Ρι	ublished in:
Jo	ournal of Chromatography A, 1469 (2016) 48–59
The	e final publication is available at Elsevier via http://dx.doi.org/10.1016/j.chroma.2016.09.048
3	Development of stable isotope dilution assays for the quantitation of
4	intra- and extracellular folate patterns of Bifidobacterium adolescentis
5	
6	Markus Kopp ^{a,b} , Kerstin Dürr ^a , Matthias Steigleder ^a , Thomas Clavel ^b , and Michael
7	Rychlik ^{a,*}
8	
9	^a Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10,
10	D-85354 Freising, Germany
11	^b ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner
12	Berg 1, D-85354 Freising, Germany
13	
14	Key words: bifidobacteria, bacterial folate production, stable isotope dilution assay, LC-
15	MS/MS, quantitation of pteroylpolyglutamates
16	
17	E-mail: michael.rychlik@tum.de
18	Phone: ++49 8161 71 3746
19	

- 20 * to whom correspondence should be addressed
- 21

BY NC ND
 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

24 <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

1 ABSTRACT

Folate producing bifidobacteria have been studied extensively but appropriate methods for 2 in detail guantitation of intra- and extracellular pteroylmono- and pteroylpolyglutamate 3 patterns are lacking. Therefore, *B. adolescentis* DSM 20083^T was cultivated in folate-free 4 5 medium (FFM) for 24 h to develop and validate stable isotope dilution assays (SIDAs) coupled with LC-MS/MS for the determination of 5-formyltetrahydrofolic acid (5-HCO-6 7 H₄folate), 10-formylfolic acid (10-HCO-PteGlu), tetrahydrofolic acid (H₄folate), folic acid 8 (PteGlu) and 5-methyltetrahydrofolic acid (5-CH₃-H₄folate) including its di-, tri-, and 9 tetraglutamic vitamers $(5-CH_3-H_4PteGlu_{2-4}).$ The respective monoglutamylated 10 isotopologues labelled with deuterium were used as internal standards for quantitation. Limits of detection and quantitation (LOD/LOQ) were sufficiently low to quantify 48.2 11 nmol·L⁻¹ 5-CH₃-H₄folate (5.7/17 nmol·L⁻¹) and 71.0 nmol·L⁻¹ 5-HCO-H₄folate (10/30) 12 nmol·L⁻¹) as major folate vitamers extracellularly and 124 nmol·L⁻¹ 5-CH₃-H₄folate (3.4/10) 13 nmol·L⁻¹), 213 nmol·L⁻¹ 5-HCO-H₄folate (4.8/14 nmol·L⁻¹), and 61.4 nmol·L⁻¹ H₄folate 14 $(2.3/7.0 \text{ nmol}\cdot\text{L}^{-1})$ intracellularly after deconjugation. The major portion of native 5-CH₃-15 H₄folate vitamer was ascribed to its tetraglutamate (>95%). Concentrations of mono-, di-, 16 tri-, and pentaglutamylated folates were below LOD or LOQ. Intra-assay precision 17 coefficients of variation (CVs) ranged from 7% (at a concentration of 53.9 nmol·L⁻¹ for 5-18 CH₃-H₄PteGlu₄), 15% (25.5 nmol·L⁻¹ 5-CH₃-H₄folate) to 18% (78.5 nmol·L⁻¹ 5-HCO-19 H₄folate), extracellularly, and from 6% (60.7 nmol·L⁻¹ 5-CH₃-H₄PteGlu₄), 7% (202 nmol·L⁻¹ 20 5-HCO-H₄folate), 10% (67.1 nmol·L⁻¹ H₄folate) to 11% (127 nmol·L⁻¹ 5-CH₃-H₄folate), 21 intracellularly. Inter-assay precision CVs ranged from 2% (54.7 nmol·L⁻¹ 5-CH₃-22 $H_4PteGlu_4$), 3% (71 nmol·L⁻¹ 5-HCO-H₄folate) to 11% (48.2 nmol·L⁻¹ 5-CH₃-H₄folate), 23 extracellularly, and from 1% (61.4 nmol·L⁻¹ H₄folate), 5% (213 nmol·L⁻¹ 5-HCO-H₄folate), 24 6% (63.5 nmol·L⁻¹ 5-CH₃-H₄PteGlu₄) to 10% (124 nmol·L⁻¹ 5-CH₃-H₄folate), intracellularly, 25 thus showing excellent reproducibility. Recoveries for all analytes under study ranged 26

between 81 and 113%. These newly developed methods enable reproducible, precise and sensitive quantitation of eight bacterially synthesized folate vitamers in two totally different matrices, including both monoglutamates and polyglutamates. Furthermore, we here present the first assay using solely monoglutamylated $[^{2}H_{4}]$ -5-CH₃-H₄folate to quantify native polyglutamate patterns of this vitamer in bacteria which might replace timeconsuming determination of monoglutamates in the future.

7

8 **1. Introduction**

9

10 Bifidobacteria like B. adolescentis, B. bifidum, B. breve, B. infantis and B. longum have 11 been characterized for their production of vitamins such as thiamine, folate, pyridoxine, 12 nicotinic acid and cobalamine in semi-synthetic medium [1] and, therefore, are considered 13 as important probiotics [2]. In particular, autotrophic bifidobacteria strains of the species B. 14 adolescentis are capable of synthesizing folates de novo [2]. Folate deficiency is a 15 potential risk factor for inborn errors like spina bifida and anencephaly [3,4] or diseases 16 like Alzheimer's [5,6] and cancer [7,8]. The relative availability of bacterial folate 17 compared to food folate remains unclear but its contribution to host nutrition is suggested to be substantial because of the longer transit time in the colon [9,10]. 18

19 Nevertheless, suitable methods for the simultaneous quantitation of bacterially 20 synthesized folates, either mono- or polyglutamic forms, in extra- and intracellular 21 fractions have not been applied recently. In the following the term 'monoglutamate' (Fig. 22 A.1 of the electronic supplemental material (ESM)) is used to describe the total amount of 23 the respective vitamer in its monoglutamic form after enzymatic deconjugation. The term 24 'polyglutamate' (Fig. A.1 of the ESM) refers to the native vitamer distribution including all 25 monoglutamic and polyglutamic forms without deconjugation. Pompei et al. [11] analysed the intra- and extracellular folate content after 48 h cultivation in FFM by a microbiological 26

1 assay. Unfortunately, the assay did not allow determination of folate patterns. In contrast 2 to this, D'Aimmo et al. [12] investigated the intracellular folate production and the folate patterns of bifidobacteria *in vitro* by high performance liquid chromatography coupled with 3 4 UV and fluorescence (FD) detection (HPLC-UV/FD). They identified 5-CH₃-H₄folate and H₄folate as main vitamers after deconjugation in cells cultivated in FFM. After detecting 5 significant amounts of intra- and extracellular total folate. Deguchi et al. [1] claimed high 6 7 portions of intracellular folate in bifidobacteria to be excreted into the cultivation medium 8 without indicating any underlying mechanism. In this regard, pteroylpolyglutamates form 9 the main storage forms of folate in cells, whereas pteroylmonoglutamates represent 10 transport forms. However, there are neither investigations of the degree of glutamalytion 11 of intra- nor extracellular folate vitamers in bifidobacteria [11,12]. Sybesma et al. [13] used 12 HPLC coupled with diode array detection (HPLC-DAD) to identify polyglutamated folate 13 vitamers produced by various lactic acid bacteria. Rong et al. [14] investigated polyglutamate patterns of an unspecified microbiota in rat feces after injection of [³H]-p-14 15 aminobenzoic acid into the cecum and found mainly monoglutamates, tri- and 16 tetraglutamates. Prior to colonic absorption, pteroylpolyglutamates have to be 17 deconjugated by exogenic conjugase activity. Therefore, precise methods for the 18 combined determination of intra- and extracellular pteroylmono- and pteroylpolyglutamate 19 patterns are urgently needed to shed light on extracellular folate enrichment and folate 20 bioavailability, which depends on the degree of polyglutamylation and conjugase activity.

SIDAs have proven their advantages over conventional microbiological assays, on the one hand, because in the latter assays recoveries of and responses to different folate vitamers strongly depend on the model organism used for detection [15]. On the other hand, methods using HPLC-DAD without using internal standards lack sensitivity in comparison to LC-MS(/MS) methods and calibration has to be carried out by extraction of a spiked sample matrix. In contrast, the use of isotopologic internal standards in SIDAs compensates for chemical analyte degradation, matrix effects, and losses during
 extraction and clean-up, which is crucial for accurate folate analysis.

Most recently, SIDAs of folates have been developed in the field of clinical chemistry or 3 4 food analysis for the quantitation of monoglutamate distribution in erythrocytes [16], dried blood spots [17], and whole blood [18] or polyglutamate distributions in vegetables [19]. 5 However, the SIDAs for folates often use a time-consuming overnight deconjugation. 6 Other methods [18,19] apply UPLC-MS/MS for folate detection and an extraction protocol 7 8 customized for blood lysates or food. Nevertheless, only 5-CH₃-H₄folate analysis has been 9 validated up to present, which is not sufficient for detailed bacterial folate analysis, 10 because combined, simplified and efficient analysis of all monoglutamates and 11 polyglutamates in both bacteria cells and surrounding medium is needed to understand 12 the physiology of bacterial folate production, accumulation and transport. Moreover, 13 preprocessing steps for sufficient cell lysis have to be established prior to folate extraction 14 and the impact of nutritional medium composition, containing high concentrations of 15 inorganic salts and organic acids, on solid phase extraction (SPE) performance has to be 16 carefully evaluated for polyglutamate extraction. This is particularly critical because the 17 increasing anionic character of the polygutamates is likely to interfere on ion exchange 18 SPE with ionic components of the growth medium. Finally, accuracy has to be verified, 19 e.g. by comparing the total concentration of native polyglutamate distribution to the level 20 of the respective monoglutamate after deconjugation.

