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Kurzfassung

Eines der Hauptprobleme für die gehemmte Akzeptanz von Elektrofahrzeugen ist die geringe
Reichweite. Um diese zu erhöhen, sind bezüglich der eingesetzten Lithium-Ionen-Batterien
nicht nur elektrochemische Verbesserungen notwendig, es bedarf auch einer genaueren Zus-
tandsschätzung. Durch eine exaktere Bestimmung des Batteriezustandes kann die Ausnutzung
der Batterie erhöht werden, z. B. durch berechnen des Ladezustands basierend auf der ak-
tuellen Kapazität und nicht auf der nominalen, oder durch verwenden des Ladezustandes als
Abbruchkriterium beim Laden und Entladen anstatt der Zellspannung.

Die Literatur stellt für diese nicht direkt messbaren Zustände verschiedene Algorithmen zur
Verfügung, wobei der Kalman Filter eine weit verbreitete Methode der Zustandsschätzung
ist. In bisherigen Studien wird der Kalman Filter unter Laborbedingungen meist nur bei
einer bestimmten Temperatur und bei Laufzeiten von wenigen Stunden untersucht. In der
Praxis jedoch, muss der Algorithmus innerhalb eines weiten Temperaturbereichs und über
mehrere Jahre hinweg zuverlässig und genau arbeiten. Deshalb ist das Ziel dieser Arbeit, die
praktische Umsetzbarkeit des Kalman Filters auf Zell- und Modulebene zu untersuchen.

Um notwendige reale Testbedingungen zu bestimmen, wird das Batterieverhalten auf Ab-
hängigkeiten von Temperatur, Ladezustand, Strom und Alter hin untersucht. Basierend
auf diesem Batterieverhalten wird eine generische Validierungs- und Bewertungsmethode
vorgestellt, die Algorithmen bei verschiedenen Temperaturen und Lastdynamiken testet. Um
reale Bedingungen zu schaffen, werden die Daten für die Validierung von einem Batterie
Management System gemessen.

Anhand dieser Methode werden verschiedene Kalman Filter verglichen, wobei der Fokus
auf den variierenden Modellparametern liegt. Es wird eine sehr starke Abhängigkeit der
Schätzperformanz von den Parametern gezeigt, die wiederum durch Filtereinstellungen beein-
flusst werden kann. Diese Einstellungen beschreiben die nicht konstanten und nicht linearen
Modellunsicherheiten und müssen empirisch für alle Zellzustände bestimmt werden. Beim Ver-
gleich verschiedener Kalman Filtertypen, konnten keine relevanten Abweichungen festgestellt
werden.

Neben den Modellparametern zeigt die aktuelle Forschung auch alterungsbedingte Verän-
derungen der Ruhespannungskennlinie, die die Referenz für den Kalman Filter darstellt. Die
Auswirkung der Veränderung auf die Zustandsschätzung wird jedoch nicht gezeigt. Zu diesem
Zweck wird in dieser Arbeit eine Untersuchung mit unterschiedlich gealterten Zellen durchge-
führt. Dabei wird beobachtet, dass der Einfluss der Ruhespannung auf die Schätzperformanz
mit steigendem Alter der Zellen zunimmt. Dieser Effekt wird bei niedrigen Temperaturen



noch weiter verstärkt. Um die Schätzperformanz zu verbessern, können beide Abhängigkeiten
wiederum empirisch durch die Filtereinstellungen beeinflusst werden.

Des Weiteren wird eine Alterungsstudie auf Zell- und Modulebene durchgeführt, um diese
Veränderungen der Ruhespannung genauer untersuchen zu können. Dabei soll die Unter-
suchung auf Modulebene die Skalierbarkeit der Alterung und somit der Zustandsschätzung
zeigen. Auf Zellebene wird eine ladezustandsabhängige Veränderung der Ruhespannung beo-
bachtet, die unabhängig von der Alterung ist, aber mit der Kapazitätsabnahme korreliert.
Werden die Ruhespannungen der gealterten Zellen und Module verglichen, zeigen sich auf
beiden Ebenen ähnliche Veränderungen. Somit kann die Skalierbarkeit der Alterung bestätigt
werden.

Das Fazit dieser Arbeit ist, dass der Kalman Filter in der Praxis nicht ohne Weiteres zur
Zustandsschätzung von Lithium-Ionen-Batterien verwendet werden kann. Die nicht kon-
stanten Modellparameter und die alterungs- sowie temperaturabhängige Ruhespannung er-
fordern jeweils eine empirische Anpassung der Filtereinstellungen. Somit ist die Performanz
des Kalman Filters in der realen Anwendung verglichen mit dem Laborbetrieb mit seinen sehr
eingeschränkten Bedingungen wesentlich geringer.



Abstract

One of the central topics regarding the reduced market acceptance of electric vehicles is the
limited driving range compared to conventional vehicles with combustion engines. To increase
the driving range, whilst optimising of the electrochemical attributes of lithium-ion cells the
state estimation also has to be improved. As a result of a more accurate state estimation,
the utilisation of a cell can be increased e. g. by calculating the state of charge based on the
actual cell capacity and not the nominal value, or by considering the state of charge as abort
criterion during charging and discharging and not the cell voltage.

In literature many algorithms for the un-measurable states are presented, wherein the Kalman
filter is one of the most common methods. In recent studies, only the short-term behaviour
over several hours, at mostly one temperature, under laboratory conditions has been tested.
However, in real applications, the Kalman filter has to perform within a wide temperature
range reliably and accurately over several years. On account of this, the aim of this thesis is
to investigate the practical feasibility of the Kalman filter at the single cell and module level.

To identify required test conditions the cell behaviour is investigated regarding temperature,
state of charge, current and ageing dependencies. Based on the cell behaviour a generic
validation and benchmark method is presented for testing algorithms at different temperatures
and load dynamics. For a realistic test environment the measurement data for the validation
is provided by a battery management system.

The focus of the performed Kalman filter comparison study is the variable cell model param-
eters. Here, a strong influence of the parameters on the estimation performance is shown,
whereby the estimations are further influenced by the filter tuning. The tuning parameters
describe the inconstant, non-linear model uncertainties and are to determine for all condi-
tions empirically. Relevant deviations between different Kalman filter implementation are not
observed.

In addition to the model parameters recent research also observes a change in open circuit
voltage over lifetime. Therefore, the open circuit voltage represents the reference for the
Kalman filter. However, the influence of these changes on the state estimation is not shown.
Thus, an investigation with cells in different ageing states is performed. It is shown that the
influence of the open circuit voltage on the state estimation increases with the progression of
ageing. This effect is enhanced at low temperatures. To improve the estimation performance
both dependencies can be influenced by the filter tuning.

For a more detailed investigation into the change in open circuit voltage over lifetime, an



ageing study at the single cell and module level is performed. In this context, the module
ageing study aims to prove the scalability of ageing and consequently of the state estimation.
At cell level, a state of charge dependent change in open circuit voltage is observed, which
is independent from the ageing conditions and correlates with the capacity degradation. By
comparing the open circuit voltage of the aged cells and modules fairly similar changes are
observed, and as a result, the scalability of ageing can be confirmed.

This thesis concludes that the Kalman filter is not necessarily feasible in real applications. The
strongly varying model parameters, as well as the temperature and ageing dependent open
circuit voltage, require an empirical adaptation of the inconstant and non-linear filter tuning
parameters. Hence, the performance of the Kalman filter in a real application is significantly
lower compared to the laboratory environment with its high constrains.
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1 Introduction

Initially in this chapter, a motivation is given to define the main topic of this thesis. After-
wards, a literature review concerning Kalman filtering is given. Based on this, four objectives
are identified to assess the feasibility of Kalman filters (KF) in real applications. Furthermore,
an overview of this work is presented.

1.1 Motivation

For lithium-ion cells (LICs) several state of charge (SOC) estimation algorithms are presented
in literature [1]. One of the most common algorithms is the KF, which was invented by
Rudolph Kalman [2] in 1960 and originally used to estimate trajectories for manned and
unmanned spacecrafts. In 2004, Plett [3–5] introduced a method to use the KF for estimating
the SOC of LICs, that is not directly measurable. This method was commonly adapted in later
works, resulting in various implementations of state estimation based on KFs. The advantage
of KFs is the consideration of model and measurement uncertainties, which results in a robust
estimation behaviour.

Before the application of the KF in the field of batteries is shown, an example of an original
application field is presented. This example highlights the differences compared to the use
with batteries and the subsequent concerns are discussed.

To illustrate the functionality of a KF, it is applied to track a falling object by a radar [6]. This
object has an altitude of s0=100 km and a velocity of v0=2000m s−1. Furthermore, the object
is only affected by gravity (g=9.81m s−2), fraction or other braking influences are neglected.
The standard deviation of the measurement accuracy of the radar is 300m. The physical
definition of the problem is represented by Eq. 1.1 with velocity ṡ (Eq. 1.2) and acceleration
s̈ (Eq. 1.3) as states.

s = s0 − v0t−
gt2

2 (1.1)

ṡ = −v0 − gt (1.2)

s̈ = −g (1.3)

In this example the initial values for the states altitude and velocity are set to zero. The
acceleration is the constant model input. The task for the KF is to estimate these states by
minimising the error between the model and the real world by adapting the states.

1



1 Introduction

Fig. 1.1a and Fig. 1.1b show the estimation results for altitude and velocity, respectively, and
Fig. 1.1c as well as Fig. 1.1d show the corresponding error.
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Figure 1.1: Tracking of a falling object: (a) altitude s; (b) velocity v; (c) altitude estimation error; (d) velocity
estimation error.

As one can see, the errors of the altitude and velocity estimated by the KF converge to
zero after 15 s. This is possible because the linear model implemented in the KF is identical
to the linear problem. Moreover, the model parameters are constant, which reduces model
uncertainties.

In the field of batteries, the models differ due to the complex, non-linear cell behaviour. These
differences are caused by an insufficiently accurate model, or by inexact model parameters. By
using a KF without model parameter estimation, in this work referred to as a single Kalman
filter (SKF), uncertainties are increased due to constant model parameters. However, as a cell
is dependent on SOC, temperature, current and age [7], the model uncertainties vary during
operation, because a model is not able to represent all possible conditions. These model un-
certainties must be compensated by adding process noise, but in literature these empirically
determined values are mostly assumed to be constant. This allows a reliable and accurate
estimation only in strictly defined ambient conditions, such as constant temperatures or short
running times in order to neglect ageing effects.
To increase the model accuracy, and therefore decreased model uncertainties, a KF with an
additional parameter estimation, in this work referred to as a dual Kalman filter (DKF), is
used. Compared to the SKF, the parameters are estimated based solely on empirically deter-
mined, constant process noise without any model description. However, parameter estimation
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is possible in constrained ambient conditions.

Taking this into account, a more detailed investigation of the KF behaviour is required to
guarantee a reliable and accurate SOC and parameter estimation in a real application over
lifetime, for example in an electric vehicle (EV). Here, the temperature demand can be between
−30 ◦C and 50 ◦C [8, p. 31].

To identify required factors for a feasibility study at cell and module level, the next section
presents literature research into aspects regarding Kalman filtering.

1.2 Literature research

1.2.1 Lithium-ion cell modelling

The KF uses a cell model to estimate the state of a LIC. Therefore, an introduction to common
modelling approaches is given in this section.
In the field of cell modelling, the charge and discharge behaviour of cells is mainly described
by three different modelling approaches. The most accurate, but, consequently, most complex
method is the electrochemical model. Here, mass and charge transfer reactions in the cell
are described on a fundamental level with numerous partial differential equations. With this
approach an accurate prediction of the terminal voltage can be achieved. However, the high
complexity of the model comes with the price of high parametrisation and computational
effort. In [9–12] a KF-based SOC estimation with an electrochemical model is introduced.
Here, the state vector of the filter includes more than five state variables.

An additional modelling method is the black box model. Here, no physical knowledge of
internal cell processes is required. Examples of black box models are: stochastic models [13],
fuzzy logic models [14] or neuronal network (NN) models [15; 16]. To the authors knowledge,
for the application with a KF, in literature only NN models are relevant [17; 18].

The most common approach is based on equivalent circuit models (ECMs). Here, the electro-
chemical behaviour of the cell is approximated by passive electrical elements such as resistors
and capacities. Common implementations of this approach, like the Shepherd, Unnewehr
and Nernst models, approximate the cell behaviour with a SOC dependent voltage source
and additional resistors [4]. In [4; 19–26] these three models are combined and used in a
KF. Wang et al. achieved higher estimation accuracy with a combined approach, using the
Shepard, Unnewehr and Nernst models in combination and by selecting the particular model
required depending on the voltage level [23].

By extending the ECM with additional capacitor and resistor networks (RC terms), model
accuracy can be significantly enhanced. However, an increasing amount of RC terms results
in higher model complexity and parametrisation effort. In [3; 4; 17; 27–49] different KFs are
implemented with one RC term. To achieve higher accuracy in the voltage calculation, [50–64]
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implemented different KFs with two RC terms.

Further improvements in model accuracy can be achieved by implementing a charge and
discharge dependency of the ECM elements [4; 21; 29; 38] and/or hysteresis effects of the
open circuit voltage (OCV) [4; 20; 33; 65].

Hu et al. compared the above mentioned models and their influence on the filter accuracy
and came to the conclusion that the ECM with one RC term provides the best compromise
between accuracy and complexity [66].

1.2.2 Kalman filter

The KF is based on a set of differential equations (model) to predict the state of a physical,
real process. Therefore, it minimises the error between the measured and predicted output
of a linear system by adapting the state variables. A common use of the filter in the battery
field is to predict the cell voltage based on an ECM and a Coulomb counter. For this purpose,
the relation between the SOC and the OCV is considered. The calculated voltage is then
compared to the measured cell voltage and the difference is minimised by adapting the SOC
and other ECM values. For linear systems a linear Kalman filter (LKF) can be used for state
estimation [48; 54].

Due to the non-linear cell behaviour, the LKF is rarely used in literature. By linearising
the system and measurement matrices in the actual state by first-order Taylor approximation
of the differential equations, the KF can be applied to batteries. This approach is called
extended Kalman filter (EKF) [5; 6; 21; 29–31; 35; 51; 53; 55; 67]. However, filter estimation
can result in inaccurate behaviour and divergence of the filter, due to the linearisation error
and the neglect of the higher-order derivatives of the Taylor approximation [67].

For this reason, the sigma point Kalman filter (SPKF) has been developed. Here, no deriva-
tives are required, the linearisation is approximated by a set of sigma points [28; 67; 68]. Two
common types of the SPKF are the unscented Kalman filter (UKF) and the central difference
Kalman filter (CDKF).
In [21; 44; 54; 69–72] an UKF based on the unscented transformation is presented. This
transformation is a method to approximate the expected value and the covariance of a ran-
dom variable propagated through a non-linear function by omitting the derivation of system
and measurement matrices [67].
The CDKF is based on the interpolation according to Stirling [27; 67; 73]. As in the case of
the UKF, the derivation is omitted. The difference between both filters is connected to the
implementation of scaling and gain factors. While the CDKF uses only one scaling factor, the
UKF uses three.
The disadvantage of both filters is the required square root calculation of the covariance ma-
trix with the Cholesky factorisation in each time step. However, rounding errors can occur
and the positive definition of the covariance matrix can not be guaranteed [74]. To reduce
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the calculation error, [67; 70] introduced the square root forms of the UKF and CDKF. Here,
the Cholesky factorisation is only updated and not calculated in each time step.

The SOC estimation with a KF is highly dependent on the accuracy of the ECM parameters.
If these values are not exact or fluctuate over time, the estimation error of the filter increases.
A joint or dual estimation can compensate this by adapting the ECM parameters. In the case
of the joint estimation, the states and parameters are in the same state-space [75; 76]. Due
to the higher order of the resulting system, the computational effort increases with the third
order (n3) of the state vector dimension n [28]. To keep the system’s order low, a separate
state-space model can be used. Here, both filters work in parallel [3–5; 30; 67; 73; 77], but,
consequently, the correlation between the states and parameters may get lost, which may
result in higher estimation errors [28].

Due to the serial connection of LIC in battery modules, state estimation of each serial block
is required. This can lead to high computational efforts and memory requirements. In order
to not have to calculate the state of every single block, in literature two methods with an
EKF are proposed. Dai et al. describe a two step method, whereby in the first step the
average SOC of the module is estimated, then the differences between the block SOC from
the average SOC is derived [52]. The other method is to estimate the lowest SOC in a module
by considering the minimal block voltage [78]. In this case, the SOC can’t be used for other
battery management system (BMS) functions such as balancing.

To guarantee an accurate and stable behaviour of the filters, precise filter tuning is required.
Therefore, the correct values of the process (model uncertainties) and measurement noise and
the covariance matrices (estimation uncertainty) must be found. Due to the lack of exact noise
information, these values are determined empirically. This process is called filter tuning.
To reduce the time-consuming filter tuning procedure, adaptive Kalman filters (AKFs) are
introduced [19; 32; 37; 41; 43; 49; 56]. Here, the process and measurement noise is calculated
on-line based on the error between measured and predicted output voltage. Although here an
initial guess also has to be made.
Saha et al. presented a different approach where the process and measurement noise can
be found off-line and is not adapted during progress [79]. Compared with the adapting
approaches, the measurement noise can also be set stepwise depending on the SOC [29].

1.2.3 Validation of state estimation algorithms

Within the literature, various algorithms for SOC estimation are validated by different meth-
ods without further benchmarking. However, a comparison of the results is not possible, as
the area of application is multilateral and the shortcomings of the estimators are often not
considered in the validation process.

An important issue in the validation is the determination of a reference SOC to compare the
estimated SOC with a reliable value. A common method of measuring the reference SOC is
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the Coulomb counter (Eq. 1.4):

SOC(t) = SOC0 + 1
Cact

∫ t

t=0
i(τ)dτ (1.4)

where SOC0 corresponds to the initial SOC, Cact to the actual measured capacity of the cell,
i(τ) to the load current and t to the time of operation. Therefore, a positive load current
corresponds to charging. One issue is that, mostly, the same current signal is used to calculate
the reference SOC and to estimate the SOC with the algorithm [17; 22; 45; 80; 81].
An offset-afflicted measurement causes a drift in the reference, calculated by Eq. 1.4. When
the algorithm is not able to correct this drift, the estimation follows the offset-influenced
reference. Other algorithms, for example OCV-based algorithms, may correct the error, but,
when using only one current sensor, it is not possible to distinguish between the correct and
incorrect SOC (Fig. 1.2a).
This shortcoming can be addressed by using two different sensors for the reference and for
the algorithm [36; 39; 52; 71]. Therefore, the current sensor for the reference must be more
accurate than the sensor for the algorithm. In Fig. 1.2b, this concept is depicted schematically.
The estimation based on the current measurement of a BMS (Fig. 1.2b, sensor 1) drifts apart,
while the algorithm partly compensates for the error.
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Figure 1.2: Validation issues: (a) validation with one current sensor (constant-current (CC) discharge); (b)
validation with an additional, more accurate, current sensor (CC discharge); (c) shortcomings of
discretising and resulting error.

By determination of the reference SOC using a Coulomb counter, the finite sample rate causes
an error during dynamic loads. In Fig. 1.2c the real current (dashed line) and the discrete
current measurement (solid line) is shown. The green area symbolises the resulting error,
caused by the discrete measurement. Furthermore, temperature changes and high currents
can cause temporary capacity (Cact) variations, which can affect the SOC calculation (Eq. 1.4).
A potentially more accurate way to define a reference SOC is a residual charge determination
at the end of each test. Due to the CC discharge, the accumulated error, caused by the
finite sample rate and other influences, can be minimised. This approach is mandatory for
long-term tests. [39]

The behaviour of a battery depends on temperature, SOC and current rate. Furthermore, the
OCV changes with temperature, depending on chemistry and SOC [82; 83]. Consequently,
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due to possible temperature variations during operation, the validation has to be performed
at different and varying temperatures, otherwise a reliable and accurate function cannot be
guaranteed. [39]

The algorithms presented in the literature are rarely validated during the charging process. In
common applications, the discharge current is highly dynamic, while in the charge direction,
the current is comparatively constant. As an example for neural networks, this also leads to
the need for separate training data for the charge period. Other algorithms such as the dual
KF [3–5] or the sliding mode observer [84] also behave differently without any dynamics [39;
42]. These behaviours are often neglected.

Due to the wide measurement range of current sensors, the measurement accuracy of small
currents can be disturbed by noise or by an offset of the sensor. These errors can affect
the SOC estimation. In order to address these issues, pauses and long-term tests [62] are
necessary. During these tests, the SOC based on the Coulomb counter increases due to the
current sensor offset, while the SOC estimation of the algorithm follows the reference SOC
[39].

Further investigations showed the estimation accuracy and stability concerning variable am-
bient temperatures as well as ageing effects. Additionally, the influences of initialisation and
parameter errors are mandatory for a proper validation [45].

1.2.4 Comparative studies of different Kalman filters

Despite the importance of the filter tuning parameters, most publications about KFs as well
as comparative studies of different filters rarely provide information about the filter tuning.
So, the comparability is to be considered as critical, due to the high influence of the filter
tuning on the estimation behaviour and accuracy.

In [27; 45; 55] an EKF is compared with a SPKF. Here, the results in [45; 55] indicate
a similarly accurate estimation of both filters, while in [27] the EKF displayed inaccurate
behaviour. However, information about the filter tuning is not presented in these publications.
In [20; 26; 35] an EKF is compared with an UKF. In [20] fairly similar results of the EKF and
UKF are presented by using the same filter tuning. However, in [26; 35] the UKF demonstrated
a better performance. The filter tuning is the same for both algorithms.
Sun et al. compared an EKF with an adaptive extended Kalman filter (AEKF) [20]. In
contrast to [19], both filters showed the same results. As shown in [20; 26; 35; 45; 55], the
EKF can result in accurate estimation and stable behaviour. Nevertheless, in [40; 57] an EKF
with an adaptive ECM approach is compared with an EKF without any ECM adaptation,
whereby the latter shows inaccurate results. The tuning parameters are not mentioned.

As one can see, comparable types of KFs can result in completely different results. This shows
the importance of the filter tuning and a comparative validation method.
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1.2.5 Influence of change in open circuit voltage on the state of charge
estimation

As already mentioned in Section 1.2.2, the KF considers the relation between the SOC and
the OCV to estimate the states. Whereby, the OCV can be represented by a model or look-
up table (LUT) in the filter. This may lead to large deviations compared to the measured
OCV resulting in high estimation errors or unstable estimation behaviour. Nevertheless, the
influence of the OCV on the SOC estimation is rarely investigated in literature.

In [71] the influence of the temperature-dependent OCV of a lithium-iron-phosphate (LFP)
cell on the SOC estimation with a KF is investigated. Here, high errors resulting from
an incorrect OCV–SOC correlation are shown. To resolve this problem, different OCVs at
different temperatures are implemented in the battery model.

Zheng et al. showed, that this temperature dependency is also influenced by the OCV de-
termination method [85]. Here, the OCV, determined by a constant charge/discharge with a
current of C/20 (constant-current (CC)-OCV), and the OCV, determined by 10% charge/dis-
charge steps followed by a 2 h relaxation time (incremental (IC)-OCV), are compared and the
influence on the SOC estimation with a KF is investigated. In their work, the OCV shows
a high deviation from the reference at lower temperatures, and therefore, the estimation of
the KF is more accurate when the IC-OCV is used. However, at 0 ◦C both the CC-OCV and
the IC-OCV method lead to high estimation errors, whereas the regions lower than 10% and
higher than 90% are not considered.

The influence of an aged OCV on the SOC estimation with KFs is often not considered in
literature.

1.2.6 Ageing of lithium-ion cells and modules

Until today, LICs are mainly used in mobile devices such as cell phones and laptops [86].
However, with the necessity of high-energy and high-power battery packs for different appli-
cations, such as stationary energy storage systems (SESSs) or EVs, cells must be connected
in series and parallel. As a consequence of the increasing amount of cells connected in series,
the computational effort for state estimators increases, as the state for each cell is required.
Therefore, in [38; 52; 87; 88] the KF is applied on module and pack level by scaling the ECM
parameters. Similar to the state estimation on cell level, the ageing influence is not consid-
ered. To take this into account, the ageing behaviour on module and pack level as well as
the ageing scalability has to be investigated. Consequently, a profound understanding of the
ageing behaviour of LICs, modules and packs is mandatory.

Numerous studies on the ageing behaviour of lithium-ion batterys (LIBs) at the cell level have
been presented in past and recent publications [89–101], in contrast to investigations at the
battery pack or at the module level. The consequences of ageing generally result in a loss of
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capacity and an increase in impedance, with the latter resulting in a loss of power capability
[102].

The main reasons for ageing can generally be subdivided into three main categories, which in-
clude: the loss of active lithium, the degradation of electrode materials, and deteriorated ionic
kinetics [89]. Among the numerous ageing mechanisms of LICs, the formation and evolution
of the solid electrolyte interphase (SEI) layer at the interface of the anode and the electrolyte
take on a key role. This layer ideally inhibits any decomposition of the electrolyte after for-
mation [103–105] and grows in thickness over their lifetime, especially at a high SOC and high
temperatures [106–108]. The increase of this layer results in a decreasing capacity because of
the consumption of active lithium accompanied by an increase in impedance. Therefore, long
operation periods at high SOC and temperatures should generally be avoided for LICs [107;
109–112]. For a more comprehensive description of the various ageing mechanisms of LICs,
such as lithium plating or the effects of volumetric changes of active materials, the reader is
referred to [106; 109; 113–115].

