An updated 25+ year (1991-2017) sea level record from the Arctic Ocean contribution to the ESA SL_CCI initiative

Stine Kildegaard Rose¹ Ole Baltazar Andersen¹ Marcello Passaro² Jérôme Benveniste²

¹DTU Space - National Space Institute, Kgs. Lyngby, Denmark

²Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM), Germany

 $^{3}\mathrm{European}$ Space Research Institute, European Space Agency (ESA-ESRIN), Frascati, Italy

EGU 2017, Wienna, April 27, 2017

EGU 2017

ARCTIC SEA LEVEL RECORD

(日) (周) (王) (王)

APRIL 27 2017

INTRODUCTION

Why studying Arctic SL?

- Part of ESA's SL CCI: New improved SL record
- The Arctic SL challenging

(ロ) (日) (日) (日) (日)

April 27 2017

2 / 14

Figure 1: ESA Sea Level (SL) Climate Change Initiative (CCI)

IMPROVEMENTS OF CCI_SL DTU/TUM PRODUCT

- Former (reprocessed but largely un-retracked) New (ALES+ retracked, REAPER and in house processed)
- No constrains to the MSS
- Dedicated Arctic processing
- Larger amount of data, especially in the sea-ice covered regions

EGU 2017

INTRODUCTION

WHY STUDYING ARCTIC SL?

- Part of ESA's SL CCI: New improved SL record
- The Arctic SL challenging

- Seasonal/permanent ice cover
- Regional coverage (satellites/tide gauges)
- Satellite instruments
- Insufficient geophysical models

・ロト ・日下・ ・ ヨト・・

- Residual orbit errors
- Retracking

IMPROVEMENTS OF CCI_SL DTU/TUM PRODUCT

- Former (reprocessed but largely un-retracked) New (ALES+ retracked, REAPER and in house processed)
- No constrains to the MSS
- Dedicated Arctic processing
- Larger amount of data, especially in the sea-ice covered regions

EGU 2017

INTRODUCTION

Why studying Arctic SL?

- Part of ESA's SL CCI: New improved SL record
- The Arctic SL challenging

Improvements of CCI_SL DTU/TUM product

- Former (reprocessed but largely un-retracked) New (ALES+ retracked, REAPER and in house processed)
- No constrains to the MSS
- Dedicated Arctic processing
- Larger amount of data, especially in the sea-ice covered regions

EGU 2017

(ロ) (日) (日) (日) (日)

APRIL 27 2017

DATA DESCRIPTION

Making the 25+ years SL record based on satellite altimetry:

- ERS-1 (REAPER)
- ERS-2 (ALES+)
- Envisat (ALES+)
- CryoSat-2 (DTU inhouse LARS processing of SAR/SARIn, RADS (Scharroo et al., 2013) of LRM)

Corrections	Model	Comments
Wet troposphere	Prefer using model (ECMWF)	ERS1, not possible - as far as we know?
Ocean tides, etc	FES 2014	Not defined close to the coast
Inv. baro/ Atm. corr.	Inv. baro from GDR product	Inv. baro/ atm corr?? Best for arctic?
Mean sea surface	DTU15	

Table 1: Geophysical corrections

EGU 2017

DT Na

ALES+ RETRACKER

ALES+ (NON-PEAKY WAVEFORMS)

- **1** Leading edge detection
- First retracking (leading edge only)
- Subwaveform extension
- Second retracking of the extended subwaveform

ALES+ (PEAKY WAVEFORMS)

- Leading edge detection
 - External estimation of trailing edge slope*
- First retracking (leading edge only)

イロト イヨト イヨト イヨト

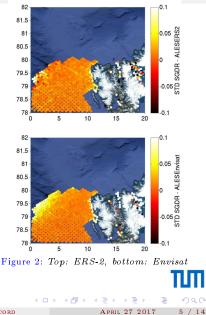
April 27 2017

4 / 14

- **Subwaveform** extension
- Second retracking of the extended subwaveform

 * Brown-Hayne simplified model with trailing edge slope as 4th unknown (follows CLS solution proposed in CCI and adapts it to ALES)

$$V_m(t) = P_u \frac{|1 + \operatorname{erf}(u(\boldsymbol{c}_{\boldsymbol{\zeta}}, t, SWH))|}{2} e^{f(\boldsymbol{c}_{\boldsymbol{\zeta}}, t, SWH)}$$