Therefore, our first aim was to develop and validate the first stable isotope dilution assay (SIDA) for precise and simultanous determination of extracellular and intracellular folate patterns in two totally different and complex media using *B. adolescentis* DSM 20083^T as model organism. Furthermore, we wanted to established a method for the determination of polyglutamylated 5-CH₃-H₄folate using $[^{2}H_{4}]$ -5-CH₃-H₄folate as internal standard to compare intracellular and extracellular polyglutamate ratios and to clarify the extent of

glutamylation in the intracellular and extracellular fraction. To the best of our knowledge,
the method described herein for the combined analysis of 5 monoglutamates and 3
polyglutamates is unique in its application for screening the physiology of bacterial folate
production, accumulation and release.

5

6 **2. Materials and Methods**

7

8 2.1. Chemicals

9

10 Agar, MRS bouillon (de Man, Rogosa and Sharpe), urea, magnesium sulphate 11 heptahydrate, manganese chloride dihydrate, sodium molybdate dihydrate, thiamine, 12 calcium pantothenate and L-cysteine were obtained from Carl Roth GmbH (Karlsruhe, 13 Germany). Rat serum (preservative free) was obtained from Biozol (Eching, Germany). 14 Chicken pancreas was purchased from Becton Dickinson and Co. (Sparks, MD, USA). 15 Acetonitrile, dihydrogen phosphate, disodium potassium hydrogen phosphate 16 (anhydrous), methanol, sodium chloride, sodium acetate trihydrate, acetic acid, 17 hydrochloric acid (37%), 2-Amino-2-(hydroxymethyl)-1,3-propanediol (Tris) hydrochloride, 18 Tris base, dipotassium hydrogenphosphate, ferrous sulphate heptahydrate, L-glutamic 19 acid, L-alanine, L-aspartic acid, and sodium hydroxide (NaOH) were purchased from 20 Merck (Darmstadt, Germany). Dithiothreitol (DTT), Ethylenediaminetetraacetic acid 21 (EDTA), pyridoxine hydrochloride, nicotinic acid, riboflavin, biotin, and glycerine (99.5%) 22 were purchased from Applichem Lifescience (Darmstadt, Germany). Formic acid, 23 formaldehyde solution (37%), sodium borohydride, sodium acetate, ammonium sulphate, 24 Tween 80, glucose, manganese sulphate tetrahydrate, calcium chloride dihydrate, zinc 25 sulphate heptahydrate, copper sulphate pentahydrate, p-aminobenzoic acid, L-arginine,

glycine, L-histidine, L-isoleucine, L-leucine, L-methionine, L-phenylalanine, L-serine, L-1 2 tryptophan, L-valine, Dulbecco`s Phosphate Buffered Saline (PBS) and 4morpholineethanesulfonic acid (MES) were obtained from Sigma-Aldrich (Steinheim, 3 4 Germany). Ascorbic acid was obtained from VWR Chemicals Prolabo (Leuven, Belgium). Boric acid was obtained from neoLab Migge Laborbedarf-Vertrieb GmbH (Heidelberg, 5 Germany). L-threonine, L-lysine and L-asparagine were purchased from Serva 6 Feinbiochemica GmbH & Co KG (Heidelberg, Germany). 2-octanol was purchased from 7 8 Alfa Aesar (Karlsruhe, Germany). Folic acid polyglutamates (PteGlu₂₋₅), 5-CH₃-H₄folate, 9 10-formylfolic acid (10-HCO-PteGlu), 5-formyltetrahydrofolic acid (5-HCO-H₄folate) 10 calcium salt, and H₄folate trihydrochloride were purchased from Schircks Laboratories 11 (Jona, Switzerland). PteGlu was obtained from Fluka (Buchs, Schweiz). The isotopologic $[^{2}H_{4}]$ -5-CH₃-H₄folate, $[^{2}H_{4}]$ -5-HCO-H₄folate, $[^{2}H_{4}]$ -10-HCO-PteGlu, $[^{2}H_{4}]$ -12 standards H_4 folate, and $[^2H_4]$ -PteGlu were synthesized as reported recently [20]. 13

14

15 2.2. Materials and bacteria cultures

16

17 Strata strong anion exchange (SAX) (100 mg, 1 mL), Strata strong anion mixed-mode (X-A) (30 mg, 1 mL) and Strata Phenyl cartridges (100 mg, 1 mL) were obtained from 18 Phenomenex (Aschaffenburg, Germany). *Bifidobacterium adolescentis* (DSM 20083^T) was 19 obtained as lyophilisate from the German Collection of Microorganisms and Cell Cultures 20 21 (DSMZ, Braunschweig, Germany). AnaeroGen 2,5 L (GasPak) was obtained from Oxoid 22 (Hampshire, UK). Chemicals for FFM were mixed according to D'Aimmo et al. [12]. 23 LIVE/DEAD BacLight Bacterial Viability Kit L7012 for fluorescence microscopy was obtained from Molecular Probes (Eugene, Oregon, USA). For fluorescence microscopy 24 we used an Axiostar plus (HBO 50) microscope with a red BP 546/12; FT 580; LP 590 25 26 and a green BP 475/40; FT 500; BP 530/50 fluorescence filter from Carl Zeiss

Microimaging GmbH (Göttingen, Germany). Zirconium beads (0.1 mm) were obtained
 from Carl Roth GmbH (Karlsruhe, Germany). The bead beater Fast Prep 24 was
 manufactured by MP Biomedicals (Solon, OH, USA) The HLC Thermomixer was
 manufactured by DITABIS AG (Pforzheim, Germany).

5

6 2.3. Solutions and nutritional media for the bacteria

7

Abacterial glycerin solution (40%) was produced by dilution of glycerin with MRS (40/60, v/v). After vortexing the solution was sterile filtered in a sterile centrifuge tube. Sterile Lcysteine solution (2%) consisted of 0.4 g L-cysteine diluted in 20 mL water and sterile filtered in an autoclaved reaction vessel. MRS nutritional medium (MRS, De Man, <u>R</u>ogosa und <u>S</u>harpe) consisted of 26 g MRS bouillon dissolved in 487.5 mL water and autoclaved at 121°C for 20 min. Finally, 12.5 mL of the L-cysteine solution were added to give a final volume of 500 mL.

15

16 2.4. Solutions for folate extraction

17

Extraction buffer consisted of a 200 mmol·L⁻¹ MES hydrate and 20 g·L⁻¹ ascorbic acid 18 aqueous solution with 1 g·L⁻¹ DTT, adjusted to pH 5 with 7.5 M NaOH. Phosphate buffer 19 (100 mmol·L⁻¹) was prepared by adjusting an aqueous solution of disodium hydrogen 20 phosphate (100 mmol L⁻¹) with an aqueous solution of potassium dihydrogen phosphate 21 (100 mmol·L⁻¹) to pH 7.0. The equilibration buffer for the SAX cartridges was prepared by 22 adding 0.2 $g \cdot L^{-1}$ DTT to diluted phosphate buffer (10 mmol·L⁻¹). Further, the eluting 23 24 solution was a mixture of aqueous sodium chloride (5%) and aqueous sodium acetate (100 mmol·L⁻¹) containing 1 g·L⁻¹ DTT and ascorbic acid (1%). The chicken pancreas 25 suspension for pteroylpolyglutamate deconjugation was prepared by stirring chicken 26

pancreas (30 mg) in aqueous phosphate buffer solution (90 ml, 100 mmol·L⁻¹) containing
1% ascorbic acid adjusted to pH 7 with 7.5 M NaOH.

3

4 2.5. Cultivation of bifidobacteria

5

All glass devices and materials were autoclaved prior to use. Experiments were carried
 out under a Laminar-Flow. Incubation of the anaerobic bacteria in centrifuge tubes was
 carried out in an anaerobic jar with activated GasPak.

9

10 2.5.1. Cryo-conserved bacterial suspension

11

The lyophilisate was resuspended in 1 mL MRS medium. Afterwards the suspension was transferred into 24 mL MRS medium for incubation at 37°C for 53 h. 1 mL of the culture was transferred into further 24 mL MRS medium and incubated at 37 °C for further 18 h to reach the stationary phase. The stationary phase was verified by measurement of the optical density (OD) at 600 nm with MRS medium as sample blank. Glycerine solution (40%) was added to the bacteria suspension (1/1 v/v). The mixture was aliquoted in 200 µL portions and stored at -80°C.

19

20 2.5.2. Cultivation of bifidobacteria

21

20 µl aliquots of the cryoconserved culture were suspended in 25 mL medium and incubated for 24 h at 37°C. Afterwards 1.25 mL were diluted to a final concentration of 5% in fresh medium and incubated for further 24 h at 37°C (preculture). The working culture consisted of a further dilution of 0.5 mL preculture in 9.5 mL nutritional medium. The working culture was incubated for further 24 h at 37°C prior to extraction.

2 2.6. Optimization of intra- and extracellular folate extraction

3

4 For the optimization of folate analysis the bacteria cultures of *B. adolescentis* were 5 cultivated as described in point 2.5.2..

6

7 2.6.1. Optimization of extracellular pteroylmonoglutamate extraction

8

9 Six working cultures were incubated for 24 h and centrifuged at 5000 g at 4°C for 10 min. 10 The supernatants were pooled and aliquoted for extracellular folate extraction as follows. 11 Three aliquots of 1 mL, 2 mL and 3 mL were prepared in triplicate for three different 12 variants and diluted 1+1 with extraction buffer. Afterwards 0.92 ng [²H₄]-5-CH₃-H₄folate 13 was added as internal standard. After vortexing for 10s and equilibrating for 15 min 14 samples were subjected to the following extraction procedures.

15 For extraction procedure (E1) samples were heated for 4 min at 100°C, centrifuged at 2700 g and 4°C and subsequently subjected to solid phase extraction (SPE) as described 16 17 in 2.7.7. Further nine aliguots were mixed with 1 mL chicken pancreas suspension and 150 µL rat serum for extraction procedure (E2). After incubation for 4 h at 37°C under 18 19 constant agitation samples were heated at 100°C and chilled in an ice bath. Samples were purified via SPE after centrifugation at 2700 g and 4°C for 20 min. Extraction 20 21 procedure (E3) included an additional cooking step in analogy to procedure (E1) before 22 the addition of the enzyme mixture. The following steps were conducted in analogy to 23 procedure (E2).