In addition to the loss of capacity and increase in impedance the OCV also changes over life-
time, which can influence the state estimation by a KF because of the OCV–SOC relation. A
change in shape of the OCV due to degradation effects is observed in more recent publications
[116–119]. However, the relation between SOC and OCV is often assumed to be constant over
the lifetime of a LIC [33]. Similarly to the capacity degradation, these variations can be
explained by a change in the electrode morphology due to the formation of dendritic deposits
[120], loss of cycable lithium-ions [119], loss of active materials [119; 121; 122] or a changing
electrode balancing [123]. As a consequence, the correlation between OCV and SOC changes
during ageing [124] and the relation has to be updated for an accurate state estimation based
on the OCV [125]. In [126] the SOC of an aged lithium-cobalt-oxide (LCO) and in [127] that
of a nickel-manganese-cobalt (NMC) cell is derived from the OCV–SOC relation of a new cell.
In both publications a maximum SOC error of approximately 10% is observed.

Apart from the works describing the ageing behaviour or mechanisms of LICs, statistical
investigations conclude that variations in the initial lithium-ion cell-to-cell parameters (e.g.
capacity and impedance parts) will increase with the progression of ageing, even for cells
cycled in the laboratory under controlled ambient conditions [128–132]. Cell-to-cell (or lot-to-
lot) variations in the new state must be ascribed to the production process, wherein variations
in the manufacturing process parameters may occur [133; 134].
In contrast to these intrinsic causes of cell parameter variations, predominantly extrinsic
causes are assumed to be responsible for an increase in the parameter spread during the
course of ageing in battery units (e.g. parallel blocks, modules and packs). Such extrinsic
causes include temperature gradients in the battery pack or deviations in the conductor re-
sistances, cell contact resistances and also their type of interconnection [135; 136]. Cells that
are connected in series are loaded with the same current but can be operated within differ-
ent voltage swings because the weakest cell always determines the performance of the entire
string [137]. In contrast, differences in the cell resistances in parallel connected cells cause an
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uneven current distribution, which in turn results in SOC drifts [138]. As the SOC influences
the OCV, these drifts automatically equalise at pause periods. In summary, during ageing,
lithium-ion cell-to-cell parameter variations increase in the field because of the aforementioned
extrinsic reasons, whereby a link to initial cell-to-cell variations in the new state because of
production tolerances should additionally be assumed [132].
For cells which are interconnected in battery units, it is questionable whether this increasing
spread of cell characteristics accelerates the ageing behaviour at module level compared with
that of single cells. For example, a 20% mismatch in the ohmic resistance of two LFP-based
cells connected in parallel led to a lifetime reduction by 40% when compared with an opti-
mally matched compound [138]. However, the ageing behaviour of these parallel compounds
was not compared with that of single cells. In addition, most of the ageing experiments in
the laboratory are only performed with single LICs because battery unit investigations result
in a higher complexity as well as higher measurement equipment requirements and resources.

To show the feasibility of the KF, the different objectives of this work are derived from the
presented literature research in the next section. Furthermore, the structure of this work is
described.

1.3 Objectives and structure of this work

From the motivation and literature research above, four objectives are derived to fulfil the
investigation of the practical feasibility of KFs in real applications on cell and module level:

Objective 1: LIC modelling and experimental investigation of the cell behaviour

The Implementation of a KF in the field of batteries requires an accurate cell model. This
model and the quality of the corresponding parameters are the basis for a precise state estima-
tion. The literature research about ECMs showed (Section 1.2.1), that the ECM consisting of
the OCV, an ohmic resistance and one or two RC terms are commonly used with KFs due to
the compromise between accuracy and complexity. To use this ECM in a real application with
varying conditions, e.g. temperature, the investigation of the ECM parameter dependencies is
necessary to guarantee an accurate functionality of the state estimation with KFs. Hence, the
parameter dependencies of this ECM with one and two RC terms are presented and related to
physicochemical effects (Chapter 2). Furthermore, the determined ECM parameters in this
work are compared with the cell behaviour described in literature to confirm these results
(Chapter 6). Therefore, cells in different ageing states are considered.

Objective 2: Influence of ECM parameters on different KFs

Section 1.2.2 summarised the different KF types implemented in literature. Among others,
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1.3 Objectives and structure of this work

SKF and DKF are mentioned and methods to determine the filter tuning parameters are
presented. Chapter 3 presents the general implementation of the KF and shows differences
to the other KF forms. To show the resulting variation of estimation performance, all in-
troduced KFs are compared. Therefore, a generalised validation and benchmark method
(Chapter 5) is developed based on the literature research into validation of state estima-
tion algorithms (Section 1.2.3), ECM parameter dependencies (Chapter 2) and the already
mentioned shortcomings of comparative studies (Section 1.2.4). The validation contains an
analysis of standardised driving cycles and a generation of an application-independent test
profile. The resulting profiles are performed in a wide temperature range during low-dynamic,
high-dynamic and long-term validation scenarios. Furthermore, due to the observed depen-
dencies of ECM parameters on SOC, temperature, current and age (Chapter 6), the influence
of ECM models and parameters on the estimation accuracy of the different KFs is investigated
(Chapter 7).

Objective 3: Influence of the OCV on the state estimation

The literature research regarding the influence of the OCV on the SOC estimation (Sec-
tion 1.2.5) showed a non negligible dependency on temperature and ageing state of the cell.
Therefore, Chapter 8 investigates the influence on the state estimation by considering three
cells in different ageing states over a wide temperature range.

Objective 4: Changes in OCV during lifetime at cell and module level

Due to the importance of the OCV as the reference for the KF, the ageing behaviour of
the OCV is investigated in more detail. An ageing study is performed at cell (Section 9.1)
and module (Section 9.2) level to show the ageing impact on the OCV. Additionally, Sec-
tion 9.2 aims to compare the ageing behaviour of modules regarding capacity, resistance and
OCV changes with that of single cells and evaluates present challenges in a module ageing
study. Therefore, temperature influences, influences of contact resistances and the resulting
impact on cell balancing are examined. For this purpose, two modules, consisting of 112 LICs
each, were constructed. With the ageing experiments at module level, the scalability of age-
ing, and consequently the scalability of state of charge estimation algorithms, are investigated.

The present thesis is structured as shown in Fig. 1.3. Firstly, in this part, the literature re-
search of this chapter and the fundamentals regarding cell modelling (Chapter 2) and Kalman
filtering (Chapter 3) are presented to understand the further work. Afterwards, the experi-
mental part of Chapter 4 and the validation and benchmark method of Chapter 5 introduce
the solution approaches (Part II). The results and discussion Part III contains four chap-
ters (Chapter 6 to Chapter 9), whereby each chapter corresponds to one objective presented
above. Finally, the work is summarised and a final conclusion about the feasibility of KFs in
real applications at cell and module level is given in Part IV.
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Figure 1.3: Structure of the work

It is noted, that the development of a new approach with a KF is beyond the scope of this
work, although, design suggestions and recommendations for further works are presented.
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2 Fundamentals of lithium-ion cell modelling

As Section 1.2.1 concluded that the ECM cell model with one and two RC term models are
two of the most commonly used ECMs in state estimation by a KF, both models are used in
this work.
In this chapter the structure of the one and two RC term ECM are presented and the depen-
dencies of the ECM elements are discussed (Section 2.1). Furthermore, the discrete state-space
notation of the ECM is derived in Section 2.2.

2.1 Equivalent circuit based cell modelling

In Fig. 2.1 the ECM with two RC terms is depicted. Furthermore, the dependencies of each
element is shown. The ohmic resistance Ri contains the resistance of the current collectors,
the electrolyte, SEI and additional contact resistances of the cell [139; 140]. The first RC term
(R1, C1) represents the charge transfer processes that consist of the double-layer capacitance
and the charge transfer resistance. The second RC term (R2, C2) describes diffusion effects
that consist of the diffusion capacitance and the diffusion resistance [76]. The OCV U0 is
dependent on the SOC and calculated from an analytical equation or a LUT. [141]

C1 C2

I

UR1 R2

Ri

U1 U2

U0

(SOC, T, I, Age)(T, Age)

(SOC, T, Age)

Figure 2.1: ECM consisting of one ohmic resistance (Ri), two RC terms (R1, C1 and R2, C2) and the SOC-
dependent OCV U0 with the corresponding dependencies. U and I correspond to the terminal
voltage and current, respectively.

The ohmic resistance Ri is measured directly (approximately 1ms) after a current change, or
with an electrochemical impedance spectroscopy (EIS) at a frequency of approximately 1 kHz,
where the imaginary part of the spectrum is zero [142], depending on the cell. This resistance
does not participate in any reactions within the electrodes, resulting in a mostly independence
from the SOC [143]. However, a temperature dependency related to the electrolyte can be
observed. Therefore, a decreasing temperature leads to an increasing viscosity and poor
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2 Fundamentals of lithium-ion cell modelling

lithium-ion transport, resulting in an increased resistance [7; 140]. As already mentioned in
Section 1.2.6, Ri increases with ageing as a result of the growing SEI as well as other ageing
mechanisms.

Fig. 2.2 presents the normalised charge transfer resistances of different commercial 18650 cells
(nickel-cobalt-aluminium (NCA), NMC and LFP) at 25 ◦C, whereby all cells show a similar
behaviour (normalised to their maximum value) at low SOC level. The values for the RC
terms are determined by current pulses [7; 65; 142] or EIS measurements [7; 142; 144]. In
both cases, the voltage response of the applied current in time and frequency domain for
pulses and EIS is fitted by least square methods to optimise the parameters of the ECM.
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Figure 2.2: Normalised and interpolated charge transfer resistance R1 of different commercial 18650 cells
(nickel-cobalt-aluminium, nickel-manganese-cobalt and lithium-iron-phosphate) cell at 25 ◦C (nor-
malised to their maximum value).

For the depicted cell chemistries, at low or high SOC levels, the charge transfer resistance
increases or decreases with a strong non-linear behaviour, while in the midrange, a reasonably
constant charge transfer resistance is observed. The behaviour in the midrange arises from a
concentration equilibrium between reactants and products, resulting in an improved kinetic
of the reversible processes [7; 143; 145].

A decreasing temperature results in a decreasing conductivity in the electrolyte and intercala-
tion kinetics [7; 140; 145; 146]. As a consequence, the charge transfer resistance increases and
the strong non-linear shape at low and high SOC is intensified [145]. In literature, these effects
are mostly modelled by the Arrhenius law, which describes the temperature dependency of
chemical processes [7; 140; 143; 146].

In [7] a current rate dependency on the charge transfer resistance R1 is also shown. With
increasing current the contributions of the charge transfer polarisation decreases, resulting in
a decreasing R1. In literature, the charge transfer is described by the Butler-Volmer equation
[142; 147]. The current rate dependency increases at low temperatures and low SOC levels
[7; 145]. Compared to R1, C1 shows little dependency on temperature or SOC. However, a
change over lifetime is observed [7].
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2.1 Equivalent circuit based cell modelling

Due to slower chemical processes at lower temperatures, diffusion processes, described by the
second RC term, are inhibited [142; 148], which causes the diffusion resistance R2 to increase
[146]. Similar to R1, R2 increases with decreasing SOC. Instead of the second RC term, the
diffusion is often described by the Warbung impedance (frequency domain) [142].

The OCV is defined as the difference between the half-cell potentials of the cathode and
the anode when the applied cell current is cut off and all polarisation effects are completely
decayed. Here, the half-cell potential is related to the amount of lithium intercalated in each
electrode. Consequently, the cell SOC changes with the SOC of both electrodes [83]. Fig. 2.3
shows the OCV of different commercial 18650 cells at 25 ◦C with common cathode materials
such as NCA, NMC or LFP, all with graphite as the anode material. Therefore, the material
composition of the active materials defines the characteristic potential curves of the OCV for
the chemistry [119; 149].
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Figure 2.3: OCVs of commercial 18650 lithium-ion cells with graphite vs. different conventional cathode ma-
terials at 25 ◦C, measured by averaging the cell voltage of a constant current charge and discharge.

The high voltage drop at SOCs lower than approximately 10% can be explained by the
increasing potential of the delithiated anode [124]. In applications this region is often avoided
due to practical reasons [121], for example, the fast voltage drop which results in a high
current demand to fulfil the power requirement.

To determine the OCV, two common methods are established in practise [150]. The first
method is the measurement of the cell voltage at a CC charge and discharge (CC-OCV).
The OCV–SOC relation is then calculated by averaging the charge and discharge curve. Due
to averaging, hysteresis effects and impedance influences are minimised [116]. The charge
throughput is normalised to the actual cell capacity [83]. Hysteresis effects arise from me-
chanical stress and different thermodynamic states at the same SOC [83]. This effect is
predominantly observed in LFP cells. In literature, the applied current to measure the OCV
varies from C/20 [121] to C/40 [83; 119]. In general, a lower applied current leads to a lower
cell polarisation [150; 151], thus, the OCV can be measured more accurately. However, as the
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2 Fundamentals of lithium-ion cell modelling

cell impedance can increase significantly at very low and very high SOCs, a low cell polari-
sation may not be ensured during measurement [119; 150; 151]. Therefore, the CC methods
can lead to high voltage errors and imprecise OCV values in these high and low regions. This
effect increases at lower temperatures [126] as well.
To minimise the voltage error, the OCV can be determined by the so-called incremental-OCV
(IC-OCV). Here, the cell is charged and discharged stepwise to defined SOCs. After each
step, the applied current is cut off and the OCV is measured when a defined relaxation time
is reached. The relaxation time is dependent on SOC, temperature, cell chemistry and cell
age [152]. In literature, the relaxation time varies from 1h [118; 151; 153] to 24 h [126] and
the step size from 4% [126] to 10% [85]. If the same SOC for each cut-off phase in charge and
discharge direction can be guaranteed [151], the charge and discharge OCVs can be averaged
to minimise hysteresis effects [153]. Excluding impedance effects, the temperature dependency
of the OCV can be explained by SOC dependent entropy effects [154].

All elements of the presented ECM suffer from ageing. The main ageing effects are summarised
in Section 1.2.6. Given that detailed investigations regarding ageing effects are not within the
scope of this work, the reader is referred to the cited literature.

In Table 2.1 the dependencies of the ECM elements are summarised, including the corre-
sponding publications.

Table 2.1: SOC, temperature T , current I and ageing dependencies of the ECM elements in literature.

Ri RC terms U0

SOC [143] [7; 140; 143; 145; 146; 155] [83]
T [7; 140; 146; 156] [7; 122; 140; 143; 145; 146] [71; 83; 85; 116; 156]
I - [7; 122; 142; 145–147; 157] -
Age [101; 108; 158] [101; 158] [116–119]

2.2 Discretisation of the equivalent circuit model

The use of the KF on discrete systems, for example a BMS, requires all equations in their
discrete form. Therefore, in this section, the equations of the ECM presented above (Fig. 2.1)
are derived and discretised for n RC terms. The resulting discrete state-space notation is then
used in the KF implementation in the next section.

The equation for the terminal voltage U of the ECM with n RC terms, similar to Fig. 2.1,
results to:

U = U0(SOC) + U1 + · · ·+ Un +RiI (2.1)
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2.2 Discretisation of the equivalent circuit model

To calculate the overpotential Un, Kirchhoff’s first law is applied to the RC term:

I(t) = iC(t) + iR(t) (2.2)

From the equations of the RC term elements Rn and Cn the currents iC and iR result to:

iC(t) = CnU̇n(t) (2.3)

iR(t) = Un(t)
Rn

(2.4)

Substituting the currents iC and iR in Eq. 2.2 with Eq. 2.3 and Eq. 2.4, respectively, the
time-dependent voltage U̇n(t) results to:

U̇n(t) = − 1
RnCn

Un(t) + 1
Cn

I(t) (2.5)

This derivation can be used for any RC-term.

The required SOC value for the SOC dependent OCV is obtained from the coulomb counter
defined by Eq. 1.4. The corresponding deviation ˙SOC(t) results to:

˙SOC(t) = 1
Cact

I(t) (2.6)

Now, the derived equations can be used in the general state-space notation:

ẋ(t) = Atx(t) + Btu(t) (2.7)

y(t) = Htx(t) + Dtu(t) (2.8)

Therefore, x ∈ Rn is the state of the considered system, A∈ Rn×n the transition matrix,
B ∈ Rn×l the influence of the input u ∈ Rl and y∈ Rm the summation of the measured
quantities. The measurement matrix H ∈ Rm×n connects the state x with the measurement
and the straight-way matrix D ∈ Rm×l gives the influence of the input to the measurement.
The system output y corresponds to the terminal voltage U and the system input u to the
terminal current I. The index t symbolises continuous quantities.

With Eq. 2.5 and Eq. 2.6 the continuous state-space notation results to:


U̇1(t)
...

U̇n(t)
˙SOC(t)

 =



− 1
R1C1

0 · · · 0

0 . . . . . . ...
... . . . − 1

RnCn
0

0 · · · 0 0




U1(t)
...

Un(t)
SOC(t)

+


1
C1...
1
Cn
1

Cact

 I(t) (2.9)

The equation for the model output in matrix form corresponds to the sum of the overpotentials
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2 Fundamentals of lithium-ion cell modelling

and the OCV of the presented ECM:

U(t) =
[
1 · · · 1 U0(SOC(t))

SOC(t)

]

U1(t)
...

Un(t)
SOC(t)

+RiI(t) (2.10)

Eq. 2.9 and Eq. 2.10 are now discretised and transformed into the general discrete state-space
notation:

xk+1 = Akxk + Bkuk (2.11)

yk = Hkxk + Dkuk (2.12)

The index k symbolises discrete quantities. According to [6], for every time invariant system
matrix At, the fundamental matrix Φ exists. With this matrix the contiguous state can be
propagated exactly from t0 to any time t:

x(t) = Φ(t− t0)x(t0) (2.13)

The fundamental matrix can be calculated using the Laplace transformation L with the
Laplace operator s and the identity matrix I [6] according to:

Φ(t) = L−1[(sI−At)−1] (2.14)

Φ(t) =



e
− t
R1C1 0 · · · 0

0 . . . . . . ...
... . . . e−

t
RnCn 0

0 · · · 0 1


(2.15)

Due to Φk = Φ(τs) [6], whereby τs is the sample time,

Φ(τs) = Ak =



e
− τs
R1C1 0 · · · 0

0 . . . . . . ...
... . . . e−

τs
RnCn 0

0 · · · 0 1


(2.16)

holds true. To discretise the transition matrix Bt (in this case a vector) the integral of the
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2.2 Discretisation of the equivalent circuit model

continuous quantity Bt multiplied with Φ(t) is calculated and results to:

Bk =
τs∫

0

Φ(t)Btdt (2.17)

Bk =



R1
(
1− e−

τs
R1C1

)
...

Rn
(
1− e−

τs
RnCn

)
τs
Cact


(2.18)

With Eq. 2.16 and Eq. 2.18 the discretised state-space notation of the ECM with n RC terms
results to:

xk+1 =



e
− τs
R1C1 0 · · · 0

0 . . . . . . ...
... . . . e−

τs
RnCn 0

0 · · · 0 1


xk +



R1
(
1− e−

τs
R1C1

)
...

Rn
(
1− e−

τs
RnCn

)
τs
Cact


uk (2.19)

yk =
[
1 · · · 1 U0(xn+1,k)

xn+1,k

]
xk +Riuk (2.20)

where τs and k are the sample time and the time step, respectively. The product of Rn
and Cn corresponds to the time constant τn of the n RC term. The state vector contains n
overpotentials of the RC terms and the SOC:

xk =
[
U1,k · · · Un,k SOCk

]t
(2.21)

Now, the complete discrete state-space notation of the battery model is known and can be
used with a KF. In the next chapter, the KF and variations of it are introduced.
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3 Fundamentals of Kalman filtering

The literature research of Section 1.2.2 showed several variations of KFs. In this chapter the
KF is introduced (Section 3.1) and the differences between the various KF implementations
are identified (Section 3.2).

3.1 General Kalman filter implementation

To include model and measurement uncertainty to the discrete ECM (Section 2.2), noise is
added to the state-space notation (Eq. 2.19 and Eq. 2.20). Two random variables wk ∈ Rn

and vk ∈ Rm represent the process and the measurement noise, respectively. Considering this
notation, the state-space representation and the measurement equation are extended to:

xk+1 = Akxk + Bkuk + wk (3.1)

yk = Hkxk + Dkuk + vk (3.2)

It is further assumed that the variables wk and vk consist of Gaussian distributed white noise.
In addition, regarding the measured quantities, it is expected that the measuring devices
are not offset afflicted. Furthermore, all measurements occur independently from each other.
Moreover, it is assumed that the perturbation due to the process noise appears in the same
manner. If the process noise and the measurement noise are uncorrelated and the mean values
are zero, it can be assumed that:

E
[
wwt

]
= Q (3.3)

E
[
vvt
]

= r (3.4)

Thereby, E is the statistical expectation operator, r the covariance of the measurement noise
and Q the covariance of the process noise matrix. [3]

The KF belongs to the prediction-correction method. It first predicts a state x̂−k in its state-
space notation and the corresponding covariance matrix P−k . In the next step, the Kalman
gain K is computed. Then, the KF corrects the prediction (x̂+

k and P+
k ) by weighting the

difference between the real measurement Uk and the predicted measurement result yk with
the Kk. The working principle of the KF is shown in Fig. 3.1.
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Figure 3.1: Calculation sequence of a Kalman filter

Due to the assumptions made in Eq. 3.4 and Eq. 3.3, the algorithm simplifies to the following
calculation sequence [3; 159]:

Initialisation:
x̂+

0 = E [x0] (3.5)

P+
0 = E

[(
x0 − x̂+

0

) (
x0 − x̂+

0

)t]
(3.6)

Prediction:
x̂−k = Ak−1x̂

+
k−1 + Bk−1uk−1 (3.7)

P−k = Ak−1P+
k−1A

t
k−1 + Q (3.8)

Correction gain:
yk = Hkx̂

−
k + Dkuk (3.9)

Kk = P−k Ht
k

(
Hk P−k Ht

k + r
)−1

(3.10)

Correction:
x̂+
k = x̂−k + Kk (Uk − yk) (3.11)

P+
k = (I−KkHk) P−k (3.12)

In the subsequent work, this type of KF is referred to as a LKF. The described calculation
sequence is used in all different types of KFs.

The differences between the algorithms are introduced in the next section.
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3.2 Variations of Kalman filter algorithms

3.2 Variations of Kalman filter algorithms

In this section the differences between various KFs are shown. All described algorithms are
state of the art and well published. The reader is referred to cited literature for the complete
algorithm implementations.

3.2.1 Extended Kalman filter

The model explained in Section 3.1 is not able to describe non-linear physical systems such
as the charge transfer reaction of electrochemical cells. To include non-linear behaviour, it is
assumed that the state-space equation and measurement equation have the form:

xk+1 = f (xk, uk) + wk (3.13)

yk = e (xk, uk) + vk (3.14)

with the differentiable functions f and e. If the time deviation of these two functions is small,
they can be approximated by the first order Taylor expansion. Furthermore, the functions are
evaluated at the latest state approximation: either x̂+

k or x̂−k . This procedure distinguishes
the difference between the LKF and the EKF.
Considering these assumptions, the matrices A and H from Eq. 3.1 and 3.2 can be redefined:

Ak := ∂f (xk, uk)
∂xk

∣∣∣∣∣
x
k

(3.15)

Hk := ∂e (xk, uk)
∂xk

∣∣∣∣∣
x
k

(3.16)

Eq. 3.15 and Eq. 3.16 are usually called Jacobian matrices. Taking these variations into
account, the algorithm of the EKF works analogously to the LKF in Section 3.1. The complete
algorithm derivation can be found in [3; 36; 77; 160].

3.2.2 Adaptive extended Kalman filter

Due to the EKF, it is possible to apply the KF to non-linear systems. However, there are sys-
tems whose dynamical processes and parameters cannot be identified accurately. This leads
to inaccurate estimations by the KF.
To solve this problem the system’s remaining degrees of freedom can be used by the process
noise and the measurement noise. The right choice of these values induces a fast transient
response and an accurate estimation of the state [19; 32; 38]. Furthermore, due to changing
external influences (e. g. temperature) which manipulate the approximation, the process
noise and the measurement noise can be adapted in every time-step [53].
The idea is to use the average value of the deviation of the measured and the predicted mea-
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3 Fundamentals of Kalman filtering

surement value at the latest time-step instead of the measurement noise value, which averages
over all possible states of the random variables. Although this contradicts the minimising
property of the Kalman gain, the replacement includes the real behaviour of the system into
the KF. This can be implemented by calculating the moving average V φ of the deviation from
the measurement:

V φ
k = 1

φ

k∑
m=k−φ+1

(Uk − yk)(Uk − yk)t (3.17)

with window size φ ≤ k and φ ∈ N. Based on the averaged error, the measurement noise and
the process noise matrix is updated as follows [19; 32; 38]:

rk = V φ
k + Hk P−k Ht

k (3.18)

Qk = KkV
φ
k Kt

k (3.19)

The rest of the algorithm is identical to the EKF explained in Section 3.2.1.

