiers in Cellular and Infection 

Microbiology 7. 

C. burnetii represents a human pathogen, which is categorized as a bio-weapon (Madariaga et 

al., 2003). Based on genome analysis, this bacterium seems to have great metabolic potential 

(Seshadri et al., 2003). However, its metabolism is still only poorly investigated. In this study, 

labeling experiments with [U-13C3]serine, [U-13C6]glucose and [U-13C3]glycerol were 

performed with the C. burnetii RSA 439 NMII strain in the recently developed axenic growth 

medium ACCM-2 to investigate the full metabolic potential of this pathogen. Using GC/MS 

based isotopologue profiling the effective usage of all three precursors by C. burnetii could be 

demonstrated. Therefore, overall 13C-enrichment values and isotopologue compositions were 

analyzed in numerous key metabolites e.g. protein derived amino acids or specific cell wall 

components. Dependent on the respective tracer, 13C-label was shuffled into different 

biosynthetic pathways. Glucose preferably served as a precursor for cell wall formation but it 

was also efficiently converted into pyruvate and subsequently shuffled into reactions of the 

TCA cycle. Furthermore, carbon flux from glucose occurred into erythrose 4-phosphate via 

the non-oxidative PPP, which was subsequently used in the shikimate/chorismate pathway for 

the formation of aromatic amino acids. In contrast, serine was predominantly converted into 

acetyl-CoA, which was shuffled into the TCA cycle and fatty acid biosynthesis, and did not 

serve efficiently as gluconeogenetic substrate. On the other hand, carbon flux from glycerol 

almost exclusively occurred towards gluconeogenetic reactions serving as a substrate for cell 

wall biosynthesis. In addition, glycerol could also partly be converted into PEP or pyruvate, 

again predominantly serving cell wall formation via the synthesis of diaminopimelic acid 

(DAP). Comparing the concept of the core metabolic fluxes in C. burnetii to the network which 

is present in L. pneumophila, a similar but not identical bipartite topology could be identified. 

This emphasizes the idea that this strategy might be in general a beneficial concept for 

intracellular replication and survival of these pathogens as a result of specific adaption 

processes on the respective nutrient supply and metabolism of the host. However, the lifestyle 

of these two pathogens is similar but not identical resulting in partly different bipartite 

metabolic concepts, which is presumably dependent on the respective replication niche. 
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4 DISCUSSION 

4.1 The bipartite metabolism of L. pneumophila 

For a long time, the common opinion about the metabolic potential of L. pneumophila was, 

that this intracellular replicating pathogen is only capable of efficiently metabolizing amino 

acids. Indeed, amino acids and especially serine represent the preferred carbon and energy 

source (Pine et al., 1979; George et al., 1980; Tesh and Miller, 1981). However, labeling 

experiments proved the potential of L. pneumophila to efficiently use further carbon sources 

like glucose (Eylert et al., 2010; Gillmaier et al., 2016). Furthermore, the expression of glpK 

and glpD has been shown to be upregulated during intracellular replication of L. pneumophila 

in macrophages, indicating the usage of glycerol in the nutrition of this pathogen (Faucher et 

al., 2011). In this study, detailed analysis of the metabolic potential of L. pneumophila JR32 

was performed using different in vitro and in vivo experimental setups. Although glycerol did 

not support extracellular replication, labeling experiments using [U-13C3]glycerol in the newly 

developed MDM demonstrated that this substrate is indeed metabolized by this pathogen. 

Glycerol did furthermore support in vivo replication in A. castellanii and macrophages when 

added 4 h post infection and a L. pneumophila glpD deletion mutant was outcompeted during 

co-infection in amoeba with the wild-type. Furthermore, using extensive growth phase 

dependent in vitro and in vivo isotopologue profiling experiments with [U-13C3]glycerol, [U-

13C6]glucose and [U-13C3]serine it was demonstrated that certain nutrients are serving distinct 

metabolic pathways in this pathogen. Thereby, the respective carbon fluxes are partitioned in 

a bipartite metabolic network, which could be a beneficial adaption strategy for the intracellular 

survival of L. pneumophila. This bipartite metabolism is divided into two modules. Module 1 

comprises gluconeogenetic reactions, the PPP as well as reactions of the ED pathway. 

Although the PPP is incomplete in L. pneumophila since the oxidative branch (6-

phophogluconate-dehydrogenase) as well as the transaldolase are missing, the non-oxidative 

part is still sufficient for carbohydrate conversion and supply of C5 sugars, which are essential 

precursors for histidine, purine and pyrimidine biosynthesis (Cazalet et al., 2004; Chien et al., 

2004). Besides that, module 1 provides the precursors for cell wall biosynthesis as well as 

NADPH/H+. In total this module represents the energy consuming anabolic part of L. 

pneumophila metabolism. On the other hand, module 2 represents the energy generating part 

since it comprises the lower part of glycolysis as well as reactions of the TCA cycle which 
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generate high amounts of ATP, NADH/H+ and FADH2. In this bipartite metabolism carbon 

flow from glycerol and glucose is predominantly directed towards gluconeogenetic reactions 

and the PPP (module 1) while serine is used for energy generation in module 2 (see section 

3.1). Carbon flux is furthermore dependent on the developmental stage, since serine is 

extensively used during replication while glucose and glycerol are preferred substrates at later 

growth phases. 

The concept of a modular metabolism has also been identified in further intracellular 

replicating pathogens like Listeria monocytogenes or Mycobacterium tuberculosis. Thus, this 

metabolic concept in which carbon flux derived from different carbon sources is 

predetermined, seems to be a general concept and could be beneficial in intracellular 

replication. However, there appears to be differences in the modulated carbon fluxes dependent 

on the respective replication niche of the pathogen. In contrast to L. pneumophila, glycerol is 

efficiently used for energy generation in L. monocytogenes, a pathogen which replicates in the 

cytosolic compartment (Schneebeli and Egli, 2013). In contrast to Legionella, L. 

monocytogenes is able to grow on glucose and glycerol as sole carbon source, whereas labeling 

experiments showed incorporation of amino acids but only usage for protein biosynthesis and 

not in catabolic reactions, as it is the case for L. pneumophila (Eylert et al., 2010; Schneebeli 

and Egli, 2013; Grubmüller et al., 2014). However, similar to the bipartite metabolism 

observed in L. pneumophila, carbohydrates like Glu-6-P are shuffled into the PPP (module1) 

(Grubmüller et al., 2014). The modulated metabolism of M. tuberculosis also shows high 

carbon fluxes from glucose into module 1 (PPP and early steps of the glycolytic pathway). 

Like L. monocytogenes, M. tuberculosis also incorporates amino acids from the host but only 

uses them directly for protein biosynthesis. In contrast, acetate represents the main carbon 

source for energy generation in module 2 (TCA cycle). Dependent on the co-substrate, carbon 

flux from glycerol occurs towards module 1 (in presence of glucose) or module 2 (in presence 

of acetate) (de Carvalho et al., 2010; Beste et al., 2013) 

In L. pneumophila, glycerol seems to play only a minor role in the nutrition of this pathogen, 

since lowest 13C-enrichment values were obtained in the experiments with 13C-glycerol and 

only at later growth phases. However, it seems to be important at later developmental stages, 

when the bacteria develop into its transmissive form. This is triggered by nutrient starvation, 
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in particular limited amino acids concentration, inside the host. In its virulent transmissive 

form, this pathogen is flagellated and probably capable of lysing the LCV and host cell 

membranes, which could result in an increased excess to glycerol as an alternative carbon 

source at later growth phases. Furthermore, in vivo labeling experiments performed in this 

study using 13C-glycerol proofed that this substrate reaches the LCV and directly serves Man 

formation. However, the genome of L. pneumophila only reveals a glycerol 3-phosphate 

transporter (GlpT), indicating that rather glycerol 3-phosphate (G3P) than glycerol is used in 

vivo (Cazalet et al., 2004; Chien et al., 2004). An eukaryotic GlpK (NP_997609) from 

experiments with RAW 264.7 macrophages has been identified in proteome analysis of 

purified LCV, indicating that glycerol which could reach the host cytosol by diffusion is 

phosphorylated and subsequently transported into the LCV (Hoffmann et al., 2014b). The 

importance of glycerol as an in vivo substrate was also shown when a L. pneumophila ∆glpD 

mutant was outcompeted during coinfection with the wild-type in A. castellanii. Since, this 

substrate is almost exclusively used in gluconeogenetic reactions and in the PPP during in vivo 

as well as in vivo replication, this also underlines the importance of these biosynthetic routes 

and effective carbon flux into these pathways during late stages of infection. This study proofs 

that the gluconeogenetic pathway is active in L. pneumophila although a homologue of a 

fructose 1,6-bisphosphatase has not been found in the Legionella spp. and only a 

phosphofructokinase has been annotated (Chien et al., 2004; Cazalet et al., 2010). 

Nevertheless, this enzyme could favor gluconeogenetic reactions since fructose 1,6-

bisphosphatase activity has been determined as 10-fold higher than phosphofructokinase 

activity (Keen and Hoffman, 1984). Furthermore, the annotated phosphofructokinase in L. 

pneumophila (lpd1913; pfkA) shows homology to bacterial and eukaryotic ones, which are 

pyrophosphate dependent and reversible PfkA enzymes. Therefore, this annotated 

phosphofructokinase could possibly catalyze reactions in both directions.  

4.2 CsrA dependent regulation of the bipartite metabolism in L. 

pneumophila 

Performing comparative metabolic analysis with the L. pneumophila Paris wild-type and the 

respective CsrA knock down mutant, the regulatory role of CsrA has been investigated in this 

work. The csrA mutant used in this study has been characterized in a previous study. Thereby 

extensive transcriptome and proteome analysis in combination with RNA-Co-
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immunoprecipitation experiments were performed, followed by deep sequencing of the wild-

type and its csrA mutant (Sahr et al., 2017). Most importantly, this mutant is characterized by 

a transmissive phenotype, which appears already during exponential growth. Additionally, the 

CsrA knock down affected numerous enzymes involved in serine metabolism, the preferred 

carbon and energy source of L. pneumophila during replication (George et al., 1980; Tesh et 

al., 1983). Particularly, the putative serine transporter (lpp2269) and the serine dehydratase 

(lpp0854) as well as numerous enzymes involved in pyruvate metabolism and in the TCA cycle 

were downregulated on transcriptome and/or proteome level during E phase dependent on the 

CsrA knock down (Sahr et al., 2017) (Figure 5-5). This indicated a reduced metabolism of 

serine in the csrA mutant which was confirmed in oxygen consumption experiments performed 

in this work. Determination of OCR revealed a downregulated bacterial respiration when serine 

was added to the L. pneumophila csrA mutant. CsrA is therefore crucial for the wild-type, since 

it clearly enhances serine uptake and metabolism and therefore energy supply during 

replication of this pathogen. The regulation of serine metabolism by CsrA furthermore affects 

the bipartite metabolism in L. pneumophila. In both bacterial strains, carbon flux from serine 

predominantly occurred towards the TCA cycle for energy generation during exponential 

growth (Figure 3-4). However, carbon flux from serine was even more restricted to module 2 

of metabolism in the csrA mutant while simultaneously carbon flux into module 2 was reduced 

(Figure 4-1). However, since it was observed that bacterial respiration is in general reduced in 

this mutant (Figure 3-1), serine is more likely used to form metabolic intermediates instead of 

energy production. To sum this up, serine metabolism is downregulated dependent on the CsrA 

knock down, whereas carbon flux is even more restricted to the TCA cycle in the csrA mutant 

(Figure 4-1). 

