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Abstract

The Hybrid tokamak scenario provides favorable confinement and stability

properties and is a candidate for an ITER Advanced tokamak scenario. It is

characterized by low magnetic shear and a value of the safety factor (q) close

to unity in the plasma core resulting in the absence of sawteeth. As transport

calculations for some Hybrid discharges predict that the applied heat and

current sources drive the value of q on axis below unity, there seems to be an

unexplained mechanism which leads to a redistribution of the toroidal current

density such that q ≈ 1 is maintained in the center of the discharge. This

mechanism is referred to as magnetic flux pumping. Besides the advantageous

effect of preventing sawtoothing which also prevents the seeding of neoclassical

tearing modes by sawteeth, magnetic flux pumping as well facilitates the drive

of plasma current through external current sources. As the current density

is automatically redistributed, current sources can be applied in the plasma

center, where they are most efficient.

The aim of this work is to contribute to the understanding of magnetic flux

pumping in Hybrid discharges. As described in [1], a flux pumping mechanism

is found in 3D non-linear MHD simulations leading to stationary states with

a helically perturbed core and a flat central safety factor profile with values

close to unity. It is proposed in [1] that the main effect responsible for this

flux pumping mechanism is that the magnetic field and velocity perturbations

resulting from a saturated quasi-interchange instability combine to generate an

effective negative loop voltage via a dynamo effect. In this thesis, a large set of

long-term 3D nonlinear single-fluid MHD simulations in toroidal geometry are

presented which have been performed by means of the high-order finite element

code M3D-C1. The simulations result in asymptotic states that either exhibit

sawtooth-like reconnection cycles, or correspond to sawtooth-free stationary

states where the central safety factor is kept from decreasing below unity by

flux pumping. A detailed analysis of this flux pumping mechanism is presented,
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and it is discussed under which conditions the mechanism is able to sustain

itself. This includes a linear stability analysis of an equilibrium with low central

magnetic shear and a central q ≈ 1. Furthermore, a step towards more realistic

simulations of Hybrid discharges has been made by performing 3D nonlinear

MHD simulations based on ASDEX Upgrade geometry in which some features

of the current ramp-up phase in realistic Hybrid discharges are imitated.

Although in the framework of single-fluid MHD and with the used pa-

rameters it is not expected that all features of realistic sawtooth cycles are

reproduced, the reconnection events obtained in the simulations share some

of their characteristics and two interesting phenomena are found for specific

sets of parameters. First, in some cases, the reconnection process during these

sawtooth-like events does not complete but stops and reverses. And second,

in one case the sawtooth-like reconnection events are separated by quiescent

phases showing similar characteristics as the sawtooth-free stationary states.

2



Zusammenfassung

Das Hybrid-Tokamak-Szenario verfügt über gute Einschluss- und Stabilitäts-

eigenschaften und stellt ein mögliches Advanced-Tokamak-Szenario für ITER

dar. Das Hybrid-Szenario ist charakterisiert durch niedrige magnetische Ver-

scherung und einen Wert des Sicherheitsfaktors (q) nahe an Eins im Zentrum

der Entladung, was zu der Vermeidung von Sägezähnen führt. Transportsim-

ulationen für einige solcher Hybrid-Entladungen sagen voraus, dass der Wert

von q an der Achse aufgrund der verwendeten Heiz- und Stromquellen unter

Eins absinken sollte. Da dies nicht geschieht, scheint es einen noch nicht

erklärten Mechanismus zu geben, der die toroidale Stromdichte im Zentrum

so umverteilt, dass dort q ungefähr auf Eins gehalten wird. Dieser Mechanis-

mus wird auch als magnetisches Flux-Pumping bezeichnet. Zusätzlich dazu,

dass der Mechanismus zur Vermeidung von Sägezähnen führt und damit auch

das Seeding von neoklassischen Tearing-Moden durch Sägezähne verhindert,

erleichtert er auch den externen Stromtrieb. Externer Stromtrieb ist am effi-

zientesten, wenn er im Zentrum eingesetzt wird, was durch die automatische

Umverteilung der Stromdichte durch das Flux-Pumping ermöglicht wird.

Das Ziel der vorliegenden Arbeit ist es, zu einem verbesserten Verständnis

von magnetischem Flux-Pumping in Hybrid-Entladungen beizutragen. Wie in

[1] beschrieben, wurde in dreidimensionalen nichtlinearen MHD-Simulationen

ein Flux-Pumping-Mechanismus gefunden, der zu stationären Zuständen führt,

bei welchen sich im Zentrum des Plasmas eine helikale Störung befindet und

der Sicherheitsfaktor Werte nahe Eins annimmt. Die in [1] vorgeschlagene

Erklärung für den Mechanismus ist, dass die von einer gesättigten Quasi-

Interchange-Instabilität verursachten Störungen des Magnet- und Geschwindig-

keitsfeldes über einen Dynamo-Effekt zu einer effektiven negativen Umfangs-

spannung führen. In der vorliegenden Arbeit werden eine große Anzahl von

nichtlinearen Langzeitsimulationen in dreidimensionaler, toroidaler Geome-

trie diskutiert, die auf dem magnetohydrodynamischen Einflüssigkeitsmodell
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basieren und mit Hilfe des Finite-Elemente-Codes M3D-C1 berechnet wurden.

Das Ergebnis der Simulationen sind entweder Zustände, die von wiederkehren-

den sägezahnähnlichen Rekonnexionszyklen geprägt sind, oder stationäre, säge-

zahnfreie Zustände, bei denen der zentrale Wert des Sicherheitsfaktors von

magnetischem Flux-Pumping davon abgehalten wird, unter Eins abzusinken.

Der Flux-Pumping-Mechanismus wird im Detail analysiert und es wird erläutert,

unter welchen Bedingungen der Mechanismus in der Lage ist, sich selbst aufrecht-

zuerhalten. Dazu wird unter Anderem eine lineare Stabilitätsanalyse eines

Gleichgewichts mit niedriger magnetischer Verscherung und einem Wert von

q ≈ 1 im Zentrum diskutiert. Außerdem wurden nichtlineare Simulationen in

der Geometrie von ASDEX Upgrade durchgeführt, in welchen einige Merkmale

der Stromaufbauphase in realistischen Hybrid-Entladungen nachgeahmt wer-

den. Diese Simulationen stellen einen Schritt auf dem Weg zu realistischeren

Simulationen von Hybrid-Entladungen dar.

Auch wenn aufgrund des verwendeten Einflüssigkeitsmodells und der gewähl-

ten Parameter nicht zu erwarten ist, dass in den Simulationen alle Merk-

male von realistischen Sägezahnzyklen wiedergegeben werden, finden sich doch

einige grundsätzliche Eigenschaften von Sägezähnen in den Simulationen wieder.

Zudem fielen bei speziellen Kombinationen von Parametern zwei interessante

Phänomene auf. Zum einen ist in einigen Fällen der Rekonnexionsprozess nicht

vollständig. Das Wachstum der Insel stoppt in diesen Fällen bevor sie den Plas-

makern vollständig verdrängt hat, und die Breite der Insel nimmt wieder ab.

Zum anderen liegen zwischen den sägezahnähnlichen Zyklen in einer Simula-

tion längere Phasen, die den stationären, sägezahnfreien Zuständen ähneln.
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Chapter 1

Introduction

The sun gains its energy from nuclear fusion reactions in which the difference

in mass between the fusing nuclei and the reaction products is released in the

form of kinetic energy. In order to harness energy from nuclear fusion on earth,

the necessary conditions have to be provided for sufficient fusion reactions to

occur in a controllable way. While in the sun, the dominant fusion process is a

chain of reactions in which helium is produced from four protons, this process

would not be suitable for a nuclear fusion reactor because of its low probability.

Instead, a more suitable reaction is fusion of deuterium and tritium. In a

nuclear fusion reactor, a large number of fuel atoms at high enough energies

so that their nuclei can overcome their mutual repulsion, would have to be

confined for a sufficiently long period of time. A confinement configuration

which has been very successful on the path towards achieving this goal is the

tokamak. In a tokamak, the necessary energy is provided in the form of thermal

energy. As a result of the high temperatures, the fuel atoms are ionized and

thus constitute a plasma. The plasma particles are confined to a toroidal

volume by means of a magnetic field which is set up such that the magnetic

field lines helically wind around nested toroidal surfaces. This magnetic field

configuration results from a combination of a strong toroidal magnetic field

produced by magnetic field coils and a weaker poloidal magnetic field mainly

generated by a toroidal electric current inside the plasma which is driven by a

transformer.

Over the course of the history of tokamak research, which began in the

1950s, a large number of tokamaks has been built and operated in many dif-

ferent countries. As the confinement time increases with the machine size,
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larger and larger tokamaks have been built in order to approach the neces-

sary conditions of a future fusion reactor. The largest tokamaks currently in

operation are JET [2] in the UK, DIII-D [3] in the US, ASDEX Upgrade [4]

in Germany, EAST [5] in China and KSTAR [6] in South Korea. A tokamak

of even larger size, called ITER [7], is currently being built in France by an

international collaboration. The main objective of the ITER program is to

demonstrate the scientific and technical feasibility of a nuclear fusion reactor.

ITER is expected to reach a ratio between power from fusion reactions and

external heating power of up to ten, which corresponds to a plasma state close

to ignition1.

In order to maximize the performance of plasma discharges, they have to

be optimized to provide good confinement of particles and energy while ensur-

ing macroscopic stability of the plasma equilibrium. This is done by carefully

tailoring the magnetic field configuration and adjusting the use of different

external heat and current sources leading to the development of different op-

erational scenarios. An important quantity used to characterize the magnetic

field configuration in a tokamak is the safety factor which describes the lo-

cal angle of the magnetic field lines by giving the number of toroidal turns a

magnetic field line undergoes during one poloidal turn around the torus. The

safety factor is closely related to the radial profile of the toroidal plasma cur-

rent density, a large current density implying a small value of the safety factor.

Note that a detailed as well as extensive discussion of the physics of tokamaks

can be found in [8].

Another important feature of an operational scenario alongside its confine-

ment and stability properties is the maximum possible duration of a discharge.

As for the standard operation of a tokamak, the plasma current is generated

inductively by a transformer, a continuous operation which would be desirable

for a commercial fusion reactor is not possible that way. Therefore, methods

of driving the plasma current non-inductively are being explored, e.g., external

current sources or the enhancement of the bootstrap current, a diffusion-driven

current caused by temperature and density gradients due to the toroidal geom-

etry. Scenarios that allow for extended discharge lengths or even steady-state

operation by a partly or fully non-inductive generation of the plasma current

are referred to as Advanced tokamak scenarios. The study of Advanced sce-

1Ignition is reached when the heating necessary to sustain the plasma is provided by the
fusion reactions only, without the need for additional external heating.
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narios is one of the objectives of the ITER program.

Standard operational scenarios with inductive current drive are character-

ized by a current density profile that is largest in the center of the plasma.

A centrally peaked current density profile leads to a further concentration of

current in the plasma center, as in a region with larger current, Ohmic heat-

ing is stronger leading to higher temperatures and thus to a lower resistivity

which raises the current density even more. This process is intercepted when

the central value of the safety factor profile reaches a value below unity which

results in the onset of sawteeth, periodic relaxation events in the plasma core

in each of which the central temperature and current density profiles are flat-

tened. Sawteeth can have the unfavorable effect of seeding a different kind

of instability, so called neoclassical tearing modes [9], which can degrade the

confinement and even lead to a disruption of the entire discharge. An example

of a high performance standard operational scenario is the H-mode which is

characterized by the use of strong additional external heating sources and a

transport barrier at the edge of the plasma enhancing the confinement.

In contrast to the standard operational scenarios, Advanced steady-state

scenarios are characterized by a current density profile that peaks off the

plasma center, leading to a safety factor profile above unity which has a neg-

ative slope in the plasma core and then increases towards the plasma edge.

This magnetic field configuration yields improved confinement in the region

where the safety factor profile has a small or negative slope, which enhances

the contribution of the bootstrap current. However, it has not yet been pos-

sible to reach performance levels comparable to standard H-mode discharges

because Advanced steady-state discharges are more prone to instabilities.

Another kind of Advanced tokamak scenario is the Improved H-mode which

allows for extended discharge durations at high performance. It was first found

in ASDEX Upgrade and has by now been generated in most large tokamaks.

The Improved H-mode became known as the Hybrid scenario as it represents

a mode of operation in between the inductive standard H-mode and the fully

non-inductive steady-state scenario. It is characterized by a safety factor pro-

file which is flat and has values close to unity in the central region of the

plasma, leading to favorable confinement and stability properties. More de-

tails on Advanced scenarios, in particular with regard to the preparation of

the operation of ITER is given in [10].

Calculations for some Hybrid discharges predict [11–13] that according to

9



the heat and current sources, the current density profile should centrally peak,

leading to a central value of the safety factor below unity and the occurrence of

sawteeth. However, an unexplained mechanism, often referred to as magnetic

flux pumping, seems to flatten the central current density profile such that the

safety factor is clamped to a value close to unity in the plasma core. In order to

be able to extrapolate the accessibility and properties of the Hybrid scenario

in present-day tokamaks to ITER, it is crucial to understand in detail the

mechanism behind magnetic flux pumping. For more information on magnetic

flux pumping in Hybrid discharges it is referred to [11–13].

This work is aimed at advancing the understanding of magnetic flux pump-

ing in Hybrid tokamak discharges by means of 3D nonlinear magnetohydrody-

namic simulations in toroidal geometry which have been performed using the

high-order finite element code M3D-C1. The magnetohydrodynamic model

describes the plasma as a magnetized, electrically conducting fluid and rep-

resents a widely used framework for addressing the subjects of equilibrium

and stability in tokamak plasmas. The presented simulations are set up such

that the central value of the safety factor profile is driven towards values be-

low unity. The resulting evolution of the plasma is either characterized by

sawtooth-like periodic relaxation events, or sawteeth are prevented by a flux

pumping mechanism that keeps the central value of the safety factor close to

unity.

In Chapter 2, an overview of the theoretical background of the presented

work as well as a brief description of the M3D-C1 code are given. A summary

of some experimental observations on the sawtooth instability and approaches

for its theoretical description as well as a summary of the physics of Hybrid

discharges are presented in Chapter 3.

In Chapter 4, it is analyzed in detail how the flux pumping mechanism in

the presented simulations works, and under which conditions it sustains itself.

In Chapter 5, simulations in ASDEX Upgrade geometry are presented which

mimic some features of the set-up of realistic Hybrid discharges and represent

a first step on the path towards a more realistic modeling of Hybrid discharges.
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Chapter 2

Magnetohydrodynamics

2.1 Ideal MHD equations

The ideal magnetohydrodynamic (MHD) equations are given by

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

ρ
dv

dt
= −∇p+ J×B (2.2)

E + v ×B = 0 (2.3)

d

dt

(
p

ργ0

)
= 0 (2.4)

complemented by a low-frequency, long-wavelength version of Maxwell’s equa-

tions

∇× E = −∂B

∂t
(2.5)

∇×B = µ0J (2.6)

∇ ·B = 0 . (2.7)

Here, ρ describes the mass density, v the fluid velocity, J the electric current

density, B the magnetic field, p the pressure, E the electric field, γ0 = 5/3

is the ratio of specific heats, µ0 is the vacuum permeability and d
dt

stands for

the convective derivative ( ∂
∂t

+ v ·∇). A detailed description and derivation of

this model are, for example, presented in [14,15] which are the references this

section is based on.

The MHD model consists of an equation describing the conservation of
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mass (2.1), the force balance equation (2.2) giving the time evolution of mo-

mentum, Ohm’s law (2.3) and the adiabatic equation of state (2.4). Ohm’s law

combined with Faraday’s law (2.5) yields the time evolution of the magnetic

field. Note that by using Equation (2.1), the adiabatic equation (2.4) can be

rewritten as

3

2
n
∂T

∂t
+

3

2
nv · ∇T + nT∇ · v = 0 , (2.8)

where n is the particle density and T is the temperature. This equation is

often called energy equation.