3.2.3 Unscented Kalman filter

Section 3.1 describes the KF in its original form assuming a linear model and/or Gaussian dis-
tributed random variables. In Section 3.2.1 a solution for models, which can be approximated
by linearisation, is shown. However, the system can be neither linear nor the state Gaussian
distributed. Furthermore, the influence of the noise can also be non-linear. Consequently, the
state-space equation and measurement equation are

xk+1 = f (xk, uk, wk) (3.20)

yk = e (xk, uk, vk) (3.21)

with the differentiable functions f and e. In Section 3.1 it is shown, that the formalism of
the KF works if the random variable is Gaussian distributed. So, the solution of the problem
is to claim that the state, which is considered, has this characteristic. Therefore, the random
variable is approximated by other vectors, which is constructed in such a way, that the mean
value and the covariance matrix are equal to the parameters of the state. Since the choice
of the weights of every sigma point as well as its number is arbitrary, there is no restriction
to the selection of these vectors. However, the constructed probability distribution is only an
approximation of the Gaussian distribution. Thereby, the mean value and covariance matrix
are only equal in the first two moments of a Taylor approximation. If the sigma points are
chosen symmetric to the mean value and weight the vectors and their reflection equal to the
mean value, then all odd moments are zero, which is equivalent to the Gaussian distribution.
Moreover, an additional parameter in the weighting to derive the fourth moments of the
Gaussian distribution is introduced.
The algorithm of the UKF is equal to all other KFs with the exception of the approximation
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of the Gaussian distribution. Considering the process noise, the determination of 2n+1 sigma
points λn is required, with n representing the length of the state vector. Afterwards, the state-
space Eq. 3.20 can be used to receive the estimation of the next state. Then the covariance
matrices and the measurement equation are calculated. The derivation and the complete
algorithm can be found in [67–69].

3.2.4 Central difference Kalman filter

Another KF that is able to estimate non-linear systems without the need of derivatives is the
CDKF. Similarly to the EKF, it approximates the state-space equations and the measurement
equations to the second order. The approximations of the derivatives by a Taylor series are
replaced by Stirling’s polynomial interpolation formula [27; 68]. Except the weighting of the
evaluation points, the CDKF and the UKF are similar to each other, resulting in a nearly
equal estimation accuracy [67]. Here, the UKF uses three parameters (λ1, λ2, λ3) whereas
the CDKF uses only one (h). The algorithm is explained in detail in [28; 67].

3.2.5 Square root forms of the unscented and the central difference
Kalman filter

A general disadvantage of the UKF and the CDKF is the required computation of the square
root of different matrices, due to big computational effort and rounding errors in the Cholesky
factorisation. To handle this problem, a QR-decomposition, Cholesky factor updating or
efficient pivot-based least squares can be used instead. In this way, the order of magnitude
or computation of the state, depending on the dimensions of the covariance matrices, can be
reduced by one power. Nevertheless, the estimation accuracy is rarely influenced. [34; 67; 70]

3.2.6 Dual Kalman filter

The DKF introduced in [3–5; 30; 67; 73; 77] consists of two KFs working in parallel. Therefore,
the first KF estimates the states xk (Eq. 2.21) and the second the parameters θ of the ECM
and the cell capacity:

θk = [Ri, Cact, R1, C1, . . . , Rn, Cn] (3.22)

The filter estimation sequence contains a prediction step of the state vector and a correction
step of the parameters. In this process, the expected states are predicted based on the state-
space notation in Eq. 3.1. Due to the fact that the state-space notation does not exist for the
parameters of the ECM, a prediction is not possible and the adaptation of the parameters has
to be done in the correction step [5; 39]. Accordingly, the parameter prediction θ−k results to:

θ−k = θ+
k−1 (3.23)
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For a dynamic adaptation of the ECM parameters it is essential to consider the parameter
process noise Qθ and the measurement noise rθ of the parameter estimator. This is required
due to the missing model description of the ECM parameters. So, only the filter tuning
determines the estimation performance.
Since the parameters θ+

k−1 are the input for the state and parameter estimator, a first coupling
of the two filters is implemented at the beginning of each cycle k. A second coupling is
performed in the correction step, as the predicted state x̂−k is considered for the parameter
correction [36].

3.3 Filter tuning

The overall performance of the filters is set by the covariance matrix P, the process noise ma-
trix Q and the measurement noise r. To the authors knowledge, it is not possible to calculate
the correct set of tuning parameters for KFs in the field of batteries. The determination of
the parameters results from experience and empirical experiments, but in general:

• The process noise matrix determines the model uncertainty [6; 161]: if the diagonal ele-
ments of Q are zero, the filter assumes a perfect model. As a consequence, no correction
of the states occurs. High values for Q increase the estimation error, because the filter
assumes continually contributing uncertainty to the states. Therefore, a compromise
between the ability to correct inaccurate values and estimation error has to be found.

• The covariance matrix determines the convergence behaviour [6; 161]: if the diagonal
elements of P are zero, the filter assumes accurate initial values. As a consequence,
the adaptation of incorrect initial values is performed slowly in contrast to an adapta-
tion with diagonal elements higher than zero (depending on the values for the process
noise matrix Q). If the initial state is unknown, high values for P are recommended.
This allows a fast correction of the initial parameters, but can also result in unstable
behaviour. Therefore, a compromise between convergence velocity and stability has to
be found.

• The measurement noise determines the measurement uncertainty [6; 161]: small values
for r assume a high accuracy of the measurement sensors. Consequently, the filter
calculates the states based on the measurement1 and ignores the model2. High values
for r result in a lower Kalman gain (Eq. 3.10) due to the distrust of the measurement. As
a consequence, the correction based on the measurement is reduced and the estimation
follows the model without correction. Therefore, a compromise between the ability to
correct inaccurate values and estimation error has to be found.

1 voltage based on the measurement equation
2 Coulomb counter
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4 Experimental

For all experiments in this work, the cell introduced in Section 4.1 was used. For the mea-
surements at module level, two battery modules consisting of the same cells were constructed
(Section 4.2), whereby the experiments at single cell and module level were performed with
the measurement setup shown in Section 4.3. The methods to characterise the cells and to
track the progress during the ageing studies (Section 4.6) are explained in Section 4.4 and
Section 4.5, respectively. An overview of the experiments with the corresponding cell group
(CG) is given in Section 4.7.

4.1 Introduction of examined cells

To obtain representative results for state estimation and cell ageing in battery electric vehicles
(BEVs), LICs with typical characteristics for electromobility were required. As the range of
BEVs is substantially determined by the energy content of the traction battery, these batteries
usually comprise high-energy LICs. Moreover, the traction battery has to provide sufficient
peak power for accelerating the vehicle. To meet these requirements, Panasonic NCR18650PD
NCA cells with a nominal capacity (Cnom) of 2.85Ah were used in this work. They feature
a high specific energy of 214Whkg−1, a high energy density of 577Wh l−1 and a low ohmic
resistance of approximately 21mW. The operating voltage range of these cells ranges from
2.5V (Umin) to 4.2V (Umax). The data-sheet of the cell can be found in Appendix A.

4.2 Design of the battery modules

To investigate the ageing scalability and the OCV change at module level an ageing study
at the module level is performed. Therefore, two identical battery modules were constructed.
The requirements included: a realistic size and capacity for an electrical vehicle, an exact
temperature measurement, and the possibility to disassemble the series connection to obtain
a deeper insight in the local ageing behaviour.

4.2.1 Topology

The modules were designed in an 8s14p cell interconnection topology, which is illustrated
in Fig. 4.1a. This topology consisted of eight blocks connected in series, with each block
consisting of 14 cells in parallel. This resulted in an operating voltage range from 20V to
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33.6V and a nominal capacity of approximately 40Ah. A total number of 224 cells was used
to construct the two battery modules. These cells were selected out of 250 cells from the same
production lot. The matching process is described in Section 4.2.3.
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Figure 4.1: Design of the modules in 8s14p topology: (a) schematic representation which illustrates the disas-
sembly points (dashed red lines); technical drawings in top (b) and front view (c), illustrating the
positions of the temperature and voltage measurements.

To gain a deeper insight into the ageing behaviour of the module, the series connections of
the eight blocks are demountable. This is illustrated in Fig. 4.1a by the dashed red lines.
This allowed for separate capacity and resistance measurements for all eight cell blocks to
determine interdependencies between the ageing behaviour and the position of the cells within
the module. However, the interconnections between the 14 cells of each block were realised
as non-removable joints, as removable connectors generally increase the contact resistances
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4.2 Design of the battery modules

[135]. This would affect the equalisation processes between parallel cells and may distort the
ageing behaviour.

4.2.2 Construction

Fig. 4.1b and Fig. 4.1c show the design of the modules. The 112 cells were placed in a frame
that was 343mm long and 182mm wide, with a spacing between the cells of 1.6mm and
4.6mm, respectively. The blue circles symbolise the negative poles and the red circles the
positive poles of the cells.
The cell connectors, depicted in grey, were made of 0.2mm thin nickel-plated steel (Hilumin),
which is a steel alloy that can be spot-welded onto the cell poles. The cell connectors were
welded to 1.5mm thick and 10mm wide copper rails, depicted in orange. During the construc-
tion process, the cell connectors were first attached to the copper rails by ultrasonic welding.
Afterwards, the produced "ribs" were spot welded onto the cell poles.
Due to the module design, with its removable series connectors, the entire current of the 14
parallel cells of each block had to flow through the current collector rails, depicted in orange.
To prevent high power losses and heat generation in the cell connectors, these rails were not
made of Hilumin because of its high specific resistance, of approximately 0.1Wmm2 m−1. In-
stead, the current collector rails were made of copper, which provided a substantially lower
specific resistance of 0.017Wmm2 m−1. In this manner, the power loss of the connectors and
hence the cell heating was minimised. Moreover, the module could be disassembled in blocks
by untightening the copper rails on the front of the module (Fig. 4.1c).

To investigate the temperature behaviour, 25 temperature sensors were installed in each mod-
ule. The locations of the sensors are also shown in Fig. 4.1b (cyan and green circles). The cyan
circles symbolise PT100 sensors attached directly onto the cell surface by a thermal adhesive,
and the green circles symbolise thermocouple sensors placed in the centre of a heat conduc-
tive silicone spacer, which retained an equal distance from the four adjacent cells. The two
groups of sensors thus enabled measurements of the cell temperatures as well as the average
temperatures at different locations inside the module.

4.2.3 Capacity-based cell matching

To perform capacity-based cell matching, the capacity distribution of the used cells had to
be measured to exclude outliers. For all 250 cells used in this investigation, the measured
and normal distribution is given in Fig. 4.2a for capacities and Fig. 4.2b for ohmic resistances
(measured at 1 kHz).
The relative coefficients of variation κ=σ/µ for the capacity and the resistance are 0.16% and
0.72%, respectively. The parameter σ is the standard deviation from the normal distribution
[132]. The arithmetic mean value µ of the capacity is 2.88Ah, and that of the resistance is
21.67mW. Higher κ for resistances were also observed for LICs with other cathode materials
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[128; 132], which in turn could lead to a pronounced ageing behaviour for cells connected in
parallel (Section 1.2.6 and [138]).
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Figure 4.2: Cell matching: (a) normal distribution of capacities at the cell level; (b) normal distribution of
ohmic resistances (measured at 1 kHz) at the cell level.

Despite the low tolerances, capacity-based cell matching was performed to guarantee a low
balancing effort for the BMS. The objectives of cell matching were to select and connect cells
to blocks such that the serial connections would result in a homogeneous capacity distribution
in the module. In other words, the module capacities would not be reduced by a weak block,
and the BMS would not require continuous balancing. Two (approximately) identical modules
were created after the cell matching procedure.

The calculated and measured capacities of the eight blocks of both modules after matching
are shown in Fig. 4.3a and Fig. 4.3b, respectively. Thereby, the capacity and resistance values
for each block were calculated by:

Cblock =
14∑
i=1

Ccell,i (4.1)

Rblock = 1
14∑
i=1

1
Rcell,i

(4.2)

On the basis of these results, the capacities at the module level were observed to be lower.
This was attributed to the length of storage time (approximately 4 months) between the
single cell measurements and the measurements at the block level. The mean capacity losses
caused by calendar ageing were 0.91% and 0.88% for module 1 (M1) and module 2 (M2),
respectively.
The calculated and measured block resistances are shown in Fig. 4.3c and 4.3d. Here, an
increase of the measured resistances compared to the calculated values was observed. The
effect of a resistance change due to calendar ageing was considered to be negligible because
the contact resistances were the dominant factor for increased resistances in the modules. In
[135], the resistance of a spot welded contact (Hilumin to Hilumin) was given as 0.16mW.
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Figure 4.3: Cell matching at 25 ◦C: measured and calculated capacities of (a) module 1 and (b) module 2;
measured and calculated ohmic resistances (measured at 1 kHz) of (c) module 1 and (d) module 2.

For the two poles and 14 parallel cells of one block, this resulted in a contact resistance
of Rcontact=0.16mW·2/14=0.023mW. The mean increase of the block resistances was from
1.55mW to 1.98mW (21.7%) for both modules, whereas about 5.3 percentage points were
related to the contact resistances. The rest was related to the contact resistances between
Hilumin and the copper rail and the material itself.

4.3 Measurement setup at single cell and module level

4.3.1 Single cell level

In this work all measurements on single cell level were performed with a BaSyTec cell test
system (CTS). For the validation of the state estimation algorithms, measurement data was
provided additionally by a less-accurate BMS. To guarantee the functionality of the used
algorithm in real applications, cell voltages, temperatures and current were measured by this
self-developed prototype BMS [36]. Thereby, the device which provides the reference value
must have a higher accuracy and resolution than the device which provides the measurement
data for the algorithm.
To realise the experiments at the defined temperatures, the cell was placed in a temperature
chamber. In Fig. 4.4, the experimental set-up for the validation is shown. The accuracies and
resolutions of the used devices are summarised in Appendix B Table B.1.

31



4 Experimental

Power

Voltage measurement

Current measurement

Current sensor

Temperature sensor

Temperature chamber

BMS

BaSyTec 

A

A

A

Figure 4.4: Measurement setup on cell level

4.3.2 Module level

For the measurements at module level a module test bench was developed. A BaSyTec high
power system (HPS) with two channels was used to cycle the modules with a maximum
current of 80A at a maximum module voltage of approximately 33V. Each channel had a
battery safety device (BSD) for monitoring the single-cell voltages of every block as well as
the module temperature. As the BSD only measures with low accuracy in terms of safety, an
additional BaSyTec cell measurement unit (CMU) was used to measure the single voltages
with high accuracy. The connection terminals for the BSD and CMU are symbolised by a
grey square in Fig. 4.1c.

The series connection of several cell blocks could lead to slightly different voltages and SOC
levels for the cell blocks due to the manufacturing tolerances of the cells and inhomogeneous
ageing or temperature distribution in the module [25]. This imbalance is the reason for cell
balancing in battery modules. To process balancing, the modules were supervised by the
BMS from Section 4.3.1, which measured every block voltage and the module current. When
the voltage difference between the highest and lowest block exceeded the threshold of 5mV
during charging periods, the BMS started the balancing process. The balancing was performed
dissipatively by switched 33W resistors. This allowed a balancing current between 75mA and
127mA, depending on the block voltage. The connections of the BMS are symbolised in
Fig. 4.1c by a grey triangle.

The PT100 temperature sensors, attached directly onto the cell surfaces, were measured
with a National Instruments PXI system, and the thermocouples for average temperatures at
different locations inside the module with the CMU.

The BMS sent the measured values to the PXI system (Fig. 4.5) via the controller area net-
work (CAN)-bus. In Fig. 4.5a, the setup for the test configuration during cycling is shown.
The connectors between the blocks were closed and the HPS loaded the battery module with
the driving cycle.
Fig. 4.5b shows the test configuration during check-up for each block. The modules were
disassembled and a check-up for each block was performed with an extended cell test system
(XCTS). The HPS, BSD and BMS are deactivated, and the CMU only measures tempera-
tures. The ohmic resistance Ri of each block and module was measured with an impedance
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measurement device (HIOKI BT3562). The accuracies of the measurement equipment are
summarised in Appendix B Table B.2.
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Figure 4.5: Scheme of the module ageing test bench: (a) cycling configuration; (b) check-up configuration.

4.4 Methods used for determining equivalent circuit model
parameters

4.4.1 Parameter identification

To determine the cell parameters, current pulses with different amplitudes were applied to
the cell over the entire SOC range in steps of approximately 7% of the nominal capacity. The
voltage response of every current pulse was fitted by a least square method to optimise the
parameters for the ECM, consisting of one ohmic resistance and one or two RC terms (Fig.
2.1). Therefore, the ohmic resistance Ri was measured by an EIS at 1 kHz at the same SOC
levels. The parameter fitting was calculated separately for the one and two RC term model.
This procedure was repeated at −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C and for different current
rates (−1C, −0.75C, −0.5C, −0.25C in discharge direction and 0.5C in charge direction).
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4.4.2 Open circuit voltage determination

In this work both OCV determination methods introduced in Section 2.1 were used. For the
CC-OCV the NCA cell was charged to the maximum allowed voltage Umax and discharged to
the minimum allowed voltage Umin with a constant current of 0.01C.
To induce the same polarisation effects during loading compared to the CC method, the same
current of 0.01C was used for the IC method. Here, the cell was charged and discharged in
10% steps with a relaxation time of 3 h in between. The OCV at a SOC of 100% or 0% was
determined by a constant-current constant-voltage (CCCV) charge or discharge, respectively.
Therefore, the cut-off current was set to 0.005C.
To ensure the same SOC levels of the steps for both directions the precise Coulomb counting
of the CTS was used. The charge and discharge direction was averaged for both methods to
minimise hysteresis effects and, in the case of the CC method, to compensate the influence of
the impedance. Both measurement procedures were repeated for all considered temperatures.

4.5 Methods used for cell diagnosis

A check-up routine was used to determine the condition and to track the degradation of the
lithium-ion cells and modules. This routine consisted of capacity and resistance measurements.
At the module level, the spread among cell blocks (group of 14 cells in parallel) was also
evaluated by a newly introduced parameter, which is the state of inhomogeneity (SOI).

4.5.1 Capacity measurement

To determine the capacity, the cell was fully charged with a CC of 0.5C and a constant-
voltage (CV) of the maximum allowed voltage Umax (for the tested cell 4.2V), until the
current dropped below 0.02C. This corresponds to a SOC of 100%. After that, the cell was
discharged with a CC of 1C to the minimum allowed voltage Umin (for the tested cell 2.5V),
followed by a CV period with a cut-off current of 0.02C, corresponding to a SOC of 0%.
The additional CV charge and discharge period was required to reduce the impacts of the cell
impedance, and the cell temperature, on the measurement of the actual capacity [162]. The
C-rate in this work is related to the nominal capacity.

For the measurements obtained at the module level, the voltage limits were multiplied by the
amount of cells connected in series. The charge and discharge currents were multiplied by
the amount of cells connected in parallel. At the module level, a CCCV discharge was not
possible because the discharge process had to be stopped when the first block reached the
lower voltage limit. The described check-up routine was performed at 25 ◦C.
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4.5.2 Resistance measurement

After the capacity measurement, the check-up routine charged the cells and modules to 50%
of their measured capacity. At this SOC, the internal resistance Ri was determined to monitor
the changes in cell impedance. This value represents the real part of the cell impedance at
1 kHz, and is determined by an excitation of the cells or modules with a sinusoidal current.
Therefore, the resistance was measured with the HIOKI BT3562, which directly measured the
resistance at 1 kHz.

4.5.3 State of inhomogeneity

To identify the increasing inhomogeneity between the blocks within each module during the
progress of ageing, a new state, referred to as SOI, was defined. The SOI reveals the spread
between the maximum and minimum value of a battery parameter in percent:

SOIX = Xmax −Xmin
Xmax

(4.3)

where X can refer to the capacity, ohmic resistance or temperature. The concept of the SOI
can also be transferred to other parameters and used both for single cells and modules.

4.5.4 Differential voltage analysis

The differential voltage analysis (DVA) is an enhanced method to characterise a LIC. There-
fore, the derivative of the OCV is related to the derivative of the corresponding charge through-
put. The DVA allows a separate consideration of different ageing mechanisms. [123]
In this work, the resulting DVA spectra are related to the actual capacity.

4.6 Ageing study at single cell and module level

To investigate the ageing behaviour at single cell and module level an ageing study is per-
formed. The aim of these studies is to show the scalability of ageing and the change in OCV.
This is essential for state estimation at single cell and module level during lifetime.
For the comparison of cell and module ageing, results from [163] are used. In the ageing study
at the cell level, the impact of regenerative braking on battery ageing was examined for a rep-
resentative driving load profile, derived from the US06 highway driving cycle (see Fig. 4.6a)
[163]. This driving cycle was selected because it features frequent load changes and a high
charge throughput per time, which was beneficial for accelerated cycle life testing. A vehicle
model was used to compute the load currents at the cell level for a BEV with a highway
driving range of approximately 100 km. Fig. 4.6b illustrates the load profiles resulting from
unrestricted regenerative braking compared with no regenerative braking. [163]
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The cells were charged and discharged repeatedly with the following test sequence: At first,
the cells were charged with a constant current of 0.25C (≈700mA) to their assigned charging
voltage. After a pause of 5min, the cells were discharged, with two subsequent runs of a
driving load profile, with a pause of 1min after each run. Before the cycle life testing and
after 400 repetitions of the charging and discharging sequence, a check-up was performed to
track the ageing of the cells.
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Figure 4.6: US06 highway driving cycle: (a) velocity profile; (b) load current at the cell level with unrestricted
regenerative braking and without regenerative braking. [163]

Since the depth of discharge (DOD) was about 25%, the check-ups were always performed
after a charge throughput of approximately 100 equivalent full cycles (EFC). For the vehicle
configuration, this corresponded to a driven distance of approximately 10 000 km.

The different test conditions in the ageing study at the cell level comprised three temperatures
(10 ◦C, 25 ◦C and 40 ◦C), four levels of regenerative braking (from unrestricted regenerative
braking to no regenerative braking at all) and three SOC operating windows (high, medium
and low SOC), resulting from three different charging voltages (3.7V, 3.9V and 4.1V). In
addition to the cells, which were cycled repeatedly, other groups of cells from the same pro-
duction lot were stored at eight different SOC levels and temperatures, from 10 ◦C to 55 ◦C,
to examine the calendar ageing at the different SOC regions. For each test condition, one new
cell was used. [163]
The results from five months of testing [163], covering a driven distance of 50 000 km, showed
that for all three temperatures, the fastest ageing occurred in the high SOC operation with
no regenerative braking at all. The increased battery ageing resulting from the load profile
without regenerative braking was assumed to be attributed to a higher depth of discharge at
the end of the driving sequence, as no charge was recovered during braking periods. Moreover,
a high SOC is also known to increase calendar ageing. [163]

In order to compare the ageing behaviour of the module level with that of the single cell level,
comparable test procedures were used. From the test conditions at the cell level, the most
stressful load profile was selected. Hence, the tests at the module level were performed at the
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high SOC operating window at 40 ◦C with no regenerative braking.
The current of this load profile was multiplied by the number of cells in parallel. So, the same
average load per cell as in [163] was yielded. To compare battery ageing at the single cell and
module level, single LIC and modules consisting of 112 cells were investigated. For each study,
all examined cells belonged to an identical production lot. All cells were examined with the
check-up routine presented in Section 4.5 before the module construction, as well as before
the start of ageing experiments.
The modules were cycled in a temperature chamber which kept the ambient temperature at
about 40 ◦C. After 100EFC, the check-up of the modules was performed with a CC discharge
at approximately 25 ◦C.

To investigate the OCV during ageing, a separate ageing study was performed in this work,
with the same conditions as described above. The cyclic ageing behaviour was investigated at
25 ◦C and 40 ◦C at the low (L) and high (H) SOC level (3.7V and 4.1V). The calendar ageing
was additionally performed at 10 ◦C at both SOC levels. To track the OCV changes, the
check-up routine was extended with the OCV determination by a constant current described
in Section 4.4.2.
Due to the comparably long check-up routine, this ageing study is not comparable with the
ageing study at module level. In Table 4.1 the ageing experiments at single cell and module
level are summarised.

Table 4.1: Matrix of the cyclic and calendar ageing experiments at single cell and module level. L corresponds to
the low SOC level (3.7V), H corresponds to the high SOC level (4.1V). The green tick symbolises the
amount of cells or modules per ageing condition, the red cross symbolises conditions not considered.

L/10 ◦C H/10 ◦C L/25 ◦C H/25 ◦C L/40 ◦C H/40 ◦C

Cell cyclic 7 7 33 33 33 33

calendar 3 3 33 33 33 33

Module cyclic 7 7 7 7 7 33

calendar 7 7 7 7 7 7

4.7 Overview of experiments

During this work, several experiments were performed with different cells of the aforemen-
tioned Panasonic NCR18650PD NCA cell (Section 4.1). Therefore, in Fig. 4.7 the experiments
are categorised in CGs. The vertical position of the single blocks symbolises the time progress.
With CG1, OCV and pulse measurements are performed to calculate the parameters of the
used one and two RC term ECM (Section 4.4) of a new cell. Due to the low cell-to-cell vari-
ation (Section 4.2.3) two different cells, one for the OCV and one for the pulse measurement
are used to reduce measurement time. With this experiment the dependencies of the ECM
elements of new cells are investigated in Chapter 6.
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Figure 4.7: Overview of the performed experiments on cell and module level. Cell group 5 correspond to results
of [163].

