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Abstract

The present thesis addresses the nonlinear damping behavior of acoustic resonators—such
as quarter-wave and Helmholtz resonators—originating from flow separation at the edges
of the resonators in the presence of high acoustic amplitudes. In particular, it focuses on
the following aspects: high-fidelity fluid dynamic simulations, gathering in-depth knowl-
edge about the mechanisms involved and data-based reduced-order modeling.

Compressible fluid dynamic simulations are conducted for the nonlinear aeroacoustic char-
acterization. These simulations are acoustically excited at an inlet boundary with the
Navier-Stokes characteristics boundary condition. The computational setup is success-
fully validated against experiments for various test cases. In addition, a novel method-
ology applying incompressible flow simulations is developed and cross-validated against
compressible simulations.

The validated compressible computational setup is employed as a powerful tool to investi-
gate nonlinear effects in detail. The effects of the resonator edge contour on the damping
behavior are analyzed. It is demonstrated that a blunt edge reduces the flow separation
at the leading edge significantly, resulting in a reduction of the nonlinear resistance. Fur-
thermore, the scattering to higher harmonics is investigated in the nonlinear regime. For
the Helmholtz resonator, a pattern in the spectrum of the scattered wave is found, where
only the odd harmonics are present. A quasi-steady analysis identifies the flow symmetry
during the inflow and the outflow phase as the reason for this pattern. Accordingly, the
pattern becomes weaker for a Helmholtz resonator with an asymmetric neck and vanishes
totally for a quarter-wave resonator. Moreover, it is shown that the overall scattering to
higher harmonics remains on minor and moderate levels for the Helmholtz and quarter-
wave resonator, respectively.

Data-based reduced-order modeling of the dynamics of resonators forms the core of the
thesis. For that purpose, system identification techniques are applied on broadband in-
put/output data from a fluid dynamic simulation. The linear dynamics are reproduced
very accurately by an estimated linear autoregressive model. Such a model can be rep-
resented as a digital filter with an infinite number of filter coefficients. Since the autore-
gressive model exhibits a moderate number of free model parameters, it is robust against
over-fitting. This methodology is extended into the nonlinear regime. A novel gray-box
model structure, named local-linear neuro-fuzzy network, is proposed along with a proce-
dure for a bias-free identification. This model—defined in the time domain—reproduces
the nonlinear dynamics accurately in a robust manner by an estimation based on data
from a single simulation. Since this model is very flexible and can be evaluated efficiently,
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it can be employed as an acoustic boundary condition in other fluid dynamic or aeroa-
coustic simulations for the assessment of the nonlinear stability of the overall system.
Moreover, the efficient and robust nonlinear characterization makes this approach feasible
to support the resonator design in an early stage of development.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit den nichtlinearen Dämpfungseigenschaften
akustischer Resonatoren wie z. B. λ/4- und Helmholtzresonatoren, die aufgrund
von Strömungsablösung an den Resonatorenkanten bei hohen akustischen Ampli-
tuden auftreten. Insbesondere werden folgende Aspekte betrachtet: die akkurate
strömungsmechanische Simulation, die Vertiefung des Kenntnisstandes über die auftre-
tenden Mechanismen und die datengestützte Generierung von Modellen reduzierter Ord-
nung.

Für die nichtlineare aeroakustische Charakterisierung werden kompressible
strömungsmechanische Simulationen durchgeführt. Diese Simulationen werden am
Einlass, an dem die Navier-Stokes-Characteristics-Randbedingung implementiert ist,
akustisch angeregt. Das numerische Setup wird erfolgreich anhand von Experimenten
für verschiedene Testfälle validiert. Zudem wird eine neue Methode, basierend auf
inkompressibler Simulationen, entwickelt und an kompressible Simulationen validiert.

Das validierte kompressible Setup wird eingesetzt, um nichtlineare Effekte im De-
tail zu untersuchen. Zunächst wird die Auswirkung der Resonatorkantenkontur auf
die Dämpfungseigenschaften analysiert. Es wird gezeigt, dass eine stumpfe Kante die
Strömungsablösung an der Vorderkante erheblich reduziert, was zu einer Verringerung
des nichtlinearen Widerstandes führt. Zudem wird die Streuung in Oberschwingungen im
nichtlinearen Regime untersucht. Für den Helmholtzresonator wird ein Muster im Spek-
trum der reflektierten Welle sichtbar, in dem ausschließlich die ungeradzahligen Ober-
schwingungen vorhanden sind. Als Ursache hierfür wird in einer quasi-stationären Ana-
lyse die Strömungssymmetrie während der Ein- und Ausströmphase ermittelt. Dement-
sprechend wird das Muster für einen Helmholtzresonator mit einem asymmetrischen Hals
schwächer und verschwindet vollständig für einen λ/4-Resonator. Darüber hinaus wird
gezeigt, dass die gesamte Streuung zu Oberschwingungen auf kleinem Niveau für den
Helmholtzresonator bzw. einem moderatem für den λ/4-Resonator verbleibt.

Die datengestützte Modellierung der Resonatordynamik bildet den Kern dieser Arbeit.
Hierfür werden Systemidentifikationstechniken auf breitbandige Ein- und Ausgangsdaten
einer strömungsmechanischen Simulation angewendet. Die lineare Dynamik wird durch ein
geschätztes lineares autoregressives Modell sehr genau wiedergegeben. Ein solches Modell
kann als digitaler Filter mit unendlich vielen Filterkoeffizienten dargestellt werden. Da das
autoregressive Modell nur eine geringe Anzahl an freien Modellparametern aufweist, ist
es robust gegenüber Over-Fitting. Diese Methodik wird in das nichtlineare Regime ausge-
dehnt. Eine neue Gray-Box-Modellstruktur, ein sogenanntes lokal-lineares Neuro-Fuzzy-
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Netzwerk, wird zusammen mit einer Prozedur für eine biasfreie Identifikation entwickelt.
Dieses im Zeitbereich definierte Modell reproduziert robust die nichtlineare Dynamik ba-
sierend auf Daten einer einzigen Simulation. Aufgrund seiner Flexibilität und effizienten
Auswertbarkeit kann es als akustische Randbedingung in strömungsmechanischen oder ae-
roakustichen Simulationen zur Beurteilung der nichtlinearen Stabilität des Gesamtsystems
eingesetzt werden. Darüber hinaus kann dieser Ansatz durch die effiziente und robuste
nichtlineare Charakterisierung den Auslegungsprozess von Resonatoren bereits zu einem
frühen Entwicklungsstadium unterstützen.
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1 Introduction

Acoustic resonators are used as sound absorbers in various technical applications. For in-
stance, they are implemented to reduce sound emissions to the environment or to suppress
thermoacoustic oscillations [1]. Combustion systems, such as domestic heaters, gas tur-
bines or rocket engines, may suffer from so-called thermoacoustic instabilities [2]. These
instabilities can occur due to the feedback of the combustion process and the acoustics
within the system. By a fluctuating heat release from the combustion, the gaseous vol-
ume is thermally expanded in an unsteady manner which produces sound. This sound is
reflected at the combustion chamber boundaries and, in turn, influences the combustion
process itself. In the case of an instability, this feedback may lead to very high amplitudes.
In the worst case, these high amplitudes can damage or even destroy the combustion
system. Among other arrangements to weaken this feedback, acoustic resonators are im-
plemented in the walls of the combustion chamber [3, Chp. 8]. Exemplarily, an L-shape
quarter-wave resonator mounted in the Vulcain 2, the main stage engine of the Ariane 5
rocket, is shown in Fig. 1.1a.

Prominent examples of resonators employed for the reduction of sound emissions are
found in aero-engines [4, Chp. 19]. Several sound sources are present in such an engine,
where fan noise is dominant in modern devices. Regularities for sound emissions are
continuously intensified to protect humans and animals from the harmful effects of noise [4,
Chp. 19]. Acoustic liners, which can be considered as an array of Helmholtz resonators, are
commonly placed in the inlet and the exhaust duct to meet these regulations. Figures 1.1b
presents the placement of such liners in an engine.

To determine the sound emissions or the thermoacoustic stability of a system equipped
with resonators, a model for their dynamics is needed. Such a model is often provided in
terms of the impedance. The impedance relates, by definition, the local fluctuating acous-
tic pressure to the local acoustic velocity in a linear fashion. However, at high acoustic
amplitudes, resonators do not behave in a linear manner due to flow separation at their
edges. When the analysis is performed in the frequency or the Laplace domain, the linear-
ity of the models considered is required. Hence, often local-linear models are constructed,
where correction parameters are incorporated into the impedance model emulating the
nonlinear influence. A local-linear model is valid for a specific amplitude range, for which
the correction parameters are set. Accordingly, such a model cannot be used in the time
domain when amplitudes change dynamically. However, a model accounting for dynamical
changes is needed for a rigorous nonlinear analysis of systems in the time domain.

This dissertation addresses the nonlinear damping effects present in acoustic resonators.
In particular, it focuses on high-fidelity computational fluid dynamics (CFD) simulations
of the resonator dynamics including nonlinear phenomena, on deepening the knowledge of
the nonlinear mechanisms, and on their data-based reduced-order modeling. CFD simula-
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Introduction

(a) L-shaped quarter-wave resonator
in a Vulcain 2 engine.1

(b) Liners in an aero-engine (taken from [4,
Chp. 19]).

Figure 1.1: Resonators in technical applications.

tions have proven their capability of reproducing the physics accurately. Thus, a validated
simulation setup can be a powerful tool to study aspects of the nonlinear interactions.
In the present thesis, the impact of the edge shape on the damping characteristics and
the scattering to higher harmonics is investigated in detail using this tool. The findings
are consolidated by analytic considerations aligned with flow visualizations. The poten-
tial of CFD simulations is also employed to generated models of the resonator dynamics.
Existing models are mainly based on first principles in combination with some correction
terms. These correction terms are adjudicated by correlation analysis of experimental
data. When the set of correlation parameters is determined correctly, the harmonic be-
havior of the resonator can be described well for a fixed amplitude of excitation. In this
thesis, a data-based modeling approach is pursued. Based on the input/output data of a
simulation, a reduced-order model (ROM) is estimated using system identification (SI)
techniques. ROMs are generated in both the linear and the nonlinear regime. By this
procedure, an efficient and robust approach is presented to generate accurate models for
various resonator geometries and conditions.

The results were presented at conferences and in journals. Major publications are repro-
duced in the Appendix A. The present paper-based dissertation guides through these
publications by summarizing the most important results, embedding them in the liter-
ature context, and, most importantly, showing the interconnections between them. The
thesis is structured as follows: Section 2 lays the theoretical and terminological foundation.
Different types of resonators (Sec. 2.1) as well as the fluid dynamic and acoustic governing

1Private photography taken with permission at the museum of the DLR (Deutsches Zentrum für Luft-
und Raumfahrt), Lampoldshausen (Germany).
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equations (Sec. 2.2) are introduced. Modeling in terms of the reflection coefficient and the
impedance (Secs. 2.3 and 2.4) as well as a 1-D quasi-steady modeling approach (Sec. 2.5)
are presented. In Sec. 3, the impact of several parameters of quarter-wave resonators on
the linear thermoacoustic stability of a generic rocket combustion chamber is demon-
strated by a network model. The computational setup is introduced in Sec. 4. Section 5
addresses some aspects of the nonlinear behavior. The shape of the edges of resonators
influences the separation behavior and, thus, the nonlinear damping characteristics as
discussed in Sec. 5.1. The scattering to higher harmonics for different resonator types is
considered in Sec. 5.2. Section 6 reports on data-based reduced-order modeling. After a
general introduction on SI (Sec. 6.1), the linear SI approach and results for some test
cases are presented in Sec. 6.2. This approach is extended into the nonlinear regime by
a new gray-box model in Sec. 6.3. Finally, conclusions are given in Sec. 7. Here, also the
author’s contribution to the attached papers is described clearly.
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2 Fluid Dynamic and Acoustic
Background

This chapter introduces the essential terminology and analytical concepts of the thesis.
First, the different types of resonators are introduced in Sec. 2.1. Here, the principle of the
damping mechanism is also briefly described in prose. Section 2.2 presents the governing
equations from fluid dynamics and sketches the derivations of the acoustic Helmholtz and
wave equation. In Sec. 2.3, it is shown that the linear impact of a resonator located at
the boundary of a domain can be modeled as an impedance or a reflection coefficient.
Describing functions generalize these expressions for the nonlinear regime as presented in
Sec. 2.4. Finally, a quasi-steady 1-D modeling approach commonly used in the literature is
given in Sec. 2.5. Such a relatively simple approach can model the dynamics surprisingly
well and helps to develop a clear picture of them.

2.1 Working Principle and Types of Resonators

Hard walls fully reflect an incident wave without any loss. Whereas, at an acoustic res-
onator, the incident wave is only partially reflected due to imposed losses there. A res-
onator exploits the resonance of a cavity being connected via one or several openings to
the chamber. This resonance leads to high particle velocities at the opening of the cav-
ity, which causes losses there. In general, two main types of resonators are distinguished:
locally and non-locally reacting resonators. In the locally reacting case, its behavior is
independent of the angle of the incident acoustic wave. This is achieved when either only
one opening per cavity is present or when the openings connected via the backing vol-
ume are arranged closely to each other (in comparison to the wavelength). Otherwise, the
resonator is referred to as non-locally reacting and its behavior cannot be modeled by
considering only a local section of the device’s surface, as sketched in Fig. 2.1a. In most
technical applications, resonators can be considered as locally reacting. Hence, this thesis
is restricted to that kind of resonators. Three prototypes of locally reacting resonators
can be identified: the Helmholtz, the half-wave, and the quarter-wave resonator. The
Helmholtz resonator, displayed in Fig. 2.1d, is named after Hermann von Helmholtz, who
was the first to analyze it theoretically [6]. This resonator type has a closed cavity, which
is connected to the chamber via an opening with a narrow cross-section, the so-called neck.
The half-wave and the quarter-wave resonators consist of tubes, see Figs. 2.1b and 2.1c.
The opening of such a tube resonator linked to the chamber is referred to as its mouth.
The half-wave resonator has also an opening at the backside of the tube, while the end of
the quarter-wave type is closed. The lengths of the tubes determine the eigenfrequencies
of the half-wave and the quarter-wave resonators. The half and the quarter of eigenfre-
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θ

(a) Non-locally reacting resonator. (Sketch
similar to [5, Fig. 1.3].)

g

f

p∞

(b) Half-wave resonator.

g

f

l0

d0

(c) Quarter-wave resonator with geometrical
dimensions.

l0

d0

lcav

dcav
g

f

(d) Helmholtz resonator with geometrical di-
mensions.

Figure 2.1: Sketches of basic resonator types with acoustic traveling f - and g-waves.

quencies’ wavelengths coincide with the lengths of the tubes, which explains the naming
of these resonator types. Since an open end is often difficult to realize, the quarter-wave
tube and Helmholtz resonator are mainly implemented in applications. Accordingly, only
those two types are considered in the present thesis.

For locally reacting resonators, Rayleigh [7] described their working principle by the anal-
ogy to a mechanical mass-spring-damper system. The mass in the neck or the mouth of
the resonator corresponds to the mass in its mechanical counterpart. The imposed losses
and the compressibility of the backing volume correlate with the losses of the mechanical
damper and the stiffness of the spring, respectively. The external pressure driving the sys-
tem corresponds to a force acting on the mechanical system. A mathematical description
of this system is given in Sec. 2.5.

The losses mentioned above are caused by the fluid motion at the opening of the resonator.
There are two main loss mechanisms: the thermo-viscous losses due to friction at the walls
and losses due to flow separation. The former scale linearly with the particle velocity.
This means that, for instance, the losses double when the velocity doubles. However,
this relation is not valid for the losses caused by the flow separation. When the particle
velocity at the edges of the resonator is beyond a certain level, the fluid particle cannot
follow the resonator contour, the flow separates and a jet forms. The kinetic energy of
that jet does not recuperate into the acoustic energy, but is transformed into vortices

6



2.2 Governing Equations

(a) Linear regime. (b) Nonlinear regime.

Figure 2.2: Snapshots of streamlines in the vicinity of a Helmholtz resonator neck gen-
erated with the CFD environment introduced in Chp. 4.

instead, which are finally dissipated via the turbulent cascade process. The energy which
the jet carries—and thus also the acoustic loss—depends on the particle velocity in a
nonlinear manner. Moreover, the level of forcing influences the induced flow at the opening
of the resonator noticeably. The change of the flow characteristics impacts not only the
acoustic losses as described above, but also the fluid mass taking part in the resonant flow
motion. This corresponds to a variation of mass in the mass-spring-damper model and,
thus, changes the eigenfrequency of the resonator. It is common to distinguish between
the linear and the nonlinear regime. In the linear regime, where the acoustic forcing is
sufficiently low, only the linear effects are present. The resonator is said to be operated in
the nonlinear regime when the forcing is high enough to trigger nonlinear effects. Typical
streamlines for both regimes are illustrated for an Helmholtz resonator in Fig. 2.2. The
flow separation at the edges can clearly be seen in the nonlinear regime presented in
Fig. 2.2b. In this thesis, these nonlinear effects are studied in detail (see Sec. 5) and a
data-based reduced-order model for their description is developed (see Sec. 6).

2.2 Governing Equations

This thesis investigates the acoustic damping of resonators, i. e., the losses of sound propa-
gating in a fluid when it interacts with those devices. All relevant effects are fully included
in the Navier-Stokes equations for Newtonian, compressible fluids without external forces
(see for instance the manuscript by Davidson [8]). This set of equations consists of the
continuity, the momentum, and the energy equation. The relation between the density ρ
and the velocity of the fluid ui in space xi and time t can be written in Einstein notation
for the mass and momentum equation as:

dρ

dt
+ ρ

∂ui

∂xi

= 0 , and (2.1)

ρ
dui

dt
= − ∂p

∂xi

+
∂

∂xj

(

2µSij −
2

3
µ
∂uk

∂xk

δij

)

. (2.2)
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Fluid Dynamic and Acoustic Background

Above, the operator d · /dt denotes the material derivative d · /dt = ∂ · /∂t+ ui ∂ · /∂xi.
The pressure, the viscosity, and the strain rate tensor are referred to as p, µ, and Sij,
respectively. The rate tensor is defined as Sij = 1/2 (∂ui/∂xj + ∂uj/∂xi). The transport
equation for the internal energy e reads as:

ρ
de

dt
= −p

∂ui

∂xi

+ 2µSijSij −
2

3
µSkkSii +

∂

∂xi

(

kT
∂T

∂xi

)

. (2.3)

Above, the variables T and kT stand for the temperature and the thermal conductivity,
respectively. In addition to the partial differential equations (PDEs) above, two equations
of state are required for a complete problem description. Here, the ideal gas law can be
applied for all cases considered:

p = ρRsT , (2.4)

where Rs is the specific gas constant. For an ideal gas, the specific internal energy e and
the temperature T are linked by the relation:

e =

∫

cv dT =

∫

cp dT − p

ρ
, (2.5)

where cv and cp denote the specific heat capacities at constant specific volume and at
constant pressure, respectively.

The set of equations above describes the whole physics involved. However, it is often
meaningful to consider some simplification of them. Disregarding viscosity, the momentum
equation (2.2) reduces to the Euler equation

ρ
dui

dt
+

∂p

∂xi

= 0 . (2.6)

If additionally the flow is assumed to be incompressible and irrotational, i. e.
ωi ≡ ǫijk ∂uk/∂xj = 01, it further reduces to the incompressible Bernoulli equation

∂φ

∂t
+

1

2
uiui +

p

ρ
= const. . (2.7)

This equation is valid along a streamline and the variable φ stands for the potential of
the irrotational flow ∂φ/∂xi = ui. It is often starting point for the analysis of so-called
acoustically compact elements, see Sec. 2.5.

In acoustics, isentropic disturbances of flow variables are considered [9]. Hence, any varying
quantity q is decomposed into its mean q0 and its fluctuating parts q′, i. e. q = q0 + q′. If
the fluctuating parts are small in comparison to a suitable reference value, it is valid with
only minor loss of generality to neglect higher-order products of fluctuating quantities.
The continuity (2.1) and the Euler equation (2.6) for the fluctuating quantities read as

d0ρ
′

dt
+ ρ0

∂u′
i

∂xi

= 0 and (2.8)

ρ0
d0u

′
i

dt
+

∂p′

∂xi

= 0 , (2.9)

1ǫijk denotes the permutation tensor defined as ǫijk =







1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if (i, j, k) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)}
0 else

8



2.2 Governing Equations

where d0 · /dt stands for the material derivative with respect to the mean flow u0, i. For
an isentropic compression, the fluctuating pressure p′ and density ρ′ are related in first
order approximation as

p′ = c20 ρ
′ , (2.10)

where the constant c0 is defined as c20 = (∂p/∂ρ)s with the index s indicating the isentropic
relation. The variable c0 is named speed of sound, since acoustic perturbations propagate
in space with that speed, as it can be seen below in Eq. (2.12). For an ideal gas, the speed
of sound is given by c0 =

√
γRsT , where γ denotes the adiabatic index γ = cp/cv. By

combination of Eqs. (2.8), (2.9) and (2.10), the so-called wave equation can be formulated:

d2
0p

′

dt2
− c20

∂2p′

∂xi∂xi

= 0 . (2.11)

When the acoustic pressure p′ is know, the particle velocity u′
i can be deduced from it by

applying Eqs. (2.8) and (2.10).

In many applications, the sound propagates in a 1-D manner. This is, e. g., valid for plane
waves in a duct with constant cross section area. Hence, a 1-D configuration is considered
in the following paragraph.

The wave equation (2.11) can be factorized as

(
d0

dt
+ c0

∂

∂x

)(
d0

dt
− c0

∂

∂x

)

p′ = 0 . (2.12)

Each factor represents an operator known from the convection equation with the con-
vective speeds ±(c0 ∓ u0). In this form, it can be seen that the solution of the 1-D wave
equation consists of two perturbations traveling upstream and downstream with the speed
c0 relative to the mean fluid motion. These two characteristic waves, also known as Rie-
mann invariants, are defined as

f =
1

2

(
p′

ρ0c0
+ u′

)

and g =
1

2

(
p′

ρ0c0
− u′

)

. (2.13)

Accordingly, the acoustic velocity and pressure is given in terms of f and g as

u′ = f − g and
p′

ρ0c0
= f + g , (2.14)

respectively.

In linear acoustics, equations are often transformed into frequency domain by the Fourier
transform F . Quantities in the frequency domain are indicated by ·̂ and the angular
frequency is denoted as ω in the following. The pressure in frequency domain p̂ is given
by

p̂(ω) = F{p}(ω) =
∫ ∞

−∞

p(t) e−iωtdt . (2.15)

9
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When the pressure is determined in the frequency domain, the inverse Fourier transform
F−1 yields the corresponding value in the time domain

p(t) = F−1{p̂}(t) = 1

2π

∫ ∞

−∞

p̂ eiωtdω . (2.16)

A quantity gained by the inverse Fourier transform is complex-valued. Without loss of
generality, the real part of this quantities can be considered as the physical quantity. The
3-D wave equation (2.11) without mean flow is transformed to

∂2p̂

∂xi∂xi

+ k2p̂ = 0 (2.17)

and is named Helmholtz equation. The parameter k is called wavenumber and is defined
as k ≡ ω/c0. In a 1-D setup, the propagation of a f -wave in a duct with length l can
be written in terms of the wavenumber as: fout = exp(−i lk)fin, where fin/out denote the
f -wave entering and leaving the duct, respectively.

2.3 Impedance and Reflection Coefficient

Solving the Helmholtz equation (2.17) on a given domain requires setting boundary condi-
tions (BCs) on the entire boundary. For an ideal opening to the environment, no pressure
fluctuations are assumed, i. e., a Dirichlet BC p̂ = 0 is set on such a boundary. At a hard
wall, no wall-normal velocity fluctuations can take place, which means that the gradi-
ent of the pressure vanishes in wall-normal direction ni. This means the Neumann BC
(∂p̂/∂xi)ni = 0 is set. In addition to these ideal cases, situations occur where the pressure
and velocity fluctuations are coupled in a certain manner. This is modeled as a Robin
BC with the so-called (surface) impedance Z. This quantity is defined in the frequency
domain as the ratio of the pressure fluctuations p̂ to the wall-normal velocity fluctuation
ûi ni:

Z(ω) =
p̂(ω)

ûi(ω)ni

. (2.18)

Hence, the impedance describes the frequency response function for the pressure when
the boundary is excited by a velocity fluctuation. Impedance values should be regarded
as an “effective, averaged boundary condition the incident sound experiences rather than
as a detailed quantity associated with a point measurement” [10]. The real and imag-
inary part of the complex valued impedance are denoted as the resistance and the re-
actance, respectively. It can be shown that an acoustically passive boundary exhibits a
non-negative resistance Re(Z) ≥ 0 and that the boundary absorbs sound for Re(Z) > 0,
see Rienstra [11]. The two special cases of an ideal opening and a hard wall correspond
to impedances Zopen = 0 and |Zwall| = ∞, receptively. The impedance perceived by an
acoustic wave traveling within a fluid is called specific impedance and is given by ρ0c0. To
allow for a more intuitive interpretation, the impedance is often normalized with respect
to that specific value. The normalized impedance z = Z/(ρ0c0) is denoted by lower case z
in the following. By a 1-D acoustic analysis [12], the impedance of a loss-free quarter-wave
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2.3 Impedance and Reflection Coefficient

tube with effective length le can be calculated. An f -wave is entering the tube, propagates
the distance le along the tube, is reflected at the hard wall end (with reflection coefficient
R = 1, see below Eq. (2.21)), and finally travels as g-wave along the tube in opposite
direction. This yields the normalized impedance

z(ω) =
1

ρ0c0

p̂

û
=

f + g

f − g
=

1 + exp(−i 2lek)

1− exp(−i 2lek)
= −i cot

(
ω le
c0

)

, (2.19)

where k ≡ ω/c0 denotes the wavenumber, see Eq. (2.17).

The relation between the acoustic velocity and the pressure on a boundary Z(ω)û(ω) =
p̂(ω) can also be described in the time domain. The multiplication in the frequency domain
results in a convolution (marked by the symbol ∗) of u(t) with the so-called impulse
response of the impedance Zt(t):

p(t) =
(
F−1{Z} ∗ u

)
(t) =

∫ ∞

−∞

Zt(τ) u(t− τ) dτ . (2.20)

The impulse response Zt is given by the inverse Fourier transformed impedance Zt(t) =
F−1{Z}(t) = 1/(2π)

∫∞

−∞
Z(ω) exp(iωt) dω. A physical system formulated in a ‘cause and

effect manner’ can be assumed to be causal, which means that its response cannot depend
on future inputs. In formula, this means that Zt(t) = 0 for all t < 0.

Another way to acoustically characterize a boundary is the ratio of the reflected acoustics
(g) to the normally incident (f), see Fig. 2.1 (θ = 0). This is done by the reflection
coefficient, which is defined as

R(ω) =
ĝ(ω)

f̂(ω)
. (2.21)

Its connection to the impedance is given by

R =
z − 1

z + 1
=

Z − ρ0c0
Z + ρ0c0

, or z =
Z

ρ0c0
=

1 +R

1−R
. (2.22)

In the formula above, it can be observed that there are no reflections for a normalized
impedance of unity, z = 1. A system with a normalized resistance below and above unity
is referred to as normally damped and over-damped, respectively. When the plane wave is
incident upon boundary with an angle θ (see Fig. 2.1a), the reflection is given by

Rθ =
z cos(θ)− 1

z cos(θ) + 1
. (2.23)

The maximal absorption is achieved for z = 1/ cos(θ) in that case.

Frequency response functions such as R and Z describe the system behavior in the Fourier
domain and, thus, are valid if the system dynamics are neither decaying nor growing. In
many aeroacoustic systems, this assumption applies. For instance, the sound propagation
in the inlet duct of an aero-engine can be studied under this assumption, since the sound
pressure does not vary on short time scales. However, this assumption is violated when
the (linear) thermoacoustic stabilization of a system is studied. Here, transfer functions
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in the Laplace domain have to be considered. Exemplarily shown for the pressure, the
Laplace transformation L is defined as:

P (s) = L{p}(s) =
∫ ∞

0

p(t)e−st dt . (2.24)

Functions in the Laplace domain are denoted by an capital letter, e. g., P (s) for the
pressure. The complex-valued Laplace variable s = σs + iω describes both the angular
frequency ω and the growth rate σs of a signal. All frequency response functions defined in
the Fourier domain can also be defined analogously in the Laplace domain. For instance,
the impedance reads here as:

Zs(s) =
P (s)

U(s)
. (2.25)

The frequency response functions in the Fourier domain define the behavior only on the
imaginary axis of the complex-valued Laplace domain. The Laplace domain representation
contains additional information for the behavior of the system responding to an decaying
or increasing input signal u′(t) = û exp[(σs + iω)t].

The transfer behavior of any linear, time-invariant (LTI) system can fully be modeled
by a transfer function in the Laplace domain. In this context, linear means that the
input and the output signal (which are functions in time) can be related to each other
by a linear function. Time-invariant implies that the characteristics of the system do not
change in time. If the frequency response is known in the Fourier domain, say Z(ω), it
generally cannot be extruded into the Laplace domain as Zs(s) = Zs(σs + iω) 6= Z(ω)
for σs 6= 0, see Schmid et al. [13]. A frequency response described by a holomorphic2 or
meromorphic3 function can be extended to a transfer function in the Laplace domain by
analytic continuation, which is by construction valid for the underlying LTI system.

In experiments, the impedance cannot be obtained directly since the velocity in the neck
is difficult to measure. When there is no mean flow present, the two- or multi-microphone
method offers a good possibility to determine the impedance, see for instance Temiz
et al. [14]. Here, a sample, such as a resonator, is located at the end of a tube, the so-
called impedance tube, which is equipped with an array of microphones. A loudspeaker
placed at the other end excites this configuration harmonically. From the pressure data of
the microphones, the characteristic f - and g-waves (see Eq. (2.13)) can be reconstructed.
Their ratio gives the reflection coefficient R, cf. Eq. (2.21), from which the impedance
can be deduced, see Eq. (2.22). However, for acoustic resonators, the transformation from
the reflection coefficient R to the resistance Re(z) is ill-conditioned for frequencies clearly
distinct from the eigenfrequency, see Förner and Polifke [15, Sec. 3.3]. This means that
even a small deviation in the reflection coefficient can lead to a huge deviation in the
resistance.

In presence of grazing flow—a mean flow normal to the resonator opening, this impedance
tube approach is difficult to realize. The in-situ method developed by Dean [16] can be
applied instead under such conditions. Here, at least one microphone is mounted on the

2complex differentiable
3holomorphic except for a set of isolated points
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front plate and one at the bottom of the cavity. Assuming 1-D acoustic propagation in
the cavity, the impedance can be deduced from these measurements. In a supervised
Semester thesis by the present author, Bambauer [17] implemented both methods in the
CFD setup presented in Sec. 4.1 and showed a reasonable agreement of impedance values
determined by these approaches. However, a slight discrepancy increasing with the grazing
velocity was visible. Due to difficulties placing the microphone close to the sample, so-
called impedance education techniques are widespread. Here, the microphones are located
far away from the sample and the impedance is calculated by an inverse problem by means
of CAA simulations, see for instance Zhou [5].

2.4 Impedance and Reflection Coefficient Describing

Functions

As mentioned above, a resonator behaves in a linear manner only for sufficiently small
particle velocities close to the edges of the opening. For larger velocities, the flow separates,
leading to nonlinear effects. Sivian [18] as well as Ing̊ard and Labate [19] were among
the first discovering and modeling this nonlinear behavior. In Sec. 2.5, the impact of
the separation effects on the damping characteristics is discussed in more detail. In the
nonlinear regime, the system behavior cannot be modeled by a transfer function, which
is by definition only valid for an LTI system. Measurements and models are nevertheless
often presented in a similar fashion as so-called describing functions. Here, the harmonic
response of the system to harmonic forcing is given in dependence on the frequency and
the sound pressure level (SPL), see for instance Hersh et al. [20]. The SPL serves as an
indicator for the strength of the acoustic signal. It is defined via the root mean square
(RMS) of the acoustic pressure prms and the reference pressure pref = 20 µPa as

SPL = 20 log10

(
prms

pref

)

dB . (2.26)

However, the describing function does not describe the entire behavior of a nonlinear
system.

Overall, the nonlinear behavior of an acoustic resonator manifests itself in several aspects:
The most prominent nonlinear effect is that the harmonic behavior changes with the exci-
tation amplitude. This effect is considered by the describing function approach. Hence, for
many technical applications, the impedance describing function captures major parts of
the dynamics if acoustic amplitudes remain constant. However, there is also scattering to
higher harmonics [18, 21, 22], which cannot be modeled by the impedance describing func-
tion. This scattering is investigated both analytically and numerically by Förner et al. [23]
for Helmholtz and quarter-wave resonators and is briefly summarized in Sec. 5.2. In pres-
ence of broadband acoustic excitation, the SPL is not a suitable quantity to correlate with
nonlinear effects. Instead, the RMS of the particle velocity at the resonator opening seems
to be appropriate, see Bodén [24]. Moreover, the acoustic behavior at a certain frequency
can be influenced noticeably by multi-tonal excitation, which means that in the excitation
signal not only a single frequency is present, but also multiples of that frequencies, see
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1

l0 lcav

d0 dcav

(a) Helmholtz resonator.

1 22 dcavd0

l0 lcav

(b) Neck and backing cavity.

Figure 2.3: Segregation of the Helmholtz resonator into its components.

Bodén [25, 26] and Serrano et al. [27]. For this special type of excitation, the resistance
for a specific frequency can even take negative values.

2.5 1-D Modeling Approaches

Ingard and Ising [28] suggested studying a Helmholtz resonator segregated in its neck
and its backing cavity, as depicted in Fig. 2.3. For typical geometries, the neck itself is
acoustically compact. This means that the neck is very small in comparison to the acoustic
wavelength λ = 2πc0/ω, or in other words the Helmholtz number He = l0/λ ≪ 1. Here,
l0 denotes the length of the neck. In the following, its diameter is referred to as d0 and
the cylindrical cavity has the length lcav and the diameter dcav, as sketched in Fig. 2.3.
With a compact neck, effects of compressibility do not have to be taken into account for
the neck but only for the cavity (cf. Eq. (2.28) below). The compact neck is characterized
in the frequency domain by the transfer impedance

Zo =
∆p̂

û
, (2.27)

where ∆p̂ = p̂1 − p̂2 stands for the fluctuating pressure drop from position 1 to 2 , see
Fig. 2.3b. The velocity û refers to the cross-sectional surface averaged velocity in the duct.
It is equal on both sides of the neck due to the mass conservation and the assumption
of incompressibility. There are other authors using the cross-sectional surface averaged
velocity in the neck u′

o instead. These two velocities are related via the porosity of the
resonator plate σ ≡ d20/d

2
cav, such that u′ = σu′

o. The surface impedance of the cylindrical
cavity at position 2 is given by

Zcav =
p̂2
û2

= −i
ρ0c

2
0

lcav ω
. (2.28)

This expression can be derived by assuming an isentropic uniform compression/expansion
of the backing volume. In first order approximation (of the Laurent series), this agrees
with the admittance of a quarter-wave tube given in Eq. (2.19), cf. Tournadre et al. [29].
Summing up both contributions yields the overall impedance Z of the resonator at the
reference plane 1 (cf. Fig. 2.3a)

Z = Zo + Zcav . (2.29)
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Thus, the knowledge of the transfer impedance of the neck allows for the full characteri-
zation of the Helmholtz resonator.

The flow through the neck can be treated as incompressible due to its acoustic compact-
ness. For this purpose, the incompressible Bernoulli equation (2.7) is applied. By doing
so, it is implicitly assumed that the flow is inviscid and does not separate. The equation
is expressed in terms of fluctuating quantities in 1-D, where x denotes the axial spatial
coordinate in the following. Evaluation on a streamline on two reference points on both
sides of the neck gives:

(φ′
2 − φ′

1) +
1

2

(

u′
2
2 − u′

1
2
)

+
1

ρ0
(p′2 − p′1) = 0 . (2.30)

The first term can be rewritten by introducing an effective length le

φ′
2 − φ′

1 =

∫ 2

1

u′(x) dx =

∫ 2

1

Ao

A(x)
u′
o dx = u′

ole =
u′

σ
le . (2.31)

Here, Ao and u′
o denote the cross section area and the velocity in the neck, respectively.

The x-dependent cross section area formed by the flow path is A(x). Note that the effective
length equals the geometrical length of the neck lo with an additional end correction, see,
e. g., Ingard [30]. Due to the conservation of mass, u1 = u2 and, therefore, the second
term in Eq. (2.30) vanishes. Thus, the pressure drop ∆p′ = p′1 − p′2 over the neck without
losses can be expressed as:

∆p′ ≈ ρ0
1

σ
le
∂u′

∂t
. (2.32)

The thermo-viscous losses along the neck walls, which are not considered in the above
equation, can be included by an appropriate real-valued constant Rl (see, e. g., Bodén
and Zhou [31]). When the acoustical particle displacement in the neck reaches the same
order of magnitude as the neck diameter d0 or is larger, i. e., when the Strouhal number
Sr = ω d0 σ/|û| is small, the flow cannot follow the edge contour and separates. Thus, the
flow contracts, taking less area to jet through the neck as sketched in Fig. 2.3. The ratio of
the flow core area to the geometrical cross-sectional area is described by the vena contracta
factor Cd, which is also often referred to as the discharge coefficient [20, 32]. In the linear
regime where Sr ≫ 1, it can be assumed Cd ≈ 1, whereas Cd < 1 holds in the nonlinear
regime. Besides the effects captured by the Strouhal number, also the edge shape has a
strong impact on the separation process. The separation is more pronounced, the sharper
the edge is [33, 34], see also Sec. 5.1. Using the contraction factor, the velocity in the
neck can be expressed as u′

o = 1/(Cd σ) u
′. When such a jet forms, it draws energy off the

acoustics, which is dissipated in the vortex structures generated due to the separation. If
it is assumed that the kinetic energy of the flow in the neck 1/2 ρ0 (1/(Cd σ) ũ

′)2 is fully
dissipated and does not recuperate downstream of the neck (see for instance Ingard [21]),
it follows

∆p′ ≈ ρ0
1

σ
le
∂u′

∂t
︸ ︷︷ ︸

inertia

+ Rl u
′

︸︷︷︸

viscosity

+
1

2
ρ0

u′|u′|
(Cd σ)2

︸ ︷︷ ︸

flow separation

. (2.33)

The influence of the backing volume can be inserted into Eq. (2.33). The pressure inside the
cavity at location 2 can be expressed as ∂p′2/∂t = ρ0c

2
0 u

′/lcav (cf. Eq. (2.28)). Introducing
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√
Cd d0d0 dcav
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z

Figure 2.4: Vena contracta of the
flow due to flow sepa-
ration.