In contrast to the experiments with 13C-serine, comparative isotopologue analysis using [U-

13C6]glucose with the L. pneumophila wild-type and its csrA mutant showed a reduced carbon 

flux into the energy generating part of metabolism. On the other hand, usage of glucose in 

gluconeogenetic reactions and in the PPP was not affected in absence of CsrA (Figure 3-4). 

Effects of the CsrA knock down were investigated on a transcriptome and proteome level in 

combination with RNA-Co-immunoprecipitation and revealed numerous affected genes in the 

ED pathway, glycolysis and in glucose incorporation in the csrA mutant (Sahr et al., 2017) 

(Figure 5-6). These data revealed that in presence of CsrA the putative glucose transporter 
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(Lpp0488), which was identified as direct target of CsrA, is downregulated during exponential 

growth on protein level. Simultaneously, enzymes related to glucose metabolism were 

positively affected in presence of CsrA. In detail, all genes of the ED pathway (lpp0483, 

lpp0484, lpp0485, and lpp0487) where downregulated on transcriptome level in the csrA 

mutant, whereas lpp0483, lpp0484 and lpp0485 could additionally be identified as direct 

targets of CsrA. Also all enzymes of the second part of glycolysis (lpp0535, lpp2838, lpp0153, 

lpp0152, lpp2020, and lpp0151) have shown to be directly targeted by this post-transcriptional 

regulator, but only lpp2838 was additionally reduced on transcriptome level. Same was true 

for one enzyme of the PPP (lpp0108) during E phase in the csrA mutant (Sahr et al., 2017) 

(Figure 5-6). The fact that glucose is more preferred as a substrate at later growth phases in L. 

pneumophila wild-type (see section 3.1) might be related to the negative effect of CsrA on 

glucose incorporation, since high concentrations of CsrA are present in the bacteria during 

replication. On the other hand, CsrA levels are reduced at transmissive stage due to binding of 

this global regulator to small non-coding sRNAs Rsm X, Y, Z, which are built as a result of 

low nutrient conditions. This also leads to a reduced carbon flux directed towards module 2, 

since the positive effects of CsrA on biosynthetic pathways responsible for glucose catabolism 

(ED pathway, glycolysis, PPP) are reduced. However, at the same time also the reductive effect 

of CsrA on glucose uptake is reduced at PE phase.  

Interestingly, the operon lpp0151-lpp0154 comprises three genes of the second part of the 

glycolytic cascade (glyceraldehyde 3-phoshate, phosphoglycerate kinase, pyruvate kinase) and 

additionally the transketolase enzyme of the PPP (Figure 5-6). Furthermore, this operon has 

been identified as a direct target of CsrA, which induces the transcription level of the three 

glycolytic enzymes by simultaneously not affecting transcription levels of the transketolase 

enzyme (Sahr et al., 2017). CsrA therefore enhances the carbon flux from glucose into module 

1 in L. pneumophila wild-type during replication but it also represses the uptake of glucose at 

the same time. In contrast, the amount of pyruvate derived from glucose degradation via GAP 

is reduced in the csrA mutant. However, GAP derived from glucose is still shuffled into 

reactions of the PPP in same amounts as in the wild-type. Therefore, this operon seems to be a 

key target of CsrA in the regulation of metabolic fluxes in the bipartite metabolism of L. 

pneumophila. This is also in agreement with the isotopologue analysis of L. pneumophila wild-

type and its csrA mutant. Unchanged or slightly induced 13C-enrichment values in His (PPP) 
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or sugars (gluconeogenesis) in contrast to reduced 13C-lable in pyruvate (Ala) or TCA cycle 

related metabolites (Glu) in absence of CsrA supports the idea that glucose uptake is induced 

in the csrA mutant but the amount of GAP build from glucose degradation is more efficiently 

shuffled into reactions of the PPP by the transketolase (direct usage of GAP) which is not 

affected by CsrA. Carbon flux into the TCA cycle is reduced due to the missing inductive 

effect of CsrA on pyruvate biosynthesis from GAP (Sahr et al., 2017). Since this does surely 

also affect reactions in the opposite gluconeogenetic direction (biosynthesis of glyceraldehyde 

3-phophate from pyruvate), carbon flux from serine into the upper part of metabolism is 

reduced, which was demonstrated by the labeling experiments with [U-13C3]serine. This again 

emphasizes the crucial role of the CsrA regulation of the operon lpp0151-lpp0154 in the growth 

phase dependent adjustment of carbon fluxes from different substrates.  

The CsrA knock down in L. pneumophila dramatically affected the metabolism of glycerol. 

Comparative labeling experiments with the wild-type and the csrA mutant using [U-

13C3]glycerol revealed dramatically induced 13C-incorporation levels in marker metabolites 

leading to 13C-excess values in the csrA mutant which were more than twice as high as in the 

wild-type. This clearly shows that in absence of CsrA glycerol metabolism is dramatically 

upregulated. A growth phase dependent metabolism of glycerol was already observed in 

labeling experiments with the L. pneumophila wild-type (see section 3.1). Labeling 

experiments with the csrA mutant now elucidate the crucial role of CsrA in glycerol 

metabolism dependent on the respective developmental stage. This is furthermore supported 

by comparative proteome analysis of the L. pneumophila wild-type and the csrA mutant during 

E phase, since the amount of the GlpK enzyme (Lpp1369) has shown to be significantly 

upregulated dependent on the CsrA knock down (Figure 5-6) (Sahr et al., 2017). This emerges 

the role of CsrA as a repressor of glycerol metabolism during the replicative phase in the L. 

pneumophila wild-type. Since the amount of CsrA is reduced in the bacteria at later stages, this 

effect decreases. This agrees with the low 13C-incorporation rates derived from [U-

13C3]glycerol during replication and the increased carbon flux at transmissive stage in the wild-

type. Since the csrA mutant already shows a transmissive phenotype during exponential growth 

due to lower amounts of CsrA, the amount of GlpK is probably already upregulated at early 

developmental stages leading to a dramatically increased carbon flux derived from glycerol. 

Furthermore, 13C flux into the TCA cycle slightly increased in the csrA mutant due to the 
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dramatically upregulated incorporation and metabolism of [U-13C3]glycerol. However, 

simultaneously the carbon flux from this substrate was even more restricted to module 1 (PPP, 

ED pathway, gluconeogenesis) in absence of CsrA (Figure 3-4). This effect might be related 

to the reduced biosynthesis of pyruvate from GAP in absence of CsrA, due to the missing 

induction of the three glycolytic enzymes in the operon lpp0151-lpp0154. At the same time, 

carbon flux into gluconeogenetic reactions and into the PPP (directly via GAP) is not affected 

(Figure 5-6).  

 

Figure 4-1: Regulation of core metabolic fluxes by CsrA in the bipartite metabolism in L. pneumophila Paris. The bipartite 

metabolism comprises two modules. Module 1 includes reactions of the ED pathway, glycolytic and gluconeogenetic reactions 

as well as the PPP. Module comprises the TCA cycle. Main carbon fluxes are indicated in coloured arrows (blue: glucose; 

red: glycerol; green: serine). The left side illustrates carbon fluxes in the L. pneumophila wild-type whereas the right side 

represents the main carbon fluxes in the csrA mutant. In both strains, serine is used in the second module (TCA cycle) for 

energy generation, although carbon flux is partly reduced in the csrA mutant. In addition, serine usage in module 1 is also 

lowered dependent on CsrA. In contrast to serine metabolism, carbon flux from glucose is predominantly directed towards 

module 1 and only partly towards energy generation. The carbon flux from glucose into module 2 was reduced in the csrA 

mutant, whereas no differences could be observed in the carbon flux directed towards module 1. Glycerol metabolism was 

very low in the L. pneumophila wild type and almost exclusively restricted to module 1. In contrast, carbon flux from glycerol 

was dramatically increased in the csrA strain and did also partly occur towards module 2, although the main carbon flux was 

still directed towards the first module of metabolism. Up- or downregulated enzymes dependent on CsrA are indicated in 

framed plus [+] or minus [-] sings. CsrA induces glycolytic enzymes (lpp0151, lpp0152, lpp0153) by simultaneously 

downregulating enzymes related to glycerol metabolism (lpp1369) in the L. pneumophila wild-type. Abbreviations: Glu-6-P, 

glucose 6-phosphate; Fru-6-P, fructose 6-phosphate; 6-PG, 6-phosphogluconate; KDPG, 2-keto-3-desoxy-phosphogluconate; 

GAP, Glyceraldehyde 3-phosphate; DHAP, Dihydroxyacetone phosphate; G3P, Glycerol 3-phosphate; Pyr, pyruvate; PPP, 

pentose phosphate pathway; PHB, polyhydroxybutyrate; DAP, diaminopimelate; Man, mannose; ED pathway, Entner-

Doudoroff pathway; TCA, tricarboxylic acid cycle. 
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In summary, these data highlight the crucial role of CsrA in the life stage specific metabolism 

of L. pneumophila besides its well-known function as a central regulator of the developmental 

switch in the biphasic life cycle of this intracellular pathogen. During replication, CsrA induces 

the uptake and metabolism of serine, the main carbon and energy source of L. pneumophila 

(George et al., 1980; Tesh and Miller, 1981), thereby ensuring a sufficient nutrient supply into 

the TCA cycle for effective energy generation and therefore intracellular replication. At later 

developmental stages, if favored nutrients are getting limited, CsrA induces the uptake and 

metabolism of alternative carbon sources like glucose but especially glycerol. At the same time 

carbon flux from these substrates into the TCA cycle is reduced by CsrA, whereas their usage 

in anabolic processes is enhanced. This key regulatory role of CsrA in the bipartite metabolism 

of L. pneumophila is thereby predominantly related to its regulation of the operon lpp0151-

lpp0154, which comprises three glycolytic enzymes at the interface of module 1 and module 2 

(Figure 4-1). 

