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Abstract

Cancer is fundamentally a disease of genome characterized by somatically acquired mu-
tations. Recent advances in high-throughput genomic technologies such as single nu-
cleotide polymorphism (SNP) microarrays and DNA next-generation sequencing have
enabled us to explore the mutational landscape of cancer genomes at an unprecedented
resolution. Somatic mutations include single nucleotide variants (SNVs), small inser-
tions/deletions (indels), somatic copy number alterations (SCNAs), structural variations
(SVs), and epigenetic changes altering gene expression and chromatin structure. On one
hand, the characterization of somatic mutations allows the identification of driver muta-
tions and driver genes, providing new insights into the underlying mechanism of tumori-
genesis and possibly revealing new therapeutic targets for cancer treatment. On the other
hand, the exploration of somatic alterations makes it possible to investigate generation
mechanism of somatic mutations, contributing to the understanding of DNA damage and

repair processes that have been operative throughout the development of cancer.

In this thesis, we investigated generation mechanisms of somatic mutations, especially
SNVs (Chapter 2) and SCNAs (Chapter 3) in diverse tumor types. Taking advantage of
available genetic and epigenetic features, we showed that SNV rate in cancer genome is
strikingly related to chromatin organization. We also revealed that the strong association
between SNV mutation rate and chromatin organization is independent of tissue and mu-
tation types. For SCNAs, we conducted multiple linear regression (MLR) analyses of the
pooled SCNA data from The Cancer Genome Atlas Pan-Cancer project. Our MLR model
explains >30% of the pooled SCNA breakpoint variation, with the explanatory power
ranging from 13 to 32% for 11 different cancer types and SCNA types—amplifications
and deletions, telomere-bound and interstitial SCNAs and local SCNAs. In addition to
confirming previously identified features, we also identified several novel informative fea-
tures, including distance to telomere, distance to centromere and low complexity repeats.
The results of the MLR analyses were additionally confirmed on an independent SCNA
data set obtained from the Catalogue of Somatic Mutations in Cancer database. Using a
rare event logistic regression model and an extremely randomized tree classifier, we re-
vealed that genomic features are informative for telling apart common SCNA breakpoint

hotspots and non-hotspots.

We also characterized SCNAs and chromosomal breaks in human osteosarcoma (OS,

Chapter 4) as well as SNVs, indels, SCNAs and SVs in chicken Marek’s Disease (MD)



lymphomas (Chapter 5). OS is the most common primary malignant bone tumor in chil-
dren and adolescents. We performed a comprehensive assessment of SCNAs in 160 OS
samples using whole-genome CytoScan High Density arrays (Affymetrix, Santa Clara,
CA). Breakage analysis revealed OS specific unstable regions in which well-known OS
tumor suppressor genes, including TP53, RB1, WWOX, DLG2, and LSAMP are located.
Certain genomic features, such as transposable elements and non-B DNA-forming motifs
were found to be significantly enriched in the vicinity of chromosomal breakage sites.
A complex breakage pattern — chromothripsis — has been suggested as a widespread
phenomenon in OS. It was further demonstrated that hyperploidy and particularly chro-
mothripsis were strongly correlated with OS patient clinical outcome. MD is a lympho-
proliferative disease in chickens caused by MD Virus, a highly oncogenic a-herpesvirus.
We explored the somatic mutational landscape of MD with multiple approaches including
whole genome sequencing, whole transcriptome sequencing and SNP microarrays. We
identified 54 high-confidence driver genes, of which /KZF I encodes a transcription factor

associated with chromatin remodeling and is an important player in lymphomagenesis.

Overall, our results contribute to the understanding how somatic mutations drive tumori-
genesis and shed light on the molecular mechanisms of somatic mutation generation in

cancer.

Keywords: Somatic Mutations; Single Nucleotide Variants (SNVs); Small Insertions
and/or Deletions (Indels); Somatic Copy Number Alterations (SCNAs); Structural Varia-

tions (SVs); Driver Genes; Generation Mechanism, Osteosarcoma; Marek’s Disease.
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Zusammenfassung

Krebs ist eine genomische Krankheit, die auf der Entstehung von somatischen Mutatio-
nen basiert. Aktuelle Fortschritte bei Hochdurchsatz-Technologien, wie etwa Einzelnuk-
leotid Polymorphismen (SNP) Microarrays und DNA Next-Generation Sequenzierung,
ermoglichen uns die Analyse von Mutationen in Krebsgenomen in einer bisher nie dagewe-
senen Auflosung. Somatische Mutationen sind Einzelnukleotid-Varianten (SNVs), kleine
Insertionen/Deletionen (Indels), Anderungen der somatischen Kopienanzahlen (SCNAs),
strukturelle Variationen (SVs) und epigenetische Anderungen, die Genexpression und
Chromatinstruktur beeinflussen. Auf der einen Seite erlaubt die Charakterisierung so-
matischer Mutationen die Identifikation von Driver-Mutationen und Driver-Genen, um
so neue Erkenntnisse iiber die zugrundeliegenden Mechanismen der Tumorgenese zu er-
langen, die eventuell zu neuen Therapieansitze fiir die Behandlung von Krebs fiihren.
Auf der anderen Seite ermoglicht die Erforschung von somatischen Verdanderungen, die
Mechanismen hinter der Entstehung von somatischen Mutationen zu untersuchen, um so
die Prozesse von DNA-Schidigung und -Reparatur zu verstehen, die hinter der Entwick-

lung von Krebs stehen.

Im Rahmen dieser Arbeit haben wir die Entstehungsmechanismen von somatischen Mu-
tationen, im speziellen SNVs (Kapitel 2) und SCNAs (Kapitel 3) in vielfdltig Tumoren
untersucht. Durch verfiigbare genetische und epigenetische Eigenschaften haben wir
demonstriert, dass die SNV-Rate im Krebsgenom in auffilliger Weise mit der Chromati-
norganisation zusammenhéngt. Wir haben auflerdem gezeigt, dass der deutliche Zusam-
menhang zwischen SN'V-Mutationsrate und Chromatinorganisation unabhédngig von Gewe-
beart und Mutationstyp ist. Basierend auf den zusammengelegten SCNA-Daten des The
Cancer Genome Atlas Pan-Cancer-Projekts haben wir Analysen mittels multipler linearer
Regression (MLR) ausgefiihrt. Unser MLR-Modell erklirt >30% der SCNA Breakpoint-
Variation, wobei die Aussagekraft zwischen 13 und 32% fiir 11 verschiedene Krebstypen
und SCNA-Typen — Vervielfiltigungen und Deletionen, Telomer-gebundene und in-
terstitielle SCNAs und lokale SCNAs — liegt. Zusitzlich zum Nachweis bisher iden-
tifizierter Eigenschaften haben wir auch weitere neue informative Eigenschaften iden-
tifiziert, wie z.B. Distanz zum Telomer, Distanz zum Zentromer und Wiederholungen
von geringer Komplexitidt. Die Ergebnisse der MLR-Analyse wurden auflerdem durch
einem unabhingigen SCNA-Datensatz aus der Catalogue of Somatic Mutations in Cancer
Datenbank verifiziert. Mit einem logistischen Regressionsmodell fiir seltene Ereignisse

und einem extrem randomisierten Entscheidungsbaum-Klassifizierer konnten wir zeigen,
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dass mithilfe genomischer Eigenschaften SCNA Breakpoint Hotspots und Nicht-Hotspots

auseinandergehalten konnen werden.

Wir haben auBerdem SCNAs und Chromosombriiche in Osteosarkomen beim Menschen
(OS, Kapitel 4) und zusitzlich SNVs, Indels, SCNAs und SVs in von der Marek-Krankheit
(MD) verursachten Lymphomen bei Hiithnern (Kapitel 5) charakterisiert. OS ist der hiufig-
ste primédre bosartige Knochentumor bei Kindern und Jugendlichen. Wir haben SCNAs
in 160 OS-Proben mittels CytoScan High Density arrays (Affymetrix, Santa Clara, CA)
fiir komplette Genome verglichen. Eine Bruchstellenanalyse hat fiir OS spezifische insta-
bile Regionen aufgezeigt, in denen sich bekannte OS Tumorsuppressionsgene befinden,
unter anderem 7P53, RB1, WWOX, DLG2 und LSAMP. Bestimmte Genomeigenschaften,
wie etwa Transposons oder nicht-B DNA-bildende Motive, waren deutlich hédufiger in
der niheren Umgebung von Chromosombruchstellen zu finden. Ein komplexes Bruch-
muster — Chromothripsis — scheint ein verbreitetes Phinomen bei OS zu sein. Es
konnte gezeigt werden, dass Hyperploidie und speziell Chromothripsis deutlich mit dem
klinischen Ergebnis von OS-Patienten zusammenhingen. MD ist eine lymphoprolifer-
ative Krankheit bei Hithnern, die vom MD-Virus, bei dem es sich um ein hoch onko-
genes a-Herpesvirus handelt, verursacht wird. Wir haben die somatischen Mutationen
in MD mithilfe verschiedener Ansitze analysiert, unter anderem Sequenzierung kom-
pletter Genome, Sequenzierung kompletter Transkriptome und SNP Microarrays. Wir
konnten 54 Driver-Gene mit groler Gewissheit identifizieren, darunter /KZF1, das fiir
einen Transkriptionsfaktor codiert, der mit Chromation-Remodellierung assoziiert wird

und eine wichtige Rolle bei der Lymphomagenese spielt.

Zusammenfassend betrachtet tragen unsere Ergebnisse zum Verstindnis bei, wie somatis-
che Mutationen Tumorgenese vorantreiben, und beleuchten die molekularen Mechanis-

men der Entstehung von somatischen Mutationen bei Krebs.
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Literature review

Cancer is a group of more than 200 distinct diseases involving abnormal proliferation of
cells with the potential to invade or metastasize to other normal tissues and organs [1]].
Since 2010, cancer has been the leading cause of death in China with an estimated 4.29
million new cases and 2.81 million deaths in the year 2015 alone [2]. To effectively diag-
nose and treat cancer, better understanding of the disease is required. The last century has
witnessed a tremendous advance in our knowledge of cancer, and an emerging consensus

is that cancer is a disease of the genome.

1.1 Cancer is a disease of the genome

More than a century ago, seminal studies on the development of doubly fertilized sea
urchin eggs by Theodor Boveri led to the hypothesis that cancer is caused by chromoso-
mal abnormalities [3]], in other words, cancer is “a disease of the genome”[4, 5. At the
beginning of the 20" century, cancer causing chemicals were discovered, however, their
cellular targets have not yet been identified [|6]. The discovery of DNA as the genetic
material of inheritance [7]] and the determination of its structure by Watson and Crick [§]]
indicated that DNA was the cellular target for chemical carcinogens and that these agents
generate mutations leading to cancer [6]. The role of genetic mutations in human cancer
was confirmed by the discovery of translocation between chromosomes 9 and 22 (known
as the “Philadelphia chromosome™) in chronic myeloid leukemia [9-11]. The discovery
of the Philadelphia chromosome in almost all cases of a specific human cancer strongly
supported Boveri’s hypothesis that a critical genetic alteration in a single cell could give

rise to a tumor [[12]. Advances in molecular techniques later allowed the identification of
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critical genes involved in the Philadelphia chromosome: v-abl Abelson murine leukemia
viral oncogene homolog (ABL) on chromosome 9 and breakpoint cluster region (BCR)
on chromosome 22 [13]]. The idea that cancer is a disease of an altered genome attracted
wider attention following the discovery that transfer of total genomic DNA from tumor
cells into other cells was sufficient to cause transformation [14} [15]. Cloning and char-
acterization of the specific DNA segment responsible for the transformation led to the
identification of the first oncogene—HRAS, followed by the discovery of the exact point
mutation (G >T substitution) in codon 12 resulting in a glycine to valine substitution
[16H18]]. These landmark findings launched a new era of molecular cancer genetics re-
search that continues to date: identification of mutated genes causally implicated in the

development of human cancer (cancer genes) [4, 19].

1.1.1 Cancer genes: oncogenes and tumor suppressor genes

A major aim of cancer studies is to search for genes that are implicated in tumor ini-
tiation and development. Based on whether mutations are dominant or recessive at the
cellular level, cancer genes can be divided into oncogenes (dominant mutation, a single
altered allele is sufficient to initiate cancer) and tumor suppressor genes (TSGs) (recessive

mutation, both alleles need to be changed)[19].

The protein products of oncogenes include transcription factors, chromatin remodelers,
growth factors, growth factor receptors, signal transducers, and apoptosis regulators [20].
Oncogenes are altered in ways that render them permanently active or active when they
are not supposed to [21]. Oncogene activation can be achieved by chromosomal translo-
cations, gene amplifications, intragenic mutations, or by changes in methylation [21]. A
common translocation event in Burkitt’s lymphoma is a well-characterized example of
oncogene activation. Translocations juxtapose MYC oncogene to the enhancer elements
in the immunoglobulin loci on chromosomes 14q, 22q and 2p, thereby leading to tran-
scriptional deregulation of MYC gene [22]]. MYC protein, a transcription factor, plays
an important role in cell cycle progression and cellular transformation. Amplification of
ERBB?2 gene was found in some breast cancers, and is associated with poor clinical out-
come [23]]. Oncogene gain-of-function mutations often involve critical regulatory regions
leading to continuously increased activity of the mutated protein. For example, the most
common mutations of BRAF gene, amino acid change of a valine to a glutamate at codon

599, results in elevated kinase activity and transformation capability [24].
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TSGs normally act to inhibit inappropriate cell growth and division, stimulate apopto-
sis, and repair DNA [25]]. In many tumors, these genes are lost or inactivated by genetic
or epigenetic alterations, including non-synonymous mutations, insertion or deletions of
variable sizes, and epigenetic silencing [21]. Although for some TSGs haploinsufficiency
(loss of only one allele) may contribute to carcinogenesis [26], mutation or loss of both al-
leles is generally required to facilitate tumor progression [21]]. The first tumor suppressor
gene RB1I was identified by studies of the genetic mechanisms underlying retinoblastoma,
a rare childhood retinal tumor. Besides the inherited mutation in an allele of RB/ gene, a
retinoblastoma patient normally has an additional mutation event or loss of heterozygosity
(LOH) to inactivate the other allele [27]. Among TSGs, DNA repair genes are particularly
important in prohibiting tumor development. These genes are responsible for correcting
DNA mistakes during normal DNA replication or those induced by mutagens [21]. When
these genes are inactivated, mutation rate will be elevated in other genes. Typical exam-

ples include BRCA in breast and ovary cancers, and RECQL4 in bone tumors.

1.1.2 A consistent cancer hallmark—genome instability

Although there are significant differences between cancer types, there are also properties
shared by most if not all cancers. These properties, referred to as “cancer hallmarks”, in-
clude but are not limited to self-sufficiency in growth signals, insensitivity to anti-growth
signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and
tissue invasion and metastasis [28]. Genome instability is a consistent characteristic cru-
cial to the acquisition of the hallmarks of cancer [29], and plays important roles in tumor
initiation and progression. Genome instability is typically subdivided into three cate-
gories: nucleotide instability, microsatellite instability and chromosomal instability [30].
Nucleotide instability is characterized by increased frequencies of base-pair mutations
and small insertions and deletions. Microsatellite instability, which refers to the expan-
sion and contraction of oligonucleotide repeats in microsatellites, is the consequence of
impaired mismatch repair genes. Chromosomal instability, the most prevalent form of
genome instability, refers to the changes in the structure and number of chromosomes
in cancer cells compared with normal ones. Several mechanisms have been proposed to
explain the source of genome instability: defects in DNA repair and mitotic checkpoint

genes [30], telomere dysfunction [31]], centrosome abnormality and replication stress [[32].
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1.2 The catalog of somatic mutations in cancer genomes

Somatic cells can accumulate mutations in DNA after conception. These mutations are
collectively termed somatic mutations to distinguish them from germline mutations. So-
matic mutations will not be transmitted to offspring, while, on the other hand, germline
mutations do. Germline mutations account for 5-10% of cancers as high-penetrance vari-
ants observed in various hereditary cancer syndromes [33[]. For example, germline muta-
tions in 7P53 can cause Li-Fraumeni syndrome, which is characterized by development
of a variety of cancer types including sarcomas, breast cancer, brain tumors and leukemia
[34]. Inherited alterations in the BRCAI and BRCA2 genes are responsible for the ma-
jority of hereditary breast and ovarian cancer syndromes, which are marked by increased
risks of breast and ovarian cancer in women [35} 36]]. Somatically acquired mutations are
the most common cause of sporadic cancers. Somatic mutations include different types of
DNA sequence changes: single nucleotide variants (SNVs), small insertions and deletions
(indels), somatic copy number alterations (SCNAs), structural variations (SVs), small
or large-scale size mutations in mitochondrial genomes, and epigenetic changes altering
gene expression and chromatin structure [4]. Recently, sequencing of cancer genomes
has led to the discovery of three new classes of complex chromosomal rearrangement:
chromothripsis [37]], chromoanasynthesis [38]], and chromoplexy [39]]. Chromothripsis is
characterized by tens to hundreds of genomic rearrangements restricted to one or a few
chromosomes and an oscillating pattern of DNA copy number states [37]]. Based on the
similarities shared between chromothripsis and complex genomic rearrangements, a new
term of chromoanasynthesis (chromosome reconstitution or chromosome reassortment)
was then proposed to describe better the underlying mechanisms [38]. Chromoplexy, on
the other hand, is characterized by a closed chain of translocations involving multiple
chromosomes, with little or no copy number alterations [39]. Cancer cells may also ac-
quire DNA sequences from various types of viruses, such as human papilloma viruses in

cervical cancer and Epstein-Barr viruses in Burkitt’s lymphoma [40].
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THE CANCER GENOME

1.3 Technologies for exploring the mutational landscape

of the cancer genome

Recent advances in high-throughput genomic technologies such as array comparative
genomic hybridization (array-CGH), single nucleotide polymorphism (SNP) genotyping
and next-generation sequencing (NGS) have revolutionized the study of cancer genomics
by aiding the comprehensive characterization of somatic mutations in tumor cells [41].
Although early cancer genomics projects relied on array-based methods to investigate
mRNA expression and DNA copy-number, the most recent large-scale projects such as
The Cancer Genome Atlas (TCGA) [42]] and the International Cancer Genome Consor-
tium (ICGC) [43] employ a combination of SNP genotyping microarrays and NGS tech-
niques [44]].

1.3.1 Single nucleotide polymorphism microarrays

The human genome has been estimated to harbor approximately ten million or more
SNPs. Two alleles of a SNP are often arbitrarily labeled as A and B for simplicity. There-
fore, for each individual, there are three possible genotypes at each SNP site: AA, BB
and AB. SNP microarrays were originally designed to genotype DNA sequences at thou-
sands of SNPs across the human genome. Since their initial development, SNP arrays
have been widely used in genome-wide association studies aimed at identifying disease
risk loci. Nowadays, the inclusion of copy number polymorphism (CNP) probes in SNP
microarrays has made them ideal to identify SCNAs and loss of heterozygosity in cancer
[45]. The most commonly used SNP microarrays come from Affymetrix and Illumina.
For example, Genome-Wide Human SNP Array 6.0 contains about 1 million SNP probes
and 1 million CNP probes. Using these commercial microarrays, the landscape of SC-
NAs has been characterized across multiple cancer types, generating new insights into

how focal SCNAs are frequently altered across several cancer types [46, 47].

1.3.2 Next-generation sequencing techniques

DNA sequencing technology was first developed in 1977 by Frederick Sanger and Wal-
ter Gilbert based on different methods: the chain-termination method (known as Sanger

sequencing) [48]] and the chemical degradation method [49]]. A decade later, Applied
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Biosystems introduced the first automated sequencing instruments, which were based on
capillary electrophoresis and were the main workhouses for the Human Genome Project
(HGP) [50]. Using the first generation sequencing technique, the HGP took more than a
decade and cost about 3 billion US dollars [51]. The need for faster, more accurate, higher
throughput, and cheaper sequencing instruments stimulated the emergence of NGS tech-
nologies [52]]. NGS technologies are distinct from the first generation sequencing meth-
ods in terms of massively parallel analysis, high throughput, and relatively short reads
[52, |53]]. Three most typical NGS technologies are pyrosequencing method from 454
Life Sciences (purchased by Roche in 2007), sequencing-by-synthesis from Solexa (ac-
quired by Illumina in 2007), and Sequencing by Oligo Ligation Detection from Applied
Biosystems (purchased by Life Technologies in 2008 and Life Technologies was then
acquired by Thermo Fisher Scientific in 2014) [53]. Different NGS technologies have
advantages and drawbacks with regard to read length, throughput, run time, error rate and

cost (reviewed in [53]).

As one of the most widely adopted technologies in the NGS industry, Illumina Solexa
sequencing provides the highest throughput and the lowest per-base sequencing cost [S3]].
The Illumina workflows consist of four steps: library preparation, cluster generation, se-
quencing and data analysis [54]]. For library preparation, DNA or cDNA is randomly
fragmented into small sizes and each fragment ligated to an adapter at both ends, fol-
lowed by polymerase chain reaction (PCR) amplification and gel purification. During
cluster generation, the library is loaded into a flow cell and the fragments are bound at
one end to a solid surface coated with oligonucleotides complementary to the adapters
used in the library preparation step. The free end of each fragment hybridizes to a com-
plementary adapter to initiate complementary strand synthesis, which is termed as bridge
amplification. Illumina’s sequencing-by-synthesis detects single bases as they are intro-
duced into growing DNA strands by using a reversible terminator-based method. There
are two commonly used sequencing strategies, single-end sequencing (SES) and paired-
end sequencing (PES). SES involves sequencing DNA from only one end, while PES
involves sequencing both ends of the DNA fragments and assigning the forward and re-
verse read pairs [54]. Compared with SES, PES produces twice the number of reads and
allows more accurate read alignment. These advantages make PES more suitable for de-
tecting some types of somatic mutations, such as SVs (see below). In the data analysis
step, the large NGS data sets demand bioinformatics tools for data analysis and manage-

ment. For example, the relatively short reads required the development of new alignment
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tools [53]]. Furthermore, the bioinformatics algorithms used in NGS data analysis should
account for biases introduced during the library preparation and sequencing, such as GC

content bias [55] and mappability bias [56]].

NGS has a series of applications to cancer genomic studies, which include sequencing an
entire genome (whole-genome sequencing, WGS), the coding genomic regions (whole-
exome sequencing, WES), and the transcriptome (RNA sequencing, RNA-seq) (52, 57].
As coding sequences constitute only 1-2% of the human genome, the cost for WES is
lower than WGS. Despite its much higher cost, WGS provides additional information
on structural and non-coding variants, which cannot be captured by WES. In addition to
quantifying gene expression profiles, RNA-seq can detect alternative splicing and fusion
transcripts [58]]. NGS can also be applied to cancer epigenomic studies to study epige-
netic alterations, DNA methylation changes and histone modifications [[52H54]]. These
technologies include Bisulfite Sequencing (Bisulfite-seq) and Chromatin Immunoprecip-
itation followed by Sequencing (ChIP-seq). The combination of these NGS technologies

will provide us a high-resolution view of the mutational landscape of cancer genome.

1.4 Detection of somatic mutations

Somatic aberrations acquire by tumor cells at different stages of the disease may contain
information crucial for understanding the mechanisms of tumor development, progres-
sion, metastasis and relapse. To investigate the cancer genome with NGS technologies,
it is common practice to simultaneously sequence genomic information from tumor and
matched normal (often blood) samples from the same patient. The reads from these two
matching samples are aligned to the reference genome using alignment tools (such as
Burrows-Wheeler Alignment [59], reviewed in [60]]) and differences between the nor-
mal genome and the tumor genome characterized [61]. To detect somatic mutations, an
intuitive approach would be analyses of tumor and normal independently followed by
subtractions of tumor and normal variant calls [62]. Specifically, mutations observed only
in the tumor genome but absent in the normal genome are characterized as somatic muta-
tions unique to the tumor sample. It has been found that direct comparison of the aligned
reads from the matched two samples yields better results in terms of sensitivity and speci-
ficity [61]]. However, the detection of somatic alterations from aligned reads is not an
easy task. Both sequencing and alignment introduce a number of errors and biases, such

as sequencing errors, PCR duplicates, strand bias and ambiguities in short read mapping
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[63]]. Other confounding factors include tumor sample heterogeneity and tumor impu-
rity contaminated by matched normal samples [57]]. In the past decade, many algorithms
and softwares have been developed to detect SN'Vs, small indels, SCNAs, SVs and gene
fusions (some popular tools are listed in Table [I.T)).

1.4.1 SNV detection

SNVs are the most common alterations in tumor genomes. The last decade has witnessed
the development of algorithms to detect SN'Vs in cancer genomes: SomaticSniper [64],
JointSNVMix [65]], MuTect [|66]], Strelka [[67]], LoFreq [[68], VarScan 2 [69] and VarDict
[70] (listed in Table [I.T). Most of these methods consider only a subset of errors and
biases described above. For example, VarScan2 employs empirically derived filtering
parameters, including read position, strandedness, and average mapping quality between
reference and variant reads to exclude candidate variants resulting from sequencing or
alignment artifacts [[69]]. MuTect was specifically designed to detect low allele fraction
variants due to either tumor heterogeneity or normal cell contamination [66]]. It utilizes
filters to remove false positives with characteristics corresponding to strand bias or poor
mapping quality. Although a number of comparative studies of SNV callers are available
[71, [72], there are no concordant recommendations of tools optimally balancing sensi-
tivity and specificity. The varying performances based on different datasets suggest that
multi-caller strategies are favorable [57, |63]]. Of noteworthy, several machine-learning
algorithms, such as MutationSeq [61] and SomaticSeq [73]] have been developed. These
algorithms trained their classifiers on a series of sequence features from a training dataset,
then classifiers were used on a target dataset to distinguish true somatic alterations from
false positives. Incorporating the strengths of different somatic mutation detection algo-

rithms, these methods report higher accuracy and robustness [73|.