The ideal MHD model describes a magnetized perfectly conducting fluid.

One of its important applications is the study of macroscopic equilibrium and

stability of plasmas in nuclear fusion devices that use magnetic confinement.

Within the wide range of time scales that need to be accounted for in the

theoretical treatment of these plasmas, the MHD model covers an interme-

diate regime. It neither includes high-frequency microscopic effects nor low-

frequency transport phenomena.

Equations (2.1)-(2.7) can be derived starting from the original set of Maxwell’s

equations together with the first three moments of the Boltzmann equation

for ions and for electrons as described in [14]. Equation (2.1) follows from

the zeroth moment equation for ions, Equations (2.2) and (2.3) result from

combinations of the first order moments for ions and electrons, and the sum

of the second order moments for ions and electrons leads to Equation (2.4).

Note that in terms of the corresponding quantities referring to the ions and

the electrons, the single-fluid variables used here are defined as

n = ni = ne (2.9)

ρ = min (2.10)

T =
1

2
(Te + Ti) (2.11)

p = 2nkBT = pe + pi (2.12)

v = vi (2.13)

J = en (vi − ve) . (2.14)

These equations imply that me � mi and that quasi-neutrality (ni = ne) is

assumed. Note that Te = Ti and pe = pi for the single-fluid MHD model to
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be valid. mi and me denote the ion and electron masses, kB is the Boltzmann

constant and e the electron charge.

The derivation of the ideal MHD model involves the following assumptions

which represent the conditions under which the model is valid:

(1) High collisionality. This means that on the time scales of interest,

both ions and electrons undergo sufficient collisions so that their distribution

function is nearly Maxwellian. Furthermore, their mean free path has to be

much shorter than the characteristic length scale of the system, and the energy

equilibration time has to be short compared to the characteristic time scale so

that Ti ≈ Te.

(2) Small gyro radius. The ion gyro radius has to be much smaller than

the characteristic length scale.

(3) Small resistivity. Despite the high collisionality, the resistive diffusion

time has to be large compared to the characteristic time scale.

For typical plasmas in nuclear fusion devices, conditions (2) and (3) are

satisfied. For the requirement of high collisionality this is not in general the

case. However, it can be shown that the equation for mass conservation, Ohm’s

law and the component of the momentum equation that is perpendicular to

the magnetic field lines are valid without this condition and that the parallel

component of the momentum equation as well as the energy equation do not

play an important role if the plasma motion is incompressible, i.e. ∇ · v = 0,

which is usually the case for problems involving MHD equilibrium and stability.

It can be shown that the ideal MHD model conserves mass, momentum,

energy and magnetic flux. The latter is defined by

ψ =

∫
B · dA , (2.15)

where dA denotes a surface element. Conservation of magnetic flux means

that the amount of flux passing through an arbitrary open surface which moves

along with the fluid is constant. As this also applies to the cross section of

an arbitrarily thin flux tube enclosing a single magnetic field line, it follows

that magnetic field lines are not allowed to cross, tear and reconnect. At the

same time, the magnetic field lines are constrained to move with the fluid,

so ideal MHD only allows for fluid motions that conserve the topology of the

magnetic field lines. This is called the frozen-in condition. The inclusion of

non-ideal effects into Ohm’s law makes it possible that this constraint can
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be violated which can have important implications for the stability of plasma

configurations as will be discussed in the following section.

2.2 Magnetic reconnection

The model that has been used for the calculations presented in this work

includes non-ideal dissipative terms. Including the effect of resistivity, Ohm’s

law (2.3) becomes

E + v ×B = ηJ . (2.16)

In order to discuss the effect of a finite resistivity, the time evolution equation

for the magnetic field is examined in more detail. Inserting Ohm’s law (2.16)

into Faraday’s law (2.5) yields

∂B

∂t
= ∇× (v ×B)−∇× (ηJ) . (2.17)

Using Equation (2.6) to eliminate the current density leads to

∂B

∂t
= ∇× (v ×B) +

η

µ0

∇2B , (2.18)

where it has been used that ∇ ·B = 0 and η has been assumed to be spatially

constant for simplicity. From the second term on the right side of Equa-

tion (2.18), it can be seen that η/µ0 has the role of a diffusion coefficient for

the magnetic field. Magnetic diffusion allows for a violation of the frozen-in

condition. However, the magnetic diffusion in the plasma core of modern toka-

maks is very small. Typically, η/µ0 has values in the order of 10−3m2/s. For

typical length scales of 1m, this gives a diffusion time scale of about 103s. As

MHD instabilities in tokamaks occur on a much shorter time scale, magnetic

diffusion seems to be too slow to have any impact on these processes.

However, in the presence of large gradients, significantly smaller length

scales have to be considered, so that magnetic diffusion can become important

locally. It then allows for magnetic reconnection which means that magnetic

field lines that are close can tear and reconnect in a different configuration as

sketched in Figure 2.1. This localized process can have an important impact on

the global configuration of the magnetic field as it allows the magnetic field to
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Figure 2.1: Sketch of two reconnecting magnetic field lines. The grey arrows
indicate the direction into which the plasma is accelerated. Based on Figures 1.1
and 4.3 in [16].

relax to a lower energy state which would not be accessible without resistivity.

As, globally, the frozen-in condition is still valid, the plasma is accelerated by

the motion of the magnetic field, leading to a conversion of magnetic energy

into kinetic energy.

It should be mentioned that there are also other non-ideal terms that can

lead to magnetic reconnection. Those appear in Ohm’s law in more complete

models than the resistive MHD model as, for example, the two-fluid model

where the ion and the electron fluid are treated separately. Such effects can

become important and have to be taken into account in cases where the resis-

tivity is very small. More precisely, this is the case if the width of a resistive

current sheet becomes smaller than the microscopic length scales of single par-

ticle motion which is not included into the MHD model. In fact, this is also

true for the plasma core of modern tokamaks as discussed in Section 3.1.3.

The discussion presented in this section is based on [17] and [16].

2.3 Dynamos

The first term on the right side of Equation (2.18) indicates that there might

be a possibility that a certain velocity field is able to sustain the magnetic

field against the resistive decay or even amplify it. The study of amplification

of magnetic fields by motions in conducting fluids is the subject of dynamo

theory. It has its most important applications in the field of astrophysics as

dynamos are believed to be responsible for the sustainment of magnetic fields

in many astrophysical objects like planets, stars or galaxies. An introduction
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Figure 2.2: Sketch of the rope dynamo. Based on Figure 5.4 in [16].

into dynamo theory is given in [16] which is the reference this section is based

on.

The essential idea of how a flow could amplify a magnetic field is illustrated

by the rope dynamo [18]. In this model, a closed flux tube is considered. As

sketched in Figure 2.2 the flux tube is stretched such that its length is doubled

and its cross section is reduced to half of its original value, then it is twisted

and folded. The resulting flux tube has the same length and cross section as

the original one, but carries twice the amount of magnetic flux.

In kinematic dynamo theory, which is the simplest level dynamo theory,

only the equation for the evolution of the magnetic field (2.18) is considered

and the velocity field is given, which means that any back reaction of the

magnetic field evolution onto the velocity field is neglected. It is examined

which kind of flows are needed to sustain different magnetic fields. A series of

so called anti-dynamo theorems were developed that proved that a dynamo is

not possible in certain configurations. For example, it has been proven that a

steady-state axisymmetric magnetic field cannot be maintained via a dynamo

action [19]. The same is true for a plane 2D geometry [16], but it is not

true for more general geometries with one ignorable coordinate such as helical

symmetry for which a dynamo solution has been explicitly calculated [20].
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2.4 Tokamak equilibrium configuration

Omitting time-dependent terms and setting v = 0 in Equations (2.1)-(2.7),

yields the set of equations that describe a static ideal MHD equilibrium:

∇p = J×B (2.19)

∇×B = µ0J (2.20)

∇ ·B = 0 . (2.21)

In an equilibrium state, the magnetic force J×B balances the pressure gradient

force ∇p. This section is based on [14], where an extensive discussion of ideal

MHD equilibrium theory can be found.

For a nuclear fusion device using magnetic confinement, an equilibrium

configuration is needed that provides good particle and energy confinement

properties as well as macroscopic stability. The motion of charged particles

perpendicular to the magnetic field is restricted to a gyration by the Lorentz

force, but along the magnetic field lines the particles can move freely. Thus,

the condition of good confinement leads to toroidal configurations where all

of the magnetic field lines inside a certain toroidal domain remain inside this

domain. The tokamak is the most commonly realized toroidal plasma confine-

ment configuration. It is characterized by axisymmetry.

The tokamak geometry is usually described in cylindrical coordinates (R, φ, Z)

where R is referred to as the major radius and φ is the toroidal angle. To de-

scribe a cross section of the torus at a fixed toroidal angle in cases when this

cross section is circular, the minor radius r and the poloidal angle θ are often

used. The coordinate systems are shown in Figure 2.3. By axisymmetry it is

meant that scalar quantities do not depend on φ.

The ratio of the major radius of the center of the plasma column R0 and

the minor radius of its boundary a is called the aspect ratio. The larger it is,

the closer the geometry is to the geometry of a periodic cylinder which is often

used as an approximation.

The basic set-up of a tokamak is depicted in Figure 2.4. The main compo-

nent of the magnetic field is the toroidal field generated by the toroidal field

coils. A solely toroidal magnetic field cannot maintain the plasma in a toroidal

equilibrium as the inhomogeneous magnetic field leads to a drift motion of the

plasma particles in Z-direction that separates ions from electrons and the re-
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Figure 2.3: Cylindrical coordinates R, φ and Z (blue), and additional poloidal
coordinates r and θ (green).

sulting electric field leads to an outward motion of the entire plasma [15]. This

is prevented by adding a poloidal magnetic field which is mainly generated by a

toroidal electric current inside the plasma. The current is driven by a toroidal

loop voltage induced by a transformer. The outer poloidal field coils which

are necessary to control the plasma shape and position, provide an additional

small contribution to the poloidal magnetic field.

The superposition of the toroidal and the poloidal magnetic field results in

magnetic field lines that wind helically around the torus. From axisymmetry,

it follows that they span nested toroidal surfaces, called magnetic flux surfaces.

These surfaces are also surfaces of constant pressure and the same surfaces are

spanned by J, as can be seen from

B · ∇p = 0 and (2.22)

J · ∇p = 0 , (2.23)

which result from Equation (2.19). The innermost magnetic flux surface re-

duces to a line and is called magnetic axis. In modern tokamaks the last closed

magnetic flux surface is defined by the magnetic field configuration itself rather

than by a solid surface touching the plasma. It is then called separatrix. In

these configurations, the plasma cross section (at constant φ) is usually not

circular, but can have different shapes which are typically vertically elongated.

Two quantities that are often used to label the flux surfaces are the poloidal
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Figure 2.4: Basic set-up of a tokamak. Source: EUROfusion.

magnetic flux ψp and the toroidal magnetic flux ψt defined as

ψp =

∫
B · dAp (2.24)

ψt =

∫
B · dAt (2.25)

where the area Ap is a ribbon spanned between the magnetic axis and a cut

through a chosen flux surface at constant θ, and the area At is the area inside a

chosen flux surface at constant φ. Note that in the remainder of this work the

quantities Ψ = ψp/2π and Φ = ψt/2π are referred to as poloidal and toroidal

magnetic flux, respectively.

In the case of toroidal axisymmetry, the ideal MHD equilibrium equa-

tions (2.19)-(2.21) can be reduced to a two-dimensional, nonlinear, elliptic

partial differential equation, called Grad-Shafranov equation. To this end, the

magnetic field is expressed in terms of Ψ as

B = Bφφ̂+
1

R
∇Ψ× φ̂ . (2.26)

Note that Ψ has the role of a stream function for the poloidal magnetic field.
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Inserting this expression into Equation (2.20) yields

J = − 1

µ0R
∆∗Ψφ̂+

1

µ0R
∇ (RBφ)× φ̂ , (2.27)

where ∆∗ is defined as

∆∗Ψ = R2∇ ·
(

1

R2
∇Ψ

)
. (2.28)

The components of Equation (2.19) in the direction of B and J imply that

both p and RBφ are constant on flux surfaces so that they can be expressed

as p(Ψ) and F (Ψ), where

F (Ψ) = RBφ . (2.29)

Inserting Equations (2.26), (2.27) and (2.29) into the component of Equa-

tion (2.19) which is perpendicular to the flux surfaces, ∇Ψ · [∇p = J × B],

yields the Grad-Shafranov equation

∆∗Ψ = −µ0R
2 dp

dΨ
− F dF

dΨ
. (2.30)

A specific equilibrium configuration is determined by the choice of p(Ψ), F (Ψ)

and the boundary conditions.

2.5 Magnetic field structure in tokamaks

As described in the previous section, in a tokamak configuration the magnetic

field lines wind helically around the torus on nested toroidal surfaces. The

number of times the field lines on a specific surface turn around the torus

toroidally during one poloidal turn is given by the safety factor

q =
∆φ

2π
. (2.31)

If the value of the safety factor on the surface is rational, i.e. q = m/n, a field

line in this surface closes on itself after m toroidal turns and n poloidal turns.

If q is irrational, the field line never closes. Assuming a circular cross section,
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the magnetic shear s defined as

s =
r

q

dq

dr
(2.32)

describes how much the inclination angle of the field lines changes between

neighboring flux surfaces.

For a large aspect ratio tokamak with circular cross section, the safety

factor profile can be approximated by

q(r) =
rBφ

R0Bθ

=
2πr2Bφ

µ0I(r)R0

, (2.33)

where R0 is the major radius of the magnetic axis, the total toroidal current

inside r is given by

I(r) = 2π

∫ r

0

Jφ (r′) r′dr′ , (2.34)

and Ampère’s law (2.6) has been used to obtain the second expression [8].

This shows that the toroidal current density profile plays an important role

in determining the safety factor profile. In particular, the values of the safety

factor at the plasma boundary and on the magnetic axis are approximately

given by qa = 2πa2Bφ/(µ0ItotR0) and q0 = 2Bφ/(µ0Jφ,0R0), respectively, where

Itot is the total toroidal plasma current and Jφ,0 is the toroidal current density

on axis.

The magnetic field structure of an axisymmetric equilibrium configuration

can be significantly modified by non-axisymmetric perturbations in case of

non-vanishing resistivity. Consider a perturbation of the form

ξ = ξ(r) exp (imλ) , (2.35)

where λ is defined as

λ = θ − n

m
φ . (2.36)

This perturbation is resonant with the magnetic field on the flux surface which

is characterized by q = m/n. Note that λ̂ is tangent to this flux surface and

is orthogonal to the field lines on the surface as shown in Figure 2.5. The
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Figure 2.5: A local coordinate system aligned to the magnetic field lines on the
resonant surface at radius rs. Based on Fig. 4.3 in [17].

equilibrium magnetic field along λ is

B∗ = Bθ

(
1− n

m
q(r)

)
. (2.37)

Thus, B∗ vanishes at the resonant surface at r = rs where q(rs) = m/n, and

has a different sign for r < rs than for r > rs as illustrated in Figure 2.6.

For an ideal plasma, the perturbation ξ would only deform the magnetic field,

but resistivity allows the field lines to reconnect yielding a different magnetic

topology. A chain of magnetic islands is created at the resonant surface where

each island consists in nested toroidal surfaces around a magnetic axis and is

limited by a separatrix. The island magnetic axis and the crossing lines of the

separatrix are called O-point and X-point, respectively. Note that the island

X-points are the sites of reconnection.