In parallel, the validation method for state estimation algorithms was developed (Chapter 5).
The required measurements were performed with the same cell as used for the OCV measure-
ments (CG1). These results and the cell parameters of CG1 were used for the KF comparison
study in Chapter 7.

To investigate the influence of change in OCV on the SOC estimation with KFs (Chapter 8),
the experiments to determine the ECM elements and the OCV were repeated with three cells
in different ageing states (CG2). In Table 4.2 the history of these cells, given in EFC at
different conditions, is summarised with the resulting state of health (SOH). Therefore, the
SOH is the ratio between the actual capacity Cact and the nominal capacity Cnom. The ageing
study of these cells is not a topic of this work.

The cells of CG3 and CG4 were used for the two ageing studies in this work (Chapter 9).
The ageing study at single cell level (CG3) gives a deeper insight into the OCV changes (Sec-
tion 9.1) during lifetime, whereas the ageing study at module level (CG4) aims to investigate
the ageing scalability. Therefore, the study of ageing at module level was started first. To
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4.7 Overview of experiments

Table 4.2: Cell history and SOH of the investigated cells (Z1, Z2 and Z3) in CG2.

Cell Cell history SOH
Z1 0 EFC 98.3%
Z2 385 EFC (2.5V to 4.1V) at 10 ◦C 90.4%
Z3 400 EFC (2.5V to 4.2V) at 10 ◦C 82.5%

compare the results at module level with the ageing behaviour at single cell level (Section 9.2),
previously available results from the ageing study of Keil et al. were used (CG5) [163]. At the
end of the ageing study at module level, OCV measurements at module, block and single cell
level allow the investigation of the OCV change during lifetime.
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5 Validation and benchmark method for state
estimation algorithms

Section 1.2.3 showed the shortcomings of actual validation methods. Furthermore, Chapter 2
presented the non-linear behaviour of LIC at different temperatures, SOC levels and ageing
states. Consequently, an enhanced validation method is required, to survey the functionality
of state estimation algorithms.
To consider different operational conditions, three validation scenarios are created based on
standardised driving cycles. For this purpose, existing driving cycles are analysed to identify
dominant time constants (Section 5.1). With this information, a synthetic load cycle (SLC)
is generated (Section 5.2), which is used for the three validation profiles (Section 5.3). To
allow a comparison of different algorithms, a benchmark method for performance evaluations
is presented in Section 5.4.

Parts of this chapter were previously published in [141].

5.1 Analysis of driving profiles

It is already stated that the dynamic response of LICs strongly depends on temperature,
SOC, load current and ageing. The quality of the state estimator is determined by its ability
to provide accurate results under different operating conditions. The comparability can be
achieved by applying an identical test profile. The driving cycle analysis, which gives the
foundation for the derivation of such a test profile, is described in the following.

Any signal in the time domain can be represented by a power distribution in the frequency
domain. If the signal is periodic, then the power distribution will be dominated by the corre-
sponding frequency components. In the case of vehicle driving cycles, these periodic processes
could be linked to repeated acceleration or braking while driving. Waiting at traffic lights, as
well as other frequent interruptions of vehicle movement, belong to periodic processes as well.
In total, 149 reference velocity profiles from [164] are transformed using the common vehicle
model presented in [165, p. 77] to extract power profiles. The power requirements are de-
rived from the velocity profile based on this vehicle model, with the parameters summarised
in Appendix C. Due to the diverse origins and purposes of these driving cycles, all profiles
are normalised according to their maximum power. Since not all power profiles are neutral
in terms of acceleration and recuperation power, the direct component is eliminated by sub-
tracting the profile average value from itself. Such adjustments are assumed to be valid since
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only the dynamic information is of particular interest.
Adapted profiles are subsequently transformed to the frequency domain using a fast Fourier
transformation (FFT) algorithm. The first four dominating frequencies are determined for
each profile. A sample result, based on the Artemis HighMot urbdense total driving cycle
(distance: 3086m; duration: 787 s; average speed: 14.1 kmh−1) [164], is shown in Fig. 5.1.
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Figure 5.1: Creating an application-independent test profile: dominant frequencies after a local peak search of
the Artemis HighMot urbdense total driving cycle

It has to be mentioned that the major frequencies-finding algorithm does not simply take the
first highest values in the power spectrum. Such an algorithm would result in closely lying
major frequencies, which owe their existence to the leakage effect of discrete Fourier trans-
formation (DFT). The actual algorithm replaces the initial spectrum by linear interpolation
of local maxima, which is shown in Fig. 5.1. The process is iterated until the interpolated
spectrum has only the desired amount of peaks. For driving cycle frequency analysis, this
number is set to four.

5.2 Generation of an application-independent test profile

Table 5.1 holds the averaged major time constants τdc of all adjusted power profiles sorted
in descending order of corresponding power magnitudes. The major time constants, which
could be extracted by analysing the driving cycles, as described in Section 5.1, provide the
basis for the dynamic validation profiles. Additionally, the most commonly used sample time
τs=1.0 s within the analysed driving cycles is appended [164]. So, the Nyquist theorem is
guaranteed, according to which, the sample rate fs has to be twice the highest frequency
fmax to reconstruct the signal (fs=2 · fmax). Using the four time constants and the appended
sample time τs, a dynamic load profile A is generated by the sum of sine waves with ascending
sample and hold times τsh and its corresponding power distribution a:

A(t) =
5∑
i=1

(
ai · sin

(
2π
τsh,i

· t
))

(5.1)
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5.2 Generation of an application-independent test profile

with

[A(t)] = kW
kWpeak

Depending on the application, and hence, different measurement possibilities, the sampling
rate of the system varies between seconds and minutes. To validate the algorithm or model for
different sampling rates, the sample and hold time τsh is modulated. Therefore, the number
of periods N with a constant sample and hold time τsh is rounded to its next integer value
(Table 5.1).

Table 5.1: Major time constants and sample rates for discretisation.

Time constant τdc Number of Periods N Sample and hold time τsh

55.82 s 1 55.82 s
9.023 s 6 9.014 s
5.144 s 10 5.140 s
3.860 s 14 3.859 s

τs=1.0 s 55 1.015 s

To generate the quantised signal with different step sizes, the dynamic load profile is repeated
five times. Both half cycles for each sample and hold time define one time step ∆tj = tj+1− tj
wherein the average load is calculated. Combining all time steps generates a quantised signal
S with a decreasing step size, which is equal to the sample and hold time:

S(tj) =
5∑
i=1

2Ni−1∑
j=0

∫ tj+1
tj A(t) dt

τsh,i
2

 (5.2)

where

tj = j ·
τsh,i

2
[S(tj)] = kW

kWpeak

To equalise the different load quantities in charge and discharge directions, without interfering
with the frequency spectrum, the profile is extended by the vertically and horizontally mirrored
profile. Another advantage is the additional behaviour of the prehistory, whether the cell is
stressed intensively or fairly steadily. In conclusion, the generated profile is repeated 10 times
to validate the full bandwidth of the load scenarios with all five sample and hold times in
ascending and descending orders (Section 5.2). This Coulomb neutral SLC is used as a subset
for the different validation scenarios. To achieve a cell-independent profile, the relative power
profile is divided by the nominal voltage of the used cell and scaled to the maximum current
of the cell.
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Figure 5.2: Creating an application-independent test profile: the discrete profile with the corresponding sample
rates (Eq. 5.2).

5.3 Validation scenarios

With the SLC and the information about cell behaviour, the validation profiles can be de-
veloped. To validate the stability of the state estimators during low-dynamic (profile A),
high-dynamic (profile B) and long-term tests (profile C), three independent validation profiles
are created. To guarantee a reproducible validation, at the beginning of every profile, a com-
plete CCCV charge and discharge is performed to determine the actual capacity, as described
in Section 4.5.1. The process is shown in Fig. 5.3 phase 1.
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Figure 5.3: Validation profiles for a NCA cell: sequence of the validation process for each profile (1: capacity
measurement and initial SOC conditioning; 2: profile A, B or C; 3: residual charge measurement;
4: capacity measurement). The variable x depends on the duration of the profiles.

At the end of each validation profile A, B, or C (Fig. 5.3 phase 2), a residual charge determina-
tion is performed by a CCCV discharge (Fig. 5.3 phase 3) with the same constraints as that of
the capacity determination. In order to calculate the final SOC based on the residual charge
and to consider a capacity fade during long-term tests (profile C), the capacity is measured
again (Fig. 5.3 phase 4).
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5.3 Validation scenarios

5.3.1 Profile A

Profile A (Fig. 5.4) aims to validate the low-dynamic behaviour of a state estimator. Several
CC charges and discharges are performed. Relaxation times and the Coulomb neutral SLC
are placed between single CC periods. To investigate the behaviour of the state estimator
with strongly changing parameters over the SOC range, this profile is performed at SOC
levels where the parameters differ the most (compare Section 2.1). The distinctive parameter
values of most of the LICs can be found at about 10%, 50% and 90% SOC. Initially, the
cell is charged from 50% to 90%. After a relaxation period of 30min, SLC is performed.
Subsequent to a second rest period of 30min, the cell is discharged to the next SOC level of
50% or 10%. This procedure is repeated at −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C to investigate
the temperature behaviour of the state estimator for low-dynamic profiles.
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Figure 5.4: Validation profiles for a NCA cell: profile A for low-dynamic.

5.3.2 Profile B

While validation profile A needs a Coulomb neutral profile to ensure a steady SOC at the
considered SOC levels, validation profile B (Fig. 5.5) comes with an additional direct current
(DC) offset. The amount of continuous discharge depends on the recuperation rate of the
driving cycles analysed in Section 5.1. Therefore, all driving profiles are normalised in power
and time. Afterwards, all load levels are rearranged in descending order of their magnitudes,
resulting in a common load duration curve. Cumulatively, for the recuperation levels of the
average load duration curve, around 11.35% of the discharged energy is recuperated. The
discrete SLC is shifted towards its discharge direction until the recuperation satisfies this
requirement. Dividing the power profile by the nominal voltage results in the current profile.
While profile A validates the behaviour of estimation algorithms during rest and CC periods,
profile B investigates the dynamic behaviour within the SOC range of 10% to 90%. The
charging period from 50% to 90% between phase 1 and phase 2 (Fig. 5.3) is not considered.
Analogous to profile A, the same ambient temperatures of −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C
are performed for profile B to investigate the temperature behaviour of the state estimator
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for high-dynamic profiles.
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Figure 5.5: Validation profiles for a NCA cell: profile B for high-dynamic.

5.3.3 Profile C

The purpose of validation profile C is to investigate the long-term stability and accuracy
during varying temperatures in the range from −10 ◦C to 40 ◦C. Validation profile C uses the
Coulomb neutral SLC as in profile A. SOC is maintained constant at 50% and SLC continually
repeats itself for seven days.
Fig. 5.6 shows the first 32 h of profile C. The temperature cycling starts (tS) and ends (tE) at
25 ◦C. In between, the five ambient temperature levels (−10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C)
are kept constant for two hours, while the incline or decline to the next temperature level
takes one hour. Except the boundary temperatures of −10 ◦C and 40 ◦C, every temperature
level is set twice. In total, the complete temperature range is cycled in 24 h and repeated for
seven days.
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Figure 5.6: Validation profiles for a NCA cell: one of the seven cycles of profile C for the long-term test
(temperature cycle start: tS; temperature cycle end: tE).
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5.4 Benchmark of state of charge estimation algorithms

To guarantee the comparability between state estimators, a standardised evaluation system
needs to be defined. In this section, such a system is proposed. Similar to [45], a scoring
system from 0 (worst) to 5 (best) points is applied.

In this section, the six categories of the evaluation system are explained: estimation accuracy
Kest, drift behaviour Kdrift, residual charge determination Kres, transient behaviour Ktrans

and failure stability Kfail.
For the evaluation, several error boundaries ε are defined. Each of them corresponds to an
evaluation score P (ε). Eq. 5.3 shows the score depending on the defined error boundaries. In
every category the same values are used.

P (ε) =



5 for 0 % ≤ |ε| ≤ 0.5 %
4 for 0.5 % < |ε| ≤ 1 %
3 for 1 % < |ε| ≤ 2 %
2 for 2 % < |ε| ≤ 4 %
1 for 4 % < |ε| ≤ 8 %
0 for |ε| > 8 %

(5.3)

5.4.1 Estimation accuracy Kest

Here, the overall accuracy during cycling is evaluated for all profiles. The estimation accuracy
depends on the total time within a certain error boundary (∑∆tδ∈ε) in relation to the total
measured time tend (see Fig. 5.7). Thereby, δ describes the absolute difference between the
reference SOCref provided by the CTS, and the estimated SOCest:

δ = |SOCref − SOCest| (5.4)
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±0.5% error

±1% error
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∆tδ   ε1 ∆tδ   ε2 ∆tδ   ε3

δ (ε2 ≤ ε)

δ (ε3 ≤ ε)
tend0

Figure 5.7: Validation principle: evaluation of the estimation accuracy (example with profile B and error
boundary ε=±0.5%, not all boundaries shown).

The resulting percentage part of the total time is then multiplied with the corresponding point
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P (εi). This is calculated for all six error boundaries and summed for Kest:

Kest =
6∑
i=1

(
P (εi) ·

∑∆tδ∈εi
tend

)
(5.5)

The sum of all tδ corresponds to tend.

5.4.2 Drift behaviour Kdrift

A repeating discharge profile results in an overall linear SOC trend with a certain gradient.
In short validation profiles, a difference between the reference and estimation gradient, caused
by wrong parameters or measurement errors, generates a negligible error. However, in long
validation tests or in real applications, this differing gradient can provoke an accumulating
error and the estimation drifts. When the estimation has the same gradient as the reference,
despite the mentioned reasons, the state estimator can correct any current offset or other
shortcomings. To examine this behaviour, an investigation of the estimation drift is essential
(Fig. 5.8).
Due to possible small transients at the beginning, or a non-linear estimation, the regression
line of the estimation error is calculated.

t
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Regression

tend = t100%

t

ε=SOCref - SOCest

t1h

ε1h

a)

b)

Figure 5.8: Validation principle: (a) estimation with drift (example with profile B, not all boundaries shown);
(b) linear regression of the estimation error gives the average drift error P (ε1 h)

To calculate the average drift score Kdrift, the gradient G of the regression line z is multiplied
with the time t1 h:

z = G · t+ b

ε1 h = G · t1 h (5.6)

Kdrift = P (|ε1 h|)
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with

[ε1 h] = %
h

For profile A, the drift corresponds to the mean of the drift scores during the CC charge
and discharge periods. Due to the long duration of profile C, the error per hour results in a
negligible error, even when the error increases to several percent per week. To consider such
a drift in the evaluation, the error for long-term tests (tests with a duration of at lest 7 d) is
related to one week:

[ε7 d] = %
7 d

The drift score correlates with the estimation score. A low drift score results in a low estima-
tion score, because the estimation is drifting apart. This has a high influence during long-term
investigations (profile C). However, if the drift score is high and the estimation score is low,
the estimation is not drifting but has a parallel offset. For Coulomb counter based algorithms,
for example KF, this can be provoked by incorrect parameters or voltage measurement errors.
When the estimation is oscillating, the linear regression could result in a falsified drift value.
So, a long transient oscillation around the correct SOC value can result in a high estimation
score but a low drift score. This context is summarised in Table 5.2. This correlation can
determine the reason for low estimation performance.

Table 5.2: Possible relationship between Kest and Kdrift

low Kdrift high Kdrift

low Kest
drifting parallel offset

(e.g. current offset) (e.g. wrong parameters)

high Kest transient oscillation all Ok

5.4.3 Residual charge determination Kres

During cycling, the reference is influenced by accumulated errors, due to the limited sample
time and measurement errors. Furthermore, the reference SOC is related to the cell capacity,
which may change due to a varying temperature during testing. Hence, the available capacity
differs and the reference is falsified as a consequence. The residual charge at the end of a cycle
related to the actual capacity represents the true SOCres. The resulting error bound yields
the evaluation points for this category:

Kres = P (|ε|) (5.7)
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with

ε = SOCest,end −
Cres
Cact

= SOCest,end − SOCres (5.8)

where Cres is the remaining capacity determined by a CCCV discharge at the end of the
validation profile (Fig. 5.3, phase 3) and Cact is the cell capacity measured after the validation
profiles (Fig. 5.3, phase 4).

5.4.4 Transient behaviour Ktrans

Common state estimation algorithms can compensate for incorrect initial values, measure-
ment errors and changes in parameters, temperature, etc. The investigation of the transient
behaviour is performed by initialising the system with incorrect values.
In Fig. 5.9, the evaluation of the transient behaviour is depicted. Here, it is examined which
error bound the estimator is in after 10% of the total time (t10 %) after an incorrect initial
SOC. The percent specification allows for higher algorithm requirements for shorter profiles
and lower requirements for long-term tests.
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±1% error

±2% error

Reference
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t

SOC

tth=t10% tend = t100%

ε ≤ ±0.5%

Figure 5.9: Validation principle: evaluation of the transient behaviour (example with profile B, not all bound-
aries shown).

The resulting point is scaled with the initial error mismatch (Eq. 5.9). So, the maximum
points are only reachable when the reference SOC is 100%, while the initial estimation SOC
is 0% at the beginning. The minimal mismatch must be higher than 8%, which corresponds
to the highest error boundary.

Ktrans = P (|ε|) ·
|SOCref ,t0 − SOCest,t0 |

SOCref ,t0
(5.9)

with

ε = SOCref ,t10 % − SOCest,t10 % (5.10)

State estimation algorithms can behave differently during low-dynamic loads, high-dynamic
loads or rest periods. To validate the transient behaviour correctly, the test is performed with
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a low-dynamic load (profile A), a high dynamic load (profile B) and a rest period (profile A)
at the beginning. For the low-dynamic load and the rest period in the beginning, the starting
point of profile A is shifted to the first CC discharge period and after the CC charge period,
respectively. The mean of these test results is the final evaluation value.

5.4.5 Failure stability Kfail

Several errors, such as an offset in the current and voltage measurement as well as incorrect
or varying (ageing) parameters, can provoke unstable and inaccurate behaviour in the state
estimation algorithm. For reliable functionality, these error cases should be tested and vali-
dated. To do so, a current, voltage or parameter offset is set and scores are compared to the
normal operation. From the intensity of the score change, the failure stability score Kfail,q is
calculated. Thereby, q represents the benchmark category. This test uses the results of the
estimation, residual charge and drift category.
For evaluating the state estimator in an error case, a current offset ρI of 0.1% of the 1C
current and a voltage offset ρU of 2% of the voltage range of the cell are used. For the param-
eter error ρR, the algorithm is initialised with 10% of the correct parameter. For a detailed
investigation, each error can be considered separately for each category. In the experimental
part, for clarity, Kfail,q is the mean of all error influences:

Kfail,q = 1
3
∑
ρ

(P (ε = 0)− |Kq −Kq,ρ|) (5.11)

with

ρ ∈ {ρI, ρU, ρR}

The mean value of Kfail,q is the final value for failure stability:

K̄fail = 1
3
∑
q

Kfail,q (5.12)

with

q ∈ {est, drift, res}

5.4.6 Temperature stability Ktemp

Most algorithms are based on cell models which use temperature-sensitive parameters. In
real applications, the cell temperature varies depending on the ambient temperature or due
to high loads. Hence, a state estimator has to demonstrate proper functionality at different
temperatures. Here, the performance change due to a different temperature in each test is
observed.
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To achieve an independent score for the overall estimation performance, the standard devi-
ation is used to rate the temperature stability Ktemp,q (Eq. 5.13). Thereby, q represents the
benchmark category. This test uses the results of the estimation, residual charge, drift and
transient category.

Ktemp,q = P (ε = 0)− 2 · σ (5.13)

with

σ =

√√√√ 1
n

n∑
i=1

(Kq,i − K̄q)2 (5.14)

where K̄q is the mean of the scores of profile A or B over the temperature range in each
category and n is the number of tested temperatures.

The mean value of Ktemp,q, is the final value for temperature stability:

K̄temp = 1
4
∑
q

Ktemp,q (5.15)

with

q ∈ {est, drift, res, trans}

5.4.7 Overview

In Table 5.3 the categories and their test requirements are summarised.

Table 5.3: Benchmark categories and their requirements.

Category Reference value Requirements
Kest SOCref Profile A, B, and C
Kdrift SOCref Profile A, B, and C
Kres SOCres Profile A, B, and C
Ktrans SOCref Profile A and B with wrong SOC initialisation
Kfail SOCref Kest, Kres and Kdrift with offsets of profile A, B, and C
Ktemp SOCref Kest, Kdrift, Kres, Ktrans of profile A and B

5.5 Conclusion

This chapter introduces a generalised validation and benchmark method for SOC estimation
algorithms. The method can be used to not only compare different algorithms, but also to
optimise a state estimator for specific needs.
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5.5 Conclusion

The validation consists of three profiles, where low-dynamic, high-dynamic and long-term
scenarios are tested. This is repeated for different temperatures in the range from −10 ◦C to
40 ◦C. The independence of standardised driving cycles is obtained by developing a synthetic
load cycle. To do so, a frequency analysis is performed for 149 different driving cycles and
the major time constants are identified.
In the end, a benchmark provides information about the weaknesses and strengths of the
studied algorithms and enables a comparison between different algorithms. The benchmark
has six categories for the short-term validation and four categories for the long-term test.
The categories are: estimation accuracy, transient behaviour, drift behaviour, failure stability,
temperature stability, and the estimation accuracy related to the residual charge at the end of
each test. These categories and the relationship of some benchmark scores allow the detection
of shortcomings of the investigated algorithms.
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6 Experimental investigation of lithium-ion cell
behaviour

As with many electrochemical systems, batteries exhibit highly non-linear behaviour [166].
The dynamic behaviour depends on the impedance of the cell, which is influenced by many
parameters, such as temperature, SOC, current rate, ageing and history [7; 147] (Section 2.1).
In a real application, all these dependencies can occur; hence, it is not sufficient to evaluate
a state estimator under only one specific condition in the laboratory.
In this chapter, some of the dependencies mentioned in Section 2.1 are presented to emphasise
the importance of a detailed evaluation and to guarantee an exact and reliable state estimation
with KFs. Firstly in this chapter, the dependencies of a new cell (CG1) and aged cells (CG2)
are presented in Section 6.1 and Section 6.2, respectively. Afterwards, the dependencies of
the OCV are discussed in Section 6.3. Section 6.4 summarises this chapter by comparing the
experimental investigation with the literature research in Section 2.1.

Parts of this chapter were previously published in [167].

6.1 Dependencies of equivalent circuit elements of a new cell

As mentioned in Section 2.1, the ohmic resistance Ri exhibits a low dependency on SOC
in comparison to the temperature. Fig. 6.1a shows the resistance Ri at the investigated
temperatures −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C in the range from 0% to 100% SOC.
The relative difference between the minimum and maximum resistance over the complete
SOC range is 6.1% or 4% at −10 ◦C or 40 ◦C, respectively. The relative difference between
the average resistance at −10 ◦C and 40 ◦C is 24%. Consequently, the temperature has an
influence approximately five times higher than that of the SOC.

In addition to Ri, the dependency of the one second resistance Rdc1 s is shown (Fig. 6.1b).
For state and parameter estimation in this work, the resistance one second after a current
pulse (Rdc1 s) is used instead of the ohmic resistance Ri, due to the algorithm sample time of
one second (τs=1 s). Therefore, Rdc1 s is the resistance calculated one second after a 0.25C
current pulse by relating the voltage drop to the induced current. As a consequence, the
Rdc1 s contains the fast processes of the charge transfer already. Therefore, the Rdc1 s behaves
similarly to the charge transfer resistance. If the Rdc1 s is used instead of the Ri for parameter
fitting, the additional RC terms represent the diffusion effects, which can be modelled more
accurately with a higher amount of RC terms.
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Figure 6.1: Parameters of NCR18650PD: (a) ohmic resistance Ri and (b) Rdc1 s (measured after a −0.5C
current pulse) at different temperatures. Markers symbolise measurement points.

In this chapter the Rdc1 s is investigated separately. In Fig. 6.1b the temperature and SOC
dependency of the Rdc1 s, resulting from a −0.5C current pulse, is shown. Compared to Ri,
a much higher temperature (≈420%) and SOC (≈70% at 25 ◦C) dependency is observable.
Similar behaviour can be observed regarding the charge transfer resistance R1 (two RC term
model), which increases with decreasing temperature (not shown).