K

Rtotal
m

x′

1
σ
p′

Figure 2.5: Analogy of a resonator to a mechan-
ical mass-spring-damper system.

the particle displacement in the neck x′ =
∫
u′d t/σ yields (cf. Singh and Rienstra [35])

1

σ
p′ ≈ ρ0le

1

σ

∂2x′

∂t2
+

(

Rl +
ρ0

2σ C2
d

∣
∣
∣
∣

∂x′

∂t

∣
∣
∣
∣

)
∂x′

∂t
+

ρ0c
2
0

lcav
x′ . (2.34)

By applying the crude approximation

ρ0
2σ C2

d

∣
∣
∣
∣

∂x′

∂t

∣
∣
∣
∣

∂x′

∂t
≈ Rnl

∂x′

∂t
(2.35)

(see Garrison et al. [36]), the total resistance is summarized in Rtotal = Rl + Rnl. Equa-
tion (2.34) can be rewritten using the constantsm andK for the description of respectively
the inertia effect of the mass in the opening and the compressibility of the backing volume:

1

σ
p′ ≈ m

∂2x′

∂t2
+Rtotal

∂x′

∂t
+K x′ . (2.36)

The ordinary differential equation (ODE) above has the same structure as an ODE mod-
eling a mechanical mass-spring-damper system as sketched in Fig. 2.5. This provides the
mathematical justification for the mechanical analogy already given in Sec. 2.1. From the
study of such single degree of freedom oscillators (SDOFs), it is known that its angular
eigenfrequency equals

ωeig =

√

K

m
= c0

√
σ

le lcav
. (2.37)

For moderate damping, the free system oscillates at its angular eigenfrequency ωeig.

Equation (2.36) can be transform in the frequency and the Laplace domain, i. e.
p̂(ω) = Z(ω)û(ω) and P (s) = Zs(s)U(s), respectively. The resulting expressions for the
impedance are given by:

Z(ω) = Rtotal + i

(

mω − K

ω

)

and (2.38)

Zs(s) = Rtotal + sm+
1

s
K . (2.39)
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Figure 2.6: Impedance and reactance determined by the generic SDOF model in
Eq. (2.38) for a normally damped , an optimally damped , and over-
damped system .

In the following, the dynamics of the SDOF system (2.36) are discussed in terms of the
impedance and the reflection coefficient. For that purpose, generic systems with the mass
m/(ρ0c0) = 1 s and the compressibility constant K/(ρ0c0) = 1 s−1 are considered. The
normalized impedances z and the corresponding reflection coefficients R, determined by
Eq. (2.22), are plotted in Fig. 2.6 for three cases. For these cases, different resistance values
Rtotal/(ρ0c0) = Re(z) ∈ [0.5, 1, 4] are taken into account covering normally damped (
for Re(z) = 0.5), optimally damped ( for Re(z) = 0.5), and over-damped conditions
( for Re(z) = 4). For all cases, the angular eigenfrequency of the generic systems equal
unity, where the reactance curves change their signs, see Fig. 2.6b. In Fig. 2.6c, it can
clearly be seen that the resonator absorbs best at its eigenfrequency ωeig = 1, meaning
that the gain of the reflection coefficient |R|. When the resistance Re(z) increases in the
normally damped regime, the absorption increases. As explained above in Sec. 2.3, the
resonator dampens optimally for Re(z) = 1 and absorbs all incident acoustic energy at its
eigenfrequency, see the -curve in Fig. 2.6c. In the over-damped regime with Re(z) >
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1, increasing the resistance decreases the maximal absorption, while the bandwidth of
absorption is widened simultaneously, see the -curve in Fig. 2.6c. Moreover, the phase
curves of the reflection coefficients 6 R behave differently depending on damping regimes,
see Fig. 2.6d. At the eigenfrequency, the f - and g-waves are respectively in phase for the
normally damped ( 6 R (mod 2π) = 0) and in antiphase for the over-damped regime ( 6 R
(mod 2π) = π). Far away from the eigenfrequency, R is always in phase.

Overall, the nonlinear effects for the damping behavior can be briefly be summarized
like this: High acoustic amplitudes trigger flow separation at the edges. This leads to
additional acoustic losses increasing the resistance. By variation of the resistance, the res-
onator operates either in the normally damped or the over-damped regime, resulting in
the implications explained in the previous paragraph. In addition to the effects on the re-
sistance, flow separation reduces the mass taking part in the oscillation. This corresponds
to a reduction of the effective length and shifts the eigenfrequency to higher frequencies.

Semi-analytical approaches, similar to the one presented above, are followed by several
authors to derive expressions for the impedance of a resonator or an orifice. Refer for
instance to Rice [37], to Cummings and Eversman [38], to Elnady and Bodén [39], as well
as to Hersh et al. [20].

A similar idea can also be employed to model the impedance of a quarter-wave resonator.
Its impedance can be written as (cf. Cárdenas Miranda [40])

ZQW(ω) = RQW
l +RQW

nl − iρ0c0 cot

(
ω lQW

e

c0

)

. (2.40)

Also for this resonator type, the resistance consists of a linear RQW
l and a nonlinear

component RQW
nl . The linear resistance originates from the friction at the wall, which is

largest close to the mouth of the resonator, since here the particle velocities are highest.
As in the case of the Helmholtz resonator, the additional losses of the flow separation for
high velocities are collected in the term RQW

nl . Usually, the transition from the linear to
the nonlinear regime occurs for higher SPLs in comparison to a Helmholtz resonator with
an eigenfrequency in the same order of magnitude, see [33, 41]. The effective length lQW

e

corresponds to the length of the quarter-wave tube elongated by a length correction.
However, this length correction is smaller for the quarter-wave resonator in comparison
to the Helmholtz resonator, since it only has to account for the fluid taking part in the
oscillation in front of the one opening. The angular eigenfrequency is given by

ωQW
eig =

c0π

2le
. (2.41)

The acoustic wavelength λ = 2π c0/ω
QW
eig corresponding to the eigenfrequency equals a

quarter of the effective length lQW
e of the resonator, which explains the origin of its name.

In the discussion above and also in the further course of the thesis, effects of mean flow,
temperature distribution, and hot gas penetration into the resonator opening are ignored.
In many technically relevant application, there is a grazing flow over the resonator. For
instance, this is studied experimentally by Jones et al. [42] and numerically by Zhang and
Bodony [43]. Summarized, the grazing flow increases the resistance, while the effective
length is decreased. Resonators in gas turbines are often purged, which means that cool
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2.5 1-D Modeling Approaches

(a) Outflow phase. (b) Inflow phase.

Figure 2.7: CFD simulation (cf. Chp. 4) with grazing flow (from left to right) in the
nonlinear regime; vortices are visualized with the Q-criterion.

gas in injected into the backing cavity such that a mean flow directed outwards of the
resonator is present. By doing so, they are guarded against the hot gas in the combustion
chamber and constant working conditions are guaranteed. This increases the acoustic
losses significantly, see, e. g., Eldredge and Dowling [44], Bellucci et al. [45], or Scarpato
et al. [46]. When the amplitude of the acoustic excitation rises and the purging flow rate is
too low, hot gas can penetrate the resonator opening. This can detune the resonator and
should thus be avoided, see the studies by Ćosić et al. [47] and Rupp et al. [48]. The present
thesis does not deal explicitly with these phenomena. However, the computational setup
presented in Sec. 4.1 is capable of incorporating them. Figure 2.7 presents exemplarily
snapshots of a simulation in the nonlinear regime with grazing flow. For details, refer to
the theses, supervised by the present author, of Mayr [49] and of Bambauer [17]. The
latter also shows how a Helmholtz resonator with several openings is correctly scaled to a
single orifice resonator. The data-based modeling approaches in Sec. 6 can also be applied
under the mentioned operating conditions.
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3 Numerical Assessment of
Thermoacoustic Stability

Acoustic resonators are used to suppress thermoacoustic instabilities in combustion sys-
tems. A fluctuating combustion process leads to a fluctuating thermal expansion, which,
in turn, can produce acoustic sound. In 1878, Rayleigh [2] expressed this as follows: “For
instability to occur, heat must be released at the moment of greatest compression.” So,
if the integral over the product of the fluctuating heat release Q̇′ and the fluctuating
pressure p′ over a period T is positive, i. e.,

∫ T

0

Q̇′ p′ > 0 , (3.1)

the flame acts as a sound source. The emitted sound is reflected at the boundaries of the
chamber and affects the combustion process again. This closed loop process can lead to a
so-called thermoacoustic instability. Here, the pressure amplitude can grow to high values
until the combustion chamber is either destroyed or nonlinear saturation processes and
interdependencies come into play. Self-excited instabilities can occur at the eigenfrequen-
cies of the system. For an eigenfrequency, the assigned spatial distribution of the acoustic
quantities, especially of the pressure, is referred to as an eigenmode.

Over the years, modeling of the mechanisms involved and their analytical and numerical
evaluation became a powerful tool to study the interaction of those mechanisms and
supporting the design process of combustion systems. In Sec. 3.1, a very brief, exemplary
and, hence, incomplete overview of such modeling approaches is given. The study of Förner
et al. [50] is summarized in Sec. 3.2.

3.1 Methodological Overview

There exist several approaches to determine the thermoacoustic stability of a system.
Among other things, they differ in the extent to which models (instead of the full set of
equations) are used to describe the involved phenomena [51]. A way to reduce the com-
plexity is to consider linearized problems. Linearized modeling enables to determine the
linear stability, i. e., predicting whether the amplitudes in the system grow or decay in
the regime of small distortion from a chosen operating point. Due to this limitation, it
cannot anticipate an amplitude level for linearly unstable operating conditions. In return,
linear systems can be evaluated in the frequency/Laplace domain. The increased mod-
ern computational resources facilitate high-fidelity CFD simulations including nonlinear
effects even for large high-complex systems. For instance, Urbano et al. [52] investigated
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the thermoacoustic behavior of a rocket combustion chamber with multiple injectors by
means of large eddy simulations. However, the computational costs of such high-fidelity
simulations are not yet affordable in industrial practice. At the other end of the spectrum
of modeling, there are analytical models for specific geometries. As an example, the modes
of a rocket combustion chamber can be estimated by the eigenmodes in of a cylinder with
an appropriate length correction for the nozzle [33]. Due to the assumptions made, such
pure analytic models are often inappropriate for realistic applications. Instead, the divide
et impera strategy is of avail in many cases [53]. Here, the overall system is segregated into
sub-components. Models for those sub-components can, for instance, be derived analyti-
cally, identified experimentally or numerically. Each sub-component is modeled separately
and their models are connected to a network. For such network tools, see for instance Li
and Morgans [54], often a 1-D acoustic behavior is assumed at the connecting planes. Via
such a 1-D interfaces, also a 3-D computational domain can be coupled to the 1-D network
simulation, see for instance Huber et al. [55], Bellucci et al. [56], Kaess et al. [57], Schulze
and Sattelmayer [58] as well as Emmert et al. [59]. On such a 3-D computational domains,
sets of equations of different complexity can be solved. Jaensch et al. [60] demonstrated
that any (acoustic) linear subsystem behavior can be connected to a CFD simulation as
a BC on a 1-D interface using a systematic state-space approach. As an alternative to
the high-fidelity CFD approach, linearized equations are often applied, as the Helmholtz,
the linearized Euler, or the linearized Navier-Stokes equations, cf. Pankiewitz and Sat-
telmayer [61], Nicoud et al. [62] as well as Gikadi [63]. Besides the Helmholtz equation,
such linearized equations require the mean field information, which has to be determined
in an a priori CFD simulation. Accordingly, such hybrid approaches are often referred to
as CFD/CAA techniques. In combination with an appropriate flame model, these tech-
niques can predict the linear stability. For instance, Schulze [64] followed the CFD/CAA
approach to study a rocket combustion chamber. In this study, the mode shape, which is
determined in an initial CFD/CAA run, was used as an input to characterize the high-
frequency response of the single flame in a high-fidelity CFD simulation. Feeding back
this flame response into the CAA simulation enabled predicting the linear stability.

Overall, there exist various methods for the stability analysis of thermoacoustic systems.
Resonators are employed in many relevant applications. For the stability analysis of such
damped systems, all methods require an accurate model for the damping performance
of resonators, if they do not resolve this behavior explicitly. Depending on the field of
application, such a model must either be linear—for a linear analysis in the frequency
or the time domain—or nonlinear—for a rigorous nonlinear study in the time domain.
In Sec. 6, it is discussed how reduced-order models can be provided on basis of CFD
simulation data. Before that, a study with a low-order network model is presented in the
following section, illustrating the stabilizing impact of resonators in a combustion system.

3.2 Network Model for a Rocket Combustion Cham-

ber

In this section, the study by Förner et al. [50] (reproduced in the Appendix on p. 66ff.) is
briefly presented. For a generic rocket combustion chamber, an extensive parametric study
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3.2 Network Model for a Rocket Combustion Chamber
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flame parameters nf and τ for the
undamped (blue solid) and well-
tuned damped (red dashed) cham-
ber. (Reproduced from [50].)

is conducted regarding the impact of quarter-wave resonators on the linear thermoacoustic
stability. The model used is based on the network model from Cárdenas Miranda and
Polifke [65]. It is defined in the frequency domain and is capable of considering both
plane and non-plane modes. The modeling approach and results achieved are summarized
in the following.

The main idea of this modeling approach is the segregation of the entire system into sub-
components. Figure 3.1 presents the segregated combustion chamber, which is equipped
with resonators. These resonators are arranged azimuthally in a ring, as it is usually done
in modern rocket motors, see for instance Oschwald and Farago [66]. This ring is modeled
as a single element in the network.

In a cylindrical duct segment, the 3-D solution of the convected wave equation can be
written in cylindrical coordinates (x, r, θ) as:

p′(x, r, θ)

c0ρ0
=
∑

m,n

[

Jm(α
+
mnr)Fmne

−ik+mnx + Jm(α
−
mnr)Gmne

−ik−mnx
]

e−s teimθ

=
∑

m,n

(fmn + gmn) , (3.2)

where Jm denotes the first kind Bessel function of order m. As in the 1-D case, there
are also waves traveling downstream fmn and upstream gmn. Here, these waves have an
additional azimuthal order m and a radial order n. Their phase velocity is determined
by their wavenumbers, where k±

mn and α±
mn are the axial and radial wavenumbers. The

superscripts + and - denote the corresponding wavenumbers for the up- and downstream
traveling waves, respectively. These numbers are linked by the dispersion relation

(
α±
mn

)2
=

(

− s

c0
−Ma k±

mn

)2

−
(
k±
mn

)2
, (3.3)
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where Ma stands for the Mach number of the axial uniform flow in the cylindercal duct.
Using the impedance BC at the cylinder wall, the wavenumbers can be calculated for all
orders m and n. In the case of a hard wall, this is done analytically. In the resonator
ring, an effective homogeneous impedance is derived. For each resonator, an impedance
model as in Eq. (2.40) is incorporated into this homogeneous expression. A numerical
root-finding algorithm is applied to detect the wavenumbers for the soft wall conditions.
At the interconnection with the resonator ring element, a mode matching technique is
employed to guarantee mass and momentum conservation over the interface, see Gabard
and Astley [67]. This mode matching introduces also scattering to higher order modes at
the interfaces.

The nozzle is modeled according to Bell and Zinn [68] and, at the injector plate, full
reflections are imposed. For the flame considered as a thermoacoustic element of zero
thickness, the well-known sensitive time lag model proposed by Crocco [69] is applied:

Q̇′

Q̇
= nf

(
1− e−sτ

) p′u

pu
. (3.4)

This n-τ model relates the relative pressure fluctuation p′u/pu on the cold upstream side
to the relative fluctuating heat release Q̇′/Q̇ with a time lag τ and an interaction index
nf . Using the linearized Rankine-Hugoniot equations [70], the fluctuating heat release is
translated into acoustic quantities. The eigenmodes and, accordingly, the linear stability of
the entire system are estimated via the Nyquist criterion applied in the Nyquist element,
see Sattelmayer and Polifke [71]. Here, the network is cut (as depict in Fig. 3.1) and the
open loop transfer function is evaluated for signals with constant amplitude (σs = 0).
This has the advantage that the transfer behavior of each element has to be known only
for ω. The eigenfrequencies are estimated by the minimal distances to the critical point.

By applying this network model for a generic test chamber, it is observed that the most
unstable mode is the 1T1L mode (first longitudinal mode n = 1 with azimuthal order
m = 1), which is indeed typical for rocket combustion chambers [64]. By a parametric
study, the optimal length and the optimal number of resonators are determined for that
mode. An additional eigenmode is observed for a chamber equipped with these well-tuned
resonators. Both the original and the additional mode show favorable stability properties.
Resonators are often tuned—which means that their lengths are varied—with respect to
the eigenfrequencies of the undamped system. However, a noticeable discrepancy between
this a priori estimated length and the optimal length is observed. This highlights the neces-
sity of analyzing the coupled system of resonators and combustion chamber in the design
process. Since publication, this main conclusion obtained with the low-order network has
been confirmed by the finite element simulations by Schulze et al. [72]. The stability map
of the well-tuned and the totally undamped combustion chamber is visualized in Fig. 3.2
with respect to the flame parameters nf and τ . The area of the linearly stable operation
conditions is significantly increased by inserting the well-tuned resonator ring. Moreover,
the sensitivity of the stability with respect to the nonlinear resistance of the resonators
RQW

nl is clearly pointed out in this study. This underlines the need for accurate models
that describe the impact of high pressure oscillations. A method of generating data-based
ROMs valid for such high pressure is presented in Sec. 6.3.
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4 CFD Simulations of Acoustic
Resonators

The work presented employs CFD simulation as a major tool. The computational setup is
introduced in this chapter and the methodology is briefly embedded in the literature con-
text. As acoustics is of compressible nature, a compressible solver, addressed in Sec. 4.1,
is mostly applied. However, incompressible techniques can be adopted for the aeroacous-
tic characterization of acoustically compact elements. This is done for the Helmholtz
resonator by a segregation approach, see Sec. 4.2.

4.1 Compressible CFD Simulations

Tam and co-workers were among the first to prove the potential of CFD simulations to
capture the resonator dynamics. Tam and Kurbatskii [73] studied via direct numerical
simulations (DNSs) the vortex shedding at a slit resonator in 2-D. In dependency on
frequency and SPL, they determined the transition from the linear regime without vortex
shedding to the nonlinear regime with vortex shedding. In this juncture, they showed its
acoustical damping effect. These findings were validated experimentally by Tam et al. [74].
Tam et al. [75] performed DNSs on a 3-D computational domain and depicted the different
structure of shed vortices in 3-D in comparison to 2-D. However, the vortex shedding
remained the main source for acoustical dissipation for high SPLs also in the 3-D setup.
Zhang and Bodony also followed the DNS approach in a series of papers. They investigated
the flow physics in detail and demonstrated that the vortices form turbulent structures
for high SPLs even for moderate Reynolds numbers based on the particle velocity [32].
Furthermore, they analyzed the impact of laminar and turbulent grazing flow on the
damping behavior [43]. The effect of purging flow through an orifice was studied by means
of large eddy simulations (LESs) by Mendez and Eldredge [76] as well as by Scarpato
et al. [77]. Moreover, the linearized Navier-Stokes equations can be used to investigate the
linear response of resonator, as it was done by Tournadre et al. [78] for the investigation of
temperature effects. An alternative approach to solving the Navier-Stokes equations is the
Lattice Boltzmann method, which is based on particle collision models and is promising
low numerical cost, see for instance Ji and Zhao [79].

Main parts of the work presented are also based on CFD simulations. Compressible
CFD simulations are performed with OpenFOAM [80] for an ideal gas with the PIM-
PLE algorithm, which is a combination of algorithms SIMPLE [81] and PISO [82]. This
pressure-based algorithm solves the compressible Navier-Stokes equations, see Sec. 2.2, us-
ing second-order schemes in space and time. The time integration is executed implicitly by
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Figure 4.1: Computational domain for the Helmholtz resonator.

a backward time stepping. In principle, this scheme allows for acoustic Courant-Friedrichs-
Lewy (CFL) numbers c0∆t/∆x larger than unity, where ∆t and ∆x denote the time step
and the length interval of the computational grid, respectively. However, computational
setups with acoustic CFL numbers considerably smaller than unity in the major parts of
the grids are considered for the high-fidelity simulations. Resolving the acoustics correctly
in the simulation requires an accurate velocity-pressure-energy coupling. In OpenFOAM,
this is achieved by the convergence control with a sufficiently low threshold for the pres-
sure residuum, which is set maximally to 1× 10−5. The time step is set to ∆t = 1× 10−6 s
for cases with an eigenfrequency 2πωeig < 1 kHz.

Both axisymmetric 2-D and 3-D structured meshes are considered in the studies presented.
The axisymmetric and 3-D meshes are generated by the OpenFOAM tool blockMesh and
the commercial software ANSYS ICEM CFD, respectively. The cell sizes close to the
walls at the opening of the resonator must be set fine enough to resolve the boundary
layer for the frequency range of interest, which can be estimated by the Stokes length
δs = 2π

√

2µ/(ωρ0). For all published results, mesh independence is achieved regarding
the acoustic reflection coefficient.

For the configurations considered without mean flow, it is showed that sub-grid scale
(SGS) turbulence models in LES have only a minor impact on the acoustic properties,
see the supervised Master’s thesis by Qin [83]. Zhang and Bodony [32] demonstrated that
flow separation leads to turbulent structures in front of the resonator opening also for
rather low Reynolds numbers. However, it is checked by comparison to LES—applying,
i. a., the k-equation eddy-viscosity model—that SGS modeling has only minor influence
on the resulting impedances and vortex separation for the cases considered. This shows
that the mesh resolution in the vicinity of the resonator opening is chosen fine enough
to resolve the separation mechanism correctly even without a SGS model. Hence, good
results can be achieved without SGS model, see [29, 84]. However, this might change for
other circumstance, for instance, when the SPL is further increased or when a mean flow
is present.

The general computational domain for the Helmholtz resonator is sketched in Fig. 4.1. For
the quarter-wave resonator, the computations are set up analogously. Since the dissipa-
tion takes place at the resonator walls, a no-slip condition is used here, indicated by solid
lines in the figure. A slip boundary condition is applied at the boundaries of the cylindri-
cal domain in front of the resonator, presented with dashed lines, to exclude dissipative
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4.1 Compressible CFD Simulations

effects not related to the resonator itself. At the inlet, the Navier-Stokes characteristics
boundary condition (NSCBC), cf. Poinsot and Lele [85], is utilized. This boundary con-
dition ensures a low acoustic reflection of the outgoing g-wave at the boundary of the
computational domain in the frequency range of interest. Simultaneously, an input signal
can be imposed for the incoming f -wave. In the studies presented, either harmonic or
broadband signals covering various SPL ranges have been applied. The broadband signals
imposed are generated according to Föller and Polifke [86]. Such a signal is designed in a
way that it excites the entire frequency spectrum of interest, while steep changes in the
input signal are avoided, which could otherwise cause numerical difficulties. Moreover, this
signal shows a low autocorrelation, which promises to improve the identification results,
see Chap. 6.

Detection planes are placed in the computational domain at a sufficient distance from
the resonator such that non-acoustic disturbances are absent there. Such non-acoustic
disturbances are present in the vicinity of the resonator opening due to shed vortices. The
resulting acoustic quantities must be independent of the position of this plane. If there is
a difference noticeable at two planes close to the inlet, the computational domain has to
be elongated further. At the planes, time series of the area averaged fluctuating pressure
p′ and velocity u′ are detected. From these quantities, time series of the f - and g-waves
can be computed directly, see Eq. (2.13). These time series are time-shifted with respect
to each other to account for the time it takes to travel from the detection plane to the
resonator and back. These corrected time series can either be used for SI in the case of a
broadband excitation, or the reflection coefficient can be determined at a single frequency
in case of a harmonic excitation. In the second case, the time series are cropped to an
integer multiple of the excitation period 2π/ω to avoid leakage in the discrete Fourier
transform and to dispose of any transient behavior. Now, the reflection coefficient can be
evaluated R(ω) = ĝ(ω)/f̂(ω) and the impedance can be deduced from it, see Eq. (2.22).

In the nonlinear regime, the damping characteristics depend on the amplitude of exci-
tation. This dependency is often described in terms of the SPL. In a 1-D duct as in
computational setup, the pressure at a reference position is given by the superposition of
an f - and a g-wave, p′/(ρ0c0) = f + g (cf. Eq. (2.14)). Using the laws for the propaga-
tion of the plane waves in the duct and the reflection with the coefficient R(ω, SPL), the
amplitude Af of a harmonic input signal f(t) = Af sin(ωt) has to be imposed as (cf. [29])

Af = 10SPL/20
√
2 pref

|1 +R(ω, SPL) exp(−iω 2lref/c0)| ρ0c0
(4.1)

to gain the desired SPL at a reference position in a distance lref form the resonator.
If the reflection coefficient R—which is, in general, the case—is unknown, an iterative
procedure of simulations is required to set the amplitude correctly, since its value is
needed in Eq. (4.1). In the cases where the overall SPL is of minor importance, only the
SPL of the incident acoustic wave is considered. This is referred to as incident SPL. This
is also done by other authors, for instance, Tam and Kurbatskii [73] as well as Zhang and
Bodony [32]. Note that in general the incident SPL and the actual total SPL differ from
each other.

The solver settings are validated against measurements for several test cases. Exemplar-
ily, this is presented in Fig. 4.2 for measurements from Hersh et al. [20]. The dimensions
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Figure 4.2: Reflection coefficient R and normalized impedance z for a configuration
from [20]: Measurements ( ) from [20, Fig. 12a] and CFD simulations ( )
for 75 dB ( ), 120 dB ( ), 130 dB ( ), and 140 dB ( ). (Figure is reproduced
from [15]).

of this configuration are given by l0 = 0.159 cm, d0 = 0.635 cm, lcav = 2.54 cm, and
dcav = 5.08 cm. Accordingly, its open area ratio σ = d20/d

2
cav yields 1.56% and its eigenfre-

quency can be estimated around 570Hz by Eq. (2.37) for ambient conditions and using
8/(3π) d0 as end correction [30]. The experiment has been conducted for four SPLs namely
75 dB, 120 dB, 130 dB, and 140 dB. Only the low SPL case of 75 dB is located in the linear
regime. Since no reference location for the SPL is given in the paper [20], it is assumed
that those values refer to the position of the front plate, i. e. lref = 0 (see Eq. (4.1)).
The CFD simulations are performed on a 3-D grid with around 1.8 million cells. Sub-
figures 4.2a and 4.2b depict gain and phase of the reflection coefficient R for both the
measurements [20, Fig. 12a] and the simulations. The reflection coefficient is transformed
to the normalized impedance, which is shown in Subfigs. 4.2c and 4.2d. In comparison to
the measurements, the numerics over-predict the resistance very slightly for the 130 dB
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case and moderately for the 140 dB case. The lower resistance values in the experiment
might (at least partially) originate from non-perfectly sharp edges due to manufacturing
reasons, cf. Tournadre et al. [87]. Besides that small deviation in the resistance for high
SPLs, all curves agree reasonably well. It can be concluded that the CFD setup presented
is capable of capturing the acoustics in both the linear and the nonlinear regime. It is
competitive against other CFD approaches [32, 75], where partially larger deviations from
the experiment are present.

The expected physical behavior from the 1-D consideration in Sec. 2.5 fits well to the
impedance and reflection coefficients presented in Fig. 4.2. The resistance rises with in-
creasing SPL as seen in Fig. 4.2c. The eigenfrequency can be detected by the zero-crossing
of the reactance. In Fig. 4.2d, it can be observed that the eigenfrequency shifts slightly
to higher frequencies with higher SPLs. The zero-crossing of the 140 dB reactance curve
is at a noticeably higher frequency in comparison to the other curves. This nonlinear be-
havior manifests itself in the corresponding reflection coefficient as follows (see Figs. 4.2a
and 4.2b): First, the maximal absorption increases with SPL in the lower SPL range.
When the normalized resistance exceeds unity, the maximal absorption decreases due to
over-damping of the system, but the frequency bandwidth of high absorption becomes
wider. For such an over-damped system, the phase curve differs from a normally damped
system, see Fig. 4.2b. All 6 R-curves show that the f - and g-waves are in phase for fre-
quencies far away from the eigenfrequency. Close to the eigenfrequency, these waves are
in antiphase for normally damped systems, whereas they are in phase for over-damped
systems.

4.2 Incompressible CFD Simulations

It may be surprising for non-acousticians but incompressible CFD simulations can be
employed to acoustically characterize devices that are compact (see Sec. 2.5). This means
that their geometric dimensions are small in comparison to the acoustic wavelengths for
the frequency range of interest. In many cases, the incompressible framework allows for
a simpler and more robust simulation setup in comparison to the compressible setup.
Jaensch et al. [88] characterized the thermoacoustic response of flames based on incom-
pressible simulations. In the field of aeroacoustics, Mart́ınez-Lera et al. [89] successfully
combined incompressible CFD and vortex sound theory [90] to a two-dimensional laminar
flow through a T -joint. This methodology is further improved and applied to corrugated
pipes by Nakiboğlu et al. [91] and to a large orifice configuration with through-flow by La-
combe et al. [92] for whistling prediction. In contrast to those previous works, the present
study focuses on both the linear and the nonlinear regime of Helmholtz resonators in
absence of mean flow. This method can be extended to the case with a mean flow due to
the general formulation and arguments presented by Nakiboğlu et al. [91] and Golliard
et al. [93].

The study by Tournadre et al. [29] (reproduced in the Appendix on p. 74ff.) shows the
potential of incompressible simulations to study the aeroacoustic response of a Helmholtz
resonator. Here, the Helmholtz resonator is segregated into the neck and the backing
volume as suggested by Ingard and Ising [28], see also Fig. 2.3 in Sec. 2.5. This study
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demonstrates that this segregation approach works not only in the linear but also in the
nonlinear regime if the amplitudes in the simulations are set correctly. The incompressible
simulations are excited by a velocity perturbation. The nonlinear effects are triggered
by the flow separation process at the neck, which is governed by the particle velocity
in the neck. Hence, it is essential to set the amplitude of the velocity excitation such
that the velocity in the segregated neck coincides with the velocity in the neck in the
composed resonator. Therefore, the SPL in the segregated system differs in general from
the SPL in the composed system. The overall impedance of the resonator is determined
by assembling the neck transfer impedance and the surface impedance of the backing
volume, see Eq. (2.29). Following this scaling rule, a good agreement of the incompressible
simulations with both the compressible simulations and experiments can be achieved.

The advantage of the simpler incompressible simulation framework is exploited by Caeiro
et al. [84]. In this study with a contribution of the present author, an adjoint approach
is used to formulate an optimization procedure for the shape of the resonator neck. This
procedure enables to determine a neck contour which exhibits a desired target impedance
at a specific frequency and SPL.
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5 Aeroacoustic Characterization of
Nonlinear Effects by Harmonic
Probing

The behavior of resonators is commonly determined by harmonic probing [20]. Here, a
sinusoidal signal—with a certain frequency and amplitude—excites the device acousti-
cally. The studies summarized in this chapter apply this technique to explore aspects
of the nonlinear behavior of the resonator response. In addition, analytic considerations
confirm the results. In Sec. 5.1, the impact of the edge shape of the neck on the reflection
coefficient and the impedance is investigated in the nonlinear regime for Helmholtz res-
onators. Scattering to higher harmonics is analyzed for both Helmholtz and quarter-wave
resonators in a second study presented in Sec. 5.2.

5.1 Influence of Edge Shape on the Flow Separation

and the Damping Behavior

As explained above, the nonlinear effects in the resonator response originate mainly due to
flow separation at the edges of the resonator. Laudien et al. [33] showed that the shape of
the edge influences the damping performance of a resonator. Murray et al. [94] investigated
the change of the damping performance due to the manufacturing process. They concluded
that the acoustic resistance is strongly influenced by small variation of the edge shape.
Earlier, Disselhorst and Wijngaarden [95] observed in a similar configuration—in an open
pipe—a very significant impact of the edge shape on its acoustic behavior. For an orifice,
Temiz et al. [96] focused on the transition behavior from the linear to the nonlinear regime
and detected a strong effect of the edge shape on the damping. They related this effect
to the vena contracta factor Cd (see Sec. 2.5) induced by the contour of the orifice.

Förner et al. [34] (reproduced in the Appendix on p. 83ff.) quantitatively investigate the
impact of the edge shape of Helmholtz resonators by means of both CFD simulations and
measurements. The measurements are conducted by M.A. Temiz at TU Eindhoven. Here,
different samples with sharp edges and with 45◦–chamfers are considered, as depicted in
Fig. 5.1. The results of both methods agree qualitatively well, even though the absolute
values of the resistance slightly disagree in the nonlinear regime. In spite of this noticeable
deviation, the following conclusions can be drawn based on both methods: With increasing
length of the chamfer, the eigenfrequency of the resonator increases. This corresponds to
a reduction of the effective length, meaning that the mass taking part in the oscillation
reduces with the length of the chamfer. More prominently, the nonlinear resistance is
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lcf

g 45◦

Figure 5.1: Helmholtz resonator with a chamfer of length lc at the edges of the neck.

reduced by the presence of a chamfer. This effect is almost independent of the length
of the chamfer. This behavior can be explained by studying the contraction of the jet
in the neck. In the flow visualization for the sharp edge cases, a huge separation zone
at the leading edge is observed, which correlates with a vena contracta factor Cd ≪ 1.
In presence of a chamfer, this zone is noticeably reduced corresponding to a contracta
factor close to unity, Cd ≈ 1. The contraction detected in the CFD simulations agrees
reasonably well with the reduction in the resistance and with literature values for the
static vena contracta factors [97].

5.2 Scattering to Higher Harmonics

As mentioned above, scattering to higher harmonics may take place for resonators op-
erating in the nonlinear regime. This means that the resonator is excited harmonically
at an angular frequency ω0

1 and the spectrum of the response comprises of the con-
tent not only of this fundamental harmonic ω0, but also of the higher harmonics nω0,
(n = 2, 3, . . .). The scattering to higher harmonics is rarely studied in the literature for
resonators. For an orifice, which is closely related to the Helmholtz resonator, this scatter-
ing was studied experimentally and analytically by Ingard and co-workers [21, 28] as well
as by Cummings [22]. An Odd-Harmonics-Only (OHO) pattern in the higher harmonics
was observed, where only the odd harmonics (n = 1, 3, 5, . . .) are present in the response.
This observation could be explained by a quasi-steady analysis based on the Bernoulli
equation, see Eq. (2.33). In a supervised thesis of the present author, Mages [98] studied
this equation numerically reformulated in terms of Riemann invariants f and g. He also
retrieves the OHO pattern also in this formulation of the problem.

Förner et al. [41] (reproduced in the Appendix on p. 91ff.) extend the quasi-steady ap-
proach from the literature [21, 22, 28] such that it can also be applied to Helmholtz
resonators with an asymmetric neck, or for quarter-wave resonators. Moreover, compress-
ible CFD simulations are conducted to study this phenomenon for the configurations
mentioned. The nonlinear contribution to the pressure drop over the neck of a Helmholtz
resonator can be approximated as 1/2 ρ0 (1/(Cd σ) u

′)2, according to Eq. (2.33). The
main impact of a one-sided chamfered neck is the different contraction of the fluid jetting
through it, see Sec. 5.1. For the modeling, a constant vena contracta factor C+

d is as-

1In this section, the excitation frequency is clearly marked by the subscript 0 to avoid confusion with
frequency content at higher harmonics.
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Figure 5.2: Considered resonator openings with particle flow direction depend separation
behavior.
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Figure 5.3: Scattering to harmonics plotted in logarithmic scale for the three consid-
ered test cases: 1st = fundamental ; 2nd ; 3rd 4th ; 5th .
(Reproduced from [41].)

sumed during the inflow and a constant—but possibility different—factor C−
d during the

outflow phase. This is sketched schematically for the three cases considered in Fig. 5.2.
The analysis of the Fourier transformed nonlinear pressure drop term predicts that the
OHO pattern is pronounced if C+

d and C−
d are similar. Conversely, if these factors differ

from each other, the OHO pattern weakens. To study the scattering to higher harmonics
for the quarter-wave resonator, an analogous analysis is performed for the area jump.
Here, the analysis predicts that the second harmonic is the dominant higher harmonic.
These analytical predictions are confirmed by CFD simulations. Exemplarily, CFD results
are presented in Fig. 5.3 for three test cases: Two Helmholtz resonators—one with a sym-
metric as well as another one with an asymmetric neck—and a quarter-wave resonator.
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The incident SPL is fixed for the frequency variation presented and ω̃0 denotes the ex-
citation frequency normalized with the corresponding eigenfrequency. In this figure, the
proportions scattered in the first five harmonics, defined as

|ĝ(nω0)|
∣
∣
∣f̂(ω0)

∣
∣
∣

, (5.1)

are plotted. For the fundamental harmonic (n = 1) , this is equivalent to the reflection
coefficient. The major part of the incident harmonic wave is reflected into the fundamental
harmonic. For the Helmholtz resonator with symmetric neck, the odd harmonics (n = 3

, n = 5 ) clearly dominate over the even harmonics, see Fig. 5.3a. As predicted by
the quasi-steady analysis, this OHO pattern gets weaker for the Helmholtz resonator with
an asymmetric neck (see Fig. 5.3b) and totally vanishes for the quarter-wave resonator,
where the 2nd harmonic is the dominant higher harmonic (see Fig. 5.3c). However,
the scattering to higher harmonics remains overall on a moderate level for the Helmholtz
resonator. For the quarter-wave resonator, a higher proportion is scattered into the higher
harmonics (up to 15% for high SPL).
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6 Aeroacoustic Characterization
by Data-Based Reduced-Order
Modeling

This chapter summarizes the work on the field of data-based reduced-order modeling and
positions it briefly in the literature context. The aim is to determine a reduced-order
model (ROM) which can be evaluated efficiently while reproducing the essential system
dynamics correctly. Models derived from first principles are referred to as white-box mod-
els, as for instance the models for the resonator dynamics presented in Sec. 2.5. In the
following, a different methodology is applied: the models are developed based on data
series using SI methods. Since usually a model structure is specified without considering
explicitly the physics or the governing equations involved, such a model is called a black-
box model. The data are acquired by CFD simulations excited with a broadband signal
covering the entire frequency range of interest. Hence, the overall procedure is referred to
as CFD/SI method. This method gives good results in various aero- and thermoacoustic
setups, especially in the linear regime, see Polifke [53] for a review on the work done in
his group or Innocenti et al. [99] applying this approach on a preferably premixed flame.
With this approach, not only transfer functions but also aero- or thermoacoustic sources
for the noise can be estimated in parallel. For instance, Sovardi et al. [100] character-
ized the scattering behavior and the noise source of an orifice in presence of low Mach
number mean flow. Selimefendigil [101] determined nonlinear models for heat sources us-
ing different model structures such as artificial neuronal networks. However, Jaensch and
Polifke [102] demonstrated the high uncertainty which can be involved in nonlinear iden-
tification processes if only relatively short time series data are available. Hence, attention
regarding the robustness and the validation of the estimated models is required, especially
for nonlinear models. As mentioned above, the approach is based on broadband excita-
tion. Broadband characterization for orifices and resonators is also considered by other
authors. In both experiments and DNS simulations, Tam et al. [75] excited a resonator
by a long broadband signal and determined the linear frequency response by using the
discrete Fourier transform. Bodén [24, 103] applied a high-amplitude signal triggering
nonlinear effects at an orifice. By assuming a physically motivated model structure, the
linear and the nonlinear contributions were separated.
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6.1 Linear System Identification and Prediction Er-

ror Method

The idea of SI is to estimate a ROM based on broadband time series which comprises
of input and output data. In this work, only single-input/single-output (SISO) systems
are considered. The method is briefly introduced in the discrete time framework since
measurements and simulations can only provide sampled, i. e., as discrete time series.
The time series is assumed to be sampled equidistantly with a constant time step ∆t.
The discrete time index k denotes the sample for the instant in time tk = k∆t. In the
application at hand, the sampled f - and g-wave time series are the input and output data.
Any discrete LTI system (with input f [k] and output g[k]) can be written as

A(q−1) gmodel[k] =
B(q−1)

F (q−1)
f [k] +

C(q−1)

D(q−1)
e[k] , (6.1)

where A, B, C, F , and D are polynomials in the time shift operator1 q. Such a polynomial
acts as a digital filter, hence the effect of the polynomial B with the degree nb applied
on f [k] can exemplarily be written as B(q−1)f [k] =

∑nb

i=0 biq
−if [k] =

∑nb

i=0 bif [k − i]. A
fraction of two polynomials, say (B/F ) f [k], can be evaluated by polynomial expansion
leading possibly to a filter with an infinite number of filter coefficients being applied on f [k]
even for finite polynomial orders. The variable e[k] stands for a white noise source, which
is uncorrelated to the input. When the non-deterministic output of the model is colored,
meaning that the corresponding signal has a non-constant spectral density, at least one of
the polynomials A, C, or D differs from unity. Usually, some polynomials are set to unity
when specific phenomena are considered. Moreover, the polynomial orders of the remaining
polynomial have to be fixed before the SI process, which requires some phenomenological
understanding of the problem and/or an iterative procedure. All polynomial coefficients
are collected in the vector of unknowns θ.

