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Numerical modeling of shock waves in biomedicine

By S. Adami†, J. Kaiser†, N. A. Adams† AND I. Bermejo-Moreno‡

We have developed a multi-phase compressible fluid solver that can handle shock waves
efficiently and accurately. Using a level set formulation to treat sharp interfaces and em-
ploying multi-resolution techniques, we can study complex shock-bubble interactions. In
this work, shock-induced bubble collapse interactions near a deformable interface are
presented as a model for a simplified extracorporeal shock-wave lithotripsy experiment.
The conservative sharp-interface method was successfully validated for free-field collapse
and non-spherical collapse near solid walls. We observe a systematic small deviation of
our results compared with that of the diffuse-interface method from the literature.

1. Introduction

Fluid-dynamic interaction mechanisms and processes are essential to biotechnology
and biomedicine. An important example is kidney stone lithotripsy, the side-effects of
which are precursors to many other more recently proposed and pursued therapeutical
approaches to improve drug delivery or to treat cancer (Coussios & Roy 2008; Stride
et al. 2010).
Among the most interesting biomedical phenomena driven by shock interactions is

sonoporation, where acoustic cavitation of microbubbles leads to temporary small-scale
cell membrane perforations, see, e.g., Zhong et al. (2011) or Ohl et al. (2006). At the
core of such processes is the generation, by bubble collapse, of highly localized shock
waves that interact with ambient fluid and tissue. Such extremely small-scale yet high-
energy events enable in situ control of therapeutical fluid processes with high precision
and minimal side effects. The overarching goal of our research is to develop for biologi-
cal applications innovative nanoscale processes that harness shock interactions in living
organisms.
Experimental investigations of bubble collapse challenge scientists owing to the small

spatial and, especially, temporal scales involved. Among others, Kodama & Tomita (2000)
studied the collapse of gas bubbles near a gelatin surface and identified the collapse-
induced liquid jet to hit and penetrate the gelatin surface. Ohl et al. (2006) estimated
the shear stress due to the liquid jet and related it to the probability of cell membrane
perforation. Alternatively, instead of measuring and visualizing, e.g., the liquid jet for-
mation itself, the resulting effect on cells, such as increased molecular uptake of a drug
(Ohl et al. 2006) or cell viability (Karshafian et al. 2009), is monitored.
Given the complexity of experimental investigations, numerical simulations can give

new insights into the physics of shock-bubble interactions. In the past, different numerical
methods, e.g., boundary integral methods (Calvisi et al. 2008) and finite volume methods
(Johnsen & Colonius 2006), were applied to study bubble collapse near undeformable
walls. Using the ghost fluid method, some groups have studied the deformation of a
soft wall and the reflection of the pressure wave on the boundary (Kobayashi et al. 2011;
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Takahira et al. 2008). In this paper we present our first results for a generic configuration,
resembling the basic mechanism of cell membrane poration by shock-wave impact, where
a gas bubble collapse near a compliant wall is initiated by the impact of a planar shock
wave. The compliant wall is modeled as a gel-like fluid and represents simplified cell
membrane material. We use a WENO-5 discretization scheme that combines accurate
shock capturing and numerical robustness together with a level-set-based conservative
interface method for compressible flows (Hu et al. 2006). Computational efficiency for
high-resolution simulations is improved by the use of a multi-resolution algorithm, see
Han et al. (2014).

In this work we compare the simulation results of a shock-bubble interaction near
a solid wall and a deformable gelatin interface using our sharp-interface method with
results from literature. First, the Rayleigh bubble collapse of a single bubble in a free-field
is compared with the analytical collapse time. Then, the non-spherical bubble collapse
near a solid wall is compared with findings from Johnsen & Colonius (2008). Finally,
the dynamics of the bubble collapse in the presence of a deformable gelatin interface are
compared with findings from Kobayashi et al. (2011).

In Sections 2 and 3 we introduce the governing equations and briefly describe the
numerical method. Section 4 introduces the problem setup and Section 5 presents the
simulation results and compares them with findings from the references. Concluding
remarks are given in Section 6.

