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Abstract
Workflow Management Systems (WFMSs) contribute towards the automation of
business processes by reducing execution time, improving resource utilization, and
enhancing service quality. The distribution of data together with legal regulations,
the increasing demand for flexibility, and the massive scale of today’s business
processes, however, impose new challenges for WFMSs. Addressing them requires a
paradigm shift in process modeling and corresponding system support. In this spirit,
this work presents three approaches towards mitigating the described problems.

This entails the formalization of a foundation for the safe distribution and parallel
execution of data-centric workflows over the publish/subscribe (pub/sub) abstraction
to support geographical constraints on process data. We present a novel representation
of data-centric workflows, modeled as Business Artifacts with Guard-Stage-Milestone
(GSM) lifecycles, to exploit the loosely-coupled and distributed nature of pub/sub
systems. GSM forms an abstraction of flexible business processes and we enable
a workflow mapping by redefining key pub/sub constructs. As a result, once the
workflow is mapped into the pub/sub abstraction, it inherits the loosely-coupled
benefits of pub/sub while provably guaranteeing the original execution semantics.

In addition, we design a fully-distributed geo-scale WFMS to automatically execute
geographically scattered GSM processes, while supporting locality of process- and
data fragments. Our system is based on Workflow Units (WFUs), which form a
unit of distribution, communicate over pub/sub, and manage individual process-
or data fragments. We present two mapping implementations of GSM into WFUs:
the baseline mapping (BLM) directly stemming from the pub/sub formalization,
and the optimized context-aware mapping (CAM), which considers external event
information to reduce the computational overhead and network communication. Our
experiments show that both mappings are scalable but CAM outperforms BLM.

The horizontal scaling of WFMSs that are integrated over pub/sub requires replication
of the workflow engine and instance dispatching, which comprises several pub/sub
operations. To this end, we present an approach for multi-client transactions in
distributed pub/sub systems. We formalize a pub/sub transaction as a sequence
of pub/sub operations that are to be atomically processed but isolated from any
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concurrent transaction, and where publications by one client can trigger further
operations by other clients. Based on the a priori knowledge of a transaction
coordinator (TXC), we present two implementations of our model: D-TX assumes
no prior knowledge on operations providing sequential consistency and serializability.
S-TX assumes full knowledge and manages isolation at the application level. Our
experiments show that isolation and uncertainty about operations renders D-TX
costly and suitable only for smaller configurations, in contrast to S-TX.
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Zusammenfassung
Workflow Management Systeme (WFMS) tragen zur Automatisierung von Ge-
schäftsprozessen bei, indem sie Ausführungszeiten reduzieren, die Ressourcenaus-
lastung erhöhen, sowie die Servicequalität verbessern. Datenverteilung und daran
gebundene gesetzliche Bestimmungen, steigende Flexibilitätsanforderungen und die
enormen Ausmaße heutiger Geschäftsprozesse stellen jedoch neue Herausforderungen
für WFMSs dar. Diesen entgegenzutreten erfordert einen Paradigmenwechsel in der
Modellierung von Geschäftsprozessen und entsprechende Systemunterstützung. In die-
sem Zusammenhang stellt die vorliegende Arbeit drei Ansätze vor, die beschriebenen
Probleme zu adressieren.

Zunächst wird die theoretische Grundlage formuliert, um datenzentrische Wokflows
auf Basis der Publish/Subscribe (Pub/Sub) Kommunikationsabstraktion sicher ver-
teilen und parallel ausführen zu können, und gleichzeitig geographische Rahmenbedin-
gungen mitzuberücksichtigen. Um die lose Koppelung von Pub/Sub Systemen nutzen
zu können, wird eine neuartige Darstellung datenzentrischer Workflows, modelliert
als Geschäftsartefakte mit Guard-Stage-Milestone (GSM) Lebenszyklen, vorgestellt.
GSM stellt eine Abstraktion flexibler Geschäftsprozesse dar; die Transformation eines
Workflows wird dabei durch die Neuformulierung von Kern-Pub/Sub Konstrukten
erreicht. Als Resultat erbt ein transformierter Workflow sämtlich Vorteile, die sich aus
der losen Kopplung eines Pub/Sub Systems ergeben, und behält dennoch nachweislich
seine ursprüngliche Ausführungssemantik.

Um geographisch verteilte GSM Prozesse automatisch auszuführen und gleichzeitig
die Lokalität von Daten- und Prozessfragmenten sicherzustellen, wird ein vollständig
verteiltes und geographisch skalierendes WFMS entwickelt. Das System basiert auf
Workflow Units (WFUs), welche als Verteilungseinheit fungieren, mittels Pub/Sub
kommunizieren und dabei einzelne Daten- und Prozessfragmente verwalten. Insge-
samt werden zwei Abbildungen von GSM in die WFU-Repräsentation vorgestellt:
Eine Baseline-Abbildung (BLM), welche direkt von der theoretischen Pub/Sub
Formalisierung abstammt, und eine optimierte kontextbewusste Abbildung (CAM),
welche Eventinformationen dazu benutzt, um den Berechnungsaufwand und die
Netzwerkkommunikation zu reduzieren. Eine experimentelle Studie zeigt, dass beide
Abbildungen skalieren, CAM jedoch BLM in jeder Hinsicht übertrifft.
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Die horizontale Skalierung von Pub/Sub-basierten WFMSs erfordert eine Replizierung
der Workflowengine und eine entsprechende Verteilung der Prozessinstanzen, was
wiederum mehrere Pub/Sub Operationen umfasst. Aus diesem Grund wird ein Ansatz
zur Transaktionsverwaltung in verteilten Pub/Sub Systemen vorgestellte, welcher
Operationen von mehrere Nutzer unterstützt. Eine Pub/Sub Transaktion wird als
Menge einzelner Pub/Sub Operationen definiert, welche atomar und isoliert von
anderen Transaktionen ausgeführt werden sollen, wobei Events einzelner Nutzer
Operationen anderer Nutzer auslösen können. Ausgehend von dem Vorwissen, das
ein Transaktionskoordinator über die Transaktion besitzt, werden zwei Implemen-
tierungen des Modells vorgeschlagen: D-TX erwartet keinerlei Vorabwissen über
einzelne Operationen und bietet sequenzielle Konsistenz sowie Serialisierbarkeit.
S-TX erwartet vollständiges Transaktionswissen und verwaltet die Isolation auf
Anwendungsebene. Eine experimentelle Studie verdeutlicht, dass die strikte Isolation
und die Ungewissheit über Operationen D-TX, im Gegensatz zu S-TX, teuer und
lediglich für kleinerer Systemkonfigurationen brauchbar machen.
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Chapter 1

Introduction

Business Process Management (BPM) has emerged as a discipline that combines
knowledge from information technology and management sciences, and applies it
to operational business processes. The main intension of BPM is to understand
such business processes and optimize them with respect to execution time, resource
commitment, and service quality — in other words, to increase efficiency of the
underlying business. Consequently, the scope of BPM in research and practice is
rather broad and includes, among others, operations management, techniques for
modeling, simulation, and analysis of business processes, as well as technologies for
business process automation and workflow management [95].

A business process is a chain of events, activities, and decisions that happen within
or among a set of organizations to generate value [25]. The structure of these
elements and their relationship within a given process are used to classify the
business processes [26]. For instance, in tightly-structured business processes, like in
product manufacturing or sales, all possible activities and events, as well as their
order can be determined a priori. This knowledge facilitates the formulation of
decisions that have to be taken during process enactment and enables a precise
description of the complete business process, which can be expressed in a model. A
business process model represents at least a control-flow blueprint of the process,
which every single process instance is supposed to follow (e.g., the disposition of a
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particular product on an e-commerce platform). Well-established modeling languages
for tightly-structured business processes are Petri nets, event-driven process chains
(EPC), or the Business Process Model and Notation (BPMN) [72]. However, due to
a lack of a priori process knowledge, not all processes can be described so rigorously.

Over the past decade, industrialized societies have faced a tipping point in the way
work is carried out by people. The amount of routine work and, thereby, the number
of tightly-structured processes like the ones mentioned above is declining compared
to the amount of knowledge-intense work, which is ever increasing [93]. Knowledge
work occurs in many domains such as health-care, insurance, science and engineering,
project management, and governmental processes [61]. Here, business processes are
loosely-structured and must support flexibility as often not all activities or events
can be foreseen. We also refer to such processes as flexible business processes. A
concrete set of activities and their order might differ from instance to instance
depending on the current situation and the process context. Thus, decisions have
to be made by human experts, a.k.a. knowledge workers, that are involved in the
process. In this regard, the term Case has been coined to describe flexible and
loosely-structured processes, and Case Management (CM) established as a new area
of research within BPM. As one result, the Case Management Model and Notation
standard (CMMN) [73] was recently published to provide adequate modeling support.
To facilitate the situative character of flexible business processes, CMMN relies on a
data-centric process formulation. The main advantage of data-centric models is that
they include a data model to represent application-specific process information and
support knowledge workers in their decision making (e.g., patient data in healthcare
management). This allows for the flexible and fine-grained expression of control-flow
decisions based on rules to evaluate the current data state of a process instance to
evolve it to a subsequent state [23].

Business process models serve a twofold purpose: On the one hand, they provide a
documentation and form the basis for discussion among business experts including
process analysis, verification, and optimization. On the other hand, process models
are frequently used to feed Process-aware Information Systems (PAIS)[95]. Common
to PAIS is that they have an explicit process notion, know the process they support,
and manage process data accordingly. Examples of PAIS are Enterprise Resource
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CHAPTER 1. INTRODUCTION

Planning systems (ERP), Customer Relationship Management systems (CRM), or
Workflow Management Systems (WFMS).

Workflows offer a technical perspective on business processes and enable their
automated execution. A WFMS is configured with a model of the workflow; then,
the WFMS controls the execution of a workflow instance by receiving events from
the business environment and deciding which activities need to be executed next.
Although, business process models and workflow models are quite similar, there is an
important difference: workflow models must include sufficient information to process
events and trigger activities, which are typically executed by external resources (e.g.,
knowledge-workers, web services, or actuator devices). This requires a technical
description of possible event types and the communication endpoints of activities.
Because of their event-based communication character with the business environment
many WFMSs are realized using message-oriented middleware platforms [31]. Since
WFMSs frequently need to manage huge amounts of concurrent and sometimes
long-running instances, also distributed implementations have been considered for
scalability reasons [28, 55].

In this work, we addresses the problem of workflow execution for supporting globally
distributed and flexible business processes at scale. We investigate data-centric
workflows, an abstraction of loosely-structured flexible business processes, which
provide sufficient information for execution. Following the data-centric paradigm,
we analyze strategies and techniques to distribute workflow execution using the
publish/subscribe communication paradigm. Publish/subscribe enables decoupling
of individual components, and provides scalable and reliable messaging. Our goals are
twofold: on the one hand, we aim at providing locality and privacy of data, especially,
in multi-organizational process settings, by distributing the complete workflow logic
across a set of components. On the other hand, we want to scale workflow execution
by distributing individual process instances across a set of components. For both
directions, we investigate distributed content-based publish/subscribe middleware as
integration platform to design, implement, and evaluate suitable solutions.
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1.1. MOTIVATION

1.1 Motivation

Globalization of businesses, the technological advance, and the shift towards knowledge-
intense work impose new challenges for workflow management in practice. These
parameters are of particular relevance when considering the scale of today’s business
processes in terms of concurrent instances, the number of services to be coordinated,
and the amount of data that needs to be managed in accordance with legal or
organizational policies [34, 39, 93].

1.1.1 Multi-organizational business processes

The advance in information and communication technology is the main driver for
many organizations to optimize their collaborative business processes with other
organizations in order to unleash the potential for mutual benefits. Typically,
workflows support these (globally) distributed business processes involving data and
participants from disparate organizations and geographical locations. However, in
such environments, for instance, in global corporations, business-relevant data is
inherently distributed across data-centers and it is not uncommon that huge amounts
of data need to be regularly moved across the globe, resulting in delayed decisions,
decreased efficiency, and monetary loss.

Furthermore, compliance with legal regulations as the protection of business-relevant
data, or other constraints that are imposed by individual organizations or even
governments are hard to address. For example, the eighth Data Protection Principle
of the Data Protection Act (DPA) in the United Kingdom requires that personal data
(e.g., customer information) must not be transferred outside the European Economic
Area unless the country or territory to which the data are to be transferred provides
an adequate level of protection for personal data [29]. Similarly, the EU-U.S. Privacy
Shield [27], successor of the Safe Harbor Agreement, requires that data transfers
to third parties may only occur to such organizations that follow adequate data
protection principles.
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CHAPTER 1. INTRODUCTION

A domain that is subject to even stricter regulations on data exchange is healthcare
and, in particular, the patient care sector. Usually, patient care involves many
participants such as general practitioner (GP), hospitals, specialists, and recuperative
care services, which need to coordinate their activities in order to treat a patient
effectively. Often, these participants are independently organized businesses running
their own processes and data management. Yet, the coordination of individual
activities requires the referral of a patient from one organization to another including
the exchange of relevant data (summarized as a patient record) [93]. This scenario
is depicted in Figure 1.1.1. Patient data, however, is highly sensitive and must be
processed were it is collected, unless a patient explicitly permits data exchange [8].

D
at

a

Primary 
Care (GP)

Secondary 
Care (acute 

hospital)

Specialist 
(radiologist)

Recuperative Care (nursing, physiotherapy)

Data Data

Figure 1.1.1: Referral chain in patient care business processes (adapted from [93]).

Despite their multi-organizational nature, it is not uncommon that a single global
model is used to describe such processes. This global model is either agreed on before
local processes are implemented at the participating organizations, or is imposed by
the leading organization, which forces the other organizations to adapt their local
processes. For instance, the supply chain management at Walmart defines a reference
model that integrates the marketing processes and core data of their suppliers [99].

In summary, distributed processes require an adequate level of data protection to
meet organizational and legal policies. At the same time, the amount of data that
needs to be exchanged is a major hurdle in process execution.
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1.1. MOTIVATION

1.1.2 Flexible business processes

The increase in knowledge-intense work, the acceleration of production cycles, and
frequently changing business environments have re-shaped the character of business
processes in various domains and demand for more flexibility in process modeling
and execution.

In knowledge-intense processes, for instance, it is hard, and sometimes even im-
possible, to strictly model all necessary activities and their dependencies before
actually executing the corresponding workflow. Traditional modeling techniques
like BPMN [72] or BPEL [70] are inherently activity-centric and explicitly specify
every possible control-flow decision. As a result, every single process instance is
supposed to follow this rigid lifecycle. However, in flexible business processes, rarely
two instances follow the same lifecycle and the lifcycle, in general, might be only
loosely definable.

An example of a knowledge-intense and flexible business process occurs in health-
care [93]. A high-level overview of the typical patient care process is depicted in
Figure 1.1.2. It is staged into five phases: registration, assessment, treatment planing,
treatment delivery, and review. Two aspects are particularly noteworthy: First, each
phase only represents a high-level summary of the associated activities. Especially,
the stages assessment, treatment planing, and treatment delivery require expert
knowledge and involve thousands of possible activities. Assessment, for instance,
might include radiological, pathological, and all kinds of other methods. Only a
physician with sufficient expertise is able to choose the appropriate methods and
arrange them in a meaningful manner to generate a complete picture of the physical
constitution of a particular patient. This decision process heavily depends on the
patient itself, its history, and its symptoms—which, makes the process ad-hoc. In
addition, it is hard to capture a complete set of all possible assessment methods,
which requires ad-hoc adaptation of the set of available tools. Second, even the order
of stages in this high-level example is hard to determine. In general, a patient can
be discharged at any time. More interesting, however, is that the stages assessment,
treatment planing, and treatment delivery can change from one to another at almost
any time, always depending on the expert decisions of the medical personnel involved.
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Referral

Discharge

Assessment ReviewRegistration
Treatment
Planning

Treatment
Delivery

Figure 1.1.2: High-level overview of patient care business processes (adapted from [93]).

In summary, flexibility requires ad-hoc decision making and adaptation of the business
process by domain experts at runtime, which activity-centric modeling and execution
approaches do not support. For decision making, domain experts usually apply their
knowledge to an individual case in a particular situation, e.g., the patient and its
condition. Support systems and modeling approaches for flexible business processes
therefore need to put a particular focus on the relevant information and include a
corresponding model of the associated process data [39, 73, 23, 60, 62].

1.1.3 Data-centric workflows

In recent years, there has been a growing interest in frameworks for specifying and
deploying workflows that combine both data and process as first-class citizens [2, 69,
79, 96, 23, 73, 52].

Data-centric workflows have a potential to address the problems described in
Sections 1.1.1 and 1.1.2. Process and associated data are tightly-coupled in a
sense that both are expressed in a single model without giving explicit favor to one of
them. This simplifies workflow distribution according to geographical, organizational,
and legal constraints as only a single model needs to be distributed. In addition,
flexibility is supported as process-relevant data is part of the process model. The
control-flow is modeled as declarative rules over the data model, which facilitates
ad-hoc decision making.

In this work, we consider one such data-centric BPM approach called Business
Artifacts (BA) [14, 20, 69] and a recent meta-model for modeling business artifacts
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called Guard-Stage-Milestone (GSM) [37, 23, 38]. In the artifact-centric paradigm,
business processes are modeled as interactions of key business-relevant, conceptual
entities called Business Artifacts (or “artifacts”, for short). Artifacts are modeled
using an information model that includes attributes for storing all business-relevant
information about the artifact, and a lifecycle model that represents possible ways the
artifact might evolve over time. The artifact approach typically yields a high-level
factoring of business processes into a handful of interacting artifact types.

The recently introduced data-centric workflow model known as Business Artifacts
with Guard-Stage-Milestone Lifecycles meta-model [37, 38, 23] provides a declarative
approach for specifying artifact lifecycles. GSM supports parallelism and modularity,
with an operational semantics based on a variant of Event-Condition-Action (ECA)
rules. There are four key elements in the GSM meta-model:

(a) The information model, which captures all relevant process data including
application data as well as status information about the process itself.

(b) Milestones, which correspond to business-relevant operational objectives that are
achieved (and possibly invalidated) based on triggering events and/or conditions
over the information models of artifact instances.

(c) Stages, which correspond to clusters of activity intended to achieve milestones.

(d) Guards, which control when stages are opened or closed, respectively.

Multiple stages of an artifact instance may be active at the same time, which enables
parallelism. Hierarchical structuring of the stages supports a rich form of modularity.

The operational semantics of GSM is characterized by how a single event from the
business environment is incorporated into the current snapshot of the information
model of a GSM-based system [23]. This semantics extends the well-known Event-
Condition-Action (ECA) rule paradigm. It is centered around business steps (or
B-steps, for short) that focus on the full impact of incorporating incoming external
events. In particular, the focus is on what milestones (i.e., goals or objectives) are
achieved or invalidated and what stages (i.e., activities) are opened and closed, as a
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result of the incoming event. Changes in milestone and stage status are treated as
internal status events and can trigger further status changes in the B-step. Intuitively,
a B-step corresponds to the smallest unit of business-relevant change that can occur
to a data-centric workflow.

In this thesis, we rely on the incremental operational semantics introduced in [23],
which resembles the incremental application of ECA-like rules providing a natural
and direct approach for its implementation.

1.1.4 Scalable workflow execution

Workflow Management Systems (WFMS) are software systems, which are integrated
in an enterprise infrastructure or provided as a cloud service to enable automatic
workflow execution. A model of the workflow, either explicitly created by a domain
expert or derived from a corresponding business process, is passed to the WFMS,
which controls the execution of individual workflow instances.

A single instance of the workflow represents the concrete execution of all relevant
activities necessary to process the workflow for a given case or scenario. This can
be, for example, all treatments delivered to patient X who reported about constant
headache at his GP, or all steps involved in the disposal and delivery of a new iPhone
7 to customer Y at an online retailer. Workflow execution includes the invocation of
the individual activities and their mutual data exchanges. The communication with
the business environment is based on events received from or delivered to process
participants like human beings, e.g., customers and patients, or IT support systems,
e.g., ERP systems, databases, actuator devices, web services, etc.

WFMSs typically comprise numerous components, reveal plenty of dependencies, and
show complex interaction patterns [55]. In addition, such systems are increasingly
dynamic and require adaptations or elastic provisioning [49]. Hence, components
must be added, removed, or adjusted ad-hoc and without disrupting the execution.
Middleware services are used in this context as a coordination mechanism for
individual components [9, 77]. On the one hand, a middleware should support
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non-functional requirements like scalability and availability, on the other hand, it
must allow to express the required degree of coordination—which is often a trade-off.

An increasing amount of WFMSs are realized in a distributed fashion using event-
based coordination [45, 46, 49, 55]. Some WFMSs, for instance, consist of multiple
components for data access and control flow computations [45]. The execution of
a workflow requires these components to coordinate according to a protocol that
depends on the atomicity and consistent order of a set of operations [46, 55].

In addition, a single workflow instance often involves significant communication with
its environment and it is not uncommon that a WFMS needs to handle thousands
of instances at a time; consider, for instance, the number of concurrent users and
instances on sales platforms like Salesforce or Amazon [7]. To provide an elastically
scaling service, industry-strength WFMSs assign individual instances to workflow
agents [49]. Each agent is a replica of the WFMS dedicated to handle a single
instance. A load balancer notices new instances and dispatches them across available
agents for further processing. Again, the dispatching procedure requires a set of
operations to be executed atomically and consistent with a protocol specific order.
In general, this way of load balancing can be considered a design pattern for many
PaaS cloud services (e.g., using Docker containers) [49, 90].

In recent years, publish/subscribe (pub/sub) has emerged as a popular middleware
for coordinating enterprise systems with complex interaction patterns [17, 41].
Individual components (a.k.a. clients) publish data to the pub/sub service, which
is delivered to a set of matching consumers that have previously subscribed their
interest. Pub/sub systems exhibit strong decoupling properties across clients, which
simplifies application development and allows for dynamic interactions. However,
these decoupling properties limit the ability for clients to coordinate, since each
pub/sub operation is processed independently and asynchronously but only limited
guarantees are given for operation groupings.

Large-scale applications often employ distributed pub/sub to improve scalability [41].
In this thesis, we study the distributed content-based pub/sub system model [54].
An overlay network of brokers forwards subscriptions and publications according to
their content. Each broker performs matching and routing functions to disseminate
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publications and subscriptions to intended recipients. Specifically, each broker
maintains a Subscription Routing Table (SRT) to propagate subscriptions to potential
publishers and a Publication Routing Table (PRT) to store all known subscriptions.
Incoming publications are matched against the PRT and forwarded to the next hops
in the network until they reach the matching clients.

However, supporting the above scenarios requires the transactional grouping of
various operations, which is not possible today.

1.2 Problem statement

Workflow Management Systems can support the automation of business processes and
optimize the efficiency of the underlying business. However, the efficient automation
of flexible business processes that involve multiple organizations at increasing scale
and in accordance with legal or organizational regulations is challenging. Suitable
solutions require to rethink how business processes are traditionally modeled and
executed. In this context, publish/subscribe can provide a flexible, scalable, and
available coordination platform for application and component integration. This
work concentrates on three main research objectives:

1. Partition data-centric workflows into data-access and control-flow components
at a granularity, which is suitable to meet the data management requirements
imposed by individual organizations or legislative authorities, and provide a rea-
soning about their effective distribution based on publish/subscribe coordination.

2. Design a distributed workflow management architecture that leverages the
advantages of publish/subscribe middleware for deploying and executing data-
centric workflows at geo-scale, while providing data locality for efficiency and
policy compliance.

3. Define a transaction concept for publish/subscribe and provide suitable tech-
niques for distributed publish/subscribe systems to support the horizontal scaling
of workflow management systems build on top of such platforms.
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Although, the number of flexible business processes is increasing, still, the majority
of current workflow management systems focuses on tightly-structured processes
modeled in procedural languages. Data-centric models, to the contrary, unify process
and data perspectives and offer the potential to overcome this limitation [16]. Data-
centric approaches focus on the process goal and provide evolution based on the
current system state by using declarative rules instead of a rigid control-flow.

At the same time, the vast majority of workflow management systems is designed
to support only processes within a single organization. Such systems are either
centralized in nature, relying on centralized processing of associated data, or support
only restricted forms of distributed execution without considering data appropri-
ately [12, 24, 16]. Since multi-organizational scenarios typically reveal an inherent
distribution of the relevant information across multiple data centers, such designs
complicate global workflow optimization and the adherence to data protection policies.

The support for flexible, multi-organizational business processes at geo-scale, while
respecting locality of process and data, requires fully-distributed approaches to
manage data accordingly. The state of the art are web services-based architectures,
which, however, are either modeled with procedural languages [72, 70], or in the case
of data-centric specifications, use a centralized engine to manage data and coordinate
services [15, 31, 58, 68].

Providing distributed execution support for data-centric workflows is challenging for
several reasons. Provision of data locality to meet compliance with data protection
requires a concept to distribute data access, rule evaluation, and process control for
data-centric workflows over multiple process components. The integration platform
for these process components must be scalable, reliable, and flexible to enable process
changes such as the addition of new components. For performance reasons, the
number of affected process components and the number of messages exchanged
during process evolution should be minimized.

In summary, the ultimate goal of distributing a data-centric workflow is to achieve
an effective grouping of workflow components while respecting a set of constraints
such as the infrastructure topology, geographical constraints, or pricing factors, while
minimizing communication or data transport costs.
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In addition, the integration of large-scale applications and components in enterprise
systems based on publish/subscribe middleware requires the grouping of various
operations including transactional properties like atomicity, consistency, isolation,
and durability, summarized as ACID properties.

To the best of our knowledge, there exists no definition of ACID semantics in the
context of pub/sub. Adapting the ACID properties from databases to pub/sub is
challenging because both types of systems fundamentally differ in their interaction
paradigm, operation sets, and processing model. Yet, a precise formulation of the
ACID properties is crucial to reason about an execution model for multi-client
pub/sub transactions.

Furthermore, distributed pub/sub systems introduce a high degree of concurrency
in managing the state of the various brokers. In particular, modeling consistency
and isolation is non-trivial because the main focus lies on synchronizing routing
tables across multiple brokers, which are not simply just replicated because not every
pub/sub operation is transmitted to every broker.

Moreover, it is challenging for pub/sub users, which are fundamentally decoupled
in nature, to be able to express a working order of operations within the context of
a single transaction. In database systems, this is normally not an issue since each
transaction either involves only a single client, or clients which are able to directly
coordinate with one another. In some cases, there is a need to be able to express
an order of operations within a transaction in an ad-hoc fashion, without relying
on the clients having prior knowledge of all involved parties. In other cases, the
challenge is to identify viable system assumptions, such as which a priori knowledge
can be assumed for a transaction in given scenarios. Based on these assumptions,
algorithms need to be developed to provide an efficient and scalable integration of
the model into a distributed pub/sub service.
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1.3 Approach

In summary, the objectives of this work are threefold. First, developing a fragmenta-
tion of data-centric workflows into sets of data-access and control-flow components by
mapping the workflow into corresponding publish/subscribe primitives with equivalent
execution semantics and providing the foundation for an effective distribution
compliant with given constraints. Second, designing a geo-scale distributed workflow
management architecture for executing flexible data-centric business processes,
while providing data-locality for efficiency and policy compliance. Third, defining
transactional semantics for publish/subscribe and providing suitable system support
for distributed pub/sub implementations to support the horizontal scaling of workflow
management systems built on top. We now briefly introduce these approaches.

1.3.1 Publish/Subscribe mapping of data-centric workflows

In this approach, we focus on how data-centric workflows specified in GSM can
be fragmented into sets of multiple data-access and control-flow components by
employing the publish/subscribe (pub/sub) abstraction. We believe that the loosely-
coupled nature of pub/sub systems provides a convenient substrate for workflow
execution: adaptations like the addition or removal of individual components
can be accomplished during runtime by (un-)subscribing to events that drive the
execution. The decoupling of individual workflow components facilitates their ability
for migration and enables effective scalability of the system.

Starting with an information model and a set of data-centric workflow primitives
(based on a set of acyclic ECA-style rules) that rely on an incremental operational
semantics, we develop a complete mapping of data-centric workflows into the pub/sub
abstraction. We enable this workflow transformation by redefining and formalizing
key pub/sub constructs such as subscriptions and publications together with their
matching conditions, as well as consumption and notification policies. As a result,
once a data-centric workflow is transformed into the pub/sub abstraction, it seamlessly
inherits the distributed and loosely-coupled benefits of pub/sub.
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After laying the foundation for mapping data-centric workflow primitives to pub-
lish/subscribe primitives, we proof the maintenance of the operational semantics and
quantify the execution cost in terms of messages. This foundation can now be applied
to identify an optimal workflow distribution that conforms to given constraints. We
formalize this distribution problem as the colored multiway cut problem and show its
intractability by reduction of the multiway cut problem to our distribution problem.

1.3.2 Geo-distribution of flexible business processes

In this approach, we present a geo-distributed execution architecture for flexible
data-centric business processes in multi-organizational scenarios based on GSM [23].
We show that GSM forms a generalization of flexible business processes and the
execution semantics of CMMN [73].

The core of our system is a distributed workflow engine for GSM that supports
locality of data in such a way that system components accessing particular data, are
deployed in the IT infrastructure of the data owner at geo-scale. The theoretical
foundation for this system is set in Chapter 4, where we described a publish/subscribe
formulation of GSM. The chosen loosely-coupled nature of pub/sub supports both
the ad-hoc character of flexible business processes as well as the rule-based execution
semantics. In contrast to the formalization, this approach provides a geo-scale system
architecture including an implementation, optimization, and experimental evaluation.

We introduce Workflow Units (WFUs) as distributable system components that
communicate over pub/sub, and manage individual attributes from the data model
or execute workflow rules. A WFU subscribes to the relevant attribute changes
for rule evaluation or attribute access, performs the rule evaluation or data access
in the context of an event from the environment, and publishes results to other
interested WFUs. The WFU representation of the workflow partitions the global
data model and control flow into fragments. This fragmentation is the basis for a
location-aware deployment of the business process, where each WFU is deployed
in the IT infrastructure of the organization that has the rights to manage the data
accessed by the WFU.
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1.3.3 Multi-client transactions in publish/subscribe

The foundation of our multi-client transactions approach is a formal publish/subscribe
(pub/sub) model, in which we define all pub/sub operations as filters in a global event
space. A transaction is modeled as a sequence of these operations. We also assume
that certain operations can trigger other operations, e.g., a publication can trigger a
subscription at the receiving client. The ACID semantics are then formalized over a
sequence of operations. Consistency is defined as sequential consistency imposing
a total-order relation on all operations in the sequence. Isolation is defined as
serializability, which means that the result of executing two transactions concurrently
should be the same as if both were executed one after another. In our implementation,
a transaction is always managed by a transaction coordinator (TXC). We distinguish
two different approaches based on the a priori knowledge of the TXC.

In S-TX, we assume that the TXC has static knowledge about all operations in the
transaction and transactions are isolated at the application level. Ordering is realized
by attaching a dependency list to every operation, referencing prior operations;
brokers check if all dependencies are fulfilled before processing an operation. The
routing states, SRT and PRT, are represented as conflict free replicated datatypes
(CRDTs) [59]; hence, updating the routing state is either appending or removing
from the CRDT. For atomicity, we introduce a special commit operation that contains
a dependency to the last operation of the transaction.