The magnetic islands wind helically around the plasma core and close in

themselves after m toroidal turns and n poloidal turns. This means that in

a plane of constant φ there are m magnetic islands. More information about

the magnetic field structure in tokamaks and magnetic islands can be found

in [17] and [8], which are the references this section is based on.

A special case of magnetic field topology results from a perturbation with
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λ

r - rs

λ

r - rs

λ

r - rs

Figure 2.6: Top: Illustration of the equilibrium magnetic field configuration in the
λ-r plane. On the resonant surface at r − rs = 0, the magnetic field component
along λ vanishes. Center : A perturbation only compresses the magnetic field if the
plasma is ideal. Bottom: Resistivity allows for magnetic reconnection leading to the
formation of magnetic islands. Based on Fig. 4.4 in [17].

23



Z

R

Figure 2.7: Poincaré plot showing a (m = 1, n = 1) magnetic island.

m = 1 and n = 1. In this case, a single magnetic island winds once around

the core. The core and the island have the same topological structure. If the

magnetic axis of the island is taken as a reference, the core can be seen as

winding helically around the island.

The magnetic field structure can be visualized in Poincaré plots. Poincaré

plots are generated by tracing field lines on different surfaces and marking the

points where the field lines cut a chosen plane. On irrational surfaces the field

line will trace out the entire surface after a sufficient amount of toroidal turns.

An example of a cut of constant φ featuring a (m = 1, n = 1) magnetic island

is shown in Figure 2.7.

Field line tracing can also be used to calculate safety factor profiles by

counting the number of toroidal and poloidal turns around the magnetic axis

the field lines undergo. If, for the calculation of the safety factor profile, field

lines are started inside a magnetic island, it results in a flat region where

q = m/n. This is because relative to the magnetic axis, the island winds

around helically as a whole. It does not necessarily mean that the safety factor

profile inside the island, calculated with respect to its own magnetic axis, is

flat. This becomes important when a safety factor profile in a configuration as

the one shown in Figure 2.7 needs to be calculated. The result in the central

region of the plasma then depends on which magnetic axis is chosen to be the

reference and in which region field lines are started.

A possibility of obtaining an approximation of a safety factor profile in such

non-axisymmetric configurations is to toroidally average the magnetic field

yielding a configuration of nested magnetic surfaces around a single magnetic
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axis before calculating the safety factor profile. This method will be used in this

thesis for the magnetic field structures that result from a nonlinear evolution

to find out how the axisymmetric field is modified by the perturbations.

2.6 Ideal MHD stability

As mentioned in Section 2.4, for a plasma configuration to be suitable for a

nuclear fusion device, it needs to provide good stability properties. Stability

means that perturbations result in forces that restore the equilibrium rather

than amplifying the initial perturbation. In this section, a framework for

studying the linear stability of ideal MHD equilibria will be outlined following

the discussion presented in [14]. In doing so, only the most essential steps will

be highlighted, for the detailed algebra it is referred to this reference.

The linear analysis of stability represents a useful starting point for a treat-

ment of MHD instabilities as it predicts if an instability will occur at all. For

those types of instabilities which need to be entirely avoided, in some cases

this information might be all that is needed. Other types of instabilities, like

the ones discussed in this thesis, can be tolerated as they do not necessarily

lead to an immediate termination of the plasma discharge. Thus, their non-

linear evolution is of interest and needs to be analyzed numerically. However,

in these cases, the linear analysis will also provide important insight into the

basic characteristics of the instability at its onset.

The analysis presented in this and the following two sections is based on

the ideal MHD equations. Including resistivity does not lead to stability when

a configuration is ideally unstable, but it can extend the region of instability

as it allows for changes of the magnetic topology that would otherwise be

prohibited by the frozen-in condition. Resistivity can also play a role during

the nonlinear evolution of an ideal instability which is the case for the internal

kink instability discussed in Section 2.7.

As mentioned in Section 2.4, a static ideal MHD equilibrium satisfies

∇p0 = J0 ×B0 (2.38)

∇×B0 = µ0J0 (2.39)

∇ ·B0 = 0 (2.40)

v0 = 0 . (2.41)
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All variables Q(x, t) are linearized around this equilibrium, so that

Q(x, t) = Q0(x) + Q̃1(x, t) , (2.42)

where Q̃1(x, t) represents a small perturbation. The quantity ξ̃ defined by

∂ξ̃

∂t
= ṽ1 (2.43)

is introduced to describe the displacement of the plasma. By inserting the

linearized variables into Equations (2.1), (2.4) and Equation (2.5) combined

with Equation (2.3), neglecting terms beyond first order, integrating the ob-

tained equations with respect to time, and choosing the initial conditions to

be ξ̃(x, 0) = B̃1(x, 0) = ρ̃1(x, 0) = p̃1(x, 0) = 0 and ṽ1(x, 0) 6= 0, the perturba-

tions ρ̃1, p̃1 and B̃1 can be expressed in terms of ξ̃. They are then substituted

into the linearized version of the momentum equation (2.2) yielding

ρ0
∂2ξ̃

∂t2
= F

(
ξ̃
)
. (2.44)

Here, the force operator F is defined as

F
(
ξ̃
)

=
1

µ0

(∇×B0)×
[
∇×

(
ξ̃ ×B0

)]
+

1

µ0

(
∇×

[
∇×

(
ξ̃ ×B0

)])
×B0

+∇
(
ξ̃ · ∇p0 + γ0p0∇ · ξ̃

)
, (2.45)

where Equation (2.6) has been used used to eliminate J. The normal-mode

formulation of the initial value problem given by Equation (2.44) is obtained

by separating the time-dependency of ξ̃ by expressing it as

ξ̃(x, t) = ξ(x) exp (−iωt) , (2.46)

which leads to

−ω2ρ0ξ = F (ξ) , (2.47)

representing an eigenvalue equation with eigenvalues ω2 which can be shown

to be real. If ω2 < 0, the perturbation grows exponentially with a growth rate
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γ = iω. Otherwise, the system is stable and oscillates around its equilibrium

position with the frequency ω.

In order to simplify the analytical treatment of this problem, it is useful

to cast it into a variational formulation by multiplying Equation (2.47) with ξ

and integrating it over the plasma volume which yields

1

2
ω2

∫
ρ0ξ

2 dV = −1

2

∫
ξ · F (ξ) dV . (2.48)

Here, the left side of the equation represents the kinetic energy of the plasma

and the right side corresponds to the potential energy, denoted δW in the

following. The latter decides about the stability of the system as
∫
ρ0ξ

2 dV

is always positive. It can be shown that the system is unstable if some trial

function ξ can be found which yields δW < 0. In this case, the corresponding

γ is a lower limit for the growth rate of the actual eigenfunction. This facili-

tates the linear stability analysis significantly, as it is in general not necessary

to determine the exact eigenfunctions in order to prove instability. In the fol-

lowing, expressions for δW in the geometry of interest are presented that allow

for efficient analysis and it is discussed under which conditions trial functions

can be found that yield δW < 0, focusing on long-wavelength perturbations

that are localized in the plasma core.

An expression for δW can be derived, that splits into a term describing the

magnetic field energy in the vacuum region around the plasma, a term describ-

ing the contribution of a perturbation of the boundary between the plasma and

the vacuum region, and a term δWF corresponding to the contribution of the

plasma volume itself. As this discussion aims at instabilities in the plasma

core, only the latter contribution is taken into account in the following. It

reads

δWF =
1

2

∫ [
1

µ0

|Q⊥|2 +
1

µ0

B2
0 |∇ · ξ⊥ + 2ξ⊥ · κ|2 + γ0p0|∇ · ξ|2

]
dV

+
1

2

∫ [
−2 (ξ⊥ · ∇p0) (κ · ξ⊥)− J0,‖ (ξ⊥ × b) ·Q⊥

]
dV (2.49)

where the integral is carried out over the plasma volume. Here, ξ = ξ⊥ + ξ‖b,

J0 = J0,⊥ + J0,‖b, Q = Q⊥ +Q‖b, where b = B0/B
2
0 and

Q = B1 = ∇× (ξ ×B0) , (2.50)
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and the curvature of the equilibrium magnetic field is given by

κ = (b · ∇) b . (2.51)

The first three terms of Equation (2.49) are all positive and thus act stabilizing.

From left to right, they correspond to the energy required to bend the magnetic

field lines, the energy required for a compression of the magnetic field, and the

energy required to compress the plasma. The remaining two terms can become

negative and therefore represent possible sources for instabilities. Instabilities

that are driven by the term that contains ∇p0 are called pressure-driven, and

instabilities that are due to the term that is proportional to J0,‖ are called

current-driven. In many cases, instabilities are driven by both the pressure

gradient and the parallel current density.

2.7 Internal kink instability

Equation (2.49) gives a general expression for δWF that does not depend on

the geometry. In the following, an expression for δWF in the geometry of a

tokamak plasma with a circular cross section is discussed. The perturbation ξ

is written as a component of a Fourier series, yielding

ξ(x) = ξ(r) exp [i (mθ + nφ)] , (2.52)

where m and n are called the poloidal and the toroidal mode number. The

large aspect ratio approximation is used, so that the equation for δWF can be

expanded in orders of ε = a/R0 � 1. As for tokamaks q ∼ rBφ/(R0Bθ) ∼ 1,

it follows that Bθ/Bφ ∼ ε. Furthermore, it is assumed that s ∼ 1, βp ∼
2µ0p/B

2
θ ∼ 1 and the safety factor profile is an increasing function of r. Again,

any terms depending on a perturbation of the plasma boundary are neglected.

The expansion results in a series of terms of the form

δWF = δW0 + δW2 + δW4 + ... ,

where δWn ∼ εn. The term δW0 vanishes and the next term reads

δW2 =
2π2B2

0,φ

µ0R0

∫ a

0

(
n

m
− 1

q

)2
[
r2

(
dξr
dr

)2

+
(
m2 − 1

)
ξ2
r

]
r dr . (2.53)
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Here, ξr is the radial component of ξ, and the other components have been

eliminated using the symmetry of the system. For m ≥ 2, it is not possible

to find a trial function ξr that leads to δW2 ≤ 0, thus the plasma is stable

for modes with m ≥ 2. For m = 1, the term proportional to ξ2
r vanishes.

Hence, choosing a ξr that is constant in r would make δW2 vanish, but this

perturbation is not allowed as only modes with ξr(a) = 0 are considered. As

ξr has to vanish at the boundary, its derivative has to be non-zero for some

radius. This means that if q0 > 1, the system is stable, as in this case the factor

(n/m− 1/q)2 never vanishes. This factor represents the stabilizing effect due

to the fact that energy is required to bend the field lines. It vanishes for

q = m/n, i.e. if the perturbation has the same structure as the equilibrium

magnetic field.

However, if a q = 1 surface exists inside the plasma, a trial function ξr

can be constructed that avoids the stabilizing effect of field line bending and

leads to δW2 = 0. This perturbation corresponds to a rigid helical shift of

the plasma, where ξr is constant inside the q = 1 surface and vanishes for

q > 1. The radial derivative of this trial function has the form of a δ-function

vanishing everywhere except at q = 1 where (n/m − 1/q)2 = 0. As this leads

to δW2 = 0, the term of fourth order in ε decides about the stability. For

m = n = 1, a parabolic current density profile and a value of q0 below, but

not too far from unity, δW4 can be approximated by

δW4 ≈
6π2B2

0,φr
4
sξ

2
0

µ0R3
0

(1− q0)

(
13

144
− β2

p1

)
, (2.54)

where ξ0 = ξr(0), rs is the radius of the q = 1 surface and βp1 is defined as

βp1 =
2µ0

B2
0,θ

∫ rs

0

(
r

rs

)2(
−dp
dr

)
dr . (2.55)

Hence, the mode with m = n = 1 is indeed unstable for sufficiently large

values of βp1. The instability is not only driven by the central current density,

but also by the pressure gradient inside the resonant surface. Note that the

stabilization at low values of βp1 is due to the toroidicity and does not arise if

the calculation is done for a straight cylinder.

In summary, the linear analysis of the ideal MHD equations in a geometry

approximating that of a tokamak plasma predicts an internal instability, if
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q0 < 1 (for s > 0) and if β is sufficiently large. The unstable mode has a helical

structure defined by the mode numbers m = n = 1 and radially extends over

the region inside the q = 1 surface. The displacement corresponds to a helical

kinking of the plasma core which is why the instability is called internal kink.

During the nonlinear evolution of the internal kink, the displacement of the

plasma core leads to large gradients of the magnetic field at the q = 1 surface.

At this stage, resistivity becomes important as it leads to the formation of a

(m = 1, n = 1) magnetic island (see Figure 2.7) through magnetic reconnec-

tion. The ideal internal kink instability and its resistive, nonlinear evolution

are believed to be responsible for the experimentally observed sawtooth oscil-

lations which will be discussed in Section 3.1.

This section mainly follows the discussion in [14], additional information

can be found in [8] and [17]. The original work it is based on is [21].

2.8 Quasi-interchange instability

The analysis that lead to the prediction of the internal kink instability pre-

sented in the previous section is based on the assumption of finite magnetic

shear. However, a flat central safety factor profile results in a different kind of

instability. If the safety factor profile is sufficiently flat inside the q = 1 sur-

face, the factor (1 − 1/q)2 in Equation (2.53) (for m = n = 1) reduces to the

order of ε4. In this case, the separation of the term given by Equation (2.53)

from the contributions of order ε4 is not valid any more.

When the stability analysis is carried out taking this into account, a dif-

ferent type of instability is found. It is pressure-driven [22], and the velocity

perturbation of the most unstable mode has the form of a convection cell rather

than causing a rigid shift like for the internal kink. A comparison between the

two is sketched in Figure 2.8.

This can be understood by considering the role of the stabilizing effect

of field line bending. Having q ≈ 1 inside the entire plasma core weakens

this effect, so that, in contrast to the internal kink, in this case, it is not

so important for the displacement to be exactly constant within the plasma

core in order to avoid this stabilizing contribution. The resulting instability

is called quasi-interchange because the convective motion almost interchanges

field lines. In contrast to the internal kink instability, it does not have a

threshold with regard to β [22]. This section is based on the discussion of
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Figure 2.8: Sketch of the velocity perturbation in the r-θ plane for an ideal inter-
nal kink instability (left) and for a quasi-interchange instability (right). Based on
Figure 6.10.3 in [8].

the quasi-interchange instability in [8]. An analytical linear analysis of the

stability of tokamak plasmas with low central magnetic shear and q0 ≈ 1 can

be found in [22] and [23].

2.9 The M3D-C1 code

As mentioned before, the analysis of the nonlinear evolution of MHD insta-

bilities requires numerical tools. The numerical simulations presented in this

thesis have been performed using the M3D-C1 code. It is a high-order finite

element code that solves the time-dependent nonlinear extended MHD equa-

tions [24]. The code uses a split-implicit time advance for long-time integra-

tions allowing for simulations that span the time scales of MHD instabilities as

well as those of transport phenomena. It provides a choice of different physics

models and geometries. For the simulations presented in this work, the fol-

lowing set of differential equations (here translated into SI units) is solved in
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toroidal geometry:

∂n

∂t
+∇ · (nv) = dn∇2n+ Sn (2.56)

∂B

∂t
= −∇× E (2.57)

nmi

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J×B + ν∇2v (2.58)

3

2
n
∂T

∂t
+

3

2
nv · ∇T + nT∇ · v

= ν|∇v|2 + ηJ2 +∇ ·
(
χ⊥n∇T + χ‖n

BB

B2
· ∇T

)
+ S . (2.59)

These equations correspond to Equations (2.1), (2.5), (2.2) and (2.8) with ad-

ditional terms describing dissipative effects and sources. Momentum diffusion

is reflected by the term ν∇2v in the force balance equation, where ν denotes

the dynamic viscosity. A heat diffusion term ∇ · (χn∇T ), where χ is a tensor

describing the heat diffusivity, is added to the energy equation. As, in toka-

mak plasmas, the heat transport is significantly different along and across the

magnetic field, this term is split into two parts with the scalar coefficients χ‖

and χ⊥ describing heat diffusion parallel and perpendicular to the magnetic

field lines.