Fig. 6.2a and Fig. 6.2b show the charge and discharge current rate dependency of the charge
transfer resistance R1 at 0 ◦C and 40 ◦C, respectively. It is observed, that the current rate
dependency decreases with increasing temperature. Here, the relative difference between the
average resistance, measured with a current rate of −0.25C and −1C results to 26% and 3%
at a temperature of 0 ◦C and 40 ◦C, respectively. This observations agree with the literature
research in Section 2.1. A similar behaviour is also observed for R2.
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Figure 6.2: Parameters of NCR18650PD: charge transfer resistance R1 at different current rates at (a) 0 ◦C
and (b) 40 ◦C. Markers symbolise measurement points.

Due to the relationship τ1 = R1 ·C1 and the low temperature and SOC dependency of C1 [7],
τ1 shows a similar behaviour to R1 in the investigated temperature range (Fig. 6.3a).
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6.2 Dependencies of equivalent circuit elements of an aged cell

Fig. 6.3b shows the temperature dependency of τ1 at 10%, 50% and 90%. Interestingly,
despite the fact that the relationship between τ1 and the temperature is linear at a SOC
of 10%, at higher SOCs the behaviour changes to an exponential shape. For τ2 no clear
dependency on SOC and temperature is observable.
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Figure 6.3: Parameters of NCR18650PD: (a) time constant τ1 at different current rates at 0 ◦C. Markers
symbolise measurement points; (b) interpolated temperature dependency at 10%, 50% and 90%
with a current rate of −0.25C.

Fig. 6.4 shows a qualitative validation of the two RC term ECM including Ri with the pre-
sented parameters at 25 ◦C and 0 ◦C. Therefore, profile B of the validation method (Chapter 5)
is used. In contrast to the simulation results at 0 ◦C (Fig. 6.4b), the simulated voltage at 25 ◦C
(Fig. 6.4a) almost overlaps the measured voltage. The result at 0 ◦C shows higher deviations
during charging current and relaxation times. This could arise from a low resolution of the
current dependency in charge direction, or from differing parameters during relaxation. The
latter is not considered in this model.
Below, the difference of the simulated and measured voltage, in the range from 90% to 10%
SOC, is depicted at 25 ◦C (Fig. 6.4c) and 0 ◦C (Fig. 6.4d). The root mean square (RMS) error
corresponds to 14.7mV and 32.9mV at 25 ◦C and 0 ◦C, respectively. Here, an error increase
at a SOC lower than approximately 20% can be observed. This may arise from the increasing
non-linearity of the OCV and cell parameters, which is not representable by the RC term
ECM. However, for the KF validation in Chapter 7 the ECM uses fixed parameter values at
50% (initial SOC of profile A and C) or 90% (initial SOC of profile B), so the accuracy at
this SOC level is not relevant. For higher SOCs the model shows an adequate accuracy, hence
the model and the parameter fitting are proven to be valid.

6.2 Dependencies of equivalent circuit elements of an aged cell

Now, the dependencies of Rdc1 s at different ageing states are presented. The investigated cells
Z1 (SOH=98.3%), Z2 (SOH=90.4%) and Z3 (SOH=82.5%) are from CG2 (Section 4.7).
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Figure 6.4: Validation of the two RC term ECM and parameters: (a) extract of the total simulation at 25 ◦C;
(b) extract of the total simulation at 0 ◦C; (c) deviation at 25 ◦C; (d) deviation at 0 ◦C

In Fig. 6.5a the Rdc1 s of the ageing states Z1, Z2 and Z3 depending on the SOC at −10 ◦C
and 40 ◦C is shown. At −10 ◦C the resistance of Z1 is depicted over the full SOC range. The
resistances of Z2 and Z3 are measurable only in the range from 96% to 28% and from 91% to
35% SOC, respectively. This can be explained by high impedances caused by ageing and low
temperatures, resulting in high overpotentials. The increasing resistance with a decreasing
temperature arises from dominant influences of the temperature-dependent conductivity of
the electrolyte and charge transfer resistance. As a consequence, the limiting voltage of
4.2V (Umax) and 2.5V (Umin) for the cell is reached before the cell is charged or discharged
completely. This problem is reduced at elevated temperatures. Therefore, the SOC range of
Z2 and Z3 is increased at a temperature of 40 ◦C.
Compared to the SOC dependency of Rdc1 s, Fig. 6.5b shows the temperature dependency of
the three cells at a SOC of 50%. The aged cells Z2 and Z3 show a higher variation of the
resistance over the investigated temperature range. Similar results are presented in [7; 168].

In Fig. 6.6, the temperature dependency of the actual cell capacity Cact, determined by the
CCCV discharge (Section 4.5.1), is shown for the three cells. Especially at low temperatures,
the usable capacity drops and follows a non-linear characteristic. Due to the previously
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6.3 Dependencies of the open circuit voltage at different ageing states

mentioned impedance effects, the temperature dependency of the actual cell capacity increases
with ageing, despite the low cut-off current. Similar results are presented in [69; 158; 168;
169].
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6.3 Dependencies of the open circuit voltage at different
ageing states

The KF and other common OCV-based algorithms use the OCV–SOC relation to estimate
the SOC of LICs [4; 80; 121; 170–172]. In these studies, the SOC is derived from the OCV,
based on the OCV–SOC correlation [173]. In this work, the OCV is measured by the CC and
IC methods according to Section 4.4.2. However, as shown in Fig. 6.7a and Fig. 6.7b as well
as in [71; 83; 121], the OCV of a new cell determined by both methods has a non-negligible
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6 Experimental investigation of lithium-ion cell behaviour

temperature dependency. Thereby, ∆SOC is defined as the difference between the OCV-
based SOC at 25 ◦C and the OCV-based SOC at the same voltage at different temperatures.
SOC calculations based on the OCV at 25 ◦C can result, with both methods, in estimation
errors up to ∆SOC=4% at low temperatures (T≤0 ◦C). For clarity reasons only the OCV
at 25 ◦C is shown, the deviation is represented by ∆SOC. As one can see, for a new cell the
temperature dependency is similar for the OCV determined by the CC method and the IC
method. At a SOC higher than 80%, the IC method shows a lower SOC deviation compared
to the CC method.
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Figure 6.7: Temperature and SOC dependency of a new cell: (a) CC-OCV and (b) IC-OCV (left axis) and
temperature influence at the corresponding SOC (right axis).

This behaviour changes with aged cells. In Fig. 6.8a the results of both OCV determination
methods are shown in charge and discharge direction for the new (Z1) and old cell (Z3) at
40 ◦C and −10 ◦C. The markers of the IC curves correspond to the measurement points.
At −10 ◦C the increasing impedance provokes higher overpotentials. As a consequence, the
voltage measured by the CC discharge shows lower values over the entire SOC range compared
to higher temperature, whereas the voltage determined by the IC method shows lower values
at SOCs higher than 25%. Below 25% the voltage level is similar to that at 40 ◦C.
In charge direction the voltage at −10 ◦C is higher than at 40 ◦C for SOC levels lower than
60%. Above 60% the voltage measured by the CC method follows the voltage measured at
40 ◦C, whereas the voltage measured by the IC method shows lower values. At 40 ◦C both
methods show the same values.

Fig. 6.8b shows the interpolated and averaged voltage curves and Fig. 6.9a shows the deviation
of the IC method compared to the CC method for Z1 and Z3 at 40 ◦C and −10 ◦C, respectively.
Despite averaging, it can be observed that especially at low temperatures (−10 ◦C) and low
SOCs (< 40 %) the increasing impedance causes a high voltage drop with the CC method,
which results to a ∆SOCCC−IC up to 13.5% (Fig. 6.9a). With the use of the IC method, this
voltage drop not exists. As a result, the OCV at −10 ◦C is at the same voltage level as the
OCV of the new cell at 40 ◦C. At higher SOC levels (> 40 %) both methods show nearly the
same values because of the decreasing influence of the impedance.
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Figure 6.8: OCV determination methods: (a) OCV in charge and discharge direction of the new and old cell
at −10 ◦C and 40 ◦C measured by the incremental and constant-current method; (b) interpolated
and averaged OCVs.

In Fig. 6.8b a lower gradient of the OCV at a temperature of −10 ◦C can be observed. This
can be explained by a decreased maximum and an increased minimum voltage at a SOC of
100% and 0%, respectively: after the CCCV charge to 4.2V with a current of 0.01C and a
cut-off current of 0.005C the voltage decreases after 3 h relaxation to 4.06V. This corresponds
to a voltage drop of 140mV compared to Umax. At 40 ◦C this voltage drop is 20mV. However,
due to the low current during the CCCV charge and the low cut-off constraint, the cell is
assumed to be at a SOC of 100%. This voltage relaxation is higher at a SOC of 0%. Here,
the voltage relaxes from Umin to approximately 2.77V (∆U = 270 mV) for all cells at 40 ◦C.
At −10 ◦C this voltage drop increases to 614mV and 789mV for Z1 and Z3, respectively. As
a consequence, the gradient of the OCV is decreased. Fig. 6.9b shows this dependency in the
investigated temperature range for the three cells at a SOC of 0% and 100%. As one can
see, the temperature dependency of the maximum/minimum voltage increases with the age
of the cell.

These results show that the CC method is only suitable for new cells at elevated temperatures
because of the high overpotentials, due to increased impedances at low temperatures and aged
cells. The advantage of this method, compared to the IC method, is the higher resolution
of the OCV. In contrast, the IC method allows a precise OCV determination of cells with
increased impedance due to ageing or low temperatures.
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Figure 6.9: OCV determination methods: (a) OCV deviation between the IC method and the CC method of
the new and old cell at −10 ◦C and 40 ◦C, (b) voltage at 100% SOC and 0% SOC at different
temperatures and ageing states.

6.4 Conclusion

In this chapter the ECM and OCV dependencies of the investigated cell in the new and aged
state is presented. Therefore, the parameters of a two RC term ECM are determined according
to Section 4.4 and observed for the new cell at different temperatures (−10 ◦C, 0 ◦C, 10 ◦C,
25 ◦C and 40 ◦C) and current rates (−1C, −0.75C, −0.5C, −0.25C in discharge direction and
0.5C in charge direction) over the SOC range from 0% to 100%. Furthermore, the Rdc1 s,
Cact and the OCV is investigated at three different ageing states.
Table 6.1 summarises the found dependencies and symbolises the accordance to the literature
research in Section 2.1 with a green check tick.

Table 6.1: Comparison of the investigated SOC, temperature T , current I and ageing dependencies of the
ECM elements with the literature in Section 2.1. The green tick symbolises the accordance to the
literature research.

Ri RC terms U0

SOC [143] 3 [7; 140; 143; 145; 146; 155] 3 [83]3
T [7; 140; 146; 156] 3 [7; 122; 140; 143; 145; 146] 3 [71; 83; 85; 116; 156]3
I - [7; 122; 142; 145–147; 157] 3 -
Age [101; 108; 158] 3 [101; 158]3 [116–119]3

The shown dependency of a LIC on SOC, temperature, current and age confirm that a vali-
dation of state estimation algorithms is not adequate at only one condition in the laboratory.
The next chapter investigates the influence of incorrect ECM parameters on the estimation
performance of different KFs.
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7 Influence of cell behaviour on the state
estimation with different Kalman filters

Using the presented validation method in Chapter 5, the influence of ECM parameters (Chap-
ter 6) of a one and a two RC term ECM on the estimation performance of 9 different KF
implementations are investigated in this chapter:

• single Kalman filter (SKF)
• single extended Kalman filter (SEKF)
• single adaptive extended Kalman filter (SAEKF)
• single unscented Kalman filter (SUKF)
• single central difference Kalman filter (SCDKF)
• single square root unscented Kalman filter (SSRUKF)
• single square root central difference Kalman filter (SSRCDKF)
• dual extended Kalman filter (DEKF)
• dual adaptive extended Kalman filter (DAEKF)

Therefore, the cells of CG1 are used.

First, Section 7.1 describes the initialisation for the comparability study and the experimental
conditions. Then in Section 7.2, the different SKF are compared regarding their estimation
accuracy and behaviour for the battery model with one and two RC terms. The same investi-
gations are performed with the DKF (Section 7.3) and the change in performance compared
to the SKF is discussed. In Section 7.4 the dependency of the ECM parameters on the pa-
rameter estimation of the dual algorithm is shown. After summarising the benchmark results
(Section 7.5), in Section 7.6 the estimation accuracy and transient behaviour of four filters
with correctly initialised ECM parameters and individual filter tuning for each temperature
are shown, to underline the importance of the correct values.

Parts of this chapter were previously published in [174].

7.1 Initialisation of the Kalman filter

In Section 3.3 the general guidance for the filter tuning is presented. To ensure comparabil-
ity, all filters use the same fixed set of tuning parameters. The tuning parameters used are
summarised in Appendix D Table D.1.
As well as correct filter tuning, the KF requires correct parameter values of the ECM for ac-
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7 Influence of cell behaviour on the state estimation with different Kalman filters

curate estimation. As previously mentioned, these parameters are dependent on temperature,
SOC and ageing of the cell (Section 2.1 and Chapter 6). However, the exact occurring states of
the parameters could be difficult to predict in common applications. Due to the memory limit
of embedded systems, as used in BMS, it may not be possible to store several LUTs containing
the correct ECM parameters at different temperatures and ageing states. Furthermore, to de-
termine the cell behaviour in all possible conditions an immense measurement effort regarding
time and equipment is required. Therefore, in this work the ECM with Rdc1 s and one RC
term, as well as two RC terms are parametrised at a temperature of 25 ◦C and kept constant
for the experiments at other temperatures in order to investigate the temperature influence
on the different filters (Appendix D Table D.1). The ECM is initialised at 50% for profile A
and C and at 90% for profile B to avoid an additional SOC dependent transient behaviour in
the beginning. A parameter adapting algorithm should result in a more accurate estimation.
However, the OCV and the actual capacity Cact are adapted to each temperature, because it
is observed that differing values result in unstable behaviour. The initial values for the actual
capacity for each temperature are shown in Appendix D Table D.2. The initial SOC for the
reference and the algorithms are derived from the OCV–SOC relation.

7.2 State estimation: single Kalman filter

Fig. 7.1 shows the results for the single unscented Kalman filter (SUKF), the single linear
Kalman filter (SLKF), the single extended Kalman filter (SEKF) and the single adaptive
extended Kalman filter (SAEKF).
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Figure 7.1: SOC estimation results and the deviation from the reference (∆SOC) of the SKF (one RC term)
with correct initialisation: (a) profile A at 40 ◦C; (b) profile B at 40 ◦C.
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7.2 State estimation: single Kalman filter

All results are compared to the reference (Ref) and to the SOC based on the residual charge
(Res). In Fig. 7.1a and Fig. 7.1b the estimation result and the deviation from the reference
(∆SOC) of profile A and profile B are shown at 40 ◦C, respectively. Here, the algorithms
show nearly identical behaviour and are in agreement with the reference. The differences
between the filters are lower than 1%, except at a lower SOC level in profile B. The RMS
error between the reference and the estimation is smaller than 1.3% and 0.7% for profile A
and profile B, respectively. The SOC based on the residual charge is predicted with an error
smaller than 2% for profile A and profile B. The differences of the ECM parameters between
25 ◦C and temperatures below 10 ◦C are higher than between 25 ◦C and 40 ◦C. As a result the
estimation accuracy is reduced at lower temperatures.

For profile A, at 0 ◦C, a gradient different for each filter is visible during the first CC charge
period (Fig. 7.2a). This provokes a SOC overestimation of up to 5.52 percentage points.
While the SLKF stays constant after the charging period, the SUKF and SEKF correct the
over estimated SOC during the pause and SLC. However, the SAEKF follows the reference in
each time step. After the first CC discharge period at approximately 50% SOC, the estimation
difference between the filters is lower than 1.5%. This deviation increases to 3% at 10% SOC.
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Figure 7.2: SOC estimation results and the deviation from the reference (∆SOC) of the SKF (one RC term)
with correct initialisation: (a) profile A at 0 ◦C; (b) profile B at 0 ◦C.

While the SLKF and the SAEKF are closer to the reference (∆SOC = 1%), the SEKF and
SUKF are closer to the residual charge (∆SOC = 0.5%). The increased estimation errors
at higher (≈90%) and lower (≈10%) SOC levels correlates to the higher ECM parameter
deviation from the parameters at 25 ◦C at these points (Fig. 6.1 to Fig. 6.2). The deviation
between the reference and the SOC based on the residual charge may arise from temperature
effects during the CC charge and discharge periods. As the temperature decreases, measur-
able self-heating of the cell increases, due to the increasing resistances (higher resistances at
lower SOC, Section 2.1). Therefore, only the CC periods provoke an observable increase in
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7 Influence of cell behaviour on the state estimation with different Kalman filters

temperature on the cell surface. For the used cell, the measured surface temperature increases
by 7K during profile A performed at 0 ◦C at lower SOC levels. This effect is negligible during
profile B, here the temperature increases by 2K.
For profile B, at 0 ◦C (Fig. 7.2b), all filters show a parallel offset towards a lower SOC level
after 0.5 h, resulting in a difference between the filters smaller than 4.7% in the end. At this
point, the error of all filters is smaller than 9%. During the estimation the error is lower than
13%. Due to the high-dynamic current load, deviating parameters caused by the temperature,
have a high influence on the estimation. During pauses and CC charge and discharge periods,
the RC term is in steady state after a transient behaviour. During a high-dynamic current
load, the RC term determines the voltage dynamic and hence the estimation accuracy. The
voltage difference caused by the deviating ECM parameters at 0 ◦C can be seen in Fig. 7.3.
This shows the importance of correct ECM parameter at every temperature. A parameter
mismatch leads to a higher estimation error.
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Figure 7.3: Voltage estimation results U and voltage error ∆U of the SKF (one RC term) with correct initial-
isation: estimated and measured voltage of profile A (during a SLC at approximately 50% SOC)
at 0 ◦C.

In Fig. 7.4 the long-term behaviour of the algorithms is shown. Here, also the Coulomb counter
of the BMS is depicted (SOC BMS). This Coulomb counter receives the same current input as
the algorithm. For profile A and B, the Coulomb counter shows almost the same results as the
reference, due to the short duration of the test (Fig. 7.1 and Fig. 7.2). During the long-term
test, the reference and the BMS show a decreasing behaviour despite the Coulomb neutral
SLC. This is due to accumulating measurement errors and the limited sample rate. On the
contrary, the estimated SOC values increase. While the SOC based on the residual charge at
the end of both short profiles A and B is identical with the last value of the reference, SOCres

differs from the reference in profile C (∆SOC = 1.7%). The reference drifts apart, due to
the change in cell capacity caused by temperature variation and accumulated errors in the
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7.2 State estimation: single Kalman filter

current measurement. All algorithms show the same behaviour and the mean error between
the KF and the residual charge based SOC is 0.2%. Here, the reference deviates by 1.3%.
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Figure 7.4: SOC estimation results and the deviation from the reference (∆SOC) of the SKF (one RC term)
with correct initialisation: profile C.

The results for the single square root unscented Kalman filter (SSRUKF), the single central
difference Kalman filter (SCDKF) and the single square root central difference Kalman filter
(SSRCDKF) are not shown, since the difference of the estimation results compared to the
SUKF is negligible [67, p. 81]. Table 7.1 summarises the RMS error during profile B at 25 ◦C
of these filters compared with the error of the SUKF. Due to the similar estimation behaviour
only the results for the SUKF are shown for clarity reasons.

Table 7.1: RMS error of the sigma point and square root KF for profile B at 25 ◦C

SUKF SSRUKF SCDKF SSRCDKF
RMS error 0.8029% 0.8029% 0.8049% 0.8049%

The numerical advantage of the square root forms is negligible on computing environments
like Matlab. However, the advantage could be higher on embedded systems with limited word
lengths. Due to the square root of the covariance matrices a larger range is representable
with the available word length. As a result, rounding errors are reduced and the numerical
stability is increased [67, p. 111].

The validation method from Chapter 5 includes an investigation into the estimation behaviour
after wrong initialisation values and current, voltage or parameter offsets.
Fig. 7.5a depicts the results of the SOC estimation within the first 10% of time for an incorrect
initial value of the high-dynamic profile B at 25 ◦C. In this case, the correct SOC is 90%,
but the filter is initialised with a SOC value of 10%. With the exception of the SLKF, all
algorithms are able to correct the wrong initial value. After an initial correction of the error,
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7 Influence of cell behaviour on the state estimation with different Kalman filters

the estimation of the SLKF results in a parallel offset of 10% SOC. The SEKF and the SUKF
correct the error within the first calculation step. Due to the fast transient behaviour, an
overshoot of the estimation can be observed in the error plot. Compared to these algorithms,
the SOC estimation of the SAEKF increases slowly until the correct value is reached after
0.21 h. Due to the measurement noise adaptation (Eq. 3.18), the Kalman gain increases slower
in the beginning compared to the other algorithms. This results in a delayed SOC correction.
To avoid this behaviour, the covariance matrix can be adjusted. The remaining offset between
the estimation and the reference is caused by inaccurate ECM parameters.
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Figure 7.5: SOC estimation results and the deviation from the reference (∆SOC) of the SKF (one RC term):
(a) transient behaviour during high-dynamic discharge (first 10% of time of profile B at 25 ◦C); (b)
influence of an incorrect parameter (Rdc1 s, profile B at 40 ◦C).

In Fig. 7.5b the result of the SOC estimation with a parameter offset of Rdc1 s is shown (Rdc1 s

is initialised with 10% of the correct parameter value, for the used cell the initial value of
Rdc1 s results to 4.27mW). Therefore, the resistance error generates a smaller voltage drop.
As a consequence, the voltage in the ECM is modified and operates as a modification of the
OCV. Due to the prediction part of the KF based on the Coulomb counter, the SOC error
based on the residual charge is only increased by 3.55 percentage points for the SEKF. Similar
errors in the ECM parametrisation can be provoked by a resistance increase due to ageing
effects. A dual KF, which can also adapt the parameters of an ECM, would be able to correct
the incorrect parameters and thus the influence of this error could be minimised [5; 30].

When the current measurement is afflicted with a current offset, the algorithm has to correct
the resulting deviation from the Coulomb counter. In Fig. 7.6 the influence of a 0.001C
current offset (2.85mA) on profile C is presented and the Coulomb counter based on the
measurement data of the BMS is shown (SOC BMS). Since the KF uses not only the BMS
Coulomb counter, but also the measured voltage, the algorithms can compensate the drift in
parts. Compared to the estimation without current offset (Fig. 7.4), the error regarding the
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7.2 State estimation: single Kalman filter

SOC based on the residual charge is 1.4 percentage points higher. The SOC from the current
offset afflicted Coulomb counter of the BMS results in an error of 16%. Whereas the SLKF,
SEKF and SUKF show nearly identical linear behaviour, the SAEKF oscillates with the same
gradient as the other algorithms. The oscillation arises from the changing capacity due to the
varying temperature. The adaptive tuning of the SAEKF causes a more sensitive behaviour to
the temperature dependency, which results in a higher oscillation amplitude. The benchmark
method presented in Chapter 5 allows a more detailed analysis of the estimation performance.
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Figure 7.6: SOC estimation results and the deviation from the reference (∆SOC) of the SKF (one RC term):
influence of a current offset on profile C.

In Fig. 7.7 the four KF with one and two RC terms are compared at −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C
and 40 ◦C. Thereby, Fig. 7.7a shows the estimation benchmark results Kest during profile A.
As the ECM is initialised at 25 ◦C, here, the highest score is achieved compared to the results
at other temperatures. With higher and lower temperatures the accuracy decreases, due
to deviating ECM parameters. The score differences between the algorithms change with
temperature. Compared to the other algorithms, the SAEKF shows a lower score at 25 ◦C,
but at other temperatures the results are better than for the SUKF and SEKF. Therefore, the
SUKF and SEKF show nearly identical behaviour. The SLKF behaviour is similar to that of
the SEKF and SUKF, except at 0 ◦C and 10 ◦C. Here, the SLKF achieves approximately one
score more. At 0 ◦C the SLKF and the SAEKF show nearly identical behaviour. Due to the
steady state during CC charge or discharge periods, the number of RC terms do not influence
the voltage estimation of the KF. Hence, the differences between the estimations with one or
two RC terms are negligible.
Fig. 7.7b shows the accuracy distribution over the investigated temperature range, if the ECM
is initialised at 10 ◦C instead of at 25 ◦C. As a consequence, the performance peak of the one
RC term filters is shifted to 10 ◦C. At this temperature the accuracy of the two RC term ECM
decreases. Changing the initialisation temperature does not affect the results of the SAEKF.
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Figure 7.7: Estimation score Kest of the SKFs with one and two RC terms at different temperatures: (a)
during low-dynamic load (profile A) with the ECM initialised at 25 ◦C; (b) during low-dynamic
load (profile A) with the ECM initialised at 10 ◦C; (c) during high-dynamic load (profile B) with
the ECM initialised at 25 ◦C; (d) during high-dynamic load (profile B) with the ECM initialised at
10 ◦C.

The behaviour during the high-dynamic profile B is shown in Fig. 7.7c. Here, a higher
impact of low temperatures to the estimation accuracy is observable. Moreover, the differences
between one RC and two RC terms are higher. This effect is already described previously.
Furthermore, it is observable, that the two RC term model results in a higher estimation
accuracy (except at 40 ◦C) due to the increased voltage estimation accuracy. Similarly to
profile A, the score decreases with temperatures different from 25 ◦C, although the SAEKF
shows an advantage against the other algorithms at low temperatures. The noise adaptation
of the SAEKF reduces the process noise for the SOC resulting in a higher weighting of the
Coulomb counter. The SEKF and SUKF show an identical behaviour.
Parametrising the ECM at 10 ◦C instead of 25 ◦C results in a higher estimation accuracy at
10 ◦C (Fig. 7.7d). However, the estimation accuracy at temperatures differing from 10 ◦C is
lower. This behaviour is comparable to the ECM parametrised at 25 ◦C (Fig. 7.7c). Here, the
SAEKF shows the best performance over the temperature range investigated in this work.

