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Zusammenfassung

Vine Copulas sind Abhängigkeitsmodelle, die multivariate Copuladichten als Produkt

über bivariate Bausteine, so genannte Paar-Copulas, darstellen. Ihre größten Vorteile sind

ihre Flexibilität und Anwendbarkeit, selbst in hohen Dimensionen. Diese Arbeit erweitert

die vorhandene Literatur zu Vine Copulas um drei neuartige Aspekte. Klassische Modell-

distanzen wie die Kullback-Leibler-Distanz können nur in niedrigen Dimensionen verwen-

det werden, da sie die Berechnung mehrdimensionaler Integrale voraussetzen. Um die

Berechnung von Abständen zwischen hochdimensionalen Vine Copulas zu ermöglichen,

entwickeln wir Modelldistanzen für Vine Copulas, die auf der Kullback-Leibler-Distanz

basieren. Die Tauglichkeit unseres Ansatzes wird in numerischen Beispielen und Simula-

tionsstudien belegt und die vorgeschlagenen Methoden werden zur Modellwahl verwen-

det. Block Maxima werden üblicherweise benutzt, um in der Extremwerttheorie Resultate

herzuleiten, wenn die Blockgröße gegen unendlich geht. In der Praxis sind Blockgrößen

allerdings stets endlich. Deshalb liefern wir eine explizite Formel für die Copuladichte der

komponentenweisen endlichen Block Maxima von multivariaten Verteilungen. Das Ergeb-

nis wird auf Vine Copulas in numerischen Beispielen und einer Datenanalyse angewendet.

Schließlich wird ein flexibles D-Vine-Copula-basiertes Modell für unbalancierte Longi-

tudinaldaten entwickelt. Wir präsentieren eine sequenzielle Schätzmethode und passen

das Bayessche Informationskriterium für unsere Situation an. Außerdem zeigen wir, dass

unser Ansatz als Erweiterung einer großen Klasse von linearen gemischten Modellen inter-

pretiert werden kann. In einer Datenanalyse werden die beiden Modellklassen insbeondere

bezüglich ihrer Fähigkeit, bedingte Quantile für zukünftige Messungen zu schätzen, ver-

glichen.
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Abstract

Vine copulas are dependence models that represent multivariate copula densities as prod-

ucts over bivariate building blocks, so-called pair-copulas. Their main advantages are

flexibility and applicability even in high dimensions. This thesis extends the existing lit-

erature on vine copulas by three novel aspects. Classical model distances such as the

Kullback–Leibler distance are limited to low dimensions since they require multivariate

integration. In order to facilitate the determination of distances between high-dimensional

vine copulas we develop model distances for vine copulas based on the Kullback–Leibler

distance. The validity of our approach is verified in numerical examples and simulation

studies and the proposed methods are applied for model selection. Block maxima are

usually used to derive results in extreme-value theory as the block size goes to infinity.

In practice, however, block sizes are always finite. Therefore, we provide an explicit for-

mula for the copula density of the componentwise finite block maxima for multivariate

distributions. The result is applied to vine copulas in numerical examples and a data

application. Finally, a flexible D-vine copula based model is developed for unbalanced

longitudinal data. We present a sequential estimation method for the model and adjust

the Bayesian information criterion to our situation. Further, we show that our approach

can be interpreted to be an extension of a wide class of linear mixed models. In a data

application the two model classes are compared, in particular regarding their ability to

predict conditional quantiles for future measurements.
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Chapter 1

Introduction

Essentially, all models are wrong, but some are useful.1

George E. P. Box (1919–2013)

The financial crisis of 2007–2009 showed that some of the models that were commonly

used by financial institutions were clearly wrong—and no longer useful. In his famous

article Felix Salmon blamed the Gaussian copula to have been “the formula that killed

Wall Street” (Salmon, 2009). Although this formulation may have been a bit bold and a

wrong model was certainly not the single trigger for the financial crisis, the basic criticism

in fact had its justification: the Gaussian copula was broadly used in banking to describe

the interdependencies between times-to-default of different financial entities, while major

weaknesses of this relatively simple model were widely ignored. This fairly imprudent

approach eventually proved to be fatal.

The foundations for copula modeling were already provided in the seminal work of Sklar

(1959) at the end of the 1950s. Sklar had shown that multivariate distributions could be

decomposed into marginal distributions and the dependence structure. The function de-

scribing the dependence structure is the copula. Yet, there was rather little interest in

copulas at the beginning since computational capacities did not allow for practical appli-

cations. Around the turn of the millennium, however, the rise of copulas began (among

others Joe, 1997; Embrechts et al., 1999, 2002). The previously mentioned Gaussian cop-

ula is the dependence structure underlying a multivariate normal distribution. Although

1Page 424 of Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building and Response
Surfaces, John Wiley & Sons, New York, NY.
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Chapter 1. Introduction

it inherits many convenient properties from the normal distribution, it also has some

drawbacks such as the lack of tail dependence when it comes to describing real world

data. Fortunately, for modeling the dependence between two random variables a vast

number of alternative flexible bivariate copula families has been developed (see for exam-

ple Joe, 1997; Nelsen, 2006). However, classical multivariate dependence models such as

Archimedean copulas usually lack flexibility and become numerically challenging in high

dimensions (Hofert et al., 2012), which makes them unattractive for practical applications.

An alternative approach are vine copulas, which are also known as pair-copula construc-

tions. The underlying idea of these models is to construct the density of a multivariate

copula by bivariate building blocks. This way the complex problem of specifying a d-

dimensional model is transformed to specifying d(d − 1)/2 bivariate models, so-called

pair-copulas. Since each pair-copula can be chosen arbitrarily this construction allows

for great flexibility. The first vine copula model was proposed by Joe (1996) (at that

time, however, not under the name ‘vine copula’). Bedford and Cooke (2002) introduced

vines as a graph theoretical model. Vines describe the structure underlying a vine copula

that determines which bivariate pair-copulas are to be specified. The fact that for a d-

dimensional copula there are d!
2
· 2(d−2

2 ) valid vine structures available (Morales-Nápoles,

2011) adds even more flexibility. However, it was not before the seminal work of Aas et al.

(2009) that the popularity of vine copulas gained momentum. They developed statistical

inference for vine copulas making this model class attractive to users from all fields of

applications. Since then literature on vines has—figuratively speaking—exploded. There

has been extensive research on various aspects of this model class. Dißmann et al. (2013)

developed a sequential fitting algorithm for vine copulas. Panagiotelis et al. (2012) and

Panagiotelis et al. (2017) investigated vine copulas with both continuous and discrete mar-

gins. Bayesian methods for vine copulas were for example developed in Min and Czado

(2010), Czado and Min (2011) and Gruber and Czado (2015). Non-parametric estimation

of vine copulas was performed by Nagler and Czado (2016). Brechmann et al. (2012)

developed a model selection tool called truncation in order to reduce model complexity.

Moreover, there has been a large number of applications in various fields such as finance

(e.g. Maya et al., 2015; Kraus and Czado, 2017a), insurance (Shi and Yang, 2016), spatial

statistics (e.g. Gräler, 2014; Erhardt et al., 2015), veterinary medicine (Barthel et al.,

2016) or sociology (Cooke et al., 2015).

In this thesis we extend the existing literature on vine copulas by three important as-

pects. First, we consider model distances. In order to determine how much two vine copula

models differ, Stöber et al. (2013), Spanhel and Kurz (2015) and Schepsmeier (2015) use

the Kullback-Leibler (KL) distance, also known as KL divergence, developed in Kullback

and Leibler (1951). Since the Kullback-Leibler distance requires multivariate integration

2



and corresponding analytical expressions are not known in general, its applicability is

limited to a relatively low number of dimensions, even on high-performance computers.

Maybe the greatest advantage of vine copulas is, however, that they can be used in very

high dimensions; the methods presented in Müller and Czado (2016) for example al-

low for fitting models in hundreds of dimensions. Therefore, we provide modifications of

the Kullback-Leibler distance in order to facilitate determining distances between high-

dimensional models. For this purpose, we provide a representation of the KL distance as

the sum over expectations of KL distances between univariate conditional densities. We

reduce computational costs drastically by approximating these expectations via structured

Monte Carlo integration on sparsely determined grids. We also consider symmetrized ver-

sions of our proposed KL-modifications, which can be interpreted as substitutes for the

Jeffreys distance, a symmetrized version of the Kullback-Leibler distance. We verify the

validity of these modifications and consider numerical examples and simulation studies to

see that they outperform competing methods such as Monte Carlo integration. Further,

we apply the proposed KL-modifications for model selection. In particular, we develop two

algorithms for determining the optimal truncation level outperforming the methods pro-

posed by Brechmann et al. (2012). For this purpose, we introduce a parametric bootstrap

based hypothesis test deciding between copulas from nested model classes.

Secondly, we examine block maxima that are usually used to develop results in extreme-

value theory as the block size goes to infinity (e.g. Genest and Nešlehová, 2012). We,

however, investigate the behavior of finite componentwise block maxima in a multivariate

framework, where the focus is on the dependence structure. The copula function of com-

ponentwise block maxima is known. We provide an explicit formula for the corresponding

copula density. We argue why three-dimensional vine copulas are particularly useful in

this setting and show numerical examples as well as an application to hydrological data.

Hüsler and Reiss (1989) developed a scaling approach assuring that the block maxima of

normal distributions converge to a non-trivial limit, i.e. the Hüsler-Reiss distribution with

associated Hüsler-Reiss copula. We mimic this approach for vine copulas and investigate

how the copula density of the scaled block maxima behaves for different block sizes in

numerical examples.

Thirdly, we consider repeated measurement data that are obtained in longitudinal stud-

ies and can be found in several areas, especially in medical research. The most common

approach for modeling such data is to use linear mixed models (see e.g. Diggle, 2002).

However, vine copulas with a certain fixed sequential structure (so-called D-vine copulas)

have recently also been applied by Smith et al. (2010) and Shi and Yang (2016) to model

serial dependence in such longitudinal data. An extension to multivariate data can be

found in Smith (2015) and Nai Ruscone and Osmetti (2017). All the above approaches

work in a balanced setting, i.e. all individuals in the data set have the same number of

3



Chapter 1. Introduction

measurements. Shi et al. (2016) model the dependence structure in an unbalanced setting

using Gaussian copulas. We develop a D-vine based model for unbalanced data. Various

properties of this model are investigated: We provide a sequential estimation method that

facilitates applications even for a large number of measurements and can handle missing

values. For model selection we derive an adjusted version of one of the most frequently

used selection criteria, the Bayesian information criterion (BIC). Further, we show that

our proposed model can be seen as an extension of a rich class of linear mixed models.

In an application to heart surgery data both model classes are compared. In particular,

we illustrate the strengths of our approach by predicting conditional quantiles for future

measurements.

Outline of this thesis

The contents of this thesis are based on the following four research papers.

• Killiches, M., Kraus, D., and Czado, C. (2017b). Model distances for vine copulas

in high dimensions. Statistics and Computing, doi:10.1007/s11222-017-9733-y.

• Killiches, M., Kraus, D., and Czado, C. (2017c). Using model distances to investigate

the simplifying assumption, model selection and truncation levels for vine copulas.

arXiv preprint arXiv:1610.08795v3. Under review at Canadian Journal of Statistics.

• Killiches, M. and Czado, C. (2015). Block-Maxima of Vines. In Dey, D. and Yan,

J., editors, Extreme Value Modelling and Risk Analysis: Methods and Applications,

pages 109–130. Boca Raton, FL: Chapman & Hall/CRC Press.

• Killiches, M. and Czado, C. (2017). A D-vine copula based model for repeated mea-

surements extending linear mixed models with homogeneous correlation structure.

arXiv preprint arXiv:1705.06261. Under review at Biometrics.

Chapter 2, which is based on Killiches et al. (2017b) and Killiches et al. (2017c), pro-

vides the necessary background that is needed throughout the rest of the thesis. We define

copulas briefly in order to introduce vine copula afterwards. Two different representations

for vine copulas are provided and the so-called simplifying assumption is discussed. Fur-

ther, we clarify notation for vine copulas. Finally, simulation and fitting algorithms are

presented.

In Chapter 3, which is based on contents of Killiches et al. (2017b) and Killiches et al.

(2017c), we present model distances for vine copulas that are suited for applications in high

dimensions. We first develop an alternative representation of the Kullback-Leibler distance

as a sum of expectations over KL distances between univariate conditional densities. Based

4



on this result we develop three distance measures with decreasing computational costs.

For this purpose we approximate the expectations in the alternative KL representation

by structured Monte Carlo integration. The number of evaluation points is reduced by

focusing only on diagonals. In plausibility checks and simulation studies we verify the

validity of our proposed distances as substitutes for the KL. Similarly we substitute the

Jeffreys distance, a symmetrized version of the KL, by symmetrizing our distances. In

both cases we outperform competing methods such as Monte Carlo integration due to

considerably lower computational effort.

Further, we apply the KL-substitutes for model selection. In particular, we present two

algorithms that can be used for determining the optimal truncation level for a vine copula;

our algorithms yield more precise results than the methods proposed in Brechmann et al.

(2012). For our algorithms we develop a parametric bootstrap based test deciding between

copulas from nested model classes.

Chapter 4, which presents material of Killiches and Czado (2015), considers the depen-

dence structure of finite componentwise block maxima of multivariate distributions. The

central result of this chapter is that we derive an explicit formula for the copula density of

the vector of componentwise block maxima. We argue that vine copulas are particularly

useful in this context and investigate how the copula density behaves for different block

sizes in numerical examples and an application to hydrological data. In order to investi-

gate if non-trivial limits are obtained (for block sizes going to infinity) when using proper

scaling, we adapt the scaling for Gaussian distributions developed by Hüsler and Reiss

(1989) to vine copulas and examine the results in numerical examples.

In Chapter 5, which is based on Killiches and Czado (2017), we develop a D-vine based

model to describe repeated measurement data in an unbalanced setting. For comparison

we introduce linear mixed models. A central aspect of the chapter is that the proposed

model can be interpreted as a extension to the large class of linear mixed models for

which the implied correlation structure is homogeneous over the considered individuals.

Further, we provide a sequential estimation algorithm which can handle missing values

and check its performance in a simulation study. In an application to a heart surgery

data set the performance of both linear mixed models and our model is considered. In

particular, results of the prediction of conditional quantiles for future measurements are

compared.

5





Chapter 2

Vine copula models

Since vine copulas are the common theme of all parts of this thesis, we provide the

necessary mathematical background in this chapter, which is in a large part based on

Killiches et al. (2017b) and Killiches et al. (2017c).

After a brief definition of copulas in Section 2.1 we present vine copulas in Section 2.2.

We introduce different ways of representation for vine copulas (Section 2.2.1 and Sec-

tion 2.2.2) and approach the so-called simplifying assumption for vine copulas (Sec-

tion 2.2.3). Section 2.2.4 clarifies the notation of vine copulas and Section 2.2.5 provides

algorithms for the simulation from and the fitting of vine copulas.

2.1. Copulas

A copula C : [0, 1]d → [0, 1] is a d-dimensional distribution function on [0, 1]d with uni-

formly distributed margins. Since the publication of Sklar (1959), copulas have gained

more and more interest and have been a frequent subject in many areas of probabilistic

and statistical research. Sklar’s Theorem states that for every joint distribution function

F : Rd → [0, 1] of a d-dimensional random variable (X1, . . . , Xd)
> with univariate marginal

distribution functions Fj, j = 1, . . . , d, there exists a copula C such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) . (2.1)

This copula C is unique if all Xj are continuous random variables. Further, if the so-called

copula density

c(u1, . . . , ud) :=
∂d

∂u1 · · · ∂ud
C(u1, . . . , ud)

7



Chapter 2. Vine copula models

exists, one has

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) f1(x1) · · · fd(xd),

where fj are the marginal densities. Throughout this dissertation we will always assume

absolute continuity of C and the existence of c. Equation 2.1 can also be used to define

a multivariate distribution by combining a copula C and marginal distribution functions

Fj. Thus, marginals and dependence structure can be modeled separately, as we can

specify the copula C independently of the marginal distributions. A thorough overview

over copulas can be found for example in Joe (1997) and Nelsen (2006).

2.2. Vine copulas

There are several multivariate parametric copula families, for example Gaussian, t, Gum-

bel, Clayton and Joe copulas. Being specified by a small number of parameters (usually 1

or 2), these models are rather inflexible in high dimensions. Therefore, Bedford and Cooke

(2002) suggested a method for constructing copula densities based on the combination

of bivariate building blocks: vines. The concept of vine copulas, also referred to as pair-

copula constructions (PCCs), started to gain enormous popularity after the publication

of the seminal work of Aas et al. (2009), who developed statistical inference methods for

vines copulas.

2.2.1. Tree representation

In the following we consider a d-dimensional random vector U = (U1, . . . , Ud)
> with

uniform marginals Uj, j = 1, . . . , d, following a copula C with corresponding copula

density c. For j ∈ {1, . . . , d} and D ⊆ {1, . . . , d} \ {j} we denote by Cj|D the conditional

distribution function of Uj given UD = (Ui)i∈D. For j, k ∈ {1, . . . , d} and D ⊆ {1, . . . , d}\
{j, k} the copula density of the distribution associated with the conditioned variables Uj

and Uk given the conditioning variables UD is denoted by cj,k;D.

The structure of a d-dimensional vine copula is organized by a sequence of trees V =

(T1, . . . , Td−1) satisfying

1. T1 = (V1, E1) is a tree with nodes V1 = {1, . . . , d} and edges E1;

2. For m = 2, . . . , d− 1, the tree Tm consists of nodes Vm = Em−1 and edges Em;

3. Whenever two nodes of Tm are connected by an edge, the corresponding edges of

Tm−1 share a node (m = 2, . . . , d− 1).

8



2.2. Vine copulas

The third property is often referred to as proximity condition.

In a vine copula model each edge of the d − 1 trees corresponds to a bivariate pair-

copula. Let
⋃d−1
m=1 {cje,ke;De | e ∈ Em} be the set of pair-copulas associated with the edges

in V , where—following the notation of Czado (2010)—je and ke denote the indices of the

conditioned variables Uje and Uke and De represents the conditioning set corresponding

to edge e. The vine density can be written as

c(u1, . . . , ud) =
d−1∏
m=1

∏
e∈Em

cje,ke;De
(
Cje|De(uje|uDe), Cke|De(uke|uDe);uDe

)
. (2.2)

As an example, a three-dimensional copula density c of a random vector (U1, U2, U3)>

with Uj ∼ uniform(0, 1) can be decomposed by conditioning on U2 = u2 and using the

fact that cj(uj) = 1:

c(u1, u2, u3) = c1,3|2(u1, u3|u2) c2(u2)

Sklar
= c1,3;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
c1|2(u1|u2) c2|3(u2|u3)

= c1,3;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
c1,2(u1, u2) c2,3(u2, u3),

(2.3)

where c1,3|2( · , · |u2) denotes the density of the conditional distribution of (U1, U3)|U2 =

u2, while c1,3;2( · , · ;u2) is the associated copula density. The distribution function of the

conditional distribution of Uj given U2 = u2 is denoted by Cj|2( · |u2), j = 1, 3. Hence, we

have expressed the three-dimensional copula density as the product over three bivariate

pair-copulas. The corresponding tree representation can be found in Figure 2.1, where

above each edge the associated pair-copula is denoted.

1 2 3

1,2 2,3

c1,2 ( · , · ) c2,3 ( · , · )

c1,3;2 ( · , · ;u2)

Tree 1

Tree 2

Figure 2.1.: Tree representation of a three-dimensional vine structure, where 2 is the central
node. The associated pair-copulas are denoted above the edges.

Of course, there are alternative decompositions since the choice of U2 as conditioning

variable was arbitrary. For example, we also could have conditioned on U1 or U3 such that

c(u1, u2, u3) = c2,3;1

(
C2|1(u2|u1), C3|1(u3|u1);u1

)
c1,2(u1, u2) c1,3(u1, u3) or

9



Chapter 2. Vine copula models

c(u1, u2, u3) = c1,2;3

(
C1|3(u1|u3), C2|3(u2|u3);u3

)
c1,3(u1, u3) c2,3(u2, u3).

This way of decomposing copula densities into bivariate building blocks can be extended

to arbitrary dimensions yielding Equation 2.2. Morales-Nápoles (2011) show that in d

dimensions there are d!
2
· 2(d−2

2 ) possible vine decompositions. This flexibility and variety

of choice can be of great advantage when it comes to modeling.

Vine copulas with general tree structure are often referred to as regular vines or in short

R-vines. Special cases of vine copula structures are so-called C-vines and D-vines. In a

C-vine for each tree Tm there exists a root node with degree d−m, i.e. it is a neighbor of

all other nodes. Each tree then has a star-like structure. For a D-vine each node in tree

T1 has a degree of at most 2 such that the trees are simply connected paths.

2.2.2. Matrix representation

Dißmann et al. (2013) and Stöber and Czado (2012) provide a method of how to store

the structure of a vine copula decomposition in a lower triangular matrix M = (mi,j)
d
i,j=1

with mi,j = 0 for i < j, a so-called vine structure matrix.

Definition 2.1 (Vine structure matrix). A lower-triangular matrix M = (mi,j)
d
i,j=1 with

non-zero entries mi,j ∈ {1, . . . , d}, i > j, is called a vine structure matrix if it has the

following three properties:

1. The entries of a selected column appear in every column to the left of that column,

i.e. {mj,j, . . . ,md,j} ⊆ {mi,i, . . . ,md,i} for 1 ≤ i < j ≤ d.

2. The diagonal entry of a column does not appear in any column further to the right,

i.e. mi,i /∈ {mi+1,i+1, . . . ,md,i+1} for i = 1, . . . , d− 1.

3. For i = 1, . . . , d − 2 and k = i + 1, . . . , d there exists a j > i such that the set

{mk,i, {mk+1,i, . . . ,md,i}} is equal to {mj,j, {mk+1,j,mk+2,j, . . . ,md,j}} or

{mk+1,j, {mj,j,mk+2,j, . . . ,md,j}} .

The structure of the vine is encoded in the matrix as subsequently described: A pair-

copula is determined by the two conditioned variables and a (possibly empty) set of

conditioning variables (e.g. c1,3;2 has conditioned variables U1 and U3 and conditioning

variable U2). For each entry in the structure matrix, the entry mi,j itself and the diagonal

entry mj,j in the corresponding column form the indices of the two conditioned variables,

while the indices of the conditioning variables are given by the entries mi+1,j, . . . ,md,j

in the corresponding column below the considered entry. The bivariate pair-copulas are

evaluated at the conditional distribution functions of the distributions of each of the

conditioned variables given the conditioning variables.
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2.2. Vine copulas

Expressed in formulas this means: In d dimensions, for i > j the entry mi,j together

with mj,j and mi+1, . . . ,md,j stands for the associated copula density of the (conditional)

distribution of Umi,j and Umj,j given
(
Umi+1,j

, . . . , Umd,j
)>

=
(
umi+1,j

, . . . , umd,j
)>

evaluated

at Cmi,j |mi+1,j ,...,md,j

(
umi,j |umi+1,j

, . . . , umd,j
)

and Cmj,j |mi+1,j ,...,md,j

(
umj,j |umi+1,j

, . . . , umd,j
)
,

i.e.

cmi,j ,mj,j ;mi+1,j ,...,md,j

(
Cmi,j |mi+1,j ,...,md,j

(
umi,j |umi+1,j

, . . . , umd,j
)
,

Cmj,j |mi+1,j ,...,md,j

(
umj,j |umi+1,j

, . . . , umd,j
)
;umi+1,j

, . . . , umd,j

)
.

Taking the product over all d(d−1)/2 pair-copula expressions implied by the vine structure

matrix yields the copula density c (see Dißmann et al., 2013):

c(u1, . . . , ud) =
d−1∏
j=1

d∏
k=j+1

cmk,j ,mj,j ;mk+1,j ,...,md,j

(
Cmk,j |mk+1,j ,...,md,j

(
umk,j |umk+1,j

, . . . , umd,j
)
,

Cmj,j |mk+1,j ,...,md,j

(
umj,j |umk+1,j

, . . . , umd,j
)
;umk+1,j

, . . . , umd,j

)
. (2.4)

The resemblance of Equation 2.4 and Equation 2.2 is obvious. The only difference between

the two formulas is that in Equation 2.4 the indices of the pair-copulas are denoted by

the entries of the structure matrix, whereas in Equation 2.2 they are represented by the

edges of the tree representation. Both notations have their advantages: The tree represen-

tation is easy to interpret and can be illustrated graphically; the matrix representation is

very concise and is particularly useful for programing-related purposes. We will use both

representations depending on which one is better suited for the respective objective.

In our three-dimensional example (Equation 2.3) the structure matrix looks as follows:

M =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 =

1 0 0

3 2 0

2 3 3

 .

The entries m3,1 = 2 (together with m1,1 = 1) and m3,2 = 3 (together with m2,2 = 2) in the

last row represent c1,2(u1, u2) and c2,3(u2, u3), respectively. In both cases, the condition-

ing set is empty because the considered entries are the last ones in their columns. The entry

m2,1 (together withm1,1 andm3,1) encodes the expression c1,3;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
since the indices of the conditioned variables are given by m2,1 = 3 and m1,1 = 1 and the

conditioning variable is m3,1 = 2. Multiplying these three factors leads to the expression

from Equation 2.3. Note that there is not a unique way of encoding a given vine decom-

position into a structure matrix. For instance, exchanging m2,2 and m3,2 in the above

example yields the same vine decomposition.
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Chapter 2. Vine copula models

2.2.3. Simplifying assumption

When it comes to modeling, for tractability reasons most authors assume that for pair-

copulas with a non-empty conditioning set the copula itself does not depend on the con-

ditioning variables (e.g. c1,3;2( · , · ;u2) = c1,3;2( · , · ) for any u2 ∈ [0, 1]). This assumption

is referred to as the simplifying assumption. Among others, Hobæk Haff et al. (2010),

Acar et al. (2012), Stöber et al. (2013), Spanhel and Kurz (2015) and Killiches et al.

(2017a) discuss when this assumption is justified. Since simplified vines, i.e. vine copu-

las satisfying the simplifying assumption, are in practice the most relevant class of vine

copulas—especially in high dimensions—, all examples and applications in this thesis use

simplified vines. Nevertheless, all of the presented concepts are also applicable to non-

simplified vines.

Stöber et al. (2013) investigated which multivariate copulas could be represented as

simplified vines: Similar to the relationship between correlation matrices and partial cor-

relations (Bedford and Cooke, 2002), every Gaussian copula can be written as a simplified

Gaussian vine, i.e. a vine copula with only bivariate Gaussian pair-copulas, where any

(valid) vine structure can be used and the parameters are the corresponding partial corre-

lations. Vice versa, every Gaussian vine represents a Gaussian copula. Further, t copulas

can also be decomposed into simplified vines with arbitrary (valid) vine structure. The

pair-copulas are then bivariate t copulas, the association parameters are the corresponding

partial correlations and the degrees of freedom in tree Tm are ν + (m− 1), where ν is the

degrees of freedom parameter of the t copula. However, a regular vine copula with only

bivariate t copulas, called a t vine, does not necessarily represent a t copula. Moreover,

Stöber et al. (2013) proved that the only Archimedean copula that can be decomposed

into a simplified vine copula is the Clayton copula. The pair-copulas in the vine copula

representation are then bivariate Clayton copulas with associated parameters θ/(mθ+ 1)

for all pairs in the mth tree, where θ is the parameter of the Clayton copula. Similarly

as for the t copula, a regular vine copula with only bivariate Clayton copulas (a Clayton

vine) does not necessarily represent a Clayton copula.

2.2.4. Notation of simplified parametric vine copulas

Since we typically work in a simplified parametric framework we specify each pair-copula

of the vine decomposition as a parametric bivariate copula (with up to two parameters).

In order to represent a d-dimensional vine copula using the tree notation we specify a

triplet R = (V ,B,Θ), where V = (T1, . . . , Td−1) denotes the tree sequence defining the

vine structure, B is the set of pair-copula families and Θ are the corresponding parameters.

Alternatively, for the matrix representation, we borrow the concept of the vine struc-

ture matrix to introduce a lower-triangular family matrix B = (bi,j)
d
i,j=1 and two lower-
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2.2. Vine copulas

triangular parameter matrices P (k) = (p
(k)
i,j )di,j=1, k = 1, 2, containing the pair-copula fami-

lies and associated parameters of cmi,j ,mj,j |mi+1,j ,...,md,j , respectively. Since we only use one-

and two-parametric copula families, two parameter matrices are sufficient. The entries of

the family and parameter matrices, bi,j, p
(1)
i,j and p

(2)
i,j , specify the pair-copula corresponding

to the entry mi,j. For one-parametric families we set the corresponding entry in the second

parameter matrix to zero. In order to compare the strengths of dependence of different

copula families, we also compute the Kendall’s τ values ki,j corresponding to pair-copulas

with family bi,j and parameters p
(1)
i,j and p

(2)
i,j and store them in a lower-triangular matrix

K = (ki,j)
d
i,j=1. Note that ki,j is associated with a pair-copula and does in general not

represent the Kendall’ τ between Ui and Uj. A simplified vine copula can then be written

as the quadruple R =
(
M,B, P (1), P (2)

)
.

2.2.5. Simulation and fitting of vine copulas

One of the main reasons why vine copula are considered to be a very useful tool for

modeling dependence in practice is that there is software available that can be used

for example for simulation and fitting. All these implementations are contained in the

R library VineCopula (Schepsmeier et al., 2017) for a parametric simplified framework.

Handling non-parametric simplified and parametric non-simplified vines is numerically

challenging but there is software available: kdevine (Nagler, 2017) and gamCopula (Vatter

and Nagler, 2016), respectively. We use VineCopula for all numerical vine copula related

applications throughout this thesis. The parametric bivariate copulas used as candidate

models are Gaussian, Student t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8,

Tawn type 1 and Tawn type 2 as well as their survival versions and 90/270 degree rotations

(for details see Schepsmeier et al., 2017).

For simulation and Monte Carlo integration it is important that we can sample from

vine copula distributions. Stöber and Czado (2012) and Joe (2014) provide sampling

algorithms for arbitrary vine copulas. They are based on the inverse Rosenblatt trans-

formation (Rosenblatt, 1952), which is given by Tc : [0, 1]d → [0, 1]d, w = (w1, . . . , wd)
> 7→

(Tc,1(w), . . . , Tc,d(w))>. The components of Tc(w) can recursively be defined by Tc,md,d(w) =

wmd,d and

Tc,mj,j(w) = C−1
mj,j |mj+1,j+1,...,md,d

(wmj,j |Tc,mj+1,j+1
(w), . . . , Tc,md,d(w)) (2.5)

for j = 1, . . . , d− 1, where mj,j denotes the jth diagonal entry of the structure matrix of

the vine copula. The corresponding Rosenblatt transform is given by T−1
c : [0, 1]d → [0, 1]d,

u = (u1, . . . , ud)
> 7→ (T−1

c,1 (u), . . . , T−1
c,d (u))>, where T−1

c,md,d
(u) = umd,d and

T−1
c,mj,j

(u) = Cmj,j |mj+1,j+1,...,md,d(umj,j |umj+1,j+1
, . . . , umd,d). (2.6)
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The sampling algorithm then works as follows: First, sample wj ∼ uniform(0, 1) for j =

1, . . . , d. Then, apply an inverse Rosenblatt transform Tc to the uniform sample, i.e. u =

(u1, . . . , ud)
> = Tc(w), where w = (w1, . . . , wd)

> is mapped from the (uniform) w-scale

to the (warped) u-scale in the following way:

• umd,d := wmd,d ,

• umd−1,d−1
= C−1

md−1,d−1|md,d(wmd−1,d−1
|umd,d),

...