24

25 2.6.2. Optimization of intracellular pteroylmonoglutamate extraction

4 working cultures were incubated for 24 h and centrifuged (5000 g, 10 min, 4 °C). The cellular residue was washed in 5 mL PBS-buffer. After an additional centrifugation step 3 2.4 mL extraction buffer were added to the residue. The suspension was spiked with 4 2.76 ng $[^{2}H_{4}]$ -5-CH₃-H₄folate and equilibrated for 15 min. Three aliquots of 1 mL for each 5 working culture were transferred into screw tubes with 500 mg beads.

For extraction procedure (I1) samples were heated in a Thermoblock (3 min, 95°C, 550 U/min) and subjected to a Bead Beater (3x40 s, 6.5 m/s, on ice) afterwards. Extraction procedure (I2) and (I4) included these steps in reverse order. Procedure (I3) included an additional, analogous cooking step after cell lysis in the Bead Beater. All samples except (I4) were centrifuged (15000 g, 5 min, 4°C). Supernatants were transferred to centrifuge tubes and mixed with 1 mL of chicken pancreas suspension and 150 μL rat serum. Incubation and purification via SPE was conducted in analogy to 2.7.7..

13

14 2.6.3. Optimization of extracellular pteroylpolyglutamate extraction

15

16 High concentrations of anionic compounds might interfere with analyte and internal 17 standard molecules. Therefore we examined different SPE materials for their suitability 18 compared to an extraction procedure without SPE clean-up. FFM was spiked with the respective polyglutamates to a final concentration of 39, 30 and 61 nmol·L⁻¹ for 5-CH₃-19 H₄PteGlu₂₋₄ and separated into 9 aliquots. Three aliquots of 1 mL each were spiked with 20 0.92 ng $[^{2}H_{4}]$ -5-CH₃-H₄folate and extracted in analogy to the procedure for intracellular 21 22 monoglutamates with SPE and exclusion of the enzymatic treatment. Further three 23 aliquots were extracted analogously and subjected to SPE with phenyl cartridges (2.6.4) or X-A cartridges (2.6.5). Three additional samples with 0.5 mL each (78, 60 and 122 24 nmol·L⁻¹ for 5-CH₃-H₄PteGlu₂₋₄ in FFM), were extracted without SPE. 25

1 2.6.4. SPE clean-up of pteroylpolyglutamates with phenyl cartridges

2

3 Cartridges were activated successively with 2 volumes of acetonitrile, methanol and 4 ammonium formate buffer (8 mmol/L ammonium formate, 0.05 g/L ascorbic acid, pH 3.4). 5 After sample application the cartridges were washed with 3 volumes of ammonium 6 formate buffer and evaporated to dryness by vacuum. Folates were eluted with 0.5 mL of 7 eluting solution (methanol/acetonitrile/water/acetic acid, 40/10/49/1, v/v/v/v with 1 g/L 8 ascorbic acid).

9

10 2.6.5. SPE clean-up of pteroylpolyglutamates with Strata X-A cartridges

11

12 Cartridges were activated with one volume of methanol and water, successively. After 13 application of the sample cartridges were washed with one volume of an aqueous solution 14 of ammonium acetate (25 mmol/L) and one volume of water, successively. Folates were 15 eluted with 0.5 mL of eluting solution containing 5% formic acid in methanol.

16

To evaluate the discrimination of each folate vitamer and the internal standard, the results
of all samples were compared to a mixture of analyte and internal standard.

19

20 2.7. Validation of the folate assay for pteroylmonoglutamates and –polyglutamates

- 21
- 22 2.7.1. Extraction procedure
- 23

Methods for extra- and intracellular folate extraction were developed according to [21] and [11], respectively. Sample purification was based on our previous studies [16,17] and further optimized. Bacteria suspension was centrifuged at 5000 g for 10 min at 4°C. The supernatant was subjected to the extraction protocol below, whereas the cellular fraction was suspended in 2 mL of sterile water and divided into two aliquots. Aliquot 1 was subjected to fluorescence microscopy, aliquot 2 was resuspended in 4 mL PBS, centrifuged for 15 min at 5000 g and 4°C. The supernatant was discarded and the cells were washed in 5 mL PBS and centrifuged at 5000 g and 4°C for 15 min. Afterwards the cellular fraction was resuspended in 10 mL extraction buffer and subjected to monoglutamate or polyglutamate extraction.

8 The optimized extraction procedure is summarized in Table A.1 of the ESM.

9

10 2.7.2. Fluorescence microscopy

11

12 Viability of bifidobacteria was verified via fluorescence microscopy after 24 h. 1 mL of the 13 pellet (aliquot 1) was diluted in 20 mL of sterile water and incubated for one hour at room 14 temperature. The suspension was subsequently centrifuged for 10 min at 5000 g and 15 21 °C. After repetition of the washing step the pellet was diluted in 10 mL of sterile water. 16 1 mL was mixed with 3 µL of the colour mixture consisting of SYTO 9 and propidium 17 iodide (50/50 v/v). The cells were incubated at room temperature in the dark for 15 min 18 and counted four times. The percentual amount of living and dead cells was calculated 19 from the mean.

20

21 2.7.3. Extracellular pteroylmonoglutamates

22

23 250 μ l supernatant were transferred into a 5 mL volumetric flask and made up to volume 24 with extraction buffer. 1 mL were transferred into a centrifuge tube with 0.92 ng [²H₄]-5-25 CH₃-H₄folate, 1.02 ng [²H₄]-5-HCO-H₄folate, and 3.04 ng [²H₄]-H₄folate. After equilibrating 26 for 15 min samples were heated at 100°C for 4 min in a water bath. The chilled samples were mixed with 1 mL of chicken pancreas suspension and 150 µL of rat serum. After incubation in a water bath at 37°C for 4 h under constant agitation the samples were heated at 100°C for 4 min in a water bath and subsequently centrifuged at 2700 g at 4°C for 20 min. The supernatant was subjected to SPE (2.7.7.).

5

6 2.7.4. Intracellular pteroylmonoglutamates

7

8 1 mL of the suspension was transferred into Eppendorf tubes with the deuterated internal 9 standards. After equilibrating for 15 min the suspension was transferred into screw tubes 10 filled with 500 mg zirconium beads for cellular destruction in a Bead Beater (3x40 s, 6.5 11 m/s, on ice). Lysed cells were cooked for 3 min at 95°C (550 U/min) and centrifuged at 12 15000 g and 4°C for 5 min. The supernatant was transferred into a centrifuge tube and 13 subsequently mixed with 1 mL of chicken pancreas suspension and 150 µL of rat serum. 14 After incubation and heating as described in 2.7.3., the samples were subjected to SPE 15 clean-up (2.7.7.).

16

17 2.7.5. Extracellular 5-CH₃-H₄PteGlu₂₋₄

18

19 0.5 mL supernatant was spiked with 0.92 ng $[^{2}H_{4}]$ -5-CH₃-H₄folate and diluted with 0.5 mL 20 extraction buffer. After vortexing for 10 s and equilibrating for 15 min the sample was 21 heated at 100°C for 4 min and subsequently centrifuged at 15400 g for 20 min to remove 22 the precipitate prior to LC-MS/MS analysis.

23

24 2.7.6. Intracellular 5-CH₃-H₄PteGlu₂₋₄

1 mL of the suspension was spiked with 0.92 ng [²H₄]-5-CH₃-H₄folate and equilibrated for
15 min and heated for 3 min at 95°C (550 U/min, Thermoblock). Sample clean-up was
performed in analogy to the procedure for intracellular monoglutamates (2.7.4.) except the
enzymatic deconjugation step.

5

6 2.7.7. SPE clean-up of pteroylmonoglutamates and –polyglutamates with Strata-SAX
 7 cartridges

8

9 Prior to sample extraction the cartridges were preconditioned with two volumes of
10 methanol and two volumes of equilibration buffer. After adding the sample the cartridges
11 were washed with two volumes of equilibration buffer and dried via vacuum suction.
12 Folates were eluted with 0.5 mL eluting solution.

13

14 2.7.8. Synthesis of 5-CH₃-H₄PteGlu₂₋₅ for the determination of pteroylpolyglutamates

15

PteGlu₂ (1.79 mg), PteGlu₃ (1.67 mg) and PteGlu₄ (4.07 mg) were derivatized to the respective methylated forms in a single approach according to Ndaw *et al.* [22]. The completeness of conversion was verified by LC-MS/MS measurement.

19

20 2.7.9. LC-MS/MS

21

Extra- and intracellular pteroylmono- and peroylpolyglutamates were determined separately by means of LC-MS/MS (Finnigan Surveyor Plus HPLC System, Thermo electron corporation, Waltham, USA; triple quadrupole TSQ quantum discovery mass spectrometer, Thermo electron corporation, Waltham, USA). Analyte separation was carried out on a Nucleosil C₁₈ reversed phase column (250 x 3 mm; 4 μm; Macherey-

1 Nagel, Düren, Germany). The mobile phase for gradient elution consisted of 0.1% 2 aqueous formic acid (eluent A) and acetonitrile containing 0.1% formic acid (eluent B) at a flow of 0.3 ml/min. Gradient elution and ion source parameters have been described 3 4 earlier by Mönch and coworkers [16]. In brief, gradient elution started at 0% B followed by a linear increase to 10% after 2 min, to 25% within 23 min and to 100% B after further 2 5 min. After 3 min B was decreased to 0% within two min. Equilibration of the column was 6 7 carried out for 16 min. Source CID collision energy was set to 10 arbitrary units, spray 8 voltage was set to 3900 V, capillary temperature was 320°C and capillary voltage was set to 35 V. SRM scanning was performed in the positive electrospray ionization mode (ESI⁺). 9 10 10 µL of the extracts were injected for folate analysis. Eluate was diverted to waste for the 11 first 10 min and scanning of the SRM transitions (Table A.2 and A.3 of the ESM) was 12 performed from 10-25 min.

13

14 2.7.10. HPLC-DAD

15

Dilutions of 10 mg PteGlu in 100 mL extraction buffer and 2 mg of 5-CH₃-H₄folat, H₄folate, 5-HCO-H₄folate, and 10-HCO-PteGlu in 10 mL extraction buffer were prepared. PteGlu and H₄folate had to be dissolved in 100 mmol·L⁻¹ phosphate buffer prior to dilution. Analyte concentrations were determined using the HPLC-DAD method published before [17].