As shown in Fig. 7.7c, the same temperature dependency is observable in Fig. 7.8a, where the
results of the transient test with profile B at different temperatures are shown. The SLKF is
not able to correct the wrong initial value at any temperature. The other algorithms are not
able to correct the error at −10 ◦C. With the exception at 40 ◦C, the SAEKF shows a lower
score compared to the SEKF and SUKF (compare with Fig. 7.5a).
For the long-term profile C, with varying temperature, four benchmark criteria are considered.
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7.3 State estimation: dual Kalman filter

The score for Kest, Kdrift, Kfail and Kres are shown in Fig. 7.8b. In contrast to the high-
dynamic profile B, the RC term dependency is not visible. At a SOC of 50% the parameter
difference between the one and two RC term ECM in the range of −10 ◦C and 40 ◦C is small
compared with lower and higher SOC levels. Due to the constant SOC of 50%, the parameters
change only in dependency of the temperature.
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Figure 7.8: Benchmark results of the SKF with one and two RC terms (ECM initialised at 25 ◦C): (a) transient
behaviourKtrans during high-dynamic discharge (profile B) at different temperatures; (b) estimation
score Kest, drift score Kdrift, failure stability score Kfail and residual charge determination score
Kres during the long-term test (profile C) with varying temperature.

7.3 State estimation: dual Kalman filter

A DKF allows a correction of incorrect or changing ECM parameters resulting in a more
accurate estimation. In Fig. 7.9 and Fig. 7.10 the behaviour of the dual extended Kalman
filter (DEKF) and the dual adaptive extended Kalman filter (DAEKF) is shown.
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Figure 7.9: Results of the DKF (one RC term) and the deviation from the reference (∆SOC): (a) profile A at
0 ◦C; (b) voltage error of profile A (during a SLC at approximately 50% SOC) at 0 ◦C.
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7 Influence of cell behaviour on the state estimation with different Kalman filters

Therein, Fig. 7.9a shows the estimation during profile A at 0 ◦C. Compared to the corre-
sponding SKF in Fig. 7.2a, the estimation of both algorithms follows the reference value in
the investigated time period. In addition, the SOC overshoot of the SEKF and SUKF is
reduced from 5.52 to 1.06 percentage points.
In Fig. 7.9b the voltage estimation of the DKF during the SLC in profile A at 0 ◦C is shown.
Compared to the SEKF (Fig. 7.3), the voltage estimation is improved by the DEKF by 63.5
percentage points, related to the RMS error. Despite the adaptation of the measurement
noise and process noise matrix, the DAEKF shows a lower voltage estimation performance
than the DEKF.

Fig. 7.10 shows the influence of a dual estimation when an ECM parameter is not correct.
Compared to the estimation without parameter offset, the error of the SEKF increased by 3.55
percentage points (Fig. 7.5b), whereas the error of the DEKF increased by 2.28 percentage
points. In this case, the DAEKF shows no improvement in the estimation behaviour.
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Figure 7.10: Results of the DKF (one RC term) and the deviation from the reference (∆SOC): influence of an
incorrect parameter (Rdc1 s, profile B at 25 ◦C).

In Fig. 7.11 the performance difference of the dual estimation and the SKF is shown. Here,
a positive value indicates an improvement of the DKF against the SKF. During low-dynamic
loads (Fig. 7.11a) the estimation of the DEKF is improved at every temperature. The DAEKF
decreases the accuracy at 40 ◦C.
In contrast to the increase in accuracy during low-dynamic loads, a decrease in accuracy is
observed during high-dynamic loads (Fig. 7.11b). Therefore, a decrease in the estimation ac-
curacy score is observable for both dual algorithms at 25 ◦C and 40 ◦C. During a high-dynamic
load, the parameter estimation is enhanced. Depending on the filter tuning, this could lead to
a faster adaptation of the parameter compared to the SOC, which could lead to the increased
SOC estimation errors. In addition, the transient behaviour shows a score between one or two
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7.3 State estimation: dual Kalman filter

points lower at these temperatures for the DEKF or the DAEKF, respectively (Fig. 7.11c).
Depending on the temperature or the algorithm, this behaviour can be caused by a too rapid
ECM parameter adaptation of the filter. Therefore, the error between the measured and
calculated voltage is not reduced by the correction of the SOC, but by a change of an ECM
parameter, which results in a decreased voltage error due to the changed voltage drop. This
can be influenced by the filter tuning.
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Figure 7.11: Performance change of a DKF compared to the corresponding single KF: (a) estimation score
∆Kest at different temperatures during low-dynamic load (profile A); (b) ∆Kest at different tem-
peratures during high-dynamic load (profile B); (c) transient behaviour during high-dynamic dis-
charge (profile B) at different temperatures ∆Ktrans; (d) ∆Kest, drift score ∆Kdrift, failure stability
score ∆Kfail and residual charge determination score ∆Kres during the long-term test (profile C)
with varying temperature.

During the long-term test (profile C) the dual estimation improves the estimation score Kest

and the drift behaviour Kdrift of the adaptive KF for both ECM models. In addition, the
failure stability Kfail and the SOC estimation score based on the residual charge Kres is
reduced. The influence of the DEKF on the estimation behaviour is only observable in the
Kdrift and Kfail category with two RC terms. Thereby, the overall drift behaviour is increased
and the failure stability is decreased.
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7 Influence of cell behaviour on the state estimation with different Kalman filters

7.4 Parameter estimation: dual Kalman filter

Due to the initialisation of the parameters at 25 ◦C, the estimation accuracy tends to decrease
at lower temperatures. This behaviour correlates with the decreasing precision of the ECM
parameters. The improved estimation at different temperatures is achieved by a correction
of the SOC and temperature dependent ECM parameters. To evaluate this behaviour, the
correction of the parameter Rdc1 s over the SOC range for a KF with one and two RC term
ECM is depicted in Fig. 7.12. Thereby, the reference parameter is the result of the parameter
determination over the entire SOC range according to Section 4.4.
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Figure 7.12: Comparison of the Rdc1 s estimation by the DKF with one (a) and two (b) RC terms at 0 ◦C and
25 ◦C (Profile B).

The Rdc1 s estimated by the DEKF and DAEKF with one RC term during profile B at 0 ◦C
and 25 ◦C is shown in Fig. 7.12a. Here, the ECM parameters are initialised at 25 ◦C. Hence,
the estimation at 25 ◦C follows the reference parameter without a transient behaviour in
the beginning of the profile (SOC=90%). At a SOC<20%, Rdc1 s starts to increase due
to electrochemical effects in the cell (Section 2.1). The DEKF can adapt to this effect by
increasing Rdc1 s. Compared to the DEKF, the DAEKF is not able to correct the parameter
increase. At 0 ◦C a correction of the parameter estimation at the beginning of the profile is
visible. At a SOC<80% the estimation follows the reference value. Similar to the estimation
at 25 ◦C, the parameter estimated by the DEKF increases with decreasing SOC while the
estimation by the DAEKF stays approximately constant.
Fig. 7.12b shows the Rdc1 s estimation by the DKF with two RC terms. The result of the two
RC term algorithms at 25 ◦C shows a similar behaviour as with one RC term, but the deviation
to the reference is higher. The initial correction of the DKFs with two RC terms at 0 ◦C is
lower compared with the one RC term algorithms. In this case, the correction of the voltage
error is performed by adjusting the additional RC term. In consequence, the resistance of the
Rdc1 s is shifted to the second RC term. It can be concluded, that the parameter estimation
with the less complex ECM results in an increased estimation accuracy. This arises from the
lower amount of ECM parameters and results in simpler filter tuning.
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7.5 Benchmark: summary and comparison

The results of the investigated algorithms are summarised for the three profiles in Fig. 7.13.
It is notable that it is not possible to identify the best algorithm for all operation conditions,
thus, the selection should be based on the specific application. However, it can be seen, that
the dual estimation (DEKF or DAEKF) shows an advantage in all categories, except Kres

during profile A.
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Figure 7.13: Net diagram with the final scores of all investigated KFs: (a) low-dynamic load (profile A); (b)
high-dynamic load (profile B); (c) long-term test (profile C).
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7 Influence of cell behaviour on the state estimation with different Kalman filters

7.6 Individual filter tuning and correct equivalent circuit
model parameters

In Fig. 7.7, Fig. 7.8 and Fig. 7.11 the strong dependency of the temperature on the estimation
behaviour is shown. This is based on the fact that the dynamic of the cell changes due to
the temperature dependency of the electrochemical effects, resulting in a change of the ECM
parameters (Section 2.1) and consequently in a change of model uncertainties. Hence, the
constant filter tuning is not optimal.
In this section the validation of the SEKF, SAEKF and DEKF with one RC term and the
SLKF with two RC terms is repeated for profile B at 0 ◦C and 25 ◦C. Thereby, the ECM
parameters are initialised with the correct parameters for both temperatures. The param-
eters at 0 ◦C are summarised in Appendix D Table D.3. Furthermore, the KFs are tuned
individually for both temperatures. The tuning parameters are again determined experimen-
tally (Section 3.3). In Appendix D Table D.4 the changed parameters for 0 ◦C and 25 ◦C are
shown.
The results of the estimation score Kest and the transient behaviour Ktrans are shown in
Fig. 7.14. Compared with the non-individually tuned filters, the estimation accuracy is in-
creased (Fig. 7.14a). The SEKF and the SAEKF show a higher estimation accuracy score
at 0 ◦C compared with at 25 ◦C. The DEKF achieved approximately the same score for both
temperatures.
The transient behaviour is shown in Fig. 7.14b. The SOC correction failed for the SLKF and
the SAEKF at 0 ◦C with the non-individual filter tuning (Fig. 7.8a). With the individually
tuned filters, the selected KFs achieve approximately the same score for both temperatures.
The tuning of the algorithms with two RC terms is more challenging due to the additional
tuning parameters. Here, a higher Kest for the SLKF with two RC terms resulted in a lower
Ktrans.
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Figure 7.14: Benchmark results with correct parameters and individual filter tuning at 0 ◦C and 25 ◦C during
profile B: (a) estimation score Kest; (b) transient behaviour Ktrans.

As one can see, all filters can achieve an adequate accuracy with correct ECM parameters
and optimised filter tuning.
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7.7 Conclusion

The KF is a common algorithm for SOC estimation of LIC. In literature a great variety of
different validation methods exist, wherein the test conditions are restricted. In consequence,
the estimation error of the filter is often evaluated for one specific temperature and current
profile, neglecting the influence of dynamic temperature and high or low-dynamic current
loads on the filter performance. Furthermore, a comparison of different filter algorithms is
limited due to the large scope of different validation methods. To quantify the performance
of 18 different Kalman filters the validation method presented in Chapter 5 is used. The
method consists of three profiles, where low-dynamic, high-dynamic and long-term scenarios
are applied at −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C. In this process, the algorithms are
validated with a one and a two RC term ECM.

As the filter tuning determines the estimation behaviour and accuracy, all KFs use the same
filter tuning parameters to allow a comparison of the different algorithm types. Moreover,
the ECM is initialised at 25 ◦C at every temperature to investigate the influence on the
KFs behaviour. The estimation accuracy results at temperatures greater than 25 ◦C show
similar behaviour for all algorithms. At temperatures below 25 ◦C the differences in the SOC
estimation increases between the filters. This effect is increased during high-dynamical profiles
in the SOC range from 90% to 10%. Repeating the experiments with the ECM initialised
at 10 ◦C shifts the optimum towards the initialised temperature. In contrast to high-dynamic
loads, during low-dynamic loads the amount of RC terms has no effect on the estimation
behaviour.

Depending on the precision of the fitted ECM parameters, a two RC term model can increase
the accuracy during high-dynamic loads. However, the estimation accuracy decreases with an
increasing deviation of the ECM parameters caused by the temperature. Inaccurate initialised
parameters can be corrected by a dual estimation algorithm, which increases the SOC esti-
mation accuracy. The improvement in SOC estimation accuracy depends on the temperature
and the amount of RC terms. The DEKF with one RC term shows a more accurate parameter
estimation than the DAEKF.

To show the importance of the filter tuning and the correctness of the ECM parameters, four
different filters are tuned individually for two temperatures. Compared with the investigations
with a fixed set of filter tuning and ECM parameters, the four filters show a similar estimation
accuracy and transient behaviour for both temperatures.

It is observed that the filter tuning and the ECM parameters are significant for the estimation
performance, but the filter type is not. Advantages of the different filters arise in the math-
ematical calculation methods, which may result in a lower computational effort or memory
usage. However, it is shown that different filter types require different tuning for optimal
estimation results.

In this chapter the correct OCV for all experiments was assumed. However, the OCV of the
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7 Influence of cell behaviour on the state estimation with different Kalman filters

investigated cell (Section 6.3) changes during lifetime. For this reason the following chapter
shows the influence of a changed OCV on the state estimation with a KF.

78



8 Influence of change in open circuit voltage on the
state of charge estimation

In the previous Chapter 7, the influence of the ECM parameters on the state estimation is
shown. Therefore, the correct OCV is used at the corresponding temperature. However,
according to Section 6.3 the OCV has a non-negligible dependency on the temperature and
changes during lifetime. The scope of this chapter is to show the influence of the change in
OCV on the SOC estimation.
Given that different KFs provide similar results (Chapter 7), the EKF with the one RC term
ECM is selected for the following investigations because of its common use. The experiments
are performed with cells of CG1 (validation profiles) and CG2 (OCVs). Based on the results
of Section 6.3 the IC-OCV is used due to high influences of the impedance of aged cells to
the CC-OCV. Due to invalid estimation results for the old cell (SOH=82.5%) at −10 ◦C, this
temperature is ignored within this study.

First in this chapter, the SOC deviations resulting from an incorrect OCV–SOC relation are
shown (∆SOCOCV, Section 8.1). Afterwards, these deviations are compared to the influence
on the SOC estimation with the EKF (∆SOCEst, Section 8.2).

Parts of this chapter were previously published in [167].

8.1 State of charge determination by the open circuit voltage

In this section, the temperature and ageing influence of the SOC determination by the IC-
OCV is presented. Therefore, the SOC deviation resulting from two OCVs in different ageing
states is defined as:

∆SOCOCV,Zxy = SOC(OCVZx)− SOC(OCVZy) (8.1)

whereby, Zx and Zy correspond to the OCV at the different ageing state. Similar to Fig. 6.8b,
Fig. 8.1a shows the OCV at different temperatures (0 ◦C, 40 ◦C) and ageing states (OCVZ1,
OCVZ3). It can be seen that, except the OCVZ3 at 0 ◦C, all curves are overlapping until a
SOC of approximately 20%.
The SOC deviation between OCVZ1 and OCVZ2 (∆SOCOCV,Z12) as well as OCVZ1 and
OCVZ3 (∆SOCOCV,Z13) at 40 ◦C and 0 ◦C are shown in Fig. 8.1b. At 40 ◦C the deviation
of ∆SOCOCV,Z12 and ∆SOCOCV,Z13 increases with decreasing SOC until 20%. Between 0%
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8 Influence of change in open circuit voltage on the state of charge estimation

and 20% the deviation decreases again, whereby at a SOC of 20% the maximum deviation is
approximately −3.7%. Due to the lower gradient of the OCV at 0 ◦C (Fig. 6.8a), the overall
deviation ∆SOC is higher than at 40 ◦C and decreases with decreasing SOC. At a SOC lower
than 30%, ∆SOC is comparable to the SOC deviation at 40 ◦C for both ageing stages. The
maximum deviation of ∆SOCOCV,Z12 and ∆SOCOCV,Z13 at 0 ◦C is approximately −6% and
−8.9% at a SOC between 70% and 90%, respectively.
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Figure 8.1: Temperature and ageing dependency of the OCV determined by the IC method: (a) OCV of the
new (Z1) and old cell (Z3) at 40 ◦C and 0 ◦C; (b) SOC error at 40 ◦C and 0 ◦C of the aged cells (Z2,
Z3) based on the OCV of the new cell (Z1) at 40 ◦C.

8.2 State of charge estimation by the Kalman filter

As the focus of this chapter is the influence of the change in OCV on the estimation accu-
racy at different ageing states, further investigations regarding estimation accuracy, transient
behaviour or failure stability of the EKF are beyond the scope of this study.

To investigate the influence of the OCV at different ageing states, the following experiments
are performed. First, the used cells (Section 4.1) are surveyed with the measurement setup
introduced in Section 4.3. In this way, the OCV is determined (Section 4.4.2). Secondly, the
validation profile B (Chapter 5) of the new cell of CG1 (Chapter 7) at different temperatures
is used for all experiments in this chapter to be comparable to the previous results. The EKF
is initialised at every temperature with the corresponding ECM parameters of the used cell.
Furthermore, the filter tuning is fixed to the same initial tuning parameters as used in Chap-
ter 7 (Appendix D Table D.1). In addition, these parameters are not changed for different
temperatures or ageing states. For the simulations, the OCV–LUTs at the different ageing
states are varied. So, the OCV is the only changing parameter, hence, the OCV influence on
the estimation is isolated.

In Fig. 8.2a the results of the EKF with the three different OCVs at the different ageing states
at 0 ◦C are shown. Additionally, the reference (Ref) determined by the Coulomb counter of
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8.2 State of charge estimation by the Kalman filter

the CTS is depicted. Here, a parallel offset of the SOC estimation with OCVZ2 and OCVZ3

is observable.
Fig. 8.2b gives the deviation from the reference (∆SOC). The EKF using the OCV of the new
cell Z1 shows almost identical behaviour compared to the reference. The difference between
the filter and the reference is approximately ±1%, whereas higher deviations are observable
at very low SOCs. The RMS error between the reference and the estimation is smaller than
0.6% for this ageing scenario. For the estimation with OCVZ2 and OCVZ3 the RMS error
increases to 5.56% and 8.05%, respectively. At a SOC lower than 20% the estimated SOC
starts to decline. This behaviour can be explained by the increasing resistances Rdc1 s and
R1 (Chapter 6). Consequently, the KF adjusts the SOC to lower values to compensate the
resulting increase of overpotentials, although it is observed that this behaviour is dependent
on the filter tuning as well.
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Figure 8.2: SOC estimation results with profile B of the new cell of CG1 at 0 ◦C: (a) estimation with the OCV
of Z1, Z2 and Z3 and the reference; (b) SOC deviation between the estimation and the reference.

As one can see in Fig. 8.1b, the ageing dependency of the OCV increases with decreasing
temperature. In Fig. 8.3a this influence on the estimation at 0 ◦C and 40 ◦C is shown. To
allow a better comparability with Fig. 8.1, and due to different test lengths at 0 ◦C and 40 ◦C,
the x-axis is represented in SOC estimated with OCVZ1. ∆SOCEst,Z12 and ∆SOCEst,Z13 cor-
responds to the deviation between the estimation by the EKF with OCVZ1 and the estimation
by the EKF with OCVZ2 and OCVZ3, respectively. The estimation at 0 ◦C shows the maxi-
mum deviation of −8.6% at a SOC of 90% and decreases to −6.5% with decreasing SOC. In
case of the estimation at 40 ◦C the deviation increases with decreasing SOC from −0.55% to
−2.4%. By comparing ∆SOCEst,Z12 and ∆SOCEst,Z13 at 0 ◦C and 40 ◦C an inverse behaviour
can be observed. At 0 ◦C the difference between ∆SOCEst,Z12 and ∆SOCEst,Z13 decreases,
whereas the difference increases at 40 ◦C. It is notable, that in Fig. 8.1b a similar behaviour
is observed.

In order to compare the RMS deviation of the SOC determination by the OCV–SOC relation
(Fig. 8.1b) with the estimation by the EKF (Fig. 8.3a), the results are summarised in Fig. 8.3b
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8 Influence of change in open circuit voltage on the state of charge estimation

over the investigated temperature range. Here, an increase of ∆SOCRMS with decreasing tem-
perature is observable. However, the deviation of the estimation by the EKF (∆SOCEst)
shows higher values. At 0 ◦C the difference between ∆SOCOCV,Z12 and ∆SOCEst,Z12 or
∆SOCOCV,Z13 and ∆SOCEst,Z13 increases for 2% or 3%, respectively. For the SOC esti-
mation by the EKF (∆SOCEst) the RMS error increases to 4.2% and 6.5% for the estimation
with OCVZ2 and OCVZ3, respectively. This behaviour can be explained by additional model
uncertainties at low temperatures and the constant filter tuning (Chapter 7).
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Figure 8.3: SOC estimation results: (a) SOC deviation between the estimation with OCVZ3 and the estimation
with OCVZ3 and OCVZ3 at 0 ◦C and at 40 ◦C; (b) RMS deviation ∆SOCOCV and ∆SOCEst in the
investigated temperature range.

The EKF uses not only the cell voltage for the state estimation, but also the Coulomb counter.
The weighting of these two inputs is set by the filter tuning. Here, a compromise between
accuracy and the ability to correct initialisation and measurement errors has to be found (Sec-
tion 3.3). With the filter tuning of Table D.1 (Appendix D) both requirements are fulfilled
(Chapter 7). If the weighting of the voltage measurement is increased by setting the process
noise QSOC from 10−15 to 10−11, the estimated SOC reacts more sensitively to a change in
the terminal voltage U , which is dependent on the OCV.
Repeating the experiment and comparing Fig. 8.4a with Fig. 8.1c a similar behaviour can
be observed. Consequently, the influence of the OCV–SOC correlation on the estimation is
increased.
Fig. 8.4b compares the RMS deviation of the SOC determination by the OCV–SOC corre-
lation with the estimation by the EKF over the investigated temperature range. Compared
to Fig. 8.3b, the difference between ∆SOCOCV,Z12 and ∆SOCEst,Z12, or ∆SOCOCV,Z13 and
∆SOCEst,Z13 at 0 ◦C is reduced from 2% or 3% to 0.34% or 0.54%, respectively.

As one can see, the ageing of the OCV results in an influence on the estimation depending
on the filter tuning. This in turn leads to high estimation errors in an application, if the cell
ages and the OCV is not adapted to the cells condition.
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Figure 8.4: SOC estimation results with changed filter tuning: (a) SOC deviation between the estimation
with OCVZ3 and the estimation with OCVZ3 and OCVZ3 at 0 ◦C and 40 ◦C; (b) RMS deviation
∆SOCOCV and ∆SOCEst in the investigated temperature range.

8.3 Conclusion

The EKF is a common algorithm for state of charge estimation of LICs. Therefore, the filter
uses the OCV–SOC relation as a reference. Consequently, the accuracy of this relation is
a requirement for an accurate and stable SOC estimation. Therefore, the temperature and
ageing dependency of the OCV–SOC relation at 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C with three cells
at different ageing states (SOH of 98.3%, 90.4% and 82.5%) is investigated.

The results show a RMS deviation of approximately 3.5% and 0.7% in SOC at 0 ◦C and
25 ◦C, respectively, when the OCV–SOC relation of the new cell is compared to that of the
aged cell. By using the validation method based on the SLC, it is shown that the deviation of
the SOC estimation by the EKF increases to a RMS deviation of 6.5% and 1% at 0 ◦C and
25 ◦C, respectively. This deviation is further affected by the filter tuning. Changing the filter
tuning increases the influence of the OCV on the SOC estimation.

This chapter showes the influence of the changed OCV, due to ageing, on the state estimation.
To get a deeper insight into the progress of OCV changes during ageing, the next chapter
presents an ageing study with a focus on the OCV.
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9 Ageing behaviour of open circuit voltage at single
cell and module level

In this chapter the results of the ageing study at single cell and module level according to
Section 4.6 are discussed. However, a detailed investigation of ageing effects is not the focus
of this work.
Firstly, Section 9.1 shows the observations at cell level (CG3). Here, the loss of capacity,
increase of impedance and the OCV development over the cell’s lifetime is presented. Then,
Section 9.2 shows the results of the ageing study at module level. Therefore, two modules are
constructed with cells from CG4 according to Section 4.2. This ageing study is compared to
the results from [163] (CG5) to assess the ageing scalability from single cell to module level.
In addition to the capacity and impedance development, temperature distribution within the
modules, balancing effort and the SOI over lifetime is shown. The change in OCV is presented
at the modules end of life (EOL) and compared to the OCV at the EOL at cell level (CG3).

Parts of this chapter were previously published in [162].

