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ABSTRACT	
The	 simulation	 and	 reconstruction	 of	 high	 energy	 physics	 experiments	 at	 the	 Large	

Hadron	Collider	 (LHC)	use	huge	customized	software	suites	 that	were	developed	during	
the	last	twenty	years.	The	reconstruction	software	of	the	ATLAS	experiment,	in	particular,	
is	 challenged	 by	 the	 increasing	 amount	 and	 complexity	 of	 the	 data	 that	 is	 processed	
because	 it	uses	 combinatorial	 algorithms.	Extrapolations	at	 the	end	of	Run-1	of	 the	LHC	
indicated	 the	need	of	 a	 factor	3	 improvement	 in	 event	processing	 rates	 in	 order	 to	 stay	
within	the	available	resources	for	the	workloads	expected	during	Run-2.	

This	thesis	develops	a	systematic	approach	to	analyze	and	optimize	the	ATLAS	recon-
struction	 software	 for	modern	 hardware	 architectures.	 First,	 this	 thesis	 analyzes	 limita-
tions	 of	 the	 software	 and	 how	 to	 improve	 it	 by	 using	 intrusive	 and	 non-intrusive	 tech-
niques.	This	 includes	an	analysis	of	 the	data	 flow	graph	and	detailed	performance	meas-
urements	 using	 performance	 counters	 and	 control	 flow	 and	 function	 level	 profilers.	
Different	approaches	and	possible	improvements	are	evaluated.	An	analysis	of	a	new	low	
complexity	track	reconstruction	algorithm	is	presented.	

No	full	analysis	of	the	grown	structure	of	the	ATLAS	reconstruction	software	had	ex-
isted	 so	 far.	 The	performance	 analysis	 identified	where	optimization	 efforts	would	have	
the	 largest	 impact.	The	analysis	 concludes	 that	 the	 tracking,	 already	being	 the	 computa-
tionally	most	expensive	part,	would	become	more	dominant	with	future	data.	Consequent-
ly,	 the	 optimization	 efforts	 concentrated	 on	 the	 tracking,	 combining	 algorithmic	 and	
structural	 changes	 as	well	 as	 replacing	 outdated	 libraries.	 A	 detailed	 description	 of	 the	
implemented	 changes	 and	 their	 impact	 is	 presented.	 All	 changes	 combined	 lead	 to	 a	
speedup	 of	 a	 factor	 of	 4.5	 for	 the	 reconstruction.	 Both	 code	 quality	 and	 the	 process	 to	
ensure	 code	quality	 have	been	 improved.	 For	 the	presented	parallelization	 study	 a	 data	
flow	graph	was	created	and	combined	with	module’s	runtimes.	The	critical	path	was	found	
to	consume	95%	of	 the	reconstruction	time,	showing	that	 there	 is	 little	potential	perfor-
mance	improvement	through	of	inter-module-parallelism.	The	analysis	concludes	that	for	
the	tracking	most	parallelism	must	be	 inside	a	majority	of	 the	modules	to	have	a	signifi-
cant	effect.	Currently,	efforts	are	focused	on	achieving	thread-safety	of	all	modules	to	start	
introducing	parallelism,	while	recent	efforts	reduced	the	overhead	of	processing	multiple	
events	 concurrently	 on	multicore	machines.	 The	 new	 transform-based	 tracking	method	
presented	is	parallelizable	within	an	event	and	can	be	applied	to	preselect	tracks	to	reduce	
the	complexity	for	the	classic	slow	reconstruction.	It	runs	up	to	17.5	times	faster	than	the	
comparable	algorithm	currently	in	use.	
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Introduction	 	 	 1	

1 INTRODUCTION	

High-energy	 particle	 physics	 experiments	 are	 conducted	 to	 study	 the	 properties	 of	
fundamental	particles	generated	in	collisions	at	particle	colliders.	The	term	“high-energy”	
indicates	the	very	high	energies	prevailing	at	the	collision	process	of	initial	particles	that	
imitate	 conditions	 moments	 after	 the	 creation	 of	 the	 universe.	 During	 a	 collision,	 this	
energy	is	available	to	be	converted	into	other	particles	with	potentially	much	higher	mass.	
This	 process	 is	 described	 by	 the	 theory	 of	 particle	 interaction.	 It	 describes	 how	 each	
physical	process	occurs	with	a	certain	probability.	Physicists	are	 interested	 in	observing	
rare	 processes,	 e.g.	 the	 production	 of	 Higgs	 bosons	 and	 their	 decay	 in	 proton-proton	
collisions	 at	 the	 LHC.	 Some	 processes	 have	 a	 very	 low	 probability	 such	 that	 billions	 of	
collisions	have	to	be	analyzed	in	order	to	find	a	single	occurrence.	To	accumulate	sufficient	
statistics,	 a	 large	 number	 of	 signatures	 consistent	 with	 the	 desired	 process	 has	 to	 be	
collected,	such	that	petabytes	of	data	have	to	be	analyzed.	

The	Large	Hadron	Collider	 (LHC)	 [1]	 is	 the	 largest	machine	constructed	by	mankind	
producing	 rare	 particles	 at	 higher	 energies	 and	 at	 a	 higher	 rate	 than	 ever	 before.	 It	 is	
designed	to	accelerate	protons	up	to	energies	that	correspond	to	more	than	14,000	times	
their	 invariant	 mass	 and	 to	 generate	 collision	 events.	 Collision	 events,	 during	 each	 of	
which	 multiple	 protons	 can	 collide,	 have	 a	 minimum	 temporal	 distance	 of	 only	 25ns	
between	two	events.	This	suggests	40	million	collision	events	per	second,	but	because	of	
gaps	the	number	 is	closer	to	30million	per	second.	During	each	of	these	collision	events,	
the	LHC	design	foresaw	on	average	23	simultaneous	proton-proton	collisions.	This	num-
ber	has	already	even	been	surpassed.	Although	having	only	one	collision	per	event	would	
simplify	the	subsequent	analysis,	the	increased	complexity	is	accepted	in	order	to	increase	
the	 rate	 of	 producing	 rare	 physics	 processes.	 Storing	 and	 processing	 all	 events	 would	
correspond	to	storing	more	than	one	hundred	terabytes	of	data	per	second,	which	is	not	
feasible.	 This	 is	 why	 a	 so-called	 trigger	 system	 selects	 only	 certain	 events	 for	 detailed	
analysis	that	follow	distinct	signatures,	such	as	having	specific	particles.		

The	ATLAS	experiment	[2]	is	one	of	the	four	main	experiments	at	the	LHC.	The	detec-
tor	 consists	 of	 several	 sub-detectors,	 designed	 to	measure	 different	 particle	 properties.	
Closest	 to	 the	 center	 is	 the	 Inner	 Detector	 (ID),	 which	 consists	 of	 three	 different	 sub-
detectors.	Surrounding	the	ID	is	a	strong	solenoid	magnet.	The	ID	is	designed	to	measure	
the	origins	 and	 trajectories	of	 charged	particles.	The	 two	detectors	 closest	 to	 the	 center	
work	with	sensors	similar	to	those	in	a	digital	camera.	They	allow	to	precisely	measure	the	
locations	where	charged	particles	pass	through	and	other	information.	This	“camera”	has	
more	 than	 90	million	 readout	 channels	 and	 takes	 40	million	 pictures	 per	 second,	 up	 to	
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1000	of	which	are	selected	by	 the	ATLAS	trigger	 for	analysis.	The	outermost	detector	of	
the	ID	works	with	a	different	technique,	which	has	a	 lower	spatial	resolution	but	takes	a	
high	number	 of	measurements	 per	 particle.	Outside	 of	 the	magnet	 are	 the	 calorimeters,	
which	are	designed	to	stop	most	particles	to	measure	their	energy.	The	outermost	detec-
tor	 system	 is	 the	Muon	Spectrometer,	which	was	designed	 to	measure	muons,	 a	 type	of	
particle	not	stopped	by	the	calorimeters.	The	Muon	Spectrometer	can	measure	the	trajec-
tory	of	charged	particles	(muons)	independently	of	the	ID	and	the	calorimeters	because	it	
has	a	separate	magnet	system,	 the	ATLAS	Toroid	Magnet	System.	The	ATLAS	detector	 is	
hermetically	surrounding	the	collision	area	to	measure	as	many	of	the	produced	particles	
as	possible.		

In	order	to	make	accurate	measurements,	the	detector	has	to	be	aligned	to	the	preci-
sion	of	a	few	micrometers	and	calibrated	accordingly.	To	analyze	the	measured	particles,	
the	events	are	then	reconstructed	to	interpret	the	measurements,	such	that	 it	 is	possible	
to	 determine	which	physics	 processes	 occurred.	 The	 simultaneous	 collisions	 of	multiple	
protons	 cause	 tens	of	 thousands	of	 position	measurements	 in	 the	 ID,	 such	 that	 complex	
pattern	recognition	algorithms	are	required	to	reconstruct	particle	tracks.	This	process	is	
called	 track	reconstruction	or	 tracking.	During	event	reconstruction,	many	other	physics	
objects	 are	 reconstructed	 from	 the	 recorded	 information	 in	 the	 ID	 and	 other	 detectors	
such	 as	 charged	 particle	 trajectories,	 the	 particle	 production	 vertex	 or	 energy	 clusters.	
Tracking	is	also	performed	in	the	muon	spectrometers,	while	the	calorimeters	are	used	to	
measure	other	particle	properties	by	analyzing	their	decay.	

The	track	reconstruction	in	the	ID	is	the	most	complex	and	computationally	most	ex-
pensive	of	all	reconstruction	problems,	the	optimization	of	which	is	the	main	focus	of	this	
thesis.	Reconstruction	requires	solving	complex	combinatorial	problems	to	find	the	most	
probable	 set	 of	 measurements	 that	 stem	 from	 one	 particle.	 To	 find	 probable	 tracks,	
possible	 combinations	of	 location	measurements	 created	by	 traversing	particles	have	 to	
be	evaluated.	Therefore,	the	complexity	of	processing	the	ID	data	is	directly	dependent	on	
the	number	of	particles	per	event.		

For	the	event	reconstruction	ATLAS	utilizes	a	software	framework,	Gaudi-Athena	[3].	
It	provides	the	backbone	of	a	huge	custom	software	suite.	To	confirm	the	feasibility	of	the	
experiment	 in	simulations,	parts	of	 this	software	suite	were	written	more	 than	a	decade	
ago,	even	before	the	detector	construction	was	approved.	Software	design	choices	made	at	
that	 time	still	 influence	development	 today.	Over	 the	years,	 the	software	has	grown	to	6	
million	lines	of	code	in	thousands	of	packages	[4].	

The	evolving	physics	requirements	made	continuous	modification	and	optimization	of	
the	software	necessary.	An	example	for	a	huge	change	of	requirements	emerged	with	the	
upgrade	 period	 between	 2012	 and	 2015	with	 changes	 to	 the	 detectors	 and	 to	 the	 LHC.	
This	period	is	known	as	the	Long	Shutdown	1	or	LS1.	The	changes	to	the	detector	and	the	
LHC	during	this	time	foresaw	a	doubled	frequency	of	events	and	an	average	of	40	simulta-
neous	 collisions	 per	 event.	 The	 trigger	 updates	 during	 LS1	 are	 designed	 to	 increase	 the	
number	of	events	selected	by	the	trigger	by	a	factor	of	2.5	to	up	to	1kHz.	Including	other	
factors	 this	 is	 an	enormous	 increase	of	data	 to	be	processed	while	 at	 the	 same	 time	 the	
complexity	of	the	reconstruction	of	each	event	increases	significantly.		

Future	major	upgrades	planned	for	2023,	the	so-called	High-Luminosity-LHC,	 is	 fore-
seen	to	result	in	up	to	200	simultaneous	proton-proton	collisions	per	event	and	to	record	
events	at	rates	of	5kHz	or	more	after	trigger	selection.	The	scale	of	the	problem	is	visual-
ized	by	Figure	1,	showing	a	reconstructed	High-Luminosity	LHC	event	and	the	correspond-
ing	measurements.	 The	 LS1	was	 a	window	 of	 opportunity	 to	 address	 the	 increased	 de-
mands	for	2015	by	improving	the	software	to	meet	the	new	requirements.	Much	effort	has	
been	put	in	optimizing	the	code	and	algorithms,	which	is	part	of	this	thesis.		

The	ATLAS	software	 is	run	on	a	set	of	computing	sites	distributed	around	the	world,	
which	jointly	form	the	largest	scientific	grid-computing	network	in	the	world,	the	World-
wide	LHC	Computing	Grid	(WLCG)	[5].	These	sites	belong	to	universities	and	collaborating	
laboratories,	 which	 also	 manage	 them.	 This	 means	 these	 sites	 have	 diverse	 hardware		
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Figure	 1:	 Event	 with	 140	 simultaneous	 collisions	 in	 an	 upgraded	 ATLAS	 detector	
geometry.	 The	 detector	 elements	 are	 outlined	 in	 blue	 and	 the	 location	 measure-
ments	 are	 in	 orange	 and	 yellow.	 The	 reconstructed	 particle	 tracks	 are	 shown	 in	
green.	[6]	

that	can	change	anytime.	Yet,	large	amounts	of	data	have	to	be	processed	as	efficiently	as	
possible,	requiring	attention	to	performance	of	all	parts	of	the	software,	both	in	terms	of	
physics	 and	 computational	 performance.	 To	 achieve	 the	 required	 computational	 perfor-
mance,	 code	maintenance	 needs	 to	 address	 new	 hardware	 architectures,	 changing	 soft-
ware	 environments	 and	evolving	physics	 requirements.	 Such	 conditions	pose	 a	problem	
particularly	for	long-lived	projects	that	grew	historically,	because	optimizations	exploiting	
new	 hardware	 features	 often	 require	 profound	 changes	 in	 the	 software.	 High-energy	
physics	software	is	different	to	most	other	projects	that	require	computing	power	of	this	
scale.	These	experiments	have	different	 sub-detectors	with	different	purposes,	 such	 that	
many	 different	 problems	 have	 to	 be	 solved,	 distributing	 the	 time	 spent	 over	millions	 of	
lines	of	code	with	few	hot	spots.	Writing	such	software	requires	a	profound	understanding	
of	 the	 involved	physics	processes,	which	 is	why	 it	 is	 typically	written	almost	entirely	by	
physicists	rather	than	software	engineers.		

Significantly	optimizing	 the	ATLAS	 ID	reconstruction	requires	a	 thorough	analysis	of	
the	framework,	the	algorithm	interplay,	the	algorithms	themselves	and	their	performance	
on	the	processing	hardware.	For	all	considered	optimizations	has	to	be	kept	in	mind	that	
they	impact	both	performance	and	maintainability.	Maintainability	is	especially	important	
in	 the	 ATLAS	 collaboration	 as	 the	 skills	 of	 the	 developers	 differ	 significantly	 and	
knowledge	of	the	software	gets	lost	due	to	the	quick	turnover	of	the	developers	which	are	
often	students.	

For	decades,	the	need	for	faster	software	was	addressable	by	increasing	the	computing	
power	 by	 buying	 newer	machines,	whose	 clock	 speed	was	 increasing	 following	Moore’s	
Law.	 These	 machines	 were	 able	 to	 run	 the	 same	 code	 much	 faster	 than	 the	 previous	
generation,	 sometimes	 even	 without	 requiring	 recompilation	 [7].	 In	 2006	 clock	 speed	
development	 stalled	 at	 around	 3	 GHz.	 The	 reason	 is	 the	 superlinear	 increase	 in	 power	
leakage	with	higher	clock	speeds,	an	 issue	commonly	referred	 to	as	 the	power	wall.	The	
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number	 of	 transistors	 per	 processor	 area	 continues	 to	 grow	 following	Moore’s	 law	 [8].	
With	sequential	execution	of	most	basic	operations	already	at	the	minimum	of	one	instruc-
tion	per	clock	cycle	through	pipelining,	however,	individual	operations	do	not	profit	from	
the	 increase	 in	 transistors.	 To	 utilize	 the	 additional	 transistors,	 CPU	 vendors	 started	 to	
introduce	more	 parallelism,	 manifested	 in	 wide	 CPU	 registers,	 parallel	 ports,	 hardware	
threads	and,	since	2001,	more	cores.	The	difference	to	improvements	in	basic	operations	
or	 in	 clock	 speed	 is	 that	 software	 does	 not	 indistinctly	 profit	 from	 these	 developments.	
Instead,	it	depends	on	the	software	to	make	use	of	the	new	features	or	to	allow	automated	
usage	of	these	features.	Leaving	these	resources	lying	idle,	however	would	lead	to	wasting	
potential	of	several	orders	of	magnitude.	Exploiting	largely	independent	parallel	resources	
such	as	multi	core	CPUs	by	running	multiple	instances	of	the	current	ATLAS	software	will	
not	remain	feasible	for	future	architectures:	Memory	per	core	in	future	architectures	will	
not	 be	 as	 abundant	 as	 on	 current	 systems	 [9].	Maintaining	 the	 current	 ratio	 for	 the	 in-
creasing	number	of	cores	would	lead	to	unacceptable	acquisition	and	electricity	costs.	As	a	
consequence,	to	be	able	to	utilize	these	resources,	either	memory	usage	per	instance	must	
decrease	 substantially	 or	 parallelizations	without	 huge	 additional	memory	 cost	must	 be	
applied.	

1.1 Research	Questions	
The	ATLAS	software	has	grown	to	millions	of	lines	of	code	over	the	years	of	its	devel-

opment.	The	 code	 runs	on	hundreds	of	 thousands	of	 computers	worldwide	 causing	mil-
lions	 of	 Swiss	 Francs	 of	 cost.	 Cost	 for	 computation	 will	 exceed	 the	 available	 resources	
without	 improvement	of	 the	 software,	 because	 the	problem	solved	by	 the	 software	pre-
dictably	 shifts	 towards	 higher	 complexity	 and	 size	 with	 the	 performed	 and	 planned	
updates	to	the	experiment.	This	makes	it	a	classical	optimization	problem.	Due	to	its	sheer	
size	and	the	untypical	distribution	of	load	over	many	parts	of	the	code,	focusing	on	a	single	
point	cannot	yield	the	required	gains.	Another	constraint	is	that	the	quality	of	the	results	
may	 improve,	 but	not	 reduce	with	 any	 changes	 to	 the	 software.	These	 constraints	 show	
that	 on	 the	 one	 hand,	 it	 is	 not	 sufficient	 to	 optimize	 few	 hot	 spots,	 while	 on	 the	 other	
caution	is	necessary	when	applying	optimizations	that	may	affect	the	results.	Only	under-
standing	the	software	enables	developers	to	tackle	these	challenges	and	meeting	the	goals.	

When	modifying	the	software	design,	 the	suitability	 for	current	and	 future	hardware	
should	be	taken	into	account	while	at	the	same	time	future	efforts	should	come	at	a	lower	
cost.	Large-scale	changes	to	the	software	need	to	be	organized	in	a	way	they	can	be	per-
formed	by	the	individual	groups	without	expert	knowledge.	All	efforts	to	meet	the	short-
term	requirements	had	a	strict	deadline,	which	was	set	by	the	restart	of	the	LHC	after	LS1.	
For	long-term	projects,	the	applicability	of	certain	technologies	such	as	different	parallel-
ization	 techniques	 to	 the	 problems	 to	 be	 solved	 for	 reconstruction	 would	 have	 to	 be	
analyzed,	requiring	both	an	analysis	of	the	technologies	as	of	the	current	structure	of	the	
code.	 I	 identified	 three	 individual	 steps	 required	 to	 achieve	 these	 goals,	 which	 are	 ad-
dressed	by	the	contributions	outlined	in	1.2.	These	steps	are:	
	

1. What	are	the	main	shortfalls	of	the	current	software	with	respect	to	CPU	per-
formance?	
To	be	able	to	improve	a	piece	of	software,	it	has	to	be	analysed	for	both	wasted	and	
unused	 resources.	 Understanding	 reasons	 for	 how	 the	 software	 works	 requires	
significant	effort	but	 is	necessary	to	expose	 its	 limitations	and	to	restructure	and	
reformulate	problems.	At	the	same	time,	algorithmic	changes	may	also	affect	phys-
ics	performance,	which	must	not	be	reduced	even	by	a	fraction	of	one	percent.	An-
alyzing	 the	 interplay,	 on	 the	 one	 hand,	 requires	 code	 analysis	 and	 expert	
knowledge	distributed	over	many	different	people.	On	the	other	hand,	it	requires	
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benchmarking	 software	 behavior	 and	 the	 evaluation	 and	 interpretation	 of	 such	
benchmarks.	

2. Which	improvements	can	be	implemented	before	the	end	of	LS1?	
First	and	foremost,	attention	is	to	the	performance	of	the	software	in	the	near	fu-
ture.	Pressing	issues	are	different	workloads,	which	shift	hot	spots	and	can	create	
problems	that	did	not	appear	with	previous	workloads.	Expected	hardware	devel-
opments,	the	computing	budget	in	the	near	future	and	predicted	workloads	were	
used	to	calculate	that	the	reconstruction	software	was	required	to	be	sped	up	by	a	
factor	of	three	to	deal	with	the	new	workloads	[10].	Therefore,	estimating	gains	of	
a	project	and	the	time	its	execution	takes	using	the	previous	analysis	is	necessary	
for	timely	completion	of	the	projects	as	well	as	achieving	the	set	goals.	

3. Which	long-term	improvements	are	most	promising?	
The	ATLAS	experiment	is	going	to	run	until	the	end	of	the	LHC	lifetime	2030,	and	
while	requirements	will	change,	the	type	of	changes	and	their	impact	can	be	fore-
seen.	The	 software	has	 to	deal	with	 increasingly	 complex	events	with	a	 constant	
computing	budget	and	a	changing	and	increasingly	parallel	hardware	landscape.	In	
order	to	stay	within	the	computing	budget,	utilization	of	parallel	resources	on	all	
levels	is	necessary.	Pinpointing	possible	promising	projects,	analysing	required	ef-
fort	and	possible	 impact	could	serve	as	a	starting	point	 for	 further	developments	
that	go	outside	of	the	scope	of	this	thesis.	

1.2 Contributions	
The	following	approaches	and	new	methods	are	presented	in	this	thesis,	which	are	de-

signed	to	improve	the	ATLAS	software	such	that	it	can	fulfil	the	requirements	of	the	near	
term	and	long	term	future:	
	

1. A	general	 overview	of	 the	 state	of	 the	ATLAS	 reconstruction	 software	 includes	 a	
detailed	performance	analysis	[11],	[12].	It	demonstrates	the	problem	of	develop-
ing	 the	 complex	 software	of	ATLAS	 from	an	organizational	point	 of	 view.	 I	 high-
light	 the	 challenges	 arising	with	 organizing	 hundreds	 of	 people,	 including	many	
students	 with	 differing	 skill	 levels,	 working	 on	 different	 areas.	 This	 includes	 as	
well	 a	 discussion	 of	 the	 parallelizability	 of	 the	 ATLAS	 software.	 The	 bottlenecks	
within	 the	current	approach	preventing	 the	 introduction	of	parallelism	on	differ-
ent	 levels	 are	 analysed	 in	 detail.	 Concrete	 measures	 are	 presented	 to	 counter	
shortfalls	in	near	future	scenarios.	

2. The	measures	in	which	I	participated	that	were	implemented	during	LS1	to	be	able	
to	deal	with	the	workloads	of	the	next	phase	of	the	LHC	data	taking	campaign	are	
described	 in	 detail.	 Non-intrusive	 as	well	 as	 intrusive	 optimizations	 are	 applied,	
following	the	analysis	results.	I	discuss	immediate	and	future	impact	of	each	opti-
mization	with	respect	to	performance	and	maintainability.	

3. I	analyze	and	improve	a	near-linear	complexity	vertexing	and	tracking	algorithm,	
which	presents	 an	outlook	 to	how	 the	 software	 can	be	prepared	 for	 future	 chal-
lenges.	This	algorithm	tries	to	avoid	the	most	expensive	operation	of	the	currently	
used	ID	tracking	algorithms.	Based	on	a	trigger	algorithm,	I	heavily	modified	it	to	
achieve	 the	 best	 possible	 physics	 and	 CPU	 performance.	 Due	 to	 its	 much	 lower	
computational	 complexity	 and	 because	 it	 is	 largely	 based	 on	 bit	 operations,	 it	 is	
orders	of	magnitude	faster	than	the	currently	used	tracking	algorithm.	The	modifi-
cations	 make	 parallelizations	 possible,	 which,	 depending	 on	 the	 configuration,	
would	 allow	 to	 divide	 the	 problem	 into	 hundreds	 of	 independent	 sub	 problems.	
The	 impact	 of	 the	 detector	 geometry’s	 differences	 to	 the	 simplified	 assumptions	
used	 in	 the	 algorithm	 are	 analyzed	 in	 detail	 and	 corrective	measures	 are	 imple-
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mented.	A	fully	working	prototype	has	been	implemented	and	serves	as	an	exam-
ple	to	show	under	which	conditions	the	algorithm	is	applicable.	

	

1.3 Structure	of	the	Thesis	
The	remainder	of	the	thesis	is	structured	as	follows:	
	

Chapter	2	–	Research	Environment:	The	environment	 in	which	 the	work	presented	 in	
this	thesis	is	embedded	is	given	in	this	chapter.	It	starts	with	an	introduction	to	CERN	and	
the	 purpose	 and	 technical	 challenges	 of	 the	 Large	 Hadron	 Collider	 and	 ATLAS	 together	
with	other	LHC	experiments.	A	separate	subsection	is	dedicated	to	the	Inner	Detector.	The	
ID	is	the	innermost	part	of	the	ATLAS	experiment	and	a	main	focus	of	this	thesis.	Continu-
ing	with	 the	 computing	 environment	 and	 the	 available	 resources,	 the	 remainder	 of	 this	
chapter	explains	the	general	functionality	of	the	main	software	and	algorithms	for	the	ID	
reconstruction.	
	
Chapter	3	–	Software	Development	and	Computing	 in	ATLAS:	The	 chapter	motivates	
the	 challenges	 and	 the	 problem	 description	 in	 detail.	 This	 comprises	 the	 complexity	 of	
previous	and	expected	data	and	resource	consumption	of	the	software	before	the	start	of	
the	thesis.	A	detailed	analysis	of	the	interaction	of	the	different	modules	demonstrates	the	
complexity	 and	 number	 of	 interacting	modules.	 The	 challenges	 of	 an	 organization	 with	
contributions	from	many	people	with	different	backgrounds	and	in	separate	working	units	
developing	 these	modules	 are	 indicated	 as	well.	 A	 section	 is	 dedicated	 to	 the	 hardware	
evolution	 and	 the	 different	 available	 hardware	 types	 on	 the	 market	 and	 available	 to	
ATLAS.	 The	 requirement	 to	 parallelize	 the	 single	 threaded	 software	 to	 exploit	 future	
hardware	 resources	 is	 explained.	 Lastly,	 the	 development	 of	 programming	 languages,	
external	 libraries	 and	 other	 surrounding	 software	 since	 the	 start	 of	 development	 on	
Athena	is	discussed	with	respect	to	their	importance	for	ATLAS.	
	
Chapter	 4	 –	 Performance	 Analysis:	 A	 detailed	 analysis	 shows	 the	 state	 of	 the	 ATLAS	
reconstruction	 before	 and	 during	 the	 implementation	 of	 different	 optimizations.	 The	
analysis	breaks	up	the	contributors	to	CPU	usage	in	domains	and	modules	and	shows	their	
dependencies	to	give	an	insight	into	the	complexity	in	order	to	find	hot	spots	for	optimiza-
tion.	 Subsequently,	 the	different	 types	 of	 possible	 optimizations	 are	 explained.	 They	 are	
grouped	 into	 three	 conceptually	 different	 domains:	 Software	 environment,	 hardware	
environment	 and	 own	 software.	 Applicable	 optimizations	 from	 the	 own	 software	 and	
software	 environment	 domain	 are	 analyzed.	 Examining	 the	 dependency	 chain	 of	 the	 ID	
software	clearly	shows	that	running	algorithms	in	parallel	cannot	lead	to	huge	gains.	
	
Chapter	 5	 –	 Software	 Integration:	 Using	 information	 from	 the	 performance	 analysis,	
changes	were	introduced	into	the	software.	The	software	integration	chapter	presents	the	
implementation	of	 these	changes	 in	the	software	domains	until	 the	end	of	 the	 long	shut-
down.	 The	 expected	 gains	 for	 different	 ways	 to	 implement	 a	 change	 are	 assessed,	 the	
process	of	implementation	described	and	a	prediction	of	the	expected	impact	given.		
	
Chapter	 6	 –	 Algorithmic	 Improvements	 of	 Tracking:	 The	 currently	 used	 tracking	
methods	 have	 a	 very	 high	 complexity,	 use	 slow	 operations	 and	 cannot	 be	 parallelized	
trivially.	 In	 this	 chapter,	 alternative	 algorithms	 are	 presented	 that	 try	 to	 tackle	 these	
problems.	The	detailed	description	of	applicable	algorithmic	improvements	is	followed	by	
a	feasibility	study	to	assess	the	physics	performance	and	the	possible	areas	of	application.	
Further	improvements	to	the	algorithm	are	discussed	and	physics	performance	results	of	
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an	implementation	presented.	The	parallelizability	and	throughput	of	different	paralleliza-
tion	methods	of	different	tracking	approaches	is	discussed.	
	
Chapter	7	–	Conclusions:	A	summary	of	 the	achieved	goals	of	analyzing	and	optimizing	
the	ATLAS	software.	The	impact	of	the	major	findings	are	presented	alongside	an	outlook	
to	future	projects.	
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2 RESEARCH	ENVIRONMENT	

This	chapter	is	dedicated	to	describing	the	goals	and	the	purposes	of	the	organizations	
and	projects	in	which	the	research	presented	in	this	thesis	was	embedded.	It	provides	the	
technical	context	describing	software	and	resources	available.	 It	should	equip	the	reader	
with	the	necessary	background	for	the	subsequent	chapters.		

This	chapter	is	structured	as	follows:	CERN	is	introduced	in	Section	2.1	to	explain	the	
overall	 goals	of	 this	organization.	CERN	 famously	operates	 the	LHC,	which	will	be	 intro-
duced	 in	 2.2.	 The	 amount	 of	 data	 generated	by	 the	 LHC	 and	how	much	of	 the	 data	was	
recorded	and	processed	by	the	ATLAS	experiments	is	shown	in	Section	2.3.	One	of	the	four	
main	experiments	at	the	LHC	and	the	organization	in	which	this	thesis	is	embedded	is	the	
ATLAS	 experiment	 which	 will	 be	 described	 alongside	 its	 detector	 components	 in	 Sec-
tion	2.4.	Section	2.5	presents	ATLAS’	 inner	tracking	subsystem,	the	Inner	Detector.	Algo-
rithms	to	process	data	from	the	ID	are	very	time	intensive,	which	is	why	most	of	the	work	
presented	in	this	thesis	is	primarily	aimed	at	the	ID.	The	type	of	data	taken	at	ATLAS	and	
how	 it	 is	 processed	 is	 presented	 in	 Section	2.6.	 Section	2.7	 explains	 an	 especially	 costly	
processing	 step	 of	 data,	 the	 track	 reconstruction	 in	 the	 ID	 and	 its	 algorithmic	 solution,	
which	this	thesis	focuses	on.	Section	2.8	explains	the	main	software	suites	used	at	ATLAS.	
Section	 2.9	 goes	 into	 details	 of	 the	 ATLAS	 software	 framework	Athena	 running	 all	 soft-
ware	developed	in	the	context	of	this	thesis.	The	computing	infrastructure	is	introduced	in	
Section	2.10	and	gives	details	of	the	distributed	computing	resources	available	to	ATLAS.	

2.1 CERN	
CERN	was	founded	as	the	“Conseil	Européen	pour	la	Recherche	Nucléaire”	on	29	Sep-

tember	 1954	 for	 strictly	 peaceful	 fundamental	 research	 in	 physics	 by	 twelve	 western	
European	 countries	 [13].	 It	 was	 created	 to	 re-establish	world-class	 research	 in	 Europe,	
which	 had	 suffered	 during	World	War	 2.	 Since	 then	many	 nations	 have	 joined	 CERN	 to	
collaborate	even	during	political	tensions,	and	CERN	has	become	one	of	the	largest	institu-
tions	for	basic	and	applied	research	worldwide.	Around	10,000	people	work	for	CERN	or	
CERN	 experiments	 on	 site,	 and	 thousands	 more	 in	 institutes	 worldwide.	 These	 people	
come	from	over	70	countries	and	120	different	nationalities	[14],	making	CERN	a	gather-
ing	point	for	different	cultures.	It	is	based	on	the	border	of	France	and	Switzerland	close	to	
Geneva	and	features	facilities	in	both	countries.	The	site	was	chosen	for	political	stability		
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and	its	central	location	within	Europe.	Many	discoveries	and	major	technological	innova-
tions	have	been	made,	both	 in	 the	 field	of	physics	and	outside	of	physics.	Famously,	 the	
World	Wide	Web	(www)	has	been	invented	here	as	a	means	to	share	information	between	
researchers.	Several	medical	applications	such	as	cancer	treatments	are	based	on	technol-
ogies	 developed	 at	 CERN.	 Since	 the	 very	 beginning	 CERN	 has	 been	 at	 the	 forefront	 of	
research	in	the	area	of	computing.		

CERN	hosts	the	Large	Hadron	Collider	(LHC),	currently	the	world’s	largest	particle	ac-
celerator	that	provides	data	 to	 four	main	experiments	ATLAS,	CMS,	LHCb	and	Alice	[15],	
[16],	[17].	In	2012,	ATLAS	and	CMS	announced	the	discovery	of	the	Higgs	boson	[18],	[19],	
a	fundamental	particle	these	two	experiments	were	able	to	measure	with	unprecedented	
accuracy.	

	
	

	

Figure	2:	The	accelerator	complex	 at	 CERN.	The	acceleration	of	protons	starts	 in	
the	Linear	Accelerator	2	and	reaches	 the	LHC	with	 intermediate	steps	 in	circular	
accelerators	of	 increasing	 size:	 Booster,	 PS	 and	SPS.	 The	 four	main	experiments	
are	marked	on	the	LHC	ring.	Other	accelerators	are	for	different	particles	and/or	
different	experiments.	Graphic	from	[98].		
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2.2 The	Large	Hadron	Collider	
The	LHC	is	the	biggest	particle	accelerator	in	the	world,	designed	to	reach	collision	en-

ergies	 of	 14	 TeV	 (Tera	 electron	 Volt)	 for	 proton-proton	 collisions	 and	 up	 to	 40	million	
collision	events	per	second	[20].	The	LHC	has	been	commissioned	in	2008,	replacing	the	
previous	accelerator	in	the	same	tunnel,	the	Large	Electron	Positron	collider	(LEP),	which	
had	been	in	operation	between	1989	and	2000.	Between	2008	and	2012	the	LHC	has	been	
operating	with	energies	of	up	 to	8	TeV	during	 the	 first	data-taking	period	referred	 to	as	
Run	1.	 After	 the	 first	 long	 shutdown	 (LS1)	 between	 2012	 and	 2015,	 collisions	 with	 a	
center-of-mass-energy	of	13	TeV	marked	the	start	of	Run	2.	To	accelerate	protons	to	such	
energies,	 they	pass	 through	a	chain	of	accelerators,	see	Figure	2,	where	each	accelerator	
increases	the	energy	to	a	higher	level	than	the	previous	one.	Within	the	LHC,	protons	are	
accelerated	 in	 two	 counter-rotating	 particle	 beams	 along	 the	 27km	 circumference	 ring-
shaped	collider	situated	 in	Switzerland	and	France.	The	two	beams	are	made	to	cross	 in	
four	points	at	 the	 location	of	each	of	 the	LHC’s	 four	main	experiments.	When	 the	beams	
cross,	particles	from	one	beam	interact	with	particles	from	the	other	beam.	This	is	called	a	
collision	event.	

In	 each	of	 the	 collision	events,	 two	 so	 called	bunches	each	 consisting	of	 around	1011	
protons	travelling	in	opposite	directions	pass	through	each	other.	During	one	such	bunch	

Figure	3:	Cross	section	of	certain	physics	processes	for	LHC	center-of-mass	energies	
before	and	after	LS1.	The	cross	section	of	a	process	corresponds	to	 the	probability	
of	this	process	 to	occur.	The	process	marked	"inelastic"	corresponds	 to	the	proba-
bility	of	a	proton-proton	collision.	As	the	graphic	shows	this	probability	is	almost	6	
orders	of	magnitude	higher	than	the	next	most	probable	shown	process,	and	about	
10	 orders	 of	 magnitude	 more	 probable	 than	 the	 least	 probable	 ZZ	 process.	 This	
means	that	on	average	ten	billion	collisions	have	to	take	place	for	one	ZZ	process	to	
occur,	and	to	create	reliable	statistics	many	are	needed.	Graphic	from	[99].	
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Figure	4:	Peak	number	of	proton-proton	collisions	per	event.	Maximum	reached	in	
2012	is	37.	The	red	line	indicates	the	average	of	20.7	pileup	collisions	in	2012.	[21]	

	
crossing,	a	number	of	protons	from	one	bunch	collide	with	protons	from	the	other	bunch.	

The	large	number	of	collisions	is	necessary	because	the	desired	physics	to	be	observed	
occurs	only	with	a	very	low	probability,	see	Figure	3.	The	so–called	scattering	formalism	
can	be	used	 to	describe	 such	processes.	To	understand	 the	 formalism,	 it	 is	necessary	 to	
know	 that	 in	 a	 proton-proton	 collision,	 not	 entire	 protons	 but	 the	 constituents	 of	 the	
protons,	 the	 so	 called	 partons,	 collide.	 The	 parton	 distribution	 functions	 describe	 the	
probability	to	find	partons	inside	the	protons	of	a	particular	energy	during	a	collision.	The	
probability	 for	 a	 given	 (scattering)	 process	 to	 occur	 is	 then	 computed	 using	 Feynman	
diagrams.	The	convolution	of	the	parton	distribution	functions	and	the	Feynman	diagrams	
returns	the	probability	of	a	process	to	occur.	High	energies	are	interesting	from	a	physics	
point	 of	 view	 because	 they	 are	 required	 to	 produce	 certain	 heavy,	 possibly	 unknown	
particles	predicted	by	theories	extending	the	Standard	Model.	The	recent	discovery	of	the	
Higgs	boson	 serves	as	 an	example.	While	 the	probability	 for	 two	partons	with	 sufficient	
energy	 to	 produce	 a	 Higgs	 is	 small,	 the	 probability	 is	 much	 smaller	 to	 find	 these	 two	
needed	partons	with	a	sufficient	energy.	

Due	to	the	extremely	short	lifetime	of	the	Higgs	boson,	only	its	decay	products	can	be	
measured.	Of	the	many	possible	decays	of	a	Higgs	boson,	only	a	few	are	actively	looked	for	
because	they	occur	with	a	sufficient	probability	and	can	be	detected.	As	a	result,	although	
trillions	of	events	have	been	produced,	only	a	few	hundred	events	showing	the	signature	
of	a	measured	Higgs	particle	decay	have	been	found.	

2.3 LHC	Performance	in	Run	1	
At	the	end	of	Run	1	in	the	beginning	of	2013,	the	LHC	was	shut	down	after	more	than	3	

years	of	data	 taking.	The	 total	 integrated	 luminosity	delivered	 to	 the	ATLAS	experiment	
during	 Run	 1	 was	 approximately	 27	 inverse	 femtobarn,	 which	 corresponds	 to	 about	
2.7	·	1015	proton-proton	 interactions,	which	took	place	 in	 trillions	of	events.	 In	2012,	 the	
last	 year	 of	 Run	 1,	 about	 80.5%	 of	 the	 data	 of	 Run	 1	was	 taken	 [22].	With	 the	 average	
pileup	 of	 20.7	 inelastic	 collisions	 per	 event	 for	 2012	 this	 corresponds	 to	 around	 1014	
events	[23],	[24].	The	trigger	selected	around	2	billion	of	these	events	in	2012,	which	were	
fully	reconstructed,	all	with	software	version	17.2.	The	software	fulfilled	the	requirements	
of	 the	 computing	 infrastructure,	 reconstructing	 events	 reaching	up	 to	37	pileup	 interac-
tions	in	2012,	see	Figure	4.	

The	excellent	performance	of	the	LHC	comes	at	a	price	because	the	additional	simulta-
neous	 collisions	 need	 to	 be	 reconstructed,	 which	 strongly	 affects	 the	 runtime	 of	 recon-
struction,	as	shown	in	Section	3.1.	The	reconstruction	of	each	event	 is	broken	down	into		
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Figure	5:	The	ATLAS	detector	and	its	subsystems	[2].	

reconstruction	within	the	different	subdetector	systems	of	the	ATLAS	detector,	which	are	
presented	in	the	following	Section.	

2.4 ATLAS	
By	 analysing	 particle	 collisions,	 physicists	 want	 to	 experimentally	 confirm	 existing	

theories	 and	 hope	 to	 discover	 previously	 unpredicted	 behaviour,	 so	 called	 new	physics.	
The	 two	 beams	 are	 made	 to	 cross	 each	 other	 at	 four	 points	 where	 data	 is	 taken	 and	
recorded	 for	 analysis	 by	 four	 experiments:	ATLAS,	 CMS,	ALICE	 and	LHCb.	 Each	of	 these	
experiments	has	 a	detector	 at	 the	 collision	area,	which	 is	 capable	of	detecting	produced	
particles.	 ATLAS	 and	 CMS	 are	 general-purpose	 detectors	 designed	 to	 detect	 a	 range	 of	
particles	 and	 covering	 the	 beam	 interaction	 region	 hermetically.	 ALICE	 is	 designed	 to	
work	best	for	the	analysis	of	heavy	ion	collisions,	which	are	produced	by	the	LHC	during	
dedicated	runs	over	a	period	of	four	to	six	weeks,	usually	at	the	end	of	each	year.	LHCb	is	
designed	 to	 detect	 the	 decay	 products	 of	 beauty	 hadrons	 to	 detect	 deviations	 from	 the	
Standard	Model.	Though	not	perfectly	suited	for	all	purposes,	as	of	2015	all	experiments	
record	data	from	both	heavy	ion	and	proton-proton	collisions.	

The	ATLAS	detector	has	the	largest	dimensions	of	the	four	major	experiments	at	CERN	
and	consists	of	many	different	 systems,	 see	Figure	5.	The	detector	encloses	 the	collision	
area	 in	 its	 center.	 Along	 the	 beams,	 the	 detector	 systems	 are	 cylindrical,	 enclosing	 each	
other.	At	both	ends	of	the	cylinders,	disc-shaped	endcaps	of	each	detector	system	close	the	
detector	volume.	This	structure	is	designed	to	measure	as	many	particles	as	possible	and	
the	different	detector	subsystems	are	used	to	measure	different	aspects	of	these	particles.	
Data	 is	 measured	 by	 different	 detector	 subsystems.	 The	 innermost	 detector	 is	 the	 ID,	
which	 is	a	 tracking	detector	designed	 to	measure	 the	origins	and	 trajectories	of	charged	
particles	close	to	the	beam	interaction	region.	Within	the	ID,	the	particles	pass	through	a	
strong	magnetic	 field,	causing	a	charged	particle’s	path	to	bend,	depending	on	 its	charge	
and	momentum.	Under	 the	assumption	of	 a	homogeneous	 field	and	no	material	 interac-
tions,	the	particles	follow	the	path	of	a	helix.	From	the	curvature,	the	charge	and	momen-
tum	of	the	particle	can	be	derived.	Calorimeters	are	wrapped	around	the	solenoid	magnet		
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enclosing	the	ID	to	measure	the	energies	of	most	charged	and	neutral	particles.	Different	
types	of	calorimeters	are	designed	to	stop	different	types	of	particles.	They	aim	to	contain	
the	majority	of	particles	within	this	volume	by	absorbing	all	their	energy	and	measuring	it	
in	the	process.	The	calorimeters	measure	a	particle’s	energy	for	charged	and	most	neutral	
particles.	The	outermost	detector	sub-system	is	the	Muon	Spectrometer,	which	is	a	track-
ing	device	dedicated	for	the	measurements	of	muons	that	traverse	the	calorimeter	volume	
due	to	their	relatively	low	interaction	with	the	calorimeter	material.		

ATLAS	needs	to	record	interesting	events	from	the	overwhelming	stream	of	data.	The	
particles	resulting	 from	the	collisions	pass	 through	various	detector	surfaces	and	 induce	
ionization	 that	 are	 detected	 by	 the	 read-out	 electronics.	 On	 board	 electronics	 are	 pro-
grammed	 to	 react	 to	 coincidence	 certain	 signatures	 that	 indicate	 a	 particle	 of	 a	 certain	
type	or	energy.	This	system	 is	called	 the	hardware	or	Level-1	 trigger	 [25].	 It	 is	part	of	a	
multi-stage	real	time	triggering	system	designed	to	identify	events	of	interest,	see	Figure	
6.	If	certain	conditions	are	met,	this	causes	the	event	to	be	read	out	from	the	detector	and	
analysed	 by	 the	 next	 level	 trigger	 system.	 This	High-Level	 trigger	 or	HLT,	 before	Run	 2	
divided	 into	Level	2	and	Level	3,	 is	 implemented	 in	software.	 It	does	not	 run	on	 the	 full	
event	but	just	on	parts	of	the	data	where	interesting	physics	is	expected,	so-called	regions	
of	interest.	The	processing	of	these	regions	is	done	with	algorithms	based	on	algorithms	of	
the	 offline	 reconstruction,	 which	 denotes	 the	 full	 reconstruction	 happening	 after	 the	
selection	by	the	trigger	system,	which	does	not	have	real-time	constraints.	Most	work	 in	
this	thesis	is	about	offline	software	algorithms,	but	changes	to	these	algorithms	can	also	be	
applied	to	the	HLT.	
	

Level-1 Trigger

High-Level Trigger

L1 Decision

Event 
DataRegion of Interest

Event 
Data

Event 
Data

Event 
Data

HLT Decision

Online Reconstruction

Detector

Event 
Data

Detector Readout /  
Data Collection

Figure	 6:	 ATLAS	 Trigger	 system	 schematic.	 The	 Level-1	 (L1)	 Trigger	 inside	 the	
detector	 signals	 the	 readout	 system	 if	 data	 should	 be	 read	 out.	 The	 High-Level	
Trigger	(HLT)	is	given	a	Region	of	Interest	by	the	L1	Trigger.	
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Figure	 7:	 ATLAS	 Inner	 Detector	 cross-section	 showing	 the	 different	 detector	 sub	
systems	[2]. 

2.5 The	ATLAS	Inner	Detector	
The	 Inner	 Detector	 [2]	 is	 in	 the	 focus	 of	 many	 of	 the	 algorithms	 and	 measures	

described	this	thesis.	Its	detailed	description	is	important	to	understand	the	inputs	for	the	
algorithms	and	the	effects	they	have	to	model.	This	subsection	describes	the	ID	comprising	
all	detector	elements	in	the	center	of	the	detector.	The	ID	has	a	high	sensitivity,	resolution	
and	 number	 of	 readout	 elements	 for	 high	 precision	measurements	 of	 charged	 particles	
close	 to	 the	 beam	 interaction	 region.	 It	 is	 located	 inside	 a	 strong	 solenoid	magnet	 and	
contains	silicon	and	straw	tube	detectors.	These	detectors	are	sensitive	to	charged	parti-
cles	traversing	them,	measuring	the	deposit	of	a	small	fraction	of	the	particle’s	energy	via	
ionisation	in	the	active	detector	material.	Its	elements	are	constructed	in	cylindrical	layers	
called	barrels	around	the	collision	area	with	a	radius	as	small	as	3.325cm	as	of	Run	2	and	
80cm	length	up	to	106.8cm	radius	and	272cm	length,	for	the	accurate	determination	of	a	
particle’s	path.	The	cylinder	ends	are	closed	with	endcap	disks	to	measure	particles	with	a	
small	angle	to	the	beam	axis,	see	Figure	7.	

Semiconductor	 Tracker	 (SCT)	 and	 Pixel	 Detector	 are	 both	 silicon	 detectors	 that	 are	
arranged	in	seven	cylindrical	(or	barrel)	layers	around	the	central	interaction	region	and	
in	12	disk	structures	in	each	forward	direction.	During	LS1,	an	eighth	cylindrical	layer	has	
been	installed	on	the	innermost	position,	the	insertable	B	Layer	or	IBL.	Each	layer	consists	
of	 flat	 modules	 with	 overlapping	 areas	 to	 prevent	 particles	 from	 passing	 undetected	
between	two	modules,	except	for	the	IBL	which	has	no	overlap	in	z.	The	previously	three,	
now	four	layers	closest	to	the	interaction	region	are	Pixel	Detectors,	semiconductors	with	
a	total	of	80.4	million	readout	channels.	

