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Abstract

Over the last decade, vine copulas have evolved to represent one of the standard tools for
dependence modeling in the statistical community. As so-called pair-copula constructions
they are flexible models decomposing multivariate copulas into bivariate building blocks.
Each of these can be modeled separately by a bivariate parametric or nonparametric copula,
resulting in a huge class of models.
In this thesis we consider several aspects of vine copulas. First, we use a subclass of vine
copulas called D-vine copulas for quantile regression, which is the prediction of the quan-
tiles of a response variable conditioned on several covariates assuming certain values. We
develop an algorithm that sequentially constructs the D-vine, adding one covariate after
another ordered decreasingly with regards to explanatory power, as long as the model’s fit
is significantly improved. Thus, an automatic covariate selection and ranking is facilitated.
The resulting D-vine model admits an analytic extraction of the conditional quantiles guar-
anteeing fast and precise calculations. In contrast to traditional linear quantile regression,
no distributional assumptions are made and quantiles for different quantile levels cannot
cross each other. With the application of stress testing, a task with increasing relevance in
the financial world, we show how D-vine copula based quantile regression can be used in
practice. Further, we describe how D-vine quantile regression can be generalized to account
for mixed discrete and continuous data sets and present another application explaining and
predicting bike rental counts for a bike sharing system in Washington, D.C.
The second big topic of this thesis is the simplifying assumption that is usually made for
vine copulas in order to make inference tractable, especially in higher dimensions. It as-
sumes that the conditional copulas of a vine copula decomposition do not vary with the
values of the conditioning vector. We investigate the implications of the simplifying as-
sumption for three-dimensional vine copulas by plotting and comparing contour surfaces of
vine copula densities in simplified and non-simplified scenarios. We find that non-simplified
vine copulas exhibit much more irregular shapes than simplified vines. By a comparison of
fitted simplified and non-simplified vine copula densities with nonparametric density fits,
we describe a visual test for the choice between a specified more complicated non-simplified
and the more parsimonious simplified models.
Further, we develop a statistical procedure testing for the simplifying assumption for a given
data set. After fitting both simplified and non-simplified vine copulas, we test whether the
difference between both models is significantly different from zero. As a distance measure
we use a modified version of the Kullback-Leibler distance, which is specifically designed
to be fast and still accurate, even in higher dimensions. We show that the test has a high
power and demonstrate its usefulness in two real data applications.
Finally, we propose two new algorithms that sequentially estimate the tree structure of a
vine copula model with the focus on producing models for which the simplifying assumption
is violated as little as possible. By using a recently developed test for constant conditional
correlations we use information on how the chosen tree structure affects the validity of the
simplifying assumption. In a simulation study as well as several real data examples we
show that our algorithms are able to outperform the benchmark structure selection method
given by Dißmann’s algorithm in many cases.





Zusammenfassung

Im Laufe des letzten Jahrzehnts sind Vine Copulas zu einem der Standardwerkzeuge für
Abhängigkeitsmodellierung in der Statistik geworden. Als sogenannte Paar-Copula Kon-
struktionen sind sie flexible Modelle, die multivariate Copulas in bivariate Bausteine zer-
legen. Diese können unabhängig voneinander durch bivariate parametrische oder nicht-
parametrische Copulas modelliert werden, was zu einer riesigen Klasse von Modellen führt.
In dieser Arbeit betrachten wir verschiedene Aspekte von Vine Copulas. Zuerst verwenden
wir eine Unterklasse von Vine Copulas, die D-Vine Copulas, für Quantilsregression, also die
Vorhersage der Quantile einer Variable, die auf mehrere Kovariablen bedingt ist. Wir en-
twickeln einen Algorithmus, der den D-Vine sequentiell konstruiert, indem eine Kovariable
nach der anderen, geordnet im Bezug auf ihre Erklärungskraft, hinzugefügt wird, solange
dadurch die Anpassung des Modells signifikant verbessert wird. So wird eine automatische
Kovariablen-Auswahl und Ordnung nach Wichtigkeit ermöglicht. Das resultierende D-Vine
Modell lässt eine analytische Bestimmung der bedingten Quantile zu, was schnelle und
genaue Berechnungen zur Folge hat. Im Gegensatz zur herkömmlichen linearen Quantils-
regression werden keine Annahmen über die zugrunde liegenden Verteilungen getroffen und
Quantile für unterschiedliche Quantilniveaus können sich nicht schneiden. Mit der Anwen-
dung von Stress-Tests, einer Aufgabe mit zunehmender Relevanz in der Finanzwelt, zeigen
wir, wie D-Vine Copula basierte Quantilsregression in der Praxis genutzt werden kann.
Weiterhin beschreiben wir, wie die D-Vine Quantilsregression verallgemeinert werden kann,
um gemischte diskrete und kontinuierliche Datensätze zu berücksichtigen und präsentieren
eine weitere Anwendung zur Vorhersage der Anzahl von geliehenen Fahrrädern in Washing-
ton, D.C.
Das zweite große Thema dieser Arbeit ist die simplifying assumption, die gewöhnlich für
Vine Copulas gemacht wird, um Inferenz, insbesondere in höheren Dimensionen, möglich
zu machen. Hierbei nimmt man an, dass die bedingten Copulas einer Vine Copula Zer-
legung nicht mit den Werten des Bedingungsvektors variieren. Wir untersuchen die Im-
plikationen der simplifying assumption für dreidimensionale Vine Copulas, indem wir die
Konturoberflächen der Vine Copula Dichten in Szenarien mit und ohne simplifying as-
sumption plotten und vergleichen. Wir sehen, dass nonsimplified Vine Copulas eine viel un-
regelmäßigere Form aufweisen als simplified Vine Copulas. Durch einen Vergleich mit nicht-
parametrisch geschätzten Dichten beschreiben wir einen visuellen Test für die Wahl zwi-
schen einem komplizierteren nonsimplified und dem einfacheren simplified Modell. Außer-
dem entwickeln wir einen statistischen Test für die simplifying assumption. Nach der Anpas-
sung von simplified und nonsimplified Vine Copulas wird getestet, ob die Distanz zwischen
beiden Modellen signifikant von Null verschieden ist. Als Distanzmaß verwenden wir eine
modifizierte Version des Kullback-Leibler-Abstandes, die dafür entwickelt wurde, auch in
hohen Dimensionen schnell und noch genau zu sein. Wir zeigen, dass der Test eine hohe
Güte hat und demonstrieren seine Nützlichkeit in zwei Datenanwendungen.
Schließlich stellen wir zwei neue Algorithmen vor, die die Baumstruktur eines Vine Copula
Modells sequentiell schätzen, mit dem Fokus auf Modellen, für die die simplifying assump-
tion so wenig wie möglich verletzt wird. Durch die Verwendung eines kürzlich entwickelten
Tests auf konstante bedingte Korrelationen verwenden wir Informationen darüber, wie die
gewählte Baumstruktur die Gültigkeit dieser Annahme beeinflusst. In einer Simulations-
studie sowie in mehreren realen Datenbeispielen zeigen wir, dass unsere Algorithmen in der
Lage sind, in vielen Fällen bessere Ergebnisse zu liefern als die gängige Strukturauswahl-
methode von Dißmann.
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1 Introduction and outline

“The most important questions of life are indeed, for the most part, only
problems of probability.” Pierre-Simon Laplace (1825)1

We live in a world that is more and more driven by data. The Internet, smartphones,
cars, hospitals or the financial markets are only a few examples of sources generating an
exploding amount of data. In the media, often the analogy of a second gold rush is made2.
However, instead of gold, data miners, as they are often called, dig for answers by develop-
ing statistical tools to make sense of these mountains of numbers. In this context, the need
for adequately describing dependencies between various random quantities is ever present.
Since the seminal paper of Sklar (1959) has been published featuring the famous Sklar’s
Theorem, the modeling of any multivariate distribution function can be separated into a
consideration of the random vector’s marginal distributions and their collective dependence
function, a so-called copula.
Despite having already been introduced in the 1950s, the transition from simple depen-
dence concepts such as correlations to the more sophisticated concept of copulas has been
inspired by papers and books published around the turn of the millennium (Embrechts
et al., 1999; Joe, 1997; Nelsen, 2007). Since then, copulas have been an active field of
research with applications to finance (Cherubini et al., 2004; Genest et al., 2009a,b), hy-
drology (Salvadori and De Michele, 2007; Favre et al., 2004; Renard and Lang, 2007) and
biology (Kim et al., 2008; Nikoloulopoulos and Karlis, 2008b), just to name a few. While
there exist many parametric copula families, e.g. elliptical copulas (Frahm et al., 2003; De-
marta and McNeil, 2005) or Archimedean copulas (McNeil and Nešlehová, 2009), many of
them lack the flexibility to adequately model high dimensional data exhibiting asymmetries
and/or tail dependencies with varying characteristics. By only modeling the dependence
of pairs of variables, so called pair-copula constructions (PCCs) are able to overcome these
shortcomings, providing flexible copula models for arbitrary dimensions. Having been first
discovered in Joe (1996) and further developed in Bedford and Cooke (2002), vine copulas
have become the most important and frequently used PCC, especially due to the seminal
work of Aas et al. (2009), in which inferential methods for vine copulas were developed.
Since then, the theoretical foundations of vines have been further explored. Panagiotelis
et al. (2012) considered discrete vine copulas, Min and Czado (2010) and Gruber and Czado
(2015) performed a Bayesian estimation of vine copulas, Almeida et al. (2016) discussed
time-varying vine copula models and Erhardt et al. (2015) developed spatial vine copu-
las. Regarding the computation and implementation of vine copulas, Stöber and Czado
(2012) provided a sampling algorithm, Dißmann et al. (2013) developed an algorithm for
the sequential estimation of vine copulas, Stöber and Schepsmeier (2013) gave estimates of
the standard errors in vine copula models and Schepsmeier (2016) discussed goodness-of-fit
tests for vines. Further, Brechmann et al. (2012) considered truncated vines for parameter
reduction, Krupskii and Joe (2015) combined vine copulas with factor copulas and Nagler
et al. (2017) and Schellhase and Spanhel (2017) used nonparametric pair-copulas for the
construction of vine copulas. In his latest book about dependence modeling with copulas,
Joe (2014) dedicates an entire section to vine copulas and their properties. Additionally, an
R package named VineCopula has been developed by Schepsmeier et al. (2017), containing
implementations of many of the above methods.

1http://www-groups.dcs.st-and.ac.uk/history/Extras/Laplace_Probabilities.html
2https://www.forbes.com/sites/bradpeters/2012/06/21/the-big-data-gold-rush/

#7be218afb247

1

http://www-groups.dcs.st-and.ac.uk/history/Extras/Laplace_Probabilities.html
https://www.forbes.com/sites/bradpeters/2012/06/21/the-big-data-gold-rush/#7be218afb247
https://www.forbes.com/sites/bradpeters/2012/06/21/the-big-data-gold-rush/#7be218afb247


Apart from the theoretical contributions, vine copulas have also found applications in nu-
merous different fields, such as finance (Maya et al., 2015; Almeida et al., 2016; Brechmann
et al., 2014; Cooke et al., 2015a), insurance (Krämer et al., 2013; Erhardt and Czado,
2012), biology (Barthel et al., 2016; Schellhase and Spanhel, 2017), energy (Czado et al.,
2011), sociology (Cooke et al., 2015b), meteorology (Kauermann and Schellhase, 2014) and
hydrology (Erhardt and Czado, 2015; Hobæk Haff et al., 2015; Killiches and Czado, 2015;
Pereira et al., 2016; Hobæk Haff and Segers, 2015; Nikoloulopoulos et al., 2012). In the
survey of Aas (2016) many more applications of vine copulas in the financial sector are
presented, which is without doubt the most prominent application area of vines.

Being a publication based dissertation, the present thesis is based on several published
papers and submitted manuscripts. All of them deal with the general topic of vine copula
models, illuminating various aspects. Nevertheless, two main sub-topics stand out dividing
the seven contributions into two groups: D-vine copula based quantile regression and the
simplifying assumption for vine copulas.
The first three articles (Kraus and Czado, 2017a; Fischer, Kraus, Pfeuffer, and Czado,
2017; Schallhorn, Kraus, Nagler, and Czado, 2017) are centered around the so-called D-
vine copula based quantile regression, which is a newly developed semiparametric method
to estimate conditional quantiles of a response given covariates taking on certain values.
The main motivation for developing this method was that the prevalent quantile regres-
sion approach, which is the linear quantile regression of Koenker and Bassett (1978), has
many drawbacks. For example, as discussed in Bernard and Czado (2015), the assumption
underlying the linear quantile regression method, namely that the dependence between nor-
mally distributed response and covariates is a Gaussian copula, is very restrictive and in
practice almost never fulfilled. Further, quantile crossing may occur and the usual issues
of linear regression appear, such as collinearity and the questions of including interactions
and transformations of variables. Our approach, which is developed in Kraus and Czado
(2017a), breaks away from the strong linearity assumption and uses the advantage of copu-
las, namely the possibility of separately modeling marginal distributions and the variables’
dependence function, to flexibly model the quantiles of the response given the covariates.
By estimating the marginals nonparametrically and the copula as a D-vine copula with
the response as the first node, the conditional quantiles of this semiparametric model can
be calculated analytically, guaranteeing fast and precise results. Further, the D-vine is
estimated sequentially, adding one covariate, which increases the models conditional log-
likelihood the most, after another until none of the remaining variables increases the model
fit. This way, an automatic covariate selection is ensured which simultaneously ranks the
covariates by importance.
In the context of stress testing we demonstrate the usefulness of D-vine copula based quan-
tile regression. Stress tests have become frequent practice in the financial world and they
are usually performed to assess a company’s sensitivity to negative exogenous influences.
Using data on credit default swaps we investigate several stress scenarios in the international
banking and insurance market and find out that spillover effects are mainly induced by ge-
ographical proximity. In Fischer, Kraus, Pfeuffer, and Czado (2017) we use probabilities of
default arising from a standard Merton model to investigate the interdependencies between
German industry sectors. Among other results, surprisingly, stressing the financial sector
does not seem to have a strong impact on the remaining industry sectors. The most severe
stress scenarios were the ones originating from the Basic Materials and Cyclical Consumer
Goods sectors.
The methodology introduced in Kraus and Czado (2017a) is restricted to continuous data
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sets, i.e. the response as well as all covariates are assumed to be continuous random vari-
ables. The extension of D-vine based quantile regression to mixed discrete and continuous
data, such that some or all of the variables are allowed to take on countably many val-
ues, is described in Schallhorn, Kraus, Nagler, and Czado (2017). All ingredients needed
for D-vine quantile regression (conditional distributions, conditional quantiles, conditional
log-likelihoods), which can be expressed by bivariate building blocks themselves, are gen-
eralized by discriminating the four cases, i.e. whether the building block consists of two
discrete variables, two continuous variables or one discrete and one continuous variable and
vice versa. Using this general version of D-vine quantile regression we investigate a data
set containing continuous as well as discrete variables. The conditional quantiles of the
response number of bike rentals conditioned on various variables containing seasonal and
climate information are estimated. We find out that the number of bike rentals is highly
correlated with temperature, as long as it does not get too hot. Further, the number of
bike rentals decreases with high humidity and strong wind.

The second big topic of this thesis is the simplifying assumption. It assumes that the cop-
ulas associated with conditional distributions do not depend on the specific values of the
conditioning vector. It is often made to enable fast and robust inference. Nevertheless,
many researchers have considered non-simplified vine copulas and the question when the
simplifying assumption is valid. For example, Stöber et al. (2013) determined the decompo-
sition of several known multivariate copulas into simplified vine copulas. Further, Hobæk
Haff et al. (2010) stated that simplified vine copulas are “a rather good solution, even when
the simplifying assumption is far from being fulfilled by the actual model”. However, this
statement was criticized to be too optimistic in Acar et al. (2012), who present cases where
simplified vine copulas are insufficient. The importance of this contribution is also stressed
in Oh and Patton (2017). Another critical discussion of the simplifying assumption was
given in Spanhel and Kurz (2015) who focused on possible misspecifications of simplified
vine copulas when the true distribution is non-simplified.
As a first approach to the topic in Killiches, Kraus, and Czado (2017a) we visually determine
the differences between simplified and non-simplified vines in three dimensions. Staying in
three dimensions has the advantage that the three-dimensional densities can still be visu-
alized by plotting their contour surfaces. Furthermore, in a three-dimensional vine copula
there is only one conditional pair-copula with a single conditioning variable, making it
easy to isolate and interpret the effect of the simplifying assumption. We consider several
scenarios of three-dimensional simplified and non-simplified vine copulas and display their
contour surfaces from three different angles as well as the two-dimensional contour lines of
the three bivariate marginal densities. Our analyses admit several conclusions: First, for
simplified vines the shapes of the three-dimensional contours are smooth extensions of the
bivariate marginals, while for non-simplified vines this is not necessarily the case. Further,
the density contours of non-simplified vine copulas often exhibit twists, bumps and chang-
ing dependencies, whereas simplified vines appear to be smooth and rather convex with
a more homogeneous dependence. We also see that the three-dimensional Frank copula,
which cannot be decomposed as a simplified vine copula, does not severely violate the sim-
plifying assumption, exhibiting rather constant conditional dependence. In an application
we use these findings to compare the contour surfaces of the density of a three-dimensional
subset of the often utilized uranium data set, fitted as a simplified vine, a non-simplified
vine and a nonparametric kernel density fit. Since we see that the non-simplified fit is much
closer to the kernel density fit than the simplified fit, we reason that this data set is best
fitted by a non-simplified vine copula. This conclusion has also been drawn in Acar et al.
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(2012).
While this method gives a good idea about some of the implications of the simplifying
assumption, it is not a test in a strict statistical sense and only works in three dimensions.
Therefore, in Killiches, Kraus, and Czado (2017c) we develop a statistical test for the sim-
plifying assumption that is valid in any dimension. It is based on modified version of the
Kullback-Leibler distance developed in Killiches, Kraus, and Czado (2017b), enabling fast
computations even in high dimensions. Given copula data that is to be tested concerning
the validity of the simplifying assumption, a simplified as well as a non-simplified vine cop-
ula model are fitted. In order to test the null hypothesis that the simplifying assumptions is
fulfilled, i.e. the simplified vine copula suffices to model the data, we investigate whether the
distance (measured in terms of a modified Kullback-Leibler distance) between the two fitted
models is significantly different from zero. If it is, then we reject the null hypothesis in favor
of the more complicated non-simplified vine copula model. However, if the distance is not
significantly different from zero, we conclude that the simpler simplified vine is sufficient to
represent the dependencies exhibited by the data. Since the theoretical distribution of the
test statistic given by the modified KL distance between the two models cannot be derived
analytically, we use a parametric bootstrapping scheme in order to determine approximate
confidence intervals. In a simulation study we show that the test has a very high power.
Further, we revisit the three-dimensional uranium data set and, using our test, once again
come to the conclusion that a non-simplified vine copula is necessary to adequately model
this data set. Finally, we apply our test to a four-dimensional financial data set containing
the European national indices DAX, MIB, AEX and IBEX and find out that in this case a
simplified vine copula suffices.
Lastly, in Kraus and Czado (2017b) we present alternatives to the widely used Dißmann al-
gorithm, which have the goal to find vine tree structures that produce models for which the
simplifying assumption is violated as little as possible. This research project was motivated
by the insight that the tree structure of a vine copula (determining which pair-copulas are to
be modeled) has a severe impact on whether the simplifying assumption is violated or not.
Until now, the prevalent method of selecting a vine’s tree structure is given by Dißmann’s
algorithm, a heuristic that, starting with the lowest tree, sequentially fits a vine maximizing
the overall dependence of the modeled pair-copulas measured in terms of Kendall’s τ . We
show that this selection method might yield structures that would theoretically result in
non-simplified vine copulas even though the true underlying vine is of the simplified form.
This results in insufficient model fits (measured in terms of the log-likelihood), which are
considerably worse than models fitted using the true tree structure. Therefore, we try to
tackle this issue proposing structure selection methods that take into account whether the
pair-copulas modeled violate the simplifying assumption or not. For this, we make use
of a statistical test recently developed by Kurz and Spanhel (2017) testing whether the
conditional correlation of a pair-copula is constant or not (implemented in the R package
pacotest, Kurz, 2017). The latter would be a strong indicator for a violation of the sim-
plifying assumption for the tree structure containing this pair-copula. By using the results
of these tests we try to find tree structures with a desirably low number of pair-copulas
violating the simplifying assumption. The first algorithm we propose selects the first tree
similar to Dißmann’s algorithm. Afterwards, it sequentially constructs maximum spanning
trees with a mixture of Kendall’s τ values and p-values from the test for constant condi-
tional correlation as weights. The second algorithm finds a C-vine tree structure where the
root nodes are selected maximizing the sum of p-values and Kendall’s τ values that are
allowed by the proximity condition in the next tree. We conduct an extensive simulation
study to compare the performances of our newly introduced algorithms to the benchmark
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given by Dißmann’s algorithm. We find that both our algorithms manage to outperform in
high percentages of the times in different scenarios. Especially the second algorithm fitting
a C-vine excels with significant comparative advantages in high dimensions. Also in real
data applications we beat the performance of Dißmann’s algorithm with the exception of
financial data sets which seem to be adequately modeled by simplified vine copulas and
therefore are not as sensitive to the chosen tree structure.

In the following sections, the methods introduced in the above mentioned papers are pre-
sented: Section 2 gives a general introduction to copulas (Section 2.1) and vine copulas
(Section 2.2 and Section 2.3). Further, Section 3 deals with D-vine copula based quantile
regression. To be precise, after motivating quantile regression in Section 3.1, in Section 3.2
the theory and methods of D-vine copula based quantile regression are introduced. Appli-
cations of D-vine regression to the CDS data and the German industry default probability
data are presented in Section 3.3. The extension to discrete data sets are discussed in
Section 3.4, together with an application to a bike sharing data set. Section 4 deals with
all the aspects of the simplifying assumption we considered. The visual examination of
the simplifying assumption can be found in Section 4.1. After the introduction in Sec-
tion 4.1.1, several simplified (Section 4.1.2) and non-simplified (Section 4.1.3) scenarios
are visualized and interpreted. An application to simulated and real data is given in Sec-
tion 4.1.4 and Section 4.1.5 concludes the section. Our test for the simplifying assumption
using model distances is introduced in Section 4.2. The topic is motivated in Section 4.2.1
and our modifications of the Kullback-Leibler distance are summarized in Section 4.2.2.
Next, we describe the test of the simplifying assumption (Section 4.2.3) and apply it to
two data sets (Section 4.2.4). Finally, Section 4.3 contains the discussion of the two new
algorithms for structure selection of simplified vine copula models. After a motivation
(Section 4.3.1), Dißmann’s algorithm (Section 4.3.2) and the test for constant conditional
correlations (Section 4.3.3) are presented. In Section 4.3.4 the two new tree selection al-
gorithms are introduced and explained. An extensive simulation study is performed in
Section 4.3.5 and several real data examples are provided in Section 4.3.6. The section is
concluded in Section 4.3.7. Ultimately, Section 5 concludes this thesis with a summary and
an outlook to future research.