The generation of heat by viscous and magnetic dissipation is reflected by

additional terms in the energy equation which are ν|∇v|2 and ηJ2, respectively.

The latter is called Ohmic heating. The particle and energy sources are denoted

by Sn and S, respectively. The term dn∇2n is an additional particle diffusion

which provides numerical stability and allows to account for enhanced particle

diffusion due to turbulence on microscopic scales not described by the MHD

model. The ion mass mi is set to the mass of a proton for the presented

calculations.

The magnetic field, the electric field and the electric current density are

defined as

B = ∇×A (2.60)

E = −v ×B + ηJ (2.61)

J =
1

µ0

∇×B . (2.62)

Solving for the magnetic vector potential A instead of the magnetic field en-
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sures that ∇ ·B = 0 is automatically satisfied. The magnetic vector potential

and the velocity field are represented as

A = R2∇φ×∇f + Ψ∇φ− F0 lnRẐ (2.63)

v = R2
N∇U ×∇φ+ ωR2∇φ+R−2

N ∇⊥χ , (2.64)

where f , Ψ, U , ω and χ are scalar fields, and F0 is a constant. Here, Ψ

corresponds to −ψp/2π and the quantity F = RBφ in the Grad-Shafranov

equation (2.30) can be recovered as F = F0 + R2∇ · ∇⊥f . U is the poloidal

velocity stream function, ω corresponds to the toroidal angular velocity and the

term involving χ describes the compressible part of the velocity. Cylindrical

coordinates (R, φ, Z) are used, RN = R/Raxis, ∇φ = φ̂/R and ∇⊥ acts on a

scalar field Q or a vector field Q as

∇⊥Q = R̂∂RQ+ Ẑ∂ZQ and (2.65)

∇⊥ ·Q =
1

R
∂RRQ · R̂ + ∂ZQ · Ẑ , (2.66)

respectively. Note that Equation (2.63) implies the gauge condition

R2∇⊥ ·
1

R2
A = 0 . (2.67)

In summary, the quantities that are evolved in time in this model are n, T , U ,

ω, χ, Ψ and f . Other models that are provided, but have not been used for the

simulations presented here, include reduced resistive single-fluid models using

different subsets of this set of fields, and a two-fluid model described in [24].

At the beginning of each simulation the Grad-Shafranov equation (2.30)

is solved to compute the axisymmetric equilibrium on the provided R-Z grid.

The time evolution that follows can either be calculated using the linear, the

2D axisymmetric nonlinear, or the 3D nonlinear version of the code. The 2D

nonlinear version does not allow for variations in the toroidal direction. In cases

like the ones discussed here, the plasma configuration is stable with respect to

n = 0 instabilities. This means that the 2D code version can be used to evolve

the initial equilibrium to its asymptotic state where the profiles are determined

by the diffusion coefficients, sources and the boundary conditions. It is possible

to use the 2D nonlinear version first, and later restart the simulation using the

3D nonlinear code version.
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Figure 2.9: A sketch of a triangular wedge element is shown in red.

For the 3D nonlinear version, triangular wedge finite elements as shown

in Figure 2.9 are used. They represent a tensor product of reduced quintic

triangular elements [25, 26] in the R-Z plane and Hermite cubic elements [27]

in the toroidal direction. Both the reduced quintic and the Hermite cubic

elements ensure continuity between neighboring wedges not only for the values

of the variables, but also for their first derivatives (C1 continuity). A variable

Q is expressed as

Q =
18∑
i=1

4∑
j=1

Qij αi(R,Z) βj(φ) , (2.68)

where αi and βj are the reduced quintic and the Hermite cubic basis functions,

respectively. Quintic 2D elements have 21 degrees of freedom, this number has

been reduced to 18 by applying constraints resulting from the requirement of

C1 continuity. The remaining degrees of freedom correspond to the value of

the variable Q and its derivatives ∂RQ, ∂ZQ, ∂R∂ZQ, ∂2
RQ, ∂2

ZQ at each node

of a triangle.

For the linear code version, the same triangular elements are used in the

R-Z plane, but the dependency on the toroidal angle is described by a single
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Fourier mode with a chosen toroidal mode number1. In contrast to the 2D and

3D nonlinear code versions, in this case the n = 0 background does not change

in time.

The mesh in the R-Z plane is unstructured and can be refined locally as

shown in Figure 5.1. For the simulations presented here, the boundary of the

computational domain coincides with a closed flux surface, but it is as well

possible to chose a boundary that lies outside the separatrix. A thick, resistive

wall can also be included [29]. More detailed information on the M3D-C1 code

can be found in [24,30–33].

1This decomposition makes use of the fact that other than modes characterized by differ-
ent poloidal mode numbers m which are coupled by the effect of toroidicity and shaping [28],
modes with different toroidal mode numbers n only couple nonlinearly.
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Chapter 3

The sawtooth instability and the

sawtooth-free Hybrid scenario

3.1 Sawteeth

3.1.1 Experimental observations

Sawteeth are periodic relaxation events in each of which a part of the plasma

pressure stored in the core of a tokamak discharge is ejected. First reported

in [34], sawteeth have been routinely observed in most tokamak experiments

[35]. While they have the beneficial effect of removing impurities from the

plasma core, they have also been observed to seed neoclassical tearing modes,

an instability that can have a detrimental influence on energy and particle

confinement and can even lead to disruptions of the entire plasma [36].

A sawtooth cycle is characterized by three phases. During the ramp phase

the plasma density and temperature in the center rise slowly. It is usually

followed by the precursor oscillation phase where a growing (m = 1, n = 1)

helical magnetic perturbation is observed in the core region which results in a

sinusoidal oscillation of the measured signal due to the rotation of the plasma.

Subsequently the central plasma density and temperature suddenly and very

quickly drop during what is called the crash phase. A typical signature of

sawtooth cycles is shown in Figure 3.1. It should be mentioned that also

sawteeth without precursor oscillations as well as sawteeth with postcursor

oscillations have been observed [37].

In modern, large tokamaks the sawtooth period is usually in the order of

10−2..10−1 s, e.g. [35, 38–40]. Crash times are typically in the order of 10−4 s,
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Figure 3.1: Soft X-ray signals measured at radial locations inside and outside the
inversion radius during a sawtoothing ASDEX Upgrade discharge. The soft X-ray
emission is a measure of a combination of electron temperature and impurity density
(in this case mainly tungsten). With kind permission of V. Igochine.

e.g. [39, 41–43] and do not show a strong dependence on resistivity [17].

Further outside the core plasma, the sawtooth signature is inverted, a fast

rise of the plasma temperature and density are measured at the time of the

crash [34]. The minor radius where the signature changes is called the inversion

radius. Sawteeth only occur if the value of the safety factor on the magnetic

axis is below unity. The inversion radius is found close to the radius of the

q = 1 surface of the pre-crash safety factor profile [44]. 2D measurements of

electron temperature fluctuations for a fixed toroidal angle during sawtooth

cycles show that the hot plasma core seems to be expelled through a poloidally

localized region [45–47].

As will be discussed in the following sections, a key quantity for the vali-

dation of theoretical models put forward to explain the sawtooth instability is

the evolution of the central value of the safety factor during sawtooth cycles.

The results on this differ. Whereas some measurement results suggest that the

current density profile is entirely flattened by the crashes so that the central

safety factor becomes unity after a crash, e.g. [48, 49], others indicate that q0

remains below unity throughout the entire cycle, e.g. [43,48,50–52].

A detailed, although somewhat dated, review on the sawtooth instability,
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focusing on both experimental observations and theoretical modeling can be

found in [35].

3.1.2 Kadomtsev model

While a complete theoretical model of the sawtooth instability has not yet

been developed, the description proposed by B.B. Kadomtsev in 1975 [53] is

a widely used starting point for attempts to explain the dynamics of sawteeth

seen in experiments. The following description of Kadomtsev’s model and the

discussion in Section 3.1.3 are based on [17] and [35].

The model treats the internal kink instability within the framework of

reduced resistive MHD [54, 55] in cylindrical geometry. As discussed in Sec-

tion 2.7, the internal kink is unstable when the value of the safety factor at the

magnetic axis is smaller than unity which corresponds to the experimentally

observed occurrence of sawteeth. The resulting growth of a (m = 1, n = 1)

magnetic island can explain the experimentally observed precursor oscillation.

As the island grows, the core is pushed aside and shrinks, the contained plasma

is expelled through the magnetic reconnection site at the X-point of the island.

This matches the experimental observation of a poloidally localized heat flux

during the crash phase. The reconnection process is complete when the entire

positive contribution to the helical magnetic flux Ψ∗ is eliminated. The helical

magnetic flux is given by

Ψ∗ =

∫ r

0

B∗(r′)r′ dr′ (3.1)

where B∗ is defined by Equation (2.37) for m = n = 1. The helical flux de-

scribes the magnetic flux through a helical ribbon that begins at the magnetic

axis and is shaped such that its cut with the q = 1 surface corresponds to a

magnetic field line on that surface.

After completion of the process the magnetic island has replaced the orig-

inal plasma core so that axisymmetry is restored. The island O-point has

become the new magnetic axis and q0 ≈ 1. The configuration does not have a

q = 1 surface any more and is thus stable with respect to the internal kink. The

temperature and density profiles have been flattened as the hot, dense plasma

contained inside the original q = 1 surface has been expelled and replaced by

colder, less dense plasma from inside the magnetic island. This explains the
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Figure 3.2: Sketch of the evolution of the plasma core according to Kadomtsev’s
full sawtooth reconnection model. The (m = 1, n = 1) magnetic island (blue) grows
until it has replaced the original core (red). Based on [56].

experimentally observed location of the inversion radius. The evolution of the

core magnetic field structure according to Kadomtsev’s model is sketched in

Figure 3.2.

The time the reconnection process needs to complete is given by

τK ≈ (τητ
∗
A)1/2 (3.2)

where τη = µ0r
2
1/η is the resistive time, τ ∗A = r1(µ0ρ)1/2/(Bθ(r1)(1− q0)) is the

Alfvén time with respect to the helical magnetic field and r1 is the radius of

the q = 1 surface.

During the ramp phase after the crash, Ohmic heating and, if present,

additional central heating sources increase the core temperature causing the

core resistivity to decrease1. This leads to a central peaking of the electric

current density and thus to a decrease of the central safety factor profile. The

configuration becomes internal kink unstable again and the cycle starts over.

3.1.3 Beyond the Kadomtsev model

Many numerical simulations, the first ones having been presented in [57–59],

have confirmed that the dynamics described by Kadomtsev’s model do occur

within resistive MHD. However, some features of the experimental observations

cannot be explained by this model, indicating that effects that lie outside the

scope of the resistive MHD model have to be taken into account in order to

describe the sawtooth instability correctly.

One of these features is the time scale of the temperature crash. The

reconnection time according to the Kadomtsev model given by Equation (3.2)

is more than an order of magnitude too slow compared to measured values

1A commonly used expression for the plasma resistivity is given by Spitzer’s model pre-
dicting η ∼ T−3/2 [8].
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for large high-temperature tokamaks and increases with decreasing resistivity

which also does not correspond to the observations [17].

Several mechanisms have been proposed that could speed up the reconnec-

tion process. One of them is the plasmoid instability. This instability already

occurs within the resistive MHD model, but only at resistivities close to ex-

perimental values which are difficult to achieve in simulations. At these low

resistivities the thin current sheet at the reconnection site becomes tearing

unstable and secondary islands are formed [60]. It has been shown in resistive

MHD simulations that the occurrence of plasmoids can speed up sawtooth re-

connection and lead to a reconnection time that is only weakly dependent on

resistivity [61–64].

Beyond resistive MHD, some two-fluid effects have been shown to accel-

erate the reconnection process. As mentioned in Section 2.2, two-fluid effects

lead to a modification of Ohm’s law as, for example, described in [16]. At high

temperatures where resistive diffusion becomes less dominant, these modifica-

tions can play an important role. Examples for such effects that can enable fast

reconnection are electron inertia [65], the Hall term [66, 67], parallel electron

viscosity [68] and the parallel electron pressure gradient [64].

Another feature of the experimental observations that is not reflected by

the Kadomtsev model is the long quiescent ramp-up phase. According to the

resistive cylindrical MHD model, the internal kink is destabilized as soon as

there is a q = 1 surface inside the plasma. Hence the model does not explain

the long ramp-up phase that appears to be MHD stable until q0 reaches values

significantly lower than unity. The stabilization of the internal kink mode by

toroidicity at low β cannot explain this phenomenon for all different experi-

mentally observed cases [17]. Thus, the internal kink seems to be stabilized

by a mechanism that resistive MHD misses. Various candidates for this mech-

anism like diamagnetic effects [69], finite ion Larmor radius effects [70] and

stabilization from energetic ions [71] have been proposed.

A different experimental observation that has not yet been theoretically

explained is the process of incomplete sawtooth reconnection. As discussed in

Section 3.1.1, in many cases it is found that the safety factor on axis stays below

unity during the entire sawtooth cycle. In contrast to complete Kadomtsev

reconnection, where the original plasma core is entirely expelled and q0 = 1 is

restored after each crash, these observations seem to suggest that the magnetic

reconnection process stops before completing.
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A model for incomplete sawtooth reconnection would need to provide a

stabilizing mechanism that prevents the reconnection process from complet-

ing as well as an explanation for the efficient heat transport given that the

magnetic topology only changes partly. Although some approaches have been

brought forward, e.g. [17, 47, 67, 72, 73], incomplete reconnection has not yet

been reproduced in realistic 3D nonlinear simulations.

3.2 Hybrid scenario

As mentioned before, in the standard mode of operation, the plasma current

in a tokamak is generated by a transformer. This implies an upper limit for

the length of a discharge which represents a disadvantage of the tokamak con-

figuration with regard to its suitability for future nuclear fusion reactors. For

this reason, so called Advanced scenarios are being developed which allow for

extended discharge lengths or even continuous, also called steady-state, opera-

tion. The exploration of Advanced tokamak scenarios is one of the objectives

of the ITER program. This discussion of Advanced tokamak scenarios is based

on [10] where more detailed information, especially with regard to the prepa-

ration for the operation of ITER, can be found.

In order to increase the possible length of a discharge, plasma current has

to be driven non-inductively. This can be done by creating the conditions that

maximize the bootstrap current, a diffusion-driven toroidal current caused by

temperature and density gradients [8], or by external current sources like the

injection of neutral beams or radio-frequency waves.

The standard inductive operational scenarios, called L-mode and H-mode,

the latter providing improved confinement due to a transport barrier at the

edge of the plasma, are characterized by positive magnetic shear and q0 ≤ 1

(and exhibit sawteeth). In contrast, the fully non-inductive, steady-state Ad-

vanced scenario has reversed magnetic shear, i.e. an off-axis maximum of the

current density, and q0 > 1.5, leading to an internal transport barrier that

improves confinement and thereby increases the contribution of the bootstrap

current. However, as a result of the large pressure gradient and the negative

magnetic shear, steady-state Advanced scenarios are prone to MHD instabili-

ties which prevents them from reaching the performance of standard H-mode

scenarios.