To	reduce	costs,	the	SCT	layers	located	at	higher	radii	of	up	to	52.3cm	still	use	silicon	
as	active	material	but	are	strip-shaped	with	a	pitch	of	80µm	x	12cm.	In	order	to	achieve	a	
good	resolution	in	all	dimensions,	the	strips	are	arranged	in	two	layers	per	module	on	top	
of	each	other	with	a	small	angle	with	respect	 to	each	other,	 to	derive	a	2D	position	on	a	
module	 from	two	strips.	The	trade-off	 is	a	reduced	resolution	 in	one	direction	as	well	as	
possible	 ambiguities.	 Table	 1	 shows	 the	 resolution	 of	 the	 modules	 from	 which	 the		
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Figure	8:	IBL	architecture	from	[26].	Other	silicon	detectors	are	arranged	similarly	
around	the	beamspot	at	higher	radii.	

	
Min/Max	
Radius	

No.	of	
Barrel	
Layers	

Endcap	
Layers	
per	
Side	

No.	of	
Channels	

Readout	
Size	

Est.	Barrel	
Resolution	
φ	(	x	Z)	in	µm	

IBL	 3.325cm	 1	 0	 6.02M	 50	 µm	 x	
250	µm	 10	x	50	

Pixel	
Detector	

4.7cm/	
12.6cm	 3	 3	 80.4M	 50	 µm	 x	

400	µm	 10	x	100	

SCT	 29.2cm/	
52.3cm	 4	 9	 6.2M	 80	 µm	 x	

12cm	 16	x	580	

TRT	 56cm/	
107cm	 ca.	36	 ca.	40	 0.42M	 4mm	 100-130	

Table	1:	Inner	Detector	basic	data	[2],	[26].	In	order	to	make	use	of	the	high	resolu-
tion	 of	 the	 detector	 modules,	 the	 modules’	 spatial	 alignment	 is	 known	 with	 an	
accuracy	of	a	few	micron	relative	to	one	another.	The	approximate	number	of	layers	
for	 the	 TRT	 gives	 the	 average	 number	 of	 straws	 crossed	 by	 a	 particle	 originating	
from	the	 interaction	zone.	The	number	of	 layers	 is	actually	up	 to	73	 in	 the	barrel,	
but	more	 important	 is	 that	 they	 are	 aligned	 such	 that	 there	 are	 at	 least	 36	meas-
urements	per	particle.	

different	detectors	are	made.	Note	that	in	order	to	establish	a	3D	measurement	the	mod-
ule’s	position	inside	the	detector	has	to	be	used,	which	is	established	with	slightly	 lower	
accuracy	than	the	alignment	of	the	modules	relative	to	each	other,	which	is	known	up	to	a	
few	microns.	Resolution	is	in	z	and	φ,	with	z	being	the	axis	along	the	beam	and	φ	being	the	
angle	around	the	z	axis,	perpendicular	to	it.	Each	module	has	a	side	that	is	closer	to	z	axis,	
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i.e.	has	a	smaller	r	coordinate,	than	the	other	side,	see	Figure	8,	because	of	the	overlapping	
arrangement	of	flat	detector	modules.	

The	Transition	Radiation	Tracker	(TRT)	surrounds	the	silicon	detectors	in	both	barrel	
and	 endcaps	 and	 consists	 of	 420,000	 straws	which	 can	 be	 read	 out	 separately.	 In	 gaps	
between	the	layers	of	straws,	a	dielectric	material	causes	particles	passing	through	to	emit	
photons.	This	effect	is	used	to	identify	particles,	particularly	electrons	because	the	number	
of	 photons	 emitted	 depend	 on	 the	 mass	 and	 the	 momentum	 of	 a	 particle.	 Each	 straw	
contains	 an	 ionisable	 gas	 and	 a	 wire	 with	 high	 voltage	 in	 the	 center.	 When	 a	 particle	
passes	 through,	 the	gas	 is	 ionised	and	electrons	drift	 to	 the	central	wire.	The	time	taken	
for	 the	 electron	 charge	 to	 deposit	 in	 the	wire	 allows	measuring	 a	 spatial	 resolution	 be-
tween	100µm	and	130µm	orthogonal	to	the	straw	[27],	but	neither	which	side	of	the	wire	
the	 particle	 passed	 through	 nor	 the	 position	 along	 the	 straw	 is	 known.	 Straws	 are	 ar-
ranged	parallel	to	the	beam	pipe	in	the	barrel	region	and	perpendicular	in	the	end-caps.	A	
typical	 track	 passes	 through	 36	 straws	 in	 the	 TRT	 in	 the	 barrel	 region.	 The	 number	 of	
straws	crossed	in	the	endcaps	varies,	depending	on	the	angle	of	the	track	with	respect	to	
the	beam	(the	so-called	θ-angle	of	a	track). 

A	 superconducting	 solenoid	magnet	 enclosing	 the	 ID	 creates	 a	magnetic	 field	with	 a	
strength	of	2	Tesla.	The	field	is	not	completely	homogeneous	as	it	slightly	changes	direc-
tion	towards	the	ends	of	the	barrel.	Assuming	a	simplified	homogeneous	field,	a	charged	
particle’s	path	is	bent	in	φ	but	leaves	its	direction	in	the	r-z	plane	unchanged,	which	leads	
to	a	helical	path.	From	this	bending,	 called	 the	 track	curvatures,	both	a	particle’s	 charge	
and	transverse	momentum	can	be	deduced.	

2.6 Data	to	be	reconstructed	in	ATLAS	
Tracking	detectors	are	built	to	localize	the	intersection	of	charged	particle	trajectories	

with	sensitive	detector	elements.	Usually,	this	is	done	by	measuring	the	charge	induced	in	
either	planar	 silicon	 sensor	 (Pixel	Detector	or	SCT)	or	 in	 the	 ionization	gas	of	drift	 tube	
detectors.	These	 locations	(so	called	hits)	 for	Pixel	and	SCT	detector	are	shown	 in	green	
and	yellow	on	the	sensitive	detector	 layers	 in	Figure	9	and	Figure	10,	visualizations	of	a	
simulated	event	as	it	is	read	out	from	the	detector.	This	event	has	about	40,000	hits	in	the	
Inner	Detector,	which	result	from	approximately	40	proton-proton	collisions,	which	is	the	
expected	 average	 during	 Run	2.	 Even	 higher	 numbers	 of	 proton-proton	 collisions	 are	
aimed	for	 in	the	 future,	reaching	up	to	200	collisions	per	event	 for	the	High-Luminosity-
LHC	[28]	in	2023.	To	deal	with	these	challenges,	the	detector	will	be	upgraded.		

Events	are	usually	triggered	by	final	state	signatures.	It	is	possible	that	multiple	signa-
tures	 are	detected	 in	 a	 single	 event.	A	 signature	 is	 usually	 associated	with	 a	 high	 trans-
verse	momentum	balance.	Transverse	momentum	is	defined	as	the	momentum	leaving	the	
interaction	in	an	orthogonal	direction	to	the	beam.	This	collision	of	interest	is	called	signal	
while	all	other	collisions	are	referred	to	as	pileup	collisions.		

Events	recorded	in	2012	have	up	to	37	pileup	collisions.	Higher	luminosity	has	already	
been	reached	during	Run	2.	Increasing	luminosity	only	by	increasing	the	number	of	pileup	
collisions	causes	the	reconstruction	to	become	very	slow	and	potentially	less	accurate	due	
to	the	high	occupancy	of	the	detector.	This	is	why	a	higher	frequency	of	events	is	preferred	
over	a	higher	number	of	collisions	per	event	by	the	experiments.	The	LHC	was	designed	to	
allow	40	million	events	per	 second,	 corresponding	 to	a	 so-called	bunch	spacing	of	25ns.	
During	Run	1,	a	bunch	spacing	of	50ns	was	chosen,	so	that	only	half	the	number	of	bunch-
es	were	 in	 the	LHC,	 but	 each	with	 twice	 the	number	of	 protons.	This	was	beneficial	 be-
cause	 twice	 the	number	of	protons	 leads	 to	 four	 times	 the	 instantaneous	 luminosity,	 i.e.	
four	 times	 the	 number	 of	 proton-proton	 collisions	 per	 bunch	 crossing.	 Considering	 the	
number	of	collisions	is	halved	because	there	are	half	as	many	bunches,	this	corresponds	to	
twice	 the	 integrated	 luminosity.	 For	 Run	 2	 a	 bunch	 spacing	 of	 25	 nsec	was	 used,	 yet	 a		
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Figure	9:	Simulated	event	with	the	charge	deposits	of	40	proton-proton	interactions.	
φ-cut	of	three	Pixel	Detector	layers	and	endcaps	with	hits.	Hits	not	in	the	φ-cut	are	
occluded	by	the	detector	material.	

	
Figure	 10:	 φ-cut	 of	 half-length	 of	 SCT	 and	 Pixel	 detector	 with	 hits	 in	 yellow	 and	
green.	The	detector's	center	is	at	the	right.	The	green	hits	are	the	same	as	in	Figure	
9.	

higher	luminosity	was	achieved	than	during	Run	1	by	changing	other	machine	parameters.	
The	 tighter	 bunch	 spacing	 of	 Run	 2	 leads	 to	more	 “out	 of	 time	 pileup”,	 energy	 deposits	
from	previous	events	that	are	read	due	to	the	short	time	difference.	Out	of	the	20	million	
events	per	second	in	Run	1,	400	were	recorded.	During	Run	2,	1000	events	per	second	are	
recorded,	 at	 the	 same	 time	 the	events	are	expected	 to	have	a	higher	average	number	of	
collisions	than	events	during	Run	1.		

2.7 Track	Reconstruction	
The	track	reconstruction	is	the	step	from	raw	data	from	the	detector	to	reconstructed	

trajectories	of	particles.	As	a	central	part	of	 the	 ID	reconstruction,	different	parts	of	 this	
thesis	 are	 dedicated	 to	 improvements	 of	 this	 step.	 The	 reason	 this	 thesis	 puts	 such	 a	
strong	 emphasis	 on	 reconstruction	 is	 the	 near	 exponential	 increase	 in	 runtime	 with	
number	 of	 proton-proton	 collisions	 in	 one	 event,	 see	 Figure	11.	 The	 average	number	 of		
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Figure	 11:	 Scaling	 of	 reconstruction	 runtime	 per	 event	 with	 number	 of	 pileup	
collisions.	The	y-axis	 is	 in	 log-scale	and	the	curve	 is	 fitted	to	 five	data	points.	Data	
taken	from	[59].	

collisions	per	event	is	set	to	increase	to	above	40	during	Run	2	and	up	to	200	with	future	
upgrades	of	the	LHC.	

Track	 reconstruction	 is	 composed	 of	 a	 chain	 of	 algorithms	 whose	 internal	 order	 is	
bounded	by	input/output	dependencies.	The	algorithms	used	can	be	categorized	into	data	
formation,	pattern	recognition	and	vertex	 reconstruction	stage.	The	order	of	 these	steps	
and	 their	most	 important	constituents	are	visualized	 in	Figure	12	and	Figure	13.	During	
data	 formation,	 the	measurements	 from	 the	 silicon	 detectors	 are	 grouped	 in	 clusters	 of	
measurements,	 which	 in	 turn	 are	 converted	 to	 three-dimensional	 space	 points	 (SP)	
located	on	the	detector	elements.	The	measurements	of	the	TRT	detector	are	converted	to	
drift	circles	rather	than	space	points	because	only	the	distance	to	the	central	wire	in	a	TRT	
straw	can	be	 calculated	but	not	 the	 location	along	 the	wire.	The	SP	and	 the	 clusters	 are	
passed	to	the	track	finding	[29],	[30].	The	default	strategy	has	three	distinct	steps.	It	starts	
with	the	SeedFinder,	which	tries	combinations	of	SP-triplets	likely	to	have	an	origin	close	
to	 the	 interaction	 region	and	 returns	 these	 triplets	 as	 seeds,	 see	 the	points	 encircled	by	
continuous	lines	in	Figure	14.	

The	seeds	are	passed	to	a	combinatorial	Kalman	filter	[31],	[32]	to	create	tracks	from	
clusters	spanning	all	silicon	layers.	The	seeds	are	used	to	estimate	the	initial	direction	of	
the	 particle	 path	 through	 the	 detector.	 The	 Kalman	 filter	 uses	 a	 Runge-Kutta-Nyström	
extrapolation	engine	[33]	to	predict	the	path	of	the	particle	through	the	magnetic	field	and	
then	selects	one	or	more	compatible	clusters	on	this	subsequent	layer	or	continues	with-
out	finding	any.	The	Kalman	filter	selects	a	compatible	cluster	using	its	uncertainty	and	the	
probability	for	multiple	scattering.	 In	case	it	 finds	a	cluster,	 it	uses	it	to	update	the	error	
matrix	carried	over	from	each	surface.	In	case	it	finds	multiple	clusters,	the	Kalman	filter	
splits	up	 the	 track	 into	multiple	 tracks	and	continues	 for	each	as	 if	only	one	cluster	had	
been	 found,	 hence	 the	 combinatorial	 complexity	 of	 this	 algorithm.	 The	 result	 of	 this	
processing	step	is	track	candidates.	Clusters	can	be	allowed	to	be	used	by	multiple	tracks	if	
they	exhibit	certain	properties.	For	each	cluster,	it	is	stored	how	often	it	has	been	used	in	a	
track	candidate.	This	information	is	used	in	the	next	processing	step.	

The	 next	 step	 is	 to	 resolve	 ambiguities	 of	 track	 candidates	 sharing	 measurements.	
Track	 candidates	 are	 rated	 by	 different	 criteria.	 The	 rating	 penalizes	 a	 track	 using	 the		
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Figure	 12:	Diagram	of	 the	 steps	 from	 Inner	Detector	 readout	 to	 tracks.	 There	 are	
many	 other	 highly	 specific	 reconstruction	 algorithms	 to	 better	 reconstruct	 some	
physics	objects.	The	combinatorial	track	finder	runs	for	seed	that	has	been	found.	A	
bookkeeping	mechanism	 keeps	 track	 of	 space	 points/clusters	 from	which	 a	 track	
candidate	 has	 already	 been	 formed.	 Smart	 selection	 creates	 seeds	 first	 that	 allow	
the	combinatorial	track	finder	to	find	likely	true	track	candidates	first.		

	
Figure	13:	Additional	ID	reconstruction	algorithms.	Inputs	from	Figure	12.	“Unused”	
refers	to	parts	of	the	data	that	have	not	yet	been	used	in	a	previous	algorithm	shown	
in	Figure	12.	
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Figure	 14:	 Inner	 Detector	 track	 reconstruction.	 The	 graphic	 depicts	 the	 different	
steps	 in	default	 ID	reconstruction	 in	a	simplified	model	of	 the	Inner	Detector.	Hits	
are	shown	in	yellow.	Seeds	created	from	hit	combinations	are	encircled	by	continu-
ous	lines.	The	dashed	blue	line	shows	a	case	where	two	seeds	are	created	from	hits	
from	the	same	particle.	The	green	continuous	line	shows	a	seed	rejected	because	it	
could	 not	 form	 a	 track	 coming	 from	 the	 interaction	 region.	 Similarly,	 the	 green	
dashed	line	corresponds	to	a	track	candidate	rejected	because	a	track	formed	with	
hits	compatible	with	the	direction	of	the	seed	do	not	point	to	the	interaction	region.	
The	red	 lines	and	 the	black	 line	denote	 fully	 reconstructed	 tracks,	with	 the	upper	
red	line	showing	a	track	with	hits	in	the	TRT.	[34]	
	
number	 of	 layers	 the	 track	 candidate	 crosses	 for	 which	 no	 suitable	 cluster	 was	 found	
(holes).	 The	 second	 criterion	 is	 the	 quality	 of	 the	 fit	 defined	 by	 the	 X2	 fitter	 using	 the	
distance	of	the	clusters	to	the	track	candidate.	The	tracks	are	then	sorted	by	rating.	Start-
ing	with	the	highest	rating,	clusters	assigned	to	track	candidates	are	marked	as	used.	If	a	
track	candidate	is	found	to	use	a	cluster	already	used	by	a	higher	rated	track	(and	which	
has	not	been	allowed	for	use	by	multiple	tracks),	this	cluster	is	removed	from	the	candi-
date.	If	the	track	candidate	has	enough	clusters	left,	it	is	then	removed	from	the	sorted	list	
and	 reinserted	 in	 the	 end	 for	 re-evaluation.	 If	 not	 enough	 clusters	 are	 left,	 the	 track	 is	
deleted.	

The	last	step	of	this	stage	is	the	extension	into	the	TRT,	connecting	the	silicon	tracks	
with	the	drift-circles	in	the	TRT.	The	TRT	measurements	are	used	extend	the	found	silicon	
tracks	by	searching	for	hits	in	a	likely	region	of	the	path	of	a	particle,	adding	them	to	the	
track.	
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Figure	15:	Tracking	efficiency	as	a	function	of	the	transverse	momentum	pT.	ATLAS	
default	reconstruction	settings	do	not	attempt	to	reconstruct	tracks	with	pT	of	 less	
than	0.4GeV/c.	The	maximum	azimuthal	angle	is	+-9.4°,	corresponding	to	pseudora-
pidity	|η|	=	2.5.	[35]	

In	 the	next	 stage,	 the	 tracks	are	extrapolated	 inward	 towards	 the	 interaction	 region,	
defining	 their	point	of	 closest	 approach	as	 their	origin.	 If	 two	or	more	 tracks	have	 their	
origin	 in	 the	 same	 location,	 this	 location	 is	 defined	 as	 a	 vertex	position	 in	 a	 subsequent	
step.	

This	collection	of	algorithms	allows	for	a	rudimentary	reconstruction	but	does	not	yet	
include	more	sophisticated	methods.		

2.7.1 Reconstruction	efyiciency	
For	analysis,	knowing	the	energy	of	a	reconstructed	physics	object	is	important.	There	

are	different	methods	to	measure	this	energy	in	ATLAS.	Often,	the	most	interesting	physics	
objects	decay	before	they	can	leave	a	track	in	the	detector,	so	only	the	sometimes	multiple	
decay	products	can	be	observed.	Each	of	the	decay	products	holds	part	of	the	energy.	To	
reconstruct	the	energy	of	the	original	object	accurately,	it	is	therefore	necessary	to	recon-
struct	the	tracks	of	as	many	of	the	decay	products	as	possible.	The	ID	can	directly	measure	
only	 the	 transverse	momentum	 (pT)	 of	 a	 particle	 because	 the	magnetic	 field	 bends	 the	
particle	 tracks	 in	 transverse	 direction.	 Tracks	 with	 low	 pT	 are	 not	 reconstructed	 for	 a	
number	of	reasons:	

	
• They	usually	 carry	 little	 information	 about	 the	 triggered	 collision	 event	which	 is	

usually	associated	to	a	high	energetic	signature	
• The	tracks	are	very	costly	to	reconstruct	due	to	their	sheer	number,	leading	to	an	

increased	number	of	possible	combinations	
• Very	low	momentum	particles	suffer	very	strongly	from	interactions	with	detector	

material	and	thus	the	resolution	of	certain	track	parameters,	such	as	the	pT,	is	poor	
• The	large	number	of	low	energy	particles	makes	storing	such	tracks	too	expensive	
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This	is	why	ATLAS	reconstructs	only	particles	above	a	certain	threshold,	the	cut	level,	
usually	pT	>	0.4GeV/c.	The	track	reconstruction	efficiency	is	given	as	the	fraction	of	actual	
particle	trajectories	which	are	reconstructed	as	tracks.	This	metric	can	be	used	for	simu-
lated	events	where	the	particles	causing	a	measurement	are	known.	Simulated	events	are	
suitable	to	measure	the	efficiency	of	a	 tested	algorithm.	The	pT	of	a	particle	 is	calculated	
using	the	curvature	of	its	track.	Due	to	the	material	effects,	this	is	particularly	inaccurate	
for	 low	 pT.	 This	 is	why	 the	 efficiency	 drop	 in	 Figure	 15	 is	 not	 steep	 at	 0.4GeV/c,	 but	 is	
smeared	into	both	higher	and	lower	regions.	Particles	wrongly	classified	as	having	a	lower	
pT	 than	 the	 threshold	 will	 not	 be	 reconstructed,	 and	 particles	 with	 pT	 below	 threshold	
whose	pT	is	overestimated	are	reconstructed.		

Reconstruction	 runtime	 is	 mainly	 affected	 by	 the	 number	 of	 measurements.	 The	
change	 from	 8	 TeV	 at	 the	 end	 of	 Run	 1	 to	 13	 TeV	 in	 Run	 2	 has	 only	 a	minor	 effect	 on	
reconstruction	runtime	because	the	number	of	particles	per	collision	only	increases	within	
jets	 for	 higher	 collision	 energies.	 The	 higher	 number	 of	 simultaneous	 proton-proton	
collisions	are	responsible	for	creating	a	much	larger	number	of	additional	particles	com-
pared	 to	 the	 increased	 collision	 energy.	 The	 cut	 levels	 strongly	 influence	 reconstruction	
complexity,	as	low-energy	particles	make	up	a	large	fraction	of	the	particles	in	the	detec-
tor.	Other	effects	also	contribute	to	the	increased	runtime.	With	lower	momentum,	mate-
rial	 effects	 play	 a	 larger	 role	 such	 that	 the	 path	 of	 lower	 energy	 particles	 may	 diverge	
much	more,	and	during	reconstruction	a	higher	number	of	particles	have	to	be	considered	
for	 continuing	 a	 track	on	 subsequent	 layers.	And	 lastly,	 reconstructing	 a	 larger	 range	of	
transverse	momentum	 corresponds	 to	 a	 larger	 range	 of	 curvatures.	 This	means	 a	much	
larger	 opening	 angle	 for	 possible	 combinations	 of	 measurements	 leads	 to	 an	 increased	
amount	 of	 combinations,	 both	 from	 actual	 tracks	 and	 from	 unrelated	 measurements,	
significantly	increasing	the	runtime.		

2.8 Software	used	by	ATLAS	
For	operation,	ATLAS	requires	several	software	suites	to	run.	There	are	multiple	steps	

requiring	 different	 software,	 the	 first	 being	 the	 online	 reconstruction.	 It	 is	 part	 of	 the	
software	 trigger	 [36],	 which	 uses	 the	 online	 reconstruction	 results	 to	 further	 filter	 the	
events	that	have	been	selected	by	the	hardware	trigger.	Like	the	hardware	trigger	 it	 is	a	
real-time	system,	used	to	reduce	the	number	of	events	to	an	amount	that	can	be	processed	
and	 archived.	 Due	 to	 the	 real-time	 requirements,	 this	 software	 called	 high-level	 trigger	
reduces	the	required	work	by	using	a	simplified	geometry	and	reconstructing	only	regions	
of	 interest	 (RoI),	effectively	restricting	 the	reconstruction	 to	 the	area	where	a	signal	has	
been	detected.	If	defined	criteria	are	met	that	hint	towards	certain	physics	events	justify-
ing	further	analysis,	the	event	is	then	recorded	on	disk	and	later	archived	on	tape.	

The	offline	reconstruction	does	not	have	the	same	time	constraints	and	can	therefore	
reconstruct	more	precisely	using	more	complicated	methods	and	the	full	detector	geome-
try	 details.	 Contrary	 to	 several	 trigger	 steps	 that	 constrain	 the	 event	 reconstruction	 to	
RoIs,	 the	 offline	 reconstruction	works	 on	 data	 from	 the	 full	 detector.	 The	 final	 result	 is	
stored	 in	 a	 data	 format	 containing	only	data	 required	 for	 analysis.	 This	data	 format	has	
limited	information	about	the	original	measured	data,	instead	it	contains	an	interpretation	
of	 this	data	 in	 the	 form	of	 the	 reconstructed	physics	objects.	 In	 case	 the	original	data	 is	
required,	 e.g.	 because	 algorithms	 have	 been	 improved	 or	 because	more	 accurate	 infor-
mation	about	the	detector	conditions	become	available,	reconstruction	has	to	be	executed	
again	using	the	original	data	from	the	detector.	

In	order	to	confirm	or	reject	a	theory	or	to	measure	the	mass	of	a	particle,	every	phys-
ics	 analysis	 compares	 simulated,	 i.e.	 expected	 behaviour	 with	 observed	 behaviour.	 The	
simulations	predict	the	detector	response	to	new	and	already	known	physics	events.	The	
simulation	of	the	detector	response	to	particles	is	therefore	a	key	tool	for	particle	physics.	
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Figure	16:	Architecture	of	the	Athena	Framework.	[3]	

	
To	 generate	 simulated	 data,	 no	 event	 data	 is	 needed,	 but	 algorithms	 simulate	 particles	
according	 to	 different	models,	 most	 famously	 the	 Standard	Model.	 The	 algorithms	 then	
generate	the	response	of	the	particles	to	interaction	with	a	model	of	the	detector	and	the	
detector	response.	This	output	 is	similar	 to	 the	event	data	 format	so	 it	can	be	compared	
with	 generated	 events.	 It	 is	 reconstructed	 in	 the	 same	 way	 data	 from	 the	 detector	 is	
reconstructed.	 Simulation	 shares	 some	 algorithms	 with	 offline	 reconstruction	 so	 that	
improvement	in	either	may	benefit	the	other.	

This	 thesis	 will	 primarily	 concentrate	 on	 reconstruction,	 although	 some	 of	 the	 pre-
sented	work	also	affects	or	is	applicable	to	trigger	or	simulation.	

2.9 The	Athena	Framework	
The	main	processing	framework	of	the	ATLAS	experiment	is	called	Gaudi-Athena.	It	is	

used	for	reconstruction,	simulation	and	high	level	trigger,	and	all	code	development	in	the	
course	of	 this	 thesis	was	done	 in	 the	context	of	 this	 framework.	 It	 is	based	on	the	Gaudi	
framework	 jointly	 developed	 with	 the	 LHCb	 experiment	 [3].	 Development	 on	 Athena	
started	 in	2003	after	 the	 release	of	Gaudi	 in	May	2000	 [37].	 Its	design	 reflects	different	
requirements	of	high-energy	physics	experiments	on	software.	It	is	used	for	event	simula-
tion	and	reconstruction,	and	to	a	smaller	extent	also	for	analysis.	These	three	steps	have	
different	 computational	 profiles.	 Event	 simulation	 is	 compute	 bound	 while	 analyses	
typically	 run	 over	 millions	 of	 events	 and	 are	 I/O	 bound.	 Reconstruction	 is	 in	 between,	
leaning	towards	being	more	CPU	bound.		

Across	all	processing	steps,	the	smallest	unit	that	constitutes	a	processing	job	is	a	sin-
gle	 collision	 event,	 henceforth	 just	 “event”.	 Each	 event	 is	 processed	 independently	 from	
other	events.	Both	reconstruction	and	simulation	process	data	in	many	different	stages.	To	
easily	 compose	 the	 required	 components	 for	 different	 stages,	 the	 framework	 is	 highly	
modular,	allowing	mixing	experiment-specific	modules	with	generic	ones.	It	loads	compo-
nents	 through	 dynamic	 libraries	 such	 that	 they	 can	 be	 developed	 and	 compiled	 inde-
pendently	 of	 one	 another	 and	 combined	 as	 required.	 The	 complexity	 of	 each	 of	 these	
stages	is	encapsulated	by	keeping	data	in	objects	separate	from	the	algorithms,	such	that	
one	stage	can	be	unaware	of	the	complexity	of	a	previous	stage.	The	general	architecture	is	
shown	in	Figure	16.	Data	processed	by	the	algorithms	is	accessed	through	a	single	inter-
face	 called	 StoreGate,	 which	 is	 the	 only	 foreseen	 method	 for	 communication	 between	
components.	Static	data,	such	as	the	magnetic	field,	is	accessed	through	different	services.	
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Maintaining	 the	 number	 of	 common	 interfaces	 small	 allowed	 to	 achieve	 a	 low	 coupling	
between	 the	 components.	 In	 some	 cases,	 there	 are	 specialized	 components	 which	 can	
replace	 another	 component.	 The	 algorithms	 need	 to	 be	 configurable	 without	 requiring	
recompilation	 because	 the	 requirements	 on	 the	 configuration	 of	 the	 components	 varies.	
This	configuration	 is	done	via	Python	files,	containing	the	configuration	 for	one	or	many	
components,	which	can	be	in	turn	imported	in	other	Python	files.	The	configurations	are	
so	diverse	and	complex	 that	 they	make	up	more	 than	20%	of	 the	ATLAS	code	 [4].	 Since	
only	 a	 tiny	 fraction	 of	 this	 code	 is	 executed	 for	 each	 job,	 the	 time	 spent	 in	 this	 python	
configuration	is	marginal.	

An	Athena	component	 can	be	one	of	 three	different	 types	of	modules:	An	Algorithm,	
Service	or	Tool.	Each	type	 implements	 its	own	interface.	An	Algorithm	has	to	 implement	
the	AthAlgorithm	interface,	requiring	it	to	provide	an	initialize-,	an	execute-	and	a	finalize	
method.	The	initialize	method	will	be	called	once	before	the	first	event,	the	execute	meth-
od	will	be	called	once	for	each	event	and	the	finalize	method	will	be	called	once	after	the	
last	event.	Each	Algorithm	defines	a	step	in	a	chain	of	steps	to	be	executed.	An	Algorithm	
can	 use	 Tools	 and	 Services.	 Each	 instance	 of	 a	 Tool	 is	 owned	 by	 another	 module	 and	
Services	 are	 singletons.	 Both	 Tools	 and	 Services	 have	 initialize	 and	 finalize	 functions	
analogous	 to	Algorithms,	but	can	have	arbitrary	other	public	methods	 that	can	be	called	
from	Algorithms	or	other	Services	and	Tools.	Services	are	singletons	directly	owned	by	the	
framework.	Services	normally	provide	functionality	required	by	many	different	modules,	
such	 as	 the	 StoreGate	 Service	 [38],	 which	 is	 used	 to	 access	 and	 create	 persistent	 and	
transient	data	and	 is	 the	 standard	way	 for	algorithms	 to	 communicate.	Other	 frequently	
used	Services	provide	access	to	random	number	generators	or	allow	retrieving	the	mag-
netic	 field	strength	at	arbitrary	points	within	 the	detector.	A	Tool	has	 to	have	an	owner,	
which	can	be	another	Tool,	Service	or	Algorithm	and	 is	by	default	owned	by	 the	Service	
AlgToolSvc.	Different	algorithms	can	share	a	single	Tool	instance	via	the	AlgToolSvc,	which	
is	in	some	cases	abused	to	communicate	between	algorithms.	

Athena	 runs	with	a	 single	worker	 thread	which	executes	all	Algorithms	 in	 the	order	
defined	 in	 a	Python	 configuration	 file,	 called	 the	 “job	options”.	The	algorithms	 therefore	
have	to	be	configured	in	an	order	that	satisfies	the	sequential	dependencies	of	the	job.	All	
configuration	of	modules	 is	 also	performed	 through	 these	 job	options.	An	Algorithm	e.g.	
may	 require	 a	 certain	 type	 of	 Tool,	 the	 particular	 implementation	 of	 which	 is	 specified	
here,	or	the	default	value	of	a	member	variable	defined	as	property	can	be	changed.	Input	
and	number	of	events	to	be	run	are	also	defined	here.	The	chain	of	algorithms	is	initialized	
once	per	job	and	is	executed	once	per	event.	They	are	not	expected	to	have	a	state,	which	
means	 a	 previously	 processed	 event	 shouldn’t	 influence	 subsequent	 events.	 This	 is	 im-
portant	for	parallel	execution.	It	allows	events	scheduled	for	reconstruction	or	simulation	
jobs	 to	be	 split	up	arbitrarily,	 such	 that	 they	 run	 in	 tens	of	 thousands	of	 jobs	 in	parallel	
with	each	job	processing	thousands	of	events	sequentially,	without	influencing	the	result.	

With	the	start	of	Run	2,	AthenaMP	[39]	is	used	for	bulk	processing	instead	of	Athena.	
AthenaMP	 is	 a	 modification	 of	 the	 original	 Athena	 framework,	 which	 forks	 multiple	
Athena	processes	to	process	multiple	events	in	parallel	on	a	multicore	machine.	As	multi-
processing	is	transparent	to	the	modules,	no	changes	to	the	user	code	are	required.	

2.10 Computing	Infrastructure	
The	computing	 infrastructure	comprises	all	computing	resources	available	 to	ATLAS.	

It	is	where	all	processing	of	the	data	generated	by	the	detector	and	simulation	takes	place.	
Processing	starts	at	the	so-called	trigger	farm,	which	consists	of	machines	dedicated	to	the	
selection	 of	 events,	 and	 is	 only	 available	 to	 ATLAS.	 It	 is	 physically	 located	 next	 to	 the	
detector	and	is	connected	to	the	readout	of	the	detector	by	optical	 links	to	transport	the	
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Figure	 17:	 Original	 MONARC	 grid	 tier	 structure	 as	 proposed	 in	 1999	 [40].	 The	
different	 tiers	 have	 different	 roles	 and	 are	 ordered	 from	 close	 integration	 with	
CERN	 or	 CERN	 experiments	 to	 being	 loosely	 integrated.	 Each	 experiment	 has	
adapted	this	model	for	its	need.	All	experiments	implemented	some	less	strict	form	
of	this	model	and	allow	communication	crossing	more	than	one	tier	border.	

event	 data	 stream	 arriving	 at	 around	 15kHz.	 The	 trigger	 farm	 is	 not	 available	 for	 other	
tasks	 during	 normal	 operation,	 but	 can	 be	 used	 as	 an	 additional	 computing	 site	 during	
shutdown.	It	has	in	the	order	of	10,000	physical	cores	from	different	CPU	generations	[41].		

The	 other	 available	 computing	 resources	 are	 shared	 among	 all	 experiments	 and	 are	
organized	 in	 the	Worldwide	 LHC	Computing	Grid	 (WLCG),	 forming	 the	 largest	 scientific	
computing	grid	worldwide	[5].	Most	sites	are	managed	using	middleware	from	the	Euro-
pean	Middleware	 Initiative,	while	sites	 in	 the	US	or	northern	Europe	are	managed	using	
other	middleware	 [42].	Apart	 from	being	used	 for	 simulation	 and	 reconstruction,	which	
are	 coordinated	centrally	by	each	experiment,	 thousands	of	 scientists	 all	 over	 the	world	
access	 the	WLCG	 every	 day	 to	 perform	 analyses,	 accessing	 huge	 amounts	 of	 data.	 Four	
tiers	are	distinguished,	which	are	hierarchical	 in	that	a	site	distributes	data	to	sites	from	
the	same	or	a	higher	tier	number.		

Tier	0	is	based	directly	at	CERN	and	also	in	Budapest,	Hungary.	The	new	Tier	0	site	in	
Budapest	has	a	very	fast	connection	to	CERN,	with	a	redundant	100Gbit	connection	and	a	
low	round	trip	 time	of	under	25ms.	Tier	0	 is	used	 for	 first-pass	offline	reconstruction	of	
the	generated	events.	Due	to	the	requirement	that	no	backlog	of	events	may	pile	up	in	the	
processing,	 this	 tier	 is	 not	 part	 of	 the	 batch	 system,	 meaning	 that	 no	 user	 jobs	 can	 be	
directly	scheduled	on	this	tier.	Tier	0	is	the	smallest	tier	but	has	the	largest	sites,	contrib-
uting	around	20%	of	the	total	computing	budget	[10].		

Tier	 1	 is	 composed	 of	 the	 computing	 sites	 of	 mostly	 national	 physics	 laboratories	
while	Tier	2	comprises	the	computing	resources	of	partner	universities.	Tier	3	are	compu-
ting	 sites	 which	 provide	 computational	 resources	 but	 did	 not	 sign	 a	 memorandum	 of	
understanding	defining	the	service	 level	agreements.	Therefore,	 the	size,	availability	and	
service	quality	varies	from	site	to	site.	Tier	1	and	Tier	2	traditionally	have	distinct	respon-
sibilities	 due	 to	 differences	 in	 availability	 and	 connection,	 but	 with	 improving	
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Figure	18:	 Extrapolated	CPU	growth	assuming	 flat	 budget	 for	 all	Tiers	 from	2014.	
The	 20%	 increase	 is	 expected	 with	 the	 anticipated	 technologies.	 Performance	
measured	in	HEPSPEC06.	Plot	taken	from	[10].	

connection	speed	and	quality	 this	evolved	 to	a	model	where	 the	boundaries	of	 the	 roles	
between	Tier	1	and	Tier	2	are	less	strict.	The	original	model	can	be	seen	in	Figure	17.	Tier	
0	and	Tier	1	provide	tape	storage	to	maintain	two	full	backups	of	all	data	passing	the	last	
level	 trigger	of	 all	 experiments.	Tier	1	exclusively	absorbs	 shortages	 in	Tier	0	 resources	
(“spillover”).	All	 raw	data	generated	at	CERN	are	archived	both	at	CERN	and	distributed	
over	all	Tier-1	sites.	Otherwise,	Tier	1	and	Tier	2	are	used	for	offline	reconstruction,	Monte	
Carlo	sample	generation	and	physics	analyses.	There	are	13	Tier-1	sites	directly	connected	
with	optical	fiber	to	guarantee	high	bandwidth	and	availability.	Tier-2	sites	are	connected	
over	the	Internet	and	comprise	160	sites	of	different	sizes.	Ongoing	tests	with	opportunis-
tic	use	of	high-performance-computing	(HPC)	capacity	from	different	collaborations,	such	
as	the	SuperMUC	in	Munich,	provide	another	source	of	computing	resources.	

Tier	0	being	the	only	Tier	managed	by	CERN	consists	of	approximately	65000	cores.	It	
offers	 4GB	 of	 memory	 per	 core,	 unlike	 the	 other	 tiers	 which	 until	 before	 Run	 2	 only	
allowed	 to	 run	 jobs	occupying	up	 to	2GB	per	 core.	 Since	 the	 start	of	Run	2,	memory	 re-
strictions	have	been	loosened.	The	computing	budget	is	not	foreseen	to	change	in	the	near	
future.	 The	 budget	 of	 41.2	 million	 CHF	 for	 2015	 has	 to	 cover	 manpower,	 energy	 cost,	
networking	 and	 acquisition	 of	 computers	 and	 storage	 capacity	 [43]	 for	 computing	 re-
sources	managed	by	CERN.	Energy	cost	 is	a	major	 factor,	although	 the	energy	 to	perfor-
mance	ratio	has	been	 improving	 linearly.	Performance	of	 these	machines	 is	measured	 in	
HEPSPEC06,	 a	 variant	 of	 the	 SPEC	 benchmark	 conceived	 to	 mimic	 typical	 high-energy	
physics	workloads	 [44]	 [45].	Measurements	with	 these	benchmarks	 show	 that	 available	
performance	increased	steadily,	with	20%	increase	expected	in	the	next	years,	see	Figure	
18.	Hardware	resources	in	the	Tiers	consist	of	Intel	and	AMD	x86	CPUs.		

Hardware	available	on	the	market	is	becoming	more	heterogeneous,	low	energy	ARM	
processors	 and	 GPU	 based	 accelerator	 cards	 are	 pushing	 into	 the	 server	 market	 with	
competitive	 energy	 to	 computing	 power	 ratios.	 Although	 there	 are	 ongoing	 discussions	
how	 to	 adapt	 to	 the	 evolving	 hardware	 developments,	 there	 are	 no	 short-term	plans	 to	
include	different	hardware	architecture	on	a	large	scale.	One	of	the	reasons	is	that	it	would	
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require	maintaining	multiple	versions	of	the	software	which	is	intended	to	run	on	differ-
ent	hardware	or	to	make	sure	the	same	hardware	is	available	on	all	used	computing	sites.	
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3 SOFTWARE	DEVELOPMENT	
AND	COMPUTING	IN	ATLAS	

The	concepts	and	background	explained	in	Chapter	2	give	an	overview	of	the	problem	
scale	 and	environment	 and	demonstrate	 the	 complexity	of	 the	problem.	With	 this	 infor-
mation,	the	problem	description	given	in	Chapter	3	is	put	into	a	context.	

In	this	chapter,	the	problems	addressed	in	this	thesis	are	presented	and	their	complex-
ity	demonstrated.		The	state	of	the	software	before	the	start	of	this	thesis	and	the	histori-
cal	 developments	 and	 the	 current	 development	 process	 of	 the	 ATLAS	 software	 are	 de-
scribed.	Changing	 requirements	and	recent	 changes	 in	available	 resources	are	explained	
and	put	into	context	with	the	goals	for	LHC’s	Run	2.	

3.1 Correlation	of	Beam	and	Collision	Settings	and	Processing	
Load	

The	 LHC	 design	 peak	 luminosity	was	 exceeded	 in	 2012,	 yet	 available	 computing	 re-
sources	were	able	to	cope	with	the	increased	amount	of	data	(though	getting	close	to	their	
limit).	 As	 will	 be	 explained	 in	 detail	 in	 Section	 3.2,	 reconstruction	 runtime	 increases	
rapidly	 for	 higher	 pileup.	 This	 makes	 the	 processing	 load	 strongly	 dependent	 on	 the	
number	 of	 interactions	 per	 recorded	 event.	With	 the	 number	 and	 complexity	 of	 events	
generated	during	Run	2,	the	software	from	the	end	of	Run	1	could	not	stay	within	permis-
sible	resource	limits.	The	computational	load	increases	for	several	reasons.	Both	the	peak	
luminosity	 and	 the	 integrated	 luminosity	 increase	 in	 Run	 2	 compared	 to	 Run	 1.	 Higher	
peak	luminosity	means	that	the	maximum	number	of	instantaneous	proton-proton	inter-
actions	 is	 higher	 than	 during	 Run	 1,	 leading	 to	 more	 measurements	 per	 event.	 This	 is	
important	for	reconstruction	on	Tier	0,	which	must	fulfill	the	real-time	requirements.	The	
luminosity	 is	 at	 a	maximum	at	 the	beginning	of	 a	data	 taking	 run.	An	example	of	 this	 is	
shown	 in	 Figure	 19,	 showing	 the	 luminosity	 development	 over	 about	 13	 hours	 of	 data	
taking,	from	the	initial	crossing	of	beams	until	dumping	of	the	beams	to	refill	the	accelera-
tor.	Because	events	in	the	beginning	of	a	data	taking	run	take	much	longer	to	process	than	
events	 taken	 later,	 a	backlog	of	 events	will	 accumulate,	which	can	only	be	 reduced	 later	
during	a	data	taking	run	when	the	events	take	 less	time	to	process.	The	higher	center	of	
mass	 energy	 also	 leads	 to	 a	 higher	 number	 of	 particles	 produced	 in	 each	 individual		
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Figure	19:	One	data	taking	run	with	a	peak	luminosity	that	corresponds	to	33	pileup	
interactions.	 Lowest	 number	 of	 pileup	 interactions	 is	 10	 before	 the	 beams	 get	
dumped.	 Data	 is	 binned	 in	 so	 called	 lumi-blocks,	 which	 usually	 correspond	 to	 60	
seconds.	Plot	generated	with	the	ATLAS	Run	Query	page.	

	
Figure	 20:	 Number	 of	 particles	 with	 900GeV,	 2.36TeV,	 7TeV	 and	 13TeV	 center	 of	
mass	energy	in	the	central	detector	region.	The	step	between	7TeV	and	13TeV,	the	
two	 rightmost	 data	 points,	 shows	 about	 20%	 increase	 in	 the	 number	 of	 particles.	
Plot	from	[46].	

collision,	see	Figure	20.	Some	algorithms	have	very	high	computational	complexity,	which	
means	their	runtime	increases	superlinearly	with	the	size	of	the	problem.	Therefore,	their	
runtime	will	increase	more	than	algorithms	with	a	lower	complexity	when	the	number	of	
measurements	per	event	increases.	
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3.2 Track	Reconstruction	Complexity	
My	tests	show	that	reconstruction	runtime	of	events	expected	for	Run	2	is	about	seven	

times	 slower	 than	 reconstruction	 of	 events	 as	 seen	 in	 Run	 1.	 This	 section	 explains	 the	
algorithmic	complexity	of	central	track	reconstruction	principles	and	their	interplay	with	
other	algorithms.	The	algorithms	used	in	the	event	reconstruction	have	differing	complex-
ities,	which	 are	 reflected	 in	 their	 runtime.	Within	 reconstruction,	 the	 largest	 amount	 of	
time	 is	 spent	 in	 Inner	Detector	 algorithms	 as	 it	 is	 faced	with	 the	most	 complex	 pattern	
recognition	problem	to	solve.	For	events	with	an	average	of	40	pileup-interactions	approx-
imately	two	thirds	of	the	total	time	is	spent	here	with	the	event	reconstruction	software	of	
2012,	a	 large	 fraction	of	which	are	 track	reconstruction	algorithms.	Reconstruction	 time	
not	 spent	 in	 track	 reconstruction	 is	 distributed	 over	 hundreds	 of	 Athena	modules	with	
each	module	responsible	only	for	a	tiny	fraction.	Track	reconstruction	complexity	increas-
es	with	the	space	point	density	with	𝒪(n8),	see	Figure	21.	In	a	detector	with	an	arbitrary	
number	of	layers,	to	find	all	possible	tracks,	all	n	space	points	would	need	to	be	combined	
with	all	others,	leading	to	n!	combinations.	If	a	track	should	have	exactly	one	measurement	
on	each	layer,	the	number	of	combinations	drops	to	(n/8)8,	assuming	the	space	points	are	
equally	 distributed	 over	 all	 layers.	 The	 base	 can	 be	 further	 reduced	 by	 constraints	 on	
where	 the	 track	originates	 from,	but	 the	exponent	 remains.	 In	 addition	 to	having	a	high	
complexity,	the	track	reconstruction	uses	expensive	calculations.	To	fit	a	potential	trajec-
tory	through	space	points	from	two	layers,	multiple	fourth-order	Runge-Kutta	extrapola-
tion	steps	are	performed,	making	track	reconstruction	computationally	very	expensive.		

One	way	to	reduce	the	runtime	could	be	allowing	less	costly	and	in	turn	also	less	accu-
rate	methods.	The	efficiency	of	 tracking	must	not	be	 reduced,	 such	 that	 the	only	way	 to	
allow	 this	 would	 be	 to	 increase	 the	 number	 of	 found	 combinations.	 These	 additional	
combinations	are	necessarily	not	from	related	measurements	in	that	the	measurements	of	
one	combination	did	not	stem	from	the	same	particle.	This	is	also	called	a	fake	track	or	just	
fake.	Changes	 to	algorithms	 that	 influence	 the	 results	may	have	unforeseen	 implications	
because	an	algorithm’s	output	serves	as	 input	for	the	next	algorithm	in	a	 job’s	algorithm	
chain.	Changes	in	one	algorithm	that	change	its	result	may	therefore	influence	the	runtime	
of	 the	 subsequent	 algorithms.	 For	 instance,	 although	 the	 runtime	 for	 the	 seed	 finding	
algorithm	can	be	 improved	by	allowing	more	 seeds	 in	 the	 results	 that	 contain	measure-
ments	that	do	not	stem	from	the	same	particle	(fake	seeds),	it	will	increase	the	runtime	of	
the	 track	 finder,	which	uses	 these	seeds.	Decreasing	one	algorithm’s	runtime	may	there-
fore	 result	 in	 an	 overall	 performance	 reduction	 if	 it	 increases	 subsequent	 algorithms’	
runtimes.	Such	 implications	 favor	developments	 that	do	not	affect	 the	results,	which	can	
only	have	a	limited	impact	on	runtime.	If	a	change	affecting	the	results	is	to	be	performed,	
it	requires	a	good	understanding	of	all	affected	code	parts,	which	is	difficult	due	to	the	size	
of	the	code	base,	and	a	good	understanding	of	the	affected	physics	analyses.		

Huge	efforts	have	already	been	put	into	improving	the	algorithmic	complexity	of	track	
reconstruction,	yet	the	amount	of	space	points	per	event	still	has	superlinear	influence	on	
the	runtime.	Despite	some	algorithms	having	a	higher	complexity	 than	others,	no	bottle-
neck	can	be	pointed	out	in	reconstruction.	All	aspects	of	the	event	reconstruction	have	to	
be	 optimized	 for	 significant	 effects,	 as	my	measurements	 presented	 in	 Chapter	 4	 show.	
One	way	to	influence	many	different	parts	of	the	reconstruction	is	to	optimize	infrastruc-
ture	shared	throughout	the	reconstruction.	The	Event	Data	Model	is	where	the	data	format	
of	the	intermediate	and	final	results	is	defined,	such	that	it	is	used	throughout	the	different	
stages	of	data	processing.	It	therefore	serves	as	a	good	starting	point	for	optimization.	
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Figure	 21:	 Illustration	 of	 the	 increasing	 combinatorics	with	 increasing	 number	 of	
particles.	On	the	left	side	only	one	particle	in	the	shown	detector	region	allows	only	
one	space	point	combination.	As	the	right	side	demonstrates,	just	two	particles	close	
to	 each	 other	 already	 create	 28	 =	 256	 possible	 combinations	 in	 a	 detector	with	 8	
layers	when	trying	to	reconstruct	one	track.		