The task in the SI process is to estimate the optimal values of parameter θ̂. For that
purpose, the time series data of the CFD simulation are used as so-called training data set.
The parameters θ̂ are usually determined by least square method such that the difference
of the model output gmodel[k](θ) defined in Eq. (6.1) and of the measured CFD output
gCFD[k] is minimized:

θ̂model = argmin
θ

∑

k

(gmodel[k](θ)− gCFD[k])
2 . (6.2)

This approach to predict the free model parameters is called the prediction error method
(PEM), see Tangirala [104].

An estimated model in the discrete time domain can be converted into other domains.
Therefore, the z-transform Z is introduced, which can be considered as the “discrete
Laplace transformation”. The variable z is defined as z = exp(s∆t), where s is the Laplace
variable. The z-transformation of the discrete time input signal f [k] reads as:

Z{f [k]}(z) = Fz(z) =
∞∑

k=0

f [k]e−k∆t s =
∞∑

k=0

f [k]z−k . (6.3)

1Example for the time shift operation: q−1f [k] = f [k − 1].
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Applying the z-transform to B(q−1)f [k], yields

Z{B(q−1)f [k]}(z) =
∞∑

k=0

(
nb∑

i=0

bif [k − i]

)

z−k =

b0

∞∑

k=0

f [k]z−k + b1z
−1

∞∑

k=0

f [k − 1]z−(k−1) + . . . = B(z−1)Fz(z) .

(6.4)

The polynomial B(q−1) in the time shift operator q−1 just transforms into a polynomial
B(z−1) with the same coefficients in the z-domain. Using the bilinear (Tustin) approxima-
tion, transfer functions in z can be transformed into the Laplace domain and vice versa,
see [104]. Overall, the model estimated is also valid for decaying or increasing amplitudes.
Thus, a model of the type defined in Eq. (6.1) is well suited for performing stability
analysis.

6.2 Linear Aeroacoustic Characterization of Res-

onators

The SI procedure briefly described in Sec. 6.1 is applied on the input/output data from
CFD simulations of the acoustic resonators (see Sec. 4.1). In this section, only the linear
response is considered, i. e., the resonators are excited with sufficiently low amplitudes. The
entering f -wave serves as the input and the reflected g-wave as the output. Hence, models
for the reflection coefficient R are estimated. In the aeroacoustic modeling of resonators,
no colored noise is expected in absence of turbulent mean flow. Consequently, a model
structure with A = C = D = 1 is selected, which is called an output-error (OE) model.
This model is presented as a block diagram in Fig. 6.1. CFD/SI with a second-order OE
model gives good results in the linear regime, see Förner and Polifke [105] (reproduced
in the Appendix on p. 83ff.). Exemplarily, Fig. 6.2 presents the frequency responses of
estimated OE models for four test cases. The models agree well with measurements from
Hersh et al. [20] and Temiz [34], which are also included in this figure. The estimated
models can be converted into impedance models. However, the resistance values can differ
significantly from measurements due to the ill-conditioned conversion for frequencies apart
from the eigenfrequency, see Sec. 2.3. In a successive study, Förner and Polifke [15] show

f [k] gmodel[k]

e[k]OE

B

F

Figure 6.1: Block diagram of an output-error model reproduced from [15].
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Figure 6.2: SI-estimated ( ) and measured ( ) reflection coefficient R for four test
cases indicated by the colors. (The presented figure is similar as in [15].)

that this approach can also provide local-linear models in the nonlinear regime. Such a
local-linear model is a linear model suitable for a fixed amplitude range in the nonlinear
regime.

6.3 Nonlinear Aeroacoustic Characterization of Res-

onators

The linear CFD/SI approach introduced in Sec. 6.2 is now extended into the nonlinear
regime. Only a very limited number of linear black-box model structures are available and
the output-error model structure is found to provide quantitatively accurate estimated
models for the Helmholtz resonator dynamics in the linear regime. Contrary, there exists
a large variety of nonlinear models which can be used for SI. Representatives of nonlinear
black-box models are Volterra series as well as artificial neural networks [104]. These
model types are in principle capable of modeling various nonlinear behavior. However,
for the test cases considered, a huge number of model parameters is required such that
identification results achieved with reasonably long time series are not robust.

Therefore, Förner and Polifke [15] (reproduced in the Appendix on p. 110ff.) introduce a
gray-box model structure that exploits a priori knowledge of the system dynamics. Neuro-
fuzzy networks offer the opportunity to incorporate such knowledge in the model structure,
see, e. g., Nelles [106] or Babuška and Verbruggen [107]. Such a network is developed for
modeling the specific case of the resonator. It is referred to as local-linear neuro-fuzzy
network (LLNFN) and its block diagram is sketched in Fig. 6.3. Several output-error
models OEi (i = 1, 2, . . . , N) form the skeletal structure of the network. These submodels
are wired via a so-called fuzzy-neuron layer to the input channel f [k]. The input signal
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f [k]

Fuzzy-neuron Linear

gmodel[k]

e[k]
µ1

µ2

µN OEN

OE2

OE1

layer layer

Figure 6.3: Block diagram of a local-linear neuro-fuzzy model with output-error blocks
(see Fig. 6.1) as submodels; reproduced from [15].

is distributed within this layer over the submodels depending on the RMS of the velocity
at the reference surface. The RMS of the velocity (for a fixed geometry) seems to be the
parameter controlling the nonlinear behavior also in the case of non-harmonic excitation,
as suggested by Bodén [24]. Each submodel has its neuron which applies a membership
function µi to the input signal. This membership function takes a value within the interval
[0, 1] depending on the RMS of the particle velocity. If this RMS value agrees exactly
with or differs significantly from the reference velocity uref,i of the membership function
µi, it takes the values true and false corresponding to 1 and 0, respectively. However,
the membership function cannot only yield the values “true” (1) and “false” (0), as in
Boolean logic, but also every intermediate state in the interval [0, 1], as in fuzzy logic.
A common-sense interpretation of the role of the membership function is developed as
follows (for N = 3): If the amplitudes are low, the first model OE1 is taken to describe
the resonator behavior. The second model OE2 is considered in the medium amplitude
regime and model OE3 in the high-amplitude regime. This decision is made not in a strict
but in a fuzzy way, which means that the response can be formed proportionally by more
than one model OEi. For instance, a linear combination of OE1 and OE2 is used in the
low-medium amplitude regime.

An iterative procedure to train LLNFNs is developed and applied to several test cases.
The input signal is designed in a way that it contains the entire frequency and amplitude
range of interests. The quality of the estimated models is assessed in both the time and
the frequency domain. The response of the estimated models is computed for a second
independent input signal, which was not used to train the model. The validation against
test data is an important step in SI to ensure that estimated models do not suffer from
over-parameterization. A model is denoted as over-parameterized when it has so many
free parameters that it can, on the one hand, achieve a good fit to the training data thanks
to the large degrees of freedom, but gives, on the other hand, poor predictions for another
set of input data, the test data [108, p. 133]. The estimated models perform competitively
well on the test data set for all test cases studied. Hence, the LLNFN model is deemed
robust against over-parameterization. Using the describing functions for the reflection
coefficient and the impedance, the estimated models are compared against measurements
from Hersh et al. [20] and Temiz [34]. Besides small deviations for very high amplitudes,
good agreement is achieved for all test cases studied.
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Figure 6.4: Estimated impedance describing function with total SPLs ranging from
80 dB (bluish) to 140 dB (reddish) in steps of 5 dB. (Reproduced from [15].)

The estimated LLNFN models can be evaluated efficiently in the entire frequency and
amplitude range they have been trained for. Figure 6.4 presents, exemplarily for a test
case, a describing function for the reflection coefficient R in a frequency range [200, 800]Hz
and a SPL range [80, 140] dB in 5 dB steps. It can be observed that the impedance changes
smoothly with SPL and frequency, which makes this model attractive to serve as a bound-
ary condition in CFD or CAA simulations. Using a linear model instead would require
that this model is adapted a priori to the conditions and a linear model can never re-
flect changing conditions by its design. Moreover, the LLNFN model structure makes
a model—once estimated—readily available also for other time steps or in Laplace do-
main. Each submodel can be converted to a function in the Laplace variable s by the
Tustin transformation z → s (see Sec. 6.1). By another reverse transformation s → z,
the estimated model can be applied for fixed time step of arbitrary size. Alternatively,
the boundary condition can directly operate with the model representation in Laplace
domain [109], which has the advantage that the time step can vary within the simulation.
Such possibilities are in general not given by other nonlinear models applied in SI, e. g.,
by artificial neural networks.

Moreover, the provided procedure could support the design of future resonators. When
the designer has access to a validated CFD setup for resonator simulations, he/she can
rapidly estimate how geometrical, flow, or temperature conditions influence the linear
and nonlinear resonator behavior, since only one CFD simulation is required. Thus, this
procedure can also be used for the uncertainty quantification of the resonator response. It
is known that, for instance, the manufacturing process of acoustic liners strongly impacts
the actual damping behavior, see Murray et al. [94]. With the proposed method, one could
quantify with low computational effort how the manufacturing tolerances influence the
damping performance.
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7 Summary and Conclusion

The present thesis addresses the nonlinear damping behavior of acoustic resonators such as
quarter-wave and Helmholtz resonators. This nonlinear behavior originates from flow sep-
aration at the edges of the resonator openings in the presence of high acoustic amplitudes.
In particular, this thesis focuses on the following aspects: high-fidelity fluid dynamic sim-
ulations of such devices, gathering in-depth knowledge about the nonlinear mechanisms,
and the data-based, reduced-order modeling of this behavior.

First, a parametric study by Förner et al. [50] accomplished with a low-order network
model in the frequency domain is presented. Special attention is paid to the impact
of the resonators on the linear stability of the system. It is observed that well-tuned
resonators significantly increase the stability margins. This tuning process is most efficient
if the overall coupled system formed by the combustion chamber and the resonators is
considered. The resonators are described by a local-linear impedance model, which can
reflect the impact of high sound pressure level by an appropriate constant resistance term.
The stability margins show a high sensitivity towards this term, emphasizing the need
for accurate modeling of the nonlinear effects. This need becomes even more evident for
simulations in the time domain, where the SPL can change rapidly such that local-linear
models cannot be applied.

In major parts of the thesis, high-fidelity compressible fluid dynamic simulations are con-
ducted, see [15, 34, 41, 105]. The results presented are independent of mesh and solver
setting. In absence of a mean flow, sub-grid scale modeling in large eddy simulations has
a minor impact on the acoustic damping in the simulations as long as the Stokes layer
and the edge regions, where the flow separates, are highly resolved. As an alternative to
the compressible approach, the nonlinear behavior can also be characterized by incom-
pressible simulations [29]. This study was conducted in collaboration with J. Tournadre
and P. Mart́ınez-Lera from Siemens Industry Software in Leuven, Belgium. A Helmholtz
resonator is segregated in its acoustically compact neck and its backing volume. While the
backing volume can be modeled analytically in a linear fashion, the behavior of the neck is
simulated including the nonlinear effects present. In the incompressible simulations, it is
essential to set the input velocity such that the velocity in the segregated neck agrees with
the velocity in the composed resonator. Obeying this scaling rule, the overall impedance
is given by the assembly of the transfer impedance of the segregated neck and the surface
impedance of the backing volume also in the nonlinear regime.

In collaboration with M.A. Temiz, I. Lopez Arteaga, and A. Hirschberg from TU Eind-
hoven, the impact of the edge shape on the induced flow and the damping performance
is studied [34]. Two major effects are detected: Firstly, with increasing chamfer size at
the edge, the eigenfrequency shifts to higher frequencies, corresponding to a reduction of
the effective length used in most impedance models. Secondly and more significantly, it
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is observed that already small chamfers at the edges influence the flow significantly. The
presence of a chamfer reduces the size of the separation zone at the leading edge corre-
sponding to a larger vena contracta factor. By this mechanisms, the nonlinear resistance
is reduced noticeably.

The nonlinear aeroacoustic behavior of both quarter-wave and Helmholtz resonators is
further investigated with respect to the scattering to higher harmonics [41] together with
the cooperation partners in Leuven mentioned above. These resonators are acoustically
excited with harmonic signals varying in frequency and amplitude and the spectrum of
the reflected wave is evaluated. For the Helmholtz resonator, a pattern in the harmon-
ics—named OHO pattern—is observed where only odd harmonics are present in the scat-
tered harmonic. This pattern is weaker if the neck of the resonator is chamfered on one
side. For the quarter-wave resonator, the OHO pattern totally vanishes. This observation
in the simulations is substantiated by a quasi-steady analysis. In this analysis, it is shown
that OHO pattern occurs due to the flow symmetry present for the Helmholtz resonator.

The main achievement of this thesis is the development of data-based reduced-order mod-
els (ROMs) for the reflection behavior of acoustic resonators. In the post-processing of
fluid dynamic simulations, system identification techniques are used to estimate ROMs
based on the simulation data acquired. For the identification of a linear model, the res-
onator is excited with a low-amplitude broadband signal covering the entire frequency
range of interest. Based on the input data and the detected reflection, a linear model for
the reflection coefficient is developed. Here, a second-order output-error model structure is
adopted [105]. This auto-regressive structure can parametrize a digital filter with an infi-
nite number of filter coefficients using five parameters. A good agreement of the frequency
responses of the estimated models with measurements is achieved. Hence, such models
can be employed for the stability analysis performed by other tools. Hereby, the models
can be transformed to digital filters with differing sampling rates or in other domains as
the Laplace domain to satisfy the requirements of the analysis tools.

The system identification approach is extended into the nonlinear regime [15]. For that
purpose, a gray-box model structure, named local-linear neuro-fuzzy network (LLNFN),
is developed, suited for the specific setup of the resonator reflection. The model consists
of output-error submodels, which are wired via fuzzy neurons to the input channel. Based
on the root mean square of the particle velocity in the resonator neck, the input signal
is distributed into those submodels. In the simulation providing the data for the training
of the model, the amplitude of the excitation signal is successively ramped up such that
the entire amplitude range of interest is covered. A procedure training the model without
bias is developed. The estimated nonlinear models are proven to be robust against over-
parameterization. Evaluating describing functions for the reflection coefficient and the
impedance, a good agreement with measurements has been achieved for all test cases
considered. Moreover, the sampling rate of the estimated model can be adapted to another
rate since all linear submodel can be transformed easily. Overall, such LLNFN models can
support stability analysis in the nonlinear regime, since they offer a high accuracy along
with low numerical costs. Hence, they can serve as an acoustic nonlinear boundary in
fluid dynamic or aeroacoustic simulations. Furthermore, the efficient and robust nonlinear
characterization makes this approach also feasible to support the resonator design in an
early stage of development.
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7.1 Mapping the Influence of Acoustic Resonators on Rocket Engine Combustion
Stability

The results of the author’s work have been published in several papers. The key papers
with the original abstracts and the respective contributions of the author are listed in the
following sections.

7.1 Mapping the Influence of Acoustic Resonators on

Rocket Engine Combustion Stability

A thermoacoustic linear stability analysis of a generic rocket combustion chamber is con-
ducted employing a low-order network model. Special attention is paid to the modeling
of the resonator ring, as presented in Sec. 3.2.

Original Abstract: A mode-based, acoustic low-order network model for rocket cham-
bers with resonator ring is introduced. This model involves effects of dissipation as well
as scattering and mode coupling associated with a resonator ring. Discontinuities at the
interface between acoustic elements are treated with integral mode matching conditions.
Eigenfrequencies and accordingly the linear system stability can be determined with the
generalized Nyquist plot method based on the network model. Due to low computational
cost, parameter studies can be performed in a reasonable time. An additional chamber
eigenmode is observed for well-tuned resonators. Both the original and the additional
mode show favorable stability properties for a generic test chamber. The optimal length
and number of cavities are identified for that chamber. The need of analyzing the coupled
system of resonators and combustion chamber in the design process is made evident by
the discrepancy between detected values and those of an a priori consideration. Derived
stability maps demonstrate that the region of stable operation is increased considerably
by inserting well-tuned resonators. The destabilizing influence of temperature deviations
in the cavities is quantified. Such sensitivities to modifications of design conditions can be
extenuated by a ring configuration with several non-identical resonator types. Moreover,
the strong impact of the nonlinear correlation factor in the resonator modeling on the
overall system stability is worked out.

Contribution: The low-oder tool by Cárdenas Miranda and Polifke [65] was further
developed by the author. The simulations were conducted and the manuscript was drawn
up by the lead author.

Status: Published in the Journal of Propulsion and Power.

Reference: ForneCarde15, reproduced on p. 66ff.
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7.2 Determination of Acoustic Impedance for

Helmholtz Resonators Through Incompressible

Unsteady Flow Simulations

A technique for the nonlinear aeroacoustic characterization of a Helmholtz resonator by
incompressible simulations is developed, see Sec. 4.2. The proposed procedure is based on
the segregation of the resonator into its components, as explained in Sec. 2.5.

Original Abstract: The present study investigates the physics of Helmholtz resonators
under a large range of excitation amplitudes through an approach based on incompressible
computational fluid dynamics simulations. By doing so, this work proposes and assesses an
alternative approach to the more widespread one based on compressible flow simulations
to analyze the non-linear regime of Helmholtz resonators. In the present methodology,
the resonator is decomposed into its two main components: an assumed incompressible
orifice neck and a compressible backing volume. The transfer impedance of the single
orifice is obtained by means of an incompressible solver of the flow equations without
turbulence modeling, whereas an analytical model accounts for the compliance of the gas
in the backing cavity. The proposed methodology is compared for validation purposes
to both numerical results of the full compressible equations and experimental data for
the complete resonator at different SPLs. The agreement between the results of the two
numerical approaches is found to be good. Numerical results match also fairly well with
experimental data but a systematic over-prediction of the resistance by simulations is
observed. Accounting for the presence of micro-rounded edges, presumably present due to
manufacturing processes, allows a better agreement between numerical and experimental
results.

Contribution: The paper is the outcome of an intensive collaboration with Jonathan
Tournadre from Siemens Industry Software (Leuven, Belgium)/KU Leuven. The com-
pressible CFD simulations were performed by the present author, while Tournadre con-
ducted the incompressible ones. The modeling and the writing of the manuscript were
done by both parties involved to an equal extent.

Status: Published in AIAA Journal.

Reference: TournForne17, reproduced on p. 74ff.

7.3 On the Non-Linear Influence of the Edge Geome-

try on Vortex Shedding in Helmholtz Resonators

Flow separation at the edges of the resonator opening increases the acoustic resistance in
the nonlinear regime, as explained in Sec. 2.5. Blunt resonator edges reduce the separation
zone in comparison to a sharp contour, leading to a significant reduction of the nonlinear
resistance, see Sec. 5.1.

Original Abstract: This study investigates the effect of edge profile of a Helmholtz
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resonator neck in non-linear regime by means of experiments and large eddy simulations.
The dissipation mechanisms in a Helmholtz resonator differ significantly, depending on
the sound pressure level. At low levels, i. e., in the linear regime, thermo-viscous effects
are responsible for the dissipation of the acoustic energy since the oscillating flow follows
the neck geometry. However, increasing the sound pressure level results in flow separation
at the edges. At these points, vortices form which convert acoustic perturbation energy
to the hydrodynamic mode. This is a strong non-linear effect increasing the dissipation
considerably. To observe this effect, experiments and numerical simulations are carried
out for combinations of various backing volumes, sound pressure levels, and neck profiles.
The neck profiles are selected as 45◦–chamfers due to manufacturing concerns. Hereby,
a strong dependence on the edge shape is observed in both experiments and numerical
simulations. The presence of the chamfer reduces the vortex shedding in comparison to
the sharp edge significantly, which leads to a lower acoustic resistance.

Contribution: The CFD simulations were conducted by the author, while the measure-
ments were carried out by M. A. Temiz at TU Eindhoven. The manuscript was written
by both parties involved to an equal extent.

Status: This paper was submitted to and presented at the 22nd International Congress
on Sound and Vibration (ICSV22) held in Florence, Italy, from 12 to 16 July 2015. It was
published in the ICSV22 Conference Proceedings under the copyright of the International
Institute of Acoustics and Vibration (IIAV).

Reference: ForneTemiz15, reproduced on p. 83ff.

7.4 Scattering to Higher Harmonics for Quarter-

Wave and Helmholtz Resonators

The inflow and outflow through the neck of a Helmholtz resonator are almost perfectly
symmetric, inducing a pattern in the higher harmonics in the spectrum of the scattered
acoustic wave, see Sec. 5.2. This finding is confirmed by CFD simulation (cf. Sec. 4.1) and
quasi-steady analysis (cf. Sec. 2.5).

Original Abstract: The nonlinear response of acoustic resonators is investigated over a
broad range of frequencies and amplitudes. Helmholtz resonators with a symmetric and
with an asymmetric neck, respectively, as well as quarter wave resonators are considered.
Describing functions for impedance and reflection coefficient of a Helmholtz resonator
at various sound pressure levels are determined from compressible flow simulation and
validated against experimental data. The particular focus of the present study is the non-
linear scattering to higher harmonics. For the Helmholtz resonator with a symmetric neck,
a distinct pattern in the amplitudes of the higher harmonics is observed, where the odd
harmonics dominate the response, while the even harmonics are almost negligible. Such an
“Odd-Harmonics-Only” (OHO) pattern, which was observed previously in experiment at
orifices, is explained by a quasi-steady analysis based on the Bernoulli equation, assuming
a symmetric flow pattern at the neck. For the Helmholtz resonator with an asymmetric
neck, it is observed in CFD simulations that even harmonics contribute noticeably to
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the resonator response, such that the OHO pattern is less pronounced. For the markedly
asymmetric geometry of the quarter wave resonator, the second harmonic is dominant and
the OHO pattern vanishes completely. The quasi-steady analysis is extended successfully
to describe also nonlinear scattering to higher harmonics for asymmetric configurations
and flow patterns. Overall, the scattering to higher harmonics remains on a moderate
level even at very high excitation levels for the Helmholtz resonator configurations. For
the quarter wave resonator, the scattering is more pronounced and contributes perceptibly
to the response at high excitation amplitudes.

Contribution: The paper is the outcome of an intensive collaboration of Jonathan Tour-
nadre from Siemens Industry Software (Leuven, Belgium)/KU Leuven with the author.
The compressible CFD simulations were performed by the author, while Tournadre con-
ducted the incompressible ones. The modeling and the writing of the manuscript were
done by both parties involved to an equal extent.

Status: The paper is published in AIAA Journal.

Reference: ForneTourn17, reproduced on p. 91ff.

7.5 Aeroacoustic Characterization of Helmholtz Res-

onators in the Linear Regime with System Iden-

tification

The linear acoustic behavior of Helmholtz resonators can accurately be characterized by
the CFD/SI approach, see Sec. 6.2.

Original Abstract: The dissipation of acoustic energy in Helmholtz resonators is in-
vestigated by means of large eddy simulation (LES) and system identification. At low
sound pressure level, thermo-viscous effects dominate this dissipation. This is linear, i. e.,
independent of perturbation amplitude. LES/system identification methods are applied
in this study to the linear regime. For that purpose, the system is interpreted as a single-
input / single-output system of two characteristic waves. An Output-Error model for the
reflection coefficient valid for the whole frequency range of interest is estimated from a
single LES time series. The resonator admittance and impedance are derived from that
model. For a set of test cases, comparison against experimental results and established
models shows good agreement for the gain and phase of the admittance as well as of
the reactance. The acoustic resistance value is captured with good accuracy close the
eigenfrequency of the resonator.

Contribution: The author performed the CFD simulations as well as the linear system
identification and composed the manuscript.

Status: This paper was submitted to and presented at the 22nd International Congress
on Sound and Vibration (ICSV22) held in Florence, Italy, from 12 to 16 July 2015. It was
published in the ICSV22 Conference Proceedings under the copyright of the International
Institute of Acoustics and Vibration (IIAV). The paper was peer-reviewed.
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Reference: FornePolif15, reproduced on p. 102ff.

7.6 Nonlinear Aeroacoustic Characterization of

Helmholtz Resonators with a Local-Linear

Neuro-Fuzzy Model

A proposed nonlinear gray-box model enables an accurate characterization of the resonator
behavior in the nonlinear regime, see Sec. 6.3.

Original Abstract: The nonlinear acoustic behavior of Helmholtz resonators is char-
acterized by a data-based reduced-order model, which is obtained by a combination of
high-resolution CFD simulation and system identification. It is shown that even in the
nonlinear regime, a linear model is capable of describing the reflection behavior at a
particular amplitude with quantitative accuracy. This observation motivates to choose a
local-linear model structure for this study, which consists of a network of parallel lin-
ear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear
submodels, depending on the rms of the particle velocity at the resonator surface. The
resulting model structure is referred to as an local-linear neuro-fuzzy network. System
identification techniques are used to estimate the free parameters of this model from
training data. The training data are generated by CFD simulations of the resonator, with
persistent acoustic excitation over a wide range of frequencies and sound pressure lev-
els. The estimated nonlinear, reduced-order models show good agreement with CFD and
experimental data over a wide range of amplitudes for several test cases.

Contribution: The author developed and implemented the Local-Linear Neuro-Fuzzy
Model. He performed the CFD simulations and wrote the manuscript.

Status: The paper is published in the Journal of Sound and Vibration.

Reference: FornePolif17, reproduced on p. 110ff.
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[89] P. Mart́ınez-Lera, C. Schram, S. Föller, R. Kaess, and W. Polifke. Identification of
the aeroacoustic response of a low Mach number flow through a T-joint. J. Acoust.
Soc. Am., 126(2):582–586, 2009. doi: 10.1121/1.3159604.

[90] M. S. Howe. Theory of Vortex Sound. Cambridge Texts in Applied Mathematics,
2003. ISBN 0-521-01223-6.

[91] G. Nakiboğlu, S. P. C. Belfroid, J. Golliard, and A. Hirschberg. On the Whistling
of Corrugated Pipes: Effect of Pipe Length and Flow Profile. J. Fluid Mech., 672:
78–108, 2011. doi: 10.1017/S0022112010005884.
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Mapping the Influence of Acoustic Resonators
on Rocket Engine Combustion Stability
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Technische Universität München, D-85748 Garching, Germany
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A mode-based, acoustic low-order network model for rocket chambers with resonator ring is introduced. This

model involves effects of dissipation as well as scattering and mode coupling associated with a resonator ring.

Discontinuities at the interface between acoustic elements are treated with integral mode-matching conditions.

Eigenfrequencies and accordingly the linear system stability can be determined with the generalized Nyquist plot

method based on the network model. Because of low computational cost, parameter studies can be performed in a

reasonable time. An additional chamber eigenmode is observed for well-tuned resonators. Both the original and the

additional mode show favorable stability properties for a generic test chamber. The optimal length and number of

cavities are identified for that chamber. The need for analyzing the coupled system of resonators and combustion

chamber in the design process is made evident by the discrepancy between detected values and those of an a priori

consideration. Derived stability maps demonstrate that the region of stable operation is increased considerably by

inserting well-tuned resonators. The destabilizing influence of temperature deviations in the cavities is quantified.

Such sensitivities to modifications of design conditions can be extenuated by a ring configuration with several

nonidentical resonator types. Moreover, the strong impact of the nonlinear correlation factor in the resonator

modeling on the overall system stability is worked out.

Nomenclature

A = system matrix of network model
c = speed of sound
d = diameter of quarter-wave tube
Fmn, Gmn = amplitudes of up- and downstream traveling waves
fmn, gmn = up- and downstream traveling waves
i = imaginary unit equal to

!!!!!!

−1
p

Jm = mth Bessel function of first kind
k!mn = axial wave number
L = length of the thrust chamber
l, le, lr = geometric, effective, and equivalent mass length of

quarter-wave resonator
M = Mach number
N = number of modes considered in mode matching
n = pressure interaction index, Eq. (16)
nR = number of cavities placed in resonator ring
p 0 = acoustic fluctuating pressure
_Q = heat release
R = radius of thrust chamber; reference length scale
rin, rout = radius of curvature at nozzle entrance and throat,

respectively
T = transfer matrix
T = cycle
t = time
U = mean flow velocity
x, r, θ = axial, radial, and tangential coordinates
xF, xR = axial position of flame front and resonator ring

center, respectively
Z = Θ" iΨ acoustic impedance
α! = radial wave numbers
Γ = growth rate, Eq. (19)

γ = isentropic exponent
ΔT = deviation from design temperature
ϵnl = nonlinear resistance factor
θnozzle = nozzle half-angle
κ = acoustic balancing parameter defined by Eq. (14)
λmn = nth roots of the derivative of the mth Bessel

function of first kind
μ = dynamic viscosity
Ξ = excess temperature
ξ = ratio of specific impedances
ρ = density
τ = combustion time lag, Eq. (16)
Ω = ω" iϑ complex valued angular frequency
ωref = angular frequency of the undamped 1T1L mode;

used to normalize frequency and time scales

Subscripts

m, n, l = azimuthal, radial, and axial mode order
R = evaluation at the resonator
u, d = property evaluated up- and downstream, respec-

tively

Superscripts

u, d = property evaluated up- and downstream, respec-
tively

0 = first-order fluctuation

I. Introduction

F EEDBACK between unsteady heat release and acoustics can
lead to self-excited thermoacoustic instabilities in rocket

combustion chambers. The resulting high-frequency oscillations can
lower the motor performance or, due to the high-energy density, even
destroy the thrust camber within a short time. Acoustic resonators,
such as Helmholtz resonators or quarter-wave length cavities, are
commonly used for the dissipation of acoustic energy and detuning
the system such that these oscillations are damped [1,2]. Figure 1
shows a generic combustion chamber with resonators arranged in
a ring.
The damping behavior of the cavities depends on several design

parameters, such as their length, diameter, the number of cavities, etc.
Moreover, transient operating conditions such as temperature or the
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sound pressure level (SPL) influence the resonator performance
[3,4]. Identification of an optimal design is not a trivial task because
the stabilizing impact can only be estimated in combination with the
main driving and damping mechanisms in the chamber (cf. [2]).
An acoustic network model approach has been introduced by

Cárdenas Miranda and Polifke [5] capable of analyzing the linear
stability of a rocket engine combustion chamber equipped with a
resonator ring in the frequency domain. The stability of each mode
(composed of axial and tangential contributions) is determinedwith a
generalized Nyquist criterion [6]. Following this approach, the
chamber is divided in subsystems or “elements,” which form an
interconnected network. Major attention in modeling is put on the
resonator ring, which is represented as a duct segmentwith finitewall
impedance. The acoustics within this segment are described
analytically. With suitable matching conditions derived from mass
and momentum conservation via the Galerkin approach, this model
accounts for wave scattering as well as the mode coupling effects to
higher radial modes. In this study, this network model is used to
analyze the influence of resonator parameters on the overall stability
in detail. Quantitative validation against experimental data was not
object of the present paper. This would require more sophisticated
submodels.
The paper is organized as follows: In Sec. II, the networkmodeling

detailed in [5] is summarized and the main features of each element
are discussed. The results of an extensive parameter study with focus
on the 1T1Lmode are presented in Sec. III. The generic test chamber
used for the study is introduced first. An optimal tuned resonator ring
is sought by variations of the cavity length and the number of
resonators. Stability margins in terms of the flame parameters of the
undamped chamber are compared with thewell-tuned damping case.
Moreover, the effect of temperature deviation in the cavities is
examined for two configurations: one ring equipped with only one
type of resonators and another with differing types but the same total
number of resonators. Finally, the influence of nonlinear correlation
terms associated with the SPL is investigated before concluding
in Sec. IV.

II. Low-Order Network Model

In this section, the low-order network model of a rocket engine
combustion chamber from [5] is presented briefly. This model
captures the important thermoacoustic interactions with low
computational costs. In the network, the different parts of the
combustion chamber are modeled as separate (thermo)acoustic
elements as illustrated in Fig. 2. For each such element, the main
features are summarized and discussed. By connecting these
elements, a linear system is formed, which can be used to find the
eigenfrequencies and thus to determine the linear stability of the
corresponding eigenmode.

A. Duct Segment

The three-dimensional, linear acoustic field in terms of the
pressure fluctuation p 0 with uniformmean flow in the axial direction
v0 # $U; 0; 0%T can be described by the convective wave equation

1

c2

"

∂

∂t
"U

∂

∂x

#

2

p 0 # ∇2p 0 (1)

Hereby, the viscous dissipation is neglected and a constant speed of
sound c is assumed. In a cylindrical duct with radiusR, the solution of
this equation with harmonic time dependency reads in cylindrical
coordinates &x; r; θ' as

p 0

c0ρ0
#
X

m;n

$Jm&α
"
mnr'Fmne

−ik"mnx " Jm&α
−
mnr'Gmne

−ik−mnx%eiΩteimθ

#
X

m;n

&fmn " gmn' (2)

Here, Jm denotes the mth Bessel function of the first kind. The
numbers m and n describe the tangential and radial mode order,
respectively. The solution can be interpreted as a combination of left
and right traveling waves fmn and gmn. Note that the preceding
expression is complex valued with its real part corresponding to the
physical pressure. The propagation in the x direction of the
corresponding wave is determined by the axial wave number k!mn and
the mode shape by the radial wave number α!mn. These numbers are
linked by the dispersion relation

&α!mn'
2 # &Ω∕c −Mk!mn'

2 − &k!mn'
2 (3)

where M is the Mach number U∕c.
Moreover, the wave numbers α!mn have to be determined such that

the boundary condition at the duct wall is satisfied. These conditions
are usually given in terms of an acoustic impedance Z, which is the
ratio of the fluctuating pressure p̂ 0 and velocity normal to the surface
û 0
⊥ in the frequency domain:

Z&ω' #
p̂ 0

û 0
⊥

# Θ" iΨ (4)

The real part Θ (the so-called resistance) mainly describes the
dissipative effects, whereas the imaginary part Ψ (the reactance)
describes the phase shift or time delay.
In the presence of axial mean flow, the boundary conditions for

p 0&x; r; θ' are given by Myers [7] as

−
iΩ

ρ

∂p 0

∂r
#

"

iΩ"U
∂

∂x

#

2 p 0

Z&Ω'
(5)

For a hard-wall boundary condition with Zjr#R # ∞, this sim-
plifies to

d

dr

$

Jm&αr'

%

r#R

# 0 (6)

with the real-valued, frequency-constant solutions α"mn #
α−mn # !λmn∕R, where λmn denotes the nth root of &d∕dr'Jm. For
a duct with finite shell impedance, the situation changes: The
solutions are complex valued as well as frequency dependent and
α"mn ≠ α−mn holds. In this case, the wave numbers have to be
determined by solving the nonlinear equation numerically, which
arises by inserting the analytical solution (2) and the dispersion
relation (3) into the Myers boundary condition (5).

Fig. 1 Sketch of a generic thrust chamber.

NozzleInjector

Ring

Flame

Duct

Duct

Nyquist

Fig. 2 Acoustic networkof a generic test chamberwithNyquist element;
reproduced from [5].
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Having computed the axial wave numbers, the propagation of
waves in a duct of length Λ with constant shell impedance can be
described by the corresponding transfer matrix Tmn:

$

fumn

gumn

%

# Tmn

$

fdmn

gdmn

%

(7)

The expressions fumn, gumn, fdmn, and gdmn denote the left and right
traveling wave of the mode &m; n' upstream and downstream of the
duct, respectively. This transfer matrix is given as

Tmn #

$

e−ik
("
mnΛ 0

0 e−ik
(−
mnΛ

%

(8)

It is obvious that, in such a duct, only transmission takes place,
without any reflection or scattering, neither into the same mode nor
into any other mode.

B. Resonator Ring

In the network model, the resonator ring is modeled as a duct
segment with finite shell impedance. At connections of duct
segments with differing shell impedances, appropriate matching
conditions have to be set. Here, a Galerkin-based approach is used to
satisfy mass and momentum conservation in a weak sense. In the
present report, only the main ideas behind this resonator ring model
are given (for details refer to [5]).
A common model for the impedance of the mouth of the quarter-

wave length resonator with diameter d and length l, as shown in
Fig. 1, is given by Laudien et al. [8] as

ZR # 2

"

1" ϵnl "
lr

d

#

!!!!!!!!!!!!!!!!!

2μRρRΩ
p

− icρ cot

"

Ωle

c

#

(9)

The reactance of thismodel is described in an analytical way,whereas
the resistance is determined empirically. The so-called nonlinear
factor ϵnl has to be determined experimentally in dependence on the
SPL. The length lr describes the corresponding length to the effective
mass (in analogy to the Helmholtz resonator). The effective length
le # l" δl (δl ≈ 0.42d [9]) is slightly larger than the geometric
length, because it accounts for the fluid in front of the resonator
mouth taking part in the resonator oscillation. The dynamic viscosity
at the resonator opening is denoted with μR and the density with ρR.
Because the duct model introduced earlier can only deal with duct
segments with a homogeneous shell impedance, it is reasonable to
define an equivalent impedance Zeq [8]

Zeq

Aref

#

"

X

j

Aj

Zj

#

−1

(10)

Here, Zj corresponds to the impedance at the area Aj and Aref to the
total area

X

j

Aj

It should be pointed out that this approach can formally handle
resonator rings with several resonator types. This is reasonable as
long as the assumption of a homogeneous wall impedance is valid
(i.e., there are not too many different resonator types and they are
mounted well distributed around the circumference). Having set the
homogeneous shell impedance, the transfer matrix can be computed
as discussed in Sec. II.A.
At the interface between the hard-wall and finite shell impedance

duct segment, transmission, reflection, and radial mode coupling
occur. As shown in [5], these effects are considered in appropriate
mode-matching conditions, which can be derived from mass and
momentum conservation on a control volume enclosing the
connection. For every tangential orderm, these quantities can only be
conserved in a weak integral sense with weighting functions

Ψmν&r; θ', ν # 1; : : : ; N. Decreasing the volume thickness to zero,
only surface and line integrals remain. For the coefficients

qh # $Fh
m0; G

h
m0; F

h
m1; G

h
m1; : : : ; F

h
mN ; G

h
mN %

T ;

qs # $Fs
m0; G

s
m0; F

s
m1; G

s
m1; : : : ; F

s
mN; G

s
mN %

T (11)

on the hard- and soft-wall side, the linear system

Qsqs # Qhqh (12)

follows, whereQs andQh are square 2N × 2N matrices (cf. [10,11]).
With Ψmν # Jm&λmνr∕R', the matrix Qs is of block-diagonal
structure due to the orthogonality of the Bessel functions. The
transfer matrix connecting a hard-wall segment with a soft-wall
segment is given as Tsh # &Qs'−1Qh and, analogously, Ths #
&Tsh'−1 for a connection, vice versa. In total, the transfermatrix of the
resonator ring is given as [5]

Tring # TshTsThs (13)

where Ts is the transfer matrix of the soft-wall segment of the
resonator. In contrast to a simple duct segment, scattering (i.e.,
reflection and transmission of acoustic waves), as well as coupling of
radial modes of different orders, take place here. Thus, these effects
are considered in addition to the direct dissipation of acoustic energy
in the following stability analysis.