• um1,1 = C−1
m1,1|m2,2,...,md,d

(wm1,1|um2,2 , . . . , umd,d).

Note that the appearing (inverse) conditional distribution functions can be obtained eas-

ily for vine copulas (Stöber and Czado, 2012, Section 5.3). This sampling algorithm is

implemented in VineCopula as RVineSim.

Using the tree representation of vine copulas, Dißmann et al. (2013) developed a se-

quential estimation method that fits a simplified parametric vine, i.e. the structure as

well the corresponding pair-copula families and parameters, to a given data set tree-by-

tree. Dißmann’s algorithm is the most frequently used procedure for fitting vine copulas

and works as follows: First, the empirical Kendall’s τ values are calculated for all pairs.

Then, a spanning tree maximizing the sum of absolute Kendall’s τ values is determined

such that most dependence is captured in the first tree of the vine. For every edge the

maximum-likelihood estimate for each possible pair-copula from the candidate set is de-

termined. Then, the pair-copula with the highest likelihood, AIC or BIC is assigned to

the edge. Having specified the first tree the pseudo-data for the second tree is determined

by applying the fitted conditional distribution functions. For the second tree, the empir-

ical Kendall’s τ values for all edges admissible with respect to the proximity condition

are determined. Then, as for the first tree, a maximal spanning tree with corresponding

optimal pair-copulas is selected. This procedure is repeated until all d − 1 trees of the

vine copula are specified. For a more detailed description see Dißmann et al. (2013). This

algorithm is also implemented in VineCopula as the function RVineStructureSelect.
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Chapter 3

Model distances for vine copulas

The contents of this chapter are a lightly edited reproduction of the published contents in

Killiches et al. (2017b) and of parts of the submitted contents in Killiches et al. (2017c).

Sections 3.1 and 3.7 consist of modified parts of both Killiches et al. (2017b) and Killiches

et al. (2017c). Sections 3.2 and 3.3 are based on Killiches et al. (2017b) and Sections 3.4

to 3.6 present contents of Killiches et al. (2017c).

3.1. Introduction

In the course of growing data sets and increasing computing power, statistical data analysis

has considerably developed within the last decade. The necessity of proper dependence

modeling has become evident at least since the financial crisis of 2007. Using vine copulas

is a popular option to approach this task. The advantage of these models is that they are

flexible and numerically tractable even in high dimensions.

Since it is interesting in many cases to determine how much two models differ, some

authors like Stöber et al. (2013) and Schepsmeier (2015) use the Kullback–Leibler (KL)

distance (Kullback and Leibler, 1951), also known as KL divergence, as a model distance

between vines. A symmetrized version of the KL distance is given by the Jeffreys distance

(JD) (Jeffreys, 1946). In model selection for copulas the KL distance is frequently used

(see for example Chen and Fan, 2005, 2006; Diks et al., 2010). In the context of vine

copulas, Joe (2014, Section 5.7) used the KL distance to calculate the sample size necessary

to discriminate between two densities. Investigating the simplifying assumption Hobæk

Haff et al. (2010) used the KL distance to find the simplified vine closest to a given

non-simplified vine and Stöber et al. (2013) gage the strength of non-simplifiedness of the

trivariate Farlie-Gumbel-Morgenstern (FGM) copula for different dependence parameters.

Similarly, Spanhel and Kurz (2015) use the KL distance to assess the quality of simplified
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vine copula approximations. However, all popular distance measures require multivariate

integration, which is why they can only deal with up to three- or four-dimensional models

in a reasonable amount of time.

In this chapter we will address the question of how to measure the distance between

two vine copulas even for high dimensions and show how to use distance measures for

model selection in two applications. For this purpose, we develop methods based on the

Kullback–Leibler distance, where we use the fact that it can be expressed as the sum

over expectations of KL distances between univariate conditional densities. By cleverly

approximating these expectations in different ways, we introduce three new distance mea-

sures with varying focuses. The approximate Kullback–Leibler distance (aKL) aims to

approximate the true Kullback–Leibler distance via structured Monte Carlo integration

and is a computationally tractable distance measure in up to five dimensions. The diagonal

Kullback–Leibler distance (dKL) focuses on the distance between two vine copulas on spe-

cific conditioning vectors, namely those lying on certain diagonals in the space. We show

that even though the resulting distance measure does not approximate the KL distance in

a classical sense, it still reproduces its qualitative behavior quite well. While this way of

measuring distances between vines is fast in up to ten dimensions, we still have to reduce

the number of evaluation points in order to get a numerically tractable distance measure

for dimensions 30 and higher. By concentrating on only one specific diagonal we achieve

this, defining the single diagonal Kullback–Leibler distance (sdKL). The lack of symmetry

of the KL distance and its substitutes is overcome by developing similar approximations

to the Jeffreys distance. In numerous examples and applications we illustrate that the

proposed methods are valid distance measures and outperform benchmark approaches

like Monte Carlo integration regarding computational time. Moreover, in order to enable

the assessment of the size of our developed distance measures we provide a baseline cali-

bration based on the comparison of specific Gaussian copulas to the independence copula.

Further, we show possible fields of applications for the dKL and sdKL in model selection.

For this purpose we develop a hypothesis test that answers the question if the distance

between two models from nested model classes is significant. Then we show how to select

the best model out of a list of candidate models with the help of a model distance based

measure. Finally, we also use the new distance measures and the developed hypothesis

test to answer the question how to determine the optimal truncation level of a fitted vine

copula, a task already recently discussed by Brechmann et al. (2012) and Brechmann and

Joe (2015). Truncation methods have the aim of enabling high-dimensional vine copula

modeling by severely reducing the number of used parameters without changing the fit of

the resulting model too much.

The remainder of this chapter is organized as follows: In Section 3.2 we develop the above

mentioned modified model distances for vine copulas and perform several plausibility
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checks on their performance. Section 3.3 contains a simulation studies comparing the

performances of all introduced distance measures. In order to facilitate model selection

using model distances we provide a hypothesis test based on parametric bootstrapping in

Section 3.4. In Section 3.5 we show how the model distances can be used to assess the

best model fit out of a set of candidate models. As a final application the determination

of the optimal truncation level of a vine copula is discussed in Section 3.6. Section 3.7

concludes the chapter with some summarizing comments.

3.2. Model distances for vines

There are many motivations to measure the model distance between different vines. For

example, Stöber et al. (2013) try to find the simplified vine with the smallest distance

to a given non-simplified vine. Further, it might be of interest to measure the distance

between a vine copula and a Gaussian copula, both fitted to the same data set, in order

to assess the need for the more complicated model. Common methods to measure such

distance are the Kullback–Leibler distance and the Jeffreys distance.

In order to simplify notation, for the remainder of this chapter we assume that the

diagonal of a d-dimensional structure matrix is given by 1:d. This assumption comes

without any loss of generality: Property 2 from Definition 2.1 implies that the diagonal

of any vine structure matrix is a permutation of 1 :d, where we use the notation r :s to

describe the vector (r, r + 1, . . . , s)> for r ≤ s. Hence, relabeling of the variables suffices

to obtain the desired property.

Further, for a simplified vine we define the associated matched Gaussian vine, i.e. the

vine with the same structure matrix and Kendall’s τ values associated with the pair-

copulas but only Gaussian pair-copulas.

Definition 3.1 (Matched Gaussian vine). For a simplified vine copulaR = (M,B, P (1), P (2))

let K = (ki,j)
d
i,j=1 denote the lower-triangular matrix that contains the corresponding

Kendall’s τ values. Then, the matched Gaussian vine of R is given by the vine cop-

ula R̃ = (M, B̃, P̃ (1), P̃ (2)), where B̃ is a family matrix where all entries are Gaussian

pair-copulas, parameter matrix P̃ (1) = (p̃
(1)
i,j )di,j=1 with p̃

(1)
i,j = sin

(
π
2
ki,j
)

and P̃ (2) is a

zero-matrix.

3.2.1. Kullback–Leibler distance

Kullback and Leibler (1951) introduced a measure that indicates the distance between two

d-dimensional statistical models with densities f, g : Rd → [0,∞). The so-called Kullback–

17



Chapter 3. Model distances for vine copulas

Leibler distance between f and g is defined as

KL(f, g) :=

∫
x∈Rd

ln

(
f(x)

g(x)

)
f(x) dx. (3.1)

The KL distance between f and g can also be expressed as an expectation with respect

to f :

KL(f, g) = Ef
[
ln

(
f(X)

g(X)

)]
, (3.2)

where X ∼ f . Note that the KL distance is non-negative and equal to zero if and only if

f = g. It is not symmetric, i.e. in general KL(f, g) 6= KL(g, f) for arbitrary densities f

and g. To clarify the order of the arguments, in the following we denote f as the reference

density. Further, since symmetry is one of the properties of a distance, the Kullback–

Leibler distance is not a distance in the classical sense and thus is often referred to as

Kullback–Leibler divergence. A symmetrized version of the KL distance is given by the

Jeffreys distance (Jeffreys, 1946), which is defined as

JD(f, g) = KL(f, g) + KL(g, f). (3.3)

Since the Jeffreys distance is just a sum of two Kullback–Leibler distances, we will in the

following sections concentrate on the KL distance and apply our results to the Jeffreys

distance in Section 3.3.2.

Under the assumption that f and g have identical marginals, i.e. fj = gj, j = 1, . . . , d,

the KL distance between f and g is equal to the KL distance between their corresponding

copula densities. This is due to the fact that the KL distance is invariant under one-to-one

transformations of the marginals (Cover and Thomas, 2012). Hence, if we let cf and cg

be the copula densities corresponding to f and g, respectively, and assume that f and g

have the same marginal densities, we obtain

KL(f, g) = KL
(
cf , cg

)
. (3.4)

In this chapter we are mainly interested in comparing different models that are ob-

tained by fitting a data set. Since we usually first estimate the margins and afterwards

the dependence structure (cf. IFM method in Joe, 1997, Section 10.1), the assumption

of identical margins is always fulfilled. Hence, we will in the following concentrate on

calculating the Kullback–Leibler distance between copula densities.

Having a closer look at the definition of the KL distance, we see that for its calculation

a d-dimensional integral has to be evaluated. In general, this cannot be done analytically

and, further, is numerically infeasible in high dimensions. For example, Schepsmeier (2015)

stresses the difficulty of numerical integration in dimensions 8 and higher. In this section,
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3.2. Model distances for vines

we propose modifications of the Kullback–Leibler distance designed to be computationally

tractable and still measure model distances adequately. These modifications are all based

on the following proposition that shows that the KL distance between d-dimensional

copula densities cf and cg can be expressed as the sum over expectations of KL distances

between univariate conditional densities.

Proposition 3.2. For two copula densities cf and cg it holds:

KL
(
cf , cg

)
=

d∑
j=1

Ecf
(j+1):d

[
KL
(
cfj|(j+1):d

(
· |U(j+1):d

)
, cgj|(j+1):d

(
· |U(j+1):d

) )]
, (3.5)

where U(j+1):d ∼ cf(j+1):d and (d+ 1):d := ∅. Further, cfj|(j+1):d( · |uj+1, . . . , ud) denotes

the univariate conditional density of Uj | (Uj+1, . . . , Ud)
> = (uj+1, . . . , ud)

> implied by the

density cf .

We will prove an even more general version of Proposition 3.2 that holds for arbitrary

densities f and g:

KL
(
f, g
)

=
d∑
j=1

Ef(j+1):d

[
KL
(
fj|(j+1):d

(
· |X(j+1):d

)
, gj|(j+1):d

(
· |X(j+1):d

) )]
,

where X(j+1):d ∼ f(j+1):d and fj|(j+1):d( · |xj+1, . . . , xd) denotes the univariate conditional

density of Xj | (Xj+1, . . . , Xd)
> = (xj+1, . . . , xd)

> implied by f . Proposition 3.2 then fol-

lows directly from this statement.

Proof. Recall that using recursive conditioning we can obtain for density f

f (x1, . . . , xd) =
d∏
j=1

fj|(j+1):d

(
xj|x(j+1):d

)
.

Thus, the Kullback–Leibler distance between f and g can be written in the following way:

KL
(
f, g
)

=

∫
x∈Rd

ln

(
f(x)

g(x)

)
f(x) dx

=

∫
x∈Rd

d∑
j=1

ln

(
fj|(j+1):d

(
xj|x(j+1):d

)
gj|(j+1):d

(
xj|x(j+1):d

)) f(x) dx

=
d∑
j=1

∫
xd∈R

· · ·
∫

x1∈R

ln

(
fj|(j+1):d

(
xj|x(j+1):d

)
gj|(j+1):d

(
xj|x(j+1):d

)) f(x1, . . . , xd) dx1 · · · dxd
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Chapter 3. Model distances for vine copulas

=
d∑
j=1

∫
xd∈R

· · ·
∫

xj∈R

ln

(
fj|(j+1):d

(
xj|x(j+1):d

)
gj|(j+1):d

(
xj|x(j+1):d

))

×


∫

xj−1∈R

· · ·
∫

x1∈R

f(x1, . . . , xd) dx1 · · · dxj−1

 dxj · · · dxd

=
d∑
j=1

∫
xd∈R

· · ·
∫

xj∈R

ln

(
fj|(j+1):d

(
xj|x(j+1):d

)
gj|(j+1):d

(
xj|x(j+1):d

)) fj,...,d(xj, . . . , xd) dxj · · · dxd

=
d∑
j=1

∫
xd∈R

· · ·
∫

xj+1∈R


∫

xj∈R

ln

(
fj|(j+1):d

(
xj|x(j+1):d

)
gj|(j+1):d

(
xj|x(j+1):d

))

× fj|(j+1):d(xj|x(j+1):d) dxj

 f(j+1):d(x(j+1):d) dxj+1 · · · dxd

=
d∑
j=1

Ef(j+1):d

[
KL
(
fj|(j+1):d( · |X(j+1):d), gj|(j+1):d( · |X(j+1):d)

)]
.

Proposition 3.2 is especially useful if cf and cg are vine copula densities since for a vine

copula with structure matrix M the appearing (univariate) conditional density cj|(j+1):d of

Uj | (Uj+1, . . . , Ud)
> = (uj+1, . . . , ud)

> can be easily obtained by taking the product over

all pair-copula expressions corresponding to the entries in the jth column of M . We will

prove this in Proposition 3.3.

Proposition 3.3. Let U = (U1, . . . , Ud)
> be a random vector with vine copula density c

and corresponding structure matrix M = (mi,j)
d
i,j=1. Then, for j < d

cj|(j+1):d(uj|uj+1, . . . , ud) =
d∏

k=j+1

cmk,j ,mj,j ;mk+1,j ,...,md,j

(
Cmk,j |mk+1,j ,...,md,j

(
umk,j |umk+1,j

, . . . , umd,j
)
,

Cmj,j |mk+1,j ,...,md,j

(
umj,j |umk+1,j

, . . . , umd,j
)
;umk+1,j

, . . . , umd,j

)
.

(3.6)

Proof. From Equation 2.4 we know that the vine copula density can be written as a

product over the pair-copula expressions corresponding to the matrix entries. In Property

2.8 (ii), Dißmann et al. (2013) state that deleting the first row and column from a d-

dimensional structure matrix yields a (d− 1)-dimensional trimmed structure matrix. Due

to Property 2 from Definition 2.1 the entry m1,1 = 1 does not appear in the remaining
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3.2. Model distances for vines

matrix. Hence, we obtain the density c2:d by taking the product over all pair-copula

expressions corresponding to the entries in the trimmed matrix. Iterating this argument

yields that the entries of matrix Mk := (mi,j)
d
i,j=k+1 resulting from cutting the first k rows

and columns from M represent the density c(k+1):d. In general, we have

cj|(j+1):d (uj|uj+1, . . . , ud) =
cj:d (uj, . . . , ud)

c(j+1):d (uj+1, . . . , ud)
.

The numerator and denominator can be obtained as the product over all pair-copula

expressions corresponding to the entries of Mj−1 and Mj. Thus, cj|(j+1):d is simply the

product over the expressions corresponding to the entries from the first column of Mj−1.

This proves Equation 3.6.

As an example, combining the results from Proposition 3.2 and Proposition 3.3, for

four-dimensional copula densities cf and cg we can write:

KL
(
cf , cg

)
= Ecf2:4

[
KL
(
cf1|2:4( · |U2:4), cg1|2:4( · |U2:4)

)]
+ Ecf3,4

[
KL
(
cf2|3,4( · |U3,4), cg2|3,4( · |U3,4)

)]
+ Ecf4

[
KL
(
cf3|4( · |U4), cg3|4( · |U4)

)]
+ 0

(3.7)

where for instance

cf1|2:4(u1|u2, u3, u4) = cf12(u1, u2)cf1,3;2

(
Cf

1|2(u1|u2), Cf
3|2(u3|u2);u2

)
× cf1,4;23

(
Cf

1|23(u1|u2, u3), Cf
4|23(u4|u2, u3);u2, u3

)
.

The zero in the last line of Equation 3.7 results from the fact that cf4(u4) = cg4(u4) = 1

for all u4 ∈ [0, 1]. This is generally the case for the dth summand in Equation 3.5, which

will therefore be omitted in the following. Further note that the last non-zero term of

Equation 3.7 can also be written as KL
(
cf3,4( · , · ), cg3,4( · , · )

)
.

Of course the evaluation of the KL distance with this formula still implicitly requires

the calculation of a d-dimensional integral since the expectation in the first summand of

Equation 3.5 demands a (d−1)-dimensional integral of the KL distance between univariate

densities. A commonly used method to approximate expectations is Monte Carlo (MC)

integration (see for example Caflisch, 1998): For a random vector X ∈ Rd with density

f : Rd → [0,∞) and a scalar-valued function h : Rd → R, the expectation Ef [h(X)] =∫
Rd h(x)f(x) dx can be approximated by

Ef [h(X)] ≈ 1

NMC

NMC∑
i=1

h(xi), (3.8)
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Chapter 3. Model distances for vine copulas

where {xi}NMC

i=1 is an i.i.d. sample of size NMC distributed according to the density f .

However, the slow convergence rate of this method has been subject to criticism. Moreover,

Do (2003) argues that when approximating the KL distance via Monte Carlo integration

the random nature of the method is an unwanted property. Additionally, MC integration

might produce negative approximations of KL distances even though it can be shown

theoretically that the KL distance is non-negative.

As an alternative to Monte Carlo integration, in the next sections we propose several

ways to approximate the expectation in Equation 3.5 by replacing it with the average

over a (d− j)-dimensional non-random grid Uj, such that

KL
(
cf , cg

)
≈

d−1∑
j=1

1

| Uj|
∑

u(j+1):d∈Uj
KL
(
cfj|(j+1):d( · |u(j+1):d), c

g
j|(j+1):d( · |u(j+1):d)

)
. (3.9)

Note that, being a sum over univariate KL distances, this approximation produces non-

negative results, regardless of the grids Uj, j = 1, . . . , d. Now, the question remains how

to choose the grids Uj, such that the approximation is on the one hand fast to calculate

and on the other hand still maintains the main properties of the KL distance. We will

provide three possible answers to this question yielding different distance measures and

investigate their performances.

Throughout the subsequent sections we assume the following setting: Let Rf and Rg be

two d-dimensional vines with copula densities cf and cg, respectively. We assume that their

vine structure matrices have the same entries on the diagonals, i.e. diag(M f ) = diag(M g).

Note that, although this assumption is a restriction, there are still 2(d−2
2 )+d−2 different

vine decompositions with equal diagonals of the structure matrix, which is shown in

Proposition 3.4.2 As before, without loss of generality we set the diagonals equal to 1 :d.

Proposition 3.4. Let σ = (σ1, . . . , σd)
> be a permutation of 1 :d. Then, there exist

2(d−2
2 )+d−2 different vine decompositions whose structure matrix has the diagonal σ.

Proof. The number of vine decompositions whose structure matrix has the same diago-

nal σ can be calculated as the quotient of the number of valid structure matrices and

the number of possible diagonals. Morales-Nápoles (2011) show that there are d!
2
· 2(d−2

d )

different vine decompositions. In each of the d − 1 steps of the algorithm for encoding

a vine decomposition in a structure matrix (see Stöber and Czado, 2012) we have two

possible choices such that there are 2d−1 structure matrices representing the same vine

decomposition. Hence, there are in total d!
2
· 2(d−2

d ) · 2d−1 valid structure matrices. Further,

2This includes, for example, C- and D-vines having the same diagonal.
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3.2. Model distances for vines

there are d! different diagonals. Thus, for a fixed diagonal σ there exist

d!
2
· 2(d−2

d ) · 2d−1

d!
= 2(d−2

2 )+d−2

different vine decompositions.

3.2.2. Approximate Kullback–Leibler distance

We illustrate the idea of the approximate Kullback–Leibler distance at the example of two

three-dimensional vines Rf and Rg. For the first summand (j = 1) of Equation 3.9, the

KL distance between cf1|2,3( · |u2, u3) and cg1|2,3( · |u2, u3) is calculated for all pairs (u2, u3)>

contained in the grid U1. In this example we assume that the pair-copula cf2,3 is a Gumbel

copula with parameter θ = 6 (implying a Kendall’s τ value of 0.83). Regarding the choice

of the grid, if we used the Monte Carlo method, U1 would contain a random sample of

cf2,3. Recall from Section 2.2.5 that such a sample can be generated by simulating from a

uniform distribution on [0, 1]2 and applying the inverse Rosenblatt transformation Tcf2,3
.

Figure 3.1 displays a sample of size 900 on the (uniform) w-scale and its transformation

via Tcf2,3
to the (warped) u-scale.
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Figure 3.1.: Sample of size 900 from the uniform distribution (left) and corresponding warped
sample under transformation T

cf2,3
, which is a sample from a Gumbel copula with

θ = 6 (right).

As mentioned before we do not want our distance measure to be random. This motivates

us to introduce the concept of structured Monte Carlo integration: Instead of sampling

from the uniform distribution on the w-scale, we use a structured grid W , which is an

equidistant lattice on the two-dimensional unit cube3, and transform it to the warped u-

3Since most copulas have an infinite value at the boundary of the unit cube, we usually restrict
ourselves to [ε, 1− ε]d for a small ε > 0.
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Chapter 3. Model distances for vine copulas

scale by applying the inverse Rosenblatt transformation Tcf2,3
(cf. Equation 2.5). Figure 3.2

shows an exemplary structured grid with 30 grid points per margin.
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Figure 3.2.: Structured grid with 30 grid points per margin (left) and corresponding warped grid
under transformation T

cf2,3
(right).

Applying this procedure for all grids Uj, j = 1, . . . , d−1, yields the approximate Kullback–

Leibler distance.

Definition 3.5 (Approximate Kullback–Leibler distance). Let Rf and Rg be as described

above. Further, let n ∈ N be the number of grid points per margin and ε > 0. Then,

the approximate Kullback–Leibler distance (aKL) between Rf (reference vine) and Rg is

defined as

aKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1

|Gj|
∑

u(j+1):d∈Gj
KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
,

where the warped grid Gj ⊆ [0, 1]d−j is constructed as follows:

1. Define the structured grid Wj := {ε, ε+ ∆, . . . , 1− ε}d−j to be an equidistant dis-

cretization of [0, 1]d−j with n grid points per margin, where ∆ := 1−2ε
n−1

.

2. The warped grid Gj := Tcf
(j+1):d

(Wj) is defined as the image of Wj under the inverse

Rosenblatt transform Tcf
(j+1):d

associated with the copula density cf(j+1):d.

Note that by construction |Gj| = nd−j.

Proposition 3.6 shows that the approximate KL distance in fact approximates the true

KL distance in the sense that the aKL converges to the KL for ε → 0 and n → ∞. A

proof can be found in Appendix A.1.
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3.2. Model distances for vines

Proposition 3.6. Let Rf and Rg be as described above. Then,

lim
ε→0

lim
n→∞

aKL
(
Rf ,Rg

)
= KL

(
cf , cg

)
.

In the following applications we use the function integrate for the calculation of the

one-dimensional KL. Further, we choose ε such that the convex hull of the structured grid

contains volume β ∈ (0, 1), so ε := 1
2

(
1− β 1

d−j
)
. Unless otherwise specified we set β to be

95%.

Example 3.7 (Four-dimensional aKL-example). We consider a data set from the Euro Stoxx

50, already used in Brechmann and Czado (2013). It covers a 4-year period (May 22, 2006

to April 29, 2010) containing 985 daily observations. The Euro Stoxx 50 is a major in-

dex consisting of the stocks of 50 large European companies. In order to obtain copula

data Brechmann and Czado (2013, Appendix A) first fitted ARMA(1,1)-GARCH(1,1),

AR(1)-GARCH(1,1), MA(1)-GARCH(1,1) and GARCH(1,1) models, respectively, to the

univariate marginal time series. In this example we consider the copula data of the follow-

ing four national indices: the Dutch AEX (U1), the Italian FTSE MIB (U2), the German

DAX (U3) and the Spanish IBEX 35 (U4). Fitting a simplified vine to the data yields:

M =


1 0 0 0

4 2 0 0

2 4 3 0

3 3 4 4

 , B =


0 0 0 0

F 0 0 0

t t 0 0

t t t 0

 ,

P (1) =


0 0 0 0

1.01 0 0 0

0.36 0.36 0 0

0.91 0.89 0.88 0

 , P (2) =


0 0 0 0

0 0 0 0

6.34 10.77 0 0

6.23 4.96 6.80 0

 .

As usual for financial data, most of the pair-copulas selected by the fitting algorithm are

t copulas with rather high dependence; only c14;23 is modeled as a Frank copula. Now

we compute the approximate KL distance between this (reference) vine and its matched

Gaussian vine (see Definition 3.1) and compare it to the numerically integrated KL dis-

tance. The latter limits our example to low dimensions because numerical integration

becomes very slow in higher dimensions. Even in four dimensions we have to set the tol-

erance level of the integration routine adaptIntegrate of the package cubature from its

default level of 10−5 to 10−4 to obtain results within less than 10 days. Throughout the

chapter we will also consider examples for d ≥ 5, where numerical integration becomes

(almost) infeasible. As a substitute benchmark for the numerically integrated KL distance,

we compare our approximated KL values to the corresponding Monte Carlo Kullback–
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Chapter 3. Model distances for vine copulas

Leibler (MCKL) values, where the expectation in Equation 3.2 is approximated by Monte

Carlo integration, i.e.

MCKL
(
cf , cg

)
:=

1

NMC

NMC∑
i=1

ln

(
cf (ui)

cg(ui)

)
, (3.10)

where u1, . . . ,uNMC are sampled from cf . We choose the sample size NMC to be very large

in order to get acceptable low-variance results (cf. Do, 2003).

Table 3.1 displays the approximate Kullback–Leibler distance between the fitted (refer-

ence) vine and its matched Gaussian vine for different values of β and n together with the

corresponding computational time (in hours).4 We further present the numerically and

Monte Carlo integrated KL distances. In order to facilitate comparability, for each value

of β we compute the integrals on the corresponding domain of integration with volume β.

aKL Numeric MCKL
β n = 10 n = 20 n = 50 tol=10−4 NMC = 105 NMC = 106

95%
value 0.135 0.095 0.076 0.077 0.076 0.079
time [h] 0.004 0.030 0.582 20.3 0.005 0.061

99%
value 0.311 0.170 0.107 0.082 0.085 0.081
time [h] 0.006 0.034 0.609 33.4 0.006 0.063

100%
value 0.084 0.084 0.084
time [h] 99.4 0.005 0.058

Table 3.1.: Approximate, numerically integrated and Monte Carlo integrated KL distances for
different parameter settings with corresponding computational times (in hours).

We see that for an increasing number of marginal grid points n the value of the ap-

proximate KL distance gets closer to the value obtained by numerical integration. We

further observe that in this example the value of the numerically integrated KL distance

does not change considerably when the integral is computed on the constrained domain

of integration with volume β. We expect the computational time of the aKL to increase

cubically since the number of univariate KL evaluations is
∑3

j=1 |Gj| = n3 +n2 +n. This is

empirically validated by the observed computational times. Further, we see that even for

larger values of n the aKL is still considerably faster than classical numerical integration.

Concerning the Monte Carlo integrated KL distances in this example, we observe that the

values still vary notably between NMC = 105 and NMC = 106. Thus, for the remainder of

the chapter we will use NMC = 106 in order to get rather reliable results.

Remark 3.8. During the review process of Killiches et al. (2017b) an anonymous referee

suggested to compare our approach of the (structured) warped grid to using the Latin

4All numerical calculations in this chapter were performed on a Linux computer (8-way Opteron)
with 32 cores (each with 2.6 GHz and 3.9 GB of memory).

26



3.2. Model distances for vines

Hypercube sampling (LHS) method, which is a quasi-random sampler guaranteeing that

the sample points are more evenly spread across the unit hypercube compared to stan-

dard Monte Carlo-methods (cf. McKay et al., 1979). Section 3.3.2 contains a simulation

study assessing the performance of the introduced distance measures. There, we also im-

plemented LHS and compared its performance. The results showed no improvement and

still had the disadvantage of being random with a rather high volatility. This is a property

we wanted to avoid with our approach. The weaker performance may result from the fact

that tail behavior cannot be captured sufficiently by LHS with a small sample size; for

larger sample sizes LHS loses its competitiveness due to very long computational times.

For these reason we omit a thorough discussion of the LHS.

We can conclude that the approximate KL distance is a valid tool to estimate the

Kullback–Leibler distance. However, similar to numerical integration it suffers from the

curse of dimensionality, causing computational times to increase sharply when a certain

precision is required or dimension increases. The number of evaluation points |Gj| increases

exponentially in d, making calculations infeasible for higher dimensions. This motivates

us to thin out the grids Gj in a way that considerably reduces the number of grid points,

while still producing sound results. We have found that the restriction to diagonals in the

unit cube fulfills these requirements reasonably well. Of course, with this modification we

cannot hope for the resulting distance measure to still approximate the KL distance but

we will see that in applications it reproduces the behavior of the original KL distance

remarkably well.

3.2.3. Diagonal Kullback–Leibler distance

In order to illustrate the idea behind the diagonal Kullback–Leibler distance we continue

our example from Section 3.2.2. Figure 3.3 shows the structured and warped grids used

for the aKL (gray circles). Additionally, the diagonal grid points are highlighted by filled

diamonds.

The idea is now to reduce the evaluation grids Uj to the diagonal grids in order to

define a distance measure related to the original KL distance with the advantage of re-

duced computational costs. For this, we formally define the sets of diagonals and warped

discretized diagonals.