3.3 Event	Data	Model	
The	Event	Data	Model	or	EDM	describes	 the	different	data	 representations	 required	

for	 all	 stages	 of	 data	 processing.	 For	 each	 representation,	 persistent	 and	 transient	 data	
formats	 exist.	 The	 purpose	 of	 each	 persistent	 data	 type	 is	 to	 hold	 the	 data	 for	 the	 next	
processing	step	as	compactly	as	possible.	The	detector	outputs	RAW	data	containing	the	
local	measurements	 in	 each	 detector	module	 together	with	 a	 channel	 identification	 and	
potential	 error	 flagging.	 Its	 size	 is	 between	 1MB	 and	 5MB	 per	 event	 depending	 on	 the	
event	 topology	 and	 pileup.	 Storage	 size	 is	 critical	 due	 to	 the	 large	 data	 output	 of	 the	
detector,	 amounting	 to	3.4	Petabytes	 in	2012	only	 for	 the	events	 selected	by	 the	ATLAS	
last-level	 trigger	 [47],	 which	 have	 to	 be	 redundantly	 archived.	 Such	 amounts	 of	 data	
generate	significant	cost	 for	storage.	While	processing	this	data,	 it	 is	converted	 into	new	
data	 formats	 in	 each	 step.	 Each	 subsequent	 data	 format	 reduces	 data	 further	 such	 that	
conversion	between	data	 formats	 is	only	possible	 in	one	direction.	The	 subsequent	data	
format	after	RAW	data	from	the	detector	is	Event	Summary	Data	(ESD),	which	contains	a	
detailed	output	of	the	reconstruction.	It	contains	e.g.	the	measurements	on	a	track,	which	
can	be	used	to	refit	tracks	under	different	assumptions.	The	smallest	data	representation	
with	all	reconstructed	physics	objects	 is	the	Analysis	Object	Data	(AOD)	that	 is	sufficient	
for	 physics	 analysis.	 Smaller	 custom	 data	 formats	 abstract	 further	 or	 leave	 parts	 of	 the	
information	out.	The	AOD	format	contains	only	parameters	needed	to	identify	each	phys-
ics	object	and	to	estimate	its	quality.	For	tracks,	this	is	only	the	vector	of	track	parameters	
at	 the	 so-called	 perigee,	 which	 is	 the	 point	 closest	 to	 the	 interaction	 zone	 where	 the	
interaction	is	assumed	to	have	happened.	It	also	contains	measures	for	the	track	quality,	
the	number	of	hits	found	for	this	track	and	their	associated	error	matrices.	During	the	LS1	
significant	effort	has	been	taken	by	the	ATLAS	collaboration	to	shift	 to	a	newly	designed	
xAOD	 format	 that	 is	 based	 on	 a	 flat	 tree-like	 data	 structure.	 This	 structure	 follows	 the	
structure	of	arrays	memory	 layout	and	allows	a	dual	use	of	 the	xAOD	within	 the	Athena	
frameworks	and	the	most	common	analysis	framework	in	high-energy	physics,	Root	[48].	

3.3.1 CPU	and	Memory	consumption	
In	2012,	 the	offline	 reconstruction	was	 responsible	 for	around	22%	of	 the	 total	CPU	

time	 spent	 by	 ATLAS	 (see	 Figure	 22)	 and	 therefore	 a	 significant	 contributing	 factor	 to		
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Figure	 22:	 Time	 consumption	 of	 different	 jobs	 in	 ATLAS.	 All	 reconstruction	 jobs	
combined	take	about	22%	of	total	time.	Most	of	this	time	(17%	of	the	22%)	is	spent	
reconstructing	events	generated	in	simulation	jobs.	Data	collected	using	the	ATLAS	
Dashboard.	

computing	costs.	Using	the	ATLAS	dashboard	[49],	I	deduced	that	this	corresponds	to	859	
million	HEPSPEC06-hours	in	2015,	with	an	average	of	10	HEPSPEC06	per	core	meaning	86	
million	hours	of	CPU-time.	Virtual	memory	usage	during	Run	1	had	to	be	kept	below	2GB	
as	the	agreement	between	CERN	and	the	WLHC	tiers	only	required	providing	2GB	per	CPU	
core.	Therefore,	computing	sites	were	configured	to	cancel	all	jobs	exceeding	this	limit	and	
only	low	capacity	was	available	for	jobs	requiring	more	resources.	Attributing	memory	to	
certain	 parts	 of	 the	 software	 is	 inaccurate	 because	many	 objects	 in	memory	 are	 shared	
between	modules.	It	is	tedious	to	monitor	which	objects	are	shared	and	it	is	not	clear	how	
these	shared	objects	should	be	attributed.	Instead,	memory	usage	changes	are	monitored.	
The	ATLAS	nightly	build	system,	explained	 in	3.4,	 runs	checks	on	 the	software	compiled	
with	the	changes	of	the	day,	so	a	change	in	memory	from	one	build	to	the	next	must	come	
from	one	of	 the	packages	updated	that	day.	The	amount	of	 leaked	memory	 is	monitored	
and	 attributed	 in	 the	 same	way.	 This	 is	 the	 only	way	memory	 is	 attributed	 to	modules.	
Memory	available	per	core	is	higher	for	Run	2	than	Run	1,	and	while	a	single	instance	of	
the	 reconstruction	 software	 also	 uses	more	memory	 in	 the	 software	 for	 Run	 2,	 overall	
memory	usage	could	be	reduced	by	running	multiple	events	in	parallel	by	forking	Athena	
processes,	exploiting	Linux’	built	in	copy-on-write	mechanism.	This	is	what	the	AthenaMP	
framework	does,	which	 is	 the	 standard	 framework	 for	Run	2.	Nonetheless,	memory	will	
continue	to	be	an	issue	in	the	foreseeable	future	as	memory	cost	does	not	decrease	with	
the	same	rate	as	the	cost	per	computing	core,	and	therefore	memory	becomes	scarcer	with	
increasing	number	of	cores	per	machine.	

3.4 Software	development	in	ATLAS	
The	 reconstruction	 software	 has	 grown	 over	 decades	 of	 development,	 starting	 even	

before	ATLAS	was	founded,	as	before	its	approval	simulations	had	to	be	conducted	for	the	
ATLAS	design	studies.	Pre-Athena	code	was	written	in	Fortran	but	Fortran	was	abandoned	
with	the	introduction	of	Athena	in	favour	for	C++	in	2000.	Much	of	the	code	was	converted	
to	C++	over	several	years	while	some	modules	were	only	converted	recently.		

47.8%

22.1%

20.7%

9.4%

Computing	Resource	Consumption	of	all	
Jobs	in	2012

Simulation

Reconstruction

Analysis

Other



Analysis	and	Optimization	of	the	Offline	Software	of	the	ATLAS	Experiment	at	CERN		
Robert	Johannes	Langenberg	-	December	2017	

	

Software	Development	and	Computing	in	ATLAS	 	 	 33	

	
Figure	 23:	 Developers	 with	 at	 least	 one	 code	 submission	 per	 quarter.	 The	 colors	
refer	 to	 the	 different	 development	 domains.	 Since	 the	 end	 of	 Run	 1	 in	 2012	 the	
number	slowly	recovered,	but	is	still	far	from	what	it	was	in	2009	[4].	

Thousands	of	modules	have	been	written	since	then	by	thousands	of	developers,	most	
of	whom	are	not	part	of	ATLAS	anymore.	Many	of	the	developers	were	PhD	students	who	
do	 not	 stay	 with	 ATLAS	 after	 finishing	 their	 studies.	 This	 leads	 to	 a	 quick	 developer	
turnover	 and	 abandoned	 code.	 The	 current	 ATLAS	 svn	 repository	 contains	 455	 Athena	
algorithms	 in	2293	packages	and	7	million	 lines	of	 code	 [4].	An	analysis	of	 the	SVN	 logs	
shows	that	the	number	of	developers	committing	code	at	least	once	within	3	months	has	
seen	a	steady	decline	since	the	start	of	Run	1	(see	Figure	23),	reaching	below	50%	of	the	
previous	 750	 developers	 per	 quarter	 at	 the	 beginning	 of	 LS	 1.	 Most	 developers	 have	 a	
physics	background	with	 little	 focus	on	computer	science,	although	 the	small	number	of	
people	who	are	responsible	for	the	majority	of	svn	activities	(see	Figure	24)	have	experi-
ence	 in	software	development	and	 follow	the	ATLAS	coding	rules.	Both	 figures	 illustrate	
that	 ATLAS	 is	 depending	 on	 a	 small	 core	 developer	 team.	 To	 reduce	 this	 dependency	
ATLAS	needs	to	increase	the	number	of	skilled	and	dedicated	developers.	

The	heterogeneity	of	developers	means	that	many	parts	of	the	software	are	developed	
by	people	without	formal	education	in	computing,	a	problem	common	in	scientific	compu-
ting	[50],	[51].	This	is	in	part	due	to	the	fact	that	the	institutes	that	are	part	of	ATLAS	have	
an	obligation	to	participate	in	activities	required	for	operation.	Estimates	are	that	around	
600	people	are	required	for	the	operation	of	ATLAS,	which	is	1/6th	of	the	entire	workforce	
of	 the	3600	members	of	ATLAS	 [52].	These	activities	 include	monitoring	of	 the	detector	
activities,	hardware	and	software	calibration	and	software	development.	Almost	all	ATLAS	
institutes	 are	 from	 the	 field	 of	 physics	 and	 software	 development	 is	 not	 a	 fundamental	
part	of	most	physics	study	programs.	This	conflict	of	interest	leaves	results	short	of	what	
could	be	achieved	with	a	comparable	workforce	of	dedicated	developers.	For	this	reason,	
the	software	has	inefficiencies,	contains	untested	and	unreviewed	code,	memory	leaks	and	
unsafe	 pointer	 handling	 and	 is	 not	 well	 documented.	 This	 situation	 is	 allowed	 by	 the		
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Figure	24:	Load	distribution	of	software	development	in	ATLAS	measured	by	num-
ber	of	svn	commits	per	person.	In	2014,	42	developers	were	contributing	50%	of	the	
changes.	Data	extracted	from	svn.	

	
Figure	25:	Number	of	new	software	package	versions	committed	to	ATLAS	SVN	each	
month.	Data	extracted	from	svn.	

insufficient	 code	 quality	 assurance	 mechanisms	 in	 ATLAS,	 which	 are	 unsuitable	 for	 a	
project	with	thousands	of	code	changes	every	month	(see	Figure	25).	The	introduction	of	
Jira	 [53]	 as	 issue	 tracking	 and	management	 system	 lead	 to	 clearer	 responsibilities,	 such	
that	many	of	the	problems	found	with	the	Coverity	static	code	checker	[54]	in	place	were	
tracked	and	fixed.	While	Coverity	led	to	the	discovery	and	elimination	of	many	problems,	
it	does	not	 replace	 tests,	which	can	assure	 that	 the	behaviour	 is	not	only	not	undefined,	
but	is	also	the	desired	behaviour.	Currently,	the	only	automated	tests	are	integrated	into	
the	ATLAS	nightly	build	system.	
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3.4.1 Building	and	Testing	in	ATLAS	
This	 build	 system	 knows	 final	 releases,	 development	 (dev)	 nightlies,	 development-

validation	 (devval)	 nightlies	 and	 migration	 releases.	 Final	 releases	 represent	 a	 fully	
consistent	state	of	the	software	that	should	be	bug	free.	Development	nightlies	should	also	
be	free	of	major	bugs,	but	represent	ongoing	development.	Within	devval	nightlies	devel-
opers	can	test	if	their	changes	work	well	with	a	full	build	before	they	are	integrated	into	
dev.	Migration	 releases	 are	 used	 to	 implement	 changes	 that	will	 break	 the	 release	 for	 a	
prolonged	period,	such	that	all	changes	can	be	integrated	into	a	dev	or	devval	release	once	
the	migration	is	complete.	Release	numbers	follow	the	scheme	W.X.Y.Z.	Final	releases	are	
defined	by	numbers	W	for	major	changes	and	X	for	minor	changes,	while	Y	and	Z	are	used	
for	 bug	 fixes	 and	performance	 improvements.	 The	 dev	 and	devval	 nightlies	 have	 a	 one-
week	 cycle,	 being	 rebuilt	 every	 night	 overwriting	 the	 release	 that	 is	 one	 week	 old.	 A	
change	 is	 always	 first	 included	 in	 the	devval	 release,	 from	where	 it	 can	 go	 to	 dev	 if	 the	
developer	 deems	 it	 stable.	 These	 multiple	 levels	 of	 fully	 built	 releases	 prevent	 non-
working	code	from	going	into	production	but	require	a	lot	of	resources,	as	a	full	build	on	a	
dedicated	high-end	machine	takes	about	9	hours.	This	also	means,	an	error	will	make	the	
whole	 release	 unusable	 by	 the	 whole	 developer	 base	 until	 the	 error	 is	 removed	 and	
rebuilt,	which	is	at	the	earliest	the	following	day.	

A	 release	may	be	validated	with	 respect	 to	 its	physics	 results.	 Such	a	 release	 can	be	
used	in	production,	and	is	barred	from	changes	that	affect	an	algorithm’s	result	except	for	
critical	bugfixes	(“frozen”)	to	maintain	reproducibility.	A	release	is	usually	only	validated	
for	either	simulation	or	reconstruction	but	not	for	both,	because	time	schedules	for	either	
purpose	 are	 different.	 For	 this	 reason,	 separate	 versions	 are	 validated	 separately	 and	
development	also	continues	separately	due	to	the	policy	of	frozen	releases.	

For	 performance	monitoring,	 a	 Runtime	 Tester	 (RTT)	 system	 has	 been	 set	 up.	 This	
system	runs	a	series	of	predefined	jobs	after	a	new	nightly	has	been	built,	scans	the	log	for	
crashes,	warnings	and	errors	and	allows	inspecting	the	logs	and	results.	This	is	a	minimal	
test	if	a	whole	domain	runs	without	crashing,	but	checking	the	results	for	sanity	remains	
manual	and	is	done	at	the	developers’	discretion.		

Performance	is	monitored	in	a	similar	way,	comparing	performance	between	two	re-
leases	 or	 nightlies.	 Before	 allowing	 a	 release	 into	 production,	 a	 physics	 validation	 is	
performed,	which	 is	 the	process	of	manually	 verifying	 the	 sanity	of	 results	of	 the	whole	
software	 chain.	 In	modules	 responsible	 for	 one	 or	more	 percent	 of	 the	 used	 CPU	 time,	
inefficiencies	are	spotted	faster	because	usually	only	experienced	developers	are	assigned	
to	work	on	such	code.	The	vast	number	of	modules	requiring	only	a	few	milliseconds	per	
event	remains	a	problem,	as	they	are	too	small	to	attract	attention	and	remain	unchanged	
even	 though	 they	might	 have	 become	 completely	 unnecessary.	 A	 study	 has	 shown	hun-
dreds	of	tables	in	a	job’s	output	that	are	created	but	never	filled.	Another	problem	is	that	
the	reconstruction	software	 is	divided	 in	different	domains,	 reflecting	 the	organizational	
structure	of	ATLAS.	 In	some	cases,	 responsibilities	are	not	clear	where	areas	of	multiple	
groups	are	touched,	slowing	down	development.		

3.4.2 EDM	Design	Considerations	
Considering	the	development	of	the	C++	language	in	the	past	years,	many	well-meant	

decisions	affecting	large	parts	of	the	software	should	be	revised.	Generally,	a	strictly	object	
oriented	design	was	enforced,	 leading	to	very	deep	 inheritance	chains.	Members	of	EDM	
classes	were	 created	 lazily,	 although	 they	are	always	accessed.	Lazy	 initialization	means	
allocation	and	initialization	takes	place	at	time	of	access	instead	of	at	time	of	object	crea-
tion.	 This	 can	 save	 computing	 time	 and	 memory	 in	 case	 the	 members	 are	 not	 always	
accessed.	 Dynamic	memory	 allocation	 is	 expensive,	 such	 that	 time	 is	wasted	 if	 dynamic	
memory	 is	allocated	 for	multiple	small	objects	 rather	 than	 for	all	of	 them	at	once.	Other	
parts	 of	 the	 EDM	 were	 identified	 through	 dynamic	 casts,	 as	 the	 associated	 cost	 was		
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Figure	26:	Seven	performance	dimensions	as	 taken	from	[55].	The	dimensions	are	
orthogonal	to	one	another	with	the	exception	of	symmetric	multithreading.	

expected	 to	diminish	 to	 the	cost	of	an	 integer	 comparison	 in	 future	C++	versions,	which	
never	happened.	Some	design	choices	such	as	the	originally	strictly	object	oriented	struc-
ture	 intended	 to	 allow	 easy	 maintenance	 were	 not	 taken	 for	 high	 performance.	 This	
illustrates	that	the	software	was	not	built	for	high	performance	but	to	perform	the	needed	
work.	The	consequences	of	these	decisions	continue	to	affect	the	performance	to	this	day.	
At	the	time,	staying	within	the	permissible	resource	limits	was	not	problematic	as	compu-
ting	 resources	 were	 sufficient	 for	 the	 problem	 size.	 This	 changes	 drastically	 for	 Run	 2	
because	of	the	greater	complexity	of	events	and	their	larger	numbers	on	the	one	hand,	but	
also	with	the	change	in	hardware	development	explained	in	the	next	section.	

3.5 Hardware	evolution	
During	the	Athena	design	and	development	phase,	multicore	computers	were	not	yet	

widely	 available	 and	 the	 developments	 towards	 having	more	 and	more	 cores	were	 not	
foreseen	[40].	Subsequently,	this	and	other	hardware	developments	have	become	availa-
ble	 at	 the	 computing	 sites	 over	 time	 as	 hardware	 is	 exchanged	 on	 average	 every	 four	
years.	This	section	details	the	development	of	hardware	and	its	support	in	the	production	
code	after	Run	1.	

3.5.1 Parallel	Resources	on	Modern	Computing	Hardware	
In	order	to	optimize,	we	have	to	be	aware	of	the	available	resources	and	how	they	can	

be	used.	Notably,	many	different	forms	of	parallelism	have	been	introduced.	Optimization	
for	these	parallel	resources	is	not	always	possible	for	several	reasons.	One	problem	that	is	
particularly	 difficult	 to	 address	 is	 that	 algorithms	 may	 have	 precedence	 constraints	
requiring	 a	 sequential	 order	 of	 execution.	 This	 means	 if	 the	 order	 of	 operations	 is	 not	
interchangeable	 without	 changing	 the	 result,	 they	 also	 cannot	 be	 executed	 in	 parallel.	
Enabling	 parallelism	may	 require	 structural	 changes	 in	 the	 data	 or	 even	 different	 algo-
rithms.	Concentrating	on	CPU	capabilities	 for	 the	hardware	 side,	 I	will	use	 the	7	dimen-
sions	of	parallelism	 introduced	 in	 [55],	 see	Figure	26.	The	dimensions	are	orthogonal	 in	
the	sense	that	their	impact	on	performance	is	multiplicative.	Most	implementation	details	
are	given	on	the	example	of	a	Haswell	architecture	CPU.	
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Figure	27:	Ports	on	a	Haswell	CPU	core.	The	ports	can	be	used	simultaneously,	even	
by	instructions	from	different	threads.	

Hardware	parallelism	exists	in	the	following	concepts:	
1. Pipelining	allows	retiring	one	micro	operation	(µOP)	per	clock	cycle,	even	for	op-

erations	that	take	more	than	one	clock	cycle.	This	works	because	an	execution	unit	
can	already	start	computation	on	another	µOP	one	clock	cycle	after	starting	to	pro-
cess	a	µOP,	even	if	they	take	more	than	one	clock	cycle	to	complete.	Without	pipe-
lining,	 a	port	would	be	blocked	 from	accepting	more	µOPs	until	 the	execution	of	
one	µOP	is	fully	finished.	With	pipelining,	the	next	µOP	can	already	be	fed	into	the	
pipeline	of	a	port	one	clock	cycle	after	the	execution	of	the	previously	inserted	µOP	
began.	Pipelining	is	usable	for	most	types	of	µOP	with	the	exception	for	division.	A	
µOP	 is	not	equivalent	 to	an	 instruction.	 Instructions	denote	 the	operations	that	a	
CPU	can	decode,	but	cannot	execute	directly.	 Instead,	 the	 instructions	have	 to	be	
decoded	to	(in	some	cases	multiple)	µOPs	which	can	then	be	fed	 into	the	respec-
tive	pipeline	of	a	port	on	a	CPU	core.	A	µOP	can	e.g.	be	loading	or	storing	data	or	
elementary	arithmetic	operations	on	integer	or	floating-point	numbers.		
	

2. Superscalar	execution	 refers	 to	 the	parallel	 usage	 of	multiple	 ports	 on	 a	 single	
core.	Parallel	ports	allow	multiple	µOPs	to	be	dispatched	to	different	ports	in	par-
allel.	 This	 requires	 support	 of	 out	 of	 order	 execution	by	 the	CPU	where	µOP	de-
pendencies	are	automatically	detected	such	that	the	program	logic	doesn’t	change.	
Modern	 Intel	 processors	 have	 multiple	 parallel	 ports	 that	 can	 execute	 different	
µOPs,	 although	not	all	ports	 can	execute	all	 types	of	µOP.	A	Haswell	 architecture	
CPU	core	has	8	different	ports	allowing	different	operations	[56],	see	Figure	27.	

	
3. Wide	SIMD	(single	instruction	multiple	data)	support	allows	execution	of	one	op-

eration	on	several	values.	If	the	values	are	in	adjacent	memory	locations,	execution	
takes	no	longer	than	computing	a	single	value.	A	Haswell	CPU	core	has	ports	that	
can	process	up	to	256bit	of	data	at	once,	corresponding	to	8	single	precision	values	
or	4	double	precision	values,	 such	 that	a	 factor	of	4	or	8	 in	performance	may	be	
lost	if	SIMD	instructions	are	not	used.	
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4. Symmetric	Multithreading	(SMT)	allows	multiple	threads	to	simultaneously	exe-
cute	 instructions	 on	 the	 same	 CPU	 core.	 If	 not	 all	 ports	 are	 fully	 used	 by	 one	
thread,	one	or	several	threads	can	dispatch	instructions	to	unused	ports.	SMT	does	
not	 increase	 the	 theoretical	maximum	 throughput	 but	 adds	 to	 parallelism	by	 al-
lowing	 utilization	 of	 resources	 by	multiple	 processes/threads,	which	would	 also	
have	 been	 fully	 available	 to	 a	 single	 thread.	 A	 Haswell	 CPU	 supports	 issuing	 in-
structions	of	two	threads	simultaneously	per	physical	CPU	core.	

	
Of	these	core-internal	dimensions,	directly	influencing	dimensions	other	than	SIMD	or	

SMT	(and	 thereby	also,	 to	a	point,	 superscalar	execution)	 is	non-trivial	with	a	high-level	
programming	 language.	 µOP	 scheduler	behavior	 is	 only	known	empirically	 as	 Intel	does	
not	publish	implementation	details.	Enforcing	SMT	works	by	pinning	threads	to	a	core	or	
simply	creating	threads	equal	to	the	number	of	logical	cores.	SIMD	parallelism	can	only	be	
exploited	by	writing	SIMD	instructions	or	”SIMD-friendly”	code,	for	which	the	compiler	is	
able	to	generate	SIMD	instructions.	Both	often	require	deep	structural	changes	to	the	code	
to	have	the	data	for	SIMD	instructions	in	adjacent	memory	locations	and	to	restructure	a	
problem	 such	 that	many	operations	 of	 the	 same	 type	 are	 executed	without	 intermittent	
different	operations.	Compilers	 automatically	 recognize	only	 trivial	 cases	of	 SIMD	paral-
lelizability	 and	writing	 SIMD	 commands	 (intrinsics)	 is	 error	 prone	 and	 deprecates	with	
new	CPU	generations.	

None	of	these	dimensions	of	parallelism	have	played	a	role	in	the	design	of	the	ATLAS	
reconstruction	software.	The	remaining	dimensions	of	parallelism	are	based	on	multiple	
cores	 and	 allow	 embarrassingly	 parallel	 execution	 although	 other	models	may	 be	more	
beneficial.	Embarrassingly	parallelism	in	the	ATLAS	reconstruction	is	achieved	by	running	
multiple	Athena	instances	processing	different	events.	
Embarrassingly	parallel	exploitable	concepts	are:	

5. Multicore	processors.	 The	 number	 of	 transistors	 still	 doubles	 every	 two	 years,	
following	Moore’s	law.	This	led	to	an	increase	in	the	number	of	processing	cores	on	
a	single	die.	The	trend	is	going	to	further	increase	the	number	of	cores	on	a	die	by	
making	each	core	less	complex	and	therefore	smaller.	This	way,	the	power	to	flops	
ratio	tends	to	be	better	than	in	highly	complex	CPUs	with	only	few	cores.	The	mul-
tiple	cores	on	a	die	usually	share	the	level	3	cache,	such	that	on	the	one	hand	mul-
tiple	threads	can	profit	 from	cache	locality	but	on	the	other	hand	have	less	cache	
per	core	available.	With	the	Many	Integrated	Core	(MIC)	architecture,	Intel	has	re-
leased	a	co-processor	with	over	60	 fully	x86	compliant	cores.	The	cores	are	sim-
pler	and	have	a	lower	frequency	clock	than	high	end	Intel	Xeon	CPUs.	Each	core	al-
lows	four	SMT	threads	on	each	core	as	compared	to	two	threads	on	a	Haswell	CPU	
architecture.	Nonetheless,	performance	per	watt	of	such	a	processor	is	very	com-
petitive	 compared	 to	 classical	 server	 CPU	 architectures	 with	 fewer	 heavy-duty	
cores	but	requires	that	the	majority	of	cores	can	be	kept	busy.	
	

6. Multi-Socket.	Some	motherboards	have	multiple	so-called	sockets	which	can	host	
a	CPU	each.	All	CPUs	on	a	single	motherboard	have	access	to	all	memory	installed	
on	this	mainboard,	but	memory	is	only	directly	connected	to	one	socket.	Access	to	
memory	connected	to	another	socket	has	to	go	through	the	connected	CPU	leading	
to	considerable	delays.	This	is	called	non-uniform	memory	access	(NUMA).	

	
7. Separate	processing	nodes,	 i.e.	 completely	 independent	machines,	naturally	have	

all	resources	replicated	so	there	is	no	interference	between	different	nodes	unless	
they	access	the	same	resources	over	network.	Any	communication	between	nodes	
has	to	go	via	network,	which	is	the	slowest	connection	of	all	other	interconnected	
parallel	resources.	
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Figure	28:	Hottest	functions	and	hottest	blocks	within	the	hottest	function.	Each	of	
the	blocks	accounts	 for	 less	 than	1%	of	 the	 total	 runtime.	Data	 taken	with	GOoDA	
profiler.	

New	Intel	and	some	other	vendor’s	developments	are	usually	available	to	CERN	short-
ly	 after	 or	 even	 before	 their	 release	 for	 testing	 purposes	 due	 to	 the	 close	 collaboration	
with	 Intel	 and	 other	 hardware	 vendors	 mainly	 through	 the	 CERN	 openlab	 but	 as	 well	
through	other	channels.	While	 reconstruction	 in	 its	 current	 form	cannot	exploit	 some	of	
the	new	 features,	 it	 is	used	 for	 some	applications	 such	as	 random	number	generation,	 a	
significant	cost	 factor	 in	simulations,	and	projects	 to	make	use	of	 these	architectures	 for	
reconstruction	are	ongoing.	

3.5.2 Parallelization	on	modern	architectures	
Parallelization	to	make	use	of	a	CPU’s	SIMD	capabilities	requires	careful	code	adjust-

ments	by	experts	and	as	such	only	pays	off	for	hot	spots	in	the	code,	which	are	hard	to	find	
in	the	ATLAS	reconstruction	software,	see	Figure	28.	Even	when	finding	a	hotspot,	vectori-
zation	may	not	be	possible	for	a	particular	problem	at	all.	

Multi	 core,	multi	 socket	 and	multi	 node	 parallelism	 can	 all	 be	 exploited	 by	 creating	
more	 instances	 of	 a	 program.	 For	 a	more	memory-efficient	 exploitation	 of	 the	multiple	
cores	 per	 machine,	 Run	2	 production	 will	 run	 on	 a	 multi-process	 version	 of	 Athena,	
AthenaMP.	 The	 advantage	 of	 forking	 processes	 over	 creating	 multiple	 independent	 in-
stances	is	that	Linux	offers	a	copy-on-write	mechanism	such	that	all	memory	that	remains	
unchanged	after	 forking	 is	shared	between	 the	processes.	For	multi	 socket,	one	CPU	has	
only	access	to	one	set	of	memory	banks,	such	that	for	access	to	other	memory	the	data	has	
to	pass	through	the	respective	CPU.	Leaving	thread	management	to	the	OS,	this	may	lead	
to	significant	performance	penalties	due	to	NUMA	effects.	This	 is	why	AthenaMP	assigns	
processes	to	a	core,	which	improves	throughput	by	20%	[39].	The	current	developments	
of	 increasing	number	of	cores	per	CPU	with	each	generation	 lead	to	a	smaller	amount	of	
memory	 available	 per	 core,	 which	 cannot	 economically	 be	 solved	 by	 acquiring	 more	
memory.	Multi	core	and	multi	socket	could	also	be	exploited	by	running	multiple	threads	
of	the	same	process,	although	communication	between	threads	on	multiple	sockets	has	an	
increased	overhead	because	separate	CPUs	do	not	share	any	fast	memory,	unlike	cores	on	
a	single	CPU	which	share	on-chip	memory	called	the	level	3	cache.		

All	memory	is	shared	between	multiple	threads	of	the	same	process	by	default	unless	
specified	 otherwise.	 In	 contrast,	 between	 multiple	 processes	 only	 unmodified	 memory	
pages	 are	 shared.	 Modern	 operating	 systems	 are	 able	 to	 intelligently	 share	 read-only	
memory	 between	multiple	 processes	 of	 the	 same	 process	 tree.	Making	 use	 of	 this	 func-
tionality	 required	 only	 changes	 to	 the	Athena	 framework	 to	 be	 able	 to	 fork,	 leaving	 the	
algorithms	 as	 is,	 leading	 to	 the	 AthenaMP	 framework.	 Threading,	 with	 the	 approach	 of	
declaring	 everything	 that	 is	 not	 explicitly	 unshared	 as	 common	memory,	 allows	 sharing	
much	 more	 memory,	 but	 requires	 to	 implement	 safeguards	 such	 that	 memory	 is	 not	
shared	 unsafely.	 This	 is	 why	 threading	 comes	 at	 a	much	 higher	 development	 cost	 than	
multi-processing,	especially	if	introduced	in	retrospect	to	a	single-threaded	design	such	as	
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the	ATLAS	code	and	the	Athena	framework,	which	in	some	cases	enforces	use	of	non-const	
objects.	

3.5.3 Multi-core	CPU	versus	GPU	processing	
In	recent	years,	GPUs	have	become	popular	for	problems	outside	the	video-rendering	

domain.	 GPUs	 are	 highly	 optimized	 for	 massive	 data	 parallelism.	 To	 exploit	 the	 GPU	
parallelism,	 the	 operations	 have	 to	 be	 of	 the	 same	 type,	 similar	 to	 SIMD	 operations	 but	
with	 wider	 registers	 and	 more	 advanced	 mechanisms	 to	 automatically	 maximize	 the	
number	of	parallel	operations.	This	makes	GPUs	applicable	for	problems	that	have	many	
floating-point	operations	of	the	same	type	on	data	in	adjacent	memory	locations.	To	run	a	
program,	the	program	and	data	must	be	uploaded	to	the	GPU’s	own	memory.	After	execu-
tion,	 it	must	 be	 copied	 back	 to	 the	 host	machine.	 To	 compensate	 for	 this	 overhead,	 the	
problem	size	must	be	large	enough.	In	return,	modern	GPUs	are	usually	much	faster	and	
more	energy	efficient	in	performing	floating-point	operations	than	CPUs.	On	the	downside,	
GPUs	usually	have	a	very	slow	single	threaded	performance	such	that	only	heavily	paral-
lelizable	 parts	 of	 the	 ATLAS	 software	 could	 be	 efficiently	 run	 on	 GPUs.	 Already	 some	
prototypes	for	tracking	exist	[57],	but	no	in-depth	studies	about	the	competitiveness	of	the	
approaches	 compared	with	 the	 heavily	 optimized	 single	 threaded	 CPU	 tracking	 or	with	
multi-core	CPU	based	approaches	exist.	

3.6 Software	evolution	
Since	the	start	of	development,	the	available	software	evolved	and	continues	to	change	

at	a	quick	rate.	Compilers	and	languages	change	and	libraries	come	and	go.	ATLAS	is	not	
always	quick	to	pick	up	new	features	for	different	reasons,	sometimes	because	it	requires	
the	CERN	infrastructure	to	be	changed,	requiring	the	agreement	of	all	concerned	collabo-
rations.	Other	changes	may	imply	huge	implementation	effort.	Since	the	start	of	develop-
ment	many	 tools	 for	 performance	 analysis	 have	 been	 released	 for	 easier	 and	more	 de-
tailed	profiling,	which	helps	ATLAS	to	become	aware	of	benefits	of	new	developments	and	
deficiencies	of	the	current	setup.	

3.6.1 Proyiling	evolution	
Before	and	during	Run	1,	Valgrind	[58]	was	the	most	used	profiling	tool.	It	has	a	num-

ber	of	plugins	allowing	profiling	different	aspects,	such	as	heap	analysis,	wall	time	analysis	
and	 others.	 Valgrind	 does	 the	 profiling	 by	 introducing	 an	 additional	 layer	 between	 the	
profiled	software	and	the	hardware	resources.	This	allows	very	accurate	measurements	of	
the	used	resources,	but	the	additional	software	layer	slows	down	execution	by,	depending	
on	the	type	of	measurement,	a	factor	of	10	to	100.	This	severely	limits	profiling	as	it	costs	
a	lot	of	resources	and	takes	too	long	for	exhaustive	testing.	In	recent	years	sampling	tools	
have	emerged	(e.g.	gperftools	[59]),	which	measure	wall	time	spent	by	sampling	the	stack	
trace	 every	 set	 amount	 of	 time,	 typically	 every	 10ms.	 This	 allows	 pinpointing	 costly	
functions	and	to	a	degree	even	a	line	of	code.	The	line	cannot	always	be	accurately	deter-
mined	as	 code	may	be	 reordered	 and	 restructured	depending	on	 the	optimization	 level.	
Due	to	the	sampling	nature,	functions	requiring	a	very	low	amount	of	time	will	not	show	
up	in	the	profile,	which	is	usually	not	a	problem	as	the	heaviest	functions	are	usually	the	
most	interesting.	It	can	also	show	if	calls	from	one	code	location	take	more	time	than	from	
another	 location.	These	tools	add	only	about	5%	to	the	runtime	of	 the	profiled	software.	
Not	purely	software	related,	Intel	introduced	hardware	performance	counters	inside	their	
CPUs,	which	allow	reading	low-level	performance	measurements	such	as	cache	misses	and	
instructions	 per	 cycle,	 leading	 to	 the	 creation	 of	 tools	 to	 create	 profiles	 based	 on	 these	
counters.	 Using	 the	 counters	 does	 not	 slow	 down	 the	 profiled	 software	 and	 they	 are	 in	
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theory	100%	accurate.	 In	practice,	 some	 implementations	on	 some	CPU	generations	 are	
faulty	 and	 do	 not	 accurately	 count	 every	 event,	 or	 have	 to	 be	 sampled	 because	 of	 the	
otherwise	 too	 high	 data	 rates.	 The	 performance	 counters	 will	 always	 measure	 perfor-
mance	 of	 all	 programs	 on	 the	 same	 core.	 For	 both	 sampling	 and	 performance	 counter	
based	profilers	the	machine	used	should	be	dedicated	for	the	tests	and	not	run	any	other	
programs	 so	 the	 measurements	 are	 not	 affected.	 In	 2009	 the	 Performance	 Monitoring	
Board	 [60]	 was	 introduced	 at	 ATLAS,	 which	monitors	 the	 changes	 in	 performance	 and	
allows	an	overview	of	the	amount	of	time	spent	in	the	different	domains.	A	set	of	tests	is	
run	on	 each	nightly	build,	 scanning	 for	 changes.	 If	 an	unacceptable	 increase	 in	 resource	
usage	is	detected,	only	a	small	number	of	packages	that	were	changed	have	to	be	checked.	

Concurrently	to	the	ongoing	development	of	Athena	as	it	is	used	now,	frameworks	for	
future	 requirements	 are	 in	 development.	 One	 of	 them	 is	 the	 multithreaded	 version	 of	
Athena,	AthenaMT,	which	 allows	 the	 parallel	 execution	 of	 independent	 algorithms	 in	 an	
event	 and	 is	 expected	 to	 allow	 reducing	 the	 memory	 footprint	 per	 busy	 core	 in	 future	
multi	core	architectures,	see	also	Section	4.5.	

3.6.2 Parallel	programming	trends	
Of	the	many	innovations	in	recent	years,	parallel	technologies	have	seen	the	most	de-

velopment	 and	 attention.	 On	 the	 software	 side	 this	 is	 especially	 reflected	 by	 new	 lan-
guages	and	language	features:	
- CUDA	 [61]	 is	 Nvidia’s	 proprietary	 language	 to	write	 programs	 for	 Nvidia	 GPUs,	 re-

leased	in	2007.		
- In	 2009	 Apple	 released	 OpenCL	 [62],	 a	 multi-platform	 language	 allowing	 writing	

programs	that	execute	on	CPUs,	GPUs	and	other	hardware.		
- The	 Cilk	 language	 [63]	 has	 existed	 since	 1994	 already	 but	was	 only	 popular	 in	 the	

super	computer	domain.	It	was	made	popular	when	Intel	bought	it	and	released	a	C++	
library	TBB	[64]	for	easier	threading	based	on	Cilk	in	2006.		

- C++11,	released	in	2011,	has	finally	introduced	a	formal	model	to	support	concurrent	
operations.		

- OpenMP	 as	 one	 of	 the	 older	 standards,	 defined	 by	 a	 group	 of	 hardware	 vendors	 in	
1997	but	is	only	supported	by	GCC	since	version	4.2	released	2007.	
All	of	these	languages	have	seen	much	improvement	since	their	introduction	and	par-

allel	programming	is	wide	spread.	Much	effort	has	been	put	into	hiding	away	the	low-level	
complexities	of	parallel	programming.	

3.6.3 Library	evolution	
Over	the	years,	many	dedicated	libraries	for	highly	specific	problems	were	created	and	

reached	the	end	of	 their	support	 life.	Well	written	and	maintained	 libraries	dedicated	 to	
delivering	 high	 performance	 can	make	 use	 of	 new	hardware	 features	without	 requiring	
work	 on	 the	 side	 of	 the	 library’s	 user.	 Instead,	 the	 user	 has	 to	 rely	 on	 the	 continued	
maintenance	 by	 its	 developers.	 This	 allows	 outsourcing	 low-level	 code	 development	 for	
basic	 operations	 to	 specialists	 while	 development	 at	 ATLAS	 can	 concentrate	 on	 ATLAS	
specific	code.	ATLAS,	LHCb	and	several	other	experiments	have	most	(but	not	all)	of	 the	
libraries	their	software	uses	managed	in	the	LCG	software	stack,	a	collection	of	hundreds	
of	 libraries.	The	LCG	software	 stack	 is	 coordinated	by	 the	EP-SFT	group	of	CERN,	which	
keeps	 the	 libraries	 up	 to	 date	 and	 provides	 compiled	 versions	 of	 the	 stack	 for	 different	
combinations	of	operating	systems	and	compilers.	This	relieves	the	experiments	of	keep-
ing	 their	 libraries	up	do	date	 themselves	and	deduplicates	 the	work	which	would	other-
wise	be	performed	by	multiple	experiments	individually.	
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3.6.4 Compiler	optimizations	
Compilers	have	seen	many	performance	optimizations	through	static	and	even	dynam-

ic	code	analysis.	Compilers	used	in	ATLAS	are	regularly	replaced	by	newer	versions	when	
performance	improvements	can	be	shown.	Out	of	order	execution,	loop	unrolling	and	auto	
vectorization	are	only	some	of	the	technologies	that	have	been	introduced	and	in	part	only	
allow	the	exploitation	of	newer	hardware	technologies,	for	example	until	the	end	of	Run	1	
GCC4.3	was	used	which	does	not	 generate	 vector	 instructions.	During	LS1,	 the	 compiler	
was	 changed	multiple	 times	 for	 newer	 versions,	 currently	 GCC	 4.9	 is	 officially	 used	 and	
GCC	6	is	being	tested.	Clang	is	also	considered	in	ATLAS,	mainly	because	of	the	improved	
error	output	which	allows	a	developer	to	pinpoint	the	problem	more	quickly.	Intel’s	icc	is	
provided	 for	 free	 to	 all	 CERN	 experiments,	 but	 cannot	 be	 used	 freely	 by	 external	 users,	
which	prevents	ATLAS	from	using	it	at	all.	

3.6.5 Continuous	development	on	Athena	
During	Run	1	the	ATLAS	software	was	mostly	adjusted	to	perform	well	from	a	physics	

point	 of	 view.	 Unforeseen	 properties	 of	 the	 then-new	 data	 had	 to	 be	 reflected	 in	 the	
software.	A	main	goal	 for	 these	 changes	was	 therefore	 the	 improvement	of	physics	per-
formance,	to	gain	a	more	accurate	reconstruction.	Computing	performance	was	of	second-
ary	 importance	 and	 only	 improved	 when	 reconstruction	 performance	 did	 not	 seem	
sufficient	to	process	the	data	on	Tier	0.	Every	year	the	Tier	0	software	was	replaced	by	a	
newer	 version	 during	 Run	 1,	 each	 with	 a	 better	 physics	 performance	 and	 faster	 pro-
cessing.		

3.7 Conclusion	
The	ATLAS	collaboration	has	written	millions	of	lines	of	code	to	solve	the	reconstruc-

tion	problem	responsible	for	a	large	fraction	of	the	computing	cost.	The	problem	size	has	
been	 increasing	 over	 the	 years	 and	will	 continue	 to	 grow.	 Since	 the	 start	 of	 the	 ATLAS	
collaboration,	 both	 the	 available	 hardware	 and	 software	 have	 seen	 huge	 developments	
and	shifts	of	paradigms.	Computing	hardware	has	been	continuously	replaced	with	newer	
hardware	 at	 the	 computing	 centers,	 such	 that	 most	 new	 hardware	 developments	 are	
available	 to	 ATLAS.	 New	 software	 technologies	 were	 incorporated	 into	 the	 growing	
software	where	possible	but	some	design	decisions	have	prevented	profiting	from	others.	
Notably,	non-embarrassing	parallelism	is	painfully	absent	 in	the	ATLAS	software,	 in	part	
because	the	ATLAS	reconstruction	has	no	palpable	hot	spots.		

A	codebase	the	size	of	the	ATLAS	reconstruction	would	normally	be	managed	follow-
ing	a	strict	workflow	in	professional	software	firms.	Instead,	ATLAS	has	a	resource	inten-
sive	 and	 slow	 multi-layer	 build	 system	 designed	 to	 catch	 errors	 before	 they	 go	 into	 a	
production	release.	This	is	owed	to	the	heterogeneous	developer	base	consisting	mostly	of	
physicists	with	little	formal	education	in	software	development.	

New	profilers	show	shortfalls	of	the	software	in	unprecedented	detail.	Previously	un-
recognized	deficiencies	can	be	observed	and	 fixed.	Recent	compilers	are	capable	of	opti-
mizing	more	complex	code,	making	the	adjustments	necessary	for	automated	optimization	
more	 achievable.	 Much	 potential	 and	 hope	 is	 particularly	 on	 the	 so	 far	 unused	 parallel	
capabilities	of	 the	hardware	which	compilers	also	can	help.	The	development	process	 in	
ATLAS	 has	 severe	 shortfalls,	 which	 can	 partially	 be	 addressed	 by	 introducing	 a	 more	
professional	structure.		

The	 common	understanding	 is	 that	 the	ATLAS	 reconstruction	problem	size	will	 con-
tinue	to	grow.	The	arising	challenges	can	only	be	addressed	within	a	medium-term	time-
scale	because	it	includes	changing	the	grown	design	of	the	software.	
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4 COMPUTATIONAL	
PERFORMANCE	ANALYSIS	

Before	any	software	can	be	optimized	in	a	meaningful	way,	it	has	to	be	carefully	ana-
lysed	for	its	resource	usage.	Software	performance	depends	on	many	parameters	such	as	
input	data,	hardware	used,	the	OS	and	other	surrounding	software	and	resource	usage	of	
other	programs	running	concurrently.	Well-defined	test	cases	set	artificial	conditions	that	
are	 easy	 to	 reproduce	 and	mimic	 some	of	 the	 original	 conditions	 such	 that	 similar	 soft-
ware	behaviour	can	be	expected	during	production.		

The	test	cases	show	an	immense	increase	of	a	factor	of	7	in	time	spent	per	event	dur-
ing	Run	2	 in	 comparison	 to	events	 recorded	during	Run	1,	plus	 the	number	of	 recorded	
events	increasing	by	a	factor	of	2.5	from	400Hz	to	1000Hz.	This	poses	a	huge	challenge	to	
the	developers	to	process	the	load	during	Run	2.	The	expected	increased	available	compu-
ting	performance	reduced	some	of	the	pressure	on	the	developers,	nonetheless	increasing	
the	 computational	 performance	 defined	 the	 goal	 for	 the	 LS1	 software	 campaign:	 All	
domains	were	advised	to	speed	up	their	software	by	a	factor	of	3	to	be	able	to	deal	with	
the	Run	2	load	without	creating	queues.	

In	order	to	quantify	potential	gains,	I	measured	different	aspects	of	the	reconstruction	
software	 using	 different	 profilers	 for	 different	 aspects.	 A	 structural	 analysis	 shows	 a	
detailed	picture	of	the	data	flow	and	combines	it	with	timing	measurements	for	a	parallel-
ization	 study.	 For	 each	 analysis,	 a	 short	 conclusion	 gives	 the	 potential	 gains	 versus	 the	
expected	cost	to	implement	them.	

4.1 Decomposed	Reconstruction	Performance	
In	order	 to	quantify	potential	 gains	or	 simply	 find	bottlenecks	 in	 the	 current	ATLAS	

reconstruction	software,	I	performed	a	thorough	performance	and	code	analysis.	The	most	
important	measure	for	the	performance	of	the	software	is	the	throughput,	which	quanti-
fies	the	amount	of	work	completed	per	wall	time	on	the	available	resources.	To	determine	
the	 throughput,	 I	 measured	 the	 wall	 time	 per	 event	 for	 a	 single	 process	 job	 with	 one	
thread.	 Some	 parts	 of	 the	 software	 are	 memory-bound	 but	 concurrent	 access	 to	 these	
resources	 by	multiple	 instances	 did	 not	 significantly	 slow	 down	 execution	 in	 tests	with	
multicore	machines,	such	that	measuring	the	throughput	this	way	remains	valid.	Convert-
ibility	 between	 throughput	 and	 performance	measurements	 is	 important.	 To	 be	 able	 to		
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Track	
Finding	

Ambiguity	
Solver	

TRT	 Segment	
Finder	

Total		
Reconstruction	

Autovectorization	ON	 +1.7%	 +3%	 +1.4%	 +2%	
Table	 2:	 Wall	 time	 change	 with	 autovectorization.	 The	 tested	 algorithms	 were	
slightly	slower	after	turning	autovectorization	on,	but	the	difference	is	so	small	that	
it	may	be	due	 to	measurement	 inaccuracy.	Although	 few	 fixed	 size	 loops	with	 low	
trip	 count	 were	 vectorized	 no	 improvement	 was	 achieved	 and	 autovectorization	
was	 not	 turned	 on	 for	 any	 production	 release	 during	 Run	 1.	 Tested	 with	 release	
17.2.9.7	used	for	production	in	the	last	year	of	Run	1.	

scale	my	measurements	on	the	heterogeneous	hardware	available	to	ATLAS,	I	assume	that	
improvements	 seen	 on	 one	 CPU	 generation	 have	 a	 comparable	 relative	 impact	 on	 the	
other	CPU	generations	used	by	ATLAS.	This	assumption	is	justified	since	the	vast	majority	
of	 CPUs	 are	 x86	 architecture	mostly	 from	 Intel	 and	within	 three	 processor	 generations.	
This	 would	 not	 be	 justified	 if	 ATLAS	 made	 heavy	 use	 of	 SIMD,	 which	 changes	 quickly	
between	 processor	 generations	 and	 could	 therefore	 lead	 to	 large	 differences	 in	 perfor-
mance	 but	 ATLAS	 doesn’t	 make	 use	 of	 SIMD	 at	 all.	 Tests	 showed	 turning	 auto-
vectorization	“on”	or	“off”	has	no	positive	 impact.	Some	algorithms	even	showed	slightly	
worse	 performance	 with	 autovectorization	 but	 the	 difference	 is	 within	 the	 measuring	
inaccuracy,	see	Table	1.	Running	verbose	autovectorization	showed	that	only	some	fixed	
size	 loops	for	 initialization	were	successfully	vectorized,	presumably	because	most	 loops	
where	work	 is	performed	 iterate	over	C-style	arrays	with	unknown	 location	 in	memory.	
This	 section	 presents	 my	 measurements	 of	 the	 wall-time	 of	 individual	 steps	 and	 my	
analyses	of	the	state	of	the	ATLAS	reconstruction	software	before	LS1.	

