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Abstract— Classic biped walking controllers assume a per-
fectly flat, rigid surface on which the robot walks. While
walking over unknown terrain, robots need to sense and
estimate the ground location. Errors in this estimation result
in an unexpected early or late ground contact of the swing
foot. In this paper, we analyze how these errors affect walking
stability. Based on simulation results, we propose a strategy
that mitigates this effect. We show that if the ground height
has an associated uncertainty, an overestimation of its value
results in a more stable walk. This overestimation depends on
both sensor data and the robot’s dynamics. By using a reduced
robot model, our strategy could be implemented into the real-
time control to make the robot more robust against perception
errors and irregular surfaces.
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I. INTRODUCTION

One of the main motivations behind robotic biped locomo-
tion research is the potential, compared to wheeled vehicles,
to navigate over uneven terrain. However, the high number of
degrees of freedom (DOFs) and underactuated characteristics
make walking control considerably difficult and computa-
tionally expensive. Since its introduction in 1972 [1], the
Zero Moment Point (ZMP) has been widely used as a starting
point for walking motion generation with reduced robot
models [2]–[6]. These representations, such as the Linear
Inverted Pendulum Model (LIPM) [2] or a three point mass
model [5], simplify the motion generation algorithms to such
an extent that they can be performed in real-time. Feedback
control is introduced to compensate for modeling errors [7]–
[10]. These strategies can be easily combined with a vision
system to navigate obstacle-free, flat regions [11]. Most
are based on a vision system that can recognize walkable
surfaces in the environment; these are sent to the walking
control system, which adapts footstep locations and robot
trajectories to navigate over these surface models [12]–[23].
However, a perfect ground location detection is assumed.
These perception systems employ different kinds of on-board
or external sensors that are subject to errors, regardless of
the environment representation used afterwards. Gutmann
et al. [12], [15] used a segmented 2.5D map to recognize
surfaces above the ground with an error below 1.5cm. A
similar strategy was used by Michel, Chestnutt, Nishiwaki
et al. [14], [16], [18], who used a full-sized biped robot
to walk over complex scenarios; reported perception errors
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Fig. 1. Photo and kinematic structure of the humanoid robot Lola with an
RGB-D sensor mounted on top.

lay around 1cm. Motivated by the DARPA Challenge [24],
Stumpf et al. [19] and Fallon et al. [20] presented vision
systems for the Atlas robot, with a ground detection error
below 3cm.
In all works mentioned above, experiments were performed

on static environments with relatively flat walking surfaces
and at considerably slow walking speeds. Perception errors
could be compensated by the robot’s feedback stabilization
system. When walking over more cluttered terrain and at
higher speeds, biped robots may experience larger perception
errors with a more pronounced effect on their stability
[25]. In order to cope with such Early Contact (EC) or
Late Contact (LC) events, many authors exploit additional
sensor information (typically, contact sensors in the robot’s
feet) and phase-switching mechanisms [25]–[29]. Additional
robustness may be achieved with state estimation algorithms
and real-time footstep modifications [30]–[32].
In summary, all strategies presented compensate perception
errors with robust control. In this paper, in contrast, we con-
sider modifying the environment representation, specifically
the detected ground height. The premise is simple: “is it
possible to find an optimal value for the ground height in
terms of stability?”. This question can become even more
relevant when walking over irregular surfaces (e.g. gravel,
grass), where a perception system could provide a variable
accuracy factor (e.g. the standard deviation) for each de-
tected surface. Additionally, for high walking speeds, vision



systems are less precise1 due to motion blur and reduced
filtering possibilities. For our work, we use a simplified
model of our robot Lola (see Fig. 1). After outlining the
scope of our work (Section II), we present our three-mass
robot model (Section III). In Section IV, we analyze how
EC and LC events affect the robot’s stability and discuss
different quantifiable stability indicators. In Section V, we
present a strategy for finding an optimal value for the ground
height. As it depends on online parameters such as sensor
information or the robot’s dynamics, we propose using a
reduced robot model that can be processed in real-time.
Limitations and future work are discussed in Section VI. Our
analysis is based on the standard walking control of the robot
Lola and validated using our full, multi-body simulation [33].
Nevertheless, our results can be easily applied to other biped
robots.