C. Injector Plate, Flame, and Nozzle

Because this study focuses on accurate modeling of the resonator
ring, relatively simple models for the injector plate and the
combustion process are used. Nevertheless, it is possible to capture
the main driving and damping effect with these models.
At the injector plate, the acoustic mass flow fluctuations are

assumed to be zero &ρ1u1' 0 # 0. Consequently, the acoustic behavior
is given by [12]

&κ"mn "M'fmn " &κ−mn "M'gmn # 0 (14)

with

κ!mn #
k!mn

ω∕c"Mk!mn

(15)

The flame is modeled in an thermoacoustic element of zero
thickness with the well-known sensitive time lag model proposed by
Crocco [13]

_Q 0

_Q
# n&1 − eiΩτ'

p 0u

pu
(16)

This “n − τ model” relates the relative pressure fluctuation p 0u∕pu

on the cold, upstream side to the relative heat release _Q 0∕ _Q with a
time lag τ and an interaction index n. Using the linearized Rankine–
Hugoniot equations [14], this expression can be written in terms of
characteristic wave amplitudes [6]:

fdmn " gdmn # ξ$1 −Mu
Ξ&γn&1 − eiΩτ' " κ

";u
mn %f

u
mn

" ξ$1 −Mu
Ξ&γn&1 − eiΩτ' " κ

−;u
mn %g

u
mn;

κ"d
mnf

u
mn " κ−dgdmn # $κ";u

mn "MuγΞn&1 − eiΩτ'%fumn

" $κ−;umn "MuγΞn&1 − 4eiΩτ'%gumn (17)

with the isentropic exponent γ and the excess temperature
Ξ # &Tu∕Td' − 1. The ratio of specific impedances ξ #
ρ2c2∕&ρ3c3' is determined by momentum conservation as [5]
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ξ #
1

2

"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&Ξ" 1'&1" γM2'

q

"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ξ&1" γM2'2 " &1 − γM2'2
q

#

(18)

For the nozzle, the model of Bell and Zinn [15] is used based on an
implementation of Köglmeier et al. [16]. This admittance model
incorporates the flow with Mach number M, isentropic exponent γ,
and the mode shape &m; n', as well as the nozzle geometry. The
geometry is described by the radii of curvature at the nozzle entrance
rin and at the throat rout, as well as by the nozzle half-angle θnozzle. For
detailed discussion on the influence of the nozzle modeling refer, for
example, to [17]. Thismodel reflects the strong frequency-dependent
damping of the nozzle accurately and is thus more sophisticated than
the choked nozzle approach used in [5].

D. Determination of the Eigenfrequencies

Putting all acoustic elements together, the acoustic system can be
described as a linear system with a system matrix A&Ω' for each
frequency Ω. To get nontrivial solutions, it is necessary that
ker&A&Ω'' ≠ f0g. So, a resonant eigenfrequency Ωeig has to satisfy
det&&A&Ωeig'' # 0. Having determined such a complex-valued
eigenfrequencyΩ # ω" iϑ, the linear stability of the corresponding
eigenmode is designated by the sign of its complex part ϑ, since
p 0 ∝ e−ϑt. The growth rate per cycle T is given as

Γ # e−ϑT − 1 # exp

"

−2π
ϑ

ω

#

− 1 (19)

This expression takes negative values for positive ϑ and vice versa.
The eigenvalues determine the three-dimensional corresponding
mode shapes. In this study, the focus is put on the stability analysis.
For typical mode shape refer to [5].
The determination of the eigenvalues Ωeig is a nonlinear problem.

Thus, in general, it is very laborious to find these values directly by
root-findingmethods. Thus, the graphical Nyquist plotmethod based
on the generalized Nyquist criterion [18] is used to approximate
them. For this purpose, a Nyquist element is added to the network as
illustrated in Fig. 2. Here, one channel (e.g., for the right traveling
waves) is directly connected, whereas the other channel is cut. Now,
the open-loop transfer function (OLTF) can be defined as

OLTF&Ω' # −
fu

fd
(20)

This function maps the complex plane uniformly on itself. In
particular, all eigenfrequencies Ωeig are mapped on the critical point
−1" 0i. By mapping the real-valued, positive frequencies ω on the
open-loop transfer function curve OLTF&ω', the eigenfrequencies
can be estimated by finding those frequencies ωmin where the OLTF
curve has a localminimal distance to the critical point. This procedure
is illustrated in Fig. 3. The value ωmin corresponds to the real part of
an eigenvalue. The magnitude of its imaginary part can be estimated
by the distance Smin to the critical point scaled with 1∕σ, where

σ # lim
Δω→0

&

&

&

&

OLTF&ωmin " Δω' − OLTF&ωmin − Δω'

Δω

&

&

&

&

(21)

And so,

Ωeig ≈ ωmin " i sign&RHS'
Smin

σ

where the sign sign&RHS' has to be determined using the right-hand
side (RHS) rule. In [18], a polynomial fit to the discreteOLTF curve is
proposed to determine the eigenvalues. For a linear fit, this reads as

Ωn≈ωmin"isign&RHS'
2jSminjΔω

jOLTF&ωmin"Δω'−OLTF&ωmin−Δω'j
(22)

It should bementioned that the preceding estimation is more accurate
if the partial eigenvalue is located close to the real axis (i.e., at small
growth or decay rates). Thus, the determination of the sign, which
determines the stability of amode, is very accurate. In the case of very
high nominal growth or decay rates, quantitative accuracy decreases,
whereas the trend is reproduced correctly.
In [5], a comparison of the Nyquist method using the linear fit with

a direct root-finding method of det&A&Ω'' is given for a rocket
combustion chamber, which shows that the Nyquist method provides
reasonable results within this framework.

III. Parameter Study

Asmentioned earlier, low-order models offer the advantage of low
computational cost, such that extensive parameter studies can be
performed. In this section, the influence of several parameters
associated with the acoustic resonator ring is studied. In particular,
the influence of the cavity length l, the number of cavities nR, mean
temperature deviationΔT in the cavities, and the nonlinear factor ϵnl
are examined by way of example. Stability maps are presented for
both the undamped and damped case (i.e., combustion chamber
without and with resonators). Such studies are important because the
mounting of resonators can change themode shapes and thus can also
affect the damping and driving mechanisms significantly. In other
words, the resonator design cannot be based solely on the
eigenmodes and eigenfrequencies of the undamped chamber, but
requires the study of the coupled system “chamber with resonator” to
capture all interactions taking place (see, e.g., [2]).

A. Generic Combustion Chamber

A generic combustion chamber is defined, which is used for the
semi-analytical studies on the stabilizing influence of the resonator
ring. This chamber has radiusR and lengthL. At distance xF from the
injector plate, the compact combustion front is located with excess
temperatureΞ # Td∕Tu − 1. Further downstream, the resonator ring
is placed with nR cavities and center location xR. If not mentioned
explicitly, each of these cavities has the same length l and diameter d.
All geometrical parameters are nondimensionalized with the
chamber radius R. All following eigenfrequencies Ω # ω" iϑ and
time-dependent quantities are normalized with the real part of the
1T1L eigenfrequency ωref of the undamped chamber. Values for all
parameters are listed as follows: R # 1, L # 1.26, xF # 0.11,
xR # 0.15, d # 0.078, l # 0.44, nR # 22, ϵnl # 65, rin # 2.59,
rout # 0.97, θnozzle # 25, Ξ # 12, γ # 1.13, n # 1.5, τ # 3.10. In
this study, N # 8 radial modes were considered in the mode
matching at the resonator interfaces (Sec. II.B).
The Nyquist plot for the tangential order m # 1 of the undamped

chamber is shown in Fig. 4, where the curve describes clockwise
circles by increasing the frequency. The three points on the OLTF
curve with minimal distance to the critical point −1" 0i correspond
to the 1T, 1T1L, and 1T2L eigenmodes. The 1T mode is located at
the cut-on frequency of the first tangential order where the OLTF
curve has its only discontinuity. The second detected mode 1T1L is
unstable. Later, the curve approaches the origin, which is an outcome
of the damping induced by the nozzle increasing with the frequency.
Thus, the 1T2L is very clearly in the stable regime. This physicalFig. 3 Mapping of ω to the OLTF curve; reproduced from [5].
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effect of high damping for high frequencies is not incorporated in the
choked nozzle approach used in [5].
The eigenmodes of this chamber without resonator ring are

presented in Table 1. The 1T1L mode is most unstable for this
configuration with a growth rate of 4.92%, whereas the others are
relatively stable. Thus, the following stability analysis is based on this
mode. Studies for other modes can be performed in an analogous
manner. Inserting the well-tuned reference resonator ring in the
combustion chamber stabilizes the 1T1Lmode; see the values for the
undamped case in Table 1. Note that the formerly unstable 1T1L
mode has been split into two modes 1T1Lα and 1T1Lβ of similar
frequency when the resonator ring is inserted in the chamber. This
behavior will be explained in Sec. III.B.

B. Cavity Length

The cavity length has a major influence on the damping behavior
because the cavity eigenfrequency is given as fR;k # &2k" 1'cR∕
&4le', k # 0; 1; 2; : : : . In Fig. 5, the real part ω and imaginary part ϑ
of the 1T1L eigenfrequency are plotted, respectively. It can be
observed that the 1T1L eigenmode splits into two modes when the
resonator eigenfrequency is close to the eigenfrequency of the
coupled system. This behavior has already been seen by other authors
for experimental as well as numerical setups (cf. [19,20]). Both
modes are alwaysmore stable than the undamped 1T1Lmode,whose
stability margin ϑref is shown by a horizontal black dashed line in
Fig. 5a. Not only the stability but also the physical frequencies
change. For very short cavity lengths, the mode is hardly influenced:
Eigenfrequency and corresponding stability are almost the same as
for the undamped case. Increasing the cavity length toward the
optimal length causes a decrease in eigenfrequency and increase in
stability. Close to the optimal length, the second, so-called 1T1Lβ

mode appears. Both the original 1T1Lα and the 1T1Lβ modes are
considerably more stable. One of them exhibits a lower and the other
a higher frequency than the undamped 1T1Lmode (see Fig. 5b). The
optimal cavity length lopt is reached where the two ϑ curves in Fig. 5a
intersect. Further increase of the cavity length away from this optimal
length leads on the one hand to a further stabilization of the original
1T1Lα mode until it disappears completely. On the other hand, the
second mode 1T1Lβ tends to be more and more unstable and

asymptotically approaches both the stability margin and the
frequency of the undamped 1T1L mode. The observed shift in the
real part of the eigenfrequency ω is the reason why here and in the
following figures ϑ is plotted instead of the growth rateΓ. The growth
rate Γ is defined per cycle T which is changing with ω, whereas ϑ is
independent of T and thus more reasonable for comparison in this
context.
For the chosen parameters, the optimal damping is achieved with a

cavity length of lopt ≈ 0.438, which was also chosen for the reference
resonator configuration. For lengths in a range around lopt, the 1T1L
eigenmodes remain stable (i.e., ϑ > 0). A priori, the optimal length
can be estimated using the real part of eigenfrequency ωref from the
undamped analysis. Accordingly, the estimated length would be
lest # cR∕&4ωref' − δl # 0.454. This estimated length from the
decoupled analysis is also shown in Fig. 5awith a black dashed line. It
can clearly be seen that, for optimizing the resonator design, only the
coupled system provides accurate results. In this case, the a priori
optimal length is already slightly in the unstable region (see Fig. 5a).
The effect of splitting eigenmodes is also illustrated by theNyquist

plot in Fig. 6. For well-tuned resonators, a loop appears in the OLTF
curve such that two points with minimal distance to the critical point
occur instead of one for the undamped case. These two minima
correspond to the two eigenmodes 1T1Lα and 1T1Lβ. For a cavity
length slightly smaller than lopt, this loop is located at a higher
frequency than the original eigenmode frequency. The longer the
cavities are, the lower the corresponding frequency of the loop
location is. In the complex plane, this cavity length increment
corresponds to a counterclockwise movement of this loop. For cavity
lengths far away from the optimal length, this loop disappears again.

C. Number of Cavities

Another major design parameter is the number of cavities nR
mounted in the resonator ring. The configuration remains unstable
when only few resonators (nR < 8) are inserted (see the solid curve in
Fig. 7a). When nR is increased, the original 1T1Lmode is more and
more stabilized. But for larger values of nR&> 15', the second 1T1L
mode is detectable, which gets less stable by further increasing nR
and is very close to the unstable regime from nR # 36 onward (see
the dashed red curve in Fig. 7a). The generic test chamber is most
stable for nR # 19. For the reference resonator ring configuration,
nR # 22 cavities were selected because this number is located in the
optimal region. The corresponding real parts of the eigenfrequencies
are plotted in Fig. 7b.

D. Stability Map

The stability map of the 1T1L mode is shown in Fig. 8 in
dependency on the flame parameters n and τ. The solid curve marks
the transition from the stable (below) to the unstable regime (above)
for the undamped chamber. The shape of the curve can be explained
by the definition of the flamemodel used [Eq. (16)]. Understandably,
the mode tends to be more unstable for higher interaction indices
because this directly increases the driving influence. The time lag τ

causes the largest amplification when it matches the eigenfrequency
ω such that τω ≈ π. The reasonwhy themost unstable operating point
is not directly located at τωref # π is that the system eigenfrequency
slightly changes with variation of the time lag τ. This is compared
with the damped case with the well-tuned reference resonator ring.
The resulting stability margins are marked by the dashed red line in

−1 0 1

−1

−0.5

0

0.5

1

Re(OLTF)

Im
(O

L
T

F
)

Fig. 4 Nyquist plot of the first tangential mode for the undamped
chamber.

Table 1 Real part of eigenfrequencies and corresponding growth rates for undamped and well-

tuned damped chamber

Chamber Values

Undamped 1L 1T 1T1L 2L 2T 1T2L 2T1L 3L
ω 0.53 0.79 1 1.10 1.32 1.44 1.54 1.74
Γ −70.9% −0.26% 4.92% −98.1% −0.15% −83.7% −2.69% −99.9%

Damped 1L 1T 1T1Lα 1T1Lβ 2L 2T 1T2L 2T1L 3L
ω 0.51 0.79 0.98 1.05 1.09 1.32 1.41 1.54 1.68
Γ −69.1% −0.26% −13.7% −8.59% −96.5 −0.15% −78.0% −1.56% −99.9%
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the same figure. A significant increment of stable operation range can
be observed clearly. As explained in Sec. III.B, the 1T1Lmode splits
into two modes. Here, only the dominant (i.e., more unstable) 1T1L
mode is plotted. This explains the appearance of the sharp corner at
around n ≈ 2.03 and τ ≈ 3.41, where the stability margins of the
1T1Lα and 1T1Lβ modesmeet and the dominance switches from one
to the other mode.

E. Temperature

The cavity eigenfrequency depends linearly on the mean cavity
speed of sound fR ∝ cR. Changing the mean cavity temperature TR

detunes the cavity eigenfrequency, since cR ∝
!!!!!!

TR

p
. This effect is

also reflected in the coupled analysis. In Fig. 9, the imaginary and real
part of the dominant 1T1L eigenfrequency are plotted against the
deviation of mean temperature in the cavitiesΔT with the solid lines,
whereΔT is normalized by the design temperature in the cavities. As

expected, the configuration tends to be less stable apart from the
design temperature (see Fig. 9a).
An often used design criterion is the absorption coefficient

α&Ω' # 1 −

&

&

&

&

Z&Ω' − ρRcR

Z&Ω' " ρRcR

&

&

&

&

2

(23)

This coefficient can be seen as the ratio of the dissipated acoustic
energy to the incident acoustic energy. By definition, the maximum
absorption factor is unity. This coefficient is plotted over the
frequency for the reference configuration with the solid line in
Fig. 10. The absorption is highest close to the reference frequency and
decays rapidly apart from it. A possibility to reduce the sensitivity to
deviations of the design value is to modify the ring such that more
than a single resonator type is used. In the modified ring, the same
number of cavities is mounted but the length of six resonators is
elongated and the length of another six is shrunk by 10%. The

0.35 0.4 0.5

0

0.05

0.1

l

a) Imaginary part; the solid and dashed vertical 

lines mark the optimal length determined by 

coupled and a priori analysis

0.35 0.4 0.45 0.5

0.95

1

1.05

ω

l

b) Real part; the dashed horizontal line marks 

the eigenfrequency of the undamped system

Fig. 5 Eigenfrequencies of the split 1T1L modes vs cavity length l.
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Fig. 6 Nyquist plot for three different cavity lengths: 0.42, 0.44,
and 0.46.
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Fig. 7 Eigenfrequencies of the split 1T1L modes vs number of cavities nR.
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Fig. 8 Stability map in dependency on the flame parameter n and τ for
undamped (solid) and well-tuned damped (dashed) chamber.
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modified cavity types have lower and higher eigenfrequencies,
respectively. By changing the temperature, all eigenfrequencies shift.
With different cavity lengths in the array of resonators, the likelihood
grows that one type matches the coupled eigenfrequency and thus
damps efficiently. The absorption for the modified resonator ring is
also shown in Fig. 10with a dashed curve. It is still maximum close to
ωref but a good performance close to the eigenfrequencies of the
additional resonator types is realized. Thus, with such amodification,
the range of high absorption can be broadened efficiently but with a
slightly lower maximal absorption.
The modified resonator ring achieves the requested stabilization

also in the coupled analysis (see the red dashed curves in Fig. 9). It
can be clearly observed that the stable range is increased by this a
modification (see Fig. 9a).

F. Nonlinear Factor

In the impedancemodel of the quarter-wave resonator introduced in
Eq. (9), the nonlinear factor ϵnl plays an important role. The empirical
correlation term accounts for nonlinear damping mechanisms due to
flow separation at the cavity mouth. At high SPLs, this mechanism
dominates the linear, viscous damping and, consequently, the
resistance is mainly determined by that factor in this regime.
Now, its influence on the coupled system stability is examined.

The imaginary and real parts of the dominant 1T1L eigenfrequency
are plotted with respect to ϵnl in Fig. 11. When increasing this term,
the system stabilizes significantly until a saturation is reached at
ϵopt ≈ 100. Subsequently, the system is overdamped and the stability
drops down again and even becomes unstable for very high values of
ϵnl (see Fig. 11a). The reason is that, for very large ϵnl → ∞, the soft-

−0.2 −0.1 0 0.1 0.2

−0.02

0

0.02

∆T

ϑ

a) Imaginary part

−0.2 −0.1 0 0.1 0.2
0.95

1

1.05

∆T

ω

b) Real part

Fig. 9 Dominant 1T1L eigenfrequency vs temperature deviationΔT for two resonator ring configuration: reference configuration (solid) and modified

configuration (dashed).
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Fig. 10 Absorption coefficient α in dependency vs frequency for
reference resonator ring (solid) and modified configuration from
Sec. III.E (dashed).
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Fig. 11 Dominant 1T1L eigenfrequency vs nonlinear factor ϵnl.

120 140 160
10

−2

10
0

10
2

10
4

SPL [dB]

ε
n
l

Blackman

Ingard

P&WA

Fig. 12 Nonlinear factors assembled in [21] measured by Blackman,
Ingard, and Pratt & Whitney Aircraft (P&WA).
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wall duct behaves more andmore like a hard wall, and accordingly, ϑ
approaches the stability margin of the undamped chamber ϑref.
Some measurements with Helmholtz resonators from [21] for the

nonlinear factor ϵnl in dependency on the SPL are summarized in
Fig. 12. A considerable scatter can be observed. This underlines that
such a factor has to be determined for the specific geometric setting,
because a transfer from another setup might be defective and the
overall stability is influenced in a sensitive manner by such
incertitude. Valid impedance models require robust estimates for the
occurring SPLs and a correlation that is valid for the geometry under
consideration.

IV. Conclusions

A low-order network model of a complete rocket engine
combustion chamber has been presented. Hereby, the chamber has
been divided into several elements, in which the linear acoustics have
been modeled separately. Matching conditions have been set up at
the interfaces of duct segments with different shell impedances.
Following theGalerkin approach, mass andmomentum conservation
across the interface has been guaranteed in a weak sense. These
conditions also have included scattering andmode coupling effects at
the resonator ring. Stability analysis has been performed using the
generalized Nyquist criterion to determine the eigenfrequencies.
This procedure has been applied to perform an extensive parameter

study and generate stability maps. First, the analysis has been carried
out for the cavity lengths. When the resonator eigenfrequencies have
been close to an eigenfrequency of the coupled system, the process
has been stabilized and a splitting of this chamber eigenfrequency has
occurred. The damping effect of cavities with matching lengths has
become apparent.Moreover, it has been observed that, in general, the
resonator design according to the undamped system is not sufficient.
Instead, the coupled system of the chamber and the resonators has to
be taken into account. To achieve optimal damping, only a moderate
number of cavities has turned out to be needed. Deviations in mean
temperature from the design condition have shown a clear
destabilizing impact due to the modification of the speed of sound
within the cavities. Inserting a set of nonidentical resonators has
observably lowered this undesired effect. A strong impact of the
nonlinear acoustic dissipation parameter on the overall stability has
been observed, which occurs due to flow separation at the cavity
mouth at high SPLs. This has emphasized the need for the knowledge
of occurring SPLs and of accurate modeling of this nonlinear effect
for the specific geometric setting.
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The present work proposes and assesses a methodology based on incompressible computational fluid dynamics

simulations to study the acoustic behavior of Helmholtz resonators under a large range of excitation amplitudes. It

constitutes an alternative approach to themorewidespread one based on compressible flow simulations to analyze the

nonlinear regime of Helmholtz resonators. In the presentmethodology, the resonator is decomposed into its twomain

components: an assumed incompressible orifice neck and a compressible backing volume. The transfer impedance of

the single orifice is obtained bymeans of an incompressible solver of the flow equations without turbulencemodeling,

whereas an analytical model accounts for the compliance of the gas in the backing cavity. The proposedmethodology

is compared for validation purposes to both numerical results of the full compressible equations and experimental

data for the complete resonator at different sound pressure levels. A good agreement between the results of the two

numerical approaches could be achieved. Numerical results match also fairly well with experimental data, but a

systematic overprediction of the resistance by simulations is observed. Accounting for the presence of microrounded

edges, presumably present due to manufacturing processes, allows a better agreement between numerical and

experimental results.

Nomenclature

Af, Af;o = input amplitudes for compressible simulations,m∕s
Au = input amplitudes for incompressible simulations,

m∕s
c = speed of sound, m∕s
dcav = back-cavity diameter, m
do = orifice diameter, m
Fr, Gr = Riemann invariants, m∕s
fH;lin = Helmholtz resonance frequency in linear regime, Hz
He = Helmholtz number
lo = orifice thickness, m
lcav = back-cavity length, m
P = total pressure, Pa
p = pressure, Pa
Rexp ∕num = reflection coefficient
So∕bc = orifice/back-cavity cross-sectional area, m2

Sh = Shear number
u 0 = fluctuating velocity in duct, m∕s
u 0
o = fluctuating velocity in orifice, m∕s

Z = acoustic impedance, �Pa ⋅ s�∕m
z = normalized acoustic impedance
Δp = pressure loss, Pa
λa = acoustic wavelength, m
ρ = density, kg∕m3

σ = open area ratio
ϕ = acoustic velocity potential, m2∕s
Ω = vorticity, m−1

Superscripts

•̂ = Fourier transformed variable
•
0 = time fluctuating quantity

I. Introduction

ACOUSTIC damping systems, such as Helmholtz resonators,
perforated liners, andquarter-wavelength cavities, are commonly

used in multiple industrial applications to reduce sound transmission
and to control acoustic feedback that can lead to instabilities, for
instance, in combustion systems like aeroengines or gas turbines.
When designed properly, such devices dissipate the acoustic energy at
a specific bandwidth. The behavior of such an acoustic damper is often
characterized by its acoustic impedance, which is defined in the
frequency domain as the ratio of the pressure to the normal acoustic
velocity. The acoustic dissipation mechanisms, and therefore the
impedance values, differ significantly depending on the amplitude of
the acoustic excitation. For low excitation amplitudes, the viscous
dissipation dominates. In this case, the impedance is independent of the
sound amplitude, and the resonator or orifice behaves like a linear
system. Numerical methods based on linearized equations, like the
linearized Navier–Stokes equations, allow for an efficient treatment of
this linear regime with limited computational costs [1]. By increasing
the excitation amplitudes, nonlinear effects appear and become
progressively dominant. Such nonlinear effects originate from flow
separation at the neck of the resonator, which transfers acoustic energy
to the hydrodynamic field. The creation of vortices at the orifice neck
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increases considerably the dissipation of the acoustic energy. This
feature is of importance for the design of acoustic dampers, as it
impacts substantially the sound wave attenuation. The nonlinear
regime is, however, more complex to predict accurately due to the
intricate nature of the physical phenomena taking place. Linear
numerical methods are therefore not suitable at medium and high
excitation amplitudes, and nonlinear time domain solvers are needed.
The present work investigates the capability of an incompressible

unsteady computational fluid dynamic approach to study numeri-
cally the aeroacoustic response of a Helmholtz resonator to an
external acoustic excitation. Different sound pressure levels (SPLs)
are included in this study to cover the different regimes of an
investigatedHelmholtz resonator. Incompressible flow computations
have already successfully been used in the past to characterize the
acoustic behavior of confined flow systems. In thework ofMartínez-
Lera et al. [2], an approach combining incompressible computational
fluid dynamics (CFD) and vortex sound theory [3] was applied
successfully to a two-dimensional laminar flow through a T joint.
This methodology was further improved and applied to corrugated
pipes by Nakiboğlu [4] and to a large orifice configuration with
through flow by Lacombe et al. [5] for whistling prediction. In
contrast to those previous works, the present study focuses on both
linear and nonlinear regimes of Helmholtz resonators in the absence
of mean flow. The extension to the case with flow can be done easily
due to the present general formulation and arguments presented by
Nakiboğlu [4] and Golliard et al. [6].
Section II explains in detail the methodology applied here for the

numerical acoustic characterization of a Helmholtz resonator. The
numerical setup and the postprocessing steps used to determine the
surface impedance of the resonator are described. In Secs. III and IV,
the results for the impedance describing functions estimated by the
proposed approach are shown for the linear and nonlinear regimes,
respectively. In both cases, the results are compared to impedance
values obtained using compressible flow computation of the
complete resonator and validated against measurements data.
Section V concludes this paper with an overview of the main
observations of this study.

II. Description of Methodology and Case Study

A. Decomposed Helmholtz Resonator

The basic idea of using an incompressible solver to study the
acoustic behavior of a Helmholtz resonator, placed at the termination
of a duct as depicted in Fig. 1a, appears as a contradiction at first
thought. The incompressible nature of the fluid violates indeed the
principle of mass conservation if a nonzero inlet velocity is
prescribed at the open side of the duct closed by the resonator, which
makes impossible the direct study of this configuration by
incompressible CFD simulation. The methodology proposed here to
face this issue is to decompose the completeHelmholtz resonator into
its twomain components: the orifice neck and the backing cavity (see
Fig. 1b). Such a decomposition has already been proposed by Ingard
and Ising [7]. Formost of the configurations of interest, the orifice can
be considered acoustically compact; i.e., the Helmholtz numberHe,

which describes the ratio of the neck length or diameter to the

acoustic wavelength λa, is small (He ≪ 1). Thus, the flow through

the orifice can be treated as incompressible. The compressible effects

occur solely in the backing volume. The orifice transfer impedance

Zo is often used to quantify the acoustic behavior of an orifice. It is

defined as the ratio of the Fourier component (superscript ·̂) of the

fluctuating pressure dropΔp̂ 0 � p̂ 0
1 − p̂ 0

2 and velocity normal to the

reference surface in the duct front of the resonator u 0, i.e.,

Zo � Δp̂ 0

û 0 (1)

Note that in the previous definition the velocity û 0 is the cross-

sectional surface averaged velocity in the resonance tube. There are

other authors using the cross-sectional surface averaged velocity in

the orificeu 0
o instead. These two velocities are related via the porosity

of the resonator plate σ, such that u 0 � σu 0
o. The porosity is defined

as σ � So∕Sbc, with So and Sbc denoting the cross-sectional areas of
the orifice and backing cavity, respectively.
The contribution of the backing volume can be described in terms

of a surface impedance, Zbc � p̂ 0
2∕û

0
2, which is done here

analytically, as described in Sec. II.A.2. The orifice transfer

impedance can therefore be expressed as

Zo � p̂ 0
1 − Zbcû

0
2

û 0
1

(2)

Because of the acoustically compact neck and the same areas on

both sides of the orifice, it is reasonable to assume û 0
1 � û 0

2. Thus,

the surface impedance of the resonator Zr is given in this lumped

model as (cf. Ingard and Ising [7])

Zr � Zo � Zbc (3)

The present study builds on this Helmholtz resonator

decomposition and aims to investigate the validity of this

decomposition at different levels of sound excitation. In doing so,

the advantages of an incompressible solver are exploited for the

simulation of the flow through the orifice, including the vortex

generation responsible for the nonlinear acoustic losses. Details on

the estimation of the orifice transfer impedance and backing volume

surface impedance are given in the following sections.

1. Orifice Impedance Zo

The methodology to get the orifice transfer impedance from the

incompressible simulations is explained in this section. In the plane

wave regime, a one-dimensional approximation along the duct is

possible, and the area-averaged absolute pressure at several sections

of the duct is stored at each time step of the flow simulation. This

allows computing the pressure differences between two arbitrarily

chosen sections separated by the orifice: ΔpAB � pA − pB is the

pressure jump (or loss) between the sections A on the inlet side andB

on the outlet side (see Fig. 2).

a) Complete helmholtz resonator b) Decomposition into orifice and 

backing volume

Fig. 1 Sketch of the considered geometry and reference cut planes 1 and 2 for the decomposed resonator model.
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In a general manner, for an incompressible fluid, the momentum

equation yields

∇P � −ρ
∂u

∂t
− ρ�Ω × u� � ρν∇2u (4)

where P is the total pressure P � p� ρkuk2∕2, where u stands for
the velocity, Ω � ∇ × u denotes the vorticity, and ρ and ν are the

medium density and kinematic viscosity, respectively. The second
term on the right-hand side of Eq. (4) is related to the acoustic power
in an inviscid and homentropic flow according to Howe’s energy

corollary [3]. The third term describes the viscous dissipation
effects. The total pressure difference ΔP between two sections
can be expressed as the sum of two distinct contributions:

ΔP � ΔPpot � ΔPs. The pressure difference ΔPpot is related to a
potential flow solution [first term on the right-hand side of Eq. (4)],

which would be the solution in the absence of vorticity and viscous
effects, whereasΔPs is linked to sink/source terms for the soundwith
both vorticity and viscous effects taken into account [last two terms

on the right-hand side of Eq. (4)]. In the numerical models, the
viscous dissipation at the walls of the main duct is neglected, and slip
boundary conditions are applied. As a consequence, the vorticity and

viscous effects can be neglected for thewave propagation in the ducts
so thatΔPduct;s � 0 inside the duct segments. In the one-dimensional

approximation, ΔPpot can be expressed as

ΔPpot � −ρ

Z

L

∂ux

∂t
dx (5)

with L the total length between the two sections, x the coordinate
along the duct axis, andux the axial component of the velocity at the x

location (see Fig. 2). Inside the duct segments, ΔPduct;pot can be
interpreted as a result of the propagation along the duct of the

fluctuation invelocity ux. The pressure losses can be divided spatially
between ducts and orifice parts, leading to

(6)

with ΔPAB the total pressure losses between the measurement

sections A and B and ΔPduct the total pressure losses in the two duct
segments. From this, the expression to compute the orifice pressure
drop ΔPo is

ΔPo � ΔPAB − ΔPduct;pot (7)

There are two different ways to determine the orifice transfer
impedance values from themeasured pressure time series, depending
on whether the potential flow pressure loss correction inside the duct

is done directly on the pressure time data, or in the frequency domain

on the impedance itself. Those two approaches to estimate the orifice

impedance from the pressure and velocity time series are schematized

in Fig. 3.
In approach 1, the impedance due to the duct potential pressure loss

Zduct;pot is subtracted from the total measured impedance Ztot to

estimate the transfer impedance from the orifice Zo as

Zo � Ztot − Zduct;pot (8)

For an orifice of thickness lo placed between the measurement

sections A and B, as illustrated in Fig. 2, Zduct;pot is computed as

Zduct;pot � jρω�LAB − lo�u 0 (9)

where LAB is the distance between the measurement sections A and

B,u 0 is the velocity perturbation inside the duct parts,ω is the angular

frequency, and j is the imaginary number
������

−1
p

.
In approach 2, the duct pressure loss is directly subtracted from the

time pressure data. Asu 0 does not depend on the position x in the duct
segments, one gets

ΔPduct � ρ�LAB − lo�
∂u 0

∂t
(10)

where ∂u 0∕∂t can be computed analytically for harmonic excitation

inlet velocity or has to be computed numerically from the velocity

time series in case of broadband excitation.

2. Backing Volume Impedance Zbc

The contribution of the backing volume can also be described in

terms of a surface impedanceZbc � p̂ 0
1∕û

0
2, which can be determined

through an analytical model. Two analytical expressions for the

backing volume are shown here. Using the one-dimensional acoustic

equations, the impedance is given as

Zbc � −j cot�klcav�ρc (11)

where k denotes thewave number k � ω∕c, c is the speed of sound in
the medium, and lcav is the length of the backing cavity. When the

whole volume is compressed and expanded simultaneously, the

following expression for the impedance can be derived using the

isentropic compressibility β ≡ 1∕�ρc2�:

Zbc � −j
ρc2Sbc

Vω
(12)

This is the same formulation as in, e.g., Keller and Zauner [8]. Both

Eqs. (11) and (12) describe the same behavior for lcav ≪ λa. This can

be observed by means of the Laurent series of Eq. (11):

Zbc∕�ρc� � −i�1∕�klcav� − klcav∕3 − k3l3cav∕45�O�k5l5cav��. The

first term of the expansion is identical to the expression in Eq. (12).
Note that both expressions deliver a purely reactive contribution from

the backing cavity. Equation (12) is used in the present study.

B. Case Configuration and Numerical Setup

The geometric configuration for the incompressible simulations as

well as the definition of the boundary conditions for the unsteady CFD

are illustrated in Fig. 2. The numerical domain consists of an orifice of

u'

p'
f

g

x

(0,0)

A B

r

r

Fig. 2 Geometrical configuration for the Helmholtz resonator study
and boundary conditions: ( ) slip wall, ( ) no-slip wall, ( )
prescribed fluctuating velocity, and ( ) fixed pressure boundary
conditions.

Fig. 3 Diagram of the two approaches to get the transfer impedance of
the orifice from Δp 0: approach 1 (top) and approach 2 (bottom).
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diameter do � 4.2 mm and thickness lo � 4.0 mm, placed in a duct
of diameter dcav � 50 mm. This gives a porosity σ of the resonator
front plate of 0.71%. Those dimensions have been chosen according to
the Ref. [9], corresponding to the case with sharp edges, used for
comparison (see Sec. II.C). The original resonator design has a cavity
length of lsim∕dcav � 0.4. The extension of the computational domain
in the axial direction lsim should be long enough to allowmeasurement
sections to be put out of the area that is influenced by hydrodynamic
fluctuations. For the investigated case described through this work,
lsim∕dcav equals 10 and has been taken long to allow different
measurement sections at x∕dcav � ��8; � 6; � 4; � 2� along the
duct for assessment of the methodology. Numerically determined
impedance results have been shown independent of the location of the
chosen measurement sections after post-processing. This ensures that
the impedance results are not polluted due to vortices crossing the
measurement sections. The length lsim∕dcav � 2 has been found to be
sufficient for the investigated geometry at the investigated SPLs, and it
reduces considerably the computational cost and time.
Figure 2 presents also the boundary conditions used for the

unsteady incompressible CFD computations. The wall of the duct is
defined as the slip-wall boundary condition. This assumption implies
that no boundary layer develops along the duct and that the velocity
profile is constant through the section. Such a hypothesis is fair, as it
has been observed in various compressible studies, e.g., the large-
Eddy simulation (LES) computations performed by Alenius [10],
that changing this boundary condition does not affect the local orifice
behavior. This assumption is of importance for the present study, as it
allows one to easily discard pressure losses occurring in the duct
upstream and downstream of the orifice. The wall of the orifice plate
is, however, prescribed as no-slip boundary condition as the
resolution of the boundary layers in the vicinity of the orifice is of
major importance for a correct orifice impedance estimation. The
velocity is prescribed at the duct inlet boundary as a time-dependent
harmonic fluctuation with zero mean. Finally, a fixed pressure
boundary condition is applied to the outlet side of the duct to close the
problem definition.
The present approach is limited to cases inwhich the hydrodynamic

vortex structures are contained inside the numerical domain. As the
boundary conditions for the incompressible simulations are defined
through prescribed velocity and pressure values, vortices crossing the
domain limits are not accounted for by boundary treatment. Violation
of this rule has shown to deliver inaccurate results as the numerical
problem formulation is inconsistent in that case. If vortices approach
the in-/outflow boundaries, the computational domain has to be
extended. This can be required for configurationswith orifices of small
diameter at high excitation amplitudes, as for those cases the vortices
can travel far away from the production zone.
In this work, the incompressible finite-volume solver of a

commercial code (ANSYSFluent v14∕v15) is used to characterize the
flow. The chosen solver is pressure based, time-dependent, implicit,
and second order in time and space. The pressure correction scheme
applied is Semi-Implicit Method for Pressure-Linked Equations. No
turbulence modeling is applied for the presented simulation results as
the Reynolds number based on the orifice size and velocity fluctuation
amplitude at the orifice is rather low (maximum Re ≈ 3000 at high
excitation levels). Turbulencemodeling has shownvery limited impact
on the estimated orifice transfer impedance under the present operating
conditions. Comprehensive parameter studies regarding grid, time
step, and solver parameters have been performed to ensure that the
presented results are independent of those numerical settings. Standard
parameters for the results presented here are the minimal size of mesh
cell hmin� 10−5 m, time step dt� 10−6 s, number of iterations per
time step Niter � 20. Both two-dimensional axisymmetric and three-
dimensional simulations have been carried out in this work to
investigate three-dimensional effects.

C. References for Validation of Method

As mentioned in Sec. I, the results computed from incompressible
unsteady CFD simulations are compared to two different data sets:
compressible CFD results and experimental data performed on a

particular Helmholtz resonator geometry. This paragraph describes
briefly those references and the geometric definition of this particular
case. More detailed on the reference works can be found in the
papers [9,11].