5



6



2 Introduction to vine copulas

Parts of Section 2 are very similar to the publications Kraus and Czado (2017a), Kraus and
Czado (2017b) and Killiches, Kraus, and Czado (2017a).

2.1 Copulas

A d-dimensional copula C is a d-variate distribution function on the unit hypercube [0, 1]d

with uniform marginal distribution functions. Sklar’s Theorem (Sklar, 1959) provides a link
between multivariate distributions and their associated copulas. It states that for every
multivariate random vector X = (X1, . . . , Xd)

′ ∼ F with marginal distribution functions
F1, . . . , Fd there exists a copula C associated with X such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

This decomposition of the multivariate distribution into its margins and its associated
copula is unique when X is absolutely continuous (which we will generally assume in this
thesis unless otherwise noted). In that case, the density of X can be decomposed similarly:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · . . . · fd(xd),

where c(u1, . . . , ud) := ∂d

∂1···∂d
C(u1, . . . , ud) is the copula density and f1, . . . , fd are the

marginal densities.
If we are interested solely in the dependence structure of X, we consider it on the so-
called u-scale (or copula scale) by applying the probability integral transform (PIT) to its
marginals: Uj := Fj(Xj), j = 1, . . . , d. The Uj are then uniformly distributed and their
joint distribution function is the copula C associated with X. Refer to Joe (1997) and
Nelsen (2007) for a detailed examination of copulas including many examples of parametric
copulas, especially bivariate copulas. Those are of special interest to us since they are the
building blocks used for the pair-copula construction of regular vine copulas.

2.2 D-vine copulas

Before introducing regular vine copulas, we define an important subclass known as D-vine
copulas, which are of special importance for the D-vine copula based quantile regression
discussed in Section 3.
For a random vector X, a set D ⊂ {1, . . . , d} and i, j ∈ {1, . . . , d} \D we use the following
notation:

(a) CXi,Xj ;XD
(·, ·; xD) denotes the copula associated with the conditional distribution of

(Xi, Xj)
′ given XD = xD. We abbreviate this by Cij;D(·, ·; xD). Further, cij;D(·, ·; xD)

is the copula density corresponding to Cij;D(·, ·; xD).

(b) By FXi|XD
(·|xD) we denote the conditional distribution of the random variable Xi

given XD = xD. We use Fi|D(·|xD) as an abbreviation.

(c) CUi|UD
(·|uD) denotes the conditional distribution of the PIT random variable Ui given

UD = uD. We abbreviate this by Ci|D(·|uD).
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Following Czado (2010), the joint density f of the continuously distributed random vector X
can be written in terms of (conditional) bivariate copula densities and its marginal densities
as

f(x1, . . . , xd) =
d∏

k=1

fk(xk)
d−1∏
i=1

d∏
j=i+1

cij;i+1,...,j−1

(
Fi|i+1,...,j−1 (xi|xi+1, . . . , xj−1) ,

Fj|i+1,...,j−1 (xj|xi+1, . . . , xj−1) ;xi+1, . . . , xj−1

)
. (2.1)

We call this pair-copula construction (PCC) a D-vine density with order X1–X2–. . .–Xd. If
all margins are uniform, we speak of a D-vine copula. As introduced by Bedford and Cooke
(2002) we present a graph theoretic representation of the D-vine, where each edge of the
graph corresponds to a pair-copula.

Example 2.1. Figure 1 shows an exemplary 5-dimensional D-vine corresponding to

f(x1, x2, x3, x4, x5) =f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

· c12 · c23 · c34 · c45 (T1)

· c13;2 · c24;3 · c35;4 (T2)

· c14;23 · c25;34 (T3)

· c15;234, (T4)

where for brevity we omitted the arguments of the pair-copulas.

T1 : 1 2 3 4 5

12 23 34 45

T2 : 12 23 34 45

13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 1: Graph theoretic representation of a D-vine with order X1–X2–X3–X4–X5. The
nodes of the trees are plotted in black circles and the corresponding indices of the pair-
copulas in gray squares.

We see that all pair-copulas used in the decomposition appear as edges in the corresponding
nested set of trees displayed in Figure 1.

In order to fit a D-vine copula with a fixed order to given data, all pair-copulas appearing
in Equation (2.1) are estimated as parametric bivariate copulas. A common assumption
when working with vine copulas is to assume that the copulas associated with conditional
distributions ci,j;D do not depend on the specific values of the conditioning vector xD, i.e.
ci,j;D(·, ·; xD) ≡ ci,j;D(·, ·).
The conditional distributions Fi|D (xi|xD) appearing in the PCC can be evaluated using
only the pair-copulas specified for the D-vine from lower trees by applying the following
recursion, which was first stated by Joe (1997): Let l ∈ D and D−l := D\ {l}. Then,

Fi|D (xi|xD) = hi|l;D−l

(
Fi|D−l

(
xi|xD−l

)
|Fl|D−l

(
xl|xD−l

))
, (2.2)
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where for i, j /∈ D, i < j, hi|j;D(u|v) := ∂Cij;D(u, v)/∂v = Ci|j;D(u|v) and hj|i;D(v|u) :=
∂Cij;D(u, v)/∂u = Cj|i;D(v|u) are the h-functions associated with the pair-copula Cij;D.

In Example 2.1 the first argument of c14;23 from Tree 3, namely F1|23(x1|x2, x3), can be
evaluated using the h-functions associated with C13;2, C12 and C23 from the first two trees:

F1|23(x1|x2, x3) =h1|3;2(F1|2(x1|x2)|F3|2(x3|x2))

=h1|3;2(h1|2(F1(x1)|F2(x2))|h3|2(F3(x3)|F2(x2))).

2.3 Regular vine copulas

We briefly recall the most important definitions needed for the construction of vine copulas.
Details can be found in Bedford and Cooke (2002) or Aas et al. (2009). We restrict all our
analyses to variables and data on the uniform copula scale [0, 1]d.
A d-dimensional vine copula is a pair-copula construction consisting of d(d − 1)/2 uncon-
ditional and conditional bivariate copulas, whose structure is organized by a set of linked
trees V = (T1, . . . , Td−1) satisfying

(i) T1 = (V1, E1) is a tree with nodes V1 = {1, . . . , d} and edges E1. A tree is understood
as a graph where any two nodes are connected by a unique path (refer to Diestel,
2005, for an introduction to graph theory).

(ii) For m = 2, . . . , d− 1, the tree Tm consists of nodes Vm = Em−1 and edges Em.

(iii) For m = 2, . . . , d − 1, two nodes of Tm can only be connected by an edge if the
corresponding edges of Tm−1 have a common node.

Each edge e of the vine copula model’s d−1 trees is associated with a bivariate pair-copula
cje,ke;De , where – following the notation of Czado (2010) – je and ke denote the indices of
the conditioned variables Uje and Uke , and De represents the conditioning set corresponding
to edge e. Thus, cje,ke;De is the density of the copula between random variables Uje|De and
Uke|De , where Ui|D := Ci|D(Ui|UD). The vine density can then be written as

c(u1, . . . , ud) =
d−1∏
m=1

∏
e∈Em

cjeke;De

(
Cje|De(uje|uDe), Cke|De(uke|uDe); uDe

)
. (2.3)

Condition (iii) for the set of trees V is also known as the proximity condition. When one
constructs the trees sequentially, starting with T1, then it induces constraints on the nodes
in the next tree which can be connected by an edge. Two types of trees play a special
role regarding the proximity condition. For m = 1, . . . , d − 2, if tree Tm has a star like
structure, i.e. there is one node j connected to all the other nodes, then the proximity
condition imposes no restriction for the construction of tree Tm+1 since all nodes share the
common node j from Tm. Thus, all nodes of tree Tm+1 are allowed to be connected. On the
contrary, if tree Tm has a path like structure, i.e. each node has at most two neighbors, then
all higher trees Tm+1, . . . , Td−1 are already determined by the proximity condition since for
every node in Tm+1 there exist at most two nodes that can be connected to it, resulting in a
path like structure for tree Tm+1 as well. Note that a vine structure where all trees consist
of paths is nothing else than a D-vine. A vine with only star like trees is known as a C-vine.

All numerical calculations in this thesis are done using the programing language R (R
Core Team, 2017), mainly using the package VineCopula (Schepsmeier et al., 2017). In
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the following sections (unless otherwise noted) we will use the parametric bivariate copula
families implemented in VineCopula as building blocks. This group of copulas includes
Gaussian (N ), Clayton (C), Gumbel (G), Frank (F), Joe (J ), Clayton-Gumbel (BB1), Joe-
Frank (BB8), Tawn type 1 (T(1)) and Tawn type 2 (T(2)) copulas3 as well as their survival
versions and rotations by 90 degrees and 270 degrees (indicated by the superscripts 180,
90 or 270, respectively). The densities of the survival and rotated versions of a bivariate
copula density c are given by c90(u1, u2) = c(1− u2, u1), c180(u1, u2) = c(1− u1, 1− u2) and
c270(u1, u2) = c(u2, 1 − u1). When we specify a pair-copula, we state both the family and
the corresponding parameters. For example, a Gaussian copula with correlation ρ = 0.5
is denoted by N (0.5) and T 270

(2) (−3, 0.6) stands for a Tawn type 2 copula rotated by 270
degrees with first parameter −3 and second parameter 0.6.
The space of admissible parameters depends on the copula family. For example, whereas the
parameter space of a Tawn type 1 copula is (1,∞)× (0, 1), that of a Frank copula is given
by R \ {0}. Since we still want to compare different copula families we often transform the
parameters to the same scale using Kendall’s τ as a measure for the strength of dependence.
See for example (Nelsen, 2007, Ch. 5.1.1) for a discussion of Kendall’s τ in the context of
copulas.

3See Appendix A.1 for a definition of the Tawn copula and its two-parametric versions used in
VineCopula.
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3 D-vine copula based quantile regression

Parts of Section 3 are very similar to the publication Kraus and Czado (2017a).

3.1 Introduction

Predicting quantiles (e.g. median or quartiles) of a random variable conditioned on other
variables taking on fixed values, has continually attracted interest and found applications
in various fields, especially in finance. It has become a standard tool for risk managers
working on portfolio optimization, asset pricing and the evaluation of systemic risk. For
example, Adrian and Brunnermeier (2016) introduce the CoVaR, a measure for systemic
risk calculating conditional quantiles of a financial institution’s loss distribution conditional
on other institutions being in distress, and use it to evaluate the institution’s contribution
to systemic risk. A similar approach to measure systemic risk is found in Brownlees and
Engle (2016). Further applications of quantile regression in the financial sector include
measuring dependence in the FX markets (Bouyé and Salmon, 2009), developing pricing
models for real estates (Li et al., 2013) and predicting volatilities in the stock market (Noh
et al., 2015).
The literature is quite rich in methods to predict conditional quantiles. The most famous
and therefore frequently used method is linear quantile regression (Koenker and Bassett,
1978) which can be seen as the expansion of the well known ordinary least squares estimation
used to predict conditional means. These simple linear models have been refined to account
for nonparametric effects via additive models (Koenker, 2011; Fenske et al., 2012). Fur-
ther methods include local quantile regression (Spokoiny et al., 2013), single-index quantile
regression (Wu et al., 2010), semiparametric quantile regression (Noh et al., 2015), non-
parametric quantile regression (Li et al., 2013) and quantile regression for time series (e.g.
Chen et al., 2009; Xiao and Koenker, 2009). In the machine learning context, Hwang and
Shim (2005) use support vector machines for conditional quantile estimation while random
forests are utilized in Meinshausen (2006). Moreover, Bouyé and Salmon (2009) propose
a general approach to nonlinear quantile regression with one predictor based on a copula
function.
The linear quantile regression method by Koenker and Bassett (1978) has been criticized
by Bernard and Czado (2015) for imposing too restrictive assumptions on the shape of
the regression quantiles. They show that for normally distributed marginals the model is
misspecified as soon as the underlying dependence structure between response and covari-
ates deviates from a Gaussian copula. Further, the method suffers from issues like quantile
crossing and from the typical pitfalls of linear models such as multicollinearity, selection
and significance of covariates and the inclusion of interactions or transformed variables.
In contrast, the methodology proposed in Section 3 makes no assumptions about the shape
of the conditional quantiles. The dependence relationship between response and covari-
ates is modeled flexibly using a parametric D-vine copula. Then the model’s conditional
quantiles can be extracted analytically without approximations or excessive computational
effort. As is usual when working with copulas, we further gain from the added flexibility of
separating marginal and dependence modeling.
One of the main contributions of this section is a new algorithm that sequentially fits a
regression D-vine copula to given copula data, exhibiting many desirable features. On
the one hand, step by step, the algorithm adds covariates to the regression model with
the objective of maximizing a conditional likelihood, i.e. the likelihood of the predictive
model of the response given the covariates. On the other hand, an automatic variable
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selection is incorporated, meaning that the algorithm will stop adding covariates to the
model as soon as none of the remaining covariates is able to significantly increase the
model’s conditional likelihood. This results in parsimonious and at the same time flexible
models whose conditional quantiles may strongly deviate from linearity. Due to the model
construction, quantile crossings do not occur. Thus, the resulting D-vine quantile regression
is able to overcome all the shortcomings of classical linear quantile regression mentioned
above and therefore adds a new approach to the existing research on quantile regression.

3.2 Theory and methods

The main purpose of D-vine copula based quantile regression is to predict the quantile of
a response variable Y given the outcome of some predictor variables X1, . . . , Xd, d ≥ 1,
where Y ∼ FY and Xj ∼ Fj, j = 1, . . . , d. Hence, the focus of interest lies on the joint
modeling of Y and X and in particular on the conditional quantile function for α ∈ (0, 1):

qα(x1, . . . , xd) := F−1
Y |X1,...,Xd

(α|x1, . . . , xd). (3.4)

Using the probability integral transforms (PIT) V := FY (Y ) and Uj := Fj(Xj) with corre-
sponding PIT values v := FY (y) and uj := Fj(xj), it follows that

FY |X1,...,Xd
(y|x1, . . . , xd) = P (Y ≤ y|X1 = x1, . . . , Xd = xd)

= P (FY (Y ) ≤ v|F1(X1) = u1, . . . , Fd(Xd) = ud)

= CV |U1,...,Ud
(v|u1, . . . , ud).

Therefore, inversion yields

F−1
Y |X1,...,Xd

(α|x1, . . . , xd) = F−1
Y

(
C−1
V |U1,...,Ud

(α|u1, . . . , ud)
)
. (3.5)

Hence, the conditional quantile function can be expressed in terms of the inverse marginal
distribution function F−1

Y of the response Y and the conditional copula quantile function
C−1
V |U1,...,Ud

conditioned on the PIT values of x.
Now, we can obtain an estimate of the conditional quantile function by estimating the
marginals FY and Fj, j = 1, . . . , d, as well as the copula CV,U1,...,Ud

and plugging them into
Equation (3.5):

q̂α(x1, . . . , xd) := F̂−1
Y

(
Ĉ−1
V |U1,...,Ud

(α|û1, . . . , ûd)
)
, (3.6)

where ûj := F̂j(xj) is the estimated PIT of xj, j = 1, . . . , d.

While regarding the F̂j there is a vast literature about the estimation of a univariate distri-
bution function, the question arises how to estimate the multivariate copula CV,U1,...,Ud

, such
that on the one hand it facilitates a flexible model that is able to capture asymmetric de-
pendencies, heavy tails and tail dependencies between the variables, and on the other hand
the estimated conditional quantile function Ĉ−1

V |U1,...,Ud
(α|û1, . . . , ûd) is easily calculable. As

an answer we suggest to fit a D-vine copula to (V, U1, . . . , Ud)
′, such that V is the first node

in the first tree (i.e. a D-vine with order V –Ul1–. . .–Uld , where (l1, . . . , ld)
′ is allowed to be

an arbitrary permutation of (1, . . . , d)′). This results in a flexible class of copulas since
each bivariate copula of the pair-copula construction can be modeled separately and the
order of the Uj is a parameter that can be chosen such that the conditional likelihood is
maximized as will be explained in detail in the next section. Finally, the recursion given in
Equation (2.2) allows us to express CV |U1,...,Ud

(v|u1, . . . , ud) in terms of nested h-functions
and consequently, C−1

V |U1,...,Ud
(α|u1, . . . , ud) in terms of inverse h-functions.
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Note that C−1
V |U1,...,Ud

(α|u1, . . . , ud) is monotonically increasing in α. Therefore, a crossing
of quantile functions corresponding to different quantile levels is not possible. This issue
of quantile crossing often arises in linear and non-linear quantile regression (e.g. see the
application section of Fenske et al., 2012). Bernard and Czado (2015) show that in lin-
ear regression quantile functions may cross if non-Gaussian data is modeled. In addition,
in (non-)linear quantile regression a substantial amount of effort has to be put into deal-
ing with issues such as transforming response and covariates, including interactions among
covariates and avoiding collinearity between covariates. Our approach solves these issues
automatically since the distribution class given by the D-vines is much more flexible and
makes less restrictive model assumptions how the covariates influence the response. This
is also noted for regular vine regression by Cooke et al. (2015b).

Let in the following y :=
(
y(i)
)
i=1,...,n

, X :=
(
x

(i)
j

)
j=1,...,d, i=1,...,n

be n independent and

identically distributed observations of the random vector (Y,X1, X2, . . . , Xd)
′. The repre-

sentation of q̂α(x) in Equation (3.6) allows us to divide the estimation process into two
steps. In the first step we estimate the marginal distribution functions FY and Fj of Y
and Xj, j = 1, . . . , d, respectively, and in the second step the D-vine that specifies the pair

copulas needed to evaluate Ĉ−1
V |U1,...,Ud

(α|û1, . . . , ûd) is estimated.

3.2.1 Estimation of the marginals

In general, we have two choices of how to fit the marginal distributions, either parametrically
or nonparametrically. Since we will fit the copula in the second step parametrically, this
choice will either result in a fully parametric or semiparametric estimate of qα(x). Noh et al.
(2013) point out that modeling the marginals as well as the copula parametrically might
cause the resulting fully parametric estimator to be biased and inconsistent if one of the
parametric models is misspecified. Therefore we prefer the semiparametric approach and
estimate the marginals nonparametrically. Since we later need the inverse of the estimated
marginals for the quantile prediction (c.f. Equation (3.6)) we do not want to use the discrete
valued empirical distribution function for the estimation. Thus we choose the continuous
kernel smoothing estimator (Parzen, 1962), which is, given a sample

(
x(i)
)
i=1,...,n

, defined
as

F̂ (x) =
1

n

n∑
i=1

K

(
x− x(i)

h

)
, x ∈ R. (3.7)

Here K(x) :=
∫ x
−∞ k(t)dt with k(·) being a symmetric probability density function and

h > 0 a bandwidth parameter. Usually, we choose k = ϕ, i.e. a Gaussian kernel, and
the plug-in bandwidth developed in Duong (2016b, Equation (4)), which minimizes the
asymptotic mean integrated squared error. This is implemented in the function kcde of the
package ks (Duong, 2016a).
Hence, we obtain F̂Y and F̂j as estimates for the marginal distribution functions. We

use these to transform the observed data to pseudo copula data v̂(i) := F̂Y
(
y(i)
)

and

û
(i)
j := F̂j

(
x

(i)
j

)
, j = 1, . . . , d, i = 1, . . . , n. The pseudo copula data v̂ =

(
v̂(i)
)
i=1,...,n

,

Û =
(
û

(i)
j

)
j=1,...,d, i=1,...,n

is then an approximately i.i.d. sample from the PIT random vector

(V, U1, . . . , Ud)
′ and will be used to estimate the D-vine copula in the second step.

13



3.2.2 Estimation of the D-vine

As motivated by Equation (3.6), we fit a D-vine with order V –Ul1–. . .–Uld to the pseudo cop-

ula data since then the evaluation of Ĉ−1
V |U1,...,Ud

(α|û1, . . . , ûd), which is needed to calculate

the conditional quantile is easily feasible. For this to work, the ordering l = (l1, . . . , ld)
′ can

generally be chosen arbitrarily. However, since the explanatory power of the resulting model
does depend on the particular ordering, we want to choose it such that the resulting model
for the prediction of the conditional quantile has the highest explanatory power. Since it
would be infeasible to compare all d! possible orderings, we propose a new algorithm that
automatically constructs the D-vine sequentially choosing only the most influential covari-
ates. Similar to the step function for sequential estimation of linear models (cf. Venables
and Ripley, 2002), starting with zero covariates, in each step we add the covariate to the
model that improves the model’s fit the most. As a measure for the model’s fit we define
the conditional log-likelihood (cll) of an estimated D-vine copula with ordering l, estimated
parametric pair-copula families F̂ and corresponding copula parameters θ̂ given pseudo
copula data (v̂, Û) as

cll
(
l, F̂ , θ̂; v̂, Û

)
:=

n∑
i=1

log cV |U

(
v̂(i)|û(i); l, F̂ , θ̂

)
. (3.8)

The conditional copula density cV |U can be expressed as the product over all pair-copulas
of the D-vine that contain V (see Killiches, Kraus, and Czado, 2017b):

cV |U

(
v̂(i)|û(i); l, F̂ , θ̂

)
= cV Ul1

(v̂(i), û
(i)
l1

; F̂V Ul1
, θ̂V Ul1

)×
d∏
j=2

cV Ulj
;Ul1

,...,Ulj−1

(
ĈV |Ul1

,...,Ulj−1

(
v̂(i)|û(i)

l1
, . . . , û

(i)
lj−1

)
, ĈUlj

|Ul1
,...,Ulj−1

(
û

(i)
lj
|û(i)
l1
, . . . , û

(i)
lj−1

)
;

F̂V Ulj
;Ul1

,...,Ulj−1
, θ̂V Ulj

;Ul1
,...,Ulj−1

)
,

where F̂I and θ̂I denote the estimated family and parameter(s) of pair-copula cI . Note that
for the evaluation of the conditional copula density a specification of all pair-copulas of the
D-vine is necessary since the pair-copulas not containing V are needed for the evaluation
of the conditional distribution functions appearing in the arguments of the pair-copulas.
We now describe the D-vine regression algorithm, which sequentially constructs a D-vine
while maximizing the model’s conditional log-likelihood in each step (for a detailed code
see Appendix A in Kraus and Czado, 2017a). Assume that at the beginning of the kth step
of the algorithm the current optimal D-vine contains k − 1 predictors (for illustration, see
the black D-vine in Figure 2). For each of the remaining variables Uj that have not been
chosen yet, we fit the pair-copulas that are needed to extend the current model to a D-vine
with order V –Ul1–. . .–Ulk−1

–Uj (see the gray circles).
To be precise, the pair-copula CUlk−1

,Uj
is fitted by maximum-likelihood estimation (im-

plemented in VineCopula as BiCopSelect) based on the data
(
û

(i)
lk−1

, û
(i)
j

)
i=1,...,n

. Sub-

sequently, the pair-copula CUlk−2
,Uj |Ulk−1

is estimated. For this, we need the pseudo cop-

ula data
(
û

(i)
lk−2
|û(i)
lk−1

, û
(i)
j |û(i)

lk−1

)
i=1,...,n

, defined as û
(i)
lk−2
|û(i)
lk−1

= ĈUlk−2
|Ulk−1

(û
(i)
lk−2
|û(i)
lk−1

) and

û
(i)
j |û(i)

lk−1
= ĈUj |Ulk−1

(û
(i)
j |û(i)

lk−1
). Again the copula is fitted via maximum-likelihood based on

this data. This is repeated until finally the pair-copula CV,Uj |Ul1
,...,Ulk−1

is estimated based

14



on the pseudo copula data
(
v̂(i)|û(i)

l1,...,lk−1
, û

(i)
j |û(i)

l1,...,lk−1

)
i=1,...,n

, defined as v̂(i)|û(i)
l1,...,lk−1

=

ĈV |Ul1
,...,Ulk−1

(v̂(i)|û(i)
l1
, . . . , û

(i)
lk−1

) and û
(i)
j |û(i)

l1,...,lk−1
= ĈUj |Ul1

,...,Ulk−1
(û

(i)
j |û(i)

l1
, . . . , û

(i)
lk−1

).