4.1.1 A	general	test	case	for	performance	observations	
To	base	the	performance	analysis	on	realistic	scenarios,	I	created	test	cases	reflecting	

the	setup	in	production	of	both	before	and	after	LS1.	The	test	cases	take	into	account	the	
environment	in	which	the	software	runs,	the	state	of	the	software	analysed	and	data.	Tests	
reflecting	 the	 requirements	 before	 LS1	 run	 a	 full	 Inner	Detector	 reconstruction	with	 20	
pileup	 interactions,	 Monte	 Carlo	 simulated	 samples	 with	 a	 center	 of	 mass	 energy	 of		
𝑠 = 8𝑇𝑒𝑉,	according	to	the	conditions	at	the	end	of	Run	1.	Pileup	interactions	per	event	

continuously	increased	during	Run	1	up	to	a	peak	of	37,	but	can	differ	by	a	factor	of	two	to	
three	over	the	course	of	a	single	LHC	filling,	and	average	pileup	in	2012	was	20.7	interac-
tions	per	 event.	 This	 test	 event	 type	will	 henceforth	be	 referred	 to	 as	 “Run	1	 event”.	 To	
simulate	data	as	expected	to	be	delivered	by	the	LHC	in	Run	2,	the	ID	reconstruction	runs	
with	events	with	40	pileup	 interactions,	Monte	Carlo	simulated	samples	with	a	center	of	
mass	energy	of	 𝑠 = 14	TeV.	Energies	during	Run	2	are	now	set	at	13	TeV,	but	the	differ-
ence	 in	 event	 topology	 is	 small.	 The	 event	 type	 used	 for	 the	 test	 case	 produces	 a	 top-
antitop	quark	pair,	which	decay	to	a	large	number	of	particles.	I	omitted	one	reconstruc-
tion	 step,	 the	 muon	 reconstruction,	 which	 does	 not	 lead	 to	 significant	 differences	 in	
runtime	 due	 to	 the	 low	 number	 of	muons	 per	 event	 in	 comparison	with	 the	 number	 of	
Inner	 Detector	 tracks,	 but	 avoids	 complications	 with	 the	 performance	 measurements	
which	led	to	crashes.	All	timing	measurements	run	over	150	events	to	get	the	average	time	
per	 event.	 The	 time	 for	 the	 first	 event	 is	 not	 taken	 into	 consideration	 because	 many	
modules	are	 initialized	during	the	 first	event.	The	first	event	does	not	significantly	 influ-
ence	 the	 total	 runtime	 because	 production	 reconstruction	 jobs	 typically	 run	 over	 5000	
events.	
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4.1.2 State	of	ATLAS	reconstruction	software	before	LS1	
At	 the	end	of	Run	1	 in	2012,	 the	production	 release	 for	 reconstruction	was	17.2.7.9.	

Development	 of	 the	 software	 in	 use	 is	 constrained	 during	 operation,	 as	 an	 algorithm’s	
output	may	not	change	so	results	can	be	reproduced.	This	guarantees	a	consistent	dataset	
for	 the	 entire	 data-taking	 period	 of	 one	 year.	 Changing	 behaviour	 or	 performance	
throughout	 the	 operation	 phase	 would	 make	 a	 reprocessing	 campaign	 necessary,	 re-
reconstructing	all	data	 taken	up	to	 this	point	with	 the	changed	software.	This	constraint	
limits	changing	algorithms	where	floating	point	operations	are	an	integral	point,	as	even	
numerical	 differences	 cannot	 be	 tolerated	 and	 prohibits	 changing	 the	 flow	 of	 execution	
completely.	The	 term	used	 internally	 is	 that	a	 release	 is	 “Frozen	Tier	0”	 to	 state	 that	no	
changes	except	for	bugfixes	are	allowed.	Still,	development	was	not	halted	but	continued	
in	 parallel	 releases.	 These	 releases	 would	 not	 go	 into	 production	 before	 the	 next	 shut-
down,	which	is	usually	at	the	end	of	each	year.	The	exception	to	this	rule	is	if	computing	
resources	are	available	to	reprocess	all	data	taken	up	to	this	point	with	the	new	release.	
The	resulting	missing	promise	of	immediate	return	of	investment	and	ATLAS’	clear	focus	
on	 data	 taking	 during	 the	 first	 years	 of	 operation	 left	 development	 going	 slow	 in	 these	
periods.	Nonetheless,	the	production	release	delivered	the	required	physics	performance	
and	kept	within	the	permissible	limits	regarding	resource	requirements.		

The	two	most	prominent	of	these	resources	are	CPU	and	memory	because	they	often	
constitute	 a	 bottleneck.	 Jobs	 submitted	 to	 the	 grid,	which	 distributes	 tasks	 to	 grid	 sites	
around	the	world,	were	allowed	to	take	a	maximum	of	2GB	of	memory,	which	is	close	to	
what	some	simulation	jobs	required,	but	well	below	the	between	2GB	and	4GB	of	memory	
required	 by	 a	 reconstruction	 job	 in	 release	 17.2.7.9	 using	 my	 test	 cases.	 This	 restricts	
reconstruction	to	Tier	0	and	some	Tier	1	sites.	Memory	leaks	are	present	but	small	enough	
not	to	pose	a	problem	due	to	memory	usage	well	below	the	limit	per	job	configured	by	the	
grid	sites.	Grid	computing	resources	are	shared	between	all	experiments,	and	each	exper-
iment	has	a	share	of	the	CPU	time	it	can	use.	ATLAS	has	a	history	of	requiring	a	large	share	
of	 these	 resources,	 which	 is	 granted	 due	 to	 higher	 complexities	 in	 the	 reconstruction	
process	reflecting	a	more	complex	detector	architecture	and	model.	

Event	reconstruction	in	different	parts	of	the	detectors	requires	different	technologies	
and	different	approaches	and	to	a	degree	can	be	done	independent	of	one	another.	Thus,	it	
is	natural	that	software	groups	are	organized	in	different	domains,	which,	however,	are	all	
developing	 for	 the	 same	 framework	Athena.	 The	 impact	 of	 each	domain	 on	 the	 runtime	
can	be	seen	in	Figure	29.	As	the	graphic	shows,	the	total	runtime	increases	by	a	factor	of	
more	than	7	from	Run	1	to	Run	2	events.	More	than	50%	of	the	time	is	spent	in	the	Inner	
Detector	domain.	The	dominance	of	the	ID	domain	increases	to	two	thirds	for	events	with	
40	 instead	 of	 20	 pileup	 interactions.	 The	 increasing	 share	 can	 be	 explained	 by	 the	 high	
complexity	 algorithms	 required	 for	 ID	 track	 reconstruction.	 The	 generally	 high	 share	 is	
only	in	part	explained	by	the	high	complexity.	Additionally,	only	the	ID	and	the	calorime-
ters	have	 to	deal	with	a	very	high	number	of	 tracks	and	particles.	The	calorimeters	sur-
rounding	the	ID	are	designed	to	stop	most	particles	such	that	only	few	particles	reach	the	
other	 detector	 elements,	 i.e.	 the	 Muon	 Spectrometer	 in	 the	 outer	 detector	 region.	 The	
calorimeter	algorithms,	despite	dealing	with	high	number	of	tracks,	are	largely	unaffected	
by	 event	 complexity,	 as	 complexity	 is	 linearly	 dependent	 on	 the	 number	 of	 calorimeter	
cells,	which	 does	 not	 change.	 The	 number	 of	 higher	 energy	 particles	 scales	 sub-linearly	
with	 pileup,	 leaving	 muon	 reconstruction	 largely	 unaffected,	 while	 the	 number	 of	 low	
energy	particles	increases	linearly.	Particles	measured	in	the	ID	are	reconstructed	above	a	
certain	 energy	 threshold,	 but	 even	 below	 the	 threshold	 they	 negatively	 affect	 runtime	
because	their	measurements	are	indistinguishable	from	higher	energy	particles	until	after	
reconstruction.	Note	that	the	linear	scaling	of	the	number	of	low	energy	particles	does	not	
mean	linear	increase	in	runtime,	but	instead	the	higher	occupancy	leads	to	more	combina-
tions	leading	to	a	much	longer	runtime.	This	is	why	pileup	is	the	most	important	factor	for	
runtime.	
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Figure	 29:	 Domain	 breakdown	 for	 release	 17.2.7.9.	 Measured	 for	 events	 with	 20	
(left)	and	40	pileup	interactions	(right).	Average	runtime	per	event	is	11,677ms	for	
20	and	84,389ms	for	40	pileup	interactions	on	a	Nehalem	CPU	L5520	with	2.26GHz	
and	24GB	memory	running	Scientific	Linux	6.	

	
Figure	30:	Breakdown	of	Inner	Detector	domain	runtime	for	ttbar	signal	events	with	
20	(left)	and	40	pileup	interactions	(right),	the	largest	two	algorithms,	Silicon	Space	
Point	 Track	 Finder	 and	 Ambiguity	 Solver	 increase	 dominance	with	 higher	 pileup.	
The	test	setup	is	the	same	as	in	Figure	29.	

An	event	is	recorded	and	reconstructed	if	the	configured	multi-level	trigger	system	ac-
cepted	the	event.	This	is	usually	due	to	specific	event	topologies.	This	was	the	case	for	only	
0.002%	of	the	events	during	Run	1.	That	means	that	with	very	high	likelihood	only	one	of	
the	collisions	per	bunch	crossing	leads	to	a	triggered	event,	with	usually	a	larger	fraction	
of	high-energy	particles	in	the	detector	while	from	the	other	collisions	mostly	low	energy	
particles	originate.	

An	average	of	40	interactions	per	event	is	expected	for	Run	2,	so	the	software	is	ana-
lysed	for	how	it	behaves	for	this	type	of	event	compared	to	the	average	Run	1	event.	These	
two	event	types	will	in	the	following	be	referred	to	as	Run	1	event	and	Run	2	event	respec-
tively.	The	breakdown	chart	 for	 the	 ID	 is	 shown	 in	Figure	30.	Two	algorithms	dominate	
the	ID	reconstruction	runtime	for	both	Run	1	events	and	for	Run	2	events.	Both	algorithms	
deal	with	combinatorics.	The	SiSpTrackFinder,	short	for	Silicon	Space	Point	Track	Finder,	
constitutes	the	combinatorial	track	finder	as	explained	in	Section	2.7.	The	AmbiguitySolv-
er	 resolves	 multiple	 tracks	 that	 share	 the	 same	 measurements	 to	 only	 reconstruct	 the	
most	 likely	 tracks	and	performs	 the	 final	 track	 fit.	Both	algorithms	use	a	number	of	 tool	
chains	 and	 services	where	much	 of	 the	 actual	work	 is	 done.	 The	 time	 of	 the	 SiSpTrack-
Finder	 contains	 the	 seed	 finding	 and	 the	 combinatorial	 track	 finding.	 The	 speed	 of	 the	
reconstruction	is	very	much	dependent	on	the	quality	of	the	results	from	the	seed	finding	
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because	 the	 seeds	 are	 used	 in	 the	 subsequent,	most	 expensive	 steps.	My	measurements	
show	that	seed	finding	is	responsible	for	25%	of	the	time	required	for	pattern	recognition	
for	a	Run	2	event	with	ttbar	signal	decay,	which	corresponds	to	8%	of	the	total	runtime	in	
the	 ID	 according	 to	 the	measurements	 presented	 in	 Figure	 30	 in	 Subsection	4.1.2.	 This	
means	 the	 subsequent	 track	 finding	 accounts	 around	 for	23%	of	 total	 ID	 reconstruction	
runtime.	While	during	data	formation	there	is	no	obvious	option	to	reduce	the	load	on	the	
subsequent	 algorithms	as	 it	 is	 a	 quite	 straight	 forward	 step,	 the	 seed	 finding	 creates	60	
seeds	 for	 each	 track	 that	 is	 found.	 Each	 of	 these	 seeds	 is	 tentatively	 reconstructed	 as	 a	
track	candidate,	which	in	total	makes	up	the	rest	of	the	time	spent	in	the	pattern	recogni-
tion.	Reducing	the	number	of	the	seeds	which	do	not	lead	to	a	track,	so	called	fake	seeds,	
can	 therefore	 yield	 large	 gains	 for	 reconstruction,	 and	 is	 the	 reason	why	much	 effort	 is	
spent	to	improve	the	seed	finding.	Improvements	have	to	be	carefully	tested,	as	all	seeds	
that	 are	disregarded	although	 they	belong	 to	 a	particle	 are	 lost	 if	 no	other	 seed	 for	 this	
particle	 is	 found.	 Therefore,	 changes	 are	 not	 allowed	 to	 reduce	 the	 number	 of	 seeds	
belonging	to	particles.		

Analyses	 using	 gperftools	 and	 Valgrind	 reveal	 the	 SiSpTrackFinder	 spends	 with	
around	16%	the	largest	amount	of	its	time	in	Runge-Kutta	propagation	[65],	half	of	which	
is	spent	in	other	tools	further	down	the	call	chain.	The	Runge-Kutta	propagation	is	needed	
to	solve	the	transport	of	a	particle	trajectory	through	the	inhomogeneous	magnetic	field.	It	
has	 been	 extensively	 optimized,	 so	 further	 improvements	 to	 the	 algorithm	 does	 not	
promise	 large	 gains.	 Even	 if	 large	 improvements	 on	 this	 implementation	were	 possible,	
reducing	 the	 time	 spent	 here	 to	 zero	 would	 only	 gain	 2%	 on	 the	 total	 reconstruction	
runtime.	As	most	algorithms	and	tools,	 it	relies	on	other	tools	and	is	depending	on	input	
from	other	algorithms.		

4.1.3 Source-code	efyiciency	and	hotspots	
To	tackle	the	shortcomings	of	computational	performance	of	a	software,	it	is	necessary	

to	understand	why	it	does	not	perform	as	desired.	Software	is	a	complex	product	depend-
ing	 on	many	 other	 factors,	 there	 are	many	 properties	 with	which	 the	 efficiency	 can	 be	
observed	 and	 analysed.	 Understanding	 how	 CPU	 time	 is	 spent	 can	 show	 what	 is	 the	
limiting	factor	of	the	executed	program.	Information	why	a	CPU	is	not	reaching	its	theoret-
ical	 maximal	 throughput	 may	 give	 programmers	 enough	 information	 to	 improve	 the	
software.	Executing	wrong	instructions	because	of	branch	misprediction	are	an	example	of	
an	 inefficiency.	The	 information	how	many	branches	were	mispredicted	and	many	other	
of	such	low	level	measurements	can	be	collected	in	modern	CPUs	in	performance	monitor-
ing	units	(PMUs),	which	can	be	read	using	perf	[66],	a	program	available	in	modern	Linux	
kernels.	As	the	raw	data	is	difficult	to	interpret,	analysis	tools	such	as	Intel’s	VTune	[67]	or	
the	now	discontinued	Google’s	Generic	Optimization	Data	Analyzer	(GOoDA)	[68]	allow	in-
detail	 view	 how	 CPU	 resources	 are	 spent	 and	 can	 attribute	 these	 effects	 to	 code	 lines.	
Attribution	 to	 code	 lines	 is	 done	 sampling	 the	 stack	 trace,	 therefore	 the	 attribution	 is	
slightly	 inaccurate	 but	 accurate	 enough	 to	 look	 for	 hot	 spots	 and	 inefficiencies.	 For	 the	
example	 of	 branch	mispredictions,	 restructuring	 conditional	 branches	 or	 reducing	 their	
number	can	enable	a	CPU	to	predict	more	accurately	which	instructions	to	load.	A	look	at	
total	cycles	spent	in	track	reconstruction	with	GOoDA	shows	that	58%	of	all	cycles	are	stall	
cycles,	 see	 Figure	 31.	 At	 the	 same	 time,	 the	 proportion	 of	 instructions	 per	 cycle	 retired	
(IPC)	is	almost	one,	which	means	during	the	42%	unstalled	cycles	on	average	2.38	instruc-
tions	were	retired	per	cycle,	with	the	theoretical	maximum	of	modern	CPU	cores	being	4	
IPC	[69].	

An	IPC	of	1	is	what	Intel	considers	to	be	a	good	performance	as	a	rule	of	thumb	for	en-
terprise	applications	[70].	For	the	hot	spots,	a	detailed	profile	is	generated,	showing	how	
CPU	 cycles	 are	 spent	 line	 by	 line	 and	 side	 by	 side	 with	 the	 corresponding	 assembly.	
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Figure	31:	GOoDA	analysis	of	track	reconstruction.	Although	58%	of	all	CPU	cycles	
are	stall	cycles,	IPC	(instructions	retired	per	cycle)	is	almost	one.	

	

	
Figure	32:	The	upper	figure	shows	an	excerpt	of	the	control	flow	of	the	Runge	Kutta	
propagator	with	 basic	 blocks	 color	 coded	 by	 time	 spent	 in	 each	 block.	 The	 lower	
figure	depicts	how	GOoDA	shows	assembly	and	source	code	side	by	side.	

Both	the	amount	of	 time	spent	and	how	the	time	is	spent	 in	a	 library,	 function	or	 line	of	
code	 are	 shown	 at	 a	 glance.	 For	 each	 function,	 a	 graph	 of	 basic	 assembly	 blocks	 shows	
execution	paths	and	cycles	spent	per	block.	In	[68],	Calafiura	et	al.	use	GOoDA	to	pinpoint	
lost	efficiency	and	deduce	possible	 improvements	 in	 the	ATLAS	reconstruction	software.	
The	Kalman	filter	and	the	magnetic	 field	 in	the	ATLAS	reconstruction	are	analyzed	more	
closely	 in	[71],	each	contributing	about	3%	to	runtime	in	the	selected	setting.	They	have	
been	selected	because	they	spend	most	of	their	time	very	differently;	while	the	magnetic	
field	is	limited	by	bandwidth	because	of	non-consecutive	memory	access,	the	Kalman	filter	
uses	very	expensive	instructions.	While	for	the	magnetic	field	only	suggestions	for	optimi-
zation	are	given,	the	Kalman	filter	is	optimized	using	SIMD	instructions,	improving	speed	
by	 a	 factor	 of	 1.5	 to	 2.4	 depending	 on	 precision	 and	 vector	width.	 Solving	 these	 issues	
requires	different	approaches,	but	neither	solution	can	improve	more	than	the	time	spent	
in	this	function.	These	gains,	as	impressive	as	they	are,	reduce	runtime	by	only	one	to	two	
percent,	 but	 using	 SIMD	 instructions	makes	 code	 unreadable	 and	 hardware	 dependent.	
Maintaining	an	additional	 version	 that	 is	 independent	of	processor	 features	was	 consid-
ered	too	cumbersome	and	error	prone	such	that	the	improved	version	was	never	used	for	
production.	Another	analysis	of	the	reconstruction	software	using	the	PMUs	in	[39]	shows	
that	30%	of	the	time	is	lost	due	to	call	overhead,	showing	that	the	object	oriented	software	
design	 with	 many	 very	 small	 functions	 can	 imply	 a	 serious	 overhead.	This	 is	 a	 general	
problem	of	object	oriented	design,	which	is	hard	to	tackle	in	retrospect.	Another	analysis	
in	 [71]	 even	 suggests	 that	 tackling	 this	problem	using	 inlining	will	 lead	 to	 larger	binary	
sizes	that	 lead	to	even	higher	delays	due	to	more	frequent	memory	accesses.	 It	may	also	
not	be	possible	at	all	to	improve	the	memory	locality,	e.g.	when	memory	access	is	unstruc-
tured.	The	performance	counters	allow	viewing	an	application’s	performance	in	terms	of	
how	CPU	cycles	are	used,	but	this	information	is	mostly	helpful	for	an	in-depth	analysis	of	
single	 functions	 or	 blocks	 to	 deduce	 possible	 optimizations.	 Optimization	 of	 large	 scale	
software	can	achieve	 larger	gains	with	analyses	acknowledging	and	recognizing	complex	
relations.	
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4.2 Optimization	areas	
There	are	different	areas	where	one	can	look	for	optimization	opportunities.	In	the	fol-

lowing	 I	divided	 them	 into	 software	environment,	hardware	environment	and	own	soft-
ware.	

4.2.1 Software	Environment	
I	split	up	the	software	environment	into	three	groups:	Operating	system	(OS),	compil-

er	 and	 libraries.	 The	 OS	 provides	 access	 to	 the	 hardware	 and	 system	 libraries.	 Some	
hardware	 features	may	 be	 unusable	 on	 some	OS,	 such	 as	 64bit	 pointers	 on	 a	 32bit	 OS.	
System	calls	may	be	slower	on	some	OS	than	on	others.	Hardware	access	through	the	OS	
can	 be	 configured	 to	 provide	 best	 performance	 only	 for	 certain	 access	 patterns.	 In	 the	
WLCG	 the	 OS	 configuration	 is	 setup	 by	 the	 grid	 sites	 and	 is	 not	 configurable	 for	 each	
experiment	separately	at	Tier	0.	Although	plans	to	make	this	possible	exist,	it	has	prevent-
ed	such	optimizations	as	ABI32	builds,	which	requires	the	OS	to	support	32bit	pointers	on	
a	64bit	OS	saving	up	to	20%	memory	in	the	process,	as	suggested	in	[72].	Although	com-
pilers	have	been	improving,	only	very	simple	code	patterns	are	detected	and	automatically	
optimized,	such	as	small	loops	over	a	structure	of	fundamental	data	types.	In	the	ideal	case	
these	can	be	transformed	to	highly	efficient	code,	potentially	making	this	part	of	the	code	
many	 times	 faster.	 Though	 the	 recognition	 of	 more	 complex	 patterns	 has	 been	 getting	
better	in	newer	compiler	versions,	in	the	ATLAS	code	these	types	of	loops	only	make	up	a	
very	 small	 part.	 The	most	 part	 of	 the	 code	 needs	 to	 be	manually	 optimized	 or	 at	 least	
massaged	 to	 fulfil	 the	 requirements	 of	 automated	 compiler	 optimization.	 The	 external	
libraries	used	 at	ATLAS	 are	 compiled	 for	 the	 systems	 they	 are	used	on	but	 their	 source	
code	is	not	modified	save	to	resolve	compatibility	issues.	Libraries	may	provide	the	same	
or	similar	 functionality	but	have	greatly	differing	speeds,	which	may	also	depend	on	 the	
use	case.		

4.2.2 Hardware	Environment	
The	hardware	environment	of	a	software	consists	of	all	physical	parts	relevant	during	

execution.	 CPUs	 and	 other	 hardware	 components	 evolve	more	 quickly	 than	most	 of	 the	
used	 software,	 providing	 new	 features	 or	 allow	 faster	 execution	 of	 some	 operations.	
Specialized	hardware	often	allows	greatly	 improved	execution	speed	for	some	scenarios,	
but	require	many	changes	in	the	code.	Often	it	is	not	known	if	a	problem	can	be	reformu-
lated	in	a	way	it	suits	new	hardware	architecture.	Additionally,	to	testing	runtime	perfor-
mance,	costs	for	acquiring	and	running	the	hardware,	i.e.	electricity	consumption,	have	to	
be	considered.	Normally,	some	parts	of	the	hardware	can	be	pinpointed	as	limiting	factors	
for	execution	speed	of	particular	software.	This	is	referred	to	as	CPU-bound	in	case	calcu-
lation	takes	more	time	than	memory	access	or	memory-bound	if	the	opposite	is	the	case.	
Though	 this	 seems	 simple,	 there	 are	 many	 reasons	 and	 even	 more	 solutions	 to	 either	
limitation.	Memory	issues	are	particularly	complex	due	to	the	deep	hierarchy	of	memory.	
These	range	from	CPU	cache	hierarchies	to	main	memory,	where	connections	to	different	
sockets	may	play	a	role,	down	to	mass	storage.	It	is	also	relevant	how	the	components	are	
interconnected,	 influencing	 throughput	 and	 latency.	 For	 highly	 interconnected	 environ-
ments	collaboratively	calculating	on	multiple	different	nodes,	physical	distance	plays	into	
possible	connection	speed.	For	ATLAS,	distributed	calculation	played	only	a	minor	role,	as	
the	problem	 is	 embarrassingly	parallel.	Embarrassingly	parallel	means	 that	 the	problem	
can	be	divided	 in	 independent	sub	problems	that	can	be	computed	without	 the	need	 for	
communication	between	the	different	sub	problems.	For	the	ATLAS	reconstruction	this	is	
the	case,	because	each	event	can	be	processed	fully	independently.	With	the	surge	of	many	
core	chips,	memory	per	core	is	decreasing,	disallowing	running	separate	instances	of	the	
program	 equal	 to	 the	 number	 of	 cores	 on	 each	machine.	 This	 holds	 also	 for	 Tier	 0	 re-
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sources	which	are	controlled	by	CERN,	as	the	ratio	of	memory	per	core	cannot	economi-
cally	be	maintained.	Several	approaches	to	use	memory	more	efficiently	are	evaluated	in	
the	Subsections	4.3.2	and	4.3.4.	

4.2.3 Own	Software	
Full	 control	 over	 code	 development,	 in	 this	 case	 the	 framework	 and	 reconstruction	

software,	permits	algorithmic	and	structural	changes.	This	offers	the	largest	potential	for	
optimization	because	the	source	code	and	expertise	is	available,	allowing	in-depth	changes	
to	 both	 algorithms	 and	 architecture.	 While	 in	 the	 software	 environment	 and	 hardware	
environment	optimization	areas	one	can	only	exchange	one	element	for	other	predefined	
elements	 or	 tweak	 parameters	 such	 that	 they	 suit	 the	 requirements	 better,	 the	 own	
software	 can	 be	 changed	 completely.	 Software	 environment	 changes	 may	 require	 code	
changes,	 such	 as	 deprecated	 language	 features	 in	 a	 newer	 compiler	 version	 or	 deeply	
integrated	 external	 libraries,	 but	 these	 typically	 do	not	 lead	 to	 a	paradigm	 shift.	 Typical	
optimization	methods	are	to	 find	hotspots	and	concentrate	optimization	efforts	on	those	
parts.	 Optimizations	may	 include	 change	 of	 data	 types	 and	 structures,	minimizing	 over-
head	or	replacing	inefficient	calculations.	This	type	of	optimization	is	most	suited	for	very	
encapsulated	problems	that	can	be	improved	upon	without	the	application	in	mind.	In	the	
large-scale	ATLAS	 software	project	 consisting	of	 thousands	of	modules,	 a	 single	or	 even	
low	number	of	hotspots	does	not	exist.	Concentrating	on	optimizing	each	single	part	of	the	
software	 is	 therefore	 not	 practical.	 The	 largest	 improvements	 come	 from	 algorithmic	
changes.	 If	 a	 problem	 can	 be	 remodelled	 such	 that	 it	 requires	 less	 computational	 effort	
instead	of	reducing	the	time	spent	executing	the	existing	problem	model,	huge	gains	may	
be	 achieved	 touching	 only	 a	 few	 parts	 of	 the	 code.	 The	 time	 taken	 to	 calculate	 certain	
results	may	still	be	the	same,	but	there	may	be	fewer	results	required	to	solve	the	prob-
lem.	 Algorithmic	 changes	may	 also	 shift	 hotspots	 such	 that	 other	 optimization	methods	
can	be	applied.	Care	must	be	taken	to	consider	the	interplay	of	algorithms	when	changing	
results,	as	explained	in	Section	3.2.	

4.3 Optimizations	

4.3.1 Compilers	
Many	different	compilers	exist	for	many	different	languages.	Prominent	examples	for	

C++	are	Clang,	G++	and	the	Intel	C++	compiler.	These	compilers	are	being	actively	devel-
oped	and	have	frequent	updates,	adding	new	language	features	or	integrate	more	sophis-
ticated	 code	 analysis	 to	 apply	 optimizations.	 These	 compilers	 differ	 slightly	 in	 language	
support	and	 in	their	 licensing.	For	ATLAS,	 this	e.g.	means	that	CERN	employees	may	use	
the	 commercial	 Intel	 compiler	 due	 to	 a	 license	 agreement	 with	 Intel,	 but	 collaborating	
institutes,	where	much	of	the	development	 is	being	done,	do	not	profit	 from	this	 license.	
While	 the	 Intel	 compiler	provides	better	performance	 in	 some	cases	on	 the	mostly	 Intel	
architecture	grid	sites,	the	licensing	prohibits	ATLAS	from	using	this	compiler.	Also,	usage	
of	non-commercial	compilers	by	non-CERN	developers	and	recompilation	on	site	with	the	
Intel	compiler	is	not	feasible	due	to	the	differences	in	language	support	leading	to	incom-
patible	code.	Compilers	are	tuneable	with	so-called	compiler	flags,	offering	many	different	
types	of	optimizations,	some	better	for	particular	use	cases	than	for	others.	The	choice	of	
compiler	and	compiler	options	also	influence	runtime	speed.	My	tests	with	the	GCC	4.7	O3	
optimization	flag	showed	2-3%	improvement	over	the	O2	flag	used	in	ATLAS.	O3	optimi-
zation	among	other	optimizations	turns	on	auto	vectorization	and	function	inlining.	Tests	
with	the	Ofast	flag	showed	no	further	improvement,	but,	unless	large	gains	were	achieved,	
could	 not	 have	 been	 considered	 anyway,	 because	 Ofast	 violates	 IEEE	 standard	 making	
physics	validation	necessary	 for	any	small	change.	This	 is	because	errors	may	propagate	
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quicker	or	propagate	in	cases	that	normally	wouldn’t	lead	to	error	propagation.	Therefore,	
this	 flag	 does	 not	 guarantee	 bitwise	 equal	 results	 for	 code	 changes	 that	 with	 IEEE	 754	
compliance	would	not	have	changed	at	all.	ATLAS	cannot	easily	use	these	flags,	as	releases	
have	to	be	validated	even	for	numerical	changes,	which	is	unpractical,	and	against	policy	
for	 production	 releases.	 In	 the	 past,	 updates	 to	 the	 GCC	 compiler	 have	 all	 had	 positive	
impact	 on	 execution	 speed	 with	 new	 compiler	 option	 combinations	 being	 evaluated	
leading	to	further	gains	in	the	range	of	few	per	cent	per	version	change.	

4.3.2 Framework	optimizations	
The	Athena	framework	determines	the	way	events	are	processed,	which	is	in	a	strictly	

linear	 and	 sequential	 fashion,	 and	 therefore	 also	 defines	 how	 its	 modules	 have	 to	 be	
written.	The	chain	of	algorithm	 is	called	with	one	event	as	 input,	and	after	an	algorithm	
returns,	the	next	algorithm	in	the	chain	is	called.	It	is	able	to	access	any	data	from	previous	
algorithms	or	tools	written	to	the	StoreGate	service.	The	Athena	framework	did	not	allow	
simultaneous	processing	of	different	events	within	the	same	program	instance	before	Run	
2.	Parallel	processing	without	creating	multiple	instances	of	Athena	is	interesting	as	it	has	
the	potential	to	increase	the	proportion	of	number	of	cores	utilized	to	memory	required.	
This	 is	 important	because	of	the	CPU	developments	mentioned	in	Section	3.5.	This	prob-
lem	 has	 been	 addressed	 by	 introducing	 AthenaMP	 and	 AthenaMT,	 two	 branches	 of	 the	
Athena	framework,	which	allow	parallel	processing	of	multiple	events.	The	copy-on-write	
mechanism	provided	by	modern	Linux	distributions	 is	exploited	by	AthenaMP,	requiring	
no	changes	to	the	algorithms	and	only	small	changes	to	the	framework	mechanisms	as	the	
underlying	 OS	 transparently	 resolves	 all	 potential	 conflicts.	 By	 forking	 after	 processing	
one	 event,	 most	 modules	 and	 services	 have	 already	 been	 initialized,	 maximizing	 the	
shared	memory.	Memory	 regions	 that	 are	 only	 read	 are	 not	 copied,	 leading	 to	memory	
savings	of	around	40%	with	8	concurrent	processes	while	using	the	same	amount	of	CPU	
time,	see	Figure	35.	Shared	between	the	instances	are	for	example	the	geometry	and	the	
magnetic	 field,	which	 don’t	 change	 very	 frequently.	 The	 production	 release	 for	Run	2	 is	
AthenaMP.		

AthenaMT	 is	 currently	 under	 development	 and	 based	 on	 the	 current	multithreaded	
development	of	Gaudi.	It	allows	additional	parallelism	compared	to	AthenaMP.	AthenaMP	
spawns	copies	of	algorithms	and	conditions	and	other	data	that	changes	between	events	
assigning	them	to	a	process,	and	all	objects	created	after	 forking	only	 live	 in	the	process	
they	 were	 instantiated	 in.	 In	 AthenaMT	 these	 have	 to	 be	 centrally	 managed,	 requiring	
extra	 bookkeeping	 but	 also	 allowing	 a	 more	 fine-grained	 sharing	 of	 memory.	 Running	
algorithms	in	different	threads	of	the	same	process	means	everything	not	allocated	on	the	
stack	and	not	specified	as	 thread-local	can	be	accessed	by	all	 threads.	Memory	 intensive	
data,	such	as	the	conditions	data	defining	the	detector	conditions	during	at	least	one	lumi-
block	of	data	taking,	such	that	they	remain	the	same	for	many	consecutive	events,	can	be	
reused.	Parallelizing	algorithms	requires	making	them	thread-safe,	which	has	pitfalls	and	
requires	expert	knowledge	to	avoid	 inefficiencies.	Multiple	 threads,	 for	example,	can	use	
thread-safe	 algorithms	 at	 the	 same	 time.	Non-thread	 safe	 algorithms	 fulfilling	 less	 strict	
requirements	 can	 be	 either	 individually	 cloned	 for	 parallel	 execution	 and	 be	 reused	 to	
process	 another	 event	 in	 a	 pipeline-like	 fashion	 before	 other	 events	 finish	 processing.	
Independent	 algorithms	 of	 a	 single	 event	 can	 run	 in	 parallel,	 reducing	 the	 number	 of	
events	that	have	to	be	maintained	in	memory	to	use	more	cores	to	their	capacity.	Changing	
the	way	Athena	processes	events	 to	allow	parallel	 execution	of	multiple	events	 requires	
changes	 in	many	 integral	 parts	 of	 the	 framework	 because	 it	 has	 been	 designed	without	
parallelism	 in	mind.	Most	 algorithms	will	 also	 require	 changes	 to	make	 them	 fit	 such	 a	
model.		
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Figure	33:	Processing	model	of	AthenaMP.	The	flow	does	not	change	with	respect	to	
Athena	except	that	all	processes	pick	events	from	a	single	queue,	balancing	the	load	
between	processes.	

	
Figure	34:	Processing	model	of	AthenaMT.	Independent	algorithms	of	a	single	event	
can	run	in	parallel.	The	goal	is	to	fully	utilize	all	CPU	cores	with	less	events	running	
in	parallel	and	therefore	using	less	memory.	The	conditions	during	which	an	event	
was	recorded	make	up	a	large	part	of	the	reconstruction.	

	
Figure	 35:	 Memory	 and	 time	 spent	 using	 Athena	 with	 8	 individual	 instances	 and	
AthenaMP	with	8	worker	threads.	Processing	2000	Run	1	events.	The	step	between	
1.2	 and	 2.5	 hours	 is	 reconstruction	 which	 runs	 with	 release	 20.1.4.12.	 Peak	
combined	 memory	 usage	 of	 the	 reconstruction	 step	 of	 the	 Athena	 instances	 is	
18.5GB,	 but	 only	 11GB	 for	 AthenaMP,	 corresponding	 to	 40%	memory	 saved.	 The	
time	spent	is	almost	the	same	for	both	frameworks.	AthenaMP	manages	the	load	for	
all	 threads	 such	 that	 all	 threads	 end	 at	 the	 same	 time	 which	 shows	 in	 the	 more	
abrupt	ending	of	 the	steps.	The	additional	AthenaMP	step	at	 the	end	is	merging	of	
the	 output	 files,	 which	 isn’t	 done	 for	 Athena	 and	 could	 therefore	 be	 left	 out.	 Plot	
from	[73].	
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These	already	spent	and	expected	future	efforts	can	be	justified	because	it	allows	us-
ing	 hardware	 resources	 that	 would	 otherwise	 be	 left	 unused	 due	 to	 the	 increasing	 gap	
between	available	memory	and	available	number	of	computing	cores.	

4.3.3 Refactoring	
In	this	subsection,	I	want	to	address	possible	changes	in	the	code	without	changing	al-

gorithms,	maintaining	 type,	 order	 and	number	of	high-level	 operations	performed.	With	
high	level	I	 imply	that	underlying	instructions	or	their	order	may	change,	but	the	mathe-
matical	formulas	to	calculate	a	result	do	not	change.	Changes	made	are	purely	structural,	
in	that	source	code	is	restructured,	data	structures	are	changed	or	are	accessed	differently.	
This	 allows	 making	 code	 more	 maintainable	 in	 the	 case	 of	 code	 restructuring	 or	 may	
reduce	the	overhead	of	accessing	data	to	perform	mathematical	operations.		

In	ATLAS,	 the	Event	Data	Model	 (EDM)	 is	 the	 common	data	model	 of	Athena	 for	 all	
subgroups,	 most	 prominently	 defining	 classes	 for	 particles	 and	 tracks,	 which	 are	 used	
across	all	detector	subgroups.	The	design	of	the	EDM	has	several	flaws.	Class	members	are	
created	 lazily	 but	 the	 access	 patterns	 show	 that	 they	 are	 always	 accessed,	making	 lazy	
loading	 more	 expensive	 than	 creating	 all	 members	 of	 the	 enclosing	 object	 at	 the	 same	
time.	Because	identification	of	particle	classes	was	done	by	type,	to	add	another	identify-
ing	binary	property	required	creating	an	extra	type	for	each	already	existing	type,	which	
was	 done	 by	 creating	 a	 different	 class	 for	 each	 type.	 The	 implemented	 changes	 are	 dis-
cussed	in	Section	5.5.		

Another	 candidate	 for	 refactoring	was	 the	 service	 providing	 access	 to	 the	magnetic	
field.	This	service	was	written	in	Fortran,	although	Fortran	had	been	abandoned	in	favor	
for	 C++	with	 the	 adaptation	 of	 Gaudi	 in	 the	 form	 of	 Athena.	 The	 Fortran	magnetic	 field	
service	was	 integrated	 into	Athena	using	a	wrapper.	The	Fortran	code	was	structured	 in	
few	large	functions	in	a	single	file	with	more	than	5000	lines	of	code.	Variable	names	were	
three	letters	maximum	and	without	comments	or	documentation.	All	this	poses	difficulties	
for	developers	to	comprehend	the	code	by	reading	it	may	have	contributed	to	leaving	the	
code	in	Fortran	and	as	logs	show	in	fact	even	untouched	for	almost	a	decade.		

4.3.4 External	libraries	
The	ATLAS	software	uses	in	the	order	of	100	different	external	libraries.	Most	of	these	

libraries	are	rarely	used,	but	some	account	 for	a	significant	amount	of	 time	spent.	These	
include	the	GCC	standard	math	library	for	trigonometric	functions	in	which	about	14%	of	
total	runtime	was	spent	at	the	beginning	of	LS1	[12].	Another	external	library	used	exten-
sively	was	the	memory	allocator	with	about	10%	runtime	spent.	

Allocator	and	standard	library	provide	functions	the	vast	majority	of	applications	re-
quire,	 which	 is	 why	 many	 alternative	 implementations	 for	 these	 functions	 exist,	 with	
varying	 performance.	 Some	 libraries	 are	 tailored	 to	 specific	 scenarios,	 e.g.	 some	 math	
libraries	 are	 optimized	 to	 perform	 well	 for	 the	 execution	 of	 the	 same	 operation	 many	
times	over	or	for	allocation	of	large	blocks	without	the	need	to	free	them	quickly	in	case	of	
allocators.	 Some	 libraries	 provide	 the	 full	 API	 of	 the	 library	 they	 seek	 to	 replace	 while	
others	 just	 provide	 alternative	 implementations	 for	 certain	 functionality.	 Either	 case	
allows	 replacing	 the	 functionality	 by	 preloading	 the	 new	 library.	 A	 preloaded	 library	 is	
given	higher	preference	than	other	libraries	when	locating	a	particular	function.	This	way,	
functions	 provided	 by	 this	 library	 will	 be	 executed	 instead	 of	 functions	 with	 the	 same	
signature	 in	 other	 libraries.	 Preloading	doesn’t	 require	 any	 code	 changes	but	 can	be	 set	
when	running	the	program	but	some	libraries	cannot	reach	peak	performance	if	preloaded	
because	they	cannot	be	inlined	by	the	compiler.	

A	 third	 library	 is	 the	CLHEP	 [74]	 library,	whose	 linear	 algebra	 functions	 are	heavily	
used	for	extrapolation.	The	CLHEP	replacement	is	discussed	in	4.3.5	and	5.3.	
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4.3.5 Linear	algebra	operations	
Linear	 algebra	 functions	 from	 the	 CLHEP	 library	 were	 responsible	 for	 8%	 of	 the	

runtime	 [12].	 Linear	 algebra	 operations	 are	 required	 for	 extrapolation	 to	 navigate	 the	
geometry	of	the	ATLAS	detector,	to	compute	least	square	track	fits	and	for	Kalman	filter-
ing.	This	has	to	be	done	many	times	for	each	track,	e.g.	every	extrapolation	step	to	gener-
ate	tracks	from	space	points	or	calculate	particle	trajectories	in	simulation	is	often	only	a	
few	millimetres	 through	 the	detector.	 CLHEP	was	written	 and	maintained	by	CERN,	 but	
development	has	been	discontinued	except	 for	bug	fixes,	making	this	 library	a	candidate	
for	 replacement.	 Unlike	 the	 previous	 examples	 of	 external	 libraries,	 CLHEP,	 short	 for	
“Class	 Library	 for	 High	 Energy	 Physics”,	 is	 highly	 specialized,	 such	 that	 no	 replacement	
with	a	sufficiently	similar	interface	exists.	Alternative	libraries	provide	similar	functionali-
ty,	but	with	a	different	API,	requiring	code	changes	everywhere	the	library	is	used.	Using	a	
wrapper	 to	mimic	 CLHEP	was	 not	 possible	 on	 the	 tested	 replacement	 libraries	 because	
their	 member	 classes	 interact	 differently	 from	 CLHEP.	 Exchanging	 the	 linear	 algebra	
functions	only	 in	 the	main	 contributors	 is	 infeasible	 as	 there	 are	no	hot	 spots	of	CLHEP	
usage,	 respectively	 the	main	contributors	do	not	amount	 to	a	significant	 fraction.	There-
fore,	only	a	large-scale	intervention	can	lead	to	significant	gains.	Analysis	of	a	reconstruc-
tion	 job	 [12]	 with	 the	 Intel	 Pin	 tool	 [75]	 shows	millions	 of	 Vectors	 and	Matrices	 being	
created	 and	 hundreds	 of	 thousands	 of	 matrix-matrix	 and	 matrix-vector	 operations,	 see	
Table	3.	
	
Operation	Type	 Dimension	1st	Arg.	 Dimension	2nd	Arg.	 Calls	per	Event	
Matrix*Matrix	 3	x	3	 3	x	3	 29333	
Matrix*Matrix	 3	x	2	 2	x	2	 28139	
Matrix*Matrix	 3	x	5	 5	x	5	 13003	
Matrix*Vector	 5	x	3	 3	 23676	
Matrix*Vector	 3	x	5	 3	 11802	
Matrix*Vector	 1	x	5	 5	 4718	
Table	3:	Matrix	and	vector	operations	per	event	in	a	reconstruction	job	on	a	Run	2	
event	with	 release	 17.2.7.9.	 Note	 that	 CLHEP	 has	 different	 classes	 for	 vectors	 and	
matrices	leading	to	the	fact	that	the	measured	1x5*5(x1)	operation	is	not	a	vector-
vector	operation	but	a	matrix-vector	operation.	
	

4.4 Time	per	Tracking	Step	in	Different	Pileup	Scenarios	
In	this	section	I	analyze	the	time	of	different	tracking	steps	for	different	pileup	scenar-

ios	and	predict	their	impact	for	future	high	pileup	scenarios.	The	three	steps	are	seeding,	
tracking	and	ambiguity	solving.	I	measured	the	average	over	100	events	for	each	step	for	
different	pileup	scenarios	and	fitted	curves	through	each	step,	such	that	their	behavior	in	
higher	pileup	scenarios	can	be	predicted.	Knowing	the	runtime	of	each	intermediate	step	
from	seed	creation	 to	ambiguity	solving	and	 the	number	of	 combinations	 in	each	of	 this	
step	allows	visualizing	which	step	is	dominant	in	which	scenario,	and	how	improving	the	
step	impacts	the	total	runtime	at	different	pileup	scenarios.	

Figure	 36,	 Figure	 37	 and	 Figure	 38	 show	 curves	 fitted	 through	multiple	 datapoints,	
predicting	the	impact	of	pileup	for	different	algorithms.	The	plots	show	the	created	num-
ber	 of	 output	 as	 a	 function	 of	 pileup	 and	 runtime	 as	 a	 function	 of	 pileup.	 The	2nd	 order	
function	 agrees	 very	 well	 with	 the	 measured	 data	 and	 visualizes	 that	 the	 algorithm’s	
runtime	 is	 not	 linear	with	 the	 event	 pileup.	 Algorithm	 analysis	 suggests	 an	 even	 higher	
complexity,	and	tests	with	higher	pileup	suggest	an	even	steeper	curve,	but	testing	condi-
tions	were	different	such	that	they	could	not	be	included	in	this	analysis.	

Stacking	the	data	from	the	different	plots	shows	the	extrapolated	development	of	the		
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Figure	36:	2nd	Order	 fit	 to	measured	data	points	of	data	relevant	 for	seeding	per-
formance.	 The	 left	 graph	 shows	 the	 time	 spent	 in	 the	 seed	 finding	 for	 different	
pileup	scenarios.	The	right	graph	shows	the	number	of	seeds	generated	in	different	
pileup	 scenarios.	 Both	 graphs	 show	 that	 the	 runtime	 increases	 unsustainably	 for	
very	high	pileup	scenarios.	

	
Figure	37:	The	equivalent	data	shown	for	the	Seeding	in	Figure	36	is	shown	here	for	
the	track	finding.		

whole	 tracking	 timing	 up	 to	 events	with	 200	 pileup	 interactions	 in	 Figure	 39.	 The	 first	
observation	 is	 the	 clear	 dominance	 of	 the	 tracking	 step	 over	 the	 seeding	 and	 ambiguity	
solving,	which	apparently	 increases	with	higher	pileup.	 It	 also	 shows	 that	 the	ambiguity	
solving	takes	up	a	much	larger	share	at	smaller	pileup	scenarios	than	at	200	pileup	events.	
This	 extrapolation	 assumes	 a	 nearly	 linear	 growth	with	 the	number	 of	 output	 combina-
tions.	Correlation	between	the	measurements	of	timing	and	combinations	is	above	0.999	
for	 both	 seeding	 and	 tracking.	 This	 assumption	 allows	 to	 increase	 or	 decrease	 the	 time		
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Figure	 38:	 Timing	 and	 tracks	 accepted	 for	 the	 ambiguity	 solver	 fitted	 with	 a	
trendline.	The	number	of	tracks	accepted	does	not	increase	linearly,	indicating	that	
a	higher	number	of	fake	tracks	is	accepted.	The	number	of	tracks	accepted	does	not	
influence	any	of	the	analyzed	algorithms	such	that	the	correlation	between	the	two	
curves	is	not	important.	The	number	of	tracks	increases	linearly	with	higher	pileup,	
but	with	80	pileup	a	 sharp	 increase	can	be	observed.	This	 suggests	 the	Ambiguity	
finder	cannot	distinguish	real	tracks	and	fakes	at	higher	detector	occupancy.	

	
Figure	 39:	 Extrapolation	 of	 measured	 times	 of	 each	 tracking	 step	 to	 high	 pileup	
scenarios	with	up	to	200	pileup	interactions	per	event.	The	tracking	is	expected	to	
take	more	than	half	of	the	total	runtime	for	events	with	200	pileup	interactions.	
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Figure	40:	The	effect	of	doubling	the	runtime	for	seeding	while	halving	the	number	
of	created	seeds.	While	the	total	runtime	is	slightly	reduced	for	high	pileup	scenari-
os,	the	seeding	step	is	dominating	the	algorithm	chain.	

taken	per	combination	and	change	the	number	of	outputs	and	observe	the	effects	on	the	
total	runtime.	If	some	theoretical	optimization	was	able	to	reduce	the	number	fake	seeds	
by	 half,	 while	 at	 the	 same	 time	 doubling	 the	 runtime,	 the	 time	 of	 the	 subsequent	 algo-
rithms	decreases.	Overlaying	these	graphs	shows	if	it	results	in	an	overall	gain	or	not.	