In D-TX, the operation set is assumed to evolve at runtime (dynamic), i.e., the TXC
does not know operations issued by other clients. In addition, no assumptions are
made regarding isolation of concurrent transactions. Instead of dependencies, an
acknowledgment mechanism ensures that a certain operation is completed, i.e., fully
propagated through the system, before the next operation is processed. Serializability
is realized by adopting a snapshot isolation algorithm, which first takes a globally
consistent snapshot of the brokers’ routing state. This snapshot is used to process
all operations of a transaction. When committing the transaction, the snapshot is
analyzed for conflicts with concurrent transactions and, either merged with the stable
routing state (commit) or discarded in case of conflicts (abort). For this purpose, we
adapt the well-known 2-phase commit algorithm for atomic commitment to pub/sub.
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1.4 Contributions

The main contributions from our formal publish/subscribe mapping of data-centric
workflows into the publish/subscribe abstraction are:

i. We provide a formal model of data-centric workflows based on the Guard-
Stage-Milestone (GSM) metamodel together with a suitable formalization of the
publish/subscribe abstraction.

ii. We present a fragmentation of data-centric workflows into a set of data-access and
control-flow components by defining a mapping of core workflow constructs into
our publish/subscribe formalization to provide the foundation for the distributed
and parallel execution.

iii. We provide a detailed theoretical analysis of our mapping. We proof that a
publish/subscribe representation resulting from our mapping maintains the exe-
cution semantics of the original data-centric workflow model. Also, we quantify
the overhead of workflow execution under the publish/subscribe formulation in
terms of required messages.

iv. We analyze the complexity of the optimal workflow distribution by formalizing
the problem as the colored multiway cut problem and show its intractability
through reducing the multiway cut problem to this distribution problem.

v. We provide a greedy algorithm with a constant factor approximation for the
workflow distribution problem.

The main contributions from our geo-distributed execution approach for flexible
business processes are:

i. We analyze formalisms to model flexible business processes based on the case
management standard (CMMN) and the Guard-Stage-Milstone metamodel
(GSM) and show that CMMN models can be faithfully expressed by GSM.

17



1.4. CONTRIBUTIONS

ii. We describe a geo-scale execution architecture for GSM workflows based on
Workflow Units (WFUs) residing on top of a distributed publish/subscribe
middleware service.

iii. We present two mappings of GSM into WFUs: the baseline mapping (BLM)
directly stems from our theoretical publish/subscribe formulation of data-centric
workflows. The optimized context-aware mapping (CAM) considers knowledge
about external event types to reduce the number of WFUs involved and the
number of messages generated in the context of a single execution step.

iv. We provide an extensive experimental study evaluating and comparing BLM
and CAM with respect to process latency and throughput. We show that CAM
offers better performance, especially, for sequential task patterns.

The main contributions from our multi-client transaction approach for distributed
publish/subscribe systems are:

i. We present a formal model for supporting transactions using publish/subscribe
operations. We propose different levels of the ACID semantics for expressing
multi-user transactions with varying guarantees and requirements with respect
to a priori knowledge.

ii. We propose D-TX, our first solution for supporting transactions in the context of
a distributed content-based publish/subscribe system. D-TX allows a set of op-
erations to be defined at run-time, provides sequential consistency, serializability,
and atomicity.

iii. We propose S-TX, our second distributed solution, which relies on static knowl-
edge of all operations included in a transaction, provides weak isolation (applica-
tion level), and sequential consistency (using conflict-free replicated datatypes),
and atomicity.

iv. We provide implementations of S-TX and D-TX in a distributed pub/sub system,
together with a comprehensive evaluation that compares the strengths of both
solutions with a baseline solution, which mimics part of the transaction behavior
by introducing manual operation delays.
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Parts of the content and contributions of this work have been published in or are
submitted to the following venues:

• M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Hull, and R. Vaculín. Safe
Distribution and Parallel Execution of Data-Centric Workflows over the Pub-
lish/Subscribe Abstraction. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 27(10):2824–2838, 2015

• M. Jergler, M. Sadoghi, and H.-A. Jacobsen. D2WORM: A Management
Infrastructure for Distributed Data-centric Workflows. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages
1427–1432, 2015

• M. Jergler, H.-A. Jacobsen, M. Sadoghi, R. Hull, and R. Vaculín. Safe
Distribution and Parallel Execution of Data-centric Workflows over the Pub-
lish/Subscribe Abstraction. In 32nd IEEE International Conference on Data
Engineering (ICDE), pages 1498–1499, 2016

• M. Jergler, M. Sadoghi, and H.-A. Jacobsen. Geo-Distribution of Flexible
Business Processes over Publish/Subscribe Paradigm. In Proceedings of the
17th ACM International Middleware Conference, pages 15:1–15:13, 2016

• M. Jergler, K. Zhang, and H.-A. Jacobsen. Multi-client Transactions in
Distributed Publish/Subscribe Systems. Submitted to 18th ACM International
Middleware Conference, 2017

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents related work in the
area of workflow management with particular emphasis on data-centric modeling,
distributed approaches, the execution of data-centric workflows, and transactions
in publish/subscribe systems. Chapter 3 provides background information on the
Guard-Stage-Milestone meta model and distributed transactions.
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Chapters 4 and 5 elaborate on the mapping of data-centric workflows into the
publish/subscribe abstraction and the corresponding geo-distributed execution archi-
tecture.

Chapter 4 first presents formalizations for both data-centric workflows and the
publish/subscribe paradigm. Then, it gives a detailed account of the mapping
functions between both abstractions, putting a particular focus on the subscription
component. Next, it provides an analysis of the mapping by proofing its correctness
and estimating the execution costs. Finally, it presents the foundation for effective
workflow distribution together with a complexity analysis.

Chapter 5 presents the geo-distributed execution architecture for flexible business
processes. First, it presents CMMN and GSM as abstractions of flexible business
processes and describes their relationship. Then, it provides an overview of the
distributed execution architecture based on Workflow Units (WFU). Next, it describes
BLM and CAM, two different mappings of GSM into WFUs. Finally, it provides
details about workflow deployment and a discussion on the results collected from an
experimental study.

Chapter 6 covers multi-client transactions in distributed pub/sub systems. First, it
introduces a use-case scenario by modeling the instance dispatching problem from
workflow management as pub/sub interactions. Then, it provides a formal transaction
model for pub/sub operations including a definition of the ACID properties. Next,
it describes D-TX and S-TX our two approaches for supporting transactions in
distributed content-based publish/subscribe systems. Finally, it presents the results
obtained from an experimental evaluation and concludes with a discussion.

Chapter 7 presents joint conclusions covering the mapping of data-centric workflows
into the publish/subscribe abstraction, the geo-distributed execution, and the multi-
client transaction approach in distributed publish/subscribe systems.
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Chapter 2

Related Work

Business process management (BPM) is a broad field of research spanning various
areas and including a wide range of methods, techniques, and tools for designing,
managing, analyzing, and executing business processes. An overview about state-of-
the-art BPM approaches is provided in [95].

In particular, the various aspects on business process modeling have been subject
to extensive research. An overview of business process modeling approaches is
presented in [65]. On a first level, the authors distinguish existing languages along
two dimensions: first, the purpose the language serves, i.e., description, analysis, or
enactment of a process, and second, the view on the process the language provides,
i.e., functional, behavioral, informational, or organizational view. Orthogonal to
these feature considerations, the authors classify modeling languages into four broad
but distinct categories following the scientific and professional traditions established
over the past years:

1. Traditional process modeling languages focus on understandability of the process
by people, i.e., provide different views on the process to give an intuitive
description of the relevant aspects. Examples include Petri Nets, Event-driven
Process Chains (EPC) [48], or Role Activity diagrams [75].

2. Object-oriented languages aim at unifying the descriptions for both business
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domain experts and IT experts by naturally modeling the world through objects
and their relations. However, it turned out that such approaches tend to focus
more on the software and IT aspects, either due to inherent shortcomings, or
due to explicit focus of the language. Examples in this category include the
Unified Modeling Language (UML) and its extensions [71].

3. Dynamic process modeling languages contain industry specifications and stan-
dards to give a dynamic view on the process, provide a serialization format
for exchange, and focus on the full spectrum of usage. For example, process
description for human consumption, e.g., BPMN [72], process and workflow
exchange, e.g., XPDL [102], or process enactment, e.g., BPEL [70].

4. Process integration languages include languages to represent the integration
of processes from two or more business partners. The focus lies on describing
technology-independent mechanism, like interfaces and exchange formats, to
enable integration of different workflow management systems. An example is
the Web Services Choreography Description Language (WS-CDL) [103].

Often, organizations maintain multiple, slightly different variants of a process, e.g.,
sales processes for individual products, which traditional modeling approaches do
not explicitly support. Therefore, a plethora of work has also been done in business
process variability modeling, which is surveyed in [84]. Commonly, such approaches
are characterized by extending conventional models with constructs to capture
customizable processes. A variant of the customizable process model for a specific
scenario can then be derived by adding or deleting fragments according to a given
configuration.

Flexibility in business processes is one of the most active areas of research BPM and
has a strong relationship to business process variability modeling [83]. In general,
there are three phases in the lifecycle of a of a customizable process model [84]. First,
at design time, all variants of the model are captured in the customizable process
model. Next, at customization time, a single variant is configured and extracted
from the customizable model representing a subset of processes that can be realized
accordingly. Finally, at run-time, the customized process model is executed for
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individual process instances. While variability primarily concerns the design-time
and customization-time phases, flexibility focuses on the run-time phase.

A survey of contemporary approaches in flexibility modeling including a taxonomy
and classification is presented in [87]. The authors further distinguish flexibility into
four types:

1. Flexibility by design refers to specifying multiple alternate execution paths in
the process model at design time, which allows the selection of the most suitable
path at process execution time (e.g., by choice, parallelism, or interleaving of
activities).

2. Flexibility by deviation refers to runtime deviations from the original process
specification without altering the process model. Deviations encompass changes
to the execution within a particular process instance by altering the activities
that are to be executed next, i.e., deviating from the original control-flow.
The process model itself remains unchanged. In activity-centric languages,
this can be supported by specific deviation operations (e.g., undo, redo, skip
of activities), or by constraint violations in declarative languages (e.g., not
adhering to a previously specified constraint: A preceeds B).

3. Flexibility by underspecification refers to the ability of executing incomplete
process specifications, i.e., process definitions without sufficient information
to enable complete execution (e.g., due to placeholders for process fragments).
This type of flexibility does not require the model to change at runtime but
only to complete the missing parts. Late binding refers to the selection of the
missing process fragment from a set of available fragments, and late modeling
requires the construction of a new process fragment at runtime (either from
scratch or from existing process fragments).

4. Flexibility by change refers to the modification of a process model at runtime
such that either a single or all of the currently executing process instances are
migrated to a new process model. In contrast to the aforementioned types, here,
the design-time process model is changed. Concrete approaches need to specify
whether changes affect only new or also concurrent instances, the moment when
changes are allowed, and a migration strategy for running process instances.
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ADEPT2 [81] is a framework for enabling adaptive process aware information systems
by supporting a set of dynamic change patterns. It is based on an activity-centric
modeling approach but achieves a higher degree of expressiveness due to several
modeling extensions and relaxations [82].

Research has shown that activity-centric modeling languages only provide limited
capabilities for realizing the various types of flexibility considering, for instance, the
requirements of knowledge-intense work and case management [62]. One reason is
that activity-centric approaches only consider data as input or output of activities.
Emerging data-centric approaches such as artifact-centric models [69, 23] give data a
more central role by introducing lifecycles and stateful date. A survey on handling
data in business process models together with a study on the need for more data-
awareness is provided in [63]. The authors of [51] summarized artifact-centric
modeling approaches.

2.1 Data-centric business artifacts

The existing artifact-centric modeling approaches can be set into the context of a
four-dimensional framework, referred to as the BALSA framework, which represents
business-artifacts, lifecycles, services, and associations [51]. By varying the model
and constructs used in each of the four dimensions, different artifact-centric business
process models with different characteristics can be obtained [36].

An artifact represents a concept to record all information that are necessary to
perform the relevant business operations in order to achieve some business objective.
It clusters process and data, contains an identity to distinguish it from other artifacts,
and a content, represented as a set of attributes, to describe the artifact state.
Attributes are created, deleted, or updated as part of the process activities. An
information model is used to describe the content and a lifecycle model describes
all possible, key business-relevant stages, which the artifact might undergo from
initialization to completion in reaction to events and services that interact with the
artifact. The lifecycle can be specified using flow-charts, finite state machines, state
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charts, or declarative mechanisms. Services describe business tasks or activities
performed by the artifact, which result in an update of the artifact and/or a state
change in the information model. Associations express the relations among services
and artifacts together with their constraints. Constraints specify conditions on when
a service is executed. They can be either described procedurally or declaratively. [51]

Our work is also based on the data-centric business artifacts paradigm [69, 14, 20],
with the Guard-Stage-Milestone meta-model [23, 38, 37] being a natural evolution
from the earlier practical artifact-centric meta-models [21, 91], but using a declarative
basis and supporting modularity and parallelism within artifact instances. The exist-
ing work on GSM operational semantics already addresses some sort of parallelism [92]
but does not consider the distributed execution of business artifacts [23]. Notably,
GSM also significantly influenced Case Management and the CMMN standard [62, 73].

Recently, other data-centric approaches relying on the artifact-centric paradigm have
been proposed. These include the FlexConnect meta-model [79], in which processes
are organized as interacting business objects, or the AXML Artifact Model [2, 3],
which is based on a declarative form of artifacts using Active XML as a basis [1]. ACP-
i [104] is another artifact-centric business process model representing an extension
to the ACP model [68] to support inter organizational business processes. ACP-i
distinguishes artifacts into local artifacts belonging to an organization and shared
artifacts, which are commonly agreed for coordination. ArtiNets, to the contrary, is
closely related to Petri nets. Here, artifacts form the tokens and the transition firing
rule is based on regular expressions and counting constraints [50].

Another object-aware framework that aims at unifying process and data is PHIL-
harmonicFlows [52]. Here, workflows are modeled as micro processes that represent
the data and behavior of individual objects and macro processes that represent the
interactions among such objects.
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2.2 Distributed workflow execution

There exists a body of work focused on various aspects of distributed workflow
execution. For instance, [12] has a similar goal as our approach for fragmentation
and distribution but is applied to an inherently activity-centric workflow model, in
which data is only considered as input and output of flow activities (dataflow) and
no data-centric execution is supported. This is also true in [11], in which scheduling
of workflows in self-organizing wireless networks is addressed to respect resource
allocation constraints and dynamic topology changes, or for [88, 55] that use pub/sub
techniques to implement some of the BPM execution aspects.

Distributed workflow execution has been studied in the 1990s to also address
scalability, fault resilience, and enterprise-wide workflow management [6, 101, 66].
However, these works mostly rely on procedural models and do neither focus on
data-centric processes nor support declarative models.

A detailed design of a distributed workflow management system was proposed
in [6]. The work bares similarity with our approach in that a business process is
fully distributed among a set of nodes. However, the distribution architectures
differ fundamentally. In our approach, a content-based message routing substrate
naturally enables decoupling, dynamic reconfiguration, system monitoring, and
run-time control. This is not addressed in the earlier work.

A behavior-preserving transformation of a centralized activity chart, representing
a workflow, into an equivalent partitioned one is described in [66] and realized in
the MENTOR system [101]. MENTOR is inspired by compiler-based techniques,
including control flow and data flow analysis, in order to parallelize the business
process [67]. However, these approaches are complementary to our work since
we operate with the original workflow model without analyzing the process. An
advantage of executing an unmodified process is that dynamic changes to the
executing process instances are possible, as their structure remains unchanged from
the original specification.

A distributed workflow execution architecture for BPEL processes is presented
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in [28, 55]. This work bares similarity with our approach as it also relies on a
pub/sub middleware to coordinate the control-flow. However, the authors do not
consider process flexibility and data-locality. Another distribution approach for
BPEL based on stream processing units (SPUs) is presented in [10]. SPUs are
abstractions for business functions and encapsulate their logic in the context of a
business process. SPUs are similar to WFUs in our approach in a sense that they
form the unit of distribution. However, they do not support data-centric workflows
and build on stream processing primitives instead of pub/sub.

The Global Data Synchronization Network (GDSN) [30] is an industry standard and
system implementation that allows companies to integrate data provided by other
organizations into their processes. GDSN is used, for instance, by Walmart [99], to
access product data of its suppliers and update its own systems. GDSN also relies
on a pub/sub middleware to exchange and update data. However, its sole focus is
data exchange and not the execution of workflows.

An approach to integrate existing business processes as part of a larger workflow
is presented in [18]. The authors define event points in business processes where
events can be received or sent. Events are filtered, correlated, and dispatched
using a centralized pub/sub model. The interaction of existing business processes
is synchronized by event communication. This is similar to our work in terms of
allowing business processes to publish and subscribe. In our approach, activities in a
business process are decoupled, and the communication between them is performed
in a content-based pub/sub broker network.

Hens et al. present a distributed approach for procedural, cross-organizational
business processes [32]. A BPMN model is split into multiple control-flow fragments,
where each fragment is a grouping of activities that belongs to an organizational unit.
Each fragment is executed by a dedicated process engine assumed to be hosted by
the IT infrastructure of the corresponding organization. Similar to our approach, the
communication is based on publish/subscribe. The individual engines subscribe to
events that trigger the process fragments they are executing and generate notifications
to indicate completion of a fragment to other engines. In contrast to our work, the
approach exploits procedural instead of data-centric models; furthermore, the focus
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is on the control-flow, and data is only assumed to be transferred with the sequence
flow.

The Amit situation manager [4] specifies a language and a centralized execution
mechanism in order to reduce complexity in active databases, which are closely related
to rule-based execution of data-centric workflows. The situation concept extends
composite events in its expressive power, flexibility, and usability; thus, baring some
similarity with our notion of WFUs, which are partly realized by subscribing to
update events. Amit, however, is a centralized system and focuses on rather isolated
situations less complex workflows or interactions among situations.

There is also some work on service orchestrations for business process automation.
For example, the ACSI service hub [58, 15] executes workflows specified in GSM and
is tailored towards web-service orchestrations. ACSI is built on top of Barcelona [31]
as an underlying engine. Roles allow to restrict attribute access to certain institutions
at design and runtime. However, Barcelona is a centralized system and maintains all
data at a single machine. Similarly, ACP [68] is a centralized engine to automate
artifact-centric processes over service-oriented architectures; only the application
logic (i.e., the services) are distributed.

A decentralized service orchestration architecture based on the Object Modeling
System (OMS) is proposed in [43]. Data that is generated by a particular service
is directly forwarded to the subsequent service without being passed through a
centralized orchestration engine. Though focusing on the decentralization of data
flow to enhance performance, the approach is not data-centric in a sense that the
control flow is defined over data, which reduces its flexibility.

Another system that focuses explicitly on scientific workflows is proposed in [74].
This approach is inspired by the work on relational algebra and enables automatic
optimization by leveraging a parallel execution model. Workflows are represented as
compositions of algebraic operations. The focus of the approach is on handling large
collections of data (baring some similarity with MapReduce-style processing).
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2.3 Transactions in message-oriented middleware

Relevant related works in the context of transactions in message oriented middleware
can be classified into three categories:

1. Transactional message queues realized using centralized brokers [9, 77, 19, 40].

2. Middleware-mediated transactions [57, 56, 94].

3. Transactional messaging in distributed broker architectures [33, 35, 64, 89, 97].

Transactional message queues include proprietary systems like TIBCO’s Enterprise
Message Service [19], ActiveMQ [9] based on the Java Message Service (JMS), or
RabbitMQ [77] based on the Advanced Message Queuing Protocol (AMQP). All
systems rely on point-to-point communication or on a single message broker to deliver
messages to subscribers. Some approaches like RabbitMQ also enable distribution by
clustering message channels. A transaction defines a context, which is used to group
a set of messages that need to be atomically sent and received. This set of operation
is issued by a single publisher and buffered. On commit of the transaction, messages
are delivered to subscribers; otherwise, a rollback is performed and messages are
discarded. For instance, TIBCO [19] employs a subject-based pub/sub model and
uses 2-phase commit (2-PC) to atomically publish or consume messages on a set of
subjects. There are also some database systems providing a pub/sub interface and
similar transactional mechanisms. In Redis [80], for instance, a transaction groups a
set of operations and executes it atomically and isolated.

Although, the systems bare similarity with our work, i.e., atomic delivery, they
significantly differ as they neither support distributed brokers, nor do transactions
encompass a mixture of publications and subscriptions by different clients.

Middleware-mediated transactions integrate message queues and distributed object
transactions [57].

X2TS [56] is based on topic-based pub/sub and integrates CORBA’s Object Trans-
action Service and Notification Service to provide transactional guarantees for
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multicasting. Similar to message queues, an implicit transaction context is propagated
with messages and 2-PC is used for atomic commitment but without compensation.
X2TS contains a caching mechanism at the broker to provide different levels of
visibility, which enables a recipient to process a message before the transaction is
committed and only get notified about an abort afterwards.

D-Spheres focuses on operationally grouping distributed object transactions [94].
It uses point-to-point communication and allows the descriptive specification of
producer/consumer dependencies. Atomicity is provided by 2-PC and a compensation
mechanism cancels enqueued messages of aborted transactions.

Compared to our work, both above approaches do not support distributed message
routing and transactional combinations of publications and subscriptions by different
clients.

There is also a bunch of approaches dealing with transactional guarantees in
distributed broker architectures:

In the approach by Hill et al. [33], a publisher can request a reply as part of its
publication from subscribers. Receiving subscribers then decide if, and which type
of reply they want to send (e.g., acknowledgment or result). Replies are routed on
the reverse paths of publications and are presented to the publisher using a reply
view. The work is motivated by combining the decoupling and scaling features of
pub/sub with request/response requirements of certain application and is similar to
our acknowledgment mechanism in D-TX.

The Hermes Transaction Service (HTS) supports transactions in content-based
pub/sub [97]. HTS is built on top of Hermes, a topic-based system using rendezvous-
based routing in broker network [76]. A transaction demarcates the process of
generating one or more events at a publisher, the set of events, and a set of
processes that are executed at subscribers on consuming these events. HTS supports
compensatable transactions; a transaction service creates a transaction context,
delivers events together with the context, and provides atomicity through 2-PC. If
the transaction aborts, HTS ensures that the operations performed by subscribers in
reaction to receiving an event are compensated.
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A system build on top of HTS is TOPS [89]. An interesting feature added in TOPS
is the support for distributed transactions, i.e., a type of transaction that allows
multiple clients to publish as part of the same transaction.

Although, both works share similarities with our approach, neither HTS nor TOPS
support subscriptions or modifications to the routing state as part of the transaction.
Also isolation of transactions is not considered.

An approach to transactional client mobility in content-based pub/sub is presented
in [35]. A transaction encompasses the migration of a client from one broker to
another to enable dynamic system adaptation. The protocol is based on 3-phase-
commit and compensation but fundamentally differs from our approach. The focus
lies on transferring the client state and adapting the routing state according to the
new edge broker. No general-purpose transaction model is defined and supported.
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Chapter 3

Background

In this chapter, we present background information relevant to understand the
approaches presented in this work. In the first section, we cover the Guard-Stage-
Milestone (GSM) meta-model for declaratively specifying the lifecycle of business
artifacts. GSM forms an abstraction of flexible business processes and provides the
basis for our fragmentation and distribution approaches presented in Chapters 4
and 5, respectively. In the second section, we briefly cover concepts and techniques
related to distributed transaction processing. These approaches originate from
the database community and form the basis of our multi-client publish/subscribe
transaction approach presented in Chapter 6.

3.1 The Guard-Stage-Milestone meta-model

Business artifacts are key-conceptual entities that combine both process and data
perspectives to describe how business processes navigate through a set of business
activities [14, 20, 69]. The Guard-Stage-Milestone (GSM) [37, 38, 23] meta-model
provides a declarative basis to specify the lifecycle of a business artifact. In this
section, we summarize the key modeling constructs and the associated execution
semantics of GSM, which have also been published in in [23].
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3.1.1 Key constructs in GSM

The key constructs in GSM are the Information model, Guards, Stages, andMilestones.
In addition to these, we also recite relevant related concepts and put them into
context. The following descriptions are adopted from [23].

Artifact instance — An artifact instance represents a single conceptual business-
relevant entity of a particular type progressing through a variety of business operations
or activities (e.g., a design-to-order application or the treatment of a patient).
Instances can be long-lasting and might exist for months or even years.

Information model — The information model represents all business relevant
information about an artifact instance including data attributes and status attributes.
The data attributes represent application-level data about the actual business, e.g.,
customer or patient information, legal documents, etc. The status attributes represent
information about the internal state of the artifact, i.e., its progress in the lifecycle,
which is indicated by the current status of milestones and stages.

Task — A task refers to a business-relevant piece of work, i.e., an activity, that is
supposed to be performed by an outside agent (e.g., a web-service, a human worker,
or an actuator device). On the one side, the artifact instance invokes tasks and
provides input data from its information model. On the other side, it incorporates
data updates into the information model whenever the artifact instance notices the
termination of a task.

Environment — The environment represents the ecosystem, in which the artifact
instance exists and hosts the task executions of the artifact.

Event — There are three different categories of events is GSM:

1. Outgoing events represent event messages that are sent from the artifact to
its environment. For instance, a task-invocation event is supposed to invoke a
particular task, possibly, together with current values of data attributes from
the information model (also referred to as 2-way service call).
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2. Incoming events represent event messages that are sent from the environment
to the artifact. Request events, for instance, are sent pro-actively, e.g., a user
request to create a new artifact instance (also referred to as 1-way service
call). Task-termination events, in contrast, are sent whenever a previously
invoked task has completed its execution and, possibly, contains updates to
data attributes from the information model.

3. Internal events or status events refer to status changes within the artifact, such
as a milestone or stage changing its state from false to true, or vice versa.

Sentry — A sentry is an expression in a condition language that can refer to
incoming events, internal events, and data or status attributes. Sentries provide the
core of the ECA-like rules that drive the artifact evolution in GSM. A sentry has
the form on < event > if < condition > then < action >, where either the event
or condition may be omitted.

Milestone — A milestone is a business-relevant objective within the artifact, which
is represented as a named Boolean attribute. A milestone can be either achieved,
i.e., true, or invalidated, i.e., false. The milestone status is also reflected as a
status attribute in the information model. An achieving sentry determines when
the milestone becomes achieved and turns to true. In addition, a milestone can also
have an invalidating sentry, which determines when the milestone turns to false and
becomes invalidated.

Stage — A stage refers to a cluster of business-relevant activity supposed to be
executed during artifact evolution. Stages may form hierarchies for providing a rich
form of modularity, but only atomic stages contain tasks—in particular, exactly
a single task. Every stage is represented as a named Boolean attribute in the
information model. It can be either opened or active, i.e. true, which corresponds
to when the stage is currently executing, or closed or inactive, i.e., false, which
corresponds to when the stage is currently not executing. In addition, every stage
owns one or more milestones and, intuitively, the purpose of a stage is to achieve
one of its milestones. A single stage can only have a single executing occurrence
at a time but different stages can execute concurrently, which enables parallel task
executions.
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Guard — A guard is associated with a stage and controls when to open the stage
and start its execution. It is specified as a sentry and remains unnamed in contrast
to milestones and stages.

Lifecycle model — The lifecycle model is a component representing all stages and
milestones of an artifact. It contains the hierarchy among stages, the associations of
stages with guards and milestones, the relationship of tasks to atomic stages, and
the specifications of sentries.

3.1.2 GSM operational semantics

To understand the operational semantics of GSM, also referred to as execution
semantics, we briefly cover a set of relevant related concepts first. The following
descriptions are adopted from [23].

The GSM operational semantics assumes that only a single incoming event is processed
at a time. If more events occur simultaneously a global event queue in the GSM system
is assumed to manage incoming events. Furthermore, during execution, the GSM
meta-model maintains two invariants corresponding to an intuitive understanding of
the interactions among stages and milestones:

GSM-1 For a stage S that owns some milestone m, it is not allowed that both S is
active and m is achieved. More precisely, if S becomes active m must change
its status to false, and if m changes its status to true then S must become
inactive.

GSM-2 For a stage S that becomes inactive, all of its substages S’ also become
inactive.

During execution, at a given time, a complete description of an artifact instance,
including the values of all data and status attributes from its information model, is
captured as a snapshot of the GSM system, also denoted Σ. The execution of an
artifact instance during its lifetime can be considered as a sequence of such snapshots,
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Basis Prerequisite Antecedent Consequent

PAC-1 Guard: for each stage S, for each guard ϕ of S.
(Include term activeS′ if S′ is parent of S.)

¬S ϕ ∧ S′ ⊕S

PAC-2 Milestone achiever: For each milestone m of
stage S with achieving sentry ϕ.

S ϕ ⊕m

PAC-3 Milestone invalidator: For each milestone m of
stage S with invalidating sentry ϕ.

m ϕ 	m

PAC-4 Guard invalidating milestone: For each guard ϕ
of a stage S, for each milestonem not occuring
in a toplevel conjunct ¬m. (Include term S′ if
S′ is parent of S.)

m ϕ ∧ S′ 	m

PAC-5 For each milestone m of a stage S. S ⊕m 	S

PAC-6 For each stage S child of S′. S 	S′ 	S

Table 3.1.1: Templates for PAC rules associated with a GSM model (adopted from [23]).

each produced on receiving an incoming external event from its environment and
incorporating its impact.

Internally, the reaction of the GSM system on some incoming external event is
summarized as a Business Step, or B-step for short, which corresponds to the smallest,
atomic, business-relevant change within the artifact. Intuitively, a B-step captures
the firing of all sentries applicable to the current snapshot after receiving an external
event.

With respect to the actual execution of a GSM model, we focus on the incremental
formulation of the GSM operational semantics: a variation of incremental firing of
Event-Condition-Action (ECA) rules, known as Prerequisite-Antecedent-Consequent
(PAC) rules in GSM. Essentially, PAC rules capture the behavior of sentries and
differ from traditional ECA rules in a way that they also incorporate a temporal
component, i.e., the prerequisite, which allows for the specification of conditions on
a prior system snapshot. The GSM meta-model differentiates six distinct types of
PAC rules that are also described in Table 3.1.1: PAC-1 for achieving guards; PAC-2
for achieving milestones; PAC-3 for invalidating a milestone once its stage is opened;
PAC-4 for invalidating a milestone once its invalidating sentry is achieved; PAC-5
for closing a stage when one of its milestones is achieved; and PAC-6 for closing a
substage when its parent stage is closed. The set of PAC rules can be derived in
polynomial time from a GSM model.
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The order of PAC rule firings within a B-step is defined by the generalized notion of
the Polarized Dependency Graph (PDG). The PDG imposes a topological sort order
on PAC rule firing, essentially a PAC rule stratification, in which no cyclic relation
among PAC rules is allowed, which requires the PDG graph to be acyclic. The
PDG imposed order on rule firing guarantees the uniqueness and the termination
properties in the context of defining the smallest logical unit of work, i.e., a B-step,
as the well-formedness of a finite set of PAC rules within the B-step.