Table 1.1: Computational tools for detecting somatic mutations

Tools Description Mutation type Reference
SomaticSniper Bayesian probability with posterior filtering SNVs [64]
JointSNVMix Probabilistic graphical model with pre-filtering SNVs [65]
MuTect Bayesian classifier with pre- and post-filtering SNVs [66]
MuSE Markov substitution model for molecular allelic evolution SNVs [[74]
Pindel Pattern growth learning approach Indels [75]
Dindel Bayesian model accounting for sequencing, base-calling and mapping errors Indels [76]
Indelocator Information not available Indels [177]
Strelka Bayesian approach with posterior filtering SNVs, Indels [67]
LoFreq Statistical model for sequencing error biases SNVs, Indels [68]
SomaticSeq Ensemble approach with machine learning SNVs, Indels [73]
VarScan 2 Fisher exact test, filtering and FDR correction SNVs, Indels, SCNAs [69]
VarDict Fisher exact test with post-filtering SNVs, Indels, SVs [[70]
GAP! Pattern recognition of segmented and smoothed bi-dimensional profile SCNAs [78]
GenoCNA' Continuous time HMM with discrete states SCNASs [179]
PICNIC! HMM algorithm with preprocessing transformation SCNAs [80]
ASCAT! Goodness-of-fit score of candidate solutions of tumor ploidy and tumor purity SCNAs [81]
OncoSNP! Single unified Bayesian framework. SCNASs [182]

Continued on next page
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Table 1.1 — Continued from previous page

Tools Description Mutation type Reference
GPHMM! Global parameter HMM SCNAs [83]
ABSOLUTE! Optimization of logarithmic scores SCNASs [184]
SegSeq? Local change-point analysis with a subsequent merging procedure SCNAs [85]
CNAseg? HMM segmentation with read depth variability correction SCNAs [86]
readDepth? CBS algorithm with GC-content and mappability correction SCNAs [87]
BIC-seq? Minimizing BIC approach with no read distribution assumption SCNAs [88]
Control-FREEC?  Sliding window approach with corrections of GC-content and mappability biases SCNAs [89]
ExomeCNV? CBS algorithm with an assumption of read Gaussian distribution SCNASs [90]
CNAnorm? CBS algorithm with correction of normal cell contamination and tumor aneuploidy ~ SCNAs [91]
Patchwork? CBS algorithm with tumor purity and ploidy estimation SCNA [92]
HMMcopy> HMM segmentation with GC-content and mappability correction SCNAs [93]
OncoSNP-SEQ? HMM segmentation accounting for tumor purity, ploidy and heterogeneity SCNAs [94]
CLImAT? Integrated HMM algorithm accounting for tumor purity and ploidy SCNAs [95]
PEMer Read pair based approach with simulation based error models SVs [96]
BreakDancer Read pair based approach Indels, SVs [97]
VariationHunter ~ Read pair based approach SVs [98]
SVDetect Integrated method of read pair and read depth SVs [99]
DELLY Integrated method of read pair and split reads SVs [[100]

Continued on next page
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Table 1.1 — Continued from previous page

Tools Description Mutation type Reference
PRISM Integrated method of read pair and split reads SVs [101]
HYDRA Integrated method of read pair and local assembly SVs [102]
CREST Integrated method of split reads and local assembly SVs [103]
cortex_var De novo assembly method using colored de Bruijn graphs SVs [104]
Meerkat Integrated method of read pair, split reads, and assembly SVs [105]
LUMPY Integrated method of read pair, split read and read depth, as well as prior knowledge SVs [106]
MapSplice Gene fusion detection from paired-end or single-end RNA-seq data Gene fusions [107]
FusionSeq Gene fusion detection from paired-end RNA-seq data Gene fusions [108]
TopHat-Fusion Gene fusion detection from paired-end or single-end RNA-seq data Gene fusions [109]
SnowShoes-FTD  Gene fusion detection from paired-end RNA-seq data Gene fusions [110]
ShortFuse Gene fusion detection from paired-end RNA-seq data Gene fusions [111]
FusionMap Gene fusion detection from WGS or RNA-seq data (both paired and single end) Gene fusions [112]
FusionHunter Gene fusion detection from paired-end RNA-seq data Gene fusions [113]
deFuse Gene fusion detection from paired-end RNA-seq data Gene fusions [114]
Comrad Integrated gene fusion detection from paired-end RNA-seq and WGS data Gene fusions [115]
ChimeraScan Gene fusion detection from paired-end RNA-seq data Gene fusions [116]
nFuse Integrated gene fusion detection from paired-end RNA-seq and WGS data Gene fusions [117]
SOAPfuse Gene fusion detection from paired-end RNA-seq data Gene fusions [118]

Continued on next page
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Table 1.1 — Continued from previous page

Tools Description

Mutation type

Reference

INTEGRATE Integrated gene fusion detection from paired-end RNA-seq and WGS data

Gene fusions

[119]

'for SNP array data; *for NGS data.
HMM: Hidden Markov Model; CBS: Circular Binary Segmentation; BIC: Bayesian Information Criterion.
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1.4.2 Indel detection

Indel detection lags behind the calling of SN'Vs in terms of sensitivity and specificity
[76]]. The challenge lies in the lower frequencies of indels than those of SNVs [57, [76]
and mapping difficulties of reads overlapping the indel sequence, especially when indels
are located in short tandem repeats [76, 120]. Despite these challenges, there are several
tools (listed in Table[I.T]) available to identify indels from cancer genome sequencing data.
These are generally based on approaches that include split reads, gapped alignment and
de novo assembly [57]]. Split read tools (e.g., Pindel [[75]]) realigned soft-clipped reads to
infer indels, however, it is still difficult for these methods to distinguish low frequency true
indel calls from false positives derived from alignment errors. Gapped alignment-based
tools, such as Dindel [[76]], Strelka [[67] and LoFreq [68], performed local realignments
to detect indels. A major drawback of these methods is the reduced sensitivity to detect
longer (>30 bp) indels [121]]. De novo assembly approaches have been developed for
indel discovery, including Scalpel [[121]. None of the tools described above are able to
predict indels of full size spectrum. Therefore, a hybrid algorithm integrating split reads,
gapped alignment and de novo assembly approaches has recently been designed to detect

indels with increased sensitivity [122].

1.4.3 SCNA detection

SCNAs affect a much larger part of the cancer genome than SNVs and indels. Array-CGH
[123, [124], SNP genotyping and NGS have been used for detecting SCNAs in cancer.
Since SNP arrays allow for the estimation of absolute copy number and allelic content,
they have replaced array-CGH and have been widely used in TCGA and ICGC projects.
NGS of tumor and matched normal samples enables the efficient detection of SCNAs at
base pair resolution. Some widely-used SCNA detecting tools based on SNP arrays and

NGS are listed in Table [T 1l

SNP arrays of Illumina and Affymetrix simultaneously measure copy number and allelic
ratios at many SNP loci in the genome. For each SNP probe, the log R ratio (LRR) re-
flects the total signal intensity for both alleles, and the B allele frequency (BAF) is an
estimate of the relative proportion of one of the alleles with respect to the total signal
intensity. Based on these two complementary information, several computational algo-

rithms have been proposed to detect SCNAs in cancer (listed in Table [I.T). Compared

13
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with CNV detection in germline samples (e.g., QuantiSNP [125] and PennCNV [126]],
reviewed in [127]), SCNA detection in cancer is much more difficult for several reasons.
First, widespread aneuploidy observed in cancer [|128]] violates the assumption of a base-
line copy number of two in germline samples, and the resulting LRR baseline shift affects
copy number assignment [[129]. Second, contamination from adjacent normal cells causes
the LRR and BAF values to converge towards a diploid state proportionally to the degree
of contamination [129]. Third, intra-tumor heterogeneity [130] further complicates LRR
and BAF signals. Some of the tools listed in Table (such as GAP [78], OncoSNP [82]
and ABSOLUTE [84]) take into consideration tumor aneuploidy, normal cell contamina-
tion and intra-tumor heterogeneity, while others (such as GenoCNA [79], PICNIC [80],
ASCAT [81] and GPHMM [83]]) account for only one or two factors of them. Although
there is disagreement on the performance of GPHMM, a comparative study [129] showed

that GAP generally performed better in both simulated and real genotyping data.

NGS provides a feasible alternative to SNP microarrays for detecting SCNAs. Since most
studies classify SCNAs as one type of SVs (e.g., [131]), we consider only tools specifi-
cally for SCNA detection in this section, and summarize algorithms for SVs in the next
section. Read depth information of NGS can be used to estimate copy number, with the
underlying hypothesis being that the read depth of a genomic region is positively corre-
lated with the copy number of the region [[132]]. Compared with germline CNV detection
tools (e.g., CNV-seq [[133] and CNVnator [134]]), SCNA calling algorithms need to ac-
count for the special characteristics of SCNAs as well as tumor impurity, aneuploidy and
heterogeneity [135]]. Table [I.1] lists a number of widely used tools among the research
community, of which some account for inherent bias from NGS short reads (e.g., map-
ping bias and GC-content bias), and others further take into consideration tumor impurity
contaminated by normal cells, tumor aneuploidy and tumor heterogeneity. Though com-
parative studies [[136-138|] provide guidance for tool selection, lack of a gold standard
makes comprehensive benchmarking less reproducible and concordant. Therefore, bet-
ter benchmark datasets are urgently needed to evaluate different algorithms and further

advance the development of new tools [[135].

1.4.4 SV detection

SVs account for more polymorphism than SNV's as measured by total number of base pair

changes. A number of tools have been developed to detect SVs from NGS data. These
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detection methods can be divided into five different strategies: (1) read pair, (2) split-read,
(3) read depth, (4) assembly, and (5) combinatorial methods of the above approaches [[131,
132, |139]. Read depth based methods have already been described above (SCNA detec-
tion section), and the other approaches are discussed in this section. Several popular tools
are summarized in Table [I.T] and please refer to comprehensive reviews [132, [139] for
an exhaustive list. The read-pair methods are only applicable to paired-end reads but not
single-end reads. In paired-end sequencing, the DNA fragments from the same library
preparation protocol exhibit a specific insert size distribution. Read-pair methods utilize
discordantly mapped paired-reads, in which the mapping span and/or orientation are in-
consistent with the reference genome, to identify SVs [[131} |132]. The read pair method,
the most widely used approach, was applied in PEMer [96]], BreakDancer [97], Varia-
tionHunter [98]], and many other softwares. It can efficiently identify many types of SVs,
including insertions, deletions, tandem duplications, inversions, and translocations, but
only report approximate breakpoint locations [[132,|139]]. The split-read methods localize
the breakpoints of a SV on the basis of a “split” signal, in which one read from a read pair
is mapped to the reference genome while the other fails to map or only partially maps to
the genome [[131,132]. The split-read methods can provide base resolutions of SV break-
points, but are not sensitive to certain types of SVs, i.e., inversions and translocations
[139]. As described above in the SCNA detection sections, the read depth methods can
only detect duplications and deletions. The assembly methods first reconstruct contigs
from short reads and then identify all forms of SV by comparing the assembly contigs
with the reference genome [131}, [139]]. Although in their infancy, the assembly meth-
ods provide an unbiased approach to discover SVs and other alterations, as illustrated
in cortex_var [104]. As discussed above, each approach has both advantages and draw-
backs. Consequently, to overcome the inherent limitations of each approach, one possible
solution would be incorporating multiple methods to improve sensitivity and specificity
[131, 132, |139]. These combinatorial methods integrated two to four approaches, such
as SVDetect [99], DELLY [100], PRISM [101], HYDRA [102]], CREST [103], Meerkat
[105]], and LUMPY [106] (Table[1.T).

1.4.5 Gene fusion detection

Gene fusions may result from SVs, including insertions, deletions, inversions and translo-
cations. Widespread across many cancer types, gene fusions provided fundamental in-

sights into tumorigenesis, and have been successfully used for cancer diagnosis and treat-
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ment [140]. Traditionally detected by fluorescence in situ hybridization or DNA microar-
rays, the advancement of NGS provides an unbiased approach to identify gene fusions
either at DNA or RNA level. Leveraging the strengths of high-throughput NGS, a num-
ber of tools have been developed to detect gene fusions in the past several years. Table
[I.T] lists some popular tools, and a complete list of detection methods can be found in
a recent comprehensive review [141]. As demonstrated in Table [I.I, WGS and RNA-
seq are two major NGS data used for gene fusion characterization. Although WGS can
provide a comprehensive and unbiased view of gene fusions, its higher cost and more
intensive computational analysis hinders its application in cancer genomic studies [[141}
142]. On the other hand, RNA-seq only sequences about 2% of the whole genome that
is transcribed and spliced into mature mRNA. The relatively lower cost and shorter data
processing time make RNA-seq popular for gene fusion detection [[141, [142]]. Recently,
comparative studies of detection tools revealed that small overlaps of the fused genes were
detected by different tools [[143-145]], which could be due to the high number of false pos-
itives reported by most tools [143,|144]. To reduce false positives, one possible solution
would be integrating RNA-seq and WGS data as applied in Comrad [|115], nFuse [117]]
and INTEGRATE [[119] to increase the specificity. An alternative solution is to design
a meta-caller to combine tools of top performance so as to reprioritize candidate fusion

genes [[145].

1.5 Identification of driver mutations, genes and path-

ways

Cancer genome sequencing projects have revealed thousands of somatic mutations in cod-
ing and non-coding genomic regions. However, not all somatic alterations in a cancer
genome are involved in cancer development. Indeed, only a subset of these mutations
drive tumorigenesis and progression (driver mutations), whereas the remainder are non-
functional random events caused by the general genomic instability in cancer cells (pas-
senger mutations) [4]]. Driver mutations have dramatic impacts on the molecular functions
(gain- or loss-of-function) of gene products important for tumor initiation and progres-
sion, and provide growth advantages to cancer cells [4, 146]. Undoubtedly, the identifica-
tion of driver mutations and driver genes would provide new insights into the underlying
mechanism of tumorigenesis and the development of new therapeutic targets for cancer

treatment. A challenge is to distinguish the relatively small number of driver mutations
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from the large number of passenger mutations. There are many computational and statisti-
cal algorithms presently available to identify likely driver mutations, genes, and pathways
from somatic variants across a cohort of cancer samples. According to their function,
these tools can be divided into four general types: variant mapping and annotation, vari-
ant effect prediction, driver gene detection, and driver pathway identification [57, 63,

146-148]. Some popular tools for each category are listed in Table[1.2]

1.5.1 Variant mapping and annotation

After the detection of somatic variants, our primary goal is to map them onto annotated
functional genomic features and determine their impacts on protein-coding and non-
coding transcripts, transcription factor binding sites, and other potential regulatory ele-
ments [146]. We defined functional elements characterized by the Encyclopedia of DNA
Elements (ENCODE) Consortium as regulatory features, including transcription binding
sites, regions of open chromatin, DNase I hypersensitive sites (DHSs), histone modifica-
tion and chromatin interactions [149-151]]. This step also involved a comparison of these
variants with databases of known variants, such as dbSNP [[152], 1000 genomes [153]],
Catalog Of Somatic Mutations In Cancer (COSMIC) [154], the Human Gene Mutation
Database (HGMD)[/155]] and the Database of Genomic Variants [156]]. There are a variety
of tools available to map and annotate variants to genomic features (listed in Table [I.2).
Among them, VAT [157] and Oncotator [[158] provide annotations of variants at transcript
and protein levels, while ANNOVAR [|159] and SnpEff [160] have additional support to
include annotation of regulatory features. The Ensembl Variant Effect Predictor (VEP)
[161]] and AnnTools [[162] can map and annotate all kinds of somatic variants (SNVs, in-

dels, SCNAs, and SVs), while VARIANT [163]] and CRAVAT [164]] only consider SNVs.
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Table 1.2: Computational tools for detecting driver mutations, genes and pathways

Tools Function Description Mutation type Reference
ANNOVAR Variant annotation Transcripts, protein, and regulatory feature annotation SNVs, Indels, SCNAs, SVs  [159]
VEP Variant annotation Transcripts, protein, and regulatory feature annotation SNVs, Indels, SCNAs, SVs  [161]
AnnTools Variant annotation Transcripts, protein, and regulatory feature annotation SNVs, Indels, SCNAs, SVs  [162]
SnpEff Variant annotation Transcripts, protein, and regulatory feature annotation SNVs, Indels [160]
VARIANT Variant annotation Transcripts, protein, and regulatory feature annotation SNVs [163]
VAT Variant annotation Transcripts and protein annotation SNVs, Indels, SCNAs, SVs  [157]
Oncotator Variant annotation Transcripts and protein annotation SNVs, Indels [[158]
CRAVAT Variant annotation Transcripts and protein annotation SNVs [164]
SIFT Functional prediction Conservation-based prediction nsSNVs [165//166]
MutationAssessor  Functional prediction Conservation-based prediction nsSNVs [167]
PROVEAN Functional prediction Alignment-based score nsSNVs, ifIndels [168]
MAPP Functional prediction Physicochemical-property-based prediction nsSNVs [169]
LS-SNP/PDB Functional prediction Protein-structure-based prediction nsSNVs [[170]
transFIC Functional prediction Transformed FI score for cancer nsSNVs [[171]
Condel Functional prediction Consensus deleteriousness score of FI scores nsSNVs [1172]
CanPredict Functional prediction Combined prediction based on SIFT, Pfam and GOSS nsSNVs [1173]
PolyPhen-2 Functional prediction Naive Bayes classifier based on structure and alignment nsSNVs [174]

Continued on next page
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Table 1.2 — Continued from previous page

Tools Function Description Mutation type Reference
CHASM Functional prediction Random forest classifier based on diverse features nsSNVs [[175]
VEST Functional prediction Machine learning-based classifier nsSNVs [176]
VEST-Indel Functional prediction Machine learning-based classifier if/fsIndels [[177]
SIFT Indel Functional prediction Decision tree-based algorithm if/fsIndels [178]
FATHMM Functional prediction Hidden Markov Models algorithm nsSNVs, ncSNVs [[179]
MutationTaster Functional prediction Naive Bayes classifier cSNVs, inSNVs, Indels [180,|181]
CADD Functional prediction Combined Annotation Dependent Depletion SNVs, Indels [[182]
MuSiC Driver gene detection Recurrence-based prediction SNVs, Indels [[183]
MutSigCV Driver gene detection Recurrence-based prediction with variable BMR SNVs, Indels [184]
InVex Driver gene detection Recurrence-based prediction SNVs, Indels [[185]
Simon Driver gene detection BMR, FI and genetic code redundancy SNVs, Indels [[186]
OncodriveFM Driver gene detection Functional-mutation-based prediction nsSNVs [[187]
OncodriveCLUST Driver gene detection CLUST-based prediction nsSNVs [[188]
ActiveDriver Driver gene detection ACTIVE-based prediction nsSNVs [[189]
OncodriveFML Driver gene detection FI bias in coding and non-coding regions SNVs [190]
GSEA Pathway analysis Gene Set Enrichment Analysis SNVs, Indels, SCNAs [191]
CaMP-GSEA Pathway analysis GSEA with Cancer Mutation Prevalence scores SNVs, Indels, SCNAs [192]
PathScan Pathway analysis Probability model for mutation-enriched pathways SNVs, Indels, SCNAs (193]

Continued on next page
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Table 1.2 — Continued from previous page

Tools Function Description Mutation type Reference
HotNet Pathway analysis Heat-diffusion model with known interaction network SNVs, Indels, SCNAs [194]
HotNet2 Pathway analysis Heat-diffusion model with known interaction network SNVs, Indels, SCNAs [195]
NetBox Pathway analysis Finding significantly mutated network modules SNVs, Indels, SCNAs [196]
PSMP Pathway analysis Exclusivity based pairwise search for mutational pattern SNVs, Indels, SCNAs [197]]
MEMo Pathway analysis Driver network identification based on exclusivity SNVs, Indels, SCNAs [198]
Dendrix Pathway analysis De novo driver pathway identification SNVs, Indels, SCNAs [199]
Multi-Dendrix Pathway analysis De novo driver pathway identification SNVs, Indels, SCNAs [200]
MDPFinder Pathway analysis De novo driver pathway identification SNVs, Indels, SCNASs [201]
RME Pathway analysis De novo driver pathway identification SNVs, Indels, SCNAs (202]

[ 441LdVHO

VEP, Variant Effect Predictor; nsSNVs, non-synonymous SNVs; ifIndels, in-frame Indels; FI, Functional Impact; GOSS, Gene Ontology Similarity
Score; if/fsIndels, in-frame and frame-shift Indels; ncSNVs, non-coding SNVs; cSNVs, coding SNVs; inSNVs, intronic SNVs; CADD, Combined
Annotation Dependent Depletion; BMR, Background Mutation Rate.
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1.5.2 Functional prediction of somatic variants

The exact determination of variant functional effects relies on labor-intensive in vivo bio-
logical and clinicopathological experiments [203]. Alternatively, in silico methods can at-
tempt to predict the effects of variants on the functions of proteins or regulatory elements.
Because non-synonymous variants (changes amino acid of protein-coding genes) account
for approximately half of the disease-causing mutations deposited in Online Mendelian
Inheritance in Man (OMIM) [204]] and HGMD [155]], they are particularly the subject of
recently developed computational methods [[147]. These computational approaches typ-
ically use the Physicochemical properties of amino acids, evolutionary conservation in-
formation (multiple sequence alignments), as well as information about the role of amino
acid side chains in three-dimensional protein structure [146]. Based on the underlying
methodology, these methods can be classified as “direct methods” or “machine learning
methods” [[146, (167, [205] (Table [I.2)). The direct methods assess the effect of a mu-
tation by a phenomenological score computed based on a particular theoretical model
[146,|167]]. The machine learning methods use relevant properties (e.g., size and polar-
ity) of both the original and mutant residues, structural information (e.g., surface acces-
sibility and hydrogen bonding), evolutionary conservation and other features, and train
these features to distinguish functionally deleterious variants from nonfunctional neutral
ones [146, (167]]. As listed in Table most of these tools can only assess the func-
tional effects of non-synonymous SNVs , for instance, SIFT [[165, |166], MutationAsses-
sor [[167], PolyPhen-2 [[174] and some other extend underlying algorithm to include in-
frame and/or frame-shift indels, such as PROVEAN [[168]], VEST-Indel [177]] and SIFT
Indel [178]]. Using functionally validated missense mutation data collected from litera-
ture and database, Martelotto et al. [206] benchmarked the performance of 15 algorithms
including SIFT [165, |166]], MutationAssessor [167], PROVEAN [168]], Condel [172],
PolyPhen-2 [174], CHASM [175], VEST [176]], FATHMM [179]] and MutationTaster
[180]] (Table[1.2). The results showed that the prediction accuracy varies among different
tools and the combination of different algorithms can significantly improve the overall

accuracy [206].

Most of the tools described above focus exclusively on non-synonymous mutations, with
the underlying assumption being that coding mutations do not change amino acid se-
quence (synonymous mutations) and non-coding mutations are passenger mutations. How-

ever, several pilot studies have revealed the important roles of synonymous and non-
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coding variants in tumorigenesis [207-211]]. Supek et al. showed that synonymous mu-
tations frequently change exonic motifs that regulate RNA splicing resulting in abnormal
oncogene splicing in tumors [208]. The validation of splice-site mutation consequences
requires additional information from transcriptome, as implemented in PVAAS [212] and
Veridical [213]]. In two side-by-side papers published in the February 2013 issue of Sci-
ence, Huang et al. [209]] and Horn et al. [210] reported somatic and germline mutations in
the core promoter of telomerase reverse transcriptase (TERT) gene, which generate novel
binding motifs for E-twenty-six (ETS) transcription factors resulting in up to twofold
increase in transcription. Therefore, non-coding somatic mutations may represent an al-
ternative oncogenesis mechanism through regulatory potential. With the decreasing costs
of whole-genome sequencing, cancer genome projects provide us a wealth of data to
examine the consequences and clinical significance of non-coding mutations in cancer.
Currently, only a few tools are capable of predicting the functional consequences of non-
coding SNVs (e.g., FATHMM [179], MutationTaster [[180,|181] and CADD [182]]), how-
ever, in the coming years we foresee the development of more algorithms to illuminate

the crucial role of non-coding somatic mutations in cancer [214].

1.5.3 Detection of driver genes

A driver gene harbors driver mutations, but could also contain passenger mutations [215]].
A driver mutation confers selective growth advantages to cancer cells and is positively se-
lected during the evolution of the cancer. An important goal of cancer genomics analyses
is the characterization of cancer driver genes [4]. The main strategy generally used for
this task is to search for signals of positive selection across a cohort of tumor samples.
The most common methods for identifying driver genes is evaluating whether a gene is
mutated more frequently than expected from the background mutation rate (BMR) (re-
currence). Algorithms utilizing this approach include MuSiC [183], MutSig [184]], and
InVex [185]. However, a major challenge is to correctly estimate the BMR so as to reduce
the number of false positives [146]. The estimation of the BMR takes into account factors
such as gene length, mutation type (transitions and transversions), the nucleotide context,
DNA region replication timing [216], and gene expression level. Although this approach
is successful in detecting frequently mutated driver genes, it rarely detects driver genes
mutated at very low frequencies. Recurrence-based methods have also been designed to
identify genes that are frequently targeted by SCNAs, for example, GISTIC [217, 218]]
and RAE [219]. Applying GISTIC to copy-number profiles from a large collection of
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tumor samples, it was revealed that some of the recurrently altered regions contain onco-
genes or tumor suppressor genes, while most of them have no known cancer genes [46,
4°7]. The second approach relies on other signals of positive selection, such as a bias
accumulation of functional mutations (FM bias) or a clustering of mutations in certain
regions or functional sites (phosphorylation sites) of the protein sequences (CLUST bias
and ACTIVE bias). This approach has been implicated in Simon [186]], OncoDriveFM
[[187]], OncoDriveFML [190]], OncoDriveCLUST [188]], and ActiveDriver [189]]. Advan-
tages of this approach include its independence of the BMR estimation and its ability
to detect driver genes with low mutation frequency. However, the performance of some
methods (e.g., OncoDriveFM and OncoDriveFML) may be affected by the bias induced
by the metrics used to predict the putative impact of somatic variants on protein function.
Of noteworthy, OncoDriveFML is able to identify putative drivers in both coding and
non-coding genomic regions through the computation of a local FM bias [190]. As dis-
cussed above, all the methods have particular biases and shortcomings [146]. Therefore,
the combination of several complementary methods allows the balancing of their pros and

cons in order to identify a comprehensive and reliable list of driver genes [ 146, (147, 220].

1.5.4 Identification of driver pathways

Detection of recurrent or driver mutations from a large number of genomic variants greatly
reduces the data complexity and makes it possible to identify inherent signaling pathways
and biological processes [44]. Pathway and network approaches can provide enhanced
understanding of tumorigenesis based on the observation that driver mutations tend to
affect genes in signaling, regulatory and metabolic pathways [21}, 221]. The pathway view
of cancer mutation may explain the phenomenon of mutational heterogeneity that no two
tumors, even from the same tumor type, harbor exactly the same set of somatic mutations
[221, 222]. In individual tumors, a particular pathway can be perturbed by mutations in
multiple genes of the pathway [29, 215]. Collectively, across a cohort of tumors of a
cancer type, only a few genes in the pathway are frequently altered and many more rarely
mutated. Because the recurrence-based detection algorithms tend to miss these rarely
mutated driver genes, pathway and network approaches are generally preferred [63, 148]].
Tools for the identification of driver pathways and networks can be classified into three
types: gene set analysis methods, interaction network methods, and de novo identification

methods [57, |63}, [148]](Table [I.2).
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Gene set analysis methods examine the overlap between lists of mutated genes and pre-
defined gene sets from databases of known pathways or other functional groupings, such
as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [223]] and Gene Ontology
(GO) [224]]. This approach has been successfully used in gene expression analysis to
identify differentially expressed pathways. For example, Gene Set Enrichment Analysis
(GSEA) assess whether a group of genes has more high-ranking genes than would be
expected by chance [191]]. GSEA has been used together with different rank scores or
variables to determine the enrichment of mutations in particular pathways or functional
groups. CaMP-GESA uses Cancer Mutation Prevalence (CaMP) scores to rank genes
[192]. PathScan scores each gene at the patient level and also accounts for the mutation
probability variations in gene length [[193]]. Compared with single gene-oriented methods,
gene set analysis ones are more interpretable and statistically powerful [148]]. However,
one major drawback of gene set analysis methods is that they consider all genes in a single

pathway as equally important but ignore the topology of gene interactions [|63]].

To overcome this limitation, interaction network methods are to examine mutations on
large-scale protein-protein interaction networks deposited in databases such as the Hu-
man Protein Reference Database (HPRD) [225]], Reactome [226] and STRING [227].
The primary goal of this type of approach is to identify significantly mutated subnet-
works in the context of a large interaction network. HotNet [194] employs a heat diffu-
sion model to build an “influence graph” including neighborhood information for mutated
genes and then identifies recurrently altered subnetworks in more sample than would be
expected by chance. Applied to several TCGA cancer types, HotNet identified the signif-
icantly mutated Notch pathway in high-grade ovarian serous adenocarcinomas [228|] and
the SWI/SNF chromatin remodeling complex in clear cell renal cell carcinomas [229].
HotNet has been recently updated to HotNet2 [[195] to identify perturbed pathways and
protein complexes across pan-cancer types. An alternative method, NetBox [[196] is based
on the hypothesis that inactivation of multiple functional modules in interaction network
leads to cancer phenotype. Notably, MEMo [198] is another approach to find mutated
subnetworks based on the observation of mutational mutual exclusivity in various cancer
types. The reasoning behind mutual exclusivity is that across a cohort of patients, co-
occurring altered genes tend to be in different pathways and mutually exclusive ones in
the same pathway [[197]. The methods described above require prior knowledge of pro-
tein interaction networks, which is far from complete now, and has limited capability to

discover novel combinations of mutated genes [63,|148]).
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To identify novel combinations of mutated genes, an ideal solution is to test the signif-
icance of recurrent mutations of all possible combinations of genes. This de novo ap-
proach is computationally impossible because there would be a huge number of possible
combinations of gene sets to evaluate. The discovery of mutual exclusivity pattern [21,
197] in cancer largely reduced this number to one computationally plausible. A few tools
have been developed to identify putative driver pathways, such as Dendrix [199], Multi-
Dendrix [200], MDPFinder [201]] and RME [202]. Although de novo approaches avoid
bias introduced by prior information in gene set and network approaches, one of their dis-
advantage is that they focus on a subset of functional combinations of genes and cannot

characterize all of such combinations [63]].

1.6 Generation mechanism of somatic mutations in can-

cers

The collective somatic mutations observed in a cancer are the products of DNA damage
and DNA repair processes that have been operative throughout the development of cancer.
The recent deluge of cancer genomics data provides an unprecedented opportunity for
the discovery of the generation mechanisms for somatic alterations in cancer. Below we
summarize the new insights into the generation mechanisms for different types of somatic

mutations.

