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Abstract

Hagedorn wave packets form an orthonormal basis of the L2-functions and are known
solutions of the semiclassical Schrödinger equation with quadratic Hamiltonians. In
this thesis we analyse their structure, in particular the polynomial part, their connec-
tion to the Hermite functions and their representation in phase space.

Based on these findings we utilise them to investigate the time evolution generated
by the Schrödinger equation with a non-Hermitian, quadratic Hamiltonian. Operators
of this type appear for example in the context of diffusion models and absorbing poten-
tials and are thus of interest in physics and chemistry. We provide explicit formulas for
the propagated wave packets and thereby show that the non-unitary evolution activates
lower excited states.

At last we apply our results to the Lindblad master equation with quadratic internal
Hamiltonian and linear Lindblad terms.





Zusammenfassung

Hagedornsche Wellenpakete sind eine bekannte Orthonormalbasis des Hilbertraums
der L2-Funktionen und Lösungen der semiklassischen Schrödinger Gleichung mit
quadratischem Hamiltonoperator. In dieser Dissertations analysieren wir ihre Form,
insbesondere ihren polynomiellen Anteil, sowie ihre Verbindungen zu den Hermite
Funktionen und ihre Darstellung im Phasenraum.

Darauf aufbauend verwenden wir die Wellenpakete um die Zeitentwicklung der
Schrödinger Gleichung unter einem nicht-Hermiteschen, quadratischen Hamiltonoper-
ator zu untersuchen. Solche Operatoren spielen beispielsweise bei der Modellierung
von Diffusion oder auch absorbierenden Potentialen eine Rolle und sind somit in der
Physik und der Chemie relevant. Wir geben eine explizite Formel für die zeitentwick-
elten Wellenpakete an und zeigen, dass die nicht-unitäre Entwicklung dazu führt, dass
auch niedrigere angeregte Zustände aktiviert werden.

Zuletzt übertragen wir unsere Ergebnisse auf die Lindblad Mastergleichung mit
quadratischem Hamiltonoperator und linearen Lindbladtermen.
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1. Introduction

Hagedorn’s wave packets are a family of semiclassical wave packets Hagedorn con-
structed in the 1980s to approximate solutions of the Schrödinger equation. They ap-
pear as a product of a multivariate polynomial and a scaled Gaussian and form a basis
of the Hilbert space of square integrable functions L2(Rn). Due to their form and prop-
erties these wave packets are often seen as multi-dimensional Hermite functions, this
is however a simplification as they may attain a more complex structures involving also
Laguerre polynomials.

For a quadratic potential Hagedorn’s wave packets provide exact solutions to the
Schrödinger equation, for more general potentials they have favourable approximation
properties: the evolution of the wave packets is fully described by the dynamics of the
centre and the linearisation of the flow around it, solutions to the Schrödinger can be
approximated by the wave packets up to an exponentially small error. Hence, studying
the time evolution of these wave packets gives a significant insight into Schrödinger
dynamics and yields an efficient numerical tool.

So far, these investigations were restricted to Hermitian Hamiltonians, this means
for a real potential and a unitary time evolution. The main contribution of this thesis
is the expansion of Hagedorn’s approach to non-Hermitian Hamiltonians. Operators
of this type model diffusion and dissipation, i.e. an interaction of the quantum system
with its environment. Since in all practical situation such an interaction occurs to some
extent, the importance of non-Hermitian Hamiltonians can not be dismissed. Usual ap-
plications in physics and chemistry are potentials that absorb particles or light, models
of resonance phenomena, lasers in quantum optics or a heat bath.

We follow the idea of Graefe and Schubert in their work "Complexified coherent states
and quantum evolution with non-Hermitian Hamiltonians" and exploit the underlying
geometry of the wave packets to determine their dynamics. Thereby, we establish a
new notation for the semiclassical wave packets emphasising their close relation to
Lagrangian subspaces.

In this manner we find that in contrast to Hagedorn’s results for the Hermitian case,
the wave packets are not invariant under a non-Hermitian Hamiltonian but can be ex-
pressed as a linear combination of lower excited states. The explicit formulas we derive
furthermore allow us to calculate the propagation of the wave packets for some well-
known physical examples such as the damped harmonic oscillator, the heat equation
and the Fokker-Planck equation.
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1.1. Reader’s guide

This thesis is partitioned in two parts: The first part contains an analysis of Hagedorn’s
wave packets as an orthonormal set of L2-functions that is essentially based on the
publications [LT14], [DKT16] and Chapter 2 and 3 in the preprint [LST15].

Our main contributions in the first part are Theorem 4.2, where we trace back the
ladders constructing the wave packets to a recursion relation only for the polynomial
part and Theorem 6.1, where we show that the Wigner transform of two Hagedorn wave
packets is a wave packet on phase space.

Part I is divided in six chapters.

• In Chapter 2 we introduce the linear algebra fundamentals that we need to con-
struct Hagedorn’s wave packets in Chapter 4 and we will fall back on this in many
proofs and calculations in this thesis. This chapter can be seen as a reproduction
of [LST15, Chapter 2] augmented with basic definitions and results of symplectic
geometry from [Sil06, Chapter 1,3 and 12]. The central task of this chapter is to
establish a one-to-one correspondence of Lagrangian frames, symplectic matrices
and the upper Siegel half space. This bridge between the theory of Hagedorn’s
wave packets and symplectic geometry turns out to be useful in a lot of computa-
tions.

• Chapter 3 provides an overview over the definition and familiar properties of Her-
mite functions. Hagedorn’s wave packets can in some sense be interpreted as a
generalisation of Hermite functions to multi-dimensions and we will obtain simi-
lar results for the wave packets and the Hermite functions. However, we want to
clearly point out that Hagedorn’s wave packets are not simple tensor products of
Hermite functions and will specify this case in Chapter 4.

Our repetition is based on the introductions in [Tha93, Chapter 1] and [Fol09,
Chapter 1]. Furthermore, we use this preliminary chapter to establish basic def-
initions such as function spaces and integral transforms we require in the re-
maining thesis. We give short proofs also for well-known results whenever our
definitions differ from the one in the quoted literature.

• After we set the basis, Hagedorn’s wave packets are finally discussed in Chap-
ter 4. We use the ladder-based approach of [Hag98] rewritten by means of the
Lagrangian frames from Chapter 2. We follow thereby the outline in [LST15,
Chapter 3], but also regard the generalised wave packets discussed in [DKT16,
Chapter 2]. The main result of this chapter is that Hagedorn’s wave packets and
also their generalisations can always be written as product of a multivariate poly-
nomial and a Gaussian, where the polynomials are all generated in an equivalent
way.

• Motivated by this observation Chapter 5 presents a closer study of polynomials of
this type. We reproduce our results from [DKT16, Chapter 3] and the generating
function deduced in [Hag15]. Of particular interest is the Laguerre connection
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stated in Proposition 5.2 since it provides an explanation for the factorisation of
the symmetric Wigner function of Hagedorn’s wave packets.

• In Chapter 6 we determine the phase space representation of Hagedorn’s wave
packets. As we consider the Wigner transform of two arbitrary Hagedorn wave
packets we extend our findings from [LT14, Chapter 4] and [DKT16, Chapter 4],
where we only allowed for wave packets parametrised by the same Lagrangian
frame. However, the main statement, the Wigner transform of Hagedorn’s wave
packets can be written as a Hagedorn wave packet on phase space, also holds true
in the general setting. These results are part of a joint work with C. Lasser and
R. Schubert that has not been published yet.

• To close the analysis of the wave packets we summarise in Chapter 7 alterna-
tive definitions that are widely-spread in literature and show their equivalence to
Hagedorn’s wave packets.

Our investigation comprises the squeezed states from [CR12] and [Gos10] as well
as the metaplectic approach from [Ohs15] and the Bogoliubov transformation used
in [BFG16]. The relation to the squeezed states of [CR12] was already discussed
in [LT14, Chapter 5], the remaining equivalences are unpublished so far.

The second part of this thesis treats the time evolution of Hagedorn’s wave packets un-
der a quadratic, non-Hermitian Hamiltonian. We carry on Hagedorn’s approach from
the 80’s in [Hag81] resp. [Hag85] where he utilised the wave packets to approximate
solutions of the semiclassical Schrödinger equation with a Hermitian Hamiltonian and
showed that if the Hamiltonian is quadratic, the propagation of the wave packets can
be described by the dynamics of the centre and the linearisation of the classical flow
around it. We merge his ansatz with the techniques developed by Graefe and Schubert
in [GS12] resp. [GS11], where they investigated non-Hermitian, quadratic Hamiltoni-
ans with coherent states.

This study incorporates [LST15, Chapter 4 and 5], the remaining parts are unpub-
lished results prepared as joint work with Caroline Lasser and Roman Schubert.

The main result of the second part is Theorem 9.2 where we formulate that in con-
trast to the Hermitian case, the form of the wave packets is not directly preserved under
a non-unitary time evolution. Lower excited states are activated, the propagated state
must be expanded into states of lower order.

Part II is divided in three chapters.

• Chapter 8 gives a review of the findings for Hermitian Hamiltonians in the lan-
guage of Lagrangian frames. We state basic principles of quantum dynamics
based on [Tes09] and [EN00] and derive the propagation of the multi-dimensional
wave packets originally found in [Hag85]. We then show the equivalence of our
notion to the one given in [Hag81] resp. [HJ00]. Finally, we briefly recap the
evolution under the harmonic oscillator since one can read the Swanson-Davies
oscillator executed as example in the next chapter as harmonic oscillator with
complex potential.
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• The main chapter of the second part is Chapter 9 where we derive explicit formu-
las for the time evolution of the wave packets under a non-Hermitian propagation.
This part basically follows [LST15, Chapter 4] and restates the main findings of
this work. The results in the special case of coherent states are equivalent to
the ones in [GS12]. The first section treating the existence of the time evolution
operator is unpublished so far. The given example, the one-dimensional Davies-
Swanson oscillator is resumed from [LST15, Chapter 5].

• In the Chapter 10 we then transfer our results to the Lindblad master equa-
tion that describes the evolution of open quantum systems. We use the Wigner
transform of Hagedorn’s wave packets, that are wave packets on phase space, as
ansatz functions, similar ideas with coherent states are carried out in [Alm02]
and [AB10]. The given findings here are yet unpublished.

• To complete this thesis Chapter 11 presents further areas of applications for our
findings. We thereby stay in the physical field and briefly recap the connection be-
tween the diffusion equation, Brownian motion and the Fokker-Planck equation.
All three models can under certain conditions be written as Schrödinger equation
with quadratic, complex Hamiltonian. For each equation we study an explicit ex-
ample. The introduction of the diffusion equation follows [Eva98, §2.3], the theory
of Brownian motion and its connection to the Fokker-Planck equation is adopted
from [BH02, §5.2]. For a more general form of Fokker-Planck we moreover draw
back on [Ris84].

Furthermore, this thesis contains three appendices, discussing computation tools and
proofs that are shortened in the main part to focus on the central theme.

• Weyl-operators are utilised in a lot of proofs throughout this thesis. Hence, Ap-
pendix A summarises basic calculation formulas and symbol classes given in [Zwo11,
§4] and [Fol89, §2.1].

• Appendix B is dedicated to the metaplectic group. The theory of squeezed states
we investigate in Chapter 7 heavily relies on metaplectic operators and we thus
provide for the reader’s convenience a summary of their construction based on
[Gos10]. The results here vary from the one in the literature as we choose our
phase space variable differently.

• Since the existence of a time evolution operator is not self-evident, we require a
closer study of dynamical semigroups. Appendix C follows the outline in [EN00]
and [Vra03] and contains a full proof of Proposition 9.1.

1.2. Quantum dynamics on potential energy surfaces

Due to the significant overlap with the thesis "Quantum dynamics on potential energy
surfaces" from J. Keller we list similarities and distinctions of both works. [Kel15]
treats several approximation methods for unitary time evolution problems. In this con-
text also Hagedorn’s wave packets and their Wigner functions are discussed. Although
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the focus of this thesis is non-selfadjoint Hamiltonians, the analysis of the static wave
packets is similar. The authors also published a joint work, [DKT16], dealing with the
polynomial part of the wave packets. This publication is moreover a cooperation with
Helge Dietert from the University of Cambridge. Hence, similarities are mainly found
in the Chapter 4 resp. [Kel15, §7] stating the analysis of the wave packets, Chapter 5
resp. [Kel15, §6] handling the polynomial part of the wave packets and Chapter 6 resp.
[Kel15, §8] where the Wigner transform of the wave packets is expressed as a wave
packet on phase space.

In [Kel15] the wave packets and their relation to the Hermite functions are intro-
duced via the polynomial part. Thus, the analysis of the polynomials in [Kel15] starts
from their three-term recurrence relation, while here the wave packets are charac-
terised via a raising and lowering operator what yields a ladder operator for the polyno-
mial factor. These differences in the approach result in a different line of argumentation
throughout most proofs of [Kel15, §6] and Chapter 5.

In more detail, [Kel15, §6.1] and Section 5.1 discuss the polynomial factor of Hage-
dorn’s wave packets in one-dimension as scaled Hermite polynomials. However, [Kel15,
Proposition 7] provides a growth bound for the polynomials to ensure the convergence
of the generating function, that we neglect, since we use an ansatz via an exponen-
tial series in Proposition 5.1. Besides that we present a formula for polynomials as a
determinant in the univariate case, see 5.2 that is not part of [Kel15, §6.1].

The polynomials in the general case can be defined via a ladder operator, their gen-
erating function or a three-term recurrence relation. All of them are named in [Kel15,
§6.2] and Section 5.2. In particular, the result for the generating functions in [Kel15,
Proposition 8] is equivalent to Proposition 5.1, and the Rodrigues formula [Kel15, Eq.
(6.18)] can be found in Lemma 5.3. The ladder operators derived in [Kel15, Proposition
9] are the same we obtain from the definition of the wave packets in Theorem 4.2, but
we additionally need to verify the equivalence of the ladder operators to the recurrence
relation in Corollary 5.4.