The polarized dependency graph for a GSM model Γ = (I,R), denoted PDG(Γ),
where R is the set of PAC-rules and I is the information model of Γ, is constructed
as follows: For each status attribute s in I, there are two nodes 〈+, s〉 and 〈−, s〉. For
each stage S and each of its guards ϕ, there is a node 〈+, S.ϕ〉. For the description
of the edges of PDG(Γ), the antecedent α of a PAC rule is written as τ ∧ γ, where τ
is either empty, or has the form latestIncEvent = E for some external event type E,
or has the form �s, i.e., status event, for some status attribute s, where � ∈ {⊕,	},
referring to a positive or negative toggling of s, and γ contains no external event
types or status events.

1. For each PAC-1 rule 〈¬s, τ ∧ γ,⊕s〉 ∈ R:

• If �̂a is a toggling status attribute occurring in τ , include a directed edge
(�̂a,+S.ϕ).

• If status attribute a occurs in γ, include two directed edges (+a,+S.ϕ)
and (−a,+S.ϕ).

2. For each guard ϕ of stage S represented by status attribute s:

• Add edge (+S.ϕ,+s).

• For each milestone m owned by S that does not occur in a top-level
conjunct of form ¬m in γ, add the edge (+S.ϕ,−m).

3. For each PAC rule 〈π, τ ∧ γ,�s〉 from templates PAC-2 or PAC-3 ∈ R:

• If �̂a is a toggling status attribute occurring in τ , include a directed edge
(�̂a,�s).
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• If status attribute a occurs in γ, include two edges (+a,�s) and (−a,�s).

4. For each PAC-5 rule 〈s,⊕m,	s〉 ∈ R, where s represents a stage S, add edge
(+m,−s).

5. For each PAC-6 rule 〈s,	s′,	s〉 ∈ R, where s′ represents a stage S ′ being a
child of stage S, add edge (−s′,−s).

The incremental formulation of GSM, in turn, the execution of PAC rules in the
prescribed order of the PDG, is driven and initiated upon receiving an external
event from the environment. The set of all applicable PAC rules is then executed in
response to receiving the external event and the firing of these PAC rules is sequenced
to form a B-step. The semantics of a B-step with respect to the overall GSM system
snapshot is summarized using a 5-tuple (cf. Figure 3.1.1).

〈Σ, e, t,Σ′, Gen〉

Here, Σ is the current system snapshot of the GSM instance prior to consuming the
external event e at logical time t, Σ′ is the new snapshot of the system after firing
all relevant PAC rules that are triggered directly or indirectly by the external event
e, and Gen is a set of generated immutable events as a result of 1-way and 2-way
service calls that may be encapsulated in a task.

Figure 3.1.1: Illustration of GSM B-step (adopted from [23])
.
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3.2 Distributed transactions

Transactions have mostly been studied in the area of database systems. A database
transaction is defined as a sequence of atomic operations on data objects forming an
atomic unit of work. Operations are typically issued by a single client together with
a distinct begin and end operation and executed on one or multiple severs, while
providing atomicity, consistency, isolation, and durability—also referred to as the
ACID properties [100].

• atomicity—a transaction executes completely or not at all, i.e., either all
operations are applied or none of them.

• consistency—a transaction transfers the system from a correct state into
another correct state. A correct system state is defined by a consistency model,
which is enforced by scheduling all operation according to a specific order and
maintaining database invariants.

• isolation—concurrent transactions do not influence each other. An isolation
level defines, when changes applied by a transaction become visible to other
transactions.

• durability—committed operations, as part of a transactions, survive node or
network failures.

Within a database management system, the ACID properties are maintained by a
transaction manager containing at least: (1) a recovery mechanism to guarantee
atomicity, (2) a scheduler to guarantee consistency, and (3) a concurrency control
mechanism to guarantee isolation. [100]

3.2.1 Consistency models and consistent replication

As part of the “C” in the ACID properties, which requires a transaction to transition
from on correct system state into a new correct system state, consistent replication
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is a challenge particular arising in distributed databases. Here, a consistency model
defines a contract between a distributed data store and a set of processes to specify the
result of read and write operations in the presence of concurrency. [100] According to
these guarantees, consistency models can be classified and compared. A consistency
model CS is stronger than a consistency model CW , if CS provides all guarantees of
CW and more.

Strict consistency is the strongest model and requires that any write by any process is
instantaneously visible to all other processes. In practice, strict consistency cannot be
achieved efficiently. A slightly weaker model is sequential consistency, which requires
that writes to variables by different processes have to be seen in the same sequential,
(total-) order by all processes. Causal consistency is relaxing this requirement to
causally related operations that must be seen in the same order.

Recently, a new consistency model called Causal+ consistency, residing between
sequential and causal consistency, has been identified to describe the replication
behavior in key-value stores [59]. Causal+ consistency is defined as causal consistency
with convergent conflict handling. Causal consistency builds upon the concept of
potential causality, which is denoted with ; and defined by three rules:

1. Thread—if a and b are two operations on a single thread of execution, then
a; b if a happened before b.

2. Reads from—if a is a write operation and b is the operation reading the value
written by a, then a; b.

3. Transitivity—for operations a, b, and c, if a; b and b; c, then a; c.

Causal consistency does not order concurrent operations: two unrelated operations
a and b can be executed (replicated) in any order. However, if two unrelated
operations a and b write to the same variable, they are in conflict. Conflicts might
lead to diverging replicas or unexpected system behavior. Therefore, in causal+
consistency, convergent conflict handling defines that conflicting writes are handled
in the same way by different replicas. This is achieved by leveraging a commutative
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and associative handler function (h), which ensures that applying conflicting writes
in different orders eventually results in the same state. Typically, a conflict-free
replicated data type (CRDT) is used to implement this behavior. A CRDT can be
mutated instantaneous and concurrently and any potential divergence is guaranteed
to be eventually eliminated [5].

Eventual consistency is the weakest consistency model and only guarantees that
all replicas eventually reach the same state if clients stop submitting updates. As
concurrent updates propagate asynchronously through the system this might result
in conflicts due to violated constraints. CRDTs have also been applied to implement
eventual consistency without requiring roll-backs. Diverging states at replicas are
avoided by leveraging suitable handler functions h, for instance, add() or remove(),
to ensure that the application of conflicting writes in different orders eventually
results in the same state.

In our D-TX approach for supporting transactions in distributed publish/subscribe
systems, we provide sequential consistency by imposing a total order on pub/sub
operations. In our S-TX approach, to the contrary, we leverage the CRDT nature
of routing tables in distributed publish/subscribe systems to achieve sequential
consistency.

3.2.2 Isolation levels

Isolation levels are classified according to their capability in avoiding unwanted
concurrency effects that occur when reading data objects, e.g., dirty reads, phantom
reads, or non-repeatable reads. In general, lower isolation levels increase the chances
for these concurrency effects [100].

Serializability is the highest isolation level and avoids concurrency effects completely.
The result of concurrently executing two transactions is the same as if both transac-
tions are executed one after the other. Serializability is either achieved by read/write
locks on objects, potentially delaying other transactions (pessimistic), e.g., 2-phase
locking (2PL), or by detecting conflicts at commit time and potentially aborting
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transactions very late (optimistic), e.g., snapshot isolation.

Repeatable Reads is a little weaker than serializability and allows phantom reads.
Repeated read operations on selected objects always return the same result because
read and write locks are maintained for the complete duration of the transaction.
However, since range-locks are not maintained phantom-reads are possible for
repeated range queries.

Read committed, in contrast to repeatable reads, only maintains write locks on selected
objects for the complete duration of the transaction. Read locks are released once
the read operation has been executed, which might also lead to the non-repeatable
reads phenomenon in addition to phantom reads.

Read uncommitted, to the contrary, is a very low isolation level that reveals all three
read phenomena. It allows a transaction to read data objects that are written but
not yet committed by another transaction.

3.2.3 Distributed atomic commitment

A distributed transaction involves the access to transactional resources on multiple
hosts in a networked environment, e.g., a database that is partitioned or replicated
across several servers. Here, the transaction manager synchronizes the enforcement
of the ACID properties among all participating database servers.

The core challenges in distributed transactions originate from the atomicity and
isolation properties. Both require distributed agreement: atomicity, in order to
decide whether to commit or abort the transaction; and isolation, to either agree on
the conflict/commit order, or to propagate locks on data objects. A well-established
solution to solve this problem is the 2-phase commit protocol (2-PC) [100] combined
with commitment ordering [78] to impose an order on transactions. Our D-TX
approach adopts these concepts to distributed publish/subscribe systems for managing
multi-client transactions.
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2-phase commit (2-PC) is a distributed atomic commitment protocol, which is
initiated by a dedicated transaction coordinator (TXC) among a set of database
servers to find agreement [13]: In a voting phase, the TXC sends a commit-prepare
message to all servers. Each server executes the operations up to a point where it
can commit the transaction by adding entries to both undo and redo logs. Then it
replies with either vote-commit, if all operations succeeded, or vote-abort, if an
error or conflict occurred. Once the TXC received commit votes from all servers, it
starts with the commit phase by sending a commit message that causes all servers
to complete their operations, release resources, and acknowledge the completion.
On receiving acknowledgments from all servers the TCX completes the transaction
itself. However, if the TXC received at least a single abort vote in the voting phase,
it sends a rollback message that causes all servers to undo the operations using
their undo log and acknowledge the rollback. Again, once the TXC received all
acknowledgments it completes the transaction.

Commitment ordering (CO) refers to a property of histories (i.e., schedules
of committed transaction) that guarantees serializability, and describes a class of
techniques to achieve global serializability across a set of distributed data bases [78].
It allows the implementation of an optimistic concurrency control mechanism by
generating a commitment schedule that is compatible with a precedence order
imposed on (concurrent) transactions. More formally, a CO scheduler guarantees
that for any two conflicting transactions T1, T2, if T1 precedes T2, than T1 commits
before T2.
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Chapter 4

Publish/Subscribe Mapping of
Data-centric Workflows

In this chapter, we present our formal fragmentation approach for data-centric
workflows, represented in GSM, to establish the foundation for workflow distribution
according to geographical and/or legal constraints and enable their parallel execution.
The approach is based on mapping key GSM constructs like PAC rules, the infor-
mation model, and the B-step semantics into a set of publications and subscriptions.
We start by providing a formal model of data-centric workflows specified in GSM
in Section 4.1. Then we present a suitable formalization of the publish/subscribe
abstraction by reformulating publications and subscriptions together with their
matching, consumption, and notification policies in Section 4.2. In Section 4.3, we
provide an overview of our mapping functions and in Section 4.4 we particularly focus
on the definition of the necessary set of subscriptions. Next, in Section 4.5, we proof
the equivalence of our pub/sub formulation with the original GSM execution semantics
and quantify its execution overhead in terms of generated messages. Finally, we
analyze the complexity of optimal workflow distribution by formalizing the problem
as the colored multiway cut problem in Section 4.6. We show the intractability of the
problem by reduction from the multiway cut problem and provide a greedy algorithm
with a constant factor approximation.
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4.1 Formal data-centric workflow model

We begin by describing a formal representation of the GSM meta-model. Then we
provide a concrete example of a workflow represented in GSM, which will serve as a
running example throughout the remainder of this chapter.

4.1.1 Overview of GSM meta-model

A GSM model describing a workflow is defined as a set of artifact types with lifecycle,
denoted by A, where each artifact A is defined by a six-tuple:

A = 〈x, Att, Typ, Stg, Mst, Lcyc〉. (4.1.1)

As indicated in Chapter 3, a GSM model can succinctly be described as the grouping
of business processes into an artifact type A that corresponds to an actual business
entity within an organization. Each artifact is comprised of a set of goal-oriented work
items with lifecycles, in which a work item is modeled as stages (Stg) and goals are
referred to as milestones (Mst). In addition, each artifact may have many instances
(x), i.e., workflow instances or enactments over a globally shared information model
in order to store relevant data, i.e., a set of data and status attributes (Att) and
their associated data types (Typ). Moreover, the lifecycle model, i.e., the blueprint
for the artifact’s evolution through its various stages, is given by:

Lcyc = 〈Substage, Tasks, Owns, Guards, Ach, Inv〉. (4.1.2)

The lifecycle of each stage captures the hierarchy of its substages (Substage), encap-
sulation of a task within each (sub)stage (Tasks), information about stage nesting
(Owns), conditions for enabling (sub)stages (Guards), conditions for determining the
successful completion of (sub)stages (Ach), and conditions for disabling (sub)stages
(Inv). Roughly speaking, the GSM meta-model defines a workflow through the lens
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of a stage, guards for entering a stage, and milestones for leaving a stage.

A key primitive GSM construct, in addition to guard, stage, and milestone, is sentry,
which is the building block of guards and milestones. A sentry is a Boolean formula of
type χ(x) that consists of two parts: the (triggering) event ξ(x), which is a Boolean
formula to test the type of an incoming external event, and a condition ϕ(x), which
is a Boolean formula defined over a subset of status attributes. A sentry may have
three different forms:

(i) on ξ(x) if ϕ(x)

(ii) on ξ(x)

(iii) if ϕ(x)

The operational semantics of GSM are centered around the incremental firing of a
set of Prerequiste-Antecedent-Consequent (PAC) rules, which encode the behavior
of sentries. The order of PAC rule firings is dictated by the order prescribed by the
Polarized Dependency Graph (PDG). For more details on PAC rules, their generation
based on sentries, and the PDG please refer to Chapter 3. The execution of all
applicable PAC rules in reaction to receiving an external event from the environment
forms an atomic B-step summarized as a 5-tuple 〈Σ, e, t,Σ′, Gen〉, where Σ is the
current GSM system snapshot prior to consuming the external event e at time t, Σ′

is the new system snapshot after firing all relevant PAC rules that are triggered by
the external event e, and Gen is a set of generated immutable events as a result of
service calls encapsulated in tasks.

Definition 1. An immutable event is a static instantiation of an event schema such
that all its attribute values are predefined and not changed at runtime.

Thus, the B-step is formalized with respect to the sequence of PAC rule firings such
that Σ = Σ0,Σ1,Σ2, · · · ,Σn = Σ′ (where Σ0 6= Σ1). Thus, after applying the ith

PAC rule, according to the order imposed by the PDG, the state advances from Σi

to Σi+1, which is also referred to as a micro-B-step in GSM.
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The key properties surrounding B-steps are that a B-step 〈Σ, e, t,Σ′, Gen〉 always
terminates and ends in a unique state Σ′, where Σ 6= Σ′. We refer to these as
uniqueness properties of B-steps [23]. They are achieved in part by restricting that
each Att in the GSM model changes at most once as a result of PAC rules firing within
the context of a single B-step (i.e., toggle-once property), which implies that a change
cannot be undone, and in part by executing all relevant PAC rules whose consequents
are reachable in the PDG and in an order imposed by the PDG; namely, visiting
every reachable node in the PDG using a strata-based, breadth-first graph traversal.
PAC rules are applicable once their prerequisite and antecedent are satisfied; only
then the consequent is applied and the current state of a GSM instance changes.

The GSM execution model assumes a global, external event queue, and the current
GSM operational semantics is serialized w.r.t. the external event queue. In this
work, we also rely on a global event queue to orchestrate concurrent B-step executions
such that the event queue behaves as a pseudo-global clock. However, we interleave
and pipeline the processing of multiple B-steps over a loosely coupled, distributed
pub/sub infrastructure, in which each B-step is associated with a different external
event. We achieve this distributed and parallel execution while guaranteeing an
identical behavior as if B-steps were processed centrally and in the sequential order
of the global event queue.

For enhanced comprehensibility, we focus on the core aspects of GSM workflows (i.e.,
the data and the lifecycle) to describe our mapping. Therefore, we formalize a GSM
workflow model, Γ, as follows:

Γ = 〈I,R〉, (4.1.3)

where I is the workflow information model that consists of a set of ordered 〈attr, data-
type〉-pairs and distinguishes between data attributes (Id), i.e., application data,
and status attributes (Is) describing the state of the workflow within its lifecycle.
The number of status attributes is finite and bounded by the model. R is a set of
acyclic PAC rules representing the lifecycle. The operational semantics of Γ follows
the general notion of incremental operational semantics [23].
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Figure 4.1.1: ”Design-to-order” business process modeled in GSM (adopted from [23]).

4.1.2 Example of data-centric workflow in GSM

The example depicted in Figure 4.1.1 represents a data-centric GSM model for a
product design process on behalf of an external customer. It is structured into
various stages (i.e., rounded rectangles) describing the individual task definitions.
Guards are denoted by diamonds and milestones by circles.

Upon a customer order, i.e., an external request event of type R:NewOrder, a new
workflow is instantiated and the corresponding product requirements are approved.
Once the requirements have been approved (i.e., an external task termination event of
type T:RequirementsApproval, which indicates that the clerk in charge of finished
the task, has been received), the actual engineering stage is opened. In case the
customer decides to change the requirements afterwards (i.e., R:CustomerChange),
the design stage is suspended and the requirements are approved again. The legal
reviewing of the order is encapsulated in a separate stage comprising two sub-
stages. While country restrictions can be evaluated in parallel with the approval of
requirements, the preparation of the export documents requires a completed design.
Furthermore, preparation is suspended and country restrictions are re-evaluated if
requirements change. The whole process is accomplished once the export documents
are prepared.
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The above behavior is implicitly described by the sentries associated with guards
(cf. Table 4.1.1) and milestones (cf. Table 4.1.2) of the GSM model. The triggering
events in the sentry definitions can be either external or internal events. Conceptually,
external events are further divided into request-events invoking a task (indicated with
a “R” in the example) and task-termination-events starting with a “T”. Internal events
represent status attribute updates in the information model, whereby ⊕ indicates
that an attribute toggled to true and 	 indicates that it toggled to false.

Guard Sentry

g1 latestIncEvent = “R:NewOrder”
g2 latestIncEvent = “R:CustomerChange”
g3 RA:ap ∧ ECR:ev ∧ ¬ ED:cp
g4 latestIncEvent = “R:ResumeDesign”
g5 latestIncEvent = “R:NewOrder”
g6 latestIncEvent = “R:RedoExportDocs”
g7 ¬ ECR:ev
g8 ⊕ ED:cp
g9 latestIncEvent = “R:RedoExportDocs”

Table 4.1.1: Sentries associated with guards.

Milestone Type Sentry

RA:ap Ach latestIncEvent = “T:RequirementsApproval”
ED:cp Ach latestIncEvent = “T:EngineeringDesign”

Inv 	 RA:ap
ED:sp Ach 	 RA:ap
ECR:ev Ach latestIncEvent = “T:EvalCountryRestrictions”
PE:pp Ach latestIncEvent = “T:PreparingExportDocs”

Inv 	 ED:cp
PE:sp Ach 	 ED:cp
LR:cp Ach ⊕ PE:pp

Inv 	 PE:pp

Table 4.1.2: Sentries associated with milestones.

For example, guard g1 is achieved if the latest incoming external event was of
type R:NewOrder, which corresponds to a new customer request. Similar, milestone
ExportDocsPrepared is invalidated if an internal status-update event notified the
invalidation of milestone DesignCompleted (	ED : cp, for short).

The PAC rules for this workflow are derived from the GSM model according to the
six rule templates described in Table 3.1.1. Altogether, this comprises a set of 41
rules that are depicted in Table 4.1.3. An excerpt of three PAC rules, which will be
relevant for a subsequent running example of the mapping is depicted in Table 4.1.4.
The order of PAC rule firing for the GSM operational semantics is described by the
PDG depicted in Figure 4.1.2. It has been established according to the construction
algorithm described in Section 3.1.2.
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No Prere-
quisite

Antecedent Conse-
quent

PAC-1 rules
1 ¬ RA latestIncEvent = “R:NewOrder” ⊕ RA
2 ¬ RA latestIncEvent = “R:CustomerChange” ⊕ RA
3 ¬ ED RA:ap ∧ ECR:ev ∧ ¬ ED:cp ⊕ ED
4 ¬ ED latestIncEvent = “R:ResumeEngineeringDesign” ⊕ ED
5 ¬ LR latestIncEvent = “R:NewOrder” ⊕ LR
6 ¬ LR latestIncEvent = “R:RedoExportDocs” ⊕ LR
7 ¬ ECR ¬ ECR:ev ∧ LR ⊕ ECR
8 ¬ PE ⊕ ED:cp ∧ LR ⊕ PE
9 ¬ PE latestIncEvent = “R:RedoExportDocs” ∧ LR ⊕ PE

PAC-2 rules
10 RA latestIncEvent = “T:RequirementsApproval” ⊕ RA:ap
11 ED latestIncEvent = “T:EngineeringDesign” ⊕ ED:cp
12 ED 	 RA:ap ⊕ ED:sp
13 ECR latestIncEvent = “T:EvalCountryRestrictions” ⊕ ECR:ev
14 PE latestIncEvent = “T:PreparingExportDocs” ⊕ PE:pp
15 PE 	 ED:cp ⊕ PE:sp
16 LR ⊕ PE:pp ⊕ LR:cp

PAC-3 rules
17 ED:cp 	 RA:ap 	 ED:cp
18 PE:pp 	 ED:cp 	 PE:pp
19 LR:cp 	 PE:pp 	 LR:cp

PAC-4 rules
20 RA:ap latestIncEvent = “R:NewOrder” 	 RA:ap
21 RA:ap latestIncEvent = “R:CustomerChange” 	 RA:ap
22 ED:cp RA:ap ∧ ECR:ev ∧ ¬ ED:cp 	 ED:cp
23 ED:sp RA:ap ∧ ECR:ev ∧ ¬ ED:cp 	 ED:sp
24 ED:cp latestIncEvent = “R:ResumeEngineeringDesign” 	 ED:cp
25 ED:sp latestIncEvent = “R:ResumeEngineeringDesign” 	 ED:sp
26 LR:cp latestIncEvent = “R:NewOrder” 	 LR:cp
27 LR:cp latestIncEvent = “R:RedoExportDocs” 	 LR:cp
28 ECR:ev ¬ ECR:ev ∧ LR 	 ECR:ev
29 PE:pp ⊕ ED:cp ∧ LR 	 PE:pp
30 PE:sp ⊕ ED:cp ∧ LR 	 PE:sp
31 PE:pp latestIncEvent = “R:RedoExportDocs” ∧ LR 	 PE:pp
32 PE:sp latestIncEvent = “R:RedoExportDocs” ∧ LR 	 PE:sp

PAC-5 rules
33 RA ⊕RA:ap 	 RA
34 ED ⊕ED:cp 	 ED
35 ED ⊕ED:sp 	 ED
36 LR ⊕LR:cp 	 LR
37 ECR ⊕ECR:ev 	 ECR
38 PE ⊕PE:pp 	 PE
39 PE ⊕PE:sp 	 PE

PAC-6 rules
40 ECR 	 LR 	 ECR
41 PE 	 LR 	 PE

Table 4.1.3: Complete set of PAC rules for the “Design-to-order” workflow.

No Prere-
quisite

Antecedent Conse-
quent

1 PE:pp 	 ED:cp 	 PE:pp
2 PE:pp ⊕ ED:cp ∧ LR 	 PE:pp
3 PE:pp latestIncEvent = “R:RedoExportDocs” ∧ LR 	 PE:pp

Table 4.1.4: Excerpt of PAC rules for “Design-to-order” workflow.
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Figure 4.1.2: Polarized dependency graph (PDG) for “Design-to-order” workflow.

In the rest of this chapter, we exploit this example to illustrate our GSM-to-pub/sub
mapping. In particular, we show the construction of two distinct subscriptions
capturing the semantics of (1) the invalidation of milestone PE:pp (based on the rules
depicted in Table 4.1.4) and (2) maintaining a consistent view on status attribute
ExportDocsPrepared (i.e., PE:pp).

4.2 Publish/Subscribe schema

In this section, we present the necessary formalization of the pub/sub abstraction for
subsequently being able to prove the correctness of our mapping from data-centric
workflows to pub/sub. At the core of the pub/sub abstraction lies a set of publications
(P) and subscriptions (S). Each publication, P ∈ P, is defined as follows:

P = 〈E〉, (4.2.1)

where E defines the publication’s event schema that consists of a set of ordered
〈attr, datatype〉-pairs. Events are instances of this schema and defined as sets of
ordered 〈attr, value〉-pairs, where value is an instance of the datatype specified in
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E . Over time, a publisher continuously produces events that conform to its event
schema. Each subscription, S ∈ S, is defined as follows:

S = 〈D,Φ(ρk), δ(ρk), N(ρk),Ψ(ρk)〉 (4.2.2)

where ρk = 〈e, t, x〉, with event type e, logical event time t, and subscription instance
x (x is a context variable essentially identifying a concrete workflow instance).

D is the data model. It describes the internal state of a subscription and its
unique key is formed by the triplet ρk.

D = 〈e, t, x, onE1, · · ·, onEm, d1, · · ·, dn, s1, · · ·, sp, visited〉 (4.2.3)

For every toggling status attribute appearing in antecedents of PAC rules there
is a column onEi in D. Moreover, there is a column for every data attribute di

(i.e., application data) and every status attribute sj (i.e., internal workflow state)
appearing in logical expressions of PAC rules. The tuple with key ρk maintains
these values as the result of receiving events associated with ρk. The final column
visited indicates whether or not all the values in this tuple have stabilized, i.e.,
do no longer change as a result of external event ρk. Setting visited to true in
the tuple with key ρk implies that this tuple is now a read-only tuple and any
notification (event generation) associated with S for event ρk has been completed.
A read-only tuple is retained for maintaining an execution history and for enabling
parallel and distributed processing of PAC rules. We define the domain range
for status attributes as DOMstatus = {true, false,∅}, i.e., the Boolean constants
together with a special symbol ∅. The domain for status changes is defined as
DOMtoggling = {〈Boolean× Boolean〉,∅}, i.e., all possible transitions for the status
attribute together with ∅. Similarly, the domain range for data attributes is defined
as DOMdata = {String ∪ Number ∪ ∅}, i.e., any string or number together with ∅.
The special symbol ∅ indicates that the current value is unstable, i.e., the attribute
has not been updated in the context of the external event ρk, while all other domain
values are considered as stable.
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Φ(ρk) is the subscription’s matching condition. It is a disjunction over φi(ρk) ∈
Φ(ρk), where each φi(ρk) is a condition, that is, a logical formula representing the
antecedent of a PAC rule, that is instantiated and correlated with each external
event ρk. This condition is expressed over the condition language L that is a subset
of First-Order Logic (FOL) supporting: scalar values, binary relations (i.e., logical
operators (∨,∧,→), relational operators (i.e., <,≤,=, 6=,≥, >, the unary relation ¬,
and quantification over subscription instances ρk, i.e., ∀ and ∃). The quantification
domain for ρ is totally ordered by time t and instance x. Furthermore, we define the
following functions.

1. τk(attr, ρk), or simply, τ(attr), which returns the current value of the attribute
attr w.r.t. ρk in D.

2. τk−1(attr, ρk) which returns the last value of the attribute attr w.r.t. ρk for
k > 2 in D; otherwise it returns False for Boolean attributes, and a default or
a null value (⊥) for non-Boolean attributes.

Finally, we resort to three-valued logic, with three possible values (i.e., true, false,
unknown), where unknown is the interpretation of the unstable value (∅). We do
not consider the null value (⊥) as unstable and we do not permit the null value for
Boolean variables. We define the evaluation of any logical binary or unary operator
involving Unknown as Unknown, whereas we rely on traditional two-valued logic when
no unknown value is present. Also, when dealing with different system snapshots Σ,
to differentiate an attribute value among different snapshots, when it is not clear
from the context, we extend the definition τ to include Σ as input parameter as
follows: τk(Σ, attr, ρk) or τ(Σ, attr).

δ is the subscription’s consumption policy that describes how the internal
state of a subscription changes after consuming an event. The consumption policy is
explicitly defined in Section 4.4.

N(ρk) is the subscription’s notification policy that is also a disjunction over
νi(ρk) ∈ N(ρk) and instantiated and correlated with each external event ρk. The
notification consists of the notification schema that describes the content of the
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event(s) (its payload) and a set of conditions νi(ρk) that dictate how the content of
the event is generated.

Ψ(ρk) defines the relationship between a subscription’s matching condition Φ
and a subscription’s notification policy N and is represented as a set of ordered pairs
〈φ ∈ Φ, ν ∈ N〉, where each φi is associated with the corresponding νi, meaning,
when the matching condition φi is satisfied, then the notification condition νi is
evaluated:

Ψs(ρk) =
⋃
φi∈Φ
〈φi(ρk), νi(ρk)〉 (4.2.4)

An instance of the subscription S consists of an internal state ΣSj over the data
model D. The internal state of a subscription can only be changed upon receiving
(consuming) an external event or generating an event (notification). In general, the
internal state together with an event shapes the subscription operational semantics
OS (a.k.a., the matching semantics), which is summarized as a 6-tuple:

OS = 〈ΣSj , e, t, x,ΣSj+1, Gen〉 (4.2.5)

1. ΣSj is the current internal state of the subscription S.

2. e is an occurrence of an external immutable event.

3. t is the logical time, which is greater than all logical timestamps occurring in
ΣSj .

4. x is a variable that ranges over the IDs of instances of S. This is referred to as
the context variable of S.

5. ΣSj+1 is the internal state after consuming event e.

6. Gen is the set of generated immutable event occurrences (generated by the
notification policy) as reaction to the external event ρk.

Consequently, the operational semantics for a subscription OS is formally defined as
follows.
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Definition 2. Given a subscription S with internal state ΣSj and an external event
e at time t for the instance x (denoted by ρ) of ΣSj , the subscription S examines e
and either accepts e and makes a transitions from ΣSj

e,t,x7−−−→ ΣSj+1, or rejects e, if
neither the consumption policy nor the notification policy define a state change for e.

We now formally define the publish/subscribe schema Π as follows:

Π = 〈P,S, E , C〉 (4.2.6)

1. P is a set of publications.

2. S is a set of subscriptions.

3. E is the event schema that captures both publications’ event and subscriptions’
notification schemes.

4. C is the communication state maintaining for each external event its type (e),
the logical time of its occurrence (t), the subscription instance that processed
it (x), and the subscription type S, formalized as

C = 〈e, t, x,S〉. (4.2.7)

Without loss of generality, if there is more than just a single publisher for external
events our formal pub/sub model assumes the following two properties:

i) Each subscription instantaneously examines the external event e according to
the subscription operational semantics.

ii) At any instant in time, only a single subscription is examining e in Π.

These assumptions simplify the correctness proof for our mapping (cf. Section 4.5)
as external events are inspected in the same sequential order by all subscriptions.
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We refer to this as the pseudo-serializable execution property of Γ1.

An instance of the publish/subscribe schema Π is defined as a sequence of global
snapshots of Σ1 · · ·Σk over a discrete time space t, where Σi = {ΣCk ,ΣSj }, ΣCk is
the communication state at time t over Π, and ΣSj is the internal state of each
subscription instance of S. Π’s operational semantics is summarized as follows:

OΠ = 〈Σk, e, t, x,Σk+1〉 (4.2.8)

Here, Σk is the current snapshot of Π. And e is an occurrence of an external
event that is pending, implying that there is at least one instance x of at least one
subscription S that has not yet examined e at logical time t. Σk+1 is the new global
snapshot of Π. Formally, the operational semantics of the pub/sub model OΠ is
defined as follows:

Definition 3. Given a pending event ρk = (e, t, x) and a subscription S that has yet
to examine ρk and having the current state ΣSj , then the global snapshot advances
instantaneously from Σk

e,t,x7−−−→ Σk+1, namely:

1. The communication state transitions from ΣCk
e,t,x7−−−→ ΣCk+1, i.e., event e was

sent to S for instance x.