1.6.1 SNVs

Studies of mechanistic bases for germline point mutations can provide clues to the under-
lying mechanisms for SN'Vs, as the patterns of SN'Vs in cancer genomes have similarities
(and differences) to those of germline SNPs [230]. These studies typically analyzed hu-
man nucleotide diversity and DNA sequence divergence between human and other mam-
mals (e.g., chimpanzee) [231]. Pilot researches of germline mutations together with the
availability of cancer sequencing data have stimulated studies investigating the generation
mechanisms of SN'Vs in cancer. These studies offered new insights by analyzing asso-
ciations between somatic mutation rates and genomic features, and by investigating the
patterns of somatic mutations (mutation signature) caused by different mutational pro-

CESSES.
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Germline point mutation rate is not constant across the genome [232]]. Such variation oc-
curs on different scales, including sequence context effects (a best-known example is the
hypermutability of a methylated cytosine in a CpG dinucleotide), variation within chro-
mosomes and variation between chromosomes (such as between sex chromosomes and
autosomes) [230, 233]]. Although the reasons for the mutation rate variation are poorly
understood, a number of genomic factors (recombination, replication timing, chromatin
structures and nucleosome occupancy) have been found to affect the germline mutation
rate. A positive correlation between nucleotide diversity and recombination rate have
been observed, suggesting a mutagenic role of recombination through incorrect repair of
double stand breaks [234]]. Hellmann et al. [235]] showed that the correlation between hu-
man diversity and recombination remain after controlling some confounding factors (e.g.,
GC and CpG content, simple repeats, and distance to telomeres and centromeres). Stam-
atoyannopoulos et al. observed that mutation rate, as measured in evolution divergence
and human SNP diversity, is associated with DNA replication timing [216]. It was fur-
ther shown that mutation rate is associated with chromatin structure, and that regions of
open chromatin have the lowest non-CpG mutation rate, while regions with closed chro-
matin have the highest rate [236]]. However, a following study suggested that this associa-
tion was probably due to the correlation of chromatin compaction with replication timing
[237]. Nucleosome occupancy showed a complex association pattern with mutation rate,
in which SNPs are enriched around general nucleosome occupancy but depleted around

the positions preferentially occupied by epigenetically modified nucleosomes [238]].

A number of genetic and epigenetic features have been proposed to influence the rate
of SN'Vs in cancer, including GC content [239] |240]], gene density [239, 240], open and
closed chromatin structures [240]], nucleosome occupancy [239, 240], DNA replication
timing [239-242], three-dimensional chromatin organization [240, 242]], and DNase I hy-
persensitivity (a measure of chromatin accessibility) [243]]. Taking advantage of a large
number of epigenetic features from more than one hundred cell types, a comprehensive
study revealed that chromatin accessibility, histone modifications and replication timing
can explain 74-86% of mutation rate variance in cancer genomes [244]]. Several mech-
anisms have been proposed to explain the observed associations. The elevated mutation
rate in regions of high GC content is attributed to high frequency of CpG dinucleotides,
in which methylated cytosine is vulnerable to deamination to thymidine. The negative
association between somatic mutation rate and gene density is probably due to an addi-

tional DNA damage repair mechanism—transcription coupled repair (reviewed in [245]).
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Somatic mutation rate is elevated in closed heterochromatin and is repressed in open
chromatin. This could reflect the ready accessibility to DNA repair complexes in open
chromatin or increased exposure to mutagens in closed chromatin, which is located at
the nuclear periphery in three-dimensional chromosomal folding [240]. Recently, Supek
and Lehner observed that somatic mutations are no longer enriched in closed heterochro-
matin compared with open chromatin after the inactivation of DNA mismatch repair genes
[246]. They further proposed that differential DNA repair, rather than differential muta-
tion supply, is the actual cause for regional mutation rate variations in cancer cells. The
lower mutation rates in regions of higher nucleosome occupancy could be explained by
the fact that DNA in nucleosome undergoes less spontaneous local conformational fluc-
tuations within double-stranded DNA (DNA breathing) and is thus less accessible [247].
One possibility for the accumulation of SNVs in later replicating regions is that the slow-
ing or stalling of replication fork leads to the formation of hypermutable single-strand
DNA [216]. It was further observed that mutation rate is reduced in active regulatory
regions (defined by DNase I hypersensitive sites), probably suggesting that active regions
are more accessible to DNA repair complex [243]]. However, two independent studies
showed that mutation rate increased in the center of active promoters [248,[249]. The au-
thors of these two papers associated the elevated mutation rate with reduced level of nu-
cleotide excision repair (NER) which is caused by the binding of transcription-initiation
machinery [248| 249]]. This discrepancy can be explained by the fact that, although reg-
ulatory regions as a whole are more accessible to NER, the accessibility for NER in the

core sites is limited because of bound transcription-initiation proteins [250].

Statistical associations between somatic mutation rates and genomic properties do not
always imply causal effects of individual features. Analyses of mutation signatures in
cancer provide an alternative way to uncover the underlying DNA damage and repair
processes or replicative mechanisms to which cancer cells have been exposed [251]]. The
simple analyses of mutational spectra (C-G — A-T,C-G—- G-C,C-G—T-A,T-A — AT,
T-A — C-G, T-A — G-C) showed that some mutational spectra are specific to some tumor
types and related exogenous mutagens. For example, increased C-G — A-T transversion
rate in lung cancer is associated with tobacco carcinogen, while C-G — T-A transitions
are predominantly in ultraviolet (UV) radiation exposure related melanoma [251} 252].
However, these analyses failed to consider the sequence context (the immediately flank-
ing 5’ and 3’ bases) of a mutation, which affect the mutation rate of the mutated base

[233]. In total, there are 96 possible mutated trinucleotides (six types of substitutions,
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and four possible bases at 5’ base and four possible bases at 3’ base). The large-scale
cancer sequencing projects provide us an unprecedented opportunity to detect a complete
set of mutation signatures in cancer. Mathematical algorithms [253H256] can also be used
to extract mutation signatures and to quantify the contribution of each signature. A com-
prehensive mathematical analysis identified 21 different mutational signatures (for the
characteristics of each signature, refer to [257]]) from the somatic mutations of more than

7,000 human cancers of 30 different cancer types [257].

Some mutational signatures have been related to endogenous or exogenous DNA dam-
ages, DNA repair processes or DNA replication errors [251]. Signature 1A and 1B are
characterized by C-G — T-A mutations at NpCpG trinucleotides (“_” denotes the mutated
base) and are observed in many different cancer types [257]]. This signature has been
linked to mutagenic processes attributed to spontaneous deamination of 5-methylcytosine
to thymine. Signatures 2 and 13 are characterized by C-G — T-A and C-G — G-C muta-
tions at TpCpN trinucleotides and have been found in many cancer types, including breast
cancer and bladder cancer [258]]. These two signatures result from some highly expressed
members of APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide)
enzymes based on similarities in the type and sequence context between mutations caused
by APOBEC enzymes in vitro and those mutations in cancer [251, 257, 259]]. Signature
7, mainly found in malignant melanoma associated with UV radiation [257]], has a higher
prevalence of C-G — T-A sites and CC-GG — TT-AA at pyrimidine dimers and is a char-
acteristic feature of transcriptional strand bias [251]. The mutation characteristics and
strand bias of signature 7 suggest its formation mechanism through which UV exposure
results in pyrimidine dimers followed by transcription coupled repair [251} 257]. Signa-
ture 5 is characterized by a broad spectrum of base changes with slightly more C-G —
T-A and T-A — C-G mutations [257]. Recently, signature 5 has been linked to the inacti-
vation of nucleotide excision repair gene ERCC?2 in urothelial cancer [260]. Independent
of ERCC2 mutation status, signature 5 is also associated with smoking history, which
provides the first evidence of tobacco-related mutagenesis in urothelial cancer [260]. Sig-
nature 10 has been found in some tumors of colorectal and uterine cancer and has a spe-
cific pattern of C-G — A-T and C-G — T-A mutations at TpCpG [251} 257]. The altered
proof-reading activity of DNA polymerase Pol € has been proposed to be the underlying

mutational process [251}257].
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1.6.2 Indels

Comparative genomic studies of small indel distributions have provided clues to indel
generation mechanisms. Indels are not randomly distributed along the genome; indel
rates can vary by more than two orders of magnitude [261]. Rates of small indels have
been found to be associated with a number of genomic factors, including sequence context
(e.g., microsatellites) [261} |262]], GC content [263], proximity to telomeres [263]], male
and female recombination rates [263]], and DNA replication errors [263]. The two types
of indels are likely generated in part by different mechanism: replication-related fac-
tors are more pronounced for deletions, while recombination-related features contributed
more to insertions [263]]. It was further shown that polymerase slippages are responsible
for the majority (75%) of all indels [264]. The remaining indels are mostly simple dele-
tions in regions with complex sequences, and insertions are significantly associated with
palindromic sequence features [264]. The latter are compatible with the fork stalling and
template switching (FoSTeS) mechanism, which are more frequently associated with SVs

(264, 265].

Analysis of indel signatures provided some primary insights into the generation mecha-
nism, although the power to detect indel patterns is relatively limited [251]]. Small 1-3 bp
indels were found to associate with SNV signature 6 that is characterized by C-G — T-A
mutations at NpCpG trinucleotides [257]. In colorectal, kidney and prostate cancers, an
excess of SNVs associated with signature 6 and small indels [251]] was observed in some
tumors. This pattern is attributed to the loss of mismatch repair (MMR) genes [257]. De-
fects in MMR often lead to microsatellite instability—a phenomenon that is characterized
by variable numbers of repeats of microsatellites (short repetitive sequences <5 bp) and is
frequently observed in colorectal and endometrial cancers [266]. Large indels (4-50 bp),
by contrast, have been correlated with SNV signature 3 that is characterized by a fairly
uniform mutational spectrum [257]. Signature 3 has been reported in breast and ovarian
cancers, and tumors associated with signature 3 show increased number of larger indels
(>3 bp) [257]]. Although signature 3 has been linked to the inactivation of BRCAI and
BRCA?2 genes in homologous recombination double strand break (DSB) repair pathway,

the exact mechanism for the elevated indel rate remains elusive [251]].
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1.6.3 SVs (SCNAs)

A variety of molecular mechanisms have been proposed to explain the formation of SVs
(and SCNAs). Generally SVs occur when the repair of DSBs is incomplete [267]. DSBs
arise as part of the normal metabolism of the cell (e.g., V(D)J recombination) or as
a consequence of exposure to exogenous agents (e.g., ionizing radiation) or from the
DNA structures capable of inducing DSBs (such as non-B conformation motifs and DNA
transposons) [268, 269]]. Repair mechanisms can be divided into three types: homolo-
gous recombination repair, non-replicative non-homologous repair, and replicative non-

homologous repair [269]].

Two molecular pathways, homologous recombination (HR) and single-strand annealing
(SSA), use homologous recombination to repair DSBs [269]]. They are different from
each other in the extent of the required homology: HR requires longer sequence identity
than SSA (100 to 200 bp versus 50 bp) [267-269]]. Another difference is that SSA always
results in small deletions, while HR mostly can repair DSBs without generating CNVs or
SVs [267,269]. A well studied example of HR is non-allelic homologous recombination
(NAHR) between low copy repeats (LCRs). LCRs (also known as segmental duplications,
SD), are highly homologous sequence elements within the human genome typically 10-
300 kb in size, and bear >95% sequence identity [270]. Due to their high degree of
sequence identity, non-allelic copies of LCRs, instead of the copies at the usual allelic
positions, can sometimes act as the substrates of NAHR. This is the major mechanism re-
sponsible for recurrent CN'V formation [269]. The relative positioning of LCR pairs can
result in different types of genomic rearrangements [271]. Located on the same chromo-
some in direct orientation or in opposite orientation, or on different chromosomes, NAHR
between two LCRs leads to duplication and/or deletion, inversion, and translocation, re-
spectively. SSA can act directly at repeated sequences [269]]. In this process, neither of
the two DSB ends invades homologous sequences and internal sequence between the two
repeats as well as one of the repeats will be deleted. In humans, DSB induced SSA has

been observed between identical Alu elements [272]].

Non-replicative non-homologous repair pathways either do not require homology or need
limited micro-homology for repairing DSBs. Non-homologous end joining (NHEJ) does
not require a homologous template to guide repair. It either rejoins DSB ends accurately
or leads to small deletions (1-4 bp), and sometimes to insertion of free DNA from other

genomic regions [269]. The alternative end joining (alt-EJ) mechanism, also called micro-
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homology mediated end joining (MME]J) is an error-prone pathway. In MMEJ, 5-25
bp micro-homologous sequences were used to align DSB ends before joining, thereby
resulting in deletions of sequences flanking the original breaks. MMEJ is frequently
associated with chromosomal structural changes such as deletions, translocations, and

other complex rearrangements [273|].

Replicative non-homologous mechanisms have been proposed based on the observation
that some of human CNVs are highly complex and hard to be explained by the canonical
HR or by end joining pathways [274, 275|]. These replication based mechanisms include
FoSTeS [276], micro-homology mediated break-induced replication (MMBIR) [277]] and
serial replication slippage (SRS) [278]. The FoSTeS mechanism has been further gener-
alized to MMBIR [265]]. Although these models are different in some aspects, they all
assume that the replication fork can stall and template DNA can be introduced via micro-
homology from replication forks nearby or over long distances [267, 269, [274]. These
mechanisms can result in inversion, tandem duplication, translocation, or more complex

rearrangements [265, 277].

In germline cells, insights into the mechanisms underlying SV formation was gained from
the studies of genomic disorders [279]. Genomic disorders are a group of diseases caused
by the loss or gain of DNA resulting from the inherent human genomic instability at
some loci [271]. For example, NAHR is responsible for most of recurrent germline SV's
which show breakpoints clustering inside LCRs and recur in multiple patients [268]. In
contrast, NHEJ (or MMEJ) accounts for most of non-recurrent SVs that are of different
sizes among patients but may share a small regions of overlap within patients [268,[273]].
FoSTeS/MMBIR was proposed to explain the observed complex SVs associated with
genomic disorders [276] 277].

The landscapes of somatic SVs in cancer are extremely diverse and ranges from very few
to hundreds of SVs per patient [280]. Nevertheless, the junctional sequences flanking
SV breakpoints at nucleotide resolution enabled the revelation of mechanisms involved
in the generation of somatic SVs [251]]. Although NAHR was implicated in somatic SVs
in cancer, the exact contribution of NAHR remains unknown [268, 281]]. The very few
overlapping sequences at breakpoints imply that NHEJ and MMEJ are involved in the for-
mation of somatic SVs in cancer [282]]. It was suggested that MMEJ occurrence is rarer
than NHEJ based on the observation that only 2.5 % of SVs had >5 bp micro-homology
[282]. A comprehensive study showed that micro-homology based mechanisms (MMEJ
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and FoSTeS/MMBIR) contribute more to germline SVs (e.g., deletions, tandem duplica-
tions and complex SVs) than to somatic SVs [[105]]. This phenomenon may suggest that
these mechanisms are suppressed in cancer cells or that DNA breakage and replication
fork stalling frequently occurred in cancer cells, and non-homology based mechanisms

are the easiest way for DNA repair [[105].
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Chromatin organization is a major influence on

regional mutation rates in human cancer cells

This chapter reproduce a study [240] published in Nature (Schuster-Bockler B. and Lehner
B. Nature, 2012, 488(7412):504-507). Cancer genome sequencing provides an unprece-
dented opportunity to investigate how mutation rates vary across the genomes of somatic
cells. Taking advantage of available genetic and epigenetic features, Schuster-Bockler and
Lehner showed that mutation rates in cancer genomes are strikingly related to chromatin
organization [240]. They revealed that at the mega base (Mb) scale, a heterochromatin-
associated histone modification marker (H3K9me3) explains >40% of mutation-rate vari-
ance, and all investigated features account for >55% variance. They also showed that the
strong association between somatic mutation rates and chromatin organization is inde-
pendent of tissue and mutation types. In this work, we reproduced this study using the
same data sets in order to offer new insights, if any, into the mutation-rate variance in
human somatic cells. Our results are largely consistent with the original study, with the
exception being that in our study replication timing is the most prominent predictor for

mutation rate in cancer cells.

2.1 Introduction

It has been revealed that germline mutation rates are not constant across the genome [232].
Although the reasons behind mutation rate variance are largely unknown, a number of
genetic and epigenetic properties have been found to affect mutation rates including local
base composition [232], DNA replication timing [216]] and chromatin structure [236]]. In

a previous study, Hodgkinson et al. showed that, at the mega base scale, somatic mutation
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rate varies substantially within the human genome, and the associated individual genomic

property can only explain very little of the regional variation across the genome [239].

To identify potential causes of mutation rate variance across the genome, the authors of
the study [240] compiled a set of genetic and epigenetic features and gathered SN'Vs from
genome sequencing projects of leukemia, melanoma, small cell lung cancer and prostate
cancer. The examined features included base composition, CpG content, gene density,
DNA replication timing, nucleosome occupancy, long-range chromatin interactions (Hi-
C), recombination rate, the density of unique sequences (mappability of 24-base poly-
mers), levels of 18 histone acetylations, levels of 17 histone methylations, and occupancy

of RNA polymerase II, the CTCF insulator protein and the histone variant H2AZ.

2.2 Materials and Methods

2.2.1 Data of cancer SNV, germline SNP and human—chimp sequence

divergence

Somatic autosomal SNVs were obtained from the supplementary tables of the respective
publications: 32 075 SNVs from melanoma [62], 27 354 from prostate cancer [283], 21
708 from lung cancer [284]], and 3 874 from leukemia [285]. The leukemia SNVs are
not included in the calculation of transition/transversion correlations because the exact
alternated nucleotides were not available. All genomic coordinates for somatic SNV
correspond to the human genome assembly hgl8. When necessary, the University of
California, Santa Cruz (UCSC) liftOver tool [286] was used to convert the hgl19 coor-
dinates to hgl8. The same strategy was applied to germline SNPs, human-chimp di-
vergence data, and genome-wide feature data sets. NCBI dbSNP build 130 comprising
of 8 344 654 SNPs was downloaded from the UCSC goldenPath database (http://
hgdownload.cse.ucsc.edu/goldenPath/hgl8/database)). Sequence di-
vergence data between Homo sapiens and Pan troglodytes were extracted from EPO
(Enredo—Pecan—Ortheus) whole-genome alignments available from Ensembl release 54.
The study [240] showed that the human—chimp alignment covers >88% of the human
genome, yielding approximately 10® substitutions across all autosomes. However, we

only found about 3.44 x 107 autosomal substitutions.
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2.2. MATERIALS AND METHODS

2.2.2 Genome-wide feature sets

The human genome was split into evenly-sized (1 Mb) windows, and each genome feature
measured at 1 Mb scale. GC density is defined as the fraction of all G or C residues per 1
Mb window, and was calculated using UCSC hgGcPercent utility. CpG density refers to
the fraction of residues in CpG dinucleotides per window. Gene density is the fraction of
nucleotides covered by a gene (including exons and introns) per window. Repeat annota-
tion was downloaded from UCSC Genome Browser, and repeat coverage per window was
computed using an in-house Perl script. As suggested by the authors of the study [287],

replication timing (RT) was defined by the following formula:

RT = (0.917x G1b)+(0.75x S1)+(0.583 x S2)+(0.417 x $3)+(0.25 x S4) + (0 x G2).

Higher RT' values correspond to earlier replication events. Data for highly positioned nu-
cleosomes were downloaded from http://liulab.dfci.harvard.edu/NPS/
Result/. These data sets were predicted with the NPS algorithm [288]] using micrococ-
cal nuclease digested chromatin data extracted from resting CD4 T cells as reported by et
al. [289]]. Hi-C data for the lymphoblastoid cell line GM06990 were downloaded from the
Gene Expression Omnibus database with accession number GSE18199, and eigenvector
2 was used for chromosomes 4 & 5 and eigenvector 1 for other chromosomes [290]]. Re-
combination rates were downloaded from recombRate table of UCSC Genome Browser,
and decodeAvg value from the deCODE genetic map [291]] was used. The genome-wide
uniqueness of 24-base polymers was downloaded from UCSC Genome Browser (wgEn-
codeDukeUniqueness24bp table). Genomic coordinates for all uniquely mapped reads for
18 histone acetylation markers were downloaded from http://dir.nhlbi.nih.go
v/papers/1lmi/epigenomes/hgtcellacetylation.aspx [292]. Genomic
coordinates for all uniquely mapped reads for 17 histone methylation markers, H2AZ,
CTCF and RNA Polll binding were downloaded from http://dir.nhlbi.nih.go
v/papers/lmi/epigenomes/hgtcell.aspx [293]. The genomic coordinates
for evolutionarily conserved DNA elements were downloaded from https://www.br
oadinstitute.org/mammals-models/29-mammals—-project-supplemen

tary-info, and log-odds Siphy-pi scores were used with a cut-off threshold of 3 [294].
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2.2.3 Measurement of cancer SNV, germline SNP, human-chimp se-

quence divergence and feature sets at 1 Mb resolution

The feature of mappability described above assigns 24-base polymers a value of 1 if they
occur uniquely in the genome, 0.5 if they occur twice, 0.33 if they occur three times, and
0 otherwise. The human genome was partitioned into non-overlapping 1 Mb windows,
and windows with average mappability less than 0.8 were removed to exclude windows
with highly repetitive DNA elements. Genetic and epigenetic features as well as cancer
SNVs, germline SNPs and human—chimp sequence divergence were measured as cover-
age (fraction of a window occupied by the feature) or sum (specifically for replication

timing).

2.2.4 Statistical analysis

Pearson correlation analysis and principal component analysis (PCA) were performed
in R using the functions cor.test and princomp, respectively. For PCA, vectors of all
genomic features as well as cancer SNVs, germline SNPs and human-chimp divergence at
1 Mb resolution were scaled to mean 0 and standard deviation 1. To identify the minimal
informative set of predictive features for cancer SN'Vs, germline SNPs and human—chimp
divergence, linear models were fitted by generalized least-squares estimation. Different
models were compared by their Akaike information criterion (AIC), and models with
minimal AIC chosen. This procedure was repeated n — 1 (n equals to the number of
features) times, adding one feature to the model at each iteration. The set of features with
minimal AIC was chosen as the minimal informative set of predictive features. Percentage
explained variance was calculated as the RR? of a linear regression model using the sets of
selected predictive features. Calculations were performed in R using the AIC, gls and Im

functions.
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2.3 Results

2.3.1 Cancer SNV density is correlated with regional variation in

chromatin organization

The human genome was split into 1 Mb windows, and genomic features as well as cancer
SNVs, germline SNPs and human—chimp divergence were measured at 1 Mb scale. The
correlation coefficient was calculated for all pairwise combinations of genomic features

and target features (i.e., cancer SNVs, germline SNPs and human-chimp divergence).
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Figure 2.1: Pearson correlation coefficients of cancer SNVs, germline SNPs and human-
chimp divergence with genomic features in non-overlapping 1 Mb windows.

Indeed, cancer SNV density is strikingly correlated with many features of closed chro-
matin organization at 1 Mb scale (Figure[2.1)). The repressive histone modification H3K9me3,
correlated strongly with cancer SNV density (r = 0.64, P < 2.2 x 107!6). Other repres-
sive histone modification markers also show positive correlations, for instance, H3K9me?2
(r = 0.53,p < 2.2 x 107'6) and H4K20me3 (r = 0.43,p < 2.2 x 107'%). In con-
trast, cancer SNV density negatively correlated with levels of open chromatin associ-
ated histone markers, such as H3K4me3 (r = —0.60,p < 2.2 x 107'6) and H3K9ac

(r = —0.59,p < 2.2 x 1071%). Anti-correlations are also observed with other ge-
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nomic features such as replication timing (r = —0.66,p < 2.2 x 1071%), GC content
(r = —0.46,p < 2.2 x 10719), gene density (r = —0.40,p < 2.2 x 1071%) and the density
of highly positioned nucleosomes (r = —0.48, p < 2.2 x 10716). The authors also showed
that these conclusions are upheld when splitting the genome into alternative sizes (i.e., 10
kb, 100 kb and 10 Mb) [240]. Taken together, the authors concluded that regional muta-

tion rate variance is strongly associated with regional variation in chromatin organization
240].

To investigate the inter-dependencies among different genomic features, the correlation
coefficient was calculated for all pairwise combinations of genomic features. The results
showed that genomic features were clustered into two distinct groups, one consisting of
retrotransposons, repeats, H3K9me3, H3K9me2 and H4K20me3 while the other group

including other genomic features (Figure [2.2)).
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Figure 2.2: The correlation matrix of genomic features at 1 Mb resolution. Red denotes
positive and blue negative correlation.

Principal component analysis was further used to investigate the inter-dependencies of
features. The results showed that at 1 Mb resolution about 60% of the variance in these
genomic features could be explained by a first principal component (Figure [2.3). Many
histone modifications and other features associated with either accessible euchromatin or
inaccessible heterochromatin have a strong loading on the first principal component (Fig-

ure [2.4). For example, the histone modifications H3K9me3, H3K9me2 and H4K20me3
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have strong negative loadings on the first component. GC content, gene density, replica-
tion timing and many histone modifications associated with accessible euchromatin show
strong positive loadings on the first component. Cancer SNV density also shows a strong
negative loading on the first component. The authors believe that the result is consistent
with the idea that somatic mutation rate is higher in inaccessible heterochromatin do-
mains and lower in accessible euchromatin ones [240]. In contrast, germline SNP density
and human-chimp divergence have stronger loadings on the second principal component
(Figure[2.4).

06
05 |
04

0.3

0.2 4

Fraction of explained variance

0.1 4

Wﬂﬂﬂﬂﬂnnnhhhh

HANMOIDONODOANMILNO
A

0.0 —

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Principal component

Figure 2.3: Percentage of total variance explained by each principal component.

-40 -20 0 20 40 60
I I I I I I
o
S o
o | -
H3K36me1 ©
GC content
CpG density
H3R2me1
Conservation
HaK16ac
H2BK5me1
H3K14ac | o
H2AK9ac <
H4R3me2 H4K20me1
It HaKame1
S 4 H3K27me2 HaK91ac
~ © HaR2me2 Gene densiy
= Recombination rate Nucleosome
[} Mappability - Gerfnline SNPs H3K36me3
L o
5 Human~chimp divergence HaKame3 I
=3 H2AKSac
£ Hi-C
H3Kaac
(6] H4K20me3 H3K18ac
H3Kome1
HaKome2 H2BK20ac
o Cancer SNVs H3K4me2
S CTCF L o
S THaKomes H2BK120ac
Replication timing
H3K79me1
HaK5ac
H2AZ
H3K27me1
H3K23ac
Retrotransposons Polll o
H2BKSac -«
Repeats H3K36ac !
H3K27ac
Jro H2BK12ac
e HaKgac
< H3K79me3
! H3K79me2
HaK12ac °
Fy
T T T T
-0.05 0.00 0.05 0.10

Component 1

Figure 2.4: Bi-plot of first two principal components. Black dots denote transformed
values of individual 1 Mb windows.

39



CHAPTER 2

2.3.2 The correlation between chromatin organization and mutation
rate variance is independent of cancer type, mutation type and

genomic context

To investigate whether the correlation between chromatin organization and cancer SNV
density are independent of tissue type, the authors also analyzed the mutation data from
each tumor type separately. It has been shown that somatic mutations show signatures
associated with mutagen exposure such as ultraviolet light exposure in the melanoma [62]
and tobacco smoking in the lung cancer [284]. It can be seen from Figure[2.5]that in each
cancer type SNV density is positively correlated with repressive histone markers (e.g.,
H3K9me3, H3K9me2 and H4K20me3), and negatively correlated with genomic features
associated with accessible chromatin. These results indicate that the correlation between

chromatin organization and mutation rate variance is independent of tumor type.
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Figure 2.5: Correlation coefficients of SNV density from individual cancer genomes with
diverse genetic and epigenetic features at 1 Mb resolution.

To determine whether the correlation between chromatin organization and mutation rate
is mutation-type and genomic-context specific, mutations were divided into different cat-
egories: transitions or transversions, CpG mutations or non-CpG mutations, mutations in
genic or non-genic regions. The results showed that mutation rates are strongly associated
with H3K9me3 for mutations of different types and genomic context (Figure [2.6). The

correlation between mutation rate and H3K9me3 is strong when only considering SNVs
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surrounded by 20 bp of unique sequence, or when excluding evolutionarily conserved

bases, or when filtering out regions with extreme GC content (<35% or >75%) (Figure
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Figure 2.6: Correlation coefficients of cancer SNV density with H3K9me3 for diverse
mutation types and genomic context.

Taken together, the association between chromatin organization and mutation rate vari-

ance in cancer cells is upheld in diverse tumor types, mutation types and genomic regions.