9.1 Ageing at single cell level

9.1.1 Capacity and resistance development

The experimental results comprise 30 months of testing, which corresponds to 2500EFC and
a driven distance of approximately 250 000 km. Fig. 9.1 illustrates the capacity fade and the
increase in resistance of single cells at 40 ◦C, 25 ◦C and 10 ◦C (calendar ageing only) at the
low SOC level L (3.7V) and high SOC level H (4.1V) (Section 4.6). Therefore, the results are
normalised (Cnorm, Rnorm) to the first corresponding value. Except at 10 ◦C all experiments
are performed with two cells. Due to a rather identical ageing behaviour the results of only
one cell are shown with respect to clarity.
For the long-term cycling (Fig. 9.1a), the graph shows a slower ageing of the cells cycled
at the low SOC level. At 2500EFC the capacity loss at 25 ◦C results to 12.4% compared
to 14.8% at 40 ◦C. For the cells cycled at a higher SOC level, the capacity degradation is
increased. After 2500EFC the capacity is reduced to 84.6% at 25 ◦C. This corresponds to a
3 percentage points higher degradation compared to the capacity degradation at lower SOC.
The cell cycled at high SOC at 40 ◦C reached the EOL criteria of 80% SOH at approximately
2000EFC. At this point, the cell cycled at lower SOC retained 86.5% of the capacity, which
decreases to 85.1% at 2500EFC.
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Figure 9.1: Ageing at the cell level at low (L) and high (H) SOC at 10 ◦C (calendar ageing only), 25 ◦C and
40 ◦C: (a) capacity degradation during cycling ageing; (b) capacity degradation during calendar
ageing; (c) resistance increase during cycling ageing; (d) resistance increase during calendar ageing.

In Fig. 9.1b the capacity loss during calendar ageing is shown. The ageing experiments for
the cells at 10 ◦C started approximately one year after the experiments at 25 ◦C and 40 ◦C.
Similarly to the cycling ageing, the degradation of the cell increases with increasing temper-
ature. However, the loss of capacity is lower than during cyclic ageing. At 25 ◦C and 40 ◦C
at low SOC the degradation after the time duration of 2500EFC (920 days) is 7% and 10%,
respectively. This corresponds, approximately, to a 5 percentage point lower ageing at both
temperatures.
Fig. 9.1c and Fig. 9.1d show the resistance increase during cyclic and calendar ageing, re-
spectively. Interestingly, the resistance increase during cyclic ageing (Fig. 9.1c) at low SOC
is higher than at high SOC, but the capacity loss behaves contrarily. This result is shown
with both cells in this ageing condition and also in [175]. The reason for this behaviour could
arise from a destroyed SEI during cycling and a subsequent reaction of the electrolyte with
lithiated graphite (LiC6) lithium cations. This leads predominantly to a growing layer of
inorganic lithium salts, which is linked to an impedance increase [107; 113, p. 30].
The calendar ageing (Fig. 9.1d) shows how the resistance typically increases faster with rising
temperatures and SOC. Nevertheless, the resistance of the cell aged at 40 ◦C and high SOC
shows more intensive ageing than that of the cyclic ageing. This may be caused by migrated
cathodic oxidation products to the anode, which favour the production of highly resistive
compounds during the SEI growth [98; 113; 115, p. 30].
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9.1 Ageing at single cell level

9.1.2 Changes of the open circuit voltage

Now, the ageing influence on the OCV is shown. Therefore, Fig. 9.2 shows the voltage change
over the SOC range from 0% to 100% compared to the OCV in the new state. The results are
related to the last measurement point of each ageing condition and the OCVs are determined
by the CC method.

Fig. 9.2a presents the voltage difference ∆U= OCVnew −OCVold for the cyclic ageing study.
In [123] a shift in the electrode balancing during calendar ageing is observed. This is also
assumed during cyclic ageing. As a consequence the OCV changes and results in a flatter shape
[146]. This change is noticed as SOC dependent waves in Fig. 9.2a, with three remarkable
local maxima at approximately 80%, 50% and 10%. The decline between 60% and 50% SOC
as wells as between 20% and 10% SOC indicate a transition between the voltage plateaus
of the anode potentials, whereas the decline between 90% and 80% SOC can be assigned to
a transition between a voltage plateau of the cathode potential [123]. The position of the
peaks depends on the electrode balancing [123]. Furthermore, the voltage difference shows
an decreasing trend from 100% to approximately 10% SOC, then the difference decreases in
the strongly declining voltage of the OCV. The voltage difference increases with decreasing
capacity. For the cycled cell at 40 ◦C and high SOC, ∆U results to a maximum voltage
difference of −66mV at a SOC of 12%.
Similar results are observable during the calendar ageing study (Fig. 9.2b). Due to the lower
capacity degradation compared to the cyclic ageing study, the voltage differences are lower.
However, the maximum difference is observed in the same ageing condition at approximately
the same SOC of 10% (∆U=−41mV). Similar to the capacity degradation, the voltage
difference correlates with the temperature and SOC level during ageing.
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Figure 9.2: Voltage difference between new and aged OCV for different temperatures and SOC levels: (a) cyclic
ageing; (b) calendar ageing.

Fig. 9.3a shows the voltage difference of cells with a retained capacity of approximately 90%.
Furthermore, the mean difference of these is illustrated. It can be seen that the cycled cells
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9 Ageing behaviour of open circuit voltage at single cell and module level

show a similar behaviour. The small deviations arise from the unequal ageing state of 90%.
However, the calendar aged cells differ from the cycled cells.
These differences are more clearly observable with the DVA (Section 4.5.4) in Fig. 9.3b.
Compared to the DVA of the cycled cells, the DVA from the calendar aged cells shows a
remarkable peak at approximately 60% SOC and two additional peaks between 20% and
10% SOC. Calendar ageing is mainly provoked by a shift in the electrode balancing [123],
which is visible by the moving peak at a SOC of approximately 60%. It is shown in [121] that
during cyclic ageing these peaks decrease further.
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Figure 9.3: (a) Voltage difference between new and aged OCV: cyclic and calendar ageing at a retained capacity
at approximately 90%; (b) differential voltage analysis of aged cells: cyclic and calendar ageing at
a retained capacity at approximately 90%.

To emphasise the influence of the change in OCV on the SOC determination by the OCV–
SOC relation, Fig. 9.4a shows the increasing SOC error during cyclic ageing at 40 ◦C and high
SOC.
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Figure 9.4: (a) impact of a change in OCV to the OCV–SOC relationship (left axis: OCV, right axis: SOC
deviation); (b) difference of the CC-OCV and the IC-OCV method (for OCV determination see
Section 4.4.2) at 25 ◦C at the cells EOL.

Therefore, the SOC difference ∆SOC is defined as the difference between the OCV-based
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9.1 Ageing at single cell level

SOC at 25 ◦C of the new cell and the OCV-based SOC of the cell after 2400EFC at the same
voltage:

∆SOC = SOC(OCV0EFC)− SOC(OCV2400EFC) (9.1)

Similarly to the voltage differences, three local maxima are visible at 80%, 50% and 10%. As
one can see, the error resulting from the changing OCV–SOC relation increases to 7% and
5.6% at a SOC of approximately 40% and 10%, respectively.
As previously mentioned in Section 6.3, Fig. 9.4b verifies that at the cell’s EOL, the difference
between the CC and the IC method at 25 ◦C is negligible. The mean error over the complete
SOC range is 2mV.

Due to the need for an accurate SOC, especially at a low SOC, the peak between 20% and
10% is investigated in more detail. Therefore, Fig. 9.5 shows the correlation between ∆SOC
and the EFC, time or Cact. Fig. 9.5a and Fig. 9.5b show the increase of ∆SOC during cyclic
and calendar ageing, respectively. The exponentially decreasing behaviour is quite similar to
the capacity degradation shown in Fig. 9.1.
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Figure 9.5: Development of the SOC error between 10% and 20% SOC resulting from a changing OCV over
lifetime: (a) vs. EFC (cyclic ageing); (b) vs. time (calendar ageing); (c) vs. actual capacity Cact
(cyclic ageing); (d) vs. actual capacity Cact (calendar ageing)

Fig. 9.5c and Fig. 9.5d show the correlation between ∆SOC and the corresponding actual
capacity Cact. In order to analyse the correlation, regression curves are calculated for each
ageing condition. It can be observed that during cyclic ageing, at high SOC the error increases
linearly with Cact. However, the cells cycled at low SOC show a linear behaviour up to
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9 Ageing behaviour of open circuit voltage at single cell and module level

95%, then the decline decreases (Fig. 9.5d) and consequently the regression value (Table 9.1)
decreases too. For the calendar ageing only, at high SOC and at 25 ◦C, the gradient changes
at 95% which results in a decreasing regression value. In contrast to the peak at a SOC of
50% and 10%, the peak at 80% shows a weak correlation.

Table 9.1: Regression value r of the correlation between SOC error and capacity degradation

L/10 ◦C H/10 ◦C L/25 ◦C H/25 ◦C L/40 ◦C H/40 ◦C
Cyclic ageing - - 0.962 0.993 0.977 0.997

Calendar ageing 0.996 0.999 0.991 0.988 0.998 0.995

In order to identify a general trend in the error development with the capacity degradation,
this ageing matrix is not sufficient. Further experiments are required to model the OCV
change during lifetime. However, these results emphasise the importance of a correct OCV–
SOC relation for OCV based algorithms. Furthermore, it should be investigated if the findings
are applicable to other LIB technologies.

9.2 Ageing at module level

9.2.1 Capacity and resistance development of modules

Fig. 9.6a shows the normalised capacity fade of the ageing experiment. At the beginning, the
development at the module level shows good agreement with the one at the single cell level.
From 600EFC a slower ageing behaviour is observed for the modules which, however, shows
stronger fluctuation. This may have originated from temperature fluctuations during the
check-ups in the self-made temperature chamber, because of fluctuating room temperature,
or from a different short-term cell history before the capacity measurement was performed. A
different history may have arisen from a varying time difference between cycling and check-up.
It is observed that a longer rest between cycling and check-up results in a higher capacity.
The dependency on the rest duration is also observed at the block level. The deviations
between the modules and the single cell at 1200EFC are 2.01% and 1.21% for M1 and M2,
respectively.
In Fig. 9.6b, the resistance evolution of M1 and M2 is compared with the one at the cell
level. The resistance trend of M1 is similar to the single cell. At 1200EFC, the deviation
between M1 and the single cell is 5%. The offset between cell and module is caused by the
slower ageing behaviour at the beginning of the experiment at the cell level. In contrast,
the resistance of M2 increases faster. This is mainly caused by the resistance of one block
(Fig. 9.7d). The deviation between the module and the cell resistance is 20.3%. The higher
resistance also explains the lower capacity of M2 because the cut-off voltage during check-up
is reached earlier and so less charge is obtained. Because of the CCCV check-up at the block
level, the capacity development is not influenced by the higher resistance (Fig. 9.7b).
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Figure 9.6: Capacity and resistance development during cyclic ageing at 40 ◦C: a) module capacities; b) module
resistances.

9.2.2 Capacity and resistance of single blocks

In Fig. 9.7a and Fig. 9.7b, the capacity degradation for each block of M1 and M2 is depicted.
At the block level, the capacities for both modules are higher because of the additional CV
phase during check-ups. According to Section 4.5.1, such a CV phase is not possible at module
level. After 1200EFC, the average differences between the remaining capacities of the eight
blocks and the result from the ageing study at the cell level is 2.42% and 2.59% for M1 and
M2, respectively.
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Figure 9.7: Capacity and resistance development during cyclic ageing at 40 ◦C: a) block capacities of module 1;
b) block capacities of module 2; c) block resistances of module 1; d) block resistances of module 2.
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9 Ageing behaviour of open circuit voltage at single cell and module level

Finally, capacity losses at the cell level were higher than these at the module level and espe-
cially higher than these at the block level. The deviation can be explained by two reasons:

Reason 1: During the capacity measurements, the temperature increases because of the dis-
charge current of more than 1C. In the module, the temperature increases substantially more
than at the cell level because of heat accumulation. At the beginning of the ageing study,
the maximum temperature in each block was approximately 10K higher during the mod-
ule check-ups compared with single cell check-ups. During the progress of ageing, the mean
module temperature during check-ups also increased owing to the increasing resistance. The
maximum temperature difference between each block and single cells rises to 15K. This may
lead to the higher capacity measured during check-ups of modules as improved cell kinetics
and decreased resistances would be expected to allow for additional capacity to be extracted
from the cell before reaching the cut-off voltage.
In contrast to that, the temperature at the cell level remains approximately constant during
the progress of ageing, despite an increasing cell resistance, because a single cell exhibits a
much better heat transfer to the ambient air compared to a module. To evaluate the influ-
ence of the elevated temperature during capacity measurements, a check-up at 1200EFC with
only one block was performed. This resulted in a maximal temperature of 35 ◦C compared
with 47 ◦C when all blocks were measured together. The difference of 12K led to a measured
capacity decrease of 0.3%. The temperature dependency of the capacity of LIC has e.g. been
reported in [83; 122] and shown in Chapter 6.

Reason 2: The average temperature of the module is lower compared with that of the single
cell, which was cycled at constant 40 ◦C. This leads to a slower ageing behaviour at the
module level. At the beginning of the ageing experiment, the minimum block temperature
of M1 is 36.5 ◦C during the cycling procedure. Because of increasing cell resistances, the
dissipated heat also increases. At 1200EFC, the minimum temperature reaches 38.5 ◦C and
the maximum block temperature increases from 38.5 ◦C to 40.5 ◦C. For M2 the minimum
temperature increases from 37.5 ◦C to 39 ◦C and the maximum temperature from 39.5 ◦C to
41.5 ◦C. The ageing behaviour at elevated temperatures is mainly caused by calendar ageing
effects [163] and has also been observed for NMC based cells [100; 176].
From the calendar ageing investigations at the single cell level (CG5 [163]), the influence of a
deviation of 2K in the mean temperature during cycling can be derived: Fig. 9.8 reveals the
usage-independent calendar ageing, in terms of capacity fade, in relation to cell temperature
at the high SOC, which corresponds to the start SOC of the cycle life study. As one can
see, usage-independent calendar ageing increases clearly for temperatures above 30 ◦C. Each
additional degree increases the degradation notably. The slope of the usage-independent
capacity fade at 40 ◦C reveals that a variation in temperature of 1K leads to a difference in
the remaining capacity of 0.18% and 0.3% after 5 and 12 months of storage, respectively.
Regarding the "12 months" curve, a deviation in temperature of 2K leads to a difference in
capacity fade of 0.6%. Hence, variations in temperature are observed to have a considerable
impact on the cycle life for high-temperature operating conditions.
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Figure 9.8: Ageing at the cell level at high SOC: influence of temperature on calendar ageing.

The higher temperature during check-ups and the lower mean temperature during cycling
have a total effect of 0.9%, which can reduce the deviation between the single cell and the
block level to 1.52% and 1.69% for M1 and M2, respectively.

Fig. 9.7c and Fig. 9.7d show the resistance increase at the block level. Similar to the module
level, the resistance evolution of M1 is in good agreement with the ageing behaviour of the
single cell. After 1200EFC the mean difference between the resistance increase of the eight
blocks and the single cell is 2.8%. The deviation is lower than at the module level because of
the missing copper rails and bolted connections between blocks.
For M2, a strong spread of resistances is observable. Blocks two, three and four in particular
display a massive resistance increase compared with the other blocks. In total, there is a
mean deviation of 13.2% caused by the three outlier blocks in the module. Regarding the
capacity ageing behaviour, a faster degradation of these blocks is not observable. This might
be caused by a bad welding spot, resulting in a relatively higher contact resistance, which
would also provoke an increased generation of heat on the tab, which in turn leads to a faster
corrosion of the welded connections between cell tab and Hilumin, as well as between Hilumin
and copper. Hence, it can be assumed that the resistance increase mainly originates from the
deteriorated connections, in contrast to a distinct cell ageing. This unpredictable resistance
increase can lead to an unstable estimation behaviour of SKFs and DKFs, caused by an ECM
and filter tuning not designed for this failure case.
After disassembling M2 back to the single cell level by mechanically removing the Hilumin
and copper connectors, this assumption could be confirmed. The measured resistance of block
four at 1200EFC is 2.93mW and the sum, according to Eq. 4.2, of the single cell resistances is
1.82mW. The difference between these values corresponds to the approximate contact resis-
tance of 1.11mW. Similar values are calculated for blocks two (0.78mW) and three (1.05mW).
The other contact resistances are around 0.5mW, which can be regarded as the resistance of
a proper connection.
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9 Ageing behaviour of open circuit voltage at single cell and module level

The results show that the ageing at the module level does not progress faster than at the
single cell level and weak welding spots can continuously deteriorate the module performance.
The reasons behind the slower ageing of the module need to be investigated in more detail,
although, temperature and contact resistances have been identified as influencing factors.

9.2.3 State of inhomogeneity during the progress of ageing

Fig. 9.9a and Fig. 9.9b show the development of the capacity and resistance SOI of the blocks
of both modules, respectively (Section 4.5.3). The parameter α represents the SOI of the
selected 112 single cells of both modules in the new state, before assembly calculated by
Eq. 4.3. For the capacities (Fig. 9.9a), the SOIC of the individual cells is 0.63% for M1 and
0.57% for M2. For the resistances (Fig. 9.9b), the cell-based SOIR results in 3.53% and
3.15% for M1 and M2, respectively.
In the next step, the cells are connected and then the SOI calculation is repeated at the
block level for both modules (eight blocks). When the cells were selected by coincidence, the
calculated SOIC and SOIR would result in 0.12% and 0.55%, respectively, for both modules
(β in Fig. 9.9). These values represent the computed mean of 1000 coincident cell selections.
Capacity-based cell matching (Section 4.2.3) reduces the theoretical ideal SOIC to 0.032%
and 0.014% for M1 and M2, respectively. This ideal matching is represented by the parameter
γ in Fig. 9.9. For the resistances, which are not matched actively, the SOIR results in 0.5%
and 1% for M1 and M2, respectively. In the end, a capacity-based matching results in a lower
SOIC, but can lead to a higher SOIR (compare β and γ of M2).
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Figure 9.9: Spread of parameters over the entire ageing study: α represents the inhomogeneity for the un-
connected cells, β represents the inhomogeneity of the modules with coincidently selected cells, γ
represents the inhomogeneity for perfectly matched modules. The remaining bars illustrate the
actual inhomogeneities in the constructed modules throughout the entire ageing procedure for (a)
block capacity and (b) block resistance.

When measuring the capacities and resistances of the single blocks after the assembly of
the modules, the SOI increases because of temperature gradients during module check-ups
and variations in the additional contact resistances. The measured SOIC rises to 0.20%
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and 0.32% for M1 and M2, respectively. Additionally, the SOIR is increased to 3.17% and
4.08%, respectively. Assuming that the SOIC would have increased by the same amount
for coincidently selected cells, capacity-based cell matching reduced the SOIC by 8.8% and
10.6% for M1 and M2, respectively. Compared with the SOIC, the SOIR value is observed
to decrease for M1 but to increase for M2. Here, the contact resistances distorted the block
resistances. The high value for SOIR of M2 is a result of the worse cell connections.
Fig. 9.9 also shows the development of the SOI during the course of ageing. Here, a linear
increase of the spread between the maximal and minimal block capacity is observed (Fig. 9.9a).
The SOIC increases from its initial value of 0.2% to 0.67% and from 0.32% to 0.51% for
M1 and M2, respectively. The SOIC of M1 increases faster than that of M2, which is in
accordance with a higher SOIC of M1 in the new state at the single cell level. A link between
the lithium-ion cell-to-cell parameter variation in the new and the aged state is reported in
[132]. In Section 9.1.2 a correlation between the capacity deterioration and the change in OCV
is shown. With the increasing SOIC this change may differ in the blocks and can influence
the state estimation on module level.
However, the block resistances behave differently. For M1, the SOIR stays approximately
constant until 400EFC, after which, it starts to increase. In contrast to that, M2 is observed
to increase linearly from the beginning of the experiment. Due to the higher resistance of
blocks two, three and four, the SOIR is also approximately five times higher than that of M1.
With the outlier blocks, the SOIR increases up to 36%. Without these blocks, the SOIR

after 1200EFC is 6.9%, compared with 7% for M1.
As M2 is disassembled after 1200EFC, α can be calculated for the aged single cells. Then α
corresponds to 3.4% (increase by factor 6) and 17.6% (increase by factor 5.5) for capacities
and resistances, respectively. The SOIC inside the blocks of M2 is in the range of 0.69%
(Block 5) to 3.08% (Block 7). The SOIR is in the range of 3.32% (Block 2) to 15.77%
(Block 7).

9.2.4 Correlation of ageing and temperature

In Fig. 9.10a and Fig. 9.10b, the capacity degradation of the blocks of both modules are
compared with the corresponding mean temperature. Until 600EFC, the degradation corre-
lates well with the temperature distribution. The blocks in the border areas of the modules
have a lower temperature and hence a lower degradation. From 600EFC to 1200EFC, the
behaviour changes for both modules, whereby border block one ages faster than blocks five
to seven where the temperature is higher. The reason for this could be an increased influence
of cell-to-cell variation [128; 132].
The cell-to-cell variation in the new state is comparably low so the inhomogeneous tempera-
ture distribution dominates the ageing behaviour. During the course of ageing, the cell-to-cell
variation becomes more influential than the temperature deviation of 2K. Thus, the blocks
show a decreasing correlation between capacity fade and temperature. All in all, the differ-
ences are rather low, since the capacities have diverged less than 1% after 1200EFC.
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9 Ageing behaviour of open circuit voltage at single cell and module level

The resistance increase for M1 is, except for block six, in good correlation with the tempera-
ture at 600EFC and 1200EFC (Fig. 9.10c). For M2, however, no correlation can be observed
(Fig. 9.10d). Here, cell-to-cell and contact resistance variation might have more effect on the
ageing behaviour than temperature gradients within the module.
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Figure 9.10: Capacity degradation (a, b) and resistance increase (c, d) with the corresponding temperature
distribution at 600EFC and 1200EFC (please notice the different scaling of the ∆R axis).

9.2.5 Energy efficiency

Fig. 9.11 shows the energy efficiency at the cell and the module level. Because of the additional
contact resistances, the energy efficiency at the system level is lower than at the cell level. It is
calculated by dividing of the energy in the discharge direction by that of the charge direction.
The energy efficiency of M1 decreases by 0.6% to ηM1=95.03%. In comparison, M2 decreases
by 0.4% to ηM2=95.23%, which is slightly higher than ηM1. Due to the increase in resistance,
η is observed to decrease during the course of ageing. Moreover, while M1 exhibits a parallel
offset compared with the single cell, M2 decreases faster as a result of the accelerated increasing
resistances. The decreased energy efficiency at the module level at 1200EFC is 94.3% and
94.2% for M1 and M2, respectively, compared with an energy efficiency at the single cell level
of 94.9%.
The energy consumption of the BMS can be neglected because it was supplied by an external
power source. The balancing influence on the energy efficiency is also negligible: the calculated
mean difference between the energy efficiency with and without balancing is 0.0072%. The
fluctuation of M2 results from balancing faults, which is explained in the next section.
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Figure 9.11: Energy efficiency

9.2.6 Cell balancing

In Fig. 9.12, the balancing behaviour of M1 and M2 during the course of ageing is shown.
Every point depicts the accumulated balancing charge of all cells during 50EFC. At the
beginning, this accumulated balancing charge is 1.21Ah and 0.82Ah for M1 and M2, respec-
tively. Therefore, the BMS balanced in large parts during the charging process after the two
driving cycles (Section 4.6). At the end of the charging phase, the blocks were balanced again.
After 500EFC, the balancing charge of M2 starts to increase up to 37.1Ah, while the charge
for M1 stays constant. This is also noticeable in the energy efficiency development. The
balancing fault leads to a decrease in energy efficiency of:

∆η =

8∑
i=1

Qbal,i · Ūblock

50 EFC · Q̄M2,900 EFC · Ūblock · 8
= 37.1 Ah

50 EFC · 35.79 Ah · 8 = 0.26 % (9.2)

Thereby, Qbal is the balancing charge of every block and Ūblock the mean block voltage during
cycling. This is also visible in Fig. 9.11. The BMS measured the cell voltage between two
cells on the copper rails (Fig. 4.1b). If the bolted connection was not tightened correctly,
the BMS would also measure the voltage drop over the connection and perform balancing by
mistake. Despite the use of a torque wrench to tighten the bolts in a reproducible manner,
stable connection resistances could not be guaranteed. The reasons for this behaviour could
have originated from polluted or oxidized contact surfaces. At 900EFC, the contact surface
appears to be clean again and the balancing behaviour returns to the level of M1, at which
point, M2 follows M1 again and stays constant. The mean balancing amount from 900EFC
to 1200EFC is 0.89Ah and 1.07Ah for M1 and M2, respectively.
The mean balancing amount of all blocks Q̄bal for M1 is 1.13Ah and the mean energy amount
is 4.5Wh per 50EFC. This corresponds to:

Q̄bal

Q̄50 EFC
= 1.13 Ah

3863 Ah = 0.3 mAh
Ah (9.3)
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or

Ēbal

Ē50 EFC
= 4.5 Wh

118 kWh = 38 mWh
kWh (9.4)

Therefore, Q̄50 EFC and Ē50 EFC correspond to the mean charge and energy throughput per
50EFC, respectively. Despite the increased SOIR of M1 and particularly M2, the balancing
amount did not increase in the same trend. In fact, the balancing charge of M1 is even
observed to decrease. It is assumed that the variation of contact resistances has a greater
influence on the balancing behaviour than inhomogeneous cell resistances and capacities.
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Figure 9.12: Ageing impact on cell balancing.