2. The subscription S examines the external event e in accordance to OS ; hence,
S either accepts e and transitions from ΣSj

e,t,x7−−−→ ΣSj+1, or rejects e.

We define a valid execution sequence over Π as one that corresponds to a pseudo-
serializable execution such that at any instant in time, Π transitions only once
from state ΣCk

e,t,x7−−−→ ΣCk+1, and only a single instance of subscription S receives an
event e and transitions from ΣSj

e,t,x7−−−→ ΣSj+1 (if necessary). Notably, at any instant
in time, many subscriptions (or many instances of a single subscription) may be
waiting to receive the event e; however, the pseudo-serializable execution property

1The practical implication of these assumptions is that with multiple external event publishers,
all external events must be serialized. This requires a synchronization mechanism between external
event publishers in order to generate a total order over a discrete timespace t. A solution to this
problem in content-based publish/subscribe systems is presented in [105]
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does not impose any restriction on the order in which subscriptions (or instances of
a subscription) must receive the event e. Therefore, any non-deterministic selection
of subscriptions (or instances), that results in an instantaneous examination of event
e at time t by a single subscription instance x, suffices. Most importantly, this
pseudo-serialization requirement can be dropped when there is a single publisher of
external events (cf. assumptions on the formal pub/sub model).

An event is pending only if at least one subscription instance has not examined it yet,
and (in theory) every subscription instance must examine every event exactly once.
Therefore, from the communication state C, it can be inferred, which events have
been processed for which instances of subscription S and which events are pending
for which instances of S.

Finally, in general, with more than one publisher of external events, any valid
implementation of Π must guarantee the pseudo-serializable execution property.

4.3 Workflow mapping overview

Given a data-centric workflow model Γ = 〈I,R〉, we construct a pub/sub schema
Π = 〈P,S, E , C〉 by applying a mapping functionM such thatM : Γ −→ Π. The set
P in our mapping consists of a single publisher which simply publishes the external
events coming from the environment. However, constructing the set of necessary
subscriptions, S, is more subtle and is primarily derived from the set of PAC rules
and the PDG for a given model, Γ. In addition, we require a set of subscriptions for
bookkeeping purposes such as updating data and status attributes and determining
the start and the end of a B-step.

We define subscriptions both for processing relevant PAC rules and maintaining the
current values for status and data attributes. In general, two classes of subscriptions
arise: (1) Application-specific subscriptions which capture the core of the workflow
operational semantics encoding both the PAC rule semantics and the PDG topological
sort order semantics. (2) Generic subscriptions which implement a bookkeeping
mechanism to provide a consistent view of the data with an implicit locking
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mechanism. This mechanism maintains multiple versions of values for all attributes
from the information model and applies updates in a deterministic order dictated by
the order of external events. Hence, there is one version for each ρk, i.e., for each
B-step. These two classes of subscriptions also incorporate the time semantics of the
workflow meta-model, which is based on the external event received from the single
publisher in our publish/subscribe formulation. Therefore, subscriptions are event-
relativized in a sense that each subscription evaluates its conditions, implements its
consumption policy, and sends its notification in the context of each external event
in isolation, which forms a B-step.

In our mapping,M : Γ −→ Π, we require the following set of subscriptions for key
workflow operations: [S⊕s] and [S	s] for satisfying/falsifying or validating/invalidat-
ing status attributes s; [Ss] for updating the status attribute s; [Sd] for updating
the data attribute d; [Ssource] for identifying the start of a B-step; and [Ssink] for
identifying the end of a B-step, where the ⊕ or 	 polarity, denotes a positive or a
negative change in status attributes.

Next, we provide a high-level overview of each subscription. The high-level repre-
sentation and interaction among subscriptions (represented as oval) is also depicted
in Figure 4.3.1. The directed, solid arrows indicate the flow of events among
subscriptions and the (bright-colored) directed, dashed arrows indicate events received
from and sent to the environment, while the (black) dashed lines are bookkeeping
messages for maintaining a consistent view of the attributes. What is not shown in
the figure, for improved readability, is that there must be an arrow from every node
to the node Ssink to determine the end of a B-step.

The precise meaning of the arrows becomes evident in Section 4.4, after formally
defining each subscription.

[S⊕s], [S	s]: For each status attribute s in the information model of Γ, I, we add
the subscription S⊕s, for validating the attribute s and the subscription S	s for
invalidating s. The subscription’s condition Φ is derived based on the PAC rules’
prerequisite and antecedent conditions. Hence, Φ is an application-specific condition.

[Ss]: For each status attribute s in I, we add the subscription Ss that listens to
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Environ-
ment

S⊝si

Ssource SsinkSsi Ssj

S⊕sk

S⊕slS⊕si

S⊝sj
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subscriptions

Application-specific
subscriptions

Ssk Ssl

Figure 4.3.1: High-level illustration of subscription flow.

updates (i.e., notifications of S⊕s and S	s) for s. Hence, Ss’s Φ is a generic condition.

[Sd]: For each data attribute d in I, we add the subscription Sd that listens to
updates on d at the outset of the B-step. Hence, Sd’s Φ is also a generic condition.

[Ssource,Ssink]: For identifying the beginning and ending of a B-step we add the
source subscription Ssource and the sink subscription Ssink, respectively. Both
subscriptions are intended for bookkeeping purposes. Thus, their conditions are also
generic.

4.4 Mapping formalization

The subscription plays a central role in formulating the mapping of a data-centric
workflow model, Γ = 〈I,R〉, into the pub/sub abstraction given by Π = 〈P,S, E , C〉.
We formalize the semantics of a subscription S ∈ S as described in Equation 4.2.2,
where its condition Φ(ρk), consumption policy δ(ρk), and notification policy N(ρk)
are instantiated and associated with an external event ρk, and Ψ(ρk) interrelates
condition and corresponding notification.

4.4.1 Matching and notification policies

In this section, we start by providing a detailed account of the mapping of the
workflow’s application-specific semantics, namely, encoding of PAC rules and the
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PDG topological sort order, into a set of subscriptions. In addition, we provide the
foundation for a mapping that emulates the generic-execution semantics including the
necessary bookkeeping mechanism as a set of subscriptions. We guarantee that the
workflow correctly executes by ensuring data consistency and the B-step semantics.

PAC rules and PDG mapping

We first define the Γ application-specific conditions for subscriptions S ∈ S. Each
logical formula φi(ρk) ∈ Φ is defined as follows:

φi(ρk) =
PDG Predecessors︷ ︸︸ ︷
ψi,PDG(ρk) ∧

Event-based Pseudo Clock︷ ︸︸ ︷
ψi,PseudoClock(ρk)

(4.4.1)

Here, ψi,PDG is the PDG predecessor component, that is, a logical formula that
encodes the PDG topological sort order, i.e., ψi,PDG is a logical formula that evaluates
to true when all variables in D have stabilized (cf. detailed descriptions in the
paragraphs below). ψi,PseudoClock is a logical formula that enforces that subscriptions
are processed based on the order of external events, i.e., it guarantees event-order
serialization. The second component of Ψ, the notification expression, νi(ρk) ∈ N , is
defined as follows:

νi(ρk) =


γρk ,Svisitedsρk

if ψi,SAT (ρk)

γρk ,S
visited
sρk

if ∀νi ∈ N,¬(ψi,SAT (ρk))

WAIT if ∃φi ∈ Ψi,¬(φi)

(4.4.2)

Here, Svisitedsρk
is an event that indicates that the subscription S was successfully visited

for the external event ρk , i.e., (partially) completed as defined in Section 4.4.2. And,
γρk is an event that represents the consequent of the PAC rule indicating a change
(either a positive or a negative) to a particular status attribute s ∈ I (γ = �s),
while γ indicates no change to status attribute s. In addition, each event γρk and
γρk contains the current value of the status attribute s in the context of the external
event ρk. ψi,SAT (ρk) is a logical formula derived from a PAC rule’s prerequisite π

61



4.4. MAPPING FORMALIZATION

and antecedent α and WAIT is an indicator that implies that not all subscription
conditions (φi) have been satisfied. The notification policy is explained in detail in a
separate paragraph below.

Application-specific condition To construct the application-specific condition,
we adapt the PDG construction algorithm [37], which operates on the set of PAC
rules R. Suppose each PAC rule has the form 〈π, α, γ〉 that stands for prerequisite,
antecedent, and consequent, respectively. Then, the antecedent α of a PAC rule
is constructed according to the template on ξ(x) if ϕ(x), where each expression
expr ∈ ξ(x) is of the form on-event onEventType or �s, where onEventType
indicates requiring an external event of the type given by onEventType and � means
waiting for a positive, ⊕, or negative, 	, change in status attribute s. Similarly,
every expression expr ∈ γ also follows the form �s. However, expression expr ∈ ϕ(x)
has the form s, which simply indicates a stable value for status attribute s. A value
is stable if it no longer changes in the current B-step.

We first collapse instances of PAC rules, Ri ∈ R, that have identical π and γ into
a super PAC rule given by 〈π,A, γ〉, where A = (∨α∈Riα). In general, PAC rules
share identical π and γ because for a given status attribute s there exist multiple
rules that satisfy or falsify it. The notion of a super PAC rule simplifies the mapping.
Therefore, the (super) PAC rule R is mapped to S�s, where �s ∈ γ.

Example 1 In our example workflow, there are three PAC rules that share the
common prerequisite π = PE : pp and consequent γ = 	PE : pp (cf. Table 4.1.4).
These PAC rules represent the incoming edges in the PDG for node (-,PE:pp) (cf.
Figure 4.1.2). Hence, they can be collapsed into the super PAC rule PAC	PE:pp
that represents the invalidation of milestone PE:pp.

π A γ

(	 ED:cp) ∨
PE:pp (⊕ ED:cp ∧ LR) ∨ 	 PE:pp

(latestIncEvent = “R:RedoExportDocs” ∧ LR)

The super PAC rule is mapped to subscription S	PE:pp.
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The relation Ψ�s ∈ S�s (an application-specific condition and notification) is
constructed through various mapping stages, which are described next.

Each PAC rule is used to construct the subscription’s matching condition, 〈π,A, γ〉 ∈
R; Φ ∈ S�s. More specifically, we derive each φi ∈ Φ based on the PAC rule as
follows:

MΦ : αi ∈ A −→ φi ∈ Φ. (4.4.3)

Intuitively speaking, the antecedent of a PAC rule (α) forms the matching condition
(Φ). In case of a super PAC rule, each antecedent of the original PAC rules that
are collapsed within this super PAC rule (αi ∈ A) forms a single component of the
matching condition (φi ∈ Φ).

PDG predecessors The key component of φi, denoted by ψi,PDG ∈ φi, is at the
core of the subscription mapping and incorporates the notion of PDG predecessors,
an integral part of encoding the PDG topological sort order semantics of Γ into Π.
This mapping stage is represented by:

Mψi,PDG : αi ∈ A −→ ψi,PDG ∈ φi. (4.4.4)

Thus, for each φi ∈ Φ, we construct ψi,PDG ∈ φi from the corresponding αi ∈ R. The
actual definition of ψi,PDG is derived by adapting the PDG construction algorithm
that examines the antecedent component of each PAC rule identifying the set of
status attributes whose values must stabilize before firing a PAC rule, i.e., before
evaluating the subscription. We formally define ψi,PDG as a set of on-events that listen
for positive or negative change in variables appearing in the PAC rule’s antecedent,
which encodes the three different forms a sentry can have:

ψi,PDG(ρk) =
∧

�s∈ξ(x)
τk(on�s, ρk) ∧

∧
s∈ϕ(x)

τk(on.s, ρk), (4.4.5)

where on�s refers to events that report a change or no change to s (i.e., the on ξ(x)
component in antecedent α). and on.s refers to an event that holds the current value
of s (i.e., the if ϕ(x) component in α).
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Event-based pseudo clock The second component of φi is ψPseudoClock, which
enforces that each subscription is processed, namely, its condition φi is satisfied, in
the order in which external events arrive. Therefore, external events act as a pseudo
clock. The operation of this pseudo clock is defined by a logical formula as follows:

ψPseudoClock(ρk) = (@ρj, ρj ∈ ΣS ,
¬(τj(isVisited, ρj))∧
τj(eventTime, ρj) < τk(eventTime, ρk)∧
τj(subInstance, ρj) = τk(subInstance, ρk)).

(4.4.6)

Example 1—cont. As PAC	PE:pp is originally comprised of three individual
PAC rules, the subscription condition Φ contains three disjuncts representing the
original antecedents (i.e., φ1, φ2, and φ3), which results in the following PDG
predecessor components:

ψ1,PDG(ρk) = τk(onED : cp, ρk)
ψ2,PDG(ρk) = τk(onED : cp, ρk) ∧ τk(on.LR)
ψ3,PDG(ρk) = τk(LR).

Note that the external request event in PAC Rule 3 (i.e., R:RedoExportDocs)
is not evaluated within the matching condition (here ψ3,PDG(ρk)) but later on
within the notification condition. The data model D for this subscription is as
follows:

e t x onED:cp ED:cp PE:pp LR visited

The complete subscription condition Φ is then:

Φ = φ1 ∨ φ2 ∨ φ3

Φ = (ψ1,PDG(ρk) ∨ ψ2,PDG(ρk) ∨ ψ3,PDG(ρk)) ∧ ψPseudoClock(ρk)
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Application-specific notification Once the PDG requirement (i.e., ψi,PDG ∈ φi)
for a subscription instance is satisfied, namely, all variables in α have stabilized,
and all prior external events have been processed, (i.e., (ψPseudoClock ∈ φi)), the
corresponding notification of (φi, νi) is triggered. Each νi ∈ N is partially derived
from the corresponding PAC rule of the super PAC rule 〈π, αi, γ〉 in accordance to
Equation 4.4.2:

MN : (π, αi ∈ A, γ) ∈ R −→ νi ∈ N. (4.4.7)

The key component of νi is a logical formula ψi,SAT , which describes the behavior
of the notification policy. Before, giving the definition of the logical formula ψi,SAT ,
we must re-write π and αi. This re-writing is necessary for abiding by the workflow
semantics, in which each variable in π must use its last recent value from the last
completed B-step (if any), while each variable in αi must use its most recent value.
Thus, we re-write π, which consists of only Boolean variables, as follows:

Mπ : si ∈ π −→ τk−1(si, ρk). (4.4.8)

Similarly, we re-write α, which consists of both status and data attributes, based on
the most recent values as follows. Mαi consists of three stages of re-writing given by
Mϕ∈αi ,M1

ξ∈αi , andM
2
ξ∈αi :

Mϕ∈αi : ai ∈ ϕ −→ τk(ai, ρk),
M1

ξ∈αi : �s ∈ ξ −→ τk(ons, ρk) = �̂,
M2

ξ∈αi : onEvent ∈ ξ −→ τk(eventType, ρk) = onEvent,

(4.4.9)

where �̂ ∈ Boolean× Boolean refers to the type of transition for status attribute s
as indicated by �s. The mapping of a PAC rule to ψi,SAT is expressed as

Mψi,SAT : (π, αi) ∈ R −→ ψi,SAT ∈ φi, (4.4.10)

where ψi,SAT is simply derived by conjunction of re-written π and α:

ψi,SAT (ρk) =Mπ ∧Mαi . (4.4.11)
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Example 1—cont. Based on the super PAC rule, PAC	PE:pp, we now derive
the notification condition for the example in a similar fashion:

ψ1,SAT (ρk) =τk−1(PE : pp, ρk) ∧ τk(onED : cp, ρk) = (true, false)
ψ2,SAT (ρk) =τk−1(PE : pp, ρk) ∧ τk(LR, ρk) ∧ τk(onED : cp, ρk) = (false, true)
ψ3,SAT (ρk) =τk−1(PE : pp, ρk) ∧ τk(LR, ρk)

∧ τk(eventType, ρk) = ′R : RedoExportDocs′

The components of the notification condition N (i.e., ν1, ν2, and ν3) can then be
derived from Equation 4.4.2. We show this for ν1 as follows:

ν1(ρk) =


	PE : ppρk ,S

visited
	PE:ppρk

if ψ1,SAT (ρk)

	PE : ppρk ,S
visited
	PE:ppρk

if ∀νi,¬(ψi,SAT (ρk))

WAIT if ∃φi ∈ Ψi,¬(φi)

Data consistency & semantics simulation

Now that we demonstrated the mapping to translate PAC rules into a set of
subscriptions, next, we derive the subscriptions required for bookkeeping of status
and data attributes, and the execution of Γ.

Given the relation Ψi,s(ρk) = 〈φi(ρk), νi(ρk)〉, then the generic condition φi is defined
by:

φi(ρk) = τk(�a, ρk), (4.4.12)

where φi essentially captures the interest in any attempt to alter the value of attribute
a. On the other hand, the notification policy νi is expressed as follows:

νi = aρk ,Svisitedaρk
, (4.4.13)

where aρk broadcasts the current value of attribute a and Svisitedaρk
indicates that the

bookkeeping subscription for a was visited for external event ρk.
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Status attribute consistency We start with the workflow’s data consistency
requirement that ensures a consistent view of status attributes. We must ensure
that when a status attribute changes, no race condition for updating the value arises
and that every interested subscription has the most up-to-date values for its status
attributes. To achieve data consistency, we add to the subscription Ss, a generic
condition, for every status attribute s in the information model of Γ, which acts as a
single gateway for changing the value of s and subsequently broadcasting the final
stable value of s to all interested subscriptions. The relation Ψs ∈ Ss is given by:

φs(ρk) =τk(on�s, ρk) (4.4.14)

νs(ρk) =


τk(s, ρk)⇐ True,Svisitedsρk

if τk(ons, ρk) = (false, true)

τk(s, ρk)⇐ False,Svisitedsρk
if τk(ons, ρk) = (true, false)

τk(s, ρk)⇐ τk−1(s, ρk),Svisitedsρk
otherwise,

(4.4.15)

where ⇐ indicates assignment of the value of the right-side to the variable on the
left-side.

Example 2 We now show the subscription for capturing updates on status
attribute PE:pp. The subscription condition Φ is given by:

φPE:pp(ρk) = τk(onPE : pp, ρk)

Notification condition N=νPE:pp(ρk) is given by:

τk(PE : pp, ρk)⇐ True,SvisitedPE:ppρk
if τk(onPE : pp, ρk) = (false, true)

τk(PE : pp, ρk)⇐ False,SvisitedPE:ppρk
if τk(onPE : pp, ρk) = (true, false)

τk(PE : pp, ρk)⇐ τk−1(PE : pp, ρk),SvisitedPE:ppρk
, otherwise
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Data attribute consistency Likewise, we construct a set of subscriptions that
listens to events containing values for each data attribute. Upon consuming an
external event, if the value in the event payload is different from the current value,
then the subscription Sd generates the value, derived from the change or no change
events, accordingly, as follows:

φd(ρk) = τk(on∆eρk
, ρk) (4.4.16)

νd(ρk) =


τk(d, ρk)⇐ d,Svisiteddρk

if d∈∆eρk
∧

τk(d,ρk)6=τk−1(d,ρk)

τk(d, ρk)⇐ τk−1(d, ρk),Svisiteddρk
otherwise,

(4.4.17)

where ∆eρk
summarizes the data attributes appearing in e.

B-Step simulation Finally, in the workflow execution, it is crucial to identify the
start and end of a completed B-step. Therefore, first, we focus on the start of a new
B-step, which is achieved through subscription Ssource. The source subscription Ssource
has a special property because it is the only subscription that waits upon receiving
external events e from the environment. Every incoming external event in turn
establishes the start of a new B-step (referred to as the B-step deterministic-initiation
property). Acting as a single gateway, Ssource assigns increasing timestamps t to all
incoming events e and thereby imposes a total order on all external events. Therefore,
Ssource sends the events Svisitedsourceρk

and eρk that is understood by all subscriptions,
where its type, time, and intended subscription instances are summarized in ρk.
Hence, the relation Ψsource = (φ(ρk), ν(ρk)) is given as follows:

φsource(ρk) = e (4.4.18)
νsource(ρk) = Svisitedsourceρk

, eρk ,∆eρk

In order to guarantee the B-step deterministic-initiation property, we must add
onSvisitedsourceρk

to all subscriptions whose φi ∈ Φ are empty. In the same spirit, the end
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of a B-step is determined by introducing Ssink that subscribes to every subscription
involved in the execution in order to establish the ending of a B-step (referred to as
the B-step deterministic-completion property). Hence, Ψsink(ρk) is given by:

φsink(ρk) =
∧
Si∈S′

τk(onSvisited
iρk

, ρk) (4.4.19)

νsink(ρk) = Svisitedsinkρk
,

where S′ = S \ Ssink

4.4.2 Consumption policy

The subscriptions’ conditions and notification policies define a design-time specifi-
cation of the workflow semantics under our pub/sub formulation. As opposed to
this, the consumption policy specifies how to update the internal state of each
subscription, Σ, at runtime. The consumption policy is tightly bound to the
subscription operational semantics, denoted by OS = (ΣSj , e, t, x,ΣSj+1, Gen). To
precisely model the consumption policy w.r.t. OS , we discuss the subscription’s
evolution as it goes through the various stages of its lifecycle within a B-step: initiation,
modification, completion, satisfaction, generation, and termination. Each stage and
its interaction with other stages is defined next and illustrated in Figure 4.4.1.

Initiation
Modi-

fication

Com-
pletion

Partial
Comple-

tion

Satis-
faction

Genera-
tion

Termina-
tion

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5 STAGE 6

Figure 4.4.1: Consumption policy state transition.
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Stage 1. Subscription initiation occurs for the event associated with ρk (within the
kth B-step), when the subscription first receives the event, either directly (the event
eρk), or indirectly (such as status or data attribute updates in the context of ρk).
Then, eventType, eventTime, and subscriptionIstance are populated based on
ρk and isVisited is set to false, while the rest of its attributes in D are set to ∅.
However, if the subscription instance x ∈ ρk does not exist in ΣS , then as part of
the initialization (and creation of the new instance), all status attributes are set to
false and all data attributes are set to their default values.

Stage 2. Subscription modification occurs for the event associated with ρk (within
the kth B-step) after the subscription has been initiated (before or after a subscription’s
partial completion), when the internal state of the subscription is updated and it is
transitioned according to the subscription operational semantics:

OS = ΣSj
Eρk→(e,t,x)
7−−−−−−−−→ ΣSj+1. (4.4.20)

The internal state of the subscription changes by at most one single attribute in D
and is characterized by the following assignment:

(∀(ai, value) ∈ Eρk , ai ∈ D)→ τk(ai, ρk)⇐ value (4.4.21)

Stage 3. Subscription (partial) completion occurs for the event associated with
ρk (within the kth B-step) after the subscription has been initiated, when at least
one of the subscription’s φi(ρk) ∈ Ψs(ρk) has evaluated to true. If all φi(ρk) have
evaluated to true, then the subscription is considered completed, while if at least one
of φi(ρk) has evaluated to true, then the subscription is considered partially completed.
Explicitly considering a stage for the partial completion, allows the pub/sub system
to evaluate the notification policy, i.e., Stage 4, and generate events, i.e., Stage 5,
before the subscription is completed. Hence, a tuple 〈φi(ρk), νi(ρk)〉 ∈ ΨS(ρk) might
completely evaluate to true and the corresponding notifications are generated, even
if there exist conditions φj ∈ Φ that did not yet evaluated to true. This behavior
improves parallelism in execution and is indicated by the dashed lines in Figure 4.4.1.

Stage 4. Subscription satisfaction occurs for the event associated with ρk (within
the kth B-step) after the subscription has been (partially) completed, when φi(ρk) ∈
Ψ(ρk) is evaluated to true, i.e., the subscription is (partially) completed, and the
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subscription’s corresponding notification policy, νi(ρk), evaluates to true.

Stage 5. Subscription generation occurs for the event associated with ρk (within
the kth B-step) after the subscription is satisfied and when the subscription’s relevant
events are generated according to νi(ρk).

Stage 6. Subscription termination occurs for the event ρk (within the kth B-step) after
all events have been generated by the subscription and attribute τk(isVisited, ρk)
is assigned to true. Once isVisited is set to true, the tuple associated with ρk

becomes read-only.

4.5 Workflow mapping analysis

In this section, we show that under incremental formulation (sequential execution), the
data-centric workflow model Γ is equivalent to the pub/sub schema Π (distributed
execution), expressed as M : Γ −→ Π. Before establishing the correctness and
equivalence of the Γ and the Π schemas, we define a set of preliminary concepts.

4.5.1 Correctness

As described in Section 4.1, the incremental operational semantics of Γ is defined
as the 5-tuple (Σ, e, t,Σ′, Gen) and the Γ system snapshot transition, denoted by
Σ e7−→ Σ′, is defined as the smallest logical business step (B-step), which consists
of the sequential firing of PAC rules. The B-step in its expanded form is given by
Σ = Σ0,Σ1,Σ2, · · · ,Σn = Σ′, where Σ0 6= Σ1 (due to updating data attributes based
on the external incoming event e) and each Σi is referred to as a micro-B-step. Thus,
the ith micro-B-step corresponds to the firing of the ith PAC rule. Furthermore, based
on the Γ semantics, each PAC rule firing results in the change of exactly one status
attribute and the value of each status attribute changes at most once within a B-step
(the toggle-once property). Consequently, each PAC rule is fired at most once within
a B-step.
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First we provide a formalization for the set of status attributes that is changed within
a B-step in reaction to an external event e. Essentially, this set can be derived from
the event-relativized-PDG.

Definition 4. The event-relativized-PDG for an external event e, denoted by
ePDG = (Ve, Ee), is a subgraph of the PDG that includes all PAC rules and
their ordering that are triggered in reaction to e:

PDG(V,E) ⊇ ePDG = {(Ve, Ee)|Ve ⊆ V,Ee ⊆ E} (4.5.1)

Definition 5. Given ePDG = (Ve, Ee) for external events of type e, the event-
relativized status attribute set for e, denoted by Ies , contains all status attributes that
occur in nodes Ve of ePDG, i.e., all status attributes that are changed within the
B-step.

Ies = {s|s ∈ Ve, (Ve, Ee) = ePDG} (4.5.2)

Thus, the set of status attributes that is not changed within the B-step is given by
Ies = Is \ Ies .

We now formalize the changes in value of a status attribute over the notion of stable
attribute values as follows.

Definition 6. A status attribute s ∈ Is is called stable, denoted by ṡΣ, within a
B-step caused by e iff s is within the set of attributes that are not changed as reaction
to e, or s is in the event-relativized status attribute set for e and changed its value
in the context of e.

ṡΣi =

τ(Σi−1, s) 6= τ(Σ′i, s) , if s ∈ Ies
> , if s ∈ Ies

(4.5.3)

Definition 7. We refer to initial and final system snapshot of a B-step as complete
system snapshot, denoted by Σ (or Σ0) and Σ′ (or Σn), if all status attributes are
stable.

∀s ∈ Is, ṡΣ (4.5.4)
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Definition 8. We refer to an intermediate system snapshot within a B-step as a
partial system snapshot, denoted by Σi, 0 < i < n, i.e., if not all status attributes are
stable.

∃s ∈ Is,¬ṡΣ (4.5.5)

Finally, we emphasize that the incremental formulation of the execution follows a
sequential and central execution, in which the Γ semantics for the B-step execution is
defined as an atomic step and each B-step consists of a finite number of micro-B-steps.
Therefore, we define the concept of time in terms of a B-step such that system time
advances only from ti to ti+1 after processing the ith event (ei), i.e., the completion
of the ith B-step. In addition, external events are processed in the order in which
they arrive—the in-order processing of external events.

Lemma 1. The Γ incremental semantics guarantees the in-order processing of
external events (when all events are published from a single source). Hence, the
B-step execution (i.e., PAC rule firing) follows the event-order serialization.

Proof. The proof simply follows from the Γ incremental semantics such that external
events are consumed in-order and each consumed event (potentially) triggers a B-step
that is executed atomically [23]. �

Similar to the B-step event-order serialization in the Γ semantics, the micro-B-steps
within a B-step also follow a strict order which is imposed by the topological sort
order of the PDG—the PDG-based serialization of micro-B-steps.

Definition 9. The Γ incremental semantics guarantees the PDG-based serialization
of micro-B-steps [23].

Next, we show how the operational semantics of Γ is also guaranteed in our pub/sub
formulation. As provided in Section 4.2, the pub/sub schema Π’s operational
semantics is also formalized as a sequence of changes in a system snapshot denoted
by Σi

e,t,x7−−−→ Σi+1, implying a single subscriber received and accepted event e.

Lemma 2. The pub/sub operational semantics guarantees in-order delivery of events
between any pair of publisher and subscriber.
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Proof. The property is a direct consequence of our pub/sub definition in Section 4.2
(cf. Definition 2). �

Corollary 1. As consequence of Lemma 2 the mapping M under our pub/sub
operational semantics guarantees in-order processing of external events (when all
events are published from a single source).

Furthermore, our subscription mapping for PAC rules in the Γ model processes
events with respect to the order of external events (published from a single source in
both Γ and Π schemas). This mapping also introduces the notion of an event-based
pseudo-clock (Section 4.4) in order to achieve event-order serialization.

Lemma 3. The mapping M under the pub/sub operational semantics guarantees
execution of subscriptions based on event-order serialization.

Proof. This follows from the subscription condition ψi,PseudoClock, which enforces
that subscriptions are processed based on the order of external events. The condition
ψi,PseudoClock assures that a notification for event ei is generated only if all notifications
for events e0 · · · ei−1 have already been generated. �

Lemma 4. The mappingM under our pub/sub operational semantics guarantees
the PDG-based serialization of subscriptions.

Proof. The PDG-based serialization of a micro-B-step (single PAC rule) and a
subscription (super PAC rule) is satisfied in the pub/sub semantics because the
topological sort order of the PDG is directly encoded in the subscription’s condition
(ψPDG), which enforces that a subscription is evaluated only after all attributes have
stabilized. �

With respect to the B-step execution, we also prove that the pub/sub semantics
satisfy the toggle-once property.

Lemma 5. The mappingM guarantees the toggle-once property of a B-step.

Proof. The toggle-once property of a B-step, which is achieved by the PAC rule
design, namely, the relationship between a PAC rule’s prerequisite (π) and consequent
(γ) such that, roughly speaking, π ≈ ¬γ and π is always evaluated w.r.t. to a system
snapshot at the outset of a B-step after consuming the external event. This relation
is also encoded in our subscription definition given byMπ. �
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To prove the correctness of the overall execution of the pub/sub workflow formulation,
we introduce the notion of a reachable system snapshot: the state of the system after
executing a set of external events. Therefore, the correctness of our model after
processing a set of external events is determined by comparing the information model
(captured by the system snapshot) of the Γ and Π schemas. If the two snapshots are
identical, then our workflow to pub/sub mapping is correct, otherwise, it is incorrect.

To compare Γ and Π system snapshots, denoted by ΣΓ and ΣΠ, respectively, we
introduce two levels of equivalence, namely weak and strong equivalence. Without
loss of generality, we make the following simplification in the internal data model
of a system snapshot for both ΣΓ and ΣΠ: we conceptualize ΣΓ and ΣΠ as simply
a collection of all data and status attributes given in the Γ information model. In
addition, in ΣΠ, we also employ a versioning mechanism for storing this collection,
in which the versioning is advanced with respect to external events. Hence, through
versioning in ΣΠ, values of data and status attributes are retained separately for
each external event, while in ΣΓ, only the latest version of data and status attribute
values are maintained.

