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Abstract

In this thesis, we take advantage of current high throughput assays
(microarray and next generation sequencing) to examine the pattern
of somatic copy number alterations (SCNAs) in cancer genomes, and
investigate the role of DNA methylation in neural stem cells (NSCs).

To begin, we analyzed the relationship between genomic architecture
and SCNA. This work was done by using the pooled cnv data from The
Cancer Genome Atlas Pan-Cancer (TCGA) project. In multiple linear
regression (MLR) analyses, previously identified features and several
novel features, including distance to telomere, distance to centromere,
and low complexity repeats were found to be factors predicting SCNA
pattern in cancers. Furthermore, applying a rare event logistic regres-
sion model and an random forest classifier, we found that genomic fea-
tures e.g. distance to telomere and direct repeats are effective to predict
common SCNA breakpoint hotspots.

We carried out an analysis of SCNAs in 160 osteosarcoma (OS) samples.
We found that chromosomal breakages are not randomly distributed in
the OS genome and enriched in genomic features with the potential to
form DNA secondary structures. We found a number of genes including
TP53, ATRX, FOXN1, and WWOX located in those broken region
tend to become deregulated or deleted. In addition, chromothripsis
and aneuploidy are common in OS and predictive of disease outcome.

Finally, we performed an integrative analysis of whole-genome bisulfite
sequencing from neural stem cells (NSCs) in injured and non-injured
conditions. We found that NSCs are more responsive to brain injury
in terms of methylation changes. Furthermore, a substantial number
of genomic regions become permissive to transcription after injury in
NSCs. We uncovered an injury-induced epigenetic program that en-
compasses the decommissioning of developmental transcription factors
and enhancers selectively in NSCs.



Zusammenfassung

In dieser Arbeit nutzen wir moderne Hochdurchsatz-Assays (Microar-
ray und Next-Generation-Sequenzierung), um Muster in den Somatic
Copy Number Alterations (SCNAs) der Krebsgenome zu finden, und
untersuchen die Rolle von DNA-Methylation in neuralen Stammzellen

(NSCs).

Zu Beginn haben wir den Zusammenhang zwischen Genomarchitektur
und SCNA analysiert. Dies geschah unter Verwendung von zusammen-
gelegten CVN-Daten aus dem The-Cancer-Genome-Atlas-Pan-Cancer-
Projekt (TCGA). Durch multiple, lineare Regressionsanalysen (MLR)
haben wir sowohl bereits bekannte als auch neue Merkmale identifi-
ziert, wie etwa Distanz zum Telomer, Distanz zum Centromer und Low-
Complexity-Repeats, die SCNA-Muster in Krebsgewebe vorhersagen.
Weiterhin haben wir mittels einer Rare-Event-Logistic-Regression und
einem Random-Forest-Klassifizierer herausgefunden, dass genomische
Merkmale, zum Beispiel die Distanz zum Telomer und Direct Repeats,
effektive Préadiktoren fiir gemeine SNA-Breakpoint-Hotspots sind.

Wir haben SCNAs in 160 osteosarcoma-Proben (OS) analysiert. Da-
bei haben wir festgestellt, dass Chromosomal Breakages nicht zufallig
verteilt im OS-Genom auftreten und mit genomischen Merkmalen ange-
reichert sind, die potenziell sekundére DNA-Strukturen bilden kénnen.
Wir haben eine Gruppe von Genen bestimmt, darunter TP53, ATRX,
FOXN1 und WWOX, die in einer solch zerbrochenen Region dazu nei-
gen, dereguliert oder geloscht zu werden. Zuséatzlich sind chromothripsis
und aneuploidy verbreitet in OS und pradiktiv fiir einen Krankheits-
verlauf.

Zum Abschluss haben wir eine integrative Analyse von Whole-Genome
Bisulfite Sequencing von neuralen Stammzellen (NSCs) im verletzten
und intakten Zustand durchgefiihrt. Diese hat ergeben, dass NSCs bes-
ser auf Hirntraumata ansprechen im Sinne von Methylation Changes.
Auflerdem wird ein wesentlicher Anteil der Genomregionen in NSCs
nach einer Verletzung zur Transkription freigegeben. Wir haben ein
traumainduziertes, epigenetisches Programm offen gelegt, das das De-
comissioning von Developmental Transcription Factors und Enhancers
in NSCs reguliert.
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Chapter 1

Introduction

A great fraction of the genome carries copy number variations (CNVs) [1,
2, 3, 4], which can arise meiotically and also somatically as shown that
identical twins differ in CNVs [5] and observed difference in copy number
of repeated sequences for different tissues from an individual [6]. Somatic
copy-number alteration (SCNA, distinguished from germline copy-number
variation) is important in cancer formation and progression by activating
oncogenes and inactivating tumor suppressor genes [7, 8, 9, 10].

DNA methylation is arguably the best understood and most widely stud-
ied epigenetic modification in mammalian cells; the mechanisms controlling
the establishment and maintenance of DNA methylation patterns are well
characterized. Functional studies have shown that DNA methylation is
an important cell-intrinsic program, which can interact with transcription
factors and environmental cues to modulate the normal development and
differentiation of neural stem cells (NSCs) [11].

The thesis starts with an introduction to the biological background and
mathematical concepts used in the work.

1.1 Copy number variations

CNVs are gains or losses copies of DNA segments, and are a major type of
genetic variations that are widely found in human and other mammalian
genomes [12]. CNV including genomic deletion, duplication, and complex
rearrangement can differ in size ranging from 100 base pairs to several mega
base pairs [13]. CNVs are not uniformly distributed across the genome,
instead they tend to cluster in discrete regions with a high mutation rate.

Selection and mutational biases are found to shape the genomic distribution
of CNVs [14].
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In the human genome, about half of the CNVs are found to disrupt
protein-coding regions [15]. CNV loci encompassing genes may potentially
cause gene expression variations [16], alter gene structures, affect epigenetic
regulation and contribute to phenotypic variation [17]. A great number of
CNVs have been implicated in complex human diseases, such as cancer [18],
autism [19], and even susceptibility to HIV [20] due to the effect of CNVs
on gene expression and their potentially disruptive effects on gene struc-
ture and function. SCNAs often occur during carcinogenesis, leading to
the amplification of oncogenes or deletion of tumor suppressor genes [21].
Indeed, quite a few cancer-related genes, such as KRAS, RB1,PTEN [22]
have been identified to be affected by SCNAs. Cancer genes are more fre-
quently found in genomic regions with recurrent CNVs, where CNVs are
common among tumor samples [23]. Therefore, studies on CNVs can help
us to understand the genetic etiology of human diseases.

1.1.1 The mechanism of CNV

CNVs represent a significant of genetic variation. Generally CNVs are
formed when DNA double strand breaks (DSBs) are not properly repaired [24].
DSBs occurs in the process of normal cellular metabolic reaction or when
cells are exposed to ionizing radiation. The mechanisms leading to change
in the copy number include homologous recombination repair and non-
homologous repair [25]. Non-homologous repair can further be divided into
non-replicative and replicative non-homologous repair.

Homologous recombination repair

Homologous recombination repair including homologous recombination (HR)
and single-strand annealing (SSA) pathway requires sequence homology to
perform the repair [25]. HR requires longer sequence identity (100 bp to
200bp) than SSA (50bp). Another difference is that SSA always cause small
deletions, while mostly HR can repair DNA breaks without generating copy
number alterations [24, 25].

Non-allelic homologous recombination (NAHR) between low-copy re-
peats (LCRs) is the major type of HR. LCRs, also known as segmental
duplications, are stretches of DNA with over 90% sequence homology [26].
Non-allelic copies of LCRs other than copies at the usual allelic positions,
can sometimes act as the mediators of NAHR. For example, when the two
LCR pairs are located on the same chromosome and in the same orientation,
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NAHR between them will generate duplication and deletion [27]. However,
when LCR pairs are on the same chromosome but in different orientation,
it will cause inversions. It is also worthy to note that a proportion of NAHR
events use repetitive elements such as short interspersed nuclear elements
(SINEs), long interspersed element-1 (L1) and long terminal repeat (LTR)
retrotransposons, rather than LCRs as homology substrates.

SSA happens when neither of the ends of a two-ended DSB invades ho-
mologous sequence. In humans, identical Alu repeats located only a few
hundred base pairs from each other have been found to trigger DSB-induced
SSA [28]. The longer the sequence between the repeats, the less likely that
SSA will repair the DNA break. This length restriction suggests that SSA
is only a minor mechanism for the formation of CNVs.

Non-homologous repair

Non-replicative non-homologous repair - Non-homologous end join-
ing (NHEJ) and micro-homology mediated end joining (MMEJ) are two
major form of non-replicative non-homologous repair mechanism. NHEJ
does not require sequence homology while MMEJ uses microhomology to
repair DSBs [29]. NHEJ either rejoins DSB ends accurately or cause small
deletions (1-4 bp) and insertions [25]. NHEJ proceeds in four steps: detec-
tion of DSB; molecular bridging of both broken DNA ends; modification
of the ends to make them compatible and ligatable; and the final ligation
step. Although NHEJ is not directly mediated by nor strictly dependent on
certain genomic elements in the way that NAHR is dependent on LCRs, it
may still be stimulated and regulated by the genomic architecture [30, 31].
MMEJ uses 5-25 bp micro-homologous sequences to anneal at the DSB
ends, leading to deletions of sequences flanking the original breaks.

Replicative non-homologous repair - In recent years, replication-based
repair mechanisms have been proposed to explain the highly complex CN'Vs [25,
32, 33] that are difficult to be explained by either the NAHR or NHEJ
recombination mechanism. Three mechanisms including fork stalling and
template switching (FoSTeS) [34], micro-homology mediated break-induced
replication (MMBIR) [35] and serial replication slippage (SRS) are pro-
posed [36]. All of these models require microhomology for re-annealing and
assume template DNA can be generated from nearby replication forks [25,
33]. Although these models can also be applied to mediate the formation

of simple CNVs, it is hard to distinguish them from NHEJ and MMEJ.
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1.1.2 Detection of CNV

Accurate CNVs detection plays an important role in the analysis of cancer
genome, which can improve cancer diagnosis and treatment decision. Many
research on the techniques of detecting CNVs were performed.

SNP arrays have been applied extensively for detecting copy number
variation in tumor cells. SNP arrays use less sample per experiment com-
pared to comparative genomic hybridization (CGH) arrays. Although it is
much easier to detect copy number variation due to the next generation se-
quencing technology, SNP arrays of [llumina and Affymetrix platforms can
identify CNV at high resolution without a great reduction in genome-wide
coverage. The SNP array-based approaches use computational methods
leveraging signals from genotyping and sequencing to infer CNVs. The log
R ratio (LRR) represents the logged ratio of observed probe intensity to
expected intensity for both alleles, and the B allele frequency (BAF) is the
relative proportional of one of the alleles with respect to the total intensity
signal. Copy number changes can be detected through LRR and BAF,
provided by the SNP array.

For SNP array-based analyses, a number of tools have been developed
for identification of regions affected by genomic aberrations. They are
based on two commonly used strategy: circular binary segmentation (CBS)
method and the hidden Markov model (HMM) method. CBS method is a
segmentation of the total probe signals into genomic regions with similar
average signal. For the CBS method, a variety of programs have been
developed. For example, OncoSNP [37], GenoCNA [38], GPHMM [39] and
MixHMM [40] have been developed for copy number analysis of Illumina
SNP-array data. PICNIC (Predicting Integral Copy Number in Cancer) ,
CNNLOH [41], PSCN [42] and TumorBoost [43] are suitable for Affymetrix
SNP-array data. For the HMM method, ASCAT (Allele-Specific Copy
Number Analysis of Tumors) [44], GAP (Genome Alteration Print) [45] are
prevalent programs. ASCAT and GAP allow analysis of both Illumina and
Affymetrix SNP-array data of tumor samples. All of these methods detect
CNVs using sample-specific breakpoints, not considering different samples
simultaneously. Due to the high noise level in the intensity values, the
boundaries of the detected CNVs are more likely to vary among individuals.

Common CNV regions (i.e. recurrent CNV) tend to occur at the same
genomic positions across different individuals. As a result, disease-causing
genes are preferably to locate in recurrent CNV regions. Recurrent CNV
regions encompassing genes are more probable to harbor driver alterations
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(functionally significant for disease initiation or progression), while “passen-
ger”alterations (random somatic events irrelevant to pathological events)
are more likely to occur in individual-sample specific CNVs. A variety of
statistical and computational approaches have been developed for recur-
rent CNV detection. These methods differ in terms of both input data and
the implemented algorithm models. For the input, most of the recurrent
CNYV detection approaches can be divided into two categories: continuous
(log 2 ratio) and discrete (gains/losses). For the algorithms, they can be
categorized in different models , such as permutation probabilistic method,
null model or none.

1.1.3 Chromothripsis

Recently, the combination of whole-genome sequencing, SNP array and
bioinformatics analyses has led to the discovery of a new catastrophic chro-
mosomal rearrangement, termed as chromothripsis. Chromothripsis was
first found in a patient with chronic lymphocytic leukemia [46] by an com-
prehensive analysis of the chromosomal rearrangements. Since the initial
discovery, there have been many studies confirming that chromothripsis
features were indeed exhibited in many tumor types [47, 48, 49, 50, 51].
Chromothripsis occurs in approximately 2% to 5% of human cancers [46],
yet more frequently reaching up to 39% in certain tumor types [49]. Ini-
tially, it was thought that chromothripsis was particularly common in bone
cancers, but recent studies show that all sarcomas are reported to exhibit
increased rates of chromothripsis [47]. The high frequency of chromoth-
ripsis in certain tumor types suggests that chromothripsis depends on the
genetic and environmental background of cancers. Chromothripsis is a com-
mon mechanism that can drive tumorigenesis by initiating the formation of
double-minute chromosomes. It can not only lead to the amplification of a
single oncogene but also create potent amplicons containing multiple candi-
date oncogenes [52, 53, 54]. The high number of rearrangements caused by
chromothripsis also suggests it might have a higher probability of creating
functional oncogenic fusions driving tumorigenesis. This is not a common
phenomenon given that the genome only consist of 1% of coding sequences.
Besides, chromothripsis can drive cancer by the generation of deletion of
one or more tumor suppressor genes at a single catastrophe event. In a
insightful analysis of TCGA SNP array data, 72% of chromothripsis events
were linked to copy-number variation regions that are recurrently disrupted
in cancer [55]. Chromothripsis has also been associated to mutations in
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TP53 and an aberrant DNA damage response [46].

Four features distinguish this patterns of rearrangements. First, there
are complex adjacencies rather than simple deletions or non-overlapping
tandem duplications due to the clustered breakpoints in the chromosome or
chromosomal region. Second, despite the large number of rearrangements,
the chromosome region oscillates between only two copy number states that
is in sharp contrast to conventional clusters of complex rearrangements.
Third, the alternation between two copy number states is accompanied by
loss and preservation of heterozygosity. Finally, the pattern of end-joining
strongly suggests an origin from a DSB.

1.2 Statistical methods for the analysis of CNV data

A variety of different types of regression and classification have been devel-
oped in recent years, and the machine learning continues to expand at an
impressive rate. Below, we give a brief introduction to the regression and
machine learning techniques used in this work.

1.2.1 Multiple linear regression

Multiple linear regression is applied to examine the relationship between
one dependent variable Y and multiple independent variables X;, given the
vector of multiple predictors X7 = X; + ... + X,,, the response Y can be
predicted via the formula:

Y:O./—I-Ble-l--l-ﬁan

where «, (3, is the intercept and slopes, respectively.
The residual sum of squares (RSS) is used to measure the performance
of a regression model, and it is defined as:

. N . 2
RSS(V.Y) =3 (V;-Y))
=1

where Y] is the true value for the outcome, and Y; is the expected value for
the outcome.

In the least-squares model, the best-fitting line for the observed data is
calculated by minimizing the residual sum of the squares.

R-squared
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R-squared (R?), also known as the coefficient of multiple determinations,
is a measurement of how close the data are to the fitted regression line.

It is used to capture the explanatory power of the regression model. It is

defined as:
EV

TV
where BV, TV is the explained variation and total variation, respectively.
R? ranges from 0 to 100%, where 0 denotes the model explain none of the

variability of the response and 100% denotes the response can be fully ex-
plained. Generally, the higher the R?, the better the model fits the data.

R2

Adjusted R-squared

The adjusted R-squared (R2) is associated with the number of variables
and the number of observations. The performance of R? will improve when
adding more predictors into the model, but some of that improvement may
be due to chance alone. So adjusted R-squared tries to correct for this, and
it is defined as:
N -1

N —Fk— 1(
where NN is the number of observations and k is the number of predictors.

RP=1- 1—R?

The variance inflation factor

The variance inflation factor (VIF) for each variable measures the increase
of the variance compared to an orthogonal basis. As a rule of thumb, the

regression coefficients are poorly estimated due to multicollinearity if any
of the VIFs exceeds 10.

1.2.2 Logistic regression for classification

Logistic regression is a statistical method similar to linear regression except
that the outcome is measured with a dichotomous variable(true/false, suc-
cess/failure, yes/no etc.). Simple logistic regression is the regression with
one dichotomous characteristic of interest and one independent variable;
multiple logistic regression refers to the regression that there is a single
dichotomous outcome and a set of independent variables.

The dependent variable is assumed to be a stochastic event in logistic
regression. For instance the outcome event is either killed or alive when we
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analyze a pesticides kill locusts. Logistic regression calculates the proba-
bility for bug of getting killed. If the probability of bug getting killed is
greater than 0.5 it is denoted dead, if it is less than 0.5 it is denoted alive.

The outcome variable is often coded as 0 or 1, where 1 indicates that
the presence of outcome and 0 indicates that the absence of outcome. If
we define p as the probability that the outcome is 1 logistic regression is

defined as:
exp(bo + b Xy + -+ prp)

1 +exp(byp+b:.X1+ - +0,X))

where p is the expected probability of the presence of outcome; X; is inde-
pendent variable and b; is the regression coefficient.

It is worthy to note that multiple linear regression model chooses pa-
rameters that minimize the RSS while logistic regression model chooses
parameters that maximize the likelihood of observing the sample values.

p=

1.2.3 Rare event logistic regression

Logistic regression clearly interprets the relationship between a dichoto-
mous dependent variable y and a set of predictor variables. Although
logistic regression is a popular approach, it may generate extremely biased
results when the proportion of the response variable data is imbalanced.
King and Zeng [56] have shown that rare events are difficult to predict
as the standard application of logistic regression techniques can sharply
underestimate the probability for rare events. To correct this bias, they
proposed rare-event logistic regression. Specifically, an endogenous strat-
ified sampling of the dataset was first performed, then a prior correction
of the intercept was done and finally a correction of the probabilities was
calculated to include the estimation uncertainty.

In our data, the response variable data is imbalanced (response variable
y=0>>y=1). So we decided to use rare event logistic regression due
to its ability to deal with unbalanced binary event data.

1.2.4 Random forest

Random forest is an ensemble of decision trees [57]. An example of a
decision tree is illustrated in Figure 1.1. It has been applied extensively in
the computational biology such as gene expression classification, protein-
protein interaction or disease associated genes identification from genome
wide association studies.
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c2<3/ \ C1>3
/ \
Class B

/ N Clg7
C1>7 / \
; \
Class A Class B

Figure 1.1: An illustration of a decision tree. The decision tree consists of three nodes denoted
as n1,n2 and n3. At each node the data is split based on a rule associated to that node and the
attribute associated to the vectors denoted as C1,C2 and C3. In the terminal nodes the class is
assigned for the vector.

Given a training set X = Xy, -+, X, with response Y = Y7,--- .Y}, the
random forest is calculated as follows:

e Sample N cases at random with replacement from X, Y call these
XY, X3,Y, should be about 66% of the total training data.

e Train a decision tree f, on X;,Y,. It is important to note that predic-
tor variables (say m) are selected at random out of all the predictor
variables and the best split on these m is used to split the node.

e Calculate the misclassification rate - out of bag error rate (OOB) for
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each tree using the leftover data (33% of the total data). Aggregate
error from all trees to determine overall OOB error rate for the classi-
fication.

e Repeat step 1 to 3 , b times.

e Fach tree gives a classification, and we say the tree “votes”for that
class. The forest chooses the classification having the most votes over
all the trees in the forest.

After the training, the random forest can be used to classifying new data.
Feature selection

Feature selection consists in identifying a subset of the original input vari-
ables that are useful for building a good model. Feature selection can
improve the prediction power of the model. For example, it can exclude
the predictors that has a negative influence on the model. Besides, fea-
ture selection allows for a faster and more cost effective implementations
in contexts when there are thousands or even more variables in a dataset.
There are many feature selection algorithms and they are all based on the
assessment of importance of each feature.