II. PROBLEM STATEMENT

The analysis presented in this paper is not based on
specific sensor data. The results we present rely only on
the robot’s dynamics and the consequences of EC and LC
events. Therefore, it may be applicable to many different
systems. However, our scenario consists of a biped robot
and a perception system for ground (or surface) detection.
We assume that the error distribution p of the ground
estimation is known beforehand. For our work, we consider
only the error in the vertical (z) direction. In order to obtain
computable results (Section V), we either assume the error to
be constrained between finite limits or neglect errors outside
those bonds. In general:

1 =

∫ +∞

−∞
p (z) dz '

∫ zmax

zmin

p (z) dz (1)

with the limits zmin < zmax.
If we consider the system’s expected ground height zexp ∈
[zmin, zmax] and the ground’s real height zreal ∈ [zmin, zmax],
we can define the EC, LC and Ideal Contact (IC) events:

EC : zexp < zreal

LC : zexp > zreal

IC : zexp = zreal

(2)

In usual cases, zexp is defined as the sensor’s output or
expected value zexp,sensor = E (Z) =

∫ +∞
−∞ zp (z) dz. The

objective of this work is to find an optimal value zexp,opt
such that the effect of all possible EC and LC events on
the robot’s stability is minimized. In order to be applicable,
the solution has to be computable online while the robot is
walking.
To reduce computational costs and simplify our analysis, we
restrict ourselves to the following case:
• The robot’s control uses a fixed step duration Tstep.
• We assume fixed phase durations and no footstep mod-

ification mechanisms since they are supposed to work
in a later stage.

1In the following video, our robot Lola walks over an unexpected
platform; the point cloud of the RGB-D sensor is noisier than usual:
https://youtu.be/rKsx8HKvBkg

• The ground is horizontal and zexp,sensor = 0.
• Only the dynamics in the sagittal plane are considered.

Classical concepts of stability are difficult to apply in non-
linear, non-smooth systems such as biped robots [33]. To the
authors’ knowledge, there is no clear practical definition and
it is unclear how it could be quantified. In Section IV, we in-
troduce different variables related to the robot’s stability and
analyze their potential applicability as quantifiable stability
indicators to the present problem. In this work, we define
a stability indicator as a function of the robot’s state that
is convex with respect to (zreal − zexp) and presents a global
minimum at (zreal − zexp) = 0.

III. MODEL AND SIMULATION

As stated before, our application platform is the biped
robot Lola. The reaction of the robot to unexpected ground
heights could be evaluated in experiments, but other model
errors and disturbances make it difficult to isolate a single
factor. Repeatability can only be achieved in simulation.
Therefore, we use as a reference our full multi-body simu-
lation [33], which handles unilateral and compliant contacts
and takes motor dynamics and control loops into considera-
tion.
However, its high computational cost makes this simulation
impractical for generating large amounts of data or imple-
menting it in a real-time scenario (ref. Section V). Therefore,
we use an extension of the simplified three-mass model
presented in [31] which can handle different ground heights.
In the following, we explain the model’s main properties.

rb
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mb, Θzz

robot fixed FoR

rf1
rf2

g

Tstab

xI

Fig. 2. Three-mass model in the saggital plane with two unactuated DoFs
and unilateral compliant contacts.