Definition 10. The (partial) system snapshots ΣΓ and ΣΠ are weakly equivalent up
to event ei, denoted by ΣΓ ⇔w ΣΠ, iff the values of stable status attributes in both
ΣΓ and ΣΠ are equal.

∀s ∈ ΣΓ, ṡΓ
Σ ∧ ṡΠ

Σ → τ(ΣΓ, s) = τi(ΣΠ, s) (4.5.6)

Definition 11. The (complete) system snapshots ΣΓ and ΣΠ are strongly equivalent
up to event ei, denoted by ΣΓ ⇔s ΣΠ, iff all status attributes in both ΣΓ and ΣΠ

are stable and equal.

∀s ∈ ΣΓ, ṡΓ
Σ ∧ ṡΠ

Σ ∧ τ(ΣΓ, s) = τi(ΣΠ, s) (4.5.7)

Lemma 6. Any reachable system snapshots ΣΓ
ei

and ΣΠ
ei

for event ei are weakly
equivalent.

Proof. The only means to change data and status attributes is through external
events and firing of PAC rules, respectively. Data attributes are changed through
external events, since both Γ and Π semantics follow event-based serialization.
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Therefore, changes to data attributes must be consistent under both formulations.
The status attributes are changed through PAC rules fired within the scope of each
external event; again, we showed that under both Γ and Π formulations, PAC rules
follow PDG-based serialization. Moreover, the toggle-once property can be emulated
under our pub/sub formulation. The toggle-once property is essential in order to
avoid the infinite firing of PAC rules within a B-step, thus, achieving a finite number
of micro-B-steps in a B-step. As desired, both Γ and Π result in firing of PAC rules
and corresponding subscriptions derived from these PAC rules in an identical order.
Hence, the values of status attribute are also guaranteed to be identical.

Moreover, the pub/sub operational semantics enables concurrent execution of external
events in parallel in accordance to the PDG topological sort order. Suppose, the
topological sort consists of a number of levels, where each level is associated with a set
of PAC rules, i.e., subscriptions. Thus, as the external event ei propagates through
each level, all status attributes associated with visited levels will be stabilized and
will be unaffected by the execution of subsequent levels of PAC rules. Therefore,
granted the attribute versioning is in-place, the new external event ei+1 can process
the subscriptions that fall in levels l1-lj−1 while ei is processing level lj. Therefore,
inductively, it can clearly be proven that as soon as one level of the topological
sort order is processed by one event, the processed level is ready to accept the
subsequent event. Hence, our pub/sub operational semantics is capable of processing
many events in parallel while satisfying event-based and PDG-based serialization
requirements. �

Lemma 7. The time complexity of the mapping M : Γ −→ Π is linear w.r.t. the
number of PAC rules and the size of the Γ model.

Proof. We construct a set of application-specific and generic conditions by iterating
over each PAC rule exactly once. In addition, we construct a generic condition for
every status attribute in Γ. �

Lemma 8. The number of subscriptions generated by the mappingM : Γ −→ Π is
linear w.r.t. the information model I of the model Γ.

Proof. For every status attribute s ∈ S ⊆ I, the mapping M generates three
subscriptions (i.e., S⊕s, S	s, and Ss). For each data attribute d ∈ D ⊂ I, there
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is a single subscription Sd. In addition, the mapping produces the two generic
subscriptions Ssource and Ssink. Altogether, this results in 3 · |S|+ |D|+ 2, i.e., O(I)
subscriptions. �

We are now in a position to prove our mapping from the workflow formulation Γ into
the pub/sub abstraction Π.

Theorem 1. The model Γ under incremental formulation is equivalent to Π in
terms of the B-Step operational, which establishes the correctness of our mapping
M : Γ −→ Π.

Proof. The necessary steps in proving the correctness for the workflow mapping in
terms of the system snapshot reachability condition is summarized as follows:

(1) Event-based serialization of B-steps (firing all relevant PAC rules) and execution
subscriptions (a super PAC rule) (cf. Lemmas 1,3).

(2) PDG-based serialization of a micro-B-steps (firing a single PAC rule) and execution
of a subscription (a super PAC rule) (cf. Lemma 4).

(3) The toggle-once property of a B-step is satisfied in our pub/sub semantics (cf.
Lemma 5).

(4) Weak equivalence of any reachable partial system snapshot ΣΓ
ei
and ΣΠ

ei
for any

event ei (cf. Lemma 6) and

(5) Strong equivalence of any reachable complete system snapshot ΣΓ
ei
and ΣΠ

ei
for

any event ei (cf. Lemma 6).

�

4.5.2 Overhead in B-Step execution

The number of B-steps that is executed in order to process the whole workflow
depends on the characteristics of the application and is consequently not bounded
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by the workflow meta-model. For a quantification of the communication costs of our
mapping, we focus on the number of events generated within a single B-step, which
depends on the number of PAC rules (i.e., PDG nodes) that are fired as a result of
an external event e arriving (i.e., the ePDG).

In our mapping, subscriptions capture (1) PAC rule firing and (2) the bookkeeping
mechanism. Once a subscription evaluates to true, events are generated and sent to
other interested subscriptions (notification). Regarding (1), the number of events
corresponds to all edges that are traversed in the ePDG (one event for each edge to
trigger the next PAC rule) and the number of nodes visited (one event for each state
change is sent to the bookkeeping subscription). As the ePDG is acyclic, the upper
bound for generated events representing PAC rule firings w.r.t. the ePDG is in

O
( PAC rule fire︷︸︸︷
|Ee| +

bookkeeping︷︸︸︷
|Ve|

)
. (4.5.8)

For (2), the estimate of generated events is based on the same argument as for (1).
A bookkeeping subscription will propagate the new value of a status attribute (i.e.,
create an event) every time it received an update for this attribute. Within a B-step,
the number of status changes is bounded by the ePDG, i.e., by the number of nodes
that are possibly visited. Consequently, the upper bound for bookkeeping events, i.e.
the cost for maintaining data consistency, w.r.t. the PDG, is O(|Ve|). Altogether,
the number of events that are generated for executing a B-step is in O(|ePDG|).

4.6 Foundation for distribution

The mapping of the data-centric workflow model to the pub/sub schema serves to
enable the robust distribution and parallel execution of each workflow element. In
general, workflow elements comprise the individual tasks, transitions among them,
their input/output parameters, and user roles. More specifically, in a data-centric
workflow, rules are the fundamental element and capture both task invocations or
transitions, respectively, and their relevant I/O parameters. In this sense, workflow
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Figure 4.6.1: Illustration of subscription assignment.

distribution can be seen as the grouping of a set of rules or their mapped subscription
counterparts, respectively, over a loosely coupled and distributed system. What
remains unaddressed by the mapping is how to determine the actual grouping of
these workflow elements in various processing sites within the pub/sub system. Yet
another important property of workflow element grouping lies in the ability to easily
move subscriptions among pub/sub processing nodes in order to achieve higher-level
functionalities such as load balancing, replication, and availability.

One can imagine the two extreme possibilities of grouping: one that every group
entails a single subscription (where each subscription is derived as was shown in
Sections 4.3,4.4) or all subscriptions can be placed into a single processing site. The
former approach achieves the highest level of parallelism (in a sense of distributed
execution), but suffers substantially from the increased event traffic in order to
coordinate and share data among elements across various processing sites. The latter
approach becomes sequential (in a sense of centralized execution), but requires no
event traffic for interactions among various elements.

Our goal is to lay a foundation that enables us to study the distribution of the
workflow at various granularity levels in order to minimize an objective function,
e.g., network traffic, while satisfying additional real-world (hard) constraints, e.g.,
compliance requirements: enforcing parts of a workflow to be completed in a particular
geographical region, requiring that data must reside in a particular region, or following
a licensing model that charges for shipping data which indirectly forces the execution
to be as close as possible to the data. We formulate the workflow distribution in
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terms of a portable execution unit that can be carried out in a single processing site
(P-site). Thus, P-site is a processing site deployed on a given geographical location
that is responsible for executing a set of elements in a given workflow such that P-site
minimizes the objective function and satisfies a given set of hard constraints.

We formally define the workflow distribution problem as follow: given a set of P-
sites Pi and a partial assignment of a subset of subscriptions to each of the P-site
(hard constraints), then determine a complete assignment such that the network
traffic among the set of P-sites is minimized. Furthermore, we require that P-sites
are disjoint, namely, a single subscription cannot be assigned to more than one
P-site. The solution to our problem is a complete assignment of subscription-to-P-site.
Clearly, any arbitrary assignment, starting from the partial assignment, is a solution,
but not necessarily one that minimizes the objective function; hence, not an optimal
solution. Figure 4.6.1 illustrates an instance of our assignment problem, in which
we have three P-sites, where each P-site is assigned one subscription P1, P2 and P3,
respectively, and we have a set of unassigned subscriptions S4 · · ·Sn. Without loss of
generality, we also combine subscriptions with polarity (positive and negative) into a
single subscription, i.e., S = {S⊕, S	}.

This assignment problem is formulated as an undirected weighted graph G = (E, V ),
where each subscription Si is represented by a vertex vi, and there is an edge between
two vertices vi and vj iff the subscription Sj is interested in events generated by
subscription Si or vise versa. Also, we have a set of colors, C = {c1, · · · , ck}, where
each ci corresponds to the P-site Pi. Consequently, the partial coloration (i.e., partial
assignment) of the subset of vertices in G, V ′ ⊆ V , is given by the mapping function:

χ : V ′ −→ C. (4.6.1)

Moreover, we need a cost function to capture the communication cost between two
subscriptions (relative to the size of data and protocol messages). Thus, each edge
(vi, vj) of the graph reflects the communication cost flowing between vi to vj. The
cost of data flow is given by:
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C∆ : E(G) −→ R+. (4.6.2)

Likewise, the protocol cost is given by:

Cπ : E(G) −→ R+. (4.6.3)

Finally, the total cost is given by function Cz:

Cz = (C∆ + Cπ)(E(G)), (4.6.4)

which is simply computed by summing the data and protocol cost. Therefore, under
this formulation, the objective of our assignment problem is to provide a complete
coloration of graph G while minimizing Cz:

χ : V (G) −→ C, (4.6.5)

where χ = χ for all v ∈ V ′, such that the sum of all edge weights, given by Cz, whose
vertices are not of the same color, is minimized. Essentially, the complete graph
coloration results in a complete assignment, which in turn partitions the graph into
k disjoint sets of vertices such that each set is assigned to a P-site.

The intractability of our graph coloration formulation is shown by reducing the
well-known multiway cut (a.k.a., multiterminal cut) problem [22, 98] to the graph
coloration.

Definition 12. Given an undirected weighted graph G = (E, V ) and a set of
terminals S = {s1, · · · , sk} ⊆ V , then a multiway cut is defined as a set of edges
whose removal disconnects the terminals from each other. The multiway cut asks for
a minimum weight edge set whose removal disconnects the terminals.
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The problem of computing the minimum weight multiway cut is NP-hard for any
fixed size k > 2 [22]. For k = 2, the problem is tractable and can be solved optimally
using the standard max-flow, min-cut algorithm. Furthermore, for k ≥ 3, there exists
a greedy algorithm with a 2− 2

k
approximation ratio [98]. This greedy algorithm [98]

consists of two phases:

1. For each i = 1 · · · k, compute a minimum weight isolating cut Ii for each si.
This cut is computed optimally using the max-flow algorithm by construction
a new instance of the min-weight cut problem which consists of only two
terminals, namely, si and S − {si}.

2. Discard the maximum weight cut Ij and output the union of the rest, denoted
by:

I =
( ⋃
i=1···k

Ii
)
− Ij.

I disconnects any pair of terminals, hence, it is a multiway cut.

The multiway cut problem can be reduced to our graph coloration problem. We
transform the multiway cut problem by assigning each terminal vertex to a different
color (i.e., partial color assignment), and we assign a color to each non-terminal
vertex (i.e., complete color assignment), where the color is chosen from the set of
colors used for the terminal vertices, such that we minimize the edge cut between
vertices of different colors. Hence, there exists a polynomial reduction of the classical
multiway cut problem to our graph coloration problem (i.e., colored multiway cut).

Theorem 2. The colored multiway cut problem is NP-hard and can be solved within
a 2− 2

k
approximation.

Proof. The proof follows from reducing the known multiway cut problem to the
colored multiway problem. �

In summary, we formalized the general workflow distribution problem over the
pub/sub abstraction as the colored multiway cut problem. We showed that colored
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multiway cut is intractable, but there exists a constant factor approximation for
solving it. From a theoretical perspective, it is interesting to employ a more complex
communication cost function in the workflow distribution which collapses all edges
leaving from the subscription Si to all interested subscriptions residing in a different
processing site P-site because it is sufficient to transmit a message once from Si to
each interested subscriptions in a P-site. The collapsing of edges and the extension
of the problem to a directed graph, instead of an undirected graph, leads to new
challenges for future research. However, these new restriction do not affect the
hardness of the problem, namely, the problem remains intractable.

4.7 Summary

In this chapter, we established the theoretical foundation for the safe distribution
and the parallel execution of data-centric workflows over the loosely-coupled and
distributed publish/subscribe abstraction. To this end, we developed a polynomial-
time mapping of data-centric workflows into the pub/sub abstraction to achieve
distributed and parallel workflow execution. We proved the correctness of our
mapping through an equivalence of reachable system snapshots and we proved the
hardness of the optimal workflow distribution problem over the pub/sub abstraction.
Finally, we employed a greedy algorithm with a constant factor approximation for
this problem.
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Chapter 5

Geo-Distribution of Flexible
Business Processes

In this chapter, we present a geo-distributed execution system for flexible business
processes in multi-organizational scenarios. Our system relies on GSM [23], a
generalization of flexible business processes, which forms the execution semantics of
the Case Management Model and Notation (CMMN) [62, 73]. In GSM, a workflow is
based on a global information model that represents both application data from all
involved organizations as well as information about the current state of the process.
The execution semantics are specified as a set of PAC rules that are fired on receiving
an external event from the environment to evaluate the current snapshot of the GSM
system and evolve it to the next state.

A distributed GSM workflow engine forms the core of our system. It supports locality
of data by enabling the deployment of system components, which need to access
certain data, in the IT infrastructure of the respective data owner. Our system is
based on the formal mapping of GSM into the publish/subscribe abstraction described
in Chapter 4. The loosely-coupled nature of pub/sub supports both the ad-hoc
character of flexible business processes and the rule-based execution semantics. In
contrast to the previous chapter, this chapter provides a geo-scale system architecture
including an implementation, optimization, and experimental evaluation.

85



5.1. FLEXIBLE BUSINESS PROCESSES FORMALISM

We introduce Workflow Units (WFUs) as distributable system components that
communicate over a distributed publish/subscribe middleware, and manage individual
attributes from the information model or execute workflow rules. A WFU subscribes
to attribute changes relevant for rule evaluation or attribute access, performs the
rule evaluation or data access in the context of an event from the environment,
and publishes results to other interested WFUs. The WFU representation of the
workflow partitions the global information model and the control flow into executable
fragments. This fragmentation is the basis for a location-aware deployment.

We start by providing formalisms to model flexible business processes based on
CMMN and GSM in Section 5.1. First, we introduce an example of a flexible
business process from the healthcare domain under both formulations and, then,
we show how CMMN models can be expressed by GSM. Next, in Section 5.2, we
describe our WFU-based geo-scale execution architecture for GSM. In Section 5.3, we
present two mappings of GSM into WFUs: the first is our baseline mapping (BLM),
which is a practical realization of the formal mapping developed in Chapter 4. Based
on the insights obtained from BLM, we also present a novel, optimized context-aware
mapping (CAM). Details of our implementation in PADRES [41], an enterprise-grade
event management system, are shown in Section 5.4. In Section 5.5, we report on
results from an experimentally study, where we compared BLM and CAM w.r.t.
process latency and throughput under various configurations.

5.1 Flexible business processes formalism

We now present formalisms to model flexible business processes in an executable
format. We start by introducing the Case Management Model and Notation
(CMMN) [73]; then, we recap the foundation of CMMN, theGuard-Stage-Milestone
meta-model (GSM) [23]. Both formalisms are described by means of an example
BP handling the treatment of a patient, which we refer to as the patient care
business process. Finally, we show that GSM is a generalization of CMMN and
every CMMN model can be represented in GSM—the basis for our geo-distributed
workflow execution approach.
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Figure 5.1.1: Patient care process in CMMN (modeled with trisotech.com modeler).

5.1.1 Case Management Model and Notation

Healthcare is a highly knowledge-intense domain involving many different collab-
orating organizations. In the following, we refer to the patient care process [93].
A corresponding CMMN model is shown in Figure 5.1.1. In CMMN, a business
process is modeled as a case that is instantiated on a triggering event, e.g., the
referral to a hospital. The lifecycle is modeled as a set of stages (octagons) clustering
substages and/or tasks. A stage contains entry conditions (diamonds) that dictate
when to open the stage. Which substages/tasks are to be executed, can be statically
defined or modeled as an ad-hoc decision by annotating a stage as a planning element
and attaching discretionary tasks/substages (dashed lines). Discretionary items are
added on demand during runtime, offering flexibility. Stages are intended to achieve
milestones (rounded boxes), intermediary goals in case execution, which have entry
conditions to specify their achievement. Milestones are often used as entry conditions
for stages. Exit conditions, in contrast, define when the case goal has been met and
the instance can be terminated [73].

Patient care starts in stage Registration, where patient information is recorded.
A successful registration results in achieving milestone success, which, in turn,
opens stage Assessment. Here, a physician examines the patient and inquires about
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symptoms. Depending on the outcome, the physician then chooses from a variety of
actions required to establish a diagnosis, whereby decisions made are based on the
medical knowledge of the physician. He/She might decide that additional tests are
necessary or that a specialist must be involved. These alternatives are modeled as
substages intended to be handled by different institutions. Referral to a Pathologist,
for instance, requires that existing examination results should be made available
to the specialist to aide in supporting a potential diagnosis. Patient data is highly
sensitive and legal regulations restrict automated exchange [8]. Also, as specialists
are often organized independently, they have their own data management and sub-
processes, which requires an official referral. Similar to assessment, the Treatment
planning and the actual Treatment are decision-intense (details are omitted in the
example). After the treatment delivery, the success of the therapy is reviewed and
the patient is either discharged or the process loops back to an earlier stage.
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Figure 5.1.2: Patient care process in GSM.
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5.1.2 Guard-Stage-Milestones meta-model

The execution semantics of the patient care CMMN model can be expressed by
the Guard-Stage-Milestone meta-model (GSM) [23] as depicted in Figure 5.1.2.
In GSM, a workflow is modeled as interactions of business artifacts (BA). A BA
consists of a lifecycle model, L, corresponding to the graphical CMMN notation,
and an information model, I, that captures all business relevant data (i.e., data
attributes to represent application data such as patient data) and workflow-specific
status information (i.e., status attributes describing the internal state of the BA).
Interactions are specified in L and executed according to operational semantics based
on declarative rules that evolve the artifact. Like CMMN, GSM provides three core
elements to specify the behavior of a workflow. (1) Milestones are business-relevant
objectives that can be achieved or invalidated (circles); (2) Stages (rounded rectangles)
are clusters for tasks and are either opened or closed. The status attributes in I
are Boolean attributes that capture which stages are currently opened or closed
and which milestones are achieved or not. Stage opening and milestone achieving
is controlled by (3) Guards (diamonds) that represent entry conditions and event-
listeners in CMMN are specified by sentries. A sentry is a Boolean expression over
attributes in I.

Operational semantics The operational semantics of GSM defines the incorpora-
tion of external events from the business environment into the current system snapshot
(i.e., an instance of I), which corresponds to the impact on stage opening/closing,
milestone achievement/invalidation, and mutation to application data [23]. Intuitively,
the operational semantics of GSM is based on advancing the current system snapshot
(i.e., the complete state of the workflow) into a new system snapshot after consuming
exactly one external event.

Formally, the consumption of a single external event results in advancing to a new
system snapshot and is encapsulated in a business step (B-Step), which is the smallest
unit of business-relevant change in GSM. More specifically, in each B-Step, a set of
rules, which are derived from the model, are fired according to a specific order that
is derived accordingly. Each rule represents a micro-B-Step, which is an atomic data
operation within a B-Step (e.g., the update of a particular milestone).
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These rules are a variant of Event-Condition-Action (ECA) rules and are called
Prerequisite-Antecedent-Consequence, or PAC rules, in GSM. Rules follow a common
format and are expressed by a triple (π, α, γ). The prerequisite, π, is a Boolean
expression over attribute values in I based on the latest B-Step. An antecedent,
α, is a Boolean expression representing changes in the current B-Step such as the
reception of an external event or the toggling of a milestone from false to true. The
consequent, γ, describes a change to a status attribute if π and α evaluate to true.
There are six templates for PAC rules (PAC-1, ..., PAC-6) for achieving/invalidating
guards, for achieving/invalidating milestones and two rules for stage closing (cf. 3 for
more details). Table 5.1.1 shows an excerpt from the 56 PAC rules for the patient
care process depicted in Figure 5.1.2.

No. π α γ

1 ¬S1 latestEvent = “Patient Referral” ⊕ S1
2 S3 latestEvent = “T:BloodTest” ∧ bloodValue > 42 ⊕ m4
3 S4 latestEvent = “T:TissueTest” ∧ tissueValue < 1337 ⊕ m6
4 S2 ⊕ m6 ⊕ m10

Table 5.1.1: Excerpt of PAC Rules for “Patient care” workflow.

For instance, Rule 1 in Table 5.1.1 captures the achieving of guard g1, which listens
for a Patient Referral-request to open the stage Registration (S1). The rule
intuitively states that if Registration is currently closed (π) and there is an event of
type Patient Referral coming from the environment (α), then open the stage (γ),
i.e., toggle S1 from false to true (⊕S1). Similarly, Rule 3 captures the achieving
of milestone m6 (tissueAbnormal) once a termination event for a tissue screening
containing an update to attribute tissueValue has been received, and the value is
lower than a threshold. The achieving of m6 (⊕m6), in turn, represents the antecedent
of a rule that captures the achieving of milestone m10 (cf. Rule 4), which indicates
that the assessment is complete. In general, PAC rules depend on other PAC rules,
such that the consequent of a rule can trigger the antecedent of another rule (cf.
Rules 3 and 4). This dependency is encapsulated by the Polarized-Dependency-Graph
(PDG) [23]. When referring to a particular external event type e, the set of applicable
PAC rules in reaction to e is described by the event-relativized PDG for e, or ePDG,
for short.

Relationship between CMMN and GSM The main difference between CMMN
and GSM is the lifecycle of their core elements (i.e., stages, milestones, and event
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Figure 5.1.3: Lifecycle for core CMMN elements (left), GSM representation (right).

listeners). The lifecycle of a stage in CMMN has eight states and corresponding state
transitions (cf. Figure 5.3(a)). In GSM, a stage lifecycle has two states (i.e., opened
or closed), which might suggest that GSM is less expressive compared to CMMN.

However, we show that GSM can, in fact, be used as a meta-language to model
CMMN lifcycles. The stage lifecycle in CMMN can be modeled as depicted in
Figure 5.3(b). The GSM counterparts to the states in the CMMN lifecycle are
highlighted in gray. Similar, the lifecycle of milestones in CMMN can be mapped to
GSM. In both cases, individual states are modeled as GSM stages or milstones and
the transitions are modeled based on external events (representing the transition
functions). An important conclusion from this fact is that, as CMMN elements can
be completely expressed by GSM, a valid GSM workflow engine is consequently also
capable of executing arbitrary CMMN models. In the remainder of the chapter, we
therefore focus on realizing the GSM operational semantics as these are supported
by a richer theoretical foundation [23, 92].
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Figure 5.2.1: Distributed GSM workflow architecture.

5.2 Geo-distributed data-centric workflow archi-
tecture

An overview of our geographically-distributed workflow execution architecture is
depicted in Figure 5.2.1. The basis of our architecture is a GSM representation of
the workflow, (R, I), where R is the set of PAC rules and I is the information model
(i.e., data and status attributes).

Business process management such as modeling, compilation, deployment, and
monitoring is supported by a Workflow Manager over a Web Frontend. The workflow
itself is executed by a set of independent, geo-distributable Workflow Units (WFUs),
which are system components that manage PAC rules and attributes. Attributes
from I are mapped to Attribute Access WFUs; every data attribute is mapped to
a Data Access WFU (WFUD), every status attribute is mapped to a Status Access
WFU (WFUS), and every PAC rule ∈ R is mapped to a Rule WFU (WFUPAC).
There are two additional B-Step Control WFUs: WFUSOURCE handles the start of a
new B-Step, i.e., the occurrence of an external event e. It acts as a global gateway
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for external events that imposes a total order on B-Steps by attaching increasing
timestamps t to e. WFUSINK handles the termination of a B-Step by representing a
gateway that checks whether all PAC rules have been evaluated and all attributes
have been updated in the B-Step. We present two mappings of GSM into the WFU
representation in Section 5.3. Automated workflow compilation according these
mappings is provided by a Workflow Compiler that generates declarative descriptions
of WFUs. Examples for such descriptions are provided in Listings 5.3.1, 5.3.2, 5.3.3,
and 5.3.4, and will be discussed in detail in Section 5.3.

In the following, we rely on the standard terminology established for pub/sub to
describe the internals of a WFU [41]. In pub/sub, subscribers express their interests
in certain information by subscribing to an event filter via issueing subscriptions.
Publishers produce events and publish these as publications to the pub/sub system.
The pub/sub system matches publications and subscriptions, and notifies subscribers
about matching events.

Every WFU is characterized by three components:

1. subscriptions (S) define the interest of the WFU in updates to attributes that
are relevant to evaluate the application logic.

2. the application logic (AL) of the WFU within the context of a B-Step. The
application logic is represented as a set of rules, which are evaluated once all
attributes are available for the B-Step. Depending on the WFU type, the
application logic either represents a PAC rule, or the access to an attribute
to persist or retrieve updated values if required, or the detection of the start
or end of a B-Step. The result of WFU evaluation is described by a set of
notifications.

3. notifications (N ) to update other WFUs that are interested in these results.
Essentially, N defines a set of publication templates, which a WFU instantiates
and publishes depending on the result of AL.

A WFU mapping partitions the global data-model I into a set of overlapping data
models DWFU = {D1, . . . ,D|WFU |}, such that Di contains the attributes ∈ I that
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Figure 5.2.2: WFU partitioning of global data model.

WFUi maintains and ⋃i∈|WFU |Di = I. The set of attributes WFUi maintains is
comprised of those it subscribes to and those it updates itself by evaluating the
application logic. WFUi maintains a multi-version implementation of Di containing
the attribute values for all B-Steps.

Figure 5.2.2 depicts the overlapping that occurs when partitioning the global data
model of the patient care process. The example is restricted to three WFUs
constructed according to our mappings (WFU⊕m4,WFUm4, andWFUs4). WFU⊕m4

encodes the second PAC rule in Table 5.1.1. It subscribes to status attribute s3
and data attributes latestEvent and bloodValue, and publishes status attribute
m4. Hence, the data model is comprised of all four attributes depicted in the figure:

DWFU⊕m4 = {latestEvent, bloodValue, s3,m4}

The remaining WFUs are Status Access WFUs for s3 and m4. Compared toWFU⊕m4,
their data models overlap with the corresponding status attribute and latestEvent.

DWFUm4 = {latestEvent,m4},DWFUs3 = {latestEvent, s3}

WFUs are the basic unit of geographic distribution in our architecture. A Workflow
Deployment Manager (WDM) assigns each WFU to a workflow agent (WF Agent),
a lightweight system component that is capable of executing WFU declarations as
provided by the compiler. WF Agents implement the pub/sub interface and are
connected to a network of message brokers [41]. The broker network constitutes a
pub/sub system that manages subscriptions of WFUs and routes publications among
them. A concrete deployment of WFUs to WF Agents is flexible because the set of

94



CHAPTER 5. GEO-DISTRIBUTION OF FLEXIBLE BUSINESS PROCESSES

WFUs represents the most fine-grained view of a GSM process. The possibilities
range from a centralized deployment at a single machine to host WF Agents for all
WFUs, to a completely decentralized deployment, where every WFU is managed by
a separate WF Agent on a separate machine.

The WFU representation enables a location-aware deployment, where every Attribute
Access WFU is deployed in the IT infrastructure of the legal owner of the data (e.g.,
the hospital for bloodValue). Similarly, if a WFUPAC contains sensitive attributes
to evaluate a PAC rule, it is also deployed in the IT infrastructure of the data owner.
Rule 2 in Table 5.1.1, for instance, contains access to bloodValue in its antecedent
and is deployed in the hospital infrastructure.

Workflow instances are controlled by the Workflow Manager that receives events e
from the frontend, triggers the engine with e, and forwards updates back to the
frontend.

5.3 GSM to Workflow Unit mappings

We now provide a detailed account of our mappings and focus on the mapping
functions for the five WFU types: WFUSOURCE, WFUPAC, WFUS, WFUD, and
WFUSINK. We present the functions for both baseline (BLM) and context-aware
mapping (CAM) and describe the three components, subscriptions (S), application
logic (AL), and notifications (N ). Core to each WFU specification is a data model,
DWFU , which is updated in the context of a B-Step to evaluate the application logic.
The key of DWFU is a triple (e, t, x), which consists of an external event type e, that
occurs at time t for workflow instance x and maintains all attribute values for this
B-Step. All other attributes in DWFU depend on the WFU specification. DWFU is
updated in two ways: by receiving update notifications from other WFUs and by
evaluating the application logic AL over the current state of DWFU once all relevant
attribute updates have been received.

Every single update a WFU is interested in is specified by a subscription ∈ S
expressed as a set of predicates. A predicate is a triple, (attributename, operator,
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value), to describe an attribute filter, whereby value ” ∗ ” indicates a wildcard. We
also rely on the triple-syntax to express AL and N . We consider four attribute types:
STATUS attributes refer to stages and milestones in GSM and are Boolean. DATA
attributes refer to application data. We assume that data attributes are either text or
numeric values. TOGGLING attributes represent state transitions of status attributes.
The domain is {Boolean×Boolean}, a pair of Boolean variables. VISITED attributes,
also Boolean, indicate the success of WFU evaluation in the context of a B-Step. A
sample subscription to the toggling of milestone m from false to true is:

[e,=,*], [t,=,*], [x,=,*], [name,=,m], [type,=,toggling], [value,=,(false,true)]

The subscription expresses interest in all events that represent an update to the
toggling attribute m with value (false,true). The predicates for other attributes
in the subscription, i.e., e, t, and x are specified as wildcards, denoted by ∗.

5.3.1 Baseline mapping

Next, we provide the BLM mappings for all WFU types. For WFUSOURCE, WFUD,
and WFUSINK we give a concise description, and for WFUPAC and WFUS, we provide
more details including a complete example.

WFUSOURCE — To register the start of a new B-Step, this WFU subscribes to
all external events e from the environment. By means of its application logic, it
attaches a timestamp t and locally records (e, t, x) in D. Its notification generates
two event types: one event indicates that WFUSOURCE has been visited for (e, t, x)
expressing that the new B-Step has started. In addition, one data-update event for
each data attribute d ∈ I indicates the value of d under e. The latter either contains
an updated value, if d was updated with e, or no value else.