Feature importance

Three evaluation metrics including filter, wrapper and embedded meth-
ods assess the importance of features in terms of predictive power of the
model. For the filter method, features are removed independently of the
model based on criteria of their own properties. Mutual information, pear-
son correlation coefficient and inter or intra class distance are the common
metrics [58]. The wrapper methods treat the variables as inputs and use
heuristic search methods for the best subset according to the performance
of optimized model. Stepwise regression, the most popular form of feature
selection is a wrapper technique. It is a greedy algorithm that adds the best
feature (or deletes the worst feature) at each round. The embedded meth-
ods typically couple the predictor search algorithm with the estimation of
parameters and are usually optimized with a single objective function. It
is also worthy to note that feature importance is also applied to establish
a ranking of the predictors.

Gini vs Permutation

10
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Several measures are available for feature importance in random forests.
Gini importance or mean decrease in impurity (MDI) calculates the im-
portance of each feature as the sum over the number of splits (across all
tress) that include the feature, proportionally to the number of samples it
splits. Permutation importance or mean decrease in accuracy (MDA) is
assessed for each feature by removing the association between that feature
and the target. This is achieved by randomly permuting the values of the
feature and measuring the resulting increase in error. The influence of the
correlated features is also removed.

1.3 Next Generation Sequencing

Next-Generation Sequencing (NGS) technologies have surpassed conven-
tional capillary-based sequencing by the ability of massively parallel se-
quencing of short DNA fragments [59, 60]. NGS technologies are signifi-
cantly cheaper, need significantly less DNA and are more accurate and reli-
able compared with Sanger sequencing. In contrast to hybridization-based
technologies, it is not limited to the interrogation of selected probes on an
array. Roche/454 [61], lllumina/Solexa [62] and LifeTechnologies/ABI [63]
are the first platforms of NGS. Although they differ in specific technical
details (Table 1.1), they share general processing steps [60]:

e First, the input DNA is fragmented followed by ligation to platform
specific oligonucleotide adapter sequences. This process is called li-
brary preparation.

e In a next step, each single library molecule undergoes multiple rounds
of amplification in a way that all copies of the same molecule stay
clustered in the same position.

e The large number of clusters are then sequenced by alternate cycles of
addition of fluorescently marked nucleotides and imaging.

1.3.1 RNA sequencing

NGS methods allow for sequencing the transcribed molecules, a method-
ology referred to as RNA sequencing (RNA-Seq). RNA-seq is a prevalent
NGS methods applied to the investigation of transcriptome. RNA-seq has

11
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a wider detection range, lower cost and is more sensitive for transcrip-
tome profiling, compared to array-based methods. Besides, it can capture
the genome-wide expression profile including lowly expressed genes, which
might be missed using the traditional cloning based expression sequence
tags (EST) approach. RNA-seq provides a useful tool to identify differ-
entially expressed genes between tumor and normal tissues [64], detect
several novel miRNAs in cancerous cells [65]. RNA-seq can also identify
allele-specific expression, disease-associated SNPs, novel splice sites and
several novel translocations [66, 67, 68, 69].

1.3.2 ChIP sequencing

ChIP sequencing (ChIP-seq) has been widely applied for identification of
transcription factor binding sites and a variety of histone modifications.
For example, Cheung’s group used chip-seq to uncover the AR transcrip-
tional network and found this network plays a critical role in manipulating
AR activity for the targeted eradication of prostate cancer cells [70]. They
confirmed that ChIP-seq has a important role in the discovery of transcrip-
tional networks. In addition to identification of transcription factor binding
sites, ChIP-seq can also been applied to uncover distinct mechanisms asso-
ciated with differential gene regulation. Taking the important transcription
factor nuclear factor kB (NF-xB) as an example, Lister.et.al recently used
ChIP-seq to study the role of lysine methylation of the p65 subunit of the
NF-kB in differential gene regulation [71]. They demonstrated that muta-
tions in the mutants of lysine (K) 37 and 218/221 of p65 have dramatically
different effects due to the fact that methylations of these residues affect
different genes by distinct mechanisms. This suggested that cells may use
a critical mechanism to differentially regulate NF-xB-dependent genes in
different physiological or disease states. The above example reveals that
ChIP-seq combined with site mutation of the post-translation modifica-
tions of a given transcription factor could help elucidating the fundamental
mechanism of transcription factor-governed differential gene regulation.

1.3.3 NGS applied in DNA methylation

NGS is also an important tool to characterize DNA methylome, helping
better understanding of specific cell-type expression patterns that is hard
to be interpreted at the genetic level. NGS allows analysis of the entire
genome so that methylome can be charted at single base-pair resolution.

13
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For example, Lister.et.al [72] provides the first whole genome and single-
base resolution methylome profiling for both human embryonic stem cells
and fetal fibroblasts. They demonstrated that differential methylated re-
gions are close to genes responsible for pluripotency and differentiation.

1.4 DNA methylation

DNA methylation is an epigenetic mechanism. A methyl group is trans-
ferred to the C-5 position of the cytosine ring of DNA and the methylation
is catalysed by DNA methyltransferases (DNMTs) (Figure 1.2). Different
DNMTs function together either as de novo DNMTs, establishing a new
methylation pattern to unmodified DNA or as maintenance DNMTs that
copy faithfully the DNA methylation pattern from the paternal strand onto
the newly synthesized daughter strand. DNA methylation fluctuates during
the process of mammalian development. For example, demethylation can
occur during the process of cell division or the removal of methylcytosine
is caused by an oxidized intermediate [73].

Cytosine 5" Methyl - Cytosine

Figure 1.2: Illustration of DNA methylation, which converts cytosine to 5’'methyl-cytosine by
DNA methyltransferase (DNMT). SAM:S-adenosylmethionine; SAH:S-adenosylhomocysteine.

1.4.1 The genomic context of methylation

In humans, more than 98% of DNA methylation occurs in the context
of a cytosine-guanine dinucleotide (CpG) in somatic cells and the result

14
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is two methylated cytosines positioned diagonally to each other on oppo-
site strands of DNA. Interestingly, several studies revealed that there is a
significant proportion of methylation in non-CpG contexts in pluripotent
cell-types and oocytes [74, 75]. In plants, methylated cytosines are located
in symmetrical (CG or CHG) or asymmetrical (CHH, where H is A, T, or
C) context.

Mammalian genome consists of 1-4% of CpG dinucleotides and around
70% of CpG sites are methylated [76]. Methylated cytosine is inherently
mutagenic because of the spontaneous deamination of 5-methylcytosine to
thymine. Therefore, CpG motifs are generally depleted within the genome
except certain regions with high CpG density, termed as the CpG islands
(CGIs). CGIs are generally characterized by a minimum GC content of
50-55% and a defined sequence length often between 200bp-1kbp [77]. A
comparison of human and mouse genome shows that the number of CGIs
in the mouse genome is more than that in the human genome, but these
regions have a lower average CpG density in mouse [78]. CGIs are fre-
quently associated with gene promoter regions and methylation events at
these CGIs may shape chromatin and gene transcription states, suggesting
a regulatory role for methylation at these promoter-associated regions [79].

The majority of other CpG dinucleotides in the genome are generally
methylated in most celluar context, but most of CpG sites comprising CGls
remain unmethylated during development, suggesting that methylation is
the default state and CGlIs are exceptions to this rule [80, 81]. Although
CGIs are known to unmethylated, a small fraction of these loci are fully
methylated often in a tissue-specific manner in some specific cell type [82,
83, 78]. Besides, these CGIs are located often in intragenic region and
are often discovered in transcribed gene [84]. The propensity for a CGI
being methylated is also associated with its CpG density, GC content and
enrichment for transcription factor-binding motifs [85, 86, 87].

1.4.2 Role of DNA methylation

DNA methylation is involved in a number of celluar process such as X
chromosome dosage compensation, gene imprinting and the maintenance of
genome stability [88, 89]. Dysregulation of DNA methylation is implicated
in the appearance of several disorders as cancer [90, 91] and a variety of
human diseases are caused by defective imprinting [92].

Methylation also contributes to the regulation of gene expression. Stud-
ies show that high methylation of gene promoters usually leads to low or no
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transcription [81] and methylation has therefore been regarded as a repres-
sive epigenetic mark. DNA methylation is frequently associated with ac-
tive coding regions. For example, methylation is found in the gene body of
actively transcribed genes in both plants and mammals [93, 94]. Genome-
wide analysis of DNA methylation pattern at the single-base resolution
in different physiological and pathological states has revealed that local
changes in DNA methylation are associated with cell-type specific varia-
tion in gene expression. Moreover, DNA methylation plays an critical role
in controlling gene expression during differentiation of stem cells [95, 96].
A genome-wide DNA methylation analysis of human embryonic stem cells
(ESCs) and differentiated fetal fibroblasts demonstrated that there is signif-
icant differential methylation at genes important for stem cell maintenance
and differentiation processes [72]. Furthermore, lineage-specific genes are
activated at the appropriate time during development due to the DNA
demethylation at enhancers and promoters [97]. In contrast, promoters of
stem cell genes become more methylated as cells differentiate [98, 99, 100].
Embryonic stem cells on the other hand feature a significantly higher non-
CG context methylation rate as well as methylation pattern modifications
during the differentiation. This allows for the cellular differentiation of
different cell types with various gene expression patterns.

1.5 Technologies for quantifying DN A methylation

The development of microarray and sequencing technologies provides the
genome-wide pattern of DNA methylation, even in cohorts that contain
hundreds or thousands of samples [101]. Accurate determination of methy-
lation at CpG dinucleotide positions across the genome is critical for un-
derstanding its association with functional regulation. Many technolo-
gies for genome-wide DNA methylation analysis have been rapidly devel-
oped [101, 81]. These technologies are primarily based on four approaches
including microarray, endonuclease digestion, affinity enrichment and bisul-
fite conversion to discriminate the methylated and unmethylated cytosines.

1.5.1 DNA methylation arrays

Microarrays now have become widely applied to investigate DNA methy-
lation. The Illumina Infinium HumanMethylation450 BeadChip (Human-
Methylation 450K) [102] has a predominant role for DNA methylation anal-
ysis, being not only the technology adopted by TCGA [103], but also for
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numerous studies such as the aging process [104] or inter-individual vari-
ability [105]. HumanMethylation 450K interrogates over 480,000 CpG sites
in human genome. This array covers over 17-fold more CpG sites than 27K
DNA Methylation array and therefore allows for a more comprehensive
analysis of methylome [106, 107, 102]. Moreover, sample preparation takes
only minimal time and each BeadChip contains 12 arrays for DNA hy-
bridization, making this approach suitable for analyzing large cohorts. The
HumanMethylation 450K array covers 96% coverage of CpG islands [108],
more than 99% promoters of RefSeq genes [109], non-CpG methylated sites
and miRNA promoters.

MethylationEPIC BeadChip Infinium microarray interrogates over 850,
000 CpG sites, which includes 413,745 new CpG sites not included in the
450K microarray. It covers the DNA methylation status of other sequences
of the genome.

However, methylation data obtained by hybridization microarrays is bi-
ased and restricted by the design of the array platform.

1.5.2 Enzymatic DNA methylation analysis

DNA cleaverage with commonly used restriction enzymes like Hpall and
MSPI in separate assays and the comparison of the resulting fragment
sizes determines the methylated or unmethylated status of genomic DNA.
Techniques including HELP (Hpall tiny fragment Enrichment by Ligation-
mediated PCR), RLGC (Restriction Landmark Genomic Scanning) and
DNA methylation Restriction Enzyme Analysis (MSRE) are based on this
approach. One limitation of this method is that they can only detect the
methylation at the restriction enzyme recognition sites or adjacent regions.

1.5.3 DNA enrichment methylation methods

Methylated DNA is isolated by antibody immunoprecipitation methods,
methyl-CpG binding domains or other protein domains [110, 111, 112].
These methods include Methylated DNA immunoprecipitation(MeDIP),
Methyl-CpG-binding domain(MBD) and others. DNA enrichment methy-
lation methods have been used to generate the comprehensive profiling of
DNA methylation. They do not damage the DNA like bisulfite treatment.
However, the exact methylation state of individual CpG dinucleotides can-
not be determined using this approach.

MeDIP is an immunocapturing method that uses a 5-methylcytidine-
antibody to specifically recognize 5-methylcytidine(5mC). The methylated
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fraction of the genome can be analyzed by PCR or by microarray analysis
or deep sequencing. However, it is important to note that CpGs are dis-
tributed unequally in mammalian genomes and the enrichment of MeDIP
fraction depends both on the methylation status of the target sequence and
the number of CpGs it contains.

MeDIP antibody, which binds methylated single-stranded molecules con-
taining one or more methylated CpG sites. In contrast, MBD-based strat-
egy uses MBD2b to capture double stranded methylated DNA fragments.
DNA fragment size and sequencing read length determine the resolution of
MeDIP-seq and MBD-seq. Both of these two methods provide moderate
genomic resolution of 100-300bp and they can accurately identify differen-
tially methylated regions (DMRs) between samples, however, the DMRs
are only represent the relative methylation differences rather than quanti-
tative differences due to that the detected methylation signals are strongly
influenced by sequencing depth. MeDIP is more sensitive to methylation
differences in regions that has a low CpG density, while MBD is more
sensitive in regions with higher CpG density such as CpG islands [113].

1.5.4 Bisulfite conversion

Bisulfite sequencing (BS-seq) is applied to get the entire methylome of
genome. It can determine the exact methylation status of almost every
CpG, which secured bisulfite sequencing as the gold-standard method for
detection of DNA methylation [114]. BS-seq is arguably the best method to
offer unbiased genome-wide DNA methylation profiling [101, 81]. However,
BS-seq requires a deep sequencing depth to provide sufficient CpG coverage
for the methylation profile, which greatly increases the cost per methylome.
MeDIP-seq and MBD-seq only need to produce DNA libraries that covers
highly-methylated genomic regions, thus focusing the sequencing reads only
on potential regions of interest. BS-seq sequencing covers the whole genome
and most of sequencing reads map to unmethylated genomic regions are
effectively discarded [115].

Whole-genome bisulte sequencing (WGBS) [72] and tagmentation-based
whole-genome bisulte sequencing (T-WGBS) [116] are applied to detect the
methylation level of individual CpG sites in the genome. Genomic DNA is
first treated with sodium bisulfite to convert cytosine residues to uracil, but
leaves 5-methylcytosine residues unaffected. Then, treated genomic DNA
is used to perform high-throughput sequencing.

T-WGBS is able to determine methylation level of all CpG dinucleotides
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in a genome with very limited amounts of input DNA, as low as 10-30 ng
compared to 5g for WGBS. Figure 1.3 [116] outlines the T-WGBS method.

Assembly of the transpose

Tagmentation of genomic DNA

SPRI Purification

Oligonucleotide replacement
and gap repair

SPRI Purification

Bisulfite treatment

Column Purification

Limited cycle number PCR

SPRI Purification

Next generation sequenicng

Figure 1.3: Illustration of T-WBS method. SPRI: Solid phase reversible immobilisation.

Reduced representation bisulfite sequencing (RRBS) employs a similar
experimental approach to quantify the methylation of less than 10% of all
CpG sites in the genome [117], which brings down cost. The genomic DNA
is first digested with a methylation insensitive enzyme and cut at CCGG
sites, which enriches for CpG rich regions. Next, the restriction fragments
are size selected, equipped with adapters, bisulfite converted, PCR ampli-
fied, cloned and sequenced.

Analyses of BS-seq data

The best practices apply to BS-seq data contain three steps.

Quality control - Next generation sequencers assign a Phred quality score,
which represents the probability of a base calling being wrong, to the called
bases. A quality score less than 30 is commonly regarded as a poor quality.
PCR artifacts, contamination, untrimmed adapter sequences and problems
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from sequencing itself can result in low quality read data. Low base call
qualities, which often appear towards the end of next generation sequenc-
ing reads have to be eliminated because it can lead to inaccurate down-
stream analysis and data interpretation. Moreover, DNA fragments that
are shorter than the read length will cause reads extent into adapter se-
quences. If a read extends into adapter by only a few bases it may align with
mismatches and indels in the adapter region, leading to incorrect mapping.
As fragments get shorter and the fraction of adapter sequences increases,
the read will not align to the genome. Therefore, checking the quality of
raw sequencing reads is the first step. Several tools such as FastQC [118]
and PRINSEQ [119] are available to produce general quality assessment.
Once the data are checked for quality, they should be processed to remove
reads with low-quality bases, adapter sequences, and other contaminating
sequences. Tools such as Cutadapt [120], Trimmomatic [121], TrimGa-
lore [122], FASTX-Toolkit [123], which trim adapter or other contaminants
based upon user-provided parameters, can be used for performing these
operations.

Read mapping - Bisulfite sequencing short-read mapping relies on a refer-
ence genome, from which in silico bisulfite-converted genomes are generated
for use in read alignment [124, 72]. Several approaches have been developed
for the mapping of BS-seq reads, such as BSMAP [125], Bismark [126] ,
MethylCoder [127], BS Seeker [128], Last [129] and BRAT-BW [130]. These
not only differ considerably in terms of alignment speed and flexibility but
also in their output information. Note that some of these tools are not just
aligners but can additionally extract methylation levels from the alignments
such as Bismark and MethylCoder, which enable the end user to explore
the biological effects of methylation more quickly. Bismark and BS-Seeker
support the directional and the nondirectional BS-seq protocol and use
Bowtie2 [131] as an internal read mapper. The tool MethylCoder is more
flexible and able to use either GSNAP or Bowtie2. Besides it uses a similar
strategy as Bismark and BS Seeker.

Methylation level calling - After alignment, the methylation states for
genomic C positions can be estimated: C/T ratio of the mapped reads in-
dicates unmethylated cytosines while C/C matches reveal methylcytosine.
However, this is a rather inaccurate method. The main challenge is that
sequencing errors, sequence variations, mis-mapping and bisulfite failures
can lead to wrong inference of methylation levels. For example, sequence
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variation is traditionally disregarded in the analysis of WGBS data and a
C/T single nucleotide variant would still align to a bisulfite-converted refer-
ence, but be regarded as an entirely unmethylated CpG site, even though
the CpG site no longer exists. Given that over two thirds of all SNPs
occur in a CpG context, having two alleles: C/T or G/A [132], it is impor-
tant to take sequence variation in consideration to avoid wrong inference
of methylation states.

To our knowledge, NGSmethPipe is the first program that conducted
a threshold-based detection of sequence variation in bisulfite sequencing
experiments [133]. This program reports the genomic postions of detected
sequence variation in the output. Recent tools for calling SNP genotypes
directly from bisulfite sequencing reads, including Bis-SNP [134] and BS-
SNPer [135] have been developed. Bis-SNP, which is based on the Genome
Analysis Toolkit (GATK) can identifies SNPs at high precision and esti-
mates methylation levels. It is based on a Bayesian method and takes
advantage of both top and bottom DNA strand information to discrim-
inate SNPs from bisulfite conversions. In this way, C>T SNPs are no
longer interpreted as unmethylated Cs. However, Bis-SNP supports only
the directional BS-Seq protocol since it is not always known which strand
non-directional reads originate. The disadvantages of Bis-SNP is that, de-
spite its enhanced model for genotype calling, the methylation levels are
simply estimated using the C-T ratio. BS-SNPer is a program for the
detection of variation from BS-Seq alignments in standard BAM/SAM for-
mat [136]. It implemented a dynamic matrix algorithm and approximate
Bayesian modeling and is much faster than Bis-SNP.
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Chapter 2

Genomic determinants of somatic
copy number alterations across
human cancers

This chapter has been published in Zhang, Y., Xu, H., and Frishman,
D.(2016) Genomic determinats of somatic copy number alterations across
human cancers. Hum. Mol. Genet., 25(5), 1019-1030. I and HongenXu
contributed equally to this work. This study was designed by Dmitrij
Frishman, Hongen Xu and me. I collected data and did mutliple linear re-
gression, and Hongen Xu did logistic regression and extremely randomized
tree classifier. The manuscript was written by myself and Hongen Xu, and
corrected by Dmitrij Frishman.