2. Governing equations

Neglecting viscous dissipation, the shock-bubble interaction is modeled with the com-
pressible Euler equations in axi-symmetric form
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where t, r and z denote the time, the radial coordinate direction and the axial coordinate
direction, respectively. The solution state vector of the conservative variables density ρ,
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The velocity components in the radial and axial directions are u = u (r, z) and v = v (r, z).
The geometric source term due to the axi-symmetric formulation of the conservation law
in Eq. (2.1) is given by
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To close the system, the stiffened equation-of-state (Harlow & Amsden 1971)

p (ρ, e) = (γ − 1) ρe− γB (2.4)
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Material ρ [kg/m3]) γ [-] B [Pa]

Air 1.2 1.4 0.
Water 998.6 4.4 6.0 × 108

Gelatin 1061.0 4.04 6.1 × 108

Stone 1546.0 1.66 1.12 × 1010

Table 1. Material parameters

is used, where γ and B are numerical coefficients specific to each fluid. This EOS is
advantageous for the given problem since all three immiscible phases (gas, surrounding
water and gelatin) can be represented using this relation by adjusting the numerical
parameters γ and B. Table 1, taken from Kobayashi et al. (2011), gives the parameters
for each material. The speed-of-sound cs for each material is obtained from

cs =

√

γ (p+B)

ρ
. (2.5)

Note that using the stiffened gas equation-of-state for water results in a slightly overpre-
dicted speed-of-sound for the liquid phase (cL = 1647 m/s).

3. Numerical method

The governing equations are discretized with Cartesian finite volumes and a Riemann
solver is used to calculate the fluxes between cells. A fifth-order WENO shock-capturing
scheme is used and the time integration employs a second-order Runge-Kutta scheme
with local time stepping (Han et al. 2014).

3.1. Level set

A level set function ϕ is evolved in time in addition to the governing Eq. (2.1) to track
the motion of the interface. The signed distance function ϕ (x, t) defines the location of
the interface by the zero level set and follows the linear advection equation

∂ϕ

∂t
+ u

∂ϕ

∂r
+ v

∂ϕ

∂z
= 0 . (3.1)

Re-initialization of the level set function is performed according to Sussman et al. (1994)
to maintain the signed distance property during the evolution of the interface. The con-
servative interface method for compressible flows by Hu et al. (2006) is used for cells that
are cut by the interface.
Presently, a single level set function is used to identify the location of the interface

between the bulk water phase and a second immiscible phase. Depending on the global
position of the interface the phase properties of the second phase can be modified. This
approach allows us to consider the three-phase problem of a gas bubble in water near a
gelatin interface using a single level set function. However, the position-based switch of
the phase properties works only for non-penetrating phases and limits our investigation
to early-stage collapse effects on the gelatin interface deformation. We are currently
extending our method for full three-phase (and more) interactions with our recently
developed multi-material level set approach (Pan et al. 2016).
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Figure 1. Sketch of the simulation setup.

3.2. Multi-resolution

A multi-resolution (MR) algorithm that follows Han et al. (2014) is used to achieve high
computational efficiency for high-resolution simulations. The smoothness of the flow field
is estimated by comparing the numerical solution on the current level of refinement with
its interpolation on a coarse grid. If that so-called detail is smaller than a specified
threshold, then the coarse grid is deemed sufficient to represent the solution at the given
accuracy. The level-dependent threshold ǫl for the details on the level l is

ǫl = 2d(l−Lmax)ǫref , (3.2)

where d is the number of spatial dimensions, Lmax the maximum number of grid refine-
ments and ǫref the reference tolerance on the finest grid. If not stated otherwise, we used
Lmax = 6 with ǫref = 0.01. Further information on the scheme can be found in Han
et al. (2014) or the original work of Harten (1995).

4. Problem setup

The setup of the numerical problem is sketched in Figure 1. At z = 0, either a solid wall
or the interface between water and gelatin will be considered independently. The initial
shock front position is zS = 2.6 R0 and the bubble is located at zB = 1.2 R0. The gelatin
thickness is zg = 6.8 R0 and the end of the pressure pulse is at zmax = zs + 30.6 R0. In
the radial direction the domain size is H = 4 R0. For the non-spherical bubble collapse
case (Section 5.2) we use H = 14.2 R0.
The Rayleigh collapse simulations (Section 5.1) are performed with a simplified setup

without the third material and by using symmetry boundary conditions. The bubble is
placed at (z, r) = (8 R0, 0.0) and the total domain size is zmax = 16 R0 and H = 8 R0.