Such a regulatory role of the CsrA-system on metabolic processes in a growth phase dependent 

manner has also been reported for E. coli. Early studies revealed that in this pathogen, 

biosynthesis of glycogen is inhibited during exponential growth (Romeo et al., 1993; Yang et 

al., 1996). Further investigations in this bacterium identified CsrA as a global director of 

carbon flux derived from glucose since it activates carbon flow into glycolytic reactions by 

simultaneously repressing the gluconeogenetic pathway (Sabnis et al., 1995; Romeo, 1998). 

Recent experiments with numerous CsrA related mutant strains using E. coli Nissle 1917 

clearly identified CsrA as the only crucial regulator in carbon nutrition in this pathogen. This 

study also confirmed previous results, since a ΔcsrA51 mutant strain comprising reduced 

amounts of this regulator showed a downregulation in carbon flux from glucose directed 

towards glycolytic reactions and oxidative metabolism (Revelles et al., 2013). This agrees with 

the previously reported inductive effect of CsrA on glycolysis in E. coli (Sabnis et al., 1995; 

Romeo, 1998). However, this ΔcsrA51 mutant also showed significant growth defects while 

growing on further carbon sources like e.g. acetate, emphasizing the central role of this post-

transcriptional regulator in nutrient utilization. Moreover, acetate was shown to additionally 

inhibit the growth of an E. coil csrA mutant in rich media (Wei et al., 2000; Revelles et al., 

2013). However, although no enzyme of the ED pathway has been identified yet as a direct 

target of CsrA in E. coli, the respective csrA mutant showed significant growth defects on 
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compounds which are utilized by this pathway (Murray and Conway, 2005; Revelles et al., 

2013). The influence of this post-transcriptional regulator on the ED pathway is furthermore 

emphasized by the observation that this route is predominantly used in the ΔcsrA51 mutant for 

gluconate catabolism (Revelles et al., 2013). Taken together, CsrA is identified as the global 

regulator in carbon metabolism in E. coli although direct targets of CsrA related to biosynthetic 

processes are widely unknown in this pathogen, except of glycolytic and gluconeogenetic 

targets as well as some identified targets in the TCA cycle and glycolate shunt (Wei et al., 

2000; Edwards et al., 2011; Revelles et al., 2013; Morin et al., 2016). 

Besides E. coli, the influence of CsrA on core metabolic processes has been investigated in 

further pathogenic bacteria like Campylobacter jejuni or Pseudomonas aeruginosa. 

Experiments with C. jejuni wild-type and a csrA mutant using comparative proteome analysis 

revealed, besides induced expressions of virulence related proteins, also differential expression 

levels of numerous enzymes, which are involved to core metabolic processes e.g. amino acid 

metabolism of TCA cycle related enzymes (Fields et al., 2016). Transcriptome studies in P. 

aeruginosa identified an enzyme involved in the methylglyoxal detoxification process as a 

direct target of CsrA/RsmA in this pathogen. Furthermore, using a sequence-based prediction 

approach several direct targets of this global regulator have been identified in P. aeruginosa, 

including an enzyme of the gluconeogenetic cascade (Kulkarni et al., 2014).  

In Yersinia pseudotuberculosis, an ancestor of Yersinia pestis, 13C-fluxome experiments with 

the wild-type and various mutants concerning specific virulence factors including CsrA were 

recently performed. When this pathogen was grown on glucose as sole carbon source high 

conversion rates of this substrate into pyruvate have been detected for the wild-type. This rate 

was even higher in the respective csrA mutant (13% increase), which showed a reduction of 

56% in growth and substrate uptake. Simultaneously, the amount of all other detected by-

products was reduced. Interestingly, the TCA cycle was upregulated in absence of CsrA by 10 

% in Y. pseudotuberculosis whereas the PPP was downregulated in the csrA mutant. This 

indicates a repressive effect of CsrA on carbon flux into the TCA cycle but an inductive effect 

on reactions in the PPP at the same time (Bücker et al., 2014). This metabolic concept seems 

to be contrarious to the regulatory concept of CsrA present in L. pneumophila (Figure 4-1). 

However, these different regulatory concepts controlled by CsrA emphasizes its global role in 
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the metabolic adaption of different bacteria to enable efficient nutrient supply in their 

respective environmental niches and growth phase. In case of intracellular pathogens, this also 

involves the adaption on the host metabolism. Since this post-transcriptional regulator also 

controls virulence traits in bacteria, there could also be a direct link to the pathogenicity 

dependent on metabolic processes in the respective organism. In total, the very specific 

“pathometabolism” of the respective bacteria is probably partly a result of adaptive 

evolutionary processes of the CsrA-regulatory system dependent on the different environments 

(Eisenreich et al., 2015; Vakulskas et al., 2015; Van Assche et al., 2015).  

4.3 Growth phase dependent carbon flux derived from fatty acid 

degradation in L. pneumophila  

In this study the effective degradation and carbon flux into core metabolic processes derived 

from a fatty acid was show for the first time in L. pneumophila, identifying this substrate as a 

nutrient of this intracellular pathogen. Labeling experiments using [1,2,3,4-13C4]palmitic acid 

revealed that this long-chain fatty acid predominantly serves the biosynthesis of PHB (see 

section 3.2.3). This carbon and energy storage compound is crucial for the long-term survival 

of this pathogen and is predominantly built at later developmental stages (James et al., 1999; 

Garduno et al., 2002; Al‐Bana et al., 2014). The fact that ß-oxidation and formation of PHB is 

metabolically linked was already investigated in further bacteria like Pseudomonas putida 

(Huijberts et al., 1994) and was assumed to be present in L. pneumophila recently (Eisenreich 

and Heuner, 2016). Furthermore, this pathogen also features numerous phospholipases, which 

have been partly characterized as virulence factors. Since they are predominantly expressed at 

later growth phases, metabolisation of fatty acids could be linked to later developmental stages 

of L. pneumophila (Flieger et al., 2000; Flieger et al., 2004; Schunder et al., 2010). A link 

between the development of virulence trains and fatty acid degradation is furthermore 

emphasized by the fact that short-chain fatty acids are triggering the switch from replication to 

the transmissive virulent stage (Edwards et al., 2009). Additionally, lipolytic activities have 

also been detected for L. pneumophila cell-associated enzymes, indicating that host-

membrane-lysis could be a key virulence factor of this intracellular pathogen (Bender et al., 

2009). The high phospholipolytic potential is furthermore linked to Legionnaires disease 

development in the patient (Kuhle and Flieger, 2013). Thereby, the major lipolytic activity of 

L. pneumophila is related to the cell-associated hemolytic phospholipase A (PlaB), which 
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preferably hydrolyzes long-chain fatty acids with more than twelve carbon atoms (Bender et 

al., 2009). In summary, this could indicate that this pathogen lyses the host cell membranes at 

transmissive virulent stage and could subsequently use the released cell-wall derived substrates 

(fatty acids and glycerol) as nutrients and for PHB biosynthesis. A coordination of nutrient 

usage for PHB biosynthesis dependent on the developmental stage has been reported recently 

based on labeling experiments (Gillmaier et al., 2016) and supports the idea of and increased 

carbon supply from fatty acids into PHB biosynthesis at later growth phases.  

This hypothesis was investigated using oxygen consumption experiments as well as labeling 

experiments with the csrA mutant in comparison to the L. pneumophila wild-type. Thereby, 

the OCR of the wild-type indicated the usage of palmitic acid as well as of butanoate already 

in the aerobic respiration during exponential growth. Since contrarious results were obtained 

during the experiments with the CsrA knock down mutant, a positive effect of this regulator 

on the uptake and metabolism of fatty acids was implicated. However, proteome and 

transcriptome data as well as comparative labeling experiments with [1,2,3,4-13C4]palmitic 

acid revealed a more complex role of CsrA in the metabolism of fatty acids especially 

concerning the preferred usage for the biosynthesis of PHB dependent on the developmental 

stage of this pathogen (Brüggemann et al., 2006; Sahr et al., 2017). It was shown that enzymes 

responsible for the formation of this carbon and energy storage compound are upregulated 

during post-exponential growth of L. pneumophila (Hindre et al., 2008; Hayashi et al., 2010). 

A crucial role of CsrA in the regulation of these enzymes was demonstrated recently using 

proteome and transcriptome analysis. Particularly, this post-transcriptional regulator 

negatively affected the acetoacetyl-CoA reductase genes lpp0620, lpp0621 and lpp2322 on 

transcriptome (except of lpp0620) and proteome level whereas lpp0620 and lpp2322 and a 

polyhydroxyalkanoate synthase (lpp2038) could additionally be identified as direct targets of 

CsrA in L. pneumophila (Brüggemann et al., 2006; Sahr et al., 2017) (Figure 5-7). This 

indicates that CsrA is crucial for the growth phase dependent formation of PHB, since it 

inhibits its biosynthesis during replication whereas the respective enzymes seem to be 

upregulated in absence of CsrA.  
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Figure 4-2: Carbon fluxes derived from palmitic acid degradation in L. pneumophila. Acetyl-CoA derived from palmitic acid 

degradation is almost exclusively shuffled into module 2 in both strains. Thereby, this substrate predominantly serves for PHB 

biosynthesis (red arrows and framed metabolites). In the csrA mutant a minor carbon flux into the TCA cycle was also 

detectable (green arrows and framed metabolites). 

Using a Co-immunoprecipitation approach, it was furthermore demonstrated that most of the 

respective enzymes involved in PHB biosynthesis are indeed directly targeted by CsrA. This 

also applies for a long-chain fatty acid transporter (lpp1773), emphasizing the link between 

PHB formation and fatty acid metabolism (Sahr et al., 2017). A coordinative role of CsrA in 

the growth phase dependent usage of acetyl-CoA derived from fatty acid degradation was also 

demonstrated in the labeling experiments using [1,2,3,4-13C4]palmitic acid which revealed 

increased 13C-label in PHB in the experiments with the csrA mutant (Figure 4-2). 

In summary, these data show for the first time the effective usage of palmitic acid by L. 

pneumophila. Thereby, carbon flux from this substrate predominantly served PHB 

biosynthesis. The crucial coordinative role of CsrA in the growth phase dependent PHB 

formation and fatty acid degradation was elucidated using a CsrA knock down mutant. 