WFUPAC — First, all PAC rules, Ri ∈ R, with a common prerequisite, π, and
consequent, γ, are collapsed into a super PAC rule (π,A, γ), where A = ∨

Ri∈R,α∈Ri α

is a disjunction of the individual antecedents. In the following, we use the PAC rule
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1 SUBSCRIPTIONS={
{ [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ s o u r c e ’ ] , [ type ,= , ’ v i s i t e d ’ ] , [ va lue ,= , ’ t r u e ’ ] }

&{[e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ b l oodVa lue ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= ,∗ ]}
&{[e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= ,∗ ]}
}

6
APPLICATION LOGIC={

// p r e r e q u i s i t e
{ [ id ,= ,R1 ] , [ s tep ,= , ’ l a t e s t ’ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= , ’ t r u e ’ ] }

// a n t e c e d e n t
11 &{[ id ,= ,R1 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’ e ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= , ’T : BloodTest ’ ] }

// a n t e c e d e n t
&{[ id ,= ,R1 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’ b loodVa lue ’ ] , [ type ,= , ’ data ’ ] , [ va lue , > ,42]}
}

16 NOTIFICATIONS={
// v i s i t e d
{ [ id ,= ,P0 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’WFU+m4 ’ ] , [ type ,= , ’ v i s i t e d ’ ] , [ va lue ,= , ’ t r u e ’ ] }
// s u c c e s s f u l t o g g l i n g

| | { [ id ,= ,P1 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , t r u e ) ’ ] }
21 // no t o g g l i n g

| | { [ id ,= ,P2 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , f a l s e ) ’ ] }
}

Figure 5.3.1: Example of BLM mapping: WFU⊕m4 for achieving m4 in patient care business
process (cf. Rule 2 in Table 5.1.1).

for achieving milestone m4 in the patient care process as an example (cf. Rule 2 in
Table 5.1.1). The corresponding WFU⊕m4 is depicted in Listing 5.3.1. In general, a
WFUPAC subscribes to all toggling-, status-, or data attribute updates that occur
in π or A of the super PAC rule (cf. Lines 2-4). The encoding of the PAC rule in
the application logic is realized by a conjunction of attribute checks identified by a
ruleID (R1 in the example). The rule components refer to the current B-Step, i.e.,
tuple (e, t, x) in D, to evaluate the A components of the PAC rule (Lines 11 and
13), and to the latest B-Step, i.e., (e, t − 1, x) in D, to evaluate the π component
(Line 9). The notification contains three possible event types: one indicates that
WFUPAC has been visited for (e, t, x) (Line 18). The other two templates represent
the outcome of rule evaluation — either a toggling event for γ if the PAC rule fired
due to successful rule evaluation (Line 19), or no toggling if the PAC rule did not
fire (Line 22).

WFUS — To manage access to status attributes, this WFU type subscribes to all
toggling updates for a particular status attribute s. The application logic dictates
when a stable value for s has been reached in B-Step (e, t, x) and when this value can
be published to the rest of the system. An example WFU for status attribute m4 is
depicted in Listing 5.3.2. In general, a stable value for s is either reached if a successful
toggling (i.e., (true,false) or (false,true)) has been received from one of the
WFUPAC that control toggling of s (cf. Lines 6 and 8), or if both of these WFUPAC
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SUBSCRIPTIONS={
2 { [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type , eq , ’ t o g g l i n g ’ ] , [ va lue ,= ,∗ ]}

}

APPLICATION LOGIC={
{ [ id ,= ,R1 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , t r u e ) ’ ] }

7 | | { [ id ,= ,R2 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( t rue , t r u e ) ’ ] }
| | { [ id ,= ,R3 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( t rue , f a l s e ) ’ ] }
| | { [ id ,= ,R4 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , f a l s e ) ’ ] }
}

12 NOTIFICATIONS={
// v i s i t e d
{ [ id ,= ,P0 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’WFUm4 ’ ] , [ type ,= , ’ v i s i t e d ’ ] , [ va lue , eq , ’ t r u e ’ ] }
// v a l u e o f s t a t u s a t t r i b u t e

| | { [ id ,= ,P1 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue , eq ,∗ ] }
17 }

Figure 5.3.2: Example of BLM mapping: WFUm4 for managing status attribute m4 in patient
care business process.

published that s did not toggle in (e, t, x) (Lines 7 and 9). The notification contains
two event templates: one indicates that WFUS has been visited for (e, t, x), the
other indicates the current value of the s as a status event. If s was not toggled in
(e, t, x), the latest stable value from B-Step (e, t− 1, x) is copied to D and published.

WFUD — To manage access to data attributes, this WFU type subscribes to all
value updates for a data attribute d. The application logic determines when a stable
value for d has been reached in B-Step (e, t, x) and when this value can be indicated
to other WFUs. In the BLM mapping, WFUSOURCE generates a data update event
for d under every external event e. If this event contains an updated value, it is
persisted in D for (e, t, x). If no update was attached, the value of d is copied from the
latest B-Step. The notification contains two possible event templates: one indicates
that WFUD has been visited for B-Step (e, t, x), the other publishes the stable
value of d as a data event.

WFUSINK — To register the completion of a B-Step, this WFU type subscribes
to visited events from all WFUs generated by the mapping excluding itself:
WFUSOURCE, WFUPAC, WFUS, and WFUD. Once all notifications are received
for (e, t, x), a visited event for WFUSINK is generated to indicate that the B-Step
has been completed.

The BLM mapping for the patient care process generates 73 WFUs in total. One
WFUSOURCE, 44 WFUPAC, 5 WFUD, 22 WFUS, and one WFUSINK .
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5.3.2 Context-aware mapping

The rationale of the context-aware mapping (CAM) is to restrict the number of
WFUs that must be evaluated within a B-Step to those WFUs that are potentially
affected by event e. In BLM, the entire PDG of a GSM model is traversed and every
geo-distributed WFU is evaluated in every B-Step. In CAM, we consider the context
of e during WFU evaluation. A WFU is only evaluated if:

1. for WFUPAC the PAC rule is reachable over the ePDG for e.

2. for WFUD a data attribute is updated under e.

3. for WFUS a status attribute is updated under e.

Furthermore, for each event type e, CAM generates a single WFUe
SINK to check if

all WFUs relevant for e have been visited. The advantages of CAM are that fewer
WFUs are evaluated, fewer notifications are generated, and the load on WFUSINK is
distributed. We now describe the CAM mappings for the five WFU types and point
out the differences to the BLM mapping.

WFUSOURCE — again, this WFU subscribes to all external events, attaches
increasing timestamps, and indicates the start of a new B-Step by generating a
visited event. In contrast to BLM, update notifications to data attributes d are
only generated if the event type e is specified in the model to update data attribute
d. For all other data attributes, no data update events are generated.

WFUPAC — Basis is again a super PAC rule. In CAM, we generate the ePDGs for
all event types specified in the GSM model to determine those ePDGs (and thereby
those event types e) that contain the respective PAC rule in their node set. If the
ePDG contains the PAC rule in its node set, it will potentially fire in reaction to
e and AL must be evaluated. Event e is therefore a relevant context for WFUPAC.
As in BLM, we refer to the PAC rule for achieving m4 as an example (cf. Rule 2 in
Table 5.1.1). The corresponding CAM WFU⊕m4 is depicted in Listing 5.3.3. The only
event type that reaches ⊕m4 is T:BloodTest; therefore, the subscription component
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SUBSCRIPTIONS={
// ePDG of even t c o n t a i n s PAC r u l e i n node s e t −> event p o t e n t i a l l y f i r e s PAC r u l e

3 { [ e ,= , ’T : BloodTest ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ s o u r c e ’ ] , [ type ,= , ’ v i s i t e d ’ ] , [ va lue ,= , ’ t r u e ’ ] }
// data update r e l e v a n t f o r PAC r u l e e v a l u a t i o n

| | { [ e ,= , ’T : BloodTest ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ b l oodVa lue ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= ,∗ ]}
// ePDG of t h e s e e v e n t s c o n t a i n PAC r u l e s t h a t update the p r e r e q u i s i t e , but f i r i n g o f t h i s PAC r u l e

| | { [ e ,= , ’T : BloodTest ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= ,∗ ]}
8 | | { [ e ,= , ’T : R e g i s t r a t i o n ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= ,∗ ]}

| | { [ e ,= , ’T : Review ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= ,∗ ]}
| | { [ e ,= , ’T : T i s s u e T e s t ’ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= ,∗ ]}

}

13 APPLICATION LOGIC={
// p r e r e q u i s i t e update , but no PAC r u l e f i r i n g −> update p r e r e q u i s i t e & send v i s i t e d
{

| | { [ id ,= ,R0 ] , [ name ,= , ’ e ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= , ’T : R e g i s t r a t i o n ’ ] }
| | { [ id ,= ,R0 ] , [ name ,= , ’ e ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= , ’T : Review ’ ] }

18 | | { [ id ,= ,R0 ] , [ name ,= , ’ e ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= , ’T : T i s s u e T e s t ’ ] }
}
OR // PAC r u l e r e a c h a b l e ove r ePDG −> e v a l u t e r u l e , send r e s u l t n o t i f i c a t i o n & v i s i t e d
{

// p r e r e q u i s i t e
23 { [ id ,= ,R1 ] , [ s tep ,= , ’ l a t e s t ’ ] , [ name ,= , ’ S3 ’ ] , [ type ,= , ’ s t a t u s ’ ] , [ va lue ,= , ’ t r u e ’ ] }

// a n t e c e d e n t
& { [ id ,= ,R1 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’ e ’ ] , [ type ,= , ’ data ’ ] , [ va lue ,= , ’T : BloodTest ’ ] }

// a n t e c e d e n t
& { [ id ,= ,R1 ] , [ s tep ,= , ’ c u r r e n t ’ ] , [ name ,= , ’ b loodVa lue ’ ] , [ type ,= , ’ data ’ ] , [ va lue , > ,42]}

28 }
}

NOTIFICATIONS={ // the same as i n the BLM
// v i s i t e d

33 { [ id ,= ,P0 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’WFU+m4 ’ ] , [ type ,= , ’ v i s i t e d ’ ] , [ va lue ,= , ’ t r u e ’ ] }
// s u c c e s s f u l t o g g l i n g

| | { [ id ,= ,P1 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , t r u e ) ’ ] }
// no t o g g l i n g

| | { [ id ,= ,P2 ] , [ e , = ,∗ ] , [ t , = ,∗ ] , [ x , = ,∗ ] , [ name ,= , ’m4 ’ ] , [ type ,= , ’ t o g g l i n g ’ ] , [ va lue ,= , ’ ( f a l s e , f a l s e ) ’ ] }
38 }

Figure 5.3.3: Example of CAM mapping: WFU⊕m4 for achieving m4 in patient care business
process (cf. Rule 2 in Table 5.1.1).

subscribes to all attribute updates necessary for rule evaluation in this context (Lines
3,5,7). In addition, there are also subscriptions to other event contexts since PAC
rule evaluation requires the state of the prerequisite attribute, π, from the latest
B-Step (t− 1). This requires updating π in DWFU for all event contexts e that reach
PAC rules that potentially toggle π. This information can also be extracted from the
ePDGs, and WFU subscribes to updates in these event contexts (Lines 7-10). The
application logic definition is divided into two cases according to the above contexts:
if the context only causes a prerequisite update, i.e., ruleID R0 (Lines 16-18), DWFU

is updated and a visited event is generated (Line 33). If the context triggers the
PAC rule (i.e., ruleID > R0 ), it is evaluated similar to BLM (Lines 23-27) and an
event indicating the result is generated (Lines 35-37). WFUPAC is not involved in
B-Steps that are triggered by other event types.

WFUS — In CAM, this WFU type subscribes to toggling updates on status attribute
s in the context of such event types e, whose ePDG contains a PAC rule that

100



CHAPTER 5. GEO-DISTRIBUTION OF FLEXIBLE BUSINESS PROCESSES

potentially toggles s. The subscription is generated similar to WFUPAC. Compared
to BLM, the subtlety in CAM is to determine when exactly the value of s has
stabilized under (e, t, x). As a guiding example, we again refer to the WFU for status
attribute m4, which is depicted in Listing 5.3.4. For some events, both PAC rules are
in the ePDG, i.e., PAC⊕s and PAC	s (cf. T:BloodTest in Lines 20-23). For other
events, only one of them is in the ePDG, e.g., T:Registration (Lines 10-13). We
refer to this as the toggling cardinality of s under e. If a real toggling is received for
s (e.g., (true,false)), the toggling cardinality is irrelevant; s is updated in DWFU

and the stabilized value together with visited is indicated. However, if a single
no-toggling update was received by a WFUPAC (e.g., (true,true)), the application
logic must know if it can expect another toggling event (cardinality = 2), or if the
update was the only toggling (cardinality = 1). Once the cardinality of updates has
been received, the value of s from the latest B-Step is copied and published.

WFUD — In contrast to BLM, this WFU type only subscribes to updates on data
attribute d in the context of such events e that are specified to update d, and to the
start of B-Steps (visited of WFUSOURCE) for such events e that contain PAC rules
on their ePDG, which require d as part of the antecedent condition. If a data update
is received, the updated value is incorporated into DWFU and published together
with visited. If the start of a new B-Step is detected, the value from the latest
B-Step is copied and published.

WFUe
SINK — This WFU type describes the termination of a B-Step for a particular

event context e. It subscribes to visited events from all WFUs affected by e

(cf. CAM mapping for WFUSOURCE, WFUPAC, WFUS, and WFUD). Once, all
notifications are received for (e, t, x), a publication visited for WFUe

SINK is generated
to indicate that B-Step (e, t, x) has been completed.

The CAM mapping for the patient care process generates 82 WFUs in total. One
WFUSOURCE, 44 WFUPAC, 5 WFUD, 22 WFUS, and 10 WFUSINK due to the ten
event types specified in the model.
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5.3. GSM TO WORKFLOW UNIT MAPPINGS

SU
B

SC
R

IP
T

IO
N

S=
{

2
//

eP
D

G
of

ev
en

t
co

n
ta

in
s

at
le

a
st

a
si

n
g

le
PA

C
ru

le
th

at
p

o
te

n
ti

a
ll

y
fi

re
s

an
d

up
da

te
s

th
e

st
at

u
s

a
tt

ri
b

u
te

{[
e,

=
,’

T
:R

eg
is

tr
at

io
n

’]
,[

t
,=

,0
],

[x
,=

,’
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,∗
]}

||
{

[e
,=

,’
T

:R
ev

ie
w

’]
,[

t
,=

,0
],

[x
,=

,’
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,∗
]}

||
{

[e
,=

,’
T

:B
lo

od
T

es
t

’]
,[

t
,=

,0
],

[x
,=

,’
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,∗
]}

||
{

[e
,=

,’
T

:T
is

su
eT

es
t

’]
,[

t
,=

,0
],

[x
,=

,’
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,∗
]}

7
} A

PP
LI

CA
T

IO
N

LO
G

IC
=

{{
//

d
if

fe
re

n
ti

a
te

be
tw

ee
n

ev
en

t
ty

p
es

du
e

to
to

g
g

li
n

g
ca

rd
in

a
li

ty
{[

id
,=

,’
D

2
’]

,[
e

,e
q

,
’T

:R
eg

is
tr

at
io

n
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(

fa
ls

e
,t

ru
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
3

’]
,[

e,
=

,’
T

:R
eg

is
tr

at
io

n
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(t

ru
e

,t
ru

e
)

’]
,[

ca
rd

,=
,1

]}
12

||
{

[i
d

,=
,’

D
4

’]
,[

e,
=

,’
T

:R
eg

is
tr

at
io

n
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(t

ru
e

,f
a

ls
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
5

’]
,[

e,
=

,’
T

:R
eg

is
tr

at
io

n
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(

fa
ls

e
,f

a
ls

e
)

’]
,[

ca
rd

,=
,1

]}
}

O
R

{
||

{
[i

d
,=

,’
D

2
’]

,[
e,

=
,’

T
:R

ev
ie

w
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(

fa
ls

e
,t

ru
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
3

’]
,[

e,
=

,’
T

:R
ev

ie
w

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(t
ru

e
,t

ru
e

)
’]

,[
ca

rd
,=

,1
]}

17
||

{
[i

d
,=

,’
D

4
’]

,[
e,

=
,’

T
:R

ev
ie

w
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(t

ru
e

,f
a

ls
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
5

’]
,[

e,
=

,’
T

:R
ev

ie
w

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(
fa

ls
e

,f
a

ls
e

)
’]

,[
ca

rd
,=

,1
]}

}
O

R
{

||
{

[i
d

,=
,’

D
2

’]
,[

e,
=

,’
T

:B
lo

od
T

es
t

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(
fa

ls
e

,t
ru

e
)

’]
,[

ca
rd

,=
,2

]}
||

{
[i

d
,=

,’
D

3
’]

,[
e,

=
,’

T
:B

lo
od

T
es

t
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(t

ru
e

,t
ru

e
)

’]
,[

ca
rd

,=
,2

]}
22

||
{

[i
d

,=
,’

D
4

’]
,[

e,
=

,’
T

:B
lo

od
T

es
t

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(t
ru

e
,f

a
ls

e
)

’]
,[

ca
rd

,=
,2

]}
||

{
[i

d
,=

,’
D

5
’]

,[
e,

=
,’

T
:B

lo
od

T
es

t
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(

fa
ls

e
,f

a
ls

e
)

’]
,[

ca
rd

,=
,2

]}
}

O
R

{
||

{
[i

d
,=

,’
D

2
’]

,[
e,

=
,’

T
:T

is
su

eT
es

t
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(

fa
ls

e
,t

ru
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
3

’]
,[

e,
=

,’
T

:T
is

su
eT

es
t

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(t
ru

e
,t

ru
e

)
’]

,[
ca

rd
,=

,1
]}

27
||

{
[i

d
,=

,’
D

4
’]

,[
e,

=
,’

T
:T

is
su

eT
es

t
’]

,[
st

ep
,=

,’
cu

rr
en

t
’]

,[
na

m
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

to
g

g
li

n
g

’]
,[

va
lu

e
,=

,’
(t

ru
e

,f
a

ls
e

)
’]

,[
ca

rd
,=

,1
]}

||
{

[i
d

,=
,’

D
5

’]
,[

e,
=

,’
T

:T
is

su
eT

es
t

’]
,[

st
ep

,=
,’

cu
rr

en
t

’]
,[

na
m

e,
=

,’
m

4
’]

,[
ty

pe
,=

,’
to

g
g

li
n

g
’]

,[
va

lu
e

,=
,’

(
fa

ls
e

,f
a

ls
e

)
’]

,[
ca

rd
,=

,1
]}

}
}

32
N

O
T

IF
IC

A
T

IO
N

S=
{

//
v

is
it

ed
{[

id
,=

,P
0

]
,[

e
,=

,∗
],

[t
,=

,∗
],

[x
,=

,∗
],

[n
am

e,
=

,’
W

FU
m

4’
]

,[
ty

pe
,=

,’
v

is
it

ed
’]

,[
va

lu
e

,=
,’

tr
u

e
’]

}
//

va
lu

e
of

st
at

u
s

a
tt

ri
b

u
te

||
{

[i
d

,=
,P

1
]

,[
e

,=
,∗

],
[t

,=
,∗

],
[x

,=
,∗

],
[n

am
e,

=
,’

m
4

’]
,[

ty
pe

,=
,’

st
at

u
s

’]
,[

va
lu

e
,=

,∗
]}

37
}

F
ig

ur
e

5.
3.

4:
Ex

am
pl
e
of

C
A
M

m
ap

pi
ng

:
W

F
U

m
4
fo
r
m
an

ag
in
g
st
at
us

at
tr
ib
ut
e

m4
in

pa
tie

nt
ca
re

bu
sin

es
s
pr
oc
es
s.

102



CHAPTER 5. GEO-DISTRIBUTION OF FLEXIBLE BUSINESS PROCESSES

5.4 Geo-scale system deployment

The architecture presented in Figure 5.2.1 is divided into two main components: the
management infrastructure (left) and the execution infrastructure (right) 1.

The management infrastructure is implemented in the Workflow Manager, which
contains a Web Frontend, the Workflow Compiler, and the Workflow Deployment
Manager (WDM). The Web Frontend is implemented using the Google Web Toolkit
(GWT) and is comprised of a server-side implementation to manage models, including
import and export as XML, and a web-based client to graphically represent GSM
models. The modeling elements are also used to monitor the execution of individual
instances. The Workflow Compiler generates declarative descriptions of WFUs
according to the BLM and CAM mappings (cf. Listings 5.3.1, 5.3.2, 5.3.3, 5.3.4),
which can also be exported. The deployment of WFUs on geo-distributed computing
infrastructures is handled by WDM and organized in two phases: first, WDM forks
broker and WF Agent processes on remote machines over SSH and establishes an
overlay network. Then, WDM connects to the network and installs WFU descriptions
on available WF Agents. To install a WFU at the right geo-destination, every
WF Agent subscribes to special control events including its own agentId. WDM
generates deploy events with the agentId of the target and attaches the intended
WFU description. WF Agents receive such events, unwrap the WFU, and instantiate
it. After WFU deployment, the execution of workflow instances can start.

The execution infrastructure of our system is realized in the PADRES geo-scale
event management infrastructure and is comprised of a set of WF Agents that are
connected to an overlay of pub/sub message brokers [41]. WF Agents are software
components that execute the application logic of any WFU and implement the
pub/sub interface to communicate with each other over the brokers. A WF Agent
parses a WFU description, determines the type of WFU, instantiates the WFU
accordingly, and, during execution, handles workflow events as dictated by the WFU.

1Demo video available under: https://www.youtube.com/watch?v=MgZfg8FDJMk
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5.4. GEO-SCALE SYSTEM DEPLOYMENT

Algorithm 5.4.1: Process workflow event at WF Agent.
input :wfe = (e, t, x, name, value, type)
Result: process workflow event wfe at WFUPAC

1 rc ← LDS[e, t, x] . record for current B-Step
2 rl ← LDS[e, t− 1, x] . record for last B-Step
3 updateRecordWithEvent(rc,wfe)
4 if stabilized(rc) ∧ stabilized(rl) then
5 R← match(AL, rc) . match rule logic with B-Step data
6 updateRecordWithRule(rc,R) . update with matching result
7 notify(rc,R) . publish notifications
8 return

The initialization phase is comprised of three steps:

• First, the WF Agent issues all subscriptions from the WFU description to the
broker network.

• Next, the WF Agent instantiates a local data store (LDS). The LDS is a multi-
versioned representation of the data model DWFU , which is derived from the S
and N components of the WFU. LDS is implemented as a map that is indexed
by the B-Step identifier (e, t, x) and maintains all attributes in DWFU . Every
attribute contains three fields: name, type, and value. Toggling attributes
also contain a field count to store the number of toggling updates received.

• Last, a rule engine to evaluate the application logic of the WFU is instantiated
with the rules given in the AL component of the WFU. The rule engine is
based on a rete structure to match facts, i.e., the data collected for B-Steps in
LDS, against these rules.

5.4.1 WFU Evaluation at WF Agents

The actual evaluation of a WFUPAC at a WF Agent is described in Algorithm 5.4.1.
As input, the WF Agent receives a workflow event wfe encoding an attribute update.
The event follows the triple-format specification given in Section5.3 and consists
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Algorithm 5.4.2: Generate notifications.
input : r, R
Result: publish notifications for record r and set of matching application logic

rules R.
1 visitedEvent← instantiate(N [P0], r)
2 publish(visitedEvent)
3 if R 6= ∅ then
4 toggleEvent← instantiate(N [P1], r)
5 publish(toggleEvent)
6 else
7 noToggleEvent← instantiate(N [P2], r)
8 publish(noToggleEvent)
9 return

of a B-Step identifier (e, t, x), an attribute name, type, and value. First, the key
(e,t,x) is extracted from the event, and the corresponding current B-Step record
(rc) is retrieved from LDS (Line 1) and updated with the event content (Line 3).
If no record was found, this indicates a new B-Step to the WF Agent and a new
record is created; all attribute values are initialized to null. The attribute value
encoded in wfe is then used to update the corresponding attribute in rc. If the event
represents an update of a toggling attribute, the update counter for this attribute is
incremented, which is necessary to check the toggling cardinality afterwards. After
updating the record, both the current record and the record from the latest B-Step
(rl) are checked for stability (Line 4). A record is stable if all its attributes have been
updated for that B-Step and for all toggling attributes the necessary cardinality has
been received. If both records are stable, the record rc is put into the rule engine to
determine the set of matching application level rules (Line 5). The matching rules
are used to update LDS (Line 6) and to generate events indicating the result to other
WFUs (Line 7). Event generation and publication is described in Algorithm 5.4.2.
First, a visited event is generated (template P4 in the N component of WFUs);
if at least one of the rules matches (Line 3), a toggling event is generated and
published (Line 4 and 5), while if none of them match an event indicating that the
attribute will not toggle is generated and published (Line 7 and 8).
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5.5. EXPERIMENTAL EVALUATION

Model Description #s PDG ePDG* ePDG BLM* CAM*
2-Stg-Seq A sequence of two stages (tasks) 4 8 4 2.6 14 16
4-Stg-Seq A sequence of four stages (tasks) 8 16 4 3.2 26 30
1-in-3-Split A parallel split, where termination of one stage

opens three other stages
8 16 8 3.2 26 30

1-in-9-Split A parallel split, where termination of one stage
opens nine other stages

20 40 22 3.8 60 72

10-Stg-Seq A sequence of ten stages (tasks) 20 40 4 3.6 60 72

Table 5.5.1: Synthetic workflow models for evaluation.

5.5 Experimental Evaluation

We experimentally evaluated our approach in an OpenStack cloud infrastructure.
Every virtual machine (VM) was equipped with 2GB RAM, 2 vCPUs @2GHz, and
Ubuntu 14.04.1 LTS.

We compared the performance of BLM and CAM for different models, ePDG sizes,
broker topologies, and WFU deployments on varying numbers of VMs. In all
experiments, we applied two metrics: the average B-Step latency refers to the time
it takes to compute a single B-Step; the B-Step throughput refers to the number of
B-Steps executed per unit of time. B-Steps are a good metric because they represent
the full impact of an external event e on a GSM instance, i.e., PAC rule firing and
attribute mutations. This corresponds to the evaluation of all relevant WFUs in
our system including the transmission of notifications. We used two different broker
overlay networks: a single broker and a tree structure comprised of three brokers.
Each broker was deployed on a dedicated VM. The WF Agents were uniformly
distributed over a varying number of VMs and their connections were uniformly
distributed across all brokers.

Performance of Patientcare BP — In a first experiment, we compared the
performance of our system based on the BLM and CAM mappings of the Patientcare
BP. We used both the single broker and the three-brokers-network to connect a
varying number of VMs for executing the WFUs. A uniform distribution of external
event types was used to trigger 1000 B-Steps. The results are depicted in Figure 5.5.1.
In general, CAM outperforms BLM, especially, with increasing numbers of VMs. For
instance, for 15 VMs, CAM offers a speed-up of 5X in terms of throughput, and
latency is reduced by 80%. This can be explained by the fewer WFUs being involved
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and the fewer messages being generated in CAM, as well as by the reduced load on
single VMs when scaling out. However, increasing the amount of brokers did not
influence performance significantly. Although, the load on a single broker can be
reduced as not all publications are routed through all three brokers, however, some
publications need two additional hops compared to the single broker case, which
negatively effects performance.
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Figure 5.5.1: Evaluation of Patientcare business process: impact of mapping type and broker
topology on performance.

To obtain insights about factors influencing performance, we also used synthetic
models reflecting two core patterns, which are the basis for all workflows: task
sequences and parallel task splits/merges. In GSM, a task sequence is modeled as a
sequence of stages, where the achievement of a stage’s milestone triggers the next
stage. A split is modeled as a stage whose closing opens a set of other stages in
parallel. A description of these models is provided in Table 5.5.1. For each model,
the number of status attributes (#s), the number of nodes in the PDG (PDG), the
longest ePDG (ePDG∗), and the average number of nodes in ePDGs (ePDG) is given.
In addition, the number of WFUs resulting from both mappings is given (BLM* and
CAM*, respectively).
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Impact of model type on performance — First, we compared BLM and CAM
for all models in Table 5.5.1. For both mappings, the generated WFUs have been
uniformly deployed on ten WF Agent VMs and we used a uniform distribution of
external events to trigger 1000 B-Steps. The results are depicted in Figure 5.5.2.
With increasing model size (#s), both mappings show increased latency and reduced
throughput. However, the CAM mapping performs always better, especially, with
larger models (about 75% less latency and 400% throughput compared to BLM).
This behavior can be explained by the different sizes of PDG (relevant for BLM) and
ePDG (relevant for CAM), resulting in less WFUs involved in executing the CAM
mapping.
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Figure 5.5.2: Evaluation of BLM vs. CAM: impact of model type on performance. Fixed
deployment on 10 WF agent VMs.

Impact of mapping on scaling — Next, we compared the scaling behavior of
BLM and CAM based on model 10-Stg-Seq. For both mappings, the generated
WFUs were uniformly allocated to a varying number of WF Agent VMs. The results
are depicted in Figure 5.5.3. With increasing degree of distribution, both mappings
offer better performance in terms of latency and throughput. CAM, however, scales
much better compared to BLM. For 15 VMs, throughput is 5X the throughput of
BLM, while the performance difference for 2 VMs is only 0.5X; latency behavior is
similar. This behavior can be explained by the reduced number of WFUs involved
in the CAM execution for a particular external event, which provides a better
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distribution of the system load for the processing of 1000 B-Steps.
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Figure 5.5.3: Mapping comparison: impact on scaling performance for model 10-Stg-Seq.

CAM: impact of ePDG on performance — Last, we focused on the CAM
mapping and investigated the impact of the ePDG size on performance. We allocated
the WFUs for model 2-Stg-Seq (ePDG* = 4) and 1-in-9-Split (ePDG* = 22)
uniformly to a varying number of WF Agents. We only used the external event
type with the longest ePDG to execute 1000 B-Steps. The results are depicted in
Figure 5.5.4 and show that smaller ePDGs have a positive impact on performance,
especially, with higher degrees of distribution (throughput tripled for 15 VMs). Again,
the explanation for the behavior is the reduced number of WFUs in the B-Step
execution, this time, due to the smaller ePDG size.

Evaluation summary — There are three main results obtained from the evaluation:
first, both mappings are scalable, i.e., show increased performance w.r.t. B-Step
latency and throughput; CAM, however, scales much better than BLM. Second,
CAM always offers better performance compared to BLM; especially, sequential task
patterns benefit, while parallel splits are costly. Third, in CAM a lower ePDG size
for a particular B-Step significantly increases performance.
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Figure 5.5.4: Evaluation CAM Mapping: impact of ePDG size.

5.6 Summary

In this chapter, we presented a conceptual architecture and a geo-scale distributed
system addressing the combination of two current challenges in business process
management: the automated execution of (1) flexible business processes that are (2)
geographically scattered across different organizational units. The main problem in
such scenarios is to maintain locality of process- and data fragments to provide the
privacy of sensitive information, while integrating sub-processes across organizational
boundaries.