Definition 3.9 (Diagonals and warped discretized diagonals). For j = 1, . . . , d−1, we define

the set of diagonals in [0, 1]d−j:

Dj :=
{
{r + tv(r) | t ∈ [0, 1]}

∣∣∣ r ∈ {0, 1}d−j} ,
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Chapter 3. Model distances for vine copulas

where v(r) = (v1(r), . . . , vd−j(r))
> with

vi(r) :=

1 if ri = 0

−1 if ri = 1
, i = 1, . . . , d− j,

is the direction vector corresponding to the corner point r. Note that the set of diagonals

Dj only contains 2d−j−1 elements since every diagonal is implied by two corner points (e.g.

the diagonals {(0, . . . , 0)> + t(1, . . . , 1)> | t ∈ [0, 1]} and {(1, . . . , 1)> + t(−1, . . . ,−1)> |
t ∈ [0, 1]} coincide). Further, let Dj,1, . . . , Dj,2d−j−1 be an arbitrary ordering of the 2d−j−1

diagonals. We define the kth discretized diagonal on the w-scale as Dwj,k := Dj,k ∩ Wj,

whereWj is the structured grid in [0, 1]d−j defined in Definition 3.5, such that it contains

n grid points (cf. left panel of Figure 3.3). Finally, the kth warped discretized diagonal on

the u-scale is defined as Duj,k := Tcf
(j+1):d

(
Dwj,k

)
, where Tcf

(j+1):d
is defined as in Definition 3.5

(cf. right panel of Figure 3.3).
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Figure 3.3.: Structured grid with highlighted diagonals consisting of 30 evaluation points (left)
and corresponding warped grid under transformation T

cf2,3
(right).

Now, we can define the diagonal Kullback–Leibler distance by using the set of warped

discretized diagonals

Duj :=
2d−j−1⋃
k=1

Duj,k

as evaluation grid Uj.

Definition 3.10 (Diagonal Kullback–Leibler distance). Let Rf , Rg and Duj be as described

above. Then, the diagonal Kullback–Leibler distance dKL between Rf (reference vine)

and Rg is defined as
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3.2. Model distances for vines

dKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1∣∣Duj ∣∣
∑

u(j+1):d∈Duj

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
,

where
∣∣Duj ∣∣ = n · 2d−j−1.

Remark 3.11. Similar to Proposition 3.6 one can show (see Appendix A.2.1) that for each

of the 2d−j−1 diagonals Duj,k it holds

lim
ε→0

lim
n→∞

1

n

∑
u(j+1):d∈Duj,k

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
=

1√
d− j

∫
u(j+1):d∈Duj,k

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
× cf(j+1):d

(
u(j+1):d

)
du(j+1):d,

where Du
j,k := Tcf

(j+1):d
(Dj,k). Hence, the diagonal Kullback–Leibler distance can be inter-

preted as a sum of scaled approximated line integrals over weighted univariate KL dis-

tances between conditional densities, which is exactly the integrand appearing in Propo-

sition 3.2. Having the infeasibility of the aKL in higher dimensions in mind, the reduction

to points on lines seems to be a good choice in order to reduce the approximation of

multivariate integrals to one-dimensional ones. We choose the warped diagonals as these

lines since they on the one hand contain points with high density values due to the warp-

ing and on the other hand each let all components of the conditioning vector take values

on the whole range from 0 to 1. Since in practice vine models tend to differ most in

the tails of the distributions, we increase the concentration of evaluation points in the

tails by transforming the discretized diagonal with the method described at the end of

Appendix A.2.2.

The following examples are supposed to illustrate that the dKL is a reasonable distance

measure between vine copulas.

Applications of the dKL

Example 3.12 (Example 3.7 continued). We continue Example 3.7 and apply the dKL to

measure the distance between the fitted four-dimensional (reference) vine and its matched

Gaussian vine using different numbers of grid points n per diagonal and β = 95% as usual.

The results and computational times (in seconds) are displayed in Table 3.2.

We observe that the dKL values seem to converge quite fast and are already quite

close to their limit for small n. Of course, we cannot expect them to converge to the

original KL distance, but we see that the order of magnitude is the same as the values
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Chapter 3. Model distances for vine copulas

n 10 20 50 100 1,000 10,000
value 0.123 0.117 0.115 0.114 0.113 0.113
time [s] 0.9 1.7 3.9 7.7 89 964

Table 3.2.: dKL values and corresponding computational times (in seconds) for the four-
dimensional Euro Stoxx 50 example.

in Example 3.7 that were calculated by numerical integration. Concerning computational

times, the dKL merely needs a couple of seconds to produce reasonable results, which is a

vast improvement to the computational times of the aKL and MCKL, which were in the

order of hours. As expected, the computational times of the dKL grow linearly in n.

In order to assess the aptitude of the dKL for measuring the distance between vine

copulas, we conduct several plausibility checks in the following examples. Since numerical

integration is not practicable for these examples (d ≥ 5), we compare our dKL values to

the corresponding MCKL values.

Example 3.13 (Plausibility checks). The first plausibility check considers five-dimensional

t copulas with ν degrees of freedom (ranging from 3 to 30). Those can be specified as vine

copulas with structure matrices M = D5, family matrices B containing only t copulas,

Kendall’s τ matrices K = K5(0.5) and degrees of freedom matrix P (2) = V5(ν), where

Dd :=



1

d 2

d− 1 d
. . .

... d− 1
. . . . . .

4
...

. . . . . . d− 2

3 4
. . . d d− 1

2 3 4 · · · d− 1 d d


, (3.11)

Kd(τ) = (ki,j(τ))di,j=1 and (3.12)

Vd(ν) = (vi,j(ν))di,j=1 .

Here, ki,j(τ) :=
(

1
2

)d−i · τ · 1{i>j} and vi,j(ν) := (ν + d− i) · 1{i>j}, where 1{·} denotes

the indicator function. Note that the structure encoded in Dd is also known as a D-vine

structure and the parameter matrix P (1) is uniquely determined by the Kendall’s τ matrix

since all pairs are bivariate t copulas. Table 3.3 (left table) displays the diagonal (n = 10)

and Monte Carlo (NMC = 106) KL distances between these (reference) t copulas and their

matched Gaussian vines.

30



3.2. Model distances for vines

ν τ dKL MCKL ratio
3 0.5 0.857 0.374 2.29
5 0.5 0.376 0.162 2.32
7 0.5 0.209 0.091 2.30

10 0.5 0.109 0.047 2.31
15 0.5 0.051 0.023 2.26
20 0.5 0.029 0.013 2.20
25 0.5 0.019 0.008 2.25
30 0.5 0.013 0.006 2.23

ν τ dKL MCKL ratio
3 −0.7 4.702 3.226 1.46
3 −0.5 2.106 1.431 1.47
3 −0.3 0.740 0.473 1.56
3 −0.1 0.077 0.050 1.54
3 0.1 0.067 0.048 1.41
3 0.3 0.561 0.423 1.33
3 0.5 1.740 1.262 1.38
3 0.7 4.590 2.982 1.54

Table 3.3.: Left table: dKL (n = 10) and MCKL (NMC = 106) values between five-dimensional t
copulas with K = K5(0.5) and P (2) = V5(ν) and their matched Gaussian vines. Right
table: dKL and MCKL values between five-dimensional t copulas with K = K5(τ)
and P (2) = V5(3) and their matched Gaussian vines.

We see that the diagonal KL distance decreases as the degrees of freedom increase. This

is very plausible since the t copula converges to the Gaussian copula as ν →∞. Further,

while their values are not on the same scale, we observe that the dKL and MCKL values

behave similarly. This can be seen by the fact that in this example the ratio between

both values ranges only between 2.20 and 2.32, where some of the fluctuation can be

explained by the randomness of the MCKL. Further, the fact that the scale of the dKL

differs from the one of the KL is no real drawback since the scale of the KL distance

itself is not particularly meaningful. Regarding computational times we note that in this

five-dimensional example the average time for computing a MCKL value was 125 seconds,

while the average computation of the dKL only took 3 seconds.

In the second plausibility check we also deal with five-dimensional t copulas decomposed

as above. However, in this scenario the degrees of freedom are fixed to be equal to 3 and

the value for τ in K5(τ) is ranging between −0.7 and 0.7. All these vines are compared

to a t copula with Kendall’s τ matrix K5(0) and degrees of freedom ν = 3. The dKL and

MCKL distances between the resulting eight (reference) t copulas and the t copula with

Kendall’s τ matrix K5(0) is shown in Table 3.3 (right table).

Both dKL and MCKL values grow with increasing absolute value of τ as we would

expect from the true KL distance. As before, the rank correlation between dKL and

MCKL values is equal to 1, the ratio is nearly constant and the dKL is computed 40

times faster than the MCKL.

In the third plausibility check we consider five-dimensional Gumbel vines (i.e. every pair-

copula is a bivariate Gumbel copula having upper tail dependence) with the same structure

matrix Dd and Kendall’s τ matrix K5(0.5). In Table 3.4 we compare this reference vine

to its matched Gaussian vine and other vines constructed similarly using one copula

family only but retaining the same dependence in terms of the Kendall’s τ matrix. As

other copula families we choose the Clayton copula exhibiting lower tail dependence, the
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Chapter 3. Model distances for vine copulas

survival Clayton copula with upper tail dependence and the Joe copula having upper tail

dependence. As the difference between upper and lower tail dependent pair-copulas is

large, we expect the highest distance value for the Clayton vine. Conversely, the distance

to the survival Clayton vine should be the lowest. The diagonal KL distance also passes

this plausibility check assigning the largest distance to the Clayton vine, a small distance

to the survival Clayton vine and medium distances to the Joe and Gaussian vines. Again,

the ratio between dKL and MCKL values varies only little and the dKL is still roughly

40 times faster than the MCKL regarding computational time.

Family Reference family dKL MCKL ratio
Gaussian Gumbel 0.369 0.205 1.80
Clayton Gumbel 2.987 1.780 1.68
Survival Clayton Gumbel 0.322 0.158 2.04
Joe Gumbel 0.483 0.249 1.94

Table 3.4.: dKL and MCKL values between a five-dimensional (reference) Gumbel D-vine and
D-vines with the same Kendall’s τ matrix constructed using one copula family only.
The last column contains the ratio between dKL and MCKL.

The previous plausibility checks have shown that the diagonal Kullback–Leibler dis-

tance is a reasonable and fast distance measure for five-dimensional vines. Since the main

motivation of the reduction to diagonals was reduced computational complexity, we now

turn to higher dimensional examples.

Example 3.14 (Performance in different dimensions). In order to assess the performance of

the diagonal KL distance regarding computational time in different dimensions, we again

make use of the Euro Stoxx 50 data Brechmann and Czado (2013). We take the copula

data of the 12 German stocks (with ticker symbols ALV, BAS, BAYN, DAI, DB1, DBK,

DTE, EOAN, MUV2, RWE, SIE, SAP, corresponding to U1, . . . , U12) and fit vines to the

first d variables (d = 3, . . . , 12). We display the dKL distance (n = 10) between these

(reference) vines and their matched Gaussian vines with corresponding computational

times (in seconds) in Table 3.5. Again, we also present the approximated KL values using

Monte Carlo integration (NMC = 106) and the ratio between dKL and MCKL values.

While we observe that the dKL is exceptionally fast in low dimensions we note that

computational times more than double when moving up one dimension. This is reasonable

since the total number of diagonals in all evaluation grids is equal to

d−1∑
j=1

|Duj | =
d−1∑
j=1

2d−j−1 = 2d−1 − 1 (3.13)

and thus grows exponentially in d. Further, the evaluations of the conditional copula

densities become more costly in higher dimensions, which can also be seen by the fact that
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d 3 4 5 6 7 8 9 10 11 12
dKL 0.076 0.109 0.178 0.249 0.297 0.459 0.529 0.657 0.670 0.839
time [s] 0.4 1 3 8 22 61 145 342 788 1846
MCKL 0.048 0.075 0.098 0.140 0.172 0.211 0.240 0.287 0.322 0.354
time [s] 25 43 87 129 158 174 235 279 408 448
ratio 1.57 1.45 1.81 1.78 1.73 2.17 2.2 2.29 2.08 2.37

Table 3.5.: dKL values (n = 10) and MCKL values (NMC = 106) with corresponding compu-
tational times (in seconds) for vines with different dimensions based on the stock
exchange data. The fifth row contains the ratio between dKL and MCKL.

the computational times for the MCKL increase even though the number of evaluations

NMC stays constant. Comparing the computational times of the dKL and MCKL one

notices that the dKL is considerably faster than the MCKL in lower dimensions. Only

in dimensions 10 and higher it looses this competitive advantage. Considering the ratio

between dKL and MCKL values it seems that the dKL values increase slightly faster with

the dimension d than the MCKL values.

The preceding examples suggest that with the dKL distance we have found a valid

distance measure between vines with reasonable computational times for up to ten di-

mensions. However, we are still interested in finding a distance measure computable in

dimensions of order 30 to 50. To achieve this, the number of grid points should not depend

on the dimension of the evaluation grid, implying a constant number of grid points. Hence,

we choose only one of the 2d−j−1 warped discrete diagonals in Duj to be the evaluation

grid. While this may seem like a very severe restriction (with the curse of dimensionality

in mind), two heuristic observations justify this approach. On the one hand we observe

that most of the 2d−j−1 diagonals contain many grid points with density values close to

zero while there is always one diagonal whose points have very large density values. On

the other hand we will see that the properties of the distance measure using only this sin-

gle diagonal for the evaluation grid still pass the plausibility checks with values behaving

closely to those of the dKL and the MCKL.

3.2.4. Single diagonal Kullback–Leibler distance

In order to find the one diagonal whose grid points have the highest density values we

introduce a weighting measure that assigns a positive real number to a diagonal depending

on how the density behaves on it. The higher the density values are the more weight the

corresponding diagonal obtains.

Definition 3.15 (Diagonal weighting measure). Assume we can parametrize a diagonal

D ⊆ [0, 1]d (on the u-scale) by the mapping γ : [0, 1] → [0, 1]d. Let c : [0, 1]d → [0,∞) be

33



Chapter 3. Model distances for vine copulas

a copula density. Then, we define

λc(D) :=

∫
ξ∈D

c(ξ) dξ =

∫
t∈[0,1]

c(γ(t)) ‖γ̇(t)‖ dt (3.14)

to be the weight of D under c, where γ̇ is the vector of componentwise derivatives of γ.

We now define the single diagonal Kullback–Leibler distance, which is a version of the

diagonal Kullback–Leibler distance that only evaluates the diagonal with the highest

weight.

Definition 3.16 (Single diagonal Kullback–Leibler distance). Let Rf , Rg be as before and

k∗j := arg maxk λcf
(j+1):d

(
Du
j,k

)
be the index of the diagonal Du

j,k∗j
with the highest weight

according to λcf
(j+1):d

, j = 1, . . . , d− 1. Further, letDuj,k∗j with |Duj,k∗j | = n be a discretization

ofDu
j,k∗j

. Then, the single diagonal Kullback–Leibler distance (sdKL) betweenRf (reference

vine) and Rg is defined as

sdKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1∣∣Duj,k∗j ∣∣
∑

u(j+1):d∈Duj,k∗
j

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

Remark 3.17. From Remark 3.11 we know that the single diagonal Kullback–Leibler

distance approximates a scaled line integral over weighted univariate KL distances between

conditional densities along the diagonal with the highest weight.

To find this diagonal we actually would have to calculate the integral of cf(j+1):d over

each of the 2d−j−1 diagonals. In practice, this may be infeasible for high dimensions.

Therefore, we propose a more sophisticated method to find a candidate for the diagonal

with the highest weight. Similar to the hill-climbing algorithm used to find optimal graph

structures in Bayesian networks (see Tsamardinos et al., 2006), we choose a starting value

in form of a certain diagonal implied by the vine’s unconditional dependencies and look

in the “neighborhood” of this diagonal for another diagonal with higher weight. This

procedure is repeated until a (local) maximum is found. The two procedures of finding

a suitable starting diagonal and locally searching for better candidates are described in

Appendix A.3.

In the following we continue the plausibility checks from Example 3.13 in order to

demonstrate that the restriction to a single diagonal is still enough for the resulting

distance measure to generate reasonable results.

Example 3.18 (Plausibility checks (Example 3.13 continued)). Table 3.6 and Table 3.7

repeat the three plausibility checks of Example 3.13. The resulting sdKL values obviously

also pass these tests resembling the behavior of the MCKL values quite closely with
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relatively steady sdKL/MCKL-ratios. Evaluating at only one diagonal in each grid reduces

computational times even more such that the sdKL is roughly 180 times faster than the

MCKL.

ν τ sdKL MCKL ratio
3 0.5 0.754 0.374 2.02
5 0.5 0.330 0.162 2.04
7 0.5 0.184 0.091 2.03

10 0.5 0.097 0.047 2.06
15 0.5 0.046 0.023 2.04
20 0.5 0.026 0.013 1.98
25 0.5 0.017 0.008 2.04
30 0.5 0.012 0.006 2.03

ν τ sdKL MCKL ratio
3 −0.7 7.534 3.226 2.34
3 −0.5 3.100 1.431 2.17
3 −0.3 0.773 0.473 1.63
3 −0.1 0.053 0.050 1.05
3 0.1 0.157 0.048 3.30
3 0.3 1.322 0.423 3.12
3 0.5 3.226 1.262 2.56
3 0.7 6.193 2.982 2.08

Table 3.6.: Left table: sdKL (n = 10) and MCKL (NMC = 106) values between five-dimensional
t copulas with P (2) = V5(ν) and their matched Gaussian vines. Right table: sdKL
and MCKL values between five-dimensional t copulas with K = K5(τ) and their
matched Gaussian vines.

Family Reference family sdKL MCKL ratio
Gaussian Gumbel 0.394 0.205 1.92
Clayton Gumbel 3.557 1.780 2.00
Survival Clayton Gumbel 0.421 0.158 2.66
Joe Gumbel 0.576 0.249 2.32

Table 3.7.: sdKL and MCKL values between a five-dimensional Gumbel vine and vines con-
structed using one copula family only. The last column contains the ratio between
sdKL and MCKL.

These five-dimensional plausibility checks empirically show that the reduction from all

to one diagonal still yields viable results for our modified version of the KL distance. In

the following section we will compare all introduced distance measures.

3.3. Comparison of all introduced model distances

3.3.1. Comparison of all introduced KL approximations

In the following example, we will investigate the behavior of the KL, aKL, dKL, sdKL

and MCKL in dimensions d = 3, 4, 5, 7, 10, 15, 20, 30. We make use of the fact that the

Kullback–Leibler distance between Gaussian copulas can be expressed analytically (Her-

shey and Olsen, 2007). For two Gaussian copulas cf and cg with correlation matrices Σf

and Σg, respectively, one has

KL
(
cf , cg

)
=

1

2

{
ln

(
det (Σg)

det (Σf )

)
+ tr

(
(Σg)−1Σf

)
− d
}
,
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where det( · ) denotes the determinant and tr( · ) the trace of a matrix. For each dimension

d we use a reference Gaussian vine R0 (which is also a Gaussian copula) with the (D-vine)

structure matrix M = Dd and Kendall’s τ matrix K = Kd(0.5) (cf. Equation 3.11 and

Equation 3.12, respectively).

We generate another m = 50 Gaussian vines Rr, r = 1, . . . ,m, with the same structure

matrix M = Dd and a parameter matrix P (1), where the d(d − 1)/2 partial correlations

are simulated such that the corresponding correlation matrix is uniform over the space

of valid correlation matrices. For this purpose, we follow Joe (2006): For i = 2, . . . , d and

j = 1, . . . , i− 1 we draw qi,j from a Beta(i/2, i/2) distribution. The parameter p
(1)
i,j is then

obtained as the linear transformation of qi,j to [−1, 1]: p
(1)
i,j := 2(qi,j − 0.5).

We compare the reference vineR0 to eachRr using the model distances KL, MCKL, aKL,

dKL and sdKL. Since the Kullback–Leibler distance is exact in these cases, we can assess

the performance of the remaining distance measures by comparing their m = 50 distance

values to the ones of the true KL. As the scale of the KL and related distance measures

cannot be interpreted in a sensible way, we are only interested in how well the ordering

suggested by the KL is reproduced by aKL (n = 20), dKL (n = 10), sdKL (n = 10) and

MCKL (NMC = 106), respectively. Hence, we consider the respective rank correlations to

the KL values in order to assess their performances. The results and average computation

times are displayed in Table 3.8 and Table 3.9, respectively. For illustration, the true KL

values (between reference vine R0 and each Rr, r = 1, . . . , 50) are plotted against the

corresponding sdKL values for d = 20 in the left plot Figure 3.4. The corresponding right

plot shows the same results but the KL and sdKL values were transformed to the rank

level first.

d 3 4 5 7 10 15 20 30
aKL 98.4 98.5 98.4 – – – – –
dKL 96.7 97.4 98.7 98.7 97.2 – – –
sdKL 93.3 90.2 91.5 89.7 82.9 84.8 84.5 80.4
MCKL 99.8 99.5 99.5 99.7 98.5 97.2 92.3 91.7

Table 3.8.: Rank correlations (in percent) between the true KL distance values (between reference
vine R0 and each Rr, r = 1, . . . , 50) and the corresponding distance values obtained
by aKL, dKL, sdKL and MCKL, respectively, for d = 3, 4, 5, 7, 10, 15, 20, 30.

d 3 4 5 7 10 15 20 30
aKL 3.46 117.67 4357.91 – – – – –
dKL 0.23 0.82 2.49 19.63 338.32 – – –
sdKL 0.18 0.38 0.69 1.80 4.86 16.04 36.91 114.12
MCKL 7.35 14.50 24.12 46.05 97.54 239.17 473.41 961.12

Table 3.9.: Average computational times (in seconds) of aKL, dKL, sdKL and MCKL (from
Table 3.8) for d = 3, 4, 5, 7, 10, 15, 20, 30.
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Figure 3.4.: Left: Plot of the true KL distance values (between reference vine R0 and each Rr,
r = 1, . . . , 50) and the corresponding distance values obtained by sdKL for d = 20.
Right: Plot of the ranks of the true KL distance values (between reference vine R0

and each Rr, r = 1, . . . , 50) and the ranks of the corresponding distance values
obtained by sdKL for d = 20.

With a rank correlation of more than 98% the approximate KL performs extremely

well for d = 3, 4, 5. However, computational times increase drastically with the dimen-

sion such that it cannot be computed in higher dimensions in a reasonable amount of

time. As the plausibility checks from the previous sections suggested the diagonal KL

also produces very good results. In lower dimensions the dKL is competitive regarding

computational times. Only for dimensions 10 and higher it becomes slower due to the expo-

nentially increasing number of diagonals. Therefore, calculations have not been performed

for d = 15, 20, 30. As expected, restricting to only one diagonal reduces computational

times considerably such that even in very high dimensions they are kept to a minimum.

Of course, this restriction comes along with slight loss of performance, still achieving a

rank correlation of over 80% in 30 dimensions. Being a consistent estimator of the KL

distance (for NMC →∞), the Monte-Carlo KL has the best performance of the considered

model distances. However, the performance decreases for high dimensions due to the curse

of dimensionality (NMC = 106 for all d). Further, the price of the slightly better perfor-

mance (compared to sdKL) is a considerably higher computational time, e.g. in 10 and

30 dimensions the sdKL is roughly 20 and 9 times faster than the MCKL, respectively.

Altogether we can say that in order to have good performance and low computational

times one should use the dKL in lower dimensions and then switch to the sdKL in higher

dimensions in order to obtain a usable proxy for the KL distance at (relatively) low

computational costs.
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Chapter 3. Model distances for vine copulas

3.3.2. Comparison of the resulting JD approximations

All approximations of the KL distance discussed in this chapter can be easily used to

define corresponding approximations of the Jeffreys distance (see Equation 3.3). We will

call these aJD, dJD, sdJD and MCJD, where for example sdJD(f, g) = sdKL(f, g) +

sdKL(g, f). We repeat the simulation study from Section 3.3.1 for the comparison of the

approximated JD values to the true one. Table 3.10 displays the results.

d 3 4 5 7 10 15 20 30
aJD 97.2 96.1 97.7 – – – – –
dJD 95.6 95.1 98.0 98.0 96.2 – – –
sdJD 86.9 86.1 85.5 85.5 82.7 83.5 84.5 83.8
MCJD 99.7 100 99.8 99.8 99.7 98.9 95.6 92.7

Table 3.10.: Rank correlations (in percent) between the true JD values (between reference vine
R0 and each Rr, r = 1, . . . , 50) and the corresponding distance values obtained by
aJD, dJD, sdJD and MCJD, respectively, for d = 3, 4, 5, 7, 10, 15, 20, 30.

We see that the results are similar to the ones where we just considered the KL dis-

tance. Of course, being sums of two approximated KL distances the approximations of

the Jeffreys distance are more volatile and therefore perform slightly worse than their KL

counterparts. However, we still have aJD and dJD values close to 100% and sdJD values

around 85%. As one would have expected, computational times of the JD substitutes are

simply (approximately) twice as long as the ones of their KL counterparts (cf. Table 3.9).

So we can conclude that in low dimensions suitable substitutes for the Jeffreys Distance

are given by the aJD and dJD with better computational times than those of the MCJD.

In dimensions 10 and higher the sdJD would be the measure of choice with low compu-

tational times and high correlations to the true Jeffreys distance. In practice users can

decide if they want to apply substitutes of the Jeffreys distance or the Kullback–Leibler

distance, depending on whether the focus is on symmetry of the distance measure or

computational times.

3.3.3. Calibration

The results in Section 3.3.1 showed that the sdKL is a valid substitute for the Kullback–

Leibler distance since it ranks the differences between the considered models very simi-

larly. However, what still remains is the drawback that any divergence or distance measure

shares: one distance value alone cannot be interpreted properly. Therefore, we will pro-

vide a baseline comparison in this section. Based on these results one can assess whether

a certain sdKL-value is small or large. Of course, this procedure can similarly be used

to calibrate any of the other distance measures. As reference vines we take exchange-

able d-dimensional Gaussian copulas with correlation matrix Σ(ρ) = (σi,j(ρ))i,j=1,...,d with
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σi,j(ρ) = 1 for i = j and σi,j(ρ) = ρ for i 6= j, i.e. every pair of variables has the same

correlation coefficient ρ. All copulas are written as D-vines with structure matrix Dd (cf.

Equation 3.11), where all parameters, i.e. the corresponding partial correlations, in the

`th tree are equal and recursively given by ρ(`) = ρ(`−1)/(1+ρ(`−1)) for ` = 2, . . . , d−1 and

ρ(1) = ρ. This implies for example that for ρ = 0.5 the partial correlations of the pairs in

the `th tree are given by ρ(`) = 1/(`+ 1) such that the strength of dependence decreases

with the tree level. The above specified (reference) Gaussian copulas are compared to the

d-dimensional independence copula using the sdKL. Figure 3.5 shows the sdKL-values for

d = 4 and d = 20 for values of ρ between 0 and 0.90.
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Figure 3.5.: Plots of the sdKL between the exchangeable (reference) Gaussian copula with joint
correlation ρ and the independence copula against ρ for d = 4 (left) and d = 20
(right).

Of course, both graphs start at 0 as for ρ = 0 the exchangeable Gaussian copula is

simply the independence copula such that the compared models are the same. As one

would expect, the distance increases as ρ increases, regardless of the dimension. However,

we see that the scale for d = 4 is very different from that of d = 20. Whereas a sdKL-

value of 1 corresponds to a ρ of roughly 0.4 in 4 dimensions, for d = 20 it corresponds

to a ρ of approximately 0.02 (see gray dashed lines in Figure 3.5). Plots like the ones in

Figure 3.5 can now be used as a baseline comparison: If we obtain an sdKL-value of 1

between two four-dimensional vine copulas, we know that this comparable to how much an

exchangeable Gaussian copula with ρ = 0.4 differs from the independence copula, which

is in fact considerable. If we get the same sdKL-value for d = 20, this corresponds to the

difference between an exchangeable Gaussian copula with ρ = 0.02 and the independence

copula, which is not too extreme.

Of course this calibration procedure can be easily extended to a calibration of ap-

proximated Jeffreys distances. To interpret a given sdJD value, one can either use the

corresponding baseline comparison of the sdKL multiplied by 2 (since the sdJD is the

sum of two sdKL values) or consider a similar plot of the sdJD between exchangeable
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Gaussian copulas and the independence copula to classify the sdJD value as small or

large.

Since we have seen that the substitutes for KL and JD perform similarly well, we will

focus on dKL and sdKL for the remainder of the chapter.

3.4. Hypothesis test for model selection

In this section we provide a procedure based on parametric bootstrapping (see Efron and

Tibshirani, 1994) for choosing between a parsimonious and a more complex model.

Assume we have two nested classes of d-dimensional parametric copula models Cf ⊆ Cg

and a copula data set u0
i ∈ [0, 1]d, i = 1, . . . , N , with true underlying distributionRg ∈ Cg.

We want to investigate whether a model from Cf suffices to describe the data. In other

words, we want to test the null hypothesis H0 : Rg ∈ Cf , which means that there exists

Rf ∈ Cf such that Rf = Rg. Due to the identity of indiscernibles (i.e. KL(Rf ,Rg) = 0 if

and only if Rf = Rg) of the Kullback–Leibler distance this is equivalent to KL(Rf ,Rg) =

0. Hence, for testing H0 we can examine whether the KL distance between Rf and Rg

is significantly different from zero. In practice, Rf and Rg are unknown and have to be

estimated from the data u0
i ∈ [0, 1]d. Consider the KL distance d0 = KL(R̂f

0 , R̂g
0) between

the two fitted models R̂f
0 and R̂g

0 as the test statistic. Since the distribution of d0 cannot

be derived analytically we use a parametric bootstrapping scheme to retrieve it:

For j = 1, . . . ,M , where M is the number of bootstrap iterations, generate a sample

uji ∈ [0, 1]d, i = 1, . . . , N , from R̂f
0 . Fit copulas R̂f

j ∈ Cf and R̂g
j ∈ Cg to the generated

sample. Calculate the distance between R̂f
j and R̂g

j :

dj = KL(R̂f
j , R̂g

j ).

Now reorder the set {dj | j = 1, . . . ,M} such that d1 < d2 < . . . < dM . For a significance

level α ∈ (0, 1), we can determine an empirical confidence interval IM1−α ⊆ [0,∞) with

confidence level 1− α by

IM1−α = [0, ddM(1−α)e],

where d·e denotes the ceiling function. Finally, we can reject H0 if d0 /∈ IM1−α. Figure 3.6

illustrates the above procedure in a flow chart. At the bottom the resulting distances are

plotted on the positive real line. In this exemplary case, d0 (circled cross) lies outside the

range of the empirical 100(1 − α)% confidence interval and therefore H0 can be rejected

at the 100α% level, i.e. there is a significant difference between R̂f
0 and R̂g

0.

Since in higher dimensions the KL distance cannot be calculated in a reasonable amount

of time, we use the distance measures dKL (for d < 10) and sdKL (for d ≥ 10), introduced

in Section 3.2, as substitutes for the KL distance. The above bootstrapping scheme works
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Figure 3.6.: Scheme of the testing procedure based on parametric bootstrapping.

similarly using the substitutes.

Of course, it is not obvious per se how to choose the number of bootstrap samples M .