As one can see, due to varying contact resistances, voltage-based balancing can lead to bal-
ancing faults during ageing. A balancing strategy based on the SOC estimated by a KF could
be more robust against such disturbances. Due to the low balancing activity in the faultless
case, the influence of balancing on the state estimation can be neglected.

9.2.7 Changes of the open circuit voltage

In order to compare the change in OCV at module level with that at the cell level, M1 is aged
till the EOL criteria (SOH=80%) is reached. To accelerate the module ageing, the number
of subsequent driving cycles was increased from two to five. Consequently, the DOD was
increased from 25% to 62.5%, resulting in a faster degradation. The OCVs shown in this
section are determined by the CC method as the IC method is not feasible at module level
due to the required CCCV phase (Section 4.4.2). As already shown in Fig. 9.4, the difference
of the CC and the IC method is negligible at a temperature of 25 ◦C.

Fig. 9.13a shows the OCV of the module, one block and one single cell. Therefore, the module
was disassembled to perform the measurements at single cell level and the module voltage is
scaled to cell level. The differences between cell and block as well as cell and module are
illustrated in Fig. 9.13b. Here, a strong increasing deviation between cell and module is
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observed at a SOC lower than approximately 5%. This could arise from differing block SOCs
as a result of differing block capacities in the module. The SOI for the capacity distribution
increased to 0.8% at the modules EOL. The deviations higher than 5% SOC are in the range
of the measurement uncertainties of the HPS (Appendix B Table B.2).
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Figure 9.13: OCV at the EOL: (a) OCV at cell, block and module level (scaled to cell level); (b) difference
between cell and block as well as cell and module.

Comparable to Fig. 9.3, Fig. 9.14 shows the OCV difference between single cell and module
level at a SOH of approximately 80% compared to the new state. Therefore, the module is
compared to the cell from the OCV ageing study (CG3). Here, a rather similar behaviour is
observed in Fig. 9.14a. Furthermore, the DVA Fig. 9.14b also shows no remarkable distinc-
tions. The negligible differences could arise from non-identical SOHs.
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Figure 9.14: (a) Voltage difference between the OCV of the new cell from CG3 and the OCV at module level
(scaled) at EOL; (b) differential voltage analysis of the cell and module OCV.

This shows, that the OCV at the single cell and module level changes during lifetime inde-
pendently from the ageing condition . Moreover, due to the low SOIC, the change in OCV
can be scaled to module level during ageing. For modules with an increased inhomogeneous
ageing distribution this scalability may not possible.
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9 Ageing behaviour of open circuit voltage at single cell and module level

9.3 Conclusion

In this chapter, an ageing study of LICs is performed and the ageing of LIB modules is
compared with that of single LICs. The focus of the ageing study at single cell level is the
investigation of the changing OCV over lifetime, whereas the ageing study at module level
investigates the ageing scalability, including the OCV.

The results at cell level show the typical behaviour at different temperatures and SOCs during
cyclic and calendar ageing. The capacity degradation increases with increasing temperatures
and SOCs. At a SOH of approximately 90% the cells of all ageing conditions showed the same
changes in OCV. Due to the shift in the electrode balancing during ageing, the OCV curve
results in a flatter shape. As a consequence, the SOC determination, based on the OCV–SOC
relation, results in a SOC dependent error of a maximum of 7% at the EOL. This error shows
linear correlation with the capacity degradation.

To accomplish the ageing study at module level, two modules with 112 cells each were built
in an 8s14p cell interconnection topology. Before the cells were connected by ultrasonic and
spot welding, a capacity-based cell matching procedure was performed. Thereby, the already
small capacity variation of consumer cells could be further reduced, which lowered the newly
defined state of inhomogeneity regarding capacity and resistance. After 1200EFC, a capacity
fade of about 12% has been observed. In spite of resistance variations from welding and
inhomogeneous temperature distributions during module check-ups, the module SOIC is still
lower than 1% after 1200EFC. This shows fairly homogeneous ageing behaviour of the used
commercial high quality cells.

Initially, the ageing behaviour of the modules appeared to be quite similar to the ageing be-
haviour of single cells (CG5). However, the modules and their respective blocks were observed
to age slower than the single cell, due to temperature influences. Test temperatures of the
module ageing study were slightly lower than in the single cell ageing study. Furthermore,
the capacity distribution of the module correlated with the temperature gradients for the
first 600EFC, but cell-to-cell variation seemed to dominate the ageing behaviour for the next
600EFC.
The contact resistances were also observed to have an influence on the ageing behaviour. A
higher contact resistance leads to a higher temperature development, which might accelerate
the corrosion of the contact, which in turn could lead again to increased contact resistance.
So, the cell resistances only seemed to be higher. The disassembling of one module confirmed
that the contact resistances and not the cell resistances increased substantially. The contact
resistances of the weak blocks were about twice as high as these of the other blocks. However,
this appeared to have no impact on capacity loss. Furthermore, the additional contact resis-
tances were a stronger influence on the balancing behaviour of the BMS than the spreading
of capacities and resistances. Therefore, the charge amount during the equalisation process
stayed approximately constant over lifetime, while the SOI of capacity and resistance was
observed to increase.
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The investigations into balancing also showed that dissipative balancing is sufficient for mod-
ules with a capacity which is typical for BEV applications.

To compare the OCV at EOL at module level with the OCV at the single cell level, the DOD
in the module ageing study is increased to accelerate the ageing. After disassembling the
module, the scalability of the OCV from single cell to module level is shown and the OCV is
compared to the cell ageing study with the cells of CG3. At EOL a rather identical change
in OCV is observed. This is the requirement for scaled state estimation at module level.
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Final Conclusion





10 Summary and further work

To finally conclude this doctoral thesis, the key messages of each chapter are summarised
in Section 10.1. Therefore, new findings regarding the objectives defined in the introduction
(Chapter 1) are given to answer the main topic about the "Practical feasibility of Kalman
filters for the state estimation of lithium-ion batteries". Furthermore, Section 10.2 recommends
further research topics for Kalman filtering in the field of batteries.

10.1 Summary

Part I: Literature and Fundamentals

Chapter 1 introduced the Kalman filter by a simple example about estimating the altitude
and velocity of a falling object. This example is compared to the application of a Kalman filter
in the field of batteries. Therefore, non-linear and varying model uncertainties are identified
as the main concerns. Based on the literature research into the key issues regarding Kalman
filtering, four objectives for this thesis are identified:

Objective 1: Lithium-ion cell modelling and experimental investigation of the cell behaviour
Objective 2: Influence of equivalent circuit model parameters on different Kalman filters
Objective 3: Influence of the open circuit voltage on the state estimation
Objective 4: Changes in open circuit voltage during lifetime at cell and module level

Based on the literature research of Section 1.2.1, Chapter 2 introduced the subsequently used
equivalent circuit models, consisting of: the open circuit voltage, an ohmic resistance, and one
or two RC terms. Therefore, the dependencies and behaviour of each equivalent circuit model
element is described by physicochemical effects, whereby the main dependencies identified
are: state of charge, temperature, current and age. Variations or changes in these dependen-
cies cause model uncertainties in a real-life application, which need to be considered when
applying a Kalman filter. Moreover, this chapter derived and discretised the equations of the
equivalent circuit model with nRC terms, for the use with a Kalman filter in a discrete system
such as a battery management system.

The literature review about Kalman filters (Section 1.2.2) identified several variations of this
algorithm. Therefore, Chapter 3 introduces the general Kalman filter implementation and
calculation sequence and presented the differences between the various types. Here, three

103



10 Summary and further work

different algorithm groups are discovered:

• filter for linear models, assuming Gaussian distributed noise
• filter for non-linear models, assuming Gaussian distributed noise
• filter for non-linear models, assuming non Gaussian distributed noise

For the second point a dual estimator and a noise adapting type is also presented. Never-
theless, all Kalman filters require an initial guess for the measurement noise, process noise
(representing model uncertainties) and covariance matrices. Furthermore, this chapter intro-
duces the filter tuning process to find these initial guesses. This chapter aims to show the
mathematical differences of the Kalman filter variations. However, in the result and discussion
Part III the differences during applications are presented.

Part II: Solution Approach

In Chapter 4 the experimental part is presented. Alongside the introduction of the used
lithium-ion cell and the battery module design, the methodology for the experiments per-
formed in this work is described. In order to conduct the different measurements, five cell
groups are defined for the single experiments.

In Chapter 5 a generalised validation and benchmark method for state estimation algorithms
is developed. Therefore, identified shortcomings of present methods (Section 1.2.3) are elimi-
nated and required test conditions based on the cell behaviour (Section 2.1) are defined. Based
on a frequency analysis of 149 standardised driving cycles, a synthetic load cycle is derived
for an independent validation of the low- and high-dynamic behaviour as well as long-term
stability in the temperature range from −10 ◦C to 40 ◦C. Therefore, the measurement data
for the algorithm is provided by a BMS, whereas the reference data is provided by a battery
testing system. To ensure comparability, a quantitative rating technique is introduced for
estimation accuracy, transient behaviour, drift behaviour, failure stability, temperature sta-
bility and residual charge estimation to evaluate the performance of different state estimation
algorithms. This method is used in the result and discussion Part III to compare different
Kalman filters and to investigate the influence of equivalent circuit model parameters.

Part III: Results and Discussion

In the results and discussion part the objectives identified in Part I are investigated:

Objective 1: Lithium-ion cell modelling and experimental investigation of the cell
behaviour

To compare the recorded behaviour with equivalent circuit model parameters presented in
literature (Section 2.1), Chapter 6 investigates the dependencies regarding state of charge,
temperature, current and age. Objective 1 aims to evaluate the parameters of a one and
two RC term equivalent circuit model and to compare the results with these presented in
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literature:

• Compared to the ohmic resistance, the RC term exhibits a high dependency on the state
of charge and an increased dependency on current with decreasing temperature.

• Temperature dependency of the RC term time constant is dependent on state of charge.
• Temperature dependency of the resistance measured one second after a current pulse

and the actual capacity changes during lifetime.
• The two considered open circuit voltage determining methods show a temperature de-

pendency over the state of charge. The state of charge error based on the open circuit
voltage–state of charge relation increases during lifetime, especially at low temperatures.

• These deviations are lowered by using the incremental-open circuit voltage method.
• The results of this work are in accordance with these presented in literature.

Objective 2: Influence of equivalent circuit model parameters on different Kalman
filters

Chapter 7 investigates the influence of the cell behaviour on the state of charge estimation with
different Kalman filters introduced in Chapter 3. Accordingly, the validation and benchmark
method described in Chapter 5 is used and all filters are initialised with the same filter tuning.
Comparing the Kalman filters with these presented in literature is not possible due to varying
validation methods and conditions, as well as different initialisations of the measurement noise,
process noise and covariance matrices. Objective 2 aims to compare the introduced algorithms
under identical test conditions and to investigate the influence of equivalent circuit models
and parameters:

• Equivalent circuit model parameters have a strong influence on the state estimation
independently from the Kalman filter type.

• The equivalent circuit model influence decreases during a low-dynamic load and increases
with decreasing temperature.

• The estimation performance is optimal at the temperature at which the equivalent circuit
model is initialised.

• An additional parameter estimation leads to enhanced performance of the state esti-
mation, dependent on temperature and dynamic. The parameter estimation is more
precise with the lower complex equivalent circuit model.

• All algorithms show a similar behaviour and the most accurate and stable Kalman filter
is not distinguishable.

• To evaluate the importance of the filter tuning parameters, an individual filter tuning
further decreased the differences between the Kalman filters and the overall performance
is increased.

• It is reasoned that whilst the filter type is not significant for the estimation performance,
the correct equivalent circuit model parameters and the filter tuning certainly are.
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Objective 3: Influence of the open circuit voltage on the state estimation

In contrast to Chapter 7, Chapter 8 investigates the influence of change in open circuit voltage,
due to ageing, on the state of charge estimation. Subsequently, the open circuit voltages of
three cells in different ageing states are applied to a Kalman filter at temperatures in the
range of 0 ◦C to 40 ◦C. Objective 3 aims to consider both methods and to investigate the error
in state of charge estimation based on the open circuit voltage–state of charge relation and
the error during estimation with a Kalman filter:

• Compared to a new cell, the open circuit voltage–state of charge relation shows an
increasing error as the cells ages, especially at decreasing temperatures.

• The influence of the aged open circuit voltages on the state estimation with a Kalman
filter increases with decreasing temperature and shows higher errors when compared to
the investigations of the open circuit voltage–state of charge relation.

• The influence of the open circuit voltage is dependent on the filter tuning.

Objective 4: Changes in open circuit voltage during lifetime at single cell and
module level

In order to emphasise the presented influence of a change in open circuit voltage, due to ageing,
on the estimation performance, the changing open circuit voltage is observed during lifetime.
Therefore, an ageing study at single cell level is performed. The growing number of cells in a
battery pack require a state estimation at module or pack level, due to the limited calculation
power and memory of a battery management system. Therefore, an additional ageing study
on module level is performed, to investigate the scalability of the ageing behaviour of the open
circuit voltage. Objective 4 aims to perform the ageing studies and to investigate the change
in open circuit voltage and the resulting increase in state of charge error at cell and module
level:

• An increasing state of charge dependent open circuit voltage change leads to an increas-
ing error in the open circuit voltage–state of charge relation.

• Differential voltage analysis shows that this changing progress is independent from the
ageing condition.

• The changes in the open circuit voltage shape correlates with the capacity degradation.
• The state of inhomogeneity affects the open circuit voltage of the module at very low

SOCs.
• At the single cell’s and module’s end of life, both open circuit voltages show a rather

identical shape.

Fig. 10.1 summarises all results by considering the correlation between temperature and age,
regarding the influence on the estimation performance. The four objectives of this thesis
show that a Kalman filter, independent from its type, estimates the state of charge accurately
close to the initial conditions. Assuming constant equivalent circuit model parameters and
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filter tuning, the estimation performance decreases at temperatures different from the initial
temperature. In addition, the equivalent circuit model parameters change during lifetime. As
a result the temperature dependency also increases, and consequently, the loss of estimation
performance is further enhanced. Neither a dual estimation of state of charge nor equivalent
circuit model parameters can reduce this performance loss, due to the lack of filter tuning
knowledge. Filter tuning is associated with the dynamic of the cell and the model uncertain-
ties, which change with temperature and age. Regarding the state estimation at module level,
production tolerances at single cell and module level, inhomogeneous temperature distribu-
tions within modules and contact resistances further increase model uncertainties.
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Figure 10.1: Scheme of the correlation between temperature and age regarding the influence on the estimation
performance.

These facts conclude that the performance of the Kalman filter on cell and module level
in a real application during the lifetime of a battery is significantly lower compared to the
laboratory environment with its high constrains. Possibilities to extend the green area of
Fig. 10.1 and consequently to enhance the feasibility are discussed in the next section.

10.2 Recommendation and outlook

The feasibility of a Kalman filter is limited due to the strong constraints of cell temperature
and age. However, profound knowledge about the equivalent circuit model parameters and
the behaviour during lifetime can extend the green area of Fig. 10.1.
Therefore, the equivalent circuit model requires the correct parameter values for all possible
conditions (temperature, state of charge, age). Consequently, look-up tables or analytical
relations of cell parameters must be available on a battery management system, which results
in high memory or computational power requirements.
Implementing a Kalman filter with a parameter estimation can also extend the green area, but
the filter tuning has to be adapted during the lifetime. Experiments, beyond the scope of this
work, showed that the state of charge and temperature dependent gradient of the equivalent
circuit model parameter can support the filter tuning procedure. Therefore, it is assumed that
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higher gradients result in increased model uncertainty due to the fast changing nature of the
cell behaviour. However, these parameters are based on fitting algorithms, which in turn are
also dependent on parameters. If these gradients are assumed to be approximately constant,
this method reduces memory or computational power requirements of a battery management
system, compared to the changing equivalent circuit model parameters over lifetime.
A more suitable method is to reduce the estimation complexity and/or increase the model
accuracy by updating model parameters and the OCV, based on signal analysis. Determining,
for example, the resistance measured one second after a current pulse, based on the voltage
and current relation (Ohm’s law) reduces the parameter estimation by one dimension and/or
increases the model accuracy and consequently the estimation performance. However, high
demands on online signal filtering are required.
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Appendix

A Data-sheet of the Panasonic NCR18650PD NCA cell

Figure A.1: Data-sheet of the Panasonic NCR18650PD NCA cell
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Appendix

B Measurement equipment

Table B.1: Resolution and accuracy of the measurement equipment on cell level

Device Resolution Accuracy

CTS Voltage 0.3mV 1mV
CTS Current 0.2mA 1mA
CTS Temperature 0.01 ◦C ±2 ◦C

BMS Voltage 1.5mV 2.5mV
BMS Current 3mA ±0.4A
BMS Temperature 0.1 ◦C 3 ◦C

Table B.2: Resolution and accuracy of the measurement equipment on module level

Device Resolution Accuracy

HPS Voltage 1mV 12mV
HPS Current 1.6mA 55mA

BSD Voltage 1mV 50mV
BSD Current 1.6mA 2.2A
BSD Temperature 0.05 ◦C 2 ◦C

XCTS Voltage 0.3mV ±3mV
XCTS Current 2.5mA ±100mA

CMU Voltage 0.2mV 2.5mV
CMU Temperature 0.1 ◦C 3 ◦C

PXI Temperature 60 µ◦C 0.35 ◦C

HIOKI BT3562 3mW range: 0.1mW 0.015mW
30W range: 1mW 0.15W
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C Vehicle model parameters

C Vehicle model parameters

Table C.1: Parameters of the vehicle model

Parameter Value
Gravitation 9.81m/s2

Density of air 1.225 kg/m3

Ambient temperature 25 ◦C
Relative ambient humidity 0.6
Vehicle mass (excluding battery) 1200 kg
Battery pack mass 500 kg
Additional mass 150 kg
Air drag coefficient 0.31
Vehicle frontal area 2.24m
Tire roll resistance factor 0.013
Rotational mass factor 1.05
Additional consumption 0.4W
Motor efficiency 0.94%
Inverter efficiency 0.97%
Efficiency factor transmission 0.95%
Recuperation efficiency 0.5%
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Appendix

D Kalman filter initialisation

Table D.1: Initial tuning and ECM parameters of the filters at 25 ◦C

Parameter 1RC 2RC

Covariance P
U1 10−12 10−12

U2 - 10−12

SOC 5 · 10−4 5 · 10−4

Covariance Pθ

Rdc1 s 10−5 10−5

Cact 10−10 10−10

R1 10−5 10−5

C1 10−5 10−5

R2 - 10−5

C2 - 10−5

Process noise Q
U1 10−9 10−9

U2 - 10−9

SOC 10−15 10−15

Process noise Qθ

Rdc1 s 10−9 10−9

Cact 10−6 10−6

R1 10−9 10−9

C1 10−3 10−3

R2 - 10−9

C2 - 10−1

Measurement noise r r 5 · 10−7 5 · 10−7

rθ 0.0013 0.0013

ECM parameter at 90% for profile B

U1 0V 0V
U2 - 0V

Rdc1 s 42.7mW 42.7mW
R1 22.8mW 17.2mW
C1 1242F 1.9 F
R2 - 22.8mW
C2 - 1230F

ECM parameter at 50% for profile A and C

U1 0V 0V
U2 - 0V

Rdc1 s 39.5mW 39.5mW
R1 35.4mW 13.8mW
C1 958F 2.4 F
R2 - 34.9mW
C2 - 931F

Window size AKF φ 10 10

Sigma Point

λ1 0.5 0.5
λ2 2 2
λ3 0 0
h

√
3

√
3
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D Kalman filter initialisation

Table D.2: Actual capacity Cact at −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C and 40 ◦C.

−10 ◦C 0 ◦C 10 ◦C 25 ◦C 40 ◦C
Cact 2.23Ah 2.46Ah 2.72Ah 2.8Ah 2.82Ah

Table D.3: Initial ECM parameters at 0 ◦C.

Parameter 1RC 2RC
Rdc1 s 131.7mW 131.7mW
R1 51.7mW 111mW
C1 453.6 F 2.19F
R2 - 36.1mW
C2 - 427.1 F

Table D.4: Changed tuning parameters at 0 ◦C and 25 ◦C.

Temp. Parameter SLKF 2RC SEKF 1RC SAEKF 1RC DEKF 1RC

0 ◦C

Covariance U1 1.4 · 10−4 10−7 10−15 10−9

Covariance U2 10−5 - - -
Covariance 2 · 10−2 9 · 10−3 10−2 7 · 10−5

Process noise U1 10−5 10−9 10−11 10−9

Process noise U2 10−5 - - -
Process noise SOC 10−14 10−15 10−13 10−17

25 ◦C

Covariance U1 4 · 10−7 10−12 10−12 10−12

Covariance U2 10−5 - - -
Covariance 1.5 · 10−7 5 · 10−4 5 · 10−4 5 · 10−4

Process noise U1 10−9 10−9 10−9 10−9

Process noise U2 10−9 - - -
Process noise SOC 10−15 10−15 10−15 10−15

137




	Abbreviations
	Symbols
	I Literature and Fundamentals
	1 Introduction
	1.1 Motivation
	1.2 Literature research
	1.2.1 Lithium-ion cell modelling
	1.2.2 Kalman filter
	1.2.3 Validation of state estimation algorithms
	1.2.4 Comparative studies of different Kalman filters
	1.2.5 Influence of change in open circuit voltage on the state of charge estimation
	1.2.6 Ageing of lithium-ion cells and modules

	1.3 Objectives and structure of this work

	2 Fundamentals of lithium-ion cell modelling
	2.1 Equivalent circuit based cell modelling
	2.2 Discretisation of the equivalent circuit model

	3 Fundamentals of Kalman filtering
	3.1 General Kalman filter implementation
	3.2 Variations of Kalman filter algorithms
	3.2.1 Extended Kalman filter
	3.2.2 Adaptive extended Kalman filter
	3.2.3 Unscented Kalman filter
	3.2.4 Central difference Kalman filter
	3.2.5 Square root forms of the unscented and the central difference Kalman filter
	3.2.6 Dual Kalman filter

	3.3 Filter tuning


	II Solution Approach
	4 Experimental
	4.1 Introduction of examined cells
	4.2 Design of the battery modules
	4.2.1 Topology
	4.2.2 Construction
	4.2.3 Capacity-based cell matching

	4.3 Measurement setup at single cell and module level
	4.3.1 Single cell level
	4.3.2 Module level

	4.4 Methods used for determining equivalent circuit model parameters
	4.4.1 Parameter identification
	4.4.2 Open circuit voltage determination

	4.5 Methods used for cell diagnosis
	4.5.1 Capacity measurement
	4.5.2 Resistance measurement
	4.5.3 State of inhomogeneity
	4.5.4 Differential voltage analysis

	4.6 Ageing study at single cell and module level
	4.7 Overview of experiments

	5 Validation and benchmark method for state estimation algorithms
	5.1 Analysis of driving profiles
	5.2 Generation of an application-independent test profile
	5.3 Validation scenarios
	5.3.1 Profile A
	5.3.2 Profile B
	5.3.3 Profile C

	5.4 Benchmark of state of charge estimation algorithms
	5.4.1 Estimation accuracy Kest
	5.4.2 Drift behaviour Kdrift
	5.4.3 Residual charge determination Kres
	5.4.4 Transient behaviour Ktrans
	5.4.5 Failure stability Kfail
	5.4.6 Temperature stability Ktemp
	5.4.7 Overview

	5.5 Conclusion


	III Results and Discussion
	6 Experimental investigation of lithium-ion cell behaviour
	6.1 Dependencies of equivalent circuit elements of a new cell
	6.2 Dependencies of equivalent circuit elements of an aged cell
	6.3 Dependencies of the open circuit voltage at different ageing states
	6.4 Conclusion

	7 Influence of cell behaviour on the state estimation with different Kalman filters
	7.1 Initialisation of the Kalman filter
	7.2 State estimation: single Kalman filter
	7.3 State estimation: dual Kalman filter
	7.4 Parameter estimation: dual Kalman filter
	7.5 Benchmark: summary and comparison
	7.6 Individual filter tuning and correct equivalent circuit model parameters
	7.7 Conclusion

	8 Influence of change in open circuit voltage on the state of charge estimation
	8.1 State of charge determination by the open circuit voltage
	8.2 State of charge estimation by the Kalman filter
	8.3 Conclusion

	9 Ageing behaviour of open circuit voltage at single cell and module level
	9.1 Ageing at single cell level
	9.1.1 Capacity and resistance development
	9.1.2 Changes of the open circuit voltage

	9.2 Ageing at module level
	9.2.1 Capacity and resistance development of modules
	9.2.2 Capacity and resistance of single blocks
	9.2.3 State of inhomogeneity during the progress of ageing
	9.2.4 Correlation of ageing and temperature
	9.2.5 Energy efficiency
	9.2.6 Cell balancing
	9.2.7 Changes of the open circuit voltage

	9.3 Conclusion


	IV Final Conclusion
	10 Summary and further work
	10.1 Summary
	10.2 Recommendation and outlook

	References
	List of Figures
	List of Tables
	Appendix
	A Data-sheet of the Panasonic NCR18650PD NCA cell
	B Measurement equipment
	C Vehicle model parameters
	D Kalman filter initialisation