2.3.3 Improved prediction power for cancer SNV density variation

by integrated models

A previous study showed that all genomic features together explain less than 40% of
the mutation-rate variance and individual features explain very little [239]]. Next, the
authors examined whether predictions of variance in mutation rate could be improved by
using linear regression models combining the information from multiple genomic features
[240]. Using the same procedure, our results showed that all genomic features can explain

about 55% of the variance in cancer SNV density along the genome, and that a single
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feature —- replication timing (instead of H3K9me3 in the original study [290]) alone can

account for more than 42% of the variance (Figure [2.7).
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Figure 2.7: Prediction of cancer SNV density variation using integrated models. Cumu-
lative R? of linear models, adding the feature on the x axis as a predictor at each step.

2.4 Discussion

Somatic SNVs are not uniformly distributed along the human genome. The authors of the
study [240] showed that somatic mutation rate is associated with chromatin organization,
irrespective of tumor type, mutation type, or genomic context. They also showed that at
the Mb scale, a repressive histone modification marker — H3K9me3 — explains >40%
of mutation-rate variance. Using the same data sets and same procedure, we got the
results which are largely consistent with those presented in [240]. The only exception is
that replication timing is the most prominent predictor for somatic mutation rate in cancer
cells. Our results comply with two subsequent studies [241} 242], in which replication

timing was found to have a prominent role in shaping SNV landscape in cancer cells.

Both somatic mutagenesis and epigenetic features are highly cell-type specific. Since
the data for histone modification markers analyzed in the study [240] were not from the
same cell types as the somatic mutations, the authors argued that the actual influence of

chromatin organization on regional mutation rates could have been underestimated. Re-
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cently, a comprehensive study compared somatic mutations from diverse cancer types to
cell-type-specific epigenomic features [244]. The results showed that chromatin acces-
sibility and modification, as well as replication timing, can explain 74-86% of mutation

rate variance along cancer genomes.

Somatic mutation rates are elevated in heterochromatin-like domains and repressed in
open chromatin domains. The authors suggested that this pattern could reflect the varia-
tion in DNA accessibility by DNA repair machines between open and closed chromatin
domains [240]]. A following study by the same group showed that after the inactivation
of DNA mismatch repair genes, somatic mutation rates are no longer elevated in closed
heterochromatin regions [246]. They further proposed that differential DNA repair, rather
than differential mutation supply, is the primary cause of large-scale regional mutation

rate variance in cancer cells.
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Genomic determinants of somatic copy humber

alterations across human cancers

Somatic copy number alterations (SCNAs) play an important role in carcinogenesis. How-
ever, the impact of genomic architecture on the global patterns of SCNAs in cancer
genomes remains elusive. In this work we conducted multiple linear regression (MLR)
analyses of the pooled SCNA data from The Cancer Genome Atlas Pan-Cancer project.
We performed MLR analyses for 11 individual cancer types and three different kinds of
SCNAs—amplifications and deletions, telomere-bound and interstitial SCNAs and local
SCNAs. Our MLR model explains >30% of the pooled SCNA breakpoint variation, with
the explanatory power ranging from 13-32% for different cancer types and SCNA types.
In addition to confirming previously identified features [e.g., long interspersed element-
1 (L1) and short interspersed nuclear elements (SINEs)], we also identified several novel
informative features, including distance to telomere, distance to centromere and low com-
plexity repeats. The results of the MLR analyses were additionally confirmed on an in-
dependent SCNA data set obtained from the Catalogue Of Somatic Mutations In Cancer
(COSMIC) database. Using a rare event logistic regression model and an extremely ran-
domized tree classifier, we revealed that genomic features are informative for defining
common SCNA breakpoint hotspots. Our findings shed light on the molecular mecha-

nisms of SCNA generation in cancer.

This chapter has been published in Zhang, Y., Xu, H., and Frishman, D. (2016) Ge-
nomic determinants of somatic copy number alterations across human cancers. Hum.
Mol. Genet., 25(5), 1019-1030. Yanping Zhang and I contributed equally to this work.
This study was designed by Dmitrij Frishman, Yanping Zhang and me. Yanping Zhang

collected data and did multiple linear regression, and I did logistic regression and ex-
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tremely randomized tree classifier. The manuscript was written by Yanping Zhang and

me, and corrected by Dmitrij Frishman.

3.1 Introduction

Cancer is fundamentally a disease characterized by a diversity of somatic alterations
[41]]. Recently developed technologies, such as single nucleotide polymorphism (SNP)
arrays and next-generation DNA sequencing have created unprecedented opportunities
for studying different classes of mutations, including single base substitutions, small in-
dels, genomic rearrangements, and somatic copy number alterations (SCNAs) [4, 41, 46].
The landscape of SCNAs has been charted across different types of cancer, with recurrent
SCNAs often pointing at novel oncogenes and tumor suppressor genes [42, 46, |47]. Al-
though SCNAs affect a sizable fraction of the genome and are functionally important in

carcinogenesis, their generation mechanisms are not yet fully understood.

Previous analyses of SCNA data have provided insights into the mechanisms shaping
SCNA occurrence [46, 47,295, 296]]. SCNA breakpoints are not uniformly distributed in
the genome, but rather tend to be spatially clustered in breakpoint hotspots [295]]. For in-
stance, G-quadruplex sequences (G4s) are enriched in the vicinity of SCNA breakpoints,
suggesting the contribution of genomic properties to SCNA formation [295]. A recent
comparative analysis has identified two types of SCNA breakpoint hotspots—cancer-
type-specific SCNA breakpoint hotspots, which are enriched in known cancer genes, and
common hotspots (CHSs). The latter can be relatively well predicted from genomic con-
text by a multiple linear regression (MLR) model [297]. However, the model presented
in [297]] explains only a small part of the SCNA breakpoint variance (with the top four
features—indel rate, exon density, substitution rate, and SINE coverage—being collec-
tively responsible for 14% of the variation). A model considering a much wider spectrum
of genomic properties would be expected to better illuminate how different genomic fea-

tures contribute to the global patterns of SCNAs in cancer genomes.

Many endogenous factors (such as non-B DNA conformations and repetitive sequences)
can cause double-strand breaks (DSBs). Subsequent erroneous DNA repairs will result
in copy number alterations [268], 269, [295]]. Indeed, genome-wide mapping of DSBs has
shown that DSB regions are enriched in genomic regions frequently rearranged in can-

cers [298]]. Under certain circumstances, DNA can assemble into non-B conformations
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at specific sequence motifs including A-phased repeats, G-quadruplex, Z-DNA, inverted
repeats, mirror repeats, and direct repeats [299]. The resulting DNA secondary structures
have been implicated in the formation of structural alterations including copy number
variations (CNVs), inversions and translocations, such as G-quadruplexes [295]], Z-DNA
[300], cruciforms formed by inverted repeats [301]] and triplexes (also known as H-DNA)
formed by mirror repeats [302]. Transposable elements are dispersed at high copy num-
bers throughout the human genome, and non-allelic homologous recombination between
different copies of transposable elements can result in CN'Vs. For example, homologous
recombination of non-allelic copies of L1 and human endogenous retroviral elements
leads to the formation of CNVs [303, [304]]. Moreover, a 13-mer CCNCCNTNNCCNC
motif was found to associate with recombination hotspots in humans and was clustered in
common mitochondrial deletion hotspots [305]. Recently, Zhou et al. [306] have revealed
a significant enrichment of human germline and somatic structural variant breakpoints in
self-chain (SC) regions, a group of low-copy repeats (LCRs) shorter than 1 kb. Besides
the effects of local genomic context on CNV formation, TCGA Pan-Cancer analysis has
suggested different mechanisms for telomere-bound SCNAs and those SCNAs that are
interstitial to chromosomes, highlighting the importance of chromosome structure (e.g.,

telomeres and centromeres) [47]].

In this study, we selected genomic features, which have been proposed to affect SCNAs
across the human genome, of which DSBs, SCs, recombination motifs, and distance to
telomeres and centromeres have not been investigated in previous studies. We also in-
clude the histone marker H3K9me3, which accounts for >40% of mutation rate variation
in cancer cells [240]. We built MLR and logistic regression (LR) models to explore the
intrinsic basis of observed SCNA patterns. These statistical methods have been success-
ful in contrasting common fragile sites and non-fragile sites [307] and investigating the

effects of diverse sequence features on integration sites of DNA transposons [308]].

The overview of our study is presented in Figure [3.1] Taking advantage of SCNA data
from the TCGA Pan-Cancer project and collected genomic features, we firstly selected
predictors (genomic features) to reduce multicollinearity and identified common SCNA
breakpoint hotspots and non-hotspots (NHSs) across Pan-Cancer types. We then built
MLR models to investigate whether and how different genomic features contribute to the
genome-wide patterns of SCNA breakpoints. We also applied LR and extremely random-
ized tree classifier to contrast between common SCNA breakpoint hotspots and NHSs.

Our MLR models can explain >30% of SCNA breakpoint variation. The power of the
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Genomic features TCGA SCNAs data
Predictor selection based on the CHS and NHS
Spearman’s rank correlation identification
A 1 A
Multiple Linear Regression Contrasting between
(MLR) CHSs and NHSs
A 4 \ A A\ 4 A 4 4
MLR MLR for MLR for MLR MLR for Extremel
for amplification telomere-bound for SCNAs of Logistic ran domizgd
pooled and deletion and interstitial local each cancer regression tree classifier
SCNAs SCNAs SCNAs SCNAs type

Figure 3.1: An overview of the study design.

models remain stable when one considers separately different SCNA types (amplifications
and deletions), SCNA types of possible different generation mechanisms (telomere-bound
SCNAs and interstitial SCNAs), and SCNAs from different cancer types. We also demon-
strate that these genomic features are informative for telling apart common SCNA break-
point hotspots and NHSs by logistic models and extremely randomized tree classifiers.
This suggests that common breakpoint hotspots strongly depend on the local genomic

context.

3.2 Materials and Methods

3.2.1 SCNA data

The first SCNA data published in [47] were kindly provided by Travis I Zack and Rameen
Beroukhim (Dana-Farber Cancer Institute, USA). SCNAs were obtained by mapping the
signal intensities from the Affymetrix Genome-Wide Human SNP Array 6.0 in each can-
cer sample upon removing the probes in regions of recurrent germline CNVs identified
from normal tissue samples. The data were provided as files with 105 890 and 96 354 indi-
vidual SCNAs corresponding to amplifications and deletions. For each individual SCNA
the files contain its chromosomal coordinates (chromosome number as well as start and

end positions), TCGA barcode (sample identity), amplitude of copy number change and
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other information. We grouped SCNAs from the same cancer type based on the Pan-
Cancer project sample information from http://www.synapse.orqg (syn1710466).
Both boundaries of each SCNA were defined as breakpoints with a precision of about 1 kb
(the median inter-marker distance for Affymetrix Genome-Wide Human SNP Array 6.0 is
less than 700 bases). In total, we obtained 404 488 SCNA breakpoints from 4 943 samples
across 11 cancer types, of which 211 780 and 192 708 breakpoints correspond to ampli-
fications and deletions, respectively (Table [3.1)). We also subdivided all SCNAs into two
categories: telomere-bound SCNAs, with at least one boundary situated on a telomere,
and interstitial SCNAs, with both boundaries interstitial to the chromosome. Specifically,
for each chromosome we defined those SCNAs started at the left-most position or ended
at the right-most position of the chromosome as telomere-bound SCNAs (see Figure [3.2).
All the remaining SCNAs were considered to be interstitial. We further subdivided SC-
NAs into local and chromosome-level ones. Chromosome-level SCNAs were defined as
those having the left boundary at the left-most position and the right boundary at the
right-most position in the given chromosome, while all other SCNAs were considered
local (Figure[3.2). By definition, all chromosome-level SCNAs are also telomere-bound,
and all interstitial SCNAs are also local SCNAs. The second dataset was from the COS-
MIC database (version 73) [[154], and we retrieved 699 492 SCNAs generated by studies
other than TCGA (COSMIC study identifiers: 328, 382, 538, 585, 586, 589, and 650).

Leftmost SCNAs Rightmost SCNAs

Telomere-bound / chromosome-level SCNA

Telomere-bound / local SCNA

Telomere-bound / local SCNA

Interstitial / local SCNA

Interstitial / local SCNA

Figure 3.2: Schematic illustration of SCNA categories considered in this work.
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Table 3.1: Summary of somatic copy number alteration (SCNA) data from The Cancer Genome Atlas Pan-Cancer project

Breakpoints
Cancer type Abbr Sample SCNA Amplification Deletion
T size breakpoints Interstitial | Telomere-bound | Interstitial | Telomere-bound

Local | Chr. level | Local Local | Chr. level | Local
Bladder urothelialc carcinoma BLCA 90 13 344 4562 802 1172 3900 1326 1582
Breast invasive carcinoma BRCA 745 99 574 42 268 2624 8792 25414 8610 11 866
Colon adenocarcinoma COAD 349 21 650 4222 2318 2004 6672 3966 2468
Glioblastoma multiforme GBM 485 28 462 10 162 2078 1074 10234 2556 2358
Head and neck squamous cell carcinoma HNSC 270 24 272 6 990 1130 3068 5586 3320 4178
Kidney renal clear cell carcinoma KIRC 373 9 040 1818 1024 860 1756 2230 1352
Lung adenocarcinoma LUAD 292 34 952 12 080 1890 3430 8 006 4882 4664
Lung squamous cell carcinoma LUSC 261 34 400 10 828 1106 3998 7992 4628 5848
Ovarian serous cystadenocarcinoma ov 457 92216 41 238 2762 10720 19 200 7176 11120
Rectum adenocarcinoma READ 147 12 358 2 620 1114 1090 3694 2328 1512
Uterine corpus endometrial carcinoma UCEC 376 34 220 18014 1196 2726 6 570 2132 3582
Total 3845 404 488 154 802 18044 38934 99 024 43 154 50530

Abbr., Abbreviation; Chr., Chromosome.

¢ dHLdVHD
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3.2.2 Data collection on genomic features

A total of 29 genomic features were considered as potential predictors of the SCNA pat-
terns (Table[3.2). Their genomic coordinates were either obtained from public databases
and published studies or identified in this study. All coordinates correspond to the human
genome assembly hgl9 and, where necessary, the University of California, Santa Cruz

(UCSCQ) liftOver tool was used to convert the hg18 coordinates to hg19 [286].

Table 3.2: Genomic features used in the regression analyses

Category Predictor Measure Source
A-phased repeats Coverage Non-B DB version 2
Mirror repeats Count Non-B DB version 2
. Direct repeats Coverage Non-B DB version 2
DNA conformation Inverted repeats Coverage Non-B DB version 2
Z-DNA Coverage Non-B DB version 2
G4 log1p(count) Non-B DB version 2
Microsatellites Coverage UCSC Genome Browser
SINEs log1o(count) UCSC Genome Browser
L1 Coverage UCSC Genome Browser
L2 Coverage UCSC Genome Browser
LTR retrotransposons Coverage UCSC Genome Browser
DNA sequence DNA transposons Coverage UCSC Genome Browser
Low-complexity repeats Coverage UCSC Genome Browser
Double-strand breaks Coverage Tchurikov et al. (2013)
Self-chain segments Coverage This work
GC content Coverage This work
Simple repeats Coverage UCSC Genome Browser
Gene regulation H3K9me3 Count Barski et al. (2007)
CpG islands Coverage UCSC Genome Browser
Distance to centromere logip(distance in bp)  This work
Chromosome structure . . . .
Distance to telomere logio(distance in bp)  This work
Recombination motif Coverage This work
Evolutionary features Conserved DNA elements Count Siepel et al.(2005)
Indel rate Coverage Human-Chimp alignment
Substitution rate Coverage Human-Chimp alignment
Replication timing Sum Hansen et al. (2010)
Functional features E{(on Coverage UCSC Genome Browser
miRNA genes Coverage miRbase database
Fragile sites Yes/no Fungtammasan et al. (2012)

Chromosomal coordinates of the following genomic features were downloaded from the
UCSC Genome Browser [286]: probes of the Affymetrix Genome-Wide Human SNP
Array 6.0 (retrieved from the SNP/CNV Arrays track); long terminal repeat (LTR) retro-
transposons, L1, L2, SINE, DNA transposons and low-complexity repeats (retrieved from
the RepeatMasker track); telomeres, centromeres, and genome assembly gaps (retrieved
from the Gap track); microsatellites; simple repeats; CpG islands; exons and self-chain

regions (SCs). The latter elements are essentially pairs of short (up to 1 kb) low-copy
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repeats either in direct (+) or inverted (-) orientation [306]. Following [306]] we only con-
sidered self-chain segments (SCSs) consisting of paired SCs located on the same chro-
mosome as well as their spacing gaps with the total lengths of up to 30 kb. Furthermore,
we removed any SCSs overlapping with gaps in the human genome assembly (including

centromeres, telomeres, heterochromatin regions, etc.) and segmental duplications.

Non-B DNA motifs (A-phased repeats, direct repeats, inverted repeats, mirror repeats,
G4s and Z-DNA) were downloaded from the non-B DB version 2 [299]. We used the
dataset of conserved DNA elements in vertebrates published by Siepel ef al. [309]]. Re-
gions containing DSBs were downloaded from Tchurikov et al. [310]. Genomic coor-
dinates for each histone modification marker H3K9me3 in CD4" T cells were obtained
from the study of Barski ez al. [293]]. Replication timing (RT) data for the lymphoblastoid
cell line GM06990 were obtained from Hansen ef al. [287)]. For each 1kb window of the
genome sequence we obtained percent-normalized tag density values for the six phases
of the cell cycle (denoted G1b, S1, S2, S3, S4 and G2). As suggested by the authors, a
weighted average of the data based on the progression of each cell cycle was utilized, and

RT was defined by the following formula:
RT = (0.917x G1b)+(0.75x S1)+(0.583 x .52) +(0.417 x S3) +(0.25 x S4) + (0 x G2).

Higher RT' values correspond to earlier replication events. The percentage of G/C nu-
cleotides (GC coverage) for specific genomic regions was calculated using the nuc utitl-
ity, which is part of BEDTools [311]. The genome-wide distribution of the 13-mer CC-
NCCNTNNCCNC motifs related to recombination hotspots was obtained by FUZZNUC
searches (as implemented in the European Molecular Biology Open Software Suite pack-
age [312]). We obtained the coordinates for fragile sites and miRNA genes from a pre-
vious study [307] and miRbase [313]], respectively. The rates of nucleotide substitutions

and indels were calculated based on human-chimpanzee alignments as described in [297]].

3.2.3 Data transformation and prescreening of SCNA predictors

Genomic features described above were considered as potentially affecting the patterns
of SCNA occurrence across the genome. We partitioned the human genome into non-
overlapping 1 Mb windows, after excluding gaps in the genome assembly. The features
were measured as counts (number of copies in a window), coverage (fraction of a win-

dow occupied by the feature), distance in base pairs to a telomere or a centromere, or
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sum (specifically, the sum of the RT values of 1kb fragments in a 1 Mb window) (Table
[3.2). All features were evaluated for normality, and if necessary transformed by the loga-
rithm function to approximate it (Table [3.2)). In order to improve the efficiency of model
selection for the subsequent regression analyses (see below) and reduce the influence of
multicollinearity, we performed the same filtering process for the genomic features as
in [307, 308]. We used hierarchical clustering to identify clusters of features based on
Spearman’s rank correlation coefficient using a threshold of 0.8. From each such cluster,

we selected one representative feature, thus ensuring relatively low linear dependencies.

3.2.4 Identification of common hotspots and non-hotspots for break-

points across cancer types

Breakpoint hotspots, i.e., genomic regions in which breakpoints are significantly enriched,
were identified according to the method described in [295] 297, |314]]. We split the human
genome into non-overlapping 1 Mb windows and excluded from consideration windows
with extremely low Affymetrix Genome-Wide Human SNP Array 6.0 probe density (be-
low three standard deviations from the mean). The number of breakpoints for each cancer
type was counted in each 1 Mb window. The same procedure was applied to SCNA break-
point positions randomized 1000 times in order to generate the null distribution expected
by chance. Randomization and counting of breakpoints were performed using BEDTools
[311]. We assumed a normal distribution for the randomly generated samples and com-
puted P-values from the parameterized normal cumulative density function. The windows
with false discovery rate (FDR) corrected P < 0.05 were defined as breakpoint hotspots.
We defined the 1 Mb breakpoint hotspots shared in all 11 cancer types as CHSs and the 1
Mb windows which are not identified as breakpoint hotspot in any cancer type as NHSs.
The remaining 1 Mb breakpoint hotspots were defined as non-common hotspots (NCHSs),
including hotspots found in only one cancer type and hotspots identified in some, but not

all cancer types.

3.2.5 Multiple linear regression analysis

MLR models an approximately continuous response on the predictors. MLR builds the
linear relationship between the predictors and the response. All surveyed genomic fea-
tures measured in 1 Mb segments were used as potential predictors of SCNA occurrence

across the human genome. The density of SCNA breakpoints in every 1 Mb window
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was determined both for all cancer types pooled together and for each cancer type indi-
vidually. In addition, in each window we also calculated the breakpoint density of copy
number amplifications and deletions, as well as telomere-bound and interstitial SCNAs.
Further, for each window we also computed the SCNA breakpoint densities after exclud-
ing chromosome-level SCNAs with both boundaries located approximately at telomeres.

These densities were used as response variables for MLR.

To diagnose multicollinearity of each predictor, variance inflation factors (VIFs) were
calculated to avoid problems caused by the instability of the coefficients. R? was used
to capture the explanatory power of the MLR model. For the MLR model, the relative

contribution to variance explained (RCVE) of each predictor was defined as:
RCVE =1-— Rieduced/R?ulb

where R?ull and R? , ., denote the residual sum of squares of the full model (including
all of the tested predictors) and the reduced model without the predictor of interest, re-
spectively. Moreover, we tested the robustness of the MLR model by substituting some of
the predictors with other highly correlated features. We performed k-fold cross validation
[315] of the MLR model by randomly dividing the data into k-folds of the same size,
using k-1 folds of the data as a training dataset, and testing the model on the remaining
fold. The results from each fold test are combined to produce a single estimate, which we
call k-fold MLR. The mean of the k-fold adjusted R? for the model and k-fold RCVE for
each predictor are denoted as k-fold adjusted R? and k-fold RCVE, respectively.

All statistical analyses were performed in the R environment [316]. The MASS [317]] and
Car [318]] packages were used to generate the common diagonostic plots (e.g., residual
plots, Q-Q plots) and the QuantPsyc [|319]] package was used to calculate the standard-
ized coefficient of predictors (with the signs of plus or minus denoting the positive or
negative effect that predictors have on the response). The DAAG [320] package was used
to perform k-fold cross validation. RCVEs were represented graphically in heatmaps.

Predictors with FDR-corrected P < 0.05 are considered to be significant.
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3.2.6 Distinguishing between common hotspots and non-hotspots by

logistic regression

LR was used to distinguish between CHSs (binary response 1) and NHSs (binary response
0) using the same predictors as in the MLR model. To eliminate the possible small-sample
size bias we increased the number of CHSs by applying a sliding procedure. Specifically,
we divided the human genome into sliding windows of 1 Mb in length with a step size
of 100 Kb. We also applied rare events logistic regression (RELR) [321] to reduce the
sample imbalance bias. The RELR analysis was performed with the help of the statis-
tical software Zelig (http://gking.harvard.edu/zelig) [322] using the same
predictors as in the LR model. We used pseudo R? to capture the explanatory power of
the LR and RELR models. The relative contribution of each predictor for both models

(relative contribution to variance explained, RCVE) was calculated by the formula:
RCVE = [(Dy — D) = (Do — D(—))]/(Do — D),

where Dy and D are the null deviance and residual deviance of the model, respectively,

and D_,) is the deviance of the resulting model after removing the predictor of interest.

3.2.7 Distinguishing between common hotspots and non-hotspots by

an extremely randomized tree classifier

A classification decision tree [[323] is an input-output model represented by a tree struc-
ture. As a single decision tree usually suffers from high variance, ensembles of deci-
sion trees have been proposed to circumvent this problem. In this work, we applied the
extremely randomized tree classifier to distinguish between CHSs and NHSs using the
same features as in the MLR and LR models. The extremely randomized tree classifier is
implemented in Scikit-Learn, a collection of Python modules of common machine learn-
ing algorithms (http://scikit-learn.orqg) [324]. We chose to build 500 trees
to obtain robust results, growing each tree to its full depth. To balance the input data
classes, sample weights were passed to the classifier. The predictive performance of the
classifier was assessed by AUC obtained on the dataset by 5-fold cross-validation: in each
validation round 80% of the data were used as the training data and the remaining 20%
were used as the test data. The final AUC values were computed by averaging AUCs over

the 5-folds. Feature importance in extremely randomized tree classifiers was assessed
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based on the mean decrease impurity importance, which gets computed and normalized

in Scikit-Learn by default.

3.3 Results

3.3.1 Identification of SCNA breakpoint hotspots

In this work we analyzed data on 404 488 SCNA breakpoints [47] in 11 cancer types (Ta-
ble [3.1). To characterize the genome-wide patterns of SCNA occurrence, we divided the
human genome into 1 Mb non-overlapping windows, after removing gaps, and calculated

the density of SCNA breakpoints within each window. Based on the randomization pro-

cedure described in the [Materials and Methods| section, we identified 81-331 breakpoint
hotspots in individual cancers (FDR-corrected P < 0.05). As seen in Figure differ-

ent types of cancer often share breakpoint hotspots, but also have their specific hotspots.

Based on the definitions in the [Materials and Methods| section, we identified 29 CHSs,
1824 NHSs and 685 NCHSs.

3.3.2 Human genomic features

To identify potential correlates of SCNA breakpoint patterns, we compiled a set of diverse
genomic features, of which some, including non-B DNA sequences, and transposable
elements, were previously investigated for their effects on SCNA breakpoints [297], while
several other features, such as distance to centromere and DSBs, are used for this purpose
in this work for the first time. In total, we examined 29 features that can be generally
categorized into six groups: non-B DNA conformations; DNA sequence; gene regulation
and expression; evolutionary features; chromosome structures; and functional features
(Table[3.2). Following Fungtammasan et al. [307] and Campos-Sanchez er al. [308], we
used hierarchical clustering with Spearman’s rank correlation to remove some strongly
correlated features (Figure B.1). Finally, 25 features were used for subsequent regression

analyses.
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3.3.3 Impact of genomic features on the frequencies of SCNA break-

points

We examined to what extent the observed genome-wide patterns of breakpoints could be
explained by genomic features. Following an approach similar to the one described in
[307, 308]], the density of SCNA breakpoints (response) calculated in each 1 Mb window
was represented as a function of the 25 genomic features (predictors) measured in the
same 1 Mb window. The resulting MLR model accounted for 31.36% of the variation
in the breakpoint density and contained 11 significant predictors (Table |3.3). The pre-
dictor with the strongest positive effect in the model is direct repeat coverage (10.35%).
Other predictors with a significant positive effect are L1 coverage, low-complexity re-
peat coverage, SINE count, conserved DNA element count, CpG island coverage, and
inverted repeat coverage with the RCVE ranging from 0.89 to 2.06% (Table [3.3] Figure
[3.4). The predictors with the strongest negative effect are distance to telomere (29.15%)
and distance to centromere (14.55%). Less significant predictors with a negative effect
are mirror repeat count (6.68%), Z-DNA coverage (1.14%) and simple repeat coverage

(0.98%).