1. Numerical Compressible Computational Fluid Dynamics Refer-

ence Data

Compressible simulations of the Navier–Stokes equations with
both laminar and turbulent models (LES with the k-equation eddy-
viscosity model) performed with the Pimple algorithm of
OpenFOAM [12] are used for comparison [9,11]. To distinguish,
for the estimated resonator acoustic impedance, between the possible
differences originating from the numerical solvers and from the
modeling part, both open-end tube (without accounting for the cavity
backing wall) and closed-end tube (Helmholtz resonator)
configurations are simulated with the compressible solver. It was
also verified that the turbulence modeling leads only to very minor
differences. With the turbulence model activated, the acoustic
resistance increased slightly. This shows that turbulent structures as
represented by the subgrid scale model do not have a significant
impact on the separation mechanism itself in the chosen SPL range.
In the compressible flow simulations, the computational domain is

excited from the boundary opposite to the resonator at a distance
lsim∕dcav � 2 by imposing a propagating characteristic wave Fr of
amplitude Af. For this purpose, the Navier–Stokes characteristics
boundary condition, cf. Poinsot and Lele [13], is applied. Particular
care has been taken to match Af with the value of the amplitude Au in
the incompressible flow simulations to ensure the same excitation state
of the orifice in both closed and open tubes. The method to define
correctly the excitation amplitude is discussed in detail in Sec. II.D.
TheFr wave can be imagined as a wave traveling in the right direction
toward the orifice location, whereas Gr is the reflected one traveling
back to the inlet. Shortly after the inlet, area-averaged pressure and
velocity fluctuations were evaluated across a reference plane to
determined Fr andGr time series to evaluate the reflection coefficient
Rnum. For those harmonically excited simulations, the reflection
coefficient is determined through Rnum�ω� � ĝr�ω�∕f̂r�ω�, with
angular frequency ω. The reflection coefficient is transformed to
the resonator normalized surface impedance zr, using the relation
zr � �1� Rnum∕ exp�∕�1 − Rnum∕ exp�.

2. Experimental Reference Data

In addition to the numerical results, a measurement campaign has
been performed by Förner et al. [9] at the Eindhoven University of
Technology on a Helmholtz resonator configuration. The experi-
ments were carried out with an impedance tube in a semi-anechoic
chamber. The resonator sample was placed at one extremity of the
impedance tube. The measurement data give the surface impedance
of the complete Helmholtz resonator. The tube has six BSWA
MPA416microphones with the average sensitivity of 50.45 mV∕Pa,
equally distributed along the 1-m-long tube. The microphones have
been calibrated to measure the reflection coefficient Rexp in the
frequency range [100–700 Hz]. The numerical work will limit itself
to this frequency range. The reflection behavior of the test object has
been studied for various SPLs. Data for the cases 89.3 and 119.7 dB
are presented here for assessment of the investigated methodology.
Those SPL values are controlled over the entire frequency range at a
reference position, here the closest microphone from the resonator
front plate placed 49.7 mm away. The 89.3 dB case is in the linear
regime, while in the 119.7 dB case, nonlinearities are present.

D. Setting Excitation Amplitudes

For the purpose of comparing results of the incompressible
simulations with existing experimental data, it is necessary to
ensure that the velocities in the orifice agree with each other for the
different setups. This fact is also relevant for comparison with the
compressible solver, as the definition of the excitation between
compressible and incompressible solvers is fundamentally different.
The excitation is given by a time-varying axial velocity fluctuation at
the inlet boundary for the incompressible simulations, whereas it is

4 Article in Advance / TOURNADRE ETAL.

D
o

w
n

lo
ad

ed
 b

y
 B

IB
L

IO
T

H
E

K
 D

E
R

 T
U

 M
U

E
N

C
H

E
N

 o
n

 O
ct

o
b

er
 3

1
, 

2
0

1
6

 | 
h

tt
p

:/
/a

rc
.a

ia
a.

o
rg

 | 
D

O
I:

 1
0

.2
5

1
4

/1
.J

0
5

5
3

3
7

 

A.2 Determination of Acoustic Impedance for Helmholtz Resonators Through
Incompressible Unsteady Flow Simulations

77



defined through injection of an Fr wave for the compressible ones.
The reflection coefficient is therefore a key parameter tomatch results
in the nonlinear regime. This has been found to be a challenge from a
practical point of view. Drawing impedance curves from a particular
resonator at a certain SPL given at a reference position can also be
achieved by the present incompressible approach without any
knowledge of intermediate variables such as the reflection
coefficient. This requires, nevertheless, in general, several simulation
trials for one case, in which the input velocity is progressively
modified until the SPL matches the target one.
To compare the results from the investigated methodology to

existing data sets, the following procedure has been applied, based
on the relations between propagating waves Fr and Gr and
primitive variables p 0 and u 0. Below the cut-off frequency of the
duct, and in the case of no mean flow, the acoustics can be
described as the superposition of the Riemann invariants defined
by Fr � 1∕2�p 0∕�ρc� � u 0� and Gr � 1∕2�p 0∕�ρc� − u 0�. In the
resonance tube, a standing wave is developed with a fluctuating
pressure at the position x,

p 0�x� � ρc�Fr�x� �Gr�x�� (13)

In the experimental setup, the reference microphone was
mounted at a distance of lref � 0.0497 m away from the resonator
front face. This is selected as the reference position xref for the SPL.
Moreover, the reflection coefficient R � Gr∕Fr depends on both
frequency and amplitude. The reflected wave at the reference
position is thus Gr�xref� � R�ω; SPL� exp�−jω2lref∕c�Fr�xref�.
Accordingly, the fluctuating pressure at position xref is given as
p 0∕�ρc� � �1� R�ω; SPL� exp�−jω2lref∕c��Fr�xref�. Considering
the ratio of rms values to harmonic amplitude being 1∕

���

2
p

, the
amplitude Af of the incoming wave Fr � Af exp�jωt� is given as

Af� 10SPL∕20
���

2
p

pa

j1� R�ω; SPL� exp�−jω2lref∕c�jρc
(14)

wherepa � 20 μPa is the commonly used reference sound pressure
in air.
The fluctuating velocity u 0 is given as the difference of the

Riemann invariants, i.e., u 0 � Fr −Gr. Thus, the amplitude of the
velocity Au at the resonator mouth position (at xo � −lo∕2 in this
work) can be calculated as

Au�xo��ω; SPL� � Af�ω; SPL�j1 − R�ω; SPL�j (15)

For the incompressible simulations, the inlet amplitude prescribed
at the inlet boundary is directly given by Eq. (15). For the
compressible simulations, in the case of the full resonator
configuration, the inlet boundary condition is Af given by Eq. (14).
Finally, exchanging the backing cavity with a nonreflecting outlet
(Z � ρc), the amplitude of the Fr wave has to be corrected. The
reflection coefficient of the corresponding orificeRo (i.e., open tube)
can be estimated as

Ro � zr − zbc

zr − zbc � 2
(16)

Thus, the amplitude of the i wave in the open-end tube
configuration Af;o should be set as

Af;o � Af

j1 − Rj
j1 − Roj

(17)

Table 1 lists the values of the different excitation amplitudes
needed to ensure the same state at the orifice neck for five frequencies
close to the resonator eigenfrequency and for the two investigated
SPLs. As the primitive variables and Riemann variables are linked
through the reflection coefficient, values of velocity at the orifice
coming from the compressible simulations are still slightly different,
but these deviations have been judged to have only a small impact on

the estimated impedancevalues.Note that in the linear regime (here at
89.3 dB), even if specific values are given in Table 1, computations
give the same impedance values taking different inlet velocity
amplitudes, as long as these prescribed excitation amplitudes are
small enough to remain in the linear regime of the resonator.

III. Results Obtained for Small Excitation Amplitudes:
Linear Regime

For harmonic pulsating flows at the orifice, the impedance value
for each excitation frequency is computed by dividing the Fourier
coefficients of the fluctuating pressure loss through the orifice Δp̂ 0

with the velocity perturbation û 0. Each frequency requires therefore
one CFD simulation. The harmonic fluctuating inlet velocity is given
for a given angular frequency ω by

u 0�t� � Au sin�ωt� (18)

where the amplitude of inlet velocity Au is defined as described in
Sec. II.D.

A. Resonator Impedance in Linear Regime

Figure 4 shows the obtained normalized surface impedance curves
for the case SPL � 89.3 dB over the frequency range [100–700 Hz]
compared to the experimental data and the values obtained from the
system identification of the complete three-dimensional resonator
model with the compressible solver. Impedance values are
normalized by the characteristic isentropic impedance Z0 � ρc.
For each simulation set, it is verified that the impedance values are
independent of the measurement sections selected for determining
the pressure loss.
All results show a fair agreement around the Helmholtz resonance

frequency fH;lin � 372 Hz in the linear regime. The reactance
Im�zr� matches well with the experimental data over the entire
frequency range. However, one can see that the discrepancies
increase slightly with increasing frequency. The incompressible
harmonic results lead to a better reactance prediction than the
compressible solver far from the resonator eigenfrequency. The same
observation can be made on the resistance Re�zr�. Notice also that
both experimental and compressible values present a large error far
from the resonance frequency as the impedance values are obtained
using the reflection coefficientRexp orRnum, so that even a small error
on the reflection coefficient gives a larger uncertainty on the
impedance in such a condition. This comes from the fact that the
transformation from Rexp ∕num to Re�zr� is ill conditioned away from
the eigenfrequency in the case of the complete Helmholtz resonator,
as the magnitude of the reflection coefficient is close to unity at these
frequencies. The resistance obtained by incompressible simulations
seems a bit lower than experimental data, but the trend in frequency
(given by the slope) is well predicted.

B. Comparison of Two Approaches in Harmonic Case

The two approaches to extract Zo from the incompressible results,
as discussed in Sec. II.A, are investigated here in the case of the linear
regime with harmonically excited resonator. The difference in
concept between those approaches lies in the correction of the

Table 1 Example of inlet excitation amplitudes for Fr and u 0 at two
different SPLs

Frequency, Hz 340 360 380 400 420

SPL � 89.3 dB
Af , m∕s 0.0020 0.0033 0.0019 0.0013 0.0011
Au, m∕s 0.0021 0.0043 0.0024 0.0014 0.0009
Af;o, m∕s 0.0076 0.0165 0.0097 0.0057 0.0041

SPL � 119.7 dB
Af , m∕s 0.0552 0.0601 0.0574 0.0490 0.0401
Au, m∕s 0.0411 0.0474 0.0471 0.0407 0.0295
Af;o, m∕s 0.1500 0.1823 0.1891 0.1693 0.130
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pressure losses in the duct segments: in the frequency domain
(approach 1) or in the time domain (approach 2). Figure 5 shows that
there is a good agreement between impedance values resulting from
both approaches. The reactance values in particular are very similar.
More discrepancies can be noticed on the resistive part of the
impedance with the difference between the approaches growing
when the frequency is increasing. It was observed that approach 2 is
more sensitive to the simulation parameters (time step, mesh
refinement, and dependency of the measurement section) than
approach 1, but both approaches converge to the same impedance
values. Approach 1 can therefore be favored for its robustness. Those
conclusions drawn for the linear regime with harmonic signal
excitation have been verified to be valid for the nonlinear regime and
for the linear regime with broadband excitation as well.

IV. Results Obtained for Higher Excitation Amplitudes

This section presents the results obtained for higher excitation
amplitudes, where flow separates at the edges of the orifice, i.e., in the
nonlinear resonator regime.

A. Resonator Impedance in Nonlinear Regime

Figure 6 presents the normalized impedance obtained at a SPL of
119.7 dB from the different numerical methods performed on the
investigated resonator geometry compared to the experimental data.
Three-dimensional simulations have been performed with a much

shorter computational domain with lsim∕dcav � 2. The three-

dimensional mesh consists of nearly 1.5 million cells. Impedance

results from different measurement sections have been shown to be

identical.
The main conclusion from this work is that the tested numerical

models, in spite of their differences in terms of physics and

methodology, are in very good agreement. Nevertheless, a systematic

overprediction of the resistance compared to experimental results can

been seen. The discrepancy is expected to be of physical nature, as

mesh/time-step influences have been discarded. The reason for this

discrepancy is still under investigation. The comparison of the results
for the whole resonator and the results obtained by simulating

separately the orifice and the back cavity shows overall that the

combined model gives very satisfying results and that this model is

still valid for this range of moderately high sound amplitudes. Some

small differences between the two- and three-dimensional models
can be observed, but the overall impact of three-dimensional effects is

rather small, although it clearly increases with increasing velocity at

the orifice. The flow visualization (not shown here) suggests that the

eddies dissipate in an asymmetrical manner but that this asymmetry

does not influence the separation process itself. Thus, the three-
dimensional effects are not important from an acoustical point of

view for the considered SPLs. For the reactance, numerical and

experimental data are very similar, with a very good match of all

numerical results. In detail, it seems, however, that the numerical

approaches underpredict to some very small extent the reactance,

Fig. 4 Normalized resistance Re�zr� (left) and reactance Im�zr� (right) of the Helmholtz resonator, obtained with the methodology based on
incompressible simulations, compared to experimental data and broadband compressible numerical results (case SPL � 89.7 dB): ( ) two-dimensional
incompressible, ( ) three-dimensional compressible with broadband excitation, and (-×-) experimental data.

Fig. 5 Normalized resistanceRe�zr� (left) and reactance Im�zr� (right) of the Helmholtz resonator evaluated from incompressible simulations with the
approaches 1 and 2: ( ) approach 1, ( ) approach 2, and (-×-) experimental results.
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giving a slightly higher resonance frequency. When compared to the

previous linear regime case, one can note that the reactance is only in

a minor way affected by variation of the excitation amplitude.

Complementary computations have been run for a different

Helmholtz resonator geometry, based on the case studied by Hersh

et al. [14] (see Fig. 12a in the referredwork), to see if the overprediction

in resistance is also present. For this second resonator geometry,

the dimensions of the acoustic resonator are lo � 1.59 mm,

do � 6.35 mm, lcav � 25.4 mm, and dcav � 50.8 mm. Figure 7

shows the comparison of the numerical results from both

incompressible and compressible numerical approaches to the

experimental data of the literature. The general trends for both resistive

and reactive parts with respect to increasing excitation amplitudes are

correctly captured by the numerical methods. A good quantitative

agreement is also obtained. A shift in the resonance frequency can be

clearly observed in Fig. 7, with a growing deviation from its value in

the linear regime fH;lin toward higher frequencies for increasing SPLs.

This shift occurs due to a decrease of the reactance for increasing

excitation amplitudes, which is related to a reduction of the effective

length by vortex shedding [15]. Since the neck geometric length is

smaller in this case than for the first resonator configuration

investigated, this effect is much more visible here. The present cases

correspond to high Strouhal numbers Sh ≫ 1, with Sh ∈ �25–60�,
where Sh � do

������������������

ωρ∕�4μ�
p

is the ratio of the Stokes layer thickness to

the orifice diameter. The physical interpretation of the nonlinear

impedance at such high Shear number values was shown [15] to be

more complicated than at smaller Sh, due to complex vortex shedding
effects, and requires further investigation. The resistance over-
prediction from the numerical methods seems to be still present in this
case, even if significantly less pronounced.

B. Effects of Rounded Edges

One possible reason for the systematic difference between
experimental and numerical impedance results has been thought to
originate from the existence of some rounding of the edges for the
experimental Helmholtz resonator test sample. It was already shown
in previous works [9,16] that the presence of chamfers strongly
changes the structures of the produced vortices and the resistance at
moderate and high excitation amplitudes. In the present study, the
size of the considered chamfers is much smaller so that one can speak
about microchamfers or microrounded edges. These microrounded
edges are investigated as representing more realistic edges, similarly
to the ones expected from manufacturing processes.
Figure 8 shows the impact of microrounded edges on the

impedance for both linear and nonlinear regimes. In the linear regime,
the microrounded edges affect neither the determined resistance nor
reactance. This is expected as the volume of the orifice is not
considerably modified by the microchamfering and therefore the
reactance, related to the inertial effects, is not altered. The
geometrical modification at the orifice edges does not influence the
flowpath, producing no change for the pressure drop and therefore no
change in the resistance, either. In the nonlinear regime, one can

Fig. 6 Comparison of numerical results from the different solvers with experimental data for the case at 119.7 dB: (-×-) experimental results [9], ( ) two-

dimensional incompressible decomposed model, ( ) two-dimensional compressible decomposed model, ( ) two-dimensional full resonator, ( ) three-
dimensional incompressible decomposed model, ( ) three-dimensional compressible decomposed model, and ( ) three-dimensional full resonator.

Fig. 7 Normalized resistanceRe�zr� (left) and reactance Im�zr� (right) for theHershHelmholtz resonator configuration at three SPLs ( ) 120 dB, ( )
130 dB, and ( ) 140 dB, obtained from the ( ) incompressible method, ( ) compressible method, and ( ) experimental data from Hersh [14].
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observe from Fig. 8 that even small microrounded edges can affect
significantly the predicted resistance values. Results for two different
rounded edge radii are shown, Rf � 40 μm and Rf � 80 μm,
respectively. These radii represent 1 and 2% of the orifice thickness.
From those observations, accounting for rounded edges tends to
decrease the resistance, delivering a better agreement with the
experimental results. After consideration of the rounded edge radius
for the actual test sample, which is found to be close to 80 μm, the
extent of this change for the present case seems, however, to not fully
explain the observed discrepancies in resistance between the
numerical and experimental approaches. A rounded edge radius lager
than 120 μmwould indeed be required in the simulations to equal the
experimental resonance peak in resistance. No impact on the
reactance can be noticed. Additional flow computations have shown
that the impact of rounded edges on the impedance is captured in a
similar manner for both compressible and incompressible cases, for
both rounded edges and straight chamfer situations. The actual
microscale geometry does not change the results significantly.

V. Conclusions

Amethod to numerically characterize the aeroacoustic behavior of
Helmholtz resonators without mean flow has been investigated. Both
linear and nonlinear regimes have been studied.Aprocedure to assess
the present methodology, by ensuring the same velocities in the
orifice as in compressible flow simulations and experiments, is
described in this paper. The impedance values obtained with the
incompressible computational fluid dynamics (CFD) simulation of
the orifice combined with an analytical backing volume model are in
good agreement with results from a compressible simulation of a
complete resonator. The numerical results for the resistance in the
nonlinear regime show a systematic overprediction with respect to
experimental data. The impact of microrounded edges on the
estimated impedance has been investigated. Even if the presence of
microrounded edges was deemed insufficient to explain alone the

discrepancies, such geometrical details were found to affect
significantly the computed resonator resistance and should therefore
be included for accurate predictions of the acoustic behavior of
Helmholtz resonators in their nonlinear regime.
The presented approach has shown, nevertheless, to give satisfying

results for the acoustic impedance of Helmholtz resonators. It is an
alternative for the study of the nonlinear regime of such acoustic
damping systems. The proposed methodology can be applied for the
study of both linear and nonlinear regimes of theHelmholtz resonator
with commercial CFD software with moderate computational costs.
One of the most significant advantages of this methodology is that it
does not rely on the reflection coefficient to estimate the impedance
(as in experiments or compressible simulations) and instead the
impedance is directly computed from the pressure and velocity.
Impedance curves are therefore valid on a broader frequency range
than just around the resonator resonance frequency. This approach
can be extended to the study of an orificewith bias or grazing flow in a
straightforward manner following previous works [2,4,6]. In the
no-mean-flow case, two possible approaches in the postprocessing of
the orifice transfer impedance have been studied. The difference in
concept between those approaches lies in the correction of the
pressure losses in the duct segments: in the frequency domain
(approach 1) or in the time domain (approach 2). A general
conclusion is that both approaches investigated in this work lead to
similar impedance prediction, but approach 1 has been shown to be
more robust. Finally, the possible impact of three-dimensional effects
on the impedance results presented in this work has been investigated
and judged minor for the applied conditions.
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This study investigates the effect of edge profile of a Helmholtz resonator neck in non-linear

regime by means of experiments and large eddy simulations. The dissipation mechanisms in a

Helmholtz resonator differ significantly, depending on the sound pressure level. At low levels,

i. e., in the linear regime, thermo-viscous effects are responsible for the dissipation of the acous-

tic energy since the oscillating flow follows the neck geometry. However, increasing the sound

pressure level results in flow separation at the edges. At these points, vortices form which con-

vert acoustic perturbation energy to the hydrodynamic mode. This is a strong non-linear effect

increasing the dissipation considerably. To observe this effect, experiments and numerical simu-

lations are carried out for combinations of various backing volumes, sound pressure levels, and

neck profiles. The neck profiles are selected as 45◦–chamfers due to manufacturing concerns.

Hereby, a strong dependence on the edge shape is observed in both experiments and numerical

simulations. The presence of the chamfer reduces the vortex shedding in comparison to the sharp

edge significantly, which leads to a lower acoustic resistance.

1. Introduction

Helmholtz resonators are passive sound absorbers having a wide range of application areas from

ancient Greek theaters [1] to aerospace industry [2]. These resonators are named after the first scientist

to analyze them theoretically: Hermann von Helmholtz [3].

A Helmholtz resonator is a combination of an air backing volume and an opening, which is referred

to as the neck of the resonator. When excited by a pressure perturbation, the air volume acts as a

spring due to its compressibility and causes oscillation of the air in the neck. This spring-mass model

is introduced by Rayleigh [4] simplifying Helmholtz’s pioneer work. Later, Ingard and Labate [5]

observed that there are two main dissipation mechanisms in the Helmholtz resonators. The first is due

to thermo-viscous boundary layers, which is linear; and the other one is due to vortex shedding, which

is non-linear. This non-linear dissipation effect is addressed by Ingard and Ising [6]. They considered

the neck separately, performed pressure as well as particle velocity measurements, and observed that

this non-linear mechanism causes a decrease in the reactance of the oscillating air within the neck.
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(a) Helmholtz resonator. (b) Close-up resonator neck.

Figure 1: Sketch of the Helmholtz resonator geometry.

In 1979, Hersh et al. [1] derived non-linear differential equations to model the non-linear response

of the Helmholtz resonators. Yet none of the studies mentioned so far focuses on the effect of the

edge profile of the neck on the non-linearity of the resonator. In similar configurations, a huge impact

of the edge geometry was observed, see, e. g., the study for a resonance tube by Disselhorst and van

Wijngaarden [7].

In this study, three different neck samples are used. One of these samples has the sharp and other

two have the 45◦-chamfered edge profile in combination with different chamfer lengths. The purpose

of the study is to understand the effect of edge profile of the neck on the non-linear response of the

Helmholtz resonator. To achieve this purpose, large eddy simulations (LES) and impedance tube

measurements are carried out. The geometry of the Helmholtz resonator domain is sketched in Fig. 1.

2. Modeling of Helmholtz Resonators

The dynamic behavior of the Helmholtz resonator is commonly described in frequency domain

with its surface impedance Zs. The impedance is defined as the ratio of the Fourier transforms of the

fluctuating pressure p̂
′

to the fluctuating velocity û
′

, i. e., Zs(ω) = p̂
′

(ω)/û
′

(ω). Thus, the impedance

Zs can be seen as transfer function from u
′

to p
′

. The real part of the impedance is referred to as

the so-called resistance and the imaginary as reactance. Such a description in frequency domain is

actually only valid for linear transfer functions. The non-linear dynamic response of resonators is

commonly given by describing functions. That means that the impedance is defined depending on

the amplitude. This approach neglects higher harmonics. Nevertheless, it reflects the major dynamics

well. As mentioned above, the behavior of the resonator is often described as mass-spring-damper

system and reads as

(1) Zs(ω) = Rl + Rnl + i(mω −K/ω) .

Here, the term m accounts for the mass in the neck taking part in the oscillation and K for the

compressibility of the backing volume. The variable Rl denotes the linear resistance reflecting for

the thermo-viscous losses due to friction at the walls of the neck. If the amplitudes are large enough,

the flow separates at the edges transforming additional energy to the hydrodynamic mode from the

acoustic mode, which is irrotational by definition. This is a non-linear mechanism depending on the

current amplitude and is captured by the term Rnl. All terms in Eq. (1) are determined by analytical

models but they also contain some empirical correlation values. According to Keller and Zauner [8]

and Garrison et al. [9], they are approximately given as

(2) m = (1 + s) leρ̄, K =
Aρ̄c2

V
, Rl = sρ̄(l0 + ls)ω, and Rnl = ϵnlsρ̄ d0ω,

where the mean pressure, density, and speed of sound are denoted by p̄, ρ̄, and c, respectively. The

geometry is described by the backing volume V as well as by the neck area A, and length l0. The
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boundary layer effects are included in the parameter s1. The effective mass oscillating around the

neck is determined by adding a correction to the neck length. Similarly for the viscous losses, l0 is

extended by ls. The non-linear losses are captured by the non-linear correlation factor ϵnl. The angular

eigenfrequency of the resonator is given as the ratio of m to K, thus ωeig = c
√

A/(V (1 + s) le). In

the following, the impedance Zs is normalized by the free impedance ρ̄c, i. e., Z = Zs/(ρ̄c).
In the resonance tube located in front of the resonator, the acoustic field can be described by

the Riemann invariants defined as f = 1/2(p
′

/(ρ̄c) + u
′

) and g = 1/2(p
′

/(ρ̄c) − u
′

) and depicted

in Fig 1. In terms of these quantities, the impact of the Helmholtz resonator is determined by the

reflection coefficient R = g/f . The relation between this coefficient R and the normalized impedance

Z is given by Z = (1 +R)/(1−R).

3. Setup

Several test cases are investigated both numerically and experimentally. These cases consist of

combinations of three different neck profiles and two different backing volume lengths lcav in a res-

onance tube with diameter dcav. The considered necks have the same length l0 and diameter d0 but

differ in their edge profiles. One of the necks has a sharp edge (lc = 0) where the other two have 45◦–

chamfers with different sizes lc. The geometrical specifications are given in Tab. 1. The reflection

behavior of these test cases is studied for various SPLs, in particular for 89.3, 115.6, and 119.7 dB.

Table 1: Geometric properties (in mm).

Considered chamfer lengths Volume lengths Common parts

lc lc lc lcav lcav l0 d0 dcav
0 0.35 1.0 10 20 4.0 4.2 50

3.1 Experimental Setup

The experiments have been carried out with an impedance tube in an semi-anechoic chamber.

The tube has six BSWA MPA416 microphones with the average sensitivity of 50.45 mV/Pa. They are

equally distributed along the 1-m long tube and the distances between two successive microphones are

175 mm. The microphones are relatively calibrated to carry out reflection coefficient measurements

from 100 Hz to 700 Hz. The inner diameter of the tube, dcav, is 50 mm.

The data acquisition and signal processing is done by a combination of NI PCIe-6361 X-Series

DAQ card and LabView R⃝. One analogue output channel for the loudspeaker and six analogue input

channels for microphones are used. The sampling rate for generated signal is 20 kHz while it is

10 kHz for recording. The closest microphone to the tube termination is selected as the reference

input. The LabView R⃝ script regulates the excitation amplitude of the loudspeaker for each frequency

step. Doing so, it is possible to have the same – or very close – SPLs throughout the entire frequency

span. It is important to note here that this reference microphone is placed 49.7 mm away from the

tube termination. Accordingly, the SPLs are calculated at this position. The reference position would

ideally be located at the resonator mouth, but due to physical constraints, placing a microphone at that

position was not possible in this setup.

Some precautions are taken to minimize the measurements errors. First, the recorded data from the

microphones are processed using a lock-in method instead of using FFT. Secondly, the visco-thermal

effects in the tube are included [10] and implemented in the wave decomposition [11]. Finally, instead

1s = (1 + (κ − 1)/
√
Pr)

√

2ν/ω /d0, where the variables Pr, κ, and ν denote the Prandl number, the heat capacity

ratio, and the kinematic viscosity, respectively.
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of assuming a value for the speed of sound, it is treated as an extra unknown in the over-determined

set of equations [12]. With all these specifications and precautions, the deviation from the theoretical

closed-end reflection coefficient value is less than 0.5 % in the frequency of interest.

3.2 Numerical Setup

The compressible Navier-Stokes equations with k-equation eddy-viscosity subgrid-scale model

are solved in 3D using the Pimple algorithm of OpenFOAM [13]. The tolerance for stop criterion

for outer iteration loops accounting for compressible pressure-velocity coupling are set low – i. e.,

accurate – enough to resolve the acoustic field in details. Here, a threshold for the pressure residual

of 10−5 was applied.The time step size ∆t is adjusted such that the acoustic CFL number c∆t/∆x is

clearly below unity in the main parts. Only close to the walls, this number can be slightly larger, but

the acoustic behavior is still resolved accurately in those regions due to implicit time integration.

The geometrical dimensions of the neck configurations and of the backing volumes are set in

analogy to the experimental setup properties summarized in Tab. 1. At the corresponding boundaries,

the no-slip condition is utilized. The slip condition is used at the cylindrical wall of the impedance

tube which does not belong to the resonator itself. For each geometry investigated, a structured o-

grid mesh with at least 0.8 million cells is set up. Hereby especially, the boundary layer, whose

thickness can a priori be estimated by the Stokes length δs = 2π
√

2ν/ω, must be resolved well for

the frequencies of interest. In the linear regime, grid independence studies and validation have proved

the appropriateness of such a setting, see [14].

At the distance lsim = 10 cm, the inlet patch is located, where the Navier-Stokes characteristics

boundary condition (NSCBC), c. f. [15], is applied. This boundary condition ensures a low acoustic

reflection of the outgoing g wave. Simultaneously, an input signal can be imposed for the incoming

f wave. At this inlet plane, the fluctuating pressure p
′

and velocity u
′

are measured. From these

quantities, the time series of the Riemann invariants f and g can be computed directly. For that

purpose, the distance lsim is chosen large enough such that non-acoustic disturbances as the vortices

present in the vicinity of the neck do not influence the measurement.

The reflection coefficient is estimated from the measured input f and output g time series. First,

these time series are shifted with respect to each other to account for the time it takes to travel from

the reference plane to the resonator and back. Then for the identification, two approaches are applied

depending of the present regime. In the linear regime corresponding to a low SPL as 89.3 dB, linear

system identification techniques are used. Here, the domain is excited with a well-designed broad-

band signal. From the response, a second order Output-Error model is estimated, valid for the whole

frequency range of interest [14]. In the non-linear regime with higher amplitudes, harmonic simu-

lations are performed with several angular frequencies ωm. For the determination of the numerical

Rnum(ωm) = fft(g)(ωm)/fft(f)(ωm), the signals are additionally truncated to get rid of the transient

starting behavior and to have a signal length of a multiple of the period 1/(2π ωm). The amplitude of

the input signal f is calculated according to the the experimental data.

4. Results

Gain and phase of the reflection coefficient are presented for the SPLs investigated for all cases

with lcav = 20mm in Fig. 2. The reflection coefficient is transformed to the normalized surface

impedance Z, using the relation Z = (1+R)/(1−R) and plotted in Fig. 3. Due to lack of space, only

the results for the backing volume with 20 mm length are shown in the present paper. The following

discussions and findings are equally supported by the other cases with 10 mm backing volume length.

For all geometries, experiment and simulation agree very well in the linear regime. The evaluation

of the 89.3 dB simulations confirms that the flow does not separate at the edges. That means that the

Stokes boundary layer is resolved sufficiently in the simulations to capture the thermo-viscous dissi-

pation taking place in that region. In the non-linear regime, the agreement is only of qualitative, but
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Figure 2: Reflection coefficient in gain and phase representation for all configurations with lcav =
20mm. "— •—": measurement results; "—": linear SI results; and "◦": harmonic simulation results.

The colors correspond to different SPLs as indicated by the legends in the subfigures.
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figurations with lcav = 20mm. "— •—": measurement results; "—": linear SI results; and "◦":

harmonic simulation results. The colors correspond to different SPLs as indicated by the legends in

the subfigures.
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(a) Sharp edge. (b) With 1 mm-chamfer.

Figure 4: Snapshots of the velocity field (white arrows) in the neck during the outflow with 119.7 dB.

not of quantitative nature. The reactance ℑ(Z) curves still match for all cases and amplitudes in that

regime. But, the non-linear resistance is systematically over-predicted by the numerical simulations

for all cases. The reason for this over-prediction is topic of ongoing research. The grid dependency as

well as the influence of the sub-grid scale modeling have to be studied in more detail. Another reason

might be that the edges are perfectly sharp in the simulation, whereas they are not in reality. Never-

theless, the simulations provide a detailed view on the flow present in the resonator. The following

statements are confirmed by both experiment and simulation in the same manner.

First, the influence of the edge geometry on the eigenfrequency is discussed. This is a linear effect

and, thus, independent on the current SPL. Only for very high amplitudes beyond the SPL considered

in this study, the eigenfrequency is nominally influenced by the amplitude, see for instance [1]. The

eigenfrequency can be detected by the minimal gain of the reflection coefficient. The corresponding

phase is either −π in the non-over-damped case or 0 in the over-damped case. Moreover, the reactance

ℑ(Z) vanishes at the eigenfrequency. With these criteria, a shift of the eigenfrequency towards higher

frequencies with increasing the chamfer size can be observed. In the specific case of 20 mm cavity

length, the eigenfrequency rises from around 375 Hz without a chamfer, to approximately 385 Hz

and 410 Hz with the 0.35 mm and 1 mm-chamfer, respectively. This shift can be explained by a

reduction of the effective length with increasing the chamfer length. For the three cases, the resulting

effective length are 7.19 mm, 6.82 mm, and 6.02 mm, respectively. The detected effective length of

the unchamfered case go in line with the correlation by Ingard [16]. He suggested for large aspect

ratios (d0/
3
√
V ≪ 1) an end correction of 8/(3π)d0, which would lead to an effective length of

7.56 mm. The observed reduction of the effective length with non-sharp edges has already been seen

by other authors, see, e. g. [8]. In the analogy of the mass-spring-damper system discussed in Sec. 2,

this means that less mass in the neck is taking in the oscillation with increasing the chamfer size.

Moreover, a reduction of the non-linear resistance can be observed in the presence of a chamfer.

As discussed in Sec. 2, the non-linear resistance results from the flow separation the resonator edges.

Two velocity field snapshots during the outflow for a sharp and a 1-mm-chamfered edge case with

119.7 dB excitation are presented in Fig. 4. In the sharp edge case visualized in Fig. 4(a), it can

be observed that the flow separates at both the inner and the outer edge. Two large recirculation

zones are temporally formed downstream of the respective edge. One of these zones is located in

front of the resonator mouth and the other in the neck. Chamfering the sharp edges produces four

obtuse edges that cause the flow to separate with smaller recirculation zones; see Fig. 4(b). The

observed contraction of the stream motivates a comparison with the quasi-static theory including the

vena contracta effect. The vena contracta for large amplitudes for sharp edges is about 0.70 while

it is 0.95 for chamfered edges [17]. Since the non-linear losses scale approximately linear with the

square of the jet velocity, the non-linear residence is inversely proportional to the square of the vena

contracta factor. This explains the observed difference in the non-linear residence for high amplitudes

by a factor of around two, see Fig. 3 and discussion below.
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In the non-linear regime, increasing the amplitude always promotes the separation and, thus, leads

to higher non-linear losses. This results in larger resistance values for higher excitation amplitudes in

all cases, see Fig. 3. If the resonator is normally damped, the normalized acoustic resistance ℜ(Z)
is below unity – the optimal resistance value for normal incident acoustic waves, i. e., ℜ(Z) < 1. In

that case, the increase of the acoustic resistance leads to a lower gain of the reflection coefficient, as

it can be seen in the right columns of Figs. 2 and 3. This lower gain means that a higher proportion

of the acoustic energy is dissipated. The situation changes in the over-damped case where ℜ(Z) > 1
(c. f. left column in Figs. 2 and 3): Here, the additional non-linear resistance leads to a decrease in

absorption. The normal and over-damped cases can also be distinguished by the examination the

phase curve of the reflection coefficient 6 R. These phase angles differ from each other close to the

eigenfrequency. In the over-damped case, it is 0 whereas it is −π in the normal damped case. In both

cases, the waves f and g are in phase – i. e., 6 R = 0 mod 2π – away from the eigenfrequency.

With the 1 mm-chamfer, none of the investigated SPLs lead to an over-damped behavior, whereas

both non-linear cases are in the over-damped region for the sharp edge geometry. Notice that not only

the non-linear but also the linear resistance varies with the edge profile. For instance, linear resistance

decreases by 11% and 22% for the cases of 0.35 mm and 1.0 mm–chamfers, respectively. This shows

that increasing the chamfer size reduces the thermo-viscous effect around the neck. Yet the impact

on the resistance becomes more striking in the non-linear regime caused by a reduction of shedding.

With the 0.35 mm-chamfer, the non-linear resistance is reduced by approximately 47 % and 55 % for

the 115.3 dB and 119.7 dB case, respectively. A reduction of 57 % and 70 % is measured with the

1 mm-chamfer. The stated values correspond to experimental data. The magnitudes are similar for

the simulation. Mainly, the presence of a chamfer reduces the non-linear losses significantly. The

actual length of the chamfer also influences this reduction but in a minor manner. Moreover, it can be

be observed that the relative reduction is larger for higher SPL. This fits well to the above discussed

flow properties: the strong separation with its large recirculation zones causes the high non-linear

acoustic absorption in the sharp edge case. Much less energy is taken from the acoustics by the four

separation areas with little recirculation in the chamfered case. The separation process itself is mainly

determined by the sharpness of the edge.

5. Conclusion and Outlook

The influence of the edge shape of a Helmholtz resonator has been investigated by means of

both experiments and LES simulations. To study this influence, various combinations of necks with

different chamfer sizes and backing volumes have been considered. By variation of the SPL, the

linear regime, where thermo-viscous losses are dominant, as well as the non-linear regime, where

vortex shedding leads to additional losses, have been included.

In the linear regime, the results obtained from both methods match very well. The results agree

qualitatively in the non-linear regime as well, even though the absolute values slightly disagree. The

simulations overpredict the non-linear resistance. The reason for this disagreement is topic of ongoing

research. Nevertheless, the following statements are supported equally by both the experimental and

numerical investigations.

By increasing the chamfer size, a shift towards higher eigenfrequency frequencies has been ob-

served. This shift occurs due to the fact that the oscillating mass in the neck is reduced, i. e., the

effective length is shortened. This reduction is in good agreement with other correlation available in

the literature.

Another important observation is that a chamfered edge profile reduces the vortex shedding in

the resonator neck significantly. Depending on the SPL, the chamfered edge profile reduces the non-

linear resistance about the half of its value compared to the sharp edge case. This reduction is mainly

due to presence of the chamfer, but depends only weakly on its length. To the authors’ knowledge,

this is the first time that this effect has been quantified for the Helmholtz resonator.
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The nonlinear response of acoustic resonators is investigated over a broad range of frequencies and amplitudes.

Helmholtz resonators with a symmetric neck and an asymmetric neck, respectively, as well as quarter-wave

resonators are considered. Describing functions for impedance and the reflection coefficient of aHelmholtz resonator

at various sound pressure levels are determined from compressible flow simulation and validated against

experimental data. The particular focus of the present study is the nonlinear scattering to higher harmonics. For the

Helmholtz resonator with a symmetric neck, a distinct pattern in the amplitudes of the higher harmonics is observed,

where the odd harmonics dominate the response, whereas the even harmonics are almost negligible. Such an “odd-

harmonics-only” pattern, which was observed previously in an experiment at the orifices, is explained by a quasi-

steady analysis based on the Bernoulli equation, assuming a symmetric flow pattern at the neck. For the Helmholtz

resonator with an asymmetric neck, it is observed in computational fluid dynamics simulations that even harmonics

contribute noticeably to the resonator response, such that the odd-harmonics-only pattern is less pronounced. For the

markedly asymmetric geometry of the quarter-wave resonator, the second harmonic is dominant and the odd-

harmonics-only pattern vanishes completely. The quasi-steady analysis is extended successfully to also describe

nonlinear scattering to higher harmonics for asymmetric configurations and flow patterns. Overall, the scattering to

higher harmonics remains on a moderate level, even at very high excitation levels for the Helmholtz resonator

configurations. For the quarter-wave resonator, the scattering ismore pronounced and contributes perceptibly to the

response at high excitation amplitudes.