21

22 2.7.11. Calibration of pteroylmono- and pteroylpolyglutamates

23

Folate calibrator solutions were prepared by mixing the deuterated internal standard solution with the corresponding analyte solutions. Molar ratio ranges [n(S)/n(A)]-[n(S)/n(A)] for the calibration of intra- and extracellular pteroylmonoglutamates were 2.6:11:100 (5-CH₃-H₄folate), 0.5:1-1:10 (10-HCO-PteGlu, 0.82 ng [²H₄]-10-HCO-PteGlu), 2.6:1 1:20 (5-HCO-H₄folate), 10:1-1:34 (H₄folate), and 2.5:1-1:6.1 (PteGlu, 0.74 ng [²H₄] PteGlu).

Calibrator solutions for 5-CH₃-H₄PteGlu₂₋₄ were prepared by adding $[^{2}H_{4}]$ -5-CH₃-H₄folate as internal standard to the analyte mixture. Molar ratio ranges [n(S)/n(A)]-[n(S)/n(A)] for the calibration of intra- and extracellular pteroylpolyglutamates were 1:157-5:1 for 5-CH₃-H₄PteGlu₂, 1:119-7:1 for 5-CH₃-H₄PteGlu₃ and 1:244 – 3:1 for 5-CH₃-H₄PteGlu₄.

8 For the calibration functions linear regression was used by combining the molar ratios with 9 the peak area ratios [A(S)/A(A)] measured by LC-MS/MS. Consistency of response was 10 verified by injecting a randomly chosen n(S)/n(A) value in the linear range of the response 11 functions.

12

13 2.7.12. Limits of detection (LODs) and quantification (LOQs)

14

15 As folates occur ubiquitously in cells and culture medium, folate free surrogates had to be 16 developed. For extracellular LODs and LOQs a folate free medium (FFM) was produced 17 in analogy to D'Aimmo et al. [12]. Intracellular matrix surrogate consisted of 11 mg 18 lyophilized egg white suspended in 10 mL extraction buffer. The surrogate was calculated 19 from the wet weight of the cellular residue assuming that bacterial cells contain 40% dry 20 matter [23]. Determination of LODs and LOQs was carried out according to the calibration 21 line procedure proposed by Hädrich and Vogelgesang [24]. For the determination of LODs 22 and LOQs the surrogates were spiked with the respective folates at four different 23 concentration levels starting slightly above the estimated LOD and covering one to tenfold 24 amount of analyte. Extraction and LC-MS/MS analysis was carried out as described in 25 section 2.7.3-2.7.6.

1 2.7.13. Precision

2

Inter-assay precision was calculated by analyzing FFM supernatant and cellular residue
three times in triplicate during three weeks. Intra-assay precision for intra- and
extracellular folate was determined by multiple injection (n=3) of one sample in a row.

6

7 2.7.14. Recoveries of analytes in stable isotope dilution assays

8

9 FMM and lyophilized egg-white were spiked with three different analyte levels to verify 10 linearity of the response functions. Level 1 and 3 were calculated as the lowest and 11 highest amount expected in the samples. Level 2 was calculated as means of all extra-12 and intracellular samples. All samples were analysed by stable isotope dilution assay as 13 described in section 2.7.3.-2.7.6.. The recovery was calculated as the mean of the 14 addition experiments. The spiking levels are listed in Table A.4 and A.5 of the ESM.

15

16 2.8. Data analysis

17

Data analysis was carried out using Xcalibur Software vers. 2.0 (Thermo Scientific,
Waltham, USA). Significance was calculated by student's t-Test (two-sided, P<0.05).

1 3. Results

2

3 Characterization of bacterial folates is challenging due to the different matrices to be analysed. The extracellular fraction contains small anionic molecules and inorganic salts, 4 5 which can interfere with the analytes during SAX purification, whereas the intracellular fraction contains macromolecular compounds, which can trap folate vitamers. To meet the 6 7 requirement of a quantitative folate extraction and to compensate for analyte loss from 8 both matrices, we developed and optimized a SIDA with deuterated internal 9 pteroylmonoglutamate standards. Polyglutamates of 5-CH₃-H₄folate were guantified using 10 $[^{2}H_{4}]$ -5-CH₃-H₄folate as internal standard. Viability during our experiments was verified by 11 fluorescence microscopy. Green (viable) and red (dead) cells were easily distinguishable 12 from each other. In our experiments we observed a relative mean viability of 48% after 24 13 h incubation.

14

15 3.1. Optimization of intra- and extracellular folate extraction

16

17 3.1.1. Optimization of extracellular and intracellular pteroylmonoglutamate extraction

18

19 Extracellular folate extraction was optimized according to Lin & Young [21]. Different 20 volumes of supernatant were analysed for pteroylmonoglutamates to evaluate the folate 21 patterns (Fig. 1).

After deconjugation 5-CH₃-H₄folate, 5-HCO-H₄folate and H₄folate were identified. In the chromatogram (Fig. 1) with the mass transition m/z 474 \rightarrow 327 we observed an additional signal at 16.5 min. According to Pfeiffer *et al.* [25] this molecule was characterized as 4αhydroxy-5-CH₃-H₄folate (MeFox), the product of 5-CH₃-H₄folate after mild and prolonged oxidation. The identity of MeFox was verified by measuring the m/z transition of 474 \rightarrow 284. An enzymatic treatment and a heating step were introduced for quantitative polyglutamate
deconjugation and quantitative extraction from the matrix. Fig. 2 shows the concentrations
of 5-CH₃-H₄folate depending on cooking (E1), conjugase treatment (E2) and
deconjugation after cooking (E3) in 1, 2 or 3 mL of the extracellular fraction.

5 We observed an enormous increase of the methylated monoglutamate after conjugase treatment of 1 mL and a further significant (p=0.05) increase after deconjugation of a pre-6 7 heated sample (1 mL). As almost all 5-CH₃-H₄folate is polyglutamylated a deconjugation 8 step is essential to determine extracellular folate. Heating improves release of folates from 9 the matrix. Therefore, we used a combined extraction with heating followed by conjugase 10 treatment. Using SAX-SPE with 100 mg/1 mL cartridges a sample volume of 1 mL seems 11 to be the most suitable as the FFM contains high amounts of inorganic salts and anionic 12 compounds leading to an overloading of the binding sites of the stationary phase. 13 Furthermore, we observed an increasing imprecision of triplicate injection with 8, 23, and 14 34% after extracting 1, 2, and 3 mL FFM, respectively. Areas for 5-CH₃-H₄folate were 15 3000000, 660000 and 540000 area units, respectively, thus showing the necessity for 16 further dilution of the sample. Therefore, a twentyfold dilution of FFM was adapted to the 17 extraction procedure to prevent the SPE cartridges from overload.

Intracellular folate extraction was optimized according to Pompei *et al.* [11]. First the
 cellular fraction was analysed for pteroylmonoglutamates to evaluate the folate patterns
 (Fig. 3).

After deconjugation 5-CH₃-H₄folate, 5-HCO-H₄folate and H₄folate were identified. The intensity of MeFox is very low compared to the extracellular fraction. Therefore, we conclude that MeFox might be a remnant of oxidative degradation of 5-CH₃-H₄folate in the extracellular medium because of the long incubation period of 24 h.

Four extraction procedures were evaluated for their $5-CH_3-H_4$ folate content (I1) after cooking and cell destruction in a Bead Beater, (I2) cell destruction and cooking, (I3) cooking before and after cell destruction and (I4) cell destruction and cooking without
 centrifugation. The results are shown in Fig. 4.

Our results indicate a significant (p=0.05) loss of methylated folate when cooking is 3 4 performed before mechanic cell lysis (I1). This might be due to folate trapping inside the denaturated cellular membrane, which is not the case when heating is applied after cell 5 lysis. When cell lysates are centrifuged before the enzymatic deconjugation of 6 7 pteroylpolyglutamates (I2) slightly lower mean concentrations are obtained as compared 8 to the enzymatic treatment of the lysate as a whole (I4). Nevertheless, method I4 was not 9 suitable for our extraction procedure as the higher amount of matrix contamination led to 10 congestion of the SPE cartridges. Therefore, we chose method I2 for our extraction 11 procedure.

12

13 3.1.2. Optimization of extracellular and intracellular pteroylpolyglutamate extraction

14

Fig. A.2 of the ESM shows that almost all 5-CH₃-H₄folate vitamers are polyglutamylated in the extracellular fraction. Therefore, we qualitatively analysed both fractions for pteroylpolyglutamates to determine the pteroylpolyglutamate patterns. Pteroylpolyglutamates in the extracellular fraction consisted of 5-CH₃-H₄PteGlu₂₋₄ (Fig. 5), 5-HCO-H₄PteGlu₂₋₄ and to a smaller extent of H₄PteGlu₂₋₄ (Fig. A.2 of the ESM).

Due to lack of labelled polyglutamate standards we synthesized the respective $5-CH_{3}$ -H₄folate polyglutamates (Glu₂₋₄) to evaluate the suitability of [²H₄]-5-CH₃-H₄folate as internal standard and to quantify the intracellular and extracellular polyglutamate pattern of the latter. More than 95% of the intra- and extracellular $5-CH_{3}-H_{4}PteGlu_{n}$ was represented by the tetraglutamylated vitamer. From our qualitative results we assume that $5-HCO-H_{4}$ folate shows a similar polyglutamate distribution as $5-CH_{3}-H_{4}$ folate. However, as the former polyglutamates cannot be obtained as straightforward as those of $5-CH_{3}$ - 1 H_4 folate, we focussed our study on the 5-CH₃-H₄folate polyglutamates as model 2 compounds for further improvement of folate quantitation. Nevertheless, the 5-HCO-3 H_4 folate data are valid as sum value over all respective polyglutamates after 4 deconjugation.