On the one hand we want to choose M as small as possible (due to computational time);

on the other hand we want the estimate of ddM(1−α)e to be as precise as possible in order to

avoid false decisions with respect to the null hypothesis (the upper bound ddM(1−α)e of the

confidence interval IM1−α is random with variance decreasing in M). Therefore, we choose

M so large that we can decide if d0 is significantly larger (smaller) than ddM(1−α)e. For this

purpose, we construct a 100(1− β)% confidence interval for ddM(1−α)e by considering the

distribution of the dM(1−α)eth order statistic, which is given as follows (see for example

Casella and Berger, 2002, page 232):

FddM(1−α)e(x) = P(ddM(1−α)e ≤ x) =
M∑

k=dM(1−α)e

(
M

k

)
[Fd(x)]k[1− Fd(x)]M−k, (3.15)

where Fd denotes the true common underlying distribution of dj, j = 1, . . . , dM . Since

Fd is not known we replace it by the empirical distribution function implied by our

sample {d1, . . . , dM}. This way we can estimate the 100(β/2)% and the 100(1 − β/2)%

quantile for ddM(1−α)e, i.e. q̂(β/2) and q̂(1−β/2), respectively. If d0 lies outside the interval

(q̂(β/2), q̂(1−β/2)) we know that it is significantly larger or smaller than ddM(1−α)e. In all

applications of the test contained in this chapter we found that for α = 5% and β = 1%

a bootstrap sample size of M = 100 was enough.
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Validity of the parametric bootstrap for the hypothesis test

In order to establish the validity of the parametric bootstrap for the above hypothesis

test we will argue that under the null hypothesis H0 the bootstrapped distances dj, j =

1, . . . ,M , are i.i.d. with a common distribution that is close to Fd0 , i.e. the distribution

of d0, for large sample size N : If we have a consistent estimator for Rf , we know that

under H0 the estimate R̂f is close to Rf for large N . Since the bootstrap samples uji ,

i = 1, . . . , N , j = 1, . . . ,M are generated from R̂f , they can be assumed to be approximate

samples from Rf . Since R̂f
j and R̂g

j are estimated based on the jth bootstrap sample uji ,

i = 1, . . . , N , the KL between R̂f
j and R̂g

j , i.e. dj, has the same distribution as the KL

between R̂f and R̂g, i.e. d0, for large N . Therefore, we can construct empirical confidence

intervals for d0 based on the bootstrapped distances dj, j = 1, . . . ,M .

Of course this argumentation is not a strict proof but rather makes the proposed ap-

proach plausible. An example for a mathematical justification of the parametric bootstrap

in the copula context can be found in Genest and Rémillard (2008). In Section 3.1 of Kil-

liches et al. (2017c) a simulation study can be found showing that our proposed test holds

its level under the null hypothesis (for different sample sizes) when investigating the power

of the test in a simplified/non-simplified vine copula framework.

3.5. Model selection

A typical application of model distance measures is model selection. Given a certain data

set one often has to choose between several models with different complexity and features.

Distance measures are a convenient tool that can help with the decision for the “best” or

“most suitable” model out of a set of candidate models.

3.5.1. KL based model selection

The Kullback–Leibler distance is of particular interest for model selection because of

the following relationship: For given copula data ui ∈ [0, 1]d, i = 1, . . . , N , from a d-

dimensional copula model c : [0, 1]d → [0,∞) we have

KL(c, c⊥) ≈
N∑
i=1

log

(
c(ui)

c⊥(ui)

)
=

N∑
i=1

log (c(ui)) = log `(c),

where c⊥ denotes the density of the d-dimensional independence copula and log `(c) is

the log-likelihood of the model c. This means that the log-likelihood of a model can

be approximated by calculating its Kullback–Leibler distance from the corresponding

independence model (also known as mutual information in the bivariate case; see e.g.

Cover and Thomas, 2012). The log-likelihood itself as well as the information criteria
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3.5. Model selection

AIC and BIC (Akaike, 1998; Schwarz, 1978), which are based on the log-likelihood but

penalize the use of too many parameters, can be used to assess how well a certain model

fits the data. The higher (lower) the log-likelihood (AIC/BIC) is, the better the model fit.

Thus, a high Kullback–Leibler distance from the independence copula also corresponds to

a good model fit. Note that this approximation only holds if data in fact was generated

from c. Since in applications the true underlying distribution c is unknown, we can use

the KL distance between a fitted copula and the independence copula as a proxy for the

quality of the fit. Therefore, having fitted different models to a data set it is advisable to

choose the one with the largest KL distance. Since dKL and sdKL are modifications of

the original KL distance, it is natural to use them as substitutes for the model selection

procedure.

In the following subsections we provide two examples, where dKL and sdKL based

measures are applied for model selection. For this purpose we perform the following pro-

cedure 100 times: We fix a vine copula model and generate a sample of size N = 3000

from it. Then, we fit different models on the generated sample and calculate the distance

to the independence model with respect to dKL and sdKL, respectively. The results are

compared to AIC and BIC.

3.5.2. Five-dimensional mixed vine

As a first example we consider a five-dimensional vine copula with the following vine tree

structure and pair-copulas:

• Tree 1: c1,5 is a Gumbel copula with τ1,5 = 0.6, c2,4 is a BB1 copula with τ2,4 = 0.83,

c3,4 is a BB7 copula with τ3,4 = 0.74 and c4,5 is a Tawn copula with τ4,5 = 0.72;

• Tree 2: c1,4;5 is a Clayton copula with τ1,4;5 = 0.5, c2,5;4 is a Joe copula with τ2,5;4 =

0.45 and c3,5;4 is a BB6 copula with τ3,5;4 = 0.48;

• Tree 3: c1,3;4,5 is a t copula with τ1,3;4,5 = −0.19 and ν1,3;4,5 = 3 degrees of freedom

and c2,3;4,5 is a Frank copula with τ2,3;4,5 = −0.31;

• Tree 4: c1,2;3,4,5 is a Gaussian copula with τ1,2;3,4,5 = −0.13.

As described above, we perform the following steps 100 times: Generate a sample of

size N = 3000 from the specified vine copula and fit four different models to the data

sample (a Gaussian copula, a C-vine, a D-vine and an R-vine with the true structure)

using the sequential fitting routine from VineCopula, where all available bivariate families

are allowed as candidate pair-copulas. Table 3.11 displays the number of parameters, the

dKL to the five-dimensional independence copula and the AIC and BIC values of the
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four fitted models, all averaged over the 100 replications. The corresponding estimated

standard errors are given in brackets.

# par dKL( · , c⊥) AIC BIC
Gaussian copula 10.00 (0.00) 6.24 (0.09) −23669 (377) −23609 (377)
C-vine 15.57 (0.64) 7.10 (0.06) −28317 (333) −28223 (333)
D-vine 19.77 (0.47) 7.41 (0.08) −30320 (354) −30201 (354)
R-vine 15.68 (0.78) 8.37 (0.06) −33843 (344) −33749 (345)

Table 3.11.: Average number of parameters, dKL to the five-dimensional independence copula,
AIC and BIC of the fitted Gaussian copula, C-vine, D-vine and R-vine (with true
structure). Standard errors are given in brackets. Best values per column are marked
in bold.

Compared to the 15 parameters of the true R-vine model, the Gaussian copula has only

10 parameters but also exhibits the poorest fit of all considered models with respect to any

of the decision criteria. The C-vine (between 15 and 16 parameters on average) is ranked

third by dKL, AIC and BIC. The D-vine model uses the most parameters (almost 20) but

also performs better than the C-vine. With just under 16 parameters on average the R-

vine copula is rated best by all three measures. We see that the ranking of the four fitted

models is the same for dKL, AIC and BIC. We also checked that all 100 cases yielded this

ranking. Considering the empirical ‘noise-to-signal’ ratio, i.e. the quotient of the standard

errors and the absolute estimated mean, we obtain that the dKL performs better than

AIC and BIC (e.g. for the R-vine we have 0.06/8.37 < 344/33843 < 345/33479).

3.5.3. 20-dimensional t vine

In order to show a high-dimensional example, we consider a 20-dimensional D-vine being

also a t vine, i.e. a vine copula with only bivariate t copulas as pair copulas. The association

parameter is chosen constant for all pair-copulas in one tree: Kendall’s τ in Tree m is 0.8m,

m = 1, . . . , 19. Further, all pairs are heavy-tailed, having ν = 3 degrees of freedom. Due

to the overall constant degrees of freedom the resulting t vine with its 380 parameters

is not a t copula (cf. Section 2.2.3). Now we repeat the following procedure 100 times:

Generate a sample of size N = 3000 from the t vine with above specified parameters

and fit a Gaussian copula, a t copula, a t vine and an R-vine to the simulated data. For

the t and the R-vine we assume the true D-vine structure and use the sequential fitting

routine from VineCopula, where for the R-vine all available bivariate families are allowed

as candidate pair-copulas. Since the calculation of the dKL in d = 20 dimensions would be

rather time-consuming, we use the sdKL instead. We present the number of parameters,

the sdKL to the 20-dimensional independence copula and the AIC and BIC values of the

four fitted models (again averaged over the 100 replications) in Table 3.12. The estimated

standard errors are given in brackets.
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# par sdKL( · , c⊥) AIC BIC
Gaussian copula 190.00 (0.00) 84.11 (0.75) −271610 (2962) −270468 (2962)
t copula 191.00 (0.00) 93.95 (0.67) −299703 (1929) −298556 (1929)
t vine 380.00 (0.00) 96.72 (0.82) −309647 (2112) −307365 (2112)
R-vine 379.87 (0.60) 96.80 (0.99) −309337 (2579) −307056 (2579)

Table 3.12.: Average number of parameters, sdKL to the 20-dimensional independence copula,
AIC and BIC of the fitted Gaussian copula, t copula, t vine (with true structure)
and R-vine (with true structure). Standard errors are given in brackets. Best values
per column are marked in bold.

The Gaussian copula has the least parameters (190) but also the worst sdKL, AIC and

BIC values. Adding a single additional parameter already causes an enormous improve-

ment of all three measures for the t copula. The t vine is more flexible but has considerably

more parameters than the t copula (380); nevertheless all three decision criteria prefer

the t vine over the t copula. Surprisingly, the t vine is even ranked a little bit higher

by AIC and BIC than the R-vine, which also has roughly 380 parameters on average.

This ranking might seem illogical at first because the class of R-vines is a superset of

the class of t vines such that one would expect the fit of the R-vine to be at least as

good as the fit of the t vine. The reason for this alleged contradiction is that the fitting

procedure that is implemented in the R package VineCopula (Schepsmeier et al., 2017) is

not optimizing globally but tree-by-tree (cf. Section 2.2.5). Therefore, it is possible that

fitting a non-t copula in one of the lower trees might be optimal but cause poorer fits in

some of the higher trees. However, the difference between the fit of the t vine and the

R-vine is very small and for 83 of the 100 samples both procedures fit the same model.

Therefore, we want to test whether this difference is significant at all. For this purpose,

we perform a parametric bootstrapping based test as described in Section 3.4 at the level

α = 5% with M = 100 replications. With p-values between 0.32 and 0.78 we cannot even

reject the null hypothesis that the two underlying models coincide in any of the remaining

17 cases, where different models were fitted. Hence we would prefer to use the simpler t

vine model which is in the same model class as the true underlying model. In a similar

manner we check whether the difference between the t copula and the t vine is significant.

Here, however, we find out that the model can indeed be distinguished at a 5% confidence

level for all 100 samples (p-values range between 0 and 0.03). Considering the empirical

noise-to-signal ratio we see that sdKL is a bit more dependent on the sample compared

to dKL such that AIC, BIC and sdKL have roughly the same noise-to-signal ratio, where

the values of AIC/BIC are slightly lower for the t copula, the t vine and the R-vine.
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3.6. Determination of the optimal truncation level

As the dimension d of a vine copula increases, the number of parameters d(d − 1)/2

grows quadratically. For example, a 50-dimensional R-vine consists of 1225 (conditional)

pair-copulas, each with one or more copula parameters. This on the one hand can create

computational problems, while on the other hand the resulting model is difficult to in-

terpret. Given an d-dimensional data set (d large), it has been proposed (see Brechmann

et al., 2012; Brechmann and Joe, 2015) to fit a so-called k-truncated vine, where the

pair-copulas of all trees of higher order than some truncation level k ≤ d− 1 are modeled

as independence copulas. This reduces the number of pair-copulas to be estimated from

d(d − 1)/2 to d(d − 1)/2 − (d − k)(d − k − 1)/2, where k is chosen as small as can be

justified. The heuristic behind this approach is that the sequential fitting procedure of

regular vines captures most of the dependence in the lower trees, such that the dependence

in the higher trees might be negligible and therefore the approximation error caused by

using an independence copula is rather small. The task of finding the optimal truncation

level k∗ has already been tackled in the recent literature. Brechmann et al. (2012) use

likelihood based criteria such as the AIC, BIC and Vuong test for the selection of k∗,

while Brechmann and Joe (2015) propose an approach based on fit indices that measure

the distance between fitted and observed correlation matrices.

3.6.1. Algorithms for the determination of optimal truncation levels

Using the proposed distance measures we can directly compare several truncated vines

with different truncation levels. With the bootstrapped confidence intervals described in

Section 3.4 we can assess whether the distances are significant in order to find the optimal

truncation level. To be precise, in the following we present two algorithms that use the

sdKL for the determination of the optimal truncation level, a global one (Algorithm 1)

and a sequential one (Algorithm 2).

In Algorithm 1, tRV(k) denotes the k-truncated version of R-vine RV. Since a full d-

dimensional R-vine consists of d − 1 trees, tRV(d − 1) and RV coincide. The algorithm

starts with the full model RV and, going backwards, truncates the vine tree-by-tree until

the distance between the m-truncated vine and the full model is significantly larger than 0.

Hence, the truncation at level m is too restrictive such that we select the level k∗ = m+1,

for which the distance was still insignificant. For the testing procedure we can use the test

from Section 3.4 since the class of truncated vine copula models is nested in the general

class of all vine copulas.

Since fitting a full vine copula model might be rather time-consuming in high dimensions

with Algorithm 2 we propose another procedure of determining the truncation level, which
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Algorithm 1 Global determination of the optimal truncation level

Input: d-dimensional copula data, significance level α.

1: Fit full (non-truncated) regular vine RV = tRV(d-1) to the data set.
2: for m = d− 2, . . . , 0 do
3: Specify the truncated vine tRV(m) by setting all pair-copulas of trees m + 1 and

higher to the independence copula.
4: Calculate the sdKL between RV and tRV(m) and use the parametric bootstrap to

check whether the distance is significantly different from zero.
5: if distance is significant then
6: break the for-loop and return the optimal truncation level k∗ = m+ 1.

Output: Optimal truncation level k∗ = m+ 1.

Algorithm 2 Sequential determination of the optimal truncation level

Input: d-dimensional copula data, significance level α.

1: Set tRV(0) to be a truncated vine with truncation level 0, i.e. an independence copula.
2: for m = 1, . . . , d− 1 do
3: Specify the truncated vine tRV(m) by taking the truncated vine from the previous

step tRV(m− 1) and estimating the pair-copulas from tree m.
4: Calculate the sdKL between tRV(m − 1) and tRV(m) and use the parametric

bootstrap to check whether the distance is significantly different from zero.
5: if distance is not significant then
6: break the for-loop and return the optimal truncation level k∗ = m− 1

Output: Optimal truncation level k∗ = m− 1

builds the R-vine sequentially tree by tree, starting with the first tree. In each step we

check whether the additionally modeled tree significantly changes the resulting model in

comparison to the previous one. As long as it does, the vine is updated to one with an

additionally modeled tree. Only when the addition of a new tree of order m results in a

model that is statistically indistinguishable from the previous one, the algorithm stops

and returns the optimal truncation level k∗ = m−1. The heuristic behind Algorithm 2 is

that since the vine is estimated sequentially maximizing the sum of absolute (conditional)

Kendall’s τ values in each tree (for details see Dißmann et al., 2013), we can expect

the distance between two subsequent truncated vines to be decreasing. Therefore, if the

distance between tRV(k∗) and tRV(k∗+1) is not significant, the distances between tRV(m)

and tRV(m+ 1) for m > k∗ should be not significant either.

Comparing Algorithm 1 and Algorithm 2, we note that in general they do not find the

same truncation level. For example, consider the case where for some m the distances

between tRV(m) and tRV(m + 1), tRV(m + 1) and tRV(m + 2), until tRV(d − 2) and

tRV(d−1) are not significant, while the distance between tRV(m) and tRV(d−1) is. Then,

Algorithm 2 would return an optimal truncation level of m, whereas we would obtain a

higher truncation level by Algorithm 1. So in general we see that Algorithm 2 finds more
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parsimonious models than Algorithm 1.

In the following we examine how well the proposed algorithms for finding optimal

truncation levels for R-vines work in several simulated scenarios as well as real data

examples. We compare our results to the existing methodology of Brechmann et al. (2012),

who use a Vuong test (with and without AIC/BIC correction) to check whether there is a

significant difference between a certain k-truncated vine and the corresponding vine with

truncation level k−1, for k = 1, . . . , d−1. Starting with the lowest truncation levels, once

the difference is not significant for some m, the algorithm stops and returns the optimal

truncation level k∗ = m− 1.

3.6.2. Simulation study

20-dimensional t copula truncated at level 10

In the first simulated example, we consider a scenario where the data comes from a 20-

dimensional t copula truncated at level 10. For this, we set the degrees of freedom to 3 and

produce a random correlation matrix sampled from the uniform distribution on the space

of correlation matrices according to the procedure of Joe (2006) described in Section 3.3.1,

page 36. In this example, the resulting correlations range between −1 and 1 with a higher

concentration on correlations with small absolute values. After sampling the correlation

matrix, we express the corresponding t copula as a D-vine (cf. Section 2.2.1) and truncate

it at level 10, i.e. the pair-copulas of trees 11 to 19 are set to the independence copula.

From this truncated D-vine we generate a sample of size N = 2000 and use the R function

RVineStructureSelect from the package VineCopula to fit a vine copula to the sample

with the Dißmann algorithm (see Section 2.2.5). The question is now if our algorithms

can detect the true truncation level underlying the generated data. For this we visualize

the steps of the two algorithms. Concerning Algorithm 1, in the left panel of Figure 3.7

we plot the sdKL-distances between the truncated vines and the full (non-truncated) vine

against the 19 truncation levels together with the bootstrapped upper 95% confidence

bounds (d95 from Section 3.4) under the null hypothesis that the truncated vine coincides

with the full model (dashed line).

Naturally, the curve corresponding to Algorithm 1 is decreasing with an extremely large

distance between the one-truncated vine and the full model and a vanishingly small dis-

tance between the 18-truncated vine and the full model, which only differ in the specifica-

tion of one pair-copula. In order to determine the smallest truncation level whose distance

to the full model is insignificantly large, the algorithm compares these distances to the

bootstrapped upper 95% confidence bounds. In this example we see that the smallest

truncation level for which the sdKL-distance to the full model drops below the confidence

bound is 10, such that the algorithm is able to detect the true truncation level. In order
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3.6. Determination of the optimal truncation level
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Figure 3.7.: Visualization of the algorithms for data generated from a 20-dimensional t copula
truncated at level 10. Left (Algorithm 1): sdKL-distance to full model with dashed
bootstrapped upper 95% confidence bounds. Right (Algorithm 2): sdKL-distance to
model with truncation level k + 1 with dashed bootstrapped upper 95% confidence
bounds.

to check, whether this was not just a coincidence we repeated this procedure 100 times

and found that the optimal truncation level found by the algorithm averages to 10.5 with

a standard deviation of 0.81.

The right panel of Figure 3.7 displays the results for Algorithm 2. For each truncation

level k, the sdKL-distance between the vine truncated at level k and the vine truncated at

level k+1 is plotted, again together with bootstrapped upper 95% confidence bounds under

the null hypothesis that this distance is 0, i.e. the true model is the one with truncation

level k. We observe that the largest sdKL-distance is given between the vine copulas

truncated at levels 2 and 3, 3 and 4, and 4 and 5, respectively. This is in line with the

results from Algorithm 1 (left panel of Figure 3.7), where we observe the steepest decrease

in sdKL to the full model from truncation level 2 to 5. In this example Algorithm 2 would

also detect the true truncation level 10. In the 100 simulated repetitions of this scenario,

the average optimal truncation level was 10.2 with a standard deviation of 0.41.

In each of the 100 repetitions, we also used the Vuong test based algorithms with-

out/with AIC/with BIC correction from Brechmann et al. (2012) to compare our results.

They yielded average truncation levels of 14.6, 12.6 and 10.8 with standard deviations

of 1.68, 1.52 and 0.85 (without/with AIC/with BIC correction), respectively, depend-

ing on the correction method. So all three methods overestimate the truncation level, in

particular the first two.

Thus we have seen that in a scenario where the data is generated from a truncated

vine both proposed algorithms manage to detect the truncation level very well. Next, we

investigate how the algorithms perform when the true underlying copula is not truncated.
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Chapter 3. Model distances for vine copulas

20-dimensional t copula (non-truncated)

In this example we generate data from the same 20-dimensional t copula as before, this

time without truncating it. The results of the algorithms are displayed in Figure 3.8.
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Figure 3.8.: Visualization of the algorithms for data generated from a 20-dimensional t cop-
ula (non-truncated). Left (Algorithm 1): sdKL-distance to full model with dashed
bootstrapped upper 95% confidence bounds. Right (Algorithm 2): sdKL-distance to
model with truncation level k + 1 with dashed bootstrapped upper 95% confidence
bounds.

At first sight the plots look quite similar to those of Figure 3.7. Due to the sequential

fitting algorithm of Dißmann et al. (2013), which tries to capture large dependencies as

early as possible (i.e. in the lower trees), the sdKL distance to the full model (left panel

of Figure 3.8) is strongly decreasing in the truncation level. However, for truncation levels

10 to 15 this distance is still significantly different from zero (albeit very close to the

upper 95% confidence bounds for k ≥ 12) such that the optimal truncation level is found

to be 16. The right panel of Figure 3.8 tells us that the distance between the 11- and

12-truncated vine copulas is still fairly large and all subsequent distances between the

k- and (k + 1)-truncated models are very small. However, Algorithm 2 also detects 16

to be the optimal truncation level because the distances are still slightly larger than the

upper 95% confidence bounds for smaller k. In the 100 simulated repetitions the detected

optimal truncation level was between 14 and 18 with an average of 16.2 for Algorithm 1

and 15.4 for Algorithm 2.

Again, we used the algorithms from Brechmann et al. (2012) in each of the 100 repeti-

tions. From the different correction methods we obtained the following average truncation

levels: 18.6, 18.3 and 17.6 with standard deviations 0.62, 0.94 and 1.32 (without/with

AIC/with BIC correction), respectively.

Hence we can conclude that for vine copulas fitted by the Dißmann’s algorithm our

algorithms decide for a little more parsimonious models than the ones from Brechmann
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3.6. Determination of the optimal truncation level

et al. (2012). This can even be desirable since Dißmann’s algorithm selects vines such that

there is only little dependence in higher trees. Hence, we do not necessarily need to model

all pair-copulas of the vine specification explicitly and a truncated vine often suffices.

3.6.3. Real data examples

Having seen that the algorithms seem to work properly for simulated data we now want

to turn our attention to real data examples. First we revisit the example considered in

Brechmann et al. (2012) concerning 19-dimensional Norwegian finance data.

19-dimensional Norwegian finance data

The data set consists of 1107 observations of 19 financial quantities such as interest

rates, exchange rates and financial indices for the period 2003–2008 (for more details refer

to Brechmann et al., 2012). Figure 3.9 shows the visualization of the two algorithms for

this data set.
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Figure 3.9.: Visualization of the algorithms for the 19-dimensional Norwegian finance data. Left
(Algorithm 1): sdKL-distance to full model with dashed bootstrapped upper 95%
confidence bounds. Right (Algorithm 2): sdKL-distance to model with truncation
level k + 1 with dashed bootstrapped upper 95% confidence bounds.

We see that the sdKL-distance to the full model is rapidly decreasing in the truncation

level k, being quite close to the upper 95% confidence bound for k ≥ 4, very close for k ≥ 6

and dropping below it for k = 10. Hence we can conclude that the optimal truncation

level found by Algorithm 1 is 10, while a truncation level of 6 or even 4 may also be

justified if one seeks more parsimonious models. This is exactly in line with the findings

of Brechmann et al. (2012), who ascertained that depending on the favored degree of

parsimony both truncation levels 4 and 6 may be justified. Yet, they find that there still
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Chapter 3. Model distances for vine copulas

are significant dependencies beyond the sixth tree. This can also be seen from the right

plot of Figure 3.9, which visualizes the results from Algorithm 2. We see that the distance

between two subsequent truncated vines first falls below the upper 95% confidence bound

for k = 6, after being close to it for k = 4 and k = 5. Thus we see that in this example

Algorithm 2 indeed finds a more parsimonious model than Algorithm 1. If we took the

distances between all subsequent truncated vines into account, we would see that trees 9

and 10 still contribute significant dependencies, such that the “global” optimal truncation

level again would be 10. If a data analyst decided that the parsimonious model truncated

at level 6 or 4 would suffice for modeling this 19-dimensional data set, he or she would

be able to reduce the number of pair-copulas to be modeled from 171 of the full model to

93 or 66, respectively, and thus greatly improve model interpretation and simplify further

computations involving the model (e.g. value-at-risk simulations).

52-dimensional EuroStoxx50 data

Since the positive effect of truncating vine copulas intensifies with increasing dimensions,

we revisit the EuroStoxx50 data set from Example 3.7 but this time we consider the entire

52-dimensional data set instead of only a four-dimensional subset. For risk managers it

is a relevant task to correctly assess the interdependencies between these variables since

they are included in most international banking portfolios. Figure 3.10 shows the results

of the algorithms for this data set.

0 10 20 30 40 50

0
5

10
15

Truncation level k

sd
K

L−
di

st
an

ce
 to

 fu
ll 

m
od

el

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Truncation level k

sd
K

L−
di

st
. t

o 
m

od
el

 w
ith

 tr
un

c.
 le

ve
l k

+
1 

Figure 3.10.: Visualization of the algorithms for the 52-dimensional EuroStoxx50 data. Left (Al-
gorithm 1): sdKL-distance to full model with dashed bootstrapped upper 95%
confidence bounds. Right (Algorithm 2): sdKL-distance to model with truncation
level k + 1 with dashed bootstrapped upper 95% confidence bounds.

In the left panel we see that most of the dependence is captured by the first few trees

since there the sdKL-distance to the full model has its sharpest decrease in truncation

level k. The distance gets very close to the dashed upper 95% confidence bound for
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3.7. Conclusion

k > 27, however crossing it not before k = 43, implying a rather high truncation level.

Considering the visualized results of Algorithm 2 in the right panel of Figure 3.10 we

observe that the distances between subsequent truncated vines is quite small for k ≥ 8,

first dropping below the upper 95% confidence bound for k = 24. However, it increases

again afterwards and ultimately drops below the confidence bound for k = 44. One could

argue that a truncation level of k = 33 might be advisable since the treewise distance

slightly exceeds the confidence bound only three times thereafter. This would reduce the

number of pair-copulas to be modeled from 1326 for the full 52-dimensional model to

1155 for the 33-truncated vine copula. Thus, with the help of model distances we can find

simpler models for high-dimensional data.

For comparison, the algorithm from Brechmann et al. (2012) finds optimal truncation

levels of 47 (without correction), 24 (AIC correction) and 3 (BIC correction). We see

that there are large differences between the three methods: Whereas a truncation level

of 47 corresponds almost to the non-truncated vine, one should be skeptical whether a

3-truncated vine is apt to describe the dependence structure of 52 random variables.

3.7. Conclusion

In this chapter we have developed new methods for measuring model distances between

vine copulas. Since vines are frequently used for high dimensional dependence modeling,

the focus was to propose concepts that can in particular be applied to higher dimensional

models. With the approximate Kullback–Leibler distance we introduced a measure which

converges to the original Kullback–Leibler distance and therefore produces good approxi-

mations. Although being considerably faster than the calculation of the KL by numerical

integration, the aKL suffers from the curse of dimensionality and therefore is not compu-

tationally tractable in dimensions d ≥ 6. Being a more crude approximation the diagonal

Kullback–Leibler distance, which highlights the difference between vines conditioned on

points on the diagonals, has proven itself to be a reliable and computationally parsi-

monious model distance measure for comparing vines in up to 10 dimensions. In higher

dimensions the number of diagonals becomes intractable, which is why we suggested to

reduce calculations to only one diagonal with large density values, introducing the single

diagonal Kullback–Leibler distance. With the sdKL, we have found a possibility to over-

come the shortfalls of alternative methods like Monte Carlo (low speed and randomness)

and at the same time maintain the desired properties of the Kullback–Leibler distance

relatively well. For the sake of interpretability we provided a baseline calibration answer-

ing the question whether a distance value is small or large. The above distance measures

can be used to substitute the Jeffreys distance. In a simulation study we have seen that

the performance is very similar, whereas computational times double. The applications
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Chapter 3. Model distances for vine copulas

presented in this chapter showed the necessity of calculating distances between vine cop-

ulas for model selection. The developed parametric bootstrap based testing procedure

proved to be particularly useful for finding an optimal truncation level for vines. Both

algorithms proposed for determining suited truncation levels proved to yield satisfactory

results in simulations and real data applications. Since Algorithm 2 tends to find more

parsimonious models than Algorithm 1 it might be more suited for practical applications.

While we only considered datasets with dimensions d ≤ 52 here, applications in even

higher dimensions are possible. With the theory developed in Müller and Czado (2016)

the fitting of vines with hundreds of dimensions is facilitated with the focus on sparsity,

i.e. fitting as many independence copulas as justifiable in order to reduce the number of

parameters. The proposed distance measures can also be applied to select between several

of these high-dimensional models.
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Chapter 4

Block maxima for vine copulas

Large parts of the contents of this chapter have been published in Killiches and Czado

(2015). This chapter is an edited reproduction of the published results.

4.1. Introduction

Basically, block maxima have been used in extreme-value theory as one approach to

derive the family of generalized extreme-value (GEV) distributions (McNeil et al., 2010).

In the recent past the block maxima method has been studied more thoroughly and

compared to the peaks-over-threshold (POT) method in Ferreira and de Haan (2014)

and Jarušková and Hanek (2006). Dombry (2015) justifies the usage of a maximum-

likelihood estimator for the extreme-value index within the block maxima framework.

The numerical convergence of the block maxima approach to the GEV distribution is

examined in Faranda et al. (2011). Moreover, the block maxima method has found its way

into many application areas: Marty and Blanchet (2012) investigate long-term changes

in annual maximum snow depth and snowfall in Switzerland. Temperature, precipitation,

wind extremes over Europe are analyzed in Nikulin et al. (2011). A spatial application can

be found in Naveau et al. (2009). Rocco (2014) provides an overview over the concepts

of extreme-value theory being used in finance. While many of the articles use univariate

concepts, Bücher and Segers (2014) treat how to estimate extreme-value copulas based

on block maxima of a multivariate stationary time series. In contrast to the existing

literature, in the following we will consider finite block maxima of multivariate random

variables focusing on the dependence structure.