4.1. Pressure pulse

For the non-spherical bubble collapse near a wall a realistic lithotripter pulse

p (z′ = z − zS) = p0 + 2pse
−(α z′/cL)cos

(

ω
z′

cL
+

π

3

)

, z ≥ zS (4.1)

is used. The parameters α, ω and ps are taken from Johnsen & Colonius (2008), the
resulting nominal pulse width is σ = 6.75 mm and p0 is atmospheric pressure (1013
mbar).
For the deformable interface simulations we use the slightly modified pressure pulse of
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Figure 2. Rayleigh collapse: free-field collapse time of an isolated gas bubble in water with
radius R0 = 0.8 mm as a function of the non-dimensional pressure ratio p∞/p0.

Kobayashi et al. (2011)

p (z′ = z − zS) = 108 MPa · exp

[

−
393.9

m
z′
]

+ p0, z ≥ zS, (4.2)

to allow for a direct comparison of the results.

5. Results

Prior to simulating the bubble collapse with a deformable gelatin interface, we present
several verification cases. With increasing complexity, first, a single bubble collapse in a
free-field is simulated and compared with the theoretical results of Rayleigh and second,
the non-spherical bubble collapse near a solid wall is compared with results by literature
Johnsen & Colonius (2008). In the last subsection the actual problem setup is simulated
and compared with results by Kobayashi et al. (2011).

5.1. Rayleigh collapse

A spherical, non-condensable gas bubble in a free-field with radius R0 = 0.8 mm at
atmospheric pressure collapses due to increased ambient pressure p∞ in the surrounding
liquid. Depending on the initial radius R0, the liquid density ρL and the pressures outside
and inside the gas bubble p∞ and p0, the so-called Rayleigh collapse time is given by

τc ≈ 0.915

√

ρL
p∞ − p0

R0 , (5.1)

see Brennen (1995). Figure 2 shows the trend of the collapse time for varying pressure
ratios p∞/p0. The time is non-dimensionalized with the reference time tref = R0/cL,
where cL denotes the speed-of-sound in the liquid phase. In addition to two different
resolution results the theoretical Rayleigh collapse times are plotted together with a
1/

√

(p∞/p0 − 1) trend. The agreement between the numerical results and the theoretical
collapse time is very good and the largest errors are within a few percent for very high
pressure ratios. The resolution of 130 cells per bubble diameter at the finest grid level is
sufficient and this setup is used for the following simulations.
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Figure 3. Pressure profiles (top) and numerical Schlieren (bottom) contours for the shock-in-
duced gas bubble collapse near a wall at tcL/R0 = 4.94, 9.88, 11.86, 12.85, 13.83 and 15.15, (a)
to (f).

5.2. Non-spherical bubble collapse

Johnsen & Colonius (2008) present the shock-induced collapse of a gas bubble near a
solid wall using a very similar numerical approach (finite volume, WENO-5, stiffened
gas equation-of-state, HLLC solver) but a diffuse-interface method. A bubble with initial
radius R0 = 50 µm is placed next to a solid wall at a distance zB/R0 = 2.0 and is
exposed to the lithotripter pulse given in Eq. (4.1).
Figure 3 shows the pressure field and numerical Schlieren contours of the collapsing

bubble using the presented sharp-interface method. The overall agreement with the ref-
erence is good, especially during the pre-collapse phase.
In Figure 4(a) the bubble volume and center-of-mass position are monitored. Both

curves agree very well with findings by Johnsen & Colonius (2008). The interface veloc-
ities on the centerline of the bubble are shown in Figure 4(b). Here, vj denotes the jet
velocity of the interface initially facing the pressure pulse and vd denotes the velocity
of the distal interface initially facing the solid wall. Apart from the very good agree-
ment for the pre-collapse phase the sharp-interface method obviously predicts a much
stronger collapse (see the larger interface velocities during the collapse). Also, the numer-
ical minimum bubble volume is two orders of magnitude smaller. These observations are
consistent with the better interface-capturing capabilities of the sharp-interface method
compared with the diffuse-interface method within the considered inviscid flow setting.
Accordingly, the pressure histories at the wall at several radial distances in Figure
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Figure 4. (a) Time histories of the normalized bubble volume (V/V0) and wall stand-off distance
(H/R0) and (b) velocities of the jet (vj) and distal side (vd) for the shock-induced collapse.