Once all new pair-copulas are estimated, we can compute the resulting model’s conditional
log-likelihood. Finally, the current model is updated by adding the variable corresponding
to the highest cll, concluding step k. That way, step by step, the covariates are ordered
regarding their power to predict the response.

V Ul1
. . . Ulk−1 Uj

V Ul1
. . . Ulk−2

Ulk−1
Ulk−1

Uj

...
...

V Ulk−1
|Ul1 , . . . , Ulk−2

Ul1Uj |Ul2 , . . . , Ulk−1

V Uj |Ul1 , . . . , Ulk−1

Figure 2: Extending the current D-vine (black) by adding Uj in the k-th step of the algo-
rithm. For this purpose, the gray pair-copulas have to be estimated.

In the case that in the kth step none of the remaining covariates is able to increase the
model’s cll, the algorithm stops and returns the model only containing the k − 1 chosen
covariates so far. Therefore, an automatic forward covariate selection is accomplished re-
sulting in parsimonious models. In order to get even more parsimonious models, we also
consider two variants of the cll penalizing the number of parameters |θ̂| used for the con-
struction of the D-vine: the AIC-corrected conditional log-likelihood cllAIC, defined as

cllAIC
(
l, F̂ , θ̂; v̂, Û

)
:= −2 cll

(
l, F̂ , θ̂; v̂, Û

)
+ 2|θ̂|

and the BIC-corrected conditional log-likelihood cllBIC, defined as

cllBIC
(
l, F̂ , θ̂; v̂, Û

)
:= −2 cll

(
l, F̂ , θ̂; v̂, Û

)
+ log(n)|θ̂|.

Depending on how parsimonious the resulting model is desired to be, one can decide which
version of the corrected conditional log-likelihood to use. In our applications in the later
sections we always use the AIC-corrected cllAIC since in a simulation study it has shown to
select the most reasonable models in the sense that unimportant variables are disregarded
and influential ones are kept in most of the instances.

Example 3.1. We illustrate how the algorithm works for a four-dimensional data set
(y(i), x

(i)
1 , x

(i)
2 , x

(i)
3 )′, i = 1, . . . , n = 500, sampled from (Y,X1, X2, X3)′ ∼ N4(0,Σ) with

Σ =


1 0.4 0.8 0

0.4 1 0.32 0
0.8 0.32 1 0
0 0 0 1

 .
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First, the data is transformed to pseudo copula data (v̂(i), û
(i)
1 , û

(i)
2 , û

(i)
3 )′, i = 1, . . . , n, using

the kernel smoothing estimators introduced in Equation (3.7).
In the first step of the algorithm, for each of the pairs (V, Uj)

′, j = 1, 2, 3, the AIC-optimal
pair-copula is chosen using the function BiCopSelect of the R package VineCopula with
an independence test at level 0.05 (as described in Genest and Favre, 2007). Further, the
conditional log-likelihood is calculated for each of the pairs (we omit the AIC- and BIC-
corrected cll-values here since the fitted models have the same number of parameters and
therefore these statistics would imply the same conclusions). The results are shown in the
Table 1. Implying the largest cll, U2 is chosen as the first variable to construct the D-vine.

Pair-copula ĈV,U1 ĈV,U2 ĈV,U3

Family Gauss Gauss Indep
Parameter 0.34 0.79 0

cll 33.0 249.4 0

Table 1: Candidate models with corresponding cll after the algorithm’s first step.

In the second step, we investigate whether the addition of either of the remaining variables
U1 or U3 to the current D-vine can improve the conditional log-likelihood of the model.
Adding U1 would update the D-vine to order V –U2–U1 with newly estimated pair-copulas
ĈV,U1;U2 (Gaussian with ρ = 0.27) and ĈU1,U2 (Gaussian with ρ = 0.23). The log-likelihood
of the resulting conditional copula ĉV |U2,U1 is 269.8. The addition of U3 would result in both
new pair-copulas to be estimated as independence copulas. Consequently, the conditional
log-likelihood would not improve compared to the model without U3. Since 269.8 > 249.4,
we update the vine to order V –U2–U1.
In the third step, we check whether the addition of the remaining variable U3 to the
D-vine improves the conditional log-likelihood of the model. Not surprisingly, as in the
second step the new pair copulas ĈV,U3;U2,U1 , ĈU2,U3;U1 and ĈU1,U3 are all estimated to be
the independence copula. Hence, the conditional log-likelihood of the full model with order
V –U2–U1–U3 is equal to the one with order V –U2–U1. Consequently, the algorithm stops
and returns the D-vine with order V –U2–U1.

This example demonstrates the main advantages of the proposed algorithm: It automatically
selects the influential covariates, ranks them by their strength of predicting the response,
disregards any superfluous variables and finally flexibly models the dependence between
the response and the chosen covariates. Thus, the typical issues of regression such as
collinearity, transformation and inclusion/exclusion of covariates are solved without any
additional effort.
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3.3 Stress testing applications

3.3.1 Stress testing using CDS spreads

As an application of D-vine quantile regression to real data we want to exploit interdepen-
dencies in the financial market in order to construct global stress tests. For this purpose
we consider a data set containing 1371 daily observations (01/04/2006 – 10/25/2011) of
log-returns of credit default swap (CDS) spreads with 5 year maturity of 38 European,
US American and Asian-Pacific financial institutions in the banking and insurance sectors.
This data set has already been analyzed by Brechmann et al. (2013) who argue that CDS
spreads are a viable and accurate measure of a company’s creditworthiness. After apply-
ing an appropriate GARCH model to each of the univariate time series in order to get
approximately i.i.d. residuals, Brechmann et al. (2013) perform stress tests. By sampling
from a conditional C-vine the authors stress one company at a time (i.e. setting it to its
90%/95%/99%-quantile) and examine the joint impact on the other institutions conditioned
on this stress event. With our method we can go even further and consider scenarios where
more than one company is in distress. Moreover, our results are based on exact calculations
of the conditional quantiles, in contrast to the Monte Carlo simulation approach used in
Brechmann et al. (2013). Another difference between the approaches is that we apply a
separate regression for every response while the approach of Brechmann et al. (2013) al-
lows for a joint quantification of the single effects. In the following, we want to investigate
the spillover effects of a financial crisis in a certain region or branch to other regions and
branches.
The financial institutions considered in the stress test are 18 banks and 20 (re-)insurers
from the regions USA, Europe and Asia-Pacific:

• Banks: USA (Goldman Sachs (GS), JP Morgan Chase (JPM), Citigroup), Europe
(Banco Bilbao Vizcaya Argentaria (BBVA), Banco Santander (BS), Barclays, BNP
Paribas, Deutsche Bank (DB), Intesa Sanpaolo, Royal Bank of Scotland (RBS),
Société Générale (SG), Standard Chartered (StanCha), UBS, Unicredit), Asia-Pacific
(Bank of China (BoC), Kookmin Bank, Sumitomo Mitsui, Westpac Banking)

• (Re-)Insurers: USA (ACE, Allstate, American International Group (AIG), Chubb,
Hartford Financial Services, XL Group), Europe (Aegon, Allianz, Assicurazioni Gen-
erali, Aviva, AXA, Hannover Rück (HR), Legal & General (LG), Munich Re (MR),
Prudential, SCOR, Swiss Re (SR), Zurich Insurance), Asia-Pacific (Tokio Marine
(TM),QBE Insurance)

We consider three stress scenarios, corresponding to crises originating in different sectors,
and investigate the resulting spillover effects. For this, we proceed as in Brechmann et al.
(2013) and remove serial dependencies from each of the 38 univariate time series by fit-
ting adequate GARCH models. The resulting residuals rj, j = 1, . . . , 38, which are ap-
proximately independent and distributed according to their model’s estimated innovations
distribution F̂j, carry the information about the dependence structure between the institu-
tions. We consider company j to be stressed at level κ ∈ (0, 1), if its residual rj takes on the

100κ%-quantile of its innovation distribution F̂j, i.e. rj = F̂−1
j (κ). This is equivalent to the

PIT transformed variable uj := F̂j(rj) taking on value κ. Likewise, we are interested in the
resulting predicted quantile levels of the non-stressed companies. This allows us to directly
work on the u-scale and consider the PIT transformed variables uj := F̂j(rj), j = 1, . . . , 38,
and their dependencies.
In Scenario 1, we analyze the effect of stressing the European systemic banks as speci-
fied by International Monetary Fund (2009) at different stress levels. Therefore, we stress
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the banks Banco Santander, Barclays, BNP Paribas, Deutsche Bank, Royal Bank of Scot-
land, Société Générale, UBS and Unicredit at level κ ∈ {0.9, 0.95, 0.99} (corresponding to
moderate, severe and extreme stress scenarios) and use the D-vine quantile regression to
estimate the conditional medians of the remaining institutions conditioned on this stress
event. This way, we can assess the spillover effect to other sectors and regions. The left
panel of Figure 3 shows the results of the stress test of Scenario 1. For each institution
the predicted median values for the three stress levels are coded by circles (moderate stress
with κ = 0.9), diamonds (severe stress with κ = 0.95) and triangles (extreme stress with
κ = 0.99). For visualization, the currently stressed institutions’ names are printed in bold
and italics. Further, solid lines separate the geographical regions (Europe in the upper,
USA in the middle and Asia-Pacific in the lower panel), while dashed lines separate banks
(upper) from insurance companies (lower).

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●

TM

QBE

Westpac

Kookmin

Sumitomo

BoC

XLG

Hartford

Chubb

AIG

Allstate

ACE

JPM

GS

Citi

Zurich

SwissRe

SCOR

Prudential

MR

LG

HannRe

AXA

Aviva

AssGen

Allianz

Aegon

Intesa

Unicredit

UBS

StanCha

SG

RBS

DB

BNP

Barclays

BS

BBVA

0.6 0.7 0.8 0.9 1.0

Scenario 1

●
●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●
●

TM

QBE

Westpac

Kookmin

Sumitomo

BoC

XLG

Hartford

Chubb

AIG

Allstate

ACE

JPM

GS

Citi

Zurich

SwissRe

SCOR

Prudential

MR

LG

HannRe

AXA

Aviva

AssGen

Allianz

Aegon

Intesa

Unicredit

UBS

StanCha

SG

RBS

DB

BNP

Barclays

BS

BBVA

0.6 0.7 0.8 0.9 1.0

Scenario 2

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●

●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●

●

TM

QBE

Westpac

Kookmin

Sumitomo

BoC

XLG

Hartford

Chubb

AIG

Allstate

ACE

JPM

GS

Citi

Zurich

SwissRe

SCOR

Prudential

MR

LG

HannRe

AXA

Aviva

AssGen

Allianz

Aegon

Intesa

Unicredit

UBS

StanCha

SG

RBS

DB

BNP

Barclays

BS

BBVA

0.6 0.7 0.8 0.9 1.0

Scenario 3

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●

●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●

●

●
●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●
●

●
●
●
●
●

●

TM

QBE

Westpac

Kookmin

Sumitomo

BoC

XLG

Hartford

Chubb

AIG

Allstate

ACE

JPM

GS

Citi

Zurich

SwissRe

SCOR

Prudential

MR

LG

HannRe

AXA

Aviva

AssGen

Allianz

Aegon

Intesa

Unicredit

UBS

StanCha

SG

RBS

DB

BNP

Barclays

BS

BBVA

0.6 0.7 0.8 0.9 1.0

Scenario 3

Figure 3: Stress tests stressing European systemic banks (left panel), major European
banks (second panel) and US banks (third and fourth panel). For each institution the
predicted median values for the three stress levels are represented by circles (moderate
stress with κ = 0.9), diamonds (severe stress with κ = 0.95) and triangles (extreme stress
with κ = 0.99). In the right panel the non-filled symbols represent the results of the linear
quantile regression method.

We observe that the spillover effect is strongest for European insurances with predicted
median values of up to 0.98 (Allianz and Aviva) for the extreme stress scenario. The
comparably small values of the British bank Standard Chartered are explained by the
fact that according to their annual report of 2014 (https://www.sc.com/annual-report/
2014/documents/SCB_ARA_2014_full_report.pdf) 90% of the bank’s income and prof-
its are earned in Asia, Africa and the Middle East. Similar arguments holds for the
British insurance company L&G with operations in Asia and the United States (http:
//www.legalandgeneralgroup.com/all-our-sites/). Another group that is affected
quite strongly by this stress scenario are the US banks with predicted median values ex-
ceeding 0.9 in the extreme stress case. However, we observe that the geographic spillover
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effect is stronger than the institutional one, because the effect on European insurance com-
panies is stronger than the effect on US banks. US insurance companies as well as the
Asian-Pacific market are also affected by the stress scenario, but not as severe as the other
groups.
It is interesting to see that in Scenario 2, where we only stress the three major European
banks Barclays, BNP Paribas and Deutsche Bank, the results of the stress test are very
similar to those of Scenario 1. We can conclude that for a crisis to evolve it suffices that
only few but important banks default. In the last scenario, we analyze the spillover ef-
fect of a default of the US American banking system (see the third panel of Figure 3).
Therefore, we stress the banks Citigroup, Goldman Sachs and JP Morgan Chase at level
κ ∈ {0.9, 0.95, 0.99} and estimate the conditional medians of the remaining institutions
conditioned on this stress event. Again, we see the quite strong interconnectedness be-
tween US banks and insurance companies, as well as between US banks and the European
market, and observe rather weak spillover effects on the Asian-Pacific sector.
Finally, in the right panel of Figure 3, we compare the stress testing results of D-vine
quantile regression to those of linear quantile regression (Koenker, 2005) for Scenario 3.
Additional to the filled symbols indicating the results of D-vine quantile regression, we also
added the predicted medians of linear quantile regression with non-filled symbols, where
circles again denote moderate stress (κ = 0.9), diamonds severe stress (κ = 0.95) and tri-
angles extreme stress (κ = 0.99). We see that for almost all companies linear regression
overestimates the moderate stress results and underestimates the extreme ones. This re-
flects the fact that Gaussian dependence structure implied by linear quantile regression fails
to imitate the tail dependence that is typically exhibited by financial data such as these
CDS log-returns. Another flaw of linear quantile regression observable from the plot is that
due to the linearity of the model the median predictions for the three different stress levels
seem to always have a similar distance to each other. The predictions of the D-vine based
quantile regression appear as much more flexible with some narrower, wider and skewed sets
of predictions for the three stress levels. The linear quantile regression results of Scenarios
1 and 2 allow for similar conclusions and are therefore omitted here.
All in all, we see that with D-vine copula based quantile regression we can extend the
analysis of Brechmann et al. (2013). While they analyze the spillover effects stressing only
one institution by simulating from a conditioned C-vine, with our new method we are able
to perform stress tests that are conditioned on multiple banks and insurances being in
distress. Our analysis admits the conclusion that the spillover effect is mainly driven by
geography, so that European banks have a greater influence on European insurances than
on US American banks. Further, the claim of Brechmann et al. (2013) that US banks
have a stronger influence on the international financial market than European banks is not
supported by our analysis. This may be due to the fact they only stress one institution at
a time. We come to the conclusion that stressing the major European banks has a greater
overall impact on the financial system than stressing the US American banks.

3.3.2 Stress testing German industry sector PDs

Parts of Section 3.3.2 are very similar to the publication Fischer, Kraus, Pfeuffer, and Czado
(2017).

In this section we examine one-year probabilities of default (PDs) of German exchange
traded corporates, observed monthly between May 2007 and September 2016 (112 obser-
vations). In a first step, the PDs are averaged over 9 industry sectors (Basic Materials,
Communications, Cyclical Consumer Goods & Services, Non-cyclical Consumer Goods &
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Services, Energy, Financials, Industrials, Technology, Utilities). We consider the monthly
differences of the aggregated sector PDs. The differenced data series are stationary and
do not exhibit any autocorrelation or volatility clustering. Therefore, no ARMA-GARCH
models are necessary to account for time dependencies.
Next, we transform the differenced data to the copula scale by applying the probability
integral transform using the kernel density estimators as marginal distribution functions
(as described in detail in Kraus and Czado, 2017a). The corresponding contour plots with
standard normal margins and Kendall’s τ values are displayed in Figure 4.
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Figure 4: Upper triangular matrix: scatter plots and Kendall’s τ values between pairs of
aggregated sectors.
Lower triangular matrix: contour plots of densities of pairs of aggregated sectors based on
empirical copulas and standard normal margins.
Diagonal: histograms of marginals after transformation to the copula scale.

The dependencies are weak to medium and mostly positive, at first glance. The Industrials
sector seems to have the strongest interdependencies with the other ones. The empirical
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copula density contours with standard normal margins suggest that the dependencies are
quite asymmetric, such that Gaussian copulas or elliptical copulas in general would not
provide reasonable fits. Some pairs seem to exhibit tail dependence (e.g. Industrials and
Technology). The histograms of the transformed marginals displayed on the diagonal are
reasonably flat for a sample of this size.

Selected stress testing results
We perform stress tests similar to the ones described in Section 3.3.1. Large values (i.e.
close to 1) of the variables on the copula scale correspond to large differences in the sector
PDs. Therefore, inducing stress on an industry sector will be treated as setting the value of
the respective industry sector covariate to a predetermined quantile level κ ∈ (0, 1), usually
κ ∈ {0.95, 0.99}. Then we use D-vine quantile regression to examine the effect of the
stressed sectors (covariates) on the other sectors (responses). The predicted quantile will
give information on how strongly the response sectors are affected by the stress scenario.
For example, large deviations of the conditional predicted mean from the unconditional
median of 0.5 imply strong effects of the stress scenario.
We present selected scenarios stressing one sector at stress levels κ = 0.95 (black) and
κ = 0.99 (gray). For reasons of brevity, our focus lies on the sectors Basic Materials (upper
left panel of Figure 5), Cyclical Consumer Goods (upper right panel of Figure 5), Financials
(lower left panel of Figure 5) and Industrials (lower right panel of Figure 5).
As expected, the effect on the conditional quantile functions strongly depends on the specific
(stressed) sector and - to some minor extent - on the concrete stress level. Across all sectors
under consideration, Energy seems to be quite resistant against local sector crises. The same
holds for the Utilities sector if we restrict ourselves to crises arising from Basic Materials and
Cyclical Consumer Goods. On the other hand, sector crises arising from Basic Materials
and Cyclical Consumer Goods spread over to most of the other sectors beside the Utilities
sector. This does not hold for Financials and Industrials. In particular, stressing the sector
Financials mainly affects the sector Cyclical Consumer Goods and Utilities. Above that,
a simulated crisis in the Industrial sector has a significant impact on the segments Basic
Materials, Communications, Cyclical Consumer Goods and Technology.
The copula families chosen for the D-vines by the algorithm were mainly ones exhibiting
upper tail dependence, such as Gumbel and Joe copulas. This is in line with what we
expected from the contour plots of Figure 4.
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Figure 5: Stress testing results for selected industry sectors. In each plot, the sector written
in bold italics is stressed at levels 95% (black) and 99% (gray). The brackets indicate the
95% prediction interval.
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3.4 Extension to mixed discrete/continuous data

Parts of Section 3.4 are very similar to the publication Schallhorn, Kraus, Nagler, and
Czado (2017).

3.4.1 Theory

Until now, for the method of D-vine copula based quantile regression to work, we assumed
the response and all covariates to be continuous. As described in Schallhorn, Kraus, Na-
gler, and Czado (2017) this assumption can be relaxed, admitting that some or all of the
variables are discrete. Two approaches dealing with discrete variables are discussed. The
main ingredient for the first method, parametric D-vine quantile regression (PDVQR), are
discrete modifications of the h-functions, introduced as

h̃i|j;D(u|v1, v2) =
Ci,j;D(u, v1)− Ci,j;D(u, v2)

v1 − v2

.

With the help of these h̃-functions, the conditional distribution functions needed for D-vine
quantile regression can be evaluated for all combinations of discrete and continuous vari-
ables. In a similar manner, the conditional log-likelihood used to determine the best D-vine
for quantile prediction can be adapted to account for discreteness in the data. The second
method introduced in Schallhorn, Kraus, Nagler, and Czado (2017) is a nonparametric
D-vine quantile regression (NPDVQR), which uses the continuous convolution methods de-
scribed in Nagler (2017) to make the discrete variables continuous. Afterwards, the vine
copula is estimated using nonparametric estimators for the pair-copulas (Nagler et al., 2017)
and the conditional quantiles are extracted as before. For details on both approaches, please
refer to Schallhorn, Kraus, Nagler, and Czado (2017).

3.4.2 Application to bike sharing data

We investigate the bike sharing data set from the UCI machine learning repository (Lich-
man, 2013), first analyzed in Fanaee-T and Gama (2013). It contains information on rental
counts from the bicycle sharing system Capital Bikeshare offered in Washington, D.C., to-
gether with weather and seasonal information. As a response for the quantile regression we
choose the daily count of bike rentals, observed in the years 2011-2012 (731 observations).
They are displayed in the left panel of Figure 6.
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Figure 6: Observed (left) and detrended (right) bike rental counts in the years 2011-2012.