The remainder of the chapter will be structured as follows: In Section 4.2 we will derive

an expression for the copula density of the joint distribution of finite block maxima of

multivariate random variables. We show that this result is particularly useful when it is

55



Chapter 4. Block maxima for vine copulas

applied to three-dimensional vine copulas in Section 4.3, where we also present numerical

examples and an application to a hydrological data set. In order to mimic the approach

of Hüsler and Reiss (1989) we further consider scaled block maxima in Section 4.4 and

present numerical examples in Section 4.5. Finally, Section 4.6 concludes the chapter.

4.2. Copula density of the distribution of block maxima

Let U = (U1, . . . , Ud)
> be a random vector with uniform(0,1)-distributed margins, copula

C and copula density c. We consider n ∈ N i.i.d. copies Ui = (Ui,1, . . . , Ui,d)
> of U,

i = 1, . . . , n. We are interested in the distribution of the vector of componentwise block

maxima

M(n) =
(
M

(n)
1 , . . . ,M

(n)
d

)>
with M

(n)
j := max

i=1,...,n
Ui,j

for j = 1, . . . , d. According to Sklar (1959) the dependence structure is determined by the

corresponding copula CM(n) . Since Ui,j, i = 1, . . . , n, are i.i.d., we know that the marginal

distribution functions of M
(n)
j are given by

F
(n)
j (mj) = P (U1,j ≤ mj, . . . , Un,j ≤ mj) = mn

j (4.1)

and hence the corresponding marginal densities are

f
(n)
j (mj) = nmn−1

j (4.2)

for mj ∈ [0, 1], j = 1, . . . , d. Thus, the copula CM(n) is the distribution function of the

random vector

V = (V1, . . . , Vd)
> with Vj :=

(
M

(n)
j

)n
∼ uniform(0, 1).

For n ∈ N the copula of the componentwise maxima CM(n) can be expressed in terms of

the underlying copula C as follows

CM(n)(u1, . . . , ud) = C
(
u

1/n
1 , . . . , u

1/n
d

)n
, (4.3)

where uj ∈ [0, 1], j = 1, . . . , d (see e.g. Genest and Nešlehová, 2012). Since C is assumed

to have a density c, Equation 4.3 yields that CM(n) also has a density, denoted by cM(n) .

Many statistical methods such as likelihood-based techniques rely on the density of a

distribution such that cM(n) is in fact of great interest. In Theorem 4.1 we provide an

explicit formula for the copula density of the block maxima. The corresponding proof can

be found in Appendix B.1.
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Theorem 4.1. The density of the copula of the vector of block maxima satisfies for uj ∈
[0, 1], j = 1, . . . , d:

cM(n)(u1, . . . , ud) =
1

nd

(
d∏
j=1

uj

) 1
n
−1 d∧n∑

j=1

{
n!

(n− j)!C
(
u

1/n
1 , . . . , u

1/n
d

)n−j
×
∑
P∈Sd,j

∏
I∈P

∂IC
(
u

1/n
1 , . . . , u

1/n
d

)}
. (4.4)

Here, d ∧ n := min {d, n} and Sd,j := {P|P partition of {1, . . . , d} with |P| = j} repre-

sents the set of all partitions consisting of j non-empty and disjoint subsets of {1, . . . , d}.
Further,

∂IC
(
u

1/n
1 , . . . , u

1/n
d

)
:=

∂pC(v1, . . . , vd)

∂vi1 · · · ∂vip

∣∣∣∣
v1=u

1/n
1 ,...,vd=u

1/n
d

denotes the mixed partial derivative of the copula function C with respect to all indices

contained in I = {i1, . . . , ip} ⊆ {1, . . . , d}.

We see that the copula density of the block maxima depends only on the copula C

itself and its partial derivatives. Thus, we can determine the copula density of the block

maxima for any block size n as soon as we know the underlying dependence structure C.

This is a very convenient property when it comes to estimation: Assume you are given

a sample u1, . . . ,uN ∈ [0, 1]d from C of size N . The natural approach to determine the

copula density of the corresponding block maxima (for block size n) would be to take the

maxima over blocks of observations with size n and estimate the corresponding copula

density. Thus, the estimation of the copula density of the block maxima is based on only

bN/nc observations, where b·c denotes the floor function. However, if we use Theorem 4.1

we are able use the entire sample for the estimation of C, which results in a more precise

estimate. Further, we can directly derive the copula density of the block maxima for any

block size n. This way it is even possible to determine cM(n) for block sizes n > N , where

we would not be able to perform the standard estimation approach since we do not even

have a single observation of the block maxima. The only challenge is that we need to be

able to determine the partial derivatives of the copula function C.

In order to illustrate the result from Theorem 4.1 we investigate the three-dimensional

case as an example and determine the corresponding copula density of the vector of the

block maxima.

Example 4.2. Let d = 3, n ∈ N, i.e. Ui = (Ui,1, Ui,2, Ui,3)>and M(n) = (M
(n)
1 ,M

(n)
2 ,M

(n)
3 )>,

i = 1, . . . , n. If n ≥ 3 the copula density of the vector of the block maxima is given by the
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following expression:

cM(n)(u1, u2, u3) =
(u1u2u3)

1
n
−1

n3

{
nC
(
u

1/n
1 , u

1/n
2 , u

1/n
3

)n−1

c
(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
+ n(n− 1)C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)n−2

×
[
∂1C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
∂23C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
+ ∂2C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
∂13C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
+ ∂3C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
∂12C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

) ]
+ n(n− 1)(n− 2)C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)n−3

∂1C
(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
× ∂2C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)
∂3C

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)}
.

Furthermore, we consider the block maxima of multivariate random variables with uni-

variate standard normal margins since in Section 4.4 we want to establish a connection to

the limiting approach used to derive the multivariate Hüsler–Reiss extreme-value distribu-

tion (Hüsler and Reiss, 1989). For this purpose, we apply the inverse probability integral

transform to each component of Ui to obtain marginally standard normally distributed

data:

Zi = (Zi,1, . . . , Zi,d)
> with Zi,j := Φ−1(Ui,j) ∼ N (0, 1),

for i = 1, . . . , n, j = 1, . . . , d, where Φ−1 is the inverse distribution function of the standard

normal distribution N (0, 1). The corresponding componentwise block maxima are defined

by

M̃(n) =
(
M̃

(n)
1 , . . . , M̃

(n)
d

)>
with M̃

(n)
j := max

i=1,...,n
Zi,j

for i = 1, . . . , n, j = 1, . . . , d. Since we only perform a strictly increasing transformation

of the margins the copula of Zi is the same as the one of Ui, i.e. C. Similarly the copula

of the block maxima over Zi is also given by CM(n) with density cM(n) . Note that this

argument holds for any random variable with a strictly increasing distribution function.

The marginal distributions of the componentwise block maxima are given by

G
(n)
j (mj) = P (Φ(Z1,j) ≤ mj, . . . ,Φ(Zn,j) ≤ mj) = Φ(mj)

n (4.5)

with corresponding marginal densities

g
(n)
j (mj) = nΦ(mj)

n−1ϕ(mj). (4.6)

for mj ∈ R, j = 1, . . . , d. Here Φ and ϕ denote the distribution function and the density

of the standard normal distribution, respectively. Thus, the joint distribution function of
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the block maxima over Zi is given by

G(n)(m1, . . . ,md) = CM(n)

(
G

(n)
1 (m1), . . . , G

(n)
d (md)

)
= C (Φ(m1), . . . ,Φ(md))

n .

For the corresponding joint density g(n) of the block maxima over Zi we also obtain an

explicit expression as a corollary of Theorem 4.1, where once again Sklar’s Theorem is

applied.

Corollary 4.3. For mj ∈ R, j = 1, . . . , d, we have

g(n)(m1, . . . ,md) =

(
d∏
j=1

ϕ(mj)

)
·
d∧n∑
j=1

{
n!

(n− j)! · C (Φ(m1), . . . ,Φ(md))
n−j

×
∑
P∈Sd,j

∏
I∈P

∂IC (Φ(m1), . . . ,Φ(md))

}
. (4.7)

4.3. Application to three-dimensional vine copulas

As an application of the results in the previous section we will consider vine copulas

in three dimensions and show why they are a particularly useful class of model for this

purpose. We have seen in Chapter 2 that vine copulas allow for product expressions of

the density. Since in three dimensions all (three) structures are equivalent in the sense

that they can be obtained by relabeling the variables, we only consider the following

decomposition for the remained of the chapter:

c(u1, u2, u3) = c1,2(u1, u2) c2,3(u2, u3) c1,3;2(C1|2(u1|u2), C3|2(u3|u2);u2). (4.8)

We have seen that we need the copula function C and its partial derivatives in order to

calculate the copula density of the block maxima using in Theorem 4.1. These expressions

are derived in Proposition 4.4. The corresponding proof can be found in Appendix B.2.

Proposition 4.4. For a three-dimensional vine copula with decomposition as in Equa-

tion 4.8 the partial derivatives of the copula function can be obtained as follows:

1. C(u1, u2, u3) =
∫ u2

0
C1,3;2

(
C1|2(u1|v2), C3|2(u3|v2); v2

)
dv2;

2. a) ∂1C(u1, u2, u3) =
∫ u2

0
C3|1;2(C1|2(u1|v2), C3|2(u3|v2); v2) c1,2(u1, v2) dv2;

b) ∂2C(u1, u2, u3) = C1,3;2(C1|2(u1|u2), C3|2(u3|u2);u2);

c) ∂3C(u1, u2, u3) =
∫ u2

0
C1|3;2(C1|2(u1|v2), C3|2(u3|v2); v2) c2,3(v2, u3) dv2;

3. a) ∂12C(u1, u2, u3) = C3|1;2(C1|2(u1|u2), C3|2(u3|u2);u2) c1,2(u1, u2);
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Chapter 4. Block maxima for vine copulas

b) ∂13C(u1, u2, u3) =
∫ u2

0
c1,3;2(C1|2(u1|v2), C3|2(u3|v2); v2) c2,3(v2, u3) c1,2(u1, v2) dv2;

c) ∂23C(u1, u2, u3) = C1|3;2(C1|2(u1|u2), C3|2(u3|u2);u2) c2,3(u2, u3);

4. c(u1, u2, u3) = c1,2(u1, u2) c2,3(u2, u3) c1,3;2(C1|2(u1|u2), C3|2(u3|u2);u2).

Proposition 4.4 shows that the copula density corresponding to the three-dimensional

vector of block maxima based on an arbitrary vine copula is numerically tractable since

only one-dimensional integration is required. In particular this allows a numerical treat-

ment for the block size n in a finite setting.

In the following three examples we will work with simplified vine copulas. In order to

illustrate the influence of the block size on the dependence structure of the block maxima

we consider the corresponding copula density cM(n) for block sizes n = 1, 10, 50, 1000.

Note that for a block size of n = 1 the copula density of the block maxima simply is the

copula density c of the underlying distribution, i.e. cM(1) = c, since taking maxima over

blocks of size one does not have any impact. To visualize the copula density of the block

maxima cM(n) for different block sizes n we consider the contour surfaces of these three-

dimensional copula densities. This approach is the natural extension of considering contour

lines for bivariate copulas. Since copula densities on the original [0,1]-scale are difficult to

interpret and comparisons between different models would hardly be possible one usually

uses univariate standard normal margins when considering contour plots. Therefore, we

also use univariate standard normal margins for our three-dimensional contour surface

plots. The contour levels are fixed to be 0.015, 0.035, 0.075 and 0.110 for each plot (from

outer to inner surface) in order to enable comparisons between different block sizes and

examples. We show the contour surfaces from three different angles such that we get a

representative impression of the shape of the contours. This way of illustrating three-

dimensional copula densities is inspired by Killiches et al. (2017a). Furthermore, we apply

our approach to a three-dimensional hydrological data set.

Example 4.5. The first example we present is a three-dimensional Gaussian vine, i.e. all

three pair-copulas are bivariate Gaussian copulas. As parameters we choose ρ1,2 = 0.71,

ρ2,3 = 0.78 and ρ1,3;2 = 0.52 corresponding to Kendall’s τ values of τ1,2 = 0.50 and

τ2,3 = 0.57, τ1,3;2 = 0.35.

Figure 4.1 shows the copula density of the block maxima of this vine copula with

standard normal margins for block sizes n = 1, 10, 50, 1000. Each row represents one

block size and contains three plots from different angles. We see that for increasing block

size the contours tend to concentric spheres around the origin. This is what the contour

surfaces of the independence copula (with standard normal margins) look like in three

dimensions. This is also what one would expect: Recall from Section 2.2.3 that every

Gaussian vine is also a Gaussian copula. Sibuya (1960) proved that any Gaussian copula
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4.3. Application to three-dimensional vine copulas

Figure 4.1.: Plot of the contour surfaces of the copula density of block maxima of a three-
dimensional Gaussian vine with standard normal margins (τ1,2 = 0.50, τ2,3 = 0.57,
τ1,3;2 = 0.35) from different angles (columns). The rows correspond to block sizes
n = 1, 10, 50 and 1000.
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Chapter 4. Block maxima for vine copulas

lies in the domain of attraction of the independence copula, i.e. the block maxima of any

Gaussian copula converge to the independence copula. Thus, our empirical findings are

in line with the theory. Hüsler and Reiss (1989) showed that in order to achieve that

the distribution of the block maxima of a multivariate Gaussian distribution converges

to a non-trivial limiting distribution, a proper scaling of the margins and the correlation

coefficients is necessary. This will be discussed in Section 4.4.

Example 4.6. As a second example we take a three-dimensional Clayton vine, i.e. all

three pair-copulas are now bivariate Clayton copulas. As parameters we choose δ1,2 = 6,

δ2,3 = 7.09 and δ1,3;2 = 4.67 corresponding to Kendall’s τ values of τ1,2 = 0.75 and

τ2,3 = 0.78, τ1,3;2 = 0.70.

Similar to the Gaussian example Figure 4.2 shows the copula density of the block max-

ima of this vine copula with standard normal margins for block sizes n = 1, 10, 50, 1000.

Each row represents one block size and contains three plots from different angles. We

see that for increasing block size the contours tend to concentric spheres around the ori-

gin corresponding to the contour surfaces of the independence copula, which are already

(approximately) reached for n = 1000.

Remark 4.7. Even though it is not known whether all Clayton vines lie in the domain of

attraction of the independence copula, one can show that the Clayton copula, which can

be represented as a Clayton vine with specific parameter restrictions (cf. Section 2.2.3),

lies in the domain of attraction of the independence copula. According to Gudendorf and

Segers (2010) an Archimedean copula with generator ϕ lies in the domain of attraction

of the Gumbel copula with parameter

θ := − lim
s↓0

sϕ′(1− s)
ϕ(1− s) ∈ [1,∞)

if the limit exists. For the Clayton copula this limit is equal to 1. Therefore, the copula of

the block maxima of a Clayton copula converges to the Gumbel copula with θ = 1, which

corresponds to the independence copula.

Example 4.8. Having investigated two examples where all three pair-copulas belonged

to the same family we will now consider a mixed vine copula with very high strengths

of dependence specified as follows: c1,2 is a Frank copula with parameter 8 (τ1,2 = 0.8),

c2,3 is a Clayton copula with parameter 18.19 (τ2,3 = 0.8) and c1,3;2 is a Gaussian copula

with parameter 0.95 (τ1,3;2 = 0.8). As before we show the copula density of the block

maxima of this vine copula with standard normally distributed margins for block sizes

n = 1, 10, 50, 1000 in Figure 4.3. Each row represents one block size and contains three

plots from different angles. We see that due to the high parameter values there can still

be detected some non-negligible dependence for block sizes n = 50 and even n = 1000.
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4.3. Application to three-dimensional vine copulas

Figure 4.2.: Plot of the contour surfaces of the copula density of block maxima of a three-
dimensional Clayton vine with standard normal margins (τ1,2 = 0.75, τ2,3 = 0.78,
τ1,3;2 = 0.70) from different angles (columns). The rows correspond to block sizes
n = 1, 10, 50 and 1000.
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Chapter 4. Block maxima for vine copulas

Figure 4.3.: Plot of the contour surfaces of the copula density of block maxima of a three-
dimensional Frank-Clayton-Gaussian vine with standard normal margins (τ1,2 = 0.80,
τ2,3 = 0.80, τ1,3;2 = 0.80) from different angles (columns). The rows correspond to
block sizes n = 1, 10, 50 and 1000.
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4.3. Application to three-dimensional vine copulas

Therefore, we further increased block sizes to n = 106 and n = 108 in Figure 4.4. Although

there is still some dependence left, as before we can see the clear tendency to the contours

of the independence copula.

Figure 4.4.: Plot of the contour surfaces of the copula density of block maxima of a three-
dimensional Frank-Clayton-Gaussian vine with standard normal margins (τ1,2 = 0.80,
τ2,3 = 0.80, τ1,3;2 = 0.80) from different angles (columns). The rows correspond to
block sizes n = 106, 108.

Example 4.9. Hydrology is one of the areas where block maxima are important. Espe-

cially, the water levels of rivers can be interesting when it comes to analyzing the risk

of floods. We consider a three-dimensional data set containing the water levels of rivers

in and around Munich, Germany, from August 1, 2007 to July 31, 2013. The data has

been taken from Bavarian Hydrological Service (http://www.gkd.bayern.de). The three

variables denote the differences of the 12 hour average water levels at the following three

measuring points: the Isar measured in Munich, the Isar measured in Baierbrunn (south of

Munich) and the Schwabinger Bach measured in Munich (a small stream entering the Isar

in Garching, north of Munich). Since we only consider the hydrological winter (November

1 to April 30), we have 2176 data points.

First, we transform the margins to the unit interval applying the probability integral

transform with the empirical marginal distribution functions. Then, we fit the dependence

65



Chapter 4. Block maxima for vine copulas

Figure 4.5.: Plot of the contour surfaces of the copula density for block maxima of the water
level differences for one day (first row), one week (second row), one month (third
row) and one winter (fourth row) with standard normal margins.
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4.4. Copula density of scaled block maxima

structure with a vine copula using RVineStructureSelect5: c1,2 is estimated to be a Frank

copula with a Kendall’s τ of τ1,2 = 0.76, c2,3 is a Frank copula with τ2,3 = 0.23 and c1,3;2

is a Gaussian copula with τ1,3;2 = −0.18. Now we are interested in the resulting copula

density of the maxima for one day (n = 2), one week (n = 14), one month (n = 60)

and one winter (n = 362). The corresponding contour surfaces are plotted in Figure 4.5.

Similar to the examples from above we see that with increasing n the observed dependence

structure tends to the independence copula. In case of the considered rivers this means

that the maximal differences of the 12 hour average water levels over the entire winter

are (almost) independent.

4.4. Copula density of scaled block maxima

The examples from Section 4.3 all seemed to converge to the independence copula for

block sizes going to infinity. Therefore, we will investigate if some sort of scaling of the

block maxima can help to achieve non-trivial limiting copulas. Such limiting copulas are

called extreme value copulas and are characterized by max-stability. A recent introduction

to extreme value copulas is given by Gudendorf and Segers (2010).

Since Hüsler and Reiss (1989) derived the scaling for the block maxima of the multi-

variate normal distribution with standard normally distributed margins to a non-trivial

extreme value copula, we use the same marginal scaling for the block maxima M̃(n). They

are given by

W
(n)
j := bn

(
M̃

(n)
j − bn

)
,

where bn satisfies bn = n · ϕ(bn) for the standard normal density ϕ. Univariate extreme

value theory gives that

F
W

(n)
j

(wj) = P
(
W

(n)
j ≤ wj

)
= Φn

(
bn +

wj
bn

)
→ exp{− exp{wj}} as n→∞

for wj ∈ R. The marginal density of W
(n)
j is given by

f
W

(n)
j

(wj) =
n

bn
Φn−1

(
bn +

wj
bn

)
ϕ

(
bn +

wj
bn

)
(4.9)

for wj ∈ R, j = 1, . . . , d. Since W
(n)
j is a strictly increasing transformation of M̃

(n)
j ,

the copula of W(n) :=
(
W

(n)
1 , . . . ,W

(n)
d

)
is the same as the one of M̃(n), which is given

by CM(n) . Therefore, using Equation 4.3 we obtain the following expression for the joint

5In order to assure that the necessary integrals were numerically tractable we had to exclude some
pair-copula families (e.g. the t copula).
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distribution of W(n):

FW(n)(w1, . . . , wd) = P
(
W

(n)
1 ≤ w1, . . . ,W

(n)
d ≤ wd

)
= CM(n)

(
Φn

(
bn +

w1

bn

)
, . . . ,Φn

(
bn +

wd
bn

))
=

[
C

(
Φ

(
bn +

w1

bn

)
, . . . ,Φ

(
bn +

wd
bn

))]n
.

Similar arguments as in Corollary 4.3 can be used to express the joint density of W(n) in

three dimensions for n ≥ 3 as

fW(n)(w1, w2, w3) =
1

b3
n

3∏
j=1

ϕ

(
bn +

wj
bn

){
nC (u1, u2, u3)n−1 c (u1, u2, u3)

+ n(n− 1)C (u1, u2, u3)n−2

×
[
∂1C (u1, u2, u3) ∂23C (u1, u2, u3)

+ ∂2C (u1, u2, u3) ∂13C (u1, u2, u3)

+ ∂3C (u1, u2, u3) ∂12C (u1, u2, u3)
]

+ n(n− 1)(n− 2)C (u1, u2, u3)n−3 ∂1C (u1, u2, u3)

× ∂2C (u1, u2, u3) ∂3C (u1, u2, u3)
}
,

(4.10)

where uj := Φ
(
bn +

wj
bn

)
for j = 1, 2, 3.

According to Hüsler and Reiss (1989), besides scaling the maxima M
(n)
1 , . . . ,M

(n)
d , it is

also necessary to change the correlation matrix Σ(n) = (ρi,j(n))1≤i,j≤d of the underlying

joint distribution of standard normal random variables Z1, . . . , Zn, over whose i.i.d. copies

Zi,1, . . . , Zi,d, i = 1, . . . , n, we take the maximum. These correlation matrices Σ(n) need

to satisfy the following condition

(1− ρi,j(n)) log(n)→ λ2
i,j as n→∞, (4.11)

where λi,j ∈ (0,∞) are some constants for 1 ≤ i, j ≤ d, i 6= j and λi,i = 0 for i = 1, . . . , d.

Since ρi,j(n) = ρj,i(n), we also have λi,j = λj,i for 1 ≤ i, j ≤ d. Note that Equation 4.11

implies that ρi,j(n) → 1 as n → ∞. The limiting distribution HΛ of the scaled maxima

depends on Λ := (λi,j)1≤i,j≤d.

In the following we will focus on the three-dimensional case and investigate the influence
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4.4. Copula density of scaled block maxima

of λ1,2, λ1,3, λ2,3 ∈ (0,∞). For simplicity, we set

ρi,j(n) := 1− λ2
i,j

log(n)
(4.12)

for 1 ≤ i, j ≤ 3, n ∈ N, such that Equation 4.11 is always satisfied. However, for arbitrary

λi,j it is not trivial to decide whether we obtain a valid correlation matrix through this

particular choice of ρi,j(n) for any n ∈ N. By construction the matrices

Σ(n) =

 1 ρ1,2(n) ρ1,3(n)

ρ1,2(n) 1 ρ2,3(n)

ρ1,3(n) ρ2,3(n) 1


are symmetric and have ones on their diagonals. Thus, the only property we have to verify

is if Σ(n) is positive definite. For this we only need to check if the determinant of each

leading principal minor is positive. Since 1 > 0 and 1− ρ1,2(n)2 > 0 are trivially satisfied,

the only real requirement is that

|Σ(n)| = 1− ρ1,2(n)ρ1,3(n)ρ2,3(n)− ρ1,2(n)2 − ρ1,3(n)2 − ρ2,3(n)2 > 0.

Using Equation 4.12 we obtain that |Σ(n)| > 0 if and only if the following condition is

satisfied:

2(λ2
1,2λ

2
1,3 + λ2

1,2λ
2
2,3 + λ2

1,3λ
2
2,3)− (λ4

1,2 + λ4
1,3 + λ4

2,3) >
2λ2

1,2λ
2
1,3λ

2
2,3

log(n)
. (4.13)

We denote the left-hand side of Equation 4.13 by h(λ2
1,2, λ

2
1,3, λ

2
2,3). Since the right-hand

side of Equation 4.13 is always positive, the condition can only be satisfied if also the

left-hand side of Equation 4.13 is positive, i.e. h(λ2
1,2, λ

2
1,3, λ

2
2,3) > 0. If this is the case,

then Equation 4.13 is satisfied for all n ∈ N with

n ≥ n∗ :=

⌊
exp

{
2λ2

1,2λ
2
1,3λ

2
2,3

h(λ2
1,2, λ

2
1,3, λ

2
2,3)

}
+ 1

⌋
,

where b·c denotes the floor function. Table 4.1 shows the values of h and n∗ (if existing)

for 10 different combinations of λ1,2, λ1,3, λ2,3. Later we will use combinations 9 and 10 for

numerical examples.

Hüsler and Reiss (1989) derived this scaling for multivariate normal distributions. Since

we want to apply the scaling to vine copulas, we need to transform the parameters of the

normal distribution (correlations) to the parameters of the vine. This will be done with

the help of Kendall’s τ .
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# λ2
1,2 λ2

1,3 λ2
2,3 h(λ2

1,2, λ
2
1,3, λ

2
2,3) n∗

1 1 1 1 3 2
2 2 2 2 12 4
3 1 2 3 8 5
4 0.5 0.5 0.5 0.75 2
5 0.3 0.2 0.1 0.08 2
6 0.2 5 0.75 -15.8 –
7 15 20 15 800 76880
8 100 0.1 20 -6376.01 –
9 1.05 0.21 0.84 0.71 2

10 4 3 3 32 10

Table 4.1.: Different combinations λ1,2, λ1,3 and λ2,3 and the corresponding values of h and n∗.

4.5. Application to scaled three-dimensional vine copulas

Considering the vine structure from Equation 4.8 we further assume that the pair-copulas

are one-parametric. Having fixed λ1,2, λ1,3, λ2,3 such that h(λ2
1,2, λ

2
1,3, λ

2
2,3) > 0, we can

perform the following procedure for n ≥ n∗:

1. Calculate ρ1,2(n), ρ1,3(n) and ρ2,3(n) with the help of Equation 4.12.

2. Determine the corresponding partial correlation using

ρ1,3;2(n) =
ρ1,3(n)− ρ1,2(n)ρ2,3(n)√
1− ρ1,2(n)2

√
1− ρ2,3(n)2

.

3. Transform the (partial) correlations ρ1,2(n), ρ2,3(n) and ρ1,3;2(n) into the correspond-

ing (partial) Kendall’s τ values τ1,2(n), τ2,3(n) and τ1,3;2(n) using the relation for

elliptical distributions

τ =
2

π
arcsin(ρ).

4. Determine the parameters θ1,2(n), θ2,3(n) and θ1,3;2(n) of the pair copulas from the

corresponding τ values.6

Recall that ρ1,2(n)→ 1, ρ1,3(n)→ 1 and ρ2,3(n)→ 1 as n→∞. Therefore, we also have

τ1,2(n)→ 1, τ1,3(n)→ 1 and τ2,3(n)→ 1 as n→∞. However, the behavior of convergence

of ρ1,3;2(n) and hence τ1,3;2(n) is not trivial. We use Equation 4.12 to obtain

ρ1,3;2(n) =

(
1− λ21,3

log(n)

)
−
(

1− λ21,2
log(n)

)(
1− λ22,3

log(n)

)
√

1−
(

1− λ21,2
log(n)

)2
√

1−
(

1− λ22,3
log(n)

)2
→ λ2

1,2 + λ2
2,3 − λ2

1,3

2λ1,2λ2,3

6In the VineCopula package this transformation can be performed using the function BiCopTau2Par.
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4.5. Application to scaled three-dimensional vine copulas

as n→∞. Thus,

τ1,3;2(n)→ 2

π
arcsin

(
λ2

1,2 + λ2
2,3 − λ2

1,3

2λ1,2λ2,3

)
as n→∞.

For illustration, we will now consider combinations 9 and 10 from Table 4.1. In Table 4.2

we show the (partial) correlations from Step 2 of the above procedure for different block

sizes. We also present the corresponding (partial) Kendall’s τ values since they can be

compared independently from the choice the respective pair-copulas.

n ρ1,2(n) ρ2,3(n) ρ1,3;2(n) τ1,2(n) τ2,3(n) τ1,3;2(n)

Combination 9 10 0.54 0.64 0.87 0.37 0.44 0.67
50 0.73 0.79 0.88 0.52 0.57 0.69

1000 0.85 0.88 0.89 0.64 0.68 0.69
∞ 1 1 0.89 1 1 0.70

Combination 10 10 -0.74 -0.30 -0.82 -0.53 -0.20 -0.61
50 -0.02 0.23 0.25 -0.01 0.15 0.16

1000 0.42 0.57 0.44 0.28 0.38 0.29
∞ 1 1 0.58 1 1 0.39

Table 4.2.: Overview over the (partial) correlations and (partial) Kendall’s τ values for different
n for combinations 9 (λ2

1,2 = 1.05, λ2
1,3 = 0.21, λ2

2,3 = 0.84) and 10 (λ2
1,2 = 4,

λ2
1,3 = 3, λ2

2,3 = 3).

If we consider the values from Table 4.2 for combinations 9 and 10, it is eye-catching

that the choice of λ1,2, λ1,3 and λ2,3 has a crucial influence on the behavior of the (partial)

correlations and the (partial) Kendall’s τ values. In the first case the parameters are

already relatively close to their limiting values for n = 1000, whereas in the second case

they are still rather far from their limits for n = 1000. Further, we see that the limiting

values of ρ1,3;2(n) and τ1,3;2(n) can be very different depending on the choice of λ1,2, λ1,3

Now we examine the behavior of the three-dimensional density of the scaled block

maxima fW(n) (cf. Equation 4.10) for different values of n.