Thereby, this post-transcriptional regulator represses the biosynthesis of PHB during 
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replication. At later developmental stages carbon flux from fatty acid degradation into PHB 

biosynthesis is induced, since the amount of CsrA is reduced due to the binding on sRNA Rsm 

X, Y, Z. This leads to an increased incorporation of fatty acids by a simultaneously upregulated 

PHB production.  

4.4 The bipartite metabolic topology in C. burnetii 

Performing in vitro labeling experiments with the C. burnetii RSA 439 NMII strain in a 

recently developed axenic growth medium using [U-13C3]serine, [U-13C6]glucose and [U-

13C3]glycerol as tracers, a bipartite metabolic network could be identified in this intracellular 

pathogen, resembling the topology of its close relative L. pneumophila (Omsland et al., 2009; 

Omsland et al., 2011). Nevertheless, the metabolic concepts also showed some differences. In 

both pathogens, serine served as main carbon and energy source, which is efficiently shuffled 

into the TCA cycle (module 2 of metabolism). However, while serine represents the main 

substrate in the nutrition of L. pneumophila, it is not metabolized in as high rates by C. burnetii. 

In addition, carbon derived from serine degradation was almost exclusively used in reactions 

of the TCA cycle in C. burnetii, while L. pneumophila additionally uses serine to feed the first 

module of metabolism (gluconeogenetic reactions, ED pathway, glycolysis, PPP) besides the 

high carbon flux from serine into module 2 (TCA cycle). Glucose on the other hand, is mainly 

shuffled into the first module in both pathogens. However, the metabolic concept of this first 

module differs since L. pneumophila uses reactions of the ED pathway for glucose degradation 

while C. burnetii uses the glycolytic pathway (McDonald and Mallavia, 1971; Seshadri et al., 

2003; Eylert et al., 2010). Furthermore, glucose is metabolized in higher rates by C. burnetii 

and is additionally shuffled into reactions of the TCA cycle, whereas carbon flux from glucose 

is more restricted towards the upper part of metabolism in L. pneumophila. Interestingly, C. 

burnetii shows higher metabolic potential since it is also capable of using this compound for 

tyrosine biosynthesis via reactions of the shikimate/chorismate pathway. The usage of glycerol 

is very low in case of L. pneumophila and only occurs at later developmental stages of this 

pathogen. Thereby, carbon flux is restricted to gluconeogenetic reactions and the PPP. In 

contrast, glycerol is efficiently metabolized by C. burnetii but also used in the upper part of 

metabolism as a precursor for cell wall biosynthesis in gluconeogenetic reaction as well as via 

PEP serving the biosynthesis of DAP. In addition, carbon flux from this substrate also occurred 

into the shikimate/chorismate pathway for the biosynthesis of tyrosine in C. burnetii. In 
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summary, carbohydrates like glucose and glycerol are more important for the nutritional 

concept of C. burnetii than for L. pneumophila. In case of glucose this could be related to the 

slower growth of C. burnetii, which could in consequence limit the metabolic stress on the host 

cell, since glucose concentrations are directly linked to apoptosis (Zhao et al., 2008). Since 

amino acids are present in high amounts in the host, they are used as major carbon and energy 

supply in both intracellular pathogens. In total, the general concept of multi-substrate usage in 

a bipartite metabolic network, which was identified for L. pneumophila, seems to be also valid 

for C. burnetii. This emphasizes the idea that this concept might be beneficial for the robustness 

and survival of intracellular pathogens in general. 

4.5 Outlook 

The observation that intracellular pathogens feature a bipartite metabolic topology, where 

serine is used for energy generation but glucose and glycerol preferably for gluconeogenesis 

and the PPP, might be a procedure of these pathogens to use carbon supply from the host by 

simultaneously avoiding host cell damage and the activation of defense mechanisms. This 

knowledge helps to better understand the complex interaction processes of these two 

antagonists. The extended knowledge about the metabolic network in the intracellular 

pathogens L. pneumophila and C. burnetii could furthermore help to identify novel drug 

targets. In case of L. pneumophila the ED pathway attracted some attention since this pathway 

is not present in mammalian cells but important for intracellular replication of this pathogen 

(Harada et al., 2010). Also, the glpD deletion mutant showed significant intracellular growth 

defects, emphasizing the role of glycerol as a substrate and highlight the respective catabolic 

pathway as potential target. In case of C. burnetii, it was demonstrated that the 

shikimate/chorismate pathway is active and used for tyrosine biosynthesis. Since this 

biosynthetic route is also not present in mammalian cells it represents a further potential drug 

target for this pathogen. This idea is supported by the observation that respective mutants of 

C. burnetii concerning enzymes of this biosynthetic pathway (the type-II EPSP synthase 

CBU0526 or the shikimate dehydrogenase CBU0010) show a significant phenotype (Martinez 

et al., 2014) (and unpublished data). Interestingly L. pneumophila deletion mutants concerning 

the two enzymes (AroB and AroE) of the shikimate pathway also showed defects in infection 

of human macrophages and intracellular replication demonstrating the dependence of this 

pathogen on this biosynthetic pathway, although it did not show de novo biosynthesis of 
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aromatic amino acids in this study (Jones et al., 2015). Similar results were also observed with 

further pathogens like Mycobacterium tuberculosis and Helicobacter pylori (Parish and Stoker, 

2002; Ducati et al., 2007; Vianna and de Azevedo, 2012; Blanco et al., 2013). This emphasizes 

the role of metabolic pathway in general as potential drug targets, which should be focused on 

in future researched to develop new antibiotics. To achieve this goal, global knowledge of the 

bacterial metabolism and particularly concerning the interplay and adaption to the host is 

crucial and requires further studies including in vivo labeling experiments to its fully 

understanding. 
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5 SUPPLEMENTARY MATERIAL 

5.1 Supplementary Material: Pathway analysis using 13C-glycerol and 

other carbon tracers reveals a bipartite metabolism of Legionella 

pneumophila 

Häuslein, I.#, Manske, C.#, Goebel, W., Eisenreich W.†, and Hilbi, H.† (2015). Molecular 

microbiology 100, 229-246. 
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5.2 Supplementary Material: Legionella pneumophila CsrA regulates a 

metabolic switch from amino acid to glycerolipid metabolism 

Häuslein, I., Sahr, T., Escoll, P., Klausner, N., Eisenreich, W., and Buchrieser, C., (2017). Submitted 

 

 

Figure 5-1: Oxygen consumption experiments with oleic acid and arachidonic acid. Bacterial respiration, expressed as OCR, 

was quantified using an XFe96 Extracellular Flux Analyzer according to the manufacturer instructions (Seahorse Bioscience). 

Basal OCR was measured prior to the injection to assure uniform cellular seeding (see section 2.2.2.3). OCR of L. pneumophila 

wild-type compared to its csrA mutant were measured in presents of oleic acid and arachidonic acid. Both substrates were 

used in a concentration of 0.1 mM. (Adapted from Tobias Sahr, Institut Pasteur in Paris) 
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Figure 5-2: 13C Isotopologue patterns from experiments with L. pneumophila using [U-13C3]serine as precursor. Shown are 

relative isotopologue distributions (mol%) in 13C enriched metabolites (13C-excess > 0.5 mol%) of L. pneumophila wild-type 

(A) and the csrA mutant (B). Bacterial stains were cultures in CE MDM in presents of 6 mM [U-13C3]serine. Harvest of cell 

occurred at E phase (OD600 = 0.35) as well as in PE phase (OD600 = 0.80). Isotopologue distributions where calculated by 

isotopologue profiling and display means and SDs of six values (3 technical replicates x 2 biological replicates). Shown are 

relative fractions (%) of isotopologues (M+1 to M+7). For numerical values, see Table 5-5. 
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Figure 5-3: 13C Isotopologue patterns from experiments with L. pneumophila using [U-13C6]glucose as precursor. Shown are 

relative isotopologue distributions (mol%) in 13C enriched metabolites (13C-excess > 0.5 mol%) of L. pneumophila wild-type 

(A) and the csrA mutant (B). Bacterial stains were cultures in CE MDM in presents of 11 mM [U-13C6]glucose. Harvest of 

cell occurred at E phase (OD600 = 0.35) as well as in PE phase (OD600 = 0.80). Isotopologue distributions where calculated by 

isotopologue profiling and display means and SDs of six values (3 technical replicates x 2 biological replicates). Shown are 

relative fractions (%) of isotopologues (M+1 to M+7). For numerical values, see Table 5-6. 
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Figure 5-4: 13C Isotopologue patterns from experiments with L. pneumophila using [U-13C3]glycerol as precursor. Shown are 

relative isotopologue distributions (mol%) in 13C enriched metabolites (13C-excess > 0.5 mol%) of L. pneumophila wild-type 

(A) and the csrA mutant (B). Bacterial stains were cultures in CE MDM in presents of 50 mM [U-13C3]glycerol. Harvest of 

cell occurred at E phase (OD600 = 0.35) as well as in PE phase (OD600 = 0.80). Isotopologue distributions where calculated by 

isotopologue profiling and display means and SDs of six values (3 technical replicates x 2 biological replicates). Shown are 

relative fractions (%) of isotopologues (M+1 to M+7). For numerical values, see Table 5-7. 
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Figure 5-5: CsrA related regulation of serine metabolism in L. pneumophila based on extensive transcriptome and proteome 

analysis in combination with RNA-Co-immunoprecipitation experiments followed by deep sequencing of the wild-type and 

its csrA mutant (Sahr et al., 2017). In total 516 RNAs have been identified to be affected by CsrA. Based on these data, this 

figure illustrates positive effects in green and enzymes which are negatively affected are indicated in red (Sahr et al., 2017). 

In short, CsrA seems to positively affect enzymes of the TCA cycle as well as serine incorporation during E phase in L. 

pneumophila. 
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Figure 5-6: CsrA related regulation of glucose and glycerol metabolism in L. pneumophila based on extensive transcriptome 

and proteome analysis in combination with RNA-Co-immunoprecipitation experiments followed by deep sequencing of the 

wild-type and its csrA mutant (Sahr et al., 2017). In total 516 RNAs have been identified to be affected by CsrA. Based on 

these data, this figure illustrates positive effects in green and enzymes which are negatively affected are indicated in red (Sahr 

et al., 2017). In short, CsrA seems to positively effect enzymes of the ED pathway, glycolytic and gluconeogenetic reactions 

during E growth phase. On the other hand, CsrA negatively affect the uptake of glucose as well as glycerol metabolism.  
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Figure 5-7: CsrA related regulation of PHB metabolism in L. pneumophila based on extensive transcriptome and proteome 

analysis in combination with RNA-Co-immunoprecipitation experiments followed by deep sequencing of the wild-type and 

its csrA mutant (Sahr et al., 2017). In total 516 RNAs have been identified to be affected by CsrA. Based on these data, this 

figure illustrates positive effects in green and enzymes which are negatively affected are indicated in red (Sahr et al., 2017). 