Our system is founded on the well-established Guard-Stage-Milestone (GSM) meta-
model theory, a generalization of flexible business processes and the formal basis of
CMMN. We introduced a management infrastructure and a fully distributed execution
engine for GSM workflows based on Workflow Units (WFUs), independent system
components that represent the unit of distribution in our architecture. WFUs manage
individual rules and attributes in GSM workflows and provide a fragmentation of
the business process. We presented two mapping implementations of GSM into
the WFU representation: The first, our baseline mapping (BLM), directly stems
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from our theoretical publish/subscribe formulation of GSM presented in Chapter 4.
The second, an optimized context-aware mapping (CAM), results from the practical
insights we obtained from implementing BLM. In contrast to BLM, CAM considers
the type of external events to reduce the computational overhead and network
communication delay that are further magnified at geo-scale. Our experimental
evaluation in a cloud environment showed that both mappings are scalable but
CAM outperforms BLM. In particular, CAM reveals its strengths for sequential task
patterns in workflows, while task splits/merges are more costly.
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Chapter 6

Multi-client Transactions in
Distributed Publish/Subscribe

Publish/subscribe middleware offers a powerful integration and coordination platform
for workflow management systems (WFMSs). However, horizontally scaling a WFMS
with an increasing number of workflow instances requires a replication of those
components in the WFMS that handle individual instances. Replication, however,
requires a higher degree of coordination than usually supported by pub/sub.

Use case — In this part of the work, we study the following scenario stemming
from an industry-inspired application [49, 90]. It can be realized over a pub/sub
architecture as depicted in Figure 6.1(a). A network of five brokers (B1 - B5) connects
all clients involved. The WFMS is realized by two workflow Agents (A1 and A2).
A Dispatcher (D) dispatches new instances to one of the agents. The Environment
clients (E1 and E2) invoke new instances or update existing instances. The sequence
diagram in Figure 6.1(b) depicts the dispatching of an instance x1 for process p1,
created by E2, through publication pub(p1,x1,0). This publication is routed to D,
which, in turn, sends an assign publication pub(assign,A1,p1,x1) to A1. Now, A1
subscribes to updates for that process instance (sub(p1,x1)), while, at the same
time, D unsubscribes to such events (unsub(p1,x1)). The expected system behavior
is that now all update events for x1 (e.g., pub(p1,x1,1)) are only delivered to A1.
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(a) Pub/sub overlay.
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(1) txPub(p1, x1, 0)

(2) txPub(assign,A1, p1, x1)

(3) txSub(p1, x1)

(4) txUsub(p1, x1)

(5) txPub(p1, x1, 1)

beginTX()

commitTX()

(b) Pub/sub operation sequence.

Figure 6.0.1: Use case: instance dispatching in WFMS.

However, during the dispatching transition, the destination of update events to x1 is
not guaranteed to be A1. This can happen because the subscription has not been
propagated through the whole overlay, i.e., updated all PRTs between A1 and E2.
Moreover, there is a chance for duplicate delivery of events when the un-subscription
by D has not completely been propagated. In summary, the problem is that all four
operations need to be executed atomically, in the order imposed by the clients, and
isolated from any other concurrent operation, e.g., successive publications to the
same instance. These requirements can be captured as ACID semantics for pub/sub.

This chapter presents an approach for realizing multi-client transactions in distributed
content-based publish/subscribe systems. Section 6.1 introduces a formalization of
the distributed content-based publish/subscribe model, which provides the basis for
our formal pub/sub transaction model presented in Section 6.2. Here, we propose
different levels of the ACID semantics for expressing multi-user transactions. In
Section 6.3, we describe D-TX, our first solution for supporting transactions, which
allows a set of operations to be defined at run-time, provides sequential consistency,
serializability, and atomicity. S-TX, our second distributed solution, which relies on
static knowledge of all operations in a transaction, providing weak isolation, sequential
consistency, and atomicity is presented in Section 6.4. Finally, a comprehensive
evaluation comparing the strengths of both solutions with a baseline solution, which
mimics part of the transaction behavior by manual operation delays, is presented in
Section 6.5 before we summarize in Section 6.6.
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6.1 Distributed content-based publish/subscribe

The foundation of our approach is the distributed content-based pub/sub model
including an advertisement optimization for subscription routing [41, 42] that we
formalize next.

6.1.1 Event space formalization

The basis of the content-based pub/sub model is a d-dimensional event space Ed,
where each dimension is representing an attribute Ai with domain dom(Ai).

Ed = A1 × A2 × A3 × · · · × Ad

The domain dom(Ai) is predefined and ordered; the lowest and highest values are
denoted by li and ui, respectively.

A filter F on Ed is defined as a set of predicates p1, . . . , pd, such that the ith predicate
represents an interval of values [pli, pui ] for attribute Ai within dom(Ai), where pli ≥ li

and pui ≤ ui. With Fp, we refer to a special filter called point filter, if and only
if, every predicate pi ∈ Fp represents a single value from dom(Ai), i.e., ∀pi ∈ F :
pli = pui . Otherwise, we refer to a filter as a range filter, denoted by Fr, if at least
a single predicate pi ∈ Fr defines an interval with more than a single value, i.e.,
∃pi ∈ F : pli < pui . Two filter relations enable the expression of a matching and
a conflict relation among operations: overlap (ω: Definition 13) and subsume (σ:
Definition 14).

Definition 13. Filter overlap: The overlap of filters Fg and Fh is defined as a
Boolean function ω(Fg, Fh) that returns true, if and only if ∃Ai ∈ Ed such that
Fg(pi) ∩ Fh(pi) 6= ∅; i.e., if at least the predicates for a single attribute overlap.

Definition 14. Filter subsumption: The subsumption of a filter Fh by Fg is
defined by a Boolean function σ(Fg, Fh) that returns true, if and only if ∀pi ∈ Fg, Fh :
Fh(pli) ≥ Fg(pli) ∧ Fh(pui ) ≤ Fg(pui ); i.e., each predicate ∈ Fg is an interval containing
the predicate in the other filter (Fh).
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6.1.2 Elementary publish/subscribe operations

Based on the event space formalization Ed and the filter concept F , we now formalize
the set of elementary pub/sub operations. We assume that an operation is issued by
a client ci ∈ C = {c1, . . . , cn}.

OPS = {pub(Fp), adv(F ), uadv(F ), sub(F ), usub(F )}

where F and Fd represent filters on Ed. To refer to a particular client, ci, issuing
operation op ∈ OPS, we write op[ci](F ); operations have the following semantics:

• pub(Fp) – publishes an event that is represented by a point filter Fp on Ed, i.e.,
it describes a single value from the domain of each attribute Ai ∈ Ed.

• adv(F ) – advertises events a client will publish in the future. The set of
advertisements, Ac, a client issued forms the clients publication space: F c

pub =⋃
Fi∈A Fi. Every publication, pub[c](Fp), must be matched by F c

pub, such that
σ(F c

pub, Fp) returns true.

• uadv(F ) – unadvertises a prior advertisement adv(F ) of a client. Effectively,
an unadvertisement reduces the client publication space to F c

pub = ⋃
Fi∈A Fi \F .

• sub(F ) – subscribes to publications from other clients, pub(Fp), that match
the subscription, i.e., σ(F, Fp) returns true. The set of subscriptions, Sc, a
client issued forms the clients subscription space: F c

sub = ⋃
Fi∈S Fi.

• usub(F ) – unsubscribes a prior subscription sub(F ) of a client. Effectively, an
unsubscription reduces the client subscription space to F c

sub = ⋃
Fi∈S Fi \ F .

A notification represents the delivery of a publication, pub(Fp), to an interested client
c if σ(F c

sub, Fp) returns true. The set of notifications a client received over time is
represented by Nc.
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6.1.3 Broker network

A network of brokers, B = {b1, . . . , bn} is used to store, process, and forward pub/sub
operations. The processing mainly involves matching different operations and can be
expressed by the overlap function ω(Fg, Fh) and the subsumption function σ(Fg, Fh).
Advertisements, adv(F ), are broadcast to all brokers and stored in a Subscription
Routing Table (SRT), i.e., a list of [adv, lastHop]-pairs, where lastHop points to a
broker or client that sent the operation. A subscription sub(Fs) is matched against
all adv(Fa) ∈ SRT at a broker, where a successful match is defined by ω(Fs, Fa) = >.
Matching subscriptions are stored in a Publication Routing Table (PRT), which
is a list of [sub, lastHop]-pairs, and forwarded to the lastHops of the matching
advertisements. Non-matching subscriptions are buffered until they match a later
advertisement and get forwarded (i.e., the advertisement attracted the subscription);
a publication pub(Fp) is matched against all sub(Fs) ∈ PRT, where a successful match
is defined by σ(Fs, Fp) = >. Not matching publications are dropped; matching
publications are forwarded to the lastHops of the matching subscriptions and
eventually clients are notified.

6.2 Transactional content-based publish/subscribe
model

We now present our formal transaction model for distributed content-based pub/sub
systems (cf. Section 6.1). We first present our definition of transactions in the context
of pub/sub and the ACID properties. We then focus on two specific properties,
consistency and isolation, and demonstrate how they can be supported in a distributed
pub/sub system with multi-user transactions.
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6.2.1 Definition and properties of a transaction

A pub/sub transaction, TPS, consists of a sequence of elementary pub/sub operations
o1, . . . , on, where oi ∈ OPS. Each operation is a pub/sub operation, which originates
from any client in the system. In this way, a transaction can involve multiple users,
with operations originating from different sources. Additionally, each transaction is
distributed, since the pub/sub operations must be applied at various brokers, which
communicate only using overlay links.

In Definition 15, we define the ACID semantics for a pub/sub transaction TPS =
{o1, . . . , on}, oi ∈ OPS, executed on a pub/sub system Π = (B,C), where a set of
clients C = {c1, . . . , cm} is connected to a broker network B = {b1, . . . , bk}.

Definition 15. ACID semantics in pub/sub. We define the ACID semantics
for a transaction TPS as follows:

• atomicity – either all operations ∈ TPS are successfully processed by Π or none
of them. In particular, the SRTs of brokers are updated with the adv/uadv
operations, the PRTs are updated with the sub/usub operations, and clients
are notified with publications pub ∈ TPS.

• consistency – TPS transitions a correct pub/sub system state Σ into another
correct state Σ∗ (cf. Definition 16). A correct state transition by TPS is defined
through internal and external consistency:

1. internal consistency: every operation op ∈ TPS is executed on a consistent
state Σ of Π. In particular, the states of SRTs and PRTs are consistent
across all brokers b ∈ B while processing op1.

2. external consistency: the order in which the operations of TPS are
processed by Π is prescribed by the order expressed by the application
semantics.

1To better understand internal consistency consider an overlay with two brokers b1 and b2.
A publication, p1, first arrives at b1, where it is processed based on the PRT of b1, and is then
forwarded to b2. If the PRT of b2 represents a different state compared to the PRT of b1 consistency
is violated. A different state might be reached because a subscription was concurrently processed
by b2 and modified its PRT.
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• isolation – TPS only reads the latest committed state. In particular, any
sub/usub only reads the SRTs and any pub only reads the PRTs of brokers
constructed by the latest committed transaction (serializability).

• durability – a committed transaction, i.e., all routing state changes in B and
all event notifications in C are durable and survive node and network failures.

Definition 16. Consistent pub/sub system state: A consistent pub/sub system
state Σ for Π = (B,C) is defined as the state that is reached at all brokers bi ∈ B,
i.e., SRTs and PRTs, and all clients ci ∈ C, i.e., F c

pub, F c
sub, and Nc, after completely

applying a single operation op ∈ OPS.

Atomicity is taken into consideration in our designs (see Section 6.3 and 6.4). For
durability, we employ existing techniques for tolerating broker failures such as [86],
which will not be described in this work. For consistency, the main challenge is
maintaining external consistency for multi-user transactions, since pub/sub clients are
acting in an asynchronous and decoupled manner. For isolation, the main challenge
comes from the distributed nature of the pub/sub system, which can be modeled as
a replicated database, where each broker maintains a partial copy of the pub/sub
state.

6.2.2 Multi-user consistency

An inherent prerequisite to reason about consistency in multi-user transactions is a
definition of a working order between operations from different clients. Therefore,
we first introduce a special operation tcm(Fp) (transaction control message) and add
it to the set of elementary pub/sub operations, tcm(Fp) ∈ OPS. A tcm is a special
type of publication specified to trigger other operations at the receiving client, e.g.,
a client receiving a tcm issues a subscription sub. Our model provides three different
mechanisms to express an order between operations, as specified in Definition 17.

Definition 17. Transaction construction: A transaction TPS has a coordinator
TXC ∈ C and identifier txID. The TXC issues the first operation together with
txID; then, the complete operation sequence is constructed by:
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1. TXC operation – the TXC issues more operations ∈ OPS to B using txID.

2. TCM-triggered operation – a client that received a tcm for txID, issues its own
operations using txID.

3. Internally-triggered operation – a broker that received an adv (or uadv) op-
eration matching a buffered subscription forwards the sub (or usub) using
txID.

Consistency – In our model, a consistent state transfer is defined by internal
and external consistency. Our formulation of the pub/sub ACID semantics defines
a consistent state transfer through internal and external consistency. While in-
ternal consistency is already precisely described, external consistency requires a
consistency model. Essentially, all operations should be executed according to an
application-specific order, i.e., the sequential order, in which clients issued them (cf.
Definition 18).

Definition 18. Sequential consistency: External consistency in TPS is defined
as a sequential order relation among operations, denoted <SO, by the following rules:

1. Thread—for any two operations a, b ∈ TPS issued by the same client: if a
happened before b, then a <SO b.

2. Trigger—for two operations a, b ∈ TPS: if a triggers b, where b is either an
internally-triggered-operation at a broker or a TCM-triggered-operation at a
different client, then a <SO b.

3. Trigger* – for three operations a, b, and c: if a <SO b according to rule Trigger,
and if a <SO c according to rule Thread, then b <SO c. In other words, every
triggered operation is ordered prior to any subsequent operation from the same
client.

4. Transitivity – for any three pub/sub operations a, b, and c, if a <SO b and
b <SO c, then a <SO c.

For two operations a <SO b ∈ TPS, the pub/sub system Γ = (B,C) must completely
process a before b. In particular, every broker b ∈ B must process a before b.
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a1:adv(x) a1:adv(x)
s1:sub(x)

t1:tcm(x)
s2:sub(y)

p1:pub(y)

s0:sub(x)

TXC

Figure 6.2.1: Example for sequential consistency.

An example for consistent ordering of operations in a transaction is depicted in
Figure 6.2.1. In this example, a subscription s1 by client C2 is buffered at B2 before
the actual transaction starts. The subscription is buffered due to a lack of matching
advertisements at B2. In the transaction, client C1 acts as TXC and issues three
operations: first, advertisement a1 = adv(x), followed by TCM t1 = tcm(x), and
publication pub(y). According to rule Thread, the TXC operations are ordered
a1 <

SO t1 <
SO p1. According to rule Trigger, a1 <

SO s1, i.e., the advertisement
a1 attracts the subscription s1, and t1 <SO s2, i.e., the TCM triggers subscription
s2; and according to rule Trigger*, s1 <

SO t1 and s2 <
SO p1, which results in the

following processing sequence of operations: a1, s1, t1, s2, p1.

6.2.3 Distributed isolation

We define isolation in our pub/sub model by specifying, for two concurrent trans-
actions, which updates made by one transaction should be visible to the other
transaction.

In pub/sub, updates refer to changes in the routing state of brokers, i.e., SRT and
PRT. (Un-) advertisements update the SRT: every adv() writes an entry and every
uadv() removes an entry from the SRT. (Un-) subscriptions read from the SRT and
update the PRT: every sub() writes an entry and every usub() removes an entry from
the PRT. Similarly, publications pub read the PRT.
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A major problem of not properly isolating transactions in distributed pub/sub
is that publications might get delivered to unintended recipients. Consider, for
example, a scenario in which two transactions t1 = {sub[c2](x), usub[c3](x)} and
t2 = {pub[c1](x)} concurrently execute. Transaction t1 can be seen as the intent to
move a subscription sub(x) from client c3 to client c2, so that any of the following
publications is no longer notified to c3 but to c2. In general, there are three ways to
schedule the operations of t1 and t2:

1. pub[c1](x), sub[c2](x), usub[c3](x)

2. sub[c2](x), pub[c1](x), usub[c3](x)

3. sub[c2](x), usub[c3](x), pub[c1](x)

Only the first and the third schedule describe the intended system behavior. In the sec-
ond schedule pub[c1](x) is routed to both c2 and c3 because (1) σ(sub[c2](x), pub[c1](x))
and σ(usub[c3](x), pub[c1](x)), i.e., the operations are conflicting, and (2) the unsub-
scription usub[c3](x) was not processed yet. In fact, the PRT state which was read
for x in order to process pub[c1](x) was consistent but it was not committed and
subject to further changes by t1.

To avoid this, every transaction must always read the latest committed state from
SRTs and PRTs, defined as serializability. For two transactions t1 and t2, if t1 commits
before t2 (denoted t1 < t2), then all operations ∈ t2 must be processed based on
state written by t1; in particular, if t1 changed the routing state for a filter F , then
t2 must read the updated state.

6.3 Dynamic Transaction Service

In this section, we describe the design and implementation of our D-TX approach.
D-TX supports tree-based broker overlays and dynamic pub/sub transactions, where
a TXC initiates the transaction with an arbitrary operation (e.g., a tcm), unaware

122



CHAPTER 6. MULTI-CLIENT TRANSACTIONS IN DISTRIBUTED
PUBLISH/SUBSCRIBE

of operations by other clients (e.g., a sub triggered by the tcm). Atomicity is
achieved by adapting the 2-phase commit protocol to distributed pub/sub systems.
Isolation is realized through a snapshot isolation algorithm and optimistic concurrency
control. For sequential consistency, we propose an acknowledgment-based approach
to guarantee the working order of pub/sub operations.

Frequently used acronyms, components, and message formats are summarized and
briefly explained in Table 6.3.1.

Table 6.3.1: D-TX notation.

txID transaction identifier, tuple (clientID + txSeqNo)
RS stable routing state of broker, i.e., SRT and PRT
SSID version of stable routing state RS at broker
TXContext context for particular transaction, based on snapshot of latest

committed transaction (baseSSID)
TXRS isolated routing state for a particular transaction
txMap index structure to map txIDs to TXContexts
txDependencies structure to maintain transaction commit order
ackMap structure to manage pending acknowledgments
TXManager transaction handler component of client
tcm(Fp) TCM operation (using point filter)
initMsg(txID,ssID) initialization message for txID
initAckMsg(txID,ssID) acknowledgment for initMsg()
opMsg(txID,opID,op) operation message for op ∈ OPS
ackMsg(txID,opID) acknowledgment for opMsg()
prepMsg(txID) prepare message for transaction
prepAckMsg(txID,status) acknowledgment for prepMsg()
cmtMsg(txID) commit message for transaction
abtMsg(txID) abort message for transaction

6.3.1 D-TX overview

Processing a transaction in D-TX is staged into three phases and invoked by the TXC.
The purpose of the initialization phase is two-fold: first, all brokers in the overlay
are informed about the new transaction and agree on a common snapshot (i.e., the
latest committed transaction) to create the transaction context. Second, a commit
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order among concurrent transactions is established. After initializing the transaction,
the actual pub/sub operations are processed in the operation phase. Sequential
operation processing is achieved through a nested acknowledgment mechanism that
notifies the TXC once all operations have successfully been applied. The final
termination phase adopts a 2-PC protocol, tailored to distributed pub/sub systems,
to commit the transaction: first, in a prepare round, all brokers are informed about
the commit intent. Then, every broker verifies if all transactions ordered prior to the
committing one have terminated and whether conflicts exist or not. If conflicts exist,
the transaction aborts, otherwise, the transaction commits (commit round).

6.3.2 D-TX client design

Now, we present the client design of D-TX: We describe the client interface and the
concepts relevant to managing transactions. Every client can take one of two roles
in the context of a transaction: as the coordinator of the transaction (TXC), or as a
participant in the transaction (TXP).

Client API – D-TX extends the standard pub/sub interface with a callback handler
notify() to deliver incoming publications to an application (cf. Table 6.3.2).

Table 6.3.2: Client interface.

beginTX():String initialize transaction, returns txID
commitTX(txID):status terminate tx: returns comitted or aborted
txTCM(txID,Fp):void send tcm using txID
txPub(txID,Fp):void publish using txID
txAdv(txID,Fr):void advertise using txID
txUadv(txID,Fr):void un-advertise using txID
txSub(txID,Fr):void subscribe using txID
txUsub(txID,Fr):void un-subscribe using txID
notify():publication callback: returns publication received

In addition, the method txTCM() enables the construction of distributed transactions.
Like a publication, txTCM() specifies a single point from an event space, while the
remaining operations take a range filter as input. Every operation is labeled with
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the txID of the associated transaction. beginTX() triggers the initialization phase
through an initMsg and returns a txID; commitTX(txID) terminates the transaction.

Our use case scenario can be implemented as sketched in Figure 6.1(b), where
operations (1) and (2) are realized with txTCM().

Transaction management – Internally, a client maintains a transaction manager,
TXManager, for every transaction it is involved in. TXManager invokes the initializa-
tion and termination protocol and manages the sequential execution of operations.
To this end, it maintains a data structure operations, which stores all operations
received from client API calls. Every operation is described by a tuple (seqNo,
opID, op, status), where seqNo is a sequence number for local operations, opID is a
globally unique operation identifier, op is the actual operation, and status describes
whether the operation has already been processed (acknowledged), is currently being
processed (active), or is buffered due to pending prior operations.

Before any operation is processed, TXManager must complete the initialization phase,
i.e., wait for the corresponding acknowledgment (initAckMsg). Similarly, in order to
terminate a transaction, the TXManager waits for all operations being processed before
invoking the termination phase through a prepMsg. Depending on the outcome, it
returns committed or aborted.

6.3.3 D-TX broker design & protocol

An overview of the broker architecture is depicted in Figure 6.3.1. A broker has a
single input queue for incoming messages and a dedicated output queue for each
connected client or broker. The main component of a broker is the transactional
router (TXRouter) handling protocol messages for all three phases in FIFO order
within a single thread.

TXRouter maintains a stable version of the routing state (RS), which reflects the SRT
and PRT generated by the latest committed transaction; SSID refers to the version,
i.e., the txID of the transaction that produced RS. On initialization, an isolated base
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Figure 6.3.1: Internal broker architecture in D-TX.

snapshot, i.e., a copy of RS, is taken to form a new transaction context (TXContext).
This context is used to process all operations of the transaction using its transactional
routing state TXRS; every operation is either processed by TXRS or updates TXRS. On
commit, TXRS is checked for conflicts with concurrent transactions ordered prior to
the current one; if no conflicts are detected, it is merged with RS, else, it is discarded
and the transaction aborts.

To keep track of all transactions and their dependencies, txMap provides access to
each TXContext and txDependencies captures the commit order among concurrent
transactions. For each txID, it stores references to all transactions whose base
snapshot is taken from txID. The order among concurrent transactions in this list is
implicitly given through the lexicographical order of their txIDs. In Figure 6.3.1,
for instance, a transaction tx1 serves as a base snapshot for tx2 and tx3, where
tx2 < tx3. A transaction can be in various states: activeTXs indexes all active
transactions, i.e., transactions that still process operations, preparedTXs indexes
all transactions that are currently in the prepare phase, and committedTXs and
abortedTXs maintain a history of committed and aborted transactions, respectively.
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Initialization phase – The purpose of this phase is to inform all brokers about a new
transaction, agree on a common base snapshot and establish a consistent order among
concurrent transactions. The initialization protocol is shown in Algorithm 6.3.1.

A broker receiving an initialization message (initMsg) from the TXC, determines the
base snapshot version for the transaction (ssID) based on its stable state (SSID) and
forwards initMsg(ssID). Every broker without further neighboring brokers generates
a new transaction context, adds the transaction to the set of active transactions,
and responds with an acknowledgment initAckMsg(txID,ssID). To keep track
of whether all neighboring brokers have initialized the transaction properly, every
broker maintains an initAckMap with entries for every broker the initMsg has been
forwarded to. After receiving all pending acknowledgments, a broker initializes the
transaction itself and sends an acknowledgment to the origin of initMsg. Due to
the tree structure of the broker overlay, message propagation is acyclic and the
TXC eventually receives an initAckMsg indicating that all brokers have initialized
the transaction. In general, it is possible that during the initialization phase other
transactions concurrently commit. However, the protocol is still safe because a base
snapshot was selected that has been committed at every broker in the network.

Operation phase – The purpose of this phase is to process all operations of a
transaction constructed according to Definition 17, i.e., in the order specified by
participating clients. The protocol is shown in Algorithm 6.3.2.

Handle operation message – The TXManager of a client generates an operation
message, opMsg = (txID,opID,op) and sends it to the broker it is connected to.
Brokers receiving an opMsg from some broker/client origin, access the corresponding
TXContext and generate an entry, oEntry, for op in the ackMap. oEntry keeps track
of whether the broker can acknowledge processing of the operation to origin.

First, every broker checks if op triggers further internal operations, tOp, such as
buffered subscriptions (Line 6). If yes, another entry, tEntry, with a dependency
to op is created, and tOp is added as pending operation to oEntry (Lines 8–11).
The broker must then wait for the completion, i.e., acknowledgment, of tOp before
acknowledging op itself. The triggered operation is now forwarded to the newly
matching destinations and pending ack references are added to tEntry (Lines 12–14).
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Algorithm 6.3.1: Initialization phase in D-TX.
1 Procedure handleInitMsg(txID, ssID) from origin
2 if origin = CLIENT then ssID = SSID
3 iEntry ← createInitAckEntry(ssID, origin)
4 initAckMap.put(txID, iEntry)
5 neighbors = brokerNeighbors \ origin
6 if neighbors = ∅ then
7 txCtx ← newTXContext(txID, ssID)
8 txMap.put(txID, txCtx)
9 activeTXs.add(txID)

10 ackMsg ← createInitAckMsg(txID, ssID)
11 send ackMsg to origin
12 else
13 forall broker ∈ neighbors do
14 iEntry.addPendingAck(broker)
15 forward txInitMsg to broker
1717

18 Procedure handleInitAckMsg(txID, ssID) from origin
19 iEntry ← initAckMap.get(txID)
20 iEntry.removePendingAck(origin)
21 if iEntry.getPendingAcks() = ∅ then
22 txCtx ← newTXContext(txID, ssID)
23 txMap.put(txID, txCtx)
24 activeTXs.add(txID)
25 forward initAckMsg to iEntry.getOrigin()
26 else

// wait until all ACKs are receved.
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Algorithm 6.3.2: Pub/Sub operation processing in D-TX.
1 Procedure handleOpMsg(txID, opID, op) from origin
2 ctx ← txMap.get(txID)
3 ctx.add(opID, op) // add op to TXRS
4 oEntry ← createOpAckEntry(opID, origin)
5 ctx.getAckMap.put(opID, oEntry)
6 triggeredOps ← ctx.getMatchingBufferedOps(op)
7 forall tOp ∈ triggeredOps do
8 tEntry ← createOpAckEntry(tOp.opID, tOp.origin)
9 ctx.getAckMap.put(tOp.opID, tEntry)

10 oEntry.addPendingOp(tOp.opID)
11 tEntry.addDependency(opID)
12 forall tDest ∈ tOp.getDestinations() do
13 tEntry.addPendingAck(tDest)
14 forward tOp to tDest
15 oDestinations ← ctx.getRoutingMatches(op)
16 forall oDest ∈ oDestinations() do
17 oEntry.addPendingAck(oDest)
18 forward op to oDest
19 if oDestinations 6= ∅ ∧ triggeredOps 6= ∅ then
20 send ackMsg(txID, opID) to origin
2222

23 Procedure handleOpAckMsg(txID, opID) from origin
24 ctx ← txMap.get(txID)
25 oEntry ← ctx.getAckMap.get(opID)
26 oEntry.removePendingAck(origin)
27 if oEntry.getPendingAck = ∅ then
28 send ackMsg(txID, opID) to oEntry.getOrigin()
29 forall dOpID ∈ oEntry.getDependencies() do
30 dEntry ← ctx.getAckMap.get(dopID)
31 dEntry.removePendingOp(opID)

// check if dOp is acknowledged, forward ack.
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Second, the forward destinations for the actual operations are determined by matching
op with the transaction’s routing state TXRS. Then, op is forwarded and corresponding
pending ack references are added to oEntry (Lines 15–18). In addition to forwarding,
publications are also buffered in the TXContext of every broker on their path to
subscribers. This is necessary to determine potential conflicts to prior-ordered
transactions later on.

If op does not trigger any internal operation, nor is forwarded op to anyone else
(e.g., at an edge broker for a subscription), an acknowledgment message, opAckMsg
= (txID, opID), is generated and returned to origin.

Handle acknowledgment message — A broker that receives an ackMsg from some
client/broker origin removes the corresponding entry from its ackMap. If all
acknowledgments have been received, ackMsg is forwarded to the origin of op
(Lines 24–28). For all operations, dOp, that depend on op, the corresponding reference
is removed from their ackMap entry. If dOp has no more pending acknowledgments
or operations, it can also forward an ackMsg (Lines 29–31).

The same mechanism for sequential operation processing is applied at clients. If a
client, for instance, receives a tcm and issues a sub in turn, it waits for an ackMsg
for the subscription before acknowledging the tcm. For a TXC, the operation phase
is completed once it receives the acknowledgment for its last operation.

Termination phase – Transaction termination is realized in two rounds: in the
prepare round, potential conflicts are identified. Based on the outcome, in the commit
round, the transaction either commits, or aborts. The algorithm for the prepare
round is shown in Algorithm 6.3.3.

The TXC generates a prepare message, prepMsg(txID), and sends it to its edge
broker. Similar to the initialization, the prepMsg is flooded through the overlay
and opposite edge brokers respond with acknowledgments, which are collected at
intermediary brokers to eventually notify the TXC about the completion of this
round and its outcome.

First, a broker receiving a prepMsg verifies if all prior-ordered concurrent transactions
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Algorithm 6.3.3: Prepare phase in D-TX.
1 Procedure handleTXPrepareMsg(txID) from origin
2 if not all prior-ordered transactions terminated then
3 preparedTX.put(txID, origin) // buffer and wait.
4 else
5 handlePreparedTX(txID, origin)
77

8 Procedure handlePreparedTX(txID, origin)
9 pEntry ← createPrepAckEntry(txID, origin)

10 prepAckMap.put(txID, pEntry)
11 if detectConflictsWithPriorTXns (bufferedPubs) 6= ∅ then
12 pEntry.setStatus(FALSE)
13 else
14 pEntry.setStatus(TRUE)
15 neighbors ← brokerNeighbors \ ori
16 if neighbors = ∅ then
17 ackMsg ← newPrepAckMsg(txID, pEntry.getStatus())
18 send ackMsg to origin
19 else
20 forall broker ∈ neighbors do
21 pEntry.addPendingAck(broker)
22 forward txPrepMsg to broker
2424

25 Procedure handleTXPrepareAckMsg(txID, status) from origin
26 pEntry ← prepAckMap.get(txID)
27 if status = FALSE then pEntry.setStatus(FALSE)
28 pEntry.removePendingAck(origin)
29 if pEntry.getPendingAcks() = ∅ then
30 ackMsg ← newPrepAckMsg(txID, pEntry.getStatus())
31 send ackMsg to pEntry.getOrigin()
32 else

// wait until all ACKs are receved.
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are terminated; if not, the prepare round is paused until this is the case (Lines 2–3).
Next, potential conflicts are identified by comparing, for all buffered publications, the
routing behavior based on the transaction’s state, TXRS, with the routing behavior
based on the consistent routing state RS. In other words, a conflict occurs if a
concurrent transaction ordered prior to the committing one has changed the routing
state matching one of the publications. If a conflict is detected, a status flag in the
ackMap entry for the prepare phase is set to (FALSE) (Line 12); otherwise, it is set to
TRUE, i.e., no conflict. Ultimately, this status is reported to the TXC as part of the
prepAckMsg.