There is an obvious seasonal pattern and a linear trend reflecting a growth of the bike
share system (visualized by the dashed line which is the least square linear line). While the
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seasonal pattern will be handled by the covariates, we cannot account for the linear trend.
Therefore we remove the linear trend by dividing each observation by the least squares
estimate of the linear trend. We use the division rather than the subtraction of the trend
since the trend is a measure for the overall members of the bike sharing community and we
are interested in the proportion of members renting bikes. The resulting detrended response
is plotted in the right panel of Figure 6.
For each day we have continuous covariates temperature (apparent temperature in Celsius),
wind speed (in mph) and humidity (relative in %). Additionally, there is the discrete
variable weather situation giving information about the overall weather with values 1 (clear
to partly cloudy), 2 (misty and cloudy) and 3 (rain, snow, thunderstorm). Further, we have
information about the season (spring, summer, fall and winter), month and weekday of the
observed day and an indicator whether the day is a working day.
We applied all quantile regression methods discussed in Schallhorn, Kraus, Nagler, and
Czado (2017) to the bike sharing data set for the quantile levels 0.1, 0.5 and 0.9 and
use 10-fold cross-validation to evaluate their out-of-sample performance. Table 2 displays
the corresponding averaged cross-validated tick-losses (see e.g. Komunjer, 2013), given by

1
731

∑731
i=1 ρα(y(i)− q̂(i)

α ), where ρα(y) = y(α−1(y < 0)) denotes the check function, y(i) is the

i-th observation of the response and q̂
(i)
α is the α-quantile prediction. The smallest losses

and those which are not significantly larger than the smallest losses are printed in bold.
Here, a Student’s t test was used to test whether larger values are significantly larger than
the smallest value in a row.

α PDVQR NPDVQR LQR BAQR NPQR
0.1 0.039 0.035 0.041 0.035 0.090
0.5 0.082 0.069 0.078 0.064 0.250
0.9 0.042 0.032 0.036 0.032 0.295

Table 2: Averaged in-sample tick-losses of parametric D-vine quantile regression (PDVQR),
nonparametric D-vine quantile regression (NPDVQR), linear quantile regression (LQR),
boosted additive quantile regression (BAQR) and nonparametric quantile regression
(NPQR), each applied to the bike sharing data.

NPDVQR and BAQR produce the best results, significantly beating LQR and NPQR. Be-
tween the two new D-vine copula based quantile regression methods introduced in Schall-
horn, Kraus, Nagler, and Czado (2017), the nonparametric one significantly outperforms
the parametric one for α = 0.5 and α = 0.9. The reason is that most of the covariates enter
the models in a non-monotone fashion, as we will see. The ranking of the covariates by the
nonparametric sequential selection algorithm is: temperature — humidity — wind speed
— month — weather situation — weekday — working day — season.

In Figure 7 the influence of each of the covariates in the nonparametric D-vine quantile
regression model is visualized. To be precise, for a covariate Xj we calculate for all quantile

levels α of interest q̂
(i)
α = F̂−1

Y |X(α|X = x(i)), i = 1, . . . , 731, plot it against xij and add

a smooth curve through the point cloud (fitted by loess). Figure 7 shows this for the
quantile levels 0.1 (lower line), 0.5 (middle line) and 0.9 (upper line).
Higher temperatures generally go along with more bike rentals, until it gets too warm. For
temperatures higher than 32 degrees Celsius, each additional degree causes a decline in
bike rentals. Similar observations can be made for humidity. Bike rentals increase up to
a relative humidity of around 60% and decrease afterwards. Wind speed also has a strong
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Figure 7: Influence of the different covariates on the response bike rentals using NPDVQR.

influence with fewer bike rentals on windy days. It is not surprising that the warm summer
months encourage many citizens to rent bikes while in the cold winter rentals decrease on
average by approximately 60%. The inclination to borrow bikes seems to grow during the
week. On the weekend however, especially the 10% quantile drops considerably, which may
be explained by many people leaving the city to visit their families or doing leisure activities
on weekends. This is also supported by the influence of variable working day, with a few
more rentals on working days. The variables weather situation and season support the
thesis that more people tend to rent bicycles when the weather is good.
To investigate the differences between predictions of the various methods, we shall look
more closely at the temperature variable. Figure 8 shows the effect of temperature on the
predicted bike rentals using NPDVQR, PDVQR, LQR, BAQR and NPQR (from left to
right).
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Figure 8: Influence of temperature on bike rentals for different quantile regression methods.

We see that the parametric D-vine as well as linear quantile regression are not really able
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to model the decline in rentals for very hot temperatures.
Apart from assessing the influence of covariates on the response, quantile regression can
also be used to predict quantiles of the response in different scenarios. Suppose we know
tomorrow is going to be a warm August Saturday with medium humidity and low wind-
speed. Then, using our nonparametric D-vine copula based quantile regression model, we
would predict a median of 8872 bikes to be rented with 10%- and 90% quantiles 7431 and
10485, respectively. In contrast, for a cold December Monday with heavy snow and high
wind-speed the three predicted quantiles would be 22, 674 and 1152. As an operator of
such a bike sharing system we could thus adapt our supply of rental bikes to the predicted
demand.
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4 Various aspects of the simplifying assumption

4.1 Examination and visualization of the simplifying assumption in
three dimensions

Parts of Section 4.1 are very similar to the publication Killiches, Kraus, and Czado (2017a).

4.1.1 Introduction

When working with vine copulas one usually makes the simplifying assumption that pair-
copulas of conditional distributions are independent of the values of the variables on which
they are conditioned. Although enabling estimation and inference even in high dimen-
sions, this assumption has also been criticized (e.g. Acar et al., 2012; Spanhel and Kurz,
2015). Our goal is to shed some light on the implications of this simplifying assumption
by visualizing the densities of simplified and non-simplified models. For this purpose, we
concentrate on the three-dimensional case. This has the advantage that the corresponding
pair-copula construction contains only one copula describing the dependence between con-
ditional variables, making the interpretation of the results easier. Further it is possible to
visualize three-dimensional densities by plotting their contour surfaces. We will see that
these plots contain much more information than the bivariate contour lines of the three
two-dimensional margins.

4.1.2 Visualization of simplified vine copulas

The contour of a density f : Rd → [0,∞) corresponding to a level y ∈ (0,∞) is the set{
z ∈ Rd | f(z) = y

}
of all points in Rd that are assigned the same density value y. For

bivariate densities, plots of contour lines are well-known; in three dimensions this concept
can be extended to contour surfaces. In this section we present contour plots of various
simplified three-dimensional vine copula densities, ranging from very simple models such
as a Gaussian copula, to more complex scenarios. The main goal is to get a feeling for
what simplified vine copulas look like in order to properly compare them to non-simplified
vine copulas. As well as the three-dimensional contour surfaces plotted from three different
angles we present the contour lines of the two-dimensional marginals c12, c23 and c13. While
c12 and c23 are explicitly specified in the vine copula construction, the margin c13 has to
be calculated by integrating c123 with respect to u2, either analytically (when possible) or
numerically.
For all two- and three-dimensional contour plots we take the univariate marginals to have a
standard normal distribution, i.e. we consider the random vector Z = (Z1, Z2, Z3)>, where
Zj = Φ−1(Uj), j = 1, 2, 3, with Φ denoting the standard normal distribution function. This
is done because on the uniform scale copula densities would be difficult to interpret and
hardly comparable with each other. Further, in this way a Gaussian copula corresponds
to a Gaussian distribution for Z, so that all examples can be seen in comparison to this
well-known case.
In Section 4.1.2 we will consider the simplified vine copula specifications from Table 3
(Scenarios 1 to 4). Later, in Section 4.1.3, we will also examine non-simplified vine copulas
specifications and their simplified vine copula approximations. These are described in
Scenarios 5 to 8 in Table 3. For each scenario the three pair-copulas are specified by their
families and parameter(s). Further we state the corresponding Kendall’s τ value in order
to facilitate comparability. In the non-simplified scenarios (Scenarios 5–8) the τ values are
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Table 3: Vine copula specifications considered in Section 4.1.2 (simplified, Scenarios 1 to
4) and Section 4.1.3 (non-simplified, Scenarios 5 to 8). In Scenario 7, AMH stands for
the Ali-Mikhail-Haq copula. For a definition we refer to Kumar (2010). The definitions of

τ
(i)
13;2(u2), i = 5, 6, 7, 8, can be found in the text.

copula c12 copula c23

scenario page family θ
(1)
12 θ

(2)
12 τ12 family θ

(1)
23 θ

(2)
23 τ23

1 29 N 0.6 − 0.41 N 0.7 − 0.49

2 29 C 2 − 0.50 C 2 − 0.50

3 31 F 7 − 0.56 G 2 − 0.50

4 31 T(1) 3 0.3 0.25 J 270 −2 − −0.36

5 33 N 0 − 0 N 0 − 0

6 33 C −2 − −0.50 C 2 − 0.50

7 36 F 8 − 0.60 F 8 − 0.60

8 36 BB8 6 0.95 0.69 G270 −3.5 − −0.71

copula c13;2

scenario page family θ
(1)
13;2(u2) θ

(2)
13;2(u2) τ13;2(u2)

1 29 N 0.5 − 0.33

2 29 C 0.67 − 0.25

3 31 N −0.7 − −0.49

4 31 BB1 2 1.5 0.67

5 33 N 0.9 sin(2πu2) − τ
(5)
13;2(u2)

6 33 C 9(−(u2 − 0.5)2 + 0.25) − τ
(6)
13;2(u2)

7 36 AMH 1− exp(−8u2) − τ
(7)
13;2(u2)

8 36 T(2)/T 90
(2) sgn(u2 − 0.5)(4− 3 cos(8πu2)) 0.1 + 0.8u2 τ

(8)
13;2(u2)
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given by functions depending on u2. They are defined as

τ
(5)
13;2(u2) =

2

π
arcsin(0.9 sin(2πu2)),

τ
(6)
13;2(u2) =

9(−(u2 − 0.5)2 + 0.25)

9(−(u2 − 0.5)2 + 0.25) + 2
,

τ
(7)
13;2(u2) = 1− 2

3(1− exp(−8u2))
− 2(1− (1− exp(−8u2)))2 log(1− (1− exp(−8u2)))

3(1− exp(−8u2))2
,

τ
(8)
13;2(u2) = sgn(u2 − 0.5)

∫ 1

0

t(1− t)
A(t;u2)

dA′(t;u2),

where in the last row

A(t;u2) = (0.9 + 0.8u2)t+
[
(1− t)(4−3 cos(8πu2)) + ((0.1 + 0.8u2)t)(4−3 cos(8πu2))

](4−3 cos(8πu2))−1

.

Gaussian copula
The first scenario we consider concerns a Gaussian copula. Among others, Stöber et al.
(2013) showed that every Gaussian copula can be represented as a simplified Gaussian vine
copula (i.e. all pair-copulas are Gaussian) and vice versa. We specify the pair-copulas of the
vine as follows: c12 is a bivariate Gaussian copula with parameter ρ12 = 0.6 (i.e. τ12 = 0.41),
c23 is a Gaussian copula with ρ23 = 0.7 (τ23 = 0.49) and c13;2 is a Gaussian copula with
ρ13;2 = 0.5 (τ13;2 = 0.33). This specification, which can be found in Table 3 (Scenario 1),
directly implies that c13 is a Gaussian copula with ρ13 = 0.71 (τ13 = 0.50), see for example
Kurowicka and Cooke (2006), p. 69. The resulting elliptical-shaped contours displayed from
three viewpoints in the top row of Figure 9 are the natural extension of the well-known
ellipsoid-shaped contour plots of bivariate normal distributions. We chose the contour levels
for the plots such that the four contour surfaces are representative of the entire density.
For the remainder of Section 4.1 these levels are fixed with values 0.015, 0.035, 0.075 and
0.11 (from outer to inner surface). The contour plots of the two-dimensional margins in the
bottom row of Figure 9 are those of bivariate normal distributions. We see that the contour
plots of the bivariate margins already give a good impression of what the three-dimensional
object looks like. It turns out that this property can be observed for all simplified vine
copulas we will consider.

Clayton copula
A well-known representative of the class of Archimedean copulas is the Clayton copula. It
is a one-parametric family with lower tail dependence. The Clayton copula is the copula
underlying the multivariate Pareto distribution and is the only Archimedean copula that
can be represented as a simplified vine copula as proved in Stöber et al. (2013), Theorem
3.1. It is easy to see that the bivariate margins of a three-dimensional Clayton copula with
parameter θ are bivariate Clayton copulas with parameter θ, see for example Kraus and
Czado (2017a), Appendix B. There it was also shown that the copula of the conditioned
variables (in our decomposition c13;2) again is a Clayton copula, in this case with parameter
θ/(θ + 1). Hence, in order to obtain a three-dimensional Clayton copula with parameter
θ = 2 we specify a vine copula as described in Scenario 2 of Table 3. The top row of
Figure 10 displays the contours of the resulting copula, the strong lower tail dependence
is clearly visible. As already stated, the (unconditional) bivariate margin c13 is also a
Clayton copula with parameter 2 and therefore all contour plots of the margins in the
bottom row of Figure 10 are identical. Again we observe that the shape of the contours
of the three-dimensional density is anticipated quite well already by the two-dimensional
marginal plots.
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Figure 9: Top: Contours of the three-dimensional vine copula density specified by c12:
N (0.6), c23: N (0.7), c13;2: N (0.5). Bottom: Contours of the corresponding bivariate
marginal densities.
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Figure 10: Top: Contours of the three-dimensional vine copula density specified by c12:
C(2), c23: C(2), c13;2: C(0.67). Bottom: Contours of the corresponding bivariate marginal
densities.
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Mixed simplified vine copula 1
Up to now we have only considered vine copulas where all pair-copulas belong to the same
family of parametric copulas. Of course, one of the main advantages of vine copulas is that
one can specify each pair to be from a different copula family with its own parameter(s).
The resulting model class is very flexible and able to describe many different kinds of
dependencies. As an example for this, we present Scenario 3 (Table 3): c12 is a bivariate
Frank copula with parameter θ12 = 7 (i.e. τ12 = 0.56), c23 is a Gumbel copula with θ23 = 2
(τ23 = 0.5) and c13;2 is a Gaussian copula with ρ13;2 = −0.7 (τ13;2 = −0.49). In the resulting
contour plots of Figure 11 (top row) one can clearly see the shapes of the Frank and the
Gumbel copula in the left and the middle plot, respectively. Although the dependency of
each pair-copula is fairly strong, we observe rather weak dependence for c13. The negative
conditional dependence seems to cancel out with the positive dependencies implied by c12

and c23 (compare Figure 11, bottom row).
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Figure 11: Top: Contours of the three-dimensional vine copula density specified by c12:
F(7), c23: G(2), c13;2: N (−0.7). Bottom: Contours of the corresponding bivariate marginal
densities.

Mixed simplified vine copula 2
We consider a second example of a mixed vine copula (Scenario 4 from Table 3) with
the following specifications: c12 is a Tawn Type 1 copula with parameters θ12 = (3, 0.3)>

(implying τ12 = 0.25), c23 is a Joe copula rotated by 270 degrees with θ23 = −2 (τ23 = −0.36)
and c13;2 is a BB1 copula with θ13;2 = (2, 1.5)> (τ13;2 = 0.67). The shape of the resulting
contours in the top row of Figure 12 appears to be very non-standard. Especially the
dependence between the first and third marginals is quite contorted. The dependence
structure of the copula of the conditioned variables (BB1) cannot be detected at all. Further
the non-exchangeable nature of the Tawn copula is noticeable both in the three- and the
two-dimensional contour plots (cf. Figure 12, bottom row).
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Figure 12: Top: Contours of the three-dimensional vine copula density specified by c12:
T(1)(3, 0.3), c23: J 270(−2), c13;2: BB1(2, 1.5). Bottom: Contours of the corresponding
bivariate marginal densities.

Note that even for the rather bent examples in this section the shape of the bivariate
marginal contour plots resembles what we see in the three-dimensional plots. Thus all
considered simplified vine copulas share the property that knowledge of just the three
bivariate margins already provides a fairly good idea of the shape of the contours of the
three-dimensional copula density.

4.1.3 Visualization of non-simplified vine copulas

Having seen several examples of visualized simplified vine copulas we also aim to visually
explore the meaning of the simplifying assumption. For this purpose we now present a
series of contour plots of non-simplified vine copula densities and compare them to the ones
of the corresponding simplified vine copula approximations. Similar to Hobæk Haff et al.
(2010) and Stöber et al. (2013) we determine the simplified vine copula approximation of a
non-simplified vine copula with pair-copulas cNS

12 , cNS
23 and cNS

13;2 by setting the unconditional
pair-copulas cS

12 and cS
23 to the true ones (cNS

12 and cNS
23 , respectively) and finding the pair-

copula cS
13;2 (independent of u2) that minimizes the Kullback-Leibler distance to the true

conditional copula cNS
13;2. Since in most scenarios considered in this chapter this minimization

is analytically infeasible, we estimate cS
13;2 by generating a sample

(
u

(i)
1 , u

(i)
2 , u

(i)
3

)>
i=1,...,N

of

size N from the non-simplified model and fitting the likelihood maximizing parametric bi-

variate copula cS
13;2 to the pseudo copula data

(
u

(i)
1|2, u

(i)
3|2
)>
i=1,...,N

, where u
(i)
j|2 = CS

j|2
(
u

(i)
j |u(i)

2

)
,

j = 1, 3. Even though we found that the estimated parameters had converged up to the
second digit for N = 10,000 we used N = 100,000 due to low computational effort.
In Section 4.1.3 we will consider the non-simplified vine copula specifications from Table 3
(Scenarios 5 to 8).
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Gaussian vine copula with sinusoidal conditional dependence function
In our first non-simplified example (Scenario 5 from Table 3) we set the two unconditional
copulas c12 and c23 to the independence copula in order to isolate the effect of the dependence
of the conditional copula c13;2 on u2. We choose c13;2 to be Gaussian with parameter function
ρ13;2(u2) = 0.9 sin(2πu2), i.e. one full period of a sine curve with amplitude 0.9. Hence for
values of u2 ranging between 0 and 0.5 the dependence is positive with Kendall’s τ between
0 and 0.71 and negative for 0.5 < u2 < 1 (see also the left panel of the second row of
Figure 13). The shift from positive to negative dependence is clearly visible in the contour
plots shown in the top row of Figure 13. We also observe that the resulting contour
surfaces for higher levels are no longer connected and the density is bimodal. Further,
from the numerically integrated contour plot of c13 in the right panel of the second row
of Figure 13 we conclude that marginally the strong positive and negative dependencies
cancel each other out resulting in a bivariate marginal copula with almost no dependence,
resembling a t copula with association of zero and low degrees of freedom.
In opposition to the simplified examples from Section 4.1.2, now the bivariate contour plots
do no longer anticipate the three-dimensional object in a reasonable way. The sinusoidal
structure of this copula cannot be guessed from the two-dimensional plots in the second
row of Figure 13. In fact, had we used ρ13;2(u2) = −0.9 sin(2πu2), the copula density would
have changed drastically (90 degree rotation along the z2-axis) while the bivariate margins
would have stayed exactly the same.
In contrast the corresponding simplified vine copula approximation, whose contours are
displayed in the third row of Figure 13, resembles the smooth extension of the bivariate
margins (bottom row of Figure 13) to three dimensions. This unimodal simplified vine
copula, whose conditional copula ĉ13;2 is indeed a t copula with almost no dependence
(ρ̂13;2 = 0.01) and low degrees of freedom (ν̂13;2 = 2.15), is not able to reproduce the
twisted shape of the non-simplified vine copula at all. Also the implied bivariate margin
of the first and third variable in the right panel of the bottom row of Figure 13 is almost
identical to the one of the non-simplified copula in the second row.

Clayton vine copula with quadratic conditional dependence function
Next we consider a non-simplified Clayton vine copula, i.e. all pair-copulas are bivariate
Clayton copulas where the parameters of the unconditional copulas may differ in contrast
to the three-dimensional Clayton copula (cf. Scenario 2) for which the parameters of c12 and
c23 have to coincide. In this Scenario 6 we set the dependencies of the unconditional pair-
copulas as θ12 = −2 (τ12 = −0.5) and θ23 = 2 (τ23 = 0.5) and specify the parameter function
as a downwardly open parabola taking only non-negative values: θ13;2(u2) = 9(−(u2−0.5)2+
0.25). The corresponding τ13;2 values range between 0 and 0.53 and take their maximum for
u2 = 0.5 (see the left panel of the second row in Figure 14). The contours of the resulting
density shown in the top row of Figure 14 bear some resemblance to those of the Clayton
copula (cf. Figure 10) but are much more distorted. Especially the relationship between the
first and third variables seems to change from positive to negative dependence for different
values of the second variable. This implies that also the conditional copula of U1 and U3

given U2 = u2 exhibits a change from positive to negative dependence, which is an obvious
indicator that the vine copula is non-simplified. The contours of the bivariate margin c13

in the right panel of the second row of Figure 14 also have a bent shape which is far from
any of the standard parametric copulas. The bivariate contour plots of c12 and c23 suggest
a smooth shape of the contours of the three-dimensional density such that one would not
expect them to look as distorted as they do in the left and middle plots of the top row of
Figure 14.
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Figure 13: Top row: Contours of the three-dimensional non-simplified vine copula density
specified by c12: N (0), c23: N (0), c13;2: N (ρ13;2(u2)) with ρ13;2(u2) = 0.9 sin(2πu2). Second
row: τ13;2 depending on u2 and contours of the bivariate margins corresponding to the
specification of the top row. Third row: Contours of the three-dimensional simplified vine
copula approximation specified by c12: N (0), c23: N (0), ĉ13;2: t(0.01, 2.15). Bottom row:
Contours of the bivariate margins corresponding to the specification of the third row.
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Figure 14: Top row: Contours of the three-dimensional non-simplified vine copula density
specified by c12: C90(−2), c23: C(2), c13;2: C(θ13;2(u2)) with θ13;2(u2) = 9(−(u2−0.5)2+0.25).
Second row: τ13;2 depending on u2 and contours of the bivariate margins corresponding to
the specification of the top row. Third row: Contours of the three-dimensional simplified
vine copula approximation specified by c12: C90(−2), c23: C(2), ĉ13;2: BB6180(1.75, 1.16).
Bottom row: Contours of the bivariate margins corresponding to the specification of the
third row.
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Again the simplified vine copula approximation, which uses a survival BB6 copula with
parameter θ̂13;2 = (1.75, 1.16) as an approximation of the conditional copula c13;2 (implying
a Kendall’s τ of 0.39), exhibits exactly this smooth behavior implied by the bivariate
margins (see the third row of Figure 14). We further observe in the right plots of the last two
rows of Figure 14 that the simplified vine copula approximation is not able to reproduce the
altering dependence pattern between U1 and U3 due to its constant conditional dependence
parameter.