Note that inverted pendulum models (such as the LIPM)
become imprecise when the legs’ dynamics are not negligible
[30]. The robot is discretized then with one point mass for
each leg mf at the feet and an upper body mith mass mb

(near the center of mass) and inertia Θzz (ref. Fig. 2).
The upper body and feet are assumed to follow the ideal
trajectories rb and rf1,2 in the robot’s Frame of Reference
(FoR). These are obtained from the simulated robot control.
The underactuated state is simulated via two passive DOFs
between the FoR and the ground (xI − zI): a vertical dis-
placement zFoR and an inclination on the sagittal plane ϕFoR.

https://youtu.be/rKsx8HKvBkg


Contact interactions between feet and ground are modeled
as point vertical forces, with a unilateral, linear spring (kc)
and damper (dc) model. The center of pressure is fixed to the
contact point. The force control and upper body stabilization
is taken into account with an additional stabilization variable
Tstab. It follows a PD-control (control gains Kp and Kd)
based on the one implemented in Lola’s control:

Tstab = sat(−KpϕFoR −Kdϕ̇FoR) (3)

and is saturated at ± sole length
2 (mb + 2mf ) g. A detailed

description of the model’s dynamics can be found in [31].

IV. ANALYSIS

Using the model from Section III, we simulate EC, IC
and LC events by changing the ground height after achieving
periodic motion. In Figs. 3 and 4, a simulation example of
an EC and an LC event, respectively, is shown. A different
ground is defined for each foot to avoid lateral impacts and
evaluate only changes in the z direction. The forces on each
foot and the inclination of the sagittal plane are shown,
as well as the position of the robot (depicted with three
segments: one for the upper body and two between rb and
rf1,2) at three time instances a, b and c for reference.
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Fig. 3. A simulation of the three-mass model. Top: the robot position at
3 instances. Bottom: the progress of the contact forces for each foot (blue
and red), total force (dashed) and the inclination of the sagittal plane (cyan)
can be seen for an EC event.

These simulations are repeated for different ground heights
(positive for EC and negative for LC events). Thus, the
value of different indicators can be evaluated against the IC
case. Additionally, this is performed for different walking
parameters. As an example, Fig. 5 shows the plot of the
angular momentum with respect to the origin for one set of
walking parameters and zreal varying between −0.05m and
0.03m. As the foot’s trajectory has a maximum height h of
0.03m, higher values of zreal are not relevant. Besides, the
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Fig. 4. A simulation of the three-mass model. Top: the robot position at
3 instances. Bottom: the progress of the contact forces for each foot (blue
and red), total force (dashed) and the inclination of the sagittal plane (cyan)
can be seen for an LC event.

TABLE I
SIMULATION PARAMETERS

Walking step duration T 0.8s
h 0.03m

Time discretization 0.0015s
Saturation of Tstab ±80Nm

Walking step length s 0.25m 0.3m 0.35m 0.4m 0.45m
zreal between -0.05m and 0.03m

Simulation duration 4.8s

simulations result in the robot loosing balance before reach-
ing those limit values. In the following, we discuss some of
the stability indicators considered. Due to the high number
of parameters, it is not possible to include all simulation
results in this paper. Instead, a small selection based on the
parameters provided in Table I will be presented.

A. Indicators

The sagittal inclination of the FoR ϕFoR (upper body
inclination) is a potential indicator: a high absolute value
means that the robot is falling. Nevertheless, during normal
walking, it oscillates between −0, 012rad and +0, 011rad.
Its periodic motion is not easy to compare or quantify, so
we consider the minimum and maximum values ϕmin, ϕmax
along one run. In the case of an EC, the robot tilts backwards
and ϕmin decreases while ϕmax stays relatively constant. On
the other hand, the robot tilts forward in the case of an LC
and ϕmax increases while ϕmin stays relatively constant (ref.
Fig. 9). This behavior is strongly dependent on zreal but not
on the walking parameters, except for large values of |zreal|.
An indicator considering both effects (e.g. max (|ϕFoR|)) can
be applied to our problem.
Note that the robot’s stability is not only influenced by the
first contact with an unexpected floor height: if we assume no