Table 3.3: The multiple linear regression (MLR) model for pooled SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere 0243 1.265 4.24 x 1073  14.55 19.76
Conserved element count 0.113 3.382 1.88 x 107% 1.18 1.07
CpG island coverage 0.072 1.133 3.88x 1079 1.43 1.11
Direct repeat coverage 0.425 5433 7.69x1072% 1035 11.97
Inverted repeat coverage 0.098 3.330 1.17x107%  0.89 0.51
L1 coverage 0.136 3.677 1.66 x 107  1.57 1.67
Low complexity repeat coverage  0.142  3.069 8.34 x 1077 2.06 2.78
Mirror repeat count -0.303 4.284 1.12x 10718 6.68 7.70
SINE count 0.223 3.762 4.84 x 107 1.77 1.87
Distance to telomere 0419 1.883 2.81 x10772 29.15 32.21
Z-DNA coverage -0.108 3.146 2.46 x 107°%  1.14  Not significant
Simple repeat coverage -0.087 2434 6.67 x 107% 0.98 1.12
Adjusted R? 31.36
Five-fold adjusted R? 25.31

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

We repeated the same analysis replacing some of the predictors with highly correlated
predictors. For example, A-phased repeat coverage was replaced with GC content, re-
combination motif coverage or G4 count and we observed slight changes in both the
RCVE of predictors and R? of models. Most of genomic features remained significant in

these alternative models (Tables[A.T] [A.2] [A.3]and [A.4).
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Adjusted R-squared
A-phased repeat covergae
Distance to centromere
Conserved element count
CpG island coverage

Direct repeat coverage

DNA transposon coverage
Double strand break coverage
H3K9me3 count

Inverted repeat coverage

L1 coverage

L2 coverage

Low complexity repeat coverage
LTR retrotransposon coverage
Microsatellite coverage
Mirror repeat coverage
Self-chain segment coverage
SINE count

Distance to telomere

Z-DNA coverage

Exon coverage

Fragile site binary count
Indel rate

miRNA coverage

Simple repeat coverage
Substitution rate

All cancers _ BLCA BRCA COAD GBM _ HNSC _KIRC _ LUAD _LUSC OV READ _ UCEC
32.03%|  28.87%| 28.72%[ 26.89%| 13.66%| 30.11%| 17.39%| 32.90%| 32.02%| 30.05%| 28.49%[ 29.81%|
-14.55 -14.81 1116 -10.96 -4.58 -1123] -13.00] -9.04

118 0.92 1.55 1.37 0.68 1.73 0.81 0.84 1.41 0.94 1.75 |
1.44 2.13 1.28 1.14 3.09 1.17 1.48 1.48 1.28 1.30 1.40 111
0.89 1.39 L13 115 1.23 0.92 0.79 1.48
157 1.57 2.07 1.44 1.96 112 1.37 1.55 1.42 1.55 1.39
L11
2.06 1.41 1.79 3.40 1.63 1.33 1.48 2.15 2.09 2.04 2.99 1.76
-6.68 648  718]  695| -390| -634] -673] 681 -615[ 6.10] -7.57| -6.06
130
1.77 1.60 2.72 1.60 1.23 1.10 1.22 1.20 1.88 1.46 245
L14 SINID -1.19 169 200 142 o128 144  -099]  -1.03
-0.79

-0.98 -L02|  -130]  -0.98 -1.24 096  -1.07 -1.16

Figure 3.4: The effect of genomic features in multiple linear regression models. The
intensity of color is proportional to the RCVE in each model. Predictors in white color
are not significant. See Table@ for full names of cancer types.

We next applied MLR for breakpoints of two SCNA types—amplifications and deletions—
separately. The MLR model explained 29.52% (amplifications) and 27.88% (deletions)

of response variance. Notably, the predictors and the sign of their effect revealed by these

two MLR models are similar to those of pooled SCNA breakpoints (Tables [3.4] [3.5)), al-

though some differences were apparent. For instance, Z-DNA repeat coverage, which had

negative effect when both types of breakpoints were considered, disappeared in the MLLR

model for amplification breakpoints. Likewise, inverted repeat coverage lost its positive

effect in the MLR model for deletion breakpoints.

Table 3.4: The MLR model for SCNA amplification breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.293 1.265 1.88x107°2 2239 31.04
Conserved element count 0.118 3.382 1.17x107% 137 1.38
CpG island coverage 0.056 1.133 1.52x 107 093 0.73
Direct repeat coverage 0.347 5433 7.82x1071 734 5.73
Inverted repeat coverage 0.123  3.330 5.50 x 1079 1.50 1.83
L1 coverage 0.121 3.677 1.51x107% 132 0.60
Low-complexity repeat coverage ~ 0.106 3.069 2.73 x 10~% 1.22 0.07
Mirror repeat count -0.247 4284 1.17x107'2 470 5.61
SCS coverage 0.065 1375 9.83x107°%  1.00 Not Significant
SINE count 0.218 8.762 1.06 x 1079 1.79 1.34
Distance to telomere -0.411 1.884 4.54x 1075 2973 31.79
Simple repeat coverage -0.120 2.434 4.12x 107 1.96  Not Significant
Adjusted R? 29.52
Five-fold adjusted R? 21.46

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.
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Table 3.5: The MLR model for SCNA deletion breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere 0.192 1265 1.02x1072% 10.23 13.68
Conserved element count 0.099 3.382 1.36 x 107% 1.02 0.34
CpG island coverage 0.074 1.133 4.01 x 107%  1.68  Not Significant
Direct repeat coverage 0426 5.433 9.81 x 10727 11.66 12.54
L1 coverage 0.131 3.677 5.21 x107%  1.63 1.63
Low-complexity repeat coverage ~ 0.148 3.069 5.67 x 1077 2.50 2.09
Mirror repeat count -0.304 4284 5.17x 10718 7.56 8.55
SINE count 0.205 8.762 4.32x 1079 1.67 1.19
Distance to telomere -0.383  1.884 1.42x107% 2730 33.00
Z-DNA coverage -0.119 3214 870x107%  1.54 Not Significant
Adjusted R? 27.88
Five-fold adjusted R? 19.48

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

Distance to telomere is a predictor with the strongest negative effect for both pooled
SCNA breakpoints and the breakpoints corresponding to the two individual SCNA types—
amplifications and deletions (Tables [3.3] [3.4] and [3.5). In order to remove the confound-
ing effect of this parameter, we next divided SCNAs into two categories: telomere-bound
SCNAs, with one boundary located in the telomere and interstitial SCNAs, with both
boundaries interstitial to the chromosome [47]]. MLR models accounted for 31.90 and
20.24% of the variation for telomere-bound SCNAs and interstitial SCNAs, respectively.
Significant predictors of telomere-bound and interstitial SCNAs are listed in Tables [3.6]
and Distance to telomere is a dominant predictor for telomere-bound SCNAs (rela-
tive contribution of 29.97%), while for interstitial SCNAs the most significant predictor
is distance to centromere (relative contribution of 45.91%). Distance to centromere and
SINEs are also significant for both SCNA types. However, the relative contribution of
distance to centromere is substantially reduced for the telomere-bound SCNAs compared
with interstitial SCNAs. Moreover, the other significant predictors for telomere-bound

SCNAs are quite different from the significant predictors for the interstitial SCNAs.

By definition, the breakpoints of chromosome-level SCNAs are fixed at telomeres. We
therefore excluded chromosome-level SCNAs from all the pooled SCNAs before con-
ducting MLR analyses. We found that the model could explain 30.36% of the variation
and included 10 significant predictors (Table[A.5]). Notably, the predictors and their effect
are similar to those of pooled SCNAs.

We also performed similar analyses for each cancer type and found the adjusted R? of
models to be greater than 26% for all cancer types except for glioblastoma multiforme
(13.66%) and kidney renal clear cell carcinoma (17.39%). Similar to the MLR model of

the pooled SCNA breakpoints, we identified direct repeat coverage, L1 coverage, low-
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Table 3.6: The MLR model for telomere-bounded SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.163 1265 1.35x 1078 6.49 7.48
Conserved element count 0.109 3.382 3.24 x 107% 1.07 1.03
CpG island coverage 0.070 1.133 6.38 x 1079 1.32 0.22
Direct repeat coverage 0439 5433 7.06x 1073 1091 10.07
L1 coverage 0.160 3.677 3.52x 10797 215 2.18
Low-complexity repeat coverage ~ 0.154  3.069 9.67 x 1078 2.36 2.20
Mirror repeat count -0.329 4.284 6.39 x 10722 7.78 8.32
SINE count 0.184 8762 1.57 x 107% 1.18 1.10
Distance to telomere 0429 1.884 8.74x 10776 2997 31.98
Z-DNA coverage -0.115 3214 9.05x107% 127 0.60
Adjusted R? 31.90
Five-fold adjusted R? 24.40

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

Table 3.7: The MLR model for interstitial SCNA breakpoints

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere  -0.349 1.265 6.63 x 10-% 4591 53.44
H3K9me3 count 0.143 2272 9.89 x 1078 4.27 2.80
LTR coverage -0.090 2206 6.65x107% 174 1.95
SINE count 0.178 8.762 7.12 x 107% 1.72 1.53
Simple repeat coverage -0.122  2.434 1.07 x 1079 291 2.58
Adjusted R? 20.24
Five-fold adjusted R? 14.95

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

complexity repeat coverage and SINE count as significant positive predictors for almost
all cancer types (Figure [3.4). The distance to telomere, distance to centromere and mirror

repeat count remained significant negative predictors for each cancer type (Figure [3.4).

We also conducted 5-fold cross validation for all the MLR models. While the MLR
model trained over the pooled breakpoint dataset yielded an adjusted R? of 31.36%, the
R? of the 5-fold MLR built from the pooled breakpoint dataset was 25.31% (Table .
Moreover, the significant predictors and their effects identified in 5-fold MLR are similar
to those of MLR (Table [3.3). The 5-fold MLR results for the other MLR models are
provided in Tables Tables [A.IHA.5| and Figure [3.5] The consistency between the
MLR model and 5-fold MLR model indicates that the MLR model demonstrates good

predictive ability and generalizes well on validation data sets.

We also assessed the generalization ability of our MLR model on an independent dataset

obtained from the COSMIC database (see[Materials and Methods|section). On this dataset
the MLR model and the 5-fold MLR model accounted for 41.16 and 36.99% of break-

point variation, respectively (Table [3.8). The most significant predictors, e.g., distance

to telomere, mirror repeats and distance to centromere identified in the MLR model for
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Allcancers BLCA BRCA COAD GBM  HNSC KIRC LUAD LUSC OV  READ UCEC
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Figure 3.5: The effect of genomic features in 5-fold MLR models. The intensity of color
is proportional to the RCVE of each model. Predictors in white color are not significant.
See Table [3.1] for full names of cancer types.

pooled breakpoints from TCGA are also found to be significant in the MLLR model on
the independent dataset. However, predictors, including exon coverage, H3K9me3 count,
LTR retrotransposon coverage, and indel rate, gained significance in this data set. Exon

coverage and indel rate are among the top four features in the model presented in [297].

Table 3.8: The MLR model for SCNA breakpoints from an independent data set

Predictor SCE VIF P-value RC,% Five-fold RC,%
A-phased repeats coverage -0.133 5312 2.15x107%  0.79 0.78
Distance to centromere -0.086 1.299 1.24x107%  1.36 1.29
CpG island coverage 0.059 1.198 4.66 x 107%4 0.71 0.67
H3K9me3 count -0.153 3.072 2.08 x 10798 1.82 1.87
LTR retrotransposon coverage -0.099 2230 1.89 x 107%  1.06 0.94
Mirror repeat count -0.128 4447 9.17x107% 0.88 0.67
Distance to telomere -0.212  1.634 548 x 10726 6.56 7.12
Exon coverage 0.202 3.551 6.70 x 107'2 274 2.87
Indel rate 0.121 5.124 5.85 x 107% 0.68 0.69
Adjusted R 41.16
Five-fold adjusted R? 36.99

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

3.3.4 Contrasting between common hotspots and non-hotspots by lo-

gistic regression

We investigated how genomic context affects the distribution of common breakpoint
hotspots in cancer genomes. To this end we built a standard LR model using 25 fea-

tures. The final standard LR model had a pseudo R? 51.83% and comprised two highly
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significant genomic features: distance to telomere (individual contribution 20.70%) and

direct repeat coverage (individual contribution 5.16%).

However, the standard LR model may suffer from small-sample bias and class imbalance.
In this work, the sample size of CHSs is small (sample size: 29) and sample sizes for
NHSs and CHSs are imbalanced (1824 versus 29). For this reason, besides standard LR,
we performed the rare events logistic regression (RELR). The estimates of a RELR model
are corrected for class imbalance. Moreover, to eliminate the possible small-sample bias,
we increased the number of common cancer hotspots by a sliding process, in which we

divided the human genome into 1 Mb overlapping widows with a step size of 100 kb.

Following the hotspot identification procedure described in [Materials and Methods]| sec-

tion, we identified 231 CHSs. The RELR model has a pseudo R? 51.83% and contains 12

significant predictors (Table [3.9; Figure [3.6). The strongest feature discriminating CHSs
and NHSs was distance to telomere (individual contribution 20.70%). This was a negative
predictor, indicating that CHSs tend to be positioned closely to telomere. Direct repeat
coverage is the strongest significant positive predictor (with the individual contribution
of 5.16%), which implies that CHSs are located preferably in a genomic context that is
enriched in direct repeats. We also performed RELR to contrast between non-common
hotspots (NCHSs) and NHSs as well as between NCHSs and CHSs. We found that ge-
nomic features cannot discriminate between them (data not shown).

Table 3.9: Rare events logistic regression for contrasting common hotspots with non-
hotspots

Predictor Standardized coefficient P-value Relative contribution,%
Conserved elements count 5029 5.18 x 10794 1.01
CpG island coverage 1.825 1.04 x 1079 1.14
Direct repeats coverage 11257 2.16 x 10~11 5.16
DNA coverage -5.251  3.82x107% 2.02
L1 coverage 8253 1.87x 107 2.95
L2 coverage -4.857 2.02 x 1079 1.61
Low-complexity repeats coverage 3.746  1.56 x 1074 1.08
Mirror repeat count 2741 5.41 x 1079 0.67
SINE count 10.513  6.26 x 10798 2.50
Distance to telomere -44.259  4.50 x 10727 20.70
Z-DNA coverage -4.025 1.16 x 1079 1.61
Simple repeat coverage -6.701  9.29 x 107 1.02
Explained Deviance 51.83

Interestingly, the important features determined by the model, such as distance to telom-
ere, direct repeat coverage, distance to centromere and L1 coverage, were also identified

to have significant effects on SCNA breakpoint in the MLR models.
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Figure 3.6: The normalized relative contribution of predictors in terms of distinguishing
common hotspots and non-hotspots for the rare events logistic regression model.

3.3.5 Extremely randomized tree classifier for telling apart common

hotspots and non-hotspots

We applied the extremely randomized tree classifier to distinguish CHSs and NHSs using
the same 25 features. For the CHSs, this classifier reaches the area under the receiver
operating characteristic (ROC) curve (AUC) of 0.96 (Figure [3.7p). The important fea-
tures determined by the classifier for CHSs are distance to telomere, indel rate, and direct
repeats (Figure [3.7p), which is generally consistent with the predictors identified in the
RELR model. These results suggest that the positions of common breakpoint hotspots

can be reasonable well predicted from local genomic properties.

3.4 Discussion

Using a MLR model trained on 19 genomic properties, a previous study revealed top four
genomic features, including indel rate, exon density, substitution rate and SINE cover-
age, contributing to SCNA breakpoint formation [297]]. Taking advantage of the TCGA
Pan-Cancer SCNA data, we considered a wider range of genomic features than in [297|]
and performed prescreening of features to reduce the effect of multicollinearity. Our

MLR model is more than two times more powerful than that in [297] (32% of break-
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Figure 3.7: Distinguishing common hotspots from non-hotspots from genomic features.
(a) ROC-AUC curves of the extremely randomized forests; (b) The normalized relative
contribution of predictors in terms of distinguishing CHSs and NHSs.

point variance explained versus 14%) and maintains its strong performance upon 5-fold
cross validation. By including six novel genomic features, our models revealed two novel
predictors—distance to telomere and distance to centromere—-which made the strongest
contribution to our model (relative contribution of 29.15 and 10.35% to MLR model for
pooled SCNA breakpoints). The inclusion of these two features may explain the superior-
ity of our model compared with that described in [297]. Notably, out of the top four fea-
tures reported in [297] SINE coverage ranked sixth in predictive importance in our model,
while the other three features—indel rate, exon density and substitution rate—were not
among the significant predictors in our model (rank below 13th, see Table[A.6). When ap-
plying the same model to an independent data set, exon density and indel rate have some
predictive power and rank second and last, respectively (Table[3.8). We, thus, encountered
some discrepancies between the results obtained on the TCGA data and the independent
COSMIC dataset. However, we found that distance to telomere, distance to centromere,
CpG island coverage and mirror repeat count affect SCNA formation in both data sets,
and the general consistency of the results obtained on these two datasets emphasizes the
reliability of our findings. The power of the models was upheld for different SCNA types
(amplifications and deletions), for SCNAs generated by distinct mechanisms (telomere-
bound SCNAs and interstitial SCNAs) and for SCNAs from different cancer types. The
TCGA Pan-Cancer analysis has revealed two types of SCNAs: interstitial SCNAs and
telomere-bound ones [47]. The frequency of interstitial SCNAs is inversely correlated
with their lengths [46, 47], while the telomere-bound ones tend to follow a uniform length

distribution [47], which reflects distinct mechanisms underlying their formation. Indeed,
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in our study distance to centromere contributes strongly to the MLR model for interstitial
SCNAs, while distance to centromere has a much smaller role than distance to telomere
and direct repeat coverage in the MLR model for telomere-bound SCNAs. According to
the MLR model the breakpoints of interstitial SCNAs are overrepresented close to cen-
tromeres, which is consistent with the previous observations [47, 325, 326[]. Frequent
breakages near centromeres may lead to their dysfunction and further cause chromoso-
mal instability [327]], which is a hallmark of diverse cancers [30]. The prevalence of
telomere-bound SCNAs in cancers may relate to telomere dysfunction [328], and those
breakpoints of telomere-bound SCNAs that are not located in telomeres were speculated
to occur at regions with DSBs [47]. Our MLR models for telomere-bound SCNAs favor
this hypothesis and demonstrate frequent occurence of DSBs in regions enriched in direct
repeats. Direct repeats have been documented previously to cause hairpins and to overlap
with chromosome regions undergoing somatic rearrangements [329]. The high prediction
power of direct repeats in every cancer type suggests their significant common role in

shaping the distribution of SCNA breakpoints.

We also demonstrate that mirror repeat count, L1 coverage, SINE count, low-complexity
repeat coverage and several other features have important albeit smaller roles in our MLR
models. SINEs and L1 have been extensively studied for their roles in non-allelic homol-
ogous recombination, which leads to deletions, duplications and inversions [303], 330].
The significant positive effect of low-complexity repeats for all cancer types is in line
with the fact that they are usually AT-rich and prone to causing the replication fork to
pause or stall [331]] and thus induce breaks. Moreover, AT-rich repeats constitute unstable
regions of the genome, conferring susceptibility to rearrangements [332]]. These results

suggest a general mechanism of genome instability induced by genomic context.

Using the same 25 genomic features to contrast CHSs and NHSs of SCNA breakpoints,
we applied extremely tree classifiers to train the model and obtained a more powerful
model compared with that in [297] (AUC: 0.96 versus 0.75). RELR and extremely tree
classifiers both revealed distance to telomere and direct repeat coverage as being partic-
ularly potent in distinguishing CHSs and NHSs of SCNA breakpoints. The consistency
of the results obtained by rare-event logistic models and extremely tree classifiers corrob-
orates the robustness of our conclusions. It is noteworthy that indel rate is an important
predictor in extremely tree classifiers, but not in rare event logistic models. The strong
contrast between CHSs and NHSs for SCNA breakpoints in terms of the distance to telom-

ere and direct repeat coverage indicates that CHSs strongly depend on the local genomic
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context. Given that only few known cancer genes are located in common breakpoint
hotspot regions [46, 297], Li et al. hypothesized that the high frequency of SCNAs in
these CHSs across cancer types is largely due to regionally higher mutation rate [297].
The regions with intrinsically higher mutation rate are independent of tumor type (or tis-
sue origin) and are usually shared across different caner types. Since the regions enriched
in direct repeats and/or those close to telomeres are susceptible to mutations, our models

comply with this hypothesis.
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Genome-wide analysis of somatic copy number
alterations and chromosomal breakages in

osteosarcoma

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and
adolescents. It is characterized by highly complex karyotypes with structural and numeri-
cal chromosomal alterations. The observed OS-specific characteristics in localization and
frequencies of chromosomal breakages strongly implicate a specific set of responsible
driver genes or a specific mechanism of fragility induction. In this study, a comprehen-
sive assessment of somatic copy number alterations (SCNAs) was performed in 160 OS
samples using whole-genome CytoScan High Density arrays (Affymetrix, Santa Clara,
CA). Genes or regions frequently targeted by SCNAs were identified. Breakage analysis
revealed OS specific fragile regions in which well-known OS tumor suppressor genes,
including TP53, RB1, WWOX, DLG2 and LSAMP are located. Certain genomic features,
such as transposable elements and non-B DNA-forming motifs were found to be sig-
nificantly enriched in the vicinity of chromosomal breakage sites. A complex breakage
pattern — chromothripsis — has been suggested as a widespread phenomenon in OS. It
was further demonstrated that hyperploidy and in particular chromothripsis were strongly
correlated with OS patient clinical outcome. The revealed OS-specific fragility pattern

provides novel clues for understanding the biology of OS.

This chapter has been published in Smida, J., Xu, H., Zhang, Y., Baumhoer, D., Ribi,
S., Kovac, M., von Luettichau, I., Bielack, S., O’Leary, V., Leib-Mosch, C., Frishman,
D., and Nathrath, M. (2017) Genome-wide analysis of somatic copy number alterations

and chromosomal breakages in osteosarcoma. Int. J. Cancer, DOI: 10.1002/ijc.30778.
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The manuscript was written by Jan Smida, Yanping Zhang and me, and edited by Valerie

B. O’Leary, Dmitrij Frishman and Michaela Nathrath.

4.1 Introduction

Osteosarcoma (OS) is the most common primary malignant bone tumor in adolescents and
young adults [333, 334]]. It is characterized by a complex karyotype with a high degree of
aneuploidy and numerous structural aberrations such as somatic copy number alterations
(SCNAs) and genomic rearrangements [335-337]. Curative treatment of OS is based on
multi-agent chemotherapy in addition to complete surgery. For patients with localized
extremity disease 10-year event-free survival rates reach approximately 60% [338]], but
have plateaued during the past decades. Further improvement in cure rates will most
likely depend on an increased knowledge about the underlying molecular mechanisms of

this disease.

Although several predictors, such as gene expression profiles [339] and chromosomal
alteration staging systems [336] have been proposed to anticipate tumor response to
chemotherapy, common markers of prognostic and therapeutic value remain to be identi-
fied. Genomic instability is a hallmark of most cancers, including OS [30, [340], is either
driven by positive selection or originates from sequence-specific unstable regions [30].
Chromosomal fragile sites are specific genomic locations that appear as gaps or breaks
on metaphase chromosomes under replication stress [341]. This can be induced by en-
dogenous or exogenous sources, and result in the generation of DNA double strand breaks
(DSBs) and genomic instability [342]. A variety of molecular pathways are involved in

DSB repair, and, in the case of deficient repair, copy number alterations result.
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To identify SCNAs, array-based copy number profiling has been utilized as an alternative
to next generation sequencing due to its lower consumption of precious biopsy material.
DNA copy number profiling was generally opted for over gene expression, as it provided
relatively stable profiles enabling differentiation of clinically relevant genetic subgroups
[343]. However, the analysis of whole genome array data for tumor samples can be dif-
ficult due to the fact that the total DNA amount in a cancer cell can differ significantly
from a diploid state, and tumor tissues often contain some proportion of normal cells [[81].
SCNAs have the potential to inactivate tumor suppressor genes or activate oncogenes, and
consequently play fundamental roles in gene regulation and pathobiological processes in
cancer [46]]. Analyses of SCNA data generated in recent years have provided insights
into driver genes for many tumor types [46, 47]. However, the enormous complexity
of genomic aberrations in OS has made it challenging to identify recurrent alterations
and genes driving tumorigenesis [335, 337|]. Furthermore, in OS the identification of
driver genes has been hindered by intra- and inter-tumor heterogeneity and limited sam-
ple availability [337),344-346]. Despite such complications, we and others have revealed
recurrent genomic loss in regions containing tumor suppressor genes such as LSAMP,
CDKNZ2A, RBI and TP53 and most frequent gains at sites including the oncogene MYC
and the gene RUNX2 — an important player in osteogenic differentiation [337,|344-347].

Apart from their genomic instability, OSs show a disease specific SCNA pattern. The phe-
nomenon of chromothripsis represents an important mechanism of carcinogenesis that dif-
fers from progressive accumulation of genomic rearrangements. The simultaneous frag-
mentation of distinct chromosomal regions (breakpoints showing a specific, non-random
distribution) and subsequent imperfect reassembly of those fragments leads to a specific
SCNA pattern (chromothripsis like pattern, CTLP). The initial discovery indicated that
chromothripsis is a widespread phenomenon, which can be seen in 2-3% of all cancers,
most notably in 25% of bone cancers [37]]. There is a strong evidence for an association
between chromothripsis and poor outcome in different cancer types, including multiple
myeloma [348], neuroblastoma [349]] and Sonic-Hedgehog medulloblastoma [350]. Al-
though the mechanisms governing chromothripsis are largely unknown, it has important
implications for our understanding of cancer and disease [351]], as such detailed analyses

of CTLPs may shed light on OS development and progression.

Herein, copy number profiles derived from 160 pre-therapeutic OS biopsies have been an-
alyzed using whole-genome CytoScan High Density (CytoScan HD) arrays (Affymetrix,

Santa Clara, CA). Integration of SCNAs for each sample was performed in order to iden-
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tify potential genes driving OS oncogenesis. Previously found OS driver genes were
identified as well as other OS-related genes. Chromosomal breakages were found to be
spatially clustered in certain locations, termed “broken regions”, harboring the regarded
OS tumor suppressor genes TP53, RB1, WWOX, DLG2, and LSAMP. Furthermore, chro-
mosomal breakages in these regions occurred early and were influenced by local genomic
context. Most noteworthy, both aneuploidy and CTLP occurrence were found to be cor-

related with clinical outcome of OS patients.

4.2 Materials and Methods

4.2.1 Tissue samples and patient characteristics

For CytoScan HD array analysis, a set of 160 fresh-frozen tissue samples derived from
pretherapeutic biopsies was used. All biopsies were evaluated by an experienced bone
pathologist who confirmed the tumor content to be >70% per sample. The patient cohort
samples were obtained according to the guidelines and approval of the Research Ethics
Board at the Faculty of Medicine of the Technical University of Munich (Technische Uni-
versitit Miinchen, Reference 1867/07) and local ethical committee of Basel, Switzerland
(Ethikkommission beider Basel EKBB, http://www.ekbb.ch, Reference 274/12).
The descriptive characteristics of this collection are summarized in Table (three sam-
ples were excluded due to insufficient copy number profiling quality). The vast majority
of the investigated samples (n=141) are classified as high-grade OS. The patients were
treated between 1990 and 2012 according to the protocols of the Cooperative German-
Austria-Swiss OS Study Group [352](reviewed and approved by the appropriate ethics

committees) after informed consent was obtained.

4.2.2 SCNA calling, driver gene identification, and tumor subclone

decomposition

DNA from frozen OS tissue was analyzed using the Affymetrix CytoScan HD platform.
The raw data are available in the ArrayExpress database [353]] under accession number
E-MTAB-4815. Nexus copy number software version 7.5 (obtained from BioDiscov-
ery, Inc.) was used to process CEL files. Copy number alterations were called using

the Single Nucleotide Polymorphism Fast Adaptive States Segmentation Technique 2
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Table 4.1: Clinical characteristics of 157 osteosarcoma patients

Descriptive statistics

Sex n=157
Male 83
Female 74
Age at diagnosis(years) n=157
Average 20.08
Median 15
Range 3-85
Metastases n=143
Yes 61
No 82
Observation period (months) n=147
Average 64.5
Median 56.2
Range 0.24-204.5
Response to neoadjuvant treatment n=128
Good 64
Poor 64
Survival n=130
Alive 90
Deceased 40
Event (relapse or death) n=143
Yes 60
No 83
Overall survival S-year: 74.8%  10-year: 62.9%
Grouped by event status S-year 10-year
Event 25.5% 27.3%
Grouped by response to chemotherapy 5-year 10-year
Good response 90.2% 83.6%
Poor response 66.7% 61.1%

(SNP-FASST?2) segmentation algorithm together with quadratic correction implemented
in Nexus. Sample- and chromosome-specific thresholds defining copy number gain, copy
number loss, high copy gain, and homozygous copy loss were based on true diploid re-
gions in individual tumor sample (performed using Nexus with subsequent manual cura-
tion by experts from BioDiscovery, Inc.). SCNAs with fewer than 20 informative probes
were excluded from further consideration. GISTIC 2.0 (Genomic Identification of Sig-
nificant Targets In Cancer) integrated in the Nexus copy number software was utilized to
identify potential driver SCNAs and genes by evaluating the frequency and amplitude of

observed events [217]].

Subclone structures were reconstructed for each tumor sample based on the SCNA call-
ing data from the Nexus copy number software. The SubcloneSeeker software [354] was
used to decompose tumor subclone structures. In this study, a subclone was defined as a
collection of cells in the tumor sample that contained the same set of SCNAs. The seg-
mental mean values of each segment generated by SNP-FASST?2 was used as input for the

SubcloneSeeker software [354] to reconstruct the clonal structures for each patient. The
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segtxt2db and ssmain applications were employed to cluster the segments based on their
cell prevalence values and to enumerate the clonal structures. The results were exported
using the treeprint utility. We refer to the SCNAs that occurred at the root node of the

subclone tree as “clonal” SCNAs and to all others as “subclonal’.