The part [Kel15, §6.3] gives a profound characteristic when the polynomials factorise,
in this thesis in contrast we only highlight two special cases for the factorisation we
encounter in applications, see Corollary 5.6.

The connection to the Laguerre polynomials stated in Section 5.3 is equivalent to
[Kel15, §6.4]. The main result, Proposition 5.2, can analogously be found as [Kel15,
Proposition 11]. Also Corollary 5.5 that explicitly writes out the Laguerre connection
for two-dimensional polynomials coincides with [Kel15, Corollary 1]. We point out that
also the proofs in this section are obtained similarly and quoted from [DKT16, §3.3].

The tensor product representation of the polynomials from [Kel15, §6.5] then again is
not in particularly discussed here, we only mention the special case of two-dimensional
polynomials. The examplesM1,M2 andM3 chosen in Section 5.3 for the nodal sets of the
polynomials are the canonical examples and also used in [Kel15, §6.5] resp. [DKT16,
§5]. However, the more general example M4 differs in both works.
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Chapter 7 of [Kel15] then analyses Hagedorn’s wave packets and thus resembles
Chapter 4 of this thesis. Both definitions are based on the notion of Lagrangian frames,
see [Kel15, Definition 3] and Definition 2.1.

Since many proofs and arguments in this thesis, especially in the second part, are
based on Lagrangian subspaces, our repetition of symplectic geometry in Chapter 2 is
more extensive than [Kel15]. [Kel15, §7.1] gives a brief summary including the def-
inition of a symplectic metric and a compatible complex structure in [Kel15, Lemma
9], we introduce in Definition 2.4 and generalise in Proposition 2.3. The projection of
a complex phase space centre to a real centre by means of the complex structure, that
was originally found in [GS12, Theorem 2.1], is noted in [Kel15, Remark 10]. Since
this projection is crucial when we investigate wave packets under a non-unitary time
evolution we present it in more detail in Theorem 4.4.

The definition of the wave packets in [Kel15, §7.2] is a small generalisation of Hage-
dorn’s original definition via ladder operators in [Hag98]. We start in Section 4.3 from
the standard definition and then allow for the same generalisations in Corollary 4.2
and Section 4.5. The commutator relations for the ladder operators given in [Kel15,
Lemma 10] can be found as Lemma 4.1 here.

The spectral properties of the wave packets in [Kel15, §7.3] are in the current work
shorten to Lemma 4.3, the orthogonality of non-normalised wave packets, see [Kel15,
Proposition 12], is not investigated. The number operator used in both theses goes back
to notes of Caroline Lasser.

In [Kel15, §7.4] Hagedorn’s wave packets are then characterised as a product of a
Gaussian and the multivariate polynomials discussed in [Kel15, §6]. This representa-
tion is also a fundamental conclusion of this thesis and a continuation of [LT14, Propo-
sition 2]. In particular, [Kel15, Lemma 11] coincides with Theorem 4.2 and [Kel15,
Proposition 13] with Proposition 4.2, while the techniques of proofs are varying. [Kel15,
Corollary 2] that restates the three term recurrence relation for the wave packets from
[Lub08, Eq.(2.7)] is here explicitly quoted as implication of the polynomial recurrence
at the end of Section 5.2.

As in this manuscript after investigating Hagedorn’s wave packets and their polyno-
mial part, [Kel15, §8] comprises a formula for the Wigner function of two wave packets
parametrised by the same Lagrangian frame. The generalised metric we introduce in
Section 2.6 allows us to go beyond and also investigate the Wigner transform of two
arbitrary wave packets.

Thereby, both arguments are based on a lift of Lagrangian frames to phase space.
This lift is for two different Lagrangian frames Z1 and Z2 elaborated in Definition 6.1,
the special case Z1 = Z2 is determined in [Kel15, Lemma 12]. Consequently, [Kel15,
Theorem 3] can be obtained from Theorem 6.1 for the standard wave packets or, equiv-
alently from Proposition 6.4 for generalised wave packets, by taking Z1 = Z2.

The remaining parts of the phase space analysis are developed differently. Both the-
ses use the polynomial representation to provide an explanation for factorisation of the
Wigner function, see [Kel15, §8.3] and Corollary 6.1. This observation as well as [Kel15,
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Corollary 3] are reformulations of [LT14, Theorem 1]. In addition [Kel15, Remark 11,
Corollary 4] uses the findings for the factorisation of the polynomials to give more in-
formations about the tensor product structure of the Wigner function. In [Kel15, §8.4]
the Wigner function is expanded in lower symmetric Wigner functions based on a re-
currence relation for the Wigner transforms, see [Kel15, Proposition 15]. The same
recurrence is obtained at the end of Section 6.2 showing that the results here are equiv-
alent to the ones in [LT14].

The focus of the phase space chapter of this thesis is the lift of the Lagrangian frames
and its equivalence to the standard lift, see for example [SA16, §2]. Furthermore, we
deduce formulas for the FBI and the Husimi transform in Section 6.3.





Part I.

Stationary wave packets





2. Lagrangian subspaces

In this chapter we restate some basic principles of symplectic geometry to set the fun-
damentals we will need later to construct Hagedorn’s wave packets.

We focus on the definitions for vector spaces here. Analogously one could also define
a symplectic structure on manifolds but since we are handling vectors in Rn resp. Cn

we restrict the repetition to symplectic vector spaces.
The results and definitions given in the first section and in the general discussion at

the beginning of Section 2.4 are adopted from the lecture notes [Sil06, §1, §12, §13]. We
then extend the standard setting and introduce Lagrangian frames that are spanning
the Lagrangian subspaces defined in the first section. These frames will parametrise
the ladder operators for the wave packets, what is a difference to Hagedorn’s origi-
nal notation in [Hag85] and [Hag98]. However, we can show that both approaches
are equivalent. By means of the Lagrangian frames we can moreover equip each La-
grangian subspaces with a symplectic metric and a complex structure. These charac-
teristics will become crucial when we lift the wave packets to phase space.

The basic outline of this chapter follows the one given in [LST15, §2], but we will add
two more points and investigate non-normalised Lagrangian frames and the mixed met-
ric of two Lagrangian frames. In general, we need the normalisation of a Lagrangian
frame to ensure that the corresponding subspace is positive, but under a non-unitary
time evolution, as we will investigate in the second part of this work, a Lagrangian
frame can become non-normalised. In this case we need the tools developed in Section
2.5. The generalised metric will play a role when we determine the Wigner function of
two Hagedorn wave packets parametrised by different Lagrangian frames.

2.1. Symplectic vector spaces

In general, one obtains a symplectic vector space by equipping a finite dimensional K-
vector space V , K ∈ {R,C} with a bilinear, skew-symmetric form ω : V × V → K, such
that

ω̃ : V 7→ V ∗, v → ω(v, ·)

is bijective, where V ∗ denotes the dual space of V . The last condition is equivalent to
ω(v, u) = 0 for all u ∈ V implies v = 0. In this case, we call ω a symplectic structure
and (V, ω) a symplectic vector space. The following result for symplectic vector spaces is
more or less standard and can be found as [Sil06, Theorem 1.1].

Theorem 2.1 — Symplectic basis. If (V, ω) is a symplectic vector space, the dimension
of V is even, i.e. dim(V ) = 2n for n ∈ N. Moreover, there exists a basis e1, . . . , en,
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f1, . . . , fn of V such that

ω(ei, fj) = δi,j and ω(ei, ej) = ω(fi, fj) = 0 (2.1)

for i, j = 1, . . . , n.

Similarly one can define symplecticity not only for vector spaces V , but also for sub-
spaces of V . We call Y ⊆ V symplectic if ω |Y×Y is non-degenerate and isotropic if
ω |Y×Y≡ 0. Using the orthogonal complement

Y ω = {v ∈ V ; ω(u, v) = 0 ∀u ∈ Y } (2.2)

we can show that
dim(Y ) ≤ 1

2
dim(V ) (2.3)

for any isotropic subspace Y .

Lemma 2.1 Let (V, ω) be a symplectic vector space and Y a linear subspace of V . Then,

dim(Y ) + dim(Y ω) = dim(V ).

Proof. The claim follows as a consequence of the rank-nullity theorem for the linear
map

ω̃Y : V → Y ∗, v 7→ ω(v, ·) |Y .

It is clear from the definition that kern(ω̃Y ) = Y ω. Since dim(Y ) = dim(Y ∗) it remains to
show that im(ω̃Y ) = Y ω. But since ω̃ is a bijective mapping, ω̃Y has to be surjective. �

If Y is isotropic, Y ⊆ Y ω and Inequality (2.3) follows. If the identity

dim(Y ) = 1
2 dim(V )

holds, we call Y a Lagrangian subspace.
We can illustrate these definitions with the basis in Theorem 2.1: span(e1, f1) for

example forms a symplectic subspace, while span(e1, . . . , en) and span(f1, . . . , fn) both
define Lagrangian subspaces of V .

Thus, Lagrangian subspaces, that are the basis for our construction of wave packets
later on, are defined via a vector space and a symplectic structure. In this work, it
suffices to observe a simple standard case: Let V = C2n and

Ω =

(
0 −Id

Id 0

)
∈ R2n×2n. (2.4)

denote the standard skew-symmetric matrix. Then, one can easily verify that

ω : C2n × C2n → C, ω(v, u) = vTΩu. (2.5)

defines a symplectic form and we will refer to ω in the following as standard symplectic
form. To simplify the notation we write Id for the n×n- identity matrix and only specify
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the dimension in other cases, for example Id2n.

We call a matrix S ∈ C2n×2n that respects the symplectic form in the sense that
ω(Su, Sv) = ω(u, v) a symplectic matrix. For our special choice of ω, this means that S
satisfies

STΩS = Ω. (2.6)

We refer to the set of all real or complex-valued symplectic 2n×2n- matrices as Sp(n,R)

resp. Sp(n,C). The following corollary gives some useful properties for symplectic ma-
trices that follow directly from the definition.

Corollary 2.1 Every symplectic matrix S is invertible and satisfies

S−1 = ΩTSTΩ. (2.7)

In particular, det(S) = 1.

Proof. Taking the determinant in (2.6) shows

1 = det(S) det(ST ) = det(S)2.

Thus, S is invertible and the formula for the inverse follows from (2.6) by multiplying
with S−1 from the right. �

In the next section we will parametrise a Lagrangian subspace L ⊂ C2n with a com-
plex matrix Z ∈ C2n×n, i.e.

L = range(Z),

and find a direct link between symplectic matrices and Lagrangian subspaces.

2.2. Lagrangian frames

In the following we will always assume that V = C2n and ω is the standard symplectic
form on C2n.

Let L ⊂ C2n be a Lagrangian subspace. Then, dim(L) = n and there are basis vectors
l1, . . . , ln ∈ C2n such that

L = span(l1, . . . , ln).

Since L is isotropic ω(lj , lk) = lTj Ωlk = 0 for all j, k = 1, . . . , n. To shorten the notation,
we summarise the vectors l1, . . . , ln in a matrix,

Z =

 | |
l1 · · · ln

| |

 ∈ C2n×n

and find L = range(Z).

The following definition can also be found as [LST15, Definition 2.2].
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Definition 2.1 — Lagrangian frame. We say that a matrix Z ∈ C2n×n is isotropic if

ZTΩZ = 0 (2.8)

and normalised if
Z∗ΩZ = 2iId. (2.9)

We call an isotropic matrix of rank n a Lagrangian frame.

The first condition reflects the isotropy of L. If additionally an isotropic matrix has full
rank, then its columns are linearly independent and thus form a basis of a Lagrangian
subspace. This means, if Z is a Lagrangian frame, then

LZ := {Zx ; x ∈ Cn} ⊂ C2n

is a Lagrangian subspace. Vice versa, if L is a Lagrangian subspace we can construct
a Lagrangian frame Z by taking basis vectors of L as columns of Z. Note that as the
choice of the basis of L, also the choice of a Lagrangian frame Z is not unique. We define
by

Fn(L) = {Z ∈ C2n×n ; range(Z) = L,Z∗ΩZ = 2iId}

the set of all normalised Lagrangian frames spanning a Lagrangian subspace L.
The second condition first of all ensures that the quadratic form

h(v, u) = 1
2iv
∗Ωu for v, u ∈ C2n (2.10)

is positive on L. We call such a Lagrangian subspace positive. A negative Lagrangian
subspace is accordingly a Lagrangian subspace L with h(l, l) < 0 for all l ∈ L\{0}.

Besides that a normalised Lagrangian frame not only yields a basis for a Lagrangian
subspaces but for the symplectic vector space (R2n, ω).

Corollary 2.2 Let Z ∈ C2n×n denote a normalised Lagrangian frame and l1, . . . , ln the
columns of Z. Then,

Re(l1), . . . ,Re(ln), Im(l1), . . . , Im(ln)

form a basis of R2n that satisfies (2.1).

Proof. If we rewrite the isotropy condition (2.8) and the normalisation condition (2.9)
in terms of real and imaginary part of Z, we find

Re(Z)TΩRe(Z) = Im(Z)TΩIm(Z) = 0

and
Re(Z)TΩIm(Z) = −Im(Z)TΩRe(Z) = Id,

what is equivalent to (2.1). �

The two equations for the real and imaginary part of a normalised Lagrangian frame Z
in the above proof furthermore yield the approached connection to symplectic matrices,
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see also [LST15, §2].

� Remark 2.1 If Z is a normalised Lagrangian frame, then

S =
(

Re(Z) −Im(Z)
)
∈ R2n×2n

is symplectic. On the other hand, if S =
(
U V

)
∈ R2n×2n is a symplectic matrix, then

Z = U − iV defines a normalised Lagrangian frame.

The ansatz to formulate (2.8) and (2.9) as a symplecticity condition on matrices was
already introduced in [Lub08, Chapter V.I] using a different representation, which we
will discuss next.