The Hybrid scenario is a different type of Advanced scenario that is not
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Figure 3.3: (a) Safety factor profile and (b) time evolution of the central and
the minimum value of the safety factor as well as the radial position of the q = 1
surface in an ASDEX Upgrade Hybrid discharge. The grey line shows the predicted
time evolution of q0 according to a transport simulation by means of the ASTRA
code [76]. Reprinted figure with permission from [O. Gruber et. al, Physical Review
Letters, 83, 1787–1790 (1999)]. Copyright 1999 by the American Physical Society.

suitable for steady-state operation without external current drive, but allows

for discharges of extended duration at high performance. It is characterized

by low, sometimes slightly reversed, or vanishing magnetic shear in the central

plasma and q0 ≈ 1. Originally called Improved H-mode, the scenario became

known as Hybrid as it represents a mode of operation in between the inductive

standard H-mode and the fully non-inductive steady-state scenario. Hybrid

discharges provide good core confinement because of the low magnetic shear

[74]. In addition, as q0 ≈ 1, they do not exhibit sawteeth which prevents the

seeding of neoclassical tearing modes.

Often, current diffusion calculations based on the applied heat and current

sources for Hybrid discharges predict q0 to drop below unity [11–13] which

would lead to sawtoothing. An example is shown in Figure 3.3. The dis-

crepancy between prediction and measurements in these cases is due to an

unexplained mechanism which broadens the central current density profile so

that q0 is clamped to a value close to unity. As this corresponds to a redistribu-

tion of poloidal magnetic flux, this phenomenon is sometimes called magnetic

flux pumping [13]. This mechanism also facilitates the drive of plasma cur-

rent by external sources as the current can be driven in the plasma center

where the current drive efficiency is highest, and is then redistributed via flux

pumping [75].

Hybrid discharges have been generated in most large tokamaks such as

ASDEX Upgrade [11,12,77], DIII-D [13,75,78–80], JET [81] and JT60-U [82].
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In order to set up a Hybrid discharge, the plasma center is additionally heated

during the current ramp-up phase. During this phase at the beginning of a

discharge, the current density diffuses from the edge towards the center of the

plasma. Additional heating reduces the current diffusion leading to a broader

central current density profile at the beginning of the discharge.

The necessary conditions for the occurrence of flux pumping seem to differ

between tokamaks. In ASDEX Upgrade discharges, the clamping of q0 close to

unity was first thought to be linked to the presence of the fishbone instability

[11, 83], a small-amplitude periodic relaxation oscillation driven by energetic

particles [84, 85]. However in later experiments flux pumping was found to

occur also when fishbones were absent [12]. In DIII-D discharges, flux pumping

seems to be only possible at high enough β and in the presence of either

a (m = 3, n = 2) tearing mode or an externally excited (m = 1, n = 1)

perturbation of the plasma core [86].

Various attempts have been made to explain how Hybrid discharges are

sustained [13, 87–89], but a self-consistent generally accepted explanation is

still lacking. However, understanding the mechanism behind flux pumping is

crucial in order to be able to extrapolate the properties and accessibility of the

Hybrid scenario to larger future devices like ITER.

3.3 Tokamak plasmas with helical core in nu-

merical simulations

In this thesis, 3D nonlinear resistive MHD simulations are presented in which

magnetic flux pumping occurs due to a saturated quasi-interchange instability

manifesting itself as a stationary helical (m = 1, n = 1) perturbation of the

core plasma and, in particular, a (m = 1, n = 1) convection cell.

The phenomenon of a central helical (m = 1, n = 1) convection cell that

develops instead of sawtooth cycling has been seen before in nonlinear resistive

MHD simulations. It was first reported in [90] in 2D reduced MHD simulations

with helical symmetry. In [72], a similar model, but without temperature

evolution, is used and it is pointed out that a dynamo effect might be the

cause for the obtained stationary helical state. A stationary state featuring

a helical (m = 1, n = 1) core and convection cell has also been found in 3D

MHD simulations which include two-fluid effects, but use a time-independent
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resistivity [91]. In this reference, it is proposed that a saturated reconnecting

mode is responsible for the absence of sawteeth.

Whereas in the mentioned works, the primary focus was set on analyz-

ing the dynamics of sawtooth cycles, recently, the helical stationary states

themselves have become a focal point of interest and are compared to some

experimentally observed phenomena in tokamak discharges, e.g. [92,93].

A different framework for examining tokamak plasma states with a helically

perturbed core are calculations of 3D equilibria. Ideal MHD 3D equilibrium

solver, originally developed for the analysis of stellarator2 equilibria, are now

also used to examine tokamak equilibria that feature 3D perturbations like

helical cores, e.g. [94,95]. It is found that at weak reversed magnetic shear and

values of the safety factor in the neighborhood of unity in the plasma center,

besides the axisymmetric equilibrium there is a second state of equilibrium

at similar potential energy which has a 3D helical core [94]. In [96], this

finding is applied to the Hybrid scenario in ITER. The results of ideal MHD

3D equilibrium calculations are compared to linear and nonlinear ideal MHD

stability calculations in [97,98].

In this thesis, emphasis is put on understanding how the helical states are

sustained in 3D nonlinear resistive MHD simulations, under which conditions

they occur, and how these helical states can give rise to magnetic flux pumping.

This is done with the aim of contributing to a better understanding of magnetic

flux pumping in Hybrid discharges.

2A stellarator is another toroidal confinement configuration that, in contrast to a toka-
mak, is not axisymmetric.

44



Chapter 4

Magnetic flux pumping in 3D

magnetohydrodynamic

simulations

As discussed in Section 3.2, there is a mechanism of magnetic flux pumping

in Hybrid discharges which keeps the safety factor profile in the center of the

plasma flat and close to unity despite current or heat sources that work towards

centrally peaking the current density profile. As a result, these discharges do

not exhibit sawtoothing. In Reference [1], 3D nonlinear MHD simulations

in tokamak geometry have been presented in which sawtoothing is also pre-

vented by a flux pumping mechanism. The following discussion is based on

this finding. A detailed analysis of how the flux pumping mechanism in the

simulations works is given in Section 4.2. Subsequently, the results of a large

set of different 3D nonlinear MHD simulations run to their asymptotic states

are characterized. Depending on certain parameters, flux pumping either pre-

vents sawtoothing as in the cases presented in Section 4.3, or they exhibit

sawtooth-like reconnection events as examined in Section 4.4. Based on this

set of simulations, it is discussed in Section 4.5 under which conditions the flux

pumping mechanism can be sufficiently strong to prevent sawtoothing in the

simulations. In Section 4.6, some aspects of the flux pumping mechanism are

examined in more detail based on a linear stability analysis of an equilibrium

with low central magnetic shear.
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Figure 4.1: Mesh in the R-Z plane.

4.1 Simulation set-up

The presented calculations have been performed using the high-order finite-

element MHD code M3D-C1 described in Chapter 2.9. The resistive single-fluid

MHD model in toroidal geometry is used. The number of toroidal elements is

eight, and the mesh in each R-Z plane, shown in Figure 4.1, has about 1000

nodes. The boundary of the computational domain is up-down-symmetric and

coincides with a contour of constant poloidal magnetic flux. The time resolu-

tion is 40 τA
1. For each of the 3D nonlinear simulations a corresponding 2D

axisymmetric nonlinear calculation is done in order to isolate 3D phenomena.

As the focus is put on the asymptotic states of the simulations, they cover

time spans of a few 105 τA. Each has been run on 64 processors typically using

about 7..15 · 103 core hours. A large set of calculations is analyzed, obtained

by varying three parameters: the poloidal β, the perpendicular heat diffusion

coefficient together with the strength of the heat source, and the peakedness

of the heat source profile. All other parameters are held fixed. To keep the

1The Alfvén time is defined as τA = a
√
µ0nmi/B where a, n and B are a typical length

scale, and typical values for the particle density and the magnetic field, respectively. It
represents a characteristic time for MHD processes and is used as the time normalization in
M3D-C1 (see Table 4.1).
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Spitzer resistivity similar between simulations with different values of β, it is

rescaled accordingly. The chosen resistivity is a factor of 102..103 higher than

realistic resistivities in modern large tokamaks due to limited computational

resources. Similarly, the viscosity is a little more than one order of magnitude

higher than its realistic value2.

As in the following analysis, different physical processes are compared

whose time scales are set by either resistive diffusion or heat diffusion, it is

important to ensure a realistic ratio of resistive and heat diffusion time scales.

Therefore, the perpendicular heat diffusion coefficients are scaled up similarly

as the resistivity. In order to examine the influence of varying the resistivity

while keeping its ratio to the perpendicular heat diffusion coefficient fixed, one

simulation (case ‘n’) has been rerun with both η as well as χ⊥ and the strength

of the heat source scaled up by a factor of three (case ‘nX3’).

The heat diffusion anisotropy has values of χ‖/χ⊥ ≈ 104.. 3 · 106 in the

plasma center which is significantly smaller than realistic values. However, as

q ≈ 1 in the plasma core, a value of the heat diffusion anisotropy which would

allow for the parallel heat diffusion to have an influence on perpendicular heat

transport within the core3 would not be achievable in the simulations due to

computational limitations. The values of the toroidal magnetic field on axis

and the total plasma current are realistic, although a little smaller than typical

values in large, modern tokamaks. Details on the used parameters are given

in Table 4.1.

The applied loop voltage as well as the strength of the particle source are

feedback controlled to maintain the total current and the total number of

particles, respectively. The safety factor profile and the temperature as well

as the density profile reached in the asymptotic limit of the 2D simulations

for two example cases are shown in Figure 4.2. For all cases, the asymptotic

2D safety factor profile has q0 < 1, which means that in the corresponding 3D

simulations the safety factor profile is driven towards an internal kink unstable

state.

2This assumes a value of about 1m2/s for a realistic kinematic viscosity.
3For typical magnetic field configurations in the central plasma region of sawtooth-free

states in the simulations, χ‖/χ⊥ would need to have a value of about at least 109 for parallel
diffusion to lead to a heat transport across the magnetic field over a distance of about 0.1 m
that would be comparable to the transport due to χ⊥.
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Figure 4.2: Electron temperature, particle density and safety factor profiles of the
asymptotic state in the 2D simulations for two example cases. These profiles would
be reached in the asymptotic state of the corresponding 3D simulations if they were
not altered by MHD instabilities.

perpendicular thermal diffusivity χ⊥ ≈ 1.36 · 10−9 · κ0 · n[m−3]

T [K]1/2
m2/s

parallel thermal diffusivity χ‖ ≈ 3.45 · 107 m2/s

energy source S = 1.25 · 10−17 · aS
d2S
· exp

(
(R−Raxis)

2+Z2

−2.03·d2S

)
Pa/s

resistivity η = 4 · 10−6 ·
(

T
Taxis

)− 3
2

Ω m

viscosity ν = 2.3 · 10−6 kg/(ms)

toroidal magnetic field on axis Baxis = 1 T

total current Itot = 6.4 · 105 A

total number of particles ntot = 2.3 · 1021

shape of last closed flux surface R[m] = 3.2 + cos(θ + 0.2 sin θ)

Z[m] = 1.3 sin θ

time normalization τA = 2.90 · 10−7s

Table 4.1: Parameters used for the presented set of simulations. The values for κ0,
aS and dS for the different cases are listed in Table 4.2.
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4.2 The flux pumping mechanism

Similar to Hybrid discharges, the sawtooth-free state found in these 3D non-

linear MHD simulations is characterized by a central region with very low

magnetic shear where the safety factor has a value close to unity. In the simu-

lations, this state features a stationary (m = 1, n = 1) perturbation in the core,

in particular a (m = 1, n = 1) helical flow as shown in Figure 4.3. The flow is

generated by a saturated quasi-interchange instability allowed for by the low

magnetic shear [22,23,99]. This is indicated by the flow pattern which is char-

acteristic for such an instability (compare Figure 2.8) and by the dependency

on β which will be discussed in Section 4.5. Also the linear stability analysis

presented in Section 4.6 shows that such a low magnetic shear equilibrium is

unstable with respect to a quasi-interchange instability.

The comparison of the safety factor profiles in such a 3D nonlinear simula-

tion and in a corresponding 2D axisymmetric calculation in Figure 4.4 shows

that a 3D effect is responsible for the observed flattening of the central current

density. The 2D simulation can be seen as an analog to the transport sim-

ulations in [11–13], discussed in Section 3.2, which falsely predict q0 < 1 for

the described Hybrid discharges. This section is based on the ideas presented

in [1] while adding a more detailed analysis on selected aspects.

In the following, it is illustrated which 3D effects can alter the background

(n = 0) toroidal current density by analyzing the induction equation

∂tB = −∇× E (4.1)

where E is the electric field. After replacing the magnetic field B by B = ∇×A,

where A is the magnetic vector potential, integration of Equation (4.1) leads

to

∂tA = −E−∇Φ . (4.2)

Here, Φ is a single valued potential. Using cylindrical coordinates (R, φ, Z),

the projection of Equation (4.2) onto the toroidal direction yields

∂tΨ = −RηJφ +Rφ̂ · (v ×B)−Rφ̂ · ∇Φ . (4.3)

Here Ohm’s law E = ηJ − v × B has been used to eliminate the electric
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Figure 4.3: Difference between the poloidal velocity stream function in a stationary
3D simulation and in the corresponding 2D axisymmetric calculation for different
toroidal angles. Negative values are indicated in blue and positive values in red.
It can be seen that the velocity perturbation has the form of a (m = 1, n = 1)
convection cell in the plasma center. (Case ‘n’, t = 160000 τA).
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field, and the toroidal component of the magnetic vector potential has been

replaced by Ψ∇φ, where Ψ denotes the negative of the poloidal magnetic flux

ψp per radian. All quantities are split into an axisymmetric part4 and a non-

axisymmetric part, and only the dominant n = 1 component of the latter is

taken into account. The toroidal average of Equation (4.3) then gives

∂tΨ0 = −Rη0Jφ,0 −R [η1Jφ,1]n=0 +R
[
φ̂ · (v1 ×B1)

]
n=0

. (4.4)

Note that ∇Φ0 = 0 and it is assumed that v0 = 0. The n = 0 quantities can

be expressed in terms of the corresponding quantities in the 2D axisymmetric

system plus a deviation due to the influence of the 3D perturbation on the

n = 0 background: Ψ0 = Ψ2D + ∆Ψ, η0 = η2D + ∆η and Jφ,0 = Jφ,2D + ∆Jφ.

The toroidal component of the induction equation for the 2D system reads

∂tΨ2D = −Rη2DJφ,2D . (4.5)

For a stationary state, ∂tΨ2D is given by VL
2π

, where VL is a constant, corre-

sponding to the externally applied tokamak loop voltage.

As the difference between the 2D and the 3D n = 0 state is not too large,

Equation (4.4) can be linearized around the corresponding 2D solution in order

to extract 3D effects. This yields

0 = −R∆ηJφ,2D −Rη2D∆Jφ +R
[
φ̂ · (v1 ×B1)

]
n=0
−R [η1Jφ,1]n=0 (4.6)

where the term ∂t∆Ψ has been dropped because it vanishes for stationary cases

as well as for cases with a quasi-stationary periodic time evolution when it is

time averaged over one period.

The last term on the right of Equation (4.6) is negligible in the simulations

as will be shown later. Out of the three remaining terms, the second term

on the right describes the observed difference in the toroidal current density

between a 3D and a 2D calculation and the two other terms represent mecha-

nisms which can potentially be responsible for this difference. One possibility

to obtain a flattening of the central current density profile is via a flattening

of the central resistivity profile as described by the term that is proportional

4Note, that in this and the following chapter the index 0 always refers to the n = 0
component of the indexed quantity, with the exception of q0 which refers to the value of the
safety factor on axis to be consistent with the common notation.

51



to ∆η. In some of the simulations presented this is the leading effect as resis-

tivity flattening is caused by a convective flattening of the temperature profile

through the helical (m = 1, n = 1) flow described above. This flow is also

crucial for the second current flattening effect described by the third term on

the right of Equation (4.6). In this case the velocity perturbation combines

with the perturbation of the magnetic field yielding a n = 0 reduction of the

background current density in the plasma center via a dynamo mechanism.