Once the TXC receives a prepAckMsg, it starts the commit round: if the status flag
is set to TRUE, the TXC sends a commit message, cmtMsg(txID), else it sends an
abort message, abtMsg(txID). Both message types are flooded through the overlay
and acknowledged in reverse direction. If a broker receives a cmtMsg, it merges TXRS
with the stable routing state RS, truncates TXContext, and marks the transaction
committed. If a broker receives an abtMsg, it discards TXContext and marks the
transaction as aborted. Clients receiving a cmtMsg, deliver all buffered publications
to the application, or discard them when receiving an abtMsg.

6.3.4 D-TX discussion

D-TX implements the distributed pub/sub transaction model with the strong ACID
semantics defined in Section 6.2. A core concept of the approach is that every
transaction operates on a dedicated snapshot, which is consistently taken from the
state of a prior committed transaction. Consistency is achieved by ensuring that
all operations are executed in the order specified by clients. This is guaranteed
through an acknowledgment mechanism enforcing that every operation is completely
processed before its subsequent operation. Atomicity and isolation are achieved
by imposing a total order on transactions during initialization and an optimistic
concurrency control mechanism, which identifies conflicts when the transaction is
preparing to commit.
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6.4 Static Transaction Service

We now describe the design of our S-TX approach to support static pub/sub
transactions in tree-based overlays. In contrast to D-TX, here, the TXC has full
knowledge about the transaction. For S-TX, we assume weak isolation: this means if
two concurrent transactions do not operate on disjoint event spaces, still, routing
states of brokers converge, but publications might be routed to concurrent subscribers.
Again, we guarantee atomicity by adapting the 2-PC algorithm to ensure that
publications are only delivered to the application when the transaction committed.
Sequential consistency is realized by attaching a list of dependencies, referencing
prior-ordered operations, to every operation, and evaluating at brokers whether
dependencies have already been processed. Frequently used terminology in addition
to the one for D-TX (cf. Table 6.3.1) is summarized in Table 6.4.1.

Table 6.4.1: S-TX notation.

CRT client routing table
RS stable routing state of broker, i.e., SRT and PRT
processedOps maintains all processed operations
opBuffer maintains operations with pending dependencies
precedeMap maintains dependencies for each operation
succeedMap references all operations depending on an operation
overlayJoinMsg(clientID) overlay join message for client
opMsg(txID,opID,op, D) operation message for op ∈ OPS depending on prior

operation set D
tcm(Fp, tcmOPs) TCM operation, contains set of operations to

trigger at receiver (tcmOPs)
cmtMsg(txID, D) commit message depending on D
abtMsg(txID, D) abort message depending on D

6.4.1 S-TX overview

Transaction processing in S-TX is realized in two phases: in the operation phase, the
TXC generates all operations for the transaction and issues them to the system. tcm
operations are used to send a subset of these operations to particular TXPs, which
are intended to issue them as their own operations. Every operation message contains
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a list of dependencies. This list describes all preceding operations and can also be
statically computed by the TXC. Brokers evaluate whether all dependencies have
been processed before processing the actual operation. In the termination phase,
the transaction either commits, i.e., all publications are delivered to the application
at TXPs, or aborts, i.e., compensating operations are sent and publications are
discarded. Similar to D-TX, a broadcast is used to propagate the decision to brokers
and clients.

6.4.2 S-TX client design

S-TX exposes the same API as D-TX (cf. Table 6.3.2) but uses a slightly different
message format and transaction management. A tcm message has a payload field,
tcmOps, that contains all operations a receiving TXP should issue for this transaction.
In addition to txID and opID, every operation also has a payload field, dependencies,
with information about prior operations.

Again, our use case can be implemented as sketched in Figure 6.1(b), where operations
(1) is realized as txTCM() containing all other operations and dependencies in tcmOps.

A client still maintains a TXManager for every transaction it is involved in. The
purpose of TXManager is to buffer incoming publications until the transaction finally
commits, and to manage operations received from API calls that should be sent to
the broker network, which includes attaching opID and dependencies. However,
compared to D-TX, operations are no longer required to be buffered until the preceding
operation has been acknowledged; instead, they are issued directly and the ordering
is done at brokers based on the dependencies.

6.4.3 S-TX broker design & protocol

The core component of the S-TX broker is the transactional router, TXRouter, which
processes all protocol messages in FIFO order. In S-TX, TXRouter maintains a single
version of the routing state RS representing SRT and PRT. In addition, it maintains
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a list of all processed operations (processedOps) and a map, opBuffer, buffering
operations that are not processed because the corresponding dependencies have
not been satisfied. Dependencies are represented using two data structures: the
precedeMap maps an operation opID to IDs of all other operations, which opID
depends on, i.e., all prior-ordered operations. The succeedMap maps an operation
opID to all operations that depend on opID, i.e., all post-ordered operations.

Satisfiable dependencies – Before processing an operation, a broker verifies if all
dependencies have been processed by checking processedOps. However, not every
dependency is satisfiable at all brokers. (Un-) subscriptions are only processed by
brokers on a path between the subscriber and clients with matching advertisements.
To determine if a dependency is satisfiable and, hence, whether the operation must
wait for the dependency to be processed, a broker validates if it is on such a
path; this includes (1) checking whether the PRT of the broker contains a matching
advertisement, and (2), whether the lastHop of this advertisement is different from
the lastHop of the (subscription) dependency2. For this reason, dependencies do
not only comprise the opID but also information about the issuing client (senderID)
and about its filter predicates (filter):

dependency = (opID, senderID, filter)

Client Routing Table – In addition, to reason about the origin of a depending
operation, TXRouter maintains a client routing table (CRT), which is a list of
[clientID, nextHop]-pairs. The CRT contains routing information for all clients
connected to the broker network and thereby enables the broker to determine from
which neighbor a dependency subscription will arrive.

After connecting to a broker, a new client issues an overlayJoin message. Similar
to advertisements, this message is broadcast to all brokers in order to update the
CRT.

Operation phase – Algorithm 6.4.1 describes the processing of a message opMsg
= (txID, opID, op, D) at brokers.

2It is not possible that a subscription and a matching advertisement arrive at a broker from the
same neighbor because subscriptions are routed along the reverse path.
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Algorithm 6.4.1: Pub/Sub operation processing in S-TX.
1 Procedure handleOpMsg(txID, opID, op, D)
2 Ds ← getSatisfiableDependencies (D)
3 forall d ∈ Ds do
4 if d /∈ processedOps then
5 precedeMap.put(opID, d)
6 succeedMap.put(d, opID)
7 if precedeMap.get(opID) = ∅ then
8 process(txID, opID, op)
9 else

10 opBuffer.add(opID, opMsg)
1212

13 Procedure process(opMsg = (txID, opID, op))
14 RS.add(op) // (u)adv/(u)sub update routing state
15 destinations ← RS.getRoutingMatches(op)
16 forall dest ∈ destinations do
17 forward op to dest
18 markProcessed(opID)
2020

21 Procedure markProcessed(opID)
22 processedOps.add(opID)
23 next ← {}
24 forall sID ∈ succeedMap do
25 precedeMap.get(sID).remove(opID)
26 if precedeMap.get(sID) = ∅ then
27 next ∪ sID
28 forall nID ∈ next do
29 process(nID, opBuffer(nID))
3131

32 Procedure getSatisfiableDependencies(D)
33 Ds ← {}
34 forall d ∈ D | d ∈ {sub, usub} do
35 mAdvs ← RS.getMatchingAdvertisements(d.filter)
36 forall a ∈ mAdvs do
37 if a.lastHop = CRT.get(d.senderID) then
38 Ds ∪ d
39 return Ds
4141
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First, the set of satisfiable dependencies for operation opID is calculated (Lines 2,
31–38); satisfiable dependencies that are not processed yet are stored in precedeMap
and succeedMap. If not all dependencies are processed, i.e., not all corresponding
operations have been processed, opMsg is buffered. Otherwise, the operation first
updates the routing state RS and is then forwarded to neighboring brokers or clients
according to RS (Lines 14–16). After processing operation op, it is marked as processed
(Line 17). Procedure markProcessed includes removing the corresponding opID from
the dependency sets of all post-ordered operations, sID, in its succeedMap. Whenever,
an operation sID has no more unprocessed dependencies, i.e., its precedeMap is
empty, sID is added to a set of operations that is processed next (Lines 20–28).

Termination phase – The intention of the termination phase is to either commit
the transaction and deliver all publications, buffered at clients, to the application, or
abort the transaction, discard buffered publications, and undo all changes applied to
the routing state through compensating operations. Because S-TX assumes isolation
to be managed at the application-level, an abort in S-TX does not occur due to
conflicts among concurrent transactions but only due to an explicit command by the
TXC.

Commit—to commit a transaction, the TXC issues a commit message, cmtMsg =
(txID, D), to the system, where D contains dependencies to all operations of the
transaction. cmtMsg is broadcast through the system; similar to the regular operation
messages, brokers ensure that all dependencies are processed before forwarding
cmtMsg. Clients and edge brokers receiving cmtMsg respond with a cmtAckMsg,
which is aggregated at intermediary brokers to notify the TXC about the successful
commit.

Abort—to abort a transaction, the TXC generates a sequence of compensating
operations, C and issues them to the system followed by an abort message. For
each operation changing the routing state in the transaction, C contains the inverse
operation, e.g., for sub(F) ∈ TPS, the operation usub(F) is added to C. To distribute
the compensation operations to the TXPs that issued the original operation, the
same tcm constructions are used as in TPS. Compensating operations are issued
and processed in the same order as the original operations; their dependency lists
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contain both references to the original operations and to prior-ordered compensating
operations. The abort message, abtMsg = (txID, D), containing dependencies to
all prior operations, is broadcast through the system. Clients receiving the abtMsg
discard buffered publications and respond, just like edge brokers, with an abtAckMsg.
These messages are again aggregated in the broker network to notify the TXC about
the successful abort.

6.4.4 S-TX discussion

S-TX implements a relaxed variant of the pub/sub transaction model presented
in Section 6.2 by only providing weak isolation. In general, the assumption in
S-TX is that concurrent transactions operate on disjoint event spaces (application-
level isolation), and, hence, no conflict detection is required. However, even if two
concurrent transactions operate on overlapping spaces, routing states at brokers
will converge, because both SRT and PRT can be considered conflict-free replicated
data types (CRDT) [5] with add() as associative and commutative handler function.
add(sub, lastHop), for instance, adds a new entry to the PRT when processing
a subscription, and add(usub, lastHop) adds and entry when processing the
corresponding un-subscription. As both operations are idempotent, inconsistencies
in the routing states are avoided in S-TX. Publications, however, might be delivered
to unintended subscribers if transactions are not isolated at the application level
through disjoint event spaces.

Also, different to D-TX is that the TXC is assumed to have complete knowledge
about the transaction simplifying the implementation of consistency. Operation
ordering is realized using dependencies attached to every operation, which can be
calculated statically and before the transaction starts. Atomicity is realized similar
to D-TX but does not require conflict detection.

138



CHAPTER 6. MULTI-CLIENT TRANSACTIONS IN DISTRIBUTED
PUBLISH/SUBSCRIBE

6.5 Evaluation

6.5.1 Overview

We implemented D-TX and S-TX as extension to the PADRES enterprise event
bus [41]. PADRES3 is a content-based pub/sub implementation using a network of
brokers to disseminate pub/sub operations as described in Section 6.1. We experi-
mentally evaluated our implementations in an OpenStack cloud infrastructure, where
every virtual machine (VM) was equipped with 4GB RAM, 2 vCPUs @ 2GHz, and
Ubuntu 14.04.1 LTS. For our experiments, we implemented the instance dispatching
scenario described in the beginning of Chapter 6, where a single transaction is
comprised of 4 clients issuing five operations in total (cf. Figure 6.1(b)).
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Figure 6.5.1: Broker overlays used in experiments.

We used different broker topologies (cf. Figure 6.5.1), multiple instantiations of
the scenario (i.e., varying number of clients), and multiple degrees of concurrency
(i.e., transactions a TXC manages concurrently). Every broker and every client was
deployed on a separate VM and clients were uniformly distributed among brokers.
To reason about the overhead transaction management introduces to pub/sub, we
also implemented a baseline approach BL-WAIT, which does not provide isolation
but only tries to do its best to achieve consistent operation ordering by manually
introduced delays. It is important to note that BL-WAIT is not a viable, competing
solution. We evaluated all three approaches w.r.t. latency, i.e., the time it takes to

3Code available under https://github.com/MSRG/padres
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complete a single transaction, and throughput, i.e., how many transactions a system
is able to process in a certain time.

6.5.2 Baseline implementation (BL-WAIT)

In the instance dispatching scenario (cf. Figure 6.0.1), operation ordering is critical
to achieve the desired system behavior. In particular the subscription (Op. 3) and
the unsubscription (Op. 4) must be completely processed at all brokers before the
publication (Op. 5) is routed. D-TX and S-TX manage ordering by an acknowledgment
mechanism or dependency checking, respectively. However, plain pub/sub does not
provide such mechanisms; if the Environment (E) issues the second publication
(Op. 5) right after the first publication (Op. 1), it is quite likely that it is routed to
an unintended subscriber, i.e., the Dispatcher (D), and not an Agent (A). To prevent
this and estimate the cost of ordering, we manually introduce a wait time between
Op. 1 and Op. 5. To minimize wait in BL-WAIT, we approximate wait up to a delta
∆ = 50ms; the procedure is described in Algorithm 6.5.1. We do several experimental
rounds and start running the scenario with a high value for wait = 2000ms; then,
we gradually reduce/increase wait until we find a value that allows to execute a
1000 transactions correctly (i.e., the publication (Op. 5) is correctly routed) and,
in addition, some prior run with a waitp = wait − ∆ has failed. Once, we fixed
wait, we execute the scenario accordingly and measure latency and throughput. To
take accurate measurements we use a timer at client E, which is started before
sending Op. 1; when an Agent A receives the second publication (Op. 5), it sends an
acknowledgment to E, which stops the timer.

6.5.3 Experiments

Base comparison – First, we compared the base performance of all approaches
using an overlay with three brokers.

We used a single instantiation of the scenario, i.e., one Environment client (E)
serving as TXC and one Dispatcher client (D), that dispatches workflow instances
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Algorithm 6.5.1: Approximate wait in BL-WAIT.
1 Procedure approximateWait()
2 ∆ = 50ms
3 rc = ⊥ // result in current run.
4 rl = ⊥ // result in last run.
5 waitc = 2000 ms // wait time in current run.
6 waitl = 0 ms // wait time in last run.
7 lastChange = waitc − waitl // adaptation in last run.
8 δ = |lastChange| while ¬rc ∧ δ > ∆ do
9 rc = runExperiment(wc)

10 δ = |waitl − waitc|
// decrease wait.

11 if rc then
12 if rl then
13 γ = −|lastChange|
14 else
15 γ = −d|lastChange|e × 0.5

// increase wait.
16 else
17 if rl then
18 γ = +d|lastChange|e × 0.5
19 else
20 γ = +|lastChange|
21 waitl = waitc

22 rl = rc

23 waitc = waitc + γ
24 lastChange = γ

2626 return
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Figure 6.5.2: Base comparison.

in an alternating fashion to two Agent clients (A1, A2). All clients have been
randomly but uniformly connected to all brokers. In every experiment, we executed
1000 transactions (i.e., dispatched 1000 workflow instances). All transactions were
executed sequentially by the TXC. The results obtained for the three approaches are
depicted in Figure 6.5.2. Since transactions were executed sequentially, i.e., the TXC
waited for the completion of one transaction before starting the next, throughput
and latency are directly related by throughput × latency = 1s. Unsurprisingly,
D-TX (570 ms averaged latency) performs worse than BL-WAIT(190 ms); the reason
for the difference is the increased message overhead for ordering, which requires
acknowledgments for every operation, and for isolation, which requires three broadcast
rounds in total (one for initialization and two for termination). More surprising is
that S-TX (∼ 20 txns/s) beats the performance of BL-WAIT (∼ 5 txns/s). To some
extend the huge speedup (∼ 4X) can be explained by the imprecision introduced
with the wait accuracy through ∆. Another part of speedup results from the reduced
transmission time for the second publication (Op. 5), which was buffered in the
network in S-TX and not at client E as in BL-WAIT. Most importantly, however, is
that in BL-WAIT, we had to fix parameter wait conservatively so that the desired
correct output was achieved in every single transaction. The graph in Figure 6.5.2
shows the average latencies and in the experiments on S-TX, we observed that some
transactions terminated much faster than the average. Similar, in our parametrization
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runs for BL-WAIT, we found that for some of the transactions correct processing was
achieved with less wait time. In these cases, wait introduced unnecessary latency,
which, however, is important to ensure that all transactions terminate correctly.
In S-TX, to the contrast, the wait time was minimal in every transaction as the
publication could be directly processed once the dependencies were fulfilled.

Impact of overlay size on performance – In another experiment, we analyzed
the impact of the broker overlay on the performance. We used a single instantiation
of the instance dispatching scenario (i.e., four clients), executed 1000 transactions
sequentially, and compared four different overlay networks (shown in Figure 6.5.1).
Again the clients have been distributed randomly and uniformly among brokers:
for the single broker overlay, all clients were connected to the single broker, for
the three-broker overlay, one broker was connected with two clients, and for the
remaining overlays some brokers had no direct client connection. Throughout our
experiments, we varied the allocation of clients to brokers. The results represent the
averages of all experiment runs and are depicted in Figure 6.5.3.
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Figure 6.5.3: Performance impact of broker overlay size.

Basically, the base performance relation among all three approaches is confirmed
(cf. also Figure 6.5.2): BL-WAIT is faster than D-TX in all overlay settings and
S-TX always beats BL-WAIT. However, with increasing overlay sizes, the performance
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of all three approaches declines. For instance, the average latency of D-TX for
a single broker, ∼ 410ms, is more than double that of nine brokers, ∼ 911ms,
resulting in ∼ 2.5X performance degradation. This decline can also be observed in
BL-WAIT (∼ 2.6X). In S-TX, the degradation is a little less (∼ 1.9X). In general,
the performance drop with increasing overlays can be explained by the increased
communication effort resulting from additional hops every message must take. D-TX
is particularly affected for two reasons: first, also the acknowledgments must traverse
more hops, and second, the broadcast rounds in initialization and termination
phase require more hops. S-TX, to the contrast, requires fewer broadcasts and no
acknowledgments; hence, it is less sensitive to the network size and the latency of
∼ 60ms with nine brokers is still very good.

Impact of concurrency on performance – In this experiment, we investigated
the impact of concurrency on performance. With concurrency, we refer to the number
of parallel transactions (threads) initiated by the TXC. We varied the number of
threads between, 1, 2, 5, and 10. Again, we used a single instantiation of the scenario
(i.e., four clients), fixed the overlay to three brokers, and executed 1000 transactions.
Note, that there is no conflicts among transactions, as the TXC dispatches different
workflow instances in every transaction, i.e., the event spaces do not overlap.

The results are depicted in Figure 6.5.4. Again, S-TX performs better than BL-WAIT,
which beats D-TX. As expected, for all three approaches, the latencies are increasing
with increased concurrency due to concurrent processing at brokers and clients.
While BL-WAIT is comparably stable (latency increases by 50% for 10 concurrent
threads compared to sequential execution), the latencies for S-TX (3X) and D-TX
(4X) grow faster. In contrast, concurrency also has a positive effect on throughput
as brokers spend less time idling: for BL-WAIT throughput increases by 7X, for S-TX
by 3.7X and for D-TX by 2.3X. Although, in absolute numbers, S-TX reveals the
best performance, its concurrency behavior is worse compared to BL-WAIT because
of the management overhead for the termination phase. For similar reasons, also
the concurrency behavior of D-TX is worse compared to BL-WAIT. In conclusion,
concurrency increases the throughput but has to be paid with latency.

Impact of client quantity on performance – In a last experiment, we scaled the
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Figure 6.5.4: Performance impact of concurrency.

number of clients that concurrently execute transactions and analyze the performance
impact. To this end, we varied the number of instantiations of the instance dispatching
scenario from a single instance (i.e., 4 clients) to two, five, and ten instances (i.e.,
40 clients). Each instantiation dispatches instances for a different workflow, so the
event spaces of individual transactions do not overlap. We used a fixed overlay of
three brokers and at every TXC, transactions are sequentially executed. The results
are depicted in Figure 6.5.5.

Again, S-TX performs better than BL-WAIT and D-TX for all configurations. In
addition, the scaling behavior for S-TX and BL-WAIT is pretty similar: in both
approaches, the latencies increase by only 50% but the throughput increases by 7X
when scaling up to 40 clients. Compared to scaling at a single client (cf. experiments
on concurrency and Figure 6.5.4), the two approaches perform better, which gives
evidence that part of the latency results from the concurrency at clients. The scaling
behavior of D-TX, however, is not as good. While throughput increases up to 20
clients, the performance begins to drop again for 40 clients. The main reason for
this is the isolation management of D-TX, which requires agreement on a consistent
snapshot during initialization and, more important, maintaining the commit order
during termination. Adherence to the commit order may delay some transactions
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Figure 6.5.5: Performance impact of client quantity.

that are ready to commit because they have to wait for a prior-ordered transaction
to terminate.

6.5.4 Discussion

We evaluated D-TX and S-TX by comparing them to a baseline solution BL-WAIT,
with which we tried to get an estimate on the plain performance of the underlying
pub/sub system and an idea about the additional cost transaction management
introduces. Note that BL-WAIT is not really a competing solution, as the parameter
wait must be carefully chosen, depends on the current system, and requires a set of
prior configuration rounds, which is impractical. In our experiments, we showed that
S-TX efficiently guarantees consistency according to an application specific order
and even beats this baseline in all experiments. Isolation, however, as guaranteed by
D-TX is costly and practicable only for smaller settings.
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6.6 Summary

In this chapter, we formalized pub/sub transactions as a sequence of pub/sub
operations that are to be atomically processed by a distributed pub/sub system
isolated from concurrent transactions. In our model, we allow that publications by
one client can trigger further operations by different clients—forming truly distributed
transactions. Based on the a priori knowledge a transaction coordinator (TXC)
has, we provide two approaches implementing our model: D-TX assumes no prior
knowledge on operations by other transaction participants (TXP). Acknowledgments
enable consistent operation ordering, and snapshot isolation enables serializability.
S-TX relaxes the above assumptions: isolation is considered to be managed at the
application level and the TXC has full knowledge about the transaction. However,
even if concurrent transaction are not perfectly isolated at the application level, S-TX
achieves convergence of the routing states at brokers. In S-TX, consistency is achieved
through dependency checking among operations at brokers. Both approaches adopt
2-PC to provide atomicity.

Our experimental evaluation showed that isolation and the uncertainty about opera-
tions renders D-TX costly and suitable only for smaller configurations. In contrast,
S-TX introduces no significant overhead, which has been proven by comparing to a
baseline pub/sub mimicking the guarantees.
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Chapter 7

Conclusions

7.1 Summary

For many organizations, business process and workflow automation is becoming an
important means to reduce process execution time, improve resource utilization,
and enhance service quality, and, thereby, increase the overall business profitability.
Recent trends and prevailing circumstances, however, prevent technology from un-
leashing its full potential: first, the ever-increasing amount of knowledge-intense work
requires ad-hoc and flexible business processes, which only few workflow management
systems (WFMSs) nowadays support. Next, and orthogonal to this, many business
processes include data and process fragments from different organizations; current
WFMSs do not consider this distribution appropriately, either resulting in unnecessary
data transport, or complicating compliance with data protection law. In addition,
the increasing scale of business processes, mostly in terms of concurrent instances, is
a challenge for the designers of WFMSs.

Data-centric workflows constitute a promising substrate for addressing the above
challenges because they unify data and process modeling. Commonly, data-centric
approaches built on top of an information model that describes all relevant aspects
of the process, including application data and status information. The control-
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flow is then expressed over declarative rules to evaluate the current state of the
information model, evolve the process to a new state, and trigger relevant activities.
The implicit rule formulation is less rigid compared to traditional activity-centric
modeling approaches and is a cornerstone in supporting flexibility. At the same
time, the publish/subscribe (pub/sub) paradigm and corresponding middleware
implementations provide a convenient basis for the implementation of WFMSs. The
loose coupling properties of publish/subscribe together with its event-based nature
enable the integration of a WFMS in its business environment but also support the
design of distributed WFMS solutions.

As a prominent representative of data-centric workflows, in this work, we focused on
the Guard-Stage-Milestone (GSM) meta-model for specifying the lifecycle of business
artifacts. GSM provides a rich theoretical foundation; its operational semantics are
based on the incremental firing of ECA-like rules, called Prerequisite-Antecedent-
Consequent (PAC) rules in GSM, in the order implied by a specific dependency
graph, called Polarized Dependency Graph (PDG) in GSM. Most importantly, GSM
also forms the basis for the operational semantics of the Case Management Model
and Notation (CMMN)—the current standard for flexible business process modeling.

To provide an adequate automation support for GSM taking data distribution and
related constraints, such as data-locality, into consideration, we first developed
the theoretical foundation for a safe distribution and parallel execution of data-
centric workflows over the distributed publish/subscribe abstraction. We developed
a polynomial-time mapping of GSM into pub/sub by fragmenting the GSM workflow
into a set of data-access and a set of control-flow components. To integrate the GSM
semantics into pub/sub components, we redefined publications and subscriptions
together with their matching, consumption, and notification policies. We proved the
correctness of our mapping through an equivalence of reachable system snapshots
and we also proved the hardness of the optimal workflow distribution problem over
the pub/sub abstraction. To provide a solution to this distribution problem, we
employed a greedy algorithm with a constant factor approximation.

Based on our theoretical results, we designed a corresponding conceptual architecture
and a geo-scale distributed WFMS. Our system provides the automated execution of
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flexible business processes specified in GSM and geographically scattered across differ-
ent organizational units, while supporting locality of process- and data fragments. Our
management infrastructure is fully distributed and based on Workflow Units (WFUs).
WFUs are independent system components and represent the unit of distribution
to either manage individual PAC rules or attributes from the information model.
We presented two mapping implementations of GSM into the WFU representation:
the baseline mapping (BLM) is directly based on our pub/sub formalization. The
optimized context-aware mapping (CAM) results from the insights we obtained from
implementing BLM. In contrast to BLM, CAM considers the type of external events
to reduce the computational overhead and network communication delay that are
further magnified at geo-scale. Our experimental evaluation in a cloud environment
showed that both mappings are scalable but CAM outperforms BLM. In particular,
CAM reveals its strengths for sequential task patterns in workflows, while task
splits/merges are more costly.

To support safe horizontal scaling of WFMSs integrated over pub/sub, which requires
replication of the workflow engine for individual instances and dispatching, we
presented an approach for multi-client transactions in distributed pub/sub middleware.
We first formalized pub/sub transactions as a sequence of pub/sub operations that
are to be atomically processed but isolated from any concurrent transactions, while
we allow that publications by one client can trigger further operations by different
clients. Based on the a priori knowledge of the transaction coordinator (TXC), we
present two approaches implementing our model: D-TX assumes no prior knowledge
on operations by other transaction participants (TXP). Acknowledgments enable
consistent operation ordering and sequential consistency, and snapshot isolation
enables serializability. S-TX relaxes the above assumptions: isolation is considered
to be managed at the application level and the TXC has full knowledge about
the transaction. Even if concurrent transaction are not perfectly isolated at the
application level, S-TX achieves convergence of the routing states at brokers. In
S-TX, consistency is achieved through dependency checking among operations at
brokers. Both approaches adopt 2-PC to provide atomicity. Our experiments showed
that isolation and the uncertainty about operations renders D-TX costly and suitable
only for smaller configurations. In contrast, S-TX introduces no significant overhead,
which has been proven by comparing to a baseline pub/sub mimicking the guarantees.
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7.2 Future work

Future work related to the theory on fragmentation and distribution of flexible and
data-centric workflows includes (i) investigating refinements and optimizations of
the mapping into the pub/sub abstraction: for instance, to reduce the overhead of
bookkeeping, one could think of evaluating different, possibly heuristic, strategies;
in addition, to further increase parallelism in execution, an approach to leverage
data independences between different B-steps and a relaxation of the requirement
for a global external event-queue could be considered; (ii) increasing the generality
of our approach: for instance, by extending the state model from two-valued (i.e.,
Boolean) states to supporting arbitrary multi-valued state machines for handling
different transactional scenarios; (iii) supporting dynamic changes in workflows: for
instance, through stage factories that allow for on-the-fly creation and incorporation
of additional stage instances to enable ad-hoc workflow adaptations at runtime.

In the same spirit, future work related to our geo-distributed WFMS could consider
flexibility at runtime, where it is necessary to adapt the workflow model; this, in turn,
requires online adaptations to the engine, i.e., as instances are executed in parallel.
Changes to the execution engine can be seen as the addition, modification, or removal
of WFUs resulting from a recompilation of the updated workflow model. The main
challenges are to maintain the semantic correctness of active instances and to avoid
disrupting their execution, e.g., by pausing the execution for an inadequate amount of
time. A potential solution could be to introduce WFU versioning, i.e., a new version
for each adaptation. Active instances execute on older versions until they reach a
state that allows them to safely migrate to the new version. Orthogonal to this,
supporting privacy requires a location-aware deployment of WFUs to geo-distributed
computing infrastructures. To automatically calculate such deployments, the process
model must be enriched with additional information. First, information about all
organizations and their computing infrastructures is required. Second, it is necessary
to model which process fragments (i.e., data and rules) belong to which organizations.
The main challenge is to find deployments that adhere to the locality constraints on
one side, but also respect a set of other constraints, such as minimizing wide-area
communication, on the other side.
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Future work related to our multi-client transaction approach would mostly address
the realization of the isolation property, which currently introduces considerable
overhead in terms of messages and coordination that is necessary among brokers in
D-TX. Potentially, the adaptation of lower isolation levels, such as read committed
or repeated reads, to the distributed pub/sub model could provide a starting point
for more efficient algorithms. Considering different isolation levels would, however,
require to first investigate their implications on the application behavior and, in
general, study the requirements of different transactional pub/sub scenarios. Another
approach to facilitate isolation handling more from the application side instead of only
using broker-internal mechanisms, could require the TXC to announce a transaction
space before starting the transactions. The transaction space would be a subspace
of the complete event space and avoid transaction ordering and conflict detection
among concurrent and isolated transactions. Orthogonal to these considerations,
general-purpose distributed algorithms could be considered to deal with safe state
replication across brokers. For instance, the Paxos [53] protocol could be directly
applied to provide atomicity in operation replication.
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