2.3. Hagedorn’s parametrisation

If we write Z =

(
P

Q

)
as a block matrix with P,Q ∈ Cn×n, or, Z = (P ;Q) as a short

notation, then Z is isotropic if
QTP − P TQ = 0 (2.11)

and normalised if
Q∗P − P ∗Q = 2iId. (2.12)

These conditions coincide with the requirements in [Lub08, Chapter V.I] or, for Q = AT

and P = iBT with Hagedorn’s original definition given in [Hag98, Chapter 3]. Thus, we
can adopt the following lemma for Lagrangian frames.

Lemma 2.2 Let Z = (P ;Q) ∈ C2n×n be a normalised Lagrangian frame. Then, P and
Q are invertible, and

B = PQ−1 ∈ Cn×n (2.13)

is complex symmetric with positive imaginary part

Im(B) = (QQ∗)−1. (2.14)

Conversely, every complex symmetric matrix B with positive definite imaginary part
can be written as B = PQ−1 with Z = (P ;Q) being a normalised Lagrangian frame.

Proof. This result can be found as [Lub08, Chapter V.I, Lemma 1.1]. The matrices P
and Q are invertible if kern(P ) = kern(Q) = {0}, but this follows from Equation (2.12),
since

(Qy)∗(Py)− (Py)∗(Qy) = 2i‖y‖2

for all y ∈ Cn. For the symmetry of B we note that

B −BT = Q−T (QTP − P TQ)Q−1 = 0
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and, analogously, for the imaginary part,

B −B∗ = Q−∗(Q∗P − P ∗Q)Q−1 = 2iQ−∗Q−1.

For the inversion, assume that B ∈ Cn×n is symmetric and Im(B) > 0. Then, we can
construct a normalised Lagrangian frame Z = (P ;Q) by taking Q = Im(B)−1/2 and
P = BQ. This choice satisfies

QTP − P TQ = QT (B −BT )Q = 0,

and
Q∗P − P ∗Q = Q∗(B −B∗)Q = 2iIm(B)−1/2Im(B)Im(B)−1/2 = 2iId.

�

With this lemma we can identify the set of normalised Lagrangian frames with the
Siegel upper half-space

Σn = {W ∈ Cn×n ; W = W T , Im(W ) > 0}.

Moreover, with [LST15, Lemma 2.4], we find that a large set of Lagrangian subspaces
can be naturally parametrised by complex symmetric matrices.

Lemma 2.3 — Siegel half space. Assume that L ⊂ C2n is a Lagrangian subspace so that
the projection C2n 7→ Cn, (p, q) → p is non-singular on L. Then there exists a unique
symmetric B ∈ Cn×n such that

L = {(Bx, x) ; x ∈ Cn} .

The matrix B can be written as B = PQ−1, where P,Q ∈ Cn×n are the components of
any Lagrangian frame Z ∈ C2n×n spanning L. Furthermore, L is positive (negative)
if and only if Im(B) is positive (negative) definite.

Proof. That the projection of L to Cn is non-singular means that there exists a function
f such that

L = {(f(x), x) ; x ∈ Cn}

and since L is linear f also has to be linear. Thus f is of the form f(x) = Bx for a
uniquely determined matrix B ∈ Cn×n.

Now let us denote elements of L as lB(x) = (Bx, x) ∈ C2n for x ∈ Cn. Since L is
isotropic, we need

0 = lTB(x)ΩlB(x′) = x · (B −BT )x′

for all x, x′ ∈ Cn. This implies B = BT . The matrix B can be defined via any Lagrangian
frame since for any two Lagrangian frames Z = (P ;Q) and Z1 = (P1;Q1) spanning L,
there is an unitary matrix U ∈ Cn×n with Z1 = ZU , so that

P1Q
−1
1 = PQ−1 = B.
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Moreover, we find for the quadratic form

h(lB(x), lB(x)) = 1
2i lB(x)∗ΩlB(x) = 1

2ix
∗(B −B)x = x∗(ImB)x

for all x ∈ Cn. Hence L is positive (negative) if and only if Im(B) is positive (negative).
�

The observations in this chapter yet mainly focus on the imaginary part of B, but we
need to add a short remark on Re(B) here as well, since the real part gives us a criterion
to classify pure states, i.e. symmetric Wigner functions, later on.

� Remark 2.2 The matrix B is purely imaginary if

Re(PQ−1) = PQ−1 − i(QQ∗)−1 = (P − iQ−∗)Q−1 = 0,

i.e. if the normalisation condition (2.9) is fulfilled with Q∗P = −P ∗Q = iId.

All in all, we stated a one-to-one correspondence between positive Lagrangian sub-
spaces, symplectic matrices and the upper Siegel half space.

As a next step, we will equip the symplectic vector space (C2n, ω) with an ω- compati-
ble complex structure J and a metric G. These characteristics will become crucial when
we lift the wave packets to phase space.

2.4. Metric and complex structure

Let us briefly consider the general case first. Let (V, ω) be a symplectic vector space.

Definition 2.2 A complex structure on V is a linear map

j : V 7→ V with j2 = −id,

where id : V 7→ V, id(u) = u denotes the identity map. If additionally

ω(j(u), j(v)) = ω(u, v) ∀u, v ∈ V and ω(u, j(u)) > 0 ∀u ∈ V \{0}

the map j is called an ω-compatible complex structure.

This definition is taken from [Sil06, Definition 12.2]. For a better intuition one can
identify the complex structure j with the multiplication by i on a C-vector space.

It can be shown that every symplectic vector space possesses such a ω-compatible
structure, see [Sil06, Proposition 12.3]. Moreover, from a symplectic form and a com-
patible complex structure one can deduce a Riemannian metric g : V × V → K via

g(u, v) = ω(u, j(v)).

The three maps (ω, g, j) form a compatible triple, each two of the forms uniquely de-
termine the third, see [Sil06, §12.3] for more details. However, there may be several
complex structures compatible with one symplectic form ω.
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Please note that we slightly stretched the definition of a Riemannian metric here. Since
we also allow for symplectic forms that map to C, the metric g might yield complex val-
ues as well, but we find that g is only a positive inner product on R. We will still refer
to g as a metric, since the description is more a formal one.

In the special case, where we choose V = C2n and ω to be the standard symplectic
structure, we can equivalently transfer these definitions to matrices.

Definition 2.3 A matrix J ∈ C2n×2n is an ω-compatible complex structure if

JTΩJ = Ω, ΩJ > 0 and J2 = −Id2n.

Furthermore, if J is an ω-compatible complex structure, then G := ΩJ defines a
metric on R2d.

Starting from a positive Lagrangian subspace L, our goal is now to construct a metric
G and a complex structure J from a Lagrangian frame Z ∈ Fn(L). We first note that
although the choice of a Lagrangian frame spanning L might not be unique, all frames
Z,Z1 ∈ Fn(L) are related by a unitary matrix U ∈ U(n):
Since range(Z) = range(Z1), there exists an invertible U ∈ Cn×n such that Z1 = ZU .
Moreover, since Z1 is normalised,

2iId = Z∗1ΩZ1 = U∗Z∗ΩZU = 2iU∗U

and U is unitary. So, all normalised frames Z ∈ Fn(L) not only define the same ma-
trix B ∈ Σn, but also the same Hermitian square ZZ∗. The next result that can
also be found in [LST15, Proposition 2.3] will characterise L based on this Hermitian
square.

Proposition 2.1 — Projections. Let L ⊂ C2n be a positive Lagrangian and Z ∈ Fn(L).
Then, the complex conjugate L is a negative Lagrangian and

h(l, l′) = 0 for all l ∈ L, l′ ∈ L.

The orthogonal projections onto L and L, respectively, are given by

πL = i
2ZZ

∗ΩT and πL = − i
2ZZ

TΩT , (2.15)

that is,

(i) πL |L= Id2n, πL |L= 0 and πL |L= Id2n, πL |L= 0,

(ii) π2
L = πL and π2

L
= πL,

(iii) h(πLv, u) = h(v, πLu) and h(πLv, u) = h(v, πLu) for all v, u ∈ C2n.

Proof. Let l1, . . . , ln be a basis of L. Then, l1, . . . , ln is a basis of L, i.e. dim(L) = n and

l
T

Ωl
′
= lTΩl′ = 0
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for all l, l′ ∈ L. Thus L is a Lagrangian subspace and since

h(l, l) = 1
2i l

TΩl = 1
2i l
∗ΩT l = −h(l, l) < 0

for all l ∈ L, L is negative. In addition, h(l, l′) = 1
2i l

TΩl′ = 0 for all l ∈ L, l′ ∈ L and we
can interpret L and L as an orthogonal decomposition of C2n, L⊕L = C2n, with respect
to h. To prove πL |L= Id2n and πL |L= 0, we observe

πLZ = i
2ZZ

∗ΩTZ = Z, πLZ = i
2ZZ

∗ΩTZ = 0.

Furthermore,
π2
L = ( i

2)2ZZ∗ΩZZ∗Ω = i
2ZZ

∗ΩT = πL

and
h(πLv, u) = 1

2iv
∗( i

2ZZ
∗ΩT )∗Ωu = 1

2iv
∗Ω(− i

2ZZ
∗Ω)u = h(v, πLu).

The properties of πL are also proved by short calculations using that Z is isotropic and
normalised. �

We now examine the real and imaginary parts of Hermitian squares ZZ∗ to see more
of their geometric information unfolding, see [LST15, Proposition 2.5].

Proposition 2.2 — Hermitian square. Let Z ∈ C2n×n be a normalised Lagrangian frame.
Then,

ZZ∗ = Re(ZZ∗)− iΩ,

where Re(ZZ∗) ∈ Sp(n,R) is a real symmetric and positive definite. In particular,
Re(ZZ∗)−1 = ΩTRe(ZZ∗)Ω. Moreover,

Re(ZZ∗)ΩZ = iZ, Re(ZZ∗)ΩZ = −iZ,

so that (Re(ZZ∗)Ω)2 = −Id2n.

Proof. Writing πL + πL = Id2n in terms of Z, we obtain

i
2ZZ

∗ΩT − i
2ZZ

TΩT = − i
2(ZZ∗ − ZZT )Ω = Im(ZZ∗)Ω = Id2n.

Hence, Im(ZZ∗) = −Ω. This implies symplecticity of the real part, since

Re(ZZ∗)TΩRe(ZZ∗) = 1
4(ZZT + ZZ∗)Ω(ZZT + ZZ∗)

= 1
4(−2iZZT + 2iZZ∗) = −Im(ZZ∗) = Ω.

Checking positive definiteness, we see

z∗Re(ZZ∗)z = 1
2z
∗(ZZ∗z + ZZT z) = |Z∗z|2 ≥ 0

for all z ∈ R2n. If Z∗z = 0, then ZZ∗z = 0 and Im(ZZ∗)z = 0, which means z = 0.
Finally we compute Re(ZZ∗)ΩZ = 1

2(ZZ∗ + ZZT )ΩZ = iZ. �
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These properties of the Hermitian square ZZ∗motivate our next definitions, see [LST15,
Definition 2.6].

Definition 2.4 — Symplectic metric and complex structure. Let L ⊂ C2n be a positive La-
grangian subspace and Z ∈ Fn(L).

(i) We call the symmetric, positive definite, symplectic matrix

G = ΩTRe(ZZ∗)Ω

the symplectic metric of L.

(ii) We call the symplectic matrix
J = −ΩG

with J2 = −Id2n the complex structure of L.

With Hagedorn’s parametrisation Z = (P ;Q) we can write G in terms of the real and
imaginary part of B = PQ−1 and show that our definition is equivalent to the one given
in [GS11, Eq. (3)] resp. [GS12].

Corollary 2.3 Let L ⊂ C2n be a positive Lagrangian subspace, Z = (P ;Q) ∈ Fn(L) and
B = PQ−1. We can write the symplectic metric G of L as

G =

(
QQ∗ −QP ∗ − iId

−PQ∗ + iId PP ∗

)

or, equivalently,

G =

(
Im(B)−1 −Im(B)−1Re(B)

−Re(B)Im(B)−1 Re(B)Im(B)−1Re(B) + Im(B)

)
. (2.16)

Proof. The first expression for G follows by a direct calculation, G = ΩTZZ∗Ω + iΩ. For
the second form, we use that Im(B)−1 = QQ∗. So,

−PQ∗ + iId = −B ·QQ∗ + iId = −(Re(B) + iIm(B))Im(B)−1 + iId = −Re(B)Im(B)−1,

−QP ∗ − iId = −QQ∗ ·B∗ − iId = −Im(B)−1(Re(B)− iIm(B))− iId = −Im(B)−1Re(B),

and

PP ∗ = BQQ∗B∗ = (Re(B) + iIm(B))Im(B)−1(Re(B)− iIm(B))

= Re(B)Im(B)−1Re(B) + Im(B).

�

The correspondence

J = −Re(ZZ∗)Ω = −(ZZ∗ + iΩ)Ω = ZZ∗ΩT + iId
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suggest a closer study of the relation between the complex structure J and the projec-
tion πL, see [LST15, Corollary 2.7].

Corollary 2.4 — Orthogonal projections. Let L ⊂ C2n be a positive Lagrangian and J ∈
Sp(n,R) its complex structure. Then, the orthogonal projections on L and L can be
written as

πL = 1
2(Id2n + iJ), πL = 1

2(Id2n − iJ).

Proof. We have

πL = i
2ZZ

∗ΩT =
i

2
(J − iId) =

1

2
(Id + iJ)

and πL = πL. �

So far, we stated that every positive Lagrangian subspace possesses a symplectic metric
G, that is a real-valued, symmetric and positive definite matrix. Conversely, we can
also show that for every symmetric G ∈ Sp(n,R) with G > 0 there exists a positive
Lagrangian subspace whose symplectic metric is given by G:

The eigenvalues of any symmetric, positive definite matrix G ∈ Sp(n,R) occur in
pairs, there exist λ1, . . . , λn ≥ 1 so that

σ(G) =
{
λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n

}
.