5 Pre-study recovery experiments revealed a discrimination of the internal standard 6 compared to the polyglutamates during extraction of spiked FFM when compared to a 7 response mixture. We identified the stationary phases of the SAX cartridges as 8 discriminating factor and compared three different purification procedures with different 9 stationary phases to an extraction procedure without SPE.

10 SPE of extracellular pteroylpolyglutamates with SAX cartridges led to a vast decrease in 11 the signal of the labelled internal standard. Compared to an extraction without cartridges, 12 the molar ratio of polyglutamates to the monoglutamic standard was about twofold higher 13 in samples after SAX clean-up. Recoveries in the spiked surrogates are shown in table 1.

14

15	Table 1. Recoveries of 5-CH ₃ -H ₄ PteGlu ₂	4 after extraction and SPE clean-up of 1 mL FFM.
----	--	--

Analyte	conc. [nmol·L ⁻¹]	Recovery±SD [%]			
		Strata	no	Strata	Strata ⁸
		SAX	SPE*	X-A	Phenyl ⁹
5-CH ₃ -H ₄ PteGlu ₂	39	164±12	85±3*	81±5	78±4 ²⁰
5-CH ₃ -H ₄ PteGlu ₃	30	200±18	87±6*	81±4	53±2 ²¹
5-CH ₃ -H ₄ PteGlu ₄	61	179±17	99±3*	69±3	25±1 ²²

^{*} 78, 60 and 122 nmol·L⁻¹ for 5-CH₃-H₄PteGlu₂₋₄ in FFM. Extraction of 0.5 mL FFM.

In contrast to this, Strata X-A phases or phenyl cartridges led to a discrimination of polyglutamates. We determined higher amounts of internal standard leading to lower recoveries, especially for 5-CH₃-H₄PteGlu₄ after purification with X-A phases and higher losses of 47 and 75% after purification with phenyl cartridges. As the tetraglutamylated vitamer is the most abundant one in the extracellular fraction and we could not find an appropriate phase, we decided to apply no SPE step because most matrix constituents were separated from the analytes during HPLC and diverted to waste during the first 10 min of elution. Thus we could prevent the MS from major contamination with matrix compounds and ensure reproducible measurement.

6

3.1.3. Optimized conditions for sample extraction

8

7

9 After separating the extracellular fraction from the cellular residue we included a dilution 10 step for our monoglutamate assay by mixing 250 µL of FFM with extraction buffer (1+19, 11 v/v) and applying 1 mL of this dilution to lower the amount of analyte injected and to 12 minimize matrix effects during extraction. For pteroylpolyglutamate analysis, 0.5 mL FFM were mixed with 0.5 mL extraction buffer and 0.92 ng $[^{2}H_{4}]$ -5-CH₃-H₄folate was added. 13 14 Because of severe discrimination of the internal standard (SAX SPE) or the respective 15 polyglutamates 5-CH₃-H₄PteGlu₂₋₄ (phenyl SPE) and 99% recovery of 5-CH₃-H₄PteGlu₄ 16 without SPE clean-up, extraction was performed using a simple heating step (4 min, 17 100°C) followed by centrifugation (15400 g, 20 min). Inorganic salts and small organic 18 compounds were separated chromatographically during the first 10 min and diverted to 19 waste. Intracellular monoglutamate and polyglutamate concentration was assayed after 20 resuspending the cellular fraction in 2 mL distilled water. 1 mL of the suspension was 21 resuspended in 4 mL PBS buffer and centrifuged for 15 min at 5000 g and 4°C to remove 22 FFM and extracellular folates. The washing step was repeated in 5 mL PBS buffer and the 23 cellular residue was resuspended in 10 mL extraction buffer. 1 mL of the cell suspension was used for polyglutamate or monoglutamate extraction after adding 0.92 ng [²H₄]-5-24 25 CH₃-H₄folate or 0.92 ng $[^{2}H_{4}]$ -5-CH₃-H₄folate, 1.02 ng $[^{2}H_{4}]$ -5-HCO-H₄folate, and 3.04 ng 1 $[^{2}H_{4}]$ - H₄folate, respectively. The whole extraction protocol is summarized in Table A.1 of 2 the ESM.

3

4 3.2. Validation of the folate assay for pteroylmonoglutamates and -polyglutamates

- 5
- 6 3.2.1. Calibration for stable isotope dilution assays
- 7

8 Calibration curves for 5-CH₃-H₄folate, 5-CH₃-H₄PteGlu₂, 5-CH₃-H₄PteGlu₃, 5-HCO-9 H₄folate, PteGlu, 10-HCO-PteGlu and H₄folate were linear in molar ratio ranges 10 [n(S)/n(A)]-[n(S)/n(A)] given in Table 2 along with their response functions calculated 11 according to the following equation.

- 12
- 13 A(labelled standard)/A(analyte)= $R_F * n(labelled standard)/n(analyte) + b$
- 14

15	Table 2: Response functions for p	teroylmonoglutamates	and 5-CH ₃ -H ₄ PteGlu ₂₋₄ .
----	-----------------------------------	----------------------	---

Analyte	Response function	R ²	linear molar ratio
			range [n(S)/n(A)]-
			[n(S)/n(A)]
5-CH ₃ -H ₄ folate	y=0.6664x+0.0026	0.9955	2.56:1-1:100
5-CH ₃ -H ₄ PteGlu ₂	y=1.602x+0.003	0.9998	5:1-1:60
5-CH ₃ -H ₄ PteGlu ₃	y=2.5084x-0.0162	0.9983	1.7:1-1:30
5-CH ₃ -H ₄ PteGlu ₄	y=0.0009x ³ -0.0157x ² +0.1548x+0.0014	0.9998	1:244-1:1.2*
5-CHO-H₄folate	y=0.7507x-0.0505	0.9904	2.55:1-1:20
PteGlu	y=0.3721x-0.0383	0.9954	2.5:1-1:6.3
10-HCO-PteGlu	y=0.4112x+0.0275	0.9699	0.5:1-1:10

*	14101ate	y=0.9026x+0.0423		0.9994	10:1-1:33			
	* cubic function							
1								
Т	The response equation for 5 -CH $_3$ -H $_4$ PteGlu $_4$ followed a polynomial function according to:							
n	n(labelled standard	l)/n(analyte)=R _{F1} * [A	(labelled standard))/A(analyte	$]^3 + R_{F2} * [A(labelled)]$			
i S	standard)/A(analyte	$(P)^2 + R_{F3} * A(labelled)$	standard)/A(analy	rte) + b				
1								
s Ir	n all equations R	_{≂N} and b are equiva	lent to the polyno	omial factor	rs and the intercept,			
) re	espectively.							
)								
3	3.2.2. Determinatio	n of pterovlmonoaluta	amates and 5-CH₃	-H₄PteGlu₂	-4			
-					•			
F	- Folates are ubiquit	ous in animals plant	s and bacteria. Th	nerefore a	surrogate had to be			
d	developed for the determination of LODe/LOOp and receivering. The extractly lar matrix							
u	developed for the determination of LODS/LOQS and recoveries. The extracellular matrix							
~	consisted of FFM as used for bacteria cultivation (2.5.2.). Lyophilized egg white was used							
C		s used for bacteria c	uitivation (2.5.2.). I		egg white was used			
C fo	onsisted of FFM a	is used for bacteria c	e were used as cel	Il surrogate	and resuspended in			
c fc 1	consisted of FFM a or the cellular fract 10 mL extraction I	is used for bacteria c tion. 11 mg egg white puffer. LODs and L	e were used as cel OQs were detern	ll surrogate	and resuspended in g the procedure by			
c fo 1 H	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelo	is used for bacteria c tion. 11 mg egg white puffer. LODs and Lu gesang [24]. Results a	e were used as cel OQs were detern are listed in table 3	ll surrogate nined usin	and resuspended in g the procedure by			
c fo 1 ⊢	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelo	is used for bacteria c tion. 11 mg egg white puffer. LODs and L gesang [24]. Results a	e were used as cel OQs were detern are listed in table 3	ll surrogate nined usin	and resuspended in g the procedure by			
с б fc 7 1 ⊢	consisted of FFM a or the cellular fract I0 mL extraction I Hädrich and Vogelo Fable 3: LODs and LO	s used for bacteria c tion. 11 mg egg white buffer. LODs and L gesang [24]. Results a Qs for pteroylmonoglutam	ultivation (2.5.2.). I e were used as cel OQs were detern are listed in table 3 nates and 5-CH ₃ -H₄Pte	ll surrogate nined usin 3. eGlu ₂₋₄ .	and resuspended in g the procedure by			
с 5 fc 7 1 	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelg Table 3: LODs and LO	is used for bacteria cl tion. 11 mg egg white ouffer. LODs and Lu gesang [24]. Results a Qs for pteroylmonoglutam Extracellul	ultivation (2.5.2.). I e were used as cel OQs were detern are listed in table 3 nates and 5-CH ₃ -H ₄ Pte ar fraction	Il surrogate nined usin 3. eGlu ₂₋₄ . Inti	and resuspended in g the procedure by			
с б fc 7 1 5 ⊢ 7	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelg Fable 3: LODs and LO	s used for bacteria cl tion. 11 mg egg white buffer. LODs and L gesang [24]. Results a Qs for pteroylmonoglutam Extracellul LOD [nmol·L ⁻¹]	e were used as cel OQs were detern are listed in table 3 hates and 5-CH ₃ -H ₄ Pte ar fraction LOQ [nmol·L ⁻¹]	Il surrogate nined usin 3. eGlu ₂₋₄ . Intr LOD [nm	and resuspended in g the procedure by racellular fraction			
5 C 5 fc 7 1 5 F 9 T P	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelo Fable 3: LODs and LO Analyte	is used for bacteria cl tion. 11 mg egg white puffer. LODs and L gesang [24]. Results a Qs for pteroylmonoglutam Extracellul LOD [nmol·L ⁻¹] 6.9	e were used as cel OQs were detern are listed in table 3 nates and 5-CH ₃ -H ₄ Pte ar fraction LOQ [nmol·L ⁻¹] 20	Il surrogate nined usin 3. eGlu ₂₋₄ . Intr LOD [nm 5.7	and resuspended in g the procedure by racellular fraction tol·L ⁻¹] LOQ [nmol·l			
c fr fr F F	consisted of FFM a or the cellular fract 10 mL extraction I Hädrich and Vogelg Fable 3: LODs and LO Analyte PteGlu	is used for bacteria cl tion. 11 mg egg white buffer. LODs and Lu gesang [24]. Results a Qs for pteroylmonoglutam Extracellul LOD [nmol·L ⁻¹] 6.9 8.9	e were used as cel OQs were detern are listed in table 3 hates and 5-CH ₃ -H ₄ Pte ar fraction LOQ [nmol·L ⁻¹] 20 26	ll surrogate nined usin 3. eGlu ₂₋₄ . LOD [nm 5.7 3.7	racellular fraction			

5-HCO-H₄folate	10	30	4.8	14
H₄folate	3.1	9.1	2.3	7.0
5-CH ₃ -H ₄ PteGlu ₂	3.0	9.0	0.4	1.3
5-CH ₃ -H ₄ PteGlu ₃	2.1	6.2	1.0	2.8
5-CH ₃ -H ₄ PteGlu ₄	2.9	8.6	1.6	4.8

LODs and LOQs for extracellular pteroylmono- and polyglutamates were almost twice or three times as high as the values obtained for intracellular folates. This effect can be ascribed to the higher amounts of inorganic salts and anionic compounds in the FFM, which interfere with the folate vitamers during SPE purification.