Three-dimensional Frank copula
In contrast to the Clayton copula, which can be expressed as a simplified vine copula (cf.
Section 4.1.2), we now turn our attention to an Archimedean copula without this property,
the three-dimensional Frank copula. Its non-simplified vine decomposition can be found
as Scenario 7 in Table 3 (with dependence parameter θ = 8): The bivariate margins are
again Frank copulas with the same dependence parameter θ (with corresponding Kendall’s
τ values equal to 0.6). The copula of the conditioned variables c13;2 is also Archimedean,
belonging to the Ali-Mikhail-Haq (AMH) family with functional dependence parameter
γ13;2(u2) = 1− exp(−θu2) (see Kumar, 2010; Spanhel and Kurz, 2015). The corresponding
τ values displayed in the left panel of the second row of Figure 15 show that the simplifying
assumption is not severely violated. The strength of dependence is almost constant with
the exception of small τ values for u2 < 0.2. The contours depicted in the top row of
Figure 15 exhibit the typical bone shape known from the two-dimensional contour plots of
bivariate Frank copulas such as those shown in the second row of Figure 15. In order to
assess how severe of a restriction the simplifying assumption would impose for modeling
data generated by a Frank copula, we also present in the last two rows of Figure 15 the
three- and two-dimensional contours of the simplified vine copula approximation of the
Frank copula, respectively. For the trivariate Frank copula it is possible to analytically
calculate the bivariate copula c13;2( · , · ) that minimizes the Kullback-Leibler divergence to
the conditional copula c13;2( · , · ;u2), for details see Spanhel and Kurz (2015). The visual
difference between the Frank copula and its simplified vine copula approximation seems
almost negligible. Only from the angle where the dependence between the first and third
variable is visible the two contour plots can be distinguished (see the right plots of the first
and third row of Figure 10). In the lower tail, where values of z2 are small, the contours
of the simplified vine copula approximation exhibit a higher dependence than the ones of
the Frank copula, whose contours are less drawn into the corner implying less dependence.
This is in line with what we would expect since the dependence function of c13;2 of the
non-simplified vine copula is decreasing for u2 going to 0, while the dependence of c13;2 of
the simplified vine copula approximation is constant at τ13;2 = 0.28.

Mixed non-simplified vine copula
The last example we consider is Scenario 8 (see Table 3). It is more extreme featuring
pair-copulas with high dependence and more involved functions for the parameters of c13;2.
We specify c12 as a BB8 copula with parameters θ12 = (6, 0.95)> (implying τ12 = 0.69),
c23 as a Gumbel copula rotated by 270 degrees with θ23 = −3.5 (τ23 = −0.71) and c13;2 as
a Tawn Type 2 copula with both parameters depending on u2 via the functions sgn(u2 −
0.5)(4 − 3 cos(8πu2)) and θ

(2)
13;2(u2) = 0.1 + 0.8u2. The corresponding τ values ranging

between −0.39 and 0.71 are shown in the left panel of the second row of Figure 16. For
the values of u2 < 0.5 that imply negative dependence we use the 90 degree rotated version
of the Tawn type 2 copula. Figure 16 (top row) displays the contour plots of the resulting
density. This is by far the most contorted density. The four peaks of the τ13;2 function
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Figure 15: Top row: Contours of the three-dimensional non-simplified vine copula density
specified by c12: F(8), c23: F(8), c13;2: AMH(γ13;2(u2)) with γ13;2(u2) = 1 − exp(−8u2).
Second row: τ13;2 depending on u2 and contours of the bivariate margins corresponding to
the specification of the top row. Third row: Contours of the three-dimensional simplified
vine copula approximation specified by c12: F(8), c23: F(8), c13;2: see Spanhel and Kurz
(2015). Bottom row: Contours of the bivariate margins corresponding to the specification
of the third row.
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Figure 16: Top row: Contours of the three-dimensional non-simplified vine copula den-
sity specified by c12: BB8(6, 0.95), c23: G270(−3.5), c13;2: T(2)/T 90

(2)(θ
(1)
13;2(u2), θ

(2)
13;2(u2)) with

θ
(1)
13;2(u2) = sgn(u2 − 0.5)(4 − 3 cos(8πu2)) and θ

(2)
13;2(u2) = 0.1 + 0.8u2. Second row: τ13;2

depending on u2 and contours of the bivariate margins corresponding to the specification
of the top row. Third row: Contours of the three-dimensional simplified vine copula ap-
proximation specified by c12: BB8(6, 0.95), c23: G270(−3.5), ĉ13;2: t(0.18, 2.6). Bottom row:
Contours of the bivariate margins corresponding to the specification of the third row.
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are clearly visible as bumps in the three-dimensional contour plots. Of course, one can
argue about how realistic it is to assume that real data follows such a distribution but it
illustrates the variety of densities which can be modeled using non-simplified parametric
vine copulas.
For this scenario we can state that again the bivariate marginal contours do not really
anticipate the complex shape of the corresponding three-dimensional object. The contour
plots of c12 and c23 in the second row of Figure 16 look perfectly smooth and regular and do
not at all suggest the extremely twisted and contorted structure which can be seen in the
top row of Figure 16. For the conditional copula of the corresponding simplified vine copula
approximation a t copula with ρ̂13;2 = 0.18 and ν̂13;2 = 2.6 is fitted, which corresponds to a
Kendall’s τ of 0.11. Comparing the resulting bivariate margins in the second and last row
of Figure 16 we see that apart from a little bump of c13 of the non-simplified vine copula
their general shapes are fairly similar. However the three-dimensional contour plot reveals
that the simplified vine copula approximation (third row of Figure 16) is completely smooth
with no twists and dents at all, such that it is not able to capture all aspects of the actual
interdependencies.

4.1.4 Application to simulated and real data

In this section we want to investigate how the contour plots can help to decide whether
a simplified or a non-simplified specification for given data is needed. For this purpose
we at first consider simulated data, where we know the true underlying distribution, and
afterwards apply the method to real data.

Simulation study
For the simulated data example we specify the true non-simplified vine copula model as
follows: We choose c12 to be a Gumbel copula with parameter θ12 = 1.5 (τ12 = 0.33), c23

as a t copula with ρ23 = 0 and 2.5 degrees of freedom (τ23 = 0) and c13;2 as a Frank copula
with parameter function θ13;2(u2) = 3 arctan(10(u2 − 0.5)), implying negative dependence
for u2 < 0.5 and positive dependence for u2 > 0.5 with absolute τ values smaller than 0.4
(compare Figure 18, top left panel). The rather low pairwise dependencies of this copula
are clearly visible from the density’s contour plots in the top row of Figure 17. However
the surfaces look quite crumpled with lots of irregular bumps and deformations. Moreover
it is eye-catching that in this example we only observe three contour surfaces. The inner
surface is missing since the density only take values between 0 and 0.101 but the level of
the inner surface is 0.11. Further due to the low dependence we cannot detect any corner
with extraordinarily high probability mass.
We generated a sample of size N = 3,000 from this model and transformed the margins
to be standard normal in order to make results comparable. For this transformed data
sample, we performed a standard kernel density estimation with the function kde from the
R package ks (Duong, 2016a) using Gaussian kernels. Note that using this method we
only get approximately standard normal margins. The contours of the resulting estimated
densities, which are shown in the second row of Figure 17, are very close to those of the true
underlying density in the top row. Only the innermost contour surface is smaller because the
peaks of the density tend to get averaged out by kernel density estimation. The second row
of Figure 18 displays the contours of the corresponding kernel density estimated bivariate
margins, which are again close to the true ones in the first row of Figure 18.
The idea is now to compare these contour plots to those of estimated simplified and non-
simplified vine copula densities. We use RVineStructureSelect (from VineCopula) to fit

39



Figure 17: Top row: Contours of the true three-dimensional non-simplified vine cop-
ula density specified by c12: G(1.5), c23: t(0, 2.5), c13;2: F(θ13;2(u2)) with θ13;2(u2) =
3 arctan(10(u2−0.5)). Second row: Contours of the density estimated via three-dimensional
kernel density estimation. Third row: Contours of the fitted simplified vine copula density
specified by ĉ12: G(1.49), ĉ23: t(0.04, 2.36), ĉ13;2: t(0, 9.14). Bottom row: Contours of the
fitted non-simplified vine copula density specified by ĉ12: G(1.49), ĉ23: t(0.04, 2.36), ĉ13;2:
N (ρ̂13;2(u2)).
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Figure 18: τ13;2 depending on u2 (first column) and contour plots of the bivariate margins
c12 (second column), c23 (third column) and c13 (fourth column). Top row: true vine copula.
Second row: kernel density estimation. Third row: fitted simplified vine copula. Bottom
row: fitted non-simplified vine copula.

a simplified vine copula and gamVineStructureSelect (from gamCopula, Vatter, 2016) to
fit a non-simplified vine copula. Both algorithms estimate the same unconditional copulas:
c12 is fitted as a Gumbel copula with parameter θ̂12 = 1.49 and c23 as a t copula with
ρ̂23 = 0.04 and ν̂23 = 2.36 degrees of freedom. In the simplified setting c13;2 is estimated
to be a t copula with ρ̂23 = −0.01 and ν̂23 = 3.42. The corresponding contours are shown
in the third row of Figure 17. They seem to be an over-smoothed version of the kernel
estimated density contours. While the general strengths of dependence are represented
fairly well, the simplified vine copula approximation does not feature the bumps and dents
of the kernel density estimated surfaces. A look at the contours of the bivariate margins
in the third row of Figure 18 reveals that the densities of the explicitly modelled margins
c12 and c23 are fitted very well. The true copula families are chosen and the estimated
parameters are close to the true values. However the contours of the implicitly defined
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margin c13 are far from the ones of the kernel density estimate. This is another indicator
for an insufficient fit resulting from the underlying simplifying assumption, which is in this
case too restrictive.
We now investigate whether these deficiencies can be remedied by fitting a non-simplified
vine copula to the simulated data. The algorithm gamVineStructureSelect estimates
the copula c13;2 to be Gaussian with parameter function ρ̂13;2(u2) depending on u2 via the
functional form displayed in the bottom left panel of Figure 18 (in terms of τ̂13;2), together
with its bootstrapped 95%-confidence intervals (gray) and the true τ13;2 curve (dashed
line). The τ -values range between −0.36 and 0.38 with negative values for u2 < 0.5 such
that the estimated function is quite close to the true underlying τ -function. Even though
the wrong copula family is chosen for c13;2 (Gaussian instead of Frank) the contours of the
resulting non-simplified vine copula in Figure 17 (bottom row) are very similar to the kernel
estimated ones and fit their shape considerably better than the estimated simplified vine
copula. Also the contours of the bivariate margin c13 in the bottom right panel of Figure 18
now provide a much better fit. Hence we can conclude that in this example we are able to
visually detect the violation of the simplifying assumption of the true distribution.

Real data application

In the following section we want to apply this method to a real data example. We investigate
the well-known uranium data set, which can be found in the R package copula. This data
set consists of 655 chemical analyses from water samples from a river near Grand Junction,
Colorado (USA). It contains the log-concentration of seven chemicals, where we will focus
on the three elements cobalt (X1), titanium (X2) and scandium (X3) that have already
been examined regarding the simplifying assumption in Acar et al. (2012). In order to
obtain copula data we first apply the probability integral transform to the data using the
empirical marginal distribution functions, i.e. the observations xji, j = 1, 2, 3, i = 1, . . . , N ,
are transformed via the rank transformation

uji =
1

N + 1

N∑
k=1

1{xjk≤xji},

where 1{·} is the indicator function. Then we transform the data to have standard normal
margins in accordance to the previous examples.
We now want to take a look at the “true” model and perform a kernel density estimation. In
the top rows of Figure 19 and Figure 20 the results of the three- and two-dimensional kernel
density estimations are displayed, respectively. The three variables seem to be positively
dependent. A few bumps and dents are noticeable. Next we explore how well estimated
simplified and non-simplified vine copulas fit the data.
Using RVineStructureSelect we obtain the following simplified vine copula: c12 is a t
copula with ρ̂12 = 0.74 and ν̂12 = 8.03 (τ̂12 = 0.53), c23 is a t copula with ρ̂23 = 0.63 and
ν̂23 = 5.93 (τ̂23 = 0.43) and c13;2 is a t copula with ρ̂13;2 = 0.08 and ν̂13;2 = 5.65 (τ̂13;2 = 0.05).
This t vine copula and its bivariate margins are depicted in Figure 19 (middle row) and
Figure 20 (middle row), respectively. Since all three degrees of freedom are of medium
size we observe modest lower and upper tail dependence. Again these contours resemble a
smoothed version of the slightly bumpy kernel density estimated contour surfaces resulting
in a rather unsatisfying fit of the data.
For the non-simplified vine copula, the estimates of c12 and c23 are the same as for the
simplified one. The third pair-copula c13;2 is still a t copula but now with ν̂13;2 = 6.69
degrees of freedom and an association parameter depending on u2. We show the relationship
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Figure 19: Top row: Contours of the density estimated via three-dimensional ker-
nel density estimation. Middle row: Contours of the simplified vine copula specified
by ĉ12: t(0.53, 8.03), ĉ23: t(0.43, 5.93), ĉ13;2: t(0.08, 5.65). Bottom row: Contours of
the non-simplified vine copula specified by ĉ12: t(0.53, 8.03), ĉ23: t(0.43, 5.93), ĉ13;2:
t(ρ̂13;2(u2), 6.69).

between u2 and τ̂13;2 in the bottom left panel of Figure 20 (again with its bootstrapped
95%-confidence intervals). One can see that we have small positive values of Kendall’s τ
for u2 ≤ 0.8 and negative dependence for the remaining values of u2. Although only the
parameters of the copula c13;2 are different compared to the simplified vine copula, the
shapes of the contour surfaces display some interesting changes: Especially in the bottom
left and right panel of Figure 19, we see that the smooth diamond-shaped contours from
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Figure 20: τ̂13;2 depending on u2 (bottom left) and contour plots of the bivariate margins
c12 (second column), c23 (third column) and c13 (fourth column). Top row: kernel density
estimation. Middle row: estimated simplified vine copula. Bottom row: estimated non-
simplified vine copula.

Figure 19 (middle row) have developed several dents. While the contour plots of c12 and
c23 are the same as before, the one of c13 exhibits some differences since it is no longer
diamond-shaped.
Comparing these contours to the ones from the top rows of Figure 19 and Figure 20 we see
that the non-simplified vine copula is able to capture the behavior of the data quite well.
The most noticeable bumps and dents are reproduced and the bivariate contours resemble
the kernel density estimated ones. Thus we come to the same conclusion as Acar et al.
(2012), namely that the vine copula decomposition of this three-dimensional data set is of
the non-simplified form.

4.1.5 Summary

In Section 4.1 we looked at the contour surfaces of several three-dimensional simplified
and non-simplified vine copulas. The flexibility of simplified vine copulas in comparison to
standard elliptical and Archimedean copulas was demonstrated. Using the 12 different one-
and two-parametric bivariate pair-copula families currently implemented in VineCopula for
the construction of a simplified vine copula, the shape of the resulting contour surfaces may
deviate considerably from the well-known ellipsoid-shaped contours of a Gaussian distribu-
tion. Considering non-simplified vine copulas facilitates the modeling of even more irregular
contour shapes exhibiting twists, bumps and altering dependence patterns. In our exam-
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ples we have observed that contemplating three-dimensional contour surfaces gives more
insight into the trivariate dependence structure than only looking at the two-dimensional
marginal contour lines. While the consideration of the three bivariate marginal contour
plots already gives a good impression of the shape of the three-dimensional object for sim-
plified vine copulas, one might be surprised how twisted and contorted some non-simplified
three-dimensional densities appear if one had only seen the smooth bivariate contour plots.
In simulated and real data applications we have seen that non-simplified vine copulas are
able to fit data with complex dependencies very well. However, we have observed that the
estimated simplified vine copulas still capture the main features of the data providing a
more smooth fit. Thus, for practical applications, especially in higher dimensions (when the
number as well as the dimension of the parameter functions increase, causing numerical in-
tractability) it might be preferable to use simplified vine copulas. Thereby overfitting might
be avoided while the main properties of the data such as correlations and tail behavior are
still well represented.
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4.2 Testing the simplifying assumption using model distances

Parts of Section 4.2 are very similar to the publication Killiches, Kraus, and Czado (2017c).

4.2.1 Introduction

In model selection, the distance between statistical models plays a big role. Often the
difference between two models is measured in terms of the Kullback-Leibler (KL) distance
(Kullback and Leibler, 1951). Nikoloulopoulos and Karlis (2008a) were among the first
to use the KL distance for model selection for copulas. Further, Joe (2014) used the KL
distance to calculate the sample size necessary to discriminate between two copula densities.
In the context of the simplifying assumption for vine copulas Hobæk Haff et al. (2010) used
the KL distance to find the simplified vine closest to a given non-simplified vine and Stöber
et al. (2013) assessed the strength of non-simplifiedness of the trivariate Farlie-Gumbel-
Morgenstern (FGM) copula for different dependence parameters.
Nevertheless, the main issue of the Kullback-Leibler distance is that, as soon as it cannot
be computed analytically, a numerical evaluation of the appearing integral is needed, which
is hardly tractable once the model dimension exceeds three or four. In order to tackle
this problem, several modifications of the Kullback-Leibler distance have been proposed
in Killiches, Kraus, and Czado (2017b). They yield model distances which are close in
performance to the classical KL distance, however with much faster computation times,
facilitating their use in high dimensions. Using these model distances, we will investigate a
major question arising when working with vines: Is the simplifying assumption justified for
a given data set or do we need to account for non-simplifiedness? The importance of this
topic can be seen from many recent publications such as Hobæk Haff et al. (2010), Stöber
et al. (2013), Acar et al. (2012) or Spanhel and Kurz (2015).

4.2.2 Model distances for vine copulas

In this section we shortly review the definitions of the most important distance measures dis-
cussed in Killiches, Kraus, and Czado (2017b). For detailed information about the concepts
consult this paper and references therein. Starting point is the so-called Kullback-Leibler
distance (see Kullback and Leibler, 1951) between two d-dimensional copula densities cf ,
cg : [0, 1]d → [0,∞), defined as

KL(cf , cg) =

∫
u∈[0,1]d

log

(
cf (u)

cg(u)

)
cf (u) du. (4.9)

Note that due to the lack of symmetry the KL distance is not a distance in the classical
sense and therefore is also referred to as Kullback-Leibler divergence. If cf and cg are the
corresponding copula densities of two d-dimensional densities f and g, it can be easily
shown that the KL distance between cf and cg is equal to the one between f and g if
their marginal distributions coincide. It is common practice to use the Inference Functions
for Margins (IFM) method: First the univariate margins are estimated and observations
are transformed to the copula scale using the estimated margins; afterwards the copula is
estimated based on the transformed data (cf. Joe, 1997, Section 10.1). Therefore, it can be
justified that in the remainder of this section we restrict ourselves to data on the copula
scale.
Since in the vast majority of cases the KL distance cannot be calculated analytically, the
main problem of using the KL distance in practice is the computational intractability for
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dimensions larger than 4. There, numerical integration suffers from the curse of dimension-
ality and thus becomes exceptionally inefficient. As a remedy for this issue, Proposition 2
from Killiches, Kraus, and Czado (2017b) expresses the KL between multivariate densities
in terms of the sum of expected KL distances between univariate conditional densities:

KL
(
cf , cg

)
=

d∑
j=1

Ecf
(j+1):d

[
KL
(
cfj|(j+1):d

(
· |U(j+1):d

)
, cgj|(j+1):d

(
· |U(j+1):d

) )]
, (4.10)

where for j < d we use the abbreviation (j+1):d = {j + 1, j + 2, . . . , d} with (d+ 1):d := ∅
and U(j+1):d ∼ cf(j+1):d. It would be a valid approach to approximate the expectations

in Equation (4.10) by Monte Carlo integration, i.e. the average over evaluations of the
integrand on a grid of points simulated according to cf(j+1):d. Since this would also be
computationally challenging in higher dimensions and additionally has the disadvantage of
being random, Killiches, Kraus, and Czado (2017b) propose to approximate the expecta-
tions through evaluations on a grid consisting of only warped diagonals in the respective
unit (hyper)cube. The resulting diagonal Kullback-Leibler (dKL) distance between two
d-dimensional R-vine models Rf and Rg is hence defined by

dKL
(
Rf ,Rg

)
=

d−1∑
j=1

1

|Dj|
∑
u∈Dj

KL
(
cfj|(j+1):d(·|u), cgj|(j+1):d(·|u)

)
,

where the set of warped discrete diagonals Dj ∈ [0, 1]d−j is given by

Dj = Tj

({
{r + µv(r) | µ ∈ Iε,n}

∣∣∣ r ∈ {0, 1}d−j}) .
Here, r ∈ {0, 1}d−j are the corner points in the unit hypercube [0, 1]d−j, v : {0, 1}d−j →
{−1, 1}d−j, v(r) = 1−2r denotes the direction vector from r to its opposite corner point and
Iε,n is the equidistantly discretized interval [ε, 1−ε] of length n. Hence {r + µv(r) | µ ∈ Iε,n}
represents a discretization of the diagonal from r to its opposite corner point r + v(r).
Finally, these discretized diagonals are transformed using is the inverse Rosenblatt trans-
formation Tj with respect to cf(j+1):d (Rosenblatt, 1952). Recall that the Rosenblatt trans-

formation u of a vector w ∈ [0, 1]d with respect to a distribution function C is defined by
ud = wd, ud−1 = C−1

d−1|d(wd−1|ud), . . . , u1 = C−1
1|2:d(w1|u2, . . . , ud). Often it is used to trans-

form a uniform sample on [0, 1]d to a sample from C. The concept is used to transform the
unit hypercube’s diagonal points to points with high density values of cf(j+1):d. Hence, the

KL distance between cf and cg is approximated by evaluating the KL distances between
the univariate conditional densities cfj|(j+1):d and cgj|(j+1):d conditioned on values lying on
warped diagonals Dj, j = 1, . . . , d− 1. Diagonals have the advantage that all components
take values on the whole range from 0 to 1 covering especially the tails, where the substan-
tial differences between copula models occur most often. With the above modifications the
intractability of the KL for multivariate densities is overcome since only KL distances be-
tween univariate densities have to be evaluated. It was shown in Proposition 1 of Killiches,
Kraus, and Czado (2017b) that these univariate conditional densities cfj|(j+1):d and cgj|(j+1):d

can be easily derived for the vine copula model. Moreover, in Remark 1 they prove that for
ε→ 0 and n→∞ the dKL converges to a sum of scaled line integrals. Further, they found
heuristically that even for n = 10 and ε = 0.025 the dKL was a good and fast substitute
for the KL distance.
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4.2.3 Testing simplified versus non-simplified vine copulas

As already mentioned in the introduction, the validity of the simplifying assumption is a
frequently discussed topic in the recent literature. For the case the simplifying assumption
is not satisfied, Vatter and Nagler (2016) developed a method to fit a non-simplified vine
to given data such that the parameters of the pair-copulas with non-empty conditioning
sets are dependent on the conditioning variable(s). This functional relationship is modeled
with a generalized additive model. The fitting algorithm is implemented in the R package
gamCopula (Vatter, 2016) as the function gamVineStructureSelect. The selection of the
vine structure is identical to the one selected by RVineStructureSelect.
In this section we will present how distance measures can be used to decide whether a (more
complicated) non-simplified model is needed or the simplified model suffices. This can be
done with the help of the parametric bootstrapping based model selection test introduced in
Section 2.3 of Killiches, Kraus, and Czado (2017c). Let Cf and Cg be the class of simplified
and non-simplified vine copula models, respectively. Since every simplified vine can be
represented as a non-simplified vine with constant parameters, Cf and Cg are nested, i.e.
Cf ⊆ Cg. Now, for data from an arbitrary, but unknown true distribution Rg ∈ Cg we want
to decide which of the classes to choose for modeling the data. Hence, the null hypothesis
we want to test at significance level α is

H0 : Rg ∈ Cf .