This effect corresponds to an effective negative loop voltage in the center of

the tokamak opposing the externally applied loop voltage.

The strength of the different terms in Equation (4.6) in the plasma center

is shown in Figure 4.5 for stationary states in two different simulations. In the

case shown on the left the resistivity flattening effect is dominantly responsible

for the diminished central toroidal current density, whereas in the other case

the current flattening is predominantly caused by the dynamo loop voltage

effect. The difference between these two cases is the value of the perpendicu-

lar heat diffusion coefficient χ⊥ and correspondingly the strength of the heat

source. They are higher in the second case which leads to a stiffer temperature

profile that cannot easily be altered by convection. Therefore, the resistiv-

ity flattening effect does not play a significant role in the second case. The

temperature gradient remains large, driving the instability that results in the

dynamo driven loop voltage. In modern large tokamaks, and in particular in

Hybrid H-mode discharges which are characterized by strong heating and large

turbulent heat flux, the ratio of the resistive time scale to the heat diffusion

time scale µ0χ⊥/η is in a regime where the dynamo effect is dominant in our

simulations.
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Figure 4.5: Terms of the linearized induction equation in the plasma center in
two simulations with different values of µ0χ⊥/η. A flattening of the central n = 0
current density profile can be caused by a flattening of the resistivity profile described
by ∆ηJφ,2D and by a dynamo loop voltage described by −(v × B)φ,∆ = −[(v ×
B)φ,3D,n=0 − (v × B)φ,2D]. Note, that the sum of the three terms is negligible
showing that these two effects fully account for the occurring change of the current
density. The case on the right has a higher value of χ⊥ and a proportionately stronger
heat source yielding a stiffer temperature profile which decreases the effectiveness of
convective resistivity flattening.

4.3 Sawtooth-free cases

In the following, two typical examples of simulations resulting in sawtooth-

free states are discussed. The first example reaches an asymptotic state that

is entirely time-independent. The characteristic (m = 1, n = 1) convection cell

in the plasma center and the flat central safety factor profile close to unity for

such a case have been shown in Figures 4.3 and 4.4. The Poincaré plots in

Figure 4.6 show the magnetic field line structure for such a stationary state.

Note, that these Poincaré plots have to be interpreted with care. The safety

factor in the central region is flat and very close to unity, thus the informative

value of the obtained structures is limited, as very small deviations in the safety

factor profile have a great impact on the appearance of the Poincaré plot. For

instance, in this case, the magnetic field line structure seems to be dominated

by higher harmonics than n = 1 although the n = 1 harmonic contains the

largest magnetic energy as can be seen in Figure 4.7.

The second example is a slight variation of this stationary case. It tends

to occur at high values of µ0χ⊥/η as will be seen in Figure 4.15. In this case,

the asymptotic state features the same characteristics, but superimposed with

an oscillation. The n = 1 magnetic and kinetic energies for such an oscillatory
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Figure 4.7: Kinetic and magnetic energies of the n = 1 and n = 2 harmonics for
a stationary case (left) and for a quasi-stationary oscillatory case (right). In both
cases sawtoothing is prevented.

case are shown in Figure 4.7. Figure 4.8 shows the strength of the dynamo loop

voltage effect as well as the time evolution of the minimum value of the safety

factor (qmin) and q0. It can be seen that despite the oscillation, the central

safety factor profile is still very close to unity at all times so that sawtoothing

is prevented. An oscillation is also seen in the magnetic field line structure also

shown in Figure 4.8, but the structure is qualitatively similar to the stationary

case.
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Figure 4.8: Top: Time evolution of the value of q on axis and the minimum value of
q and of the strength of the dynamo loop voltage term on axis for a quasi-stationary
case. Despite the oscillation, the dynamo loop voltage effect is strong enough to
keep the safety factor profile in the central plasma region flat with values close to
unity at all times. Bottom: Poincaré plots of the central region for different points
in time.

4.4 Sawtoothing cases

In the sawtoothing cases, the safety factor on axis decreases to values signif-

icantly below unity such that q0 ≈ 1 is restored by magnetic reconnection in

periodically repeating crashes. The time traces of the magnetic and kinetic

energies for such a case are shown in Figure 4.9, and the time evolution of q0

and qmin are shown in Figure 4.10. The evolution of the magnetic topology is

in agreement with Kadomtsev’s full reconnection model as can be seen from

the Poincaré plots for different points in time during one cycle in Figure 4.11.

As the resistivity used is significantly above its realistic value and two-fluid

effects are not included into the calculations, several characteristics of realis-

tic sawtooth crashes like the fast crash times as found in [64, 69, 100] are not

expected to be reproduced in these simulations.

The time trace of the strength of the dynamo loop voltage on axis for this

case, shown in Figure 4.10, reveals why this case behaves so differently than
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Figure 4.10: Time evolution of q0 and the minimum value of q (left) and the
strength of the dynamo loop voltage on axis (right) during about one cycle for a
case exhibiting a sawtooth-like behavior.

the sawtooth-free cases. In between the crashes, the dynamo loop voltage

vanishes, which means that it cannot compensate for the tendency of the

current density to centrally peak. This leads to the decrease of q0 and the

onset of the reconnection process. Only during the sawtooth crashes, there is a

spike in the central dynamo loop voltage due to the strong (m = 1, n = 1) flow

which is caused by the reconnection process reorganizing the central plasma

and magnetic field line structure.

In another type of sawtoothing cases that is found, the sawtooth cycle starts

similarly as described above with a decrease of q0 destabilizing an internal kink,

but instead of completing, the reconnection process stops and reverses. The

corresponding evolution of the magnetic topology is shown in Figure 4.12. In

these cases axisymmetry is not recovered after the crashes which manifests

itself in an offset in the n = 1 magnetic energy as shown in Figure 4.13.

Also the dynamo loop voltage on axis, shown in Figure 4.14, does not vanish

completely.
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Kadomtsev’s model, the (m = 1, n = 1) magnetic island grows until it has entirely
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Figure 4.12: Poincaré plots showing the magnetic field line structure in the cen-
tral plasma region at different points in time during an incomplete sawtooth cycle.
Before the (m = 1, n = 1) magnetic island can replace the original plasma core, the
reconnection process stops and reverses. Note, that this series of plots cover one
entire cycle showing that an axisymmetric state is not reached at any time. (Case
‘m3’).

Note, that these cases qualitatively differ from the oscillatory cases dis-

cussed in Section 4.3 in that q0 falls significantly below unity. As seen on

the Poincaré plots, the reconnection process lets the original core shrink and

regrow, whereas in the oscillatory cases, the structures in the central region

seem mainly to be deformed, but not to change in size.

As will be seen from the second plot in Figure 4.15, these incomplete saw-

tooth reconnection cases only occur if the tendency of the current density to

centrally peak is relatively weak. This means that in these cases the linear

drive for the internal kink instability is low. It is possible that in a more

complete model than the one used for the presented calculations, a similar

behavior occurs also for a more peaked current density profile if the internal
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Figure 4.14: Time evolution of q0 and qmin (left) and the strength of the dynamo
loop voltage on axis (right) during about two cycles for a case exhibiting incomplete
sawtooth reconnection.

kink is stabilized by a more realistic physics model including, for example,

diamagnetic drift, finite Larmor radius or energetic particle effects [101]. It

is to be investigated if this might then provide a possible explanation for the

experimental observations indicating incomplete sawtooth reconnection.

4.5 Conditions for the prevention of sawteeth

As a next step, it is examined under which conditions the flux pumping mech-

anisms are strong enough to be able to prevent sawtoothing in the simulations.

For this purpose, the entire set of 3D nonlinear MHD simulations is analyzed.

The three parameters parameters that have been varied to generate the set of

simulations are described in more detail in the following.
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(1) The poloidal beta is defined as

βp1 =
2µ0

B2
θ

∫ r1

0

(
r

r1

)2(
−dp
dr

)
dr (4.7)

where r is the midplane minor radius and r1 is the radius where the velocity

perturbation vanishes. The value of βp1 determines the drive of the instability

that enables flux pumping by generating the necessary helical flow.

(2) The ratio of the resistive time scale to the heat diffusion time scale

µ0χ⊥/η has been varied by varying χ⊥ at the same rate as the strength of the

applied heat source while keeping η fixed. As mentioned before, this quantity

controls the stiffness of the temperature profile and thus the effectiveness of

the resistivity flattening effect.

(3) The third parameter varied is the peakedness of the heat source. In a

2D simulation this parameter determines the value of q0 which is a measure for

how strong the current flattening mechanism in a 3D simulation needs to be

in order to keep q0 = 1. We define ∆2D as the corresponding rate of magnetic

flux pumping:

∆2D = −2ηBφ,axis

µ0Raxis

(1− q0,2D)

q0,2D

≈ ηJφ,axis(q0 = 1)− ηJφ,axis(q0 = q0,2D) . (4.8)

In Figures 4.15-4.17, each data point corresponds to one of the 3D nonlinear

MHD simulations run to their asymptotic states. As mentioned before, the first

plot in Figure 4.15 shows that oscillatory cases tend to occur at high values

of µ0χ⊥/η. Note that the case ‘nX3’ being a stationary case despite the fact

that it has a three times larger value of χ⊥ than case ‘n’, confirms that it is

not χ⊥, but really its ratio to η which is crucial.

According to both plots in Figure 4.15, sawtooth-free states only occur at

sufficiently high βp1. Below that threshold in βp1, the pressure-driven insta-

bility at low magnetic shear is not strong enough to provide the helical flow

necessary for the flux pumping mechanisms to work. The existence of a thresh-

old in β is consistent both with the simulation results presented in [91] and

with Hybrid discharges being characterized by high values of β.

In order to verify the idea that only in the sawtooth-free cases, the pro-

vided amount of flux pumping suffices to keep the central safety factor close
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Cases exhibiting complete and incomplete sawtooth reconnection are marked in red
and orange, respectively. Open symbols correspond to cases with a more peaked
heat source profile. The case marked by a triangle has a three times larger resistiv-
ity. Note, that for cases with βp1 < 0.03 and µ0χ⊥/η < 1.5 · 102, Ohmic heating
plays a role in determining the heating profile.

case r c g bb ee cc c025 c05 c1

κ0 1.75e-6 3.5e-6 7.e-6 5.6e-5 1.1e-4 1.2e-6 3.5e-6 3.5e-6 3.5e-6

aS 5.e22 1.0e23 2.0e23 1.6e24 3.2e24 2.5e22 2.2e22 3.7e22 5.8e22

dS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

case r01 m3 m0 n d c15 ff wb ii

κ0 1.75e-6 1.76e-5 2.2e-6 2.8e-5 1.4e-5 3.5e-6 2.18e-3 2.8e-5 5.6e-5

aS 2.3e22 8.e22 0.0 8.e23 4.e23 8.7e22 6.40e25 7.4e23 1.48e24

dS 0.5 0.5 – 0.5 0.5 0.5 0.5 0.5 0.5

case p o aa qb h m4n z mm nX3

κ0 5.e-6 7.e-6 3.5e-6 3.5e-6 3.5e-6 3.52e-5 4.4e-6 5.5e-6 8.4e-5

aS 8.e22 8.e22 3.5e22 7.1e22 8.0e22 1.4e23 9.5e21 1.15e22 2.4e24

dS 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5

Table 4.2: Parameters κ0, aS and dS as defined in Table 4.1 for the different cases.
Note that case ‘nX3’ has a three times larger resistivity.
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Figure 4.16: Combined strength of magnetic flux pumping effects on axis versus
the amount of flux pumping which is necessary to keep q0 = 1 for the different 3D
nonlinear simulations. The black line indicates where the two quantities are equal.
The sawtooth-free cases (blue and green) lie at or above this threshold, whereas
the sawtoothing cases (red and orange) are found below. As the strength of the
flux pumping effects varies with time for the oscillating and the sawtoothing cases,
error bars indicate the range of their oscillation and the data points are set to their
time-average over one period.

to unity at all times, this amount of flux pumping provided by the two current

flattening mechanisms described in Section 4.2 is compared to the rate of mag-

netic flux change needed to keep q0 = 1. The latter quantity is approximately

given by ∆2D defined by Equation (4.8). As in the cases with a periodic time

evolution, the strength of the flux pumping mechanisms also varies with time

(e.g., see Figures 4.8, 4.10 and 4.14), its time average over one period is used

for the comparison. Figure 4.16 confirms that sawteeth are avoided only if the

combined strength of the two current flattening mechanisms equals or exceeds

the value of ∆2D. Note that even for case ‘nX3’ which has a significantly larger

value of ∆2D because of the larger resistivity, the flux pumping mechanisms

are sufficiently strong to compensate it.

As expected, the sawtoothing cases do not meet this condition. The flux

pumping provided by the magnetic reconnection process during each crash is

able to restore q0 ≈ 1 periodically, but q0 ≈ 1 is not maintained at all times.

In Figure 4.17 the two current flattening mechanisms are separated, show-
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Figure 4.17: Strength of the resistivity flattening effect (left) and the dynamo
loop voltage (right) on axis for different sawtooth-free cases. The value of χ⊥ which
is varied together with the strength of the heat source controls the stiffness of the
temperature profile.

ing that for increasing µ0χ⊥/η the strength of the resistivity flattening effect

decreases whereas the dynamo loop voltage effect strengthens. As discussed

before, the former trend is due to the decreased effectiveness of the convective

flattening of the temperature profile for high values of χ⊥ and strong heat

sources. The decrease of the strength of the dynamo voltage effect for low χ⊥

is due to the fact that the strong resistivity flattening effect already provides

enough current flattening to keep q0 ≈ 1. An additional dynamo loop voltage

would further increase the central value of the safety factor above unity. This

would stabilize the low-shear pressure-driven instability which needs q ≈ 1

and thus weaken the helical flow responsible for the dynamo voltage. In this

way the strength of the dynamo loop voltage effect is self-regulated to always

provide a flat safety factor profile close to unity in the plasma center.

4.6 Linear stability analysis of an equilibrium

with low central magnetic shear and q0 ≈ 1

In the previous sections, it has been discussed how, in 3D nonlinear MHD

simulations with low central magnetic shear and q0 ≈ 1, a saturated quasi-

interchange instability can generate (m = 1, n = 1) velocity and magnetic

field perturbations which combine to give an effective negative loop voltage

via a dynamo effect. In this section, the linear stability of an equilibrium

with low central magnetic shear and q0 ≈ 1 is analyzed. It is confirmed that

the resulting most unstable mode can be characterized as a quasi-interchange
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Figure 4.18: Safety factor profile and pressure profile of the analyzed equilibrium.
ΦN denotes the normalized toroidal magnetic flux.

instability and it is examined if by combining the linear velocity and magnetic

field eigenfunctions a corresponding dynamo loop voltage can be obtained.

The calculations have been performed using the linear eigenvalue code CAS-

TOR3D [102–104]. The analyzed equilibrium is defined by the pressure profile

and the safety factor profile shown in Figure 4.18. The geometry and parame-

ters are based on the 3D nonlinear case ‘bb’ discussed in the previous sections.

However, diffusion coefficients are not included except for the resistivity. Note

that as an exact equivalent to the safety factor profile in a 2D equilibrium

cannot be calculated from a 3D state, a simple safety factor profile which is

flat and close to unity in the plasma center has been chosen.

As discussed in Section 2.8, the quasi-interchange instability is an ideal,

pressure-driven (m = 1, n = 1) instability, located in the plasma center. Its

velocity eigenfunction has the characteristic form of a (m = 1, n = 1) con-

vection cell featuring a significant flow on axis. As shown in Figure 4.19,

the instability that is found in this case is indeed ideal as its growth rate is

approximately independent of the resistivity for a wide range of resistivities.