In particular, if u1, . . . , un ∈ R2n are orthonormal eigenvectors of G associated with the
eigenvalues λ1, . . . , λn, that is,

Guk = λkuk , uj · uk = δjk , j, k = 1, . . . , n ,

then the vectors vk := Ωuk are eigenvectors of G so that

Gvk = λ−1
k vk , k = 1, . . . , n ,

since GΩ = ΩG−1. This special spectral structure allows to extract a normalised La-
grangian frame from a symplectic metric.

Lemma 2.4 Let G ∈ Sp(n,R) be symmetric and positive definite. Consider an eigen-
basis u1, . . . , un, v1, . . . , vn ∈ R2n of G as described above and denote

lk := 1√
λk
uk − i

√
λkvk , k = 1, . . . , n .

Then, the matrix Z ∈ C2n×n with column vectors l1, . . . , ln is a normalised Lagrangian
frame so that G = ΩTRe(ZZ∗)Ω.

Proof. This result can also be found as [LST15, Lemma 2.8]. The vectors l1, . . . , ln are
normalised, since

l∗jΩlk =

(
1√
λj
uj + i

√
λjvj

)
· Ω
(

1√
λk
uk − i

√
λkvk

)
= δjk (ivk · Ωuk − iuk · Ωvk) = 2iδjk .
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Isotropy is seen by an analogous calculation. Furthermore,

Re(ZZ∗) =

n∑
k=1

Re(lkl
∗
k) =

n∑
k=1

(
1
λk
uku

T
k + λkvkv

T
k

)
= G−1 ,

where we have used that Re(lkl
∗
k)uk = 1

λk
uk and Re(lkl

∗
k)vk = λkvk for all k = 1, . . . , n. �

This section completes the part of symplectic linear algebra we will need to construct
Hagedorn’s wave packets. Beyond that we allow for two generalisations we will make
use of when we specify the non-symmetric Wigner function or, when we propagate our
Lagrangian subspaces with a non-unitary time evolution. These two extensions are
discussed in the next sections.

2.5. Non-normalised Lagrangian frames

First we want to review the construction of Lagrangian subspaces via non-normalised
Lagrangian frames, i.e. Lagrangian frames that do not satisfy (2.9). By definition
such frames still span a Lagrangian subspace L = range(Z), but its characterisation is
encoded in the matrix Z∗ΩZ. We will encounter frames of this type in Chapter 9, when
we discuss the effects of non-Hermitian Schrödinger dynamics.

Definition 2.5 — Normalisation. Let Z ∈ C2n×n be a Lagrangian frame. We define its
normalisation N ∈ Cn×n as

Z∗ΩZ = 2iN,

with N being a Hermitian, invertible matrix.

The invertibility of N follows since for all v ∈ C2n\{0}, Z∗ΩZv = 0 implies that each col-
umn of Z is an element of Z. But this is a contradiction since L is a positive Lagrangian
frame, while L is negative, see Proposition 2.1.

In §2.2 we stated that the normalisation condition (2.9) ensures that the quadratic
form h defined in (2.10) is positive on L. We can generalise this result here in terms of
the normalisation N .

Lemma 2.5 Let Z ∈ C2n×n be a Lagrangian frame and N the normalisation of Z.
Then, the Lagrangian subspace L := range(Z) is positive (negative) if and only if N
is positive (negative) definite.

Proof. Let l1, . . . , ln ∈ C2n denote the columns of Z. Then, L is positive, if

h

 n∑
j=1

αjlj ,
n∑
j=1

αjlj

 > 0

for all αj ∈ C, j = 1, . . . , n. But by the definitions of h and N ,

h

 n∑
j=1

αjlj ,

n∑
j=1

αjlj

 =

n∑
j,k=1

1

2i
αil
∗
iΩljαj = α∗Nα
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with the vector notation α =
(
α1 . . . αn

)T
. �

With this lemma we can also argue that if N is a positive definite matrix, the La-
grangian subspace L is positive and can thus be parametrised by a normalised La-
grangian frame Z ′ ∈ Fn(L). We find such a frame Z ′ by taking Z ′ = ZN−1/2, since

Z ′TΩZ ′ = (N−1/2)TZTΩZN−1/2 = 0

and
Z ′∗ΩZ ′ = (N−1/2)∗Z∗ΩZN−1/2 = 2iN−1/2NN−1/2 = 2iId.

This construction is well-defined as N is positive definite, Hermitian and invertible.

� Remark 2.3 Both frames, Z ′ and Z, define the same Lagrangian subspace L, because
N−1/2 is invertible, the same metric G, because N−1/2 is Hermitian, and the same
complex symmetric matrix B, see Section 2.3.

Moreover, we can also rewrite the parametrisation of Hagedorn discussed in Section
2.3 in terms of the normalisation N .

Lemma 2.6 Let Z = (P ;Q) ∈ C2n×n be a Lagrangian frame with normalisation N .
Then, the matrices P and Q are invertible and the matrix B = PQ−1 is symmetric
and satisfies

Im(B)−1 = QN−1Q∗.

In particular, the imaginary part of B is positive definite if and only if N is positive
definite.

Proof. The invertibility of P and Q follows since N is invertible and

(Qy)∗(Py)− (Py)∗(Qy) = 2iy∗Ny.

The symmetry B is a consequence of the isotropy of Z, see Lemma 2.2, and is thus
preserved. For the imaginary part of B we can calculate

Im(B) = 1
2i (B −B∗) = 1

2iQ
−∗ (Q∗P − P ∗Q)Q−1 = Q−∗NQ−1.

�

2.6. Generalised metric

Let Z1, Z2 ∈ C2n×n be two normalised Lagrangian frames. In the following we will
construct a joined metric of Z1 and Z2 and give a criterion for the case in which Z1 and
Z2 define the same Lagrangian subspace L. This joined metric becomes important when
we deduce the Wigner function of two Hagedorn wave packets, one parametrised by Z1

and one by Z2.
We start with defining a mixed isotropy C ∈ Cn×n via

ZT1 ΩZ2 = 2iC (2.17)
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and, accordingly, a mixed normalisation D ∈ Cn×n satisfying

Z∗1ΩZ2 = 2iD. (2.18)

If Z1 = Z2, we find C = 0 and D = Id. In general, we can only be sure that D is
invertible with the same argument as for the normalisation N .

Following further the idea from the previous section, we could normalise Z1 and Z2

by multiplying with D−1/2,

(Z1D
−1/2)∗ΩZ2D

−1/2 = 2iId,

if the matrix D would be Hermitian and positive definite. Unfortunately, taking the
square root of D is in general not well-defined. However, for the symplectic metric of a
Lagrangian frame, see Definition 2.4, we only used the Hermitian square

K := Z2D
− 1

2 (Z1D
− 1

2
∗)∗ = Z2D

−1Z∗1 , (2.19)

which can be defined in any case. This motivates our next result.

Proposition 2.3 — Joined metric. Let Z1 and Z2 be two normalised Lagrangian frames,
D their mixed normalisation and K as in (2.19). Then, the matrix

G =
1

2
ΩT (K +KT )Ω. (2.20)

is symmetric, symplectic and has a positive definite real part.

Proof. The symmetry of G follows directly from the definition. For the symplecticity we
calculate

(K +KT )Ω(K +KT ) = KΩK − (KΩK)T +KTΩK +KTΩK

where
KΩK = Z2D

−1Z∗1ΩZ2D
−1Z∗1 = 2iZ2D

−1Z∗1 = 2iId

and
KTΩK = Z1D

−TZT2 ΩZ2D
−1Z∗1 = 0.

Therefore, GΩG = i
2Ω(K −KT )Ω and it remains to show that K −KT = 2iΩ. But this

holds true since

(KT −K)ΩTZ1 = Z1D
−TZT2 ΩTZ1 = Z1D

−T (2iDT ) = 2iZ1.

Equivalently, we could also multiply by ΩZ2. Positive definiteness of the real part fol-
lows by the next corollary. �

The construction above can be seen as a generalisation of the symplectic metric. In
particular, both constructions are consistent as for Z = Z1 = Z2, we find D = Id and

G =
1

2
ΩT (ZZ∗ + (ZZ∗)T )Ω =

1

2
ΩT (ZZ∗ + ZZ∗)Ω = ΩTRe(ZZ∗)Ω.
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This also raises the question how the joined metric G of two normalised Lagrangian
frames Z1 and Z2 is related to their single symplectic metrics.

Corollary 2.5 Let Z1 ∈ C2n×n and Z2 ∈ C2n×n be two normalised Lagrangian frames,

G1 = ΩTRe(Z1Z
∗
1 )Ω and G2 = ΩTRe(Z2Z

∗
2 )Ω.

Then, the joined metric G of Z1 and Z2 can be written as

G = 2(G−1
1 +G−1

2 )−1 + i(G1 −G2)(G1 +G2)Ω. (2.21)

Proof. A direct calculation yields

G(G−1
1 +G−1

2 ) =
1

2
ΩT (Z2D

−1Z∗1 + Z1D
−TZT2 )Ω(Z1Z

T
1 + Z2Z

∗
2 )

=
1

2
ΩT (Z2D

−1Z∗1ΩZ2Z
∗
2 + Z1D

−TZT2 ΩZ1Z
T
1 )

= iΩT (Z2Z
∗
2 − Z1Z

T
1 )

Using that G−1
j = ZjZ

∗
j + iΩ is real symmetric and the fact that symplecticity implies

ΩG−1
j = GjΩ for j = 1, 2, we find

G(G−1
1 +G−1

2 ) = iΩT (G−1
2 −G

−1
1 − 2iΩ)

= 2Id + Ω(G−1
1 −G

−1
2 ) = 2Id + (G2 −G1)Ω

Multiplying with (G−1
1 + G−1

2 )−1 and using the symplecticity once more to rewrite the
inverse of G1 resp. G2 proves the claim. �

With Equation (2.21), we can complete the proof of Proposition 2.3:

Re(G)−1 =
1

2
(G−1

1 +G−1
2 )

is positive definite since G1 and G2 are positive definite matrices. In particular, we
mention that G is real if and only if G1 = G2.

Although the relation between G and G1, G2 appears very complex, the matrix G

differs from G1 and G2 only by a singular matrix.

Corollary 2.6 Let Z1 ∈ C2n×n and Z2 ∈ C2n×n denote two normalised Lagrangian
frames, G1 and G2 their symplectic metrics and G their joined metric. Then, the
matrices G−G1 and G−G2 are singular.

Proof. We only present the proof for G − G1 here, an analogous computation can be
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executed for G−G2. With Corollary 2.5

G−G1 = (2Id + i(G1 −G2)Ω) (G−1
1 +G−1

2 )−1 −G1

=
(
Id + i(G1 −G2)Ω−G1G

−1
2

)
(G−1

1 +G−1
2 )−1

=
(
(−Ω + iG1)Ω− (iΩ +G1)G−1

2

)
(G−1

1 +G−1
2 )−1

= −(G1 + iΩ)(G−1
2 − iΩ)(G−1

1 +G−1
2 )−1

Thus, the difference G − G1 is singular for all G2 if G1 + iΩ is singular. But this holds
true due to Proposition 2.1 and Definition 2.4:

G1 + iΩ = ΩTZ1Z
T
1 Ω

is singular, since the projection πL1
= i

2Z1Z
T
1 Ω has a non-trivial kernel. �

Rewriting the difference G−G1 also allows us to give a more profound characteristic of
the mixed isotropy C. Using that G1 + iΩ = ΩTZ1Z

T
1 Ω and G−1

2 − iΩ = Z2Z
∗
2 , we find

G−G1 = ΩZ1Z
T
1 ΩZ2Z

∗
2 (G−1

1 +G−1
2 )−1

and we can read off that G = G1 if and only if C = 0.

� Remark 2.4 Two normalised Lagrangian frames Z1 and Z2 span the same Lagrangian
subspace if they satisfy

ZT1 ΩZ2 = 0.

This is the only case where the generalised metric G of Z1 and Z2 is a real matrix.



3. Hermite functions

In this chapter we want to review basic definitions and properties of Hermite functions
that are Hermite polynomials times a Gaussian,

ϕk(x) =
π−1/4

√
2kk!

hk(x)e−x
2/2, x ∈ R.

Hagedorn’s wave packets can be seen as a generalisation of Hermite functions to several
dimensions and with varying width of the Gaussian. In the one-dimensional setting
they appear as scaled Hermite functions, while in multi-dimensions most characteris-
tics of Hermite functions can be logically extended to Hagedorn wave packets. We will
also present the proofs of some well-known results for the Hermite functions here in
order to introduce techniques that we will use for the wave packets in the next chap-
ter. There are several equivalent ways to define Hermite functions, for example via a
Rodriguez-formula, a generating function or a differential equation. We will start here
with the approach via ladder operators, what is a common approach in quantum me-
chanics, and derive more formulations in §3.3. Still, we could start with any of these
definition and obtain the same results.

3.1. Dirac’s ladder operators

To be precise we start with introducing some well-known function spaces we will work
on later. Our basic setting is the Hilbert space L2(Rn) of square integrable functions
with the scalar product

〈ϕ,ψ〉 =

∫
Rn
ϕ(x)ψ(x) dx, for all ϕ,ψ ∈ L2(Rn)

and the induced norm ‖ϕ‖2 = 〈ϕ,ϕ〉. Furthermore, we will consider two subsets of
L2(Rn), the Schwartz space

S(Rn) = {f ∈ C∞(Rn) ; ∀α, β ∈ Nn ∃C > 0 : |xα∂βxf | < C}

of all rapidly decaying smooth functions and D(Rn) = C∞0 (Rn), the set of all smooth
functions with compact support. We have D(Rn) ⊂ S(Rn) ⊂ L2(Rn). The Dirac ladder
operators appear as operators on L2(Rn). In particular, they can be written as Weyl-
quantisation

(op[a]ϕ)(x) = (2π)−n
∫
R2n

a(ξ, 1
2(x+ y))eiξT (x−y)ϕ(y) dξdy, ∀ϕ ∈ S(Rn) (3.1)
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of a function a ∈ S(Rn ⊕ Rn), see [Gos10, §10.1] for a detailed discussion of the Weyl-
correspondence and Appendix A for a formal introduction of Weyl-operators. In quan-
tum mechanics, see [Zwo11, §1.2], such an a ∈ S(Rn⊕Rn) is called a classical observable
and its Weyl-quantised operator op[a] a quantum observable. We also refer to a as sym-
bol of op[a].