4.2.3 Definitions of chromosomal breakages and their association with

genomic features

We defined genomic starts and ends of SCNAs as SCNA breakpoints although their exact
chromosomal positions could not be determined. Breakpoints situated upstream of the
first or downstream of the last CytoScan HD probe on the same chromosome as well as
those located in telomeres or centromeres were ignored. We defined a genomic position
to be a chromosomal break when the log, signal value alteration between two adjacent

genomic segments (from centromere to telomere) was >0.3.

An association was determined between chromosomal breakages and multiple genomic
features as obtained from public databases and published studies or as identified in the
current study. All genomic coordinates of the features correspond to the human genome
assembly hgl9 and, when necessary, the University of California, Santa Cruz (UCSC)
liftOver tool was used to convert the hgl8 coordinates to hg19 [286]. Specifically, chro-
mosomal coordinates for Alu repeats, DNA transposons, L1 and long terminal repeat
(LTR) retrotransposons, exons, and conserved elements (the PhyloP46wayPrimates ta-
ble) were downloaded from UCSC Genome Browser [286]. Non-B DNA motifs were
obtained from non-B DB v2.0 [299]. Common fragile sites were found to be tissue- and
cell-type specific [355]]. As tissue-specific data was not available, we obtained genomic
coordinates for common fragile sites and non-fragile regions from a previous study [307].
We defined nucleotide substitution (or insertions/deletions, indels) rate as the ratio of the
total number of substitutions (or indels) to the total number of nucleotides in the human-

chimpanzee alignments (from UCSC Genome Browser).

The density of SCNA breakpoints, chromosomal breaks or genomic features (i.e., item)
were defined as the ratio of total base pairs belonging to the item to the total length of the
genomic region. The subdivision of the genome, shuffling, and feature density calculation

were performed using BEDTools [311]] and in-house Perl scripts.
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4.2.4 Detection of chromothripsis-like patterns in osteosarcoma

To detect CTLPs the algorithm described in [356] was applied to identify clustering of
copy number changes in the genome. Default settings were used except for the parameter
of log, signal value difference between two adjacent segments (set to 0.2). CTLP samples
were determined by the evidence of the copy number switching its status at least 12 times
(SwitchNo > 12) and log;, of likelihood ratio greater than 8 (log,, LR > 8) within a

single chromosome.

4.2.5 Estimation of tumor purity and ploidy

SNP-based DNA microarrays allow simultaneous measurement of the allele-specific copy
number at many different SNP loci in the genome. For each probeset, the log R ratio
(LRR) reflects the ratio of total signal intensity for both alleles against expected signals,
and the B allele frequency (BAF) is an estimate of the relative proportion of one of the
alleles with respect to the total signal intensity. LRR and BAF values were derived using
the affy2sv R package [357] together with the Affymetrix Power Tools. A total of 873
normal samples downloaded from the study [358]] (Gene Expression Omnibus accession
number: GSE59150) were also processed using affy2sv. The resulting LRR and BAF
were used as input for the GPHMM algorithm (version 1.4) [83] to obtain an estimation
of normal cell contamination and absolute copy number of genomic segments for each
sample. Population frequency of the B allele file required for running GPHMM was
created using the Perl script compile_pfb.pl in PennCNV [126], with BAF values from
the 873 normal samples as input. Another required file — GC model file (GC content
flanking SNP markers) — was generated using the Perl script cal_gc_snp.pl in PennCNV
[126]. Tumor ploidy was further determined following the protocol described in [359].
Specifically, the chromosome arm count in a tumor genome was estimated based on the
absolute copy number of genomic segments in the pericentric region. The copy number
of the corresponding arm was set to the absolute copy number of the segments in the
pericentric region if its size was > 1.5 Mb. Otherwise, if the size of the pericentric
segments was <1.5 Mb, the copy number of the chromosome arm was approximated
by the average copy number of all segments on that chromosome arm. Tumor ploidy was
assigned for each tumor sample based on chromosome counts and the DNA index, defined
as the average copy number of the tumor genome divided by 2. Tumor ploidy was set at

2 (near-diploid genome) for chromosome counts <60 and DNA index <1.3, and set at 4
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(near-tetraploid genome) for chromosome counts > 60 and DNA index > 1.3 [360].

4.3 Results

4.3.1 Overview of somatic copy number alterations in osteosarcoma

The SCNA landscape of pre-treatment tissue samples (n = 160) from OS patients (charac-
teristics of whom are provided in Table d.T]) was profiled using Affymetrix CytoScan HD
arrays. Three samples were excluded from copy number analysis due to insufficient data
quality. A genome-wide frequency plot of SCNAs is shown in Figure d.1] In our collec-
tions, the median size of the SCNAs was 1.2 Mb with the OS genome having on average
209 SCNA events. Regional gains and losses of various sizes were observed, ranging from
entire chromosomes to minor genomic segments. Many oncogenes and tumor suppressor
genes were located within these sites. No significant correlation was noted between the
total SCNA number, size, or median in relation to age or gender. An apparent correlation
trend was evident for total SCNA size and survival, although perhaps due to insufficient

power this did not reach significance.
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Figure 4.1: Genome-wide frequency plot of SCNAs in 157 OS samples. Copy number
losses and gains are in red and blue, respectively.
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4.3.2 GISTIC analysis and tumor subclone decomposition uncover

key driver genes affected by SCNAs in osteosarcoma

GISTIC 2.0 [217] 1s a tool to identify genes targeted by SCNAs that may drive cancer
development. The X and Y chromosomes were excluded from the analysis and were an-
alyzed separately in gender specific subsets of OS patients. GISTIC identified 88 regions
significantly altered in 157 OS samples (Figure 4.2} genomic locations of these regions
have been listed in Supplementary Table [A.7). The annotation of GISTIC regions re-
vealed 101 targeted genes (listed in Supplementary Table[A.8)), of which the vast majority
(74 transcripts) were protein-coding genes. Nine genes listed in the Catalogue of Somatic
Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) [361]] — namely NOTCH2,
PDGFRA, CDK4, CCNEI and RUNXI were located in copy-number gain regions, while
CDKNZ2A, FLII, TP53 and ATRX were identified in copy-number loss regions. 7P53 and
ATRX, often targeted by SCNAs, have been reported by us and others as important driver
genes in OS [344,|362,(363]]. Besides these well-known OS driver genes, GISTIC regions
contained several other OS-related genes, such as RUNX2 and DLG?2 (344, 364].

Analysis also revealed novel or recently described genes — FOXNI and WWOX. FOXN1
(17q11.2) is the main transcriptional regulator of thymic epithelial cell development, dif-
ferentiation, and function [365]]. Although it directly or indirectly regulates expression of
a broad variety of genes, it has not been found to date to be associated with cancer and,
in particular OS. The WWOX gene (16q23.1) spans a common fragile site FRA16D, as-
sociated with DNA instability in cancer [366]]. Recently, a series of reports demonstrated
the relevance of reduced or absent WWOX expression in various cancer types, includ-
ing OS, presumably due to chromosomal deletions and translocations within the WWOX
gene, highlighting an essential role for WWOX in tumor suppression and genomic sta-
bility [367-369]. Besides the tumor suppressor and pro-apoptotic activity of WWOX in
OS, its role in osteogenic differentiation and interaction with RUNX2 has recently been
elucidated [[370].

A malignant tumor often consists of genetically distinct cell populations, referred to as
tumor subclones, with each possessing a specific mutation subset. Determination of the
order in which SCNA mutations occur is a powerful means for identifying genes with
fundamental roles in oncogenesis. SubcloneSeeker [354] succeeded in inferring subclone

structures for 99.4% of tumors (156 out of 157). The mean number of predicted subclone
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Figure 4.2: Significantly altered regions and genes contained therein with copy number
alterations in osteosarcoma as identified by GISTIC analysis

structures for each tumor was 8.5 (ranging from 1 to 45). Thirty-six tumors had >10
possible subclone structures, which may be due to the complex nature of such tumor sam-
ples. Next, an investigation was undertaken as to whether or not SCNAs overlapping with
putative genes (identified by GISTIC) were clonal events. Previously reported findings
as revealed by alternative approaches were confirmed, to show that even for the well-
known OS driver genes such as TP53 and RBI, the majority (=~ 90%) of SCNAs were
subclonal events [363]]. Thirty-four tumors had clonal SCNAs overlapping 1-10 driver
genes, such as TP53, RB1, DLG2, WWOX, TERT, FOXNI1, APC, PTEN, LSAMP, ATRX,
and CDKNZ2A. No single gene had clonal SCNAs in the majority of tumors.
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4.3.3 Breakage analyses reveal osteosarcoma-specific unstable regions

DNA breakage is a prerequisite for cancer-associated genomic aberrations, including am-
plifications, deletions, inversions, and translocations. The genomic start and end of SC-
NAs were defined as breakpoints with a precision of ~ 1 kb (average inter-probe distance
for CytoScan HD Array is <1 kb). Since whole genome arrays have reduced ability
for inversion and/or translocation detection, the chromosomal breakage landscape was
investigated, which strongly indicated the prevalence of genomic rearrangements. The
criterion for considering a SCNA breakpoint as a chromosomal break was based on the
log, signal value alteration between two adjacent genomic segments >0.3 (Figure §.3)),
which is more stringent than the cutoff of 0.23 previously used [371]]. In total, 62 172
SCNA breakpoints and 19 810 chromosomal breaks were identified in 157 OS samples.
The number of chromosomal breaks per sample ranged from 17 to 425, with a median
value of 114. The number of breaks per mega base ranged from 4 (chromosome 2) to
14 (chromosome 17). In order to further examine the landscape of chromosomal breaks
across different chromosomes, each chromosome was divided into non-overlapping 1 Mb
regions following gap exclusion in the genome assembly and the density of chromosomal
breaks per block calculated. Results showed that 2% of genomic regions (61/3060) were
significantly enriched for chromosomal breaks (Bonferroni corrected P-values <0.1). Out
of these “broken regions”, 11% are located within common fragile sites, while 46% over-
lapped with non-fragile sites [307], indicating apparent OS-specific instability character-
1stics.
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Figure 4.3: Schematic illustration of chromosomal breaks. “d” means logs value changes
between two adjacent genomic segments at a specific genomic position.

Some of the OS-associated tumor suppressor genes [347], including TP53, RB1, WWOX,
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DLG?2 and LSAMP, but no known OS oncogenes, were located in these broken regions
(Figure f.4). To determine the evolutionary order in which SCNAs occurred in these
areas, a comparison was made with clonal SCNAs obtained by the SubcloneSeeker anal-
ysis. An enrichment of clonal SCNAs was found in these broken regions compared to
randomly generated ones (10 662 versus 4 579, P-value=0), implicating chromosomal

breakage as a clonal event of early occurrence in tumorigenesis.
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Figure 4.4: The genomic landscape of chromosomal breaks and associated genes in OS.
The outermost circle represents chromosomes and cytogenetic bands. The next circle
represents known OS driver genes and other genes as listed in Table[d.2] The third circle
represents “‘broken regions”. The innermost circle shows common fragile sites and non-
fragile regions in red and blue, respectively.

To identify genes prone to breakage in OS, we compared the distribution of actual chro-
mosomal breaks to a background distribution obtained by shuffling the position of chro-
mosomal breaks 1 000 times. This approach, while limited by a degree of uncertainty in

calling the location of chromosomal breaks (due to the inter-probe distance characteristic
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for CytoScan HD arrays), can nevertheless provide clues as to which genes are prone to
breakage in OS. A total of 343 genes were found to harbor chromosomal breaks signifi-
cantly more frequently than would be expected by chance (Bonferroni corrected P-values
<0.01). Of these, 24 genes (listed in Table {.2)) have been previously shown to be asso-
ciated with OS (DLG2, WWOX, TP53, RB1, LSAMP, PTEN, and APC [347]]) and other
tumors (DMD, EYAI, SCAPER, WNK1, KANSLI, TP63, FOXNI, and CHM) and found
by GISTIC analysis. TP53 was selected to demonstrate the distribution of chromosomal
breaks along the gene. As seen in Figure [4.5]the largest number of chromosomal breaks

was located in the first intron of this gene [344, 362].
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Figure 4.5: Plot of chromosomal breaks around the TP53 gene.

4.3.4 Chromosomal breakage in osteosarcoma is dependent on local

genomic context

To examine whether chromosomal breakages in OS were associated with the local ge-
nomic context, we investigated the joint distributions of chromosomal breaks, SCNA
breakpoints and multiple genomic features within a 1 Mb genomic window. Previous
studies have shown that DNA breakage can be induced by DNA structures such as non-B
DNA conformations, including Cruciform, G-quadruplexes (G4), Slip, Triplex, and Z-
DNA, and by highly homologous genomic repeats, such as L1 and Alu [268] 295, |306].
Further features considered in this analysis were common fragile sites, evolutionarily con-
served elements, substitution rate, indel rate and exon density which have been associated
with SCNA breakpoints [295, 297, 372]]. As expected, SCNA breakpoints and chromo-
somal breakage are highly correlated (P-value <2.20 x 1076, Spearman rho = 0.76). In
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Table 4.2: Genes frequently targeted by chromosomal breaks in osteosarcoma that were

previously shown to associate with osteosarcoma or other tumors

Gene Chromosome Start End OMIM Count % OS
DLG2 11 83 166 055 85338314 603583 113 27.39
WWOX 16 78 133 309 79 246 564 605131 102 31.85
DMD X 31137 344 33357726 300377 71 17.83
EYAI 8 72 109 667 72274 467 601653 62 20.38
SCAPER 15 76 640 526 77176217 611611 61 19.75
ERBB4 2 212240441 213403352 600543 43  12.74
FHIT 3 59 735 035 61237133 601153 42 8.28
WNK1 12 862 088 1020618 605232 40 14.01
KANSLI 17 44 107 281 44302740 612452 40 21.66
LRP1B 2 140988 995 142 889270 608766 39 12.74
TP53 17 7571719 7590868 191170 34 19.75
TP63 3 189349215 189615068 603273 34 10.83
USP34 2 61 414 589 61 697 849 615295 29 11.46
TERT 5 1253286 1295162 187270 28 10.19
FOXNI 17 26 850 958 26 865175 600838 25 1592
NE2 22 29 999 544 30094 589 607379 25 6.37
RB1 13 48 877 882 49 056 026 614041 24 8.28
NEGR1 1 71 868 624 72748 277 613173 21 7.01
CHM X 85116 184 85302 566 300390 21 7.01
LSAMP 3 115521209 116 164 385 603241 19 8.92
PTEN 10 89 623 194 89728 532 601728 11 3.82
APC 5 112043201 112181936 611731 10 3.18
RET 10 43 572 516 43 625797 164761 8 4.46
FANCA 16 89 803 958 89 883 065 607139 6 2.55

All genomic coordinates are based on human genome assembly hg19;
Count: the total number of chromosomal breaks found in gene regions;
% OS: percent of OS samples affected by chromosomal breaks;

gene names previously associated with OS [347]] are in bold;

gene names identified by GISTIC analysis in this study are in italics.

addition, it was also noted that SCNA breakpoints and chromosomal breaks were sig-
nificantly correlated with diverse genomic properties, including Alu, L1, Cruciform, G4,

Slip, Triplex, Z-DNA, exon density, and indel rate (Bonferroni corrected P-values <0.01;

Table [4.3).

We further examined the association of genomic properties to chromosomal breaks at
a higher resolution. Specifically, windows of 10, 20, 50, and 100 kb centered around
each chromosomal break were analyzed with subsequently merging of overlapped win-
dows. The density of each feature was computed and determined as to whether the feature
was enriched compared to the remaining regions. Compared with random expectation,
the vicinity of chromosomal breaks was significantly enriched for several genomic fea-
tures, including genomic repeats, non-B DNA conformation forming motifs, conserved
elements, exon density, substitution rate and indel rate (Table .4} Bonferroni corrected

P-values <0.01, Mann-Whitney test). These genomic features have been associated with
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Table 4.3: Correlations among SCNA breakpoints, chromosomal breaks and genomic
features

Chromosomal breakage = Genomic features P-values Spearman rho
Alu 6.01 x 10=29 0.20

DNA transposons 1.11 x 1072 0.05

L1 1.36 x 10712 0.13

LTR retrotransposons 3.31 x 1076 0.08

Cruciform 1.67 x 10717 0.15

G4 7.75 x 10721 0.17

Slip 3.00 x 10738 0.23

Chromosomal breaks Triplex 447 % 10-13 0.13
Z-DNA 1.63 x 10731 0.21

Conserved elements 2.92 x 1075 0.08

Exon density 1.67 x 10715 0.14

Common fragile sites 1.75 x 1072 -0.04

Substitution rate 1.69 x 10714 0.14

Indel rate 6.88 x 10720 0.16

Alu 1.50 x 107°2 0.27

DNA transposons 1.85 x 107° 0.08

L1 4.52 x 1072° 0.19

LTR retrotransposons 5.63 x 1073 0.05

Cruciform 1.16 x 10711 0.12

G4 2.69 x 10=49 0.26

. Slip 8.66 x 10748 0.26

SCNA breakpoints Triplex 3.48 x 102! 0.17
Z-DNA 8.73 x 10727 0.19

Conserved elements 5.36 x 1071 0.01

Exon density 2.27 x 10742 0.24

Common fragile sites 1.25 x 1072 -0.05

Substitution rate 5.26 x 1072 0.01

Indel rate 5.00 x 1078 0.10

Genomic features with Bonferroni corrected P-values less than 0.01 are in bold.

SCNA breakpoints in different cancer types [297], suggesting that OS is similar to other
cancers 1n regards to chromosomal breakage occurrence. Of note, common fragile sites
were not preferentially associated with chromosomal breaks at any genomic resolution in-
vestigated in this study (Table {.4)), indicating that OS has perhaps very specific breakage
characteristics that include already known common fragile sites as well as unique sites of

instability.

4.3.5 Clinical implications of chromothripsis-like patterns and hy-

perploidy

Applying the CTLP detecting algorithm to the OS SCNA dataset, a total of 87 chro-
mosomes from 52 patients passed the threshold and were termed CTLP cases. CTLP oc-
curred in 33.1% of patients within this dataset, implying that chromothripsis is a widespread

phenomenon in OS. This incidence rate was largely consistent with a previous study of
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Table 4.4: Correlation between chromosomal breaks and genomic features

. Enrichment in genomic regions centered at chromosomal breaks
Genomic features

10 kb 20 kb 50 kb 100 kb
Alu + + + +
DNA transposons + + + +
Ll + + + +
LTR retrotransposons + + + +
Cruciform + + +
G4 + + + +
Slip + + + +
Triplex + +
Z-DNA + + +
Conserved elements + + +
Exon density + +
Common fragile sites
Substitution rate + + + +
Indel rate + + + +

+ denotes enrichment of genomic features in genomic windows centered at chromosomal breaks
(Bonferroni corrected P-values <0.01).

a small sample size of bone cancers [37]. CTLPs had a tendency to occur frequently on
chromosomes 8 (11.5%) and 17 (9.2%). The OncoPrint shown in Figure [4.6| provides an
overview of SCNAs in specific genes and CTLP affecting individual samples. Chromo-
somal aberrations in TP53 occurred in 88% (46/52) of CTLP patients, compared to 56%
(59/105) of non-CTLP cases (P-value=1.0 x 1074, two-tailed Fisher’s exact test). We
analyzed three genes — RBI, WWOX and DLG2 — that frequently harbor structural vari-
ation in OS [344]]. Chromosomal alterations in RBI occur in 73% (38/52) of CTLP cases,
but only in 48% (50/105) of non-CTLP samples (P-value = 3.5 x 1073, two-tailed fisher’s
exact test). Chromosomal aberrations in WWOX occur in 85% (44/52) and 66% (69/105)
CTLP and non-CTLP samples, respectively (P-value=1.4 x 1072, two-tailed fisher’s ex-
act test). Finally, 83% (43/52) of CTLP cases harbored aberrations in DLG2, compared
with 57% (60/105) of non-CTLP cases (P-value=1.3 x 1073, two-tailed fisher’s exact
test). These observations indicate that chromosomal aberrations in 7P53, RBI, WWOX

and DLG2 genes are strongly associated with CTLPs in OS.

Furthermore, an investigation of the association between CTLPs and clinical data was
performed [373]]. As follow-up clinical data was available for 114 patients, CTLP was
detected in 33% (38/114) of this cohort. Notably, as shown in Figure {.7p, Kaplan-
Meier analysis revealed that patients with CTLP patterns in their tumors showed signif-
icantly curtained survival expectancies compared to those without CTLP (log-rank test,

P-value=7.06 x 10~%).
A successful estimation was made of tumor ploidy and tumor content for 90.4% (142/157)
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Figure 4.6: OncoPrint showing the distribution of SCNAs (CN gain and CN loss) for
genes TP53, RBI, DLG2 and WWOX and CTLP in OS patients (column). Each bar rep-
resents a sample. Green bars indicate samples with CTLP. Red and blue bars indicate
samples with CN loss and CN gain for a specific gene, respectively. Gray bars represent
samples without CTLP or without CN changes for a specific gene. The numbers on the
left show what percentage of samples is affected by CTLP or CN changes for a specific
gene.
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of samples using the GPHMM algorithm. These OS biopsies were estimated to have on
average 37.5% normal tissue contamination with a median ploidy of 2.7n. Following the
procedures for chromosome number estimation (as described in the “Materials and Meth-
ods”), the distribution of chromosome numbers was plotted in 142 samples to clearly
demonstrate a two ploidy status of the tumor genome (Figure 4. 7p). Near-diploid was de-
fined for tumors with chromosome number <60 and DNA index <1.3 (see ‘“Materials and
Methods” for details), without consideration for SCNAs presence or absence in tumors.
Near-tetraploid tumors had greater chromothripsis events than those classified as near-
diploid (Figure , P-value=4.60 x 1073, Fisher’s exact test). This was compatible with
results from a recent study linking chromothripsis with hyperploidy [374]. Patients with
tumors exhibiting near-tetraploid genomes had poorer survival compared with patients

having tumors with estimated ploidy of ~ 2 (Figure 4.74d).
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Figure 4.7: Clinical implications of chromothripsis and ploidy. (a) Kaplan-Meier survival
curves for CTLPs versus non-CTLP cases. The P-value is based on the log-rank test;
(b) Distribution of chromosome numbers in 142 OS samples, displaying the two ploidy
status of tumor genomes; (c) Association of the ploidy status with chromothripsis; (d)
Kaplan-Meier survival curves for near-tetraploid samples versus near-diploid samples.
The P-value is based on the log-rank test.

4.4 Discussion

Rarity and genomic complexity, as well as marked intra- and intertumoral heterogeneity,
have challenged the molecular characterization of OS etiology [347]. Given the difficulty
in acquiring a large cohort of samples in this rare tumor, we integrated DNA copy number
profiles of 160 pretherapeutic biopsies to identify recurrent genomic changes and driver

genes. Genome-wide profiles were performed on Affymetrix CytoScan HD platform,
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which has the highest resolution of SNP and non-polymorphic probes for detecting hu-
man chromosomal alterations. Copy number analyses confirmed high genomic instability
in the OS biopsies, with the vast majority of samples (82%) exhibiting highly complex
altered genomes. The unstable genome in the majority of OS is probably due to the de-
ficiency in homologous recombination repair [363]. The BRCA1/2 (important players in
homologous recombination pathway) deficiency associated characteristics in single base
substitutions, and large-scale genome instability signatures are evident in >80% of OS

[363].

Using GISTIC, we identified a number of genes which are frequently targeted in OS, in-
cluding already known driver genes (e.g., TP53 and ATRX) as well as other OS-related
genes, such as WWOX. WWOX is a putative tumor suppressor gene encompassing a com-
mon fragile site FRA16D, which is a frequent target of chromosomal rearrangement in
multiple cancers. The absence or reduced expression of WWOX have been linked to poor
prognosis in a wide variety of cancers, particularly in ovarian cancer and OS [375] 376].
In previous reports by others, the function loss of WWOX has been linked to chromoso-
mal deletions and translocations as well as loss of expression 367, 369]. In this study, we
showed that 32% of OS samples have at least one chromosomal break within the WWOX
gene, supporting the WWOX inactivation by chromosomal rearrangements. We further
showed that WWOX gene was located in “broken regions” (discussed below) and SCNAs
and chromosomal breaks in those regions more likely to be of early occurrence. The re-
sults are consistent with the hypothesis that loss of WWOX expression is an early event

in OS pathogenesis [369].

Genome-wide analysis revealed that chromosomal breaks are not randomly distributed
and clustered in “broken regions”. About half of these regions overlapped with non-fragile
sites, strongly suggestive of OS-specific fragility. Our observations comply with the find-
ings that unstable sites are tissue specific [3535]. It is noteworthy that OS-associated tumor
suppressor genes including TP53, RB1, WWOX, DLG2, and LSAMP [3477] are situated in
the “broken regions”. SCNAs in those broken regions were more likely to be clonal events
as opposed to those expected by chance. The early occurrence of breakages and the pres-
ence of multiple tumor suppressor genes in such regions may explain the complex and

aggressive nature of OS.

We further revealed that SCNA breakpoints and chromosomal breaks were significantly

correlated with diverse genomic properties, including Alu, L1, cruciform, G4, slip, triplex,
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Z-DNA, conserved elements, exon density, and indel rate. Genomic repeats such as L1
and Alu are interspersed throughout the human genome at high copy numbers, and non-
allelic homologous recombination events between different copies lead to duplications,
deletions, and inversions [330]. Repetitive DNA motifs may fold into non-B DNA con-
formation, thereby serving as chromosomal targets for DNA repair and recombination
leading to the formation of structural variations including CNVs, inversions and translo-
cations [329]. Therefore, it could be speculated that breakages probably occur at OS-
specific fragile sites with the potential to form stable secondary structures (e.g., non-B

DNA structures) and to consequently stall the replication fork.

Based on 20 patients including 9 OSs and 11 chordomas, Stephens et al. [37] estimated
that 25% of bone cancers were associated with chromothripsis. In our dataset, CTLPs
occurred in about one third of patients, suggesting that chromothripsis is a widespread
phenomenon in OS. Massive genomic rearrangement raised by chromothripsis apparently
represents an important mechanism of carcinogenesis, as distinct from progressive accu-

mulation.