2.1 Abstract

Somatic copy number alterations (SCNAs) play an important role in car-
cinogenesis. However, the impact of genomic architecture on the global
patterns of SCNAs in cancer genomes remains elusive. In this work we
conducted multiple linear regression (MLR) analyses of the pooled SCNA
data from The Cancer Genome Atlas Pan-Cancer project. We performed
MLR analyses for 11 individual cancer types and three different kinds of
SCNAs-amplifications and deletions, telomere-bound and interstitial SC-
NAs and local SCNAs. Our MLR model explains more than 30% of the
pooled SCNA breakpoint variation, with the explanatory power ranging
from 13 to 32% for different cancer types and SCNA types. In addition to
confirming previously identified features [e.g. long interspersed element-1
(L1) and short interspersed nuclear elements (SINEs)], we also identified
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several novel informative features, including distance to telomere, distance
to centromere and low complexity repeats. The results of the MLR analy-
ses were additionally confirmed on an independent SCNA data set obtained
from the Catalogue Of Somatic Mutations In Cancer (COSMIC) database.
Using a rare event logistic regression model and an extremely randomized
tree classifier, we revealed that genomic features are informative for defin-
ing common SCNA breakpoint hotspots. Our findings shed light on the
molecular mechanisms of SCNA generation in cancer.

2.2 Introduction

Cancer is fundamentally a disease characterized by a diversity of somatic al-
terations [137]. Recently developed technologies, such as single nucleotide
polymorphism (SNP) arrays and next-generation DNA sequencing have
created unprecedented opportunities for studying different classes of muta-
tions, including single base substitutions, small indels, genomic rearrange-
ments, and somatic copy number alterations (SCNAs) [137, 138, 139] . The
landscape of SCNAs has been charted across different types of cancer, with
recurrent SCNAs often pointing at novel oncogenes and tumor suppres-
sor genes [138, 140, 55]. Although SCNAs affect a sizeable fraction of the
genome and are functionally important in carcinogenesis, their generation
mechanisms are not yet fully understood.

Previous analyses of SCNA data have provided insights into the mech-
anisms shaping SCNA occurrence [138, 55, 141, 142]. SCNA breakpoints
are not uniformly distributed in the genome, but rather tend to be spa-
tially clustered in breakpoint hotspots [141]. For instance, G-quadruplex
sequences (G4s) are enriched in the vicinity of SCNA breakpoints, sug-
gesting the contribution of genomic properties to SCNA formation [141].
A recent comparative analysis has identified two types of SCNA break-
point hotspots-cancer-type-specific SCNA breakpoint hotspots, which are
enriched in known cancer genes, and common hotspots (CHSs). The lat-
ter can be relatively well predicted from genomic context by a multiple
linear regression (MLR) model [143]. However, the model presented in
[143] explains only a small part of the SCNA breakpoint variance [with
the top four features-indel rate, exon density, substitution rate, and SINE
coverage-being collectively responsible for 14% of the variation]. A model
considering a much wider spectrum of genomic properties would be ex-
pected to better illuminate how different genomic features contribute to
the global patterns of SCNAs in cancer genomes.
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Many endogenous factors (such as non-B DNA conformations and repet-
itive sequences) can cause double-strand breaks (DSBs). Subsequent erro-
neous DNA repairs will result in copy number alterations [141, 144, 25].
Indeed, genome-wide mapping of DSBs has shown that DSB regions are
enriched in genomic regions frequently rearranged in cancers [145]. Under
certain circumstances, DNA can assemble into non-B conformations at spe-
cific sequence motifs including A-phased repeats, G-quadruplex, Z-DNA,
inverted repeats, mirror repeats, and direct repeats [146]. The resulting
DNA secondary structures have been implicated in the formation of struc-
tural alterations including CNVs, inversions and translocations, such as
G-quadruplexes [141], Z-DNA [147], cruciforms formed by inverted repeats
[148] and triplexes (also known as H-DNA) formed by mirror repeats [149].
Transposable elements are dispersed at high copy numbers throughout the
human genome, and non-allelic homologous recombination between differ-
ent copies of transposable elements can result in CNVs. For example, ho-
mologous recombination of non-allelic copies of L1 and human endogenous
retroviral elements leads to the formation of CNVs [150, 151]. Moreover, a
13-mer CCNCCNTNNCCNC motif was found to associate with recombina-
tion hotspots in humans and was clustered in common mitochondrial dele-
tion hotspots [152]. Recently, Zhou et al. [153] have revealed a significant
enrichment of human germline and somatic structural variant breakpoints
in self-chain (SC) regions, a group of low-copy repeats shorter than 1 kb.
Besides the effects of local genomic context on CNV formation, TCGA Pan-
Cancer analysis has suggested different mechanisms for telomere-bound SC-
NAs and those SCNAs that are interstitial to chromosomes, highlighting
the importance of chromosome structure (e.g. telomeres and centromeres)
[55].

In this study, we selected genomic features, which have been proposed to
affect SCNAs across the human genome, of which DSBs, SCs, recombina-
tion motifs, and distance to telomeres and centromeres have not been inves-
tigated in previous studies. We also include the histone marker H3K9me3,
which accounts for more than 40% of mutation rate variation in cancer
cells [154]. We built MLR and logistic regression (LR) models to explore
the intrinsic basis of observed SCNA patterns. These statistical methods
have been successful in contrasting common fragile sites and non-fragile
sites [155] and investigating the effects of diverse sequence features on in-
tegration sites of DNA transposons [156].

The overview of our study is presented in Figure 2.1. Taking advantage
of SCNAs data from the TCGA Pan-Cancer project and collected genomic
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features, we firstly selected predictors (genomic features) to reduce mul-
ticollinearity and identified common SCNA breakpoint hotspots and non-
hotspots (NHSs) across Pan-Cancer types. We then built MLR models
to investigate whether and how different genomic features contribute to
the genome-wide patterns of SCNA breakpoints. We also applied LR and
extremely randomized tree classifier to contrast between common SCNA
breakpoint hotspots and NHSs. Our MLR models can explain more than
30% of SCNA breakpoint variation. The power of the models remain sta-
ble when one considers separately different SCNA types (amplifications
and deletions), SCNA types of possible different generation mechanisms
(telomere-bound SCNAs and interstitial SCNAs), and SCNAs from dif-
ferent cancer types. We also demonstrate that these genomic features are
informative for telling apart common SCNA breakpoint hotspots and NHSs
by logistic models and extremely randomized tree classifiers. This suggests
that common breakpoint hotspots strongly depend on the local genomic
context.

Genomic features TCGA SCNAs data
Predictor selection based on the CHS and NHS
Spearman’s rank correlation identification
Y l Y
Multiple Linear Regression Contrasting between
(MLR) CHSs and NHSs
Y A Y ¥ y
MLR MLR for MLR for MLR MLR for Extremel
for amplification telomere-bound for SCNAs of Logistic ran domizgd
pooled and deletion and interstitial local each cancer regression || oo o csifier
SCNAs SCNAs SCNAs SCNAs type

Figure 2.1: An overview of the study design. TCGA: the cancer genome atlas; SCNA: somatic
copy number alterations; CHS: common hotspots; NHS: non-hotspots.
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2.3 DMaterials and Methods

2.3.1 SCNA data

The first SCNA data published in [55] were kindly provided by Travis I
Zack and Rameen Beroukhim (Dana-Farber Cancer Institute, USA). SC-
NAs were obtained by mapping the signal intensities from the Affymetrix
Genome-Wide Human SNP Array 6.0 in each cancer sample upon removing
the probes in regions of recurrent germline CNVs identified from normal
tissue samples. The data were provided as files with 105,890 and 96,354 in-
dividual SCNAs corresponding to amplifications and deletions. For each in-
dividual SCNA the files contain its chromosomal coordinates (chromosome
number as well as start and end positions), TCGA barcode (sample iden-
tity), amplitude of copy number change and other information. We grouped
SNCAs from the same cancer type based on the Pan-Cancer project sample
information from http://www.synapse.org (syn1710466). Both boundaries
of each SCNA were defined as breakpoints with a precision of about 1
kb (the median inter-marker distance for Affymetrix Genome-Wide Hu-
man SNP Array 6.0 is less than 700 bases). In total, we obtained 404,488
SCNA breakpoints from 4,943 samples across 11 cancer types, of which
211,780 and 192,708 breakpoints correspond to amplifications and dele-
tions, respectively (Table 2.1). We also subdivided all SCNAs into two
categories: telomere-bound SCNAs, with at least one boundary situated
on a telomere, and interstitial SCNAs, with both boundaries interstitial
to the chromosome. Specifically, for each chromosome we defined those
SCNAs started at the left-most position or ended at the right-most posi-
tion of the chromosome as telomere-bound SCNAs (see Figure 2.2). All
the remaining SCNAs were considered to be interstitial. We further sub-
divided SCNAs into local and chromosome-level ones. Chromosome-level
SCNAs were defined as those having the left boundary at the left-most
position and the right boundary at the right-most position in the given
chromosome, while all other SCNAs were considered local (Figure 2.2). By
definition, all chromosome-level SCNAs are also telomere-bound, and all
interstitial SCNAs are also local SCNAs. The second dataset was from
the COSMIC database (version 73) [157], and we retrieved 699 492 SCNAs
generated by studies other than TCGA (COSMIC study identifiers: 328,
382, 538, 585, 586, 589, and 650).
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Leftmost SCNAs Rightmost SCNAs

Telomere-bound / chromosome-level SCNA

Telomere-bound / local SCNA

Telomere-bound / local SCNA

Interstitial / local SCNA

Interstitial / local SCNA

Figure 2.2: Schematic illustration of SCNA categories considered in this work.

2.3.2 Data collection on genomic features

A total of 29 genomic features were considered as potential predictors of
the SCNA patterns (Table 2.2). Their genomic coordinates were either
obtained from public databases and published studies or identified in this
study. All coordinates correspond to the human genome assembly hgl9
and, where necessary, the University of California, Santa Cruz (UCSC)
liftOver tool was used to convert the hgl8 coordinates to hgl9 [108].
Chromosomal coordinates of the following genomic features were down-
loaded from the UCSC Genome Browser [108]: probes of the Affymetrix
Genome-Wide Human SNP Array 6.0 (retrieved from the SNP/CNV Ar-
rays track); long terminal repeat (LTR) retrotransposons, L1, L2, SINE,
DNA transposons and low-complexity repeats (retrieved from the Repeat-
Masker track); telomeres, centromeres, and genome assembly gaps (re-
trieved from the Gap track); microsatellites; simple repeats; CpG islands;
exons and SCs. The latter elements are essentially pairs of short (up to 1
kb) low-copy repeats either in direct (+) or inverted (-) orientation [153].
Following [153] we only considered self-chain segments (SCS) consisting
of paired SCs located on the same chromosome as well as their spacing
gaps with the total lengths of up to 30 kb. Furthermore, we removed
any SCSs overlapping with gaps in the human genome assembly (includ-
ing centromeres, telomeres, heterochromatin regions, etc.) and segmental
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Table 2.2: Genomic features used in the regression analyses

Category Predictor Measure Source
A-phased repeats Coverage Non-B DB version 2
Mirror repeats Count Non-B DB version 2
. Direct repeats Coverage Non-B DB version 2
DNA conformation Inverted repeats Coverage Non-B DB version 2
Z-DNA Coverage Non-B DB version 2
G4 log1o(count) Non-B DB version 2
Microsatellites Coverage UCSC Genome Browser
SINEs log1o(count) UCSC Genome Browser
L1 Coverage UCSC Genome Browser
L2 Coverage UCSC Genome Browser
LTR retrotransposons Coverage UCSC Genome Browser
DNA sequence DNA transposons Coverage UCSC Genome Browser
Low-complexity repeats Coverage UCSC Genome Browser
Double-strand breaks Coverage Tchurikov et al. (2013)
Self-chain segments Coverage This work
GC content Coverage This work
Simple repeats Coverage UCSC Genome Browser
Gene regulation H3K9me3 Count Barski et al. (2007)
CpG islands Coverage UCSC Genome Browser

Chromosome structure

Evolutionary features

Functional features

Distance to centromere
Distance to telomere
Recombination motif
Conserved DNA elements
Indel rate

Substitution rate
Replication timing

Exon

miRNA genes

Fragile sites

logio(distance in bp)
logio(distance in bp)
Coverage

Count

Coverage

Coverage

Sum

Coverage

Coverage

Yes/no

This work

This work

This work

Siepel et al.(2005)
Human-Chimp alignment
Human-Chimp alignment
Hansen et al. (2010)

UCSC Genome Browser
miRbase database
Fungtammasan et al. (2012)

duplications.

Non-B DNA motifs (A-phased repeats, direct repeats, inverted repeats,
mirror repeats, G-quardruplexes (G4) and Z-DNA) were downloaded from
the non-B DB version 2 [146]. We used the dataset of conserved DNA el-
ements in vertebrates published by Siepel et al. [158]. Regions containing
DSBs were downloaded from Tchurikov et al. [159]. Genomic coordinates
for each histone modification marker H3K9me3 in CD4" T cells were ob-
tained from the study of Barski et al. [160]. Replication timing (RT) data
for the lymphoblastoid cell line GM06990 were obtained from Hansen et al.
[161]. For each 1kb window of the genome sequence we obtained percent-
normalized tag density values for the six phases of the cell cycle (denoted
G1b, S1, S2, S3, S4 and G2). As suggested by the authors, a weighted
average of the data based on the progression of each cell cycle was utilized,
and RT was defined by the following formula:

RT = (0.917xG1b)+(0.75x S1)+(0.583% 52)+(0.417% $3)+(0.25X 54) +(0x G2).

Higher RT values correspond to earlier replication events. The percent-
age of G/C nucleotides (GC coverage) for specific genomic regions was
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calculated using the nuc utitlity, which is part of BEDTools [162]. The
genome-wide distribution of the 13-mer CCNCCNTNNCCNC motifs re-
lated to recombination hotspots was obtained by FUZZNUC' searches (as
implemented in the European Molecular Biology Open Software Suite pack-
age [163]). We obtained the coordinates for fragile sites and miRNA genes
from a previous study [155] and miRbase [164], respectively. The rates
of nucleotide substitutions and indels were calculated based on human-
chimpanzee alignments as described in [143].

2.3.3 Data transformation and prescreening of SCNA predictors

Genomic features described above were considered as potentially affecting
the patterns of SCNA occurrence across the genome. We partitioned the
human genome into non-overlapping 1 Mb windows, after excluding gaps
in the genome assembly. The features were measured as counts (number of
copies in a window), coverage (fraction of a window occupied by the fea-
ture), distance in base pairs to a telomere or a centromere, or sum (specifi-
cally, the sum of the RT values of 1kb fragments in a 1 Mb window) (Table
2.2). All features were evaluated for normality, and if necessary trans-
formed by the logarithm function to approximate it (Table 2.2). In order
to improve the efficiency of model selection for the subsequent regression
analyses (see below) and reduce the influence of multicollinearity, we per-
formed the same filtering process for the genomic features as in [155, 156].
We used hierarchical clustering to identify clusters of features based on
Spearman’s rank correlation coefficient using a threshold of 0.8. From each
such cluster, we selected one representative feature, thus ensuring relatively
low linear dependencies.

2.3.4 Identification of common hotspots and non-hotspots for break-
points across cancer types

Breakpoint hotspots, i.e. genomic regions in which breakpoints are sig-
nificantly enriched, were identified according to the method described in
[141, 143, 165]. We split the human genome into non-overlapping 1 Mb
windows and excluded from consideration windows with extremely low
Affymetrix Genome-Wide Human SNP Array 6.0 probe density (below
three standard deviations from the mean). The number of breakpoints
for each cancer type was counted in each 1 Mb window. The same pro-
cedure was applied to SCNA breakpoint positions randomized 1000 times
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in order to generate the null distribution expected by chance. Random-
ization and counting of breakpoints were performed using BEDTools [162].
We assumed a normal distribution for the randomly generated samples
and computed P-values from the parameterized normal cumulative den-
sity function. The windows with false discovery rate (FDR) corrected P
<0.05 were defined as breakpoint hotspots. We defined the 1 Mb break-
point hotspots shared in all 11 cancer types as CHSs and the 1 Mb windows
which are not identified as breakpoint hotspot in any cancer type as NHSs.
The remaining 1 Mb breakpoint hotspots were defined as non-common
hotspots (NCHSs), including hotspots found in only one cancer type and
hotspots identified in some, but not all cancer types.

2.3.5 Multiple linear regression analysis

MLR models an approximately continuous response on the predictors. MLR
builds the linear relationship between the predictors and the response. All
surveyed genomic features measured in 1 Mb segments were used as po-
tential predictors of SCNA occurrence across the human genome. The
density of SCNA breakpoints in every 1 Mb window was determined both
for all cancer types pooled together and for each cancer type individually.
In addition, in each window we also calculated the breakpoint density of
copy number amplifications and deletions, as well as telomere-bound and
interstitial SCNAs. Further, for each window we also computed the SCNA
breakpoint densities after excluding chromosome-level SCNAs with both
boundaries located approximately at telomeres. These densities were used
as response variables for MLR.

To diagnose multicollinearity of each predictor, variance inflation factors
(VIFs) were calculated to avoid problems caused by the instability of the
coefficients. R? was used to capture the explanatory power of the MLR
model. For the MLR model, the RCVE of each predictor was defined as:

RCVE =1-— R%educed/R?‘ull

where R?cu” and R?,,,.., denote the residual sum of squares of the full model
(including all of the tested predictors) and the reduced model without the
predictor of interest, respectively. Moreover, we tested the robustness of
the MLR model by substituting some of the predictors with other highly
correlated features. We performed k-fold cross validation [166] of the MLR
model by randomly dividing the data into k-folds of the same size, using
k-1 folds of the data as a training dataset, and testing the model on the
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remaining fold. The results from each fold test are combined to produce a
single estimate, which we call k-fold MLR. The mean of the k-fold adjusted
R? for the model and k-fold RCVE for each predictor are denoted as k-fold
adjusted R? and k-fold RCVE, respectively.

All statistical analyses were performed in the R environment [167]. The
MASS [168] and Car [169] packages were used to generate the common
diagonostic plots (e.g., residual plots, Q-Q plots) and the QuantPsyc [170]
package was used to calculate the standardized coefficient of predictors
(with the signs of plus or minus denoting the positive or negative effect
that predictors have on the response). The DAAG [171] package was used
to perform k-fold cross validation. RCVEs were represented graphically in
heatmaps. Predictors with FDR-corrected P <0.05 are considered to be
significant.

2.3.6 Distinguishing between common hotspots and non-hotspots by
logistic regression

LR was used to distinguish between CHSs (binary response 1) and NHSs
(binary response 0) using the same predictors as in the MLR model. To
eliminate the possible small-sample size bias we increased the number of
CHSs by applying a sliding procedure. Specifically, we divided the human
genome into sliding windows of 1 Mb in length with a step size of 100
Kb. We also applied rare events logistic regression (RELR) [56] to reduce
the sample imbalance bias. The RELR analysis was performed with the
help of the statistical software Zelig (http://gking.harvard.edu/zelig) [172]
using the same predictors as in the LR model. We used pseudo R? to
capture the explanatory power of the LR and RELR models. The relative
contribution of each predictor for both models (relative contribution to
variance explained, RCVE) was calculated by the formula:

RCVE = [(Dy = D) = (Do = D(—p)]/(Do = D)

where Dy and D are the null deviance and residual deviance of the model,
respectively, and D(_p is the deviance of the resulting model after removing
the predictor of interest.

2.3.7 Distinguishing between common hotspots and non-hotspots by
an extremely randomized tree classifier

A classification decision tree [173] is an input-output model represented by
a tree structure. As a single decision tree usually suffers from high variance,
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ensembles of decision trees have been proposed to circumvent this problem.
In this work, we applied the extremely randomized tree classifier to distin-
guish between CHSs and NHSs using the same features as in the MLR
and LR models. The extremely randomized tree classifier is implemented
in Scikit-Learn, a collection of Python modules of common machine learn-
ing algorithms (http://scikit-learn.org) [174]. We chose to build 500 trees
to obtain robust results, growing each tree to its full depth. To balance
the input data classes, sample weights were passed to the classifier. The
predictive performance of the classifier was assessed by AUC obtained on
the dataset by 5-fold cross-validation: in each validation round 80% of the
data were used as the training data and the remaining 20% were used as
the test data. The final AUC values were computed by averaging AUCs
over the 5-folds. Feature importance in extremely randomized tree classi-
fiers was assessed based on the mean decrease impurity importance, which
gets computed and normalized in Scikit-Learn by default.

2.4 Results

2.4.1 Identification of SCNA breakpoint hotspots

In this work we analyzed data on 404488 SCNA breakpoints [55] in 11 can-
cer types (Table 2.1). To characterize the genome-wide patterns of SCNA
occurrence, we divided the human genome into 1 Mb non-overlapping win-
dows, after removing gaps, and calculated the density of SCNA break-
points within each window. Based on the randomization procedure de-
scribed in the Materials and Methods section, we identified 81-331 break-
point hotspots in individual cancers (FDR-corrected P <0.05). As seen in
Figure 2.3 different types of cancer often share breakpoint hotspots, but
also have their specific hotspots. Based on the definitions in the Materials
and Methods section, we identified 29 CHSs, 1824 NHSs and 685 NCHS:s.