Example 4.10. Again we start with a Gaussian vine and the parameters of combination

10: λ2
1,2 = 4, λ2

1,3 = 3 and λ2
2,3 = 3. Figure 4.6 shows the contour surfaces of the density

fW(n) of the scaled block maxima of the Gaussian vine for block sizes n = 10, 50, 1000

(rows) from different angles (columns). The contour levels are fixed to be 0.015, 0.035,

0.075 and 0.110 (from outer to inner surface) as in Section 4.3. The Kendall’s τ values

corresponding to the three block size can be found in Table 4.2. Since the margins in the

plots of Figure 4.6 are given by Equation 4.9 we can hardly assess the underlying depen-

dence structure. The underlying copulas, however, are the main interest in this chapter

such that we additionally consider similar plots, where the only difference is that the

margins are set to be standard normal (Figure 4.7). We see that with increasing block
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Chapter 4. Block maxima for vine copulas

Figure 4.6.: Plot of the contour surfaces of the density of the scaled block maxima of a three-
dimensional Gaussian vine from different angles (columns). The rows correspond to
block sizes n = 10, 50 and 1000.
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4.5. Application to scaled three-dimensional vine copulas

Figure 4.7.: Plot of the contour surfaces of the copula density of the scaled block maxima of a
three-dimensional Gaussian vine with standard normal margins from different angles
(columns). The rows correspond to block sizes n = 10, 50 and 1000.
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size the contour surfaces again seem to tend to the contour surfaces of the independence

copula. Having the results of Hüsler and Reiss (1989) in mind this might appear contra-

dictory. However, if we look at the Kendall’s τ values for n = 1000 we see that they are

still extremely small: τ1,2(n) = 0.28, τ2,3(n) = 0.38 and τ1,3;2(n) = 0.29. They are still

extremely far from their theoretical limits of 1, 1 and 0.39, respectively. Thus, we simply

have the density of the block maxima of a Gaussian copula with rather low strengths of

dependence, for which we already know that it lies in the domain of attraction of the

independence copula (Sibuya, 1960). If we increase n further, the Kendall’s τ values will

converge to their theoretical limits and we know from Hüsler and Reiss (1989) that the

copula of the block maxima will approach a Hüsler–Reiss copula. This, however, requires

very large block size as even for n = 1050 the corresponding Kendall’s τ values are given

by only 0.83, 0.85 and 0.39, respectively. On the one hand, this is still far from the point

where one could assume that the asymptotics have set in, on the other hand we cannot

even handle such large values for n numerically. Therefore, the lesson of this example is

that although in theory the scaling of the block maxima and the underlying dependence

structure may lead to non-trivial limits, for finite block sizes this does not necessarily

have an impact.

Example 4.11. Our final example is a Clayton vine, where we choose λ2
1,2 = 1.05, λ2

1,3 =

0.21 and λ2
2,3 = 0.84 (corresponding to combination 9). Figure 4.8 shows the contour

surfaces of the density fW(n) of the scaled block maxima of the Clayton vine for block

sizes n = 10, 50, 1000 (rows) from different angles (columns). The Kendall’s τ values

corresponding to the three block size can again be found in Table 4.2. The similarity to

the plots for the Gaussian vine (Figure 4.6) is obvious for n = 50 and 1000. Therefore we

do not additionally show the plots of the corresponding copula density of the scaled block

maxima with standard normally distributed margins. The copula density of the scaled

block maxima is very close to the independence copula for n = 50 and 1000. Again even

for n = 1050 the Kendall’s τ values are given by only 0.91, 0.92 and 0.70, respectively,

which would not suffice to assume that the asymptotic behavior can already be observed.

However, we do not have any theoretical results about a possibly non-trivial limit of a

Clayton vine even when scaling is applied.

4.6. Conclusion

In this chapter we showed that the copula density of componentwise block maxima of

multivariate distributions can be expressed explicitly using the copula function of the

underlying distribution and its derivatives. For three-dimensional vine copulas we made

use of the fact that computing their partial derivatives requires only one-dimensional
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Figure 4.8.: Plot of the contour surfaces of the density of the scaled block maxima of a three-
dimensional Clayton vine from different angles (columns). The rows correspond to
block sizes n = 10, 50 and 1000.

integration, which makes the evaluation of the copula density for block maxima numer-

ically tractable. The advantage of our method is that we can use the entire sample for

estimation instead of reducing the sample size to one nth of the original sample size by

taking maxima over n observations. Once we have estimated the underlying dependence

structure we can derive the copula density of the block maxima for any block size (even

larger than the original sample size). In three numerical examples and an application to

hydrological data we saw that the block maxima did not approach a non-trivial limiting
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distribution for increasing block size. Therefore, we mimicked the scaling approach of

Hüsler and Reiss (1989) yielding non-trivial limits for Gaussian distributions. Numerical

examples, however, showed that for finite block sizes the asymptotic behavior cannot be

observed.
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Chapter 5

Modeling repeated measurements
using D-vine copulas

The contents of this chapter are a lightly modified reproduction of the contents of Killiches

and Czado (2017).

5.1. Introduction

Repeated measurements that are obtained in a longitudinal study are common in many

areas. Very early applications in astronomy (Airy, 1861) were followed by a vast number

of studies in fields such as industry (e.g. Newbold, 1927), ecology (e.g. Potvin et al., 1990),

biology (e.g. Yeung et al., 2003), psychology (e.g. Lorch and Myers, 1990), medicine (e.g.

Ludbrook, 1994), education (e.g. Malin and Linnakylä, 2001) and many more.

Over the years many concepts have been developed for the analysis of such repeated

measurements. A discussion of the origins of longitudinal data models can be found in

Chapter 1 of Fitzmaurice et al. (2008). Davis (2002) offers a thorough introduction to the

topic, starting with basic aspects of repeated measurement data. Besides foundations and

different modeling aspects of repeated measurement data, Lindsey (1999) addresses the

question of how to design a study. Diggle and Donnelly (1989) give an extensive review

on different approaches to the analysis of repeated measurements. The most popular

model class for this purpose is probably the one of linear mixed models (LMMs). It

extends classical linear models by adding individual-specific random effects to the fixed

effects. Extensive introductions to this topic can be found for example in Diggle (2002)

and Verbeke and Molenberghs (2009). Although the covariance structure of linear mixed

models can be fitted rather flexibly, the dependence always remains Gaussian by definition.

Within the last two decades dependence modeling has become more and more popular
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in all areas of applications. Especially copulas have gained large popularity since they

allow to model marginal distributions and the dependence structure separately (Sklar,

1959). Consequently, copulas were also applied for modeling repeated measurement data.

This approach has first been used by Meester and MacKay (1994) who developed a model

for bivariate clustered categorical data. Lambert and Vandenhende (2002) present a model

for multivariate repeated measurement data, where the dependence is described by any

copula (although only the Gaussian copula is used in the application). Shen and Weissfeld

(2006) model serial dependence for continuous longitudinal data with a non-ignorable

non-monotone missing-data process using a Gaussian copula. Another example is Lindsey

and Lindsey (2006), who use the Gaussian copula among other multivariate models with

correlation matrices for non-linear repeated measurements. Further, Sun et al. (2008)

argue that elliptical copulas are better suited than Archimedean copulas for modeling

serial dependence in the context of longitudinal data.

D-vine copulas are a special class of vine copulas (Bedford and Cooke, 2002; Aas et al.,

2009) that are particularly suited for modeling serial dependence. Smith et al. (2010) used

them to model longitudinal data in a Bayesian approach. Multivariate time series are

considered in Smith (2015) and Nai Ruscone and Osmetti (2017). In Joe (2014, Chapter

7.5) discrete longitudinal count data are modeled using D-vines. Shi and Yang (2016) use

a mixed D-vine to model semi-continuous longitudinal claims. All these references work

in a balanced setting, i.e. each individual has the same number of measurements. An

unbalanced setting is considered by Shi et al. (2016) using a Gaussian copula.

The novelty of the approach presented in this chapter is that we develop a D-vine copula

based model with arbitrary margins for modeling unbalanced longitudinal data with the

aim of understanding the underlying relationship among the measurements and enabling

predictions for future events. For prediction we use conditional quantiles that are ana-

lytically given. For model selection we derive an adjustment of the Bayesian information

criterion (BIC) for the proposed model. The model will furthermore be shown to be an

extension of a very wide class of linear mixed models for which the correlation matrix of

the measurements is homogeneous over the individuals.

Section 5.2 briefly introduces D-vine copulas and the proposed D-vine copula based

model for repeated measurement data. Linear mixed models and their connection with

the D-vine based model are developed in Section 5.3. Section 5.4 contains maximum-

likelihood based estimation methods for the D-vine based model. Further, as a tool for

model selection, an adjustment of the BIC for the proposed model is derived. The per-

formance of the estimation methods is investigated in a simulation study (Section 5.5).

In Section 5.6 we fit both LMMs and D-vine based models to a heart surgery data set

and compare the results using likelihood based model selection criteria and performing

conditional quantile prediction. Section 5.7 contains our conclusions and an outlook.
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5.2. D-vine based repeated measurement model

5.2.1. Setting

Consider a repeated measurement (longitudinal) data set Y = {y1, . . . ,yn} that contains

n ∈ N observation blocks yi = (yi1, . . . , y
i
di

)> ∈ Rdi associated with individual i having

di ∈ {1, . . . , d}measurements. Here d ∈ N denotes the maximum number of measurements

per individual observed. For two different individuals the jth event does not necessarily

need to have occurred at the same time tj. We denote by nj the number of observations

of length j, j = 1, . . . , d, where nj is zero if Y contains no observations of length j. We

divide now the data set into groups of individuals with the same number of measure-

ments. For j = 1, . . . , d, we summarize the observations of group j as Yj = {yi | i ∈ Ij},
where the corresponding index set is defined as Ij = {i | yi ∈ Rj}. Table 5.1 illustrates

the above notation and data structure for an exemplary data set of size n = 9, where the

maximum number of measurements per individual is d = 4 and we have n1 = 0 individ-

uals with 1 measurement, n2 = 3 individuals with 2 measurements, n3 = 2 individuals

with 3 measurements and n4 = 4 individuals with 4 measurements. Consequently, I1 = ∅,
I2 = {1, 2, 3}, I3 = {4, 5} and I4 = {6, 7, 8, 9}.

observations measurements
1 2 3 4

Y2 = {yi | i ∈ I2}


y1 ∗ ∗
y2 ∗ ∗
y3 ∗ ∗

Y3 = {yi | i ∈ I3}
{
y4 ∗ ∗ ∗
y5 ∗ ∗ ∗

Y4 = {yi | i ∈ I4}


y6 ∗ ∗ ∗ ∗
y7 ∗ ∗ ∗ ∗
y8 ∗ ∗ ∗ ∗
y9 ∗ ∗ ∗ ∗

Table 5.1.: Grouping of an exemplary data set of size n = 9 with d = 4, n2 = 3, n3 = 2 and
n4 = 4. Stars indicate observed events.

Having Sklar’s Theorem (Sklar, 1959) in mind, we follow a two-stage approach, also

referred to as the Inference Functions for Margins (IFM) method (cf. Joe, 1997, Section

10.1): First we use the probability integral transform and apply the univariate marginal

distributions F i
j to the measurements yij ∈ R in order to transform them to measurements

uij := F i
j (y

i
j) ∈ [0, 1] on the uniform scale, j = 1, . . . , di and i = 1, . . . , n. Then we model

the dependence structure of the resulting uniform scale data utilizing a copula. In the
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following sections we will use a notation for the copula data that is similar to the one for

the original data. The copula data U = {u1, . . . ,un} consists of the observations ui =

(ui1, . . . , u
i
di

)> ∈ [0, 1]di , i = 1, . . . , n. Again, we form groups U j = {ui | i ∈ Ij} containing

all observations of length j, j = 1, . . . , d. Since individuals with only one measurement

do not contribute to the dependence structure we will only consider U2, . . . ,Ud. Thus we

can assume that n1 = 0, i.e. U1 = ∅, without losing generality. Of course, in practice the

distribution functions F i
j are usually not known and need to be estimated (see Section 5.4).

5.2.2. D-vine based dependence model

D-vine copulas

Recall from Section 2.2.1 that D-vine copulas are vine copulas with a special tree structure,

which is illustrated in d = 4 dimensions in Figure 5.1 on page 83. Due to their structure,

following the notation of Czado (2010), the density of a D-vine copula with order 1–2–

. . . –d can be written as

c1:d(u1, . . . , ud) =
d−1∏
`=1

d−∏̀
k=1

ck,k+`;(k+1):(k+`−1)

(
Ck|(k+1):(k+`−1)(uk|uk+1, . . . , uk+`−1),

Ck+`|(k+1):(k+`−1)(uk+`|uk+1, . . . , uk+`−1);uk+1, . . . , uk+`−1

)
.

(5.1)

Here ck,k+`;(k+1):(k+`−1)( · , · ;uk+1, . . . , uk+`−1) is the bivariate copula density associated

with the distribution of (Uk, Uk+`)
> given (Uk+1, . . . , Uk+`−1)> = (uk+1, . . . , uk+`−1)> and

Ck|(k+1):(k+`−1)( · |uk+1, . . . , uk+`−1) is the distribution function of the conditional distri-

bution of Uk given (Uk+1, . . . , Uk+`−1)> = (uk+1, . . . , uk+`−1)>, ` = 1, . . . , d − 1 and

k = 1, . . . , d − `. The corresponding graphical interpretation is the tree representa-

tion, where the pair-copulas occurring in tree j have a conditioning set of size j − 1,

j = 1, . . . , d− 1.

In order to ease inference later we make the simplifying assumption (cf. Section 2.2.3)

although we could set up our model without it as well.

In the following we will assume a parametric model such that a D-vine copula can

be identified by the set of pair-copula families C = (ck,k+`;(k+1):(k+`−1) | k = 1, . . . , d −
` and ` = 1, . . . , d− 1) and the set of associated parameters θ = (θk,k+`;(k+1):(k+`−1) | k =

1, . . . , d − ` and ` = 1, . . . , d − 1). In general, non-parametric pair-copulas could also be

used (see Nagler and Czado, 2016).

A convenient property is that D-vine models are nested in the sense that the pair-

copulas needed to describe the dependence of variables 1 to j are contained in the model

describing the dependence of variables 1 to j + 1, j < d. This is illustrated in Figure 5.1

on page 83.
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Model description

Since the data has been obtained from repeated measurements there exists a clear sequen-

tial or temporal ordering. This immediately suggests the use of D-vine copulas with order

1–2–. . . –d (Smith et al., 2010; Smith, 2015; Nai Ruscone and Osmetti, 2017). Therefore,

as a general approach, we assume parametric simplified D-vine models (cf. Equation 5.1)

for the copula densities of all groups j = 2, . . . , d. Of course, we only consider groups for

which we have observations. The copula density cj1:j of group j then can be described with

the help of the set of the j(j − 1)/2 pair-copula families

Cj = (cjk,k+`;(k+1):(k+`−1) | k = 1, . . . , j − ` and ` = 1, . . . , j − 1)

and the set of associated parameters

θj = (θjk,k+`;(k+1):(k+`−1) | k = 1, . . . , j − ` and ` = 1, . . . , j − 1)

for j = 2, . . . , d with a non-empty U j. For the estimation of Cj and θj we set up the

likelihood, which is based on the subset of U containing the observations of length j. The

resulting likelihood and log-likelihood can be written as

Lj(Cj,θj | U j) =
∏
i∈Ij

cj1:j(u
i
1, . . . , u

i
j | Cj,θj) and

logLj(Cj,θj | U j) =
∑
i∈Ij

log cj1:j(u
i
1, . . . , u

i
j | Cj,θj),

respectively. Consequently, the log-likelihood of the general model is given by

logL(C2, . . . , Cd,θ2, . . . ,θd | U) =
d∑
j=2

logLj(Cj,θj | U j). (5.2)

For future reference we call this Model A. It is obvious by construction that the models

for different groups can be estimated independently from each other since there are no

intersections between the groups, neither regarding data nor pair-copula families or pa-

rameters. From a practical point of view this would correspond to the assumption that

the dependence structure of two groups can be completely different such that an individ-

ual for whom we have observed j events has nothing in common with those who have

had j + 1 events. However, one can argue that an individual from group j is basically a

member of group j + 1 for whom the (j + 1)st measurement has not been observed yet.

The underlying random mechanism (i.e. the copula), however, should be the same or at

least share some properties. Therefore, it makes sense to impose more restrictions on the

set of pair-copula families and the associated parameters. For example, one could assume
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that all groups share the same pair-copula families and only the parameters can differ

between the groups. The most sensible and interesting case—which we will pursue in the

following—is the one that all groups have the same pair-copula families and parameters,

cjk,k+`;(k+1):(k+`−1) = ck,k+`;(k+1):(k+`−1),

θjk,k+`;(k+1):(k+`−1) = θk,k+`;(k+1):(k+`−1)

(5.3)

for k = 1, . . . , j − ` and ` = 1, . . . , j − 1. We will refer to this model as Model B. Us-

ing the same families and parameters for all groups implies that the D-vine describing

the dependence pattern of group j is a sub-vine of the vine of groups j + 1, . . . , d. In

particular, the vine copula density of group j is simply the multivariate marginal den-

sity c1:j of the density c1:d of the largest group d. Consequently, c1:d describes the full

model, from which the models of all smaller groups can be explicitly derived. Thus, the

corresponding log-likelihood only depends on one set of d(d − 1)/2 pair-copula families

C = (ck,k+`;(k+1):(k+`−1) | k = 1, . . . , d − ` and ` = 1, . . . , d − 1) and the set of associated

parameters θ = (θk,k+`;(k+1):(k+`−1) | k = 1, . . . , d− ` and ` = 1, . . . , d− 1).

Example

In order to illustrate the above concept we will now look at the example with at most d = 4

repeated measurements. Assume we have (up to) four-dimensional repeated measurement

data U = {u1, . . . ,un} of size n = n2 + n3 + n4 ordered as described in Section 5.2.1,

which can be partitioned into groups 2, 3 and 4 by defining U j = {ui | i ∈ Ij}, j = 2, 3, 4,

where I2 = {i | ui ∈ R2}, I3 = {i | ui ∈ R3} and I4 = {i | ui ∈ R4}. The model and hence

its log-likelihood depends on the six pair-copulas C = (c1,2, c2,3, c3,4, c1,3;2, c2,4;3, c1,4;2,3)

and the associated parameters θ = (θ1,2,θ2,3,θ3,4,θ1,3;2,θ2,4;3,θ1,4;2,3). Figure 5.1 shows a

schematic representation of the full model c1:4 with its pair-copulas and parameters. The

nodes represent the measurements. Above and below each edge the associated pair-copula

and the observations that can be used for estimation are denoted, respectively. The sub-

vines for c1:2 and c1:3 are highlighted by different color intensities of the nodes and line

types of the edges. The resulting log-likelihood is given by

logL(C,θ | U) =
∑
i∈I2

log c1:2(ui1, u
i
2 | c1,2,θ1,2)

+
∑
i∈I3

log c1:3(ui1, u
i
2, u

i
3 | c1,2, c2,3, c1,3;2,θ1,2,θ2,3,θ1,3;2)

+
∑
i∈I4

log c1:4(ui1, u
i
2, u

i
3, u

i
4 | c1,2, c2,3, c3,4, c1,3;2, c2,4;,3, c1,4;2,3,

θ1,2,θ2,3,θ3,4,θ1,3;2,θ2,4;,3,θ1,4;2,3)

(5.4)

82



5.2. D-vine based repeated measurement model

1 2 3 4

1,2 2,3 3,4

1,3|2 2,4|3

U2, U3, U4

c1,2 ( · , · ;θ1,2)

U3, U4

c2,3 ( · , · ;θ2,3)

U4

c3,4 ( · , · ;θ3,4)

U3, U4

c1,3;2 ( · , · ;θ1,3;2)

U4

c2,4;3 ( · , · ;θ2,4;3)

U4

c1,4;2,3 ( · , · ;θ1,4;2,3)

Tree 1

Tree 2

Tree 3

Figure 5.1.: Illustration of the four-dimensional D-vine describing the components of the depen-
dence structure of the full model c1:4 (dark, medium and light). The sub-vines for
c1:2 (dark) and c1:3 (dark and medium) are highlighted by different color intensities
of the nodes and line types of the edges. Above and below each edge the associ-
ated pair-copula and the observations that can be used for estimation are denoted,
respectively.

Using the vine decomposition from Equation 5.1 for c1:2, c1:3 and c1:4, the log-likelihood

associated with data U (Equation 5.4) can be re-written as

logL(C,θ | U) =∑
i∈I2∪I3∪I4

log c1,2(ui1, u
i
2;θ1,2)

+
∑

i∈I3∪I4

[
log c2,3(ui2, u

i
3;θ2,3) + log c1,3;2(C1|2(ui1|ui2;θ12), C3|2(ui3|ui2;θ23);θ1,3;2)

]
+
∑
i∈I4

[
log c3,4(ui3, u

i
4;θ3,4) + log c2,4;3(C2|3(ui2|ui3;θ2,3), C4|3(ui4|ui3;θ4,3);θ2,4;3)

+ log c1,4;2,3(C1|3;2(C1|2(ui1|ui2;θ1,2) |C3|2(ui3|ui2;θ2,3);θ1,3;2),

C4|2;3(C2|3(ui2|ui3;θ2,3) |C4|3(ui4|ui3;θ4,3);θ2,4;3);θ1,4;2,3)
]

(5.5)

For the general case of Model A (Equation 5.2) we saw that the pair-copulas and

parameters corresponding to group j can be estimated independently from those of the

remaining groups and only depend on the data contained in U j. Looking at Equation 5.5

(corresponding to Model B) it immediately becomes clear that assuming the pair-copulas

and parameters are the same for all groups has changed this phenomenon. The D-vines

describing the densities c1:2 and c1:3 are nested sub-vines of the full model c1:4, which
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can easily be understood from Figure 5.1: The dark nodes (and solid edges) correspond

to c1:2; adding the medium colored nodes (and dashed edges) results in the model of

c1:3; incorporating also the light nodes (and dotted edges) yields the full model for c1:4.

Therefore, when it comes to estimation we see for example that not only the observations

belonging to U2 but also those from U3 and U4 (i.e. the entire sample U) have an influence

on the estimate for c1,2 and θ1,2. Thus this increases the accuracy of the estimation

compared to the approach from Model A.

The assumption of common pair-copula families and parameters for all groups comes

with the advantages of better interpretability, less parameters and higher estimation ac-

curacy.

Missing values

In practice, unfortunately, data do not always look exactly the way we described it in

Section 5.2.1. Sometimes there are missing values in the data. For example, there might

be individuals for whom the first, third, fourth and fifth measurement are available but

the second one is missing. Such situation can occur for various reasons, e.g. a patient skips

a measurement date due to illness, measuring instruments have problems causing a loss

of the result or data is simply not reported due to human failure. Moreover, there might

be (non-informative) dropouts, i.e. individuals with measurements only up to a certain

time, e.g. caused by relocation of a patient to another city.

For many model classes such observations cannot be used at all and have to be re-

moved from the data set for model estimation. This way the sample size is decreased and

information is lost. For Model B, however, observations with missing values can still be

used (assuming they are missing at random). The information gained from our exemplary

individual with measurements 1, 3, 4, 5 still contributes to the estimation of c3,4, c4,5 and

c3,5;4 (and of course to the estimation of the marginal distributions 1, 3, 4, 5). Since the

missing second measurement is needed for the estimation of the remaining pair-copulas,

this individual cannot be used in order to estimate them. Nevertheless, we prevent the

loss of the individual’s entire information. In order to include observations with missing

value into our model we simply have to modify the log-likelihood such that the sums of

the log-likelihood of each pair-copula includes all observations for whom the necessary

measurements are available. For the sake of notation we will stick to the formulation

of Model B as above, keeping in mind that missing values can also be handled by our

approach.

Conditional prediction

Further, we can use our repeated measurement data model for prediction. In many appli-

cations it can be interesting to have a prediction for the size of an upcoming measurement.
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For instance, having proper estimates for future claims can be a competitive advantage

for the risk management department of an insurance company.

For a d-dimensional model, consider an individual i that has had di < d measurements

so far, i.e. yi = (yi1, . . . , y
i
di

)>. We are now interested in the distribution of the next mea-

surement di + 1. Since di + 1 ≤ d, the sub-vine describing the dependence of events 1

to di + 1 can be extracted from the full model. We consider the conditional distribution

function F i
di+1|1:di

( · |yi1, . . . , yidi). Joe (1996) was the first to show that there exists a re-

cursive representation for such conditional distribution functions. This way one obtains a

closed-form expression of the conditional distribution function solely based on the pair-

copulas specified in the D-vine (and the univariate marginals, of course) if the variable

to be predicted is a leaf in the first tree. In our case, di + 1 is in fact a leaf in the first

tree of the D-vine on nodes 1 to di+ 1. Thus, we know F i
di+1|1:di

( · |yi1, . . . , yidi) analytically

and can further simulate from it, which can be very useful for practical application. As

an example, we can express the univariate conditional distribution function F i
4|1,2,3 in the

following way:

F i
4|1,2,3(yi4|yi1, yi2, yi3) = C4|1;23

(
C4|2;3

(
C4|3(F i

4(yi4)|F i
3(yi3))

∣∣C2|3(F i
2(yi2)|F i

3(yi3))
) ∣∣

C1|3;2

(
C1|2(F i

1(yi1)|F i
2(yi2))

∣∣C3|2(F i
3(yi3)|F i

2(yi2))
))
.

Further, being the inverse of the conditional distribution function, the conditional quantile

function can be expressed in general as

qα(yi1, . . . , y
i
di

) = (F i
di+1|1:di

)−1(α|yi1, . . . , yidi)
= (F i

di+1)−1
(
C−1
di+1|1:di

(α|F i
1(yi1), . . . , F i

di
(yidi))

) (5.6)

and is of great interest in order to determine upper and lower bounds of a prediction

interval. Kraus and Czado (2017a) show that inversion also yields a closed-form expres-

sion for the conditional quantile function solely based on the specified pair-copulas and

marginals. Thus, we can determine arbitrary conditional quantiles for the size of measure-

ment di + 1. For example, for financial applications it might be interesting to obtain a

conditional 99%-value-at-risk, i.e. the conditional 99%-quantile, for the size of individual

i’s next measurement.

In order to be able to perform statistical inference of any kind with our D-vine based

model we first have to estimate the pair-copula families and associated parameters. Sec-

tion 5.4 will present two estimation approaches. First, however, we will introduce linear

mixed models and illustrate how they are connected to our proposed D-vine based model

in Section 5.3.
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5.3. Connection between the D-vine based model and

linear mixed models

Probably the most popular models for longitudinal data are linear mixed models. In this

section we will give a short introduction to this model class and show how they are

connected to our approach from Section 5.2.

5.3.1. Linear mixed models for repeated measurements

Linear mixed models have been discussed in detail by many authors, e.g. in Diggle (2002),

Verbeke and Molenberghs (2009) and Fahrmeir et al. (2013). Describing the outcome of

repeated measurements j, j = 1, . . . , di, for individuals i, i = 1, . . . , n, as responses Y i
j ,

they extend linear models by including random effects γi ∈ Rq to the fixed (i.e. non-

random) effects β ∈ Rp, p, q ∈ N. These random effects, unlike the fixed effects, are

different for each individual. The covariate vectors xi,j ∈ Rp and zi,j ∈ Rq are associated

to the fixed and random effects, respectively.

For i = 1, . . . , n and j = 1, . . . , di, the jth measurement for individual i is assumed to

decompose to

Y i
j = x>i,jβ + z>i,jγi + εi,j, (5.7)

where the vector of random effects γi ∼ Nq(0, D) is normally distributed with zero

expectation and covariance matrix D ∈ Rq×q and the error vector εi = (εi,1, . . . , εi,di)
> ∼

Ndi(0,Σi) also follows a centered normal distribution with covariance matrix Σi ∈ Rdi×di .

Further, γ1, . . . ,γn, ε1, . . . , εn are assumed to be independent. Hence,

Y i
j ∼ N (x>i,jβ, φ

2
i,j) (5.8)

with standard deviation φi,j :=
(
z>i,jDzi,j + σ2

i,j

)1/2
, where σ2

i,j := Var(εi,j). Using the

notation

Xi :=


x>i,1

...

x>i,di

 ∈ Rdi×p, Zi :=


z>i,1
...

z>i,di

 ∈ Rdi×q, Yi :=


Y i

1
...

Y i
di

 ∈ Rdi

we can represent the vector of all measurements belonging to individual i as follows:

Yi = Xiβ + Ziγi + εi. (5.9)

We see that due to the independence assumptions of γi and εi, i = 1, . . . , n, there ex-
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ists a correlation between measurements of one individual but measurements of different

individuals are independent. Further, the joint distribution of Yi can be determined to

be

Yi ∼ Ndi(Xiβ, ZiDZ
>
i + Σi) (5.10)

and Y1, . . . ,Yn are independent. The fixed effects β and random effects γi as well as

the parameters of the covariance matrices D and Σi, i = 1, . . . , n, can be estimated using

(restricted) maximum-likelihood estimation as described for example in Diggle (2002) and

Fahrmeir et al. (2013).

Linear mixed models are very popular in practice since they are easy to handle and

interpret. Further, observations with missing data can also be used for ML estimation as

long as the values are missing at random (see e.g. McCulloch et al., 2011; Ibrahim and

Molenberghs, 2009).

5.3.2. Aligning linear mixed models and the D-vine based approach

Equation 5.10 implies that all univariate marginal distributions are normal distributions.

Further, the dependence structure is Gaussian and can vary from individual to individual

since the correlation matrix Ri of Yi is given by

Ri := Cor(Yi) = diag(φ−1
i,1 , . . . , φ

−1
i,di

)
(
ZiDZ

>
i + Σi

)
diag(φ−1

i,1 , . . . , φ
−1
i,di

),

where φi,j is the standard deviation of Y i
j , j = 1, . . . , di, i = 1, . . . , n. In practice, however,

this would make estimation infeasible since the number of parameters would be too large;

in many cases one would even have more parameters than observations. Therefore, struc-

tural assumptions are made, especially for Σi ∈ Rdi×di , in order to reduce the number of

parameters to be estimated.

In Section 5.2.2 we assumed that the dependence structure is basically the same for all

individuals and only differs due to the number of measurements di that individual i has

had so far. In order to obtain the same for linear mixed models, we simply have to require

the following homogeneity condition:

Homogeneity condition: We call correlation matrices Ri homogeneous if they are the

same for all individuals i = 1, . . . , n except for the dimension, i.e. Ri = (rk,`)
di
k,`=1 ∈ Rdi×di

is a (di × di)-submatrix of a correlation matrix R = Rd = (rk,`)
d
k,`=1 ∈ Rd×d.

This condition is in particular fulfilled if the covariance matrices of the errors Σi ∈ Rdi×di

and the design matrices of the random effects Zi ∈ Rdi×q are constant in i except for

the dimension. Despite being a restriction, linear mixed models meeting this requirement

still comprise a wide range of models used in practice. The assumption on the covariance
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matrices Σi is for example fulfilled if errors

• are assumed to be i.i.d., i.e. the (k, `)th entry of Σi is given by σ21{k=`}, where 1{·}

denotes the indicator function;

• exhibit a compound symmetry structure, i.e. the (k, `)th entry of Σi is σ2ρ1{k 6=`} for

some ρ ∈ (−1, 1);

• follow an autoregressive structure of order 1 (AR(1)), i.e. the (k, `)th entry of Σi is

given by σ2ρ|k−`| for some ρ ∈ (−1, 1);

• have an exponential decay structure, i.e. the (k, `)th entry of Σi can be written as

σ2 exp {− |k − `| /r}, where r > 0 is the constant “range” parameter.

These are typical simplifications that are made anyway for modeling longitudinal data

in most applications if the number of individuals is large with respect to the number of

measurements. The assumption on the design matrices Zi is also often satisfied, e.g. for

the popular class of so-called random intercept models, where Zi = (1, . . . , 1)> ∈ Rdi×1

for j = 1, . . . , di and i = 1, . . . , n. Further, the assumption includes any model where the

covariates associated with the random effect only depend on the (common) measurement

times tj, j = 1, . . . , d, i.e. for example Zi = (t1, . . . , tdi)
> ∈ Rdi×1 or more generally

Zi = (h(t1), . . . , h(tdi))
> ∈ Rdi×1 for some function h : R → R. Thus, assuming that Zi

only depends on the number of measurements di for individual i is also not uncommon

such that there is in fact a wide class of linear mixed models sharing the property that

the correlation matrix Ri of Yi only depends on the number of measurements.