In short, CsrA seems to negatively affect PHB biosynthesis during E growth phase.  
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Table 5-1: 13C-Excess (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from experiments with L. 

pneumophila wild-type and its csrA mutant in presents of 6 mM [U-13C3]serine. Labeling experiments were performed in CE 

MDM. Harvest of bacterial cells occurred at E phase (OD600 = 0.35) and PE phase (OD600 = 0.80). Data are means and SDs 

of six values (3 technical replicates x 2 biological replicates). 

 

 

 

 

 

 

 

 

 

 

 

[U-13C3]serine WT E WT PE ΔCsrA E ΔCsrA PE 

Ala 59.14% ± 2.60% 63.22% ± 0.79% 56.73% ± 0.62% 62.63% ± 1.20% 

Asp 23.17% ± 1.98% 25.87% ± 0.51% 19.03% ± 0.84% 22.13% ± 0.07% 

Glu 20.19% ± 1.03% 24.77% ± 0.15% 16.91% ± 0.19% 21.66% ± 0.85% 

Gly 18.02% ± 0.70% 16.73% ± 1.33% 14.50% ± 0.15% 14.18% ± 1.51% 

Ile 0.04% ± 0.01% 0.06% ± 0.02% 0.05% ± 0.02% 0.06% ± 0.01% 

Leu 0.01% ± 0.00% 0.01% ± 0.01% 0.01% ± 0.01% 0.01% ± 0.01% 

Lys 37.06% ± 2.48% 40.66% ± 0.80% 33.18% ± 1.07% 37.50% ± 0.48% 

Phe 0.13% ± 0.07% 0.12% ± 0.06% 0.12% ± 0.06% 0.13% ± 0.07% 

Pro 0.23% ± 0.04% 0.35% ± 0.03% 0.25% ± 0.04% 0.28% ± 0.05% 

Ser 82.59% ± 0.61% 82.69% ± 0.24% 87.13% ± 8.61% 84.91% ± 3.21% 

Tyr 0.07% ± 0.03% 0.09% ± 0.02% 0.11% ± 0.05% 0.07% ± 0.06% 

Val 0.04% ± 0.03% 0.03% ± 0.02% 0.01% ± 0.01% 0.04% ± 0.02% 

DAP 38.48% ± 1.44% 43.51% ± 0.40% 33.20% ± 1.84% 43.41% ± 0.78% 

PHB 26.98% ± 2.98% 28.84% ± 0.94% 26.56% ± 1.70% 29.73% ± 0.87% 

His 37.87% ± 2.99% 36.48% ± 0.65% 25.91% ± 0.72% 28.40% ± 2.46% 

Man 24.95% ± 2.49% 19.56% ± 1.63% 13.13% ± 0.65% 12.99% ± 0.75% 

GlcN 24.14% ± 2.19% 20.48% ± 4.99% 13.99% ± 3.22% 17.08% ± 3.99% 

Mur 32.62% ± 6.07% 31.96% ± 6.56% 24.03% ± 2.07% 27.54% ± 4.41% 
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Table 5-2: 13C-Excess (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from experiments with L. 

pneumophila wild-type and its csrA mutant in presents of 11 mM [U-13C6]glucose. Labeling experiments were performed in 

CE MDM. Harvest of bacterial cells occurred at E phase (OD600 = 0.35) and PE phase (OD600 = 0.80). Data are means and 

SDs of six values (3 technical replicates x 2 biological replicates). 

 

 

 

 

 

 

 

 

 

 

 

[U-13C6]glucose WT E WT PE ΔCsrA E ΔCsrA PE 

Ala 3.95% ± 0.23% 6.30% ± 0.94% 4.15% ± 0.23% 4.80% ± 0.10% 

Asp 1.57% ± 0.20% 3.13% ± 0.42% 1.53% ± 0.26% 2.09% ± 0.07% 

Glu 1.50% ± 0.04% 2.77% ± 0.46% 1.41% ± 0.61% 1.86% ± 0.07% 

Gly 0.10% ± 0.09% 0.11% ± 0.04% 0.07% ± 0.05% 0.12% ± 0.09% 

Ile 0.06% ± 0.04% 0.05% ± 0.02% 0.06% ± 0.01% 0.06% ± 0.03% 

Leu 0.02% ± 0.02% 0.01% ± 0.01% 0.01% ± 0.01% 0.01% ± 0.00% 

Lys 2.31% ± 0.17% 3.98% ± 0.46% 2.55% ± 0.18% 3.19% ± 0.04% 

Phe 0.09% ± 0.04% 0.12% ± 0.01% 0.09% ± 0.04% 0.08% ± 0.02% 

Pro 0.22% ± 0.03% 0.24% ± 0.04% 0.22% ± 0.04% 0.24% ± 0.04% 

Ser 0.22% ± 0.08% 0.36% ± 0.20% 0.19% ± 0.06% 0.16% ± 0.03% 

Tyr 0.10% ± 0.03% 0.08% ± 0.02% 0.06% ± 0.02% 0.10% ± 0.05% 

Val 0.04% ± 0.03% 0.02% ± 0.02% 0.02% ± 0.01% 0.05% ± 0.03% 

DAP 3.21% ± 058% 5.19% ± 1.33% 3.42% ± 0.27% 3.76% ± 0.12% 

PHB 1.76% ± 0.67% 3.17% ± 1.35% 1.72% ± 0.32% 1.99% ± 0.28% 

His 19.93% ± 0.67% 26.97% ± 2.05% 23.62% ± 2.53% 28.59% ± 0.14% 

Man 46.94% ± 9.19% 61.03% ± 9.50% 61.08% ± 2.38% 60.70% ± 13.10% 

GlcN 31.62% ± 4.59% 36.68% ± 4.53% 38.91% ± 2.25% 34.47% ± 1.58% 

Mur 16.58% ± 2.20% 28.51% ± 1.34% 21.57% ± 11.48% 25.05% ± 2.77% 
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Table 5-3: 13C-Excess (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from experiments with L. 

pneumophila wild-type and its csrA mutant in presents of 50 mM [U-13C3]glycerol. Labeling experiments were performed in 

CE MDM. Harvest of bacterial cells occurred at E phase (OD600 = 0.35) and PE phase (OD600 = 0.80). Data are means and 

SDs of six values (3 technical replicates x 2 biological replicates). 

 

 

 

 

 

 

 

 

 

 

[U-13C3]glycerol WT E WT PE ΔCsrA E ΔCsrA PE 

Ala 0.51% ± 0.11% 0.83% ± 0.27% 1.11% ± 0.05% 1.42% ± 0.16% 

Asp 0.24% ± 0.07% 0.33% ± 0.23% 0.49% ± 0.05% 0.63% ± 0.09% 

Glu 0.27% ± 0.05% 0.48% ± 0.19% 0.48% ± 0.03% 0.77% ± 0.12% 

Gly 0.08% ± 0.07% 0.03% ± 0.06% 0.08% ± 0.04% 0.08% ± 0.08% 

Ile 0.08% ± 0.04% 0.07% ± 0.05% 0.09% ± 0.04% 0.07% ± 0.05% 

Leu 0.06% ± 0.06% 0.06% ± 0.06% 0.06% ± 0.05% 0.04% ± 0.04% 

Lys 0.33% ± 0.06% 0.57% ± 0.18% 0.71% ± 0.04% 0.94% ± 0.13% 

Phe 0.16% ± 0.11% 0.16% ± 0.09% 0.15% ± 0.08% 0.16% ± 0.08% 

Pro 0.31% ± 0.05% 0.26% ± 0.07% 0.26% ± 0.07% 0.27% ± 0.14% 

Ser 0.14% ± 0.04% 0.12% ± 0.06% 0.16% ± 0.06% 0.13% ± 0.04% 

Tyr 0.12% ± 0.05% 0.11% ± 0.06% 0.11% ± 0.03% 0.13% ± 0.03% 

Val 0.04% ± 0.03% 0.04% ± 0.06% 0.04% ± 0.04% 0.05% ± 0.03% 

DAP 0.55% ± 0.11% 1.08% ± 0.11% 0.98% ± 0.08% 1.56% ± 0.14% 

PHB 0.57% ± 0.23% 0.49% ± 0.17% 0.49% ± 0.19% 0.68% ± 0.19% 

His 5.45% ± 0.90% 6.40% ± 1.08% 13.79% ± 1.35% 13.99% ± 0.03% 

Man 4.22% ± 0.98% 6.27% ± 1.24% 12.70% ± 0.56% 16.00% ± 0.79% 

GlcN 6.56% ± 1.42% 18.35% ± 2.44% 13.44% ± 2.03% 23.35% ± 5.19% 

Mur 8.61% ± 1.58% 20.39% ± 5.24% 19.65% ± 5.43% 28.21% ± 5.14% 
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Table 5-4: 13C-Excess (mol%) of protein-derived amino acids, DAP, PHB, LACT and STE from experiments with L. 

pneumophila wild-type and its csrA mutant in present of 0.8 mM [1,2,3,4-13C4]palmitic acid. Labeling experiments were 

performed in CE MDM. Harvest of bacterial cells occurred at E phase (OD600 = 0.35) and PE phase (17d). Data are means 

and SDs of six values (3 technical replicates x 2 biological replicates). 