2.4.2 Human genomic features

To identify potential correlates of SCNA breakpoint patterns, we compiled
a set of diverse genomic features, of which some, including non-B DNA se-
quences, and transposable elements, were previously investigated for their
effects on SCNA breakpoints [143], while several other features, such as
distance to centromere and DSBs, are used for this purpose in this work
for the first time. In total, we examined 29 features that can be generally
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categorized into six groups: non-B DNA conformations; DNA sequence;
gene regulation and expression; evolutionary features; chromosome struc-
tures; and functional features (Table 2.2). Following Fungtammasan et
al. [155] and Campos-Sanchez et al. [156], we used hierarchical clustering
with Spearman'‘s rank correlation to remove some strongly correlated fea-
tures (Figure 2.4). Finally, 25 features were used for subsequent regression
analyses.

Dissimilarity=1—|Spearman's correlation|

0.0 0.2 0.4 0.6 0.8 1.0
L 1 1 1 | |

miRNA
Inverted repeats ——
Low complexity repeats —

Double strand breaks

Conserved elements :'—
LTR retrotransposons

L1

Exon
H3K9me3
Replication timing

SINE
A-phased repeats
Recombination motif
GC content
G4

Direct repeats
Simple repeats
Mirror repeats
Indels

DNA transposons
L2 _ I

Self chain segments
Z-DNA

Distance to telomere
Substitutions

Microsatellite
Fragile site
Distance to centromere
CpG island

Figure 2.4: Hierarchical clustering of predictors based on their Spearman’s correlation coeffi-
cients.

2.4.3 Impact of genomic features on the frequencies of SCNNA break-
points

We examined to what extent the observed genome-wide patterns of break-
points could be explained by genomic features. Following an approach
similar to the one described in [155, 156], the density of SCNA breakpoints
(response) calculated in each 1 Mb window was represented as a function
of the 25 genomic features (predictors) measured in the same 1 Mb win-
dow. The resulting MLR model accounted for 31.36% of the variation in
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the breakpoint density and contained 11 significant predictors (Table 2.3).
The predictor with the strongest positive effect in the model is direct repeat
coverage (10.35%). Other predictors with a significant positive effect are
L1 coverage, low-complexity repeat coverage, SINE count, conserved DNA
element count, CpG island coverage, and inverted repeat coverage with the
relative contribution to variance explained (RCVE) ranging from 0.89%
to 2.06% (Table 2.3; Figure 2.5). The predictors with the strongest neg-
ative effect are distance to telomere (29.15%) and distance to centromere
(14.55%). Less significant predictors with a negative effect are mirror re-
peat count (6.68%), Z-DNA coverage (1.14%) and simple repeat coverage
(0.98%).

Table 2.3: The MLR model for pooled SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.243  1.265 4.24E-38 14.55 19.76
Conserved element count 0.113 3.382 1.88E-04 1.18 1.07
CpG island coverage 0.072 1.133 3.88E-05 1.43 1.11
Direct repeat coverage 0.425 5433 T7.69E-28 10.35 11.97
Inverted repeat coverage 0.098 3.330 1.17E-03 0.89 0.51
L1 coverage 0.136  3.677 1.66E-05 1.57 1.67
Low complexity repeat coverage 0.142 3.069 8.34E-07 2.06 2.78
Mirror repeat count -0.303 4.284 1.12E-18 6.68 7.70
SINE count 0.223 3.762 4.84E-06 1.77 1.87
Distance to telomere -0.419 1.883 2.81E-72 29.15 32.21
Z-DNA coverage -0.108 3.146 2.46E-04 1.14 Not significant
Simple repeat coverage -0.087 2.434 6.67E-04 0.98 1.12
Adjusted R2 31.36
Five-fold adjusted R?2 25.31

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution
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Adjusted R-squared
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Figure 2.5: The effect of genomic features in MLR models. The intensity of color is proportional
to the RCVE in each model. Predictors in white color are not significant. See Table 2.1 for full

names of cancer types.

We repeated the same analysis replacing some of the predictors with
highly correlated predictors. For example, A-phased repeat coverage was
replaced with GC content, recombination motif coverage or G4 count and
we observed slight changes in both the RCVE of predictors and R? of
models. Most of genomic features remained significant in these alternative

models (Tables 2.4, 2.5, 2.6, 2.7).

Table 2.4: Alternative MLR replacing A-phased repeat with GC content

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.244 1.261 1.47E-38 14.71 19.93
Conserved element count 0.117 3.418 1.18E-04 1.25 1.19
CpG island coverage 0.074 1.135 2.39E-05 1.51 1.29
Direct repeat coverage 0.436 5.332 9.84E-30 11.09 13.32
L1 coverage 0.134 3.659 2.07E-05 1.53 1.79
Low-complexity repeat coverage 0.140 3.084 1.38E-06 1.97 2.71
Mirror repeat count -0.309 4.324 2.93E-19 6.90 8.08
SINE count 0.246 9.761 1.75E-06 1.94 1.95
Distance to telomere -0.418 1.864 1.90E-72 29.16 32.51
Simple repeat coverage -0.085 2.383 8.22E-04 0.95 1.04
Adjusted R? 31.41
Five-fold adjusted R2 24.40

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution
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Table 2.5: Alternative MLR replacing A-phased repeat with recombination motif

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.243 1.260 2.46E-38 14.61 19.80
Conserved element count 0.116 3.393 1.38E-04 1.23 1.16
CpG island coverage 0.073 1.132  2.77E-05 1.49 1.15
Direct repeat coverage 0.429 5.244  2.45E-29 10.93 13.26
Inverted repeat coverage 0.096 3.330 1.46E-03 0.86 0.44
L1 coverage 0.139 3.664 1.05E-05 1.64 1.88
Low-complexity repeat coverage 0.144 3.082  6.25E-07 2.10 2.85
Mirror repeat count -0.300 4.294 2.53E-18 6.52 7.79
SINE count 0.252 10.209 1.66E-06 1.94 2.06
Distance to telomere -0.416 1.869 6.81E-72 28.91 31.88
Z-DNA coverage -0.096 3.334 1.46E-03 0.86 -0.22
Simple repeat coverage -0.086 2.364 7.03E-04 0.97 1.08
Adjusted R? 31.42
Five-fold adjusted R? 24.43

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

Table 2.6: Alternative MLR replacing A-phased repeat with G4

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.243  1.260 3.28E-38 14.60 19.81
Conserved element count 0.108 3.510 4.85E-04 1.03 0.88
CpG island coverage 0.072 1.133  4.22E-05 1.42 1.19
Direct repeat coverage 0.425 5.336 2.47E-28 10.56 12.55
Inverted repeat coverage 0.100 3.319 8.91E-04 0.94 0.57
L1 coverage 0.133 3.753 3.07E-05 1.47 1.58
Low-complexity repeat coverage 0.139 3.199 2.51E-06 1.88 2.48
Mirror repeat count -0.301 4.332 2.56E-18 6.54 7.73
SINE count 0.205 8.261 1.50E-05 1.59 1.66
Distance to telomere -0.419 1.869 1.12E-72  29.35 32.54
Z-DNA coverage -0.125 3.837 1.06E-04 1.27 0.53
Simple repeat coverage -0.094 2.342 2.07E-04 1.17 1.30
Adjusted R2 31.35
Five-fold adjusted R? 24.21

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution
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Table 2.7: Alternative MLR replacing H3K9me3 with replication timing

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.244 1.258 1.01E-38 14.77 19.74
Conserved element count 0.115 3.387 1.41E-04 1.23 1.16
CpG island coverage 0.071 1.133 5.01E-05 1.39 1.03
Direct repeat coverage 0.417 5.420 4.77E-27 10.01 11.51
Inverted repeat coverage 0.103 3.322 5.75E-04 1.00 0.70
L1 coverage 0.140 3.667 9.81E-06 1.65 1.86
Low-complexity repeat coverage 0.145 3.073 5.12E-07 2.14 2.87
Mirror repeat count -0.298 4.302 3.96E-18 6.45 7.40
SINE count 0.198 7.809 1.65E-05 1.57 1.49
Distance to telomere -0.422 1.879 3.42E-73 29.49 32.27
Z-DNA coverage -0.118  2.837  2.25E-05 1.52 0.16
Simple repeat coverage -0.088 2.335 4.43E-04 1.04 1.14
Adjusted R2 31.43
Five-fold adjusted R? 24.67

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

We next applied MLR for breakpoints of two SCNA types-amplifications
and deletions-separately. The MLR model explained 29.52% (amplifica-
tions) and 27.88% (deletions) of response variance. Notably, the predictors
and the sign of their effect revealed by these two MLR models are simi-
lar to those of pooled SCNA breakpoints (Tables 2.8, 2.9), although some
differences were apparent. For instance, Z-DNA repeat coverage, which
had negative effect when both types of breakpoints were considered, disap-
peared in the MLR model for amplification breakpoints. Likewise, inverted
repeat coverage lost its positive effect in the MLR model for deletion break-
points.

Table 2.8: MLR for SCNA amplification breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.293 1.265 1.88E-52 22.39 31.04
Conserved element count 0.118 3.382 1.17E-04 1.37 1.38
CpG island coverage 0.056 1.133 1.52E-03 0.93 0.73
Direct repeat coverage 0.347 5.433 7.82E-19 7.34 5.73
Inverted repeat coverage 0.123 3.330 5.50E-05 1.50 1.83
L1 coverage 0.121  3.677 1.51E-04 1.32 0.60
Low-complexity repeat coverage 0.106 3.069 2.73E-04 1.22 0.07
Mirror repeat count -0.247  4.284 1.17E-12 4.70 5.61
SCS coverage 0.065 1.375 9.83E-04 1.00  Not Significant
SINE count 0.218 8.762 1.06E-05 1.79 1.34
Distance to telomere -0.411  1.884 4.54E-68 29.73 31.79
Simple repeat coverage -0.120 2.434 4.12E-06 1.96  Not Significant
Adjusted R2 29.52
Five-fold adjusted R2 21.46

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution
Distance to telomere is a predictor with the strongest negative effect

for both pooled SCNA breakpoints and the breakpoints corresponding to
the two individual SCNA types-amplifications and deletions (Tables 2.3,
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Table 2.9: MLR for SCNA deletion breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.192  1.265 1.02E-23 10.23 13.68
Conserved element count 0.099 3.382 1.36E-03 1.02 0.34
CpG island coverage 0.074 1.133 4.01E-05 1.68 Not Significant
Direct repeat coverage 0.426 5.433 9.81E-27 11.66 12.54
L1 coverage 0.131 3.677 5.21E-05 1.63 1.63
Low-complexity repeat coverage 0.148 3.069 5.67TE-07 2.50 2.09
Mirror repeat count -0.304 4.284 5.17E-18 7.56 8.55
SINE count 0.205 8.762 4.32E-05 1.67 1.19
Distance to telomere -0.383 1.884 1.42E-58 27.30 33.00
Z-DNA coverage -0.119  3.214 8.70E-05 1.54  Not Significant
Adjusted R2 27.88
Five-fold adjusted R? 19.48

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

2.8, 2.9). In order to remove the confounding effect of this parameter,
we next divided SCNAs into two categories: telomere-bound SCNAs, with
one boundary located in the telomere and interstitial SCNAs, with both
boundaries interstitial to the chromosome [55]. MLR models accounted for
31.90 and 20.24% of the variation for telomere-bound SCNAs and inter-
stitial SCNAs, respectively. Significant predictors of telomere-bound and
interstitial SCNAs are listed in Tables 2.10 and 2.11. Distance to telomere
is a dominant predictor for telomere-bound SCNAs (relative contribution
of 29.97%), while for interstitial SCNAs the most significant predictor is
distance to centromere (relative contribution of 45.91%). Distance to cen-
tromere and SINEs are also significant for both SCNA types. However,
the relative contribution of distance to centromere is substantially reduced
for the telomere-bound SCNAs compared with interstitial SCNAs. More-
over, the other significant predictors for telomere-bound SCNAs are quite
different from the significant predictors for the interstitial SCNAs.

Table 2.10: MLR for telomere-bounded SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.163  1.265 1.35E-18 6.49 7.48
Conserved element count 0.109 3.382 3.24E-04 1.07 1.03
CpG island coverage 0.070 1.133 6.38E-05 1.32 0.22
Direct repeat coverage 0.439 5.433 7.06E-30 10.91 10.07
L1 coverage 0.160 3.677 3.52E-07 2.15 2.18
Low-complexity repeat coverage 0.154 3.069 9.67E-08 2.36 2.20
Mirror repeat count -0.329 4.284 6.39E-22 7.78 8.32
SINE count 0.184 8.762 1.57E-04 1.18 1.10
Distance to telomere -0.429 1.884 8.74E-76 29.97 31.98
Z-DNA coverage -0.115  3.214 9.05E-05 1.27 0.60
Adjusted R2 31.90
Five-fold adjusted R? 24.40

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

By definition, the breakpoints of chromosome-level SCNAs are fixed at
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Table 2.11: MLR for intersttial SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.349 1.265 6.63E-65 45.91 53.44
H3K9me3 count 0.143 2.272  9.89E-08 4.27 2.80
LTR coverage -0.090 2.206 6.65E-04 1.74 1.95
SINE count 0.178 8.762 T7.12E-04 1.72 1.53
Simple repeat coverage -0.122 2.434 1.07E-05 291 2.58
Adjusted R? 20.24
Five-fold adjusted R2 14.95

SCE, standardized coeflicient; VIF, variance inflation factor; RC, relative contribution

telomeres. We therefore excluded chromosome-level SCNAs from all the
pooled SCNAs before conducting MLR analyses. We found that the model
could explain 30.36% of the variation and included 10 significant predictors
(Table 2.12). Notably, the predictors and their effect are similar to those
of pooled SCNAs.

Table 2.12: MLR for SCNA breakpoints after excluding chromosome-level SCNAs

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere 339  1.265 1.24E-69 29.30 41.94
Conserved element count 0.097 3.382 1.49E-03 0.89 0.67
CpG island coverage 0.086 1.133 1.01E-06 2.13 0.01
Direct repeat coverage 0.370 5.433 2.38E-21 8.11 10.09
Inverted repeat coverage 0.114 3.330 1.60E-04 1.26 1.39
Low-complexity repeat coverage 0.092 3.069 1.52E-03 0.89 0.52
Mirror repeat count -0.229 4.284 3.00E-11 3.94 3.53
SINE count 0.222 8.762 6.40E-06 1.81 1.73
Distance to telomere -0.391 1.884 1.38E-62 26.08 30.43
Simple repeat coverage -0.115 2.434 8.58E-06 1.76 1.78
Adjusted R2 30.36
Five-fold adjusted R2 22.48

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

We also performed similar analyses for each cancer type and found the
adjusted R? of models to be greater than 26% for all cancer types except
for glioblastoma multiforme (13.66%) and kidney renal clear cell carcinoma
(17.39%). Similar to the MLR model of the pooled SCNA breakpoints,
we identified direct repeat coverage, L1 coverage, low-complexity repeat
coverage and SINE count as significant positive predictors for almost all
cancer types (Figure 2.5). The distance to telomere, distance to centromere
and mirror repeat count remained significant negative predictors for each
cancer type (Figure 2.5).

We also conducted 5-fold cross validation for all the MLR models. While
the MLR model trained over the pooled breakpoint dataset yielded an ad-
justed R2 of 31.36%, the R? of the 5-fold MLR built from the pooled break-
point dataset was 25.31% (Table 2.3). Moreover, the significant predictors
and their effects identified in 5-fold MLR are similar to those of MLR (Ta-
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ble 2.3). The 5-fold MLR results for the other MLR models are provided in
Tables 2.4-2.12 and Figure 2.6. The consistency between the MLR model
and 5-fold MLR model indicates that the MLR model demonstrates good

predictive ability and generalizes well on validation datasets.

All cancers BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC ov READ UCEC
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Figure 2.6: The effect of genomic features in 5-fold MLR models. The intensity of color is
proportional to the RCVE of each model. Predictors in white color are not significant. See Table
2.1 for full names of cancer types.

We also assessed the generalization ability of our MLR model on an
independent dataset obtained from the COSMIC database (see Materials
and Methods section). On this dataset the MLR model and the 5-fold
MLR model accounted for 41.16% and 36.99% of breakpoint variation,
respectively (Table 2.13). The most significant predictors, e.g., distance to
telomere, mirror repeats and distance to centromere identified in the MLR
model for pooled breakpoints from TCGA are also found to be significant in
the MLR model on the independent dataset. However, predictors, including
exon coverage, H3K9me3 count, LTR retrotransposon coverage, and indel
rate, gained significance in this data set. Exon coverage and indel rate are
among the top four features in the model presented in [143].

2.4.4 Contrasting between CHSs and NHSs by logistic regression

We investigated how genomic context affects the distribution of common
breakpoint hotspots in cancer genomes. To this end we built a standard
LR model using 25 features. The final standard LR model had a pseudo
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Table 2.13: MLR for SCNA breakpoints from an independent data set

Predictor SCE VIF P-value RC,% Five-fold RC,%
A-phased repeats coverage -0.133  5.312 2.15E-04 0.79 0.78
Distance to centromere -0.086 1.299 1.24E-06 1.36 1.29
CpG island coverage 0.059 1.198 4.66E-04 0.71 0.67
H3K9me3 count -0.153  3.072  2.08E-08 1.82 1.87
LTR retrotransposon coverage -0.099 2.230 1.89E-05 1.06 0.94
Mirror repeat count -0.128  4.447  9.17E-05 0.88 0.67
Distance to telomere -0.212  1.634 5.48E-26 6.56 7.12
Exon coverage 0.202 3.551 6.70E-12 2.74 2.87
Indel rate 0.121  5.124 5.85E-04 0.68 0.69
Adjusted R? 41.16
Five-fold adjusted R2 36.99

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution

R? 51.83% and comprised two highly significant genomic features: distance
to telomere (individual contribution 20.70%) and direct repeat coverage
(individual contribution 5.16%).

However, the standard LR model may suffer from small-sample bias and
class imbalance. In this work, the sample size of CHSs is small (sample
size: 29) and sample sizes for NHSs and CHSs are imbalanced (1824 vs
29). For this reason, besides standard LR, we performed the rare events
logistic regression (RELR). The estimates of a RELR model are corrected
for class imbalance. Moreover, to eliminate the possible small-sample bias,
we increased the number of common cancer hotspots by a sliding process, in
which we divided the human genome into 1 Mb overlapping widows with a
step size of 100 kb. Following the hotspot identification procedure described
in Materials and Methods section, we identified 231 CHSs. The RELR
model has a pseudo R? 51.83% and contains 12 significant predictors (Table
2.14; Figure 2.7). The strongest feature discriminating CHSs and NHSs was
distance to telomere (individual contribution 20.70%). This was a negative
predictor, indicating that CHSs tend to be positioned closely to telomere.
Direct repeat coverage is the strongest significant positive predictor (with
the individual contribution of 5.16%), which implies that CHSs are located
preferably in a genomic context that is enriched in direct repeats. We
also performed RELR to contrast between non-common hotspots (NCHSs)
and NHSs as well as between NCHSs and CHSs. We found that genomic
features cannot discriminate between them (data not shown).
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Table 2.14: RELR for contrasting CHSs with NHSs

Predictor Standardized coefficient P-value  Relative contribution,%
Conserved elements count 5.029 5.18E-04 1.01
CpG island coverage 1.825  1.04E-06 1.14
Direct repeats coverage 11.257  2.16E-11 5.16
DNA coverage -5.2561  3.82E-05 2.02
L1 coverage 8.253 1.87E-09 2.95
L2 coverage -4.857  2.02E-05 1.61
Low-complexity repeats coverage 3.746  1.56E-04 1.08
Mirror repeat count -2.741  5.41E-03 0.67
SINE count 10.513  6.26E-08 2.50
Distance to telomere -44.259  4.50E-27 20.70
Z-DNA coverage -4.025 1.16E-05 1.61
Simple repeat coverage -6.701  9.29E-04 1.02
Explained Deviance 51.83
Inverted repeat coverage
Indel rate
Substitution rate
DSB coverage
Distance to centromere
Exon coverage
A-phased repeat coverage
LTR coverage
SCS coverage
Microsatellite coverage
Fragile site binary count i
miRNA coverage ]
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Figure 2.7: The normalized relative contribution of predictors in terms of distinguishing CHSs

and NHSs for the RELR model.