This would mean that the true underlying model is in Cf , or in other words that the model
is simplified. If the null hypothesis was rejected, this would be a clear indicator that a
non-simplified vine copula is needed to model the data. To test the null hypothesis (given
a copula data set u0

i ∈ [0, 1]d, i = 1, . . . , N , from Rg) we fit a simplified model R̂f
0 and a

non-simplified model R̂g
0 to the data. Then, the test statistic is given by

d0 = dKL(R̂f
0 , R̂g

0)

and the question is whether this distance is significantly different from 0 (since this would
be the theoretical value under H0). To answer this question the test statistic’s distribu-
tion is approximated by a parametric bootstrapping scheme, which is described in detail
in Section 2.3 of Killiches, Kraus, and Czado (2017c). In short, we generate M = 100
bootstrap replications d1, . . . , dM of the test statistic under H0 and estimate the p-value as
1
M

∑M
i=1 1di>d0 . The validity of this approach is also discussed in detail in Killiches, Kraus,

and Czado (2017c). After investigating the power of the test in the following paragraph,
we apply it to a hydro-geochemical and a financial data set in Section 4.2.4.

Power of the test
In a simulation study we investigate the performance of our test. For this purpose we
consider a three-dimensional non-simplified vine consisting of the pair-copulas c1,2, c2,3 and
c1,3;2, where all pairs are bivariate Clayton copulas. The Kendall’s τ values of the copulas
c1,2 and c2,3 are τ1,2 = 0.7 and τ2,3 = 0.5, respectively. The third τ value depends linearly
on u2: τ1,3;2(u2) = a + (b − a)u2 with constants a, b ∈ [−1, 1]. For a = b the function is
constant such that the vine is simplified. By construction τ1,3;2 can become negative for
some combinations of a, b and u2; in such cases we use the 90 degree rotated version of the
Clayton copula since the Clayton copula does not allow for negative dependence.
By fixing a = 0.3 and letting b range between −1 and 1 in 0.1 steps we obtain 21 scenarios.
For each of the scenarios we generate a sample of size N ∈ {200, 500, 1000} from the
corresponding non-simplified vine copula and fit both a simplified and a non-simplified
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model to the generated data. Since we are only interested in the parameters and their
variability we fix both the vine structure and the pair-copula families to the true ones.
We test the null hypothesis that the two underlying models are equal. In order to assess
the power of the test, we perform this procedure P = 250 times (at significance level
α = 5%) and check how many times the null hypothesis is rejected. As sample size we
take the same N used to generate the original data. In each test we perform M = 100
bootstrap replications. In Figure 21 the proportions of rejections of the null hypothesis
within the P = 250 performed tests are shown depending on b. The different sample sizes
are indicated by the three different curves: N = 200 (dotted curve), N = 500 (dashed
curve) and N = 1000 (solid curve).
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Figure 21: Percentage of rejections of H0 (at level α = 5%) depending on b with constants
a = 0.3, M = 100 and P = 250 for N = 200 (dotted curve), N = 500 (dashed curve) and
N = 1000 (solid curve). The horizontal solid gray line indicates the 5% level.

We see that the observed power of the test is in general very high. Considering the dashed
curve, corresponding to a sample size of N = 500, one can see the following: If the distance
|b− a| is large, τ1,3;2 is far from being constant. Hence, we expect the non-simplified vine
and the simplified vine to be very different and therefore the power of the test to be large.
We see that for b ≤ −0.1 and b ≥ 0.6 the power of the test is above 80% and for b ≤ −0.2
and b ≥ 0.7 it is even (close to) 100%. For values of b closer to a the power decreases. For
example, for b = 0.1 the Kendall’s τ value τ1,3;2 only ranges between 0.1 and 0.3 implying
that the non-simplified vine does not differ too much from a simplified vine. Therefore,
we cannot expect the test to always detect this difference. Nevertheless, even in this case
the power of the test is estimated to be almost 44%. From a practical point of view, this
result is in fact desirable since models estimated based on real data will always exhibit at
least slight non-simplifiedness due to randomness even when the simplifying assumption
is actually satisfied. Further, for b = 0.3 the function τ1,3;2(u2) is actually constant with
respect to u2 so that R∗ is a simplified vine. Thus, H0 is true and we hope to be close to
the significance level α = 5%. With 6.4% of rejections, we see that this is the case here.
Looking at the dotted and the solid curve we find that the higher the sample size is, the
higher is the power of the test, which is what one also would have expected. In the case of
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N = 1000, we have a power of over 80% for b ∈ [−1, 0] ∪ [0.5, 1] and even 100% rejections
for b ∈ [−1,−0.1] ∪ [0.6, 1]. For b = 0.3 the test holds its level with 5.2% of rejections. Yet
even for a sample size of as little as N = 200, the power of the test is above 80% for values
of b between −1 and −0.3 and 0.5 and 1. A power of 100% is reached for b ≤ −0.8 and
b ≥ 0.9. For b = 0.3 the test rejects the null hypothesis in 7.2% of the cases.
We can conclude that our test is a valid α-level method in finite samples to decide if a
non-simplified model is necessary.

4.2.4 Real data examples

Three-dimensional subset of the uranium data set
To show an application of our test we revisit the three-dimensional subset of the uranium

data discussed in Section 4.1.4 and fit both a simplified and a non-simplified vine copula
to the data.
The fitted simplified vine R̂f

0 is specified in the following way: c1,2 is a t copula with
τ1,2 = 0.53 and ν1,2 = 8.03, c2,3 is a t copula with τ2,3 = 0.43 and ν2,3 = 5.93 and c1,3;2 is a t

copula with τ1,3;2 = 0.08 and ν1,3;2 = 5.65. For the non-simplified vine R̂g
0, the pair-copulas

c1,2 and c2,3 are the same as for the simplified vine, c1,3;2 is also still a t copula but now has
ν1,3;2 = 6.69 degrees of freedom and its association parameter depends on u2 as displayed
as the solid line in Figure 22. For values of u2 below 0.8 (roughly) we have small positive
Kendall’s τ values, whereas for the remaining values we observe small to medium negative
association. For comparison, the (constant) Kendall’s τ of the estimated simplified vine
is plotted as a dashed line. Further, the pointwise bootstrapped 95% confidence bounds
under H0 are indicated by the gray area.
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Figure 22: Estimated functional relationship between τ1,3;2 and u2 (for the non-simplified

model R̂g
0). The dashed line represents the constant τ1,3;2 of the simplified model R̂f

0 and
the gray area indicates the pointwise bootstrapped 95% confidence bounds under H0.

The fact that the estimated Kendall’s τ function exceeds these bounds for more than half of
the u2 values suggests that the simplified and non-simplified vines are significantly different
from each other. We now use our testing procedure to formally test this.
The distance between the two vines is dKL0 = 0.058. Using our test, we can reject H0 at the
5% level (with a bootstrapped p-value of 0.01 based on 100 bootstrap iterations). Hence,
we conclude that here it is necessary to model the dependence structure between the three
variables using a non-simplified vine. Acar et al. (2012) and our findings in Section 4.1.4
also suggest that a simplified vine would not be sufficient in this example.
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Four-dimensional subset of the EuroStoxx 50 data set
We examine a 52-dimensional EuroStoxx50 data set containing 985 observations of returns
of the EuroStoxx50 index, five national indices and the stocks of the 46 companies that
were in the EuroStoxx50 for the whole observation period (May 22, 2006 to April 29, 2010).
Since fitting non-simplified vine copulas in high dimensions would be too computationally
demanding we consider only a four-dimensional subset containing the following national
indices: the German DAX (U1), the Italian MIB (U2), the Dutch AEX (U3) and the Spain
IBEX (U4) (see also Example 1 of Killiches, Kraus, and Czado (2017b), where this data set
was already investigated). In practice it is very common to model financial returns using t
copulas (see e.g. Demarta and McNeil, 2005). From Stöber et al. (2013) we know that any
t copula can be represented as a vine satisfying the simplifying assumption. With our test
we can check whether this necessary condition is indeed fulfilled for this particular financial
return data set.
We proceed as in the previous section and fit a simplified model R̂f

0 as well as a non-
simplified model R̂g

0 to the data. The estimated structures of both models are C-vines with
root nodes DAX, MIB, AEX and IBEX. Again, the pair-copulas in the first tree coincide for
both models being fitted as bivariate t copulas with τ1,2 = 0.70 and ν1,2 = 4.96, τ1,3 = 0.72
and ν1,3 = 6.23, and τ1,4 = 0.69 and ν1,2 = 6.80. In the second tree of the simplified model
the pair-copulas are also estimated to be t copulas with τ2,3;1 = 0.23 and ν1,2 = 6.34, and
τ2,4;1 = 0.24 and ν1,2 = 10.77. The corresponding non-simplified counterparts fitted by
the gamVineStructureSelect algorithm are also t copulas, whose strength of dependence
varies only very little and stays within the confidence bounds of the simplified vine (see
Figure 23, left and middle panel). The estimated degrees of freedom are also quite close to
the simplified ones (ν2,3;1 = 6.47 and ν2,4;1 = 11.56), such that regarding the second tree
we would presume that the distance between both models is negligible. Considering the
copula c3,4;1,2 in the third tree, the simplified fit is a Frank copula with τ3,4;1,2 = 0.11, while
the non-simplified fit is a Gaussian copula whose τ values only depend on u1 (i.e. the value
of the DAX). In the right panel of Figure 23 we see the estimated relationship, which is a
bit more varying than the others but still mostly stays in between the confidence bounds.
The broader confidence bounds can be explained by the increased parameter uncertainty
for higher order trees of vine copulas arising due to the sequential fitting procedure.
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Figure 23: Estimated functional relationship of τ2,3;1 (left), τ2,4;1 (middle) and τ3,4;1,2 (right)

in terms of u1 from R̂g
0. The dashed lines represent the constant τ values of the simplified

model R̂f
0 and the gray areas indicate the pointwise bootstrapped 95% confidence bounds

under H0.

The question is now, whether the estimated non-simplified vine is significantly different
from the simplified one, or in other words: Is it necessary to use a non-simplified vine
copula model for this data set or does a simplified one suffice? In order to answer this
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question we make use of our test using parametric bootstrapping and find out that with a
p-value of 0.24 (based on 100 bootstrap iterations) the null hypothesis cannot be rejected.
So we can conclude that for this four-dimensional financial return data set a simplified vine
suffices to reasonably capture the dependence pattern.
Although we only presented applications in dimensions 3 and 4, in general the procedure can
be used in arbitrary dimensions. The computationally limiting factor is the fitting routine
of the non-simplified vine copula model, which can easily be applied up to 15 dimensions
in a reasonable amount of time (for the methods implemented in Vatter, 2016).
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4.3 Determination of simplified vine structures using a test for con-
stant conditional correlations

Parts of Section 4.3 are very similar to the publication Kraus and Czado (2017b).

4.3.1 Motivation

Recall that an exemplary vine copula decomposition of a three-dimensional vine copula is
given by:

c(u1, u2, u3) = c12(u1, u2) c23(u2, u3)c13;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
. (4.11)

In general, there are various ways of specifying a vine copula decomposition. For example,
in the three-dimensional case, there are three possibilities depending on which variable is
chosen to be the conditioning one. When we speak of the structure of the vine, we mean
the specification which pairs of variables are modeled conditioned on which other variables.
It is now a stylized fact that the flexibility of vines is able to overcome the problem of
a limited model choice in the case when only elliptical or Archimedean copulas are used.
Being able to assign a different bivariate copula to any pair of variables, the new issue
arises of having too many possible models to choose from. Not only the selection of pair-
copula families and corresponding parameters, but especially the vast number of possible
model structures make the search of an “optimal” vine for a given data set a challenging
task. Until now, almost unanimously, the method of choice for structure selection is the
so-called Dißmann algorithm (Dißmann et al., 2013). This is also due to its prominent
implementation as RVineStructureSelect in the R package VineCopula (Schepsmeier
et al., 2017). Dißmann’s algorithm is a heuristic that sequentially constructs the vine’s
structure, trying to capture most of the dependence in the lower trees.
The motivation of this section is the observation that the model structure of a vine copula
has a considerable influence on the validity of the simplifying assumption. To illustrate
this, reconsider the three-dimensional vine copula model from Equation (4.11), now in its
simplified form:

c(u1, u2, u3) = c12(u1, u2) c23(u2, u3)c13;2

(
C1|2(u1|u2), C3|2(u3|u2)

)
.

This density can also be written as another vine copula using a different tree structure, e.g.
the one containing the pairs (1,2) and (1,3) in the first and (2,3; 1) in the second tree:

c(u1, u2, u3) = c12(u1, u2) c13(u1, u3)c23;1

(
C2|1(u2|u1), C3|1(u3|u1);u1

)
.

This decomposition does not need to be of simplified form anymore, i.e. the copula c23;1

might now depend on the conditioning value u1. Hence, given data from the simplified
vine copula model we expect a fitted simplified vine copula with the original tree structure
to have a significantly better model fit than one with a different tree structure. While
Dißmann’s structure selection algorithm only takes into account the strength of depen-
dencies between pairs of variables, no consideration concerning the resulting conditional
pair-copula is made. In this section, we propose two new structure selection algorithms
that try to amend exactly this flaw. By using a test for constant conditional correlations
developed in Kurz and Spanhel (2017) and implemented in Kurz (2017), we incorporate
information about the violation of the simplifying assumption when constructing the vine’s
tree structure. The first algorithm selects the first tree similar to Dißmann’s algorithm and
uses the p-values of these tests as weights in the subsequent trees. The second algorithm
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we propose fits a C-vine, where each root node is selected in a way that minimizes the
occurrence of non-simplifiedness in the next tree. As we will see in a simulation study, this
improves the model fit in terms of the Akaike information criterion (AIC) compared to Diß-
mann most of the time, especially when the dimension is large. Finally, in revisiting several
classic data sets that have already been studied in the vine copula context we demonstrate
the practical relevance of our proposed methods.

4.3.2 Dißmann’s algorithm for selecting simplified vine copulas

Since the sequential structure selection algorithm proposed in Dißmann et al. (2013) will
serve as a benchmark vine model selection method, we shortly outline how it works. Assume
we are given an i.i.d. sample of size n of a d-dimensional copula, denoted by (u

(i)
j )i=1,...,n

j=1,...,d.
Since a vine copula model consists of three parts (the vine structure, the parametric families
of each pair-copula and their corresponding copula parameters), each of these components
have to be estimated.
Assume at first that the tree structure is given. Then for each of the d(d−1)/2 pair-copulas
a family and copula parameter(s) have to be selected. Starting with the first tree, for each
unconditional pair the maximum-likelihood estimate of the copula parameter is determined
for each family studied (see Appendix A.1 for a list of families currently implemented in
the VineCopula package). Then the family with the lowest Akaike information criterion
is chosen (Akaike, 1998). In the higher trees, for each edge corresponding to a condi-

tional pair-copula cje,ke;De , the estimated pseudo observations u
(i)
je|De

:= Ĉje|De(u
(i)
je
|u(i)
De

) and

u
(i)
ke|De

:= Ĉke|De(u
(i)
ke
|u(i)
De

), i = 1, . . . , n, are calculated and used to find the optimal family
and parameter for pair-copula cje,ke;De . This is repeated until all pair-copulas are fitted.
Note that it is possible to incorporate a test for independence in the pair-copula selection
process (see Genest and Favre, 2007): Based on the estimated Kendall’s τ the null hypoth-
esis that the (pseudo) observations come from the independence copula is tested. Then, if
the null hypothesis is not rejected for some chosen level β, the pair-copula to be estimated
is chosen to be the independence copula.
Regarding the selection of the tree structure, Dißmann’s algorithm uses a heuristic that
models the strongest pairwise dependencies (measured in terms of the absolute empirical
Kendall’s τ value) in the lower trees. To be precise, the algorithm starts with the first
tree, where all pair-wise empirical Kendall’s τ values are determined and then a maximum
spanning tree using the absolute τ values as weights is selected (e.g. by the Algorithm of
Prim, see Cormen et al., 2001, Section 23.2). For the next tree, all required pseudo ob-
servations are determined as above and for all edges allowed by the proximity condition
the Kendall’s τ values are estimated. Again, a maximum spanning tree is selected using
these empirical Kendall’s τ values as edge weights, now on the graph constrained by the
proximity condition. This procedure is iterated until all d− 1 trees are selected.
Dißmann et al. (2013) justify this heuristic by noting that the lowest trees have the great-
est influence on the overall fit and thus it is important to model most of the dependence
early. Further, they argue that this procedure minimizes estimation errors in higher trees,
because typically the dependence decreases when using the algorithm, making rounding
errors less severe. As a measure of the strength of dependence Kendall’s τ is used since it
is a rank-based dependence measure facilitating the comparison of different copula families
(see e.g. Nelsen, 2007, Chapter 5.1.1).
Alternative methods using other edge weights for the determination of the maximum span-
ning tree have been proposed. For example, the fitted pair-copula’s AIC or the p-value of
a goodness-of-fit test have been used in Czado et al. (2013), but they are not commonly
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used since all possible pair-copulas have to be estimated first to obtain all the edge weights.
This becomes time consuming especially in higher dimensions. Another approach for the
tree selection of vines is given by Kurowicka (2011), who also uses the heuristic of modeling
most of the dependence in the lowest trees by starting with the last tree, where the edge
with the lowest partial correlation is chosen. This is repeated, going backwards, until all
trees are specified.
So we see that there is already quite a range of structure selection methods. However,
all these approaches do not take into account the selected structure’s implications on the
validity of the simplifying assumption and therefore on the overall model fit. The methods
we will propose in Section 4.3.4 remedy this issue. They are based on a test whether the
simplifying assumption is fulfilled for a considered pair-copula term as described in the
following section.

4.3.3 Test for constant conditional correlations (CCC test)

Formally, the simplifying assumption requires that all the pair-copulas of the vine appearing
in Equation (2.3) can be written as follows:

cjeke;De (·, ·; uDe) ≡ cjeke;De (·, ·) .

This means that the pair-copula is independent of the conditioning variables, implying that
the dependence associated with the copula is constant with respect to uDe . A stochastic rep-
resentation of the simplifying assumption is given by (Uje|De , Uke|De) ⊥ UDe , denoting that
the random variables Uje|De = Cje|De(Uje|UDe) and Uke|De = Cke|De(Uke|UDe) are jointly
independent of UDe (Kurz and Spanhel, 2017). Without the simplifying assumption, one
would have to allow cjeke;De to depend on uDe , making it a (|De|+ 2)-dimensional function
to be estimated (which is d-dimensional for the pair-copula in the last tree). This would
defeat the whole purpose and convenience of vine models, whose idea it is to express a
d-dimensional copula just in terms of bivariate building blocks. While for low dimensions
of the conditioning vector researchers have found ways to relax the simplifying assumption
(Acar et al., 2012; Vatter and Nagler, 2016; Schellhase and Spanhel, 2017), in higher di-
mensions this does not seem feasible. Further discussion and implications of the simplifying
assumption can be found in (Hobæk Haff et al., 2010; Stöber et al., 2013; Spanhel and Kurz,
2015; Killiches et al., 2017c).
Recently, Kurz and Spanhel (2017) developed a statistical testing method assessing the
severity of the violation of the simplifying assumption for each conditional pair-copula in a
vine copula. It tests the null hypothesis that the conditional correlation ρjeke|De associated
with pair-copula Cjeke;De is constant with respect to the conditioning variables UDe . For
this purpose, the support Ω0 of UDe is divided by a partition Γ := {Ω1, . . . ,ΩL}, with
L ∈ N, Ωi ∩Ωj = ∅ for i 6= j, and P (UDe ∈ Ωi) > 0 for i = 1, . . . , L. The idea of the test is
that under the null hypothesis the conditional correlation between Uje|De and Uke|De given
UDe ∈ Ωi does not depend on i. Hence, denoting ρΩi

:= Corr(Uje|De , Uke|De|UDe ∈ Ωi), the
null hypothesis is equivalent to testing ρΩ1 = . . . = ρΩL

, which we will call the constant
conditional correlation (CCC) assumption. To derive a test statistic we observe that for

the vector of estimated conditional correlations R̂(n)(Γ) := (ρ̂
(n)
Ω1
, . . . , ρ̂

(n)
ΩL

)′, estimated by
the sample Pearson’s correlation coefficient based on an i.i.d. sample of size n, it holds

√
n(R̂(n)(Γ)−R(Γ))

d−−−→
n→∞

N(0,Σ(Γ)),

where R(Γ) is the vector of true conditional correlations and Σ(Γ) is the asymptotic
variance-covariance matrix (see Kurz and Spanhel, 2017). The asymptotic normality of
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R̂(n)(Γ) is used to derive an asymptotically χ2-distributed test statistic by taking differences
and normalizing. Defining the matrix A ∈ {−1, 0, 1}(L−1)×L with Aij = 1{i = j} − 1{i =
j − 1}, i = 1, . . . L− 1, j = 1, . . . L, i.e.

A =


1 −1

1 −1
. . .

1 −1

 ,

where the omitted entries equal zero, we have that

AR̂(n)(Γ) =


ρ̂

(n)
Ω1
− ρ̂(n)

Ω2

ρ̂
(n)
Ω2
− ρ̂(n)

Ω3
...