The	tracking	algorithm	chain	shown	in	Figure	40	shows	that	such	a	change	could	re-
duce	 the	 total	 runtime	by	a	 small	margin,	but	 it	would	also	 shift	 the	weight	of	 the	most	
expensive	 algorithm,	 which	 in	 ATLAS	 currently	 is	 the	 tracking	 to	 the	 seeding.	 Such	 a	
change	could	be	desirable	as	the	seeding	does	not	have	complicated	bookkeeping	mecha-
nisms	which	prevent	the	parallelization	of	this	step.	

4.5 	Dependencies	of	the	ATLAS	Reconstruction	
Most	Athena	Algorithms	in	a	reconstruction	job	are	part	of	a	dependency	chain.	Their	

input	comes	from	another	Algorithm	and	their	output	serves	as	input	for	a	next	Algorithm.	
Communication	between	the	different	steps	of	 the	algorithm	chain	 is	done	via	the	Store-
Gate	service	by	allowing	Algorithms	to	read	and	write	data	using	this	service.	An	ATLAS	
script	 allows	 observing	 which	 Algorithm	 writes	 and	 reads	 which	 data	 to	 construct	 a	
dependency	graph.	Some	Algorithms	bypass	StoreGate	by	communicating	through	shared	
Tools	(violating	ATLAS	coding	rules).	To	achieve	a	more	complete	picture	I	modified	Tools	
that	are	known	to	be	(ab)used	for	this	purpose,	 logging	which	Algorithm	accesses	which	
data	they	hold.	The	combined	graph	from	both	monitoring	methods,	shown	in	Figure	41,	
does	not	 show	all	modules	 in	 the	 chain	but	only	 those	communicating	or	writing	a	 final	
output.	The	graph	nonetheless	gives	an	impression	of	the	complex	dependencies	in	recon-
struction.	Reconstruction	 consists	 of	more	 than	600	modules	 interacting,	most	 of	which	
are	 tools	 used	 by	 the	 algorithms	 in	 the	 shown	 chain.	 Some	 algorithms	 do	 work	 inde-
pendently	 of	 others,	 but	most	 take	 output	 from	 or	 create	 input	 for	 some	 other	module.	
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Figure	41:	Dependency	graph	of	all	algorithms	writing	and	reading	from	StoreGate	
with	Athena	release	17.2.7.9.	Boxes	 in	grey	denote	data	while	boxes	 in	red	denote	
Athena	 algorithms.	 The	 highlighted	 InDetSiSpTrackFinder	 is	 the	 most	 expensive	
algorithm.	It	depends	on	seven	other	algorithms’	output	and	writes	a	one	collection	
which	is	read	by	multiple	algorithms.	

This	defines	an	order	of	execution,	which	is	 important	for	parallelizing	algorithms.	Addi-
tionally	 to	 the	 dependencies	 observed	 through	 data	 access	 patterns,	 a	 deep	 call	 chain	
exists.	Most	algorithms	use	many	tools	and	services	and	each	of	the	tools	can	in	turn	also	
use	tools	and	services,	which	are	not	shown	in	the	graph	if	they	do	not	access	data	through	
the	communication	service	StoreGate.	

4.5.1 Dependency	and	Intra-Event	Parallelizability	Study	of	ID	Algo-
rithms	

The	Athena	 framework	 is	based	on	 the	Gaudi	 framework	 that	was	developed	by	 the	
LHCb	 experiment	 in	 1998	 [76],	 ten	 years	 before	 the	 inauguration	 of	 the	 LHC,	 not	 yet	
foreseeing	the	developments	in	computing	hardware	and	in	the	performance	of	the	LHC.	
By	2005,	 leading	scientists	designing	 the	CERN	computing	grid	assumed	that	clock	rates	
would	increase	for	far	longer	than	they	did	and	that	multicore	CPUs	would	not	enter	mass	
market	[40].	This	is	why	Gaudi	and	Athena	are	designed	for	sequential	execution	of	events,	
and	why	the	algorithm	chain	for	reconstruction	has	been	designed	and	optimized	without	
parallelism	 in	mind.	Many	of	 the	 reconstruction	 algorithms	have	been	developed	before	
ATLAS	was	built,	before	parallel	programming	had	entered	the	server	market.	This	lead	to	
the	current	sequential	model	processing	an	event	fully	before	starting	to	process	the	next	
event	within	 one	 Athena	 instance.	Within	 the	 chain,	 each	 algorithm	 processes	 an	 event	
before	passing	its	output	 into	the	next	algorithm.	The	full	dependency	chain	of	ID	recon-
struction	 contains	 39	 communicating	 algorithms,	 creating	 complex	 dependencies.	 It	
should	 be	 noted	 that	 the	 ID	 reconstruction	 consists	 of	 many	more	modules,	 as	 each	 of	
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Figure	42:	Dependency	graph	of	 ID	algorithms	accessing	StoreGate.	Algorithms	on	
the	critical	path	are	colored	red	and	modules	not	on	the	critical	path	are	green.	The	
data	collections	are	depicted	in	grey.	Connections	to	a	data	collection	coming	from	a	
module	left	of	it	means	the	module	is	writing	to	it	while	a	connected	module	right	of	
the	data	 collection	 is	 reading	 it.	 The	 graph	 shows	 the	modules	 are	 strongly	 inter-
connected	 leading	 to	 many	 modules	 being	 part	 of	 the	 critical	 path.	 Tested	 with	
Release	17.2.9.7.	

	

these	algorithms	is	at	the	top	of	a	deep	call	chain.	With	my	experience	of	having	analyzed	a	
limited	 number	 of	 algorithms	 I	 estimate	 each	 algorithm	 uses	 around	 ten	 tools	 and	 ser-
vices,	which	would	mean	hundreds	of	modules	are	involved.	The	dependency	graph	of	the	
ID	 modules	 accessing	 StoreGate	 in	 Figure	 42	 has	 the	 critical	 path	 highlighted.	 The	
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Figure	 43:	 Dependencies	 of	 the	 full	 ID	 algorithm	 chain	 by	 number	 and	 by	 time	
spent.	17	of	the	39	algorithms	are	part	of	the	ID	chain	but	they	make	up	at	least	the	
measured	95%	of	 the	 ID	 reconstruction	 time.	 Some	dependencies	may	have	been	
lost	due	 to	 the	 (discouraged)	usage	of	Tools	 to	 communicate	 instead	of	StoreGate.	
Adding	 these	 modules	 may	 lead	 to	 an	 even	 larger	 fraction	 of	 algorithms	 on	 the	
critical	path.	
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Figure	 44:	 PixelClusterization	 call	 chain	 of	 Tools	 and	 Services.	 The	 Services	 call	
chain	is	not	resolved	any	further.	

critical	path	is	defined	as	the	path	of	modules	with	sequential	dependencies	that	takes	the	
longest	time	to	execute.	17	of	the	39	algorithms	are	part	of	the	critical	path.	I	combined	the	
graph	with	the	algorithm	timings	using	Run	1	ttbar	events	to	generate	a	typical	workload.	
A	clear	dominance	of	the	critical	path	shows	as	depicted	in	Figure	43.	With	around	95%	of	
the	time	spent	in	algorithms	with	sequential	dependency,	a	maximum	of	5%	of	the	ID	time	
can	be	saved	by	running	algorithms	in	parallel	within	one	event.	The	most	cost	intensive	
algorithms	use	bookkeeping	mechanisms	which	order	 the	 input	data,	 such	 that	 they	can	
only	 run	 after	 the	 previous	 algorithm	has	 generated	 all	 its	 output.	 A	 simplified	 chain	 of	
algorithms	for	the	Inner	Detector	reconstruction	doing	the	most	compute	intensive	work	
is	explained	below	and	their	conceptual	similarities	and	differences	important	for	parallel-
ization	stressed.	

Within	ID	reconstruction,	data	formation	is	the	first	step,	which	prepares	data	for	fur-
ther	 processing	 by	 other	 algorithms.	 It	 takes	 the	 raw	data	 from	 the	 detector	 and	 trans-
forms	it,	resolving	derivable	information.	

First	 is	 the	PixelClusterization,	which	takes	all	pixels	 that	measured	a	charge	deposit	
over	threshold	during	one	event.	Adjacent	measurements	are	joined	to	clusters,	which	are	
assumed	 to	 stem	 from	 at	 least	 one	 particle.	 Clusters	 can	 be	 split	 into	multiple	 clusters	
depending	 on	 shape	 and	 charge	 deposit	 or	 are	 considered	 to	 stem	 from	more	 than	 one	
particle.	 The	 distance	 from	 the	 interaction	 region	 is	 a	 major	 factor	 to	 distinguish	 the	
measurements	of	multiple	particles.	The	 IBL	 layer,	which	 is	closest	 to	 the	proton-proton	
interactions,	has	the	highest	resolution	with	6	million	readout	channels.	Clusterization	for	
the	SCT	 is	simpler	because	each	strip	only	has	 two	neighbors	 instead	of	 the	eight	neigh-
bors	in	the	grid-like	structure	of	the	Pixel	detector.	The	data	formation	for	the	TRT	is	the	
conversion	of	measurements	to	drift	circles.	There	is	no	clusterization	for	the	TRT.	All	of	
the	 above	 tasks	 can	 be	 executed	 in	 parallel	 by	 dividing	 the	 detector	 in	 regions,	making	
sure	 no	 detector	modules	 are	 shared,	 these	 tasks	 require	 no	 synchronization.	 The	 Pixel	
detector	 consists	 of	 1744	 modules,	 the	 SCT	 has	 15912	 modules	 and	 for	 the	 TRT,	 each	
straw	can	be	operated	on	independently.	The	data	preparation	accounts	for	around	4%	of	
reconstruction	 runtime	 in	 a	 Run	 2	 event	 as	 shown	 in	 the	 measurements	 presented	 in	
Subsection	4.1.2.	The	 largest	 fraction	of	 time	of	 the	data	preparation	 is	 spent	 in	 the	Pix-
elClusterization	due	to	the	more	complex	algorithms.	Parallelizing	over	all	pixel	modules	
would	be	sufficient	to	fully	utilize	even	manycore	architectures	and	reduce	the	sequential	
PixelClusterization	time	to	insignificance.	In	an	attempt	to	parallelize	this	step,	I	started	by	
rewriting	the	PixelClusterization	algorithm	to	be	thread	safe.	The	PixelClusterization	uses	
multiple	 Tools	 and	 Services,	which	 have	 to	 be	 adjusted	 for	 thread	 safety	 themselves	 or	
guarded	with	mutexes.	The	tools	could	not	be	guarded	by	mutexes	without	compromising	
performance.	The	Tools	use	other	Tools	and	Services	in	turn,	Figure	44	shows	the	call	tree	
omitting	 the	data	 structures.	Athena	 foresees	 access	 to	Tools	 and	Services	 through	han-
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dles,	which	automatically	make	the	tools	mutable.	All	Tools	themselves	also	have	mutable	
member	variables.	The	complex	structure	and	the	small	expected	return	finally	made	me	
abandon	 the	project,	 but	 it	 showed	 thread	 safety	 cannot	 quickly	 be	 achieved	by	 a	 small	
work	 force	 in	 the	 current	 state,	 even	 on	 such	 a	 comparably	 simple	 processing	 step.	 It	
requires	 involving	 the	 various	module	 developers,	 they	 have	 to	 contribute	 a	 significant	
amount	of	work	and	have	to	be	educated	to	program	in	a	thread	safe	way.	This	will	happen	
when	 developers	 are	 asked	 to	 get	 their	 software	 ready	 for	 AthenaMT,	 which	 requires	
thread	safe	modules	as	presented	in	Subsection	4.6.	Once	thread	safety	of	a	full	call	chain	
of	 some	 algorithm	 is	 achieved,	 parallelization	 schemes	 as	 naïve	 as	 the	 presented	 ones	
promise	high	degrees	of	parallelism	with	low	implementation	and	maintenance	effort.	

For	 SCT	 and	 Pixel	 detector,	 the	measurements	 are	 converted	 to	 space	 points	 in	 the	
space	point	formation.	Space	points	contain	the	2D	location	on	its	detector	surface	and	an	
error	matrix.	For	SCT	the	space	point	 formation	consists	of	 the	combination	of	SCT	clus-
ters	 from	 the	 two	 layers	 per	 detector	 element.	 Strip	 clusters	 of	 two	 strip	 layers	 glued	
together	are	combined	to	one	space	point	if	both	clusters	have	measurements	in	the	same	
region.	Due	to	the	tilt	of	two	layers	with	respect	to	each	other,	this	area	will	be	very	small	
yielding	 an	 accurate	 2D	measurement	 on	 the	 detector	 element.	 For	 Both	 SCT	 and	 Pixel	
detector,	the	2D	locations	on	the	detector	element	and	the	location	of	the	detector	element	
can	be	combined	to	establish	a	space	point’s	3D	location.	The	drift	circles	from	the	TRT	are	
converted	to	drift	circles	instead,	reflecting	the	location	ambiguity	around	the	central	wire	
and	the	missing	measurement	 in	wire	direction.	Similar	to	the	clusterization,	paralleliza-
tion	 could	 be	 achieved	 by	 creating	 tasks	 for	 each	 detector	module	 of	 the	 Pixel	 and	 SCT	
detector.	

The	pattern	recognition	 combines	 the	 space	 points	 in	 different	ways	 to	 prepare	 and	
build	 the	 tracks.	 This	 is	 the	 most	 computationally	 expensive	 reconstruction	 step.	 It	 is	
explained	in	Section	2.7	in	detail.	

The	seed	finding	and	combinatorial	track	finder	doesn’t	allow	naïve	parallelization	ap-
proaches	 such	 as	 the	 ones	mentioned	 before.	 Together	 they	 account	 for	 46%	 of	 the	 ID	
reconstruction	runtime	in	a	Run	2	event.	It	is	therefore	the	most	important	step	to	paral-
lelize,	albeit	a	very	complex	one.	It	keeps	track	of	measurements	already	used	to	create	a	
track	candidate	to	avoid	reusing	them,	reducing	the	complexity	of	this	step.	This	prevents	
parallelizing	indistinctly	over	the	combinations.	Though,	a	parallelization	would	be	possi-
ble	 over	 regions,	 maintaining	 the	 bookkeeping	 locally	 for	 each	 region	 but	 reusing	 the	
measurements	of	tracks	crossing	region	borders.	The	clean-up	of	the	additionally	generat-
ed	 combinations	 due	 to	 the	 lack	 of	 bookkeeping	 in	 the	 cross-border	 regions	 could	 be	
resolved	 in	 an	 additional	 step.	 Critical	 for	 this	 approach	 is	 the	 number	 of	 cross-border	
combinations,	because	it	cannot	be	reduced	by	bookkeeping.	A	higher	degree	of	parallel-
ism	therefore	would	lead	to	a	higher	amount	of	work	done	in	vain,	such	that	the	degree	of	
parallelism	 is	 limited	 as	 long	 as	 bookkeeping	 is	 important	 to	 reducing	 the	 number	 of	
combinations.	As	 shown	 in	 Section	4.7	 it	 loses	 importance	with	higher	pileup	 scenarios.	
Approaches	to	parallelize	over	regions	are	presented	in	Chapter	6.	

The	ambiguity	 solving	step	 took	25%	of	 the	 ID	reconstruction	runtime	with	a	Run	2	
event.	Efficient	parallelization	of	this	step	is	particularly	difficult	because	of	the	large	role	
the	bookkeeping	plays.	A	similar	scheme	to	sort	 tracks	by	regions	could	be	employed	as	
for	 the	 combinatorial	 track	 finder.	 Sorting	within	 each	 region	 by	 rating,	 shared	 clusters	
only	exist	for	tracks	crossing	a	region.	A	second	sequential	step	could	compare	the	remain-
ing	tracks	for	duplicates	from	tracks	crossing	region	borders.	

Due	to	the	sequential	nature	of	Athena,	parallelization	within	the	Athena	framework	is	
only	feasible	over	the	data	of	a	single	event.	Fortunately,	all	expensive	algorithms	iterate	
over	 set	 of	 data	 large	 enough	 to	 make	 parallelization	 within	 an	 event	 feasible.	 The	
bookkeeping	some	algorithms	do	to	reduce	complexity	could	be	broken	down	into	smaller	
parallelizable	segments	with	as	 little	overlap	as	possible	and	comparing	the	results	 from	
neighboring	segments	with	one	another	in	a	second	step.	A	trade-off	between	paralleliza-
tion	and	additional	work	due	to	a	higher	number	of	segments	needs	to	be	found.	
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Figure	45:	Using	the	requested	collection	names,	the	underlying	Whiteboard	behind	
the	StoreGate	Service	can	resolve	algorithm	dependencies	and	schedule	algorithms.	
The	 dependencies	 are	 used	 to	 create	 precedence	 constraints	 and	 allow	 parallel	
execution	of	unrelated	algorithms.	Manually	specifying	the	order	of	execution	is	not	
necessary.	

4.6 Caveats	for	Parallel	Processing	in	the	Reconstruction	
The	ATLAS	software	suffers	from	problems	of	many	grown	solutions,	which	also	affect	

parallelizability.	 The	 framework	 has	 been	 designed	 without	 parallelism	 in	 mind	 and	
algorithms	have	been	optimized	for	sequential	execution.	AthenaMT	tries	to	conquer	some	
of	these	limitations	without	requiring	a	structural	change	in	the	algorithms.	Parallelism	is	
achieved	 by	 running	 multiple	 events	 in	 a	 pipelining	 fashion	 and	 running	 algorithms	 in	
parallel	that	are	independent.	AthenaMT	requires	the	dependency	graph	of	algorithms	and	
exploits	 that	 algorithms	are	 required	 to	 communicate	using	 StoreGate.	 In	multithreaded	
Gaudi,	 the	 storage	mechanism	behind	 the	 StoreGate	 service	 has	 been	 reimplemented	 to	
monitor	 read	 and	 write	 accesses,	 using	 it	 to	 determine	 satisfied	 dependencies	 without	
having	 to	 manually	 specify	 the	 order	 of	 execution,	 see	 Figure	 45.	 A	 problem	 with	 this	
approach	is	that	some	algorithms	do	not	write	out	their	whole	output	at	once	but	create	
empty	containers	they	fill	at	a	 later	point.	The	whiteboard	doesn’t	see	the	content	of	 the	
containers	and	assumes	the	dependency	is	satisfied	as	soon	as	the	container	is	first	creat-
ed.	 These	 algorithms	would	 need	 to	 be	 changed	 to	 be	 usable	with	 AthenaMT,	 as	would	
algorithms	 that	 communicate	 through	 other	 non-foreseen	means	 such	 as	 shared	 Tools.	
Another	 parallelization	 approach	 supported	 by	 AthenaMT	 is	 to	 run	 multiple	 events	 in	
parallel	on	the	same	Algorithms,	which	either	requires	these	algorithms	to	be	thread	safe	
or	 to	 be	 cloned.	 Unfortunately,	 many	 functions	 that	 are	 marked	 as	 const	 use	 mutable	
variables	 that	 affect	 the	 result.	 This	 requires	 even	 seemingly	 simple	 parallelizations	 to	
examine	 the	 full	 chain	 of	 tools	 and	 algorithms	used	 for	mutables.	 The	 cloning	 approach	
doesn’t	 have	 these	 problems,	 but	 requires	 manual	 implementation	 and	 handling	 of	 the	
multiple	 instances	in	contrast	to	the	fully	transparent	copy-on-write	forking	of	multipro-
cessing	used	in	AthenaMP.	Additionally,	the	expected	gains	for	reconstruction	through	in-
event	 algorithm	 parallelism	 are	 relatively	 low	 as	 shown	 Section	 4.5.1.	 The	 AthenaMP	
framework	 supporting	 forking	 processes	 with	 no	 changes	 required	 on	 the	 modules	 is	
already	available	and	is	used	for	production	during	Run	2.	
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write collection X read collection X 
write collection Y
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Algorithm B
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Figure	 46:	 Seeds	 rejected	 before	 extrapolation	 over	 the	 course	 of	 one	 ttbar	 event	
with	 40	 proton-proton	 collisions.	 Each	 data	 point	 stands	 for	 100	 analyzed	 seeds.	
The	 spike	 in	 the	 middle	 stems	 from	 a	 different	 type	 of	 seed	 which	 has	 stricter	
criteria	to	be	used	for	extrapolation.	

	
Figure	47:	Number	of	 tracks	created	over	the	course	of	one	event.	Each	data	point	
stands	for	100	analyzed	seeds.	Initially,	each	seed	has	a	higher	probability	to	result	
in	 a	 track	 while	 in	 the	 end	 only	 few	 tracks	 are	 found.	 This	 is	 both	 due	 to	 the	
bookkeeping	and	because	probable	fake	seeds	have	been	sorted	to	be	at	the	end.	

4.7 Inyluence	of	Bookkeeping	in	Tracking	in	Run	2	Production	
The	bookkeeping	in	the	tracking	step	of	the	reconstruction	has	been	introduced	during	

Run	 1	 to	 avoid	 reconstructing	 tracks	 that	 have	 already	 been	 found,	 because	 the	 recon-
struction	requires	an	extrapolation	of	the	track	through	the	whole	Inner	Detector.	This	is,	
as	mentioned	 earlier,	 a	 very	 costly	 step.	 To	 achieve	 this,	 the	 space	 points	 of	 a	 seed	 are	
compared	with	the	measurements	of	all	 tracks	that	have	already	been	found,	and	only	 if	
the	number	of	measurements	of	the	seed	used	in	a	single	track	is	lower	than	a	threshold,		
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Figure	48:	Time	taken	per	100	seeds	over	the	course	of	one	event.	Average	time	per	
seed	is	higher	at	the	end	than	in	the	beginning	although	fewer	tracks	are	found	as	
Figure	 47	 shows,	 indicating	 that	 the	 bookkeeping	 does	 not	 reduce	 overall	 pro-
cessing	cost	at	later	stages.	

the	seed	is	used	to	perform	a	track	search.	The	seeds	are	sorted	such	that	the	probability	
to	find	a	track	is	higher	for	the	first	seeds,	to	maximize	the	impact	of	the	bookkeeping.	The	
comparison	 process	 becomes	 slower	 the	 more	 tracks	 have	 already	 been	 found.	 The	
bookkeeping	can	neither	prevent	fake	seeds	for	which	no	track	exists	from	being	extrapo-
lated.	No	previously	 found	 track	 can	be	 found	because	none	 exists	 for	 a	 fake	 seed,	 such	
that	 the	 extrapolation	 can	 only	 be	 stopped	 once	 the	 algorithm	 decides	 it	 cannot	 find	 a	
track.	The	bookkeeping	only	prevents	a	fake	seed	from	being	extrapolated	if	enough	of	its	
measurements	have	already	been	used	in	another	track.	

The	number	of	 fake	seeds	 increases	with	the	number	of	proton-proton	collisions	per	
event	as	shown	 in	Section	4.4,	much	 faster	 than	the	number	of	actual	 tracks,	which	only	
increases	linearly.	With	higher	pileup,	the	number	of	found	tracks	is	small	compared	to	the	
number	of	 fake	seeds.	Because	pileup	has	increased	many	times	over	since	the	introduc-
tion	 of	 this	 feature	 and	 because	 it	 prevents	 intra-algorithm	 parallelization	 as	 shown	 in	
Section	4.5.1,	I	wanted	to	analyze	its	effect	in	current	and	future	pileup	scenarios.	Instru-
menting	the	code	shows	that	while	initially	many	seeds	can	be	rejected,	this	number	drops	
the	 further	 the	 algorithm	 progresses	 to	 seeds	 which	 are	 not	 likely	 to	 yield	 a	 track,	 as	
shown	 in	 Figure	46	 and	Figure	47.	 The	 graphs	 show	aspects	 of	 the	 track	 finding	 over	 a	
single	 event	 with	 40	 proton-proton	 collisions.	 Although	 the	 number	 of	 found	 tracks	
reduces,	the	average	time	per	found	track	does	not	reduce	but	tends	to	increase,	as	Figure	
48	shows.	Comparison	of	how	much	time	is	spent	per	seed	in	the	100	seeds	represented	
by	the	first	data	point	and	in	the	100	seeds	represented	by	the	100th	data	point	of	Figure	
48	show	that	the	distribution	is	different.	As	Figure	49	shows,	of	the	first	100	seeds,	some	
seeds	 took	a	 lot	of	 time	to	process	while	others	 took	a	moderate	amount	of	 time.	As	 the	
seeds	are	 sorted	by	descending	order	of	 likelihood	 to	yield	a	 track,	 seeds	 that	 take	only	
little	processing	time	are	part	of	a	 track	which	has	already	been	found.	These	can	there-
fore	be	found	quickly	in	the	still	short	list	of	already	found	tracks.	The	distribution	of	the	
seeds	of	data	point	100	also	shown	in	Figure	49	has	much	smaller	tails.	For	these	seeds	the	
lookup	in	the	list	of	increased	size	is	performed,	but	the	exclusion	of	the	seed	is	much	less		
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Figure	49:	Distribution	of	processing	time	per	seed	for	the	first	100	seeds	and	100	
seeds	after	already	having	processed	10,000	seeds.	

	

Track	
Finder	
Unchanged	

Ambiguity	
Solver	
Unchanged	

Track	Finder	
No	
Bookkeeping	

Ambiguity	
Solver	No	
Bookkeeping	

pileup	of	40		 2315ms	 1283ms	 2733ms	 1271ms	
pileup	of	80	 14388ms	 5660ms	 15024ms	 5728ms	
pileup	of	140		 64528ms	 16099ms	 66976ms	 16533ms	

Table	 4:	 CPU	 performance	 with	 and	 without	 bookkeeping	 for	 Run	 2	 and	 future	
pileup	scenarios.	Test	run	with	1000	events	 for	40	pileup	collisions	per	event	and	
100	 events	 each	 for	 80	 and	 140	 pileup	 collisions	 per	 event.	 The	 advantage	 of	
bookkeeping	reduces	with	higher	number	of	pileup	collisions.	

likely	due	to	the	seed	sorting.	Extrapolation	takes	less	time	than	a	full	track	as	the	search	is	
stopped	 when	 not	 enough	measurements	 can	 be	 found.	 This	 is	 why	most	 seeds	 take	 a	
moderate	amount	of	time	to	be	processed.	

As	analyzed	in	Section	4.5.1,	this	bookkeeping	mechanism	is	blocking	parallelization	of	
this	 step.	 To	 analyze	 its	 impact,	 I	 profiled	 reconstruction	with	 bookkeeping	deactivated.	
This	cannot	negatively	affect	physics	performance,	as	without	the	exclusion	of	seeds	more	
tracks	can	be	 found,	but	not	 less.	Duplicates	are	not	a	problem	because	after	a	 track	has	
been	 found,	 it	 is	 always	 tested	 if	 this	 track	 has	 been	 found	 previously.	 The	 ambiguity	
solving	 after	 the	 tracking	 performs	 slightly	more	work	 because	 of	 the	 additional	 tracks	
that	 are	 found.	 Timing	measurements	 show	 that	 the	 ID	 track	 finding	 and	 the	 ambiguity	
solving	each	 take	 longer,	 see	depending	on	 the	number	of	pileup	 collisions,	 see	Table	4.	
The	same	measurements	show	that	the	effect	decreases	as	expected	with	higher	number	
of	 pileup	 collisions.	 Given	 that	 this	mechanism	 prevents	 parallelization	 of	 the	 track	 ex-
trapolation	 and	 yields	 especially	 for	 high	 pileup	 scenarios	 only	 low	 percentage	 gains,	
removing	it	may	be	acceptable	if	parallel	resources	would	otherwise	remain	unused.	

4.8 Conclusions	
The	analyses	presented	in	this	chapter	identified	several	optimizations	and	ruled	out	

others	or	showed	the	effort	required	to	perform	them.	The	critical	path	analysis	showed	
little	gains	can	be	achieved	from	parallelising	ID	reconstruction	algorithms	within	a	single	
event,	 which	 is	 one	 of	 the	 main	 features	 of	 AthenaMT.	 The	 results	 led	 to	 prioritizing	
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parallelization	within	individual	algorithms.	The	parallelizability	analysis	of	the	individual	
ID	reconstruction	steps	shows	parallelization	opportunities	 in	different	steps	and	where	
obstacles	for	parallelization	lie.		

While	optimizations	on	the	OS	have	shown	great	potential,	they	are	difficult	to	main-
tain	and	are	unlikely	to	be	included	for	ATLAS	as	the	infrastructure	common	to	all	experi-
ments	 would	 have	 to	 support	 it,	 which	 touches	 the	 interests	 of	 other	 experiments	 and	
institutes	providing	 the	computing	sites.	The	 focus	 for	optimizations	was	 instead	put	on	
intrusive	 and	non-intrusive	 replacement	 of	 libraries,	 refactoring	 of	 algorithms,	 changing	
algorithms	to	run	in	parallel	and	exchanging	algorithms	by	more	efficient	ones.	

Order	of	 implementation	should	be	 low	 to	high	effort	 to	achieve	 the	 largest	possible	
gain	as	quick	as	possible.	Long	running	projects,	such	as	replacing	the	CLHEP	library	need	
to	run	in	parallel	with	other	projects.	Some	optimizations	will	lead	to	touching	large	parts	
of	 the	 codebase	and	 reconstruction	 contains	unmaintained	 code,	 such	 that	 code	 cleanup	
should	 be	 conducted	 where	 outdated	 technologies	 or	 violations	 of	 the	 ATLAS	 coding	
standards	 are	 encountered.	 Some	 optimizations	 cannot	 be	 performed	without	 profound	
changes,	e.g.	changing	the	algorithm	flow	or	the	underlying	framework	or	acquiring	new	
hardware.	Breaking	backwards	compatibility	may	be	necessary	to	introduce	new	technol-
ogies.	

Optimizations	applied	during	the	writing	of	this	thesis	and	to	which	I	contributed	are	
presented	in	the	next	chapter.	The	main	focus	lies	on	the	side	of	the	own	software	and	the	
tools	and	libraries	it	uses,	which	promises	the	largest	gains	with	the	lowest	effort	and	cost	
to	implement	the	changes.	
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5 SOFTWARE	 INTEGRATION	 OF	
OPTIMIZATIONS	

This	chapter	describes	 the	software	projects	 to	 improve	 the	 reconstruction	software	
during	 LS1.	 The	 described	 projects	 differ	 much	 in	 effort	 required	 and	 improvement	
achieved.	Each	section	 in	 this	Chapter	discusses	one	or	 few	closely	 related	projects.	The	
first	subsection	describes	project	assessment	and	how	impact	was	predicted.	The	follow-
ing	subsection	describes	the	project	implementation	and	the	last	subsection	describes	the	
measured	or	estimated	 impact.	Tests	are	 run	with	Run	2	events	as	described	 in	Subsec-
tion	4.1.1	on	an	Intel	Nehalem	CPU	with	2.2	GHz	and	24	GB	memory	with	Scientific	Linux	
CERN	6	(SLC	6)	if	not	specified	otherwise.	

5.1 Impact	expectation	of	optimizations	
Independently	of	the	implementation	costs,	I	identified	three	core	points	for	an	impact	

analysis.	The	points	 are	 the	 immediate	 impact	on	 execution	 speed,	 the	 future	 impact	on	
the	 speed	 and	 the	 impact	 on	 maintainability.	 For	 most	 optimization	 efforts,	 immediate	
impact	 is	 the	main	motivation.	 For	 long-lived	projects	 such	as	 the	ATLAS	detector	 code,	
efforts	 to	 increase	 maintainability	 or	 to	 allow	 performance	 gains	 in	 future	 settings,	 i.e.	
with	different	data	or	with	a	different	framework,	pay	off	in	a	longer	perspective.	Simplify-
ing	 the	maintenance	of	deeply	 integrated	 libraries	 such	 that	 they	 can	be	exchanged	 in	 a	
single	 point	 may	 drastically	 reduce	 the	 cost	 of	 future	 optimizations	 such	 that	 one	 can	
expect	to	continue	to	gain	from	such	improvements.	

5.2 External	Library	replacement	

5.2.1 Assessment	
ATLAS	uses	various	external	libraries	that	have	been	in	place	for	many	years.	In	some	

of	 these	 libraries,	 significant	 time	 is	 spent.	 Three	 libraries	 totalling	 35.5%	of	 the	 recon-
struction	runtime	have	been	identified,	see	Table	5	with	tests	on	Scientific	Linux	CERN	5	
(SLC	 5)	 and	 release	 17.7.2.	 In	 collaboration	 with	 the	 ATLAS	 Performance	 Monitoring	
Board	 I	 conducted	measurements	showing	around	14%	reconstruction	runtime	spent	 in	
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libm	[12].	Significant	time	was	spent	throwing	floating	point	exceptions,	which	should	not	
occur	frequently,	and	in	case	of	occurrence	not	be	time	consuming,	as	this	did	not	include	
any	exception	handling.	15%	runtime	are	spent	in	the	memory	allocator	tcmalloc	version	
0.99.	 The	 CLHEP	 library,	which	 became	 a	 candidate	 for	 replacement	with	 the	 end	 of	 its	
support,	 showed	 to	 be	 responsible	 for	 6.5%	 of	 the	 reconstruction	 runtime	 in	my	meas-
urements.	Different	options	have	been	weighed	for	all	three	libraries,	due	to	the	complexi-
ty	of	replacing	CLHEP	it	is	described	separately	in	Section	5.3.	
	
	 Reconstruction	time	spent	in	library	
tcmalloc	0.99	 15%	
libm	 14.1%	
CLHEP	 6.5%	
Total	 35.6%	
Table	5:	 Libraries	with	a	huge	 impact	on	execution	 speed.	More	 than	one	 third	of	
reconstruction	runtime	is	spent	in	these	libraries.	

Math	library:	 The	 libm	math	 library	 provides	 implementations	 for	 floating	 point	mathe-
matical	operations	defined	for	the	C	standard	library	on	Linux.	For	ATLAS,	the	most	used	
and	most	 costly	 of	 these	 functions	 are	 the	 trigonometric	 functions	 and	 exponentiation.	
Because	the	API	of	these	functions	is	in	the	C	and	C++	standard,	they	are	very	widely	used.	
To	 allow	users	 to	 choose	 other	 implementations,	 other	 libraries	 have	 adopted	 the	 same	
API	and	provide	a	 subset	of	 the	 functionality	of	 libm.	Two	of	 these	 implementations	are	
VDT	and	IMF.	

VDT	 is	 open	 source	 and	 autovectorizable	 and	 provides	multiple	 implementations	 of	
some	trigonometric	and	exponential	 functions	 for	double	and	single	 floating	point	preci-
sion.	The	VDT	library	does	not	guarantee	IEEE	compliance,	but	with	on	average	less	than	1	
least	significant	bit	difference	between	libm	and	VDT	the	inaccuracy	of	VDT	is	acceptably	
small.	The	VDT	functions	can	be	inlined	to	avoid	function	calls	and	improve	autovectoriza-
tion.	It	promises	performance	improvements	of	a	factor	of	2	to	3	without	vectorization	and	
up	to	a	factor	of	ten	with	vectorization	[77].	Intel	Math	Library	(IMF)	provides	a	similar	set	
of	 functions	 and	 is	 IEEE	 compliant.	 Both	 IMF	 and	 VDT	 support	 the	 libm	 API,	making	 it	
possible	to	preload	these	libraries.	VDT	also	offers	faster	versions	of	these	functions	with	
severely	reduced	accuracy,	but	whether	they	can	be	used	would	have	to	be	decided	on	a	
case-by-case	basis	which	disallows	using	them	as	drop-in	replacement.	Running	tests	with	
both	 libraries	 by	 preloading	 shows	 that	 both	 IMF	 and	 VDT	 reduce	 the	 fraction	 of	 time	
spent	 in	 the	 trigonometric	 functions	 to	about	6%,	 see	Table	7.	We	chose	 IMF	due	 to	 the	
slight	 advantage	 over	 VDT.	 VDT	 additionally	 has	 the	 disadvantage	 of	 requiring	 physics	
validation	because	of	 its	non-IEEE-compliance.	 If	 after	 the	change	hot	 spots	 still	 take	up	
significant	 time	 in	 these	math	 functions,	 VDT	may	 offer	 higher	 gains	 by	 inlining	 and	 by	
removing	a	function	call	and	(if	the	application	permits)	from	autovectorization.	
	
	 exp	 cos	 sin	 Sincosf	 atanf	
Million	Calls	per	Event	 3.4	 2.5	 2.2	 2.1	 2.1	
Table	6:	Trigonometric	functions	with	the	highest	number	of	calls.	

	 libm	 IMF	 VDT	
Reconstruction	 Time	 Spent	 in	
Library	 14.1%	 6.0%	 6.4%	

Table	7:	Reconstruction	time	spent	in	each	library.	IMF	and	VDT	were	preloaded	to	
replace	 libm	 for	 this	 test.	 IMF	shows	slightly	better	performance	while	being	 IEEE	
compliant,	leading	ATLAS	to	using	IMF	for	production	during	Run	2.	

Memory	 Allocation:	 ATLAS	 used	 the	 allocator	 tcmalloc	 0.99	 during	 Run	 1,	 which	 was	
developed	by	Google	 for	multithreaded	 applications,	 reflected	by	 its	 name	which	 stands	
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for	 “thread	 caching	 allocator”.	 It	 implements	 sophisticated	 locking	 mechanisms	 which	
were	 not	 used	 in	 the	 single	 threaded	 ATLAS	 software.	 Tcmalloc	 is	 also	 faster	 in	 single	
threaded	 applications	 than	 the	 glibc	 version	distributed	with	 SLC	5,	 the	OS	used	during	
Run	1.	This	is	in	part	due	to	the	fact	that	tcmalloc	does	not	return	freed	memory	to	the	OS	
but	 manages	 memory	 internally,	 avoiding	 costly	 system	 calls.	 Tcmalloc	 0.99	 does	 not	
support	aligning	memory	regions,	such	that	vector	operations	lead	to	undefined	behavior.	
Newer	 versions	 of	 tcmalloc	 were	 available	 but	 had	 been	 dismissed	 in	 previous	 tests	
because	 of	 slightly	 higher	 memory	 requirements,	 which	 presumably	 stems	 from	 the	
memory	 alignment	 implemented	 in	 newer	 versions.	 The	 memory	 allocator	 distributed	
with	more	recent	Linux	distributions	such	as	SLC6	are	about	the	same	speed	as	tcmalloc.	A	
reliably	 faster	 memory	 allocator	 could	 not	 be	 found	 among	 ten	 allocators	 tested	 [78].	
Some	 allocators,	 such	 as	 jemalloc	 [79]	 were	 dismissed	 due	 to	 non-reproducible	 perfor-
mance	 results.	 Newer	 versions	 of	 tcmalloc	 lead	 to	 a	 slightly	 faster	 reconstruction	 but	
require	 about	 1%	 more	 memory	 because	 they	 return	 aligned	 memory	 unlike	 tcmalloc	
0.99.	 Tcmalloc	 2.1	 was	 chosen	 due	 to	 the	 reliably	 good	 performance	 and	 its	 focus	 on	
threading	 because	 several	 projects	 aim	 at	 using	multithreading	 in	 the	 ATLAS	 code.	 The	
slight	 increase	in	memory	usage	is	considered	acceptable	due	to	the	increased	limits	per	
job	on	the	grid,	which	is	now	at	4GB	since	LS1	as	opposed	to	2GB	before.	

5.2.2 Implementation	
Both	libm	and	malloc	have	a	well-defined	API	that	is	used	by	the	vast	majority	of	ap-

plications.	Due	to	their	widespread	use,	many	alternative	libraries	with	the	same	API	have	
been	implemented.	Preloading	them	avoids	changing	the	thousands	of	places	where	they	
are	used.	Including	the	preload	command	in	the	common	scripts	used	for	production	jobs	
allows	exchanging	the	libraries	again	later	on	easily.	

5.2.3 Immediate	and	Future	Impact	
For	a	Run	1	event	I	measured	6%	runtime	reduction	and	8%	for	a	Run	2	event	with	the	

new	math	 library	 and	 2%	 reduction	 for	 the	 allocator	with	 some	 types	 of	 Run	 2	 events.	
Actual	impact	on	a	job	may	vary	as	the	results	particularly	of	the	allocator	have	shown	to	
depend	strongly	on	the	test	case.	The	 improvements	could	not	have	come	from	autovec-
torization	 as	 the	 allocator	 is	 preloaded	 at	 runtime,	 during	 compile	 time	 GCC	 assumes	
stdcmalloc	 is	 used	 which	 would	 have	 led	 to	 undefined	 behaviour	 and	 possibly	 crashes	
with	tcmalloc	0.99,	as	this	version	did	not	yet	align	memory.	Therefore,	it	is	safe	to	assume	
that	autovectorization	does	not	grant	any	benefits	for	the	reconstruction	without	specifi-
cally	conditioning	the	code	to	vectorize	easily	enough	for	the	compiler	to	understand.	Yet,	
with	 the	 employment	 of	 autovectorizing	 libraries	 and	 empowering	 developers	 to	 create	
vectorizing	code,	there	might	well	be	additional	gain	come	from	this	change	in	the	future.	

To	 gain	 from	 future	 developments	 tests	 with	 other	 libraries	 can	 be	 performed	 by	
simply	 exchanging	 the	 preload.	 This	 is	 not	more	 difficult	 or	 easier	 than	 before,	 but	 the	
awareness	 of	 the	 importance	 of	 these	 libraries	 has	 increased.	 The	 original	 tests	 were	
conducted	with	 SLC	 5.	 Later	 I	 conducted	 tests	 on	 an	 SLC	 6	machine	 and	 the	 optimized	
post-LS1	 reconstruction	 software,	 again	 comparing	 the	 performance	 of	 libimf	 with	 the	
newer	version	of	 libm.	The	tests	showed	that	either	 library	makes	up	 just	about	2.5%	of	
the	 total	 reconstruction	 runtime,	 with	 negligible	 time	 spent	 in	 floating	 point	 exception	
handling,	 suggesting	 much	 of	 the	 time	 may	 have	 been	 spent	 due	 to	 a	 bug	 in	 the	 older	
version	of	libm	in	SLC	5.		
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5.3 Eigen	library	project	

5.3.1 Assessment	
The	 Class	 Library	 for	High	 Energy	 Physics	 (CLHEP)	 contributed	 around	 6.5%	of	 the	

total	 runtime	 of	 a	 reconstruction	 job	 in	 release	 17.7.2,	 see	 Table	 8.	 CLHEP	 is	 a	 library	
specifically	 written	 to	 support	 the	 needs	 of	 the	 high-energy	 physics	 community.	 It	 has	
been	developed	and	supported	by	the	community,	which	has	extended	it	with	new	func-
tionality	 as	 required.	 The	 CLHEP	 project	 has	 been	 put	 on	 halt	 for	 further	 development,	
providing	only	bug	fixes	[74].	This	means	that	the	library	cannot	profit	from	newer	archi-
tectures	the	same	way	a	library	developed	with	modern	architectures	in	mind	can.	Addi-
tionally,	 CLHEP	 was	 originally	 written	 more	 than	 20	 years	 ago	 and	 does	 not	 use	 tech-
niques	 developed	 in	 the	 meantime,	 such	 that	 performance	 is	 worse	 than	 that	 of	 many	
competing	 libraries.	Due	 to	 the	 specialized	application	of	 this	 library,	 a	modern	replace-
ment	with	similar	API	is	not	available.	The	highest	cost	of	CLHEP	operations	comes	from	
matrix	multiplications	as	well	as	other	matrix	operations	because	these	are	the	operations	
most	widely	 used	 in	 the	 ATLAS	 reconstruction.	 Therefore,	 a	 linear	 algebra	 library	with	
highly	 performant	 matrix	 and	 vector	 operations	 needs	 to	 be	 chosen	 to	 replace	 CLHEP.	
Three	 libraries	 claiming	 high	 efficiency	 and	 known	 to	 be	 in	 use	 by	 various	 scientific	 or	
industrial	 projects	 are	 listed	 below.	 These	 were	 considered	 as	 CLHEP	 replacement	 and	
their	performance	evaluated.	In	addition,	two	ATLAS	implementations	are	compared:	
	

1. Root	 [48]	 framework	 implementation	SMatrix,	which	 is	 the	de-facto	standard	 for	
CERN	physics	analysis	and	many	other	purposes		

2. Intel	Math	Kernel	Library	(MKL),	an	Intel	 library	for	 linear	algebra	implementing	
LAPACK	and	BLAS	[80].	

3. Eigen,	a	template	library	used	by	many	scientific	and	engineering	applications	e.g.	
Google’s	TensorFlow	or	Google’s	Ceres	[81].	

4. An	ATLAS	implementation	of	a	vectorized	4x4	matrix-matrix	multiplication	using	
SIMD	intrinsics.	

5. An	ATLAS	implementation	of	naïve	4x4	matrix-matrix	multiplication.	
	
The	ATLAS	matrix-matrix	multiplication	was	implemented	using	SIMD	intrinsics	only	for	
4x4	matrices.	A	comparative	 test	with	all	 libraries	shows	 in	Figure	50	 that	 the	 intrinsics	
implementation	outperforms	all	other	implementations	and	is	18	times	faster	than	CLHEP.	
Eigen	 is	second	best	with	twelve	times	 faster	than	CLHEP,	because	at	 the	time	Eigen	did	
not	yet	 support	AVX.	The	naïve	matrix	multiply	and	Root	were	5	and	4	 times	 faster	and	
MKL	was	slightly	slower	than	CLHEP.	MKL	is	optimized	for	use	with	large	matrix	sizes	and	
uses	the	same	codebase	for	large	and	small	matrices	while	Eigen	has	a	codebase	optimized	
for	each	small	and	large	matrix	sizes	[81].	Tests	with	5x3*3x5	matrix-	matrix	operations	
showed	Eigen	to	be	almost	twice	as	fast	as	Root’s	SMatrix	with	a	factor	of	6	over	CLHEP.	
MKL,	 which	 is	 optimized	 for	 large	 matrices,	 was	 the	 only	 implementation	 slower	 than	
CLHEP	 for	 the	 tested	 matrix	 dimensions.	 None	 of	 the	 libraries	 used	 vectorization	 with	
these	matrix	 dimensions,	which	 shows	 how	much	more	 efficiently	 these	 operations	 are	
implemented	 than	 in	 CLHEP	 or	MKL,	 even	without	 exploiting	 SIMD	 instructions.	Matrix	
and	Vector	sizes	are	mostly	between	2	and	5,	with	very	few	matrix	operations	with	larger	
dimensions	up	to	50x50	[12].	
Due	to	the	clear	lead	of	Eigen	matrix	operations	with	respect	to	the	other	libraries,	Eigen	
was	considered	for	closer	examination	and	comparison	with	CLHEP	and	the	requirements	
of	ATLAS.	While	some	geometry	operations	are	faster	in	Eigen	than	their	CLHEP	counter-
part,	some	operations	are	slower	by	a	factor	of	ten	and	more,	see	Figure	51,	although	some	
more	 common	 operations	 such	 as	 the	 transform	 are	 still	 faster.	 As	 shown	 in	 Table	 8,	
CLHEP	 geometry	 operations	 only	 make	 up	 a	 fraction	 of	 CLHEP’s	 runtime		
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Figure	 50:	 Comparison	 of	 4x4	matrix	multiplication	 of	 different	 implementations.	
Speedup	relative	to	CLHEP.	BasMult	is	a	naïve	matrix	multiplication	while	OptMult	
uses	AVX	instructions.	Plot	from	[82].	

contribution.	An	option	would	be	to	use	both	libraries	in	parallel,	each	only	for	operations	
where	 they	 are	 the	 respective	 fastest	 option.	 Considering	 the	 awkwardness	 of	 using	 a	
different	type	for	a	geometry	operation	the	results	of	which	will	be	used	in	matrix	opera-
tions	makes	 this	 option	 appear	 less	 favourable.	 Therefore,	 Eigen	was	 chosen	 to	 replace	
CLHEP	wherever	possible.	Later	measurements	 showed	 the	slower	geometry	operations	
to	be	negligible.		

5.3.2 Features	
Eigen	 comes	with	many	methods	 for	 geometrical	 transformations	and	matrix	opera-

tions	used	in	the	ATLAS	reconstruction.	Being	a	template	library,	it	can	be	extended	easily	
without	overhead,	and	provides	a	method	to	extend	the	functionality	by	own	functions	put	
in	place	directly	with	the	Eigen	native	functions.	This	allowed	to	implement	convenience	
functions	frequently	used	in	the	ATLAS	software.	