Interestingly, the important features determined by the model, such as

NHSs
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distance to telomere, direct repeat coverage, distance to centromere and L1
coverage, were also identified to have significant effects on SCNA breakpoint
in the MLR models.

2.4.5 Extremely randomized tree classifier for telling apart CHSs and

We applied the extremely randomized tree classifier to distinguish CHSs
and NHSs using the same 25 features. For the CHSs, this classifier reaches
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the area under the receiver operating characteristic (ROC) curve (AUC) of
0.96 (Figure 2.8a). The important features determined by the classifier for
CHSs are distance to telomere, indel rate, and direct repeats (Figure 2.8b),
which is generally consistent with the predictors identified in the RELR
model. These results suggest that the positions of common breakpoint
hotspots can be reasonable well predicted from local genomic properties.
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Figure 2.8: Distinguishing CHSs from NHSs from genomic features. (a) ROC-AUC curves of
the extremely randomized forests. (b) The normalized relative contribution of predictors in terms
of distinguishing CHSs and NHSs.

2.5 Discussion

Using a MLR model trained on 19 genomic properties, a previous study
revealed top four genomic features, including indel rate, exon density, sub-
stitution rate and SINE coverage, contributing to SCNA breakpoint for-
mation [143]. Taking advantage of the TCGA Pan-Cancer SCNA data, we
considered a wider range of genomic features than in [143] and performed
prescreening of features to reduce the effect of multicollinearity. Our MLR
model is more than two times more powerful than that in [143] (32% of
breakpoint variance explained versus 14%) and maintains its strong per-
formance upon 5-fold cross validation. By including six novel genomic
features, our models revealed two novel predictors-distance to telomere
and distance to centromere, which made the strongest contribution to our
model (relative contribution of 29.15 and 10.35% to MLR model for pooled
SCNA breakpoints). The inclusion of these two features may explain the
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superiority of our model compared with that described in [143]. Notably,
out of the top four features reported in [143] SINE coverage ranked sixth
in predictive importance in our model, while the other three features-indel
rate, exon density and substitution rate-were not among the significant
predictors in our model (rank below 13th, see Table 2.15). When apply-
ing the same model to an independent data set, exon density and indel
rate have some predictive power and rank second and last, respectively
(Table 2.13). We, thus, encountered some discrepancies between the re-
sults obtained on the TCGA data and the independent COSMIC dataset.
However, we found that distance to telomere, distance to centromere, CpG
island coverage and mirror repeat count affect SCNA formation in both
data sets, and the general consistency of the results obtained on these two
datasets emphasizes the reliability of our findings. The power of the mod-
els was upheld for different SCNA types (amplifications and deletions), for
SCNAs generated by distinct mechanisms (telomere-bound SCNAs and in-
terstitial SCNAs) and for SCNAs from different cancer types. The TCGA
Pan-Cancer analysis has revealed two types of SCNAs: interstitial SCNAs
and telomere-bound ones [55]. The frequency of interstitial SCNAs is in-
versely correlated with their lengths [138, 55|, while the telomere-bound
ones tend to follow a uniform length distribution [55], which reflects dis-
tinct mechanisms underlying their formation. Indeed, in our study distance
to centromere contributes strongly to the MLR model for interstitial SC-
NAs, while distance to centromere has a much smaller role than distance
to telomere and direct repeat coverage in the MLR model for telomere-
bound SCNAs. According to the MLR model the breakpoints of intersti-
tial SCNAs are overrepresented close to centromeres, which is consistent
with the previous observations [55, 175, 176]. Frequent breakages near cen-
tromeres may lead to their dysfunction and further cause chromosomal in-
stability [177], which is a hallmark of diverse cancers [178]. The prevalence
of telomere-bound SCNAs in cancers may relate to telomere dysfunction
[179], and those breakpoints of telomere-bound SCNAs that are not located
in telomeres were speculated to occur at regions with DSBs [55]. Our MLR
models for telomere-bound SCNAs favor this hypothesis and demonstrate
frequent occurence of DSBs in regions enriched in direct repeats. Direct
repeats have been documented previously to cause hairpins and to overlap
with chromosome regions undergoing somatic rearrangements [180]. The
high prediction power of direct repeats in every cancer type suggests their
significant common role in shaping the distribution of SCNA breakpoints.
We also demonstrate that mirror repeat count, L1 coverage, SINE count,
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low-complexity repeat coverage and several other features have important
albeit smaller roles in our MLR models. SINEs and L1 have been exten-
sively studied for their roles in non-allelic homologous recombination, which
leads to deletions, duplications and inversions [150, 181]. The significant
positive effect of low-complexity repeats for all cancer types is in line with
the fact that they are usually AT-rich and prone to causing the replication
fork to pause or stall [182] and thus induce breaks. Moreover, AT-rich
repeats constitute unstable regions of the genome, conferring susceptibil-
ity to rearrangements [183]. These results suggest a general mechanism of
genome instability induced by genomic context.

Table 2.15: List of all features ranked by relative contribution to SCNA breakpoints formation
in MLR model

Predictor Relative contribution,%  Rank
Distance to telomere 29.15 1
Distance to centromere 14.55 2
Direct repeat coverage 10.35 3
Mirror repeat count 6.68 4
Low-complexity repeat coverage 2.06 5
SINE count 1.77 6
L1 coverage 1.57 7
CpG island coverage 1.44 8
Z-DNA coverage 1.14 9
Conserved element count 1.18 10
Simple repeat coverage 0.98 11
Inverted repeat coverage 0.89 12
H3K9me3 count 0.48 13
Indel rate 0.35 14
Exon coverage 0.20 15
DNA transposon coverage 0.13 16
Microsatellite coverage 0.12 17
Double strand break coverage 0.10 18
L2 coverage 0.07 19
A-phased repeat coverage 0.05 20
Self-chain segment coverage 0.04 21
Substitution rate 0.04 22
miRNA coverage 0.03 23
LTR retrotransposon coverage 0.01 24
Fragile site count 0.00 25

Using the same 25 genomic features to contrast CHSs and NHSs of SCNA
breakpoints, we applied extremely tree classifiers to train the model and
obtained a more powerful model compared with that in [143] (AUC: 0.96
versus 0.75). RELR and extremely tree classifiers both revealed distance
to telomere and direct repeat coverage as being particularly potent in dis-
tinguishing CHSs and NHSs of SCNA breakpoints. The consistency of the
results obtained by rare-event logistic models and extremely tree classifiers
corroborates the robustness of our conclusions. It is noteworthy that indel
rate is an important predictor in extremely tree classifiers, but not in rare
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event logistic models. The strong contrast between CHSs and NHSs for
SCNA breakpoints in terms of the distance to telomere and direct repeat
coverage indicates that CHSs strongly depend on the local genomic context.
Given that only few known cancer genes are located in common breakpoint
hotspot regions [138, 143], Li et al. hypothesized that the high frequency
of SCNAs in these CHSs across cancer types is largely due to regionally
higher mutation rate [143]. The regions with intrinsically higher mutation
rate are independent of tumor type (or tissue origin) and are usually shared
across different caner types. Since the regions enriched in direct repeats
and /or those close to telomeres are susceptible to mutations, our models
comply with this hypothesis.

49



2. GENOMIC DETERMINANTS OF SOMATIC COPY NUMBER
ALTERATIONS ACROSS HUMAN CANCERS

50



Chapter 3

Genome-wide analysis of somatic
copy number alterations and
chromosomal breakages in
osteosarcoma
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3. GENOME-WIDE ANALYSIS OF SOMATIC COPY NUMBER
ALTERATIONS AND CHROMOSOMAL BREAKAGES IN OSTEOSARCOMA

3.1 Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor
in children and adolescents. It is characterized by highly complex kary-
otypes with structural and numerical chromosomal alterations. The ob-
served OS-specific characteristics in localization and frequencies of chro-
mosomal breakages strongly implicate a specific set of responsible driver
genes or a specific mechanism of fragility induction. In this study, a com-
prehensive assessment of somatic copy number alterations (SCNAs) was
performed in 160 OS samples using whole-genome CytoScan High Density
arrays (Affymetrix, Santa Clara, CA). Genes or regions frequently targeted
by SCNAs were identified. Breakage analysis revealed OS specific fragile
regions in which well-known OS tumor suppressor genes, including TP53,
RB1, WWOX, DLG2, and LSAMP are located. Certain genomic features,
such as transposable elements and non-B DNA-forming motifs were found
to be significantly enriched in the vicinity of chromosomal breakage sites.
A complex breakage pattern - chromothripsis - has been suggested as a
widespread phenomenon in OS. It was further demonstrated that hyper-
ploidy and in particular chromothripsis were strongly correlated with OS
patient clinical outcome. The revealed OS-specific fragility pattern may
provide a basis for patient prognosis and offer a vital platform for thera-
peutic intervention in the future.

3.2 Introduction

Osteosarcoma (OS) is the most common primary malignant bone tumor in
adolescents and young adults [184, 185]. It is characterized by a complex
karyotype with a high degree of aneuploidy and numerous structural aber-
rations such as somatic copy number alterations (SCNAs) and genomic
rearrangements [186, 187, 188]. Curative treatment of OS is based on
multi-agent chemotherapy in addition to complete surgery. For patients
with localized extremity disease 10-year event-free survival rates reach ap-
proximately 60% [189], but have plateaued during the past decades. Fur-
ther improvement in cure rates will most likely depend on an increased
knowledge about the underlying molecular mechanisms of this disease.
Although several predictors, such as gene expression profiles [190] and
chromosomal alteration staging systems [188] have been proposed to an-
ticipate tumor response to chemotherapy, common markers of prognostic
and therapeutic value remain to be identified. Genomic instability is a
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hallmark of most cancers, including OS [191, 178]|. Recurrent genomic in-
stability in cancer is either driven by positive selection or originates from
sequence-specific unstable regions [178]. Chromosomal fragile sites are spe-
cific genomic locations that appear as gaps or breaks on metaphase chro-
mosomes under replication stress [192]. Replication stress can be induced
by endogenous or exogenous sources, and result in the generation of DNA
double strand breaks (DSBs) and genomic instability [193]. A variety of
molecular pathways are involved in DSB repair, and, in the case of deficient
repair, copy number alterations result.

To identify SCNAs, an array-based copy number profiling has been uti-
lized as an alternative to next generation sequencing due to its lower con-
sumption of precious biopsy material. DNA copy number profiling was
generally opted for over gene expression, as it provided relatively stable pro-
files enabling differentiation of clinically relevant genetic subgroups [194].
However, the analysis of whole genome array data for tumor samples can
be challenging due to the fact that the total DNA amount in a cancer cell
can differ significantly from a diploid state, and tumor tissues often con-
tain some proportion of normal cells [44]. SCNAs have the potential to
inactivate tumor suppressor genes or activate oncogenes, and consequently
play fundamental roles in gene regulation and pathobiological processes in
cancer [138]. Analyses of SCNA data generated in recent years have pro-
vided insights into driver genes for many tumor types [138, 55]. However,
the enormous complexity of genomic aberrations in OS has made it chal-
lenging to identify recurrent alterations and genes driving tumorigenesis
[186, 187]. Furthermore, in OS the identification of driver genes has been
hindered by intra- and inter-tumor heterogeneity and limited sample avail-
ability [195, 187, 196, 197]. Despite such difficulties, we and others have
revealed recurrent genomic loss regions containing tumor suppressor genes
such as LSAMP, CDK2NA, RB1, and TP53 and most frequent gains in-
cluding the oncogene MY(C and the gene RUNX2 - an important player in
osteogenic differentiation [195, 198, 187, 196, 197].

Apart from their genomic instability, osteosarcomas show a disease spe-
cific SCNA pattern. The phenomenon of chromothripsis represents an im-
portant mechanism of carcinogenesis that differs from progressive accu-
mulation of genomic rearrangements. The simultaneous fragmentation of
distinct chromosomal regions (breakpoints showing a specific, non-random
distribution) and subsequent imperfect reassembly of those fragments leads
to a specific SCNA pattern (chromothripsis like pattern, CTLP). The ini-
tial discovery indicated that chromothripsis is a widespread phenomenon,
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which can be seen in 2% - 3% of all cancers, most notably in 25% of bone
cancers [46]. There is a strong evidence for an association between chro-
mothripsis and poor outcome in different cancer types, including multiple
myeloma [199], neuroblastoma [200] and Sonic-Hedgehog medulloblastoma
[53]. Although the mechanisms governing chromothripsis are largely un-
known, it has important implications for our understanding of cancer and
disease [201], as such detailed analyses of chromothripsis-like patterns may
shed light on OS development and progression.

Herein, copy number profiles derived from 160 pre-therapeutic osteosar-
coma biopsies have been analysed using whole-genome CytoScan High Den-
sity (CytoScan HD) arrays (Affymetrix, Santa Clara, CA). SCNAs for each
sample were integrated to identify potential genes that may drive OS onco-
genesis. Previously found OS driver genes were identified as well as other
OS-related genes. Chromosomal breakages were found to be spatially clus-
tered in certain locations, termed “broken regions”, harboring the regarded
OS tumor suppressor genes TP53, RB1, WWOX, DLG2, and LSAMP. Fur-
thermore, chromosomal breakages in these regions occurred early and were
determined by local genomic context. Most noteworthy, both aneuploidy
and CTLP occurrence were found to be correlated with clinical outcome of
OS patients.

3.3 Methods

3.3.1 Tissue samples and patient characteristics

For CytoScan HD array analysis, a set of 160 fresh-frozen tissue samples
derived from pretherapeutic biopsies was used. The patient cohort sam-
ples were obtained according to the guidelines and approval of the Re-
search Ethics Board at the Faculty of Medicine of the Technical University
of Munich (Technische Universitdt Miinchen, Reference 1867/07) and lo-
cal ethical committee of Basel, Switzerland (Ethikkommission beider Basel
EKBB, www.ekbb.ch, Reference 274/12). The descriptive characteristics
of this collective are summarized in Table 3.1. The vast majority of the in-
vestigated samples (n=141) are classified as high-grade osteosarcoma. The
patients were treated between 1990 and 2012 according to the protocols
of the Cooperative German-Austria-Swiss Osteosarcoma Study Group (re-
viewed and approved by the appropriate ethics committees) after informed
consent was obtained.
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Table 3.1: Clinical characteristics of 157 osteosarcoma patients

Descriptive statistics

Sex n=157
Male 83
Female 74
Age at diagnosis(years) n=157
Average 20.08
Median 15
Range 3-85
Metastases n=143
Yes 61
No 82
Observation period (months) n=147
Average 64
Median 56.2
Range 0.24-204.5
Response to neoadjuvant treatment n=128
Good 64
Poor 64
Survival n=130
Alive 90
Deceased 40
Event (relapse or death) n=143
Yes 60
No 83
Overall survival 5-year: 74.8%  10-year: 62.9%
Grouped by event status 5-year 10-year
Event 25.5% 27.3%
Grouped by response to chemotherapy 5-year 10-year
Good response 90.2% 83.6%
Poor response 66.7% 61.1%

3.3.2 SCNA calling, driver gene identification, and tumor subclone
decomposition

DNA from frozen osteosarcoma tissue was analysed using the Affymetrix
CytoScan HD platform. The raw data are available in the ArrayExpress
database [202] under accession number E-MTAB-4815. Nexus copy num-
ber software version 7.5 (obtained from BioDiscovery, Inc.) was used to
process CEL files. Copy number alterations were called using the Single
Nucleotide Polymorphism Fast Adaptive States Segmentation Technique
2 (SNP-FASST2) segmentation algorithm together with quadratic correc-
tion implemented in Nexus. Sample- and chromosome-specific thresholds
defining copy number gain, copy number loss, high copy gain, and homozy-
gous copy loss were based on true diploid regions in individual tumor sam-
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ple (performed using Nexus with subsequent manual curation by experts
from BioDiscovery, Inc.). SCNAs with fewer than 20 probes were excluded
from further consideration. GISTIC 2.0 (Genomic Identification of Signif-
icant Targets In Cancer) integrated in the Nexus copy number software
was utilised to identify potential driver SCNAs and genes by evaluating
the frequency and amplitude of observed events [203].

Subclone structures were reconstructed for each tumor sample based
on the SCNA calling data from the Nexus copy number software. The
SubcloneSeeker software [204] was utilized to decompose tumor subclone
structures. In this study, a subclone was defined as a collection of cells in
the tumor sample that contained the same set of SCNAs. The segmental
mean values of each segment generated by SNP-FASST?2 was used as input
for the SubcloneSecker software [204] to reconstruct the clonal structures
for each patient. The segtrt2db and ssmain applications were employed to
cluster the segments based on their cell prevalence values and to enumerate
the clonal structures. The results were exported using the treeprint utility.
We refer to the SCNAs that occurred at the root node of the subclone tree
as clonal SCNAs and to all others as subclonal ones.

3.3.3 Definitions of chromosomal breakages and their association with
genomic features

We defined genomic starts and ends of SCNAs as SCNA breakpoints al-
though their exact chromosomal positions could not be determined. Break-
points situated upstream of the first or downstream of the last CytoScan
HD probe on the same chromosome as well as those located in telomeres
or centromeres were ignored. We defined a genomic position to be a chro-
mosomal break when the log, signal value alteration between two adjacent
genomic segments (from centromere to telomere) was >0.3.

An association was determined between chromosomal breakages and
multiple genomic features as obtained from public databases and published
studies or as identified in the current study. All genomic coordinates of the
features correspond to the human genome assembly hgl9 and, when nec-
essary, the University of California, Santa Cruz (UCSC) liftOver tool was
used to convert the hgl8 coordinates to hgl9 [108]. Specifically, chromoso-
mal coordinates for Alu repeats, DNA transposons, L1 and long terminal
repeat (LTR) retrotransposons, exons, and conserved elements (the Phy-

loP46wayPrimates table) were downloaded from UCSC Genome Browser
[108]. Non-B DNA motifs were obtained from non-B DB v2.0 [146]. Ge-
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nomic coordinates for common fragile sites and non-fragile regions were
obtained from a previous study [155]. We defined nucleotide substitution
(or insertions/deletions, indels) rate as the ratio of the total number of
substitutions (or indels) to the total number of nucleotides in the human-
chimpanzee alignments (from UCSC Genome Browser).

The density of SCNA breakpoints, chromosomal breaks or genomic fea-
tures were defined as the ratio of total base pairs belonging to the item
to the total length of the genomic region. The subdivision of the genome,
shuffling, and feature density calculation were performed using BEDTools
[162] and in-house Perl scripts.

3.3.4 Detection of chromothripsis-like patterns in osteosarcoma

To detect chromothripsis-like patterns (CTLPs) the algorithm described
in [47] was applied to identify clustering of copy number changes in the
genome. Default settings were used except for the parameter of log, signal
value difference between two adjacent segments (set to 0.2). CTLP samples
were determined by the evidence of the copy number switching its status at
least 12 times (SwitchNo > 12) and log,, of likelihood ratio greater than
8 (logyy LR > 8) within a single chromosome.

3.3.5 Estimation of tumor purity and ploidy

SNP-based DNA microarrays allow simultaneous measurement of the allele-
specific copy number at many different SNP loci in the genome. For each
probe set, the log R ratio (LRR) reflects the ratio of total intensity signals
for both alleles to expected signal, and the B allele frequency (BAF) is
an estimate of the relative proportion of one of the alleles with respect to
the total intensity signal. LRR and BAF values were derived using the
affy2sv R package [205] together with the Affymetrix Power Tools. A total
of 873 normal samples downloaded from the study [206] (Gene Expression
Omnibus accession number: GSE59150) were also processed using affy2sv.
The resulting LRR and BAF were used as input for the GPHMM algorithm
(version 1.4) [39] to obtain an estimation of normal cell contamination and
absolute copy number of genomic segments for each sample. Population
frequency of the B allele file required for running GPHMM was created
using the Perl script compile pfb.pl in PennCNV [207], with BAF values
from the 873 normal samples as input. Another required file - GC model file
(GC content flanking SNP markers) - was generated using the Perl script
cal_gc_snp.pl in PennCNV [207]. Tumor ploidy was further determined
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following the protocol described in [208]. Specifically, the chromosome arm
count in a tumor genome was estimated based on the absolute copy number
of genomic segments in the pericentric region. The copy number of the
corresponding arm was set to the absolute copy number of the segments in
the pericentric region if its size was >1.5 Mb. Otherwise, if the size of the
pericentric segments was <1.5 Mb, the copy number of the chromosome
arm was approximated by the average copy number of all segments on that
chromosome arm. Tumor ploidy was assigned for each tumor sample based
on chromosome counts and the DNA index, defined as the average copy
number of the tumor genome divided by 2. Tumor ploidy was set at 2
(near-diploid genome) for chromosome counts <60 and DNA index <1.3,
and set at 4 (near-tetraploid genome) for chromosome counts > 60 and
DNA index >1.3 [209].