 

 

 

 

 

 

 

 

 

 

 

0.8 mM [1.2.3.4-
13C4]palmitic acid 

WT E WT PE ΔCsrA E ΔCsrA  PE 

Ala 0.14% ± 0.07% 0.12% ± 0.05% 0.19% ± 0.05% 0.14% ± 0.03% 

Asp 0.27% ± 0.05% 0.17% ± 0.06% 0.44% ± 0.09% 0.23% ± 0.04% 

Glu 0.50% ± 0.03% 0.52% ± 0.06% 0.78% ± 0.08% 0.54% ± 0.07% 

Gly 0.06% ± 0.06% 0.10% ± 0.06% 0.07% ± 0.04% 0.07% ± 0.07% 

His 0.13% ± 0.03% 0.15% ± 0.09% 0.16% ± 0.09% 0.24% ± 0.14% 

Ile 0.12% ± 0.04% 0.07% ± 0.03% 0.14% ± 0.05% 0.07% ± 0.02% 

Leu 0.07% ± 0.03% 0.01% ± 0.01% 0.12% ± 0.07% 0.02% ± 0.01% 

Lys 0.22% ± 0.07% 0.18% ± 0.09% 0.22% ± 0.07% 0.23% ± 0.05% 

Phe 0.18% ± 0.02% 0.13% ± 0.04% 0.19% ± 0.04% 0.22% ± 0.02% 

Pro 0.00% ± 0.00% 0.03% ± 0.04% 0.00% ± 0.00% 0.06% ± 0.05% 

Ser 0.17% ± 0.04% 0.14% ± 0.05% 0.17% ± 0.26% 0.20% ± 0.04% 

Tyr 0.14% ± 0.06% 0.15% ± 0.07% 0.18% ± 0.05% 0.15% ± 0.09% 

Val 0.04% ± 0.03% 0.06% ± 0.03% 0.09% ± 0.08% 0.08% ± 0.06% 

DAP 0.18% ± 0.06% 0.11% ± 0.10% 0.56% ± 0.23% 0.31% ± 0.35% 

PHB 2.79% ± 1.52% 3.36% ± 0.91% 4.93% ± 0.35% 6.32% ± 0.76% 

LACT 0.16% ± 0.06% 0.28% ± 0.29% 0.16% ± 0.19% 0.30% ± 0.18% 

STE 0.19% ± 0.02% 0.35% ± 0.23% 0.41% ± 0.12% 0.45% ± 0.05% 
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Table 5-5: Relative fractions of isotopologues (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from 

experiments with L. pneumophila wild-type and its csrA mutant in presents of 6 mM [U-13C3]serine. Labeling experiments 

were performed in CE MDM using. M+X represents the mass of the unlabeled metabolite plus X labeled 13C-atoms. Data are 

means and SDs of six values (3 technical replicates x 2 biological replicates). 

[U-13C3]serine: WT E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 4.55% ± 0.16% 4.40% ± 0.06% 54.68% ± 2.63%     

Asp 10.46% ± 0.39% 16.43% ± 0.86% 10.92% ± 1.08% 4.15% ± 0.68%    

Glu 7.29% ± 0.22% 17.77% ± 0.39% 8.17% ± 0.43% 5.59% ± 0.52% 2.24% ± 0.25%   

Gly 0.57% ± 0.06% 17.73% ± 0.71%      

His 17.23% ± 0.45% 8.03% ± 0.32% 11.93% ± 0.27% 14.38% ± 0.40% 8.23% ± 0.86% 9.91% ± 2.16%  

Lys 4.92% ± 0.32% 16.87% ± 0.37% 20.33% ± 0.75% 12.62% ± 0.79% 10.06% ± 1.06% 3.66% ± 0.63%  

Ser 1.75% ± 0.05% 2.59% ± 0.07% 80.28% ± 0.59%     

DAP 3.95% ± 0.26% 5.91% ± 0.65% 28.43% ± 0.99% 10.07% ± 0.99% 12.46% ± 0.50% 7.60% ± 0.26% 2.87% ± 0.22% 

PHB 5.82% ± 0.78% 28.53% ± 1.42% 3.11% ± 0.78% 8.92% ± 1.58%    

Man 4.81% ± 0.18% 5.22% ± 0.30% 15.90% ± 0.56% 4.48% ± 0.29% 3.67% ± 0.68% 8.41% ± 2.00%  

GlcN 5.71% ± 0.81% 6.34% ± 1.75% 13.78% ± 2.33% 3.91% ± 0.99% 5.34% ± 2.84% 7.13% ± 1.77%  

Mur 8.12% ± 3.16% 2.66% ± 2.33% 20.05% ± 11.78% 5.35% ± 3.71% 2.76% ± 3.86% 14.48% ± 4.97%  

[U-13C3]serine: WT PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 6.47% ± 0.28% 4.87% ± 0.11% 57.82% ± 0.77%     

Asp 14.48% ± 0.58% 18.18% ± 0.30% 11.99% ± 0.45% 4.17% ± 0.12%    

Glu 12.66% ± 0.36% 21.62% ± 0.14% 10.72% ± 0.18% 5.96% ± 0.27% 2.38% ± 0.10%   

Gly 0.56% ± 0.12% 16.44% ± 1.28%      

His 27.92% ± 1.97% 9.63% ± 0.24% 13.27% ± 0.20% 15.25% ± 0.43% 6.64% ± 0.19% 6.28% ± 0.17%  

Lys 7.40% ± 0.34% 19.42% ± 0.48% 23.05% ± 0.87% 14.11% ± 0.26% 10.08% ± 0.13% 3.63% ± 0.09%  

Ser 4.99% ±1.12% 3.26% ± 0.19% 78.85% ± 0.28%     

DAP 7.77% ± 0.53% 8.38% ± 0.34% 30.52% ± 0.32% 14.03% ± 0.27% 12.98% ± 0.51% 8.05% ± 0.26% 2.74% ± 0.16% 

PHB 9.18% ± 0.28% 32.33% ± 0.73% 3.62% ± 0.22% 7.66% ± 0.52%    

Man 6.53% ± 1.46% 5.71% ± 0.47% 16.44% ± 1.06% 3.29% ± 0.81% 2.27% ± 0.26% 4.26% ± 0.92%  

GlcN 11.71% ± 13.14% 8.29% ± 5.64% 9.36% ± 5.47% 6.96% ± 5.43% 6.36% ± 5.82% 1.15% ± 1.00%  

Mur 13.11% ± 9.66% 12.85% ± 10.80% 6.68% ± 7.67% 14.87% ± 9.49% 4.94% ± 8.46% 8.12% ± 7.87%  

[U-13C3]serine: ΔCsrA E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 5.08% ± 0.71% 4.04% ± 0.35% 52.34% ± 1.05%     

Asp 10.94% ± 0.18% 14.94% ± 0.51% 8.59% ± 0.58% 2.38% ± 0.22%    

Glu 7.80% ± 0.65% 17.31% ± 0.16% 6.55% ± 0.20% 4.05% ± 0.12% 1.25% ± 0.11%   

Gly 0.37% ± 0.06% 14.31% ± 0.14%      

His 30.77% ± 1.77% 6.84% ± 0.44% 8.79% ± 0.24% 12.46% ± 0.77% 3.48% ± 0.52% 2.90% ± 0.20%  

Lys 6.12% ± 0.82% 17.66% ± 0.38% 20.55% ± 0.72% 11.18% ± 0.46% 7.77% ± 0.56% 2.07% ± 0.21%  

Ser 1.81% ± 0.73% 2.67% ± 0.21% 84.74% ± 8.71%     

DAP 4.95% ± 1.11% 5.92% ± 0.63% 29.88% ± 1.80% 8.60% ± 0.60% 9.92% ± 0.59% 5.27% ± 0.37% 1.47% ± 0.31% 

PHB 5.49% ± 0.34% 30.61% ± 1.81% 2.62% ± 0.11% 7.92% ± 0.88%    

Man 4.67% ± 0.37% 3.92% ± 0.15% 11.99% ± 0.93% 2.00% ± 0.19% 1.32% ± 0.27% 2.61% ± 0.32%  

GlcN 6.30% ± 1.20% 4.59% ± 0.92% 10.72% ± 1.85% 2.63% ± 1.51% 2.39% ± 1.11% 2.30% ± 1.01%  

Mur 4.98% ± 3.04% 6.82% ± 2.94% 16.00% ± 1.93% 8.24% ± 2.93% 1.14% ± 1.27% 6.49% ± 1.65%  

[U-13C3]serine: ΔCsrA PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 5.58% ± 1.02% 4.25% ± 0.55% 57.93% ± 0.53%     

Asp 13.18% ± 0.86% 16.81% ± 0.39% 10.09% ± 0.31% 2.87% ± 0.18%    

Glu 11.04% ± 1.29% 20.35% ± 0.43% 9.01% ± 0.61% 5.19% ± 0.10% 1.75% ± 0.06%   

Gly 0.43% ± 0.07% 13.97% ± 1.49%      

His 36.30% ± 0.18% 7.73% ± 1.06% 9.55% ± 0.85% 13.13% ± 1.05% 3.70% ± 0.48% 3.16% ± 0.59%  

Lys 6.68% ± 1.10% 19.05% ± 0.82% 22.72% ± 0.53% 12.86% ± 0.23% 8.95% ± 0.26% 2.65% ± 0.08%  

Ser 3.11% ± 0.53% 2.82% ± 0.25% 81.99% ± 2.88%     

DAP 5.27% ± 1.06% 6.54% ± 1.21% 32.62% ± 1.71% 13.19% ± 0.62% 13.63% ± 0.38% 8.22% ± 0.69% 2.49% ± 0.29% 

PHB 6.76% ± 0.77% 34.25% ± 0.49% 2.96% ± 0.13% 8.69% ± 0.78%    

Man 4.94% ± 0.92% 4.10% ± 0.39% 12.65% ± 0.20% 1.79% ± 0.38% 1.16% ± 0.35% 2.32% ± 0.33%  

GlcN 10.25% ± 5.20% 7.52% ± 3.06% 10.03% ± 3.83% 4.84% ± 4.41% 1.94% ± 1.29% 3.00% ± 2.65%  

Mur 11.72% ± 4.79% 3.76% ± 3.33% 21.00% ± 5.35% 5.54% ± 3.91% 2.57% ± 0.99% 8.00% ± 4.85%  
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Table 5-6: Relative fractions of isotopologues (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from 

experiments with L. pneumophila wild-type and its csrA mutant in presents of 11 mM [U-13C6]glucose. Labeling experiments 

were performed in CE MDM. M+X represents the mass of the unlabeled metabolite plus X labeled 13C-atoms. Data are means 

and SDs of six values (3 technical replicates x 2 biological replicates). 