If Ri is homogeneous in i, we have that all individuals i share the same Gaussian

dependence structure, i.e. correlation matrix. This scenario is a special case of the D-vine

based model since we can represent any Gaussian correlation matrix using a D-vine with

Gaussian pair-copulas and the corresponding (partial) correlations as parameters (see for

example Stöber et al., 2013, Theorem 4.1). The univariate margins F i
j can be chosen

arbitrarily for the copula approach such that we can simply use N (x>i,jβ, φ
2
i,j)-margins

(cf. Equation 5.8) to end up with a model describing the same joint distribution of Yi

as the corresponding linear mixed model (Equation 5.10). Since we can use arbitrary

distributions for the margins and/or any D-vine copula for the dependence structure, our

approach can be seen as an extension of linear mixed models with common correlation

structure for all individuals. Figure 5.2 illustrates the link between our D-vine based model

and linear mixed models.

For the application in Section 5.6 we will compare how well both model classes perform

fitting real life data.
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Linear mixed model

LMM with common
correlation structure
for all individuals

Gaussian copula
with Gaussian

regression margins

Gaussian copula with
arbitrary margins

D-vine copula
with Gaussian

regression margins

D-vine copula with
arbitrary margins

Figure 5.2.: Flow chart illustrating how the D-vine based model is linked to linear mixed models.

5.4. Estimation methods for the D-vine based model

5.4.1. Marginal modeling

Although our focus is on dependence modeling, we will briefly discuss how the univariate

marginal models for Y i
j , i.e. F i

j , can be estimated. In general the choice of marginal models

is completely arbitrary. They can be parametric or non-parametric. The most common

situation for repeated measurements is that in addition to the measurement data Y itself

further covariates are known for each individual and measurement. Therefore, regression

models such as linear (LMs) or generalized linear models (GLMs) can be applied. In this

case, F i
j ( · ) = Fj( · |xi,j) depends on the individual’s associated covariates xi,j ∈ Rp, where

p ∈ N is the number of covariates used in the model. In our application (Section 5.6)

we will simply use the margins implied by the competing linear mixed model making

the models better comparable. Our focus, however, is rather to develop a flexible model
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Chapter 5. Modeling repeated measurements using D-vine copulas

describing the dependence structure that is present in the data Y such that we will not

further elaborate on how to estimate the univariate marginal distributions.

5.4.2. Dependence modeling

Assume we have estimated the marginal distributions and obtained (pseudo-)copula data

by applying the estimated distribution functions F̂ i
j to the measurements, i.e. ûij := F̂ i

j (y
i
j).

We now use the transformed data as a copula sample to estimate the underlying de-

pendence structure. Section 5.2 has shown that D-vine copulas are suited for modeling

the dependence structure being present in repeated measurement data. Model B (Equa-

tion 5.3) was preferable since it is easier to interpret and estimate. Further, predictions for

not yet observed measurements can be made. The aim of the methods presented in Sec-

tion 5.4 is to find estimates for the set of pair-copula families C = (ck,k+`;(k+1):(k+`−1) | k =

1, . . . , d− ` and ` = 1, . . . , d− 1) and the set of parameters θ = (θk,k+`;(k+1):(k+`−1) | k =

1, . . . , d− ` and ` = 1, . . . , d− 1) corresponding to Model B from Section 5.2, where d is

the maximal number of observed events per observation. We will present two approaches:

a standard joint maximum-likelihood estimator and a sequential method. Since we want

to choose both parameters and families for each pair-copula we will select from a set of

m bivariate candidate family types Γ = {γ1, . . . , γm}, where each member γ ∈ Γ has its

own space of admissible parameter values Ω(γ).

Joint maximum-likelihood approach

The canonical approach in order to find optimal pair-copula families and parameters would

be to use maximum-likelihood estimation. In Section 5.2 we have already determined the

log-likelihood. Since the families specify which parameter values are admissible, finding

the optimal families and parameter estimates is divided into two steps: For each combi-

nation of families we have to determine the maximum-likelihood estimate of parameters;

then we select the one combination with the overall highest likelihood. This way we find

the best D-vine model with regards to likelihood optimization. However, since there are

|Γ| = m candidates for each of the d(d − 1)/2 pair-copula families, we have to perform

md(d−1)/2 times an at least (d(d− 1)/2)-dimensional optimization (some families like the

t-copula may have more than one parameter). It is obvious that this can very quickly

become computationally infeasible if the number of candidate families m is high and—

especially—if the dimension d gets large.

Of course, the possibly large number of parameters to be estimated is a general problem

in the statistical analysis of vine copulas. Therefore, Aas et al. (2009) (for D-vines) and

later Dißmann et al. (2013) (for general vine copulas) developed a sequential tree-by-tree
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selection algorithm facilitating vine copula model estimation up to very high dimensions.

Dißmann’s algorithm is commonly used to fit the vine’s model structure, pair-copula

families and parameters but it can also only be used for the selection of families and

parameters only if we have a fixed tree structure (e.g. a D-vine). The difference to the

classical situation which we face when we want to estimate a vine copula is that our

observations have different lengths.

Sequential approach

Inspired by Dißmann’s algorithm we want to fit the pair-copula families and the associated

parameters of the D-vine to a repeated measurement data set using a sequential approach.

Given classical data, Dißmann’s algorithm starts with the estimation of the first tree and

estimates the unconditional pair-copulas (and their parameters) via maximum-likelihood

estimation. Then the observations are transformed into pseudo-observations needed for

the estimation of the second tree using the estimated pair-copulas of tree 1. Continuing

this way the vine is built up tree-by-tree.

In the presence of repeated measurement data, however, we can pursue a very similar

strategy. The only difference is that we estimate each pair-copula (and its parameter(s))

only based on the available full observation. All pair-copulas to be estimated are of the

form ck,`;(k+1):(`−1) with parameter θk,`;(k+1):(`−1). When all observations are of the form

(u1, . . . , uj)
> for some j ∈ {1, . . . , d}, i.e. there are no “gaps” between two observed

events, we can use the information of observations with a minimum length of `, i.e. all

observations in
⋃d
j=` U j, for the estimation of ck,`;(k+1):(`−1) and θk,`;(k+1):(`−1). Thus, we can

maintain the basic scheme known from Dißmann’s algorithm. With a slight modification

of the data we are even able to use the function RVineCopSelect from the R library

VineCopula (Schepsmeier et al., 2017) for our purpose, making our approach also very

appealing from a practitioner’s point of view.

Of course, this sequential approach can also be applied for data with missing values

(Section 5.2.2, page 84). Then, for the estimation of each pair-copula ck,`;(k+1):(`−1) with

associated parameter θk,`;(k+1):(`−1) is performed using all observations for whom the nec-

essary measurements uk, uk+1, . . . , ul are available. The function RVineCopSelect can still

be used in the presence of missing values.

The biggest advantage of being able to use sequential estimation approach is that we can

estimate models at reasonable computational costs, even in high dimensions. Of course,

the approach also works when using non-parametric pair-copulas or even non-simplified

vine copulas. For details for estimating non-parametric and non-simplified vines we refer

the reader to Nagler and Czado (2016) and Vatter and Nagler (2016), respectively. Yet, as

already mentioned at the beginning, we focus on parametric simplified vine copulas here.
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5.4.3. Model selection

In model selection one often wants to compare different fitted models. For this purpose

the log-likelihood and log-likelihood based measures such as AIC (Akaike, 1998) and

BIC (Schwarz, 1978), which penalize large numbers of parameters, are frequently applied.

Whereas the penalty of the AIC only depends on the number of parameters in the model,

that of BIC also depends on the sample size. In our case, however, it is not completely

obvious what sample size to use. Therefore, we derive how the BIC for the D-vine based

model including margins can be calculated in our situation. Proposition 5.1 shows that

each parameter is to be weighted with the (logarithm of) the number of observations that

directly contribute to its estimation. A proof can be found in Appendix C.1.

Proposition 5.1. Let pj ∈ N be the number of parameters of the D-vine based model

including margins restricted to the measurements 1 to j, j = 1, . . . , d, and define ∆pj :=

pj − pj−1 for j = 2, . . . , d and ∆p1 := p1. Further denote by Nj =
∑d

k=j nk the number of

individuals with at least j measurements. The BIC of the D-vine based model including

margins is given by

BIC = −2 logL(θ̂ | Y) +
d∑
j=1

∆pj log(Nj).

Here, logL(θ̂ | Y) = logL(θ̂M | Y) + logL(θ̂C | U) is the log-likelihood of the fitted model

including margins, i.e. the sum of the log-likelihood of the margins logL(θ̂M | Y) and the

one of the copula logL(θ̂C | U) (which is the one of Model B from Section 5.2.2). Further,

θ̂ = (θ̂M , θ̂C) is the maximum-likelihood estimate for the set of all model parameters

(associated with both the margins θ̂M and the D-vine copula θ̂C).

Remark 5.2. Although this BIC adjustment was developed for the D-vine based model, it

can also be used for certain types of linear mixed models due to the connection described

in Section 5.3. For LMMs fulfilling the homogeneity condition the BIC can be determined

with the formula from Proposition 5.1 if only individuals with j or more measurements

contribute to the estimation of the parameters of the sub-model restricted to the first j

measurements which were not already contained in the sub-model restricted to the first j−
1 measurements. This is for example the case if on the one hand no structural assumptions

(besides homogeneity) are imposed on the covariance matrices of the random effects and

the errors D and Σi and on the other hand the design matrices Xi have a form that allows

for different marginal regression models for different measurements. For guaranteeing the

latter each covariate is only allowed to be incorporated in one of the marginal regressions,

i.e. the values of this covariate are zero for all other measurements; if a covariate still is

to be included in more than one model, one simply splits up the covariate into several

measurement-specific covariates that are non-zero only for one particular measurement.
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This way for one covariate a separate coefficient can be estimated for different marginal

models (if necessary).

5.5. Simulation study

In order to check that the sequential estimation approach from Section 5.4 works rea-

sonably well, we perform a simulation study that is inspired by the data analyzed in

Section 5.6.

Simulation setting

For a maximum number of measurements d ∈ {5, 10}, we generate d-dimensional data

sets and prune them randomly to obtain an unbalanced setting. In this context pruning

means that for each d-dimensional observation i we independently draw di from a discrete

distribution on {2, . . . , d} and restrict this observation to its first di components. This

way we mimic the nature of unbalanced repeated measurement data. In order to assess

the implications of having only incomplete data we sequentially fit a D-vine copula to

both the full and the pruned data set and compare the estimates.

To obtain data sets we consider randomly generated D-vine copulas with structure 1–2–

. . . –d. For this purpose, we rely on the method proposed in Joe (2006) to sample Gaussian

correlation matrices that are uniformly distributed over the space of valid correlation

matrices. Conveniently, this method is already based on a vine decomposition: For each

tree i, i = 1, . . . , d− 1, we generate the corresponding d− i parameters associated to the

Gaussian pair-copulas by drawing from a Beta((d − i + 1)/2, (d − i + 1)/2) distribution

and transforming the outcome linearly to [−1, 1], resulting in a mean and mode of 0 and

a variance of 1/(d− i+ 2). However, since we do not only want to consider Gaussian D-

vines, we transform the Gaussian parameters to Kendall’s τ values using the relationship

τ = 2
π

arcsin(ρ). Then, we randomly draw a pair-copula family for each pair-copula to

be specified7 and convert the Kendall’s τ values to parameters of the respective families.

For one-parametric families τ can directly be transformed to the parameter space. For

two-parametric families there are infinitely many combinations of parameters resulting

in the same Kendall’s τ value. Therefore, we adopt the approach used in Kraus and

Czado (2017b): draw the second parameter randomly8 and determine the first parameter

implicitly such that the two parameters imply the required Kendall’s τ .

With the above procedure we generate R = 1000 D-vine copulas and simulate data sets

of size n ∈ {200, 2000}. Then for each observation i we randomly determine its length

7The families are drawn uniformly from the ones available in the library VineCopula: Gaussian, t,
Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and Tawn as well their rotations (see Schepsmeier
et al., 2017, for details).

8The specific sampling distributions can be found in Appendix B of Kraus and Czado (2017b).
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di ∈ {2, . . . , d}. For d = 5, the underlying distribution mimics the observed measurement

rates of the data considered in Section 5.6. The exact proportions of individuals with

a least j measurements would have been 100.0%, 78.5%, 58.5%, 43.9% for j = 2, 3, 4, 5,

respectively. For d = 10, we extended the scenario of d = 5 accordingly. The distributions

are given in Table 5.2.

j 2 3 4 5
probability of di = j 20% 20% 15% 45%
probability of di ≥ j 100% 80% 60% 45%

j 2 3 4 5 6 7 8 9 10
probability of di = j 10% 10% 10% 10% 10% 5% 5% 5% 35%
probability of di ≥ j 100% 90% 80% 70% 60% 50% 45% 40% 35%

Table 5.2.: Probability mass function and proportions of individuals with at least j measurements
for the “pruning distribution” (top table: d = 5; bottom table: d = 10).

For both the full and the pruned data set we use the sequential algorithm implemented

in RVineCopSelect (from the VineCopula library) to fit D-vine copulas. In order to

assess how badly the loss of information affects the estimation we compare the resulting

D-vines by considering each pair-copula separately. For this purpose, we consider the mean

absolute difference between the Kendall’s τ values (∆τ := 1
R

∑R
r=1 |τ̂pruned(r)− τ̂full(r)|),

the lower and the upper tail dependence coefficients (∆λs := 1
R

∑R
r=1 |λ̂spruned(r)− λ̂sfull(r)|

for s ∈ {`, u}) of the two models. Comparing general strength of dependence and tail

behavior enables us to assess how similar the fitted pair-copulas are.9

Results for d = 5

For d = 5, the absolute differences of Kendall’s τ , lower and upper tail dependence

coefficient (averaged over the R = 1000 data sets) are displayed for each of the 10 pair-

copulas in Table 5.3, where the sample sizes are n = 200 and n = 2000, respectively.

For n = 200, the 10 average absolute estimated Kendall’s τ values for the full data

set ( 1
R

∑R
r=1 |τ̂full(r)|) lie between 0.345 and 0.394; the 10 average estimated upper and

lower tail dependence coefficients for the 10 pair-copulas are between 0.075 and 0.108

( 1
R

∑R
r=1 λ̂

`
full(r)) and 0.080 and 0.107 ( 1

R

∑R
r=1 λ̂

u
full(r)), respectively. For n = 2000, the

three ranges are fairly similar: [0.338, 0.422], [0.081, 0.992] and [0.083, 0.107], respectively.

We can see that even for a sample size of only n = 200 (see upper part of Table 5.3) the

differences between the two estimates are relatively small. The largest absolute deviations

are 0.058, 0.066 and 0.067 for τ , λ` and λu, respectively. The average absolute deviations

0.029 (τ), 0.039 (λ`) and 0.039 (λu), respectively. Of course, c1,2 is always estimated

9Considering the percentage of cases where the same copula family is fitted would not be sensible
since the number of candidate families is large and many of them, e.g. a Clayton and a survival Joe
copula, can hardly be distinguished.
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equally in both cases since all pruned observations have minimum length of 2. We can

observe what one would expect given that the number of observations with at least j

measurements descends in j: Pair-copulas for whose estimation later measurements are

needed exhibit larger deviations.

c1,2 c2,3 c3,4 c4,5 c1,3;2 c2,4;3 c3,5;4 c1,4;2,3 c2,5;3,4 c1,5;2,3,4

n
=

20
0 ∆τ 0.000 0.016 0.026 0.035 0.017 0.027 0.036 0.032 0.043 0.058

∆λ` 0.000 0.018 0.035 0.050 0.024 0.039 0.053 0.044 0.066 0.065

∆λu 0.000 0.022 0.030 0.041 0.024 0.037 0.058 0.048 0.067 0.065

n
=

20
0
0 ∆τ 0.000 0.005 0.007 0.010 0.005 0.008 0.010 0.008 0.011 0.015

∆λ` 0.000 0.004 0.008 0.012 0.009 0.011 0.016 0.008 0.021 0.015

∆λu 0.000 0.004 0.010 0.011 0.006 0.008 0.013 0.011 0.021 0.024

Table 5.3.: Absolute differences of Kendall’s τ , lower and upper tail dependence coefficient for
each of the 10 pair-copulas, averaged over the R = 1000 data sets of size n = 200
and n = 2000, respectively.

The results in the lower part of Table 5.3 (corresponding to n = 2000) show a similar

qualitative behavior. However, the overall level of average absolute deviations is even

smaller: Maximum/average values are 0.015/0.008, 0.024/0.011 and 0.021/0.010 for τ , λ`

and λu, respectively.

Results for d = 10

We performed the same studies as above for d = 10. Since it does not make sense to

display the results for all 45 pair-copulas separately, we only report some summary statis-

tics10. For a sample size of n = 200 the maximum/average deviations were 0.091/0.048

(τ), 0.069/0.044 (λ`) and 0.068/0.043 (λu); for n = 2000 we observed 0.059/0.018 (τ),

0.037/0.017 (λ`) and 0.037/0.017 (λu). In comparison to the results for d = 5 we detect

an increase in deviation, which seems plausible since the dimension of the model increases

but the sample sizes are kept constant.

All in all, we see that the sequential fitting of D-vine models to repeated measure-

ment data performs well such that we do not have to hesitate to use it for the real data

application in Section 5.6.

5.6. Application

In Section 5.5 we have seen that our proposed estimation method performs satisfactory.

Now we will apply it to real life data. For this purpose, we consider the aortic valve replace-

ment surgery data set heart.valve that is taken from the R library joineR (Philipson

10The detailed results are of course available on request from the authors.
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et al., 2017) and has been analyzed in Lim et al. (2008). For this longitudinal study the

regression of the left ventricular mass index (LVMI) of n = 256 individuals was examined

in several follow-up appointments after the surgery, where a new heart valve had been

implanted. The total number of examinations is 988 such that the average number of

measurements per patient is 3.86, where 10 is the maximum. Table 5.4 summarizes the

sizes of the groups of individuals with exactly j and j or more measurements, respectively,

j = 1, . . . , 10.

j 1 2 3 4 5 6 7 8 9 10
patients with j measurements 51 44 41 30 27 15 21 15 6 6

patients with ≥ j measurements 256 205 161 120 90 63 48 27 12 6

Table 5.4.: Sizes of the groups of individuals with exactly j and j or more measurements, re-
spectively, j = 1, . . . , 10.

Besides the examination results, for every patient and measurement there are also

covariates available. We denote them the way they are stored in the data set heart.valve.

The following list contains the covariates that we used in our final models as well as a

short description, which is basically taken from the documentation of the joineR library

(Philipson et al., 2017):

• size: size of the heart valve in millimeters;

• sex: gender of the patient

• bsa: body surface area (preoperative)

• time: date of measurement (with surgery date as time origin)

The quantity we model is the logarithm of the LMVI. We estimate two different mod-

els: a linear mixed model and a D-vine copula based model. We focus on the first five

measurements since there are rather few observations for the later measurements. This

way we use 832 of the 988 available measurements (84.2%).

Linear mixed model approach

In order to fit a linear mixed model (cf. Section 5.3.1) to the data we use the function

lme from the R library nlme (Pinheiro et al., 2017). Assuming a homogeneous covariance

structure for all individuals i, i = 1, . . . , 256, different correlation structures such as i.i.d.

errors, compound symmetry or AR(1) can be selected (cf. Section 5.3, page 88). We fit

a random intercept model, i.e. Zi = (1, . . . , 1)> ∈ Rdi×1, and compare different (homo-

geneous) correlation structures for the error terms, namely i.i.d., compound symmetry,
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AR(1), exponential decay and a general (i.e. unrestricted) structure. Note that we per-

form classical maximum-likelihood estimation (instead of restricted maximum-likelihood

estimation, which is often used for linear mixed models) since we need to be able to

compare the quality of the fit to our D-vine based approach later. The parameter esti-

mates, however, are almost the same for both methods. The best model with respect to

log-likelihood and AIC is the one with the general structure; it contains the covariates

size, sex and bsa as well as an intercept as fixed effects. The AR(1) error structure,

where the (k, `)th entry of Σi is given by σ2ρ|k−`|, is more parsimonious than the general

structure and exhibits a better BIC although log-likelihood and AIC are worse; it contains

the covariates size, sex, bsa and time as well as an intercept. Note that the use of

BIC for linear mixed models is controversial (Hedeker and Gibbons, 2006); it is frequently

debated which sample size to use for the calculation of BIC (Jones, 2011; Müller et al.,

2013; Delattre et al., 2014). In the penalty of the standard BIC all model parameters

are weighted with the logarithm of the total number of observations. Here, we used the

adjusted BIC for linear mixed models that was developed by Delattre et al. (2014) and

that is better comparable to the one we derived for our approach in Proposition 5.1, where

each parameter is weighted with the logarithm of the number of observations that directly

contribute to its estimation. In the adjusted penalty term of Delattre et al. (2014) the

parameters associated with the fixed effects are weighted with the logarithm of the num-

ber of measurements and the parameters associated with the random effects are weighted

with the logarithm of the number of individuals.

The log-likelihood, AIC and BIC values of the models with the general and the AR(1)

structure can be found in Table 5.5. The remaining structures are not listed there as they

performed uniformly worse than the two models.

D-vine copula based approach

As an alternative we will also fit our D-vine based model. As described in Section 5.2.1

we first deal with the univariate marginal distributions and afterwards estimate the de-

pendence structure. For the marginals we use the univariate marginal regression model

that was already estimated for the linear mixed model with AR(1) error correlation struc-

ture. Hence, the margins depend on the covariates size, sex, bsa and time. In order to

transform the measurements to the uniform scale, we apply the estimated normal distri-

bution functions resulting from the regression model (cf. Equation 5.8). Then a D-vine

copula with order 1–2–3–4–5 is fitted to the transformed observations according to the

sequential approach from Section 5.4.2 (using RVineCopSelect). In order to avoid un-

necessary parameters we apply a Kendall’s τ based independence test (significance level

α = 5%), which is also implemented in RVineCopSelect, to decide for each pair-copula

if it is significantly different from an independence copula (for a detailed description see
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Chapter 5. Modeling repeated measurements using D-vine copulas

Hollander et al., 2014; Genest and Favre, 2007). The criterion for the selection of the

pair-copula families is standard BIC. We fit both a Gaussian D-vine copula, where all

pairs are assumed to be bivariate Gaussian, and a general, unrestricted D-vine copula.

The result is in both cases a first-order Markov structure, also known as a 1-truncated

vine copula, i.e. all pair-copulas in the second, third and fourth tree are the independence

copula. For the Gaussian vine the Kendall’s τ values of the Gaussian pairs in the first

tree are estimated to be τ̂1,2 = 0.43, τ̂2,3 = 0.54, τ̂3,4 = 0.56 and τ̂4,5 = 0.61. For the

general D-vine copula the pair-copulas in the first tree are estimated to be the following:

ĉ1,2 = Frank (τ̂1,2 = 0.49); ĉ2,3 = Survival Gumbel (τ̂2,3 = 0.53); ĉ3,4 = Survival Gumbel

(τ̂3,4 = 0.56); ĉ4,5 = Frank (τ̂4,5 = 0.65). Figure 5.3 displays pairwise plots of the copula

data (transformed to standard normal margins for reasons of comparability) including the

contour lines of the corresponding fitted pair-copulas.
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Figure 5.3.: Pairwise plots of the copula data (transformed to standard normal margins) including
the contours lines of the fitted pair-copulas of the Gaussian D-vine copula (upper
panel) and the general D-vine copula (lower panel), respectively.

We see that there is a positive medium strength of dependence for all pairs in both

models (τ -values from 0.43 to 0.61 and 0.49 to 0.65, respectively). The shape of the con-

tours, however, differs considerably between the two models. All four bivariate copulas

in the general D-vine model are from different families and non-Gaussian. Whereas ĉ1,2

and ĉ4,5 show no tail dependence, the survival Gumbel copula modeling the dependence

between variables 2 and 3 and 3 and 4, respectively, exhibits moderate lower tail depen-

dence: λ̂`2,3 = 0.62 and λ̂`3,4 = 0.64. The fact that the dependence between two consecutive

measurements is not constant and non-Gaussian is an indicator that the general D-vine

approach might be a better choice than a simple Gaussian dependence model.
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5.6. Application

Model comparison

In order to see if this is the case we compare the fit of the two D-vine based models

(including margins) and the two linear mixed models to the data using the log-likelihood

(of the full model including margins), AIC and BIC. Table 5.5 displays all three model

selection criteria. Note that the BIC values of the linear mixed models are calculated as

proposed by Delattre et al. (2014) and the ones of the D-vine based models are calculated

according to Proposition 5.1.

model log-likelihood AIC BIC # parameters
general LMM −99.4 230.9 305.3 16
LMM AR(1) −108.9 233.8 270.4 8

Gaussian D-vine −102.7 225.3 265.3 10
general D-vine −85.0 190.1 230.1 10

Table 5.5.: Log-likelihood, AIC and BIC values for the fitted linear mixed models with general and
AR(1) structure and the Gaussian and the general D-vine based models (including
margins). Bold values indicate the best model fit according to the respective model
selection criteria.

One can see that the unrestricted D-vine model performs uniformly better than the

Gaussian one. This is a clear indicator that the normality assumption for the dependence

is not really suited. Nevertheless, due to their flexibility, both D-vine based models yield

a considerably better fit than the two linear mixed models with respect to log-likelihood,

AIC and BIC; only the log-likelihood of the Gaussian D-vine is slightly worse than the

one of the general LMM. We see that the D-vine based approaches are able to capture

the structure of the data better since the flexibility of the D-vine helps to fit the depen-

dence structure more appropriately. This is especially important if the deviation from

Gaussianity is strong.

Quantile prediction

As a final application we illustrate how conditional quantiles for the (j + 1)st measure-

ment of an individual with j measurements can be determined using the general D-

vine copula based approach and the linear mixed model with AR(1) error structure.

For this purpose, we select three representative individuals with di = 4 measurements

from the data set such that they have had rather low (y1 = (4.63, 4.62, 4.66, 4.91)>),

medium (y2 = (5.26, 5.13, 5.00, 5.19)>) and high (y3 = (5.90, 5.80, 5.67, 5.31)>) mea-

surement values so far, respectively. We use the corresponding observed covariate val-

ues of xi = (xi,1, xi,2, xi,3, xi,4)> = (sizei, sexi, bsai, timei)
> that are given by x1 =

(29, 0, 1.93, 3.15)>, x2 = (25, 0, 1.65, 5.48)> and x3 = (25, 0, 1.71, 3.19)>, respectively.

We pretend that the three selected individuals have only had three measurements so

far. Then we predict the median, i.e. the 50% quantile, and a 90% prediction interval, i.e.
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Chapter 5. Modeling repeated measurements using D-vine copulas

the 5% and the 95% quantile, of the fourth measurement based on the three measure-

ments yi1, y
i
2, y

i
3 for both models and compare the results to the true value of the fourth

measurement.

For the linear mixed model we know that the joint distribution of the measurements

of one individual is a multivariate normal distribution with mean and variance as in

Equation 5.10. Having estimated the corresponding parameters we can easily determine

the conditional distribution of the fourth measurement given the first three measurements,

which is given by a univariate normal distribution (see for example Joe, 2014, Section

2.6). The quantiles of univariate normal distributions are known such that we can easily

compute the desired quantities. The estimated median for individual 1 is 4.78, the 90%

prediction interval is given by (4.37, 5.18). For individuals 2 and 3 the medians are 5.21

and 5.73 and the prediction intervals are (4.81, 5.61) and (5.32, 6.13), respectively. We see

that the observed value of the fourth measurement of individuals 1 and 2 are inside the

prediction intervals; for the third individual the prediction interval does not contain the

observed measurement value: 5.31 /∈ (5.32, 6.13). Note that due to the normality of the

conditional distribution the prediction intervals are symmetric around the mean (which

is also the median).

For comparison we determine the conditional quantiles using the general D-vine based

model. Since we want to apply Equation 5.6, which uses the inverse conditional distri-

bution function on the copula level C−1
4|1:3( · |F i

1(yi1), F i
2(yi2), F i

3(yi3)) and the inverse of the

marginal distribution function of the fourth measurement (F i
4)−1( · ), we first of all trans-

form the measurements 1, 2 and 3 to the copula scale by ûij := F̂ i
j (y

i
j), where F̂ i

j are the

marginal linear regression estimates obtained from the linear mixed model. For each in-

dividual i = 1, 2, 3 and α ∈ {0.05, 0.50, 0.95} we use the estimated general D-vine copula

to calculate q̂iu(α) := Ĉ−1
4|1:3(α|ûi1, ûi2, ûi3). Since F̂ i

4( · ) is again a univariate normal distri-

bution we can easily determine its inverse and apply (F̂ i
4)−1( · ) to q̂iu(α) to obtain the

conditional quantiles on the original scale q̂iy(α) = (F̂ i
4)−1(q̂iu(α)). The estimated median

for individual 1 is 4.65, the estimated 90% interval is given by (4.42, 5.02). For individuals

2 and 3 the medians are 5.18 and 5.60 and the prediction intervals are (4.82, 5.58) and

(5.13, 6.03), respectively. Thus all three prediction intervals contain the corresponding

observed measurement values. Note that the 5% and 95% quantiles are in general not

symmetric around the 50% quantile in this case.

In practice it might be interesting to investigate the influence of covariates on the

estimated conditional quantiles. As an example we illustrate how the quantiles depend

on the variable bsa. In Figure 5.4 we show the resulting estimates for the median (solid

lines) and the prediction intervals (dashed lines) of individuals 1 (left), 2 (middle) and 3

(right) depending on the size of the heart valve for the linear mixed model (gray lines)

and the D-vine based model (black lines). The estimated quantiles for the actual covariate
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5.6. Application

specifications of our three selected individuals are given by the intersections dotted vertical

lines (indicating the true bsa values) and the quantile lines; for example the median is

marked at the intersection point of the prediction interval and the corresponding median

line. The actual observed measurement value yi4 is also added as a circle.
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Figure 5.4.: Estimated median (solid lines) and prediction intervals (dashed lines) of the fourth
measurement for individuals 1 (left column), 2 (middle column) and 3 (right column)
depending on the size of the heart valve for the LMM (gray) and the D-vine based
model (black). Vertical lines indicate the true bsa values. Actual observed values
are marked as circles.

First of all, we see that the quantiles estimated from the linear mixed model depend

linearly on bsa. This is clear since the covariates only influence the estimated mean of the

distribution of the fourth measurement given the first three. This influence is the same for

all quantiles, i.e. the slope of the all gray lines is the same. Since the standard deviation

does not depend on the covariate values all prediction intervals have the same width (even

for different individuals). Normality implies that the prediction intervals are symmetric

around the mean (median).

The quantiles estimated on the basis of the D-vine based model, however, inherit the

flexibility of the D-vine model and do not depend linearly on the bsa value. The width

of the prediction intervals varies among the three individuals and even for one individual

depending on the covariate values. The slope for different quantiles can even be positive

and negative for one individual. These phenomena can be seen very clearly in left plot in

Figure 5.4 corresponding to the first individual.