ρ̂
(n)
ΩL−1

− ρ̂(n)
ΩL

 .

The real-valued test statistic is defined by

Tn(Γ) = (AR̂(n)(Γ))′(AΣ̂(n)(Γ)A′)−1AR̂(n)(Γ),

where Σ̂(n)(Γ) is a consistent estimator for Σ(Γ). Since Kurz and Spanhel (2017) show that
under regularity conditions and H0 it holds that

nTn(Γ)
d−−−→

n→∞
χ2
L−1,

an asymptotic β-level test is given by

1{nTn(Γ) ≥ F−1
χ2
L−1

(1− β)},

where F−1
χ2
L−1

(1− β) denotes the 1− β quantile of the χ2 distribution with L− 1 degrees of

freedom.
Of course, the power of this test highly depends on the chosen partition Γ. Therefore, Kurz
and Spanhel (2017) adjust the test statistic to accommodate for the combination of different
partitions and further use decision trees to find partitions where a possible violation of the
simplifying assumption is most pronounced. The partition size L is determined by the
algorithm and grows with |De| (see Kurz and Spanhel, 2017, for details). Finally, they
show that the test has a very high observed power compared to benchmark methods. The
test is implemented as function pacotest in the R package pacotest (Kurz, 2017).

4.3.4 Two new tree selection algorithms

Motivation
As a motivation we first consider three-dimensional data sets. Here we know that there are
three different possible vine tree structures and that the specification of the first tree already
fully describes the whole tree structure. In Section 4.3.2 we have seen that Dißmann’s
algorithm chooses the tree structure that maximizes the dependence between the variables
in the first tree. However, the resulting tree structure might yield a non-simplified vine
copula even though the true model is a simplified vine copula. Hence, the model fit of
Dißmann in terms of log-likelihood might not be optimal.
This motivates us to select tree structure by testing which combination of variables is “most
simplified”. In detail, we use the R function pacotest to test for the hypothesis that the
CCC assumption holds for Ui, Uj|Uk with k ∈ {1, 2, 3} and {i, j} = {1, 2, 3}\{k}. Then, we
choose the tree structure which has the highest p-value in the second tree.
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Example 1 We show how this works for a real life data set, namely a subset of the
well-known seven-dimensional hydro-geochemical data set first investigated by Cook and
Johnson (1986), consisting of N = 655 observations of log-concentrations of the three
chemicals cobalt (U1), titanium (U2) and scandium (U3) in water samples taken from a
river near Grand Junction, Colorado. This data set has been examined with regard to the
simplifying assumption by many researchers, e.g. Acar et al. (2012), Killiches, Kraus, and
Czado (2017a) and Killiches, Kraus, and Czado (2017c). After transforming the data to
the copula scale by applying the empirical probability integral transform, we estimate the
Kendall’s τ values for each of the three pairs. They are τ̂12 = 0.54, τ̂13 = 0.36 and τ̂23 = 0.44.
Consequently, Dißmann’s algorithm chooses edges (1, 2) and (2, 3) corresponding to pair-
copulas c12 and c23 for the first tree resulting in the conditional copula c13;2 to be modeled
in the second tree. The Dißmann algorithm fits all pair-copulas as t copulas. The log-
likelihood and AIC-values of the vine copula fitted by Dißmann’s algorithm are 428.8 and
−845.6, respectively (see also Structure 2 in Table 4).

Structure Tree 1 conditional copula p-value sum of τ log-lik AIC

1 2–1–3 c23;1 0.29 0.54 + 0.36 = 0.90 434.9 −857.8
2 1–2–3 c13;2 0.01 0.54 + 0.44 = 0.98 428.8 −845.6
3 1–3–2 c12;3 0.19 0.36 + 0.44 = 0.80 418.5 −825.1

Table 4: The p-values, sums of Kendall’s τ values, log-likelihoods and AIC-values of the
three possible tree structures for the three-dimensional uranium dataset.

Let us now examine the p-values of the test for constant conditional correlations for the
three possible tree structures. They are 0.29, 0.01, 0.19 for the conditional copulas c23;1,
c13;2 and c12;3, respectively. Hence, we see that the structure chosen by Dißmann’s algorithm
has a strong indication for non-simplifiedness, such that we would rather choose one of the
other two structures. The structure corresponding to the highest p-value (Structure 1 in
Table 4) also has a larger sum of Kendall’s τ values in the first tree compared to the other
structure with a large p-value (0.54+0.36 = 0.90 vs. 0.36+0.44 = 0.80), such that we would
choose the structure with edges (1,2) and (1,3) in the first and (2,3; 1) in the second tree.
The fitted vine copula of Structure 1 has a Tawn and a t copula in the first tree and a BB7
copula in the second tree. With a log-likelihood of 434.9 and an AIC of −857.8 it provides
a better model fit than the one selected by Dißmann’s algorithm. For completeness we note
that Structure 3 in Table 4 has the worst fit, with the lowest sum of τ in the first tree and
rather low p-value for the conditional copula in the second tree. All in all, with Structure
1 we found a way of describing this data set using a simplified vine copula, whereas in
the recent literature it seemed necessary to use a non-simplified vine copula model when
Structure 2 was used.
Extending this idea to higher dimensions, things get more complicated because there are
superexponentially more tree structures to choose from. While e.g. in five dimensions there
are still “only” 480 possible tree structures, in ten dimensions they already explode to
4.8705 · 1014. See Morales-Nápoles (2011) for a general formula for counting the number of
different vine structures. The question is now how to incorporate the information about
the tests concerning the simplifiedness of the conditional copulas for the determination of
the best vine tree.

Algorithm 1: Regular vine structure selection using CCC test based weights
The first approach that we propose is to choose the first tree (where there are no explicit
considerations about simplifiedness yet) according to Dißmann’s approach and then to
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incorporate the CCC tests in the higher level trees. In each tree, the test’s p-values of all
edges allowed by the proximity condition are calculated and used to find the maximum
spanning tree. This would constitute a compromise between both approaches reflecting as
much of the dependence as possible in the first tree and accounting for non-simplifiedness
in the trees where conditional copulas have to be fitted. Further, one can also assign a
score to each edge combining both the edge’s p-value and estimated absolute Kendall’s τ .
Hence, the score of an edge e would be defined as

sα(e) := α · fp(e) + (1− α) · fτ (e),

where α is a weighting factor and the functions fp and fτ map each edge e allowed by the
proximity condition to a score regarding its degree of simplifiedness and absolute Kendall’s
τ values, respectively. For example, fp could be the function mapping each edge to its
associated rank of the p-value arising from the CCC test, i.e. fp(ei) = i, if the edges ei are
ordered such that p-value(e1) < p-value(e2) < . . . < p-value(eK). Here, K is the number
of edges allowed by the proximity condition. Similarly, fτ could rank the edges by their
absolute empirical Kendall’s τ values, such that the scales of fp and fτ would coincide.
The weighting factor α can be chosen by the user. We will see in Section 4.3.5 that values
around 0.6 yield good fits in terms of the AIC. After having determined the score of each
edge, a maximum spanning tree on the edges using the scores sα(e) is constructed. Then,
similar to Dißmann’s algorithm the pair-copulas corresponding to the chosen tree are fitted
(with or without an independence test). Algorithm 1 implements this procedure.

Algorithm 1 Regular vine structure selection using CCC test based weights

Input: d-dimensional copula data, weighting factor α, edge score functions fp and fτ .

1: Tree 1: estimate absolute empirical Kendall’s τ values between all variables and find
the corresponding maximum spanning tree. For each selected edge of the tree, fit a pair-
copula based on the copula data and determine the corresponding pseudo observations
for the next tree.

2: for m = 2, . . . , d− 1 do
3: Tree m: for all edges e allowed by the proximity condition, calculate the score
sα(e) = α·fp(e)+(1−α)·fτ (e) using the pseudo observations and find the corresponding
maximum spanning tree. For each selected edge of the tree, fit a pair-copula based on
the pseudo observations and determine the corresponding pseudo observations for the
next tree.

Output: R-vine with tree structure focused on constant conditional dependencies as well
as large dependencies in lower trees.

Example 2 We show how the algorithm works in detail for a 5-dimensional example.
At first we generate a random R-vine object with random tree structure, families and
parameters and simulate a sample of size 1000 from it (exact details on how the random
vine is generated can be found in Section 4.3.5). The resulting true vine specification is a
D-vine with pair-copulas given in Table 5.
The chosen vine’s first tree connects the edges (2,3), (2,4), (1,5) and (4,5). In a first
step we fit an R-vine to the simulated data using the function RVineStructureSelect in
which Dißmann’s algorithm is implemented. The resulting first two trees are displayed in
Figure 24 as the gray graphs.
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Tree 1 Tree 2

C23: Clayton (0.44) (τ23 = 0.18)
C24: type 1 Tawn (2.43, 0.81) (τ24 = 0.51)
C15: type 2 Tawn (6, 0.43) (τ15 = 0.39)
C45: survival Gumbel (2.69) (τ45 = 0.63)

C34;2: survival BB6 (1.07,2.31) (τ34;2 = 0.58)
C25;4: BB8 (1.62, 0.7) (τ25;4 = 0.1)
C14;5: 270 degree rotated type 1 Tawn (−3.89,

0.54) (τ14;5 = −0.45)
Tree 3 Tree 4

C35;24: survival Joe (2.31) (τ35;24 = 0.42)
C12;45: Frank (18.67) (τ12;45 = 0.8)

C13;245: survival BB1 (0, 2.39) (τ13;245 = 0.58)

Table 5: D-vine copula specification of Example 2.

Tree 1: 5 4 2

1

3

Tree 2:

1, 5

3, 5

4, 5 2, 4

τ̂15 = 0.39

τ̂35 = 0.53

τ̂45 = 0.62 τ̂24 = 0.46

τ̂23 = 0.18

τ̂14;5 = −0.45

p = 97.1%

τ̂13;5 = −0.17

p = 0.03%

τ̂34;5 = 0.13

p = 23.8%

τ̂25;4 = 0.10

p = 5.9%

Figure 24: First two trees selected by Dißmann’s algorithm (gray). In Tree 1, the empirical
Kendall’s τ values of each edge are given in the boxes and the dashed lines correspond to the
true tree structure. In Tree 2, additionally to Kendall’s τ , the p-values of the conditional
correlation test are given and the dashed lines mark the tree selected by Algorithm 1.

The first tree of the fitted R-vine is quite close to the true one (highlighted by a dashed
line). Edges (2,4), (1,5) and (4,5) are selected and the true copula families are chosen with
parameters very close to the true ones (τ̂24 = 0.46, τ̂15 = 0.39 and τ̂45 = 0.62). Only edge
(3,5) is selected instead of (2,3) since it has a higher empirical Kendall’s τ (0.53 compared
to 0.18).
Due to the proximity condition in the second tree, node (2, 4) can only be connected to
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(4,5) (since it is the only other node containing a 4 or a 2), resulting in the edge (2,5; 4).
Regarding nodes (1,5), (3,5) and (4,5) the proximity condition allows all of these nodes to be
connected. Only focusing on the absolute empirical Kendall’s τ value, Dißmann’s algorithm
chooses edges (1,3; 5) and (1,4; 5) since |τ̂14;5| > |τ̂13;5| > |τ̂34;5|. Altogether, the selected
second tree constitutes a path and therefore the higher level trees are already determined by
the proximity condition. The AIC of the R-vine fitted by Dißmann’s algorithm is −7775.5.
Next, we consider the results of our proposed algorithm on this data set. Of course, the
selected first tree coincides with the one from Dißmann’s algorithm. However, in the second
tree, when choosing which of the nodes (1,5), (3,5) and (4,5) to connect, we see that even
though edge (1,3; 5) has a slightly larger absolute Kendall’s τ̂ than edge (3,4; 5), its p-value
(0.03%) is much smaller than the 23.8% of edge (3,4; 5). Thus, for α ≥ 0.5 our proposed
algorithm would choose edges (3,4; 5) and (1,4; 5) for the second tree (cf. the dashed graph
in the lower panel of Figure 24). After having fit the third and fourth trees accordingly, the
overall resulting R-vine proves to yield a much better fit than Dißmann’s algorithm with
an AIC of −8272.9.
In the simulation study presented in Section 4.3.5 we repeat this procedure 1000 times
and find that Algorithm 1 achieves a better or equal AIC-value in 80.5 percent of the
simulations.

Algorithm 2: C-vine structure selection using CCC test based weights
One major disadvantage of Algorithm 1 is that the overall tree structure is already strongly
affected by the first tree due to the proximity condition. For example, if the first tree is
fitted with a path-like structure, then the whole vine is automatically a D-vine since the
proximity condition only allows for one possible (also path-like) structure in the higher
trees. In this case we cannot account for a possible non-simplifiedness of the model at all.
For example, in three dimensions Algorithm 1 would always yield the same structure as
the Dißmann algorithm since for three nodes every tree constitutes a path. So, e.g. for the
three-dimensional uranium example described in Section 4.3.4, where the consideration of
the test for the simplifying assumption improved the structure fit, the proposed algorithm
would be futile.
Thus we have to find a way how to sequentially select a vine structure incorporating in the
current tree the information which conditional correlations are not constant in the subse-
quent tree while still keeping the subsequent graph as flexible as possible. We have seen
that a path-like structure in the first tree already determines the structure of the remaining
trees. Conversely, we know that we retain the highest flexibility by fitting a star-like struc-
ture in the first tree since then the proximity condition imposes no restriction (such that all
nodes in the subsequent tree are allowed to be linked by an edge). Following this logic for all
trees, a star-like structure is reasonable for every tree level. The root node vm of each star
should be chosen such that on the one hand the sum of absolute empirical Kendall’s τ values
between this root node and all the other variables (conditioned on the earlier root nodes
v1, . . . , vm−1) is large. On the other hand, conditioned on the root node vm (and all the
earlier root nodes) pairs of the remaining variables should have rather constant conditional
correlations, i.e. the p-values of the CCC test conditioning on the root nodes should be large.
Formally, at tree levelm we assign each remaining node v ∈ Nm := {1, . . . , d}\{v1, . . . , vm−1}
the score ψα(v) (operating on nodes v instead of edges e as in Algorithm 1) defined as

ψα(v) = α · gp(v) + (1− α) · gτ (v).

We then choose the one with the highest score as a root node for tree m. Again, α is a
weighting factor and gp and gτ are functions mapping a node to ranked scores regarding
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the CCC tests and the Kendall’s τ values, respectively. To be precise, let pij;v1,...,vm−1,v

denote the p-value of the test for constant conditional correlation of Cij;v1,...,vm−1,v and let
r be the function mapping a p-value pi0j0;v1,...,vm−1,v0 to its rank among all possible p-values
pij;v1,...,vm−1,v with i, j, v ∈ Nm pairwise distinct. Then, gp calculates for all v ∈ Nm the
p-value score

p(v) :=
∑

i,j∈Nm\{v}, i 6=j

r(pij;v1,...,vm−1,v),

and then maps each v to its rank among all p-value scores {p(v)}v∈Nm (e.g. the root node
with the smallest p-value score would be assigned rank 1). Instead of choosing the function
r to be the rank transformation, other transformations such as the logarithm are possible.
However, the results of the simulation study show that the rank transformation yields the
best results (see Appendix A.6).
Regarding Kendall’s τ , gτ similarly calculates the τ scores

t(v) :=
∑

i∈Nm\{v}

|τ̂iv;v1,...,vm−1|, v ∈ Nm

and then assigns each v to its corresponding rank among these τ scores. The Kendall’s
τ associated to civ;v1,...,vm−1 is estimated as the empirical Kendall’s τ between the pseudo
observations ûi|v1,...,vm−1 and ûv|v1,...,vm−1 and is denoted by τ̂iv;v1,...,vm−1 .
After the optimal root node is found, similar to the other algorithms all pair-copulas implied
by the resulting tree have to be fitted (with or without independence test) for the calculation
of the pseudo observations of the next tree level (see Algorithm 2).

Algorithm 2 C-vine structure selection using CCC test based weights

Input: d-dimensional copula data, weighting factor α, node score functions gp and gτ .

1: for m = 1, . . . , d− 1 do
2: Tree m: Determine the optimal root node by evaluating score ψα(v) = α·gp(v)+(1−
α) · gτ (v) for all nodes v ∈ Nm and choose the maximal one. Fit pair-copulas between
this root node and the remaining nodes based on the pseudo observations. Calculate
the corresponding pseudo observations needed for the tree selection in the next step.

Output: C-vine with tree structure focused on constant conditional dependencies as well
as large dependencies in lower trees.

Using this algorithm with any α > 0.5, we retrieve the AIC-optimal tree structure for the
uranium example discussed in Section 4.3.4.

Example 2 (continued) We revisit the 5-dimensional example from the previous section
and want to apply Algorithm 2 to the simulated data (with α = 0.6 and rank-transformed
p-values). Table 6 displays the information needed to find the optimal root node v1 in the
first tree of the C-vine.
For example, the p-value score p(1) = 91 is the sum of the ranks of the 6 p-values pij;1,
i, j ∈ {2, 3, 4, 5}, i 6= j, among the 30 possible p-values. Since 91 is the third largest p-
value score, its rank among the p-value scores is 3. Similarly, since

∑5
i=2 |τ̂i1| = 1.04 is the

smallest of the τ scores node 1 gets assigned rank 1. Hence, the overall score is calculated as
ψα(v) = 0.6 · 3 + 0.4 · 1 = 2.2. Doing this for the other possible root nodes we see that node
5 has the largest p-value and τ scores and therefore with an overall score of 5.0 is selected
as the first root node. This procedure is repeated for all trees yielding a C-vine with root
node ordering 5–4–2–1–3 and an AIC of −7446.6. While we see that this model has a higher
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node v p(v) rank(p(v)) t(v) rank(t(v)) ψα(v)

1 91 3 1.04 1 2.2
2 89 2 1.47 3 2.4
3 105 4 1.31 2 3.2
4 69 1 1.72 4 2.2
5 111 5 1.98 5 5.0

Table 6: p-value scores p(v) and τ scores t(v) with associated ranks, and the overall score
ψα(v) with α = 0.6 for the determination of the root node v1 in the first tree of the C-vine
fitted by Algorithm 2.

(i.e. worse) AIC than the ones selected by Algorithm 1 and by Dißmann’s algorithm (which
may be due to the fact that the true model is a D-vine and Algorithm 2 fits a C-vine), it
still finds the AIC-optimal out of the 60 possible C-Vines structures. Further, we will see
in Section 4.3.5, where this procedure is repeated 1000 times, that in 73.6% of the time
Algorithm 2 finds a C-vine with a better AIC than the one of Dißmann’s chosen R-vine.

4.3.5 Simulation study

Setup
We perform an extensive simulation study, evaluating the performance of the two proposed
algorithms in many different scenarios. For each scenario, we repeat R = 1000 simulations
of samples with size n of randomly generated d-dimensional R-vine copulas. For these,
we sample uniformly one out of the 2(d−2)(d−3)/2 different structure matrices with natural
ordering as described in Joe et al. (2011) using the R function RVineMatrixSample from
VineCopula; for each pair-copula, a random copula family out of the 12 families currently
implemented in the package VineCopula is selected (see Appendix A.1 for a list of the im-
plemented families). Regarding the copulas’ parameters, Beta(2, 2) distributed Kendall’s
τ values are generated and multiplied by −1 with a probability of 50% (note that the
densities of some families have to be rotated by 90 degrees to accommodate negative de-
pendence). The Beta(2, 2) distribution is symmetric around its mode 0.5 with a variance of
0.05 and has a 95% confidence interval given by [0.09, 0.91]. Next, for the two-parametric
copula families the second parameter is randomly generated from suitable distributions (see
Appendix A.2 for details). Finally, the first parameter of all pair-copulas is derived from
the sampled Kendall’s τ values and the second parameters (where required) using the R
function BiCopTau2Par (see Joe, 1997, for details). An exemplary random 5-dimensional
R-vine is given in the Table 5 of Section 4.3.4.
In the simulation study, for each of the samples of size n from these random R-vines we will
calculate the AIC-values of the vines fitted using our proposed algorithms (here without
the mentioned independence tests). The AIC-values will be compared to those of the fitted
Dißmann vines. Before presenting the results of the simulation study, we shortly investi-
gate the influence of the weighting factor α on the AIC-values of the models fitted by our
algorithms.

Choice of weighting factor α
In the simulation study we will consistently use the weighting factor α = 0.6. This choice
is justified because we heuristically observe that the AIC of our fitted values on average
is lowest for medium sized weighting factors with the best performances for α = 0.6. We
generate 1000 random d-dimensional vine copulas (as described in Section 4.3.5), simulate
a sample of size n from each copula and apply our algorithms to the sample using weighting
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factors α ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. For each α we compute the AIC of the fitted models
averaged over the 1000 repetitions. Overall, we find that in most scenarios α = 0.6 yields
the lowest average AIC or close to it. Figure 25 displays exemplary results for Algorithm 2
in the setting n = 1000 and d = 5, 10, 30.
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Figure 25: AIC-values of vine copulas fitted by Algorithm 2 depending on the weighting
factor α in the setting n = 1000 and d = 5, 10, 30, averaged over 1000 repetitions.

We observe a U-shape of the plots indicating that choosing the weighting factor too small
or too large does not yield optimal fits. So, focusing exclusively on the Kendall’s τ values
or the p-values of the CCC test apparently is not sufficient. For d = 5 and d = 10 the
minimum of the average AIC-values is attained for α = 0.6 and in dimension thirty for
α = 0.4 with the average AIC of α = 0.6 being still quite close to the minimum. The
results for sample sizes n = 400 and n = 3000 given in Appendix A.4 are very similar and
lead the same conclusion of α = 0.6 being optimal. Finally, the same study applied for
Algorithm 1 also yields an optimum of α = 0.6.

Results
In our simulation study we let the dimension d of the randomly generated vine copulas vary
between 3 and 50 and the sizes of the simulated samples n between 400 and 3000. The
percentage of times where our algorithms performs better or equal than Dißmann is given
in Table 7 (the percentages of equal performance are given in brackets and are omitted if
they are 0). The results of the table are also visualized in Figure 29 of Appendix A.7.

d
Algorithm n 3 4 5 7 10 15 20 30 50

Algorithm 1
400 100 (100) 92.2 (89.0) 80.8 (69.3) 54.9 (30.8) 41.9 (5.9) 34.8 (0.2) 30.0 26.5 22.1
1000 100 (100) 93.1 (89.0) 82.3 (69.7) 59.9 (32.3) 41.4 (4.8) 35.9 (0.1) 30.3 28.9 27.3
3000 100 (100) 92.6 (88.6) 79.9 (68.0) 58.3 (31.3) 41.6 (4.2) 36.2 (0.2) 35.3 21.8 18.2

Algorithm 2
400 84.4 (49.6) 68.8 (3.1) 67.7 75.9 82.0 93.2 96.7 99.2 99.8
1000 91.1 (51.5) 75.5 (3.8) 73.6 80.2 88.7 95.8 99.0 99.6 100
3000 93.4 (47.6) 77.1 (3.7) 75.8 82.2 91.7 96.8 99.2 100 100

Table 7: Percentages of better or equal performance regarding the AIC-value of the two
algorithms compared to Dißmann’s algorithm for different dimensions d and sample sizes
n based on 1000 data sets sampled from randomly generated R-vines (in brackets the
percentages of equal performance are given).