[U-13C6]glucose: WT E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0.52% ± 0.12% 0.37% ± 0.13% 3.53% ± 0.20%     

Asp 1.98% ± 0.52% 1.15% ± 0.10% 0.65% ± 0.06% 0.01% ± 0.01%    

Glu 1.65% ± 0.36% 2.43% ± 0.16% 0.25% ± 0.03% 0.02% ± 0.02% 0.03% ± 0.01%   

Gly        

His 5.72% ± 0.31% 13.44% ± 0.32% 9.15% ± 0.52% 3.93% ± 0.08% 8.75% ± 1.00% 0.00% ± 0.00%  

Lys 2.31% ± 0.13% 2.48% ± 0.44% 2.19% ± 0.14% 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%  

Ser        

DAP 2.47% ± 1.22% 2.08% ± 0.59% 4.49% ± 0.74% 0.34% ± 0.15% 0.13% ± 0.08% 0.04% ± 0.04% 0.01% ± 0.03% 

PHB 1.23% ± 0.71% 2.67% ± 0.98% 0.07% ± 0.16% 0.06% ± 0.05%    

Man 2.42% ± 1.05% 2.25% ± 1.61% 8.41% ± 4.86% 2.12% ± 1.19% 2.73% ± 0.62% 37.89% ± 13.91%  

GlcN 4.98% ± 0.96% 5.49% ± 0.72% 12.01% ± 2.13% 3.60% ± 0.32% 4.85% ± 0.91% 16.51% ± 2.74%  

Mur 13.34% ± 1.67% 2.90% ± 1.53% 7.81% ± 2.76% 2.28% ± 2.40% 0.50% ± 0.78% 7.55% ± 1.40%  

[U-13C6]glucose: WT PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 1.08% ± 0.29% 0.67% ± 0.22% 5.50% ± 0.82%     

Asp 4.02% ± 0.30% 2.30% ± 0.33% 1.21% ± 0.21% 0.06% ± 0.04%    

Glu 3.71% ± 0.45% 4.01% ± 0.64% 0.50% ± 0.17% 0.08% ± 0.05% 0.06% ± 0.02%   

Gly        

His 6.48% ± 0.20% 16.58% ± 1.00% 11.21% ± 1.07% 5.06% ± 0.47% 13.67% ± 1.03% 0.00% ± 0.00%  

Lys 4.45% ± 0.46% 4.30% ± 0.51% 3.54% ± 0.37% 0.02% ± 0.03% 0.03% ± 0.04% 0.00% ± 0.00%  

Ser        

DAP 4.84% ± 0.95% 3.65% ± 0.89% 6.28% ± 1.64% 0.73% ± 0.26% 0.31% ± 0.16% 0.13% ± 0.07% 0.01% ± 0.01% 

PHB 1.82% ± 0.76% 5.06% ± 2.09% 0.07% ± 0.09% 0.13% ± 0.07%    

Man 3.58% ± 1.39% 3.96% ± 1.51% 14.26% ± 7.23% 3.92% ± 1.86% 4.01% ± 0.53% 46.03% ± 16.40%  

GlcN 8.17% ± 0.35% 7.56% ± 0.18% 14.27% ± 1.72% 4.53% ± 0.38% 6.02% ± 0.77% 17.63% ± 3.24%  

Mur 13.11% ± 3.76% 8.07% ± 0.73% 11.08% ± 2.99% 9.29% ± 0.83% 1.31% ± 0.39% 10.81% ± 0.46%  

[U-13C6]glucose: ΔCsrA E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0.65% ± 0.24% 0.33% ± 0.05% 3.71% ± 0.19%     

Asp 2.19% ± 0.57% 1.15% ± 0.21% 0.54% ± 0.09% 0.00% ± 0.01%    

Glu 1.83% ± 0.40% 2.21% ± 0.22% 0.21% ± 0.07% 0.01% ± 0.01% 0.03% ± 0.00%   

Gly        

His 5.35% ± 0.26% 14.78% ± 1.30% 10.12% ± 0.65% 5.08% ± 0.39% 11.22% ± 1.81% 0.00% ± 0.00%  

Lys 2.61% ± 0.24% 2.72% ± 0.23% 2.41% ± 0.22% 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%  

Ser        

DAP 2.63% ± 0.83% 2.25% ± 0.56% 4.60% ± 0.20 0.44% ± 0.12%% 0.17% ± 0.08% 0.07% ± 0.05% 0.01% ± 0.01% 

PHB 1.16% ± 0.57% 2.74% ± 0.43% 0.01% ± 0.01% 0.06% ± 0.02%    

Man 1.98% ± 0.67% 2.78% ± 0.59% 9.07% ± 2.37% 3.26% ± 0.94% 3.46% ± 0.37% 50.23% ± 0.55%  

GlcN 4.10% ± 0.90% 5.32% ± 0.56% 12.59% ± 0.61% 4.76% ± 0.36% 5.65% ± 0.82%% 22.28% ± 1.23%  

Mur 5.64% ± 3.82% 3.56% ± 2.14% 6.29% ± 2.42% 5.46% ± 5.03% 0.98% ± 1.22% 11.85% ± 8.81%  

[U-13C6]glucose: ΔCsrA PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0.76% ± 0.14% 0.44% ± 0.06% 4.26% ± 0.06%     

Asp 2.75% ± 0.25% 1.57% ± 0.06% 0.81% ± 0.07% 0.01% ± 0.02%    

Glu 2.72% ± 0.27% 2.68% ± 0.12% 0.29% ± 0.03% 0.03% ± 0.02% 0.04% ± 0.00%   

Gly        

His 5.58% ± 0.21% 17.18% ± 0.76% 11.56% ± 0.49% 5.92% ± 0.22% 14.65% ± 0.53% 0.00% ± 0.00%  

Lys 3.62% ± 0.21% 3.45% ± 0.09% 2.88% ± 0.11% 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%  

Ser        

DAP 3.09% ± 0.51% 2.69% ± 0.31% 4.90% ± 0.25% 0.39% ± 0.10% 0.18% ± 0.13% 0.09% ± 0.04% 0.02% ± 0.03% 

PHB 1.24% ± 0.36% 3.30% ± 0.43% 0.01% ± 0.01% 0.03% ± 0.04%    

Man 2.35% ± 1.01% 2.78% ± 0.94% 9.13% ± 2.49% 2.55% ± 0.43% 3.63% ± 0.41% 50.09% ± 16.03%  

GlcN 7.68% ± 0.23% 6.65% ± 0.24% 11.99% ± 0.25% 4.28% ± 0.14% 5.44% ± 0.71% 17.59% ± 1.22%  

Mur 9.78% ± 1.52% 7.55% ± 1.61% 7.45% ± 1.19% 6.80% ± 1.65% 0.68% ± 0.78% 12.08% ± 2.48%  
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Table 5-7: Relative fractions of isotopologues (mol%) of protein-derived amino acids, DAP, PHB, Man, GlcN and Mur from 

experiments with L. pneumophila wild-type and its csrA mutant in presents of 50 mM [U-13C3]glycerol. Labeling experiments 

were performed in CE MDM. M+X represents the mass of the unlabeled metabolite plus X labeled 13C-atoms. Data are means 

and SDs of six values (3 technical replicates x 2 biological replicates). 

[U-13C3]glycerol: WT E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0,43% ± 0,21% 0,04% ± 0,04% 0,35% ± 0,03%     

Asp        

Glu 0,36% ± 0,24% 0,47% ± 0,08% 0,01% ± 0,03% 0,00% ± 0,00% 0,00% ± 0,01%   

Gly        

His 3,53% ± 0,75% 4,17% ± 0,67% 4,20% ± 0,80% 0,62% ± 0,17% 1,16% ± 0,09% 0,00% ± 0,00%  

Lys 0,23% ± 0,25% 0,11% ± 0,13% 0,51% ± 0,04% 0,00% ± 0,00% 0,00% ± 0,00% 0,00% ± 0,00%  

Ser        

DAP 0,55% ± 0,62% 0,36% ± 0,31% 0,66% ± 0,22% 0,05% ± 0,06% 0,06% ± 0,12% 0,01% ± 0,02% 0,01% ± 0,02% 

PHB 0,71% ± 0,25% 0,74% ± 0,48% 0,01% ± 0,03% 0,01% ± 0,02%    

Man 2,37% ± 0,76% 1,79% ± 0,40% 5,41% ± 1,38% 0,16% ± 0,08% 0,18% ± 0,04% 0,26% ± 0,08%  

GlcN 4,15% ± 0,74% 2,15% ± 0,52% 4,49% ± 0,59% 0,74% ± 0,65% 1,58% ± 0,73% 1,09% ± 0,71%  

Mur 2,15% ± 3,07% 2,95% ± 2,79% 3,77% ± 2,17% 5,70% ± 2,05% 0,59% ± 0,97% 1,10% ± 0,88%  

[U-13C3]glycerol: WT PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0,52% ± 0,35% 0,07% ± 0,10% 0,60% ± 0,12%     

Asp        

Glu 0,67% ± 0,46% 0,81% ± 0,28% 0,02% ± 0,02% 0,00% ± 0,00% 0,01% ± 0,01%   

Gly        

His 3,98% ± 0,92% 4,80% ± 0,75% 5,14% ± 1,09% 0,69% ± 0,12% 1,34% ± 0,14% 0,00% ± 0,00%  

Lys 1,01% ± 0,66% 0,20% ± 0,14% 0,67% ± 0,09% 0,00% ± 0,00% 0,00% ± 0,00% 0,00% ± 0,00%  

Ser        

DAP 1,44% ± 0,94% 0,80% ± 0,39% 1,39% ± 0,20% 0,07% ± 0,07% 0,00% ± 0,00% 0,00% ± 0,01% 0,01% ± 0,01% 

PHB 0,56% ± 0,39% 0,68% ± 0,16% 0,01% ± 0,01% 0,00% ± 0,00%    

Man 2,95% ± 1,22% 2,63% ± 0,31% 7,41% ± 1,33% 0,42% ± 0,28% 0,35% ± 0,28% 0,62% ± 0,37%  

GlcN 6,54% ± 1,18% 5,67% ± 0,59% 9,44% ± 0,98% 2,84% ± 0,32% 5,04% ± 1,35% 4,56% ± 0,96%  

Mur 6,22% ± 3,13% 7,14% ± 3,36% 8,77% ± 1,61% 7,78% ± 3,13% 1,62% ± 1,32% 6,05% ± 2,55%  

[U-13C3]glycerol: ΔCsrA E 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0,48% ± 0,13% 0,19% ± 0,10% 0,83% ± 0,10%     

Asp 1,37% ± 0,35% 0,01% ± 0,02% 0,19% ± 0,06% 0,00% ± 0,00%    

Glu 0,82% ± 0,13% 0,71% ± 0,11% 0,04% ± 0,05% 0,00% ± 0,00% 0,01% ± 0,01%   

Gly        

His 6,90% ± 0,47% 10,25% ± 0,81% 9,39% ± 0,88% 1,80% ± 0,23% 4,00% ± 0,52% 0,00% ± 0,00%  

Lys 0,98% ± 0,39% 0,53% ± 0,19% 0,74% ± 0,09% 0,00% ± 0,00% 0,00% ± 0,00% 0,00% ± 0,00%  