Two typical important examples for observables are position and momentum. We
consider a phase space variable z = (p, q) ∈ Rn ⊕ Rn, where q denotes the position and
p the momentum. For the position operator, we find with a(p, q) = qj , 1 ≤ j ≤ n, that

(op[a]ϕ)(x) = (2π)−n
∫
R2n

1
2(xj + yj)e

iξT (x−y)ϕ(y) dξdy = 1
2

∫
R2n

δ(x− y)(xj + yj)ϕ(y) dy

= xjϕ(x),

i.e. (q̂jϕ)(x) = xjϕ(x) for all ϕ ∈ S(Rn) with the short notation q̂j = op[qj ]. Moreover, for
a(p, q) = pj , 1 ≤ j ≤ n, it follows by partial integration that

(op[a]ϕ)(x) = (2π)−n
∫
R2n

ξje
iξT (x−y)ϕ(y) dξdy = (2π)−n

∫
R2n

(i∂yje
iξT (x−y))ϕ(y) dξdy

= (2π)−n
∫
R2n

−ieiξT (x−y)∂yjϕ(y) dξdy = −i

∫
R2n

δ(x− y)∂yjϕ(y) dy

= −i∂xjϕ(x),

i.e. (p̂jϕ)(x) = −i∂xjϕ(x), since boundary values vanish for ϕ ∈ S(Rn). In the following
we will use the vector-valued notation ẑ = (p̂, q̂) where

(q̂ϕ)(x) = xϕ(x) and (p̂ϕ)(x) = −i∇xϕ(x) (3.2)

for ϕ ∈ S(Rn). The position and momentum operator satisfy the following important
property.

Lemma 3.1 — Canonical commutator relation. The position operator q̂ and the momentum
operator p̂ as defined in (3.2) are canonically conjugates, this means

[q̂j , p̂k] = iδjk, for all 1 ≤ j, k ≤ n (3.3)

with the commutator bracket [â, b̂] = âb̂− b̂â.

Proof. Due to the standard differentiation rules, we have

(q̂j(p̂kϕ))(x) = −ixj∂xkϕ(x)

and
(p̂k(q̂jϕ))(x) = −i(δjkϕ(x) + xj∂xkϕ(x))

for all ϕ ∈ S(Rn). Taking the difference yields the result. �

A more general view on canonical commutator relations is given in [Ohs15, §2.1], we
will take up on this again in Section 7.3.
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Based on the position and momentum operator we are now able to introduce the
ladder operators for the Hermite functions.

Definition 3.1 — Dirac’s ladder operators. We call the operator

â† =
1√
2

(q̂ − ip̂) (3.4)

the creation or raising operator of the Hermite functions and

â =
1√
2

(q̂ + ip̂) (3.5)

the annihilation or lowering operator.

By their definition these operators inherit three useful characteristics from the position
and momentum operator

Lemma 3.2 Dirac’s ladder operators have to following properties:

a, â and â† map Schwartz functions to Schwartz functions, i.e. âjϕ, â†jϕ ∈ S(Rn) for
all ϕ ∈ S(Rn) and 1 ≤ j ≤ n.

b, â and â† are formal adjoints on S(Rn), i.e.〈â†jϕ,ψ〉 = 〈ϕ, âjψ〉 for all ϕ,ψ ∈ S(R)

and 1 ≤ j ≤ n.

c, â and â† satisfy the commutator relation [âj , â
†
k] = δjk for 1 ≤ j, k ≤ n.

Proof. Let ϕ ∈ S(Rn). Then, for all multiindices α, β ∈ Nn there exists by definition a
C > 0 such that |xα∂βxϕ| > 0. The same obviously holds true for xjϕ(x) and ∂xjϕ(x),
1 ≤ j ≤ n, and thus q̂jϕ, p̂jϕ ∈ S(Rn) what proves a.

For b, we find with partial integration for j = 1, . . . , n

〈â†jϕ,ψ〉 =
1√
2

∫
Rn

(xj − ∂xj )ϕ(x)ψ(x) dx =
1√
2

∫
Rn
ϕ(x)(xj + ∂xj )ψ(x) dx = 〈ϕ, âjψ〉

since ϕ(x)ψ(x) |Rn= 0 for all ϕ,ψ ∈ S(Rn).
Claim c, follows from the canonical commutator relations (3.3)

[âj , â
†
k] =

1

2
[q̂j + ip̂j , q̂k − ip̂k] =

−i

2
([q̂j , p̂k]− [p̂j , q̂k]) =

−i

2
(2iδjk) = δjk.

�

As a last remark in this section we want to add the relation of Dirac’s ladder operators
to the harmonic oscillator Ĥ = 1

2(p̂2 + q̂2), In the one-dimensional case it is clear from
the definition that

â†â =
1

2
(q̂ − ip̂)(q̂ + ip̂) =

1

2
(p̂2 + q̂2 + i(q̂p̂− p̂q̂)) =

1

2
(p̂2 + q̂2)− 1

2

and, analogously, ââ† = 1
2(p̂2 + q̂2) + 1

2 . So, the harmonic oscillator and â†â resp. ââ†

have the same eigenfunctions.
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3.2. Coherent and excited states

In this section we derive Hermite functions as eigenfunctions of the one-dimensional
harmonic oscillator. From the previous section we know that eigenfunctions of Ĥ with
eigenvalue k + 1

2 , k ∈ N, are eigenfunctions of â†â with eigenvalue k.
First, we note that all eigenfunctions of â†â with eigenvalue 0 are elements of the

kernel of â,
I = {ϕ ∈ S(R) ; âϕ = 0}.

as it follows from â†âϕ = 0 that

0 = 〈â†âϕ, ϕ〉 = 〈âϕ, âϕ〉 = ‖âϕ‖2.

Lemma 3.3 — Coherent state. Every element ϕ ∈ I is of the form

ϕ(x) = c · e−x2/2

where c ∈ C.

Proof. Let ϕ ∈ I. Then,

∇x(ex
2/2ϕ(x)) = xex

2/2ϕ(x) + ex
2/2∇xϕ(x) = ex

2/2âϕ = 0

and ϕ is a constant multiple of e−x2/2. �

So, we found that eigenfunctions of the harmonic oscillator with eigenvalue 1
2 are con-

stant multiples of e−x2/2. However, in quantum mechanics wave functions are used
to describe the state of quantum systems, i.e. they provide a probability distribution
for an observable a. Hence, to be physically meaningful, we consider only normalised
L2-functions and denote as coherent ground state

ϕ0(x) = π−1/4e−x
2/2 (3.6)

with ‖ϕ0‖ = 1, see [Fol09, §1.1]. The expression coherent states for eigenstates of the
harmonic oscillator was introduced in [Gla63] and later generalised, see for example
[CR12, §1, §2].

From the ground state ϕ0 we can now construct eigenfunctions of â†â with higher
eigenvalues. Since

〈â†ϕ0, ϕ0〉 = 〈ϕ0, âϕ0〉 = 0

we find that the iterative application of â† to ϕ0 generates a family of orthogonal func-
tions. To preserve the normalisation of the eigenfunctions, we calculate for k ∈ N

〈(â†)kϕ0, (â
†)kϕ0〉 = 〈(â†)k−1ϕ0, â(â†)kϕ0〉 = k〈(â†)k−1ϕ0, (â

†)k−1ϕ0〉

where we used the commutator relation from Lemma 3.2 and âϕ0 = 0. With an in-
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ductive argument, we can conclude that ‖(â†)kϕ0‖2 = k!, this motivates our following
definition of the Hermite functions.

Definition 3.2 — Hermite functions. Let k ∈ N and ϕ0 denote the coherent ground state
given in (3.6). Then, we define the k-th Hermite function via

ϕk =
1√
k!

(â†)kϕ0

or, equivalently, ϕk = 1√
k
â†ϕk−1.

The above definition also explains the name raising or creation operator for â†. For â, it
holds

âϕk =
1√
k!
â(â†)kϕ0 =

k√
k!

(â†)k−1ϕ0 =
√
kϕk−1,

i.e. ϕk−1 = 1√
k
âϕk for k ≥ 1 and â lowers or annihilates the eigenstates ϕk. Moreover,
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Figure 1.: Hermite functions ϕk for k = 0, . . . , 4.

this relation shows that the Hermite functions are indeed eigenfunctions of â†â as

â†âϕk =
√
kâ†ϕk−1 = kϕk

for all k ∈ N. Thus, the k-th Hermite function ϕk is an eigenstate of â†â with eigen-
value k and an eigenstate of the harmonic oscillator with eigenvalue k + 1

2 . From the
construction it is also clear that the next result holds true.

Theorem 3.1 — Orthonormal set. The Hermite functions (ϕk)k∈N form an orthonormal
basis of L2(R).

Detailed proofs of this result can easily be found, see for example [Tha93, Lemma 1.1.2]
or [Fol09, Theorem 6.11].

Another well-known property of the Hermite functions is that they are not only eigen-
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functions of the harmonic oscillator but also of the one-dimensional Fourier transform

Fϕ(ξ) =
1√
2π

∫
R
ϕ(x)e−ixξ dx (3.7)

for all ϕ ∈ L2(R). This seems logical as Ĥ is invariant under the Fourier transform,
see [Tha93, §1.1]. We will present a proof here that is based on the Dirac ladder
operators since we can use a similar approach later for the generalised wave pack-
ets.

Lemma 3.4 — Fourier transform. Let k ∈ N and ϕk denote the k-th Hermite function.
Then,

Fϕk = (−i)kϕk.

Proof. We denote by

F−1ϕ(x) =
1√
2π

∫
R
ϕ(ξ)eixξ dξ

the inverse of the Fourier transform. Then, Fϕ0 satisfies

0 = F âϕ0 = F âF−1Fϕ0

and is thus an element of the kernel of âF := F âF−1. In particular, Fϕ0 is the nor-
malised element of kern(âF ), since F and F−1 are adjoints on L2(R), i.e.

‖Fϕ‖2 = 〈Fϕ,Fϕ〉 = 〈ϕ,F−1Fϕ〉 = ‖ϕ‖2

for all ϕ ∈ L2(R). For the excited states ϕk, k ≥ 1, we moreover have

Fϕk =
1√
k
F â†ϕk−1 =

1√
k
F â†F−1Fϕk−1 :=

1√
k
â†FFϕk−1.

This means, we can construct the Fourier transforms analogously to the Hermite func-
tions using the ladder operators âF and â†F .

Let ϕ ∈ S(R). By partial integration

(F q̂F−1ϕ)(ξ) =
1

2π

∫
R2

xϕ(ξ′)eix(ξ′−ξ) dξ′dx =
−i

2π

∫
R2

ϕ(ξ′)∂ξ′e
ix(ξ′−ξ) dξ′dx

=
i

2π

∫
R2

∂ξ′ϕ(ξ′)eix(ξ′−ξ) dxdξ′ = i

∫
R2

δ(ξ′ − ξ)∂ξ′ϕ(ξ′) dξ′

= i∂ξϕ(ξ) = −(p̂ϕ)(ξ)

and

(F p̂F−1ϕ)(ξ) =
−i√
2π

∫
R
∂x(F−1ϕ)(x)e−ixξ dx =

i√
2π

∫
R

(F−1ϕ)(x)∂xe
−ixξ dx

=
ξ√
2π

∫
R

(F−1ϕ)(x)e−ixξ dx = ξF(F−1ϕ)(ξ)

= ξϕ(ξ) = (q̂ϕ)(ξ).

Thus, âF = 1√
2
(−p̂ + iq̂) = iâ and â†F = 1√

2
(−p̂ − iq̂) = −iâ† what finishes the proof.
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The strategy of using the ladder operators to prove the Fourier result is adapted from
[Hag98, §2]. �

From the definition of the raising operator â† = 1√
2
(x−∇x) and the ground state ϕ0(x) =

π−1/4e−x
2/2, one can already deduce that the Hermite functions attain the form

ϕk(x) = 1√
2kk!

hk(x)ϕ0(x) (3.8)

where hk is a one-dimensional polynomial of degree k. This polynomial part is generally
known as Hermite polynomials and includes most of the characteristics of the Hermite
functions. The next section is an analysis of this part including some equivalent defini-
tions for the Hermite functions.

3.3. Hermite polynomials

With Ansatz (3.8) for the Hermite functions, we can trace back â† resp. â to operators
b̂† and b̂ that act only on the polynomials. We have for k ≥ 0

ϕk+1(x) = 1√
k+1

â†ϕk(x) =
1√

2k(k + 1)!
â†(hk(x)ϕ0(x))

= 1√
2k+1(k+1)!

(2xhk(x)−∇xhk(x))ϕ0(x).

So, the Hermite polynomials can be generated as

hk+1 = b̂†hk(x), where b̂† = 2x−∇x = 2q̂ − ip̂

starting from the initial value h0(x) = 1. In Figure 2 we present for a better illustration
the first few Hermite polynomials, k = 0, . . . , 4 .
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Figure 2.: Hermite polynomials hk for k = 0, . . . , 4.
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The same approach for the lowering operator yields

ϕk−1(x) =
1√
k
âϕk(x) =

1√
k · 2k+1k!