Nomenclature

Af, Au = input amplitudes, m/s
A0 = cross-section area of the orifice, m2

Cd = contraction factor
c0 = speed of sound, m/s
dcav = backcavity diameter, m
d0 = neck diameter and quarter-wave resonator diameter, m
f, g = Riemann invariants, m/s
lc = reference length defined in Eq. (4), m
lcav = backcavity length, m
lch = chamfer length, m
le = effective length, m
l0 = neck thickness and quarter-wave resonator length, m
i = imaginary unit

������
−1

p

p = pressure, Pa
pc = reference pressure defined in Eq. (3), Pa
pref = reference pressure for the calculation of the sound

pressure level; 20 μPa

prms = root mean square of the overall pressure, Pa
R = reflection coefficient
t = time, s
tc = reference time defined in Eq. (3), s
u 0
0 = fluctuating velocity in the neck, m/s

u 0 = fluctuating velocity in the resonator tube, m/s
Z, z = acoustic impedance (nonnormalized and normalized),

Nsm−3

Δp = pressure loss, Pa
ρ0 = density, kg∕m3

σ = open area ratio
ϕ = acoustic velocity potential, m2∕s
ωeig = resonator angular eigenfrequency, rad/s
ω0 = fundamental angular frequency, rad/s

Superscripts

AJ = quantity corresponding to the area jump
HR = quantity corresponding to the Helmholtz resonator
QW = quantity corresponding to the quarter-wave resonator
^ = Fourier transformed variable
∼ = nondimensional quantity
′ = acoustic fluctuating part of the variable

I. Introduction

ACOUSTIC resonators are used in various industrial applications
to reduce sound emission [1] or to avoid thermoacoustic

instabilities [2,3]. Two basic types of such resonators are the
Helmholtz and the quarter-wave resonators [4], which are sketched
in Fig. 1.
The scattering behavior of such resonators is investigated in this

study under ambient conditions withoutmean flow.During operation
in industrial applications, the scattering behavior of resonators can be
strongly influenced by the working conditions. Some of these
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influencing effects are listed here. In most applications, a grazing
flow over the resonators is present. This can cause a shift in the
resonator eigenfrequency and has an impact on the resistance. This
has been studied, e.g., experimentally by Jones et al. [5] and
numerically by Zhang and Bodony [6]. Especially in gas turbines,
resonators are often purged to guard them from the hot gas in the
combustion chamber and to guarantee constant working conditions.
Moreover, this increases the acoustic losses significantly; see, for
instance, thework of Eldredge and Dowling [7], Bellucci et al. [8], or
Scarpato et al. [9].When the amplitude of the acoustic excitation rises
and the purging flow rate is too low, hot gas can penetrate the
resonator opening. This can detune the resonator and should thus be
avoided; see, e.g., the studies byĆosić et al. [10] and Rupp et al. [11].
The present study will be based on two approaches: computational

fluid dynamics (CFD) and one-dimensional (1-D) quasi-steady
analysis. CFD simulationswere performed byTamet al. [12–14]. In a
series of papers [12–14], they studied slit and Helmholtz resonators
using direct numerical simulation (DNS) techniques: first, in a two-
dimensional (2-D) setup; and later, in a 3-D configuration. The DNS
approach was also pursued by Zhang and Bodony, who studied the
influence of laminar and turbulent grazing flows [6,15] and the
interaction between neighboring cavity openings [16]. Mendez and
Eldredge [17] determined the influence of purging flow via large-
eddy simulations (LESs). The LES approach is also followed in the
present study. Moreover, the linearized Navier–Stokes equations can
be used to investigate the linear response of a resonator, as was done
by Tournadre et al. [18] for the investigation of temperature effects.
An alternative approach to those explicitly solving theNavier–Stokes
equations is theLatticeBoltzmannmethod,which is based on particle
collisionmodels and promises a low numerical cost; see, for instance,
thework of Ji and Zhao [19]. Another alternative is to characterize an
orifice (corresponding to the resonator neck) by incompressible
simulations and add the contribution of the compressible backing
volume analytically [20].
On the side of the analytical modeling of Helmholtz resonators, a

1-D semiempirical quasi-steady approach is followed in the present
study, as is often done in the literature. The idea of this ansatz is to
analyze the Helmholtz resonator decomposed in an acoustically
compact orifice and a compressible backing volume. The motion of
the fluid in the neck can then be described by a 1-D quasi-steady
equation containing semiempirical correlations; see the studies by
Ingard [21], Ingard and Ising [22], Melling [23], Cummings [24],
Hersh et al. [25], as well as Singh and Rienstra [26].
Physically, resonators dissipate acoustic energy due to the

thermoviscous losses at thewalls. It is well known that, for sufficiently
high excitation amplitudes, additional acoustic energy is absorbed due
to flow separation at the resonator edges. Flow separation processes are
very sensitive to the edge shape. The edge shape impact was
investigated for open-end pipes by Disselhorst and Wijngaarden [27],
as well as Atig et al. [28]. Temiz et al. [29] investigated this effect for
orifice configurations. Its influence on the resonator impedance was
evaluated by Laudien et al. [30] and Förner et al. [31].
The acoustic dissipation by flow separation is a nonlinear

phenomena. Its nonlinear behavior can be detected by two aspects for

a harmonic excitation: On the one hand, the amplitude and phase of
the reflected wave at the frequency of excitation may depend on the
amplitude of the excitation. This behavior can be described in terms
of describing functions for the resonator impedance or its reflection
coefficient; see, for instance, the work of Hersh et al. [25] and Singh
and Rienstra [26], or the Appendix of the present paper. On the other
hand, scattering of acoustic energy to other frequenciesmay occur. To
the authors’ knowledge, this has not yet been studied in detail for
resonators. The scattering to higher harmonics at an orifice, which is
closely related to the Helmholtz resonator, was studied
experimentally and analytically by Ingard and Ising [22,32] as well
as Cummings [24]. An odd-harmonics-only (OHO) pattern in the
higher harmonics was observed, where only the odd harmonics are
present in the response. This observation could be explained by a
quasi-steady analysis based on the Bernoulli equation.
The present study investigates the nonlinear acoustic scattering of

both Helmholtz and quarter-wave resonator designs by means of
CFD simulations. The appearance of the OHO pattern is found to
depend on the symmetry of the configuration under study. The quasi-
steady theory for scattering to higher harmonics at symmetric orifices
[24,32] is extended to also describe asymmetric configurations and
flow conditions, such that it can be applied to Helmholtz resonators
with an asymmetric neck or quarter-wave resonators.
The paper is organized as follows: The approaches to describe the

resonator response restricted to the fundamental frequency are
presented in Sec. II. The quasi-steady theory from the literature is also
introduced in this section. In Sec. III, this theory is applied and
extended for the considered cases and the scattering behavior is
evaluated. Section IV presents the scattering behavior observed in the
CFD simulations for both the Helmholtz and quarter-wave
resonators. The behavior is also compared to analytical prediction.
Finally, the findings are summarized in Sec. V.

II. Physical Background

In this section, the basic terminology to characterize acoustic
resonators is introduced. Moreover, a quasi-steady analysis based on
the incompressible Bernoulli equation is presented, which accounts
for nonlinearities of the pressure drop across the neck of a resonator.
Throughout the whole study, the geometrical quantities, shown in
Fig. 1, are denoted as follows: For the Helmholtz resonators, the
lengths and diameters of the neck and of the backing volume are
referred to as l0, d0, lcav, and dcav, respectively. The length and
diameter of the quarter-wave resonator are named as l0 and d0. The
open area ratio is denoted by σ.

A. Impedance and Reflection Coefficient Describing Functions

The behavior of an acoustic resonator is often described in the
frequency domain by its impedance Z. It is defined as the ratio of the
Fourier transforms (·̂) of the fluctuating acoustic pressure p 0 and
velocity u 0 normal to the reference surface:

Z�ω0� � z�ω�c0ρ0 �
p̂�ω0�
û�ω0�

(1)

a) Helmholtz resonator b) Quarter-wave resonator

Fig. 1 Sketch of both resonator types considered. Slip walls in the simulations are marked by dashed lines.
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Here,ω0 denotes the angular excitation frequency. The real part of
the impedance is referred to as resistance and its imaginary part as
reactance. In the following, impedance values normalizedwith the air
specific impedance ρ0c0 are denoted by lowercase z. Here, ρ0 and c0
stand for the mean density and the speed of sound, respectively.
The resonator can also be characterized in terms of characteristic

wave amplitudes f and g, assuming 1-D acoustics in front of the
resonator. These f and g quantities can be considered as right- and
left-traveling waves, respectively. In the absence of mean flow,
they are defined as f � �p 0∕�ρ0c0� � u 0�∕2 and g � �p 0∕�ρ0c0�
−u 0�∕2. The ratio of the reflected ĝ�ω0� wave to the normally
incident f̂�ω0� wave in the frequency domain is defined as the
reflection coefficient R�ω0� � ĝ�ω0�∕f̂�ω0�. Its relation to the
impedance is given by the following:

R�ω0� �
ĝ�ω0�
f̂�ω0�

� Z�ω0� − ρ0c0

Z�ω0� � ρ0c0
� z�ω0� − 1

z�ω0� � 1
(2)

At the resonator angular eigenfrequency ωeig, the reactance
vanishes I�Z�ωeig�� � 0 and, accordingly, the optimal resistance
equals the specific impedance ρ0c0 of the medium, where no
reflection takes place at all (i.e., jR�ωeig�j � 0). Thus, the gain of the
reflection coefficient decreases with the increasing sound pressure
level (SPL) until it reaches the optimal resistance R�z�ωeig�� � 1.
For a resistance larger than this optimal value R�z�ωeig�� > 1, the
resonator is called overdamped. In that case, the reflection coefficient
grows with a further increase of the resistance, as can be also
observed in Sec. IV.
The concepts introduced previously are not adequate to

characterize nonlinear phenomena because Z and R do not depend
on the excitation amplitude. To extend the impedance to the nonlinear
regime, the describing function approach is commonly used; see, for
instance, the work of Hersh et al. [25], which is referred to as th
eimpedance describing function in the following. Here, the
impedance is specified, not only in dependency on the frequency but
also on the excitation amplitude. This is commonly done in terms of
the sound pressure level present at a certain reference position. The
value of this SPL is defined as 20 log10�prms∕pref�, where prms and
pref denote the root mean square of the fluctuating pressure and the
reference pressure in air of 20 μPa, respectively. Note that this
approach cannot represent the nonlinear behavior in a comprehensive
manner but only the behavior for the fundamental frequency of
excitation. In particular, the scattering to higher harmonics is not
included in this describing approach, which is investigated in the
current paper.

B. Flow Separation as the Cause of Nonlinear Behavior

The Helmholtz resonator can be analyzed as a combination of an
acoustically compact orifice and a backing volume in the linear and
nonlinear regimes [20]. Thus, the loss mechanisms for a Helmholtz
resonator are the same as those at an orifice. To understand those
mechanisms, the 1-D unsteady Bernoulli equation with suitable

extensions for the loss terms can be studied for an orifice, as sketched
in Fig. 2a; see, e.g., [24,32,33]. In the quarter-wave resonator case,
the situation is different due to the asymmetry of the area jump, as
sketched in Fig. 2b, but it can be analyzed in a similar framework. The
following discussion helps to understand how the nonlinear losses are
caused in both configurations.
The analysis is presented in nondimensional form. Nondimen-

sional quantities are indicated by the superscript ∼. The reference
time tc and pressure pc used for the nondimensionalization are
defined as follows:

tc �
lc

c0
and pc � ρ0c

2
0 (3)

The reference length scale lc, which was already introduced to
define the timescale tc, is set differently for the orifice and the area
jump to account for the different typical scales present. It is set such
that the corresponding nondimensional angular eigenfrequencies
~ωeig � ωeigtc for the Helmholtz and quarter-wave resonators are
unity, i.e., ~ωeig � ωeigtc � 1. These eigenfrequencies of ωHR

eig and

ω
QW
eig can be approximated as Helmholtz and quarter-wave resonators

ωHR
eig � c0

�����������������������������
σ

lcav�l0 � 2Δl�

r
and ω

QW
eig � πc0

2�l0 � Δl� (4)

respectively. The length correction Δl accounts for fluid in front of
the resonator opening taking part in the oscillation and can be set
according to Ingard [21] as 4∕�3π�d0, where d0 is the diameter of the
opening. This geometrical length l0 and the length corrections (2Δl
and Δl, respectively) are usually combined to the so-called effective
lengths le, as described in more detail in Eq. (7). The corresponding
length scales are set as follows:

lHRc �
�����������������������������
lcav�l0 � 2Δl�

σ

r
and l

QW
c � 2�l0 � Δl�

π
(5)

At first, the Helmholtz resonator is considered. It is assumed here
that the resonator neck is acoustically compact such that it can be
treated as an incompressible orifice. Viscous losses are neglected at
the beginning of this consideration, and the Bernoulli equation is
studied. This equation reads in terms of fluctuating quantities in
nondimensional form as follows:

∂ ~ϕ 0

∂~t
� 1

2
~u 02 � ~p 0 � const: (6)

where ~ϕ is the nondimensionalized potential ~u � ~∇ ~ϕ. The preceding
equation is integrated from positions 1 to 2, sketched in Fig. 2a. The

nondimensionalized effective length ~le is introduced to express the
result in a compact form:

b) Area jump (with flow-dependent contraction)a) Orifice

Fig. 2 Sketch of the corresponding geometries for the incompressible quasi-steady analysis.
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~ϕ 0
2 − ~ϕ 0

1 �
Z

2

1

~u 0� ~x� d ~x �
Z

2

1

~A0 ~u
0
0

~A� ~x�
d ~x � ~u 0

0
~le �

~u 0

σ
~le (7)

Here, ~A0 and ~u 0
0 denote the nondimensionalized cross-section area

and the velocity in the orifice, respectively. The ~x-dependent area
formed by the flowpath is ~A� ~x�. Note that the effective length equals
the nondimensionalized geometrical length of the orifice ~l0 with an
additional, nondimensionalized end correction 2Δ ~l added; see, e.g.,
Ingard [21]. The pressure drop Δ ~p 0 � ~p 0

1 − ~p 0
2 over the orifice

without losses can be expressed as follows:

Δ ~p 0 ≈
1

σ
~le
∂ ~u 0

∂~t
(8)

The losses caused by friction at the orifice walls, which are
not considered in the preceding equation, can be included by an
appropriate real-valued constant ~Rl (see, e.g., the work of Boden and
Zhou [34]). When the acoustical partial displacement in the orifice
reaches the same order as the orifice diameter ~d0 or is larger (i.e.,
when the Strouhal number Sr � ~ω ~d0σ∕j ~uj is small), the flow cannot
follow the edge contour anymore and separates. Thus, the flow takes
less area to jet through the orifice, as sketched in Fig. 2a. The ratio of
the flow core area to the geometrical cross-sectional area is described
by the contraction factor Cd, which is also often referred to as the
discharge coefficient [15,25]. In the linear regime where Sr ≫ 1, it
can be assumed the Cd ≈ 1, whereas Cd < 1 in the nonlinear regime.
Besides the Strouhal number, the edge shape also has a strong impact
on the separation process. The sharper the edge, themore pronounced
the separation [30,31]. Using the contraction factor, the velocity in
the orifice can be expressed as ~u 0

0 � 1∕�Cdσ� ~u 0. When such a jet
forms, it takes energy from the acoustics, which is dissipated in the
vortex structures generated due to the separation. If it is assumed that
the kinetic energy of the flow in the orifice 1∕2�1∕�Cdσ� ~u 0�2 is fully
dissipated and does not recuperate downstream of the orifice (see, for
instance, the work of Ingard [32]), it follows that

Δ ~p 0 ≈
1

σ
~le
∂ ~u 0

∂~t|��{z��}
inertia

� ~Rl ~u
0

|{z}
viscosity

� 1

2

~u 0j ~u 0j
�Cdσ�2|���{z���}

flow separation

(9)

It can be seen in the preceding expression that the loss terms due to
friction and flow separation contribute to the resistive part. When
the losses and the pressure drop are not in equilibrium, the fluid in
the orifice is accelerated, which solely impacts the reactance of the

transfer impedance ( d∂ ~u 0∕∂~t � i ~ω ~̂u). Moreover, it can be seen that
only the flow separation behaves in a nonlinear fashion in this model.
In analogy, an acousticallycompact area jump, as sketched inFig. 2b,

can be considered for the investigation of a quarter-wave resonator.
In comparison to the formulations for the orifice found in the literature,
an additional term is introduced that also behaves nonlinearly. By
integration of the Bernoulli equation [Eq. (6)], the additional term
1∕2 ~u 02�1∕σ2 − 1� appears due the nonequal cross-section area on both
sides. In this case, the pressure drop can be expressed as follows:

Δ ~p 0 ≈
1

σ
~lAJe

∂ ~u 0

∂~t
� 1

2
~u 02

�
1

σ2
− 1

�
� ~RAJ

l ~u 0 � 1

2

~u 0j ~u 0j
�Cdσ�2

(10)

In the preceding, ~lAJe and ~RAJ
l denote a suitable nondimensionalized

effective length and linear loss term for the area jump, respectively.

III. Scattering to Higher Harmonics Described by
Quasi-Steady 1-D Analysis

In contrast to linear systems, nonlinear systems can respond not
only at the fundamental angular frequency ω0 of the excitation but
also at itsmultiples: the so-called higher harmonics. The fundamental
frequency ω0 is referred to as the first harmonic, and any multiples
nω0 are referred to as the nth harmonic (n ∈ N). In the following, the

spectrum of the response is studied numerically in dependency on the
excitation frequency and amplitude. To the authors’ knowledge, this
is studied for the first time in detail for resonator configurations. The
orifice, which is from a geometrical point of view close to the
Helmholtz resonator, is investigated experimentally and analytically
with respect to its scattering behavior; see, e.g., the work of Ingard
and Ising [22,32] and Cummings [24]. A pattern in the harmonics is
observed in those studies, where the odd harmonics (third, fifth, : : : )
dominate clearly over the even ones (second, fourth, : : : ). This
pattern is referred to as odd-harmonics only in the following. Ingard
[32] and Cummings [24] explained the appearance of the OHO
pattern by studying quasi-steady 1-D equations.
In the following, these considerations are extended step by step to

also account for an asymmetric orifice and for an area jump, as they are
present for a Helmholtz resonator with an asymmetric neck and a
quarter-wave resonator. This analysis is applied to predict the relative
contributions of the first five harmonics for Helmholtz resonators with
symmetric and asymmetric necks, as well as quarter-wave resonators.
The appearance or absence of theOHOpattern can be explained by

studying quasi-steady 1-D equations, such as Eqs. (9) and (10).
Similar considerations were made by Ingard [32] and Cummings
[24]. The theory presented in the literature is restricted to orifices
assuming a time-invariant contraction factor Cd for the whole cycle.
In the current study, the contraction coefficientCd is assumed to be

constant during the inflow and outflow half-cycles:

Cd �
�
C�
d ; for ~u 0 ≥ 0

C−
d ; for ~u 0 < 0

(11)

First, the orifice is considered where the pressure drop is described
by Eq. (9). The only nonlinear term is given as 1∕�2�Cdσ�2� ~u 0j ~u 0j.
Accordingly, this is the only term that can contribute to the scattering
to higher harmonics. Thus, the other terms are disregarded in the
analysis because the focus of the study is the scattering behavior to
higher harmonics, i.e.,

Δ ~p 0�~t�2σ2 � 1

C2
d

~u 0j ~u 0j (12)

If a sinusoidal velocity ~u 0�~t� � ~Au sin� ~ω0 ~t� is assumed, the
Fourier series of this pressure drop reads as

Δ ~p 0�~t� 2σ
2

~A2
u

� a0

2
�

X∞

n�1

an cos�n ~ω0 ~t� � bn sin�n ~ω0 ~t� (13)

with the constants

an �

8
>><
>>:

1
2
�C�

d − C−
d �; for n � 0

1
4
�C−

d − C�
d �; for n � 2

0; else

(14)

and

bn �
�

−4�C−
d
�C�

d
�

π�n3−4n� ; for odd n

0; else
(15)

It can be seen that, for symmetric flow conditions with C�
d � C−

d ,
the coefficients an � 0 for all n. Thus, only contributions with
bn ≠ 0 remain for odd n. It can be concluded that the appearance of
the OHO pattern is due to the symmetry of the flow.
This flow symmetry is broken for an asymmetric geometry. Note

also that the mean flow may lead to different flow contraction
conditions during the inflow and outflow phases, as shown by Zhang
and Bodony [35] for a Helmholtz resonator with grazing flow. The
flow asymmetry due to flow separation at sufficiently high
amplitudes can be described like this for a one-sided chamfered
orifice: At the sharp orifice edge, the flow contracts (i.e., C�

d < 1),
whereas it does not at the chamfered edge (i.e., C−

d ≈ 1).
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The asymmetry increases when the area jump is studied instead of
the orifice. The separation term [Eq. (12)] analyzed by Fourier
transform in Eqs. (13–15) is also part of the nonlinear response. Due
to the change in cross section at the area jump, an additional term
appears in Eq. (10). This term can be expressed as follows:

1

2
~A2
usin

2� ~ω0 ~t�
�
1

σ2
− 1

�
� 1

4
~A2
u

�
1

σ2
− 1

�
�1 − sin�2 ~ω0 ~t�� (16)

The preceding expression contributes significantly to the second
harmonic, and thus amplifies the disappearance of the OHO pattern.
The following conclusions can be made from the preceding

considerations: The Helmholtz resonator with a symmetric neck
shows the OHO pattern, where the harmonics decrease with
increasing order. If its neck is asymmetric (e.g., with C�

d ≈ 0.7 for a
sharp edge andC−

d ≈ 0.95 for a 45 deg chamfered edge; see [36]), the
OHO pattern gets weaker. The third harmonic is still dominant. But
now, the second harmonic is predicted to be more pronounced than
the fifth one. When a quarter-wave resonator is considered, strong
scattering in the second harmonic is expected. Overall, the scattering
to higher harmonics is much larger here than in the case of a
Helmholtz resonator (for σ ≪ 1).
In the preceding discussion, only the nonlinear terms are

considered. It can be seen in Eqs. (13) and (16) that their contribution
scales with the square of the amplitude of the velocity ~A2

u, whereas all
the other linear terms scale with the amplitude of the velocity ~Au.
Thus, it can be concluded that the impact of the nonlinear term
responsible for the scattering to higher harmonics rises with
increasing velocity.

IV. Scattering to Higher Harmonics Observed in CFD
Simulations

In this section, the predicted patterns in the amplitudes of the
higher harmonics are verified and quantified with compressible CFD
simulations for three resonator configurations. These considered
configurations as well as the computational setup are introduced in
Sec. IV.A. A qualitative comparison of compressible Helmholtz
resonator simulations and incompressible orifice simulations is
performed in Sec. IV.B. By doing so, a link from the incompressible
theory to compressible resonator simulations is provided. Moreover,
the flow separation for the three test cases is investigated during the
inflow and outflow phases in this section. Finally, the results of the
compressible simulations of three resonators are presented and
discussed in Sec. IV.C.

A. Simulation Setup and Definition of the Test Cases

1. Definition of Test Cases

In the present numerical study, a quarter-wave (QW) resonator as
well as Helmholtz resonators with symmetric (HRS) and asymmetric
(HRA) necks are considered. The generic geometries are sketched in
Fig. 1. The neck of configuration HRA is chamfered by 45 deg on the
outside, with a length in the axial direction of lch � 0.35 mm. The
values of all geometric quantities are listed in Table 1 in dimensional
and nondimensional forms. TheHRS configuration is set as in [31] to
have access to validation data. The chamfer length is set small enough
that it influences the linear response of the resonator only marginally.

2. CFD Solver Setup

Compressible CFD simulations are performed with the PIMPLE
algorithm of OpenFOAM [37]. The slip condition is applied at the
cylindrical wall of the impedance tube and the no-slip condition is

used at the resonator itself; see Fig. 1. At the inlet, the Navier–Stokes
characteristics boundary condition (cf. Poinsot and Lele [38]) is
used. This boundary condition ensures a low acoustic reflection of the
outgoing g wave. Simultaneously, an excitation signal can be
imposed for the incoming f wave, which is set sinusoidally
[f � Af sin�ω0t�] with different fundamental frequencies:ω0∕�2π�.
At this inlet plane, the fluctuating pressure p 0 and velocity u 0 are
monitored. From these dimensional quantities, the time series of the
nondimensional ~f and ~g waves can be computed directly. As
explained previously, the incoming wave scatters in the harmonics of
the reflectedwave ~̂g�n ~ω0�. In the following figures, the amplitudes of
the higher harmonics ~̂g�n ~ω0� are normalized by the amplitude of the
fundamental harmonic of the incoming wave ~̂f� ~ω0�, which can be
written as follows:

��� ~̂g�n ~ω0�
���

��� ~̂f� ~ω0�
���

(17)

In the postprocessing, the transient parts of the data series have
been removed and then truncated to amultiple of the periodT to avoid
leakage in the spectra. For further details on the solver, refer to [31].
The simulations use three-dimensional (3-D) meshes of at least 1.5
million cells. Note that this is, overall, a rather coarse mesh in
comparison to DNSs available in the literature [15]. However, the
mesh is refined carefully in the Helmholtz resonator neck (and
the quarter-wave resonatormouth, respectively), and especially at the
edges because, here, the mechanisms responsible for the acoustic
dissipation take place. The mesh independence with respect to the
acoustic impedance is checked for HRS up to an overall SPL of
125 dB. Overall, reasonable results with relatively low computation
cost can be achieved, enabling for extensive parameter studies.
The compressible CFD simulations are performed as LESs with

the k-equation eddy-viscositymodel as a subgrid-scale (SGS)model.
Several SGS models have been tested. However, the acoustic
response of the resonator depends only very weakly on the SGS
modeling. Vortex structures are formed in thevicinity of the resonator
neck due to the pulsation forcing of the flow. The dissipation to
thermal energy of these vortices follows mainly the turbulent
cascade. However, the separation process itself, responsible for the
nonlinear acoustic dissipation, is almost not influenced by the
vortices. This can also be seen with the Reynolds number based on
the orifice size and velocity amplitude at the orifice, which remains
rather low (maximum Re≈3000 at 119.7 dB for HRS). Accordingly,
the impact of the SGS model on acoustic properties remains very
small as the separation process at the edges is resolved sufficiently.
Moreover, comprehensive parameter studies regarding mesh, time-
step, and solver parameters are performed to ensure that the presented
results are independent of the numerical settings. The solver is
validated in detail in the linear regime for various configurations in
[31]. In the nonlinear regime, the solver is validated against the
measurements ofM. A. Temiz ¶ based on describing functions for the
HRS configuration; see the Appendix.
To compare the simulation with the measurement, the input

amplitudeAf of thefwavesmust be set such that the superposition of
the waves f and the reflected g � Rf matches the desired SPL; see
[20] for more details. This requires an a priori knowledge of the
reflection coefficient or an iterative process. In the following, this
approach of setting the input amplitude is solely used for validation

Table 1 Geometric properties of the considered Helmholtz and quarter-wave resonators in dimensional and nondimensional forms

l0, mm d0, mm lcav, mm dcav, mm lch, mm σ, % ωeig∕�2π�, Hz ~l0 ~d0 ~lcav ~dcav ~lch ~ωeig

HRS 4.0 4.2 20 50 0 0.71 373 0.0274 0.0288 0.1369 0.3423 0 1
HRA 4.0 4.2 20 50 0.35 0.71 373 0.0274 0.0288 0.1369 0.3423 0.0024 1
QW 143 6.35 — — — — — — 1.56 589 1.5561 0.0691 — — — — — — 1

¶Private communication by M. A. Temiz, Technische Universiteit
Eindhoven, Department of Mechanical Engineering, Eindhoven, The
Netherlands.
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purposes. Besides that, the SPL is set only with respect to the input
signal f ignoring the reflected acoustic g wave. This is referred to as
input SPL in the following. Note that the input SPL and the actual
SPL differ from each other.
For the orifice configuration, incompressible simulations are also

performed with the SIMPLE algorithm of the commercial software
ANSYS Fluent v15. A detailed description of the corresponding
solver setting can be found in [20]. For a given geometry and
excitation frequency, the nonlinear behavior is linked to the
magnitude of the velocity in the orifice and resonator neck,
respectively. For a valid comparison, the input amplitude in the
incompressible simulation has to be set such that velocities in the
orifice agree with the velocities in the Helmholtz resonator neck.

B. Validation of Modeling Assumptions via CFD

1. Linking the Incompressible and Compressible Approaches

The orifice is treated as incompressible in the analysis of Sec. III,
whereas the CFD simulations of the Helmholtz resonator are set up
compressibly. Accordingly, a quantitative comparison between those
two is not directly possible. Therefore, incompressible orifice CFD
simulations are also considered in this section, which allow a link
from the CFD simulations to the 1-D quasi-steady theory. The
compressible resonator simulations and the incompressible orifice
simulations can be compared qualitatively.
A sinusoidal velocity ~u 0�~t� � ~Au sin� ~ω0 ~t� is assumed in the

analysis of Sec. III. The higher harmonics occur there solely in the
pressure dropΔ ~̂p�n ~ω0� over the orifice. This pressure drop including
the higher harmonics is also determined via incompressible CFD
simulations with sinusoidal velocity excitation. For these
incompressible simulations, the orifice corresponding to the
resonator neck of HRS is considered as geometry. The amplitudes
Au of the velocities in the incompressible simulations are adjusted
such that they coincide with the velocity amplitudes in the resonator
neck present for a SPL of 119.7 dB at the reference distance of
lref � 49.7 mm. The higher harmonics in the pressure drop are
presented in Fig. 3a. In this figure, the amplitude of the nth harmonic
is normalized by the fundamental harmonic Δ ~̂p� ~ω0�, such that this
harmonic is represented as

���Δ ~̂p�n ~ω0�
���

���Δ ~̂p� ~ω0�
���

(18)

Moreover, the results of 1-D simulations [39] of the quasi-steady
equation [Eq. (9)] are included in this figure. It can be observed that
both the 1-D quasi-steady equation [Eq. (9)] and the incompressible
CFD simulation exhibit the OHO predicted by the quasi-steady
analysis. The third harmonic is dominant, followed by the fifth
harmonics, as predicted by the analysis. The magnitude of the odd
harmonics obtained by the 1-D simulations of the quasi-steady

equation [Eq. (9)] agreeswellwith the oneof theCFDsimulations.The
scattering to higher harmonics takes place mainly close to the angular
eigenfrequency ~ωeig ≈ 1, where the velocities in the orifice are largest.
In Fig. 3b, the higher harmonics in the scattered gwave [as defined

in Eq. (17)] are plotted for the compressible LESs of the symmetric
Helmholtz resonator. Again, the input amplitudes Af are set in a way
that a SPL of 119.7 dB at the reference distance lref � 49.7 mm is
achieved. The 1-D quasi-steady equation [Eq. (9)] can be rewritten in
terms of Riemann invariants f and g to a 1-D ordinary differential
equation (ODE), which can be solved numerically [39]. The scattered
higher harmonics described by this 1-D quasi-steady ODE are also
included in this figure. Both compressible approaches, the LES and
the 1-D ODE, have the OHO pattern as predicted by the 1-D quasi-
steady analysis in Sec. III. There are almost no contributions to the
even harmonics for both compressible approaches. Also here, the
scattering to higher harmonics occurs mainly close to the angular
eigenfrequency ~ω0 ≈ 1. This also agrees with the incompressible
analysis because the velocities in the resonator neck are largest close
to the eigenfrequency. It can be observed that the third harmonics of
this quasi-steady 1-D approach agreeverywell these of the 3-DLESs.
The fifth harmonic is underpredicted by the 1-D approach. Overall,
the nonlinear term in the quasi-steady equation [Eq. (9)], oncewritten
in terms of Riemann invariants, describes the mechanisms
responsible for the scattering to higher harmonics accurately.
It can be summarized that the OHO pattern is present for both

symmetric orifices and Helmholtz resonators. For both configura-
tions, the mechanism responsible for the scattering to higher
harmonics can be explained well by studying the 1-D quasi-steady
equation [Eq. (9)] as it is done in Sec. III.

2. Contraction Behavior for the Three Considered Configurations

Before the scattering to higher harmonics in the compressible
CFD simulations for each resonator is discussed, the flow
contraction is investigated for these configurations. In Fig. 4, a
snapshot of the flowfield during the inflow and outflow phases with
maximal contraction is presented for all configurations. These
snapshots are cropped to the vicinity of the resonator neck and
mouth, respectively. Note that the separation process is a transient
process such that, for a precise prediction, phase averaging over
several periods and (subsequently) averaging over time would be
required, as was done by Zhang and Bodony [15]. Here, only the
order of magnitude and the influence of the edge on separation
behavior are evaluated optically with the presented snapshots. The
separation zones are marked with thick lines at the upper edges in
each figure. The resonators are excited at a frequency close to their
eigenfrequencies ~ω0 ≈ 1 (corresponding to 380 Hz) with an input
SPL of 125 dB (for HRS and HRA) and at ~ω0 ≈ 1 (corresponding
to 580 Hz) with 160 dB (for QW). Configuration QW is excited
with a higher SPL in comparison to the Helmholtz resonator
configurations because it requires a higher SPL to trigger nonlinear

a) Higher harmonics in Δ p at the orifice [cf. Eq. (18)] b) Higher harmonics in f for the Helmholtz resonator
[cf. Eq. (17)]

Fig. 3 Higher harmonics for the Helmholtz resonator HRS and the corresponding orifice at 119.7 dB: second harmonic in CFD simulations , third
, forth , fifth ; harmonics with quasi-steady 1-D analysis are plotted with dotted lines (rel., relative).
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behavior, as will be shown in Sec. IV.C.3. As explained previously,
these SPL values are set here and in the following as input SPLs,
which means that the SPL values refer solely to the input f waves
while ignoring the reflected g waves. The separation behavior is
similar for the inflow and outflow for HRS; see Figs. 4a and 4b. A
contraction ratio of≈0.7, as can be found in the literature [15,36], is
confirmed by the simulation. The asymmetric neck induces an
asymmetric separation behavior. During the outflow, the
contraction remains the same as for HRS; see Fig. 4d. However,
the flow contracts less with a factor of C�

d ≈ 0.9 for the inflow
(Fig. 4c), which is close to the literature values (0.95 in Blevins’s
textbook [36]). The separation is also asymmetric for the quarter-
wave resonator withC�

d ≈ 0.7 andC−
d ≈ 1, as can be seen in Figs. 4e

and 4f. Overall, it can be concluded that the assumption of Sec. III
that the contraction depends on the flow direction is reasonable.

C. Scattering to Higher Harmonics Determined by CFD Simulations

1. Scattering to Higher Harmonics at the Helmholtz Resonator with Sym-

metric Neck

The amplitudes of the higher harmonics n ~ω0 up to order n � 5 of
the resonator response for an input SPL of 125 dB are plotted in
Fig. 5a for the fundamental excitation frequencyω0∕�2π� in the range
of 200–700 Hz, corresponding to ~ω0 ∈ �0.54; 1.87�. All harmonics
with larger order (n > 5) are negligible with a relative content of less
than 2‰. It can be observed that the damping of the fundamental
harmonic (line marked with ) is best close to the resonator
eigenfrequency, i.e., where ~ω0 is close to unity. On the other hand,
scattering to higher harmonics mainly occurs close to that frequency.
This is in line with expectations because the velocity in the neck is
largest in this frequency range and is causing strong nonlinear effects
here. Away from the eigenfrequency, velocities are smaller and the

Fig. 4 Flow visualization in a 2-D cutting plane in the vicinity of the resonator neck/mouth during the inflow and outflow phases for the three

configurations consideredat excitation frequency close to the eigenfrequency ~ω0 � 1with inputSPL125dB forHRSandHRA, andwith input SPL160dB
for QW. On the upper half, the contraction is marked in green for each case.
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system behaves almost linearly. As expected, the OHO pattern
occurs (i.e., the odd harmonics contribute predominantly to the
response), whereas the even harmonics are almost absent. The third
harmonic (line marked with ) clearly dominates over the even
ones (second is shown as , fourth is shown as ). The
contribution of the harmonics becomes less and less considerable
with increasing ordern. The impact of the fifth harmonic (linemarked
with nabla) is noticeably smaller than the third but is still more
prominent than even harmonics.
In Fig. 5b, the scattering to the harmonics is depicted under

variation of the input SPL for an excitation frequency close to
eigenfrequency ~ω0 ≈ 1 [corresponding to ω0∕�2π� � 380 Hz]. The
reflection coefficient and the resistance are presented in Fig. 6 ( ).
Note that the reflection coefficient equals the scattering into the
fundamental harmonic, which is also shown in Figs. 5a and 5b. With
increasing input SPL, the fundamental harmonic first decays (up to
110 dB) because the resistance increases; see Fig. 6b. The optimal
damping for orthogonal incident acoustic waves is achieved with a

normalized impedance of z � 1. Increasing the excitation further
leads to higher resistance, but the reflection also increases. This
occurs due to the overdamping of the system. The trend of increasing
resistance with increasing SPL can also be explained by studying the
1-D equation for the pressure drop; see Eq. (9). The only nonlinear
term in this equation corresponds to the flow separation. The
corresponding nonlinear resistance scales with the amplitude of the
velocity in the neck, which itself increases with rising SPL. This can
also be seen in experimental [40] and numerical [15] studies.
The scattering to higher harmonics increases with increasing

amplitude in the normal-damped range (z < 1). Close to the region of
optimal damping (z � 1), the scattering to higher harmonics abruptly
attains a local minimum. This minimum cannot be explainedwith the
analysis of Sec. III because the velocity in the neck is actually further
increasing. Furthermore, the scattering to higher harmonics does not
totally vanish for low amplitudes. The considerations made
previously would actually suggest a monotonic increase of the
scatteringwith the amplitude, startingwith no scattering and reaching

a) Helmholtz resonator HRS for input SPL 125 dB b) Helmholtz resonator HRS atω 0 ≈ 1 (380 Hz) for
variable-input SPL

c) Helmholtz resonator with asymmetric neck
HRA for input SPL 125 dB

d) Helmholtz resonator with asymmetric neck HR
 at ω̃ 0 ≈ 1 (380 Hz) for variable-input SPL

e) Quarter-wave resonator QW for input SPL 160 dB f) Quarter-wave resonator QW at ω0 ≈ 1 (580 Hz
for variable-input SPL

˜

Fig. 5 Scattering to harmonics plotted in logarithmic scale: fundamental , second , third , forth , fifth .
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asymptotically a limit. The reasons for the discrepancy to the
presented simulation results are still unknown. In the overdamped
range, the scattering increases again by increasing the input SPL. The
overall scattering remains small for this resonator setup, even for very
high excitation levels. Thus, modeling the nonlinear behavior only
for the fundamental frequency ~ω0 with the describing function
approach (see Sec. II.A) reflects the main mechanisms accurately in
that case.
It can be observed that the OHO pattern vanishes in a range of very

high SPL (≥130 dB), which is shaded in Figs. 5b and 5d (for HRA).
The interaction of the vortices formed at leading and trailing edges is
identified as the cause of this behavior. The exact mechanism and the
circumstances when the OHO pattern is absent will be discussed in
detail in a separate paper.