Ser        

DAP 1,24% ± 1,00% 0,92% ± 0,36% 1,19% ± 0,30% 0,01% ± 0,02% 0,02% ± 0,04% 0,00% ± 0,00% 0,01% ± 0,03% 

PHB 0,57% ± 0,47% 0,69% ± 0,16% 0,00% ± 0,00% 0,00% ± 0,00%    

Man 4,81% ± 0,26% 4,79% ± 0,41% 13,47% ± 0,52% 1,23% ± 0,12% 0,79% ± 0,08% 2,09% ± 0,21%  

GlcN 5,48% ± 1,68% 5,18% ± 3,98% 10,79% ± 2,32% 1,73% ± 2,28% 2,07% ± 0,91% 2,52% ± 0,96%  

Mur 5,80% ± 7,94% 6,53% ± 5,75% 8,78% ± 3,50% 10,70% ± 5,92% 2,09% ± 2,67% 3,24% ± 3,76%  

[U-13C3]glycerol: ΔCsrA PE 

 M+1 M+2 M+3 M+4 M+5 M+6 M+7 

Ala 0,56% ± 0,16% 0,23% ± 0,10% 1,08% ± 0,08%     

Asp 1,45% ± 0,45% 0,08% ± 0,08% 0,30% ± 0,04% 0,00% ± 0,00%    

Glu 1,33% ± 0,35% 1,13% ± 0,14% 0,06% ± 0,05% 0,00% ± 0,00% 0,01% ± 0,00%   

Gly        

His 7,10% ± 0,16% 10,38% ± 0,21% 9,81% ± 0,29% 1,76% ± 0,11% 3,93% ± 0,14% 0,00% ± 0,00%  

Lys 1,53% ± 0,39% 0,68% ± 0,13% 0,92% ± 0,11% 0,00% ± 0,00% 0,00% ± 0,00% 0,00% ± 0,00%  

Ser        

DAP 1,74% ± 0,82% 1,34% ± 0,31% 2,00% ± 0,21% 0,07% ± 0,07% 0,03% ± 0,03% 0,00% ± 0,00% 0,00% ± 0,01% 

PHB 0,73% ± 0,16% 0,98% ± 0,33% 0,00% ± 0,00% 0,00% ± 0,00%    

Man 5,61% ± 0,47% 4,77% ± 0,90% 15,72% ± 0,93% 1,93% ± 0,31% 1,30% ± 0,18% 3,24% ± 0,47%  

GlcN 7,22% ± 1,15% 6,62% ± 0,50% 13,27% ± 1,09% 3,01% ± 0,89% 5,68% ± 1,85% 6,57% ± 3,11%  

Mur 4,49% ± 1,73% 6,72% ± 1,92% 12,87% ± 2,07% 14,12% ± 2,70% 1,85% ± 1,44% 7,83% ± 5,26%  
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Table 5-8: Relative fractions of isotopologues (mol%) of PHB and glutamic acid from L. pneumophila WT and its csrA mutant 

from labeling experiments with 0.8 mM [1,2,3,4-13C4]palmitic acid. Labeling experiments were performed in CE MDM. 

M+X represents the mass of the unlabeled metabolite plus X labeled 13C-atoms. Data are means and SDs of six values (3 

technical replicates x 2 biological replicates). 

PHB 

 WT E WT PE ΔCsrA E ΔCsrA PE 

M+1 1.93% ± 2.01% 1.21% ± 1.12% 1.67% ± 2.03% 1.02% ± 0.59% 

M+2 3.32% ± 2.09% 4.60% ± 1.11% 7.65% ± 1.14% 10.49% ± 1.26% 

M+3 0.17% ± 0.37% 0.51% ± 0.66% 0.09% ± 0.18% 0.15% ± 0.22% 

M+4 0.52% ± 0.51% 0.38% ± 0.38% 0.62% ± 0.57% 0.71% ± 0.33% 

Glutamic acid 

 WT E WT PE ΔCsrA E ΔCsrA PE 

M+1 0.33% ± 0.18% 0.30% ± 0.17% 0.83% ± 0.30% 0.41% ± 0.21% 

M+2 0.89% ± 0.12% 1.05% ± 0.20% 1.22% ± 0.22% 0.99% ± 0.19% 

M+3 0.11% ± 0.03% 0.01% ± 0.03% 0.14% ± 0.02% 0.03% ± 0.03% 

M+4 0.00% ± 0.00% 0.01% ± 0.02% 0.02% ± 0.02% 0.01% ± 0.02% 

M+6 0.01% ± 0.01% 0.02% ± 0.01% 0.03% ± 0.01% 0.03% ± 0.01% 
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Table 5-9: Ratio of 13C-excess in histidine to alanine calculated for E phase and PE phase for experiments with L. 

pneumophila wild-type and its csrA mutant. Labeling experiments were performed in CE MDM using either 6 mM [U-

13C3]serine, 11 mM [U-13C6]glucose or 50 mM [U-13C3]glycerol. SDs was calculated from the highest possible (+) and the 

lowest possible (-) value. 

Ratio: 13C-Excess (mol%) His/13C-Excess (mol %) Ala 

 WT E + - WT PE + - 
ΔCsrA 

E 
+ - 

ΔCsrA 

PE 
+ - 

6 mM [U-
13C3]serine 

0.64 0.08 0.08 0.58 0.02 0.02 0.46 0.02 0.02 0.45 0.05 0.05 

11 mM [U-
13C6]glucose 

5.04 0.49 0.44 4.28 1.13 0.84 5.69 0.97 0.87 5.95 0.16 0.15 

50 mM [U-
13C3]glycerol 

10.67 5.11 3.32 7.76 5.74 2.90 12.39 1.92 1.74 9.88 1.28 1.02 

 

Table 5-10: Ratio of 13C-excess in histidine to glutamine calculated for E phase and PE phase for experiments with L. 

pneumophila wild-type and its csrA mutant. Labeling experiments were performed in CE MDM using either 6 mM [U-

13C3]serine, 11 mM [U-13C6]glucose or 50 mM [U-13C3]glycerol. SDs was calculated from the highest possible (+) and the 

lowest possible (-) value. 

Ratio: 13C-Excess (mol%) His/13C-Excess (mol %) Glu 

 WT E + - WT PE + - 
ΔCsrA 

E 
+ - 

ΔCsrA 

PE 
+ - 

6 mM [U-
13C3]serine 

1.88 0.26 0.23 1.47 0.04 0.03 1.53 0.06 0.06 1.31 0.17 0.16 

11 mM [U-
13C6]glucose 

13.33 0.85 0.80 9.75 2.81 2.01 16.70 4.21 3.34 15.41 0.70 0.65 

50 mM [U-
13C3]glycerol 

19.98 7.96 5.69 13.38 12.90 5.46 28.86 5.06 4.44 18.25 3.32 2.44 
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5.3 Supplementary Material: Multiple substrate usage of Coxiella burnetii 

to feed a bipartite metabolic network 

Häuslein, I., Cantet, F., Reschke, S., Chen, F., Bonazzi, M., and Eisenreich, W. (2017). Frontiers in Cellular and 

Infection Microbiology 7. 
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LIST OF ABBREVIATIONS 

% percent 

°C degrees Celsius 

µL microliter 

µm micrometer 

3-HBA 3-hydroxybutyrate 

6-PG 6-phosphogluconate 

ABC transporter ATP-binding cassette transporter 

ACCM-2 Acidified Citrate Cysteine Medium 2 

ACES N-(2-acetamido)-2-aminoethanesulfonic acid 

ADP adenosine diphosphate 

Ala alanine 

Arg arginine 

Asn asparagine 

Asp aspartate 

ATP adenosine triphosphate 

BCYE buffered charcoal yeast extract 

CCV Coxiella-containing vacuole 

CE MDM carbon-enriched minimal defined medium 

CsrA carbon storage regulator A 

Cys cysteine 

DAP diaminopimelic acid 

DHAP dihydroxyacetone phosphate 

DNA deoxyribonucleic acid 

E phase exponential growth phase 

ED pathway Entner-Doudoroff pathway 

EI enzyme I 

EII enzyme II 

EPF exponential phase form 

FADH2 flavin adenine dinucleotide 

Fru-6-P fructose 6-phosphate 

g gram 

G3P glycerol 3-phosphate 

Gal galactose 

GAP glyceraldehyde 3-phosphate 

GC/MS gas chromatography/mass spectrometry 
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GDP guanosine diphosphate 

GlcN glucosamine 

Gln glutamine 

glpD glycerol 3-phosphate dehydrogenase 

glpK glycerol kinase 

Glu glutamate 

Glu-6-P glucose 6-phosphate 

Gly glycine 

h hour 

His histidine 

HPr heat-stable or histidinephosphorylatable protein 

icm/dot intracellular multiplication/defective organelle trafficking 

IHF integration host factor 

Ile isoleucine 

KDPG 2-keto-3-deoxy-6-phosphogluconate 

kPa kilo Pascal 

L liter 

LACT lactate 

LCV Legionella-containing vacuole 

Leu leucine 

Lys lysine 

M molar 

Man mannose 

MDM minimal defined medium 

Met methionine 

MFS Major facilitator superfamily 

mg milligram 

MIF mature infectious form 

min minutes 

mL milliliter 

mm millimeter 

mM millimolar 

mRNA messenger RNA 

Mur muramic acid 

NAD(P)H nicotinamide adenine dinucleotide (phosphate) 

ng nanogram 

OD600 optical density at 600 nanometer 
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PBS phosphate-buffered saline 

PDL Poly-D-lysine 

PE phase Post-exponential growth phase 

PEP phosphoenolpyruvate 

pH Potential of hydrogen 

PHB polyhydroxybutyrate 

Phe phenylalanine 

ppGpp guanosine-3’,5’-bispyrophosphate 

PPP pentose phosphate pathway 

Pro proline 

PTS phosphoenolpyruvate: carbohydrate phosphotransferase system 

RNA ribonucleic acid 

rpe ribulose-phosphate 3-epimerase 

RPF replicative phase form 

rpiA ribulose 5-phophate isomerase 

rpm rounds per minute 

RT retention time 

s seconds 

SCV Small-cell variant 

SD standard deviation 

Ser serine 

SPF stationary phase form 

STE stearic acid 

T4BSS type IVB secretion system 

T4SS type IV secretion system 

TBDMS tert-butyl-dimethylsilyl 

TCA tricarboxylic acid 

Thr threonine 

tktA transketolase 

TMS trimethylsilyl 

tRNA transfer RNA 

Trp tryptophan 

Tyr tyrosine 

Val valine 

α-KGA α-ketoglutarate 
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