∇xhk(x)ϕ0(x),

which means
∇xhk(x) = 2k · hk−1(x), k ≥ 1 (3.9)

and differentiation can be seen as lowering operator on the polynomial level. A se-
quence of polynomials satisfying this condition is called an Appell sequence, see [App80].

Starting from the polynomial ladder operators we can now deduce several equivalent
definitions for Hermite polynomials. Please note that we could have started with any
of these definitions and maintain the same results.

In [CDG06, §4] the authors showed that polynomials that form an Appell sequence
can also be characterised via their generating function or a determinant. We add two
more points here: From the ladder operator b̂† and using that the Hermite polynomials
form an Appell sequence we can clearly follow a recurrence relation and since

b̂†hk(x) = 2xhk(x)−∇xhk(x) = ex
2∇x(hk(x)e−x

2
)

also a type of Rodrigues’ formula.

Theorem 3.2 Let (hk)k∈N denote the Hermite polynomials as defined in (3.8).Then, also
the following three statements hold true:

a, The Hermite polynomials (hk)k∈N satisfy the three-term recurrence relation

hk+1(x) = 2xhk(x)− 2khk−1(x) (3.10)

for k ≥ 0 with h0(x) = 1 and hk(x) = 0 for k < 0. We will shorty refer to this
definition as TTRR.

b, The generating function of the Hermite polynomials is given by

g(x, t) =
∞∑
k=0

tk

k!
hk(x) = e2xt−t2 , (3.11)

i.e. hk(x) = ∂kt g(x, t) |t=0.

c, The Hermite polynomials (hk)k∈N fulfil the Rodrigues’ type formula

hk(x) = ex
2
(−∇x)ke−x

2
(3.12)

for k ≥ 0.

Proof. The TTRR follows directly from the raising operator b̂† and (3.9). For the Ro-
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drigues’ formula in c, we calculate

∇xhk(x) = ∇x
(

(−1)k(∇kxe−x
2
)ex

2
)

= (−1)k
(

(∇k+1
x e−x

2
)ex

2
+ 2x(∇kxe−x

2
)ex

2
)

= 2xhk(x)− hk+1(x)

what matches with the recurrence relation in (3.10). At last, for the generating function
we note that with the Rodrigues’ formula

∂kt e
−(x−t)2 |t=0= (−1)k∂kue

−u2 |u=x= hk(x)e−x
2

where we substituted u = x−t. The exponential function e−(x−t)2 can be written exactly
as its Taylor expansion around t = 0,

e−(x−t)2 =

∞∑
k=0

tk

k!

(
∂kt e
−(x−t)2 |t=0

)
=
∞∑
k=0

tk

k!
hk(x)e−x

2

and the result follows from e−(x−t)2ex
2

= e2xt−t2 . �

These properties of the Hermite polynomials are widely known and can be found in the
literature, see for example [Fol09, §1.7] or [Tha93, §1.1]. However, we could not find an
established representation of the Hermite polynomials via a determinant and will thus
deduce one in the following.

As it was shown in [CDG06, §1] the Bernoulli polynomials are closely related to the
power sums

Sk(m) =
k∑
j=1

jm,

with m ≥ 0. For the Hermite polynomials we have to adapt this sums slightly and
introduce a recursive definition.

Definition 3.3 Let S1
k = Sk(1) =

∑k
j=1 j denote the first power sum. We set

Sm+1
k =

k∑
j=1

Smj+1j

for all k,m ≥ 1.

The sum notation here shall emphasise the relation to the Bernoulli polynomials. How-
ever, we can also give an explicit formula for the numbers Smk that is more familiar in
the context of Hermite polynomials.

Lemma 3.5 Let k,m ≥ 1. We can calculate the numbers Smk via

Smk = 2−m
(2m+ k − 1)!

m!(k − 1)!
. (3.13)
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Proof. We prove this statement by induction over m. For m = 1 we find

S1
k =

k(k + 1)

2
=

1

2

(k + 1)!

(k − 1)!
,

and Equation (3.13) holds true for m = 1 and all k ≥ 1. If we further assume (3.13) is
true for k,m ≥ 1, we moreover find

Sm+1
k = 2−m

k∑
j=1

(2m+ j)!

m!(j − 1)!
= 2−m

(2m+ 1)!

m!

k∑
j=1

(
2m+ j

2m+ 1

)

= 2−m
(2m+ 1)!

m!

k−1∑
j=0

(
2m+ 1 + j

2m+ 1

)
= 2−m

(2m+ 1)!

m!

(
2m+ k + 1

2m+ 2

)
= 2−(m+1) (2m+ k + 1)!

(m+ 1)!(k − 1)!

since
∑k

j=0

(
m+j
m

)
=
(
m+k+1
m+1

)
. �

From Formula (3.13) we can also deduce the initial values S0
k = 1 for all k ≥ 1 and to be

well-defined we set Smk = 0 whenever k ≤ 0 or m < 0.

The coefficients Smk in the form (3.13) appear if one writes an arbitrary polynomial
as linear combination of Hermite polynomials. From their definition it is clear that the
polynomials (hj)j≤k form a basis of the set Pk of all polynomials with degree at most
k. Thus, one can expand every polynomial of degree k in terms of Hermite polynomi-
als (hj)j≤k. The next lemma gives an explicit formula of this expansion for monomi-
als.

Lemma 3.6 Let (hk)k∈N denote the Hermite polynomials as defined in (3.8). Then, we
can write

(2x)2k =

k∑
j=0

2k−jSk−j2j+1h2j(x),

for even degrees and for odd degrees

(2x)2k+1 =

k∑
j=0

2k−jSk−j2(j+1)h2j+1(x),

with k ≥ 0.

Proof. Both formulas can easily be verified for k = 0,

(2x)0 = h0(x) = 1, (2x)1 = h1(x) = 2x.

Also, by induction using the recurrence relation (3.10) and the initial values Sk+1
0 =
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S−1
2(k+2) = 0

(2x)2(k+1) =
k∑
j=0

2k−jSk−j2(j+1)(2x)h2j+1(x) =
k∑
j=0

2k−jSk−j2(j+1) (h2j+2(x) + 2(2j + 1)h2j(x))

=
k+1∑
j=1

2k+1−jSk+1−j
2j h2j(x) +

k∑
j=0

2k+1−j(2j + 1)Sk−j2(j+1)h2j(x)

=
k+1∑
j=0

2k+1−j
(
Sk+1−j

2j + (2j + 1)Sk−j2(j+1)

)
h2j(x)

and it remains to show that Sk+1−j
2j + (2j + 1)Sk−j2(j+1) = Sk+1−j

2j+1 . But this holds true since
with Lemma 3.5

Sk+1−j
2j + (2j + 1)Sk−j2(j+1) = 2−(k−j+1) (2k + 1)!

(k − j + 1)!(2j − 1)!
+ 2−(k−j) (2k + 1)!

(k − j)!(2j)!

= 2−(k−j+1) (2k + 1)!

(k − j + 1)!(2j)!
(2j + 2(k − j + 1))

= 2−(k−j+1) (2k + 2)!

(k − j + 1)!(2j)!
= Sk+1−j

2j+1 .

The proof for (2x)2(k+1)+1 works analogously. �

With this lemma we are now able to give a determinant representation of the one-
dimensional Hermite polynomials.

Proposition 3.1 Let k ∈ N. Then, the k-th Hermite polynomial hk as defined in (3.8)
can be written as determinant of a (k+ 1)× (k+ 1)- matrix that is constructed in the
following way:

hk(x) = (−1)k det



1 x x2 x3 x4 x5 . . . xk

2 0 S1
1 0 1

2S
2
1 0

...

0 2 0 S1
2 0 1

2S
2
2

. . .
... 0 2 0 S1

3 0
. . . 0

... 0 2 0 S1
4

. . . 1
2S

2
k−3

0 2 0
. . . 0

. . . 0 2
. . . S1

k−1

0 . . . 0 2 0



. (3.14)

Proof. The proof follows again by induction. We first state that the determinant of an
upper Hessenberg matrix Mk = (mi,j)1≤i,j≤k, i.e. a matrix that has only zero-entries
below the first subdiagonal, can be written as

det(Mk) = mk,k det(Mk−1) +
k−1∑
j=1

(−1)k−jmj,k det(Mj−1)
k−1∏
l=j

ml+1,l
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where det(M0) = 1, see [CDG06, Lemma 3]. Assuming that the claim is true for all
polynomials hk′ , k′ < k, we find

hk(x) = (−1)k
k∑
j=1

(−1)k−j+1mj,k+1 det(Mj−1)2k+1−j

= 2km1,k+1 +
k∑
j=2

(−1)−j+12k+1−jmj,k+1(−1)j−2hj−2(x)

= (2x)k −
k∑
j=2

2k+1−jmj,k+1hj−2(x).

Next, we have to insert the entries of the last column. For an even index h2k, we find

(x2k,
1

2k−1
Sk1 , 0,

1

2k−2
Sk−1

3 , 0, . . . , S1
2k−1, 0)T

and therefore

h2k(x) = (2x)2k −
k∑
j=1

22(k−j)+1 1

2k−j
Sk+1−j

2j−1 h2j−2(x) = (2x)2k −
k−1∑
j=0

2k−jSk−j2j+1h2j(x)

what is consistent with the expansion formula in Lemma 3.6. A similar argument yields
the claim in the odd case h2k+1. �

So far, we were following the outline for the analysis of the Bernoulli polynomials given
in [CDG06]. But besides that, the Hermite polynomials are also closely related to the
Laguerre polynomials. This relation will come to the fore when we investigate the
Hermite functions in phase space in the next section.

3.4. Hermite functions in phase space

The Wigner transform

W(ϕ,ψ)(ξ, x) = (2π)−n
∫
Rn
ϕ(x+ y

2 )ψ(x− y
2 )eiyT ξ dy, (ξ, x) ∈ Rn ⊕ Rn (3.15)

of two Schwartz functions ϕ,ψ ∈ S(Rn) is the Fourier transform of their correlation
function and, again, a Schwartz function on phase space. It is a quasi-probability
distribution as it might also attain negative values, that measures both, position and
momentum, simultaneously, see [LT14, §1]. However, the symmetric Wigner function
W(ϕ) := W(ϕ,ϕ) is a real-valued function since by definition W(ϕ,ψ) = W(ψ,ϕ) and
thus provides a pure density operator, see [Gos10, §13.1.1] or [LST15, §3, §4].

In order to calculate the Wigner transform of two Hermite functions ϕk and ϕl, k, l ∈
N, we first have to state some basic properties ofW.

Lemma 3.7 For the Wigner transformW the following three statements hold:

a, Let ϕ1, ϕ2, ψ1, ψ2 ∈ S(Rn). Then, W(ϕ1, ψ1) and W(ϕ2, ψ2) are elements of S(Rn ⊕
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Rn) and satisfy Moyal’s identity,

〈W(ϕ1, ψ1),W(ϕ2, ψ2)〉L2(R2n) = (2π)−n〈ϕ1, ϕ2〉L2(Rn)〈ψ1, ψ2〉L2(Rn) (3.16)

b, Let ϕ ∈ S(Rn). Then, the marginal distributions of W(ϕ) give the position and
momentum distribution of ϕ,∫

Rn
W(ϕ)(ξ, x) dξ = |ϕ(x)|2,

∫
Rn
W(ϕ)(ξ, x) dx = |(Fϕ)(ξ)|2. (3.17)

c, Let a ∈ S(Rn ⊕ Rn) be an observable and â its Weyl-quantisation. Then,∫
R2n

W(ϕ,ψ)(z)a(z) d(z) = 〈ϕ, âψ〉, z = (ξ, x) ∈ Rn ⊕ Rn (3.18)

for all ϕ,ψ ∈ S(Rn).

Proof. For Moyal’s identity we find

〈W(ϕ1, ψ1),W(ϕ2, ψ2)〉L2(R2n) =

= (2π)−2n

∫
R4n

ϕ1(x+ y
2 )ϕ2(x+ y′

2 )ψ1(x− y
2 )ψ2(x− y′

2 )eiξT (y−y′) d(y, y′)d(ξ, x)

= (2π)−n
∫
R2n

ϕ1(x+ y
2 )ϕ2(x+ y

2 )ψ1(x− y
2 )ψ2(x− y

2 ) d(x, y)

where we again made use of the delta-distribution relation∫
Rn
eiξT (y−y′) dξ = (2π)nδ(y − y′) and

∫
Rn
δ(y − y′)f(y′) dy′ = f(y).

By substituting x′ = x− y
2 , we find the stated equality,

〈W(ϕ1, ψ1),W(ϕ2, ψ2)〉L2(R2n) = (2π)−n
∫
Rn
ψ1(x′)ψ2(x′)

∫
Rn
ϕ1(x′ + y)ϕ2(x′ + y) dydx′

= (2π)−n〈ϕ1, ϕ2〉L2(Rn)〈ψ1, ψ2〉L2(Rn).

Let ϕ ∈ S(Rn). The marginal distributions ofW(ϕ) are given by∫
Rn
W(ϕ)(ξ, x) dξ = (2π)−n

∫
R2n

ϕ(x+ y
2 )ϕ(x− y

2 )eiyT ξ dξdy

=

∫
Rn
ϕ(x+ y

2 )ϕ(x− y
2 )δ(y) dξdy = |ϕ(x)|2

and ∫
Rn
W(ϕ)(ξ, x) dx = (2π)−n

∫
R2n

ϕ(x+ y
2 )ϕ(x− y

2 )eiyT ξ dxdy

= (2π)−n
∫
R2n

ϕ(y′)ϕ(x′)eiξT (y′−x′) dy′dx′ = |(Fϕ)(ξ)|2

where we substituted x′ = x− y
2 and y′ = y + x′, see also [Fol09, Proposition 1.96]. The

proof of the last claim can also be found in [Gos10, Proposition 200]. For ϕ,ψ ∈ S(Rn)
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and a ∈ S(Rn ⊕ Rn), we have

〈ϕ, âψ〉 = (2π)−n
∫
R3n

ϕ(x)ϕ(y)eiξT (x−y)a(ξ, 1
2(x+ y)) d(ξ, x)dy

= (2π)−n
∫
R3n

ϕ(x′ + y′

2 )ϕ(x′ − y′

2 )eiξT y′a(ξ, x′) d(ξ, x′)dy′

=

∫
R2n

W(ϕ,ψ)(ξ, x′)a(ξ, x′) d(ξ, x′)

and again, a suitable substitution, y′ = x− y and x′ = y + y′

2 yielded the result. �

Equation (3.18) in the previous lemma already displays the close relation between the
Wigner transform and the Weyl-quantisation that was originally examined in [Gro46].
For any quantum observable â : S(Rn) 7→ S(Rn) the expectation value in a state ψ ∈
L2(Rn) is given by

〈â〉ψ =
〈ψ, âψ〉
〈ψ,ψ〉

and can thus be calculated using the Wigner function, see for example [Gos10, Defini-
tion 204] or [Lub08, §I.4.1].