5.3.3 Integration	for	Athena	
CLHEP	 types	 and	 methods	 were	 used	 directly	 in	 many	 places	 throughout	 the	 ATLAS	
software.	Although	the	API	of	Eigen	and	CLHEP	are	similar,	it	was	necessary	to	modify	all	
lines	of	code	where	CLHEP	was	used	in	order	to	make	use	of	Eigen’s	functionality.	In	order	
to	facilitate	this	effort	for	future	changes,	we	designed	a	wrapper	interface	using	a	typedef	
to	 avoid	 any	 overhead.	 The	 wrapper	 function	 names	 mimic	 CLHEP	 where	 possible	 to	
minimize	the	necessary	code	changes	and	facilitate	the	transition	for	users.	The	wrapper	
also	allows	modifying	the	Eigen	types	(e.g.	double	or	single	precision)	or	to	replace	Eigen	
later	or	even	 just	parts	of	Eigen	 for	all	of	Athena	 in	a	 single	place,	because	 it	 avoids	 the	
need	 to	 reference	 Eigen	 directly.	We	 extended	 the	 Eigen	 functionality	 by	 implementing	
dozens	of	helper	functions	and	constructors	to	increase	the	similarity	between	Eigen	and	
CLHEP.	
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Figure	51:	Comparison	of	some	geometry	operations	in	Eigen	and	CLHEP.	Assigning	
the	rotation	matrix	and	the	translation	vector	to	the	transform	is	a	no-op	in	CLHEP,	
which	is	why	it	takes	no	time.	In	Eigen	a	rotation	is	internally	not	stored	in	matrix	
form.	

	
Type	 Total	Runtime	
Transform	 1.1%	
2D	Vector	 1%	
3D	Vector	 1%	
SymMatrix	 0.9%	
Rotation	 0.5%	
3D	Point	 0.4%	
Matrix	 0.2%	

Table	 8:	 Type	 of	 CLHEP	 operations	 and	 their	 contribution	 to	 reconstruction	
runtime.	Point,	Vector	and	Matrix	are	three	distinct	types	in	CLHEP.	Data	collected	
using	gperftools.	

The	migration	required	a	combined	effort	as	more	than	1000	packages	needed	to	be	
updated.	 In	 the	 course	 of	 this	 large-scale	 change,	 the	 ATLAS	 reconstruction	 Event	 Data	
Model	was	also	changed	(see	Section	5.5).	This	combined	effort	of	all	ATLAS	reconstruc-
tion	software	groups	 took	around	11	months.	A	caveat	with	CLHEP	was	 that	 translation	
objects,	 point	 objects	 and	 vector	 objects	 among	 others	 are	 of	 different	 type	 although	
internally	sharing	the	same	representation.	In	Eigen	these	are	all	of	the	same	type,	requir-
ing	to	specify	operations	that	differ	between	the	two	types	explicitly.	It	is	therefore	neces-
sary	to	migrate	function	calls	depending	on	the	type	they	were	used	with.	Another	prob-
lematic	change	was	that	Eigen	matrices	are	not	initialized	on	construction,	as	opposed	to	
CLHEP,	 which	 initializes	 unity	 matrices.	 Matrices	 that	 are	 later	 directly	 assigned	 some	
value	 do	 not	 need	 to	 be	 initialized,	 allowing	 the	 Eigen	 constructors	 to	 be	 faster	 than	
CLHEP	constructors.	Assert	functions	in	Eigen	allow	monitoring	access	to	these	uninitial-
ized	matrices,	avoiding	bugs	 that	would	be	otherwise	difficult	 to	 find.	The	changes	were	
first	 included	in	a	migration	release	parallel	 to	the	normal	development	release	so	other	
developments	would	not	be	affected.	Only	after	changes	were	tested	for	bugs,	 they	were	
moved	 to	 the	 development	 release	 version	19.0.X.	During	 the	migration,	 I	managed	 and	
coordinated	 the	 migration	 release,	 maintaining	 a	 wiki	 page	 to	 organize	 the	 order	 of	
packages	 to	 be	 changed	 and	 the	 persons	 assigned	 to	 do	 so.	 While	 migrating	 dozens	 of	
packages	myself,	I	setup	and	maintained	a	webpage	with	descriptions	of	common	pitfalls	
for	the	other	developers	involved	in	the	project.	

5.3.4 Immediate	and	Future	Impact	
Due	to	the	invasive	change	in	the	software,	multiple	projects	were	conducted	in	paral-

lel.	While	updating	the	code,	the	developers	were	asked	to	identify	other	unrelated	ineffi-

1 10 100 1000 10000 100000 1000000

Transform	Decomposition
Transform	Assignment

Vector	Transform
Inversion

Get	Rotation

CLHEP Eigen



Analysis	and	Optimization	of	the	Offline	Software	of	the	ATLAS	Experiment	at	CERN		
Robert	Johannes	Langenberg	-	December	2017	

	

Software	Integration	of	Optimizations	 	 	 73	

ciencies.	During	 the	migration,	 other	projects,	 developed	 in	parallel	 on	 the	development	
release,	were	also	included	in	the	release.	One	of	the	key	advantages	of	Eigen	is	the	inlin-
ing	of	 functions,	which	saves	 the	overhead	of	a	 function	call.	As	a	consequence,	 this	also	
means	 inlined	 functions	 cannot	 be	 profiled	 separately	 as	 they	 do	 not	 appear	 in	 the	 call	
stack.	 If	 the	 speedup	stayed	close	 to	what	was	measured	 in	 the	 tests	presented	 in	5.3.1,	
Eigen	 operations	 now	 use	 about	 1%	 of	 reconstruction	 time	 and	 therefore	 should	 have	
sped	up	the	runtime	by	approximately	5%.	An	impression	of	the	combined	speedup	of	all	
projects	during	 the	migration	can	be	 found	 in	 the	conclusions	 in	Section	5.7.	To	validate	
the	accuracy	delivered	by	Eigen	matches	CLHEP	I	compared	both	by	performing	a	transla-
tion	and	its	inverse	and	comparing	input	and	output.	Results	computed	with	Eigen	showed	
to	be	 equally	or	more	accurate	 than	CLHEP	 in	99.9%	of	 all	 cases	 and	 in	 the	other	 cases	
deviate	from	the	CLHEP	result	by	only	one	least	significant	bit.	

Maintainability	 was	 improved	 by	 creating	 a	 well-defined	 interface	 that	 allows	 ex-
changing	of	 the	 library	and	wrapping	other	 library’s	API	 to	 fit	ATLAS’	use.	The	wrapper	
eliminates	the	need	to	reference	Eigen	directly	and	thereby	also	centrally	allows	changing	
parameters	such	as	the	precision	to	test	impact	on	results	and	speed.	Additionally,	Eigen	
or	parts	of	Eigen	could	be	exchanged	more	easily	 in	a	potential	 future	library	change.	As	
compilers	 advance	 in	 optimization	 techniques	 such	 as	 autovectorization	 and	 inlining,	
switching	to	a	new	compiler	can	bring	further	automatic	improvements.	The	active	Eigen	
community	promises	a	modern	library	for	the	foreseeable	 future	while	 its	 license	allows	
ATLAS	to	customize	the	 library	with	extended	 functionality	or	by	exchanging	algorithms	
to	optimally	suit	the	requirements.	

5.4 Magnetic	Field	Service	

5.4.1 Assessment	
The	ATLAS	magnetic	field	service	is	used	to	provide	access	to	the	strength	of	the	mag-

netic	field	across	the	detector.	Measured	field	values	are	known	for	a	fine-grained	3D	grid	
of	 non-uniform	 size	 in	 cylinder	 coordinates.	 Requesting	 any	 point	 within	 the	 detector	
volume,	 the	 service	 loops	 over	 the	 map	 to	 find	 and	 retrieve	 the	 surrounding	 known	
measured	values	(the	so-called	bin)	and	interpolates	the	value	at	the	requested	point.	This	
service	is	used	by	both	simulation	and	reconstruction	and	contributed	8%	to	reconstruc-
tion	runtime	and	18%	to	simulation	runtime	with	release	17.2.	The	magnetic	field	service	
was	one	of	 the	 few	parts	of	 the	ATLAS	code	still	 in	Fortran77.	A	complete	rewrite	of	 the	
service	was	necessary	 to	not	 just	 facilitate	but	allow	maintenance.	The	code	had	no	self-
explanatory	variable	names	and	no	documentation;	 the	code	structure	was	highly	condi-
tional	and	contained	functions	with	thousands	of	lines	of	code.	A	long	callchain	converted	
values	 several	 times	 between	 cm,	 mm	 and	 meter	 and	 between	 kilo	 Tesla	 and	 Gauss,	
requiring	 a	 measurable	 amount	 of	 time.	 A	 rewrite	 allowed	 reducing	 the	 call	 chain	 and	
unify	 the	 access	 that	was	 possible	 through	 three	 different	 interfaces.	 An	 analysis	 of	 the	
field	 map,	 requiring	 360MB	 of	 memory,	 showed	 field	 values	 were	 stored	 with	 higher	
precision	than	the	uncertainty.	Analyzing	the	code	we	discovered	the	same	field	values	are	
requested	 consecutively	 hundreds	 of	 times	 during	 event	 simulation,	 retrieving	 it	 from	
memory	 each	 time.	 By	 adding	 a	 cache	 of	 the	 last	 requested	 bin,	 the	 speed	 improved	
dramatically.	

5.4.2 Implementation	
Masahiro	Morii	implemented	a	magnetic	field	service	in	C++	with	a	simplified	and	uni-

fied	magnetic	 field	 interface	while	 I	 analysed	 the	physics	performance	 and	 runtime	effi-
ciency	 in	 comparative	 tests	with	 the	old	 field	 service.	 I	 implemented	a	 test	bed	 for	both	
proposes.	 To	 evaluate	 computational	 performance,	 the	 test	 bed	 requests	 field	 values	
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mimicking	 reconstruction	accesses	 to	 the	 field	 service	by	 requesting	 field	 values	 in	1cm	
steps	in	a	straight	line	in	an	arbitrary	direction	from	the	center.	Both	field	services	cannot	
run	 at	 the	 same	 time,	 so	 I	 stored	 the	 field	 values	 and	 the	positions	 and	 compared	 them	
requesting	the	same	positions	in	a	second	run.	For	physics	validation,	I	scanned	the	whole	
detector	volume	 in	 small	 steps	and	compared	 them	with	 the	values	 from	 the	other	 field	
service	in	a	second	run.	The	field	map	was	changed	to	store	short	integers	(16bit)	instead	
of	single	precision	floating	point	(32bit)	values,	which	were	found	to	hold	the	information	
in	 sufficient	 accuracy,	 halving	 the	 size	 in	 memory.	 An	 analysis	 showed	 that	 absolute	
differences	do	not	exceed	4	Gauss	or	0.2%	of	the	field	value.	These	differences	in	the	two	
services	were	lower	than	the	measurement	uncertainty,	such	that	the	service	can	be	used	
in	production.	

5.4.3 Immediate	and	Future	Impact	
The	 comparative	 tests	 I	 conducted	 use	 the	 new	 magnetic	 field	 service	 through	 the	

wrapper	interface,	such	that	the	measured	impact	is	less	than	after	the	full	migration.	This	
allows	testing	on	the	same	release	and	avoids	including	other	improvements	in	the	meas-
urements.	The	service	sped	up	20%	in	my	testbed.	To	confirm	the	results	from	the	testbed,	
I	ran	both	reconstruction	and	simulation	with	Run	2	events.	Simulation	requires	magnetic	
field	 values	 for	 points	 that	 are	 very	 closely	 neighboured	 frequently.	 These	 values	 are	
calculated	 by	 interpolating	 the	 measured	 values	 surrounding	 the	 requested	 point.	
Through	 the	 cache,	 99%	 of	 the	 field	map	 accesses	 could	 be	 avoided,	 requiring	 only	 the	
interpolation	 step.	 The	 time	 spent	 decreased	 from	 18%	 to	 2%	 total	 simulation	 time.	
Reconstruction	gained	20%	on	the	8%	spent	in	the	magnetic	field,	reducing	the	magnetic	
field	cost	to	6.4%.	

5.5 Event	Data	Model	Update	

5.5.1 Assessment	
The	 ATLAS	 offline	 reconstruction	 software	 is	 a	 collection	 of	 several	 algorithms.	 The	
integration	of	these	components	relies	upon	a	set	of	well-structured	framework	modules	
(described	 in	 Section	 2.9)	 and	 a	 common	 Event	 Data	 Model	 (EDM).	 The	 EDM	 enables	
independent	development	of	code	amongst	the	different	subgroups	of	the	experiment,	and	
also	 facilitates	 code	 re-usage	 and	 the	 definition	 and	 implementation	 of	 common	 algo-
rithms	and	methods	to	be	used	in	different	reconstruction	contexts.	

It	defines	both	transient	and	persistent	representations	for	many	different	objects.	The	
conversion	 between	 the	 two	 representations	 is	 done	 through	 converter	 classes.	 During	
Run	 1,	 common	 functionality	 of	 objects	 within	 a	 group	 were	 bundled	 through	 virtual	
derivation.	The	persistification	was	object	based	and	thereby	 in	an	“array	of	structures”,	
reflecting	the	object	oriented	transient	representation.	To	save	space,	during	the	conver-
sion	from	transient	to	persistent	data	was	simplified,	requiring	deriving	some	information.	
Both	decisions	had	the	effect	that	the	persistified	data	could	not	be	used	for	analysis	with	
the	most	 common	 analysis	 tool	 Root.	 Instead,	 the	 persistified	 data	was	 converted	 in	 an	
additional	step	 to	an	analysis-friendly	 format,	 costing	both	CPU	time	and	disk	space	and	
delayed	the	analysis.	

One	of	the	heavily	used	structures	of	the	EDM	in	the	ID	reconstruction	are	the	Track	
Parameters,	see	Figure	52.	This	group	of	classes	defines	the	properties	of	a	particle	track	
at	 different	 detector	 locations.	 Track	 parameterization	 exists	 on	 all	 accessible	 surface	
classes	of	 the	detector	geometry.	This	was	realized	by	creating	a	 track	parameter	 inher-
itance	schema	analogous	to	the	surface	inheritance	schema.	For	type	safety	reasons,	tracks	
with	 different	 particle	 charge	 and	 different	 location	 in	 the	 detector	 have	 to	 be	 of	 a		
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Figure	52:	Charged	and	neutral	TrackParameter	as	implemented	in	the	EDM	during	
Run	1	with	 the	example	of	a	plane	surface.	 Six	different	 surface	 types	exist	with	a	
separate	 implementation	 each.	 The	neutral	 flavor	was	 added	 later	 on	 and	 lead	 to	
code	duplication.	Diagram	from	[83].	

different	 class	 type.	This	 led	 to	 significant	 amount	of	 duplicated	 code.	The	derived	 class	
members	 were	 initialized	 lazily,	 although	 these	 values	 are	 almost	 always	 used.	 Lazy	
initialization	 requires	dynamic	memory	 allocation	which	 is	much	 slower	 than	 allocation	
during	 object	 creation	 and	 fragments	 the	 memory,	 and	 lastly	 requires	 a	 check	 if	 the	
member	 has	 already	 been	 instantiated	 before	 every	 access.	When	 the	 type	 information	
was	needed,	a	track	parameter	was	converted	from	the	base	type	to	its	particular	surface	
type	with	a	dynamic	cast,	which	is	 far	more	expensive	than	e.g.	an	 identifier	comparison	
under	typical	conditions	[84].		

5.5.2 Implementation	
A	new	EDM	was	designed	with	both	transient	and	persistified	representation	as	structure	
of	 arrays,	 which	 would	 minimize	 memory	 fragmentation	 and	 allow	 direct	 usage	 of	 the	
persistified	 EDM	 for	 analysis.	 Using	 the	 persistified	 EDM	 directly	 for	 analysis	 in	 Root	
means	a	single	API	can	be	used	 in	both	 frameworks,	and	analysis	 results	 can	be	written	
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Figure	53:	Access	to	the	SOA	structure	through	a	wrapper	interface	which	simulates	
an	array	of	structures	[85].	

	
Figure	 54:	 TrackParameters	 type	 describing	 the	 state	 as	 implemented	 in	 the	 new	
EDM.	The	inheritance	structure	remains	the	same	as	in	Figure	52.	

out	 in	 a	 compatible	 format.	 Compression	 algorithms	 are	 also	 more	 effective	 because	
values	 in	 a	 SOA	 structure	 tend	 to	 cluster	 value	 ranges,	which	 is	 exploited	 by	 such	 algo-
rithms.	A	wrapper	as	shown	in	Figure	53	allows	to	use	this	representation	as	if	it	was	an	
array	 of	 structures	 in	Athena,	 to	 simplify	 access	 and	migration	 from	 the	 old	model.	 The	
wrapper	 can	be	 optimized	out	 such	 that	 this	 form	of	 access	does	not	 require	 additional	
resources.	The	decision	to	use	structures	of	arrays	is	also	intended	to	facilitate	the	use	of	
vector	instructions	in	the	future.	

The	track	parameters	have	been	completely	rewritten	to	change	the	complex	and	inef-
ficient	structure	of	Run	1.	All	parameters	are	now	templated	such	that	the	different	Track-
Parameters	are	still	of	different	type,	maintaining	type	safety,	but	use	the	same	implemen-
tation,	 see	 Figure	 54,	 making	 the	 definition	 of	 each	 separate	 type	 nothing	more	 than	 a	
single	 line	of	 code.	To	avoid	dynamic	casts	 to	 the	respective	 type,	an	 identifier	has	been	
introduced	which	allows	efficient	testing	for	the	type.	This	allowed	code	size	of	the	Track-
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Parameter	classes	to	be	reduced	by	around	97%	from	9180	to	277	lines	of	code.	Members	
initialized	lazily	were	changed	to	initialize	on	object	creation.	These	changes	were	includ-
ed	in	the	design	during	the	Eigen	migration	campaign	in	a	separate	project	[86].	

5.5.3 Impact	
The	exact	impact	on	reconstruction	runtime	is	difficult	to	measure	due	to	other	paral-

lel	changes.	The	immediate	impact	of	the	new	structure	is	saved	disk	space	due	to	avoiding	
the	conversion	step	to	an	analysis	format,	but	in	medium	to	long	term	it	also	enables	the	
use	of	vector	units	due	to	the	representation	as	structure	of	arrays.	

Standalone	tests	showed	a	 factor	of	 three	computational	performance	 improvements	
for	 the	 new	 TrackParameters	 [86].	 Maintainability	 of	 the	 TrackParameter	 classes	 is	
improved	due	to	the	reduction	of	the	code	size.	

5.6 Algorithm	Reordering	and	Algorithmic	Tracking	Update	

5.6.1 Seeding	Improvements	
While	many	of	the	algorithms	used	in	ATLAS	have	been	optimized	to	perform	a	partic-

ular	problem	as	fast	as	possible,	there	are	many	parameters	that	can	influence	the	runtime	
by	changing	the	problem	to	be	solved.	

One	of	these	problems	is	the	ID	tracking.	The	tracking	is	seeded	by	a	direction,	which	
stems	 from	 a	 triplet	 of	 measurements	 on	 three	 different	 layers,	 a	 so-called	 seed,	 see	
Section	2.7.	A	track	can	only	be	found	with	a	good	initial	direction	derived	from	the	seed.	
The	seed	generation	creates	all	combinations	of	measurements	that	fulfil	certain	require-
ments,	but	restricts	the	number	of	combinations	per	measurement.	If	a	higher	number	of	
seeds	is	generated	for	a	measurement,	the	seeds	are	sorted	by	weight	and	only	the	seeds	
with	the	higher	weight	are	accepted.	The	weight	of	a	seed	was	defined	during	Run	1	by	the	
point	 of	 closest	 approach	 to	 the	 interaction	 region	 of	 a	 potential	 track.	 For	 Run	 2,	 an	
additional	factor	for	the	weight	is	defined	through	the	number	of	compatible	seeds	found	
that	 share	 the	 two	measurements	 closest	 to	 the	 interaction	 region.	 Compatibility	 is	 de-
fined	as	 the	curvature	of	a	potential	 track	spanned	by	 the	seeds	being	similar,	 such	 that	
they	may	belong	to	the	same	particle	track.	The	sum	of	these	two	weights	defines	the	total	
seed	weight.	This	weighing	scheme	is	more	resilient	to	high	occupancy	which	would	lead	
to	an	explosion	of	combinatorics.	 In	very	high	occupancy	scenarios,	 the	number	of	seeds	
created	 from	 a	 single	 space	 point	 must	 be	 limited	 to	 reduce	 runtime.	 This	 weighing	
scheme	 leads	 to	 a	 higher	 efficiency	 as	 real	 tracks	 are	 more	 likely	 to	 be	 found.	 Table	 9	
shows	that	seeds	with	at	 least	one	compatible	seed	have	double	the	so-called	purity,	 the	
percentage	of	seeds	belonging	to	a	particle	track,	for	events	with	40	pileup	collisions.	

Table	9	also	shows	how	strongly	the	seed	types	differ	in	purity,	which	is	exploited	for	
another	 improvement:	 Seeds	 from	 SCT	 measurements	 are	 created	 and	 processed	 first,	
assuming	that	at	least	one	track	of	each	proton-proton	interaction	can	be	found	with	SCT	
seeds.	After	processing	all	SCT	seeds,	the	interaction	zone	is	now	restricted	to	the	region	
along	 the	beam	line	between	where	 the	 leftmost	and	rightmost	 track	candidates	created	
from	SCT	seeds	have	their	point	of	closest	approach.	Seeds	of	other	types,	which	contain	
many	more	fakes,	must	have	their	impact	parameters	within	the	newly	restricted	interac-
tion	zone.	According	to	my	measurements,	this	reduces	the	total	number	of	seeds	by	12%	
for	a	Run	2	event,	reducing	the	runtime	of	the	track	finding	by	the	same	fraction.	

A	 third	optimization	was	 to	 change	 the	 configuration	of	 these	 algorithms,	 tightening	
the	 requirements	 of	 a	 track.	 By	 e.g.	 reducing	 the	 allowed	 number	 of	 missing	 measure-
ments	for	a	track,	the	track	extrapolation	can	be	aborted	earlier	such	that	less	time	is	lost.	
Tracks	with	more	missing	measurements	will	not	be	 found	anymore,	but	measurements	
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show	that	this	actually	led	to	a	higher	efficiency	in	the	reconstruction	of	the	signal	because	
fake	tracks	become	less	likely,	see	Table	10.	

All	three	changes	influence	which	tracks	are	reconstructed	and	therefore	which	tracks	
can	be	found.	Proton-proton	collisions	which	do	not	have	particle	tracks	which	are	finda-
ble	 through	SCT	seeds	are	 lost	 through	 the	restriction	of	 the	 interaction	region.	Because	
there	are	more	Pixel	seeds	than	SCT	seeds	[87]	including	a	higher	amount	of	fake	seeds	as	
shown	in	Table	9,	it	is	more	beneficial	to	define	the	region	using	SCT	seeds	because	more	
seeds	can	be	excluded	this	way.	The	optimization	of	the	weights,	which	prefers	seeds	for	
which	 another	 compatible	 seed	 can	 be	 found,	 favors	 finding	 multiple	 seeds	 that	 corre-
spond	to	a	single	particle.	This	will	only	exclude	seeds	from	being	created	if	more	than	a	
threshold	of	seeds	has	already	been	found	for	a	single	measurement.	These	improvements	
combined	 led	 to	 a	 25%	 speedup	 of	 the	 ID	 track	 reconstruction	 according	 to	 [86].	 My	
measurements	showed	an	even	higher	total	speedup	of	1.54	for	the	reconstruction	of	Run	
2	events.		

	
pileup	
collisions	 PPP	 PPS	 PSS	 SSS	 PPP+1	 PPS+1	 PSS+1	 SSS+1	
0	 57%	 26%	 29%	 66%	 79%	 53%	 52%	 86%	
40	 17%	 6%	 5%	 35%	 39%	 8%	 16%	 70%	

Table	9:	Percentage	of	seeds	corresponding	to	a	particle	track	for	different	types	of	
seeds	or	so-called	purity.	PPP	seeds	consist	entirely	of	pixel	detector	measurements	
while	 SSS	 seeds	 consist	 entirely	 of	 SCT	 measurements.	 PPS	 and	 PSS	 seeds	 have	
measurements	 from	 both	 detector	 systems.	 Seeds	 requiring	 another	 compatible	
seed	 have	 a	much	 higher	 purity	 and	 SSS	 seeds	 are	 generally	more	 pure	 than	PPP	
seeds	[86].	

pileup	
Run	1	
Cuts	

Run	2	
Cuts	

Run	2	Cuts	+	
Z	bounds	

40	 0.939 0.946 0.946 
Table	10:	Efficiency	as	fraction	of	tracks	from	the	signal	interaction	reconstructed.	
The	new	 cuts	 increase	 the	 fraction	of	 reconstructed	 tracks	while	 the	Z	bounds	do	
not	have	an	impact	on	efficiency	[86].	

5.6.2 Backtracking	Improvement	
Particles	produced	during	 the	 collision	of	 two	protons	may	 rapidly	decay	within	 the	

detector.	Many	particles	have	a	lifetime	so	short	that	their	existence	can	only	be	observed	
by	their	decay	products.	While	some	particles	decay	so	quickly	their	decay	products	seem	
to	originate	from	the	interaction	region,	others	travel	a	measurable	distance	but	still	decay	
within	the	ID.	Products	from	particles	decaying	a	measurable	distance	from	the	interaction	
region	 are	 called	 secondary	 particles.	 The	 origin	 of	 these	 secondary	 particles	 is	 less	
restricted	 than	 that	 of	 so-called	 primary	 particles	 which	 originate	 from	 the	 interaction	
region,	making	reconstructing	secondary	particles	more	difficult.	To	reconstruct	the	tracks	
of	secondary	particles,	a	Hough	transform	[88]	is	run	on	all	measurements	which	were	not	
yet	used	to	construct	a	track	from	the	 interaction	region.	For	each	combination	of	meas-
urements	 found	 with	 the	 Hough	 transform,	 the	 track	 finder	 tries	 to	 create	 a	 track.	 An	
analysis	showed	this	only	led	to	few	found	tracks	[89],	such	that	during	for	Run	2	it	was	
decided	 to	 concentrate	 on	 electrons	 and	 positrons,	 because	 these	 frequently	 cannot	 be	
reconstructed	 otherwise	 as	 they	 lose	 energy	 due	 to	 an	 effect	 called	 bremsstrahlung.	
Electrons	 and	 positrons	 leave	 energy	 deposits	 in	 the	 electromagnetic	 calorimeter.	 By	
changing	the	order	of	the	calorimeter	and	ID	reconstruction	algorithms,	the	energy	depos-
its	in	the	calorimeters	are	known	before	the	tracking.	Using	these	measurements,	a	region	
of	interest	can	be	defined	in	which	to	look	for	a	secondary	particle	track.	The	TRT	meas-
urements	are	used	to	find	a	track	pointing	towards	the	detector	center	to	find	a	direction.	
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This	is	called	back	tracking	because	the	tracks	are	found	in	the	reverse	particle	direction.	
Using	backtracking	drastically	reduces	the	number	of	possible	combinations	and	thereby	
its	 runtime	 [90].	 This	 optimization	was	 performed	 following	 the	 decision	 to	 allow	 for	 a	
small	 reduction	 of	 physics	 performance	 in	 exchange	 for	 a	 large	 improvement	 of	 the	
performance.		

The	finding	of	secondary	particles,	which	was	previously	very	expensive,	was	reduced	
to	an	 insignificant	contributor	 to	runtime.	 In	my	measurements,	 it	 improved	reconstruc-
tion	 runtime	by	a	 factor	of	1.83,	 see	Table	12,	making	 this	 change	 the	 single	 largest	 im-
provement	for	Run	2	events,	almost	halving	the	reconstruction	time.	This	optimization	is	
particularly	 important	 for	 higher	 pileup	 scenarios,	where	 the	 number	 of	measurements	
that	 cannot	 be	 attributed	 to	 a	 particle	 track	 significantly	 increase.	 I	 describe	 this	 im-
provement	in	which	I	did	not	participate	in	this	thesis	because	it	shows	how	only	a	com-
prehensive	understanding	of	the	algorithm	interaction	allowed	this	algorithmic	optimiza-
tion,	with	an	impact	higher	than	any	of	the	other	optimizations	that	aimed	to	leave	algo-
rithms	as	they	were.	At	the	same	time,	the	optimization	requires	the	understanding	which	
results	 are	 important	 and	 which	 may	 be	 dismissible	 and	 the	 approval	 of	 the	 experts	
concerned	with	physics	performance.	

	

											Release	

	

Event	type	

17.2.7.9	
32bit		

	

17.2.7.9	
64bit	

17.7.0	 18.9.50	 19.0.1	 19.0.X	 19.1.1.3	

Run	1	events	 11677	 9569	 8606	 7910	 6423	 6201	 5179	

Run	2	events	 84389	 71845	 51270	 53147	 37730	 34322	 18703	
Table	11:	Runtime	of	different	releases	for	Run	1	and	Run	2	events	in	ms	per	event.	
While	a	Run	2	event	was	more	 than	7	 times	slower	 than	a	Run	1	event	on	release	
17.2.7.9,	 the	difference	 is	only	3.6	 fold	 for	release	19.1.1.3.	The	 test	machine	 is	an	
Intel	Xeon	CPU	L5520	at	2.27GHz	with	24GB	memory	running	SLC6.	

							Project	

	

Event	type	

32bit	
to	
64bit	

IMF	
pre-
load	

SLC	5	
to	
SLC	6	

New	
magn.	
field	

Seeding	
optimi-
zations	

Back	
tracking	

Combined	
theor.	
speedup	

Combined	
actual	
speedup	

Run	1	
events	

1.22	 1.06	 0.96	 0.96	 1.17	 1.19	 1.66	 2.25	

Run	2	
events	

1.17	 1.08	 1.03	 1.20	 1.54	 1.83	 4.40	 4.51	

Table	12:	Achieved	speedup	factor	of	different	projects	for	Run	1	and	Run	2	events.	
The	number	denotes	how	much	 faster	(or	slower	 if	 the	number	 is	 less	 than	1)	 the	
software	 is	 after	 the	 respective	 change	 with	 Run	 1	 and	 Run	 2	 events.	 Tests	 with	
some	 optimizations	 include	 other	 optimizations	which	may	 have	 an	 effect	 on	 the	
results.	The	combined	actual	speedup	is	the	difference	between	the	first	and	the	last	
column	in	Table	11.	Tests	with	the	exception	for	the	second	column	were	conducted	
on	the	same	machine	as	the	release	runtime	tests	shown	in	Table	11.	

5.7 Performance	Optimization	Results	
The	 ATLAS	 reconstruction	 software	 speed	 was	 improved	 by	 a	 factor	 of	 more	 than	

three	for	Run	2	events,	compared	to	the	software	at	the	end	of	Run	1.	Table	11	shows	the	
impact	 of	 the	 different	 changes	 on	 runtime.	 These	measurements	 represent	 the	 state	 of	
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the	software	at	different	times	during	the	development.	It	shows	how	each	set	of	changes	
impacts	 reconstruction	on	a	modern	environment.	The	 increase	 in	 runtime	 from	release	
17.7.0	to	18.9.50	for	the	new	data	set	shows	that	improvements	for	one	dataset	can	lead	to	
worse	performance	in	another	dataset.	Where	possible	to	attribute	to	one	or	a	small	set	of	
changes,	this	is	measured	and	the	changes	are	shown	in	Table	12.	

5.7.1 How	the	Results	were	Measured	
The	differences	between	the	Run	1	events	and	the	Run	2	events	as	defined	in	Subsec-

tion	4.1.1	demonstrate	how	much	the	data	has	to	be	taken	into	consideration	when	meas-
uring	 the	 impact	 of	 a	 change.	 Some	 changes	have	decreased	 the	 speed	 for	Run	1	 events	
while	they	have	a	very	positive	effect	when	processing	Run	2	events.	I	could	not	conduct	
measurements	 independently	 of	 one	 another,	 as	 some	 optimizations	 only	 work	 with	 a	
release	that	already	includes	other	optimizations,	which	may	affect	the	outcome.	Switch-
ing	 from	building	with	32bit	 to	64bit	register	support	 increases	reconstruction	software	
memory	usage	by	20%	while	runtime	was	decreased	by	the	same	amount.	Compilation	in	
an	SLC	6	environment	using	GCC4.6	leads	to	a	slight	increase	in	runtime	with	Run	1	events	
and	a	slight	decrease	for	Run	2	events	compared	to	compilation	under	SLC	5	and	GCC4.3.	
For	these	two	tests	should	be	stressed	that	 the	test	machine	was	 in	both	cases	SLC	6,	so	
also	SLC	5	compiled	releases	were	run	with	SLC	6.	The	same	is	true	for	the	tests	with	32bit	
and	64bit	compiled	releases,	for	the	tests	shown	in	Table	12	SLC	6	was	used	in	both	cases.	
The	speedup	from	running	on	SLC	5	to	SLC	6	is	around	10%	while	the	speed	reduction	of	
the	SLC5	compiled	binaries	to	SLC6	compiled	binaries	was	only	4%,	so	in	total	reconstruc-
tion	was	faster	also	for	Run	1	events	after	the	change.	The	IMF	preload	showed	only	2-3%	
speedup	 in	 respect	 to	 using	 GNU	 libm	 in	 later	 tests	 using	 SLC	 6,	 showing	many	 perfor-
mance	 inefficiencies	 were	 fixed	 in	 libm	 since	 SLC	 5	 when	 the	 original	 tests	 had	 been	
performed.	The	new	magnetic	field	was	tested	using	a	wrapper	that	introduced	even	more	
unit	 conversions	 instead	 of	 with	 the	 newly	 implemented	 interface,	 because	 it	 allowed	
testing	 on	 the	 same	 release	 without	 requiring	 code	 changes	 wherever	 it	 is	 accessed.	
Therefore,	not	 the	 full	 impact	of	 the	change	was	visible,	 just	 the	 impact	of	 the	cache	and	
the	 slightly	 improved	 access	 to	 the	 memory	 internally,	 leading	 to	 worse	 performance	
when	 running	with	 old	 data.	 Unit	 tests	 had	 shown	 better	 field	 performance,	which	 also	
becomes	 visible	 when	 running	 with	 Run	 2	 events.	 The	 impact	 is	 even	 higher	 in	 newer	
releases	where	the	magnetic	field	is	not	called	through	a	wrapper	but	directly,	avoiding	a	
deep	 call	 chain	 and	 several	unit	 conversions.	Changes	 in	how	and	how	often	 the	 field	 is	
called	make	a	comparison	through	releases	difficult	though.	The	Eigen	migration	and	the	
Event	Data	Model	update	took	11	months	in	total.	The	result	is	that	many	other	improve-
ments	also	went	into	the	release	at	the	same	time.	It	is	therefore	not	possible	to	measure	
these	 results	 in	 a	 single	 number,	which	 is	why	 they	 are	 not	mentioned	 in	 this	 table.	 All	
seeding	optimizations	combined	have	had	a	large	impact,	reducing	runtime	by	more	than	
one	third	for	Run	2	events.	The	largest	single	 improvement	stems	from	the	backtracking	
update,	significantly	reducing	the	number	of	times	the	combinatorial	track	filter	needs	to	
run.	It	serves	as	example	of	the	effects	an	algorithmic	change	can	have	and	as	motivation	
for	the	new	tracking	methods	presented	in	Chapter	6.	The	backtracking	update	is	particu-
larly	effective	for	expected	future	events,	almost	doubling	reconstruction	speed.	Multiply-
ing	all	measured	speedups	leads	to	a	theoretical	speedup	factor	of	1.66	for	Run	1	events	
and	4.4	for	Run	2	events,	compared	to	the	measured	actual	speedup	between	first	and	last	
release	of	2.25	respectively	4.51.	This	is	due	to	interactions	between	the	different	optimi-
zations.	The	predicted	improvement	and	the	actual	improvement	differ	by	26%	on	Run	1	
events	and	by	only	2%	for	Run	2	events,	which	is	not	much	considering	the	large	number	
of	projects	and	the	huge	gains	achieved.	The	software	is	in	much	better	shape	now	consid-
ering	the	cleanup	projects	e.g.	in	the	magnetic	field,	the	EDM	and	with	the	Eigen	migration	
that	 are	 only	 partially	 reflected	 by	 computational	 performance,	 but	 which	 have	 a	 huge	
impact	on	maintainability.	
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Figure	 55:	 Core	 cycles	 and	 instructions	 retired	 for	 releases	 17	 (upper)	 and	 19	
(lower).	The	number	of	 instructions	 retired	per	 core	 cycle	 is	worse	 for	 the	newer	
release	 than	 for	 the	 older	 one.	 Nevertheless,	 the	 newer	 release	 processes	 more	
events	 in	 the	 same	 time.	 The	 number	 of	 events	 was	 chosen	 to	 achieve	 similar	
runtimes.	

5.7.2 Interpretation	of	the	Results	
The	results	highlight	the	importance	to	test	the	changes	with	the	expected	data	during	

production.	It	also	shows	a	discrepancy	of	the	effect	of	a	change	when	first	tested	and	in	
the	 last	 tested	environment,	which	 includes	all	 improvements	 and	may	have	 changed	 in	
other	 unpredicted	 ways.	 An	 improvement	 can	 become	 unnecessary	 or	 even	 potentially	
harmful,	as	both	trigonometric	functions	of	libm	and	the	system	allocator	of	SLC6	deliver	
comparable	results	as	the	libraries	they	have	been	replaced	with.	The	difference	is	that	the	
system	libraries	may	be	updated	during	normal	system	maintenance	or	during	a	switch	to	
a	newer	OS.	These	libraries	may	perform	better,	which	would	go	unnoticed	if	new	tests	are	
not	performed.		

The	performance	of	 the	software	measured	 in	 instructions	per	cycle	changed	 for	 the	
worse,	as	a	comparison	between	release	17	and	release	19	shows	in	Figure	55.	This	means	
the	 low-level	hardware	utilization	has	not	 improved.	At	 the	 same	 time,	 the	 set	 goals	 for	
speed	 improvement	 were	 met.	 The	 improvements	 on	 the	 ATLAS	 code	 are	 algorithmic	
rather	than	improving	the	exploitation	of	hardware	features,	but	some	prepare	for	a	better	
hardware	 utilization	 in	 the	 future	 such	 as	 the	 new	 EDM.	 It	 also	 indicates	 that	 the	 used	
libraries	 also	 hardly	 improve	 on	 the	 hardware	 utilization	 but	 rather	 on	 the	 algorithms	
used.	

The	 xAOD	 format	marks	 an	 important	 step	 from	object-based	design	 towards	 Struc-
ture	of	Arrays	style	storage	of	data.	The	chosen	access	patterns	through	a	wrapper	allow	
the	use	of	the	data	in	a	similar	way	as	before.	The	elimination	of	an	intermediate	conver-
sion	step	for	analysis	speeds	up	the	internal	workflow	and	opens	the	door	to	vectorization	
by	improving	data	locality.	Vectorization	was	not	achieved	using	vectorizing	libraries	due	
to	 the	 matrix	 dimensions	 typically	 used.	 The	 introduction	 of	 the	 Eigen	 library,	 while	
improving	 speed,	 did	 not	 lead	 to	 the	 desired	 vectorization,	which	 could	 have	 served	 as	
example	of	outsourcing	its	complexity.	While	efforts	to	include	vectorization	in	computa-
tionally	expensive	code	regions	persist,	a	higher	priority	for	many	groups	is	the	prepara-
tion	of	the	ATLAS	code	for	parallelization	through	multithreading.	

The	optimizations	with	the	highest	impact	during	LS1	were	algorithmic	optimizations	
in	relatively	small	parts	of	the	code.	While	the	affected	algorithms	consumed	a	lot	of	CPU	
time,	changing	them	in	some	cases	also	affected	the	amount	of	CPU	time	spent	 in	subse-
quent	algorithms.	Many	of	the	changes	affected	the	final	result,	which	always	requires	the	
approval	 of	 groups	 concerned	with	 the	 efficiency	 but	 also	 can	 only	 be	 considered	 by	 a	
physicist	able	to	distinguish	between	important	and	less	important	results.	A	workflow	to	
streamline	 the	collaboration	between	physicists	and	computer	 scientists	 could	 therefore	
improve	 code	 quality	 and	 speed.	 Some	 deficiencies	 may	 have	 been	 spotted	 sooner	 if	 a	
clear	code	review	scheme	was	in	place,	which	would	not	leave	single	persons	responsible	
for	 portions	 of	 the	 code.	 Another	 problem	 that	 could	 be	 addressed	 by	 a	 well-defined	



Analysis	and	Optimization	of	the	Offline	Software	of	the	ATLAS	Experiment	at	CERN	
Robert	Johannes	Langenberg	-	December	2017	

	

82	 Software	Integration	of	Optimizations	

workflow	are	unclear	responsibilities	for	certain	code	parts,	some	of	which	were	written	
by	people	who	already	 left	ATLAS.	Despite	 the	 improvements	 to	 the	ATLAS	code	during	
LS1,	large	parts	of	the	code	could	profit	from	a	thorough	analysis	and	optimization,	which	
is	why	I	expect	the	largest	potential	with	the	smallest	effort	here.	Parallelization	through	
multithreading	 is	 currently	 being	 implemented.	 The	 importance	 of	 multithreading	 de-
pends	 largely	 on	 the	 development	 of	 the	 CPU	market,	which	 is	 foreseen	 to	 increase	 the	
number	of	cores	faster	than	memory	to	a	point	ATLAS	is	no	longer	able	to	utilize	them	just	
by	multi-processing.	



Analysis	and	Optimization	of	the	Offline	Software	of	the	ATLAS	Experiment	at	CERN		
Robert	Johannes	Langenberg	-	December	2017	

	

Analysis	and	Implementation	of	Tracking	Improvements	 	 	 83	

6 ANALYSIS	AND	
IMPLEMENTATION	OF	
TRACKING	IMPROVEMENTS	

Tracking	is,	as	the	analysis	in	Chapter	4	shows,	one	of	the	most	expensive	steps	in	the	
current	implementation	of	the	ATLAS	reconstruction	with	a	runtime	increasing	polynomi-
ally	 with	 number	 of	 space	 points.	 Through	 in-depth	 optimizations,	 performance	 goals	
could	 be	 met,	 but	 the	 complexity	 remains	 a	 problem	 for	 future	 medium-term	 require-
ments	and	will	become	unmanageable	in	the	long	term.	Tests	show	that	a	10fold	increase	
in	pileup	 leads	 to	a	150fold	 increase	 in	 runtime,	which	 is	 the	workload	expected	 for	 the	
HL-LHC,	 see	 [60].	 One	 of	 the	 technical	 solutions	 to	 cope	with	 the	 increasing	 computing	
problem	is	to	exploit	idle	parallel	resources.	In	Section	4.7	I	have	shown	that	the	tracking	
can	be	efficiently	parallelized.	 In	 this	 chapter	 I	will	 explore	 the	competitiveness	of	GPUs	
and	CPUs	for	tracking.	Alternatively,	I	present	a	low	accuracy	and	low	complexity	tracking	
approach	which	 has	 the	 potential	 to	 reduce	 the	 tracking	 time	 to	 an	 insignificant	 factor.	
This	solution	is	suitable	for	both	the	expectable	shift	in	computational	resources	towards	
highly	parallel	hardware	and	also	the	increasing	complexity	of	the	data.	This	chapter	first	
presents	the	 low	complexity	tracking	approach	and	then	the	comparative	study	between	
GPU	and	CPU	parallel	tracking.	

6.1 Transform	Based	Low	Complexity	Tracking	
To	reduce	the	runtime	of	tracking	by	orders	of	magnitude,	it	is	necessary	to	reduce	the	

complexity	 of	 the	 algorithms.	 The	 algorithms	 in	 place	 in	 the	 offline	 reconstruction	 have	
seen	much	optimization	and	perform	well	despite	the	increasing	requirements.	Neverthe-
less,	the	complexity	of	these	algorithms	remains	unchanged,	such	that	they	will	not	remain	
feasible	 if	 the	 LHC	 performance	 increases	 as	 planned.	 To	 tackle	 this	 problem,	 the	 algo-
rithms	must	be	exchanged	or	the	scope	of	these	algorithms	must	be	reduced.		

A	different	tracking	approach	was	used	in	the	software	trigger	during	Run	1.	The	soft-
ware	trigger	has	to	reduce	the	number	of	events	from	about	100kHz	to	1kHz.	The	decision	
if	an	event	should	be	processed	further,	i.e.	in	case	of	a	positive	trigger	decision,	has	to	be	
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taken	within	the	order	of	10-50ms.	To	achieve	such	a	reconstruction	runtime	a	low	com-
plexity	transform-based	tracking	was	used.	It	has	a	slightly	lower	physics	performance	in	
terms	 of	 track	 reconstruction	 efficiency	 and	 accuracy,	 but	 was	 sufficient	 for	 trigger	 re-
quirements	during	Run	1.	To	further	reduce	the	runtime,	the	software	trigger	only	recon-
structs	 regions	 of	 interests	within	 the	 detector	 as	 defined	 by	 the	 hardware	 trigger.	 The	
reason	 for	discontinuing	 this	 approach	 in	 the	 trigger	was	 the	decreased	performance	of	
the	vertexing	algorithm	for	higher	pileup	scenarios.	For	Run	2	it	has	been	replaced	by	an	
adapted	version	of	the	offline	algorithms.	Parts	of	the	algorithm	continue	to	be	used	to	find	
the	 beamspot	 and	 a	 hardware	 implementation	 is	 planned	 for	 the	 High	 Luminosity	 LHC	
that	is	due	to	start	operation	in	2023.	By	implementing	a	series	of	improvements,	I	show	
that	 they	 can	 be	 applied	 in	 its	 original	 context	 as	 well	 as	 in	 other	 scenarios,	 which	 is	
presented	in	the	following	sections.	

This	method	consists	of	two	transform-based	algorithms,	for	vertexing	and	for	track-
ing.	The	tracking	algorithm	depends	on	knowing	the	primary	vertices,	i.e.	the	locations	of	
the	 proton-proton	 collisions.	 The	 vertex	 finder	 is	 therefore	 critical	 to	 the	 approach:	 If	 a	
primary	vertex	has	not	been	 found,	 tracks	originating	 from	 this	 interaction	 location	will	
also	not	be	 looked	 for.	 If	 no	other	 vertex	 is	 found	 in	 close	 vicinity,	 the	 tracks	 cannot	be	
found.	To	make	the	approach	usable	for	high	pileup	scenarios,	I	will	therefore	first	concen-
trate	on	improving	the	vertex	finder.	

The	 following	sections	 first	explain	 the	principle	of	 the	vertexing	algorithm	and	ana-
lyze	 their	 capability	 to	 perform	 the	 required	 tasks	 before	 detailing	 implemented	 im-
provements.	 Subsequently,	 test	 results	 of	 the	 implementation	 are	 presented	 and	 lastly	
possible	application	scenarios	of	the	algorithm	are	discussed.	

6.1.1 General	description	of	the	vertex	yinder	
The	vertex	finder	tries	to	establish	the	vertex	locations	by	finding	points	in	the	interac-

tion	region	where	potential	tracks	point	to.	A	potential	track	is	defined	as	the	combination	
of	 two	 space	 points	 on	 two	 distinct	 pixel	 layers	 that	 are	 compatible	 with	 a	 helix	 of	 a	
particle	originating	in	the	interaction	region.	The	minimum	transverse	momentum	can	be	
set.	This	means	a	helix	with	a	certain	minimum	radius	must	be	found	that	passes	through	
both	space	points	and	any	point	in	the	interaction	region,	assuming	a	particle	path	under	
ideal	 conditions.	There	 is	 at	maximum	one	helix	 that	 can	be	 found	 fulfilling	 the	 require-
ments.	The	locations	in	the	interaction	region	found	this	way	are	recorded	using	a	histo-
gram	with	 binning	 along	 the	 beam	 axis.	 The	 bin	 with	 the	 highest	 number	 of	 entries	 is	
subsequently	returned	as	the	most	probable	primary	vertex	of	the	signal	interaction.	

This	algorithm	has	a	complexity	of	O(n2)	with	the	number	of	space	points,	because	it	
combines	 two	 pixel	 space	 points.	 To	 combine	 only	 space	 points	 which	 are	 likely	 to	 be	
compatible,	the	space	points	are	sorted	by	φ	region	and	the	delta-φ	of	the	two	space	point	
is	restricted.	This	way,	combinations	which	are	only	compatible	with	transverse	momen-
tum	lower	than	the	threshold	are	avoided.	

This	approach	has	a	high	noise	level	as	random	combinations	of	two	space	points	often	
point	 to	 the	 beam	 spot,	 leading	 to	 a	 high	background	 sometimes	 indistinguishable	 from	
interactions.	This	becomes	worse	with	higher	number	of	pileup	interactions.		