more changes on the floor height, the step after an EC event
consists of an LC, and vice-versa; this is due to the change
in the robot’s state, especially how ϕFoR is affected by EC
and LC events (see Figs. 3 and 4). Thus we also observe the
values of ϕFoR at the first and second contact with the ground
after the change in zreal, ϕcon1 and ϕcon2 . ϕcon1 shows quasi-
linear behaviors for small values of zreal. More interesting is
the behavior of ϕcon2 which is almost 0 for a range of low
values of |zreal| and shows a sudden increase of absolute value
outside of that region. This can be explained by the effect
of Tstab, which is able to counteract small variations of zreal.
Note that ϕcon2 indicates the state of the robot at the contact
with the ground, where a sudden change in the acting force
will hinder the stabilization controller. An indicator such as
|ϕcon2 | is therefore meaningful for our problem.
The angular momentum L0 with respect to the inertial
coordinate system (xI − zFoR in Fig. 2) also indicates future
states of instability. Fig. 5 shows the value of L0 for one
set of walking parameters and different values of zreal. As
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Fig. 5. Angular momentum with respect to the inertial coordinate system
for a walking step length of s = 0.35m. The IC simulation is depicted in
green while the values at the time of the first and second contacts with the
modified ground are highlighted in blue and red, respectively.

with ϕFoR, we plot the maximum and minimum values of
L0, L0

min and L0
max. These are shown for different walking

parameters in Fig. 6, which can be interpreted as the limits of
the projection of Fig. 5 on the zreal−L0 plane. Even though
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Fig. 6. Maximum and minimum values of L0 along zreal for different
simulations.

no discernible trend can be found on L0
max, L0

min shows a

clear constant value for a range around zreal = 0 and an
increasing deviation outside of it. This behavior allows for a
convex indicator in the form of e.g.

(
L0

min (0)− L0
min (zreal)

)
.

The angular momentum with respect to the FoR LFoR has
been proposed as a stability indicator in [34], but was already
dismissed by [33] for the robot Lola. Our simulations showed
no clear trend (no convexity) as well. Other indicators
analyzed were the distance of the ZMP to the foot’s edge, the
value of Tstab and its minima and maxima. However, none
of them show a near convex/concave behavior with respect
to (zreal − zexp) and are not applicable to our problem.
Nevertheless, if we consider the timespan tsat in which Tstab
is saturated, we obtain another indicator, as any values above
zero indicate a limitation of the stability control and thus a
potential state of instability (see Fig. 7).
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Fig. 7. Timespan in which Tstab is saturated along zreal for different
simulations.

B. Discussion

The results presented here are strongly dependent on
Lola’s particular walking controller and model parameters.
Nevertheless, the presented strategy and indicators can be
easily applied to other robots. Of all variables analyzed,
several fulfill our premise and can be applied to our problem
(namely, ϕmax,min, ϕcon2 , L0

min, tsat). The indicators can be
seen in Fig. 8 for one set of walking parameters. They are
all related to stability in the sense that they can indicate
states in which the disturbance is too large to be compensated
by the stabilization torque. There is a priori no criteria by
which some may be better than others for our problem. Those
that are less dependent on the walking parameters could
potentially simplify the implementation (see Section V).

C. Model Validation

As shown in previous work, the dynamics of a robot such
as Lola can be well described by our three-mass model; it
allows one to reliably predict future states of instability and
reactions to disturbances [30]–[32]. In order to confirm the
validity of the results, we performed full, multi-body simu-
lations for different ground heights. In Fig. 9, it can be seen
that they show a similar trend and are almost proportional,
which does not affect the validity of our solution.
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Fig. 8. A comparison of selected stability indicators for s = 0.35m.
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Fig. 9. Validation of results for ϕmax (red) and ϕmin (blue) with s =
0.35m. Lines: simple model. Dots: full multi-body simulation.