6 Recoveries of all analytes using SIDA-LC-MS/MS ranged from 81 to 113% and from 81 to

7 111% for extra- and intracellular folate, respectively (Table 4).

Analyte	Level	Extracellular fraction		Intracellular fraction	
		Spiked conc.	recovery [%]	Spiked conc.	recovery [%]
		[nmol·L ⁻¹]		[nmol·L⁻¹]	
PteGlu	Ι	23.9	104 ± 4	19.9	110 ± 4
	II	35.8	91 ± 8	29.9	89 ± 7
		48.0	112 ± 7	36.0	85 ± 6
10-HCO-PteGlu	Ι	nd	nd	nd	nd
	II	30.2	82 ± 4	18.1	96 ± 5
		40.3	99 ± 4	36.2	90 ± 6
5-CH ₃ -H₄folate	Ι	24.3	102 ± 2	30.4	95 ± 3
	II	40.1	83 ± 7	120	98 ± 5

27	

	III	80.2	113 ± 2	240	90 ± 4
5-HCO-H₄folate	I	40.3	105 ± 6	40.5	98 ± 4
	II	60.0	112 ± 3	300	91 ± 10
		120	92 ± 9	400	84 ± 1
H₄folate	I	11.9	95 ± 6	29.9	91 ± 5
	II	23.9	84 ± 6	60.2	87 ± 7
		35.9	81 ± 5	120	81 ± 9
$5-CH_3-H_4PteGlu_2$	I	9.41	86 ± 2	nd	nd
	II	18.8	102 ± 4	3.29	94 ± 11
	111	31.4	96 ± 11	9.41	95 ± 3
$5-CH_3-H_4PteGlu_3$	I	7.16	87 ± 6	nd	nd
	II	14.3	103 ± 7	3.58	94 ± 7
	111	23.9	100 ± 7	7.16	111 ± 7
5-CH ₃ -H ₄ PteGlu ₄	I	14.6	91 ± 5	5.12	95 ± 7
	II	48.7	100 ± 5	73.1	99 ± 1
		122	94 ± 5	146	102 ± 6

1 nd: not determined.

2

3 3.2.3. Precision of the assays for pteroylmonoglutamates

4

5 Intra-assay precision was determined by multiple injection (n=3) of an extra- and 6 intracellular extract of one bacteria culture. Coefficients of variation (CVs) revealed 7 satisfactory reproducibility of the multiple injection experiment and ranged between 6 and 8 11% for intracellular and 7 and 18% for extracellular folate (Table 5). High CVs of 9 extracellular 5-CH₃-H₄folate and 5-HCO-H₄folate can be ascribed to their concentrations 10 close to their LOQs. Moreover, higher variations of 5-HCO-H₄folate in these low

- 1 concentrations due to possible interconversions to and from 5,10-CH⁺-H₄folate and 10-
- 2 HCO-H₄folate can be assumed.
- 3 **Table 5.** Intra-assay precision for pteroylmonoglutamates and 5-CH₃-H₄PteGlu₂₋₄.

Analyte	Extracellular fract	ion	Intracellular fraction		
	concentration [nmol·L ⁻¹]	CV [%]	concentration [nmol·L ⁻¹]	CV [%]	
PteGlu	< LOD	-	< LOD	-	
10-HCO-PteGlu	< LOD	-	< LOD	-	
5-CH ₃ -H ₄ folate	25.5	15	127	11	
5-HCO-H₄folate	78.5	18	202	7	
H₄folate	< LOQ	-	67.1	10	
5-CH ₃ -H ₄ PteGlu ₂	< LOQ	-	< LOD	-	
5-CH ₃ -H ₄ PteGlu ₃	< LOQ	-	< LOQ	-	
5-CH ₃ -H ₄ PteGlu ₄	53.9	7	60.7	6	

Inter-assay precision was determined by extraction of one sample in triplicate on three days within two weeks. CVs for inter-assay precision were 1–10% for intracellular folates and 2-11% for extracellular folate (Table 6). As different batches of bacteria cultures were used for the validation procedure of pteroylmono- and pteroylpolyglutamates, their concentrations cannot be compared in this table.

- 10
- 11 **Table 6.** Inter-assay precision for pteroylmonoglutamates and 5-CH₃-H₄PteGlu₂₋₄.

Analyte	Extracellular fraction		Intracellular fraction		
	concentration [nmol·L ⁻¹]	CV [%]	concentration [nmol·L ⁻¹]	CV [%]	
PteGlu	< LOD	-	< LOD	-	
10-HCO-PteGlu	< LOD	-	< LOD	-	

5-CH ₃ -H₄folate	48.2	11	124	10
5-HCO-H₄folate	71.0	3	213	5
H₄folate	< LOQ	-	61.4	1
5-CH ₃ -H ₄ PteGlu ₂	< LOQ	-	< LOD	-
5-CH ₃ -H ₄ PteGlu ₃	< LOQ	-	< LOQ	-
5-CH ₃ -H ₄ PteGlu ₄	54.7	2	63.5	6

PteGlu and 10-HCO-PteGlu were not detectable. 5-CH₃-H₄folate and 5-HCO-H₄folate represented the major vitamers intra- and extracellularly. H₄folate was quantifiable solely intracellularly. In an independent approach we quantified 5-CH₃-H₄PteGlu₂₋₄. The tetraglutamate was quantified extra- and intracellularly with 54.7 and 63.5 nmol·L⁻¹, respectively. 5-CH₃-H₄PteGlu₃ was detectable but not quantifiable in the respective fraction. The diglutamate was detectable only in the supernatant.

8

9 3.2.4. Comparison of 5-CH₃-H₄folate and 5-CH₃-H₄PteGlu₂₋₄ content

10

In a single experiment with one culture incubated for 24 h, we compared the accordance of both methods quantitating monoglutamate after deconjugation and polyglutamates of extra- (Fig. 6) and intracellular (Fig. 7) 5-CH₃-H₄folate.

Quantitation showed a good correlation between the total concentrations obtained by either determination of pteroylmono- or pteroylpolyglutamate. $5-CH_3-H_4PteGlu_2$ and $5-CH_3-H_4PteGlu_3$ were below LOQ. According to the concentration of monoglutamate, almost 100% of polyglutamylated $5-CH_3-H_4$ folate can be traced back to the tetraglutamate.

19

20 **4. Discussion**

2 Because of their probiotic properties and their ability to produce considerable amounts of folate, bifidobacteria became model organisms of particular interest. Pompei et al. [11] 3 4 examined folate production by bifidobacteria in both intracellular and extracellular fractions in folate-free semisynthetic medium containing the folate precursor p-aminobenzoic acid. 5 Most of the 62 human strains tested were auxotrophic for folate. Six of 17 folate-producing 6 strains including strains of *B. adolescentis* and *B. pseudocatenulatum* produced up to 82 7 ng·mL⁻¹ extracellular total folate in FFM. About 9-38% of the produced folate was ascribed 8 9 to intracellular folate after incubating the cells for 48 h. In contrast to this we quantified 10 28% 5-CH₃-H₄folate and 25% 5-HCO-H₄folate in the extracellular fraction of B. adolescentis DSM 20083^T cultivated in FFM for 24 h corresponding to approximately 72 11 and 75%, respectively, in the intracellular fraction. Extracellular total folate concentration 12 in our study was 56 ng·mL⁻¹ and 185 ng·mL⁻¹ were found intracellularly. Comparability 13 14 between the conflicting results is difficult because of different growth media used, strain-15 to-strain differences and the time point of sampling. We found H₄folate exclusively in the 16 intracellular fraction, which can be attributed to the lower stability of this vitamer in FFM. 17 Moreover, the determined vitamer distribution is also dependent on many environmental 18 and analytical factors as i.e. 5-HCO-H₄folate might be a conversion product of 10-19 formyltetrahydrofolate (10-HCO-H₄folate) and 5,10-methenyltetrahydrofolate (5,10-CH⁺-H₄folate) [26,27]. 10-HCO-H₄folate is essential for the synthesis of purines and, on the 20 21 one hand, is unstable in the presence of oxygen [28] or heat [26]. On the other hand, 5,10-CH⁺-H₄folate is converted to 5-HCO-H₄folate when exposed to pH values below 5 22 23 [29].