Although the underlying cause of chromothripsis is not fully understood, several hypothe-
ses have been recently proposed [37, 377, 378]]. Firstly, chromothripsis might occur by
ionizing radiation induced DNA damage at a short or long stretch of the chromosome
[37,|377]. Secondly, telomere attrition may cause dicentric chromosomes which persist
through mitosis developing into chromatin bridges that further generate single-stranded
DNA and trigger DNA repair [37,379]. Thirdly, abortive apoptosis has also been consid-
ered as a possible mechanism [377], but it does not provide a reasonable explanation for
the localization of DNA shattering [378]]. Fourthly, premature chromosome compaction,
in which chromosomes are induced to undergo chromosome condensation before com-
pleting DNA replication, results in shattering of the incompletely replicated chromosome
[380]. An appealing explanation for chromothripsis is that the localized damage could
occur in one or two chromosomes (or chromosome part) physically isolated from other
chromosomes [381]]. The so-called nuclear structure “micronuclei” are widely observed in
cancer cell lines. Taking advantage of live cell imaging and single-cell genome sequenc-
ing, Zhang et al. demonstrated that chromatid fragmentation and subsequent reassembly
occur in the micronucleus and can generate localized genomic rearrangements, some of
which recapitulate all features of chromothripsis [382]]. Investigation of the association
between lesions in specific genes and chromothripsis will offer some insights into the

impact of chromothripsis in cancerogenesis. Our analysis indicates that SCNAs in the
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TP53, RBI,WWOX and DLG2 genes are strongly associated with CTLPs in OS. Among
them, DLG?2 frequently shows breakages in OS and may be a preferential target for chro-
mothripsis and breakage [344]. RBI is significantly copy-number altered in OS, while
the other candidate, TP53, has already been linked to chromothripsis in medulloblastoma
[350]. Utilizing an in vitro cell-based system, chromothripsis has been recently linked
to hyperploidy [374]. Indeed, we have shown that compared with diploid tumors, those
which are hyperploid had a greater chance to harbor chromothripsis events and less favor-

able outcomes.
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Preliminary analysis of somatic mutational
landscape of Marek’s disease lymphomas in

chickens

This chapter present the preliminary results of an ongoing project collaborated with Alexan-
der Steep from the Avian Disease and Oncology Laboratory in Michigan State University.
This chapter was written with the help from him. He did wet lab experiments and I did the
most of bioinformatics analyses. Marek’s Disease Virus (MDV) induce Marek’s Disease
(MD) in chickens, which is characterized by T-cell lymphomas. It was estimated that MD
costs the world-wide poultry industry 1-2 billion US dollars per year. Although vaccina-
tion against MDV-induced transformation has been successful in stopping the formation
of neoplasms in infected chickens, high-density poultry rearing practices have induced
MDYV evolution and increased MDV virulence. To develop more sustainable MD con-
trol measures, a fundamental understanding of the molecular etiology of tumorigenesis is
needed. Here we used multiple approaches including whole genome sequencing, whole
transcriptome sequencing, and DNA microarrays to explore the somatic mutational land-
scape of MD. We identified 54 high confidence driver genes, of which /IKZF'I encodes a
transcription factor associated with hematopoietic cell differentiation and has been linked
to the development of lymphoid leukemia. Our results contribute to the understanding
how somatic mutations drive transformation and lymphomagenesis, and will likely be

used to guide future disease control.
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5.1 Introduction

Marek’s Disease (MD) is a lymphoproliferative disease in chickens caused by Marek’s
Disease Virus (MDV), a highly oncogenic a-herpesvirus [383]]. Originally described as
a sporadic chronic disease, MD has increased severity drastically since its discovery in
1907 [383]], and today is manifested by paralysis, chronic wasting, and most notably
the development of multiple lymphomas in the viscera and musculature [384]]. It was
estimated that MD costs the world-wide poultry industry 1-2 billion US dollars per year,
which is likely an underestimation due to under-reporting [385]. The main strategies
for disease control focus on good housekeeping, optimization of genetic resistance to
MD, and vaccination against MDV-induced transformation [386]. As the first-developed
cancer vaccine, the vaccine against MDV successfully stops the formation of neoplasms
in infected chickens [387]. Despite the success of vaccination, multiple vaccine breaks
occurred throughout the second half of the 20" century [383, 388]. One explanation for
vaccine breaks is that vaccination control enhances the fitness and transmission of highly
virulent strains when vaccines are “leaky” and let the host survive but do not stop viral
proliferation and transmission [389]. To develop more sustainable MD control measures,
a fundamental understanding of the molecular etiology of tumorigenesis (e.g., somatic

mutations driving transformation and tumorigenesis) is needed [388]].

Virulent MDV goes through four overlapping stages of infection: early cytolytic, latent,
late cytolytic, and transformation [383,(390]. MDYV infection begins when chickens inhale
dander shed from infected chickens. Infectious dander is taken up by phagocytic cells in
the upper respiratory tract [391] and the virus is transported from the lungs to the lym-
phoid tissues: the spleen, thymus and bursa of Fabricius [392]]. In these organs the early
cytolytic phase, characterized by the infection of B lymphocytes, is evident between 3 and
6 days post infection (dpi) [393]]. The infected B cells induce the activation of CD4* T
cells, which in turn become infected and serve as the primary vehicle for MDV multipli-
cation and dissemination. From 7 dpi MDV enters a latent stage defined as the presence
and maintenance of viral genome without virus production [383]]. Infected T cells carry
the virus to the feather follicle epithelium, where infectious virus is assembled and shed
into the environment [394]]. In susceptible and/or unvaccinated birds, a second cytolytic
phase occurs between 14 and 21 dpi and infected CD4* T cells become transformed and
develop into fatal lymphomas [384]. The cell subpopulation transformed by MDV are

identical to those in which latent infection is established, suggesting that latent stage is
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necessary for transformation [383]].

The rapid onset of MD lymphomas suggests that genes carried on the MDV genome and
somatic alterations are directly involved in oncogenic transformation and lymphomage-
nesis. A major MDV oncogene is Meq (MDV EcoRI Q), which encodes a basic leucine
zipper (bZIP) transcription factor [395]]. Meq is expressed in lytically infected cells and T-
cell tumors with a variety of functions including transactivation, DNA binding, chromatin
remodeling and transcriptional regulation [383],|396]. Previous studies indicate that Meq
is necessary but not sufficient for MDV transformation, as deletion of Meq from a very
virulent MDV strain results in no lymphomas [397] and Meq is encoded and expressed
in non-oncogenic MDV strains [398]]. It has been revealed that MDV can integrate into
chicken chromosome and the integration seems to be random and common [399]. MDV
integration is necessary but does not guarantee transformation [400]], suggesting that ad-
ditional somatic alterations are needed. Given that MDV oncogenes (e.g. Megq) regulate
many host genes and pathways, it is believed that the interplay among somatic alterations,
MDV-induced gene expression regulation, and MDV integration plays a fundamental role

in MDV-induced transformation.

To test the hypothesis whether or not somatic mutations contribute to MDV-induced
transformation, we use multiple approaches including whole genome sequencing (WGS),
whole transcriptome sequencing (i.e., RNA sequencing), and DNA microarrays to ex-
plore the somatic mutational landscape of MD. The combination of approaches has not
yet applied to MD and is expected to reveal novel insight into MDV-induced tumori-
genesis. We identified 54 high confidence driver genes, whose functions include cell
adhesion, cell signaling, cellular proliferation, cell differentiation and immune response.
Notably, we found that disruptive mutations together with low gene expression of IKZF1
occurred in 12 of 26 (46%) MD tumors. IKZF1 has been found to play an important
role in hematopoietic cell differentiation and its loss of function has been linked to the
development of lymphoid leukemia. Our results contribute to the understanding of how
somatic mutations drive transformation and lymphomagenesis, and will likely be used to

guide future disease control.

93



CHAPTER 5

5.2 Materials and Methods

5.2.1 Experimental birds, materials, and tissue sampling

White Leghorn chicken lines 6 and 7 differ greatly in susceptibility to MD (line 6 resistant
and line 7 susceptible), and have been extensively studied to characterize the genetic basis
for MD resistance. In this experiment, we used F; progenies of lines 7 x 6 and parental
lines maintained in Avian Disease and Oncology Laboratory, United States Department
of Agriculture. A total of 200 F; chicks were inoculated at hatch with 1 000 plaque
forming unit (pfu) of the MDV JM/102W strain, which is classified as virulent type in the
virulent spectrum of MDV ranging from mildly virulent (m) to virulent (v), very virulent
(vv) and very virulent plus (vv+) [401]. After 8 weeks post-inoculation or until moribund
(4-8 weeks), chickens were necropsied for large late-stage tumors for the sake of easy
discrimination between tumor and surrounding tissue. In total, we collected 162 tumors
from 54 birds, and 64 of these tumors from 36 birds were used for different purposes:

SNP array genotyping, WGS and RNA sequencing.

Blood sampled from a pool of 6 F; birds not challenged with MDV was used as controls
for SNP array genotyping. For controls used in WGS, liver or the other gonad was sam-
pled from the infected bird. For controls used in RNA sequencing, RNAs were isolated
from purified CD4" T cells, the cell type most likely to be transformed by MDYV, from

unchallenged chickens of 2 and 6 weeks of age.

5.2.2 Whole genome sequencing, whole transcriptome sequencing and

SNP array genotyping

DNA from 22 unchallenged F; birds and 26 MD gonadal tumors specifically selected
from the 162 MD tumors mentioned above were subject to WGS. Four tumors (26-22=4)
were sequenced twice with a biological replicate using DNA isolated from adjacent cells.
Parental lines 6 and 7 were also sequenced to provide reference information. For RNA
sequencing, RNAs from 8 unchallenged F; chickens and the same 26 MD tumors were
subjected to sequencing. DNA from 6 F; birds and 72 MD tumors were subject to geno-
typing on a custom 15K Affymetrix SNP array. A pool of 6 Line 6 birds and a pool of 6

Line 7 birds were used as reference samples.
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Libraries for WGS and RNA sequencing were constructed using [llumina TruSeq Nano
DNA Library Preparation Kit and Illumina TruSeq Stranded mRNA LT kit, respectively.
Libraries were sequenced with an Illumina HiSeq 2000 to obtain 125 bp paired-end reads.
Base calling was performed with the Illumina Real Time Analysis v1.18.64 and the output

was demultiplexed and converted to FastQ format with the Illumina Bcl2fastq v1.8.4.

5.2.3 Analyses of whole-genome sequencing data

5.23.1 Read trimming, quality control, mapping, and post-processing

Adapters were trimmed from raw reads with Trimmomatic [402]. Read trimming via base
quality was performed using Sickle [403]. Trimmed reads were quality checked by using
FastQC [404]. The mapping and post-processing pipeline was designed following the
Genome Analysis Toolkit (GATK) best practices [405]. Trimmed reads of ample qual-
ity were mapped to the chicken genome assembly Gallus_gallus-5.0 using BWA-MEM
in the BWA package [406]]. Information for read groups was added using Picard (avail-
able at https://broadinstitute.github.io/picard/). At both “sequenc-
ing lane” level and “merged lane” level, duplicate read marking and local indel realign-
ment were performed using Picard and GATK (available at https://software.b
roadinstitute.org/gatk/), respectively. Versions and parameters for these tools

can be found at https://github.com/hongenxu/MDV_proj.
5.2.3.2 Detection of SNVs, indels, SCNAs, LOH and SVs

Somatic mutations include single nucleotide variants (SNVs), small insertions and/or
deletions (indels), somatic copy number alterations (SCNAs), structural variants (SV)
and loss of heterozygosity (LOH). The detection of somatic mutations was performed us-
ing tumor and matched normal whole genome BAM files generated in the steps described
above. Different callers use different calling strategies based on their underlying statisti-
cal or hierarchical assumptions. It is generally believed that candidate mutations detected
by several independent algorithms is less likely to include false positives than those by a
single algorithm alone [57]]. We employed multiple software tools to each type of somatic
mutations including SNVs, indels, SCNAs, SVs and LOH. Versions and parameters for
these tools can be found at https://github.com/hongenxu/MDV_proj.

We used a series of software packages including MuSE [74]], MuTect [|66]], JointSNVMix2
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[65]], SomaticSniper [[64]], VarDict [/0], and VarScan 2 [[69]] to detect somatic SNVs. For
indel detection, we used Indelocator [77|], VarDict, VarScan 2 and LoFreq [68]. The
details for post-filtering of SNV and/or indel calls by each tool are available athttps://
github.com/hongenxu/MDV_proj. All filtered SNV and indel calls by different
callers were combined using a post somatic mutation calling workflow—SomaticSeq [[73]].

We selected SNV candidates called by at least two callers for the following analyses.

To characterize SCNAs in MD lymphomas, Control-FREEC [89, 407]] and copyCat (avail-
ableathttps://github.com/chrisamiller/copyCat) wereused. For control-
FREEC, we further filtered out somatic SCNAs and LOH failed in both Wilcoxon test and
Kolmogorov—Smirnov test (P > 0.05). Details for generating chicken GC content and
mappability data for running each tool can be found at https://github.com/hon
genxu/MDV_proi.

WGS allows us to characterize somatic SVs and their breakpoints in base-pair resolu-
tion. In order to reduce the number of false positives, we used an integrated approach
combining three callers: BreakDancer [97]], Delly [100] and novoBreak [408]. Ver-
sions, parameters and post filtering strategies for these tools can be found at https:

//github.com/hongenxu/MDV_proij.

5.2.3.3 Inference of somatic mutational signatures from SNVs

Somatic mutational signatures are patterns in the occurrence of somatic SNV that linked
to potential mutagenic processes. In order to infer the mutational signatures of MD, we
used the R package SomaticSignatures [255], in which a mutation spectrum was decom-
posed with non-negative matrix factorization algorithm or principal component analysis.
The decomposition was performed on a known number of signatures ranging from 2 to 8
using non-negative matrix factorization based. The optimal number of signatures (r = 5)
was manually chosen based on the residuals sum of squares and the explained variance
between the observed and fitted mutational spectrum. The signature analysis was repeated

5 times with the same results obtained after each run.

5.2.3.4 Determination of driver mutations, genes and pathways

To determine which of the detected somatic mutations are likely driver mutations, we
used PROVEAN (Protein Variation Effect Analyzer) to predict whether or not a non-

synonymous SNV has an impact on the function of a protein [[168]. With somatic SNV
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and indel calls, significantly mutated genes (SMGs) were identified using three tools of
different strategies: mutation recurrence (MuSiC [183]]), CLUST bias of mutations (On-
codriveCLUST [188]]), and network analysis (MUFFINN [409]). For MuSiC analysis, a
gene was considered to be a SMG if its false discovery rate (FDR) < 0.2 for at least two
of three tests: Fisher’s Combined P-value test, Likelihood Ratio test, and the Convolution
test. For Oncodrive CLUST analysis, the minimum number of mutations to include a gene
was set to 1. Genes with g-value < 0.05 were considered as SMGs. Since MUFFINN
is designed for human cancers, human orthologs of chicken genes downloaded from In-
Paranoid version 8.0 [410] were used for MUFFINN analysis. Somatic mutation data for
chicken genes were subject to analysis as a list of human orthologs and mutation count
pairs. We considered 9 mutations types, including missense mutations, nonstop muta-
tions, nonsense mutations, mutations at translations start sites, mutations at splice sites,
in frame insertions, in frame deletions, frame shift insertions, and frame shift deletions.
A gene was considered to be a SMG if it was ranked in top 100 by at least two of four
different combinations between network algorithms (DNmax and DNsum) and functional
networks (HumanNet and STRING v10) for MUFFINN. Versions and parameters for run-
ning these tools can be found at https://github.com/hongenxu/MDV_proj.
The mutation waterfall plot and mutation hotspot plot were created using the R package

GenVisR [411]]. The recurrent LOH regions were detected using the HD-CNV tool [412].

5.2.4 Analyses of whole transcriptome sequencing data

5.2.4.1 Read trimming, quality control, mapping, and post-processing

Sequencing adapters were trimmed from raw reads with Trimmomatic [402]]. The FastQC
tool [404]] was used to check the quality of trimmed reads. Trimmed reads were mapped
to chicken genome assembly Gallus_gallus-5.0 using the 2-pass mapping of the STAR
aligner with default parameters [413]]. Duplicate reads were marked with the MarkDupli-
cates command of Picard (available at http://broadinstitute.github.io/p
icard). Versions and parameters for these tools can be found at https://github.c

om/hongenxu/MDV_pro .
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5.2.4.2 Differential expression analysis

The number of aligned reads (skipping duplicate reads) within each gene were counted by
using the featureCounts tool implemented in the subread package [414]]. Gene annotations
for the chicken genome was downloaded from Ensembl (Ensembl release 86). Normal-
ization of read counts and estimation of fold change was carried out using R pacakage
DESeq?2 [4135]]. Differentially expressed genes were selected using the function results

with alpha = 1 x 10_5 and [ fcT hreshold = 1.
5.2.4.3 Gene ontology enrichment analysis of differentially expressed genes

Gene ontology enrichment analysis was performed at Gene Ontology Consortium web-
site (available at http://geneontology.org/page/go—enrichment—analy
sis), which is based on PANTHER [416]. PANTHER Overrepresentation Test (release
20170413) and Gene Ontology Database (release 2017-05-25) were used. The analyses
were performed for up-regulated and down-regulated genes in MD lymphomas, sepa-

rately.

5.2.5 Analyses of DNA microarray data

A custom 15K Affymetrix SNP array was used to genotype 72 MD tumors and a pool
of six F; uninfected birds. SNP arrays allow simultaneous measurement of the allele-
specific copy number at multiple loci in the genome. For each probeset, the log R ratio
(LRR) reflects the ratio of total signal intensity for both alleles to expected signals, and
the B allele frequency (BAF) is an estimate of the relative proportion of one of the alleles
with respect to the total signal intensity. LRR and BAF values were calculated using
the tool PennCNV-Afty [[126] following the guidance at http://penncnv.openbi
oinformatics.org/en/latest/user—-guide/affy/. The resulting LRR and
BAF were used as input for ASCAT [81]] and genoCNA [79]] to identify allele-specific
copy number. Population frequency of the B allele (PFB) required for running genoCNA
was created using the Perl script compile_pfb.pl in PennCNV [126] with BAF values from
the six normal samples as input. Versions, parameters and detailed usage for these tools

can be found at https://github.com/hongenxu/MDV_proi.
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5.3. RESULTS AND DISCUSSION

5.3 Results and Discussion

5.3.1 The overview of the study design

The overview of our study is presented in Figure [5.1] The high inbreeding of both lines
6 and 7 as well as the heterozygous nature of F; progeny enable us to characterize tumor
specific somatic alterations in reference to both parental lines. A total of 200 F; chicks
were challenged at hatch with JM/102W MDYV strain. The main reason this strain was
chosen is that it preferentially induces large, fairly homogeneous gonadal tumors instead
of diffuse spleen tumors. From these birds, we collected 162 tumors and used them on
different technology platforms. Of these, 72 together with 6 F; uninfected birds were
subject to a custom Affymetrix SNP array. A total of 26 tumors (with 4 replicates) and
matched normal tissues were characterized by WGS. The transcriptomes of 26 tumors
and 8 normal controls were profiled by RNA-sequencing. The control samples for SNP
array genotyping and RNA sequencing were not from infected chickens. We argue that
the high level of inbreeding and genetic consistency of F; progeny render it unnecessary

to have controls for each individual.

~1000 pfu
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Figure 5.1: An overview of the study design.
The SNP array has the capacity to survey ~ 9K SNPs, the majority of which are com-

pletely fixed and differ between parental lines and are therefore heterozygous in F; chick-

ens. WGS yielded a median of 16x (ranging from 12X to 22x) and 12x (ranging from
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9% to 15x) depth of coverage for normal and tumor tissues, respectively. For RNA se-
quencing, two samples were removed either due to low number of reads or low mapping

rate.

5.3.2 Somatic SNVs and indels in MD lymphomas

WGS of 26 paired tumor and normal samples (including 4 biological replicates) allowed
us to identify somatic SNVs and indels. We employed 6 callers for characterizing SNVs
and 4 callers for indels. We used filtering strategies designed in each caller or recom-
mended by post-processing workflow—SomaticSeq [73] to reduce false positives. For
SNVs, we only consider those identified by at least two tools. We characterized a median
of 5114 (ranges from 3062 to 7150) somatic SN'Vs/indels per tumor. In the coding regions
of the chicken genome, we detected a median of 56.5 (ranges 25 to 76) non-synonymous
SNVs. This number is larger than pediatric and liquid cancers such as glioblastoma,
medulloblastoma and leukemia, but less than most adult solid tumors, such as head and

neck squamous cell carcinoma and colorectal cancer [215].

To understand the DNA damage and repair processes those have been operative in MD,
we inferred the mutational signatures from mutation spectra using the SomaticSignatures
package with non-negative matrix factorization method [255]. For MD, the most com-
mon substitution was the C-G—T-A changes, followed by the T-A—C-G changes (Fig-
ure [5.2p). We identified five independent mutational signatures in the MD cohort (Figure
[5.2b), and these signatures matched the previously identified signatures described in the
Catalogue of Somatic Mutations in Cancer (COSMIC) database (http://cancer.s
anger.ac.uk/cosmic/signatures). Signature S1 and S2 are mainly character-
ized by C-G—T:-A substitutions, and corresponds to COSMIC signature 7 and 11, respec-
tively. These two signatures are strongly represented in glioblastoma and skin cutaneous
melanoma, respectively (Figure [5.2c). Signatures S3 and S4 show a broad distribution
across the motifs and may match COSMIC signature 4. Signature S3 occurred in head and
neck squamous cell carcinoma and thyroid carcinoma, whereas signature S4 was mainly
found in lung adenocinoma and lung squamous cell carcinoma (Figure [5.2c). Signature
S5 closely resembles COSMIC signature 5, which is characterized by a broad spectrum
of base changes and more C-G—T-A and T-A—C-G changes. Notably, signature S5 con-
tributed >75% in MD and >50% in kidney renal clear cell carcinoma. A recent study has

linked COSMIC signature 5 in urothelial tumors to a nucleotide excision repair gene—
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ERCC2 [260]. An etiology of signature 5 in MD remains to be elucidated.
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Figure 5.2: Mutational signatures of MD lymphomas. (a) Relative frequency of 96 motifs
defined by the base substitution class (top) and the 5’ and 3’ adjacent bases (bottom) in
MD lymphomas. (b) Composition of five somatic signatures (named S1 to S5) estimated
from the matrix of mutation counts across MD lymphomas. (c) The contribution of five
somatic signatures to MD lymphomas and eight cancer types of The Cancer Genome At-
las (TCGA) project. MD: Marek’s Disease; GBM: Glioblastoma Multiforme; HNSC:
Head and Neck Squamous Cell Carcinoma; KIRC: Kidney Renal Clear Cell Carcinoma;
LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; OV: Ovarian
Serous Cystadenocarcinoma, SKCM: Skin Cutaneous Melanoma, THCA: Thyroid Car-
cinoma.

To determine the accuracy of SNV calling and custom filtering, we used the genotyping
information from custom 15K Affymetrix SNP array performed on the same samples.
The SNP array has 13 665 SNPs, of which, only 49 were also present in the WGS. Thus,
genotyping data are not sufficient to validate SNV calls from WGS. Targeted sequencing
will be used to validate SNVs and evaluate the accuracy of our SNV calling and custom

filtering.
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5.3.3 Somatic SCNAs, LOH and SVs in MD lymphomas

The package copyCat can detect SCNAs by measuring the coverage depth of massive
sequencing of the genome. Compared with copyCat, Control-FREEC [89, 407]] is ad-
ditionally able to detect LOH. We identified 542 and 253 SCNAs (including gains and
losses) using copyCat and Control-FREEC, respectively. Only 9 SCNAs were detected
by both tools, suggesting that there were many false positives. Notably, Control-FREEC
detected a total of 2779 LOH events. We used HD-CNV [412] to identify recurrent LOH
regions and got 381 genomic regions with a median size of 163 Kb (ranging from 10 kb

to 11.4 Mb).

SNP microarrays have allowed simultaneous detection of copy number and copy-neutral
changes on the same array. We used two methods— genoCNA [79] and ASCAT [81]] to
identify copy number states and genotype calls. The tool genoCNA identified 138 copy
number gains, 146 copy number losses and 458 LOH events. Next we used genoCNA re-
sults from the same samples to validate SCNAs and LOH events characterized by Control-
FREEC. The results showed that for copy number gains and losses, there is no overlap
of SCNA calls between WGS and SNP microarray genotyping. But for LOH, 99 LOH
events were called by two platforms. These LOH events were additionally confirmed
by ASCAT raw outputs, although ASCAT needs additional parameters to infer the final
genotype calls for our custom SNP array. The SCNA and LOH calling from both WGS
and SNP array indicated that LOH events are frequent in MD lymphomas. We will use
target sequencing to validate the common LOH events called by these two platforms and

annotate these events to reveal their potential roles in MD lymphoma.

To identify somatic SVs in cancer genomes, computational methods are required to iden-
tify SV events and determine their breakpoints in base-pair resolution from the massive
amounts of reads generated by a NGS experiment. Computational tools normally use
three types of approaches: assembly, read pairs, and split reads [139]]. In order to create
a reliable list of SVs, we applied three methods based on complementary approaches:
BreakDancer [97] (read pairs), Delly [100] (read pairs and split reads), and novoBreak
[408] (assembly). BreakDancer, Delly and novoBreak identified 917, 1451 and 163 SVs,
respectively. In order to remove false positives, we only considered SV events called by
at least two callers. The analysis resulted in 39 high-confidence SV calls, including 28
deletions and 11 inversions. The recurrent SVs (in more than 1 sample) overlapped with

genes such as DCLK1 and CTCF. The encoded protein of DCLK] is involved in several
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different cellular processes, including neuronal migration, neuronal apoptosis and neuro-
genesis. The gene CTCF encodes a transcription factor with 11 highly conserved zinc
finger domains, which is involved in many cellular processes including transcriptional
regulation and chromatin structure regulation [417]]. CTCF has been suggested as a po-
tential tumor suppressor factor as it modulates the expression of several key-regulators of

differentiation, cellular senescence, cell cycle control and progression [418]].

5.3.4 Driver genes and mutations

To identify a comprehensive and reliable list of driver genes, we applied three methods
(MuSiC [183]], OncodriveCLUST [[188] and MUFFINN [409]) based on complementary
approaches [220]. MuSiC identifies driver gens based on the frequency of mutations ob-
served in genes across a cohort of tumors, whereas OncodriveCLUST relies on detecting
a biased accumulation of mutations in certain regions of protein sequences. MUFFINN is
a pathway-centric method, which accounts not only for mutations in individual genes but

also in their neighbors in functional networks.

We identified different numbers of driver genes using the three methods (Figure [5.3p).
We considered genes identified as drivers by at least two methods high-confidence drivers
[220]. In total, we identified 54 high-confidence driver genes, and their mutation fre-
quency and types are shown in Figure [5.3p. Genes are ordered by the presence of mu-
tations in more to less samples. We only considered nonsense mutations, frame shift
insertions, frame shift deletions, mutations at translation start sites, mutations at splice
sites, nonstop mutations, in frame insertions, in frame deletions and missense mutations.
The high-confidence driver genes with higher mutation frequency include MUC4 and
IKZF1. MUC4 encodes a mucin glycoproteins MUC4, which may play important roles
in epithelial renewal and differentiation. MUC4 can serve as a ligand for the receptor
tyrosine kinase ERBB2, regulating its phosphorylation [419]. The roles of MUC4 in MD
lymphomas remain to be elucidated. IKZF1 encodes a transcription factor associated
with chromatin remodeling, and its roles in lymphomas will be discussed in the following

sections.

5.3.5 Differentially expressed genes in MD lymphomas

We identified a total of 1 755 genes showing significantly different expression levels be-

tween MD lymphomas and normal controls, of which 1 394 and 361 genes were expressed
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Figure 5.3: Significantly mutated genes in MD lymphomas. (a) Venn diagram showing
the number of driver genes identified by each method. The names of the genes detected
by 2 or more methods are shown in subfigure B. (b) The mutation waterfall plot for 54
high-confidence driver genes in MD. Driver genes and samples are displayed in rows
and columns, respectively. The frequency of mutations for the genes in WGS cohort are
shown in the left bar plot.

higher and lower in tumors, respectively. Unexpectedly, none of the differentially ex-
pressed genes in MD lymphomas were in the list of high confidence driver genes identified
above. Gene ontology enrichment analysis of the up-regulated genes in MD lymphomas
revealed an enrichment in genes associated with multicellular organismal signaling, bi-

cellular tight junction and extracellular matrix component. For down-regulated genes in
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tumors, gene ontology enrichment analysis showed that they are enriched in genes related
to leukocyte proliferation, leukocyte differentiation, leukocyte activation, hemopoiesis,

cell activation, and positive regulation of immune system process.

5.3.6 Ikaros’s Role in MD Lymphomas

The Ikaros gene family, includes IKAROS family zinc finger 1 (IKZF1), IKZF2 and
IKZF3, encodes transcription factors that belong to the family of zinc-finger DNA-binding
proteins associated with chromatin remodeling. The corresponding proteins, also known
as Ikaros, Aiolos and Helios, are involved in regulation of lymphoid development and
differentiation [420]]. The Ikaros protein (IKZF1) contains two separate regions of zinc-
finger domains: 4 DNA-binding zinc fingers near the N-terminus and 2 zinc fingers for
protein-protein interactions near the C-terminus (Figure 4A) [421]. Several alternatively
spliced isoforms have been described for the IKZF'I gene, and these isoforms differ in
the number of N-terminal DNA-binding zinc finger motifs, resulting in proteins with and
without DNA-binding properties. Mutations of /KZF I result in the loss of Ikaros function,
and have been identified as an important event in the development of acute lymphoblastic
leukemia with Philadelphia chromosome [422].
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Figure 5.4: IKZF 1 gene in MD lymphomas. (a) Mutation hotspot graphic for IKZF'I gene.
(b) The mutation and gene expression waterfall plot for IKZF1 gene.
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In MD lymphomas, we showed that IKZF1 gene harbors SNV or indels in coding regions
in 7 of 26 samples, with missense SNVs in 5 samples, in frame insertion in 1 sample and
in frame deletion in 1 sample (Figure 3B). The mutation hotspot plot for /IKZF1 shows
that mutations (6 missense mutations in 5 samples) are clustered in the second DNA-
binding zinc finger near the N-terminus (Figure [5.4p). This gene got its name because its
protein’s function is very susceptible to changes in gene expression. Next we investigated
the expression level of /KZFI in MD lymphomas and controls using RNA sequencing
data. If we consider the average expression level of controls as baseline, we found 5 MD
samples with much lower gene expression (< one fourth of baseline). Notably, these 5
samples and 7 samples with SNVs or indels are mutually exclusive (Figure [5.4b), which
suggests that in addition to mutations, low gene expression may represent another way to

cause Ikaros to lose efficacy.
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Summary

Cancer is a disease of the genome triggered by somatic mutations. Characterizing the
nature and importance of these somatic alterations has been the goal of tumor biolo-
gists for several decades. On one hand, the characterization of somatic mutations allows
the identification of driver mutations and driver genes, providing new insights into the
underlying mechanism of tumorigenesis and possibly revealing new therapeutic targets
for cancer treatment. On the other hand, the exploration of somatic alterations makes it
possible to investigate generation mechanism of somatic alterations, contributing to the
understanding of DNA damage and repair processes that have been operative throughout
the development of cancer. This dissertation detected somatic copy number alterations
(SCNAs) and chromosomal breaks in human osteosarcoma as well as single nucleotide
variants (SNVs), small insertions/deletions (indels), SCNAs, structural variants (SVs) in
chicken Marek’s disease lymphomas. It also investigated generation mechanisms of so-

matic mutations, especially SNVs and SCNAs in multiple tumor types.