V. APPLICATION IN WALKING CONTROLLER

A. Solution

As explained in Section II, the objective of this work is
to find the optimal expected ground height zexp,opt according
to a stability indicator. Naturally, a weighted combination
of several of the presented indicators can be used as an
indicator. Let zmax − zmin = l. For our solution, we take
an indicator K defined in [−l, l], with zexp = 0 and such
that a smaller value of K can be associated with a more
stable walk.
Considering any possible value of zexp, we define z̃ =
zreal − zexp. Thus, we can calculate the indicator value as:

Kzexp = K (zreal − zexp) = K (z̃) (4)

We propose then, as an optimal expected value, the one for
which the accumulated effect of all possible EC, LC and IC
events is minimal:

zexp,opt = argmin
ẑ∈[zmin,zmax]

∫ zmax

zmin

p (z)K (z − ẑ) dz (5)

Let us assume that p is symmetric with respect to zexp,sensor.
For a symmetric indicator K, we obtain zexp,opt = zexp,sensor.
In that case, the influence of EC and LC events would be
equivalent. It is interesting, however, that after solving zexp,opt
for several simulation scenarios with the indicators presented
in this paper, we obtain zexp,opt > zexp,sensor. This result, which
is consequent with the asymmetry of Fig. 8, indicates that EC
events have a greater effect on stability than LC events, and
zexp should be overestimated. The precise value (5) depends
both on the sensor’s error and robot’s dynamics and cannot
be computed beforehand.

B. Implementation

The presented solution is very general so that it can be ap-
plied regardless of the model used for analysis. Nevertheless,
it is computationally expensive. A thorough implementation
would involve the following process:
a) perform EC, LC and IC event simulations for a full robot

model in the range z̃ ∈ [−l, l], and obtain the values for
K (z̃)

b) with the result from a), calculate the integral term in (5)
for the range zexp ∈ [zmin, zmax] and find the minimum

that would have to be performed every step, as a) depends on
the sensor’s input and walking parameters. Out of both op-
erations, b) is computationally inexpensive while a) presents
the most difficulty.
In order to implement a) in the real-time walking controller,
an initial solution could be to precompute it offline. Out of a
database with detailed simulation results, the values of K (z̃)
could be interpolated during walking. One drawback of this
method is that it makes a change in the stability indicator
difficult. Besides, the amount of variables involved would
result in a large amount of data. On the other hand, if the
discretization is coarse, then the result’s precision would
decrease. Furthermore, it is not clear if an interpolation could
work in this high-dimensional problem.
We propose using a reduced robot model (see Section III)
to perform a large number of simulations online and obtain
values for K (z̃). As shown in previous work [31], simu-
lations of such a reduced model are considerably efficient
and can be implemented into the real-time control. Besides,
as explained before, such a reduced model can still reliably
predict the robot’s dynamics. If we consider that a small
modification of the ground height does not necessarily imply
a re-planning of the footstep positions, these simulations may
be performed throughout one walking step, which is enough
for obtaining acceptable results. We plan to implement this
solution in our walking controller in order to further evaluate
the stability indicators and validate the applicability of our
model.

VI. CONCLUSIONS

In this paper, we presented an analysis of the effect of
perception errors on the stability of biped robots. Based on
a simplified robot model, several stability indicators were
suggested. We propose the application of this model to
find an optimal value for the assumed ground height in



the presence of bounded uncertainty. This could potentially
improve the robustness of the robot against perception errors,
without making changes to the walking control. An accuracy
factor describing irregular surfaces (e.g. gravel, grass) can
also be taken into account. According to our results, an
overestimation of the ground height leads to a more stable
walk in most cases.
Some limitations of this work include the reduced model
used for analysis and the strong assumptions for the test
scenario. We intend to evaluate the dynamics in the lateral
as well as the sagittal plane and apply them in a combined
solution. For the future, we plan to implement the proposed
strategy on the robot Lola and validate the results presented
in this paper.
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