D'Aimmo *et al.* [12] used an HPLC-UV/FD method and identified $5-CH_3-H_4$ folate and H₄folate to be the most abundant intracellular folate vitamers in bifidobacteria cultivated in FFM. $5-HCO-H_4$ folate was below their LOD and could not be detected. Methods based on

1 UV absorption are not suitable for extracellular folates, as aromatic amino acids and 2 further chromophoric substances of the matrix interfere with analyte signals. SPE purification prior to HPLC-UV/FD analysis leads to substantial losses of analytes, which 3 4 are not compensated for by internal standards. In our assay we observed considerable discrimination of the deuterated internal standard [²H₄]-5-CH₃-H₄folate during extraction 5 and clean-up of extracellular 5-CH₃-H₄PteGlu₂₋₄ and identified the purification step via 6 7 SAX cartridges as the cause. The high content of anions and small, anionic and organic 8 molecules might contribute to a non-proportional release of the monoglutamylated vitamer 9 and its labelled isotopologue from the stationary phase. In contrast to this, the 10 polyglutamylated vitamers possess more than one anionic binding site thus showing 11 higher affinity to the quaternary amine phase. In contrast to this, mixed-mode phases like 12 Strata X-A or Strata Phenyl showed a strong discrimination of tetra- and triglutamylated 5-13 CH₃-H₄folate. These findings are consistent with the fact that an increasing number of 14 glutamyl residues increases the hydrophilic character of the molecule compared to the 15 monoglutamylated internal standard. Interestingly, almost 100% of 5-CH₃-H₄PteGlu₄ were 16 recovered in spiked FFM by only centrifuging the extract without any SPE step. As the 17 recovery results for all polyglutamyl forms of 5-CH₃-H₄folate were satisfactory, no further 18 optimization steps on the different cartridges were performed and SPE was omitted in the 19 final procedure for extracellular folates.

Incorporation of bacterially synthesized folate into host tissue was verified by Rong *et al.* [14] after injection of tritium-labelled p-aminobenzoic acid into the caecum of rats. In the latter study, labelled folate forms synthesized by an undefined fecal microbiota consisted mainly of mono-, tri- and tetraglutamylated folates with small amounts of di- and pentaglutamylated folates. This is particularly important as for assessing folate bioavailability it is necessary to study the degree of polyglutamylation of each folate vitamer. Considering native 5-CH₃-H₄folate vitamers, in our study the intra- and

extracellular fractions of *B. adolescentis* DSM 20083^T consisted mainly of the 1 2 tetraglutamylated 5-CH₃-H₄folate (>95%) and negligible amounts (<LOD or LOQ) of 5-CH₃-H₄PteGlu₂ and 5-CH₃-H₄PteGlu₃. 5-CH₃-H₄folate was not found in the FFM during the 3 4 screening for mono- and polyglutamylated 5-CH₃-H₄folate. Extracellular 5-HCO-H₄folates showed equal polyglutamate patterns with 5-HCO-H₄PteGlu₄ being the predominant folate 5 vitamer. Both monoglutamate and polyglutamate assays showed a high correlation. The 6 7 latter might replace the former in the future, because of facilitated and fast sample clean-8 up (Table A.1 of the ESM) and guantitating the native folate vitamer distribution. From the 9 extracellular enrichment of tetraglutamylated folates we conclude that intracellular folates 10 might be released in the medium after cell death and progressing lysis. Tetraglutamylated 11 folates have to undergo further deconjugation to be accessible for colonocytes. Therefore, 12 bioavailability of these folates produced by this strain might depend largely on exogenous 13 deconjugase activity in the colon.

14

15 **5. Conclusions**

16

17 Herein we present the first SIDA including simultaneous determination of monoglutamylated and polyglutamylated folates for the characterization of bacterial folate 18 19 synthesis in vitro. FFM and cells differ considerably in the complexity of their matrix 20 composition. Cellular components can be separated easily whereas FFM contains small 21 acidic and anionic molecules interfering with the conventional SPE procedures. 22 Monoglutamate losses compensated for the respective are bv isotopologic 23 monoglutamate standard. Thus, monoglutamates can be quantified correctly and 24 independent of culture medium composition. The application of these standards may 25 restrict the propagation of the method but their use prevents from tedious matrix calibrations or standard additions, which is even more expensive in terms of work load 26

1 and measuring time. With regard to sample clean up, an increasing degree of 2 polyglutamylation of folates leads to an increasing polar character of the molecule thus increasing polyglutamate retention on SAX SPE. Therefore, the isotopic monoglutamate 3 4 standard is largely displaced by matrix components leading to an overestimation of 5 extracellular polyglutamate content. As most of the interfering salts and molecules are eluted within the first few minutes during LC-MS/MS measurement and small volumes and 6 7 high dilutions of FFM were used, we were able to exclude the SPE step from our 8 purification. Determination of total 5-CH₃-H₄folate and the respective polyglutamates 9 showed a good correlation of both approaches for both intra- and extracellular fraction 10 independent of matrix composition. These findings might allow further studies on 11 polyglutamylated H₄folate or 5-HCO-H₄folate and their production by bifidobacteria. The 12 quantitation with respective monoglutamylated isotopic standards saves cost and time 13 compared to the purchase or synthesis of the respective isotope labelled polyglutamates 14 and enables sensitive determination of the native bacterial folate vitamer distribution.

15

16 Acknowledgements

We thank Sami Kaviani-Nejad and Ines Otte from the Deutsche Forschungsanstalt für Lebensmittelchemie (Freising, Germany) for analytical assistance. We also thank Jürgen Behr from the Chair of Technical Microbiology (Freising, Germany) for mentoring Kerstin Dürr, and Sarah Just, Caroline Ziegler and Melanie Kornbauer from the Chair of Nutrition and Immunology (Freising, Germany) for technical assistance.

- 22
- 23
- 24
- 25
- 26

1 Figure legends

2

Fig. 1: LC-MS/MS of pteroylmonoglutamates in the extracellular fraction of *B. adolescentis* after deconjugation. *m/z*: SRM transitions of the folate vitamer; monoisotopic
 mass precursor→monoisotopic mass product ion.

6

Fig. 2: Concentrations of $5-CH_3-H_4$ folate depending on cooking (E1), conjugase treatment (E2) and deconjugation after cooking (E3) in 1, 2 or 3 mL of the extracellular fraction analysed in triplicate. * significant difference (Student's t-test, two-sided, P<0.05).

10

Fig. 3: LC-MS/MS chromatogram of pteroylmonoglutamates in the intracellular fraction of
 B. adolescentis after deconjugation. *m/z*: SRM transitions of the folate vitamer;
 monoisotopic mass precursor→monoisotopic mass product ion.

14

Fig. 4: Intracellular 5-CH₃-H₄folate content after (I1) cooking and cell destruction, (I2) cell destruction and cooking, (I3) cooking before and after cell destruction and (I4) cell destruction and cooking without centrifugation. Samples were analysed in triplicate. * significant difference (Student's t-test, two-sided, P<0.05).

19

Fig. 5: LC-MS/MS chromatogram of pteroylpolyglutamates in the extracellular fraction of
 B. adolescentis. m/z: SRM transitions of the folate vitamer; monoisotopic mass
 precursor→monoisotopic mass product ion.

23

Fig. 6: Quantitation of extracellular monoglutamate (i.e. after deconjugation) and polyglutamates (i.e. sum of native polyglutamates and monoglutamate without deconjugation) of $5-CH_3-H_4$ folate.

Fig. 7: Quantitation of intracellular monoglutamate (i.e. after deconjugation) and polyglutamates (i.e. sum of native polyglutamates and monoglutamate without deconjugation) of $5-CH_3-H_4$ folate.

5

1 Appendix A. Supplementary Data

Table A.1: Scheme of intra- and extracellular extraction of pteroylmono- and pteroylpolyglutamates.

extraction step	extraction step	cellular fraction - polyglutamates	cellular fraction -	FFM - monoglutamates	FFM - polyglutamates	
			monoglutamates			
purification/	cultivation		24 h, 37°C, anaerobic conditions			
separation	separation		5000 g, 4°C, 10 min, separate cellular fraction and supernatant			
	dilution	resuspend cellular fraction	resuspend cellular fraction in 2 mL distilled water			
				flask with extraction buffer		
	aliquoting	Aliquot 1 – fluoresc	ence microscopy		-	
		Aliquot 2 – fola	Aliquot 2 – folate extraction			
	centifugation	resuspend aliquot 2 in 4 mL PBS buffe	er, centrifugation for 15 min at 5000			
		g and 4°C, repeat step	with 5 mL PBS buffer			
	dilution	resuspend cell fraction in	10 mL extraction buffer			
	internal standards	add 0.92 ng [² H ₄]-5-CH ₃ -H ₄ folat	e to 1 mL cell supsension for	add 0.92 ng [² H ₄]-5-CH ₃ -H ₄ folate, 1.02 ng [² H ₄]-	add 0.92 ng [² H ₄]-5-CH ₃ -	
		polyglutamate and 0.92 ng [² H ₄]-5-C	polyglutamate and 0.92 ng [² H ₄]-5-CH ₃ -H ₄ folate, 1.02 ng [² H ₄]-5-HCO-		H₄folat to 0,5 mL	
		H_4 folate and 3.04 ng [² H ₄]- H_4 folate	H_4 folate and 3.04 ng [2H_4]- H_4 folate to 1 mL cell suspension for		supernatant and further 0,5	
		monoglutamat	monoglutamate extraction		mL extraction buffer	
	equilibration		15 min, transfer suspension into	screw tubes with 500 mg zirconia beads		
	heating	3 min, 95°C (550 U/min)				
		Thermoblock				
	cell lysis	cell lysis, Bead Beater (3	x40 s, 6,5 m/s, on ice)]		
	heating	3 min, 95°C (550 U/r	min) Thermoblock	4 min, 100°C, ice bath		
	centrifugation	15000 g, 4°	°C, 5 min		15400 g, 20 min	
extraction	deconjugation		150 μL rat serum, 1 mL chicken pancreas suspension (4 h, 37°C)			
	heating		4 min, 100°C, ice bath			
	centrifugation		2700 g, 20 min, 4°C			
	SPE clean-up		SAX-SPE 100 mg, 1 mL			
	washing step	2	2 volumes methanol, 2 volumes equilibration buffer			
	elution	0,5 mL eluting solution				
detection		LC-MS/MS				

Table A.2: LC-MS/MS transitions for pteroylmonoglutamates.