To	prove	it	is	possible	to	distinguish	the	signal	vertex	from	pileup	interactions	in	high	
pileup	 scenarios	 using	 only	 tracks,	 I	 analyzed	 event	 topologies	 showing	 the	 theoretical	
distinguishability	of	certain	signal	events	 from	pileup,	presented	 in	6.1.2.	The	analysis	 is	
discussed	in	full	detail	in	[91].	I	implemented	an	improved	version	of	the	algorithm	which	
is	adapted	to	exploit	the	Run	2	detector	geometry	and	reduces	random	space	point	combi-
nations	that	do	not	belong	to	a	particle	track,	so	called	fakes.	This	implementation	shows	
the	applicability	and	limitations	of	the	approach	as	well	as	the	physics-	and	computational	
performance	in	comparison	with	the	offline	tracking.	
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6.1.2 Distinguishability	study	
The	high-level-trigger	does	not	 reconstruct	 tracks	 in	all	detector	 regions	but	 instead	

focuses	on	regions	of	 interest	which	are	suspected	to	contain	interesting	physics	objects.	
To	 reduce	 time	 even	 further,	 the	 vertexing	 algorithm	 was	 used	 to	 identify	 the	 signal	
interaction	such	that	only	one	vertex	would	have	to	be	reconstructed,	significantly	reduc-
ing	the	problem	size.	To	be	able	to	 identify	the	signal	vertex,	 it	has	to	be	distinguishable	
from	other	vertices	with	the	information	available.	To	see	if	the	distinction	is	theoretically	
possible	using	only	tracks	visible	in	the	Inner	Detector,	I	analyzed	Monte	Carlo	simulated	
events.	 These	 events	 contain	 information	 about	 the	 generated	 particles	 such	 as	 type,	
energy	and	 charge,	 the	 so-called	 truth	 information	which	 is	not	 available	 in	 events	 read	
out	 from	the	detector.	Using	this	 information,	 I	extracted	only	particles	 that	are	 likely	 to	
leave	a	 trace	 in	 the	 ID,	 i.e.	 charged	particles	 that	are	unlikely	 to	decay	before	 they	reach	
the	outer	regions	of	the	ID.	This	does	not	mean	that	all	of	the	remaining	particles	will	leave	
a	 reconstructable	 trace	 in	 the	detector,	 as	 every	detector	has	 inefficiencies	 such	as	non-
working	elements,	coverage	of	the	phase	space	only	reaching	up	to	a	maximum	pseudora-
pidity,	 and	 particles	 may	 interact	 before	 they	 reach	 the	 outermost	 regions	 of	 the	 ID.	
Nonetheless,	using	all	charged	and	stable	particles	allows	judging	what	distinction	rate	is	
possible	under	perfect	conditions,	and	gives	an	upper	boundary	for	the	maximum	efficien-
cy	of	this	algorithm.	The	efficiency	here	denotes	the	ability	to	find	and	distinguish	a	vertex.	
In	a	second	step	this	upper	boundary	is	compared	with	the	distinction	rates	achieved	with	
an	implementation	of	the	algorithm	using	the	ATLAS	Run	2	ID	geometry	and	increasingly	
realistic	scenarios.	

6.1.2.1 Theoretical	Distinguishability	
Because	it	was	previously	not	possible	to	reach	the	high	energy	now	possible	with	the	

LHC,	events	with	high	collision	energy,	or	high	q2,	are	the	least	investigated	events.	This	is	
why	 the	 signals	 for	 which	 ATLAS	 is	 configured	 to	 trigger	 are	 associated	 with	 high	 q2	
processes.	During	such	processes,	high-energy	particles	are	produced	 that	quickly	decay	
into	one	or	more	particles	with	a	 lifetime	 long	enough	 to	pass	 through	 the	detector.	For	
many	of	these	events,	high-energy	tracks	can	be	found,	as	the	most	common	products	of	
decays	 resulting	 in	 a	 particle	with	 a	 longer	 lifetime	 are	 charged.	 The	 ID	 can	 only	 detect	
charged	 particles.	 Besides	 particles	 from	 the	 signal	 event,	 usually	 more	 particles	 result	
from	a	proton-proton	 interaction.	These	particles	 range	 from	very	 low	energy	 to	higher	
energies,	with	the	signal	in	the	vast	majority	of	the	cases	having	the	highest	energy.		

The	 ATLAS	 software	 is	 not	 configured	 to	 find	 particle	 tracks	 in	 the	 ID	 below	
400MeV/s,	which	does	not	pose	a	problem	because	low	energy	particles	contribute	 little	
to	 the	 information	 about	 the	 event,	 such	 as	 the	 total	 event	 energy.	 There	 are	 several	
reasons	 for	 excluding	 these	 tracks	 from	 reconstruction.	 One	 effect	 affecting	 detection	 is	
scattering,	 which	 can	 occur	when	 a	 particle	 interacts	with	material	 inside	 the	 detector,	
making	 it	 change	 its	 path.	 The	 average	 scattering	 angle	 is	 inversely	 correlated	with	 the	
momentum,	 such	 that	 these	 lower	 energy	 particles	 are	 more	 likely	 to	 deviate	 strongly	
from	a	helical	path,	see	[92],	and	therefore	have	to	be	searched	for	in	a	much	wider	road,	
increasing	computational	cost	and	number	of	fakes.	Another	issue	with	low-energy	parti-
cles	 is	 that	 their	curvature	 in	a	homogeneous	magnetic	 field	 is	 inversely	correlated	with	
their	 transverse	momentum,	 such	 that	 helices	 of	 low	 energy	 particle	 tracks	will	 have	 a	
smaller	radius.	A	smaller	radius	means	a	particle	track	is	covering	a	much	larger	detector	
region	in	φ	around	the	beam	axis,	because	the	curvature	is	in	φ.	This	geometrical	spread	is	
why	the	reconstruction	of	particles	of	a	low	energy	range	requires	considering	many	more	
combinations,	significantly	 increasing	 the	computational	cost.	The	vertex	 finder	assumes	
nearly	 helical	 track	 paths	 and	 has	 no	 means	 of	 correcting	 for	 deviations,	 so	 that	 only	
particles	with	a	transverse	momentum	greater	1GeV/c	are	taken	into	consideration	for	the	
distinguishability.	For	the	test	I	filtered	out	particles,	selecting	only	particles	that	are	not	
likely	to	decay	before	reaching	the	outer	regions	of	the	ID	(hereafter	referred	to	as	“stable	
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particles”)	 and	 with	 a	 charge	 unequal	 0.	 Also,	 the	 particle’s	 origin	 had	 to	 be	 less	 than	
0.2mm	 from	 the	 interaction	 point.	 A	 distinction	 metric	 has	 been	 created	 considering	
different	characteristics	of	signal	and	pileup	 interactions.	The	particle	energy	has	shown	
to	allow	a	good	distinction	rate	because	the	signal	is	high	energy	and	a	signal	interaction	
usually	 produces	 other	 medium-	 to	 high-energy	 particles.	 Therefore,	 the	 transverse	
momentum	(pT)	of	a	particle,	which	is	the	only	energy	measurement	available	in	the	ID,	is	
used.	To	 increase	 the	effect	of	high-energy	particles,	 the	pT	measurement	 is	 squared.	To	
avoid	 registering	 overlay	 of	 multiple	 low-energy	 pileup	 events	 as	 a	 single	 high-energy	
collision,	 the	 total	measurement	 is	 divided	 by	 the	 number	 of	 tracks.	 Testing	 this	metric	
against	multiple	other	metrics,	it	has	shown	to	deliver	the	best	distinction	rate	for	differ-
ent	 types	 of	 signal	 events.	 This	 metric	 M	 is	 described	 by	 the	 sum	 of	 the	 square	 of	 the	
transverse	momentum	of	all	tracks	divided	by	the	number	of	tracks	t:	

	

M = 	
p234

𝑡

6

378
	

	
To	take	into	account	that	high	pT	pileup	interactions	may	be	rated	similarly	to	a	signal	

interaction	 with	 metric	 M,	 the	 three	 highest	 rated	 results	 are	 used.	 This	 means	 for	 a	
tracking	algorithm	that	all	three	results	are	treated	as	vertices	that	have	to	be	reconstruct-
ed.	This	increases	the	runtime	of	the	tracking	by	a	factor	of	three,	but	because	tracking	is	
orders	 of	 magnitude	 faster	 if	 only	 tracks	 originating	 from	 a	 certain	 point	 have	 to	 be	
reconstructed,	the	total	runtime	will	still	be	lower.	Applying	the	metric	above	lead	to	the	
distinction	 rate	 in	Table	 13.	 Tested	 events	 have	been	 chosen	 to	 cover	 different	 types	 of	
different	signatures	in	the	ID.	The	signal	in	a	Higgs	to	two	photons	decay	does	not	leave	a	
trace	in	the	Inner	Detector	and	has	been	chosen	to	show	limitations	of	the	approach.	Using	
the	low-level	trigger	information,	it	is	possible	to	select	this	algorithm	only	for	events	for	
which	a	well	distinguishable	signal	is	expected.	
	

Pileup		 tt	allhad	 tt	nonallhad	 Zmumu	 Hγγ	
20	 100%	 100%	 99.9%	 75.7%	
40	 100%	 100%	 99.7%	 63.6%	
80	 99.9%	 99.9%	 99.6%	 52.8%	
160	 99.9%	 99.7%	 99.1%	 43.7%	

Table	13:	Truth	analysis	for	charged	particles	pT	>1GeV/c.	Probability	to	successful-
ly	distinguish	the	different	signal	vertices	from	pileup	interactions,	i.e.	to	be	among	
the	three	top	rated	vertices	with	the	given	metric.	

 
As	expected,	the	distinction	rate	is	low	for	the	Higgs	to	two	photons	decay	(Hγγ),	mak-

ing	 this	metric	 inapplicable	 for	 this	 type	of	event.	The	study	shows	 that	 for	other	 tested	
event	types	the	distinction	is	possible	with	a	high	probability	even	in	high	pileup	scenari-
os.	

6.1.3 Algorithmic	Details	of	the	Vertexing	Algorithm	
The	study	suggests	that	it	is	possible	to	distinguish	event	topologies	from	one	another	

using	only	charged,	stable	primary	particles	under	ideal	conditions.	In	a	tracking	detector,	
such	as	the	ID,	the	tracks	have	to	be	found	first	before	such	information	is	available.	The	
existing	 algorithm	 uses	 combinations	 of	 two	 pixel	 space	 points	 to	 calculate	 the	 particle	
energy	and	origin.	While	this	is	enough	to	find	all	tracks	originating	from	the	signal,	it	will	
also	 generate	many	 fakes.	The	 algorithm	has	been	 implemented	 from	scratch	 to	 include	
the	 endcaps,	 account	 for	 changed	 Run	 2	 geometry	 and	 implements	 improvements	 for	
physics	performance	and	speed.	
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Figure	 56:	 Schematic	 of	 how	detector	 layers	 are	 binned	 in	 z	 and	φ.	 The	 path	 of	 a	
potential	track	is	calculated	using	two	space	points	and	the	beam	spot.	If	sufficient	
space	points	are	found,	a	track	pointing	to	the	beam	spot	is	considered	found.	

6.1.3.1 Principle	of	the	Vertexing	Algorithm	
The	algorithm	uses	combinations	of	two	pixel	detector	space	points	to	determine	the	

origin	of	a	possible	track.	It	extrapolates	a	straight	line	through	both	space	points	in	the	r-z	
plane	 towards	 the	 interaction	 region.	 Here,	 r	 denotes	 the	 distance	 perpendicular	 to	 the	
interaction	region,	i.e.	the	radius,	and	z,	the	coordinate	along	the	interaction	region,	with	z	
=	0	being	in	the	center	of	the	interaction	region.	The	φ	distance,	 i.e.	the	difference	in	the	
angle	around	the	beam	axis	and	the	distance	in	r	between	the	two	space	points	is	used	to	
calculate	 the	 transverse	momentum	of	a	particle	originating	 from	the	 interaction	region.	
The	 vertex	 histogram	 bin	 corresponding	 with	 the	 location	 on	 the	 interaction	 region	 is	
updated	according	to	the	metric	M.	The	algorithm	exploits	that	ATLAS	has	a	nearly	homo-
geneous	magnetic	field	in	the	ID	and	that	the	center	of	the	magnetic	field,	the	center	of	the	
ID	 and	 the	 interaction	 region	 are	 all	 in	 the	 same	 place.	 The	 tracks	 of	 charged	 particles	
originating	from	the	center	are	therefore	only	deflected	in	φ	direction,	so	they	are	nearly	
on	 a	 straight	 line	 in	 the	 r-z	 plane	 for	 higher	 pT.	 All	 combinations	 of	 two	 Pixel	 detector	
space	points	 that	have	a	φ	distance	compatible	with	 the	 tested	pT	 range	 (i.e.	here	above	
1GeV/c)	are	considered.	To	quickly	 find	all	 compatible	 combinations,	 these	space	points	
are	binned	in	φ.		

As	mentioned,	a	major	problem	for	the	applicability	of	this	algorithm	were	the	fakes,	
that	added	up	to	a	lot	of	background,	as	many	space	point	combinations	with	a	φ	distance	
within	the	analyzed	pT	range	do	not	belong	to	a	track.	To	effectively	check	if	a	combination	
belongs	 to	a	 track,	 the	existence	of	additional	space	points	on	a	helical	 trajectory	can	be	
tested.	To	minimize	the	cost	for	these	tests,	all	space	points	from	the	ATLAS	silicon	layers,	
the	SCT	and	the	Pixel	detector,	are	binned	in	a	3D	histogram	by	φ	and	z	for	barrel	space	
points	respectively	in	φ	and	r	for	space	points	on	the	endcaps.	Bin	sizes	must	be	adjusted	
for	 a	 trade-off	 between	 noise	 elimination	 and	 allowing	 for	 deviation	 from	 the	 ideal	 as-
sumed	conditions.	The	radius	for	the	barrels	respectively	the	z	coordinate	for	the	endcaps	
is	 known	 because	 the	 subsequent	 layer	 can	 be	 calculated	 using	 the	 trajectory.	With	 the	
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next	layer	known	and	the	angle	and	curvature	of	the	track	calculated	from	the	two	initial	
pixel	space	points,	it	is	possible	to	accurately	calculate	the	coordinates	on	the	next	detec-
tor	surface,	see	Figure	56.	

This	 way,	 a	 check	 for	 the	 existence	 of	 a	 compatible	 space	 point	 completely	 avoids	
scanning	 through	 space	 points	 to	 find	 a	match.	 For	 tracks	with	 a	 pT	 above	 1	GeV/c,	 the	
locations	can	be	approximated	with	a	linear	extrapolation.	At	these	energies,	the	radius	of	
a	helix	formed	by	a	particle’s	track	are	so	large	that	a	linear	extrapolation	leads	to	insignif-
icant	 errors.	 The	 maximum	 error	 is	 larger	 for	 lower	 energies	 and	 smaller	 angle	 to	 the	
beam	 axis.	 The	 maximum	 absolute	 error	 of	 the	 approximation	 for	 φ	 is	 calculated	
in	Appendix	A	with	0.04°	 for	 the	ATLAS	detector.	This	 linear	extrapolation	 is	 faster	 than	
the	accurate	 formula	 for	a	helix.	By	setting	a	single	bit	corresponding	 to	 the	 layer	 in	 the	
histogram	 for	 each	 space	 point,	 the	 only	 additional	 check	 is	 a	 single	 bit	 test	 for	 each	
detector	layer.	By	requiring	at	least	six	compatible	space	points,	the	probability	for	noise	
forming	a	helical	track	is	reduced.	The	ATLAS	Run	2	geometry	is	designed	to	generate	at	
least	 eight	 space	 points	 for	 a	 track	 within	 the	 boundaries,	 so	 this	 still	 allows	 for	 some	
inefficiency.	Each	time	for	two	pixel	space	points	sufficient	compatible	entries	are	found,	
the	z	location	on	the	beam	is	stored	in	a	vertex	histogram	together	with	the	energy	of	this	
track.	 After	 looping	 over	 all	 feasible	 space	 point	 combinations,	 energies	 and	 number	 of	
tracks	are	used	to	calculate	the	metric	to	score	each	bin.	The	three	highest	rated	bins	are	
returned	and	assumed	to	contain	the	primary	vertex	of	the	signal	interaction.	

6.1.3.2 Further	Improvements	to	the	Algorithm	
Prediction	of	the	potential	space	point	location	on	a	subsequent	layer	from	pixel	space	

point	 combinations	 is	 limited	 by	 a	 combination	 of	 multiple	 scattering,	 the	 distance	 be-
tween	these	layers	and	the	deviation	from	a	homogeneous	magnetic	field.	Such	inaccura-
cies	can	lead	to	missing	the	bin	in	the	histogram	for	an	SCT	detector	layer	by	one,	especial-
ly	when	an	SCT	space	point	would	lie	close	to	the	border	between	two	bins.	To	account	for	
these	inaccuracies,	a	compatible	space	point	is	considered	found	if	there	is	an	entry	in	the	
calculated	 bin	 or	 in	 any	 of	 its	 eight	 neighboring	 bins.	 My	 tests	 showed	 this	 improves	
finding	compatible	bins	without	significantly	adding	to	noise.	Noise	levels	are	low	for	even	
high	pileup	scenarios	because	of	the	high	resolution	of	the	z-φ	(for	the	barrel)	respectively	
r-φ	histogram	(for	the	endcaps)	which	has	in	the	order	of	106	bins	but	only	about	103	–	104	
space	points	per	detector	layer.	

Another	inaccuracy	related	to	finding	the	compatible	SCT	space	points	is	that	the	bar-
rel	is	not	a	perfect	cylinder	but	consists	of	flat	overlapping	modules	arranged	around	the	
center.	Similarly,	endcaps	are	overlapping	to	avoid	cracks	where	particles	could	otherwise	
pass	undetected.	This	leads	to	differences	in	r	of	4cm	between	space	points	on	the	inner-
most	respectively	on	the	outermost	position	of	a	module	for	the	barrel	and	similar	differ-
ences	 for	 the	 overlapping	 endcap	 modules.	 A	 lookup	 in	 the	 histogram	 based	 on	 an	 r	
(barrel)	respectively	z	value	(endcaps)	with	a	2cm	error	can	lead	to	a	wrong	lookup.	This	
is	improved	by	shifting	each	space	point	towards	the	average	r	of	the	barrel	respectively	
average	z	value	in	the	endcaps	in	the	direction	of	the	detector	center.	This	is	not	accurate	
for	all	tracks	as	they	can	originate	from	the	whole	interaction	zone	which	is	±156mm	from	
the	detector	center.	The	correction	direction	deviates	from	the	actual	track	direction	most	
in	 the	 central	 barrel	 regions,	 as	 the	 distance	 a	 particle	 travelled	 is	 shortest	 here.	 The	
measure	is	nonetheless	helpful	as	the	correction	in	z	is	minimal	in	barrel	areas	close	to	the	
barrel	 center.	 The	φ	 direction	 cannot	 be	 corrected	 in	 the	 same	way,	 as	 it	 depends	 on	 a	
particle’s	charge	and	transverse	momentum,	and	is	therefore	left	unchanged.	

The	transverse	momentum	resolution	is	not	very	precise	for	this	algorithm.	The	algo-
rithm	depends	on	the	beamspot’s	location	being	at	r	=	0	and	cannot	adjust	vertex	positions	
in	r	and	φ	direction.	If	the	vertex	is	not	exactly	on	the	beamspot,	all	tracks	originating	from	
this	vertex	will	have	an	error	in	the	assigned	pT.	The	beamspot’s	location	is	usually	known,	
so	 the	effect	can	be	reduced	by	shifting	all	 space	points	by	 the	distance	of	 the	beamspot	
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from	 the	 center	 of	 ATLAS.	 Although	 the	 locations	 of	 interactions	 can	 deviate	 by	 a	 few	
hundred	microns	from	the	known	beamspot,	this	will	nonetheless	reduce	the	error	of	the	
tracks.	 By	 doing	 this	 before	 the	 previously	 described	 correction	 for	 the	 flat	 overlapping	
modules,	the	space	point	locations	will	be	corrected	for	their	perpendicular	distance.	

Second,	a	random	combination	of	measurements	is	as	likely	to	result	in	a	very	high	pT	
fake	track	as	in	a	low	pT	fake	track.	High	pT	contribute	much	more	to	the	total	score	using	
the	metric	introduced	in	6.1.2.1,	such	that	a	single	very	high	rated	fake	has	the	potential	to	
create	 the	 highest	 rated	 vertex.	 To	 avoid	 this	while	 still	 allowing	 real	 high	 pT	 tracks	 to	
contribute	more	to	a	vertex	than	a	random	combination,	I	introduced	a	maximum	pT	of	30,	
such	 that	a	 single	 fake	which	 is	 counted	 just	once	will	not	contribute	much	more	 than	a	
high	pT	 track	 from	an	 actual	particle.	A	 real	 track	 is	more	 likely	 to	 be	 counted	up	 to	10	
times	from	different	Pixel	measurement	combinations.	

6.1.4 Performance	Study	of	a	Vertexing	Implementation		

6.1.4.1 Single	Particle	Study	with	Realistic	Geometry	
A	second	study	has	been	conducted	to	estimate	the	effect	of	geometry	on	the	perfor-

mance	of	the	algorithm	and	the	metric.	The	events	tested	in	the	truth	study	are	simulated	
in	 the	Run	2	ATLAS	detector	geometry,	 though	with	 ideally	homogeneous	magnetic	 field	
and	 no	material	 interaction	 effects,	 such	 that	 the	 path	 of	 the	 particles	 does	 not	 change	
during	 lifetime.	 To	 measure	 the	 difference	 between	 lost	 efficiency	 due	 to	 the	 detector	
geometry,	which	cannot	be	corrected,	and	lost	efficiency	due	to	simplifying	assumptions	in	
the	algorithm,	minimum	requirements	to	find	a	track	are	defined.	These	are	measured	on	
the	 truth	 information	 stored	 with	 simulated	 particles.	 A	 particle	 that	 does	 not	 pass	
through	 at	 least	 6	 distinct	 layers	 or	 has	 a	 pseudorapidity	|η|	>	2.5	 is	 considered	 to	 be	
unfindable.	The	particles	marked	unfindable	under	 these	conditions	make	up	45%	of	all	
charged,	stable	particles	with	transverse	momentum	greater	1GeV/c.	Under	these	condi-
tions,	the	algorithm	finds	99%	of	the	remaining	findable	tracks.	

6.1.4.2 Single	Particle	Study	with	Realistic	Setting	
In	this	subsection,	the	algorithm’s	ability	to	find	single	particle	tracks	in	a	realistic	set-

ting	is	tested.	Magnetic	field	and	geometry	are	both	simulated	in	full	detail.	The	particles	
do	 not	 originate	 from	 the	 center	 of	 the	 detector	 as	 in	 previous	 tests,	 but	may	 originate	
anywhere	 along	 the	 interaction	 region.	 Material	 interaction	 is	 also	 simulated.	 Realistic	
particle	behavior	may	render	a	track	unfindable	for	more	reasons,	such	that	I	extend	the	
definition	 in	6.1.4:	 If	a	particle	decays	before	passing	through	at	 least	6	distinct	detector	
layers,	 it	 will	 be	 considered	 unfindable	 even	 if	 the	 decay	 products	 create	 further	 space	
points.	A	particle	is	only	considered	findable	if	the	particle’s	creation	vertex	distance	in	r	
from	the	interaction	region	is	less	than	2mm.	The	interaction	region	spans	from	(0,0,–156)	
to	(0,0,156),	so	31.2cm	along	the	beam	axis.	A	particle	is	considered	found	if	at	least	6	bins	
containing	measurements	 from	 this	 particle	 have	 been	 grouped	 by	 the	 algorithm.	Using	
this	 configuration,	 the	 algorithm	 can	 find	94.8%	of	 all	 findable	 particle	 tracks	with	 pT	 >	
1GeV/c.	This	is	a	lower	bound,	as	in	an	event	with	many	particles	the	space	points	caused	
by	other	particles	may	contribute	to	finding	through	random	combination	of	a	space	point	
with	 space	 points	 belonging	 to	 the	 track.	 Including	 the	measurements	 from	many	 other	
tracks	 does	 not	 reduce	 the	 probability	 to	 correctly	 combine	 measurements,	 instead	 it	
introduces	 additional	 random	combinations	 of	 unrelated	measurements,	 so-called	 fakes.	
Therefore,	all	tracks	found	during	this	test	would	also	be	found	running	this	algorithm	on	
an	event	with	many	particles.	
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Figure	 57:	 Vertex	 identification	 efficiency	 for	 lower	 pileup	 events	with	 the	 Run	 1	
vertexing	algorithms.	Within	acceptance	denotes	that	the	signal	is	fully	detectable	in	
the	Inner	Detector.	Plot	taken	from	[93].	

6.1.4.3 Study	with	Realistic	Setting	on	Run	2	Events	
To	compare	the	number	of	real	measurements	from	the	same	particle	combined	correctly	
with	 the	 number	 of	 fakes,	 I	 created	 events	 with	 identifiers	 for	 each	 particle	 above	 an	
energy	threshold	of	0.3GeV/c.	Particles	with	lower	energy	are	not	found	by	the	algorithm,	
which	is	configured	to	find	tracks	above	1GeV/c	transverse	momentum.	For	tests	with	500	
events	with	40	pileup	collisions	and	a	Z	to	two	muons	signal,	on	average	1835	tracks	with	
more	than	1GeV	are	found	per	event,	but	390	of	these	tracks	are	fakes.	This	corresponds	
to	21.2%	fakes.	The	number	of	found	tracks	does	not	correspond	to	distinct	tracks	because	
the	same	track	can	be	found	and	counted	up	to	6	times	in	the	barrel	region	and	up	to	10	
times	in	the	endcap	region,	by	combining	different	Pixel	detector	space	points	of	the	same	
particle.	 My	 tests	 show	 tracks	 are	 found	 6.5	 times	 on	 average.	 A	 fake	 has	 a	 very	 low	
probability	to	be	counted	as	often	because	measurements	from	different	particles	are	less	
likely	to	have	a	high	level	of	agreement	between	the	different	space	points,	such	that	not	
all	combinations	point	in	the	same	direction.	Therefore,	these	fakes	are	more	likely	to	be	
distributed	over	the	interaction	region	rather	than	accumulate	on	one	point.	The	primary	
vertex	can	be	correctly	identified	in	74.6%	of	the	cases.	The	huge	difference	to	the	theoret-
ical	measurements	partially	stems	from	the	45%	lost	tracks	described	in	6.1.4.	According-
ly,	 in	45.6%	of	 the	 tested	500	Z	 to	 two	muons	signal	events,	 there	were	not	at	 least	 two	
muons	with	 pT	>	15GeV	 findable.	 In	 another	 1.2%	 the	 interaction	 took	place	 outside	 the	
interaction	 region	 in	 z	 direction	 defined	 to	 be	 between	 –156mm	 and	 +156mm.	 When	
disregarding	 these	 events	 with	 (partially)	 unfindable	 signal,	 93.0%	 of	 all	 vertices	 are	
correctly	identified.	A	study	of	the	offline	reconstruction	vertexing	algorithms	during	Run	
1	shows	that	around	90%	of	the	signal	vertices	are	correctly	identified	in	Z	to	two	muon	
decay	 events	 when	 events	 with	 partially	 unfindable	 signal	 are	 also	 considered,	 and	 in	
about	 99%	 of	 the	 cases	 if	 these	 events	 are	 factored	 out,	 see	 Figure	 57.	 Although	 these	
results	are	only	for	up	to	38	pileup	interactions,	the	trend	is	recognizable	such	that	similar	
results	are	expected	for	events	with	40	pileup	interactions.	The	better	result	of	the	offline	
reconstruction	 algorithm	despite	 the	 same	metric	 is	 because	 these	 vertexing	 algorithms	
run	after	the	detailed	track	reconstruction,	such	that	very	accurate	pT	measurements	can	
be	used,	the	exact	location	of	the	tracks’	perigee	is	known	up	to	a	few	microns	and	the	fake	
rate	 is	below	1%	 [93].	The	additional	 low	pT	 tracks	 should,	 according	 to	 the	metric,	 not	
significantly	influence	the	result,	as	Table	13	in	Section	6.1.2.1	shows.	
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6.1.5 Applicability	Analysis	of	the	Algorithm	for	Tracking	
The	presented	vertexing	Algorithm’s	probability	to	successfully	select	the	signal	vertex	

is	crucial	to	the	tracking	algorithm	that	requires	the	vertices.	If	the	signal	vertex	has	been	
found	but	its	 identification	cannot	be	guaranteed,	more	vertices	would	have	to	be	recon-
structed.	The	runtime	of	the	tracking	algorithm	is	linear	with	the	space	points	and	linear	
with	 the	number	 of	 vertices	 to	 be	 reconstructed.	 The	number	 of	 reconstructed	 real	 and	
fake	 vertices	 increases	with	 pileup,	 such	 that	 the	 runtime	 becomes	 O(n*m)	 for	 n	 space	
points	and	m	vertices.	This	would	quickly	get	unacceptably	high.	To	avoid	reliance	on	the	
found	vertices,	the	vertex	finder	algorithm	itself	can	be	used	to	group	space	points	belong-
ing	 to	 tracks,	 as	 it	works	 on	 a	 similar	 principle	 as	 the	 track	 finder.	 By	 using	 the	 vertex	
reconstruction	 algorithm	 to	 find	 tracks,	 all	 tracks	 that	 could	 have	 been	 found	 with	 the	
tracking	algorithms	can	be	 found	as	well.	 I	will	 shortly	explain	 the	 tracking	algorithm	to	
show	that	the	vertexing	algorithm	can	find	at	least	the	same	amount	of	particle	tracks:	

The	track	finder	algorithm	does	not	create	tracks,	but	groups	space	points	that	may	be	
compatible	 with	 a	 track.	 The	 actual	 track	 construction	 and	 fitting	 must	 be	 done	 in	 a	
subsequent	step.	This	subsequent	step	will	be	much	faster	than	with	standard	seed	find-
ing,	because	 it	eliminates	more	 fakes	and	already	provides	all	possibly	compatible	space	
points,	 see	 analyses	 in	 Subsections	 6.1.6	 and	 6.1.7.	 To	 create	 the	 groups,	 the	 algorithm	
maps	 all	 space	 points	 to	 a	 3D	 histogram.	 Space	 points	 on	 the	 same	 helical	 path	 are	 as-
sumed	 to	belong	 to	a	 single	particle.	Accordingly,	 space	points	on	a	helix	are	mapped	 to	
the	 same	 bin.	 This	 mapping	 only	 works	 for	 a	 specified	 curvature	 corresponding	 to	 a	
certain	pT	and	for	a	specified	origin	on	the	beam	axis.	This	is	why	the	mapping	has	to	be	
done	for	all	desired	pT	ranges	and	all	vertices	to	be	reconstructed.	To	identify	 if	a	space-
point	belongs	to	a	track,	it	is	tested	if	it	maps	to	a	bin	with	sufficient	entries	from	distinct	
layers	according	to	a	threshold.	Entries	in	neighboring	bins	are	also	considered	and	added	
to	the	group.	If	such	a	group	contains	sufficient	space	points	from	distinct	layers,	they	are	
assumed	 to	belong	 to	one	or	multiple	 very	 close	 tracks.	The	 size	of	 the	bins	defines	 the	
accepted	 pT	 range,	 and	 counting	 neighboring	 bins	 ensures	 space	 points	mapped	 on	 bin	
borders	cannot	prevent	space	points	from	being	correctly	grouped.	

The	vertex	 finder	uses	 the	same	 function	 to	 find	space	points	compatible	with	a	 two	
space	point	combination	as	the	tracking	algorithm	for	its	binning.	But	the	vertex	algorithm	
does	 so	 using	 the	 originating	 point	 and	 pT	 calculated	 from	 these	 particular	 two	 space	
points.	In	doing	so,	it	allows	a	higher	deviation	from	a	perfectly	helical	path	with	the	same	
bin	sizes	and	does	not	suffer	from	the	uncertainty	of	a	reconstructed	vertex.	The	tracking	
algorithm’s	 existence	 is	 legitimized	 by	 its	 linear	 complexity	 for	 reconstructing	 a	 single	
vertex,	making	 this	algorithm	applicable	 if	only	a	 small	number	of	vertices	needs	recon-
struction	 and	 if	 they	 can	 be	 reliably	 found	 at	 low	 cost.	 With	 the	 scenario	 of	 requiring	
reconstruction	of	particles	 from	all	vertices,	 this	condition	does	not	apply.	The	vertexing	
algorithm	already	tests	pixel	space	point	duplets	for	compatible	space	points	on	the	other	
layers,	 independent	of	 their	vertex	 location	on	the	 interaction	region.	By	 including	parti-
cles	with	pT	between	0.4	and	1	GeV/c,	 the	vertexing	algorithm	can	emulate	the	full	 func-
tionality	 of	 the	 tracking	 algorithm.	 In	 a	 test	with	 realistic	 events	 I	 established	 the	 algo-
rithm’s	ability	to	find	lower	pT	tracks,	see	Table	14.	

	
	 pT	≥	0.4	 pT	≥	0.5	 pT	≥	0.6	 pT	≥	0.7	 pT	≥	0.8	 pT	≥	0.9	 pT	≥	1.0	
truth-tracks	
found	 82.2%	 87.5%	 89.6%	 91.0%	 93%	 94.3%	 94.8%	

Table	14:	The	vertexing	algorithm's	efficiency	 for	different	pT.	For	 the	 tests,	single	
tracks	from	a	minimum	bias	event	were	selected.	

While	 the	efficiency	 is	significantly	 lower	 for	 low-pT	 tracks	 than	 for	higher	pT	 tracks,	
these	lower	pT	tracks	also	contribute	less	to	finding	high	energy	particles.	Overall	efficien-
cy	is	lower	than	offline	reconstruction,	but	it	is	also	much	faster.	
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6.1.6 Computational	Performance	Comparison	
The	output	of	 these	algorithms	are	not	 tracks	but	 rather	groups	of	 space	points	 that	

may	 belong	 to	 a	 track.	 To	 create	 a	 track,	 one	 or	multiple	 tracks	must	 be	 fitted	 through	
these	 space	points.	 This	 is	 a	 similar	problem	 to	 trying	 to	 find	 a	 track	 from	only	 a	 set	 of	
initial	parameters	given	by	a	seed,	as	currently	 in	use	in	offline	track	reconstruction,	but	
avoids	 having	 to	 find	 the	 space	 points	 on	 each	 layer.	 The	 track	 reconstruction,	 as	men-
tioned	 in	 Section	 2.7,	 consists	 of	 three	 steps.	 The	 intermediate	 results	 are	 seeds,	 track	
candidates	and	 tracks.	With	each	subsequent	 step,	 the	number	of	 results	 is	 reduced	and	
each	step	creates	a	structure	closer	to	the	final	track.	The	effort	required	to	create	a	final	
track	from	the	filtering	algorithm’s	output	is	somewhere	in	between	the	effort	needed	to	
create	a	track	from	a	seed	or	a	track	candidate.	For	a	reasonable	comparison	I	will	give	the	
results	of	both	seeding	and	 the	 tracking	part	 to	contrast	 the	results	of	 the	 filtering	algo-
rithm.	

The	results	of	the	speed	comparisons	are	in	Table	15.	To	measure	track	candidate	cre-
ation	and	seeding,	I	ran	a	full	offline	reconstruction.	Because	the	track	candidate	creation	
requires	 the	 seeding	 to	 run,	 I	 measured	 their	 combined	 runtime.	 In	 a	 separate	 run,	 I	
disabled	the	track	candidate	creation	and	measured	only	the	seeding.	As	some	seeds	are	
excluded	using	the	results	 from	tracking,	which	does	not	take	place	when	the	tracking	is	
disabled,	 the	 test	 of	 the	 seeding	 overestimates	 the	 actual	 time	 by	 a	 few	 percent.	 The	
results	 show	that	 the	algorithm	scales	 similarly	as	 the	offline	seeding	and	 tracking	algo-
rithm	with	the	cut	on	transverse	momentum.	The	seeding	does	not	gain	much	speed	from	
changing	the	pT	cuts.	The	filtering	algorithm	is	between	7.8	and	17.5	times	faster	than	the	
seeding.	
	
	 pT	≥	0.4	 pT	≥	0.5	 pT	≥	0.6	 pT	≥	0.7	 pT	≥	0.8	 pT	≥	0.9	 pT	≥	1.0	
Seeding	+	Track	
Candidates	
Creation	

3612ms	 3040ms	 2642ms	 2284ms	 2029ms	 1891ms	 1758	

Seeding	only	 945ms	 940ms	 914ms	 902ms	 898ms	 895ms	 893ms	
Filtering		
algorithm	 120ms	 98ms	 84ms	 74ms	 64ms	 57ms	 51ms	

Table	 15:	 Timing	 of	 different	 tracking-related	 algorithms	 per	 event.	 The	 filtering	
algorithm	has	not	been	optimized	for	speed	yet.	Tests	performed	with	Z	to	µµ	signal	
events.	

The	vertexing	algorithm	cannot	assert	 the	quality	of	 the	 found	space	point	combina-
tions	 because	 it	 is	 missing	 too	 much	 information.	 The	 distance	 of	 particle	 production	
vertices	from	the	beam	spot	is	unknown,	and	for	each	space	point	found	in	the	histogram	
that	is	compatible	with	a	duplet,	the	location	is	only	known	within	the	histogram	bin	size	
boundaries.	This	 lack	of	 information	means	 that	no	meaningful	bookkeeping	 that	would	
allow	 to	 reduce	 complexity	 is	 possible,	 neither	 would	 a	 bookkeeping	 mechanism	 save	
much	 time	due	 to	 the	 low	complexity	of	 the	 algorithm.	 Instead,	 the	 lack	of	bookkeeping	
allows	a	parallelization	over	all	 space	point	 combinations.	Parallel	 instances	 can	use	 the	
same	lookup	histogram	and	space	point	 lists,	as	no	there	are	no	writing	operations	after	
initialization	of	 these	 lists,	 such	 that	memory	overhead	 is	minimal.	 Computational	 over-
head	is	also	negligible	as	it	consists	only	in	the	assignment	of	space	points	for	each	parallel	
instance.	 These	 properties	 make	 the	 implementation	 of	 a	 parallel	 version	 comparably	
trivial.	
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Figure	58:	Comparing	the	purity	of	the	found	combinations	of	different	algorithms.	
While	 I	generated	detailed	data	about	duplicates	and	 fakes	 for	 the	vertexing	algo-
rithm,	this	information	is	not	available	for	the	other	algorithms.	Tested	with	Z	to	µµ	
signal	events	with	40	pileup	interactions	and	transverse	momentum	>	1GeV/c. 

6.1.7 Purity	Study	
This	 subsection	presents	 the	 results	of	 a	 study	of	 the	number	of	 found	 tracks	compared	
with	the	number	of	found	fakes	and	the	number	of	duplicates	found.	A	duplicate	refers	to	a	
collection	of	 space	points	 created	by	a	particle,	 i.e.	belonging	 to	a	 truth	 track,	which	has	
been	 found	 multiple	 times.	 Excluding	 such	 duplicates	 is	 not	 always	 possible	 a	 priori	
because	 two	 groups	 of	 space	 points	may	 share	most	 but	 not	 all	 space	 points,	 such	 that	
both	groups	include	space	points	from	the	same	track.	The	same	problem	exists	in	offline	
tracking,	where	a	so-called	ambiguity	solver	decides	which	is	the	more	probable	track.	The	
number	 of	 duplicates	 and	 fakes	 found	 influence	 the	 runtime	 of	 subsequent	 tracking	
algorithms	 which	 need	 to	 filter	 out	 all	 fakes	 and	 duplicates.	 As	 explained	 in	 6.1.5,	 the	
results	are	applicable	to	both	tracking	and	vertexing	algorithm,	such	that	I	will	not	distin-
guish	between	the	two.	If	the	algorithm	is	used	for	vertexing,	the	number	of	fakes	consti-
tute	 the	 background,	 creating	 fake	 vertices	 and	 making	 a	 distinction	 of	 vertices	 more	
difficult.	

To	allow	for	a	comparison	with	the	offline	reconstruction,	this	study	compares	the	fil-
tering	 purity	 and	 duplicates	 generated	 to	 the	 seeding	 and	 the	 track	 candidates	 in	 the	
offline	track	reconstruction.	

As	the	chart	in	Figure	58	shows,	the	seeding	finds	60	combinations	per	real	track	and	
therefore	almost	6	times	more	than	the	10.8	found	combinations	per	found	particle	track	
from	the	filtering	algorithm.	The	track	candidate	creation	reduces	the	number	of	combina-
tions	 to	4.3	 combinations	per	 real	particle	 track.	This	 comparison	assumes	a	100%	effi-
ciency	 for	 all	 algorithms	 except	 the	 filtering	 algorithm	 for	 which	 the	 measured	 95%	
efficiency	 is	used.	This	data	visualizes	how	much	the	size	and	complexity	of	 the	tracking	
problem	can	be	reduced	by	using	the	filtering	algorithm.	The	number	of	combinations	of	
the	 filtering	algorithm	 is	6	 times	 lower	 than	 the	number	combinations	generated	by	 the	
seeding.	With	the	provided	information	a	track	candidate	can	in	the	worst	case	be	created	
in	a	similar	time	as	the	track	candidate	creation	from	seeds.	This	means	that	in	the	worst	
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Figure	59:	Sketch	of	ATLAS	Inner	Detector	subdivided	into	regions	[94].	Two	inde-
pendent	 combinations	 of	 regions	 have	 been	 highlighted.	 For	 the	 yellow	 combina-
tion,	all	layers	are	from	one	φ	region.	The	region	in	orange	is	a	combination	of	the	
two	innermost	layers	from	one	φ	region	and	the	outermost	layer	from	the	neighbor-
ing	φ	region	counter	clockwise.	In	total,	there	are	5	different	combination:	All	layers	
belong	to	one	φ	region,	combining	the	two	innermost	layers	from	one	φ	region	with	
the	outermost	layer	from	a	neighboring	region,	and	combining	the	innermost	layer	
from	one	φ	region	with	the	two	outermost	layers	from	a	neighboring	φ	region.	

case,	 the	 track	 candidate	 creation	 using	 results	 from	 the	 filtering	 algorithm	 should	 take	
only	 1/6th	 of	 the	 time	 it	 takes	 in	 combination	 with	 the	 offline	 reconstruction	 seeding	
algorithm.	

6.1.8 Proposal	for	Application	for	the	Improved	Vertex	Finder	
The	improved	vertexing	has	different	possible	applications.	The	algorithm	in	its	origi-

nal	 form	 was,	 is,	 or	 is	 foreseen	 to	 be	 used	 for	 some	 of	 the	 applications.	 These	 are	 the	
software	trigger	vertexing	and	tracking	 in	the	past,	 the	vertex	 finding	 for	 the	beam	loca-
tion	 currently	 and	 a	 hardware	 implementation	 for	 the	 hardware	 trigger	 for	 the	
high-luminosity	 LHC	 in	 the	 future.	 In	 the	 case	 of	 current	 and	 future	 developments,	 the	
improved	vertexing	algorithm	can	be	adapted	to	the	purpose	and	can	be	directly	applied.	
In	 the	 cases	 where	 the	 original	 vertex	 finder	 and	 track	 finder	 have	 been	 replaced,	 the	
performance	 of	 the	 solution	 currently	 in	 place	 needs	 to	 be	 compared	 for	 differences	 in	
runtime	and	physics	performance	with	the	improved	vertex	finder	presented	here.	

As	another	field	of	application,	the	vertex	finder	could	be	used	in	the	offline	tracking,	
as	 low	 accuracy	 tracking	 algorithm	 to	 reduce	 the	 complexity	 of	 the	 reconstruction	 in	 a	
high	pileup	scenario.	The	events	generated	with	 the	High	Luminosity	LHC	starting	2023	
will	have	much	higher	pileup	which	will	lead	to	prohibitively	expensive	reconstruction.	A	
way	 to	 tackle	 the	 complexity	would	be	 to	 run	detailed	 reconstruct	 only	 in	 the	 region	of	
interest	where	the	signal	is	located	and	run	reconstruction	in	other	detector	regions	with	
a	faster	algorithm	allowing	lower	accuracy.	Particles	originating	from	pileup	interactions	
are	reconstructed	mostly	to	be	able	to	distinguish	the	energy	deposited	in	calorimeters	by	
these	particles	 from	 the	energy	deposited	by	particles	 from	 the	 signal	 interaction.	 If	 the	
accuracy	of	the	pileup	reconstruction	is	reduced,	it	will	have	a	minor	impact	on	the	accu-
racy	of	the	attribution	of	energy	deposits	in	the	calorimeters.	This	may	be	acceptable	if	the	
loss	 of	 accuracy	 can	 be	 compensated	 for	with	 a	 higher	 number	 of	 events	which	 can	 be	
processed,	which	can	in	turn	improve	confidence	levels.	To	reconstruct	the	pileup	differ-
ently	from	the	signal,	 the	signal	origin	location	must	be	known	before	reconstruction.	As	
the	 tests	 presented	 in	 6.1.4.3	 shows,	 the	 vertexing	 algorithm	 does	 not	 find	 the	 primary		
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Figure	60:	Runtime	of	the	tracking	per	ttbar	event	with	10-pileup	interactions	on	a	
Xeon	L5520	CPU	with	different	number	of	threads.	The	dashed	line	denotes	perfor-
mance	of	 the	same	algorithm	executed	on	a	GPU.	The	CPU	version	 is	derived	 from	
the	GPU	version	by	[57].	

vertex	position	among	all	pileup	vertices.	However,	for	many	event	types	the	signal	event	
origin	location	can	be	pinpointed	up	to	few	centimeters	using	trigger	information	from	all	
detector	regions.	Using	this	location,	only	this	area	can	be	reconstructed	using	high	accu-
racy	reconstruction	while	the	pileup	interactions	in	the	other	areas	can	be	reconstructed	
using	the	improved	vertexing	algorithm.	

6.2 GPU	Parallel	tracking	on	CPUs	
Prototypes	running	 tracking	 in	 the	ATLAS	 ID	on	a	highly	parallel	GPU	have	been	de-

veloped	 as	 early	 as	 2011	 [57].	 For	 this	 approach,	 the	 seeding	 and	 the	 tracking	 step	 are	
both	 parallelized.	 The	 seeding	 is	 parallelized	 over	 parallel	 regions,	 how	 the	 detector	 is	
divided	into	regions	is	shown	in	Figure	59.	To	improve	memory	locality,	space	points	are	
sorted	by	detector	 region.	After	 all	 seeds	 are	 created,	 track	 candidates	 are	 formed.	This	
step	is	parallelized	over	the	seeds,	such	that	a	very	high	degree	of	parallelism	equal	to	the	
number	 of	 seeds	 can	be	 achieved.	Algorithmically	 it	works	 very	 similar	 to	 the	 currently	
used	 tracking	 approach	 using	 a	 Kalman	 filter	 for	 fitting	 but	 is	missing	 the	 bookkeeping	
which	would	make	parallelization	more	complicated.	Another	GPU	prototype	parallelizes	
in	a	similar	fashion	but	uses	a	different	algorithm	for	the	tracking.	In	[95],	space	points	are	
combined	 using	 cellular	 automaton	 algorithms.	 Recent	 studies	 rely	 on	 these	 prototypes	
[96].	Because	GPUs	are	not	available	on	all	computing	sites,	but	multicore	processors	are,	I	
wanted	to	study	the	performance	that	can	be	achieved	with	this	concept	using	threading	
on	CPUs.	This	would	 allow	deploying	 these	 algorithms	 to	 run	on	 the	 currently	 available	
resources.	A	study	under	my	supervision	showed	that	 the	algorithm	presented	 in	[57]	 is	
also	efficiently	parallelizable	on	CPUs.	The	GPU	version	and	the	version	modified	to	run	on	
CPUs	produce	the	same	result.	Due	to	the	prototype	character	of	the	parallel	versions	with	
significant	 physics	 performance	 deficiencies,	 a	 meaningful	 direct	 comparison	 to	 the	
current	 production	 algorithms	 for	 tracking	 is	 not	 possible.	 It	 also	 prevented	 running	
tracking	for	events	with	more	than	10	pileup	interactions	because	of	a	complexity	explo-
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sion.	For	a	20	pileup	Run	1	event,	the	CPU	version	ran	out	of	memory	on	the	dedicated	test	
machine	with	24GB	memory	and	the	GPU	version	could	not	be	started.	To	compare	both	
the	parallel	CPU	and	the	GPU	version,	we	ran	tests	on	a	high-end	Nvidia	GPU	for	scientific	
computing,	 the	Tesla	K20Xm	and	 compared	 it	 to	 results	 from	an	 Intel	Xeon	L5520	CPU.	
Performance	comparisons	showed	that	the	CPU	version	outperforms	the	GPU	implemen-
tations	for	more	than	two	threads,	see	Figure	60.		