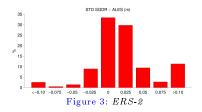


EGU 2017

$\mathrm{ALES}+$ performance in open waters

DIFFERENCE OF NOISE STATISTICS

- Std. within 1-Hz block
- Mask: Maximum sea-ice extend (March 1992)
- Almost constant improvements
- Large improvements in coastal areas and in sea-ice proximity


$\mathrm{ALES}+$ performance in open waters

DIFFERENCE OF NOISE STATISTICS

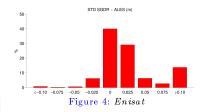
- Std. within 1-Hz block
- Mask: Maximum sea-ice extend (March 1992)
- Almost constant improvements
- Large improvements in coastal areas and in sea-ice proximity

DIFFERENCE OF AVG. NOISE (ERS-2)

- Noise reduction in the 72%
- Reduction of over 3 cm in 30%
- SGDR: Median Noise = 9.72 cm
- ALES: Median Noise = 8.49 cm

イロト イヨト イヨト イヨ

EGU 2017


ALES+ PERFORMANCE IN OPEN WATERS

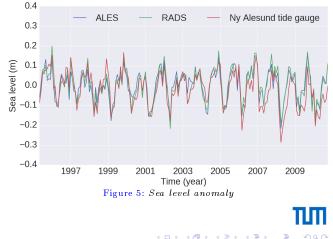
DIFFERENCE OF NOISE STATISTICS

- Std. within 1-Hz block
- Mask: Maximum sea-ice extend (March 1992)
- Almost constant improvements
- Large improvements in coastal areas and in sea-ice proximity

DIFFERENCE OF AVG. NOISE (ENVISAT)

- Noise reduction in the 76%
- $\bullet~{\rm Reduction}$ of over 3 cm in 27%
- SGDR: Median Noise = 6.74 cm
- ALES: Median Noise = 5.26 cm

(ロ) (日) (日) (日) (日)

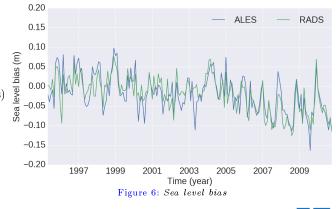


EGU 2017

VALIDATING ALES+

Comparing SLA to Ny Ålesund tide gauge (for ALES+)

- Pearson correlation coefficient ex. Ny Ålesund versus:
 - ALES: R=0.827 (2,723,430 points)
 - RADS: R=0.838 (315,037 points)



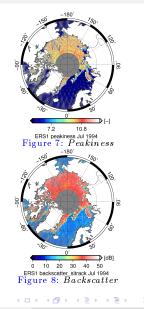
VALIDATING ALES+

Comparing SLA to Ny Ålesund tide gauge (for ALES+)

- Pearson correlation coefficient ex. Ny Ålesund versus:
 - ALES: R=0.827 (2,723,430 points)
 - RADS: R=0.838 (315,037 points)

< 4 P ►

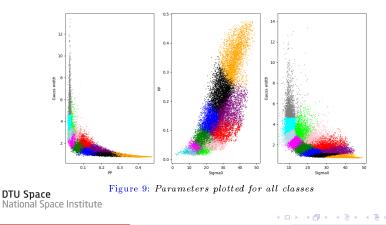
EGU 2017


OCEAN AND LEAD DISCRIMINATION

DATA FILTERING

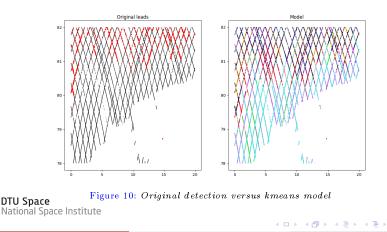
- Removing sea-ice/mixed surface measurements
- MAD outliers detected for every track

Satellite	Ocean		Lead	
ERS-1	PP <	1.5	PP > 21	L
	$\sigma^0: 9 - 15$		LEW < 3.0	
ERS-2	PP <	1.5	PP > 23	3
	$\sigma^{0}: 9 - 15$		LEW < 3.0	
Envisat	PP <	1.5	PP > 21	L
	$\sigma^0 : 9 - 15$		LEW < 3.0	
CryoSat-2	RADS		PP(SAR) > 35	5
			PP(SARIn) > 15	5
			LEW < 0.9)
			St. STD < 4.0	