3.4 Results

3.4.1 Overview of SCNASs in osteosarcoma

The SCNA landscape of pre-treatment tissue samples (n = 160) from os-
teosarcoma patients (characteristics of whom are provided in Table 3.1)
was profiled using Affymetrix CytoScan HD arrays. Three samples were
excluded from copy number analysis due to insufficient data quality. A
genome-wide frequency plot of SCNAs is shown in Figure 3.1. In our collec-
tive the median size of the SCNAs was 1.2 Mb with the OS genome having
on average 209 SCNA events. Regional gains and losses of various sizes
were observed, ranging from entire chromosomes to minor genomic seg-
ments. Many oncogenes and tumor suppressor genes were located within
these sites. No significant correlation was noted between the total SCNA
number, size, or median in relation to age or gender. An apparent correla-
tion trend was evident for total SCNA size and survival, although perhaps
due to insufficient power this did not reach significance.
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Figure 3.1: Genome-wide frequency plot of somatic copy number alterations in 157 osteosarcoma
samples. Copy number losses and gains are in red and blue, respectively.

3.4.2 GISTIC analysis and tumor subclone decomposition uncover
key driver genes affected by SCNAs in osteosarcoma

GISTIC 2.0 [203] is a tool to identify genes targeted by SCNAs that may
drive cancer development. The X and Y chromosomes were excluded from
the analysis and were analyzed separately in gender specific subsets of
OS patients. GISTIC identified 88 regions significantly altered in 157 OS
samples (Figure 3.2; genomic locations of these regions have been listed
in Supplementary Table 6.1). The annotation of GISTIC regions revealed
101 targeted genes (listed in Supplementary Table 6.2), of which the vast
majority (74 transcripts) were protein-coding genes. Nine genes listed in
the Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene
Census (CGC) [157] - namely NOTCH2, PDGFRA, CDK/, CCNFE1, and
RUNX1 were located in copy-number gain regions, while CDKN2A, FLI1,
TP53, and ATRX were identified in copy-number loss regions. TP53 and
ATRX, often targeted by SCNAs, have been reported by us and others as
important driver genes in OS [195, 210, 211]. Besides these well-known
OS driver genes, GISTIC regions contained several other OS-related genes,
such as RUNX2 and DLG?2 [195, 212].
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Figure 3.2: Significantly altered regions and genes contained therein with copy number alter-
ations in osteosarcoma as identified by GISTIC analysis.

60



3.4 Results

Analysis also revealed novel or recently described genes - FOXNI and
WWOX. FOXN1 (17q11.2) is the main transcriptional regulator of the
development, differentiation, and function of thymic epithelial cells [213].
Although it directly or indirectly regulates expression of a broad variety
of genes, it has not been found to date to be associated with cancer and,
in particular OS. The WWOX gene (16¢23.1) spans a common fragile site
FRA16D, associated with DNA instability in cancer [214]. Recently, a se-
ries of reports demonstrated the relevance of reduced or absent WWOX
expression in various cancer types, including OS, presumably due to chro-
mosomal deletions and translocations within the WIWOX gene highlighting
an essential role for WIWOX in tumor suppression and genomic stability
[215, 216, 217]. Besides the tumor suppressor and pro-apoptotic activity
of WIWOX in OS, its role in osteogenic differentiation and interaction with
RUNX?2 has recently been elucidated [218].

A malignant tumor often consists of genetically distinct cell populations,
referred to as tumor subclones, with each possessing a specific mutation
subset. Determination of the order in which SCNA mutations occurred is a
powerful means for identifying genes with fundamental roles in oncogenesis.
SubcloneSeeker [204] succeeded in inferring subclone structures for 99.4%
of tumors (156 out of 157). The mean number of predicted subclone struc-
tures for each tumor was 8.5 (ranging from 1 to 45). Thirty-six tumors had
greater than 10 possible subclone structures, which may be due to the com-
plex nature of such tumor samples. Next, an investigation was undertaken
as to whether or not SCNAs overlapping with putative genes (identified
by GISTIC) were clonal events. Previously reported findings as revealed
by alternative approaches were confirmed, to show that even for the well-
known OS driver genes such as TP53 and RBI, the majority (~90%) of
SCNAs were subclonal events [210]. Thirty-four tumors had clonal SCNAs
overlapping one to ten driver genes, such as TP53, RB1, DLG2, WWOX,
TERT, FOXN1, APC, PTEN, LSAMP, ATRX, and CDKN2A. No single
gene had clonal SCNAs in the majority of tumors.

3.4.3 Breakage analyses reveal osteosarcoma-specific fragile regions

DNA breakage is a prerequisite for cancer-associated genomic aberrations,
including amplifications, deletions, inversions, and translocations. The ge-
nomic start and end of SCNAs were defined as breakpoints with a preci-
sion of ~1 kb (average inter-probe distance for CytoScan HD Array is <1
kb). Since whole genome arrays have reduced ability for inversion and/or
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translocation detection, the chromosomal breakage landscape was investi-
gated, which strongly indicated the prevalence of genomic rearrangements.
The criterion for considering a SCNA breakpoint as a chromosomal break
was based on thelog, signal value alteration between two adjacent genomic
segments >0.3 (Figure 3.3), which is more stringent than the cutoff of 0.23
used in [219]. In total, 62,172 SCNA breakpoints and 19,810 chromosomal
breaks were identified in 157 OS samples. The number of chromosomal
breaks per sample ranged from 17 to 425, with a median value of 114.
The number of breaks per megabyte ranged from 4 (chromosome 2) to 14
(chromosome 17). In order to further examine the landscape of chromo-
somal breaks across different chromosomes, each chromosome was divided
into non-overlapping 1 Mb regions following gap exclusion in the genome
assembly and calculated the density of chromosomal breaks per block. Re-
sults showed that 2% of genomic regions (61/3060) were significantly en-
riched for chromosomal breaks (Bonferroni corrected P-values <0.1). Out
of these “broken regions”, 13% are located within common fragile sites,
while 49% overlapped with non-fragile sites [155], indicating apparent OS-
specific fragility characteristics.

Chromosomal
breaks (d>0.3)

Log, signal value
i
a
(=N
P
(=N

Figure 3.3: Schematic illustration of chromosomal breaks. “d”means log, value changes between
two adjacent genomic segments at a specific genomic position.

Some of the OS-associated tumor suppressor genes [198], including TP53,
RB1, WWOX, DLG2, and LSAMP, but no known OS oncogenes, were lo-
cated in these broken regions (Figure 3.4). To determine the evolutionary
order in which SCNAs occurred in these areas, a comparison was made with
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clonal SCNAs obtained by the SubcloneSeeker analysis. An enrichment of
clonal SCNAs was found in these broken regions compared to randomly gen-
erated ones (10662 vs 4579, P-value=0), implicating chromosomal breakage
is a clonal event of early occurrence in tumorigenesis.
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Figure 3.4: The genomic landscape of chromosomal breaks and associated genes in osteosarcoma.
The outermost circle represents chromosomes and cytogenetic bands. The next circle represents
known OS driver genes and other genes as listed in Table 3.2. The third circle represents “broken
regions ”. The innermost circle shows common fragile sites and non-fragile regions in red and blue
respectively.

In order to identify genes prone to breakage in OS, we compared the
distribution of actual chromosomal breaks to a background distribution ob-
tained by shuffling the position of chromosomal breaks 1,000 times. This
approach, while admittedly suffering from some uncertainty in calling the
location of chromosomal breaks due to the inter-probe distance charac-
teristic for CytoScan HD arrays, can provide clues as to which genes are
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prone to breakage in OS. A total of 343 genes were found to harbor chro-
mosomal breaks significantly more frequently than would be expected by
chance (Bonferroni corrected P-values < 0.01). Of these, 24 genes (listed
in Table 3.2) have been previously shown to be associated with OS (DLG2,
WWOX, TP53, RB1, LSAMP, PTEN, and APC [198]) and other tumors
(DMD, EYA1, SCAPER, WNK1, KANSL1, TP63, FOXN1, and CHM)
and found by GISTIC analysis. TP53 was selected to demonstrate the
distribution of chromosomal breaks along the gene. As seen in Figure 3.5
the largest number of chromosomal breaks was located in the first intron
of this gene [195, 211].
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Figure 3.5: Plot of chromosomal breaks around the TP53 gene.

3.4.4 Chromosomal breakage in osteosarcoma is dependent on local
genomic context

To examine whether chromosomal breakages in OS were associated with the
local genomic context, we investigated the joint distributions of chromoso-
mal breaks, SCNA breakpoints and multiple genomic features within a 1Mb
genomic window. Previous studies have shown that DNA breakage can be
induced by DNA structures such as non-B DNA conformations, including
Cruciform, G-quadruplexes (G4), Slip, Triplex, and Z-DNA, and by highly
homologous genomic repeats, such as 1.1 and Alu [141, 144, 153]. Further
features considered in this analysis were common fragile sites, evolutionar-
ily conserved elements, substitution rate, indel rate and exon density which
have been associated with SCNA breakpoints [141, 143, 220]. As expected,
SCNA breakpoints and chromosomal breakage are highly correlated (P-
value < 2.20 x 107!6, Spearman rho = 0.76). In addition, it was also
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Table 3.2: Genes frequently targeted by chromosomal breaks in OS that were previously shown
to associate with OS or other tumors

Gene Chromosome Start End OMIM Count % OS
DLG2 11 83 166 055 85 338 314 603583 113 27.39
WWOX 16 78 133 309 79 246 564 605131 102 31.85
DMD X 31 137 344 33 357 726 300377 71 17.83
EYA1 8 72 109 667 72 274 467 601653 62 20.38
SCAPER 15 76 640 526 77176 217 611611 61 19.75
ERBB4 2 212 240 441 213 403 352 600543 43 12.74
FHIT 3 59 735 035 61 237 133 601153 42 8.28
WNK1 12 862 088 1020 618 605232 40 14.01
KANSL1 17 44 107 281 44 302 740 612452 40 21.66
LRP1B 2 140 988 995 142 889 270 608766 39 12.74
TP53 17 7571 719 7 590 868 191170 34 19.75
TP63 3 189 349 215 189 615 068 603273 34 10.83
USP34 2 61 414 589 61 697 849 615295 29 11.46
TERT 5 1 253 286 1295162 187270 28 10.19
FOXN1 17 26 850 958 26 865 175 600838 25 15.92
NF2 22 29 999 544 30 094 589 607379 25 6.37
RB1 13 48 877 882 49 056 026 614041 24 8.28
NEGRI1 1 71 868 624 72 748 277 613173 21 7.01
CHM X 85 116 184 85 302 566 300390 21 7.01
LSAMP 3 115 521 209 116 164 385 603241 19 8.92
PTEN 10 89 623 194 89 728 532 601728 11 3.82
APC 5 112 043 201 112 181 936 611731 10 3.18
RET 10 43 572 516 43 625 797 164761 8 4.46
FANCA 16 89 803 958 89 883 065 607139 6 2.55

All genomic coordinates are based on human genome assembly hg19;
Count: the total number of chromosomal breaks found in gene regions;
% OS: percent of OS samples affected by chromosomal breaks;

gene names previously associated with OS are in bold;

gene names identified by GISTIC analysis in this study are in italics.

noted that SCNA breakpoints and chromosomal breaks were significantly
correlated with diverse genomic properties, including Alu, L1, Cruciform,
G4, Slip, Triplex, Z-DNA, conserved elements, exon density, and indel rate
(Bonferroni corrected P-values <0.01; Table 3.3).

We further examined the association of genomic properties to chromo-
somal breaks at a higher resolution. Specifically, windows of 10 kb, 20
kb, 50 kb, and 100 kb centred around each chromosomal break were anal-
ysed with subsequently overlapped windows merged. For each window, the
density of each feature was computed and determined as to whether the
feature was enriched compared to the remaining regions. Compared with
random expectation, the vicinity of chromosomal breaks was significantly
enriched for several genomic features, including genomic repeats, non-B
DNA conformation forming motifs, conserved elements, exon density, sub-
stitution rate and indel rate (Table 3.4; Bonferroni corrected P-values <
0.01, Mann-Whitney test). These genomic features have been associated
with SCNA breakpoints in different cancer types [143], suggesting that OS
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Table 3.3: Correlations among SCNA breakpoints, chromosomal breaks and genomic features

Chromosomal Breakage Genomic Features P-values Spearman Rho
Alu 6.01 x 10—2° 0.20

DNA transposons 1.11 x 102 0.05

L1 1.36 x 10~ 12 0.13

LTR retrotransposons 3.31 x 10~6 0.08

Cruciform 1.67 x 10~17 0.15

G4 7.75 x 10~21 0.17

Slip 3.00 x 10—38 0.23

Chromosomal breaks Triplex 44T % 10-13 0.13
Z-DNA 1.63 x 10731 0.21

Conserved elements 2.92 x 10~° 0.08

Exon density 1.67 x 1015 0.14

Common fragile sites 1.75 x 1072 -0.04

Substitution rate 1.69 x 10~ 14 0.14

Indel rate 6.88 x 10—20 0.16

Alu 1.50 x 10—°2 0.27

DNA transposons 1.85 x 102 0.08

L1 4.52 x 10~25 0.19

LTR retrotransposons 5.63 x 10~3 0.05

Cruciform 1.16 x 10~ 1 0.12

G4 2.69 x 10—49 0.26

) Slip 8.66 x 10~48 0.26

SCNA breakpoints Triplex 3.48 x 10~21 0.17
Z-DNA 8.73 x 10—27 0.19

Conserved elements 5.36 x 10~ L 0.01

Exon density 2.27 x 10~42 0.24

Common fragile sites 1.25 x 1072 -0.05

Substitution rate 5.26 x 10~2 0.01

Indel rate 5.00 x 10~8 0.10

Genomic features with Bonferroni corrected P-values less than 0.01 are in bold.

is similar to other cancers in regards to chromosomal breakage occurrence.
Of note, common fragile sites were not preferentially associated with chro-
mosomal breaks at any genomic resolution investigated in this study (Table
3.4), indicating that OS has perhaps very specific breakage characteristics
that include already known common fragile sites as well as unique sites of
instability.

3.4.5 Clinical implications of chromothripsis-like patterns and hyper-
ploidy

Applying the CTLP detecting algorithm to the OS SCNA dataset a to-
tal of 87 chromosomes from 52 patients passed the threshold and were
termed CTLP cases. CTLP occurred in 33.1% of patients in this dataset,
implying that chromothripsis is a widespread phenomenon in OS. This in-
cidence rate was largely consistent with a previous study of a small sample
size of bone cancers [46]. CTLPs had a tendency to occur frequently on
chromosomes 8 (11.5%) and 17 (9.2%). The OncoPrint shown in Figure
3.6 provides an overview of SCNAs in specific genes and CTLP affecting
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Table 3.4: Correlation between chromosomal breaks and genomic features

Genomic features Enrichment in genomic regions centered at chromosomal breaks
10 kb 20 kb 50 kb 100 kb

Alu

DNA transposons

L1

LTR retrotransposons

Cruciform

G4

Slip

Triplex

Z-DNA

Conserved elements

Exon density

Common fragile sites

Substitution rate

Indel rate

++ A+t
++++++++++
+++++++++

+ -
+ +

4+ A+ At

++ A+ +

+ denotes enrichment of genomic features in genomic windows centered at chromosomal breaks
(Bonferroni corrected P-values <0.01).

individual samples. Chromosomal aberrations in TP53 occured in 88%
(46/52) of CTLP patients, compared to 56% (59/105) of non-CTLP cases
(P-value = 1.0 x 1074, two-tailed Fisher‘s exact test). We analysed three
genes - RB1, WWOX and DLGZ2 - that frequently harbor structural vari-
ation in OS [195]. Chromosomal alterations in RBI occur in 73% (38/52)
of CTLP cases, but only in 48% (50/105) of non-CTLP samples (P-value
= 3.5 x 1073, two-tailed fisher's exact test). Chromosomal aberrations in
WWOX occur in 85% (44/52) and 66% (69/105) CTLP and non-CTLP
samples, respectively (P-value= 1.4 x 1072, two-tailed fisher‘s exact test).
Finally, 83% (43/52) of CTLP cases harboured aberrations in DLG2, com-
pared to 57% (60/105) of non-CTLP cases (P-value = 1.3x 1073, two-tailed
fisher‘s exact test). These observations indicate that chromosomal aberra-
tions in TP53, RB1, WWOX and DLG2 genes are strongly associated with
chromothripsis-like patterns in OS.

Furthermore, an investigation of the association between chromothripsis-
like patterns and clinical data was performed [221]. As follow-up clinical
data was available for 114 patients, CTLP was detected in 33% (38/114)
of this cohort. Notably, as shown in Figure 3.7, Kaplan-Meier analysis
revealed that patients with CTLP patterns in their tumors showed signif-
icantly curtained survival expectancies compared to those without CTLP
(log-rank test, P-value = 7.1 x 107%).

A successful estimation was made of tumor ploidy and tumor content
for 90.4% (142 /157) of samples using the GPHMM algorithm. These os-
teosarcoma biopsies were estimated to have on average 37.5% normal tissue
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Figure 3.6: OncoPrint showing the distribution of SCNAs (CN gain and CN loss) for genes
TP53, RB1, DLG2 and WWOX and chromothripsis-like pattern (CTLP) in osteosarcoma patients
(column). Each bar represents a sample. Green bars indicate samples with CTLP. Red and blue
bars indicate samples with CN loss and CN gain for a specific gene, respectively. Gray bars
represent samples without CTLP or without CN changes for a specific gene. The numbers on the
left show what percentage of samples is affected by CTLP or CN changes for a specific gene.

contamination with a median ploidy of 2.7n. Following the procedures for
chromosome number estimation (as described in the Methods), the dis-
tribution of chromosome numbers was plotted in 142 samples to clearly
demonstrate a two ploidy status of the tumor genome (Figure 3.8a). Near-
tetraploid tumors had greater chromothripsis events than diploid ones (Fig-
ure 3.8b, P-value = 0.0046, Fisher‘s exact test). This was compatible with
results from a recent study linking chromothripsis with hyperploidy [222].
Patients with tumors exhibiting near-tetraploid genomes had poorer sur-
vival compared to patients having tumors with estimated ploidy of around
2 (Figure 3.8c¢).

3.5 Discussion

Rarity and genomic complexity, as well as marked intra- and intertumoral
heterogeneity, have challenged the molecular characterization of osteosar-
coma etiology [198]. Given the difficulty in acquiring a large cohort of
samples in this rare tumor, we integrated DNA copy number profiles of 160
pretherapeutic biopsies to identify recurrent genomic changes and driver
genes. Genome-wide profiles were performed on Affymetrix CytoScan HD
platform, which has the highest resolution of SNP and non-polymorphic
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Figure 3.7: Kaplan-Meier survival curves for chromothripsis-like patterns (CTLPs) versus non-
CTLP cases. The P-value is based on the log-rank test.
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Figure 3.8: Ploidy estimation and its clinical implications. (a) Distribution of chromosome
numbers in 142 osteosarcoma samples, displaying the 2 ploidy status of tumor genomes. (b)
Association of the ploidy status with chromothripsis. (¢) Kaplan-Meier survival curves for near-
tetraploid samples versus near-diploid samples. The P-value is based on the log-rank test.
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probes for detecting human chromosomal alterations. Copy number anal-
yses confirmed high genomic instability in the OS biopsies, with the vast
majority of samples (82%) exhibiting highly complex altered genomes. The
unstable genome in the majority of OS is probably due to the deficiency in
homologous recombination repair [210]. The BRCA1/2(important players
in homologous recombination pathway) deficiency associated characteris-
tics in single base substitutions, and large-scale genome instability signa-
tures are evident in more than 80% of OS [210].

Using GISTIC, we identified a number of genes which are frequently tar-
geted in OS, including already known driver genes (e.g. TP53 and ATRX)
as well as other OS-related genes, such as WIWWOX. WIWOX is a putative
tumor suppressor gene encompassing a common fragile site FRA16D, which
is a frequent target of chromosomal rearrangement in multiple cancers. The
absence or reduced expression of WIWWOX have been linked to poor prog-
nosis in a wide variety of cancers, particularly in ovarian cancer and OS
[223, 224]. In previous reports by others, the function loss of WIWOX has
been linked to chromosomal deletions and translocations as well as loss of
expression [215, 217]. In this study, we showed that 32% of OS samples
have at least one chromosomal break within the WIWOX gene, support-
ing the WIWWOX inactivation by chromosomal rearrangements. We further
showed that WIWOX gene was located in“broken regions”(discussed below)
and SCNAs and chromosomal breaks in those regions were more likely to
occur early. The results are consistent with the hypothesis that loss of
WWOX expression is an early event in the pathogenesis of OS [217].