Figure 5. Wall impact pressure profiles: (a) temporal pressure profiles at the wall for four
different radial coordinates, (b) spatial pressure profiles along the wall for preceding time.

5(a) show larger peak values. In Figure 5(b) the spatial pressure profiles along the wall
interface are plotted for increasing time. As shown by Johnsen & Colonius (2008), the
maximum wall pressures follow a purely geometrical decay given by

pwall

(

r

R0

)

=
a

√

z2C + (r/R0)
2
+ b , (5.2)

where zC is the collapse distance to the wall and a and b are parameters that can be
determined using two spatial pressure profiles. Despite the overall larger pressure peaks,
which relate to the difference in the interface treatment, our results agree very well with
the reference results.
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Figure 6. Numerical Schlieren contours of the shock-induced bubble collapse near a gelatin
interface.

Figure 7. Temporal evolution of the (a) effective gas bubble radius and (b) interface velocities
for the gelatin setup.

5.3. Bubble collapse near the deformable gelatin interface

As a model for shock-wave lithotripsy, Kobayashi et al. (2011) studied the interaction
of a deformable tissue phase with a shock-induced collapsing gas bubble. The problem
setup is shown in Figure 1, and the initial bubble radius is R0 = 0.8 mm. For the other
geometrical parameter we refer to the problem description in Kobayashi et al. (2011). To
compare the presented plots we mapped the numerical results to their coordinate system.
The numerical Schlieren image in Figure 6 shows the interface evolution of the gas bub-

ble and the gelatin interface. In this visualization the shock front moves upward. When
the initial shock hits the gas bubble, a reflection wave is created. Later, the original shock
crosses the tissue interface without reflections as the impedance of water and gelatin is
equal. At early times, the gelatin interface moves toward the gas phase. During the col-
lapse a strong compression wave due to the waterhammer with a much larger amplitude
compared to the original shock is emitted and hits the gelatin interface. Consequently,
this interface is strongly accelerated and forms a cavity. This deformation seems to in-
dicate the poration of the cell membranes due to a bubble collapse. Given the simple
region-based switch in material properties, the current numerical setup breaks down as
soon as the bubble interface moves into the original gelatin interface location. Therefore,
we limit our analysis to the initial collapse phase.
The equivalent bubble radius over time is plotted in Figure 7(a). The time is non-

dimensionalized with the equivalent Rayleigh collapse time and results are presented
for two different tissue materials, i.e., gelatin and stone (see Table 1 for the material
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Figure 8. (a) Axial bubble motion and (b) tissue deformation at r = 0 for two different
materials.

properties). The presence of a deformable interface retards the bubble collapse compared
with the free-field collapse. The interface velocities vj and vd (for definitions see the
previous subsection) for the gelatin interface are shown in Figure 7(b). The vanishing
interface velocity at post-collapse times is a postprocessing artifact due to the interface
breakup on the centerline of the bubble. Additionally, Figure 8 shows the axial bubble
motion δz and tissue deformation at r = 0 for the two materials.
Comparing all presented plots with the reference results in Kobayashi et al. (2011)

shows the same qualitative behavior, see, e.g., the characteristic difference in the axial
bubble displacement between the two materials. However, the collapse is predicted at
a slightly shorter timescale by our conservative sharp-interface method. The smallest
bubble radius in the presented results occurs at t/t0 ≈ 1.4 for the gelatin case, whereas
the reference results show a minimum radius at t/t0 ≈ 1.6. These systematic differences
are currently under investigation.

6. Conclusions

We have presented a sharp-interface method for compressible flows that is applied to
the problem of shock-induced bubble collapse near a deformable interface. Very good
agreement is found for the free-field Rayleigh collapse. The effect of the chosen interface
method is visible in the example of a non-spherical collapse near a solid wall, where the
sharp-interface model predicts larger peak pressure amplitudes but overall comparable
interface dynamics. The deformable interface interaction presents systematically higher
intensities and shorter timescales compared with a diffuse interface method. Although
such observations may be related to the expected benefits of sharp and conservative
interface interaction methods, the issue requires further investigations. In the future we
will extend our simulations to a fully three-dimensional setup and further analyze the
differences between the different numerical methods.
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