With the Weyl calculus from Appendix A we are able to compute the Wigner trans-
form of two Hermite functions ϕk and ϕl. Our aim is to write Dirac’s ladder operators
as equivalent operators acting on the Wigner function W, i.e. to find operators Â1, Â2

resp. Â†1, Â
†
2 such that

Â1W(ϕ,ψ) =W(âϕ, ψ), Â2W(ϕ,ψ) =W(ϕ, âψ),

Â†1W(ϕ,ψ) =W(â†ϕ,ψ), Â†2W(ϕ,ψ) =W(ϕ, â†ψ),

for all ϕ,ψ ∈ S(Rn). Thereby, we can analogously to the calculation of the Fourier
transform define the Wigner transformW(ϕ0) of the coherent ground state as element
of the kernels of Â1 and Â2 and produce Wigner transform of the form W(ϕk, ϕl) by
iteratively applying Â†1 and Â†2.

Lemma 3.8 — Phase space ladders. Let ϕ,ψ ∈ S(Rn) and set y = iξ + x for ξ, x ∈ Rn.
Then, we find for the lowering operator â

W(âϕ, ψ)(ξ, x) = 1√
2
(y +∇y)W(ϕ,ψ)(ξ, x),

W(ϕ, âψ)(ξ, x) = 1√
2
(y +∇y)W(ϕ,ψ)(ξ, x),

and for the raising operator â†,

W(â†ϕ,ψ)(ξ, x) = 1√
2
(y −∇y)W(ϕ,ψ)(ξ, x),

W(ϕ, â†ψ)(ξ, x) = 1√
2
(y −∇y)W(ϕ,ψ)(ξ, x).

Proof. We will exhibit the proof only for the annihilator â here, the proof for the creator
â† works analogously. From Lemma 3.7 c, we know that for z = (ξ, x) and any w ∈
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S(Rn ⊕ Rn),∫
R2n

W(âϕ, ψ)(z)w(z) dz = 〈âϕ, ŵψ〉 = 〈ϕ, â†ŵψ〉 =

∫
R2n

W(ϕ,ψ)(z)(a†#w)(z) dz

and ∫
R2n

W(ϕ, âψ)(z)w(z) dz = 〈ϕ, ŵâψ〉 =

∫
R2n

W(ϕ,ψ)(z)(w#a)(z) dz

where a(ξ, x) = 1√
2
(x + iξ) = 1√

2
y and a†(ξ, x) = 1√

2
(x − iξ) = 1√

2
y. The Moyal product

can be calculated with the formula given in Corollary A.1,

(a†#w)(z) = 1√
2
(yw(z) + i

2(∂ξw(z) + i∂xw(z))),

(w#a)(z) = 1√
2
(yw(z) + i

2(−∂ξw(z) + i∂xw(z))),

and with partial integration∫
R2n

W(âϕ, ψ)(z)w(z) dz = 1√
2

∫
R2n

(y + 1
2(−i∂ξ + ∂x))W(ϕ,ψ)(z)w(z) dz∫

R2n

W(ϕ, âψ)(z)w(z) dz = 1√
2

∫
R2n

(y + 1
2(i∂ξ + ∂x))W(ϕ,ψ)(z)w(z) dz.

�

Using these phase space ladders, we can now identify the ground state of the Wigner
transform of the Hermite functions. We stress here that all results stated above are
valid in multi-dimensions, although we will only investigate the one-dimensional case
in the remaining section.

Lemma 3.9 Let ϕ0 denote the coherent state (3.6). The symmetric Wigner function of
ϕ0 reads

W(ϕ0)(ξ, x) = 1
πe
−(ξ2+x2) = 1

πe
−|y|2

where y = iξ + x.

Proof. We will in the following use the short-notation W0 := W(ϕ0). Since âϕ0 = 0 it
follows from the previous lemma that

(y +∇y)W0(y) = 0 and (y +∇y)W0(y) = 0.

Every function satisfying those two conditions is of the form ce−|y|
2 since

∇y(W (y)e|y|
2
) = (yW (y) +∇yW (y))e|y|

2
= 0

for all functions W satisfying (y +∇y)W (y) = 0. Lemma 3.7 a, implies ‖W0‖2 = (2π)−1

and the result follows from
∫
R2 e

−2(ξ2+x2) dξdx = π
2 . �

The form of the Wigner ground state W(ϕ0) is not suprising, it seems as the logical
expansion of ϕ0 to two dimensions. Proceeding further, the application of the phase
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space ladders 1√
2
(y −∇y) and 1√

2
(y −∇y) will again create a polynomial prefactor and

it is a well-known fact, see for example [Fol09, Theorem 1.105] or [Tha93, Theorem
1.3.4 and 1.3.5], that this factor can be written in terms of the associated Laguerre
polynomials

L
(α)
k (x) =

k∑
j=0

(−1)j
(
k + α

k − j

)
xj

j!

with k ∈ N and α ∈ R. The following proposition can also be found in [LT14, Corollary 1]
using a different technique of proof based on a integral formula for the Hermite polyno-
mials. Here we will use the phase space ladders similar to [Tha93, §1.3].

Proposition 3.2 If ϕk, ϕl are the k-th and l-th Hermite function, k, l ∈ N, then their
Wigner transform is

W(ϕk, ϕl)(ξ, x) =

(−1)k
√

2l−k
√

k!
l! y

l−kL
(l−k)
k (2|y|2)W0(ξ, x), k ≤ l

(−1)l
√

2k−l
√

l!
k!y

k−lL
(k−l)
l (2|y|2)W0(ξ, x), l ≤ k

(3.19)

with y = iξ + x. In particular,

W(ϕk)(ξ, x) = (−1)kL
(0)
k (2|y|2)W0(ξ, x).

Proof. We present here a proof by induction for the case k < l. Suppose that (3.19) holds
true forW(ϕk, ϕl). Then,

W(ϕk+1, ϕl)(ξ, x) = 1√
k+1
W(â†ϕk, ϕl)(ξ, x) = (−1)k√

k+1

√
2l−(k+1)

√
k!
l!W0(ξ, x)(

2yyl−kL
(l−k)
k (2|y|2)− (l − k)yl−(k+1)L

(l−k)
k (2|y|2)− 2yyl−kL

′(l−k)
k (2|y|2)

)
= (−1)k√

k+1

√
2l−(k+1)

√
k!
l!W0(ξ, x)yl−(k+1)

(
(2|y|2 − (l − k))L

(l−k)
k (2|y|2)− 2|y|2L′(l−k)

k (2|y|2)
)

and since the associated Laguerre polynomials satisfy ∇jxL(α)
k (x) = (−1)jL

(α+j)
k−j (x), see

[Tha93, Eq.(1.1.49)], we can rewrite the expression in the brackets as

(l − k − 2|y|2)L
′(l−(k+1))
k+1 (2|y|2) + 2|y|2L′′(l−(k+1))

k+1 (2|y|2).

The claim follows from Laguerre’s equation: xL′′(α)
k (x)+(α+1−x)L

′(α)
k (x)+kL

(α)
k (x) = 0,

see [Tha93, Eq.(1.1.48)]. Moreover,

W(ϕk, ϕl+1)(ξ, x) = 1√
l+1
W(ϕk, â

†ϕl)(ξ, x)

= (−1)k
√

2l−k−1
√

k!
(l+1)!W0(ξ, x)

(
2yl−k+1L

(l−k)
k (2|y|2)− 2yl−k+1L

′(l−k)
k (2|y|2)

)
= (−1)k

√
2l−k+1

√
k!

(l+1)!W0(ξ, x)yl+1−k
(
L

(l−k)
k (2|y|2) + L

(l−k+1)
k−1 (2|y|2)

)
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and the claim in this case follows from the identity

L
(α)
k (x) + L

(α+1)
k−1 (x) = (−1)k

xk

k!
+

k−1∑
j=0

(−1)j
((

k + α

k − j

)
+

(
k + α

k − j − 1

))
xj

j!

=

k−1∑
j=0

(−1)j
(
k + α+ 1

k − j

)
xj

j!
= L

(α+1)
k (x).

The cases l = k and k > l are proved analogously. �

Given that |W(ϕk, ϕl)|2 is a function in |y|2 it is clear that the absolute value ofW(ϕk, ϕl)

is radially symmetric. Figures (3), (4) and (5) exemplary illustrate this behaviour for
W(ϕ0),W(ϕ3) andW(ϕ1, ϕ3).
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Figure 3.: Absolute value of the symmetric Wigner transformW(ϕ0)
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Figure 4.: Absolute value of the symmetric Wigner transformW(ϕ3)

The only Wigner transform of the formW(ϕk, ϕl) that is strictly positive is the Wigner
ground state W(ϕ0). One can in particular show that the Wigner transform W(ϕ) of a
function ϕ ∈ S(Rn) is non-negative if and only if ϕ is a Gaussian, see [Gos10, §9.2.1].
This lack of positivity can be cured by the convolution with the Gaussian phase space
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Figure 5.: Absolute value of the mixed Wigner transformW(ϕ1, ϕ3)

function G(z) = π−ne−|z|
2 . The resulting positive transform

H(ϕ) = G ∗W(ϕ)

is called the Husimi transform H : Rn ⊕ Rn 7→ [0;∞). The Husimi transform can also
be deduced from the FBI transform (Fourier-Bros-Iagolnitzer), which is defined as the
inner product with the Gaussian wave packet

g(p, q;x) = π−n/4e−|x−q|
2/2+ipT (x−y) (3.20)

centred in the phase space point z = (p, q) ∈ Rn ⊕ Rn. That is,

(Fzϕ)(p, q) = (2π)−n/2〈ϕ, g(p, q)〉

see for example [Fol09, §3.3]. Then, the Husimi transform appears as the modulus
squared of the FBI transform, H(ϕ) = |(Fzϕ)(p, q)|2 for all z = (p, q) ∈ Rn ⊕ Rn, which
immediatly reveals positivity, see [LT14, §1]. The next result can be found as Corollary
2 in [LT14].

Corollary 3.1 — FBI and Husimi transform. Let ϕk be the k-th Hermite function and z =

(ξ, x) ∈ Rn ⊕ Rn. Then, the FBI transform is given by

(Fzϕk)(ξ, x) =
e−iξx/2

√
π2k+1k!

yke−|y|
2/4

with y = iξ + x. Consequently, the Husimi transform reads

H(ϕk) =
1

π2k+1k!
|y|2ke−|y|2/2.

Proof. We have

(Fzϕk)(ξ, x) = (2π)−1/2〈 1√
k!

(â†)kϕ0, g(ξ, x))〉 =
1√

2πk!
〈ϕ0, (â)kg(ξ, x)〉
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and since â g(ξ, x) = 1√
2
y g(ξ, x), it suffices to evaluate the inner product of g(ξ, x) with

the coherent ground state ϕ0,

(Fzϕk)(ξ, x) =
1√

π2k+1k!
yk〈ϕ0, g(ξ, x)〉.

This can be executed by completing the square in the exponent,

〈ϕ0, g(ξ, x)〉 = π−1/2

∫
R
e−(x′−x)2+iξ(x′−x)e−x

′2/2 dx′

= π−1/2e−|y|
2/4e−iξx/2

∫
R
e−(x′−y/2)2 dx′ = e−|y|

2/4e−iξx/2.

�

The Husimi transform hence exhibits the same radial symmetry as the Wigner trans-
form, see Figure (6) for an example.
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Figure 6.: Absolute value of the Husimi transform H(ϕ3)

The Gaussian g(p, q) we used to calculate the FBI transform is centred in an arbitrary
phase space point z = (p, q) ∈ Rn ⊕ Rn. Until now we only considered functions centred
at the origin, but we can transfer this generalisation also to the Hermite functions:

Let z = (p, q) ∈ R⊕R and denote by hk the k-th Hermite polynomial. We set as ground
state the shifted Gaussian,

ϕ0(p, q;x) = π−1/4e−(x−q)2/2+ip(x−q)

and obtain for the Hermite functions centred at z,

ϕk(p, q;x) =
1√
2kk!

hk(x− q)ϕ0(p, q;x).

Such phase space translations are typically expressed by means of the Heisenberg- Weyl
operator, see [Gos10, Definition 124],

T (z)ψ(x) = eipT (x−q/2)ψ(x− q), ψ ∈ L2(Rn)
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also for multi-dimensional phase space centres z = (p, q) ∈ Rn ⊕ Rn. With this notation
we find

ϕk(p, q) = e−ipq/2T (z)ϕk

and the shifted Hermite functions (ϕk(p, q))k∈N maintain the orthonormality of the stan-
dard Hermite functions (ϕk)k∈N.

A nice interpretation of the Fourier transform becomes now visible when we calculate
Fϕk(p, q).

Proposition 3.3 Let z = (p, q) ∈ R ⊕ R. Then, the Fourier transform interchanges the
position and momentum centre,

(Fϕk(p, q))(ξ) = (−i)ke−ipqϕk(−q, p; ξ).