2. Scattering to Higher Harmonics at the Helmholtz Resonator with

Asymmetric Neck

The gain of the reflection coefficient and resistance for various
SPLs are included in Fig. 6 for the configurationwith the asymmetric
neck HRA. The chamfer size is set such that the linear impedance is
almost not influenced by the chamfer. Thus, the eigenfrequency
remains the same as for HRS and the excitation for that case is set to
380Hz. The nonlinear resistance can be observed to decrease slightly
in comparison to the unchamfered case HRS; see Fig. 6a. This
decrease arises from the lower flow contraction during the outflow
phase; see [31]. The scattering to the harmonics n ~ω0 (n ∈
f1; 2; : : : ; 5g) is shown for an input SPL of 125 dB in Fig. 5c for a
range of 200–700 Hz for the fundamental excitation frequency
ω0∕�2π�, corresponding to ~ω0 ∈ �0.68; 1.36�. Moreover, the
scattered higher harmonics are presented for an excitation close to
eigenfrequency ~ω0 ≈ 1 (corresponding to 380Hz) with varying input
SPLs in Fig. 5d. As predicted, the second harmonic increases in
comparison to HRS with symmetric neck. According to the analysis
of Sec. III, the second harmonic should be weaker than the third but
stronger than the fifth one. However, the increase of the second
harmonic is moderate such that the second and fifth harmonics have
about an equal strength in the CFD simulations.

3. Scattering to Higher Harmonics at the Quarter-Wave Resonator

For the quarter-wave resonator, the behavior changes
significantly with respect to the Helmholtz resonators. For QW,
the scattering to higher harmonics is mostly into the second
harmonic, which again fits well to the analysis of Sec. III. This can
be seen in Fig. 5e for a constant SPL of 160 dB and in Fig. 5f for the
excitation eigenfrequency close to eigenfrequency ~ω0 ≈ 1
(corresponding to 580 Hz) in a range of 80–160 dB. The frequency
sweep is performed for QW at 160 dB instead of 125 dB for
Helmholtz resonator configurations due to the higher SPL required
to trigger nonlinear behavior. This can be seen in Fig. 6a ( ). For
HRS, the resistance starts to increase at a SPL of about 105 dB due to
nonlinear effects. For QW, this occurs at about 125 dB. This
difference can be explained only partially due to the different open

area ratios σ. Thus, the different threshold to trigger nonlinearities
originatesmainly due to the different resonator concepts.Moreover,
the overall scattering increases as well. The maximal scattering is in
the order of 2% for the Helmholtz resonators. Here, for QW, the
relative scattering to the second harmonic can reach values up to the
order of 10%. This difference inmagnitude of theHelmholtz and the
quarter-wave resonator is backed by the quasi-steady analysis.

V. Conclusions

The nonlinear acoustic response of quarter-wave and Helmholtz
resonators has been studied bymeans of compressible computational
fluid dynamics (CFD) simulations. Particular attention was paid to
the scattering to higher harmonics. For the Helmholtz resonators, the
higher harmonics exhibited an odd-harmonics-only pattern, where
only the odd harmonics were present, whereas the even ones were
negligible. Such patterns were observed previously at symmetric
orifices, and they were explained by a 1-D quasi-steady analysis
based on the Bernoulli equation with suitable extra terms for the
losses [22,24,32]. The current study extended the analysis, such that
it was also applicable to configurations that exhibited asymmetric
flow patterns, e.g., Helmholtz resonators with asymmetric necks or
quarter-wave resonators.
The following observations are observed in CFD simulations and

confirmed by the quasi-steady analysis: For the Helmholtz resonator
with a symmetric neck, the scattering to higher harmonics exhibits
the odd-harmonics-only (OHO) pattern. The OHO pattern is weaker
if a Helmholtz resonator with an asymmetric neck is considered. It is
concluded that the pure OHO pattern occurs due to the flow
symmetry during the inflow and outflow phases through the
symmetric resonator neck. For the quarter-wave resonator,
corresponding to a simple discontinuity in the cross-sectional area
in the 1-D compact analysis, a larger threshold for the excitation is
required to trigger noticeable nonlinear effects. If scattering takes
place in this configuration, the second harmonic is the dominant
higher harmonic, and the OHO pattern vanishes completely.
Overall, the scattering to higher harmonics is more pronounced for

the quarter-wave resonator, forwhich values up to the order of 10%of
the incident wave are observed. In contrast, Helmholtz resonators
exhibit quite moderate nonlinear scattering (up to 2%), even for very
high excitation levels. One may conclude that, in many cases,
describing functions for impedance or reflection coefficients
characterize the nonlinear response of resonators with acceptable
accuracy.

Appendix: Solver Validation in the Nonlinear Regime

The solver validation in the nonlinear regime is presented using
impedance describing function measurements performed by M. A.
Temiz (see footnote ¶) from the Eindhoven University of Technology
on configuration HRS in a frequency range of [100,700] Hz
corresponding to ~ω0 ∈ �0.27; 1.87�. Figure A1 shows the normalized
impedance and the reflection coefficient for overall SPLs of 120 and

a) Normalized resistance (z) b) Gain of reflection coefficient |R|

Fig. 6 Gain of reflection coefficient jRj and normalized resistanceRe �z� under variation of the input SPL at the corresponding eigenfrequency ~ω0 ≈ 1.
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125 dB obtained by the measurements and the CFD simulations. In
those simulations, the input amplitudes of the fwave are set in a way
that the acoustic SPL directly in front of neck matches the target
value. Because the nonlinear effects mainly affect the resistance
R�z�, it is more challenging to capture this quantity correctly in the
CFD simulation (see Fig. A1a) than the reactance I�z�, which always
fits very accurately (see Fig. A1b). The curves agree quite reasonably,
but the numerics slightly overpredict the nonlinear resistance. A
reason for this is (at least partially) that the edges in the CFDmesh are
perfectly sharp, whereas the real sample is not due to manufacturing
reasons [20]. The measurements are also a bit shaky away from the
eigenfrequency. This shaky behavior does not originate from physics
but from the ill-conditioned transformation from the reflection
coefficient to resistance. The reflection coefficient is in both the
experiment and CFD the quantity that is directly and subsequently
transformed to the impedance. Thus, a comparison in the reflection
coefficient is more suitable. This is depicted in Figs. A1c and A1d.
Here, the curve match is almost perfect and shows the quality of the
computational setup.
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The dissipation of acoustic energy in Helmholtz resonators is investigated by means of large eddy

simulation (LES) and system identification. At low sound pressure level, thermo-viscous effects

dominate this dissipation. This is linear, i. e., independent of perturbation amplitude. LES/system

identification methods are applied in this study to the linear regime. For that purpose, the system is

interpreted as a single-input / single-output system of two characteristic waves. An Output-Error

model for the reflection coefficient valid for the whole frequency range of interest is estimated

from a single LES time series. The resonator admittance and impedance are derived from that

model. For a set of test cases, comparison against experimental results and established models

shows good agreement for the gain and phase of the admittance as well as of the reactance. The

acoustic resistance value is captured with good accuracy close the eigenfrequency of the resonator.

1. Introduction

Acoustic resonators, such as Helmholtz resonators, perforated liners, or quarter wave length cav-

ities, are commonly used to induce dissipation of acoustic energy in combustion systems like rocket

combustion chambers, aero-engines, or gas turbines [1]. Thus, they can stabilize the combustion

process or reduce the emitted sound to the environment.

The acoustic behavior of such resonators is often characterized by their acoustic impedance. The

impedance describes the ratio of pressure and acoustic velocity and, thus, also how much energy is

dissipated in the device. In the literature, there are several studies available that determine resonator

impedance by empirical, analytical, or numerical means in dependency of frequency and sound pres-

sure level (SPL). For example, Hersh et al. [2] and Melling [3] carried out experiments. For analytical

derivations, refer for instance to [4, 5]. These analytical models introduce empirical correlation fac-

tors. Numerical studies approximating the impedance can be found, e. g., in [6, 7]. But none of these

studies applies system identification (SI) methods as it is done here. SI methods promise accurate

estimations over the whole frequency range of interest using a single time series data set.

In this study, the damping behavior of the Helmholtz resonator is examined numerically using

the LES/SI approach and is organized as follows: First in Sec. 2, fundamentals of the Helmholtz res-

onator are reviewed and discussed. In Sec. 3, the answer of the resonator to well-designed broadband

excitation is tracked. The gained CFD input-output data is used to perform a SI in the linear regime.

The estimated reflection coefficient model and the derived the admittance as well as the impedance

are validated against experiments and analysis before a conclusion and outlook are given in Sec. 4.
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Figure 1: Sketch of the Helmholtz resonator do-

main with acoustic waves f and g.

Figure 2: Block diagram of a generic discrete

linear model with input f [k] and output g[k].

2. Analysis of the Helmholtz Resonator

A Helmholtz resonator as sketched in Fig. 1 consists of a compact volume connected to the cham-

ber by its neck. Qualitatively, the behavior of this resonator can be described as a mass-spring-damper

system. The mass of the gas inside the neck is accelerated by the fluctuating chamber pressure. On

the other side, the compressible gas in the backing volume acts as a spring. The motion in the neck

causes viscous losses close to the walls. Increasing the excitation amplitudes leads to flow separation

at the neck of the resonator, which converts acoustic perturbation energy to the hydrodynamic mode.

The vortices formed remain laminar for moderate excitation levels and turn turbulent for yet larger

levels. This effect is strongly nonlinear and increases the dissipation considerably. Close to the eigen-

frequency of this systems, the motion in the neck is strongest and thus most acoustical losses occur in

that frequency range.

Starting from mass and momentum equations, Keller and Zauner [4] developed the following

expression for the fluctuating velocity u
′

in the neck:

(1) (1 + s) leρ̄
︸ ︷︷ ︸

I

ü
′

+
(

sρ̄(l0 + ls)ω
︸ ︷︷ ︸

IIa

+ ζρ̄
∣
∣u

′
∣
∣

︸ ︷︷ ︸

IIb

)

u̇
′

+
Aρ̄c2

V
︸ ︷︷ ︸

III

u = −ṗ
′

︸︷︷︸

IV

.

Hereby, the parameters A and l0 refer to the neck area and length, respectively. The corrected length

le corresponds to the neck length plus a correction taking the additional mass next to the neck ends

into account which participates in the oscillation. Similarly, ls denotes a friction correction length and

ζ ≈ 1 − (d0/dcav)
4. The density is denoted by ρ̄ and the fluctuating pressure by p

′

. The so-called

boundary layer parameter s reflects the thermo-viscous dissipation.

This semi-analytical equation clearly shows the character of a mass-spring-damper system as

described above, which is excited by the external fluctuating pressure p
′

(term IV). Term I accounts

for the inertia of the mass within the neck. The compressibility of the backing volume is reflected in

term III. The losses are included in terms II, where the first one (a) reflects the linear, thermo-viscous

dissipation due to friction of the oscillating fluid at the neck walls. The second term (b) accounts

for the nonlinear losses due to vortex shedding. This is illustrated in Fig. 3: For a small excitation

amplitude, the flow does not separate as illustrated in Fig. 3(a). Increasing the amplitude leads vortex

shedding at the edges and the flow looses its largely irrotational nature as show in Fig. 3(b). By

this process, energy is extracted from the acoustic mode – which is irrotational – and fed into a

hydrodynamic mode in form of vortices. These vortices are finally dissipated by the turbulent cascade

process.

For small Stokes numbers d0 ≪ δs, the boundary layer parameter can be estimated as s =
1/d0(1 + (κ − 1)/

√
Pr)

√

2ν/ω. The variables Pr, κ, and ν denote the Prandl number, the heat ca-

pacity ratio, and the kinematic viscosity, respectively. According to Ingard [9], the correction lengths

can be estimated as ls ≈ d0 and, for large aspect ratios (d0/
3
√
V ≪ 1), le ≈ l0 + 8/(3π)d0.
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(a) Linear Regime, 100 dB (Q = 2e4). (b) Nonlinear Regime, 150 dB (Q = 2e8).

Figure 3: Vortices visualized by isosurfaces of the Q-criterion [8] for different SPLs1 during the

inflow excited close to eigenfrequency; background colored by vorticity in logarithmic scale.

The behavior of an acoustic resonator is often described in the frequency domain. Assuming

harmonic periodicity – i. e., u
′

= û eiωt and p
′

= p̂ eiωt – Eq. (1) can be rewritten as

(2) (1 + s) leρ̄ωi û+ (sρ̄(l0 + ls)ω + ζρ̄û) û− Aρ̄c2

V ω
i û = −p̂ .

The angular eigenfrequency of this system is given as:

(3) ωeig = c

√

A

V (1 + s) le
.

Introducing the crude linearization ζρ̄û2 ≈ ϵnlsρ̄ d0ωû with a loss factor ϵnl, Eq. (2) can be rewrit-

ten in terms of the impedance [10]:

(4) Zm(ω) =
p̂

û
= ρ̄

(

1 +
κ− 1√
Pr

)(

1 + ϵnl +
l0
d0

)√
2νω + i

(

leρ̄ω(1 + s)− Aρ̄c2

V ω

)

.

Note that such a nonlinear factor ϵnl depends on both the geometry and strongly on the SPL [11]. For

the following comparison, the impedance expression of the cavity mouth Zm is scaled by the area

ratio of the tube to mouth, i. e., Z = d2cav/d
2
0 Zm. The real part of the impedance Z is referred to as

resistance and its imaginary part as reactance.

3. System Identification in the Linear Regime

In this section, the geometric and numerical setup used in this study are presented. Linear SI

methods are introduced before the results of the identification are compared against analytical and

empirical descriptions.

3.1 Geometric and Numerical Setup

The response of a Helmholtz resonator as sketched in Fig. 1 with a cylindrical neck and the

backing volume is investigated numerically for three cases listed in Tab. 1 under ambient conditions.

For validation purposes, the setups are chosen corresponding to the study of Hersh et al. [2].

120 log
10
(prms/20µPa)
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Case I Case II Case III Cases I – III

l0 l0 l0 d0 lcav dcav
5.08 cm 0.635 cm 0.159 cm 0.635 cm 2.54 cm 5.08 cm

Table 1: Geometry dimensions for the three cases investigated this study.

Acoustic excitation is imposed at the boundary opposite to the resonator situated at a distance

lsim = 10 cm. Shortly after this inlet, area averaged measurements are evaluated across a reference

plane. The computational domain is set long enough such that non-acoustic disturbances occur-

ring closer to the resonator do not influence the measurements. The acoustics is modeled using two

Riemann invariants f and g which can be imaged as waves traveling with the speed of sound c in

right and left direction, respectively. In absence of mean flow as in this study, they are defined as

f = 1/2(p
′

/(ρ̄c) + u
′

) and g = 1/2(p
′

/(ρ̄c) − u
′

). At the inlet, a f wave signal can be imposed

and low acoustic reflection of the outgoing g wave is realized by using Navier-Stokes characteristics

boundary conditions (NSCBC), c. f. [12]. For the hard walls, no-slip boundary conditions are set,

whereas, for the artificial boundaries marked by dashed lines in Fig. 1, slip conditions are utilized.

The compressible Navier-Stokes equations with k-equation eddy-viscosity model are solved using

the Pimple algorithm of OpenFOAM [13] on block structured o-grids with at least 0.85 million cells.

Each mesh resolution close to the neck walls is set fine enough to resolve the boundary layer for the

frequency range of interest well. The boundary thickness can be estimated with the Stokes length

δs = 2π
√

2ν/ω, c. f. [6]. A comparison of radial profile of the root mean square of the axial velocity

in the middle of the neck against the analytical solution in a infinitely long pipe [14] shows a good

agreement, indicating that the boundary layer is resolved well. In the main parts, the acoustic CFL

number c∆t/∆x is clearly below unity. Close to the walls, this number is larger, but, by using implicit

time integration, the acoustics are still resolved accurately in those regions. It should be emphasized

that the tolerance for stop criterion for outer iteration loops accounting for compressible pressure-

velocity coupling must be set low. Otherwise, the simulation could easily fail to express the speed of

sound correctly and, accordingly, the a wrong resonator eigenfrequency would be predicted.

For the identification, a broadband input signal with a SPL of 75 dB is generated. A priori

monofrequent simulations close to the eigenfrequency showed (see, e. g., in Fig. 3) that for such a

moderate excitation level the flow remains in the linear regime for the frequency range of interest,

i. e., the flow does not separate at the edges. In other words, the dominant nonlinearity in Eq. (1) -

term IIb - stays small. The signal is designed in a way that it excites the whole frequency spectrum

of interest and steep changes in the input signal are avoided, which could otherwise cause numerical

difficulties. The requirements above are satisfied by a signal construction according to [15]. Dou-

bling the number of cells provides a very similar response to such a signal. Thus, the solution can be

expected to be independent of the mesh in the linear regime.

3.2 Methodology

In this section, linear SI methods are applied to identify a model of the resonator dynamics. Such

methods have already been successfully applied to other thermo- or aero-acoustic systems, see, e. g.,

a review by Polifke [16] or Jaensch et al. [17] for recent developments. Linear SI methods are only

applicable to dynamical systems behaving predominately in a linear manner. By construction of the

input signal, this condition is satisfied, see Sec. 3.1. Thus, the following analysis is clearly restricted

to the linear regime without flow separation. Using this methodology, the reflection coefficient over

the whole frequency range of interest is estimated from time series data of a single, broadband excited

CFD simulation.

The resonator can be considered as a single-input / single-output (SISO) system with input and

output data f [k] and g[k], respectively. Hereby, k denotes the discrete time k = t/∆t where ∆t is the
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sampling interval. The general form of a linear, parametric model is given as

(5) A(q−1) g[k] =
B(q−1)

F (q−1)
f [k] +

C(q−1)

D(q−1)
e[k] ,

where q stands for the time shift operator and e[k] is Gaussian white noise. The variables A, B,

C, D, and F are polynomials in q−1, so for instance A(q−1) =
∑na

i=0 ai q
−i. The polynomials

A, C, D, and F are defined such their 0th coefficients are unity, thus a0 = c0 = d0 = f0 =
1. Figure 2 illustrates this process as a block diagram. The possible infinite answer of a sys-

tem can be parametrized by the finite set of polynomial coefficients collected in the vector θ =
(a1, . . . , ana

, b0, . . . , bnb−1, c1, . . . , cnc
, d1, . . . , dnd

, f1, . . . , fnf
)T . Setting restrictions on these poly-

nomials corresponds to choosing a specific model for the identification.

The system is described by two transfer functions, one for the input data R and one for the noise

H . They are given as

(6) R(q−1) =
B(q−1)

A(q−1)F (q−1)
and H(q−1) =

C(q−1)

A(q−1)D(q−1)
.

Knowing the parameters θ and all previous time steps up to k − 1, the one step ahead prediction

g̃[k|k − 1](θ) for the next observed value g[k] is calculated as

(7) g̃[k|k − 1](θ) = H−1(q−1)R(q−1) f [k] +
(
1−H(q−1)

)
g[k] .

Now, the parameters θ are determined in such a way that the squares of the discrepancies are mini-

mized, i. e., the following optimization problem has to be solved:

(8) θ̂ = argmin
θ

∑

k

(y[k]− ỹ[k|k − 1](θ))2 .

The estimated model is assign with these optimal parameters θ̂. This procedure is called prediction-

error minimization (PEM).

In this study, the Output-Error model is applied. This corresponds to a case where A as well as the

noise model H are set to unity in Eq. (6) and the other polynomials can be chosen independently. This

model was chosen since it turned out that modeling the error does not bring benefits for the resonator

setup in the linear regime. Before identification, the CFD time series are shifted with respect to each

other to account for the time it takes to travel from the reference plane to the resonator and back.

Moreover, the CFD raw data, which is highly resolved in time, is downsampled in order to stabilize

the identification process.

3.3 Results

In the following, the properties of estimated 2nd order Output-Error models (nf = 2, nb = 3)

for the three test cases (see Tab. 1) are discussed and compared to experimental results [2] as well

as to the analytic behavior described by Eq. (4). The nonlinear factor ϵnl is estimated according to

Garrison et al. [11] as ϵnl ≈ 1.62 (p0/47.88 Pa)0.93, where p0 is the amplitude of the incoming wave.

In the linear regime, the value of the expression above is – as expected – quite small (0.0043). In all

the following plots it is evident that the analytical model predicts a too low eigenfrequency for short

neck lengths. This fact is not mentioned explicitly anymore.

From the estimated reflection coefficient R, the normalized impedance Z and admittance Y =
1/Z can be derived from the relation

(9) R(ω) =
ĝ

f̂
=

Z − 1

Z + 1
=

1− Y

1 + Y
,
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Figure 4: Reflection coefficient R of the estimated model (solid line), analytical solution Eq. (4)

(dashed line), experiments [2] (circles) for Case I in red, Case II in blue, and Case III green.
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Figure 5: Normalized admittance Y of the estimated model (solid line), analytical solution Eq. (4)

(dashed line), experiments [2] (circles) for Case I in red, Case II in blue, and Case III green.
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Figure 6: Normalized impedance Z of the estimated model (solid line), analytical solution Eq. (4)

(dashed line), experiments [2] (circles) for Case I in red, Case II in blue, and Case III green.
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where the .̂ indicates the Fourier transform of the associated quantity. Both the impedance Y and

admittance Z are both normalized using the free impedance ρ̄c in the following.

The frequency response of R for these approaches and for all test cases is plotted in Fig. 4. The

band stop character of R can clearly be observed considering the gain curves in Fig. 4(a). In the vicin-

ity of the corresponding eigenfrequency, the gain is small, whereas it is close to unity away from this

range. The three gain curves qualitatively match for all test cases. The estimated models capture the

gain at eigenfrequency correctly, whereas the analytical model underestimates this quantity slightly.

The phase of the response shown in Fig. 4(b) behaves similarly for all approaches. For low and high

frequencies, the input and output signals are in phase and close to the eigenfrequency in antiphase.

The frequency response of the normalized admittance Y is displayed in Fig. 5. The admittance

can be interpreted as the transfer function of the SISO system with fluctuating pressure p̂
′

as input

and velocity û
′

as output. The gain shows a high resonant response close to the eigenfrequency, see

Fig. 5(a). Figure 5(b) presents the corresponding phase curve for the admittance. For low and high

frequencies the phase difference of p̂
′

and û
′

is π/2 and −π/2, respectively. At the eigenfrequency,

the signals p̂
′

and û
′

are in phase. This behavior is described in the same way for the three cases.

Figure 6 shows the normalized impedance Z in its resistance/reactance representation. The reac-

tance curves of the different approaches shown in Fig. 6(b) agree very well with each other for all

cases. The magnitudes of the resistance are estimated correctly close to the corresponding eigenfre-

quency by the Output-Error models even though the trends are expressed incorrectly, see Fig. 6(a).

This discrepancy in the trend can be explained with the ill-conditioned transformation from R to the

resistance Re(Z). Away from the eigenfrequency, the reactance dominates the impedance due to its

larger numerical value and, thus, a wrong trend in the resistance is not manifested in the reflection

coefficient as long as its value is good close to the eigenfrequency. The analytic model reflects the

trend well, but the absolute values of the resistance are underestimated for the three test cases.

4. Conclusion and Outlook

The dynamic behavior of a Helmholtz Resonator has been analyzed. First, an analytical approach

has been reviewed, where the movement of the gaseous mass within the neck is described in analogy

to a mass-spring-damper system. By linearization of the nonlinear ODE derived from that model, an

impedance model can be derived.

The flow in the vicinity of the neck has been examined by means of CFD simulations. For low

SPLs, the flow does not separate at the edges and, thus, the resonator dynamics can be expected to

behave linear in that regime. At higher excitation amplitudes, vortex shedding occurs, which leads to

additional, nonlinear damping.

In the linear regime, a system identification has been performed on broadband CFD time series

data using a 2nd order Output-Error model. This process provides a model that is valid over the whole

frequency range of interest using the data of a single simulation. From the estimated reflection coeffi-

cient, the admittance as well as the impedance have been derived. The estimated quantities of each test

case have been compared to analytical and empirical descriptions. The reflection coefficient and the

admittance have always matched the reference values very well. Choosing the resistance/reactance

representation for the impedance, the values of the reactance curves have agreed with each other

for all three approaches. The resistance values close to the corresponding eigenfrequency have been

caught well by the estimated models, but have shown wrong trends due to the ill-conditioned relation

of resistance to reflection coefficient.

The present results demonstrate the feasibility of the CFD/SI method for this type of problem. The

CFD/SI approach will be extended to the nonlinear regime in order to describe the resonator behavior

at higher SPLs. Nonlinear SI methods, as for instance neural networks, can in principle account for

such effects.
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a b s t r a c t

The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based

reduced-order model, which is obtained by a combination of high-resolution CFD simu-

lation and system identification. It is shown that even in the nonlinear regime, a linear

model is capable of describing the reflection behavior at a particular amplitude with

quantitative accuracy. This observation motivates to choose a local-linear model structure

for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-

neuron layer distributes the input signal over the linear submodels, depending on the root

mean square of the particle velocity at the resonator surface. The resulting model struc-

ture is referred to as an local-linear neuro-fuzzy network. System identification techniques

are used to estimate the free parameters of this model from training data. The training

data are generated by CFD simulations of the resonator, with persistent acoustic excitation

over a wide range of frequencies and sound pressure levels. The estimated nonlinear,

reduced-order models show good agreement with CFD and experimental data over a wide

range of amplitudes for several test cases.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Helmholtz resonators, as schematically sketched in Fig. 1, are used in various industrial applications to absorb sound. Arrays of

such resonators are applied as liners in jet engines to reduce the emission of sound to the environment [1, p. 214ff]. Combustion

systems as for instance gas turbines can become thermoacoustically unstable due to the feedback between the unsteady heat

release and the acoustics within the chamber. Helmholtz resonators are often inserted to stabilize the combustion process [2].

The present paper introduces a data-based reduced-order model (ROM), a so-called local-linear neuro-fuzzy network.

This model is defined in the time domain, is capable of considering a change in amplitude, and can capture nonlinear effects.

The data for the identification of the model parameters is generated by broadband CFD simulation. Once such a ROM is

identified, it can be evaluated efficiently and may serve, e.g., as a nonlinear boundary condition in simulations of com-

pressible flow that require acoustic boundary conditions (BC), such as computational aeroacoustics (CAA). Moreover, the

methodology proposed characterizes the nonlinear resonator behavior in an efficient and robust manner, and can thus

support the proper tuning of a resonator.

As mentioned above, the resonator can respond in a linear and nonlinear fashion. Linear behavior of a system means that

the relation between the system input and its output can be described by a linear transfer function. A linear transfer
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function can easily be transformed from the frequency/Laplace space to the time domain and vice versa by using the direct

and inverse Fourier/Laplace transformation, respectively. If the resonator operates in the linear regime, its response is fully

characterized by its impedance or equivalently by its reflection coefficient. Such a linear relation is valid for low acoustic

amplitudes. However, when the particle velocity in the resonator neck increases beyond a certain level, the flow separates at

the edges of the resonator leading to nonlinear effects as already early described by Sivian [3] as well as by Ingård and

Labate [4]. The nonlinear behavior of an acoustic resonator manifests itself in several aspects: The most prominent nonlinear

effect is that the harmonic behavior changes with the excitation amplitude. This effect can be modeled with an impedance

describing function, which gives the impedance in dependency on the applied sound pressure level (SPL), see, e.g., Hersh

et al. [5]. For many technical applications, the impedance describing function captures much of the dynamics for constant

acoustic amplitudes. Scattering to higher harmonics [3,6,7] cannot be described by the impedance describing function, but

this scattering remains on a very moderate level for Helmholtz resonators, see Förner et al. [8]. Moreover, the acoustic

behavior at a certain frequency can noticeably be influenced by multi-tonal excitation, which means that in the excitation

signal not only the that single frequency is present but also multiples of this frequencies, see Bodén Boden13, Boden16 and

Serrano et al. [9].

Most available models are based on the first principle 1-D analysis of the fluctuating mass in the resonator neck, see, e.g.,

Rice [10], Cummings [7], Maa [11] as well as Hersh et al. [5]. An impedance describing function can be derived in a semi-

analytical manner. Good agreement with experiments is achieved once the values of a set of correction parameters are correctly

assigned. Such correction parameters are usually provided via correlation analysis and are valid for fixed amplitudes. That is

why the transformation of this kind of model into time domain, where amplitudes vary dynamically, is not a trivial task.

The present methodology requires CFD simulations and broadband data analysis. Bodén [12,13] performed experi-

mentally broadband forcing of an orifice and applied correlation analysis to separate the linear and the nonlinear con-

tribution. Tam et al. [14] compared their direct numerical simulations (DNS) excited by a broadband signal against ex-

periments. Tam et al. already showed in preceding studies [15,16] the potential of simulation to capture the resonator

dynamics. The impact of purging flow is investigated via large eddy simulation by Mendez and Eldredge [17]. In a series of

papers, Zhang and Bodony studied the effect of high amplitude excitation as well as the influence of laminar and turbulent

grazing flow using the DNS approach, see e.g. [18,19].

The methodology proposed in this study applies the computational fluid dynamics/system identification (CFD/SI) ap-

proach to estimate a ROM, see Polifke [20]. Since usually a model structure is specified without considering explicitly the

physics involved, such a model is called a “black-box model” in contrast to a “white-box model” derived from first principles.

The model parameters are deduced from CFD time series, the so-called training data. In principle, the training data set can

also be provided by experiment. This time series must cover the entire frequency range of interest for linear SI and also the

entire amplitude range for nonlinear SI. Once the model structure is fixed, the model parameters are determined such that

the difference between the model output and the training data is minimized in terms of a suitable norm. In order to

ascertain good model performance, the estimated model is subsequently validated against an independent test data set. This

methodology is applied in this study to several test cases without mean flow under ambient conditions. Since no restricting

assumptions are made on the model structure, the proposed model should also be capable of characterizing more complex

resonator configurations, as, e.g., in presence of purging or grazing flows, as well as other aeroacoustic devices, as for

instance orifices.

Förner and Polifke [21] showed that the CFD/SI approach can provide quantitatively accurate black-box models for the

Helmholtz resonator dynamics in the linear regime, i.e. for low excitation amplitudes. Only a very limited number of linear

black-box models are available; the so-called output-error (OE) model has shown good performance. However, there exists a

large variety of nonlinear models which can be used for SI. Representatives of nonlinear black-box models are Volterra series

as well as artificial neural networks. These models are in principle capable of modeling any nonlinear behavior. However, for

the test cases considered, a huge number of model parameters was required such that identification results that were

achieved with reasonably long time series were not robust.

Therefore, this study introduces a “gray-box model” structure that exploits a priori knowledge of the system dynamics.

Neuro-fuzzy networks offer the opportunity to incorporate such knowledge in the model structure, see, e.g., Nelles [22] or

Fig. 1. Sketch with dimensioning of a Helmholtz resonator with acoustic waves f and g.
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Babuška and Verbruggen [23]. Building a network containing so-called fuzzy neurons offers additional freedom in the

modeling. A fuzzy neuron applies a so-called membership function and becomes active only under certain conditions. The

membership function takes a value within the interval [ ]0, 1 . If these conditions are fully or not at all satisfied, true (1) or

false (0) is assigned to this function, respectively. However, the membership function cannot only take on the values “true”

and “false”, as in Boolean logic, but it can take on also every intermediate state in the interval [ ]0, 1 , as in fuzzy logic.

The paper is organized as follows: Section 2 introduces acoustical quantities and the underlying physical mechanisms as

well as the geometrical and computational setups of the present study. The linear system identification process using an

output-error model is shown in Section 3. Moreover, the ability of that model type to characterize the resonator behavior in

the linear regime as well as in the nonlinear regime in a local-linear fashion are discussed here. In Section 4, a local-linear

neuro-fuzzy model to identify the nonlinear resonator response is proposed and an algorithm for the estimation of the free

model parameter is derived. This procedure is applied to several test cases and validated against experimental data from the

literature in Section 5. Conclusion and outlook are offered in Section 6.

2. Acoustical background and CFD setup

A Helmholtz resonator consists of a backing volume connected via a small neck to a larger volume as sketched in Fig. 1.

This study considers resonators that are cylindrical, with lengths l0, lcav as well as diameters d0, dcav of the neck and the

backing volume, respectively. The open area ratio d d/0
2

cav
2 is denoted by s. In the next section (Section 2.1), physical quantities

to describe the resonator absorption behavior are introduced, and the pertinent mechanisms are outlined. The numerical

setup used in the current study and a validation of the CFD solver is presented in Section 2.2. The design of the input signals

is discussed here. Finally, the test cases considered are introduced in Section 2.3.

2.1. Acoustical quantities and physical mechanisms

The behavior of an acoustic resonator is often described in the frequency domain by its impedance Z. It is defined as the ratio

of the Fourier transforms ( .̂ ) of the fluctuating acoustic pressure ′p and velocity ′u normal to the reference surface at xref :

ω ω ρ( ) = ( ) =
^

^ ( )
Z z c

p

u
.

10 0

The real part of the impedance is referred to as resistance and its imaginary part as reactance. Usually, the impedance is

normalized with the specific impedance ρ c
0 0, where ρ0 and c0 denote the mean density and the speed of sound, respectively.

The resonator can also be characterized in terms of characteristic wave amplitudes f and g, assuming 1-D acoustics in

front of the resonator. These f and g can be considered as right and left traveling waves, respectively. In absence of mean

flow, as in this study, they are defined as
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The ratio of a normally incident wave
^
f to the reflected ĝ wave in frequency domain is called reflection coefficient R:
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The resonator behavior is often approximated with a simplified 1-D ordinary differential equation, see for instance Keller

and Zauner [24] or Bodén and Zhou [25], which helps to understand the fundamental behavior of the resonator:
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The equation above has the structure of a mass-spring-damper system. The acoustic pressure (term IV) is driving the mass in

the neck of the resonator. This oscillating mass is proportional to the geometrical length of the neck l0, elongated by a length

correction Δl, cf. Ingard [26]. This correction accounts for the fluid in the vicinity of the neck taking part in the oscillation

(term I). The resonator backing volume is filled with a compressible fluid, which acts like a spring (III). Losses are induced

due to thermo-viscous losses described by the constant Rl (IIa) and due to flow separation (IIb). In the IIb-term, also the

effect of flow contraction is captured in the so-called discharge coefficient Cd. For a harmonic signal ω′( ) = ( )u t A tsinu , the

term ̇′ ′u u can be approximated by ′A uu and, accordingly, the impedance can be described as:
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In the formula above, it can be seen that an amplitude variation has a huge impact on the impedance. The nonlinear

resistance IIb is influenced, since Au explicitly appears there. Also, the discharge coefficient Cd varies since the flow con-

traction mechanisms also depend on the amplitude. Moreover, the length correction Δl for the effective length in the

reactance is also known to vary with the excitation amplitude, see for instance Ingard [26] or Temiz et al. [27]. In the range

of small amplitudes, these effects are negligible, and the resonator is said to operate in the linear regime. With rising

amplitudes, the nonlinear effects described above have a huge impact on the resonator response in the nonlinear regime. In

the expressions above, a harmonic forcing with amplitude Au is assumed. In the case of non-harmonic excitation, the root

mean square (rms) of the velocity (for a fixed geometry) seems to be the parameter controlling the nonlinear behavior, see

Bodén [12]. The strength of an acoustic signal is usually measured as SPL, which is defined via the rms of the acoustic

pressure p
rms

and the reference pressure = μp 20 Pa
ref

as

=
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

p

p
SPL 20 log dB.

6
10

rms

ref

The expected behavior from the 1-D consideration above fits to experiments as for instance shown in Fig. 2 with

measurements reproduced from Hersh et al. [5] for the test case HR1 (defined in Section 2.3). The resistance gets larger with

increasing SPL, see, e.g., Fig. 2 on the left-hand side. The eigenfrequency can be detected by the zero-crossing of the re-

actance. In Fig. 2 on the right, it can be observed that the eigenfrequency shifts slightly to higher frequencies. The zero-

crossing of the 140 dB reactance curve is at a higher frequency in comparison to the other curves. This nonlinear behavior

manifests itself in the corresponding reflection coefficient as follows (see Fig. 3): First, the maximal absorption increases

Fig. 2. Normalized impedance z for test case HR1: Measurements (� ) by Hersh et al. [5] and CFD simulations ( ) for 75 dB ( ), 120 dB ( ), 130 dB

( ), and 140 dB ( ).

Fig. 3. Reflection coefficient R for test case HR1: Measurements (� ) by Hersh et al. [5] and CFD simulations ( ) for 75 dB ( ), 120 dB ( ), 130 dB ( ),

and 140 dB ( ).
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with SPL in the lower SPL range. When the normalized resistance exceeds unity, the maximal absorption decreases due to

the so-called over-damping of the system, but the frequency bandwidth of high absorption becomes wider. For such an over-

damped system, the phase curve differs from a normally damped system, see Fig. 3 on the right-hand side. All R-curves are

in phase at frequencies far away from the eigenfrequency. Close to the eigenfrequency, normally damped systems are in

antiphase, while over-damped systems are in phase.

2.2. CFD setup and solver validation

With the CFD/SI approach, training data for black-box ROMs are acquired from CFD simulations as time series of fluc-

tuating flow variables. The CFD simulations are performed with OpenFOAM [28] solving the compressible, transient Navier-

Stokes equations using the PIMPLE algorithm. The acoustic inlet boundary is realized with the Navier-Stokes characteristic

boundary conditions (NSCBC) suggested by Poinsot and Lele [29], where an arbitrary signal for the f wave traveling into the

domain can be imposed, while maintaining a low reflection coefficient for the outgoing g wave. More details on the nu-

merical solver are given by [21].

Results from a solver validation study for test case HR1 (defined in Section 2.3) are presented in Figs. 2 and 3. These

figures show the normalized impedance and the reflection coefficient for experiments and CFD simulations considering

three SPLs namely for 120, 130, and 140 dB. The numerics over-predict the resistance moderately for the 140 dB case and

very slightly for the 130 dB case. Besides that small deviation in the resistance for high SPLs, all curves agree reasonably well.

It can be concluded that the CFD simulation performed on a 3-D grid with 1.8 million cells is capable of capturing the

acoustics in the nonlinear regime.

In order to compare simulations with measurements, the input amplitude of the f waves must be set such that the

superposition of f and reflected wave g ¼ Rf matches the desired total SPL, cf. Eq. (2). Unless the reflection coefficient R is

known a priori, an iterative process setting the input amplitude is required. Note that such an iterative approach of is used

solely for validation purposes in this study. Besides that, the SPL in the CFD simulations is set only with respect to the input

signal f, ignoring the reflected acoustic g wave, as it is also done by other authors, for instance by Zhang and Bodony [18].

This will be referred to as incident SPL in the following. Note that in general the incident SPLs and the actual total SPL differ

from each other.

For the SI, broadband input-output data are required, which are generated by the CFD simulation. The time series of the

acoustic forcing f wave and of the reflected g wave serve as input and output data set, respectively. Since the influence of 3-D

effects is minor for the test cases considered [30], the broadband data for the SI was generated on a 2-D axisymmetric mesh.