DTU Space National Space Institute

EGU 2017

CLASSIFICATION


- Using a unsupervised clustering: Kmeans
- 12 classes and 3 parameters: (PP, LEW, Sigma0)
- Classification is run by every month
- Slightly better correlation coefficient with Ny-Ålesund tide gauge for C2

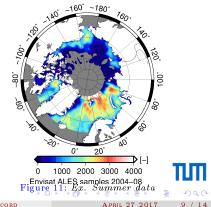
EGU 2017

CLASSIFICATION

- Using a unsupervised clustering: Kmeans
- 12 classes and 3 parameters: (PP, LEW, Sigma0)
- Classification is run by every month
- Slightly better correlation coefficient with Ny-Ålesund tide gauge for C2

EGU 2017

ARCTIC SEA LEVEL RECORD


THE SEA LEVEL RECORD

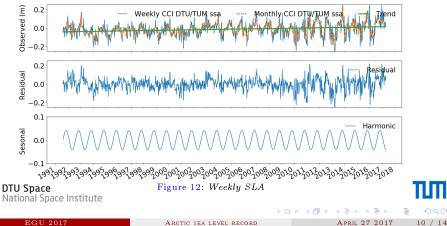
PROCESSING STEPS

- Weekly data are gridded using least squares collocation with second-order Markov covarinace function (Andersen, 1999)
- Grid size: 1° by 3°
- Inter-satellite bias determined

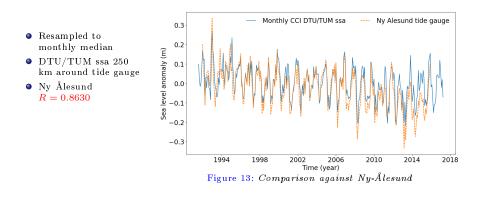
ISSUE

- Sparse Summer data (June-Aug.)
- Prandi et al. (2012) describes: correlation between the presence of sea ice and SLA data coverage. Using geoid data for missing data

EGU 2017


National Space Institute

DTU Space


ARCTIC SEA LEVEL RECORD

PRELIMINARY TRENDS AND SEASONAL VARIABILITY

- Solving the harmonic function by ordinary least squares
- Seasonal maximum in late Autumn and minimum in late Spring ۲
- Global trend $2.2 \pm 0.2 \text{ mm/yr}$

VALIDATING AGAINST TIDE GAUGES

EGU 2017

April 27 2017

11 / 14

< 17 ×

SUMMARY

- $\bullet~25+$ years of radar altimetry data are processed
- $\bullet~{\rm ALES+}~{\rm performs}~{\rm good}$ in open ocean and in sea-ice cover
- Leads and open ocean are found. Avoiding introducing MSS errors
- DTU/TUM good fit to tide gauges
- Issue with Summer data especially around the Beaufort Gyre
- Preliminary sea level rise of $2.2 \pm 0.2 \text{ mm/yr}$
- Data will in the near future be available through the CCI home page
- Antarctica version

EGU 2017

(日) (日) (日) (日) (日)

April 27 2017

FUTURE WORK

- \bullet Further improvement of lead/ocean descimination (classification, masks, . . .)
- Have a closer look at the sea level anomalies
- ALES+ retracking of ERS-1
- $\bullet~{\rm Improve/continue}$ time series with SARAL/AltiKa and Sentinel 3a data
- Separating the tides, annual signal and sea level pressure better.
- We need to improve the MSS and apply a new MSS correction in the Arctic.

EGU 2017

イロト イヨト イヨト イヨト

APRIL 27 2017

THANK YOU FOR LISTENING!

- O. B. Andersen. Shallow water tides in the northwest European shelf region from TOPEX / POSEIDON altimetry + M2cøs. J. Geophys. Res., 104(1):7729-7741, 1999.
- P. Prandi, M. Ablain, A. Cazenave, and N. Picot. A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry. *Marine Geodesy*, 35(July 2014):61-81, 2012. ISSN 0149-0419. doi: 10.1080/01490419.2012.718222.
- R. Scharroo, E. Leuliette, J. Lillibridge, D. Byrne, M. Naeije, and G. Mitchum. RADS : CONSISTENT MULTI-MISSION PRODUCTS. In The Symposium on 20 Years of Progress in Radar Altimetry, Venice,, number 2, pages 5-8. Eur. Space Agency Spec. Publ., ESA SP-710, 2013.

stine@space.dtu.dk

EGU 2017

イロト イヨト イヨト イヨト

APRIL 27 2017