Genome-wide analysis revealed that chromosomal breaks are not ran-
domly distributed and clustered in “broken regions”. About half of these
regions overlapped with non-fragile sites, strongly suggestive of OS-specific
fragility. It is noteworthy that OS-associated tumor suppressor genes in-
cluding TP53, RB1, WWOX, DLG2, and LSAMP|[198] are situated in the
“broken regions”. SCNAs in those broken regions were more likely to be
clonal events as opposed to those expected by chance. The early occurrence
of breakages and the presence of multiple tumor suppressor genes in such
regions may explain the complex and aggressive nature of OS.

We further revealed that SCNA breakpoints and chromosomal breaks
were significantly correlated with diverse genomic properties, including
Alu, L1, cruciform, G4, slip, triplex, Z-DNA, conserved elements, exon
density, and indel rate. Genomic repeats such as L1 and Alu are inter-
spersed throughout the human genome at high copy numbers, and non-
allelic homologous recombination events between different copies lead to
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duplications, deletions, and inversions [181]. Repetitive DNA motifs may
fold into non-B DNA conformation, thereby serving as chromosomal targets
for DNA repair and recombination leading to the formation of structural
variations including CNVs, inversions and translocations [180]. Therefore,
it could be speculated that breakages probably occur at OS-specific fragile
sites with the potential to form stable secondary structures (i.e. non-B
DNA structures) and to consequently stall the replication fork.

Based on 20 patients including 9 osteosarcomas and 11 chordomas,
Stephens et.al. [46] estimated that 25% of bone cancers were associated
with chromothripsis. In our dataset, chromothripsis-like patterns occurred
in about one third of patients, suggesting that chromothripsis is a widespread
phenomenon in OS. Massive genomic rearrangement raised by the phe-
nomenon of chromothripsis apparently represents an important mechanism
of carcinogenesis, as distinct from progressive accumulation. As observed
by Stephens [46], a single catastrophic event can occur while the chromo-
somes are being condensed for mitosis. However, the underlying cause of
chromosomal damage is still unknown. Our analysis indicates that SC-
NAs in the TP53, RB1 and DLG2 genes are strongly associated with
chromothripsis-like patterns in OS. Among them, DLG2 frequently shows
breakages in OS and may be a preferential target for chromothripsis and
breakage [195]. RBI is significantly copy-number altered in OS, while the
other candidate, T'P53 has already been linked to chromothripsis in medul-
loblastoma [53]. Utilizing an in vitro cell-based system, chromothripsis has
been recently linked to hyperploidy [222]. Indeed, we have shown that
compared with the diploid tumors, the hyperploid ones had more chance
to get chromothripsis events and less favourable outcomes.

3.6 Conclusions

A comprehensive characterization of somatic copy number alterations (SC-
NAs) in a large cohort (n = 160) of osteosarcoma samples was undertaken
in this study. A high percentage (98%) of the analysed OS samples were
of sufficient quality for data analysis. The high degree of aneuploidy and
large-size copy number alterations in OS was confirmed. Using GISTIC, a
number of genes that are frequently targeted in OS were identified, of which
TP53, ATRX, FOXN1, and WWOX are already known tumor suppressors
associated with OS and other tumor types. Genome-wide analysis of chro-
mosomal breaks revealed a tendency for confinement to genomic regions
harbouring OS-associated tumor suppressor genes including TP53, RBI,
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WWOX, DLG2, and LSAMP. Breakage susceptibility in OS was found to
be largely dependent on local genomic context. A complex breakage pat-
tern - chromothripsis - has been suggested as a widespread phenomenon in
OS correlated with OS patient survival. Through unlocking an OS-specific
fragility pattern, a specific code has been revealed that may provide a basis
for patient prognosis and offer a vital platform for therapeutic intervention
in the future.
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Chapter 4

Injury signals uncovered a
regenerative program in mouse
neural stem cells

This chapter is in Bobadilla,E. , Zhang,Y., Dehler,S.;, Xu, H. Frishman,D.,
Villalba,A.M. (2017) Injury signals uncover a regenerative program in mouse
neural stem cells (manuscript in preparation). Enric Llorens-Bobadilla, I
and Sascha Dehler contributed equally to this work. This study was de-
signed and initiated by Enric Llorens-Bobadilla, Dmitrij Frishman and Ana
Martin-Villalba. Enric Llorens-Bobadilla and Sascha Dehler did the biolog-
ical experiments. Dmitrij Frishman and I conceived the bioinformatics part
of this project. I did the methylation level calling, differentially methylated
regions identification, annotation of the differentially methylated regions.
The manuscript are now written by Enric Llorens-Bobadilla, Sascha Dehler
and me and will be edited by Dmitrij Frishman and Ana Martin-Villalba.

4.1 Introduction

Stem cells display two unique characteristics: to self-renew and to differ-
entiate into multiple cell types. The adult central nervous system (CNS)
contains neural stem cells (NSCs) that are crucial for both brain develop-
ment and adult neurogenesis. NSCs go through either symmetric division
that generates two daughter NSCs, which have identical stem cell proper-
ties as the parental cell, or asymmetric division, which yieds one identical
daughter NSC and more mature progenitors of all neural lineages by asym-
metric division.

NSCs are present in few specialized areas of adult mammalian brain,
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such as the subventricular zone (SVZ) of the lateral ventricles and the
subgranular layer of the dentate of the hippocampus [225, 226]. NSCs
in the SVZ give rise to neuroblasts, which migrate to the olfactory bulb
(OB) along the rostral migratory stream (RMS) and generate new neurons
227, 228].

It is believed that extracellular factors and intracellular process control
cell fate specification and differentiation of NSCs [229]. Epigenetic mecha-
nisms, such as DNA methylation are critical in cell type specification and
tissue development. Previous studies have revealed that epigenetics play
an essential role in the development of NSC, and that NSCs are prevented
from differentiation when inhibiting DNA methylation [230, 231]. How-
ever, little is known about the role of epigenetic mechanism in regulating
injury-induced neurogenesis.

Here we studied the molecular response of endogenous NSCs to ischemic
injury. We examined how injury signals affect the DNA methylome of NSCs
by whole genome bisulfite sequencing. We uncovered an injury-induced epi-
genetic program that encompasses the decommissioning of developmental
transcription factors and enhancers selectively in NSCs.

4.2 Materials and Methods

4.2.1 Mouse sample

Young adult mice are exposed to ischemic injury and two days later NSCs
(GLASTs"Prom1™) from their in vivo niche are isolated as previously de-
scribed [232]. For comparative analyses, PSA-NCAM™ neuroblasts (NBs,
the NSC progeny) and Prom1™ niche oligodendrocytes (OLs, a postmitotic
glial cell type) are simultaneously profiled.

4.2.2 Tagmentation-based whole genome bisulfite sequencing

20-30ng of genomic DNA were isolated from freshly sorted cells for tagmentation-
based whole genome bisulfite sequencing (T-WGBS) libraries. It is pro-
cessed as previously described in collaboration with Dr. Dieter Weichenhan
[116, 233]. All sequencing runs were conducted at the DKFZ Genomics and
Proteomics core facility. T-WGBS libraries were sequenced in an Illumina
HiSeq 2000 for 101bp paired-end sequencing.
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4.2.3 Preprocessing and read mapping

Raw T-WGBS reads were analyzed with the FastQC quality control tool
(v0.10.1). Trim_ galore_0.4 [122] was used to trim off adapter sequences
and remove bases with a Phred base quality score below 30. Phred describes
the error probability (P) of a single base call in a way that

phred — score = —101og;,(P)

Thus, a phred-score of 30, for example, gives an error probability of 0.1%
and hence an accuracy of 99.9%.

Trimmed reads were aligned to mouse reference genome (GRCm38 /Ensemb])
using BWA-Meth_ 0.1 [234] with the default settings. Duplicate reads were
removed after alignment using the function MarkDuplicates from the Picard
tool [235].

4.2.4 Detection of CpG methylation level

BS-SNPer is a program for variation detection of Bisulfite sequencing using
approximate Bayesian modeling. CpG methylation calls were made using
BS-SNPer [135], with the following parameters: -minquali 20, -mincov 10,
-mapvalue 30. The output CpG methylation are strand-independent where
counts from the two Cs in a CpG and its reverse complement (position i on
the plus strand and position i+1 on the minus strand) were combined and
assigned to the position of the C in the plus strand. Moreover, we used the
script “filterCG_SNP.pl”of BS-SNPer to discard C nucleotides that have
been confirmed to be C>T SNPs.

4.2.5 Identification of differentially methylated regions

The methylation value of strand-merged CpG sites from the two injured and
two non-injuried replicates were used to identify injury-induced difference
in methylation, using the R package bsseq [124]. The smoothing was carried
out with the parameters ns=20, h=250, maxGap=100,000,000. Loci with
coverage >4 in all the replicates of non-inury and injuried samples were
retained. Injury-induced differentially methylated regions (DMRs) were
identified using t-statistic quantile cut-offs of 0.01 and 0.99, requiring with
at least 5 CpGs per DMR and exhibiting a mean methylation change at
least 20% between injuried and non-injuried samples.

Hypo DMRs (hypoDMRs) are statistically significant regions with mean
methylation value of injuried samples less than that of non-injuried samples.
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Hyper DMRs (hyperDMRs) are statistically significant regions with mean
methylation value of injuried samples greater than that of non-injuried
samples.

4.2.6 Genomic and functional annotation of CpG sites

Gene locations were defined based on the Ensembl/GRCm38 assembly. The
5’-most transcript start site (T'SS) on the plus strand were selected as the
single TSS of genes with multiple transcripts. The reverse (3’-most TSS)
was done for genes on the minus strand. We limited our analysis to protein-
coding genes, resulting in 22,082 TSSs in total. We extracted the exon
coordinates from the transcript annotation file and removed overlapping
exons. The exonic region was subtracted from the genic region to get
the intronic regions and the gene region was subtracted from the whole
genome to get the intergenic regions. CpG islands were downloaded from
the UCSC [108]. For location of a site relative to a gene, we used these
categories: T'S'S 4+ 500bp (from 1 to 500bp downstream or upstream of the
TSS), T'SS £ 2kb (from 1 to 2000bp downstream or upstream of the TSS).
Promoter is defined from 1 to 1000bp upstream and 1 to 200bp downstream
of TSS.

PhastCons [158] conservation scores from alignment of 59 vertebrate
genomes with mouse genome were obtained from the UCSC genome Browse
[108]. We examined the conservation status of hypoDMRs. PhastCons
conservation score was calculated for 50-bp windows of 1kb up- and down-
stream around the center of all hypoDMRs. The average PhastCons con-
servation for each window was plotted.

4.2.7 Motif analysis

We used the hypergeometric optimization of motif enrichment (HOMER)
[236] tool to searched for enrichment of known motifs within hypoDMRs
with the parameters -size given and -cpg , and otherwise default parameters.
The known motifs used in our analysis were derived from the HOMER tool
[236].

4.2.8 Gene ontology and pathway analysis

Genomic regions of hypoDMRs were used as input in GREAT package
[237]. The genome mm10 was used as reference and the nearest gene within
a 1000kb distance was considered to be associated with a particular region.
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For hierarchical representation, the nearest gene for the hypoDMRs were
used as input in ClueGo [238], which was run as a plugin of Cytoscape v
3.4.0 [239].

4.2.9 Histone marks of development enhancers analysis

Previous published ChIP-seq peak data for histone modifications of H3k04mel
and H3k27ac of E14.5 developing brain (Dev.Brain) and Olfactory bulb
(OB) (Table 4.1) were downloaded from the mouse Encode/LICR [240].
The peak regions were converted to mm10 using UCSC liftOver [108].

Table 4.1: Summary of ChIP-seq peak data for histone modifications

Cell Type H3k04mel Peak Regions H3k27ac Peak Regions
E14.5 developing brain 131394 36495
Olfactory bulb 94715 36596

We investigated whether hypoDMRs offer a rich source of enhancers
compared with random genomic sequences. We compared the number of
hypoDMRs that overlap with the enhancer peak regions against the random
background expectation. To assemble background datasets, we generated
for each enhancer peak data set 200 randomized data sets, matched for
enhancer region size, chromosome. We also exclude DAC blacklist genomic
regions obtained from UCSC table browsers [108] because these regions
contain signal artifacts in sequencing experiments. The numbers of over-
lapping hypoDMRs were averaged to get the random background, and the
enrichment of the observed overlap against the random background was
assessed using a one-sided binomial test.

4.3 Results

4.3.1 Whole-genome DNA methylation analysis in the injuried SVZ

In order to study the DNA methylation profiles of small amounts of sorted
cell populations at genome-wide resolution we applied the recently devel-
oped tagmentation-based whole genome bisulfite sequencing (T-WGBS). In
total, two replicates for each cell type and condition were sequenced to ob-
tain an average coverage of 15X per replicate ( 30X combined). On average,
we measured the methylation level of 19 million CpG sites (coverage>4)
per sample (range of 17 million to 19 million). As expected, most CpG
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Figure 4.1: DNA methylation levels of different genomic features. (a) DNA methylation levels of
genomic features in injuried and non-injuried NSCs. The thickness of the bars indicates densities
of CpGs at the y axis ratio, and the white circle indicates the median. (b) Equivalent plot for
DNA methylation in NBs. (c) Equivalent plot for DNA methylation in OLs.

sites were highly methylated throughout the genome except very close to
transcription start sites (TSS) and CpG islands (Figure 4.1a-4.1c).

To examine the global distribution of DNA methylation, we divided the
genome into 10-kb bins and calculated CpG methylation in the injured and
non-injuried samples (Figure 4.2a). Both injured and non-injuried methy-
lomes were highly methylated, although non-injuried methylomes contain-
ing a little higher abundance of mCG (Figure 4.2).
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Figure 4.2: Genome-wide methylation level in NSCs, NBs and OLs. (a) Box plots of the percent
CpGs for each sample.

mCG distribution for each sample, calculated from non-overlapping 10-kb bins spanning the mouse
genome. (b) Percentage of highly methylated CpGs, partially methylated CpGs and unmethylated



4. INJURY SIGNALS UNCOVERED A REGENERATIVE PROGRAM IN
MOUSE NEURAL STEM CELLS

4.3.2 DNA methylation changes caused by injury

We hypothesized that epigenetic changes caused by brain injury may con-
tribute to increased fate plasticity. Thus, we conducted analysis on the
methylation changes after ischemic injury. To explore how the methylome
changes to the response of NSCs, NBs and OLs to injury signals, we used
bsseq [124] to analyze differential CpG methylation of non-injuried and in-
juried samples of each cell type separately. Only loci with coverage >4
in all samples were retained, which left 17625739, 16926719 and 18161496
CpG sites for NSCs, NBs and OLs, respectively. We defined injury-induced
differential methylated regions (DMRs) as a region of 5 or more CpG sites
exhibiting a significant difference in methylation between the two groups
and an absolute mean methylation difference above 0.2. Using these cri-
teria, we identified 2735, 1125 and 1087 DMRs for NSCs, NBs and OLs,

respectively (Figure 4.3).

20007  NSCs NBs OLs
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DMR number
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Figure 4.3: The number of injury-induced differential methylated regions(DMRs) in NSCs, NBs
and OLs. Hypo: hypo methylated. Hyper: hyper methylated.

We found that only a small proportion of (5.9%) hypoDMRs overlapped
with a promoter (Figure 4.4a). The vast majority of hypoDMRs were lo-
cated distal to TSSs (Figure 4.4b). Moreover, hypoDMRs occurred in ge-
nomic regions that show increased level of evolutionary conservation (Fig-
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ure 4.4c).

0 1 33 1049 (kb)
1 1 1 1
o Intergenic
o Intron I
@ Exon = |
@ Promoter =
32.2% S
o
n
<
o
5.9%
o
<
o
54.29% 7.7% T T T T
5 10 15 20
Distance to TSS (log2 bp)
(@) (b)
n
Q
o
o
S
(=}
wn
—
[S]
o
-
e T T T T T
-1 -0.5 0 0.5 1

Distance to hypoDMR (kb)

(©

Figure 4.4: Injury-induced hypoDMRs in NSCs. (a) Pie charts showing the distribution of
hypoDMRs in different genomic regions. (b) Distribution of distances of hypoDMR to the near-
est T'SS. (¢) Average phastCons conservation score within 50-bp windows, around the center of
hypoDMRs.

4.3.3 Transcription factor binding sites at injury-induced DMRs in
NSCs

We next examined whether hypoDMRs are enriched with transcription
factor binding sites (TFBS) that may potentially expose the epigenetic
changes to an injury-induced upstream regulator. We applied the HOMER
tool [236] to do the TFBS enrichment analysis across hypoDMRs. We
found that hypoDMRs are enriched with TFBS that are associated with
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the injury-induced TFs such as C-jun or Statl. Interestingly, Isll appeared
among the top-enriched TFBS exclusively in NSCs (le-11) (Figure 4.5).
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Figure 4.5: Heatmap representing the enrichment of transcription factor binding motifs for
injury-induced hypoDMRs in each cell type. Each row represents a motif.

4.3.4 Specific injury-induced demethylation of developmental tran-
scription factor enhancers in NSCs

Enhancers work as cis-regulatory elements that activate gene expression
and can operate tens of thousands of base pairs away from the target gene
[241]. To study the function of the genes associated to our hypoDMRs
we used the genomic regions enrichment of annotations tool (GREAT)
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[237] to map the nearest gene within a 1000kb distance. We revealed a
high enrichment for transcription factors (TFs) among the genes associ-
ated to hypo DMRs (102 regions mapped to 72 known TFs, FDR<2.3e-14).
These TFs included several known regulators neuronal subtype specifica-
tion, such as Bell1b, Pax6 or Neurod?2. To globally visualize the gene on-
tology term enrichment we created Cytoscape maps. This representation
uncovered a very elaborate network of highly enriched gene ontology terms
in NSCs (Figure 4.6a). Specifically, hypoDMRs in NSCs are significantly
near genes that are responsible for developmental process, neurogenesis and
differentiation-related categories. We also did the same analyses on injury-
induced hypoDMRs in NBs and OLs we observed a much more modest
functional enrichment (Figure 4.6b-4.6¢). Together, the genes under puta-
tive control by the enhancers that become hypomethylated after injury are
enriched in functions relevant to tissue repair, including the re-activation
of a developmental program.

4.3.5 Injury induces demethylation at developmental enhancers in

NSCs

To further characterize these hypoDMRs we compared them to ENCODE
two brain ChIP-seq datasets of histone modification [240]. Specifically,
one is adult OB, the ‘default’ program for NSCs; and the other is E14.5
Dev.Brain, because it is a developmental period where multiple neuronal
subtypes instead of that ‘default’ program are being generated. Follow-
ing the enrichment method described in section 4.2.9, we revealed that hy-
poDMRs are more closely correlated with the enhancer landscape of the de-
veloping brain than with the adult olfactory bulb (Figure 4.7). Specifically,
62% of the regions (1091 out of 1747) overlapped with E14.5 Dev.Brain
H3k04mel-marked enhancers, compared to 24% (428 out of 1747) over-
lapped with adult OB enhancers (Figure 4.7). Similarly, the active en-
hancer mark H3k27ac, also significantly associated correlated with hy-
poDMRs, and 11% and 12% overlapped with active enhancers in E14.5
Dev.Brain and adult OB respectively. In summary, a subset of develop-
mental enhancers becomes permissive, through loss of DNA methylation,
in NSCs after ischemic injury.
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Figure 4.6: Injury-induced demethylation at enhancers. (a) Enriched GO network groups using
ClueGO. P<0.00001 are shown. Each node represents a biological process. Edges represent
connections between the nodes and the length of each edge reflects the relatedness of two processes.
Node color, represents the class that they belong. Mixed coloring means that the specific node
belongs to multiple classes. Ungrouped terms are not shown. (b) Equivalent plots for hypoDMRs
in NBs. (¢) Equivalent plots for hypoDMRs in OLs.
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Figure 4.7: Venn diagram showing the enrichment of hypoDMRs in NSCs on enhancers marked
by H3k04mel and H3k27ac. P values are calculated by the bionomial test. (a) Overlap between
hypoDMRs with H3k04mel of E14.5 Dev.Brain tissue compared with that of hypoDMRs with
random regions. (b) Overlap between hypoDMRs with H3k04mel of adult OB tissue compared
with that of hypoDMRs with random regions.

4.4 Conclusions

In this part, we have investigated how the DNA methylome integrates
injury signals to mediate cell plasticity. To achieve this, we analyzed the
whole genome bisulfite sequencing data of non-injuried and injuried samples
in NSCs,NBs and OLs.