The acoustic input signals for the f wave are generated according to Föller and Polifke [31]. This signal is designed such that it

excites the entire frequency spectrum of interest while avoiding rapid changes in the input signal, which could cause numerical

difficulties. Moreover, it shows a low autocorrelation. Otherwise, the SI might fail if an input signal with high autocorrelation

would be considered [31]. The amplitude of this signal is successively ramped up in time to cover a wide range of amplitudes for

the nonlinear SI. The signal with a length of 0.5 s is divided into equally sized parts on which the amplitude either is set

constant or increases linearly in time to the next amplitude plateau. The nonlinear signal assesses the amplitude plateaus with

incident SPLs of 75 dB, 110 dB, 120 dB, 130 dB, 140 dB, and 150 dB, respectively. This signal is plotted below in Fig. 9 of Section

4.2. For validation purposes, a second uncorrelated signal is generated [31] and ramped up in the same manner.

2.3. Test cases

Four test cases are considered in the present study. Their geometrical values are given in Table 1. To have access to

experimental validation data, the test cases HR1, HR2, and HR3 are set as in Hersh et al. [5]. Test case HR4 corresponds to the

test rig of Temiz [32].

3. Linear system identification on specified amplitude regimes

The idea of the CFD/SI approach is to estimate a ROM from time series generated by CFD simulation. The model structure

is defined a priori, and the free model parameters are set such that a suitable objective function describing the difference

Table 1

Geometry dimensions and properties for the test cases investigated in this study. The first three configuration are set according to Hersh et al. [5] and the

HR4 according to Temiz [32].

Case l0 [cm] d0 [cm] lcav [cm] dcav [cm] feig [s�1] s [%]

HR1 0.159 0.635 2.54 5.08 ≈560 1.56

HR2 0.318 0.635 2.54 5.08 ≈490 1.56

HR3 0.635 0.635 2.54 5.08 ≈400 1.56

HR4 0.4 0.42 2 5 ≈380 0.71
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between the model prediction and the CFD data is minimized. To achieve a good result, the chosen model structure has to be

suitable to describe the phenomena.

Förner and Polifke [21] have shown that a second-order output-error model captures the linear dynamics of a Helmholtz

resonator with good accuracy. Such a model is by design linear and thus cannot exhibit any amplitude-dependent behavior.

However, it will be shown in Section 3.4 that such a model can describe the linearized behavior for a fixed SPL regime. But

first the model structure and the estimation procedure are introduced in the next sub-section (Section 3.1). Linear models

are estimated for the considered test cases in Section 3.2 and the uncertainty associated with the identification process is

discussed in Section 3.3.

3.1. Methodology of an output-error model estimation

Since the CFD time series is a discrete time series, also the models have to be defined in a discrete framework. The time

series is sampled equidistantly with a constant time step Δt . The discrete time index k denotes the sample for the instant in

time = ( − )Δt k t1k .

The response of an output-error model – see the block diagram in Fig. 4 – depends on present and previous input as well

as on previous output. The time-discrete output-error model for the input [ ]f k and the output [ ]g k is given as a filter, which

may formally be written as a fraction of two polynomials in the time shift operator1 q:

[ ] =
( )

( )
[ ] + [ ] =

+ + ⋯ +

+ + ⋯ +
[ ] + [ ]

( )

− − +

− −
g k

B q

F q
f k e k

b b q b q

f q f q
f k e k

1
.

7

n
n

n
n

0 1
1 1

1
1

b
b

f

f

The equation above models the transfer behavior =R B F/ . Since no perfect match between the CFD data and the estimated
model can be achieved, “noise” [ ]e k is considered in the estimation process. The noise is the difference between the CFD

output and the output of the estimated model, which is assumed to be white colored. In other words, it is assumed that

there remains no further information in noise, i.e. the difference of CFD and model output. The order of the transfer function

R is determined by the number of free parameters nb and nf in numerator and denominator, respectively. In the present

study, nb ¼ 3 and nf ¼ 2 for all cases considered. All free parameters are assembled in the vector

θ = ( … … )b b b f f f, , , , , , ,n n
T

OE 0 1 1 2b f
.

The task in the system identification process is to estimate the optimal values of parameters θ̂OE. For that purpose, the

time series data of the CFD simulation is used as training data set. The parameters θ̂OE are determined such that the dif-

ference of the model output θ[ ]( )g k defined in Eq. (7) and of the measured CFD output [ ]g k
CFD

is minimized in the following

sense:

∑θ θ
^ = [ ]( [ ]( ) − [ ])

( )θ

w k g k g kargmin .
8k

OE CFD
2

This least square optimization is weighted by a weighting function [ ]w k . As long as the SPL does not vary in the training data

set – which is the case in this section – the weights are set to [ ] ≡w k 1. This ansatz to predict the free model parameters is

called the prediction error method (PEM), see Tangirala [33].

The above optimization problem (8) is nonlinear and, thus, cannot be solved directly. There are several algorithms

available to solve this problem, see e.g. the textbook by Keesman [34]. Here, an iterative approach is presented, where the

input and output data is pre-filtered such that white noise is realized in the end. This procedure, although well-known [34],

is presented here since it is helpful to construct the optimization procedure for the nonlinear model proposed in Section 4.4.

The nonlinear optimization problem can be written in a pseudo linear way:

Φ θ^ = ^
( )g W , 9

1/2
OE OE

Fig. 4. Block diagram of the output-error model with input [ ]f k and output [ ]g k .

1 Example: [ ] = [ − ]−q f k f k 11 .
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whereW denotes a diagonal matrix with [ ]w k on its diagonal. The left-hand side represents the non-disturbed model output
^[ ] = ( ) ( ) [ ]g k B q F q f k/ for = + +k n n K1, 2 ,...,b b and the so-called observation matrix ΦOE is defined as (for >n nb f ):

Φ ( ^) =

[ ] [ − ] … [ ] −^[ − ] −^[ − ] … −^[ − ]

[ + ] [ ] … [ ] −^[ ] −^[ − ] … −^[ + − ]

⋮ ⋮

[ ] [ − ] … [ − ] −^[ − ] −^[ − ] … −^[ − − ] ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

f g

f n f n f g n g n g n n

f n f n f g n g n g n n

f K f K f K n g K g K g K n

,

1 1 1 2

1 2 1 1

1 1 2 1 10

b b b b b f

b b b b b f

b f

OE

It can be seen that the pseudo linear system in Eq. (9) cannot be solved directly for the unknowns θOE, since θOE is also

needed to define the observation matrix ΦOE and the left-hand side ĝ of this equation. But instead of ĝ , the measured CFD
output g

CFD
can be used to approximate the unknowns θOE. The solution for this weighted linear least square problem (8) is

given as

( )θ Φ Φ Φ≈ ( ) ( ) ( )

( )Φ

−

≔ ( )†

  

f g W f g f g W g, , , .

11

T T

f g

OE OE CFD OE CFD

1

OE CFD

,

CFD

WOE CFD

The solve operator for the weighted least square problem is denoted as ( )†. W in the following. With this ansatz of using g
CFD

instead of ĝ , a model is estimated which has a colored noise ( ) [ ]F q e k1/ instead of white noise. The model with colored noise

is, in fact, autoregressive with exogenous terms (ARX). It has been observed that this ARX model shows inferior quality as

the output-error model for the considered problem, especially for low frequencies. This colored noise can be overcome to

obtain the output-error model when input and output are pre-filtered with ( )F q1/ as shown below.

The considerations above lead to the following iterative procedure to determine θ̂OE correctly, cf. [34, Chp. 6.1.4]: The

vector of unknowns is initialized with zeros, i.e. θ = 0OE
0 . Then, the iteration = …l 1, 2, can be started:

First, the input and output are pre-filtered using the estimated model parameters of the previous iteration step −l 1:

θ θ
[ ] =

( )( )
[ ] [ ] =

( )( )
[ ]

( )− −
f k

F q
f k g k

F q
g k

1
and

1
.

12

l

l

l

l
OE

1
OE

1 CFD

Note that the filter is just the identity in the first iteration step l ¼ 1. The observation matrix is created with these filtered

quantities:

Φ Φ= ( ) ( )f g, . 13
l l l
OE OE

Now, the parameter vector can be calculated as the solution of the weighted least square problem for the current iteration

step l:

( )θ Φ=
( )

†
g .

14
l l

W

l
OE OE

This procedure is repeated until θ
l
OE converges to the solution θ̂OE, which is usually the case after a few iterations.

3.2. Linear system identification

It has been remarked above that Helmholtz resonators can be linearly characterized with a second-order output-error

model [21]. Here, a time series with length 0.1 s and an incident SPL of 75 dB are used for the CFD simulations for all four

test cases. The estimated reflection coefficients are presented in Fig. 5. In Fig. 6, the corresponding normalized impedance is

shown for HR1. In those figures, also the empirical data from Hersh et al. [5] and Temiz [32] are included. Good agreement

can be seen for all test cases.

3.3. Uncertainty and Ill-conditioned transformation to resistance

The SI process is always linked to some uncertainty in the estimated model parameters. This uncertainty can be de-

termined using statistic techniques under the assumption the original system has the same structure as the model system.

With this assumption and = −W 1K nb
, the covariance matrix in the estimated parameters θ̂Cov OE is given as [34]:

( )θ σ Φ Φ
^ = ( )

−
Cov , 15e

T
OE

2
OE OE

1

where se denotes the empirical standard deviation of the noise [ ]e k .

This uncertainty in the model parameter manifests itself in confidence intervals of the reflection behavior. In Fig. 5, the

one (68.27%) and two standard deviation (95.45%) confidence intervals are shown for gain and phase of the reflection

coefficient R estimated by an output-error model trained on a 0.1 s time series in the linear regime. This 0.1 s time series is
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sufficient to estimate the model parameters with high accuracy. For the gain | |R , the confidence interval can be visually

detected even though they are quite small. The intervals in the phase curve can hardly be seen.

The estimated reflection behavior and its uncertainties can be propagated in an impedance representation and are

shown in Fig. 6. For clarity, this is only presented for HR1. The uncertainties are propagated by Monte Carlo simulations with

1000 random experiments. Here, many models are considered with random model parameters set according to the dis-

tribution given by the covariance in Eq. (15). These models are transformed to the impedance and, then, the confidence

intervals are defined by the corresponding quantiles. In the impedance representation, the impact of the uncertainty rises.

The resistance R( )z is determined with narrow uncertainty bounds only in the vicinity of the resonator eigenfrequency.

Apart from that frequency, the resistance is associated with high uncertainty. This behavior arises from the ill-conditioned

transformationR R( ) = [( + ) ( − )]z R R1 / 1 wheneverR I( ) << | ( )|z z . This ill-conditioned transformation does not only influence

the numerical setup, but also experiments with resonance tubes, where also the reflection coefficient R is determined and

the impedance z is deduced from it. Due to this ill-conditioned transformation, the following discussions concentrate on the

reflection coefficient R.

3.4. Local-linear identification on specified amplitude levels

In the identification process, a linear model is estimated that provides the best fit for the training data. This model can be

considered as a linearization of the actual nonlinear behavior around the current working condition. If the operating

conditions in the training data sets differ, so do the estimated linear models. Different amplitude levels can be considered as

different working condition, as seen in Eq. (5), where the amplitude shows up explicitly. Based on that idea, a series of linear

models is estimated using data sets generated with an incident SPL of 75, 120, 130, and 140 dB, respectively. The corre-

sponding reflection coefficients are plotted in Fig. 7. It can be seen that those models depict the trends expected for a correct

representation of the nonlinear behavior: With rising SPL, the resistance also increases and, consequently, the minimal gain

Fig. 6. SI-estimated ( ) and measured ( ) z with 1 and 2 standard deviation confidence intervals for test cases HR4.

Fig. 5. SI-estimated ( ) and measured (� ) reflection coefficient R with 1 and 2 standard deviation confidence intervals for test cases HR1 ( ), HR2

( ), HR3 ( ), and HR4 ( ).
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of the reflection coefficient drops. When the over-damped regime is reached, the maximal absorption decreases again, while

the frequency bandwidth of high absorption gets wider. All estimated models are in phase (0 or multiples of π2 ) for fre-

quencies far away from the eigenfrequency. Close to the eigenfrequency, the normally damped systems are in antiphase,

while the over-damped system is in phase.

Nevertheless, these local-linear models cannot predict the response to a dynamic time signal, since they are only valid

close to the working conditions used within their estimation process. On the one hand, it is hard to judge whether the

operating conditions for two differed signals agree. On the other hand, the condition can change during operation which can

impossibly be reflected with a linear model. These drawbacks are remedied in the local-linear neuro-fuzzy model proposed

in the following section.

4. Nonlinear system identification using a local-linear neuro-fuzzy model

As seen in the previous section, linear models can describe the resonator behavior also at large oscillation amplitudes in a

local-linear manner. The proposed model exploits this idea and combines such local-linear submodels to a nonlinear model

in the time domain. This is done with a so-called neuro-fuzzy network model structure [22,23]. The proposed model

consists of a neuron layer and a second layer containing the linear submodels. The neuron layer distributes the input signal

with respect to so-called membership functions over the second layer. Since every submodel behaves local-linearly, the

model is denoted as local-linear neuro-fuzzy networks (LLNFN) in the following. Before results and validations for several

test cases are presented in Section 5, the model is discussed in depth: First, the model is defined in Section 4.1 and the fuzzy

membership functions being applied in the neuron layer are introduced in Section 4.2. An optimization problem for the

parameter estimation is formulated in Section 4.3 and an iterative procedure to solve this problem is derived in Section 4.4.

4.1. Model structure

The proposed model combines N output-error submodels OE θ( )i i in a network as sketched in Fig. 8. Each linear submodel

is able to describe the resonator behavior in certain amplitude ranges adequately (see Section 3.4). The free model para-

meters of the ith submodel are denoted by θi and the overall free parameters are collected in the vector ( )θ θ θ θ= …, , , N

T

1 2 .

The linear submodels are wired via a neuron layer. Each subsystem i has its own neuron applying a so-called membership

Fig. 7. CFD/SI estimated reflection coefficient R for local-linear output-error model with broadband incident SPL of 75 dB ( ), 120 dB ( ), 130 dB

( ), and 140 dB ( ).

Fig. 8. Block diagram of the local-linear neuro-fuzzy model.
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function μ [ ]k
i

, = …i N1, 2, , . The overall model response [ ]g k is given as a linear combination of responses of the individual

linear submodels:

∑θ μ
θ

θ
[ ]( ) = [ ]

( )( )

( )( )
[ ] + [ ]

( )=

g k k
B q

F q
f k e k .

16i

N

i
i

i1

For every instant in time k, each membership function μi maps to a value in the interval [ ]0, 1 , where 0 means that the ith

submodel is not member of the current state (false) while 1 means the opposite (true). However, in fuzzy logic, there exists

not solely the true (1) and false (0) state as in the Boolean logic but also every intermediate state. Overall, the membership

functions are set in such a way that the total operating conditions are gradually distributed among the different sub-

conditions, i.e., μ∑ [ ] =
=

k 1
i

N

i1
for all k. The actual design of the membership functions is presented in the following section, a

common-sense interpretation of the role of the membership function is developed as follows (for N ¼ 3): If the amplitudes

are low, the first model OE 1 is taken to describe the resonator behavior. The second model OE 2 is considered in the medium

amplitude regime and model OE 3 in the high-amplitude regime. This decision is made not in a strict but in a fuzzy way,

which means that the response can be formed proportionally by more than one model OE i. For instance, a linear combi-

nation of OE 1 and OE 2 is used in the low-medium amplitude regime.

4.2. Fuzzy membership functions

A key point of the proposed model is the design of membership functions for the fuzzy neuron layer. This design is made

a priori and is not included in the training process itself, as it is often done for other systems [22,23]. By doing so, the

resulting optimization problem can be solved efficiently in an iteration of linear least square problems as shown below.

Nevertheless, the N estimated linear subsystems OE θ( )i i depend on the actual choice of the membership functions. In the

optimization process, these subsystems are determined such that the interconnected network minimizes the objective

function for the current set of membership functions.

Since the rms of the velocity at the resonator surface xref is a reasonable measurement for the nonlinearity as discussed

in Section 2.1, the membership functions are based on this value. By doing so, the membership functions are in principle

capable of reflecting nonlinear effects due to a rising amplitude at a certain frequency as well as due to some non-harmonic

effects. For that purpose, a sliding windowed rms of the (estimated) velocity is calculated

[ ] = ( [ − ] [ − + ] … [ − ]) ( )u k u k k u k k u krms , 1 , , 1 . 17T Trms

The window length kT is set such that it covers at least one eigenfrequency period f1/
eig
. Note that the velocity [ ]u k is not directly

available. During the identification process, it is just given by the difference of the input f
CFD

and output data g
CFD

as

[ ] = [ ] − [ ]u k f k g k
CFD CFD

. When an estimated model is simulated with an input f
input

, the velocity is estimated using the predicted

response g
model

: [ ] = [ ] − [ ]u k f k g k
input model

. For HR1 excited with the input signal presented in Fig. 9, the sliding windowed rms

value of the velocity is exemplarily plotted in Fig. 10. The input signal in Fig. 9 is set as described in Section 2.2.

The membership functions are realized as hat functions, which are called Takagi-Sugeno membership functions in this

context [23,22]. Having set N reference velocities u iref, , the membership functions μ [ ]k
i

are defined (for [ ] ∈ [ ]u k u u, Nrms ref,1 ref, )

as:

Fig. 9. Broadband excitation signals ramped up from incident SPL of 75–150 dB.
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μ [ ] =

− [ ]

−
[ ] ∈ [ ]

− [ ]

−
[ ] ∈ [ ]

( )

( − )
( − )

( + )
( + )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

k

u u k

u u
u k u u

u u k

u u
u k u u

if ,

if ,

0 else

.

18

i

i

i i
i i

i

i i
i i

ref, rms

ref, ref, 1
rms ref, 1 ref,

ref, rms

ref, 1 ref,
rms ref, ref, 1

In words, this means that ith membership function μ [ ]k
i

is true (1) if the current rms velocity equals the ith reference velocity

u iref, and is false (0) if it differs significantly from this value. The intermediate states are defined by the relative distance of

the current rms velocity [ ]u krms to the neighboring reference velocities. The bounding membership functions μ [ ]k
1

and μ [ ]k
N

take the value true (1) if the amplitude [ ]u krms is below or above their reference values, respectively. A possible set of five

membership functions μi is plotted against urms in Fig. 11.

The following points should be considered for setting the reference velocities u iref, : The lowest reference velocity uref,1 has

to be located clearly in the linear regime, while the highest velocity u Nref, marks the maximal rms velocity for which the

estimated model will saturate by design. The remaining reference velocities u iref, ( = … − )i N2, 3, , 1 are located in between.

They are not arranged in an equidistant manner, since the system dynamics changes most prominently in the transition

from the linear to the nonlinear regime, such that more reference velocities should be located in this region. A grading has

been applied to set the intermediate references for that purpose, i.e., Δ( − ) ( − ) =+ + +u u u u/i i i iref, 2 ref, 1 ref, 1 ref, . For the results

presented in Section 5, the grading factor Δ has been set to 4, the first reference velocity has been selected as zero =u 0ref,1

[m/s] and the highest as 80% of the maximal velocity rms value in the training data set = ( [ ])u u k0.8maxNref, rms . According to

these rules, the five reference velocities for the membership functions shown in Fig. 11 have been set. Applying these

Fig. 10. Root mean square of ′u for HR1.

Fig. 11. Graphs of the membership functions.
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membership functions on the velocity urms shown in Fig. 10 yields the distribution of μi over time presented in Fig. 12. It can

be seen that the membership functions detect well the different levels of fluctuating velocities caused by the variation in the

input f signal.

4.3. Global and multi-objective optimization problem

After the model structure is fixed, the set of unknown optimal parameters ( )θ θ θ θ
^ = ^ ^ … ^, , , N

T

1 2 has to be determined. For

that purpose, an optimization in the unknowns is formulated. A procedure to solve this nonlinear optimization is shown in

the next section (Section 4.4). Following the PEM ansatz, the global difference between the model response θ[ ]( )g k of Eq.

(16) and the CFD measured response [ ]g k
CFD

shall be minimized. The corresponding global objective function reads as:

∑θ θ
^ = [ ] ( [ ]( ) − [ ])

( )θ

w k g k g kargmin .
19k

CFD
2

Since the amplitudes in the nonlinear regime can differ by several orders of magnitudes, an adaptive weighting [ ] ≠w k const.

is applied. This weighting emphasizes the time instances with low amplitudes in comparison to those with high amplitudes.

Without such a weighting, the time instances with high amplitudes would dominate in the optimization, while the in-

stances with low amplitudes would have almost no influence on the optimization result and, accordingly, the estimated

model would perform poorly at low amplitudes. Here, the inverse of a squared sliding windowed rms of the input signal is

used, i.e. [ ] = ( [ − ] [ − + ] … [ ])w k f k k f k k f k1/rms , 1 , ,T T
2. The window length kT is set such that the rms window covers at least

one eigenfrequency period f1/
eig
.

Formulating the optimization problem only in the global manner shown above may lead to a nonlinear model with poor

local behavior. For instance, the descending function of the estimated reflection coefficient R can show unphysical char-

acteristics for some amplitudes. This effect is well known in the modeling with neuro-fuzzy networks, see, e.g., Babuška and

Verbruggen [23]. A way to overcome this is to formulate local optimization problems for each submodel i:

∑θ μ ζ θ μ
^ = ( [ ] − ) [ ] ( [ ]( ) − [ ] [ ])

( )θ

H k w k g k k g kargmin .
20

i

k
i i i i CFD

2

i

Above, the model output of the ith submodel is denoted by gi. The function H and the parameter ζ denote the Heaviside
function and a threshold when the subproblem is active, respectively. So, μ ζ( [ ] − )H k

i
equals zero whenever μ ζ[ ] <k

i
and it

equals unity otherwise. A threshold ζ = 0.5 has been used for the results presented below Considering only the local op-

timization problems (20) would lead to a nonlinear model behaving well locally which, however, might perform sub-

optimally on a global scale.

By formulating a multi-objective optimization problem, the advantages of both the global and the local ansatz can be

combined, see Babuška and Verbruggen [23]. The multi-object function is received by a combination of the global and the

local objective functions. For the problem considered here, it reads

∑ ∑θ θ δ μ ζ θ μ
^ = [ ] ( [ ]( ) − [ ]) + ( [ ] − )( [ ]( ) − [ ] [ ])

( )θ =

⎛

⎝
⎜⎜

⎞

⎠
⎟
⎟w k g k g k H k g k k g kargmin .

21k i

N

i i i i iCFD
2

1
CFD

2

Fig. 12. Time series of membership functions for HR1.
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A weighting parameter δi can be set for each subsystem i. For the results shown below, these weighting parameters have

been chosen adaptively in such a manner that the global and the sum of all linear optimization problem are equally pro-

nounced:

δ =
( )

a

N a
,

22
i

i

global
2

2

where [ ] = [ ] [ ]a k w k g kglobal CFD
and μ ζ μ[ ] = ( [ ] − ) [ ] [ ] [ ]a k H k w k k g ki i i CFD

.

4.4. Parameter estimation procedure

The nonlinear optimization problem (21) can be solved iteratively in a fashion similar to the one of the output-error

model presented in Section 3.1. Note that this kind of problem is often solved via so-called instrumental variables methods,

see, e.g., the textbook by Nelles [22]. However, an implementation based on such a method did not show good convergence

for CFD data of the Helmholtz resonator. That is why an implementation based on pre-filtering is introduced here. For

clarity, this is presented only for the global optimization. When the local problems are included, the dimension on the

optimization has to be extended accordingly.

The vector of unknowns is initialized with zeros θ = 00 for l ¼ 0 and, then, the iteration = …l 1, 2, is started: First, the

input f and measured output g
CFD

are filtered to gain a white noise error:

∑ ∑μ
θ

μ
θ

[ ] = [ ]
( )( )

[ ] [ ] = [ ]
( )( )

[ ]
( )=

−
=

−
f k k

F q
f k g k k

F q
g k

1
and

1
.

23

l

i

N

i
i
l

l

i

N

i
i
l

1
1

1
1 CFD

With these filtered quantities, the overall observation matrix Φ Φ= ( )f g,l l l for the iteration step l is created. This overall

observation matrix is constructed as a concatenation of the fuzzy-weighted output-error observation matrices μ Φ
i OE:

( )Φ μ Φ μ Φ μ Φ= ( ) ( ) … ( ) ( )f g f g f g, , , , , , . 24
l l l l l

N
l l

1 OE 2 OE OE

Now, the unknowns can be updated:

( )θ Φ=
( )

†
g .

25
l l

W

l

This procedure is repeated until convergence in θl is reached, which is usually after a few iterations.

Several setting of the model, as for instance the number of chosen submodels N, are determined before the identification

process and, of course, influence the identification results. Potentially, the identified results differ from each other strongly

such that a judgment on the model goodness is difficult, see Jaensch and Polifke [35] who applied SI based on artificial

neural networks to characterized the acoustic flame response. The proposed model behave relatively robust regarding this

issue, as shown in Appendix A.

5. Results and validation

In this section, LLNFN models proposed in Section 4 are estimated for the four test cases considered. For each test case,

the same model structure is used, and the same input signal is applied in the CFD simulations. The input signal plotted in

Fig. 9 is a ramped broadband signal up to a certain cut-off frequency and is constructed as explained in Section 2.2. These

estimated models are validated and evaluated in both time (Section 5.1) and frequency domain (Section 5.2). Finally in

Section 5.3, the flexibility of the LLNFN model is discussed briefly.

5.1. Validation and evaluation in time domain

The response of the estimated models is computed for a second independent input signal, which was not used to train

the model. The validation against “test data”, is an important step in the SI, which ensure that estimated models do not

suffer from over-parameterization. A model is denoted as over-parameterized when it has so many free parameters that it

can, on the one hand, achieve a good fit to the training data due to the large degrees of freedom, but gives, on the other

hand, poor predictions for another set of input data [34, p. 133].

For that purpose, a second random input signal is generated (see [31]) which has the same power spectrum but is statis-

tically independent of the training signal, i.e., the cross-correlation between those signals is low. Both the training and the

independent input signal are ramped up in the same manner. A common criterion to evaluate the similarity of two time signals

g
CFD

and g
model

is the normalized root mean square error (NRMSE). Since the mean value of g
CFD

equals zeros, it reads as:
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NRMSE takes the value of unity for a perfect fit. It gives the value zero when a time series is compared against the zero sequence

and can be −∞ in the worst case. However, this measure is not suitable in the considered cases since the time series contain

sections where the fluctuation amplitudes differ by several orders of magnitudes from each other. Consequently, the NRMSE

detects mainly the differences for high amplitudes and almost ignores those in the low amplitude range. To get an equal

weighting for all amplitude ranges, both time series are scaled with the inverse of an moving rms of g
CFD

:
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The NRMSE based on those scaled quantities is a suitable measure for the considered time series. This is denoted as relative

NRMSE in the following.

The relative NRMSE is listed in Table 2 for all test cases considering different models. It is computed for both the training

data and a second independent data set. The estimated local-linear neuro-fuzzy networks are referred to as LLNFNs.

Moreover, the relative NRMSE values are given for a linear output-error model OEwhole estimated based on the whole

training data. A second output-error model OElin estimated based on the linear regime of the training data is also included.

Finally, an acoustically hard wall (R ¼ 1) is considered in this table to allow for a more intuitive interpretation of the fit

values. It can be seen that none of the listed models is over-parameterized, since the relative NRMSE values are equally good

for the training and the independent data set. As expected, the hard wall performs worst. However, it exhibits still rea-

sonable fit values, since the resonator behaves like a hard wall for frequencies away from its eigenfrequency. Especially for

HR4 having a relatively narrow bandwidth, the NRMSE value are not bad for the hard wall case. Due to that narrow

bandwidth of HR4, all models perform best for this test case. The two output-error models OElin and OEwhole behave much

better than the hard wall, since they consider damping at the eigenfrequency. However, they cannot account for the am-

plitude-dependent damping behavior, since they are linear models. In acoustical CFD simulations, linear models tuned to a

certain SPL are commonly used as boundary conditions. These two linear models illustrate the error that can occur if the

tuning is either inadequate for current constant operating conditions, or cannot be good due to changing operating con-

ditions. The LLNFN model has been constructed such that it can adapt to changing amplitudes and, accordingly, it also shows

the best fit to the CFD data. This freedom is gained by an increase of the number of free parameters to N5 (N ¼ 5 here) in

comparison to 5 for the output-error models. Compared to other nonlinear models, like artificial neural networks, this

number is still moderate. As mentioned above, it can clearly be observed that this model is not over-parameterized. For HR3

and HR4, the LLNFN model shows even a slightly better fit on the independent data than on the training data set.

5.2. Validation and evaluation in frequency domain

The validation of the estimated LLNFN models against measurements is performed in frequency domain, since measure-

ments are only given this way. Moreover, this allows for a physical interpretation of the behavior of the estimated nonlinear

models. Since the LLNFN models are defined in the time domain, their frequency response is evaluated by harmonic excitation

of the model. Before the discrete Fourier transformation is performed on the input and the output data of the model, the time

series are truncated to get rid of the transient behavior and to get a signal length which is a multiple of the excitation period. By

doing so, leakage in the discrete Fourier transformation is avoided. This procedure requires low computational effort because

both the evaluation of the model and the output post-processing can be performed very efficiently.

The model response is validated against impedance describing functions from experiment. Note that these functions are

usually given in the literature with respect to the total SPL. For the comparison the incident SPL to the model is varied

Table 2

Relative NRMSE values for the four test cases.

Test case Signal LLNFN OEwhole OElin Wall

HR1 Training data 0.80889 0.51775 0.59175 0.25876

Independent data 0.79898 0.51271 0.57328 0.24044

HR2 Training data 0.83657 0.59619 0.68404 0.31907

Independent data 0.83623 0.61231 0.68001 0.33761

HR3 Training data 0.8272 0.65564 0.74224 0.42223

Independent data 0.82945 0.68531 0.72206 0.45654

HR4 Training data 0.9109 0.74692 0.78745 0.6427

Independent data 0.91625 0.76707 0.77851 0.66115
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iteratively to match the total SPL of the experiments. Test cases HR1 to HR3 are compared against measurements from Hersh

et al. [5] and HR4 against measurements from Temiz [32]. In this section, only the plots of HR1 are presented to keep the

paper compact. The figures for the three other test cases are shown in Appendix B.

Fig. 13 shows the impedance describing function of the estimated LLNFN model for the linear regime (75 dB) and three

SPLs (120 dB, 130 dB, and 140 dB) located in the nonlinear regime. The same information in the impedance perspective is

depicted in Fig. 14. For the interpretation of the resistance plot on the left-hand side of Fig. 14, it should be kept in mind that

the transformation from reflection coefficient to resistance is ill-conditioned apart from the eigenfrequency as shown in

Section 3.3. Thus, the resistance plot is most meaningful close to the resonator eigenfrequency and loses significance apart

from it. It can be seen that the LLNFN model reflects well the general nonlinear change of the reflection coefficient. With

rising amplitude, the gain of the reflection coefficient drops down until the resonator is over-damped. In the over-damped

regime, the maximal absorption rises again with increasing amplitude, and simultaneously the bandwidth gets wider.

Moreover, the eigenfrequency shifts to higher frequencies. In the linear regime, the model and the measurements agree

well. A closer look at the nonlinear regime exposes some discrepancies between the estimated LLNFN model and the

measurements. The LLNFN model predicts the eigenfrequency shift already for lower amplitudes than it occurs in experi-

ments. Moreover, the nonlinear resistance is under-predicted by the LLNFN model. These systematic discrepancies are

present for all four test cases, but they are strongest for HR1. Only for HR4, the LLNFN model does not over-predict the

nonlinear resistance. For this test case, the simulation over-predicts the resistance, see Förner et al. [32], and the maximal

SPL is lower than in the other test cases. The largest discrepancies occur for the test case HR1 presented in this section. They

are smaller for the other cases as seen in Figs. B.1–B.3. Overall, the agreement is reasonably good for all test cases. It can be

concluded that the LLNFN model provides a reasonable and robust methodology to describe the nonlinear behavior of

Helmholtz resonators.

Fig. 13. Estimated ( ) and measured [5] (� ) reflection coefficients for HR1 for a SPL of 75 dB ( ), 120 dB ( ), 130 dB ( ), and 140 dB ( ).

Fig. 14. Estimated ( ) and measured [5] (� ) reflection impedance describing function for HR1 for a SPL of 75 dB ( ), 120 dB ( ), 130 dB ( ), and

140 dB ( ).
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5.3. Flexibility and practicability of the LLNFN model

The LLNFNmodel cannot only reproduce measurements, but it can simulate reasonably well the response to any input signal

up to the maximal amplitude that it has been trained for. Fig. 15 depicts the impedance describing function for total SPL ranging

from 80 dB to 140 dB in steps of 5 dB. It can be seen that the impedance changes smoothly with SPL and frequency, which

makes this model attractive to serve as boundary condition in CFD or CAA simulations, where acoustic boundaries are involved.

Using a linear model instead would require that this model be adapted a priori to the conditions and a linear model can never

reflect changing conditions by definition. Moreover, the LLNFN model structure, which consists of several parallel linear sub-

models, makes a model once estimated readily available also for other time steps or in Laplace space. Each submodel can be

converted to a function in the Laplace variable s by the Tustin transformation →z s. By another reverse transformation →s z ,

the estimated model can be applied for any fixed time step. Alternatively, the boundary condition can directly operate with the

model representation in Laplace space [36], which has the advantage that the time step can vary within the simulation. Such

possibilities are in general not given by other nonlinear models applied in SI, e.g., by artificial neural networks.

Moreover, the provided procedure can be used for the design of future resonators. When the designer has access to a

validated CFD setup for resonator simulations, he/she can rapidly get a reasonable idea how geometrical, flow, or temperature

conditions influence the linear and nonlinear resonator behavior, since only one CFD simulation is required. Thus, this procedure

can also be used for the uncertainty quantification of the resonator response. It is known that, for instance, the manufacturing

process of acoustic liners strongly impacts the actual damping behavior, see Murray et al. [37]. With the proposed method, one

could quantify with low computational effort how the manufacturing tolerances influence the achieved damping performance.

6. Conclusions

The paper proposes a local-linear neuro-fuzzy network to model the nonlinear resonator response in time domain. The free

model parameters are determined via the CFD/SI approach, generated from time series data of a single CFD simulation. The

nonlinear model consists of several linear submodels wired via fuzzy neurons in a network. It is shown that such linear models

can describe the resonator behavior also in the nonlinear regime in a local-linear manner. This means that such a local-linear

model is only valid in the amplitude regime it is has been trained. The fuzzy-neuron layer distributes an input signal over

several linear submodels based on the rms of the particle surface velocity. By doing so, the interconnected nonlinear model is

capable of describing the nonlinear behavior over a wide amplitude range. A multi-objective optimization problem is for-

mulated and an iterative procedure for its solution is derived. Within this iterative procedure, the input and output time series

are pre-filtered to achieve an unbiased model. The model structure is robust against over-parameterization, since the estimated

models behave comparably well on training data and on independent test data. The estimated models are validated via de-

scribing functions for the reflection coefficient and the impedance against measurements from the literature for several test

cases. Apart from slight deviations in the very high amplitude range, the estimated models perform very well for all test cases

considered. It can be concluded that the proposed procedure offers a possibility to characterize the nonlinear resonator re-

sponse over a wide range of frequencies and amplitudes with low computational effort.

Such estimated data-based ROMs can serve as boundary conditions in compressible flow or acoustic simulations to

correctly capture the nonlinear effects of a resonator or liner with marginal extra numerical costs. The efficient and robust

nonlinear characterization makes this approach also feasible to support the resonator design in an early stage of

development.

Fig. 15. Estimated impedance describing function for HR1 with total SPLs ranging from 80 dB (bluish) to 140 dB (reddish) in steps of 5 dB. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Appendix A. Robustness of the LLNFN model

The model structure has to be defined a priori. If the model structure does not correspond well to the system behavior, no

good estimated models can be achieved in the end. In this section, the sensitivity of the estimated model behavior on the

model structure is evaluated with respect to the number of submodels N considered. In Fig. A.1, reflection coefficients are

plotted for incident SPLs of 75, 110, 120, 130, and 140 dB for estimated LLNFN models with N varying from 3 to 7. It can be

observed that the curves of the different models coincide relatively well with the exception N ¼ 3. The curves of this outlier

model (N ¼ 3) are plotted with dashed lines. Moreover, it can be seen that the coincidence is better in the high than in the

lower amplitude regime. Overall, it can be concluded that the LLNFN model structure is relatively robust against changes in

N except when very few subsystems are incorporated. This robustness is also found (not shown here) with respect to other

parameters as the grading to locate the reference velocities Δ and the weights of the local optimization problems δi. The

identification only fails if the reference velocities u iref, are arranged such that one or more submodels are “blocked”. Blocked

means that almost no training data reaches this submodel which leads to an ill-conditioned optimization process. However,

this can be detected easily by the user and another distribution of the reference velocities u iref, can be chosen.

Appendix B. Graphs for test cases HR2, HR3, and HR4

In this section, the graphs for the test case HR2, HR3, and HR4 are provided. For each test case, the graphs are assembled

in one figure. Subfigure (a) contains the reflection coefficient for the estimated LLNFN models and from experiment.

Subfigure (b) shows the corresponding impedance. For HR2 and HR3, the experimental data is taken from Hersh et al. [5] for

total SPLs of 75 dB ( ), 120 dB ( ), 130 dB ( ), and 140 dB ( ). The empirical data for HR4 have been provided by Temiz2 in

a setup as in [32]. The measurements have been adjusted such that the voltage at the microphone closest to the sample has

been set to a fixed value. Dependent on the frequency, this results in total SPLs at the sample from (89.8–95.4) dB ( ),

(119.5–121.8) dB ( ), and (125.7–127.7) dB ( ). The evaluation of the model was adjusted to these values with interpolation

for the intermediate points. Subfigure (d) shows the estimated impedance describing function from a SPL ranging from

80 dB (bluish) to 140 dB (reddish) in steps of 5 dB (Figs. B.1–B.3).

Fig. A.1. Estimated Reflection coefficients for LLNFN models with N varying from 3 to 7 for incident SPLs of 75, 110, 120, 130, and 140 dB. The graphs for N ¼

3 are dashed.

2 Private communication by M.A. Temiz, Technische Universiteit Eindhoven, Department of Mechanical Engineering, Eindhoven, The Netherlands.
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Fig. B.1. Estimated reflection coefficients (Subfig. (a)) and impedance (Subfig. (b)) for HR2 in comparison to measurements from Temiz [32] and a de-

scribing function for the reflection coefficient for a SPL from 80 dB to 140 dB (Subfig. (c)).
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Fig. B.2. Estimated reflection coefficients (Subfig. (a)) and impedance (Subfig. (b)) for HR3 in comparison to measurements from Temiz [32] and a de-

scribing function for the reflection coefficient for a SPL from 80 dB to 140 dB (Subfig. (c)).
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Fig. B.3. Estimated reflection coefficients (Subfig. (a)) and impedance (Subfig. (b)) for HR4 in comparison to measurements from Temiz [32] and a de-

scribing function for the reflection coefficient for a SPL from 80 dB to 140 dB (Subfig. (c)).
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