My	 other	 studies	 presented	 in	 4.6	 suggest	 removing	 roadblocks	 for	 parallelizing	 the	
tracking	only	adds	 few	percent	of	 extra	work	 to	be	efficiently	parallelizable.	This	 imple-
mentation	did	not	include	all	features	and	improvements	of	the	highly	optimized	sequen-
tial	algorithm,	but	serves	as	an	example	of	how	efficient	parallelization	can	be.	The	elimi-
nation	of	bookkeeping	has	shown	to	increase	the	problem	size	by	less	than	10%	for	higher	
pileup	scenarios.	Reintroducing	bookkeeping	may	reduce	complexity	but	poses	additional	
challenges	 to	 parallelizing	 this	 problem.	 If	 bookkeeping	 is	 introduced	 over	 regions,	 the	
problem	may	not	be	suitable	for	GPUs	anymore	due	to	the	reduced	achievable	parallelism.	
There	are,	assuming	a	minimum	transverse	momentum	of	400MeV/c,	the	bending	in	φ	is	
22.09°	 for	 the	 outermost	 SCT	 layer,	 so	 the	 detector	 can	 be	 divided	 into	 a	maximum	 of	
⌊ 360/22.09⌋ 	=	16	regions	in	φ	(see	Appendix	A).	Combining	regions,	as	shown	in	Figure	
59,	 this	makes	 80	 combinations	 of	 regions,	which	 is	 not	 enough	 to	 saturate	 a	GPU	with	
thousands	of	parallel	processing	units.	Parallel	regions	along	the	beam	axis	are	not	feasi-
ble	because	bookkeeping	would	need	to	be	over	an	entire	φ	region	to	avoid	reusing	space	
points.	

6.3 Conclusions	
The	presented	tracking	methods	have	shown	to	improve	certain	aspects	of	the	offline	

track	 reconstruction	 algorithms	 currently	 in	 production.	 A	 transform	 based	 filtering	
algorithm	has	been	comprehensively	analysed	for	its	vertexing	and	track	finding	ability.	A	
reimplementation	 of	 this	 algorithm	 with	 major	 improvements	 and	 subsequent	 tests	
showed	that	it	is	possible	to	reduce	the	tracking	problem	complexity	from	O(n8)	to	O(n2)	
and	using	much	 simpler	operations.	The	 improvements	 increase	 the	 resilience	 to	pileup	
because	 the	 number	 of	 combinations	 found	 is	 six	 times	 smaller	 than	 with	 the	 seeding	
mechanism	 currently	 in	 use.	 The	 detected	 tracking	 and	 vertexing	 inefficiency	 requires	
careful	 consideration	 where	 the	 algorithm	 is	 applicable.	 One	 candidate	 is	 the	 trigger,	
where	lower	efficiencies	are	acceptable.	A	modified	version	without	the	improvements	is	
currently	used	for	the	detection	of	the	location	of	the	interaction	region,	which	could	also	
be	 reimplemented	with	 the	 improvements.	 As	medium	 term	 goal,	 the	 algorithm	 can	 be	
discussed	as	low	accuracy	solution	in	detector	areas	of	low	interest	to	reduce	time	spent	in	
these	regions.	The	full	development	of	a	tracking	solution	was	never	scope	of	the	analysis	
but	results	show	the	algorithm	is	versatile	and	has	a	huge	potential,	and	can	be	changed	to	
be	used	in	different	areas	of	application	with	low	effort.	

The	parallelized	 tracking	aims	at	 improving	 the	speed	of	algorithms	currently	 in	use	
and	 therefore	 maintaining	 both	 efficiency	 and	 purity	 of	 this	 approach.	 The	 study	 has	
shown	it	is	possible	to	efficiently	parallelize	on	a	CPU	the	tracking	prototype	developed	for	
GPUs	 and	 surpass	 the	 performance	 achieved	with	 a	 full	 high-end	 GPU	with	 only	 4	 CPU	
cores.	 This	 shows	 tracking	 can	 be	 efficiently	 parallelized	 on	 CPUs,	 allowing	 to	 run	 this	
parallelized	 tracking	 on	 the	 currently	 available	 hardware,	 unlike	 the	 GPU	 parallelized	
version	 which	 would	 require	 hardware	 acquisition	 on	 computing	 sites	 used	 for	 recon-
struction.	The	parallelization	of	algorithms	is	a	major	project	for	the	medium-term	future,	
which	is	currently	ongoing.	This	implementation	serves	as	a	proof	of	concept,	implement-
ing	different	forms	of	parallelization	and	combining	them	such	that	data	locality	is	optimal	
for	CPUs.	
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7 CONCLUSION	

The	 upgrades	 to	 the	 LHC	 performed	 during	 its	 long	 shutdown	 from	 2012	 to	 2014	
(LS1)	 greatly	 increased	 the	 amount	 and	 the	 complexity	 of	 the	 data	 generated,	 while	
additionally	much	more	of	 the	data	 is	selected	 for	analysis	by	 the	ATLAS	trigger	system.	
For	 this	 reason,	 the	 ATLAS	 reconstruction	 software	was	 improved	 in	 the	 course	 of	 this	
thesis	to	deal	with	the	hugely	increased	workload.	An	investigation	of	the	various	aspects	
of	 the	 development	 of	 the	 ATLAS	 reconstruction	 software	 has	 been	 presented.	 Atypical	
aspects	with	respect	to	industrial	software	development	include:	 its	developer	base	with	
strongly	 varying	 degree	 of	 programming	 skill;	many	 developers	 staying	with	ATLAS	 for	
only	for	a	few	years	leading	to	loss	of	knowledge	of	the	code;	a	code	base	of	6	million	lines	
of	code	distributed	over	2000	packages	that	has	grown	over	many	years;	and	the	absence	
of	 dominant	 hot	 spots	 and	 bottlenecks.	 Typical	 challenges	 also	 faced	 include	 evolving	
requirements,	 adaptation	of	 new	 technologies	 and	dealing	with	 legacy	 code,	 and	budget	
restrictions.	The	key	short-term	goal	during	the	shutdown	was	to	speed	up	the	software,	
while	 long-term	 goals	 included	 the	 optimization	 of	 the	 development	 process,	 improving	
software	quality	and	 the	preparation	 for	 future	computing	hardware	upgrades.	For	both	
goals,	 analysis	 of	 the	 software	 and	 the	 software	 development	 processes	was	 necessary,	
which	taken	together	form	a	major	part	of	this	thesis.	In	this	chapter,	the	most	important	
conclusions	 drawn	 from	 this	 analysis	 and	 the	 impact	 of	 the	 subsequently	 implemented	
measures	 are	 described	 and	 an	 outlook	 of	 possible	 future	 developments	 is	 given.	 The	
findings	contributed	significantly	to	the	total	increase	in	event	processing	rate	by	a	factor	
of	 4.51.	 They	 provided	 insight	 into	 the	 development	 process,	 revealed	 where	 further	
improvements	are	possible	and	facilitated	future	analysis. 

7.1 Analysis	and	Result	Summary	
The	applied	 improvements	can	be	classified	as	 technical	 improvements	and	algorith-

mic	 improvements,	 and	 for	 each,	 different	 types	 of	 software	 analysis	 are	 better	 suited.	
Technical	improvements	do	not	change	how	a	task	is	being	solved	or	its	result,	instead	the	
use	of	resources	is	improved	or	techniques	used	to	solve	the	same	operations	faster.	As	a	
consequence,	 these	 improvements	 can	 be	 applied	 irrespective	 of	 the	 problem	 and	 even	
without	much	insight	 into	it.	Results	do	not	change	except	for	rounding	issues	related	to	
floating	point	arithmetic.		

Algorithmic	improvements	solve	the	problem	at	hand	in	a	different	way	or	change	the	
problem	to	be	solved.	This	requires	a	good	understanding	of	the	task,	and	since	it	almost	
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always	also	leads	to	changes	in	the	output,	it	requires	understanding	the	physics	require-
ments,	 i.e.	 the	 importance	of	different	reconstructed	physics	objects	 for	physics	analysis.	
In	the	following,	I	will	summarize	the	improvements	alongside	the	analysis.	

7.1.1 Hot	Spot	Analysis		
A	CPU	time	analysis	showed	there	are	no	clear	hot	spots,	as	the	hottest	functions	have	

a	 self-cost	of	 less	 than	1%	of	 the	 total	 runtime.	 Self-cost	 refers	 to	 (CPU)	 time	 spent	 in	 a	
function,	without	 the	 time	 spent	 in	 functions	 that	were	 called	 from	 this	 function.	When	
combining	 all	 time	 spent	 in	 functions	 provided	 by	 a	 particular	 library,	 three	 external	
libraries	stood	out	as	major	contributors	to	runtime.	The	allocator,	tcmalloc	version	0.99,	
the	Linux	system	math	library	libm	and	the	Class	Library	for	High	Energy	Physics	(CLHEP)	
combined	 were	 responsible	 for	 35.6%	 of	 the	 total	 runtime.	 By	 replacing	 all	 three	 with	
faster	libraries,	the	reconstruction	time	could	be	reduced	by	around	13%	for	Run	2	work-
loads.	 While	 tcmalloc	 and	 libm	 could	 be	 replaced	 by	 libraries	 with	 the	 same	 API,	 for	
replacing	CLHEP,	the	Eigen	library	was	chosen,	which	has	a	different	API.	Because	CLHEP	
was	used	throughout	 the	reconstruction	code,	 the	change	required	changing	about	1000	
code	packages.	To	facilitate	future	changes,	access	to	Eigen	was	wrapped	using	templates.	
This	way,	changing	the	precision	or	exchanging	the	library	or	only	parts	of	it	in	the	future	
can	be	performed	with	low	effort,	while	the	call	to	the	Eigen	library	through	the	template	
causes	no	additional	runtime	cost.	The	new	libraries	all	introduced	support	for	vectoriza-
tion,	which	opened	up	new	possibilities	to	optimize	the	code	in	the	future.	

The	 Magnetic	 Field	 service,	 which	 is	 extensively	 used,	 contained	 the	 only	 function	
where	a	significant	amount	of	 time	has	been	spent.	This	 function	did	not	show	up	in	the	
CPU	 time	 analysis,	 because	 almost	 all	 of	 the	 time	 was	 spent	 waiting	 for	 memory.	 The	
introduction	of	a	cache	dramatically	reduced	the	time	spent	here,	leading	to	an	20%	speed	
improvement	for	reconstruction	under	Run	2	workloads.	

7.1.2 Hardware	Usage	Analysis	
While	 the	 CPU	may	 be	 the	 limiting	 factor	 in	 that	 it	 never	waits	 for	 data,	 it	 does	 not	

mean	 the	CPU	 is	performing	as	much	work	as	 it	 could	(without	saying	anything	about	 if	
the	 work	 could	 be	 avoided),	 because	 modern	 CPUs	 have	 many	 parallel	 resources.	 An	
analysis	 of	 the	CPU’s	 hardware	 counters	 revealed	 that	 the	 code	 ran	 at	 1	 instruction	per	
CPU	 cycle	 (IPC),	 while	 the	 CPU	 in	 the	 test	 setup	 could	 reach	 a	 maximum	 of	 4	 IPC.	 An	
analysis	of	the	assembly	showed	there	were	very	few	vector	operations,	which	are	capable	
of	executing	up	to	8	instructions	at	once	on	the	tested	CPU.	

The	autovectorization	feature	of	recent	compilers	did	not	lead	to	any	speedup	after	the	
introduction	 of	 the	 new	 libraries	 described	 in	 7.1.1,	 due	 to	 the	 types	 of	 operation	 and	
complicated	 data	 structures.	 As	 compilers	 get	 better,	 this	may	 change	 in	 the	 future,	 but	
large	 gains	 are	 unlikely	 due	 to	 the	 data	 being	 scattered	 in	 memory.	 Before	 the	 library	
change,	 vectorization	was	not	possible	because	of	 unaligned	memory	 returned	 from	 the	
allocator.	

The	xAOD,	a	new	data	format	which	was	introduced	during	LS1	in	parts	of	the	recon-
struction,	 stores	data	 internally	 as	 structure	of	 array,	which	 facilitates	vectorization	and	
can	reduce	 the	number	of	 cache	misses.	The	 IPC	and	autovectorization	did	not	 improve,	
but	it	increases	the	probability	future	compilers	will	be	able	to	exploit	the	data	alignment.	
Introducing	the	format	to	further	areas	e.g.	in	the	tracking	can	enable	developers	to	write	
vectorizing	 code.	 The	 new	 data	 structure	 can	 be	 read	 directly	 by	 the	 analysis	 software,	
making	a	previously	needed	costly	conversion	step	after	reconstruction	unnecessary,	such	
that	significant	computational	cost	outside	of	reconstruction	was	saved.	

Another	technical	 improvement	was	the	update	of	the	Event	Data	Model	(EDM)	used	
in	the	tracking	code,	which	 is	used	to	communicate	between	algorithms.	Heavily	utilized	
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classes	 were	 rewritten	 to	 reduce	 dynamic	 memory	 allocation	 and	 templated	 to	 reduce	
their	codebase	by	almost	10.000	lines	of	code.	Both	the	xAOD	and	the	EDM	implementa-
tion	have	happened	concurrently	with	other	optimizations,	which	is	why	their	individual	
impact	on	speedup	cannot	be	quantified	easily.	All	concurrent	optimizations	have	in	total	
improved	reconstruction	runtime	by	a	factor	of	1.54	for	Run	2	workloads.	

7.1.3 Algorithm	Level	Analysis	
For	algorithmic	improvements,	hot	spots	and	hardware	usage	are	not	as	important	as	

finding	out	which	data	processing	step	is	the	most	computing	cost	intensive.	To	this	end,	I	
analyzed	 the	 runtime	 per	 subdetector,	 because	 the	 software	 is	 divided	 into	 domains	
analogous	 to	 the	 subdetectors	 of	 ATLAS,	 and	 per	 algorithm.	 This	 analysis	 showed	 the	
Inner	Detector	 (ID)	domain	 required	56%	of	 the	 total	 runtime,	 under	Run	1	workloads,	
and	68%	under	Run	2	workloads.	Within	the	ID,	40%	(Run	1	workload)	respectively	46%	
(Run	2	workload)	of	this	time	was	spent	by	just	one	of	the	32	ID	algorithms.	This	was	the	
ID	silicon	tracking,	a	combinatorial	algorithm.	It	consists	of	many	individual	steps,	but	by	
reducing	the	number	of	combinations	processed,	all	of	these	steps	will	take	less	time.	The	
combinations	 to	be	 removed	had	 to	be	 chosen	 carefully,	 because	by	 removing	 combina-
tions,	tracks	can	become	unfindable.	

To	find	secondary	particles,	which	can	originate	anywhere	within	the	ID,	all	combina-
tions	of	measurements	were	considered,	causing	this	processing	step	to	be	very	expensive.	
Not	 all	 secondary	 particles	 are	 equally	 important	 for	 analysis.	 The	most	 important	 sec-
ondary	particles	are	electron-positron	pairs.	Electrons	and	positrons	have	an	identifiable	
signature	 within	 the	 Electromagnetic	 Calorimeter.	 The	 so-called	 backtracking	 improve-
ment	 restricted	 the	particle	 search	 to	 regions	where	 such	 signatures	were	 found	by	 the	
calorimeter	and	extended	them	from	the	outer	ID	regions	inwards	towards	the	center	of	
the	 detector.	 This	 required	 the	 calorimeter	 reconstruction	 to	 take	 place	 before	 the	 ID	
reconstruction,	such	that	this	information	was	available,	whereas	the	previous	order	was	
to	 start	 reconstruction	 from	 the	 innermost	 subdetector	 system	 going	 outwards.	 This	
improvement	alone	 sped	up	 the	overall	 reconstruction	by	a	 factor	of	1.19	 (Run	1	work-
loads)	respectively	1.83	(Run	2	workloads).	

The	finding	of	primary	particles,	which	originate	very	close	to	 the	interaction	region,	
starts	with	 the	 creation	 of	 seeds,	which	 are	 tuples	 of	 3	measurements	which	 define	 the	
direction	used	to	search	for	particle	track	candidates.	Around	60	seeds	are	found	for	each	
track.	My	analysis	shows	 that	 the	number	of	seeds	 is	 linear	with	 the	effort	of	 the	subse-
quent,	 computationally	much	more	expensive	 tracking	 step.	Two	different	optimizations	
have	been	applied	to	the	seeding.	One	optimization	favors	seeds	which	have	approximate-
ly	 the	 same	direction	 as	 another	 seed	and	 rejects	 others	 if	 too	many	are	 found.	When	a	
track	candidate	is	found,	the	seeds	whose	measurements	have	already	been	included	in	a	
track	 are	 discarded.	 The	 second	 optimization	 is	 the	 restriction	 of	 the	 region	 in	 which	
particle	 tracks	 can	 originate	 after	 a	 subset	 of	 the	measurements	 has	 been	 processed.	 A	
third	optimization	allows	deciding	that	a	track	cannot	be	found	earlier,	by	decreasing	the	
number	of	allowed	missing	measurements	for	a	track.	All	optimizations	combined	lead	to	
a	1.54	factor	reconstruction	speed	improvement.	These	improvements	did	not	negatively	
affect	the	physics	performance.	

7.1.4 Parallelizability	Study	
Parallelizing	code	does	not	in	all	cases	require	understanding	of	the	underlying	prob-

lem.	 The	 ATLAS	 reconstruction	 is	 an	 embarrassingly	 parallel	 problem,	 as	 each	 collision	
event	 can	 be	 processed	 independently.	 The	 reason	 to	 increase	 parallelism	 is	 that	 the	
reconstruction	needs	more	memory	than	is	available	per	core.	The	solution	for	Run	2	was	
using	multi-processing,	by	 starting	one	process	and	 forking	multiple	 child	processes.	All	
child	process	share	memory	regions	that	are	unchanged.	While	this	saved	40%	memory,	it	
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will	 not	 be	 sufficient	 for	 future	workloads	 and	 future	 computing	 hardware.	 This	 is	why	
parallelism	within	 an	event	 is	 introduced,	because	 less	memory	 is	needed	 if	more	 cores	
can	be	kept	busy	with	less	events	processed	in	parallel.	

Running	 multiple	 algorithms	 of	 the	 same	 event	 in	 parallel	 is	 the	 idea	 behind	 the	
framework	AthenaMT.	To	be	able	to	run	algorithms	within	this	framework,	they	have	to	be	
updated	 to	 be	 thread-safe,	 because	 it	 also	 runs	 multiple	 events	 in	 parallel	 in	 a	 single	
instance.	This	requires	a	significant	effort,	as	most	algorithms	in	the	ATLAS	reconstruction	
are	not	const	correct.	With	a	dependency	study	analyzing	the	Inner	Detector	algorithms	I	
showed	 that	 the	 algorithms	 within	 the	 ID	 spent	 at	 least	 95%	 of	 the	 ID	 reconstruction	
runtime	 on	 the	 critical	 path,	 i.e.	 a	 sequence	 of	 algorithms	 that	 has	 a	 linear	 dependency.	
This	means,	algorithm	parallelism	can	only	occupy	more	 than	one	CPU	per	event	during	
around	5%	of	the	ID	reconstruction	runtime.	Independently	of	these	findings	and	because	
const-correctness	 has	 other	 advantages,	 currently	 algorithms	 are	 adapted	 to	 work	 in	
AthenaMT.	

Another	approach	to	make	use	of	multiple	CPUs	while	processing	one	event	is	to	paral-
lelize	 within	 algorithms.	 Parallelizing	 a	 loop	 with	 many	 independent	 iterations	 can	 be	
trivial.	Unfortunately,	 the	ATLAS	code	does	not	have	such	 loops	which	need	a	significant	
amount	of	time.	This	is	why	it	is	necessary	to	understand	each	task	to	identify	areas	where	
parallelization	is	possible.	I	suggested	a	way	to	parallelize	each	of	the	main	steps	of	the	ID	
reconstruction,	which	could	be	implemented	after	the	algorithms	are	made	thread	safe	for	
AthenaMT.	For	the	tracking	step,	which	has	a	bookkeeping	layer	that	prevents	paralleliza-
tion,	my	analysis	concludes	that	 for	 future	workloads,	 the	bookkeeping	improves	perfor-
mance	of	 the	 ID	 tracking	only	by	a	 few	percent	 and	 is	 even	 counterproductive	 in	 future	
high	pileup	scenarios.	It	can	therefore	be	abandoned	without	losing	performance	such	that	
the	ID	tracking	can	be	efficiently	parallelized	for	workloads	expected	in	future	runs.	

7.1.5 Development	Process	in	ATLAS	
The	challenge	to	find	algorithmic	improvements	is	posed	by	the	complex	interplay	of	

the	algorithms	and	the	responsibility	of	different	people	over	different	parts	of	the	code.	
Typically,	one	or	a	few	persons	are	the	only	ones	maintaining	a	part	of	the	software,	and	if	
they	 leave	ATLAS	the	code	can	remain	untouched	 for	years.	This	 is	a	particular	problem	
for	high	energy	physics	experiments	because	they	have	a	huge	turnover	of	developers	due	
to	 the	many	 limited	duration	contracts.	The	software	quality	assurance	 in	ATLAS’	devel-
opment	 process,	 which	 has	 had	 very	 few	 safeguards	 against	 low-quality	 or	 abandoned	
code,	 is	 currently	being	 improved	by	 a	peer-review,	 comment	 and	discussion	 system,	 in	
part	due	to	results	from	this	thesis.	Involving	more	people	in	the	development	can	lead	to	
a	broader	understanding	of	how	different	parts	of	the	software	influence	each	other,	and	
as	we	have	seen,	the	understanding	of	how	algorithms	can	influence	one	another	can	lead	
to	very	large	gains	in	CPU	time.	

The	presented	algorithmic	improvements	also	led	to	a	loss	of	information	in	that	fewer	
particle	tracks	are	found,	which	had	to	be	carefully	selected	such	that	no	important	infor-
mation	was	 lost.	 This	 is	 another	problem	 the	developers	 face,	 as	 they	have	 to	 be	 aware	
which	information	is	vital	and	which	is	not.	This	requires	the	developer	to	be	proficient	in	
both	the	affected	physics	and	programming.	

7.2 New	Algorithms	and	Proposed	Optimizations	
Additional	 to	 the	 analysis	 of	 the	 existing	 implementations	 and	 their	 optimization,	 I	

tested	 a	number	of	 new	methods	 to	 reduce	 the	 tracking	 runtime.	Besides	 studies	 of	 the	
achievable	speedup	with	different	parallel	implementations	of	the	tracking,	I	implemented	
and	analyzed	the	usability	of	a	transform-based	algorithm	that	has	the	potential	to	reduce	
the	work	 required	by	 tracking	 to	 a	 small	 fraction	of	what	 it	 is	now	because	of	 its	 lower	
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complexity.	 It	 is	based	on	 the	combination	of	 two	algorithms	used	 in	 the	ATLAS	Trigger	
during	Run	1.	

The	algorithms	can	be	used	to	solve	two	different	problems.	The	first	is	finding	prima-
ry	vertex	 locations	 and	 identifying	 the	 signal	 vertex.	 For	one	particular	 event	 type,	 a	40	
pileup	Z	to	µµ	decay	event,	the	algorithm	finds	and	identifies	the	signal	vertex	in	93%	of	
the	cases	with	a	metric	I	developed.	While	this	is	not	enough	to	restrict	reconstruction	to	
the	area	of	the	found	vertex	because	7%	of	the	vertices	would	be	lost,	it	may	be	usable	for	
the	Trigger	because	the	Trigger	works	only	on	smaller	regions	of	interest	within	which	the	
algorithm	would	be	much	more	likely	to	find	the	vertex.	

To	 avoid	 losing	 all	 tracks	 from	 a	 non-identified	 vertex,	 I	 extended	 the	 algorithm	 to	
solve	a	second	problem;	to	identify	combinations	of	measurements	that	may	be	part	of	a	
track.	The	algorithm	can	find	94.8%	of	tracks	with	pT	above	1GeV/c.	The	found	measure-
ments	would	still	need	to	be	processed	by	a	tracking	algorithm.	Therefore,	its	result	can	be	
compared	to	the	seeding	algorithm’s	output.	The	new	algorithm	is	more	resilient	to	higher	
pileup	than	the	original	algorithms	it	was	developed	from,	because	it	produces	much	less	
combinations,	 also	much	 less	 than	 the	 seeding	 algorithm.	 The	 new	 algorithm	 has	much	
simpler	operations	than	the	seeding	and	its	complexity	is	O(n2)	compared	to	O(n3),	which	
leads	to	the	new	algorithm	being	between	8	and	17	times	faster	than	the	current	ATLAS	
seeding.	 Though	 having	 a	 lower	 complexity,	 the	 algorithm	 filters	 out	 many	 more	 fake	
seeds,	 producing	 6	 times	 less	 combinations.	 As	 my	 analysis	 shows,	 this	 directly	 corre-
sponds	to	a	 factor	6	 improvement	 in	tracking	speed.	The	algorithm	could	be	parallelized	
easily	 but	 the	 benefit	 of	 doing	 so	 for	 an	 algorithm	 that	 takes	 up	 less	 than	 1%	 of	 the	
runtime	 for	current	workloads	 is	dismissible.	Parallelization	may	become	 interesting	 for	
very	high	pileup	scenarios	when	the	algorithm	takes	more	time.	

The	 application	 of	 the	 algorithm	 depends	 on	 the	 number	 of	 real	 tracks	 it	 can	 find,	
which	 is	 with	 94.8%	 lower	 than	 the	 number	 of	 tracks	 the	 seeding	 finds.	 Applying	 the	
algorithm	only	to	pileup	interactions	may	be	acceptable,	as	the	physics	efficiency	is	not	as	
important	here.	This	has	the	potential	to	reduce	the	tracking	runtime	to	a	minor	contribu-
tor	to	the	overall	runtime.	The	algorithm	could	also	be	reintroduced	in	the	Trigger,	where	
the	previous	version	was	retired	because	it	was	not	robust	with	current	pileup	scenarios.	

7.3 Outlook	
The	ATLAS	code	quality	has	been	addressed	by	various	means	during	this	thesis	and	

continues	to	receive	more	attention	than	before.	Recognizing	the	importance	of	this	topic	
has	the	potential	 to	reduce	the	number	of	bugs,	 increase	productivity,	speed	up	the	soft-
ware	 and	 avoid	 losing	 knowledge	of	 the	 code	by	distributing	 it	 over	multiple	 people,	 to	
name	only	a	 few.	To	achieve	this,	 the	consequent	application	of	 the	planned	peer	review	
process	 is	 required.	 Collaboration	 of	 developers	 from	 different	 areas	 should	 be	 encour-
aged	and	incentivized.	

The	reconstruction	workloads	will	continue	to	increase	and	my	analyses	have	shown	
that	the	current	algorithms	will	become	unsustainably	slow	with	expected	reconstruction	
workloads.	 The	 current	 state	 of	 high-end	multi-purpose	 CPU	 cores	must	 be	 seen	 as	 the	
pinnacle	of	this	CPU	architecture’s	development,	increasing	sequential	processing	speed	of	
single	cores	cannot	be	expected.	If	predictions	of	many-core	computers	or	heterogeneous	
computer	systems	becoming	 the	norm	turn	out	 to	be	 true,	more	parallelism	needs	 to	be	
introduced	into	the	ATLAS	software	or	even	more	resources	will	lie	idle.	The	ACTS	project	
[97]	is	currently	working	on	rewriting	central	parts	of	the	tracking	such	that	it	is	experi-
ment	independent	and	thread	safe.		

The	higher	energy	efficiency	of	specialized	hardware	may	force	ATLAS	to	maintain	dif-
ferent	 hardware	 platforms.	 Maintaining	multiple	 versions	 of	 the	 ATLAS	 software	 is	 not	
practical	in	order	to	support	heterogeneous	hardware,	such	that	either	compilers	support-
ing	the	translation	of	C++	to	other	platforms	need	to	be	 found	or	created	or	parts	of	 the	
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software	 need	 to	 be	 rewritten	 in	 a	 language	 that	 supports	 multiple	 platforms.	 Because	
parallelized	code	tends	to	become	less	maintainable,	outsourcing	parallelism	into	libraries	
should	be	considered	wherever	possible.		
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Appendix	A 	-	APPROXIMATION	ERROR	OF	BENDING	IN	THE	
𝜑-PLANE	

The	formula	of	the	approximation	of	a	track	is	very	simple.	It	exploits	that	the	sine	of	an	
angle	close	to	zero	is	not	very	different	from	the	angle	itself.	The	circle	segments	defining	
the	angle	are	within	two	pixel	layers	which	in	the	worst	case	means	combining	the	inner-
most	pixel	layer	with	the	outermost,	so	in	the	order	of	10cm.	which	is	the	case	for	the	helix	
radii	of	even	the	lowest	momentum	the	ATLAS	detector	is	designed	to	measure.	
Indices	denote	variables	belonging	 to	different	 layers.	 Index	1	and	 index	2	belong	 to	 the	
two	seeding	layers.	The	index	T	denotes	the	target	 layer.	𝜑	denotes	the	angle	around	the	
beam	axis.	𝜌	denotes	the	radius	of	a	layer.	The	abstraction	of	having	only	one	radius	for	a	
layer	doesn’t	 play	 a	 role	here	 as	both	 the	 exact	 formula	 and	 the	 approximation	use	 this	
value.	All	 values	 of	 variables	with	 index	 one	 and	 two	 are	 known,	 as	 is	 the	 radius	 of	 the	
target.		
	

∆𝝋 = 𝝋𝟐 − 𝝋𝟏	 (1)	
𝚫𝝆 = 𝝆𝟐 − 𝝆𝟏	 (2)	

	𝝋𝐓 = 𝝋𝟏 +
∆𝝋
𝚫𝝆

𝝆𝑻 − 𝝆𝟏 	 (3)	

	
The	exact	formula	to	calculate	the	𝜑	region	in	the	detector	requires	calculating	the	inter-
section	of	the	circle	of	the	ATLAS	detector	layer	and	the	helix	circle.	In	addition	to	the	two	
seeding	 layers,	 the	beamspot	can	be	used	 to	define	 the	helix	circle	 in	 the	algorithm.	The	
details	are	explained	here.	The	beamspot	is	here	assumed	to	be	at	x=y=0	and	is	indexed	by	
0.	The	center	of	the	circle	defined	by	the	target	detector	layer	is	also	at	0,0.	First	the	center	
of	the	circle	defined	by	the	helix	is	calculated.	Note	that	this	circle	and	the	circle	defined	by	
the	layers	are	on	the	same	2D	plane	because	the	helix	axis	is	parallel	to	the	beam	axis.	The	
index	h	denotes	the	helix.	The	Radius	and	center	of	the	helix	are	calculated	from	the	three	
points	by	constructing	two	chords	through	the	three	points:	
	

𝒚𝟎,𝟏 = 	
𝒚𝟏 − 𝒚𝟎
𝒙𝟏 − 𝒙𝟎	

𝒙 − 𝒙𝟏 + 𝒚𝟏	 (4)	
𝒚𝟏,𝟐 = 	

𝒚𝟐 − 𝒚𝟏
𝒙𝟐 − 𝒙𝟏	

𝒙 − 𝒙𝟐 + 𝒚𝟐	 (5)	

	
For	simplicity,	the	factor	is	called	b	
	

𝐛𝟎,𝟏 =
𝒚𝟏 − 𝒚𝟎
𝒙𝟏 − 𝒙𝟎	

	
(6)	

𝐛𝟏,𝟐 =
𝒚𝟐 − 𝒚𝟏
𝒙𝟐 − 𝒙𝟏	

	 (7)	

	
The	two	lines	perpendicular	to	these	two	chords	passing	through	their	centers	will	inter-
sect	at	the	circle	center.	Establishing	the	chord	centers	m	with:	
	
	

𝐦𝟎,𝟏 = (	
𝒙𝟏	 − 𝒙𝟎	

𝟐
,
𝒚𝟏	 − 𝒚𝟎	

𝟐 	
)	 (8)	

𝐦𝟏,𝟐 = (	
𝒙𝟐 − 𝒙𝟏	

𝟐
,
𝒚𝟐 − 𝒚𝟏	

𝟐 	
)	 (9)	
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And	the	perpendicular	lines	through	the	chord	center	with	index	p:	
	

𝒚𝟎,𝟏,𝒑 = −
𝟏
𝐛𝟎,𝟏

𝒙 −
𝒙𝟏 + 𝒙𝟎

𝟐
+
𝒚𝟏 + 𝒚𝟎

𝟐
	

(10)	

𝒚𝟏,𝟐,𝒑 = −
𝟏
𝐛𝟏,𝟐

𝒙 −
𝒙𝟐 − 𝒙𝟏

𝟐
+
𝒚𝟐 + 𝒚𝟏

𝟐
	 (11)	

	
Solving	𝑦8,4,V = 𝑦W,8,V	for	x:	
	

𝒙 =
𝐛𝟎,𝟏(𝒙𝟐 + 𝒙𝟏) + 𝐛𝟏,𝟐𝐛𝟎,𝟏(𝒚𝟐 − 𝒚𝟎) − 𝐛𝟏,𝟐(𝒙𝟏 − 𝒙𝟎)

𝟐(𝐛𝟎,𝟏 − 𝐛𝟏,𝟐)
	

(12)	
	
After	finding	x,	the	y	coordinate	can	be	found	substituting	x	in	either	of	the	two	equations	
for	the	perpendicular	lines	𝑦W,8,V	or	𝑦8,4,V.	The	helix	circle	radius	is	easily	calculated,	as	we	
know	 that	 0,0	 is	 on	 the	 circle.	 The	 helix	 circle	 center	 coordinates	 are	 henceforth	 called	
𝑥Y,	𝑦Y	and	the	circle	radius	𝑟Y:	
	
	

𝒓𝐡	=	 𝒙𝐡𝟐 + 	𝒚𝐡𝟐	 (13)	
	
	
We	can	now	construct	both	circle	equations.	The	circle	equation	for	the	helix:	
	

(𝒙 − 𝒙𝐡)𝟐 + (𝒚 − 𝒚𝐡)𝟐 = 𝒓𝐡𝟐	 (14)	
	
As	the	circle	center	for	the	detector	layer	is	at	0,	0	the	formula	for	this	circle	is	simple:		
	

𝒙𝟐 + 𝒚𝟐 = 𝝆𝑻𝟐	 (15)	
	
Intersecting	 both	 circles,	 we	 obtain	 (within	 the	 design	 energy	 always)	 two	 intersection	
points.	By	subtracting	both	equations	and	expanding,	we	get	a	linear	equation	for	x	and	y.	
	

(𝒙 − 𝒙𝐡)𝟐 + (𝒚 − 𝒚𝐡)𝟐 − 𝒙𝟐 − 𝒚𝟐 = 𝒓𝐡𝟐 − 𝝆𝑻𝟐	 (16)	
	

𝒚 =
𝝆𝑻𝟐 − 𝒓𝐡𝟐 + 𝒙𝐡𝟐 + 𝒚𝐡𝟐 − 𝟐𝒙𝒙𝐡

𝟐𝒚𝐡
	 (17)	

	
Substituting	𝑦	in	(14)	or	(15)	with	(17)	yields	x.	Using	x	in	(14)	or	(15)	returns	y.	Now	one	
can	replace	the	variables	with	values	generating	the	highest	error.	For	the	𝜌] 	variable,	this	
is	the	outermost	barrel	layer	because	the	particle	travels	the	longest	distance	in	r	through	
the	 magnetic	 field.	 Here	 is	 a	 particle’s	 maximum	 bending	 in	 φ	 measured	 in	 a	 silicon	
detector.	
	

𝝆𝑻 = 𝟓𝟏𝟒𝐦𝐦	 (18)	
The	smaller	the	size	of	a	helix,	the	larger	deviation	of	a	circle	section	from	a	straight	line	in	
the	r-z	plane.	The	larger	this	deviation	is,	the	larger	the	inaccuracy	of	the	approximation.	
The	lower	transverse	momentum	limit	with	the	smallest	helix	radius	for	this	algorithm	is	
1GeV/c.	 The	 following	 variables	 and	 units	 are	 used:	 A	 perfectly	 homogeneous	 2Tesla	
magnetic	 field	 denoted	 B,	 expressed	 in	 the	 formula	 as	 kg	 per	 Coulomb	 per	 second.	 The	
transverse	momentum	converted	from	eV/c	to	kg*m/s	denoted	by	𝑝] .	The	helix	radius	in	
meters	 is	 denoted	 by	 𝑟Y 	and	 the	 charge	 q	 of	 one	 electron	 in	 Coulomb	
[http://physics.nist.gov/cuu/Units/units.html].	
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Figure	61:	The	helix	circle	always	passes	through	(0,	0).	Given	(a,	0)	also	lies	on	the	
circle,	the	circle	center	is	at	(a/2,	h).	
	

𝒓𝐡 =
𝒑𝑻
𝑩 ∗ 𝒒

	 (19)	
	

𝒓𝐡 = 𝟏𝟔𝟔𝟕. 𝟖𝟐𝟎𝟒𝟕𝟓𝟗𝟗𝒎𝒎	 (20)	
	
Defining	a	helix	with	zero	forward	momentum	simplifies	the	calculation.	Given	a	particle	
with	𝑝] 	of	1GeV/c	originating	at	 (0,	0,	0)	 in	ATLAS	coordinates	(in	mm)	passing	through	
the	outermost	SCT	detector	layer	at	(514,	0,	0).	Then	the	center	can	be	calculated	as	shown	
in	Figure	61.	
	

𝐚 = 𝟓𝟏𝟒𝒎𝒎	 (21)	
	

𝐡 = 𝟏𝟔𝟔𝟕. 𝟖𝟐𝟎𝟒𝟕𝟓𝟗𝟗𝟐 − (
𝟓𝟏𝟒
𝟐
)𝟐 = 𝟏𝟔𝟒𝟕. 𝟗𝟎𝟎𝟓𝟐𝟒𝟗	

(22)	
	
So,	the	center	of	the	helix	is	at	(257,	1647.90).	Using	(17)	and	(15)	returns	x,	here	for	the	
layer	with	𝜌	=	23:	
	

𝒚 =
𝟐𝟑𝟐 − 𝟏𝟔𝟔𝟕. 𝟖𝟐𝟎𝟒𝟕𝟓𝟗𝟗𝟐 + 𝟐𝟓𝟕𝟐 + 𝟏𝟔𝟒𝟕. 𝟗𝟎𝟎𝟓𝟐𝟒𝟗𝟐 − 𝟓𝟏𝟒𝒙

𝟐 ∗ 𝟏𝟔𝟒𝟕. 𝟗𝟎𝟎𝟓𝟐𝟒𝟗
	 (23)	

	

𝒙𝟐 + (
𝟐𝟑𝟐 − 𝟏𝟔𝟔𝟕. 𝟖𝟐𝟎𝟒𝟕𝟓𝟗𝟗𝟐 + 𝟐𝟓𝟕𝟐 + 𝟏𝟔𝟒𝟕. 𝟗𝟎𝟎𝟓𝟐𝟒𝟗𝟐 − 𝟓𝟏𝟒𝒙

𝟐 ∗ 𝟏𝟔𝟒𝟕. 𝟗𝟎𝟎𝟓𝟐𝟒𝟗
)𝟐 = 𝟐𝟑𝟐	 (24)	

	

𝒙𝟏 = −𝟐𝟐. 𝟕𝟎𝟎𝟑𝟐	 (25)	
	

𝒙𝟐 = 𝟐𝟐. 𝟕𝟒𝟗𝟏𝟗	 (26)	
	
The	result	closer	to	the	input	layer	is	correct,	so	x2	
	

𝟐𝟐. 𝟕𝟒𝟗𝟏𝟗𝟐 + 𝒚𝟐 = 𝟐𝟑𝟐	 (27)	

h
a/2 rh

0
0 x

y
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𝒚𝟏 = −𝟑. 𝟑𝟖𝟕𝟑𝟖	 (28)	

	
𝒚𝟐 = 𝟑. 𝟑𝟖𝟕𝟑𝟖	 (29)	

	
Using	𝑦8	assumes	 a	 positive	 bending	 in	 the	𝜑-plane.	 This	 corresponds	 to	 an	 azimuthal	
angle	of	-0.147815	in	radians	or	-8.46918°.	Similarly,	the	values	for	𝜌	=	50.5	are	(50.0089,	
-7.02566)	 and	 -0.1396rad	 or	 -7.997042°	 and	 for	𝜌	=	122.5	 they	 are	 (121.648,	 -14.4227)	
and	 -0.1180rad	or	 -6.761°.	Using	 the	 approximation	 in	 (3)	with	 the	 two	 layers	 at	𝜌	=	23	
and	𝜌	=	122.5	returns	−0.040°	(i.e.	an	absolute	error	of	0.040).	Using	the	approximation	to	
the	target	layer	at	514mm	with	the	two	layers	closest	to	each	other	results	in	−0.039°	(i.e.	
an	absolute	error	of	0.039).	
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Appendix	B 	-	APPROXIMATION	ERROR	OF	EXTRAPOLATION	
IN	𝜌-Z-PLANE	

The	approximation	assumes	a	straight	line	for	the	extrapolation	in	z.	The	relative	error	in	
z	 increases	 for	 smaller	helix	 radii	 and	 larger	𝜌.	 The	absolute	error	 increases	with	 flatter	
angle	 (higher	pseudorapidity)	at	 the	 largest	𝜌	with	a	 track	at	 the	 lower	energy	bound	of	
1GeV/c.	The	approximation	is	therefore	for	barrel:	
	

𝒛𝑻 = 𝒛𝟎 +
𝒛𝟏 − 𝒛𝟎
𝝆𝟏 − 𝝆𝟎

∗ 𝝆𝑻	 (30)	
	
Equivalently	for	endcaps	the	calculation	of	𝜌	for	known	z:	
	

𝝆𝑻 = 𝝆𝟎 +
𝝆𝟏 − 𝝆𝟎
𝒛𝟏 − 𝒛𝟎

∗ 𝒛𝑻	 (31)	
	
Using	the	detector	geometry	from	[2],	it	can	be	calculated	that	the	absolute	error	is	larger	
in	the	barrel	than	on	the	endcaps	due	to	the	steeper	track	angle.	The	flattest	angle	in	the	
outermost	SCT	barrel	detector	layer	is	34.5°	while	the	flattest	angle	on	the	innermost	SCT	
endcap	is	56.7°.	To	calculate	the	maximum	absolute	error,	a	track	with	1GeV/c	is	assumed,	
passing	through	(514,0,749)	which	is	a	position	on	the	outermost	barrel	layer	in	the	barrel	
region	on	one	of	the	forward	ends	of	the	barrel.	Using	calculated	accurate	positions	of	the	
track	on	the	two	innermost	layers,	the	approximation	is	then	used	to	extrapolate	back	to	
this	position	exhibiting	the	maximum	error.		
	
The	helix	equation	in	a	moved	coordinate	system	is		
	

𝜸(𝝋) =

𝑪𝒙 + 𝑹 ∗ 𝒄𝒐𝒔(𝝋 − 𝝋𝟎)
𝑪𝒚 + 𝑹 ∗ 𝒔𝒊𝒏(𝝋 − 𝝋𝟎)

𝒉 ∗
𝝋
𝟐𝝅

	

(32)	
	
With	Cx	and	Cy	denoting	the	position	of	the	center	of	the	helix	in	the	coordinate	system.	𝜑	
denotes	 the	 current	 angle	 of	 the	 helix	while	𝜑W	denotes	 the	 starting	 angle.	 The	 z	 axis	 is	
assumed	to	be	parallel	to	the	helix	axis,	as	is	the	case	in	ATLAS.		
Because	we	want	 the	helix	 to	 intersect	with	 the	z	axis	of	our	coordinate	system,	we	can	
replace	𝑹	with	 (𝐶𝑥4 + 𝐶𝑦4.	The	starting	point	is	also	on	the	z	axis,	such	that	the	starting	
angle	𝜑W	can	be	replaced	by	𝝅 − 𝐭𝐚𝐧{𝟏

𝑪𝒚
𝑪𝒙

:	
	

𝜸(𝝋) =

𝑪𝒙 + (𝑪𝒙𝟐 + 𝑪𝒚𝟐 ∗ 𝒄𝒐𝒔(𝝋 − (𝝅 − 𝐭𝐚𝐧{𝟏
𝑪𝒚
𝑪𝒙

)))

𝑪𝒚 + (𝑪𝒙𝟐 + 𝑪𝒚𝟐 ∗ 𝒔𝒊𝒏(𝝋 − (𝝅 − 𝐭𝐚𝐧{𝟏(
𝑪𝒚
𝑪𝒙
)))

𝒉 ∗
𝝋
𝟐𝝅

	

(33)	
	

		
For	 readability,	 I	 will	 keep	 the	 old	 denominations	 in	 the	 formula.	 The	 formula	 for	 the	
distance	in	𝜌	in	the	coordinate	system	is:	
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= (𝑪𝒙 + 𝑹 ∗ 𝒄𝒐𝒔(𝝋 − 𝝋𝟎))𝟐 + (𝑪𝒚 + 𝑹 ∗ 𝒔𝒊𝒏(𝝋 − 𝝋𝟎))𝟐	 (34)	
	
A	helix	described	by	a	charged	1GeV/c	particle	within	a	perfectly	homogenous	magnetic	
field	of	2	Tesla	has	a	radius	of		1.667m	as	calculated	in	Appendix	A.	Note	that	the	position	
around	z	does	not	 change	𝝆.	 To	avoid	division	by	0	we	assume	 the	helix	 center	 to	be	at	
𝑪𝒙 = 𝑪𝒚 = 	 𝟏. 𝟔𝟔𝟕.	Replacing	all	variables	by	their	values	we	get:	
	

𝝆 ≈ 𝟔. 𝟔𝟔𝟔𝟕 − 𝟔. 𝟔𝟔𝟔𝟕 ∗ 𝒄𝒐𝒔(𝝋)	 (35)	
	
Because	we	know	𝝆	and	want	to	find	out	𝝋	because	z	is	linearly	dependent	on	𝝋,	we	invert	
this	formula	for	positive	𝝆	and	𝝋	up	to	π.	This	excludes	particles	with	transverse	momen-
tum	so	low	they	do	not	leave	the	ID,	which	is	fine	as	these	are	not	reconstructed	anyway:	
	

𝝋 ≈ 𝐜𝐨𝐬{𝟏(𝟏 − 𝟎. 𝟏𝟓𝝆𝟐)	 (36)	
	
Which	means	for	0.514m	in	𝝆	the	helix	travelled	0.282rad	or	16.18°.	The	rotation	length	in	
z	denoted	h	must	therefore	be	0.749m/0.282	*	2π.	With	all	variables	defined,	we	can	now	
calculate	the	impact	points	in	𝜌	and	z	of	a	perfect	helix	on	the	innermost	detecting	layers	
which	will	be	used	to	calculate	the	straight	line	to	the	outermost	layer.	This	will	show	the	
difference	 in	 z	 of	 the	 estimation	 and	 an	 ideal	 helix.	 The	 innermost	 layers	 are	 at	𝝆	of	
0.0325m	and	0.0505m,	until	which	the	helix	travelled	in	𝜑:	
	

𝐜𝐨𝐬{𝟏 𝟏 − 𝟎. 𝟏𝟓 ∗ 𝟎. 𝟎𝟑𝟐𝟓𝟐 ≈ 𝟎. 𝟎𝟏𝟕𝟖	 (37)	
	

𝐜𝐨𝐬{𝟏 𝟏 − 𝟎. 𝟏𝟓 ∗ 𝟎. 𝟎𝟓𝟎𝟓𝟐 ≈ 𝟎. 𝟎𝟐𝟕𝟕	 (38)	
	
With	these	𝜑	values,	we	can	calculate	z	at	these	layers:	

𝟎. 𝟕𝟒𝟗𝐦/𝟎. 𝟐𝟖𝟐°	 ∗ 	𝟐𝛑 ∗
𝟎. 𝟎𝟏𝟕𝟖°
𝟐𝝅

≈ 𝟎. 𝟎𝟒𝟕𝟑𝒎	 (39)	
	

𝟎. 𝟕𝟒𝟗𝐦/𝟎. 𝟐𝟖𝟐°	 ∗ 	𝟐𝛑 ∗
𝟎. 𝟎𝟐𝟕𝟕°
𝟐𝝅

≈ 𝟎. 𝟎𝟕𝟑𝟔𝒎	 (40)	
	
Using	these	two	points	 𝝆, 𝒛 :	(0.0325,0.0473)	and	(0.0505,0.0736)	to	calculate	a	straight	
line.	

𝒛 ≈ 𝟏. 𝟒𝟔𝟏𝝆 − 𝟎. 𝟎𝟎𝟎𝟏𝟗	 (41)	
	
I	added	the	0.00019	with	higher	precision	than	the	rest	just	to	show	that	this	straight	line	
does	not	intersect	z	=	𝜌	=	0,	although	it	gets	very	close.	The	approximated	z	value	for	𝜌 =
0.514	is	therefore	0.7510m,	so	a	delta	of	2mm	from	the	exact	value.	The	bin	size	used	in	
this	 thesis	 is	4.8mm	 in	z	 for	 the	outermost	barrel	 layer,	 showing	 that	even	 this	extreme	
case	can	be	found	using	the	approximation	in	the	absence	of	other	effects.	