The characteristic flow pattern is shown in Figure 4.20. For comparison,

the flow pattern of an internal kink instability is shown in Figure 4.21. It has

a different shape and in particular a significantly lower velocity on axis than

near the q = 1 surface. The shapes of the velocity eigenfunctions for the two

instabilities agree with Section 6.10 of [8] as discussed in Section 2.8.

The linear velocity and magnetic field perturbations of the quasi-interchange

instability can be used to calculate a (m = 0, n = 0) dynamo loop voltage

(v ×B)φ in the plasma center as shown in Figure 4.22. In order to be able to

estimate if this dynamo loop voltage has a strength that is comparable to the

real dynamo loop voltage found in the 3D nonlinear simulations, v and B are
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Figure 4.19: Growth rates of the most unstable mode for different resistivities.
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Figure 4.20: Velocity field in one R-Z plane in the plasma center.
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Figure 4.21: Velocity field in one R-Z plane in the plasma center for an internal
kink instability obtained by using the safety factor profile shown on the right. (The
pressure profile and all other parameters are the same as in the case discussed above.)
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Figure 4.22: Red curve: (m = 0, n = 0) component of the dynamo loop volt-
age term calculated using the linear eigenfunctions which have been scaled by a

factor so that the maximum of
√
v2
R + v2

Z matches the same quantity in the 3D

nonlinear simulation ‘bb’ (t = 145600 τA). Black curve: Voltage that is necessary to
raise the safety factor profile in the center to unity in the 2D nonlinear simulation
corresponding to case ‘bb’ (t = 145600 τA).

scaled such that the maximum of
√
v2
R + v2

Z is the same as in the 3D nonlinear

case ‘bb’ which is used for the comparison. The scaled dynamo loop voltage is

compared to the amount of loop voltage that needs to be provided in the 3D

nonlinear simulation in order to maintain q ≈ 1 within the central region of

the plasma. This voltage deficit is calculated from the safety factor profile in

the corresponding 2D nonlinear simulation as

2Bφ,2Dη2D

µ0R

(
1− 1

q2D

)
. (4.9)

The comparison shows that the strength of the dynamo loop voltage which has

been calculated from the linear eigenfunctions is comparable with the dynamo

loop voltage in the 3D nonlinear simulation. Note, that perfect agreement is

not expected as the linear stability calculation is based on a 2D axisymmetric

equilibrium whereas the sawtooth-free state in the 3D nonlinear calculation

has a 3D helical core.

In contrast, the linear velocity and magnetic field eigenfunctions of the in-

ternal kink instability also give a dynamo loop voltage in the plasma center,

but if it is scaled accordingly, it is significantly weaker than for the quasi-

interchange instability as can be seen in Figure 4.23. This is due to the rela-

tively lower velocity in the plasma center.
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Figure 4.23: Red curve: (m = 0, n = 0) component of the dynamo loop voltage
term calculated using the linear eigenfunctions of an internal kink instability (see

Fig. 4.21). v and B have been scaled by a factor so that the maximum of
√
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Z

matches the same quantity in the 3D nonlinear simulation ‘bb’ (t = 145600 τA).
Black curve: Voltage that is necessary to raise the safety factor profile in the center
to unity in the 2D nonlinear simulation corresponding to case ‘bb’ (t = 145600 τA).

If this dynamo loop voltage from the internal kink instability could have

a significant influence in a 3D nonlinear simulation depends on the actual

strength of the central (m = 1, n = 1) flow. In the 3D nonlinear simulations

presented in the previous sections, the typical velocities during sawteeth are

not significantly larger than during the sawtooth-free states. However, when

discussing the effect of the dynamo loop voltage during sawteeth, it also has

to be kept in mind that the shape of the perturbations changes significantly

during the nonlinear evolution of the internal kink instability.

Interestingly, it is found that for a slight variation of the low shear safety

factor profile that has two q = 1 surfaces, the velocity and magnetic field

perturbations do not combine to a dynamo loop voltage that would match the

nonlinear results as can be seen in Figure 4.24. And this is despite the fact

that the resulting instability is still a quasi-interchange instability featuring

the characteristic (m = 1, n = 1) convection cell. If this has any relevance for

the 3D nonlinear simulations needs to be further investigated.
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Figure 4.24: Top left: Safety factor profile which is slightly reversed in the center.
Top right: Growth rates of the most unstable mode for an equilibrium with the shown
safety factor profile. (Calculations have been done for deuterium, so the growth rates
have to be multiplied by

√
2 in order to compare to the other calculations which use

hydrogen.) Bottom left: Velocity field in one R-Z plane in the plasma center for
this case. Bottom right: Comparison of the dynamo loop voltage calculated from
the linear eigenfunctions scaled in the same way as described above and the voltage
deficit in the nonlinear simulation (case ‘bb’, t = 145600 τA ).
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Chapter 5

Towards more realistic

simulations of Hybrid discharges

In the previous chapter, the basic physics of magnetic flux pumping has been

studied by means of 3D nonlinear MHD simulations using a relatively simple

set-up. A simplified plasma shape has been used and parameters have been

chosen to allow for relatively low spatial and temporal resolution.

Moreover, the conditions for a sawtooth-free state, namely a safety factor

profile that is flat and close to unity in the center, have been set up by starting

the simulation from a state that was strongly unstable with respect to the

internal kink, with q0 significantly below unity, leading to a sawtooth crash

generating the desired safety factor profile. As the focus was put solely on

the asymptotic time evolution of the simulations, this represented a fast and

efficient way of starting the simulations. The described choices made it possible

to analyze the basic physics mechanisms in relatively simple examples and

helped to reduce the computational effort to a level that allowed for detailed

parameters scans.

In the following, some aspects of the path towards more realistic 3D nonlin-

ear MHD simulations of Hybrid discharges are explored. A set of simulations

is presented that uses an ASDEX Upgrade like geometry and more realistic

plasma parameters requiring higher temporal and spatial resolution. Instead

of starting the simulation from a highly unstable state that the plasma might

not have been able to achieve in the first place, the simulations are set up in

a way that tries to mimic some aspects of the start-up of a realistic Hybrid

tokamak discharge. During the current ramp-up at the beginning of a toka-

68



mak discharge the current density diffuses inwards, leading to a central safety

factor profile that reaches the targeted value from above. In order to generate

Hybrid discharges, the current diffusion during this phase is reduced by addi-

tional central heating, yielding a broader current density profile, as described

in Section 3.2. Thus, the goal is to start the simulations from a safety factor

profile that has low magnetic shear in the center and q0 > 1, and let it de-

crease so that the plasma state self-consistently enters the region of instability

for (m = 1, n = 1) modes. Details about the simulation set-up and parameters

are described in Section 5.1.

It is found that both types of behavior described in Chapter 4, the sawtooth-

free states with helically perturbed core and the states that exhibit a sawtooth-

like behavior, do occur within the presented set of more realistic simulations.

These two types of simulation results are described and analyzed in Sec-

tions 5.2.1 and 5.2.2, respectively. Although detailed parameter scans could

not be performed due to limited computational resources, it is shown that the

way in which the two types of results are distributed over the parameter space

is consistent with the previous finding. Furthermore, an additional variation

of the sawtoothing cases is found where the sawtooth-like events are separated

by quiescent phases that show the characteristics of sawtooth-free states.

5.1 Simulation set-up

The presented simulations have been performed using the resistive single-fluid

model of the high-order finite-element code M3D-C1 described in Chapter 2.9.

For each of the 3D nonlinear calculations, a corresponding 2D axisymmetric

calculation with the same set-up and parameters has been done in order to

facilitate the identification of 3D effects. All simulations have been performed

in toroidal geometry, the number of toroidal planes is eight and each R-Z plane

has approximately 3700 nodes. The R-Z mesh has been refined in the center

of the computational domain as shown in Figure 5.1. The temporal resolution

is one Alfvén time. The boundary of the computational domain is up-down-

symmetric and coincides with a contour of constant poloidal magnetic flux.

The plasma resistivity corresponds to Spitzer resistivity which has been

scaled by a constant factor. It is about two to three orders of magnitude

larger than realistic values in the plasma core of large, modern tokamaks due

to limited computational resources. Parallel and perpendicular heat diffusion
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perpendicular thermal diffusivity χ⊥ ≈ 2.7 · 103 m2/s

parallel thermal diffusivity χ‖ ≈ 2.7 · 108 m2/s

resistivity η ≈ 5 · 10−6 ·
(

T
Taxis

)− 3
2

Ω m

toroidal magnetic field on axis Baxis ≈ 1.8 T

shape of last closed flux surface R[m] = 1.659 + 0.46 cos(θ + 0.2 sin θ)

Z[m] = −0.025 + 0.8 sin θ

time normalization τA = 4.6 · 10−7 s

Table 5.1: Parameters used for the simulations.

coefficients are constant1 both in time and space. Their ratio of 105 is signifi-

cantly smaller than realistic values for the heat diffusion anisotropy so that in

the simulations, parallel heat diffusion does not play a role in perpendicular

heat transport within the plasma center as discussed in the previous chapter.

However, the ratio of the resistive and heat diffusion time scales µ0χ⊥/η

is in a range where in the simulations discussed in the previous chapter, the

temperature profile is sufficiently stiff so that the dynamo loop voltage effect

dominates over the resistivity flattening effect, which is the range where also

realistic Hybrid discharges are in.

The values of the toroidal magnetic field on axis and the total plasma

current correspond to typical values for ASDEX Upgrade discharges. Two

different values for the viscosity have been used, the lower one being in the

range of realistic values. Details on the parameters used in all of the simulations

are listed in Table 5.1. Parameters that have been varied between the cases

are listed in Table 5.2.

The simulations span a time of about 1..3 · 104τA. Each has been run

on 128 processors typically using about 3..6 · 104 core hours. The necessary

amount of computational resources has been significantly reduced by using

the 2D axisymmetric version of the code for the first part of each simulation.

This is possible because the plasma stays approximately axisymmetric until the

1More precisely, κ‖ = χ‖naxis and κ⊥ = χ⊥naxis are constants.
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Figure 5.1: The mesh in the R-Z plane used for the simulations is refined in the
center.

minimum value of the safety factor reaches unity. The simulations are restarted

in 3D shortly before this is the case, the plasma then stays axisymmetric until

the stability boundary is crossed. This will be seen from the time evolution of

the kinetic and magnetic energies in the different toroidal harmonics which is

shown in Figures 5.11 and 5.14 for the entire time range of the 3D part of the

simulations.

All calculations start with a safety factor profile which is above unity and

flat in the plasma center. The initial temperature profile is consistent with

the initial q-profile via Spitzer resistivity. The safety factor is then ramped

down by applying a heat source that leads to a temperature profile which is

consistent with a q-profile with q0 < 1. This is done in two different ways:

(1) A heat source profile is used that corresponds to the heat source profile

which is consistent with the initial temperature profile scaled by a constant
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Figure 5.2: Heat and particle source profiles used for the different simulation
set-ups. The heat source profile used in cases with a feedback controlled total
current (violet) maintains the initial safety factor profile outside

√
ΨN ≈ 0.3, but

tends to peak the safety factor profile downwards in the plasma center. The heat
source profile used in cases without feedback control of the total current via the loop
voltage (turquoise) maintains the shape of the safety factor profile while shifting it
downwards. For cases with a flat temperature profile, a peaked particle source profile
(turquoise) can be used in order to generate a larger central pressure gradient.

(see Figure 5.2). The feedback control of the loop voltage which keeps the total

current constant is switched off. As a consequence, the q-profile approximately

maintains its shape and shifts downwards as shown in Figure 5.3.

(2) The used heat source profile corresponds to the sum of the heat source

profile which is consistent with the initial temperature profile and a peaked

one in the plasma center (see Figure 5.2). The total current is kept constant

by the feedback control as in most experiments. The resulting evolution of the

q-profile is shown in Figure 5.3. While q0 decreases, the safety factor profile at

the edge does not change.

Figure 5.2 also shows two examples of particle sources that are used. Dif-

ferent shapes and strengths of the particle source are used to vary the central

pressure gradient and the plasma beta, respectively. Examples of pressure,

particle density and temperature profiles resulting from combinations of the

different heat and particle sources are shown in Figure 5.4.
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Figure 5.4: Pressure, particle density and electron temperature profiles of the
asymptotic state in 2D simulations for different cases. These represent the profiles
which would be consistent with the heat and particle sources in the corresponding
3D simulations, i.e. would result without the effect of instabilities.

Case Itot [A] feedback heat particle viscosity βp1

control source source [kg/ms]

A 6.6 · 105 on peaked flat 3.6 · 10−8 0.09

B ≈ 9 · 105 off scaled flat 3.6 · 10−8 0.10

C ≈ 9 · 105 off scaled peaked 3.6 · 10−8 0.13

D ≈ 9 · 105 off scaled peaked 3.6 · 10−8 0.29

CV ≈ 9 · 105 off scaled peaked 3.6 · 10−6 0.13

AV 6.6 · 105 on peaked flat 3.6 · 10−6 0.10

HV 6.6 · 105 on peaked flat 3.6 · 10−6 0.18

EV 6.6 · 105 on peaked flat 3.6 · 10−6 0.25

Table 5.2: Overview of the simulation set-ups. The definition of βp1 is given in
Equation (4.7).
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5.2 Simulation results

Within the set of simulations discussed in Chapter 4, two different types

of long-term behavior have been identified. Either the plasma exhibits a

sawtooth-like behavior where q0 = 1 is periodically restored, or the plasma

goes into a sawtooth-free state with a helically perturbed core where the cen-

tral safety factor profile is prevented from decreasing significantly below unity

by magnetic flux pumping. Both types have as well been found in the set of

more realistic simulations that is presented here.

An overview of the simulation results in βp1-∆2D space is given in Fig-

ure 5.5. The quantities βp1 and ∆2D are defined by Equations (4.7) and (4.8),

respectively. As discussed in the previous chapter, ∆2D describes how peaked

the current density profile in the corresponding 2D simulation2 is, by giving

the amount of loop voltage needed to increase the safety factor on axis to

unity. This gives a measure of how much flux pumping is needed to prevent

sawtoothing in the 3D simulation.

It can be seen that cases with a higher central pressure gradient tend to be

sawtooth-free, which is consistent with the results presented in Chapter 4. As

some cases have significantly higher values of ∆2D than the cases discussed in

the previous chapter, it is now possible to see a dependency of the boundary

between sawtoothing and sawtooth-free cases on this parameter. The larger

∆2D, the more difficult it is to compensate the central peaking of the current

density by flux pumping. Therefore, cases with large ∆2D tend to exhibit

sawtoothing. In the following, the individual cases are discussed in more detail.

2The value of q0 has been taken from the 2D simulation at the point in time corresponding
to the end of the respective 3D simulation.
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sawtooth-free, red symbols represent cases with sawtoothing behavior and the violet
symbol marks a case where sawtooth-like events are separated by phases that show
the characteristics of a sawtooth-free state. Squares mark cases with higher viscosity
(see Table 5.2). βp1 and ∆2D are defined in Equations (4.7) and (4.8).

5.2.1 Sawtooth-free cases

As discussed in Chapter 4, sawtoothing is prevented in cases where the central

safety factor can be kept from falling significantly below unity by flux pumping.

Figure 5.6 compares the safety factor profile for one of these cases (‘EV’) to

the safety factor profile in the corresponding 2D simulation. The flux pumping

responsible for the difference between the two profiles, is due to the dynamo

loop voltage in the plasma center. The plot on the right side of Figure 5.6 shows

the strength of this dynamo loop voltage − (v ×B)φ,∆ = −[(v×B)φ,3D,n=0 −
(v ×B)φ,2D] and compares it to how much the central current density profile

in the 3D simulation is flattened with respect to the 2D simulation. It can be

seen that the dynamo loop voltage is entirely responsible for the current density

flattening in this case. As expected from the large value of µ0χ⊥/η = 680, the

dynamo loop voltage effect dominates over the resistivity flattening effect in

all of the four sawtooth-free cases.