This application illustrated how easily such investigations can be performed with both

the linear mixed model and the D-vine based model. Analyzing the results, however, has

made clear that the flexibility of the D-vine based model is a non-ignorable advantage over

the linear mixed model. For both models it is eye-catching that the differences between

the three individuals are considerable. This shows how important it can be to use the

information available when making predictions for the future.
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5.7. Conclusion and outlook

This chapter presented an intuitive and easily interpretable D-vine copula based model

with arbitrary margins for unbalanced longitudinal data. The model was compared to

linear mixed models and proved to be a generalization of this model class under the as-

sumption that the correlation structure was homogeneous over the individuals. Further,

we developed a BIC adjustment for our model. Being based on D-vine copulas our pro-

posed model benefited from the possibility to model the underlying dependence structure

very flexibly. Since we did not impose any restrictions on the univariate marginal distri-

butions, this adds even more flexibility to the model. As joint estimation of the D-vine

copula would become rather slow in high dimensions, we proposed a fast sequential alter-

native, where even missing data values could be handled without causing problems. Due

to the nested nature of D-vine models our approach further easily allowed for predicting

future events. In the application to the heart surgery data set the proposed model was

able to fit the data considerably better than the linear mixed models. If data exhibited

an even more complicated dependence structure than the considered data set (possibly

including stronger tail dependence, asymmetries etc.), the Gaussian assumption of linear

mixed models would certainly be so strongly violated that changing to a more flexible

model would be inevitable.

In an ongoing research project the D-vine based modeling approach is extended to

time-to-event data with right-censoring (Barthel et al., 2017).
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Appendix A

Appendix to Chapter 3

A.1. Proof of Proposition 3.6

Let ε > 0 and n ∈ N. To simplify notation, for j = 1, . . . , d− 1 we define

κj
(
u(j+1):d

)
:= KL

(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

Then, by definition

aKL
(
Rf ,Rg

)
=

d−1∑
j=1

1

nd−j

∑
u(j+1):d∈Gj

κj
(
u(j+1):d

)
=

d−1∑
j=1

1

nd−j

∑
w(j+1):d∈Wj

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
.

Since Wj is a discretization of [ε, 1 − ε]d−j with mesh size going to zero for n → ∞, we

have

1

nd−j

∑
w(j+1):d∈Wj

κj
(
Tcf

(j+1):d
(w(j+1):d)

) n→∞−→ ∫
[ε,1−ε]d−j

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d.

Substituting w(j+1):d = T−1

cf
(j+1):d

(
u(j+1):d

)
yields

∫
[ε,1−ε]d−j

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d

=

∫
T fc(j+1):d([ε,1−ε]d−j)

κj
(
u(j+1):d

)
cf(j+1):d

(
u(j+1):d

)
du(j+1):d

since

T−1

cf
(j+1):d

(
u(j+1):d

)
=
(
Cf
j+1|(j+2):d(uj+1|u(j+2):d), . . . , C

f
d−1|d(ud−1|ud), ud

)>
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with (upper triangular) Jacobian matrix

J = JT−1

c
f
(j+1):d

(
u(j+1):d

)
=


cfj+1|(j+2):d(uj+1|u(j+2):d)

. . . *
0 cfd−1|d(ud−1|ud)

1


such that dw(j+1):d = det(J) du(j+1):d = cf(j+1):d

(
u(j+1):d

)
du(j+1):d. Since we are only

interested in the determinant of J , whose lower triangular matrix contains only zeros, the

values in the upper triangular matrix (denoted by ∗) are irrelevant here. Finally, using

the fact that

lim
ε→0

Tcf
(j+1):d

(
[ε, 1− ε]d−j

)
= Tcf

(j+1):d

(
[0, 1]d−j

)
= [0, 1]d−j,

we obtain

lim
ε→0

lim
n→∞

aKL
(
Rf ,Rg

)
=

d−1∑
j=1

∫
[0,1]d−j

κj
(
u(j+1):d

)
cf(j+1):d

(
u(j+1):d

)
du(j+1):d

Prop. 3.2
= KL

(
cf , cg

)
.

A.2. Regarding Remark 3.11

A.2.1. Limit of the dKL

Let ε > 0 and n ∈ N. Again, for j = 1, . . . , d− 1 we define

κj
(
u(j+1):d

)
:= KL

(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

The contribution of Duj,k, j = 1, . . . , d− 1, k = 1, . . . , 2d−j−1, to the dKL is given by

1

n

∑
u(j+1):d∈Duj,k

κj
(
u(j+1):d

)
=

1

n

∑
w(j+1):d∈Dwj,k

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
=

1

n

n∑
i=1

κj
(
Tcf

(j+1):d
(ω(ti))

)
,

where ω(t) = r+ tv(r) with v(·) as defined in Definition 3.9, r ∈ {0, 1}d−j being a corner

point of Dw
j,k and ti = ε+ (i− 1)1−2ε

n−1
for i = 1, . . . , n. Letting n→∞ yields

1

n

n∑
i=1

κj
(
Tcf

(j+1):d
(ω(ti))

) n→∞−→ ∫
t∈[ε,1−ε]

κj
(
Tcf

(j+1):d
(ω(t))

)
dt. (A.1)
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Now, we further let ε→ 0 and use the fact that ‖ω̇(t)‖ =
√
d− j to obtain∫

t∈[0,1]

κj
(
Tcf

(j+1):d
(ω(t))

)
dt =

1√
d− j

∫
t∈[0,1]

κj
(
Tcf

(j+1):d
(ω(t))

)
‖ω̇(t)‖ dt

=
1√
d− j

∫
w(j+1):d∈Dwj,k

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d

=
1√
d− j

∫
u(j+1):d∈Duj,k

κj
(
u(j+1):d

)
cf(j+1):d

(
u(j+1):d

)
du(j+1):d,

where we substituted u(j+1):d := T−1

cf
(j+1):d

(w(j+1):d), dw(j+1):d = cf(j+1):d(u(j+1):d) du(j+1):d

(cf. Appendix A.1) in the last line.

A.2.2. Tail transformation

In our empirical applications of the dKL, we have noticed that different vines tend to

differ most in the tails of the distribution. Therefore, we increase the concentration of

evaluation points in the tails of the diagonal by transforming the points ti, i = 1, . . . , n,

via a suited function Ψ. Hence, by substituting t = Ψ(s) in Equation A.1 we obtain∫
s∈Ψ−1([ε,1−ε])

κj

(
Tcf

(j+1):d

(
ω
(
Ψ(s)

)))
Ψ′(s) ds.

We use its discrete pendant

1

n

n∑
i=1

κj

(
Tcf

(j+1):d

(
ω
(
Ψ(si)

)))
Ψ′(si),

where si = Ψ−1(ε) + (i− 1)Ψ−1(1−ε)−Ψ−1(ε)
n−1

for i = 1, . . . , n. Regarding the choice of Ψ, all

results in this chapter are obtained using

Ψa : [0, 1]→ [0, 1], Ψa(t) :=
Φ(2a(t− 0.5))− Φ(−a)

2Φ(a)− 1

with shape parameter a > 0, where Φ is the standard normal distribution function.

Figure A.1 shows the graph of Ψa for different values of a. We see that larger values of a

imply more points being transformed into the tails. Having tested different values for a,

we found that a = 4 yields the best overall results. Therefore, we consistently use a = 4.
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Figure A.1.: Plot of Ψa for a = 0, 4, 7.

A.3. Finding the diagonal with the highest weight

A.3.1. Procedure 1: Finding a starting value

The idea behind the following heuristic is that a diagonal has a higher weight if its points

have high probability implied by the copula density. Hence, the diagonal should reflect the

dependence structure of the variables. The unconditional dependence in a vine captures

most of the total dependence and is easy to interpret. For example, if Ui and Uj are

positively dependent (i.e. τi,j > 0) and Uj and Uk are negatively dependent (i.e. τj,k < 0),

then it seems plausible that Ui and Uk are negatively dependent. This concept can be

extended to arbitrary dimensions.

1. Take each variable to be a node in an empty graph.

2. Consider the last row of the structure matrix, encoding the unconditional pair-

copulas. Connect two nodes by an edge if the dependence of the corresponding

variables is described by one of those copulas.

3. Assign a “+” to node 1.

4. As long as not all nodes have been assigned a sign, repeat for each node that was

assigned a sign in the previous step:

a) Consider this ‘root’ node and its neighborhood, i.e. all other nodes that share

an edge with the root node.

b) If the root node has a “+”, then assign to the neighbor node the sign of the

Kendall’s τ of the pair-copula connecting the root and neighbor node, else the

opposite sign.
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5. The resulting direction vector v = (v1, . . . , vd)
> ∈ {−1, 1}d has entries vi which are

1 or −1 if node i is has been assigned a “+” or a “−”, respectively.

Note that if we had assigned a “−” to node 1 in Step 3, we would have ended up with

−v instead of v, implying the same diagonal.

To illustrate the procedure from above we consider a nine-dimensional example: Let R
be a vine copula with density c, where the following (unconditional) pair-copulas are as

specified in Table A.1.

pair-copula c1,2 c1,3 c3,4 c3,5 c2,6 c6,7 c7,8 c7,9

Kendall’s τ −0.3 0.5 0.2 −0.4 0.5 0.5 −0.4 0.6

Table A.1.: Specification of the pair-copulas with empty conditioning set.

Now, we take an empty graph with nodes 1 to 9 and add edges (i, j) if ci,j is specified in

Table A.1. The result is a tree on the nodes 1 to 9 (see Figure A.2). We assign a “+” to node

1 (implying v1 = 1) and consider its neighborhood {2, 3} as there are still nodes without a

sign. Since τ1,2 < 0 and the root node 1 has been assigned a “+”, node 2 gets a “−” and we

set v2 = −1. Node 3 is assigned a “+” such that v3 = 1. Next, we repeat this procedure for

the neighborhoods of nodes 2 and 3. Iterating in this way until all nodes have been assigned

a “+” or a “−” and all vi have been set we obtain what is shown in Figure A.2. The

resulting direction vector is given by v = (v1, . . . , v9)> = (1,−1, 1, 1,−1,−1,−1, 1,−1)>.

8 +

9 –

7 –

6 – 2 – 1 +

3 +

5 –

4 +
-0.4

0.6

0.5

0.5 -0.3

0.5

-0.4

0.2

Figure A.2.: Example for finding the candidate vector.

A.3.2. Procedure 2: Local search for better candidates

Having found a diagonal through Procedure 1 (Appendix A.3.1), we additionally perform

the following steps in order to look if there is a diagonal with even higher weight in the

“neighborhood” of v.
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1. Consider a candidate diagonal vector v ∈ {1,−1}d with corresponding weight λ
(0)
c .

2. For j = 1, . . . , d, calculate the weight λ
(j)
c corresponding to vj ∈ {1,−1}d, where vj

is equal to v with the sign of the jth entry being reversed.

3. If maxi λ
(i)
c > λ

(0)
c , take v := vk with k = arg maxi λ

(i)
c to be the new candidate for

the (local) maximum.

4. Repeat Steps 1–3 until a (local) maximum is found, i.e. maxi λ
(i)
c ≤ λ

(0)
c .

Although there is no guarantee that we really find the global maximum of the diagonal

weights, this procedure in any case finds a local maximum. Starting with a very plausible

choice of v it is highly likely that we end up with the “right” diagonal.

In Step 2 the weight of numerous diagonals has to be calculated. For a fast determination

of these weights it is reasonable to approximate the integral in Equation 3.14 by

λc(D) ≈ 1

n

n∑
i=1

c(γ(ti)) ‖γ̇(ti)‖ ,

where 0 < t1 < t2 < . . . < tn < 1 is an equidistant discretization of [0, 1].
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Appendix to Chapter 4

B.1. Proof of Theorem 4.1

In order to prove Theorem 4.1 we first prove an auxiliary lemma from which Theorem 4.1

follows as a corollary.

Lemma B.1. For k ∈ {1, . . . , d} and uj ∈ [0, 1], j = 1 . . . , d, we have

∂k

∂u1 · · · ∂uk

[
C(u

1/n
1 , . . . , u

1/n
d )n

]
=

1

nk

(
k∏
j=1

uj

) 1
n
−1

×
k∧n∑
j=1

 n!

(n− j)!C
(
u

1/n
1 , . . . , u

1/n
d

)n−j ∑
P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

) .

Proof. We will prove this statement using induction. For k = 1 we have

∂

∂u1

[
C(u

1/n
1 , . . . , u

1/n
d )n

]
= nC(u

1/n
1 , . . . , u

1/n
d )n−1∂1C(u

1/n
1 , . . . , u

1/n
d )

1

n
u

1
n
−1

1 =

1

n1

(
1∏
j=1

uj

) 1
n
−1 1∧n∑

j=1

 n!

(n− j)!C(u
1/n
1 , . . . , u

1/n
d )n−j

∑
P∈S1,j

∏
M∈P

∂MC(u
1/n
1 , . . . , u

1/n
d )

 .

The inductive step (k → k + 1) proceeds as follows

∂k+1

∂u1 · · · ∂uk+1

[
C(u

1/n
1 , . . . , u

1/n
d )n

]
=

∂

∂uk+1

{
∂k

∂u1 · · · ∂uk

[
C(u

1/n
1 , . . . , u

1/n
d )n

]}
=: (∗)1 .

Applying the inductive assumption yields
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(∗)1 =
∂

∂uk+1

 1

nk

(
k∏
j=1

uj

) 1
n
−1 k∧n∑

j=1

{
n!

(n− j)! · C
(
u

1/n
1 , . . . , u

1/n
d

)n−j
×

∑
P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)}}
=: (∗)2 .

We will consider the cases “n > k” and “n ≤ k” separately. We begin with Case 1 (n > k):

We have k ∧ n = k and hence

(∗)2 =
1

nk

(
k∏
j=1

uj

) 1
n
−1 k∑

j=1

{
n!

(n− j)! ·
{

∂

∂uk+1

[
C
(
u

1/n
1 , . . . , u

1/n
d

)n−j]
×

∑
P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)
+ C

(
u

1/n
1 , . . . , u

1/n
d

)n−j

× ∂

∂uk+1

 ∑
P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)} = (∗)3 .

Now we use that fact that for k ∈ {1, . . . , d− 1} and j ∈ {1, . . . , k ∧ n} we have

∂

∂uk+1

 ∑
P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

) =
u

1
n
−1

k+1

n

∑
P∈Sk+1,j

{k+1}6∈P

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)
.

(B.1)

Applying Equation B.1 yields

(∗)3 =
1

nk

(
k∏
j=1

uj

) 1
n
−1{ k∑

j=1

n!

(n− j)! · (n− j) · C
(
u

1/n
1 , . . . , u

1/n
d

)n−j−1

× ∂k+1C
(
u

1/n
1 , . . . , u

1/n
d

) 1

n
u

1
n
−1
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P∈Sk,j

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)

+
k∑
j=1

n!

(n− j)! · C
(
u

1/n
1 , . . . , u

1/n
d

)n−j
· 1

n
u

1
n
−1

k+1

∑
P∈Sk+1,j

{k+1}6∈P

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)}

=
1

nk+1

(
k+1∏
j=1

uj

) 1
n
−1{ k∑

j=1

n!

(n− (j + 1))!
· C
(
u

1/n
1 , . . . , u

1/n
d

)n−(j+1)

×
∑

P∈Sk+1,j+1

{k+1}∈P

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)
+
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+
k∑
j=1

n!

(n− j)! · C
(
u

1/n
1 , . . . , u

1/n
d

)n−j
·
∑

P∈Sk+1,j

{k+1}6∈P

∏
M∈P

∂MC
(
u

1/n
1 , . . . , u

1/n
d

)}
= (∗)4 .

We perform an index shift in the first sum such that j + 1 is replaced by j and make use

of the following two properties:

(A) For all P ∈ Sl,1 = {{{1, . . . , l}}} holds that {l} 6∈ P .

(B) For all P ∈ Sl,l = {{{1} , . . . , {l}}} holds that {l} ∈ P .

This results in

(∗)4 =
1

nk+1

(
k+1∏
j=1

uj

) 1
n
−1{ k+1∑
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n!
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1 , . . . , u

1/n
d

)n−j
×

∑
P∈Sk+1,j

∏
M∈P

∂MC
(
u

1/n
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,

where we used the fact that k+ 1 = (k+ 1)∧n since n > k. This concludes the first case.

Case 2 (n ≤ k) is similar to the first one. The main difference is that for j = n we have

C
(
u

1/n
1 , . . . , u

1/n
d

)n−j
= 1, which was not possible before since j ≤ k < n. Now k ∧ n = n

and therefore we obtain
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1 , . . . , u

1/n
d

)n−j−1

× ∂k+1C
(
u

1/n
1 , . . . , u
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where we applied Equation B.1 in the second equality. Further, in the third equality we

performed an index shift in the first sum and used Property (A) from above. Since n ≤ k

we have that n = (k + 1) ∧ n. This concludes the second case and hence the proof of

Lemma B.1.

Having proved the auxiliary lemma we can now easily prove the statement from Theo-

rem 4.1.

Proof of Theorem 4.1. Using Equation 4.3 we obtain

cM(n)(u1, . . . , ud) =
∂d

∂u1 · · · ∂ud
CM(n)(u1, . . . , ud) =

∂d

∂u1 · · · ∂ud

[
C(u

1/n
1 , . . . , u

1/n
d )n

]
.

As a final step, Theorem 4.1 follows directly as a corollary from Lemma B.1 by plugging

in k = d.

B.2. Proof of Proposition 4.4

Proof. The expressions in Proposition 4.4 can be obtained by straight-forward calcula-

tions. We will start from the end: Expression 4 is simply the vine copula decomposition

of c(u1, u2, u3) from Equation 4.8. Using the vine copula decomposition or expression 4,
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respectively, for expression 3c) we can write

∂23C(u1, u2, u3) = c2,3(u2, u3)

∫ u1

0

c1,2(v1, u2)c1,3;2(C1|2(v1|u2), C3|2(u3|u2);u2) dv1

= c2,3(u2, u3)

∫ u1

0

∂12C1,2(v1, u2)∂13C1,3;2(C1|2(v1|u2), C3|2(u3|u2);u2) dv1

= c2,3(u2, u3)

∫ u1

0

{
∂

∂v1

[
∂2C1,2(v1, u2)︸ ︷︷ ︸
C1|2(v1|u2)=w1

]

× ∂13C1,3;2(C1|2(v1|u2), C3|2(u3|u2);u2)

}
dv1

= c2,3(u2, u3)

∫ u1

0

∂w1

∂v1

∂

∂w1

∂3C1,3;2(w1, C3|2(u3|u2);u2)

∣∣∣∣
w1=C1|2(v1|u2)

dv1

= c2,3(u2, u3)C1|3;2(C1|2(u1|u2), C3|2(u3|u2);u2).

Similar calculations yield expression 3a). Expression 2c) is obtained through the following

calculations:

∂3C(u1, u2, u3) =

∫ u1

0

∫ u2

0

c(v1, v2, u3) dv1 dv2

=

∫ u2

0

c2,3(v2, u3)C1|2,3(u1|v2, u3) dv2

=

∫ u2

0

c2,3(v2, u3)C1|3;2(C1|2(u1|v2), C3|2(u3|v2); v2) dv2.

Similarly, expression 2a) can be derived. In order to calculate C(u1, u2, u3), we derive

another representation for ∂3C(u1, u2, u3):

∂3C(u1, u2, u3) =

∫ u1

0

∫ u2

0

c(v1, v2, u3) dv1 dv2

=

∫ u2

0

∂2

∂v2∂u3

C2,3(v2, u3)
∂

∂w2

C1,3;2(C1|2(u1|v2), w2; v2)

∣∣∣∣
w2=C3|2(u3|v2)

dv2

=

∫ u2

0

∂w2

∂u3

∂

∂w2

C1,3;2(C1|2(u1|v2), w2; v2)

∣∣∣∣
w2=C3|2(u3|v2)

dv2

=

∫ u2

0

∂

∂u3

C1,3;2(C1|2(u1|v2), C3|2(u3|v2); v2) dv2

=
∂

∂u3

[∫ u2

0

C1,3;2(C1|2(u1|v2), C3|2(u3|v2); v2) dv2

]
.
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For the copula function C (expression 1) it follows

C(u1, u2, u3) =

∫ u3

0

∂

∂v3

[∫ u2

0

C1,3;2(C1|2(u1|v2), C3|2(v3|v2); v2) dv2

]
dv3

=

∫ u2

0

C1,3;2

(
C1|2(u1|v2), C3|2(u3|v2); v2

)
dv2.

In order to obtain expression 2b) we can simply differentiate the above expression for the

copula function C with respect to u2. Finally, we differentiate expression 2c) with respect

to u1 to end up with expression 3b):

∂13C(u1, u2, u3) =
∂

∂u1

[∫ u2

0

C1|3;2(C1|2(u1|v2), C3|2(u3|v2); v2)c2,3(v2, u3) dv2

]
=

∫ u2

0

∂13C1,3;2(C1|2(u1|v2), C3|2(u3|v2); v2)c1,2(u1, v2)c2,3(v2, u3) dv2

=

∫ u2

0

c1,3;2(C1|2(u1|v2), C3|2(u3|v2); v2)c1,2(u1, v2)c2,3(v2, u3) dv2.
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Appendix to Chapter 5

C.1. Proof of Proposition 5.1

We will prove the statement of Proposition 5.1 for d = 2 in order to present the basic

idea. The extension to higher dimensions works similarly but involves more tedious cal-

culations. In our proof we adapt the derivation from Neath and Cavanaugh (2012). Since

our proof is very similar up to the last step, we refer the reader to their paper for a more

detailed argumentation.

The BIC is used for model selection when different parametric models M1, . . . ,MK are

available as candidates to describe a data set Y = {y1, . . . ,yn}. Further, let L(θk|Y) be

the likelihood corresponding to model Mk, depending on the parameters θk ∈ Ωk, where

Ωk ⊆ Rpk is the space of admissible parameter values. Let π(k) be the prior probability

corresponding to model Mk and g(θk|k) denote a prior on θk given the model Mk. Using

Bayes’ Theorem we obtain the joint posterior of Mk and θk:

h(k,θk|Y) =
π(k)g(θk|k)L(θk|Y)

m(Y)
,

where m(Y) denotes the marginal distribution of Y. We are interested in finding the

highest posterior probability of Mk given Y , which can be expressed as

P (k|Y) =
π(k)

m(Y)

∫
Ωk

L(θk|Y)g(θk|k)dθk.

Since maximizing P (k|Y) is equivalent to minimizing −2 logP (k|Y) with respect to k and
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m(Y) does not depend on k, we will from now on consider

S(k|Y) := −2 log π(k)− 2 log

∫
Ωk

L(θk|Y)g(θk|k)dθk. (C.1)

In order to be able to approximate the integrand from Equation C.1 we perform a second-

order Taylor series expansion of the log-likelihood logL(θk|Y) around the maximum-

likelihood parameter estimate θ̂k = arg maxθk∈Ωk
L(θk|Y):

logL(θk|Y) ≈ logL(θ̂k|Y) + (θk − θ̂k)>
∂ logL(θk|Y)

∂θk

∣∣∣∣
θk=θ̂k

+
1

2
(θk − θ̂k)>

[
∂2 logL(θk|Y)

∂θk∂θ
>
k

∣∣∣∣
θk=θ̂k

]
(θk − θ̂k).

Since θ̂k maximizes L(θk|Y), and hence also logL(θk|Y), we obtain

L(θk|Y) ≈ L(θ̂k|Y) exp

{
−1

2
(θk − θ̂k)>H(θ̂k|Y)(θk − θ̂k)

}
,

where we denote the negative Hessian matrix of the log-likelihood by

H(θk|Y) := −∂
2 logL(θk|Y)

∂θk∂θ
>
k

.

Neath and Cavanaugh (2012) and Cavanaugh and Neath (1999) argue that the above

approximations hold for large samples Y and further justify the use of a non-informative

prior g(θk|k) = 1 for any θk ∈ Ωk. Thus,∫
Ωk

L(θk|Y)dθk ≈ L(θ̂k|Y)(2π)pk/2
∣∣∣H(θ̂k|Y)

∣∣∣−1/2

. (C.2)

Plugging Equation C.2 into Equation C.1 yields

S(k|Y) ≈ −2 log π(k)− 2 logL(θ̂k|Y)− pk log π + log
∣∣∣H(θ̂k|Y)

∣∣∣ . (C.3)

In order to compute the determinant of H(θ̂k|Y) we consider the (`,m)th entry H`,m of

H(θk|Y). Since d = 2 the parameter vector θk = (θ1
k,θ

2
k,θ

3
k)
> can be split up such that

θjk ∈ Rqj parametrize the marginal distributions Fj of the jth measurement, j = 1, 2

and θ3
k ∈ Rq3 is the parameter vector of the copula c1,2 with pk = q1 + q2 + q3. For

the sake of notation we assume that Y is ordered such that Y2 = {y1, . . . ,yn2} and
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Y1 = {yn2+1, . . . ,yn} and further recall that N1 = n1 + n2 = n and N2 = n2. We have

H`,m = − ∂2

∂θ`∂θm

n∑
i=1

logL(θk|yi)

= −
N1∑
i=1

∂2

∂θ`∂θm
log f1(yi1|θ1

k)−
N2∑
i=1

∂2

∂θ`∂θm
log f2(yi2|θ2

k)

−
N2∑
i=1

∂2

∂θ`∂θm
log c1,2(F1(yi1|θ1

k), F2(yi2|θ2
k)|θ3

k)

= N1

[
− 1

N1

N1∑
i=1

∂2

∂θ`∂θm
log f1(yi1|θ1

k)

]
+N2

[
− 1

N2

N2∑
i=1

∂2

∂θ`∂θm
log f2(yi2|θ2

k)

]

+N2

[
− 1

N2

N2∑
i=1

∂2

∂θ`∂θm
log c1,2(F1(yi1|θ1

k), F2(yi2|θ2
k)|θ3

k)

]
.

Assuming that the data set is large, i.e. N1 and N2 are large, the expressions in the

brackets (approximately) represent entries of the Fisher information matrices

I1 = I1(θ1
k|Y) = −E

[
∂2

∂θ1
k∂(θ1

k)
> log f1(Y1|θ1

k)

]
∈ Rq1×q1 ,

I2 = I2(θ2
k|Y2) = −E

[
∂2

∂θ2
k∂(θ2

k)
> log f2(Y2|θ2

k)

]
∈ Rq2×q2

and

I3 =

I
1,1
3 I1,2

3 I1,3
3

I2,1
3 I2,2

3 I2,3
3

I3,1
3 I3,2

3 I3,3
3

 = I3((θ1
k,θ

2
k,θ

3
k)|Y2) ∈ R(q1+q2+q3)×(q1+q2+q3),

where

I`,m3 = −E
[

∂2

∂θ`k∂(θmk )>
log c1,2(F1(Y1|θ1

k), F2(Y2|θ2
k)|θ3

k)

]
∈ Rq`×qm .

Thus, H(θ̂k|Y) can be written as

H(θ̂k|Y) =

N1I1 +N2I
1,1
3 N2I

1,2
3 N2I

1,3
3

N2I
2,1
3 N2I2 +N2I

2,2
3 N2I

2,3
3

N2I
3,1
3 N2I

3,2
3 N2I

3,3
3

 .
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Using the formula for the determinant of block-matrices (Silvester, 2000) we obtain

∣∣∣H(θ̂k|Y)
∣∣∣ = N q1

1 N
q2+q3
2

∣∣∣∣I1 +
N2

N1

I1,2
3 − I1,3

3 (I3,3
3 )−1I3,1

3 +
N2

N1

[
I1,2

3 − I1,3
3 (I3,3

3 )−1I3,2
3

]
×
[
I2 + I2,2

3 − I2,3
3 (I3,3

3 )−1I3,2
3

]−1 [
I2,1

3 − I2,3
3 (I3,3

3 )−1I3,1
3

] ∣∣∣∣
×
∣∣∣I2 + I2,2

3 − I2,3
3 (I3,3

3 )−1I3,2
3

∣∣∣∣∣∣I3,3
3

∣∣∣
=: N q1

1 N
q2+q3
2 a(N1, N2).

Note that since N2/N1 is bounded between 0 and 1, a(N1, N2) is also bounded. Plugging

the expression for
∣∣∣H(θ̂k|Y)

∣∣∣ into Equation C.3 we obtain

S(k|Y) ≈ −2 log π(k)−2 logL(θ̂k|Y)−pk log π+q1 logN1 +(q2 +q3) logN2 +log a(N1, N2).

Discarding the terms that are bounded as the sample size goes to infinity yields

S(k|Y) ≈ −2 logL(θ̂k|Y) + ∆p1 logN1 + ∆p2 logN2

since ∆p1 = q1 and ∆p2 = q2 + q3. This proves the statement for d = 2. The proof of

Proposition 5.1 in higher dimensions only differs from the above in that the calculations

necessary to compute the determinant of H(θ̂k|Y) are much more involved since one has

to compute the determinant of a (d(d+ 1)/2)× (d(d+ 1)/2) block matrix.
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Gräler, B. (2014). Modelling skewed spatial random fields through the spatial vine copula.

Spatial Statistics, 10:87–102.

Gruber, L. and Czado, C. (2015). Sequential bayesian model selection of regular vine

copulas. Bayesian Analysis, 10(4):937–963.

Gudendorf, G. and Segers, J. (2010). Extreme-value copulas. In Copula theory and its

applications, pages 127–145. Springer.

Hedeker, D. and Gibbons, R. D. (2006). Longitudinal data analysis, volume 451. John

Wiley & Sons.

Hershey, J. R. and Olsen, P. A. (2007). Approximating the Kullback Leibler divergence

between Gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007.

ICASSP 2007. IEEE International Conference on, volume 4, pages IV–317. IEEE.

Hobæk Haff, I., Aas, K., and Frigessi, A. (2010). On the simplified pair-copula construction

— Simply useful or too simplistic? Journal of Multivariate Analysis, 101(5):1296–1310.
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Panagiotelis, A., Czado, C., Joe, H., and Stöber, J. (2017). Model selection for discrete

regular vine copulas. Computational Statistics & Data Analysis, 106:138–152.

Philipson, P., Sousa, I., Diggle, P. J., Williamson, P., Kolamunnage-Dona, R., Henderson,

R., and Hickey, G. L. (2017). joineR: Joint Modelling of Repeated Measurements and

Time-to-Event Data. R package version 1.1.0.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2017). nlme: Linear

and Nonlinear Mixed Effects Models. R package version 3.1-131.

Potvin, C., Lechowicz, M. J., and Tardif, S. (1990). The statistical analysis of ecophysio-

logical response curves obtained from experiments involving repeated measures. Ecol-

ogy, 71(4):1389–1400.

Rocco, M. (2014). Extreme value theory in finance: A survey. Journal of Economic

Surveys, 28(1):82–108.

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. Ann. Math. Statist.,

23(3):470–472.

Salmon, F. (2009). Recipe for Disaster: The Formula That Killed Wall Street. Wired,

17(3):74–79.

Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula

models with fixed margins. Journal of Multivariate Analysis, 138:34–52.
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