We see that in general our two proposed algorithms perform very well compared to Diß-
mann’s algorithm. Of course, in low dimensions Algorithm 1 performs very similar to
Dißmann’s algorithm since there the first tree greatly determines the model fit. So as we
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already noted, in three dimensions Algorithm 1 and Dißmann’s algorithm always find the
same vine structure and even in four and five dimensions they coincide in almost 90% and
70% of the times, respectively. In higher dimensions, when the selected tree structures differ
more often, Algorithm 1 manages to find a better structure than Dißmann’s algorithm in
more than one third of the simulations for dimensions 10-15 and around one fourth of the
time for dimensions larger than 20. Further, it seems that the sample size has no effect
on which of the two algorithms performs better since the percentages stay rather constant
when the sample size changes from 400 to 3000.
Concerning Algorithm 2 the results are even more promising. In every scenario it is better
or equal than Dißmann’s algorithm in more than two thirds of the time. Especially in high
dimensions (d ≥ 15) it outperforms in more than 90% of simulations. Moreover, we note
that a larger sample size helps to increase the advantage of Algorithm 2 even further with
increasing percentages for n going from 400 to 3000, regardless of the considered dimension.

Regarding the question, how much better Algorithm 2 performs than Dißmann’s algorithm
we present in Figure 26 boxplots of the difference between the AIC-values per observation
of the models found by Dißmann’s and our second algorithm for n = 1000. Positive values
imply a worse performance of the Dißmann algorithm.
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Figure 26: Boxplots of the difference between the AIC-values per observation of the vines
chosen by Dißmann’s algorithm and Algorithm 2.

The boxplots affirm the results from Table 7. The differences between the AIC of Diß-
mann’s algorithm and Algorithm 2 are mostly positive and become larger as the dimension
increases. We further see that the magnitude of AIC improvements is much larger than
that of the AIC losses. Since the values are shown per observations, we observe AIC im-
provements of up to 60,000 in 50 dimensions. Due to the scaling the values in the lower
dimensions appear to be close to zero. However, we performed t-tests with the null hypoth-
esis that the mean of the AIC differences is zero and could reject it in favor of Algorithm 2
with p-values smaller than 10−30 for all dimensions. The boxplots in the scenarios n = 400
and n = 3000 are very similar and can be seen in Appendix A.3.
In our simulation study the pair copulas’ Kendall’s τ values were sampled from [−1, 1].
Since many real life data sets (especially in finance) consist of variables that are pairwise
positively dependent we repeat our simulation study sampling only positive Kendall’s τ
values. An excerpt of the results is given in the first two rows of Table 11 in Appendix A.5.
The results are quite similar: Algorithm 1 performs slightly worse than in the case where
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the τ values were sampled from [−1, 1] and Algorithm 2 has better performance in low and
worse performance in high dimensions.
In the construction of the algorithms we noted that the pair-copula selection can be done
with or without a prior independence test deciding whether the independence copula can
be used. The results above were obtained without the use of independence test. In the last
two lines of Table 11 in Appendix A.5 we present the results in the positive dependence
case when our as well as Dißmann’s algorithms use the independence test at level β = 0.05.
All the results are very similar to those without the independence test implying that the
relative performances of the algorithms do not strongly depend on the use of the indepen-
dence test.
Finally, for both algorithms we chose the rank functions for scoring the Kendall’s τ and
p-values of the test for constant conditional correlations. This is justified in Appendix A.6.

Computational times and a faster version of Algorithm 2
We consider whether the better performance of our algorithm comes at a higher computa-
tional cost. The average computational times (based on 100 repetitions) of fitting a vine
copula with the three competing algorithms depending on the dimension d are displayed
for n = 1000 in Table 8.

d
Algorithm 3 4 5 7 10 15 20 30 50
Dißmann 0.42 0.92 1.47 3.14 6.63 15.6 24.6 67.8 155.3
Algorithm 1 0.41 0.83 1.42 2.94 6.42 15.2 23.5 65.1 157.7
Algorithm 2 0.49 1.20 2.37 6.65 20.08 72.9 154.6 731.2 3409.4

Table 8: Average computational times of the three algorithms for n = 1000 in different
dimensions.

We see that the computational times of Dißmann’s algorithm and Algorithm 1 are always
very close to each other with Algorithm 1 being even faster most of the times. Algorithm 2
clearly is much slower than the other algorithms since for the determination of the opti-
mal root node each possible pair-copula of the current tree level has to be fitted for the
calculation of all the required p-values. This effect increases with the dimension making
Algorithm 2 comparably fast in low dimensions, only 3 times slower in 10 dimensions, but
roughly 20 times slower for d = 50.
A possible way to decrease the computational time of Algorithm 2 is given by the following
adjustment: in a first step we restrict the allowed pair-copula families exclusively to the
Gaussian copula and proceed as before to determine the estimated tree structure. In a
second step all pair-copulas appearing in this tree structure are fitted again, now allowing
for all pair-copula families. The idea is that the resulting vine copula models hopefully do
not differ too much from the unadjusted fit since the p-values of the CCC tests should not
be very sensitive to the chosen families used to determine the pseudo observations and thus
yield similar choices for the optimal root nodes. At the same time the computational effort
is greatly reduced since the most time consuming step of Algorithm 2 is the fitting of the
pair-copulas to determine the p-values of the CCC tests. Table 9 displays the percentages
of computational times and AIC-values of the adjusted version of Algorithm 2 relative to
the unadjusted version for dimensions d = 5, 10, 30 and sample sizes n = 400, 1000, 3000.
We see that the adjustment greatly reduces the computational time making the algorithm
almost as fast as Dißmann’s algorithm. Further, the loss in performance is negligibly
small with relative performances ranging between 97 and 99 percent. Thus, we found a
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d 5 10 30
n 400 1000 3000 400 1000 3000 400 1000 3000

% time 52.0 52.1 51.9 31.2 29.6 28.2 15.8 14.0 12.9
% AIC 98.5 97.7 97.1 98.4 98.7 97.4 99.0 98.2 98.2

Table 9: Percentages of computational times and AIC-values of the adjusted version of
Algorithm 2 relative to the unadjusted version for dimensions d = 5, 10, 30 and sample
sizes n = 400, 1000, 3000.

way to significantly improve the computational times of Algorithm 2 without losing too
much performance. Nevertheless, in the following applications we will continue using the
unadjusted version of Algorithm 2 in order to achieve the best results possible.

4.3.6 Real data examples

In order to assess the performance of our proposed algorithms when confronted with real
data, we revisit several data sets that have been used in the recent vine copula literature. For
the description of each of the data sets we refer the reader to the respective references. The
uranium data set, of which we already examined a three-dimensional subset in Section 4.3.4
was introduced in Cook and Johnson (1986). The bike data sets (Schallhorn et al., 2017)
are daily and hourly records of bike rentals in Washington, D.C., together with local climate
data (temperature, perceived temperature, humidity and wind speed). The hourly bike data
set additionally contains the variable hour. The MAGIC (Major Atmospheric Gamma-ray
Imaging Cherenkov) data has been analyzed in the context of classification by Nagler and
Czado (2016). We only show the results for the subset with the classification hadron.
Further, the Norwegian data is a financial data set of Norwegian and international market
variables used in the context of truncated regular vines by Brechmann et al. (2012) and
Killiches, Kraus, and Czado (2017c). Two higher dimensional financial data sets are given
by the CDS data (Brechmann et al., 2013; Kraus and Czado, 2017a) and the EuroStoxx
50 data (Brechmann and Czado, 2013; Killiches et al., 2017c). Finally, in order to include
another non-financial data set, we also consider a subset of the Concrete Compressive
Strength Data Set (Yeh, 1998), containing all of its continuous variables, namely Cement,
Coarse aggregate, Fine aggregate and Concrete compressive strength.
The dimensions of the data sets range between 3 and 52 with sample sizes between 655 and
17379. All of the data was transformed to the copula scale using adequate preprocessing
methods where necessary (e.g. GARCH models for time series data as in Liu and Luger,
2009) and empirical probability integral transforms. Table 10 shows the AIC-values of the
vine copulas fitted by the three competing algorithms (note that we use the unadjusted
version of Algorithm 2). We further provide in brackets for each vine copula fitted by the
three algorithms the number of pair-copulas for which the test for constant conditional
correlations is rejected at the 5% level. So, e.g. in the case of the 3-dimensional uranium
data set the CCC test is rejected with a p-value of 0.01 for the conditional copula modeled
by Dißmann’s algorithm (yielding a “1” in brackets), while Algorithm 2 chooses a structure
with no rejection (implying the “0”).
Similarly to its three-dimensional subset the complete seven-dimensional uranium data set
is best fitted by Algorithm 2. Out of the 15 conditional pair-copulas of the vine fitted by
Dißmann’s algorithm four are deemed non-simplified at 5% level. Algorithm 2 is able to
reduce this number to one, thus yielding a better model fit. Regarding the four-dimensional
concrete data set we see that Algorithm 2 is also able to improve the model fit. It may seem

66



Data uranium concrete bike daily bike hourly uranium
d 3 4 5 6 7
n 655 1030 731 17379 655

Dißmann −845.6 (1) −522.9 (2) −4423.5 (3) −89859.6 (9) −1759.9 (4)
Algorithm 1 −845.6 (1) −522.9 (2) −4423.5 (3) −89842.4 (9) −1756.4 (4)
Algorithm 2 −857.8 (0) −551.6 (3) −4454.1 (3) −92040.5 (10) −1817.2(1)

Data MAGIC Norwegian CDS EuroStoxx
d 10 19 38 52
n 6688 1187 1371 985

Dißmann −61359.4 (23) −12906.4 (18) −40985.7 (31) −62377.8 (87)
Algorithm 1 −61649.7(24) −12946.6 (10) −40922.4 (25) −62280.1 (65)
Algorithm 2 −58197.4 (17) −12756.5 (12) −40514.5 (32) −62074.8 (68)

Table 10: AIC-values of the Dißmann’s algorithm, Algorithm 1 and the unadjusted version
of Algorithm 2 applied to real data sets. In brackets the number of pair-copulas is given
for which the CCC test is rejected at 5% level.

surprising, that compared to the other methods it increases the number of pair-copulas that
violate the simplifying assumption. However, if we have a closer look at the p-values of
the fitted pair-copulas, we see that the Dißmann fitted vine contains one pair-copula with
p-value equal to zero which apparently severely impairs the model’s likelihood. Similar
observations can be made for the two bike data sets.
Considering the higher dimensional data sets we notice that Algorithm 2 looses its competi-
tive advantage. The ten-dimensional MAGIC data as well as the 19-dimensional Norwegian
data achieve their best fit using Algorithm 1. For the MAGIC data set it increases the over-
all non-simplified pair-copulas while reducing the number of strong violations (with p-value
equal to zero) from 12 to 8. The good performance of Dißmann’s algorithm for the high-
dimensional finance data sets is not surprising. It is a stylized fact that such financial data
sets are modeled fairly well by t copulas (see for example Demarta and McNeil, 2005).
Stöber et al. (2013) have shown that vine decompositions of t copulas are of the simplified
form, independently of the vine’s tree structure. Thus, the CCC test is rejected less often
for vines modeling financial data. So for the 38-dimensional CDS data set, in the Dißmann
vine only 31 of the 666 fitted pair-copulas violate the simplifying assumption, which is
slightly less than the 5% that we would expect if the null hypothesis would be true for all
pair-copulas. Thus, for structure selection purposes the p-value score is rather unimportant
in this example. Consequently, Dißmann’s heuristic of modeling the strongest dependencies
in the lower trees yields the best results and the restriction to C-vines imposed by Algo-
rithm 2 is apparently too severe. Similar arguments hold for the 52-dimensional EuroStoxx
data set, where only 6.8% of the pair-copulas fitted by Dißmann’s algorithm violate the
simplifying assumption.
Regarding the pair-copula families selected by the three algorithms, we observe that they
do not differ considerably between the algorithms. Not surprisingly, most of the pair-copula
families of the financial data sets are t copulas, with some Tawn, Frank and BB1 copulas
in the mix. The concrete data was modeled mainly by Tawn, Frank and Gauss copulas.
The same copula families were chosen for the two bike data sets, with some additional BB8
copulas and rotations thereof. For the uranium data set, Frank, Joe, t and Tawn copulas
were favored, while the most commonly selected families of the MAGIC data were Tawn,
BB8 and t copulas. So we see that in these examples many non-Gaussian copulas are se-
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lected such that Gaussian copulas would not provide satisfying model fits.
All in all, we have seen that the algorithms proposed in this section are able to improve the
model fit compared to Dißmann’s algorithm, especially when the Dißmann vine exhibits
significant non-simplifiedness as assessed by the CCC test.

4.3.7 Summary

We proposed two new algorithms for the sequential selection of the tree structure of a vine
copula model. We extended currently existing methods by incorporating tests which gage
the validity of the simplifying assumption for every pair-copula. This resulted in vine copula
models which frequently have a better model fit than the benchmark given by Dißmann’s
algorithm.
Further, we revisited the three-dimensional uranium data set, which is famous for its non-
simplified nature when considering its vine decomposition using Dißmann’s algorithm. How-
ever, we found out that using the vine decomposition where the conditioning in the second
tree is done with respect to cobalt, the resulting vine is of the simplified form and provides
a better model fit.
In the real data application we saw that our proposed algorithms work especially well,
when the vine fitted by Dißmann’s algorithm contains many pair-copulas violating the sim-
plifying assumption. Thus, from a practitioner’s point of view, after fitting a d-dimensional
vine copula using Dißmann’s algorithm one should always count the number of pair-copulas
for which the test of constant conditional correlations is rejected at some level β. If this
number is considerably larger than β(d− 1)(d− 2)/2 (the expected number of rejections),
one should refit the model using our proposed algorithms, accepting larger computational
times as a trade-off for a likely better model fit.
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5 Conclusion and outlook

As Pierre-Simon Laplace already stated in 1825, “the most important questions of life are
indeed, for the most part, only problems of probability.” In this thesis we tried to provide
methods that answer some of these questions. The advantages of vine copulas as flexible
models to describe the dependence between multiple random variables have been praised
in many instances. During my time as a PhD student we aimed to add to the prominence
of vines by treating two completely different aspects. On the one hand we developed a
method to use all the advantageous flexibilities of vine copulas in order to perform quantile
regression, a statistical method with almost endless applications. As soon as there is an
influence of a set of covariates on some response to be measured, our D-vine copula based
quantile regression is a valid tool to quantify these effects. Outperforming all established
quantile regression methods in prediction ability it should be considered as one of the stan-
dard approaches when one is confronted with the task of quantile regression, especially
thanks to its implementation in R allowing also for mixed discrete and continuous data
sets.
On the other hand we illuminated several aspects regarding the simplifying assumption.
Being the only assumption which mitigates the flexibility of vine copulas it is interesting to
see what kind of implications it entails and in which cases it is indeed a model restriction.
For this, we first had a look at three-dimensional vine copulas and their contour surfaces in
several simplified and non-simplified scenarios. We saw that simplified and non-simplified
vines in fact can differ quite a bit, however mostly in pathological examples. For the most
part, simplified vines turned out to be smooth versions of their non-simplified counterparts
representing their main features such as correlations and tail behavior. We further devel-
oped a statistical test for the decision whether to use a simplified or a non-simplified vine
copula to model given data. Since simplified vine models are nested in the non-simplified
ones, we argued that a significant distance between two fitted simplified and non-simplified
vine copulas implies that the non-simplified model is superior to the simplified one. Using a
modified version of the Kullback-Leibler distance, we constructed the test which turned out
to have a high power and produce reasonable results in real data applications. Finally, we
focused our attention on the relationship between the tree structure of a fitted vine copula
and the validity of the simplifying assumption. We found out that the two are strongly con-
nected and constructed two new structure selection algorithms with the focus of producing
vine copula models that violate the simplifying assumption as little as possible. It turned
out that we were successful, beating the performance of Dißmann’s algorithm, which is the
structure selection heuristic that was most commonly used for the fitting of vine copulas in
the past years.

Of course, the end of doctoral studies is rather determined by limited time than by the lack
of research fields. All topics discussed in this thesis can be seen as starting points for further
research. Consider for example the area of using vines to perform regression. The quantile
regression methods could be generalized from using D-vines to C-vines or even a certain
subclass of regular vines (i.e., the class of vines where the response is a leaf in every tree of
the vine’s structure), to add even more flexibility to the model. Further, the limitation to
the consideration of only one response could be alleviated to allow for a vector of responses,
thus, e.g. admitting the quantification of the joint impact of a group of stressed financial
entities on another group. Another idea would be to make the transition from quantile to
mean regression. In an ongoing research project, the use of D-vine copula based quantile
regression for post-processing ensembles for weather forecasting is examined.
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Regarding the simplifying assumption, it would be interesting to see if one could find a
way to visualize or quantify its implications for vine copulas with dimensions higher than
three. Lastly, we admit that our new structure selection algorithms are still heuristically
motivated. Many different other approaches are conceivable to suggest further answers to
the still open question of how to select the best fitting simplified tree structure of a vine
copula.

70



A Appendix to Section 4.3

A.1 Pair-copula families implemented in VineCopula

The pair-copula families currently implemented in the VineCopula package are Gaussian,
t*, Clayton, Gumbel, Frank, Joe, BB1*, BB6*, BB7*, BB8*, Tawn type 1* and Tawn type
2* with respective rotations. The stars indicate two-parametric families. Definitions all of
these copula families except the Tawn copula can be found in Joe (2014). The less well
known Tawn copula (Tawn, 1988) is a bivariate extreme value copula with representation

C(u1, u2) = exp

{
[log(u1) + log(u2)]A

(
log(u2)

log(u1) log(u2)

)}
,

where the Pickands dependence function A is given by

A(t) = (1− ψ1)(1− t) + (1− ψ2)t+ [(ψ1(1− t))θ + (ψ2t)
θ]1/θ.

In the VineCopula package the Tawn type 1 copula corresponds to the Tawn copula with
ψ2 ≡ 1 and the Tawn type 2 copula corresponds to the Tawn copula with ψ1 ≡ 1.

A.2 Simulation of the second parameter for two-parametric copula
families

t copula The degrees of freedom of the t copula are sampled from 3 + G, where G ∼
Gamma(3, 3). This implies an expected value of 4 and the 95% confidence interval [3.2, 5.4].

BB1, BB6, BB7 The second parameters of the BB1, BB6 and BB7 copulas are sampled
from 1 + 3B, where B ∼ Beta(4, 2). This implies an expected value of 3 and the 95%
confidence interval [1.84, 3.85]. When the dependence is negative, the second parameter is
multiplied with −1.

BB8, Tawn The second parameters of the BB8 and Tawn copulas are sampled from a
Beta(4, 2) distribution. This implies an expected value of 2/3 and the 95% confidence
interval [0.28, 0.95]. When the dependence is negative, the second parameter of the BB8
copula is multiplied with −1.

A.3 Differences of AIC-values
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Figure 27: Boxplots of the difference between the AIC-values per observation of the vines
chosen by Dißmann’s algorithm and Algorithm 2 for n = 400 (left panel) and n = 3000
(right panel).
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A.4 Choice of weighting factor α
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Figure 28: AIC-values of vine copulas fitted by Algorithm 2 depending on the weighting
factor α in the settings n = 400 (top row) and n = 3000 (bottom row) for d = 5, 10, 30,
averaged over 1000 repetitions.

A.5 Simulation study results for positive dependence and indepen-
dence tests

d
Ind. test Algorithm 3 5 10 30

Without
Algorithm 1 100 (100) 73.1 (53.4) 37.0 (3.2) 18.8
Algorithm 2 94.1 (22.9) 83.1 86.1 91.9

With
Algorithm 1 100 (100) 73.6 (54.0) 33.0 (3.2) 16.8
Algorithm 2 94.4 (22.9) 82.9 85.8 92.9

Table 11: Percentages of better or equal performance regarding the AIC-value of the two
algorithms compared to Dißmann’s algorithm for n = 1000 and random vine copulas with
only positive dependence (in brackets the percentages of equal performance are given). In
the first two rows pair-copula no independence tests were performed and in the last two
rows they were performed with level β = 0.05.
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A.6 Choice of p-value transformation function r

d
r 3 5 10 30

rank 91.1 (51.5) 73.6 88.7 99.6
identity 89.9 (48.5) 71.1 87.5 99.5

logarithm 89.9 (48.5) 72.4 77.0 94.8

Table 12: Percentages of better or equal performance regarding the AIC-value of Algo-
rithm 2 compared to Dißmann’s algorithm depending on the transformation function r for
n = 1000 and d = 3, 5, 10, 30 (in brackets the percentages of equal performance are given).

A.7 Plots of simulation study results
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Figure 29: Percentages of better or equal performance regarding the AIC-value of the two
algorithms compared to Dißmann’s algorithm for different dimensions d and sample sizes
n based on 1000 data sets sampled from randomly generated R-vines (the dashed lines
represent the percentages of equal performance).
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Acar, E. F., Genest, C., and Nešlehová, J. (2012), “Beyond simplified pair-copula construc-
tions,” Journal of Multivariate Analysis, 110, 74–90.

Adrian, T. and Brunnermeier, M. K. (2016), “CoVaR,” American Economic Review, 106,
1705–1741.

Akaike, H. (1998), “Information theory and an extension of the maximum likelihood prin-
ciple,” in Selected Papers of Hirotugu Akaike, Springer, pp. 199–213.

Almeida, C., Czado, C., and Manner, H. (2016), “Modeling high-dimensional time-varying
dependence using dynamic D-vine models,” Applied Stochastic Models in Business and
Industry, 32, 621–638.

Barthel, N., Geerdens, C., Killiches, M., Janssen, P., and Czado, C. (2016), “Vine copula
based inference of multivariate event time data,” arXiv preprint, arXiv:1603.01476.

Bedford, T. and Cooke, R. M. (2002), “Vines: A new graphical model for dependent random
variables,” Annals of Statistics, 30, 1031–1068.

Bernard, C. and Czado, C. (2015), “Conditional quantiles and tail dependence,” Journal
of Multivariate Analysis, 138, 104–126.
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