Once mapped to the genome, we confirmed the previous reported DNA
methylation pattern in somatic tissues-CpG sites were ubiquitously methy-
lated throughout the genome except near transcription start sites (T'SSs)
and in CpG islands. Interestingly, we found that less than 6% of hypoDMRs
in NSCs overlapped with a putative promoter and that the vast majority of
these sites were located distal to TSSs. We were able to show that injury-
induced demthylation regions in NSCs show increased level of evolutionary
conservation, a finding supporting that they are functional important.

Previous work reported that histone modifications such as H3k27ac and
H3k04mel correlate with DNA hypomethylation at active enhancers [242].
We confirmed this correlation in the injury-induced DMRs, being stronger
at enhancers known to be active in the developing brain, suggesting epige-
netic priming for future differentiation.

We have further conducted an analysis of transcription factor binding
site to decipher the possible pathway responsible for injury-induced hy-
pomethylation at enhancers. We revealed that several motifs for injury-
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induced TFs are enriched within the hypoDMRs. Interestingly, we found
that Isll is among the top-enriched TFBS exclusively in NSCs (le-11).
Given that Isll is required during development for the generation of stri-
atal medium spiny neurons, these results suggest that the unmasking of
developmental enhancers, might facilitate the generation of striatal neu-
rons after injury.

Our functional enrichment analysis revealed a high enrichment for tran-
scription factors (TFs) among the genes associated to hypoDMRs (102
regions mapped to 72 known TFs, FDR<2.3e-14). These TFs included sev-
eral known regulators neuronal subtype specification, such as Bcll1b, Pax6
or Neurod?2. The gene ontology analysis uncovered that injury-induced hy-
poDMRs are significantly near genes that are responsible for developmental
process, neurogenesis and differentiation-related categories.
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Chapter 5

Summary

This work aims to increase the understanding of mechanisms of copy num-
ber variation (CNV) in cancer genomes and the role of DNA methylation
during differentiation of neural stem cells (NSCs).

In the first part of this work we investigated the somatic copy num-
ber alterations (SCNAs) from different cancers. We collected different ge-
nomic features including DNA conformation, sequence-based such as re-
peats (LINE, LTR, SINE), structural, gene regulation, evolutionary and
functional features. Based on the SCNA data from 11 individual cancer
types from TCGA we applied multiple linear regression to identify the po-
tential predictors for SCNA patterns. Our findings showed that distance to
telomere, distance to centromere and direct repeats coverage are the strong
correlates for SCNA generation in cancers.

As breakpoints of SCNAs are not randomly distributed across the genome,
they tend to cluster in regions and some of these regions are statistical
significant, termed as breakpoint hotspots. We investigated how genomic
context contribute to the pattern of common breakpoint hotspots in cancer
genomes. Based on the statistical methods including rare event logistic re-
gression and random forest we revealed that distance to telomere and direct
repeats coverage are able to distinguish common hotspots and non-hotspots
of SCNA breakpoints.

The second part of this work is focused on characterizing SCNAs in
osteosarcoma (OS). The complexity of OS genome drives us to characterize
the specific set of driver genes. Based on the SCNA breakpoint data, we
detected a number of genes more likely to be targeted by breakpoints,
including well-known driver genes (e.g. TP53 and ATRX) and other OS-
related genes, such as WWOX. Our findings were also confirmed by the gene
set identified by a permutation statistical method for breakage analysis.

89



5. SUMMARY

Previous studies have shown that DNA breakage can occur invariably at
non-B DNA structure-forming sequences or highly homologous genomic re-
peats. Thus, we investigated the association between chromosomal breaks,
SCNA breakpoints and multiple genomic features. Confirming previous
research we showed that SCNA breakpoints and chromosome breaks were
significantly enriched in diverse genomic features such as Alu, L1, cruciform
and indel rate. Moreover, we found that half of breaks hotspots overlapped
with non-fragile sites, suggesting the specific fragility of OS genome.

Many studies confirmed that chromothripsis were occurred in many tu-
mor types, especially in bone cancers. We suggest that chromothripsis is a
prevalent phenomenon in OS. Applying a chromothripsis detection method,
we found that chromothripsis-like patterns (CTLP) occurred in about one
third of patients. Although the cause of this catastrophe event is still un-
known, our findings showed that chromothripsis-like patterns are strongly
correlated with SCNAs in the TP53, RBI and RUNX2 genes. We fur-
ther investigated the relationship between chromothripsis-like pattern and
clinical data. Our analysis revealed that the survival time of patients with
CTLP patterns in their tumors is significantly shorter than those without
CTLP.

In the last part of this work we analyzed the whole-genome bisulfite
sequencing data for NSCs in injuried and non-injuried conditions. We
examined the global distribution of DNA methylation by dividing the
genome into 10-kb bins and calculated CpG methylation in the injured
and non-injuried samples. As expected for mammalian cells, most CpG
dinucleotides were highly methylated throughout the genome except near
transcription start sites (T'SSs) and CpG islands.

Given that over two thirds of all Single Nucleotide Polymorphisms (SNPs)
occur in a CpG context, BS-SNPer considers sequence variation to avoid
wrong inference of methylation state. Next, we applied BS-SNPer pro-
gram to identify the differentially methylated regions (DMRs) for each cell
type. Based on the PhastCons conservation scores from alignment of 59
vertebrate genomes with mouse genome, we calculated the average conser-
vation scores for the DMRs, 1kb upstream and 1kb downstream regions,
respectively. Our results demonstrated that hypoDMRs occurred in ge-
nomic regions with elevated level of evolutionary conservation, supporting
their functional importance.

We also found a high enrichment for transcription factors (TFs) among
the genes related to hypoDMRs (102 regions mapped to 72 known TFs,
FDR<2.3e-14). These TFS included several interesting regulators for neu-
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ronal subtype specification, such as Bell1b, Paz6 or Neurod?2. By integrat-
ing our methylation maps with ChIP-seq data on two histone marks, we
showed that active demethylation occurs almost at distal regulatory ele-
ments, particularly enhancers. We further conducted an analysis of tran-
scription factor binding sites for injury-induced hypoDMRs. We revealed
that a very interesting motif Isll is significantly enriched in hypoDMRs in
NSCs. Isll is necessary for the generation of striatal medium spiny neu-
rons, suggesting that injury may activate the devleopmental enhancers to
facilitate the generation of striatal neurons.
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Chapter 6

Appendix

6.1 Supplementary Tables
Table 6.1: Genomic regions significantly altered identified by GISTIC in 157 osteosarcoma sam-
ples

Chr.! Region Extended Region Type Genes

chrl chr1:72768081-72771450 chr1:72768081-72771450 CN Gain

chrl chr1:120532528-120540803 chr1:120532228-121119145 CN Gain NOTCH2

chrl chr1:150915428-150986518 chr1:150106621-151292631 CN Gain SETDBI1; CERS2; ANXA9;
FAM63A; PRUNE

chrl chr1:152762026-152771308 chr1:152761930-152771308 CN Loss LCE1D

chrl chr1:169225449-169242083 chr1:169225449-169242083 CN Loss NMET7

chrl chr1:248758246-248787569 chr1:248753426-248794436 CN Loss

chr2 chr2:34696356-34729740 chr2:34696356-34729740 CN Loss

chr2 chr2:87021286-87054784 chr2:86863077-88263441 CN Gain  CD8B; RMND5A

chr2 chr2:97765044-97889750 chr2:97449536-98128314 CN Gain ANKRD36

chr2 chr2:242013345-242045252 chr2:241988330-242195981 CN Loss SNED1; MTERF4; MTERFD2

chr3 chr3:37983108-37986935 chr3:37983108-37986935 CN Loss CTDSPL

chr3 chr3:116548005-116553148 chr3:116530653-116677267 CN Loss

chr3 chr3:189362262-189363677 chr3:189362262-189371001 CN Loss TP63

chr4 chr4:34783101-34824462 chr4:34783101-34828255 CN Loss

chr4 chr4:47585962-47633769 chr4:47274810-47643922 CN Gain ATP10D; CORIN

chr4 chr4:55144803-55146541 chr4:54583847-55227042 CN Gain PDGFRA

chr4 chr4:69495772-69521133 chr4:69495772-69521133 CN Loss UGT2B15

chr4 chr4:161950067-162007018 chr4:160234964-162282493 CN Gain

chrb chr5:6522965-6525445 chr5:6522965-6525445 CN Loss

chrb chr5:38738377-38760633 chr5:38585742-38917416 CN Gain OSMR-AS1

chrb chr5:180377034-180410761 chr5:180375094-180424577 CN Loss BTNLS

chr6 chr6:255666-257069 chr6:255666-257417 CN Loss

chr6 chr6:45448960-45459235 chr6:45269549-45709252 CN Gain  RUNX2

chr6 chr6:77438359-77455244 chr6:77438359-77455244 CN Loss

chr7 chr7:3971188-4071542 chr7:3770143-5137384 CN Gain SDK1

chr7 chr7:142476621-142481638 chr7:142476621-142486098 CN Loss TCRBV2S1; TCRVB; PRSS3P2;
PRSS2

chr7 chr7:154391477-154399616 chr7:154391477-154400278 CN Loss DPP6

chr8 chr8:1659358-1676610 chr8:492396-1676610 CN Loss

chr8 chr8:24974355-24989291 chr8:24974355-24989291 CN Loss

chr8 chr8:39208722-39226339 chr8:39026273-39226339 CN Gain ADAMS5

chr8 chr8:39248531-39352993 chr8:39238548-39386079 CN Loss ADAMS3A

chr8 chr8:49554073-49572201 chr8:48810937-50417372 CN Gain LOC101929268

chr8 chr8:72215337-72216222 chr8:72215310-72216684 CN Loss EYA1

chr8 chr8:98718483-98733201 chr8:98240419-98790083 CN Gain MTDH

chr8 chr8:128735487-128738992 chr8:128305898-129002357 CN Gain BC042052; CASC11

chr9 chr9:21968624-21976768 chr9:21850263-22028704 CN Loss MTAP; CDKN2A

chr10  chr10:24376468-24378414 chr10:24376468-24379860 CN Loss  KIAA1217

chr10 chr10:47058829-47061065 chr10:47057570-47061065 CN Loss ANXAS8

chr10 chr10:78257335-78261389 chr10:78257335-78261389 CN Loss C10orfl11
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Table 6.1 — Continued from previous page

Chr. Region Extended Region Type Genes

chrll chr11:5797748-5808726 chr11:5784971-5809277 CN Loss TRIM22; OR52N5; TRIM5

chrll chr11:55374167-55403443 chr11:55374167-55433103 CN Loss

chrll chr11:84184013-84184955 chr11:84159254-84222629 CN Loss DLG2

chrll chr11:101517518-101927296 chr11:101316304-102237928 CN Gain ANGPTLS5; KIAA1377;
C11orf70

chrll chr11:128681554-128683826  chr11:128679603-128683826 ~ CN Loss FLI1

chr12 chr12:869296-873583 chr12:867422-874562 CN Loss WNK1

chrl2 chr12:34383785-34485085 chr12:34261964-35800000 CN Gain

chr12 chr12:58135816-58305277 chr12:58124923-58322883 CN Gain AGAP2; TSPAN31l; MIR6759;
CDK4; DM110804; MARCHSY;
CYP27B1; METTL1;
METTL21B; TSFM; AVIL;
MIR26A2; CTDSP2; AK130110

chrl2 chr12:99795602-99798726 chr12:99795602-99800925 CN Loss ANKS1B

chrl3 chr13:38071673-38086565 chr13:38071673-38086565 CN Loss

chrl4 chr14:23100225-23120359 chr14:22844274-23307453 CN Gain

chr14 chr14:106335832-106489591 chr14:106335832-106527892 CN Gain KIAAO0125; ADAMG6

chrl4 chr14:106557833-106603522  chr14:106536937-106603522  CN Loss BC042994

chrl4 chr14:106885733-106920359  chr14:106885733-106920359  CN Loss

chrl5 chr15:76879983-76895555 chr15:76879983-76895555 CN Loss SCAPER

chrl5 chr15:99530128-99880948 chr15:99300869-99959809 CN Gain PGPEPIL; AL109706; SYNM;
TTC23; HSP90B2P; LRRC28

chrl6 chr16:19944410-19968380 chr16:19944410-19968380 CN Loss

chrl6 chr16:78372017-78382206 chr16:78372017-78384869 CN Loss WWOX

chrl7 chr17:7582979-7583221 chr17:7578835-7583723 CN Loss TP53

chrl7 chr17:17037165-17065229 chr17:16991233-17074052 CN Gain MPRIP

chrl7 chr17:26843566-26848243 chr17:26843402-26848243 CN Loss FOXN1

chrl7 chr17:39423181-39430490 chr17:39423181-39430490 CN Loss

chrl7 chr17:44223496-44279974 chr17:44213141-44279974 CN Gain KANSL1

chrl8 chr18:11252274-11464401 chr18:10812801-11589974 CN Gain

chrl8 chr18:46944321-46952804 chr18:46944321-46953209 CN Loss DYM

chr19 chr19:638104-658093 chr19:638104-1291591 CN Loss FGF22; RNF126

chr19 chr19:7151245-7195285 chr19:7146765-7302221 CN Gain INSR

chr19 chr19:30299491-30321146 chr19:30284135-30344003 CN Gain CCNE1

chr19 chr19:42422360-42428514 chr19:42422120-42428735 CN Loss ARHGEF1

chr20 chr20:1560269-1560674 chr20:1557189-1560674 CN Loss SIRPB1

chr20 chr20:29917644-29956205 chr20:29433517-30040495 CN Gain

chr21 chr21:37237166-37248079 chr21:37064469-37368136 CN Gain RUNX1

chr22 chr22:19570331-19572970 chr22:19570331-19572970 CN Loss

chr22 chr22:23146865-23207698 chr22:23146262-23240129 CN Gain  DKFZp667J0810; MIR650

chr22 chr22:51105118-51106136 chr22:51104136-51106136 CN Loss

chrX chrX:825934-826729 chrX:821776-826729 CN Loss

chrX chrX:2302238-2302530 chrX:2302238-2302530 CN Gain

chrX chrX:6659340-6659459 chrX:6659303-6661807 CN Loss

chrX chrX:31458638-31458832 chrX:31457616-31459915 CN Loss

chrX chrX:76948103-76949541 chrX:76896688-77032001 CN Loss

chrX chrX:85291897-85293444 chrX:85291897-85295272 CN Gain

chrX chrX:115135704-115138008 chrX:115135704-115153407 CN Loss

chrX chrX:122900376-122900406 chrX:122900268-122900751 CN Loss

chrX chrX:136493788-136495362 chrX:136493788-136495561 CN Loss

chrX chrX:147320320-147320888 chrX:147318675-147326708 CN Loss

chrX chrX:153963340-153963495 chrX:153960395-153963495 CN Loss

chrX chrX:155086346-155086387 chrX:155086346-155086387 CN Gain

chrY chrY:20836985-21024837 chrY:17235271-22252906 CN Loss

chrY chrY:22275025-22410762 chrY:22264667-22465913 CN Gain

LChromosome
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Table 6.2: Genes contained in the regions of frequent copy number alterations as identified by
GISTIC analysis.

Gene Symbol Chromosome Start End Length
ADAM3A chr8 39308563 39380508 71946
ADAM5 chr8 39172181 39274897 102717
ADAMG6 chrl4 106435817 106438358 2542
AGAP2 chrl2 58118075 58135944 17870
AK130110 chrl2 58230875 58236325 5451
AL109706 chrl5 99571772 99574275 2504
ANGPTL5 chrll 101761404 101787253 25850
ANKRD36 chr2 97779232 97930257 151026
ANKS1B chrl2 99128568 100378432 1249865
ANXAS8 chrl0 47011755 47174143 162389
ANXA9 chrl 150954498 150968114 13617
ARHGEF1 chr19 42387266 42434296 47031
ATP10D chr4 47487409 47595503 108095
ATRX! chrX 76760355 77041755 281401
AVIL chrl2 58191159 58209852 18694
BC042052 chr8 128698587 128746211 47625
BC042994 chrl4 106576813 106598011 21199
BC062752 chrY 20934593 20981392 46800
BTNLS8 chrb 180326076 180377906 51831
BV03S1J2.2 chr7 142428689 142499111 70423
BV6S4-BJ2S2 chr7 142462183 142494293 32111
C10orf11 chrl0 77542518 78317126 774609
Cllorf70 chrll 101918168 101955291 37124
CASC11 chr8 128712852 128746213 33362
CCNE1! chr19 30302900 30315215 12316
CDS8A chr2 87011727 87035519 23793
CDS8B chr2 87042459 87089047 46589
CDK4! chrl2 58141509 58146230 4722
CDKN2A' chr9 21967750 21994490 26741
CERS2 chrl 150937648 150947479 9832
CHM chrX 85116184 85302566 186383
CORIN chr4 47596014 47840123 244110
CTDSP2 chrl2 58213709 58240747 27039
CTDSPL chr3 37903668 38025960 122293
CYP27B1 chrl2 58156116 58160976 4861
DHRSX chrX 2137554 2419015 281462
DKFZp667J0810  chr22 22786692 23248968 462277
DLG2 chrll 83166055 85338314 2172260
DM110804 chr12 58145424 58145484 61
DMD chrX 31137344 33357726 2220383
DPP6 chr7 153584181 154686000 1101820
DYM chrl8 46570171 46987079 416909
EYA1 chr8 72109667 72274467 164801
FAMG63A chrl 150969300 150980854 11555
FGF22 chr19 639925 643703 3779
FLI1! chrll 128556429 128683162 126734
FOXN1 chrl?7 26833277 26865175 31899
GAB3 chrX 153903526 153979858 76333
HSP90B2P chrlb 99797729 99800481 2753
INSR chr19 7112265 7294011 181747
KANSL1 chrl7 44107281 44302740 195460
KANSL1-AS1 chrl7 44270938 44274089 3152
KIAA0125 chrl4 106355979 106398502 42524
KIAA1217 chr10 23983674 24836777 853104
KIAA1377 chrll 101785745 101871796 86052
LCE1D chrl 152769226 152770657 1432
LOC101929268 chr8 49464126 49611069 146944
LRRC28 chrl5 99791566 99927280 135715
MARCH9 chrl2 58148880 58154193 5314
METTL1 chrl2 58162350 58165914 3565
METTL21B chrl2 58166382 58176324 9943
MIR26A2 chrl2 58218391 58218475 85
MIR650 chr22 23165269 23165365 97
MIR6759 chrl2 58142400 58142465 66
MPRIP chrl7 16946073 17095962 149890
MTAP chr9 21802634 22029593 226960
MTDH chr8 98656406 98742488 86083
MTERF4 chr2 242026508 242041747 15240

Continued on next page
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Table 6.2 — Continued from previous page

Gene Symbol Chromosome Start End Length
MTERFD2 chr2 242034544 242041747 7204
NME7 chrl 169101767 169337201 235435
NOTCH2! chrl 120454175 120612317 158143
OR52N5 chrll 5798863 5799897 1035
OSMR-AS1 chrb 38693314 38845931 152618
PDGFRA' chr4 54243819 55164412 920594
PGPEP1L chrlb 99511458 99551024 39567
PRSS2 chr7 142479907 142481378 1472
PRSS3P2 chr7 142478756 142482399 3644
PRUNE chrl 150980972 151008189 27218
RMNDS5SA chr2 86947413 88038768 1091356
RNF126 chrl9 647525 663233 15709
RUNX1! chr21 36160097 37357047 1196951
RUNX2 chr6 45296053 45518819 222767
SCAPER chrls 76640526 77197744 557219
SDK1 chr7 3341079 4308631 967553
SETDB1 chrl 150898814 150937220 38407
SIRPB1 chr20 1545028 1600689 55662
SNED1 chr2 241938254 242033643 95390
SYNM chrl5 99645285 99675800 30516
TCRBV2S1 chr7 142334185 142494579 160395
TCRVB chr7 142353890 142500213 146324
TP53! chrl7 7565096 7590868 25773
TP63 chr3 189349215 189615068 265854
TRIM22 chrll 5710816 5821759 110944
TRIMS5 chrll 5684424 5959849 275426
TSFM chrl2 58176527 58196639 20113
TSPAN31 chrl2 58138783 58142026 3244
TTC23 chrlb 99676527 99791431 114905
TTTY9A chrY 20891767 20901083 9317
UGT2B15 chr4 69512314 69536494 24181
WNK1 chrl2 862088 1020618 158531
WWOX chrl6 78133309 79246564 1113256

LGenes with gene symbols in bold are listed in Cancer Gene Census of COSMIC.
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