Analyte	Q1 (<i>m/z</i>)	Q3 (<i>m/z</i>)
5-CH ₃ -H ₄ folate	460	313
H₄folate	446	299
PteGlu	442	295
10-HCO-PteGlu	470	295
5-HCO-H₄folate	474	327
[² H ₄]-5-CH ₃ -H ₄ folate	464	317
[² H ₄]-H ₄ folate	450	303
[² H ₄]-PteGlu	446	299
[² H ₄]-10-HCO-PteGlu	474	299
[² H ₄]-5-HCO-H ₄ folate	478	331

Table A.3: LC-MS/MS transitions for pteroylpolyglutamates.

Analyte	Q1 (<i>m/z</i>)	Q3 (<i>m/z</i>)
$5-CH_3-H_4PteGlu_2$	589.3	313.3
$5-CH_3-H_4PteGlu_3$	718.3	313.3
5-CH ₃ -H ₄ PteGlu ₄	847.3	313.3
$5-CH_3-H_4PteGlu_5$	976.3	313.3
[² H ₄]-5-CH ₃ -H ₄ folate	464	317

		1	1
Analyte	Level 1 [nmol·L ⁻¹]	Level 2 [nmol·L ⁻¹]	Level 3 [nmol·L ⁻¹]
PteGlu	23.9	35.8	48.0
10-HCO-PteGlu	nd	30.2	40.3
5-CH ₃ -H₄folate	24.3	40.1	80.2
5-HCO-H₄folate	40.3	60.0	120
H₄folate	11.9	23.9	35.9
5-CH ₃ -H ₄ PteGlu ₂	9.41	18.8	31.4
5-CH ₃ -H ₄ PteGlu ₃	7.16	14.3	23.9
5-CH ₃ -H ₄ PteGlu ₄	14.6	48.7	122

Table A.4: Spiking levels for extracellular folate

2 nd: not determined

Table A.5: Spiking levels for intracellular folate

Analyte	Level 1 [nmol·L ⁻¹]	Level 2 [nmol·L ⁻¹]	Level 3 [nmol·L ⁻¹]
PteGlu	19.9	29.9	36.0
10-HCO-PteGlu	nd	18.1	36.2
5-CH ₃ -H₄folate	30.4	120	240
5-HCO-H₄folate	40.5	300	400
H₄folate	29.9	60.2	120
5-CH ₃ -H ₄ PteGlu ₂	nd	3.29	9.41
5-CH ₃ -H ₄ PteGlu ₃	nd	3.58	7.16
5-CH ₃ -H ₄ PteGlu ₄	5.12	73.1	146

nd: not determined

Figure A.2: LC-MS/MS chromatograms of the extracellular pteroylpolyglutamate patterns of *B. adolescentis* DSM 20083^T. *m/z*: SRM transitions of the folate vitamer; precursor→product ion.

1 References

- [1] Y. Deguchi, T. Morishita, M. Mutai, Comparative studies on synthesis of water-soluble
 vitamins among human species of bifidobacteria, Biosci. Biotech. Bioch. 49 (1) (1985) 13–19.
- 4 [2] M. Rossi, A. Amaretti, S. Raimondi, Folate production by probiotic bacteria, Nutrients 3 (1)
 5 (2011) 118–134. 10.3390/nu3010118.
- [3] H.J. Blom, G.M. Shaw, M. den Heijer, R.H. Finnell, Neural tube defects and folate: case far from closed, Nat. Rev. Neurosci. 7 (9) (2006) 724–731. 10.1038/nrn1986.
- [4] R. Obeid, K. Pietrzik, G. Oakley, V. Kancherla, W. Holzgreve, S. Wieser, Preventable neural tube defects in Germany, Reprod. Toxicol. 56 (2015) 30–31. 10.1016/j.reprotox.2015.07.073.
- [5] D.A. Snowdon, C.L. Tully, C.D. Smith, K.P. Riley, W.R. Markesbery, Serum folate and the
 severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study, Am. J.
 Clin. Nutr. 71 (4) (2000) 993–998.
- [6] M. Hinterberger, P. Fischer, Folate and Alzheimer: when time matters, J. Neural. Transm. 120
 (1) (2013) 211–224. 10.1007/s00702-012-0822-y.
- M. Caudill, The Role of Folate in Reducing Chronic and Developmental Disease Risk: An
 Overview, J. Food. Science 69 (1) (2004) 55–67. 10.1111/j.1365-2621.2004.tb17887.x.
- [8] S.W. Choi, J.B. Mason, Folate and carcinogenesis: an integrated scheme, J. Nutr. 130 (2)
 (2000) 129–132.
- [9] H.M. Said, Intestinal absorption of water-soluble vitamins in health and disease, Biochem. J.
 437 (3) (2011) 357–372. 10.1042/BJ20110326.
- [10] M. Visentin, N. Diop-Bove, R. Zhao, I.D. Goldman, The intestinal absorption of folates,
 Annu. Rev. Physiol. 76 (2014) 251–274. 10.1146/annurev-physiol-020911-153251.
- [11] A. Pompei, L. Cordisco, A. Amaretti, S. Zanoni, D. Matteuzzi, M. Rossi, Folate Production by
 Bifidobacteria as a Potential Probiotic Property, Appl. Environ. Microb. 73 (1) (2007) 179–
 185. 10.1128/AEM.01763-06.
- [12] M.R. D'Aimmo, P. Mattarelli, B. Biavati, N.G. Carlsson, T. Andlid, The potential of
 bifidobacteria as a source of natural folate, J. Appl. Microbiol. 112 (5) (2012) 975–984.
 10.1111/j.1365-2672.2012.05261.x.
- [13] W. Sybesma, M. Starrenburg, L. Tijsseling, M.H.N. Hoefnagel, J. Hugenholtz, Effects of
 cultivation conditions on folate production by lactic acid bacteria, Applied and environmental
 microbiology 69 (8) (2003) 4542–4548.
- [14] N. Rong, J. Selhub, B.R. Goldin, I.H. Rosenberg, Bacterially synthesized folate in rat large
 intestine is incorporated into host tissue folyl polyglutamates, J. Nutr. 121 (12) (1991) 1955–
 1959.
- [15] M. Rychlik, M. Netzel, I. Pfannebecker, T. Frank, I. Bitsch, Application of stable isotope
 dilution assays based on liquid chromatography-tandem mass spectrometry for the assessment
 of folate bioavailability, J. Chrom. B. 792 (2) (2003) 167–176. 10.1016/S15700232(03)00254-X.
- [16] S. Mönch, M. Netzel, G. Netzel, M. Rychlik, Quantitation of folates and their catabolites in
 blood plasma, erythrocytes, and urine by stable isotope dilution assays, Anal. Biochem. 398
 (2) (2010) 150–160. 10.1016/j.ab.2009.11.007.
- [17] M. Kopp, M. Rychlik, Quantitation of 5-Methyltetrahydrofolic Acid in Dried Blood Spots and
 Dried Plasma Spots by Stable Isotope Dilution Assays, Plos 10 (11) (2015) 1–18.
 10.1371/journal.pone.0143639.
- [18] S.H. Kirsch, W. Herrmann, J. Geisel, R. Obeid, Assay of whole blood (6S)-5-CH3-H4folate
 using ultra performance liquid chromatography tandem mass spectrometry, Anal. Bioanal.
 Chem. 404 (3) (2012) 895–902.
- [19] C. Wang, K.M. Riedl, S.J. Schwartz, A liquid chromatography-tandem mass spectrometric
 method for quantitative determination of native 5-methyltetrahydrofolate and its polyglutamyl
- 50 derivatives in raw vegetables, Journal of chromatography. B, Analytical technologies in the
- 51 biomedical and life sciences 878 (29) (2010) 2949–2958. 10.1016/j.jchromb.2010.08.043.

- [20] A. Freisleben, P. Schieberle, M. Rychlik, Syntheses of Labeled Vitamers of Folic Acid to Be
 Used as Internal Standards in Stable Isotope Dilution Assays, J. Agric. Food. Chem. 50 (17)
 (2002) 4760–4768. 10.1021/jf025571k.
- 4 [21] M. Lin, C. Young, Folate levels in cultures of lactic acid bacteria, Int. Dairy J. 10 (5-6) (2000)
 5 409–413. 10.1016/S0958-6946(00)00056-X.
- [22] S. Ndaw, M. Bergaentzle, D. Aoude-Werner, S. Lahely, C. Hasselmann, Determination of
 folates in foods by high-performance liquid chromatography with fluorescence detection after
 precolumn conversion to 5-methyltetrahydrofolates, J. Chrom. A. 928 (1) (2001) 77–90.
- 9 [23] G. Bratbak, I. Dundas, Bacterial dry matter content and biomass estimations, Appl. Environ.
 10 Microb. 48 (4) (1984) 755–757.
- [24] J. Vogelgesang, J. Hädrich, Limits of detection, identification and determination: A statistical
 approach for practitioners, Accred. Qual. Assur. 3 (6) (1998) 242–255.
 10.1007/s007690050234.
- [25] Z. Fazili, C.M. Pfeiffer, Accounting for an Isobaric Interference Allows Correct Determination
 of Folate Vitamers in Serum by Isotope Dilution-Liquid Chromatography-Tandem MS, J.
 Nutr. 143 (1) (2012) 108–113. 10.3945/jn.112.166769.
- [26] S.D. Wilson, D.W. Horne, Evaluation of ascorbic acid in protecting labile folic acid
 derivatives, P. Natl. Acad. Sci. USA. 80 (21) (1983) 6500–6504.
- [27] V. de Brouwer, G.-F. Zhang, S. Storozhenko, D. van der Straeten, W.E. Lambert, pH stability
 of individual folates during critical sample preparation steps in prevision of the analysis of
 plant folates, Phytochem. Analysis 18 (6) (2007) 496–508. 10.1002/pca.1006.
- [28] M. May, T.J. Bardos, F.L. Barger, M. Lansford, J.M. Ravel, G.L. Sutherland, W. Shive,
 Synthetic and Degradative Investigations of the Structure of Folinic Acid-SF, J. Am. Chem.
 Soc. 73 (7) (1951) 3067–3075. 10.1021/ja01151a028.
- [29] J.E. Baggott, Hydrolysis of 5,10-Methenyltetrahydrofolate to 5-Formyltetrahydrofolate at pH
 2.5 to 4.5, Biochemistry 39 (47) (2000) 14647–14653. 10.1021/bi001362m.