The characteristic (m = 1, n = 1) convection cell that generates the dy-

namo loop voltage is shown in Figure 5.7 for case ‘EV’ and in Figure 5.9 for

case ‘C’. Figures 5.8 and 5.10 show the magnetic field line structure for the

two cases and the respective points in time and toroidal angles. As mentioned

before, these Poincaré plots have to be interpreted with care as very small

deviations in the safety factor profile have a great impact on the appearance of

the Poincaré plot. For instance, in these cases the n = 2 harmonic appears to

be dominant although the n = 1 harmonic contains a much higher magnetic
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Figure 5.7: Case ‘EV’: (m = 1, n = 1) convection cell. Plots show the difference
between the poloidal velocity stream function U in the 3D simulation and the corre-
sponding 2D simulation for toroidal angles 0◦, 90◦, 180◦, 270◦ (t = 25750τA, M3D-C1

units).

energy as will be seen in the following.

The main characteristics of all sawtooth-free cases are summarized in Fig-

ure 5.11. The kinetic and magnetic energies are dominated by the n = 1

toroidal Fourier harmonic. Shortly after the onset of the instability, the n = 1

mode becomes approximately stationary, except for case ‘CV’ where it exhibits

oscillations. Note that in cases ‘C’, ‘D’ and ‘CV’, the plasma state does not

become perfectly stationary because in these cases, the safety factor at the

edge still changes in time as the loop voltage is not feedback controlled. When

run out further, the decreasing value of q at the edge eventually causes the

simulations to crash. In future studies, this could be avoided by switching

on the feedback control on the applied loop voltage at some point during the
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Figure 5.10: Case ‘C’: Poincaré plots for different toroidal angles.
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simulations, which would be consistent with experiments.

As can be seen from the time evolution of the safety factor profile, case

‘EV’ does not go into the stationary state as soon as q0 reaches unity, instead

q0 continues to decrease until a large amplitude sawtooth restores q0 = 1.

This is due to the fact that in case ‘EV’, q0 is decreased by increasing the

magnetic shear in the central region of the plasma (see Figure 5.3). Thus,

when q0 reaches unity, the magnetic shear is already too high to allow for a

quasi-interchange instability to set in. Only after the sawtooth has flattened

the central safety factor profile, the conditions for the stationary state are set.

However, as the time evolution of the minimal value of the safety factor

in case ‘C’ shows, this first large amplitude sawtooth is not necessary for the

stationary state to develop. In this case the magnetic shear in the central

plasma region is low when the safety factor approaches unity, so that as soon

as qmin = 1, it is kept at this value.

As expected, the cases with lower viscosity (‘C’, ‘D’) have a larger n = 1

kinetic energy because the (m = 1, n = 1) flow is less damped. As a con-

sequence, the dynamo loop voltage effect is stronger than in the cases with

higher viscosity (by a factor two in the case of ‘C’ and ‘CV’).
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Figure 5.11: Sawtooth-free cases: Plots on the left side and in the center show
the time evolution of the kinetic and magnetic energies in the different toroidal
harmonics, respectively. The plots on the right side compare the time evolution of
the minimum value of the safety factor and its value on axis in the 3D simulation
with the respective quantities in the corresponding 2D axisymmetric simulation.
Note, that the safety factor profiles of the 3D simulations are calculated from the
toroidally averaged magnetic field.
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5.2.2 Sawtooth-like behavior

If the central safety factor profile is not prevented from decreasing below unity,

repeating reconnection events restore q0 = 1. Figure 5.12 shows the safety

factor profile before and after such a sawtooth-like event. The Poincaré plots

in Figure 5.13 show how the magnetic field line structure is reorganized during

the reconnection process.

Figure 5.14 provides an overview of the cases that exhibit sawtooth-like

reconnection events. Note that although the reconnection events share some

features with sawteeth, the evolution of the safety factor profiles does not

correspond to a typical evolution during experimentally observed sawteeth.

The time evolution of the kinetic and magnetic energies of case ‘AV’ shows

that the plasma becomes entirely axisymmetric after each crash as expected for

complete Kadomtsev reconnection. Although, during the reconnection events

in case ‘A’, reconnection does also complete, there is a residual magnetic and

kinetic energy left between the crashes. This might be due to the lower vis-

cosity. Flows in the central plasma that are initiated by the crash are damped

less and can deform the magnetic field, manifesting itself in the kinetic and

magnetic energies. A residual magnetic perturbation after a sawtooth crash

might be relevant for the seeding of neoclassical tearing modes [105,106].

In case ‘B’, the plasma also exhibits full reconnection events as can be

seen for one example on the Poincaré plots in Figure 5.15. However, the time

between the individual events is significantly longer than in the other cases.

The phases in between feature the characteristics of the sawtooth-free helical

states like the important, approximately stationary n = 1 kinetic and magnetic
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Figure 5.12: Safety factor profile before and after a sawtooth-like crash.
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Figure 5.13: Case ‘A’: Poincaré plots for different points in time during a recon-
nection event.
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Figure 5.14: Cases that exhibit a sawtooth-like behavior: Plots on the left side
and in the center show the time evolution of the kinetic and magnetic energies in the
different toroidal harmonics, respectively. The plots on the right side compare the
time evolution of the minimum value of the safety factor and its value on axis in the
3D simulation with the respective quantities in the corresponding 2D axisymmetric
simulation.
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Figure 5.15: Case ‘B’: Poincaré plots for different points in time during a sawtooth-
like reconnection event.
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Figure 5.17: Case ‘B’: Poincaré plots for different toroidal angles during the qui-
escent phase between two sawtooth events.
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Figure 5.18: Time evolution of the dynamo loop voltage on axis. The plot on the
right side shows a close-up.

energies, the typical (m = 1, n = 1) flow pattern shown in Figure 5.16, and a

similar magnetic field line structure which is shown in Figure 5.17.

These phases where the central safety factor profile is clamped close to

unity might be possible in this case because compared to the other cases with

a sawtooth-like behavior described here, it has a lower value of ∆2D, and

compared to the sawtoothing cases discussed in Chapter 4, it has a larger

value of βp1. The latter strengthens the dynamo loop voltage and the former

makes it easier for the dynamo loop voltage to compensate the central current

peaking.

The time evolution of the strength of this dynamo loop voltage on axis

is traced in Figure 5.18. As seen in other sawtoothing cases discussed in the

previous chapter it has a large spike at each crash, but in this case it does

not vanish in between the crashes. The dynamo loop voltage rather slowly

decreases which might explain why at some point the central safety factor falls

and the next reconnection event occurs. Note that from the plot showing the

time evolution of q0 and qmin for case ‘B’ in Figure 5.14, it can be seen that

this decrease of the central safety factor happens on a much faster time scale

than the decrease of q in the corresponding 2D simulation. This might be

due to the fact that in the 2D simulation the profile changes over the entire

plasma radius while in the 3D simulation it only changes significantly inside

a midplane minor radius of r ≈ 0.15. On this shorter length scale resistive

diffusion leads to a faster decrease of q.

Why the dynamo loop voltage decreases, needs to be further investigated.

Another open question is, if this phenomenon could be related to some cases of

extended sawtooth periods in experiments. In any case, this type of behavior

would need to be studied by means of more simulations with varying parame-
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ters, especially since the presented simulations at low viscosity are at the edge

of what the used mesh is able to resolve.
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Chapter 6

Summary & Outlook

The aim of this work was to advance the theoretical understanding of magnetic

flux pumping in Hybrid tokamak discharges. To this end, 3D nonlinear resistive

MHD simulations in toroidal geometry have been performed by means of the

high-order finite element code M3D-C1. A mechanism that provides magnetic

flux pumping in 3D nonlinear MHD simulations of tokamak plasmas has been

proposed in [1]. In this reference, a stationary state is described which is

characterized by a region in the plasma center where the magnetic shear is

very low and the safety factor has a value close to unity. This state features

a helical (m = 1, n = 1) perturbation of the plasma core and in particular

a strong (m = 1, n = 1) convection cell. It is proposed that this stationary

perturbation is the result of a saturated quasi-interchange instability and that

it leads to magnetic flux pumping via two different processes. First, the helical

flow flattens the central current density profile by flattening the temperature

and thus the resistivity profile via convection, a mechanism whose effectiveness

depends on the stiffness of the temperature profile. And second, the flow

combines with the perturbation of the magnetic field to generate an effective

negative loop voltage via a dynamo effect.

Summary

In the first part of this work, it has been analyzed in more detail how this

flux pumping mechanism works and under which conditions it sustains itself

to prevent sawtoothing in the simulations. An induction equation linearized

around its 2D axisymmetric solution is derived in order to illustrate how 3D

85



effects, namely the resistivity flattening effect and the dynamo loop voltage

effect, can alter the central current density. It provides expressions for the

strength of the two effects which can be quantitatively compared to each other

and to the amount of flux pumping necessary to maintain q0 ≈ 1 in a given

nonlinear simulation.

3D nonlinear MHD simulations are presented in which a heat source works

towards peaking the central current density profile such that in the absence of

3D instabilities, the safety factor profile would have a central value below unity.

A large set of such simulations is obtained by varying β, the perpendicular heat

diffusion coefficient together with the strength of the applied heat source, and

the peakedness of the heat source. It is found that, consistent with previous

theoretical findings, above a certain threshold in β, the obtained asymptotic

states are stationary (or, for high values of µ0χ⊥/η, quasi-stationary oscillat-

ing) sawtooth-free states with a 3D helically perturbed core. The threshold in

β is due to the fact that the quasi-interchange instability which generates the

helical convection cell needed for the flux pumping mechanisms is pressure-

driven.

Below this threshold in β, the asymptotic states are characterized by re-

peating sawtooth-like cycles in each of which q0 decreases to values significantly

below unity before q0 ≈ 1 is restored by a Kadomtsev-like magnetic reconnec-

tion process. It is shown that simulations develop a sawtooth-free asymptotic

state if and only if the combined strength of the two current flattening mech-

anisms equals or exceeds the amount of flux pumping that is necessary to

balance the tendency of the central safety factor profile to decrease below

unity.

By separating the two flux pumping mechanisms, it is confirmed that the

importance of the resistivity flattening effect decreases with increasing µ0χ⊥/η

as the convective flattening of the temperature profile becomes ineffective for

stiff temperature profiles. For ratios of the resistive to the heat diffusion time

scale that are realistic for typical Hybrid discharges, the dynamo loop voltage

effect therefore dominates over the resistivity flattening effect. The strength of

the dynamo loop voltage mechanism adapts to the strength of the resistivity

flattening effect such that it always provides the amount of flux pumping which

is missing to keep q0 ≈ 1 (as long as β is sufficiently high). It is proposed that

this self-regulation is due to the fact that by providing more flux pumping than

necessary, the dynamo loop voltage effect would weaken itself by driving the
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central value of the safety factor above unity which would have a stabilizing

effect on the quasi-interchange instability.

In order to understand in more detail how the dynamo loop voltage is

generated, a linear stability analysis of a 2D equilibrium with q ≈ 1 and low

magnetic shear in the central plasma region has been performed by means of

the CASTOR3D code. It is confirmed that the most unstable mode in this

configuration can be characterized as a quasi-interchange instability. Further-

more, it is shown that by combining the resulting linear velocity and magnetic

field perturbations, a dynamo loop voltage can be calculated which has a com-

parable shape and strength as the dynamo loop voltage in the 3D nonlinear

simulations.

In contrast, it is found that the linear perturbations resulting from an in-

ternal kink instability do not combine to a dynamo loop voltage of comparable

strength. Similarly, for a quasi-interchange unstable equilibrium with slightly

reversed central magnetic shear and two q = 1 surfaces, the resulting linear

perturbations do not combine to a comparable dynamo loop voltage. Although

this finding cannot be directly applied to the interpretation of stationary states

in 3D nonlinear simulations as the former is based on a 2D equilibrium while

the latter feature a 3D helical core, this might be related to the aforementioned

self-regulation mechanism of the dynamo loop voltage effect.

The second part of this work was focused on exploring the path towards

more realistic 3D nonlinear MHD simulations of Hybrid discharges. The simu-

lations are based on the geometry of the ASDEX Upgrade tokamak and are set

up to mimic the qualitative evolution of the central safety factor profile during

the current ramp-up at the beginning of a discharge. Before, the focus was

put on the asymptotic states of the simulations, and the conditions for the flux

pumping mechanisms to set in, namely low central magnetic shear and q ≈ 1

in the plasma core, had been set up by a large amplitude reconnection event

at the beginning of each simulation. In contrast, the more realistic simula-

tions are started from a safety factor profile that is flat and above unity in the

center, which is then ramped down so that the plasma state self-consistently

enters the region of instability for (m = 1, n = 1) modes.

Within this set of simulations, again both cases exhibiting sawtooth-like

reconnection events and sawtooth-free cases are found. The way these different

types of behavior are distributed over the parameter space is consistent with

the previous findings. In addition, the results indicate that the critical value
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of β for sawtooth-free states depends on how much the current density profile

tends to centrally peak due to the central heat source. It is also shown that if

the central safety factor profile is sufficiently flat when the stability boundary is

approached, which is the case during the current ramp-up phase for a realistic

Hybrid discharge, the plasma directly goes into a sawtooth-free state without

an initial large amplitude sawtooth-like event.

Regarding the simulations within both sets which develop a sawtooth-like

cycling behavior, it should be mentioned that they are not expected to repro-

duce detailed features of realistic sawteeth, like the long quiescent ramp phase

or the fast crash time, as this requires a more realistic value for the heat diffu-

sion anisotropy and a lower value for the resistivity while including two-fluid

effects, which was not possible due to numerical reasons and limited compu-

tational resources, respectively. Nevertheless, two interesting special types of

behavior have been found among these simulations.

First, in a few simulations the reconnection process during the sawtooth-

like events does not complete, but the growth of the (m = 1, n = 1) island

stops and reverses before the island can entirely replace the plasma core. This

behavior is only found in a region of the parameter space where the linear drive

for the internal kink instability is particularly small, but in a more complete

physics model, additional stabilizing effects might enable a similar behavior in

more general cases and might possibly help to understand the phenomenon of

incomplete sawtooth reconnection in experiments.

Second, in a simulation at the border between sawtooth-like cycling and

sawtooth-free cases within the more realistic set, the full reconnection cy-

cles are separated by quiescent phases that show the characteristic features

of sawtooth-free states. This finding might be related to experimental obser-

vations like the intermittent recurrence of sawteeth in Hybrid discharges or

extended sawtooth periods in sawtoothing discharges.

Outlook

First further steps on the path towards improved, more realistic 3D nonlin-

ear MHD simulations of Hybrid discharges would be the inclusion of sheared

toroidal rotation, modeling the realistic evolution of the discharge by switching

on the feedback control on the applied loop voltage after the current ramp-up

phase, and using even more realistic plasma parameters by making use of fu-
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ture extended computational resources and the result of ongoing code efficiency

improvements.

In addition, further numerical studies are planned with the aim of exam-

ining the effect of an externally excited (m = 1, n = 1) perturbation in the

plasma core and the effect of a (m = 3, n = 2) tearing mode which, as indi-

cated by experimental results in DIII-D [86], might play a role in providing

magnetic flux pumping in Hybrid discharges.

Moreover, closer comparisons of the obtained theoretical findings to exper-

imental results in ASDEX Upgrade are planned. Based on these findings, it is

expected that a threshold in β for flux pumping to occur is observed and that

this threshold depends on how low q0 should be according to the applied loop

voltage and the amount of on-axis current drive and heating. This could be

verified in a set of discharges using central co-ECCD at various values of β,

ideally with the possibility of measuring a (m = 1, n = 1) flow in the plasma

center.
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