In the Chapter 1 of this dissertation, we reviewed related literatures in cancer genomics.
We first introduced the concept of “cancer is a disease of genome”, then the catalog of
somatic mutations in cancer, followed by high-throughput genomic technologies (next-
generation sequencing and whole-genome genotyping microarrays) used for exploring
somatic mutations in cancers. We then focus on summarizing computational tools used
for detecting somatic mutations including SN'Vs, indels, SCNAs, SVs and gene fusions,
for mapping, annotating and functional prediction of somatic mutations, and for detecting
driver genes and pathways from somatic alterations. Finally, we highlighted recent studies
providing new insights into the generation mechanisms of SNVs, indels and SCNAs (and

SVs) in cancer genome.
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In Chapter 2, we aimed to reproduce a study published in Nature (Schuster-Bockler B.
and Lehner B. Nature, 2012, 488(7412):504-507) to offer new insights, if any, into the
mutation-rate (especially SNV rate) variance in human cancer cells. Cancer genome se-
quencing provides an unprecedented opportunity to investigate how mutation rates vary
across the genomes of somatic cells. Taking advantage of available genetic and epige-
netic features, Schuster-Bockler and Lehner have shown that mutation rates in cancer
genomes are strikingly related to chromatin organization. They showed that at the mega
base scale, a heterochromatin-associated histone modification marker — H3K9me3 —
explains >40% of mutation-rate variance, and all investigated features account for >55%
variance. They also showed that the strong association between somatic mutation rates
and chromatin organization is independent of tissue and mutation types. Using the same
data sets and same procedure, our results are largely consistent with the original study,
with the exception being that replication timing is the most prominent predictor for mu-
tation rate in cancer cells. Our results comply with two subsequent studies [241, 242], in
which replication timing was found to play an important role in shaping SNV landscape

in cancer cells.

In Chapter 3, we investigated the generation mechanisms of SCNAs in cancer. SCNAs
play an important role in carcinogenesis. However, the impact of genomic architecture on
the global patterns of SCNAs in cancer genomes remains elusive. We conducted multiple
linear regression (MLR) analyses of the pooled SCNA data from The Cancer Genome
Atlas Pan-Cancer project. Our MLR model explains >30% of the pooled SCNA break-
point variation. The power of the models remain stable when one considers separately
different SCNA types (amplifications and deletions), SCNA types of possible different
generation mechanisms (telomere-bound SCNAs and interstitial SCNAs), and SCNAs
from different cancer types. In addition to confirming previously identified features [e.g.,
long interspersed element-1 (L.1) and short interspersed nuclear elements (SINEs)], we
also identified several novel informative features, including distance to telomere, distance
to centromere and low complexity repeats. The results of the MLR analyses were ad-
ditionally confirmed on an independent SCNA data set obtained from the Catalogue Of
Somatic Mutations In Cancer (COSMIC) database. Our MLR model is more than two
times more powerful than that in [297]] (32% of breakpoint variance explained versus
14%) and maintains its strong performance upon 5-fold cross validation. The inclusion of
two novel predictors —distance to telomere and distance to centromere, which made the

strongest contribution to our model (relative contribution of 29.15 and 10.35% to MLR
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model for pooled SCNA breakpoints), may explain the superiority of our model com-
pared with that described in [297]. Using a rare event logistic regression model and an
extremely randomized tree classifier, we revealed that genomic features are informative
for telling apart common SCNA breakpoints breakpoint hotspot and non-hotspots. This
suggests that common breakpoint hotspots strongly depend on the local genomic context.

Our findings shed light on the molecular mechanisms of SCNA generation in cancer.

In Chapter 4, we performed a genome-wide analyses of SCNAs and chromosomal breaks
in osteosarcoma (OS). OS is the most common primary malignant bone tumor in children
and adolescents and is characterized by highly complex karyotypes with structural and
numerical chromosomal alterations. The identification of driver genes for OS has been
hindered by intra- and intertumor heterogeneity and limited sample availability. A com-
prehensive assessment of SCNAs was performed in 160 OS samples using whole-genome
CytoScan High Density arrays, of which 98% of the analyzed samples were of sufficient
quality for data analysis. A high degree of aneuploidy and large-scale copy number al-
terations in OS were confirmed. Using GISTIC, a number of genes that are frequently
targeted in OS were identified, of which TP53, ATRX, FOXNI and WWOX are already
known tumor suppressors associated with OS and other tumor types. Genome-wide anal-
ysis of chromosomal breaks revealed a tendency for confinement to genomic regions (i.e.,
broken regions) harboring OS-associated tumor suppressor genes including 7P53, RB1,
WWOX, DLG2, and LSAMP. We showed that SCNAs in those broken regions were more
likely to be clonal events as opposed to those expected by chance. The early occurrence
of breakages and the presence of multiple tumor suppressor genes in such regions may
explain the complex and aggressive nature of OS. Certain genomic features, such as trans-
posable elements and non-B DNA-forming motifs were found to be significantly enriched
in the vicinity of chromosomal breakage sites, suggesting the independence of breakage
susceptibility on local genomic context. We speculated that breakages probably occur at
OS specific fragile sites with the potential to form stable secondary structures (e.g., non-
B DNA structures) and to consequently stall the replication fork. A complex breakage
pattern — chromothripsis — has been suggested as a widespread phenomenon in OS. It
was further demonstrated that hyperploidy and particularly chromothripsis were strongly
correlated with OS patient clinical outcome. The revealed OS-specific fragility pattern
provides novel clues for understanding the biology of OS and may provide a basis for

patient prognosis in the future.
In Chapter 5, we explored the somatic mutational landscape of Marek’s Disease (MD) in
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chickens. MD, which is caused by Marek’s Disease Virus (MDV), is a serious chronic
disease most obviously manifested by malignant T-cell lymphomas. Annual world-wide
losses due to MD were estimated to be roughly 1-2 billion US dollars. Although vac-
cination against MDV has been successful in stopping the formation of neoplasms in
infected chickens, high-density poultry rearing practices and vaccination control have in-
duced MDYV evolution and increased MDYV virulence as shown by multiple vaccine breaks
throughout the second half of the 20" century. To address whether somatic alterations are
necessary for MDV-induced transformation, we used multiple approaches (whole genome
sequencing, whole transcriptome sequencing and SNP genotyping arrays) to chart the so-
matic mutational landscape of MD. We identified 54 high-confidence driver genes, some
of which function in cell adhesion, cell signaling, cellular proliferation, cell differenti-
ation and immune response. Notably, we found that disruptive mutations together with
low gene expression of IKZF1 occurred in 12 of 26 (46%) MD tumors. IKZF1 has been
found to have crucial function in hematopoietic cell differentiation have been identified as
an important player in the development of acute lymphoblastic leukemia with Philadel-
phia chromosome [422]]. Our results will contribute to the understanding how somatic

mutations drive transformation and lymphomagenesis in MD.
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Supplementary Tables

Table A.1: Alternative MLR model replacing A-phased repeat with GC content

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.244 1.261 1.47x1073% 1471 19.93
Conserved element count 0.117 3.418 1.18 x 107% 1.25 1.19
CpG island coverage 0.074 1.135 2.39 x 1079 1.51 1.29
Direct repeat coverage 0.436 5.332 9.84x 10739  11.09 13.32
L1 coverage 0.134 3.659 2.07x107% 153 1.79
Low-complexity repeat coverage ~ 0.140 3.084 1.38 x 10796 1.97 2.71
Mirror repeat count -0.309 4.324 293 x 107 6.90 8.08
SINE count 0246 9.761 1.75x107%  1.94 1.95
Distance to telomere 0418 1.864 1.90x 107 29.16 32.51
Simple repeat coverage -0.085 2383 8.22x107% 095 1.04
Adjusted R? 31.41
Five-fold adjusted R? 24.40

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

Table A.2: Alternative MLR model replacing A-phased repeat with recombination motif

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.243 1.260 2.46 x 10738 14.61 19.80
Conserved element count 0.116 3393 1.38x107% 1.23 1.16
CpG island coverage 0.073  1.132 2.77x107% 149 1.15
Direct repeat coverage 0429 5244 2.45x1072° 1093 13.26
Inverted repeat coverage 0.096 3330 1.46x107%  0.86 0.44
L1 coverage 0.139  3.664 1.05x107%  1.64 1.88
Low-complexity repeat coverage ~ 0.144  3.082 6.25 x 10797 2.10 2.85
Mirror repeat count -0.300 4294 253 x 10718 6.52 7.79
SINE count 0.252 10209 1.66 x 1079 1.94 2.06
Distance to telomere 0416  1.869 6.81 x 10772 28.91 31.88
Z-DNA coverage -0.096  3.334 1.46 x 1079 0.86 -0.22
Simple repeat coverage -0.086 2364 7.03 x 107 0.97 1.08
Adjusted R? 31.42
Five-fold adjusted R? 24.43

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.
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Table A.3: Alternative MLR model replacing A-phased repeat with G4

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.243 1260 3.28 x 1073%  14.60 19.81
Conserved element count 0.108 3.510 4.85 x 107% 1.03 0.88
CpG island coverage 0.072 1.133 4.22x107% 142 1.19
Direct repeat coverage 0425 5.336 247 x1072%  10.56 12.55
Inverted repeat coverage 0.100 3319 891 x107%  0.94 0.57
L1 coverage 0.133 3.753 3.07 x 107 1.47 1.58
Low-complexity repeat coverage ~ 0.139  3.199  2.51 x 107% 1.88 248
Mirror repeat count -0.301 4332 2.56 x 10718 6.54 7.73
SINE count 0.205 8261 1.50x107% 1.59 1.66
Distance to telomere 0419 1.869 1.12x 10" 29.35 32.54
Z-DNA coverage -0.125 3.837 1.06 x 107 1.27 0.53
Simple repeat coverage -0.094 2342 2.07x107% 117 1.30
Adjusted R? 31.35
Five-fold adjusted R? 24.21

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

Table A.4: Alternative MLR model replacing H3K9me3 with replication timing

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.244 1258 1.01x107%% 1477 19.74
Conserved element count 0.115 3.387 1.41 x107% 1.23 1.16
CpG island coverage 0.071 1.133 5.01 x 1079  1.39 1.03
Direct repeat coverage 0417 5420 4.77 x 10727 10.01 11.51
Inverted repeat coverage 0.103 3.322 5.75x107%  1.00 0.70
L1 coverage 0.140 3.667 9.81 x 1079  1.65 1.86
Low-complexity repeat coverage ~ 0.145 3.073  5.12 x 10707 2.14 2.87
Mirror repeat count -0.298 4302 3.96x 107 645 7.40
SINE count 0.198 7.809 1.65x 107% 1.57 1.49
Distance to telomere 0422 1.879 3.42x 1077  29.49 32.27
Z-DNA coverage -0.118 2.837 2.25x107% 1.52 0.16
Simple repeat coverage -0.088 2335 4.43 x107% 1.04 1.14
Adjusted R? 31.43
Five-fold adjusted R? 24.67

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.

Table A.5: The MLR model for SCNA breakpoints after excluding chromosome-level
SCNAs

Predictor SCE VIF P-value RC,% Five-fold RC,%
Distance to centromere -0.339  1.265 1.24x107% 2930 41.94
Conserved element count 0.097 3.382 1.49x107%  0.89 0.67
CpG island coverage 0.086 1.133 1.01 x107%  2.13 0.01
Direct repeat coverage 0370 5433 2.38x1072  8.11 10.09
Inverted repeat coverage 0.114 3.330 1.60 x 107%  1.26 1.39
Low-complexity repeat coverage ~ 0.092  3.069 1.52 x 10793 0.89 0.52
Mirror repeat count -0.229  4.284 3.00 x 10711 3.94 3.53
SINE count 0.222 8.762 6.40 x 1079 1.81 1.73
Distance to telomere -0.391 1.884 1.38 x107%2  26.08 30.43
Simple repeat coverage -0.115 2434 858 x107% 176 1.78
Adjusted R? 30.36
Five-fold adjusted R? 22.48

SCE, standardized coefficient; VIF, variance inflation factor; RC, relative contribution.
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Table A.6: List of all features ranked by relative contribution to SCNA breakpoints for-

mation in MLR model

Predictor Relative contribution,% Rank
Distance to telomere 29.15 1
Distance to centromere 14.55 2
Direct repeat coverage 10.35 3
Mirror repeat count 6.68 4
Low-complexity repeat coverage 2.06 5
SINE count 1.77 6
L1 coverage 1.57 7
CpG island coverage 1.44 8
Z-DNA coverage 1.14 9
Conserved element count 1.18 10
Simple repeat coverage 0.98 11
Inverted repeat coverage 0.89 12
H3K9me3 count 0.48 13
Indel rate 0.35 14
Exon coverage 0.20 15
DNA transposon coverage 0.13 16
Microsatellite coverage 0.12 17
Double strand break coverage 0.10 18
L2 coverage 0.07 19
A-phased repeat coverage 0.05 20
Self-chain segment coverage 0.04 21
Substitution rate 0.04 22
miRNA coverage 0.03 23
LTR retrotransposon coverage 0.01 24
Fragile site count 0.00 25
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Table A.7: Genomic regions significantly altered identified by GISTIC in 157 osteosar-
coma samples

Chr.!  Region Extended Region Type Genes

chrl chr1:72768081-72771450 chr1:72768081-72771450 CN Gain

chrl chr1:120532528-120540803 chr1:120532228-121119145 CN Gain NOTCH2

chrl chr1:150915428-150986518 chr1:150106621-151292631 CN Gain SETDBI1; CERS2; ANXAY;
FAMG63A; PRUNE

chrl chrl1:152762026-152771308 chr1:152761930-152771308 CNLoss LCEID

chrl chr1:169225449-169242083 chr1:169225449-169242083 CNLoss NME7

chrl chr1:248758246-248787569 chr1:248753426-248794436 CN Loss

chr2 chr2:34696356-34729740 chr2:34696356-34729740 CN Loss

chr2 chr2:87021286-87054784 chr2:86863077-88263441 CN Gain CD8B; RMNDS5SA

chr2 chr2:97765044-97889750 chr2:97449536-98128314 CN Gain  ANKRD36

chr2 chr2:242013345-242045252 chr2:241988330-242195981 CNLoss SNEDI; MTERF4; MTERFD2

chr3 chr3:37983108-37986935 chr3:37983108-37986935 CNLoss CTDSPL

chr3 chr3:116548005-116553148 chr3:116530653-116677267 CN Loss

chr3 chr3:189362262-189363677 chr3:189362262-189371001 CN Loss TP63

chr4 chr4:34783101-34824462 chr4:34783101-34828255 CN Loss

chr4 chr4:47585962-47633769 chr4:47274810-47643922 CN Gain  ATP10D; CORIN

chr4 chr4:55144803-55146541 chr4:54583847-55227042 CN Gain PDGFRA

chr4 chr4:69495772-69521133 chr4:69495772-69521133 CNLoss UGT2BI15

chr4 chr4:161950067-162007018 chr4:160234964-162282493 CN Gain

chr5 chr5:6522965-6525445 chr5:6522965-6525445 CN Loss

chr5 chr5:38738377-38760633 chr5:38585742-38917416 CN Gain OSMR-AS1

chr5 chr5:180377034-180410761 chr5:180375094-180424577 CNLoss BTNLS

chr6 chr6:255666-257069 chr6:255666-257417 CN Loss

chr6 chr6:45448960-45459235 chr6:45269549-45709252 CN Gain RUNX2

chr6 chr6:77438359-77455244 chr6:77438359-77455244 CN Loss

chr7 chr7:3971188-4071542 chr7:3770143-5137384 CN Gain  SDKI1

chr7 chr7:142476621-142481638 chr7:142476621-142486098 CNLoss TCRBV2S1; TCRVB; PRSS3P2;
PRSS2

chr7 chr7:154391477-154399616 chr7:154391477-154400278 CN Loss DPP6

chr8 chr8:1659358-1676610 chr8:492396-1676610 CN Loss

chr8 chr8:24974355-24989291 chr8:24974355-24989291 CN Loss

chr8 chr8:39208722-39226339 chr8:39026273-39226339 CN Gain ADAMS

chr8 chr8:39248531-39352993 chr8:39238548-39386079 CN Loss ADAM3A

chr8 chr8:49554073-49572201 chr8:48810937-50417372 CN Gain LOC101929268

chr8 chr8:72215337-72216222 chr8:72215310-72216684 CNLoss EYAlL

chr8 chr8:98718483-98733201 chr8:98240419-98790083 CN Gain MTDH

chr8 chr8:128735487-128738992 chr8:128305898-129002357 CN Gain  BC042052; CASC11

chr9 chr9:21968624-21976768 chr9:21850263-22028704 CN Loss  MTAP; CDKN2A

chrl0  chr10:24376468-24378414 chr10:24376468-24379860 CN Loss KIAAI1217

chrl0  chr10:47058829-47061065 chr10:47057570-47061065 CNLoss ANXAS8

chrl0  chr10:78257335-78261389 chr10:78257335-78261389 CN Loss  Cl0orfl1

chrll  chrl1:5797748-5808726 chr11:5784971-5809277 CN Loss  TRIM22; OR52NS5; TRIMS

chrll  chrl1:55374167-55403443 chr11:55374167-55433103 CN Loss

chrll  chr11:84184013-84184955 chr11:84159254-84222629 CNLoss DLG2

chrll  chr11:101517518-101927296  chr11:101316304-102237928 CN Gain =~ ANGPTLS; KIAA1377; C110rf70

chrll  chr11:128681554-128683826  chr11:128679603-128683826 ~ CN Loss  FLII

chrl2  chrl12:869296-873583 chr12:867422-874562 CNLoss WNKI1

chr12  chr12:34383785-34485085 chr12:34261964-35800000 CN Gain
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Chr. Region Extended Region Type Genes

chr12  chr12:58135816-58305277 chr12:58124923-58322883 CN Gain  AGAP2; TSPAN31; MIR6759;
CDK4; DM110804; MARCHY;
CYP27B1; METTL1; METTL21B;
TSFM; AVIL; MIR26A2;
CTDSP2; AK130110

chr12  chr12:99795602-99798726 ¢chr12:99795602-99800925 CNLoss ANKSIB

chr13  chr13:38071673-38086565 chr13:38071673-38086565 CN Loss

chrl4  chr14:23100225-23120359 chr14:22844274-23307453 CN Gain

chrl4  chr14:106335832-106489591  chr14:106335832-106527892 CN Gain  KIAA0125; ADAM6

chrl4  chr14:106557833-106603522  chr14:106536937-106603522 CN Loss ~ BC042994

chrl4  chr14:106885733-106920359  chr14:106885733-106920359  CN Loss

chrl5  chrl5:76879983-76895555 chr15:76879983-76895555 CN Loss SCAPER

chrl5  chr15:99530128-99880948 chr15:99300869-99959809 CN Gain  PGPEPIL; AL109706;
TTC23; HSP90B2P; LRRC28

chrl6  chr16:19944410-19968380 chr16:19944410-19968380 CN Loss

chrl6  chrl16:78372017-78382206 chr16:78372017-78384869 CNLoss WWOX

chrl7  chrl7:7582979-7583221 chr17:7578835-7583723 CNLoss TP53

chrl7  chrl7:17037165-17065229 chr17:16991233-17074052 CN Gain  MPRIP

chrl7  chr17:26843566-26848243 chr17:26843402-26848243 CN Loss FOXNI

chr17  chr17:39423181-39430490 chr17:39423181-39430490 CN Loss

chrl7  chrl17:44223496-44279974 chrl17:44213141-44279974 CN Gain KANSLI1

chr1l8  chrl8:11252274-11464401 chr18:10812801-11589974 CN Gain

chrl8  chr18:46944321-46952804 chr18:46944321-46953209 CNLoss DYM

chrl9  chr19:638104-658093 chr19:638104-1291591 CN Loss FGF22; RNF126

chr19  chr19:7151245-7195285 chr19:7146765-7302221 CN Gain  INSR

chrl9  ¢chr19:30299491-30321146 chr19:30284135-30344003 CN Gain CCNEI1

chrl9  chr19:42422360-42428514 chr19:42422120-42428735 CNLoss ARHGEF1

chr20  chr20:1560269-1560674 chr20:1557189-1560674 CN Loss  SIRPBI

chr20  chr20:29917644-29956205 chr20:29433517-30040495 CN Gain

chr21  chr21:37237166-37248079 chr21:37064469-37368136 CN Gain RUNX1

chr22  ¢chr22:19570331-19572970 chr22:19570331-19572970 CN Loss

chr22  chr22:23146865-23207698 chr22:23146262-23240129 CN Gain  DKFZp667J0810; MIR650

chr22  chr22:51105118-51106136 chr22:51104136-51106136 CN Loss

chrX chrX:825934-826729 chrX:821776-826729 CN Loss

chrX  chrX:2302238-2302530 chrX:2302238-2302530 CN Gain

chrX chrX:6659340-6659459 chrX:6659303-6661807 CN Loss

chrX  chrX:31458638-31458832 chrX:31457616-31459915 CN Loss

chrX chrX:76948103-76949541 chrX:76896688-77032001 CN Loss

chrX  chrX:85291897-85293444 chrX:85291897-85295272 CN Gain

chrX  chrX:115135704-115138008 chrX:115135704-115153407 CN Loss

chrX  chrX:122900376-122900406  chrX:122900268-122900751 CN Loss

chrX chrX:136493788-136495362  chrX:136493788-136495561 CN Loss

chrX  chrX:147320320-147320888 chrX:147318675-147326708 CN Loss

chrX  chrX:153963340-153963495 chrX:153960395-153963495 CN Loss

chrX  chrX:155086346-155086387 chrX:155086346-155086387 CN Gain

chrY  chrY:20836985-21024837 chrY:17235271-22252906 CN Loss

chrY  chrY:22275025-22410762 chrY:22264667-22465913 CN Gain
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Table A.8: Genes contained in the regions of frequent copy number alterations as identi-
fied by GISTIC analysis

Gene Symbol Chromosome Start End Length
ADAM3A chr8 39308563 39380508 71946
ADAMS chr8 39172181 39274897 102717
ADAM6 chrl4 106435817 106438358 2542
AGAP2 chr12 58118075 58135944 17870
AK130110 chr12 58230875 58236325 5451
AL109706 chrl5 99571772 99574275 2504
ANGPTLS chrll 101761404 101787253 25850
ANKRD36 chr2 97779232 97930257 151026
ANKS1B chr12 99128568 100378432 1249865
ANXAS chrl10 47011755 47174143 162389
ANXA9 chrl 150954498 150968114 13617
ARHGEF]1 chr19 42387266 42434296 47031
ATP10D chr4 47487409 47595503 108095
ATRX! chrX 76760355 77041755 281401
AVIL chr12 58191159 58209852 18694
BC042052 chr8 128698587 128746211 47625
BC042994 chr14 106576813 106598011 21199
BC062752 chrY 20934593 20981392 46800
BTNLS chr5 180326076 180377906 51831
BV03S1J2.2 chr7 142428689 142499111 70423
BV6S4-BJ2S2 chr7 142462183 142494293 32111
C10orf11 chr10 77542518 78317126 774609
Cllorf70 chrll 101918168 101955291 37124
CASC11 chr8 128712852 128746213 33362
CCNE1! chr19 30302900 30315215 12316
CD8A chr2 87011727 87035519 23793
CD8B chr2 87042459 87089047 46589
CDK4! chr12 58141509 58146230 4722
CDKN2A! chr9 21967750 21994490 26741
CERS2 chrl 150937648 150947479 9832
CHM chrX 85116184 85302566 186383
CORIN chr4 47596014 47840123 244110
CTDSP2 chr12 58213709 58240747 27039
CTDSPL chr3 37903668 38025960 122293
CYP27B1 chrl2 58156116 58160976 4861
DHRSX chrX 2137554 2419015 281462
DKFZp667J0810  chr22 22786692 23248968 462277
DLG2 chrll 83166055 85338314 2172260
DM110804 chr12 58145424 58145484 61
DMD chrX 31137344 33357726 2220383
DPP6 chr7 153584181 154686000 1101820
DYM chrl8 46570171 46987079 416909
EYAl chr8 72109667 72274467 164801
FAM63A chrl 150969300 150980854 11555
FGF22 chr19 639925 643703 3779
FLI1! chrll 128556429 128683162 126734
FOXN1 chrl7 26833277 26865175 31899
GAB3 chrX 153903526 153979858 76333

Continued on next page
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Gene Symbol Chromosome Start End Length
HSP90B2P chrl5 99797729 99800481 2753
INSR chrl9 7112265 7294011 181747
KANSL1 chrl7 44107281 44302740 195460
KANSLI1-AS1 chrl7 44270938 44274089 3152
KIAAO0125 chrl4 106355979 106398502 42524
KIAA1217 chrl0 23983674 24836777 853104
KIAA1377 chrll 101785745 101871796 86052
LCEID chrl 152769226 152770657 1432
LOC101929268 chr8 49464126 49611069 146944
LRRC28 chrl5 99791566 99927280 135715
MARCH9 chrl2 58148880 58154193 5314
METTLI1 chrl2 58162350 58165914 3565
METTL21B chrl2 58166382 58176324 9943
MIR26A2 chrl2 58218391 58218475 85
MIR650 chr22 23165269 23165365 97
MIR6759 chrl2 58142400 58142465 66
MPRIP chrl?7 16946073 17095962 149890
MTAP chr9 21802634 22029593 226960
MTDH chr8 98656406 08742488 86083
MTERF4 chr2 242026508 242041747 15240
MTERFD2 chr2 242034544 242041747 7204
NME7 chrl 169101767 169337201 235435
NOTCH2! chrl 120454175 120612317 158143
ORS52NS chrll 5798863 5799897 1035
OSMR-AS1 chrs 38693314 38845931 152618
PDGFRA! chr4 54243819 55164412 920594
PGPEPIL chrl5 99511458 99551024 39567
PRSS2 chr7 142479907 142481378 1472
PRSS3P2 chr7 142478756 142482399 3644
PRUNE chrl 150980972 151008189 27218
RMNDSA chr2 86947413 88038768 1091356
RNF126 chrl9 647525 663233 15709
RUNX1! chr21 36160097 37357047 1196951
RUNX2 chr6 45296053 45518819 222767
SCAPER chrl5 76640526 77197744 557219
SDK1 chr7 3341079 4308631 967553
SETDB1 chrl 150898814 150937220 38407
SIRPBI chr20 1545028 1600689 55662
SNED1 chr2 241938254 242033643 95390
SYNM chrl5 99645285 99675800 30516
TCRBV2S1 chr7 142334185 142494579 160395
TCRVB chr7 142353890 142500213 146324
TP53! chrl7 7565096 7590868 25773
TP63 chr3 189349215 189615068 265854
TRIM22 chrll 5710816 5821759 110944
TRIMS chrll 5684424 5959849 275426
TSFEM chrl2 58176527 58196639 20113
TSPAN31 chrl2 58138783 58142026 3244
TTC23 chrl5 99676527 99791431 114905
TTTY9A chrY 20891767 20901083 9317

Continued on next page
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Table A.8 — Continued from previous page

Gene Symbol Chromosome Start End Length
UGT2BI15 chr4 69512314 69536494 24181
WNK1 chr12 862088 1020618 158531
WWOX chrl6 78133309 79246564 1113256

!Genes with gene symbols in bold are listed in Cancer Gene Census of COSMIC.
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Supplementary Figures
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Figure B.1: Hierarchical clustering of predictors based on their Spearman’s correlation
coefficients.
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