Proof. From Lemma 3.4 we know that Fϕk = (−i)kϕk and thus

Fϕ(p, q) = e−ipq/2FT (z)F−1Fϕk = (−i)ke−ipq/2FT (z)F−1ϕk

and it remains to determine FT (z)F−1. Let ϕ ∈ S(R), then

(FT (z)F−1ϕ)(ξ) = 1
2π

∫
R
eip(x−q/2)

∫
R
ϕ(ξ′)eiξ′(x−q) dξ′e−ixξ dx

= 1
2πe
−ipq/2

∫
R2

ϕ(ξ′)eix(ξ′+p−ξ)e−iξ′q dxdξ′

= e−ipq/2

∫
R
ϕ(ξ′)e−iξ′qδξ′=ξ−p dξ

′ = e−ipq/2ϕ(ξ − p)e−iq(ξ−p).

The result follows as ϕk(ξ − p)e−iq(ξ−p) = ϕk(−q, p; ξ). �

In a final step we want to examine the impact of the Heisenberg-Weyl-operator on the
Wigner transform. The following general result can for example be found in [Gos10,
Proposition 174].

Lemma 3.10 Let ϕ,ψ ∈ S(Rn) and z0, z1 ∈ Rn ⊕ Rn. Then,

W(T (z0)ϕ, T (z1)ψ)(z) = ei(zTΩ(z1−z0)+ 1
2
zT1 Ωz0)W(ϕ,ψ)(z − z0+z1

2 ).

Proof. Let z0 = (p0, q0) and z1 = (p1, q1). By definition of the Wigner transform, we have

W(T (z0)ϕ, T (z1)ψ)(ξ, x) =(2π)−neixT (p1−p0)ei(pT0 q0−pT1 q1)/2∫
Rn
e−iyT (p0+p1)ϕ(x+ y

2 − q0)ψ(x− y
2 − q1)eiyT ξ dy.

If we substitute y′ = y − (q0 − q1) we can simplify this further,

W(T (z0)ϕ, T (z1)ψ)(ξ, x) =(2π)−neixT (p1−p0)ei(pT0 q0−pT1 q1)/2∫
Rn
ei(y′+(q0−q1))T (ξ−p0+p1

2 )ϕ(x+ y′−(q0+q1)
2 )ψ(x− y′+(q0+q1)

2 ) dy′

=ei(ξT (q0−q1)−xT (p0−p1)ei(pT0 q1−qT0 p1)/2W(ϕ,ψ)(z − z0+z1
2 ).
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�

The Wigner transform of two shifted Hermite functions then follows as an easy appli-
cation of this lemma.

Corollary 3.2 Let ϕk(p0, q0) and ϕl(p1, q1) be the k-th and l-th Hermite function centred
at z0 = (p0, q0) ∈ R2 resp. z1 = (p1, q1) ∈ R2. Then,

W(ϕk(p0, q0), ϕl(p1, q1))(z) = ei(zTΩ(z1−z0)+ 1
2

(q1−q0)T (p1+p0))W(ϕk, ϕl)(z − z0+z1
2 ).





4. Hagedorn’s wave packets

In this chapter we present the construction of a parameter-based orthonormal basis of
L2(Rn) that was originally developed by George Hagedorn in [Hag85]. These functions
appear as product of a multivariate polynomial times a Gaussian, where the polynomi-
als are closely related to the Hermite polynomials we discussed in the previous chapter.
However, they form not just simple tensor products of one-dimensional Hermite polyno-
mials. Hagedorn’s wave packets generalise Hermite functions to multi-dimensions but
also allow for a varying width of the Gaussian and a (small) scaling parameter ε.

In the following work we will always assume that this semiclassical parameter is
positive, ε > 0, as it will scale the width of the wave packets to order

√
ε. We also have

to integrate ε in the definition of our operators, the ε- scaled Weyl-quantisation is given
by

(opε[a]ϕ)(x) = (2πε)−n
∫
R2n

a(ξ, 1
2(x+ y))e

i
ε
ξT (x−y)ϕ(y) dξdy (4.1)

for all ϕ ∈ L2(Rn), see Appendix A for a detailed study.
For the construction of the wave packets we follow Hagedorn’s approach in [Hag98]

via ladder operators, but use a different notation introduced in [LST15] based on La-
grangian frames. Then, we proceed similarly to the Hermite functions and deduce
coherent states as eigenfunctions of the lowering operator, while excited states are ob-
tained by iteratively applying a raising operator to the coherent state. Both, raising
and lowering operator, are linear operators parametrised by a normalised Lagrangian
frame. We will show that this approach indeed yields a basis of L2(Rn) and specify the
structure of the wave packets. Moreover, we discuss several generalisations such as a
construction via non-normalised Lagrangian frames or wave packets centered at arbi-
trary phase space points z ∈ Cn ⊕ Cn, though we will see that the basic structure of a
multivariate polynomial times a Gaussian is preserved in any case.

4.1. Ladder operators

The ladder operators for Hagedorn’s wave packets are operators with linear symbols.
We use the vector-valued notation

ẑ =

(
p̂

q̂

)
introduced in (3.2) where q̂ denotes the position and p̂ the momentum operator. More-
over, we choose l ∈ Cn ⊕ Cn and set

Â(l) =
i√
2ε
lTΩẑ, Â†(l) =

−i√
2ε
l∗Ωẑ.
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Analogously to Dirac’s ladder operators we call Â(l) lowering operator and Â†(l) raising
operator, see [LST15, §3]. In particular, if we choose l = (i, 1)T , we find Â(l) = â and
Â†(l) = â†. However, Â(l) and Â†(l) do in general not satisfy the same properties as â
and â†.

Lemma 4.1 — Commutator relations. We have for all l, l′ ∈ Cn ⊕ Cn:

a, [Â(l), Â(l′)] = − i
2 l
TΩl′

b, [Â(l), Â†(l′)] = i
2 l
TΩl

′
= h(l′, l)

c, Â†(l) = −Â(l) is (formally) the adjoint operator of Â(l).

Proof. This result can also be found as [LST15, Lemma 3.2]. The basic Weyl calculus
from Appendix A implies

[Â(l), Â(l′)] = iε opε[∇A(l)TΩ∇A(l′)] = − i
2opε[(Ω

T l)TΩΩT l′] = − i
2 l
TΩl′

and

[Â(l), Â†(l′)] = iε opε[∇A(l)TΩ∇A†(l′)] = i
2opε[(Ω

T l)TΩΩT l
′
] = i

2 l
TΩl

′
.

For the last claim, we find similar to the proof of Lemma 3.2 c,

〈Â†(l)ϕ,ψ〉 =
i√
2ε

n∑
j=1

∫
Rn

(ljxj + iεlj+n∂xj )ϕ(x)ψ(x) dx

=
i√
2ε

n∑
j=1

∫
Rn
ϕ(x)(ljxj + iεlj+n∂xj )ψ(x) dx = 〈ϕ, Â(l)ψ〉.

�

The commutator relations a, and b, give a direct hint to Chapter 3: We see that we can
create a set of commuting lowering operators if we choose a set of l’s that are skew-
orthogonal to each other. Moreover, a set of vectors {l1, . . . , ln} satisfying both, isotropy
(2.8) and normalisation (2.9), parametrises a maximal family of commuting raising and
lowering operators,

[Â(li), Â(lj)] = 0 and [Â(li), Â
†(lj)] = δij for all 1 ≤ i, j ≤ n.

Thus, we can associate with every positive Lagrangian subspace L = span(l1, . . . , ln)

commuting ladder operators. Following [Hag98, §3] we combine them as an operator
vector, see [LST15, Defintiion 3.3].

Definition 4.1 — Ladder operators. For an isotropic matrix Z ∈ C2n×n with columns
l1, . . . , ln we will denote by Â(Z) and Â†(Z) the vectors of annihilation and creation
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operators, respectively,

Â(Z) :=
(
Â(l1), . . . , Â(ln)

)T
=

i√
2ε
ZTΩẑ,

Â†(Z) :=
(
Â†(l1), . . . , Â†(ln)

)T
=
−i√
2ε
Z∗Ωẑ.

For any multi-index k ∈ Nn, we set

Âk(Z) = Â(l1)k1 . . . Â(ln)kn , Â†k(Z) = Â†(l1)k1 . . . Â†(ln)kn .

Since all columns of an isotropic matrix are mutually skew-orthogonal, all components
of the annihilation vector Â(Z) commute. The same is true for the creation operator
Â†(Z). Therefore, the operator products Âk(Z) and A†k(Z) do not depend on the or-
dering of their individual factors. This is why it suffices to demand isotropy of Z in
the definition of the ladder operators. However, to construct a family of orthonormal
functions as demonstrated in Section 3.2 for the Hermite functions, we also need the
canonical commutator relation to hold, i.e. the normalisation of Z.

In particular, if Z is an isotropic matrix, we can construct a normalised Lagrangian
frame Z ′ with range(Z ′) = range(Z) by taking Z ′ = ZN−1/2 whereN is the normalisation
of Z, see Definition 2.5. Then,

Â(Z) = N
1/2
Â(Z ′) and Â†(Z) = N1/2Â†(Z ′). (4.2)

In general, we can link ladder operators defined by different Lagrangian frames via
their mixed isotropy and normalisation.

Corollary 4.1 Let Z1, Z2 ∈ C2n×n be two Lagrangian frames and C,D ∈ Cn×n denote
their mixed isotropy (2.17) and their mixed normalisation (2.18). We can expand the
ladder operators defined by Z2 as

Â(Z2) = DT Â(Z1) + CT Â†(Z1),

Â†(Z2) = D∗Â†(Z1) + C∗Â(Z1).

Proof. The identities follow directly from the definition of the ladder operators. Let
L1 = range(Z1), L2 = range(Z2). Then, with the projection from Proposition 2.1,

Â(Z2) = Â(πL1Z2 + πL1
Z2) = Â(πL1Z2)− Â†(πL1Z2)

=
i√
2ε

(
( i

2Z1Z
∗
1ΩTZ2)TΩẑ + ( i

2Z1Z
∗
1ΩTZ2)∗Ωẑ

)
=

i√
2ε

(
DTZT1 Ωẑ − CTZ∗1Ωẑ

)
= DT Â(Z1) + CT Â†(Z1)

since C = i
2Z

T
1 ΩTZ2 and D = i

2Z
∗
1ΩTZ2. The proof for Â†(Z2) works analogously. �

To conclude the introduction of the ladder operators, we want to add that the definition
given here is consistent with the original definition in [Hag98, §3] and the also common
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notation from [Lub08, §V.2]. We can write

ÂHag(A,B) =
i√
2ε

(−iBq̂ +Ap̂) =
i√
2ε
ZTΩẑ with Z =

(
iBT

AT

)

or

ÂLub(P,Q) =
i√
2ε

(QT p̂− P T q̂) =
i√
2ε
ZTΩẑ with Z =

(
P

Q

)
.

We showed in Section 2.3 that both choices of Z define a normalised Lagrangian frame
under certain conditions on A,B resp. P,Q.

4.2. Coherent states

As in the previous chapter our coherent states now emerge as eigenfunctions with
eigenvalue 0 of a lowering operator, more specifically in the multi-dimensional case
as joint eigenfunction of a family of commuting operators that can be parametrised by
a Lagrangian subspace L ⊂ Cn ⊕ Cn. We set

I(L) = {ϕ ∈ D′(Rn) ; Â(l)ϕ = 0 ∀l ∈ L}, (4.3)

see [LST15, §3.1]. In Chapter 3 we initially assumed that I ⊂ S(Rn) and proved this
assumption in Lemma 3.3. Here we first go a little bit more into detail.

Let D′(Rn) denote the set of all distributions, i.e. the dual space of C∞0 (Rn) = D(Rn),
see [Hör83, §2] for basic definitions and properties. We define a Gaussian distribution
as solution of

A(x,∇x)u = 0,

where A is a linear function on C2n, see [Hör94, §21.6]. In particular, let u ∈ D′(Rn)

with u 6= 0 and A(x,∇x) =
∑n

j=1 αjxj + βj∂xj for αj , βj ∈ C, 1 ≤ j ≤ n. We then denote

I(u) = {A; A(x,∇x)u = 0}

and call u a Gaussian if every v ∈ D′(Rn) with A(x,∇x)v = 0 for all A ∈ I(u) is a
constant multiple of u, see [Hör95, §5].

From (4.3) we observe that

ϕ ∈ I(L) if and only if Â(Z)ϕ = 0

for any Lagrangian frame Z ∈ Fn(L).

Proposition 4.1 Consider a Lagrangian subspace L = {(Bx, x) ; x ∈ Cn} parametrised
by a symmetric matrix B ∈ Cn×n as in Lemma 2.3. Then, every element in I(L) is of
the form

ϕ(x) = c · e
i
2ε
xTBx

for some constant c ∈ C. Furthermore, L is positive if and only if I(L) ⊂ L2(Rn).
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Proof. Motivated by the observation

ẑ e
i
2ε
xTBx =

(
Bx

x

)
e

i
2ε
xTBx

we denote lB(x) = (Bx, x) for x ∈ Cn. Let l ∈ L. Then,

Â(l)e
i
2ε
xTBx = i√

2ε
lTΩlB(x)e

i
2ε
xTBx = 0

using that lB(x) ∈ L implies lTΩlB(x) = 0. Hence e
i
2ε
xTBx ∈ I(L) and e

i
2ε
xTBx ∈ L2(Rn)

if and only if Im(B) > 0 what is equivalent to the positivity of L by Lemma 2.3. To show
uniqueness, we use that

∇x
(
e−

i
2ε
xTBxϕ(x)

)
= i

ε (−Bxϕ(x) + iε∇xϕ(x)) e
i
2ε
xTBx.

If ϕ ∈ I(L), we find

∂xj

(
e−

i
2ε
xTBxϕ(x)

)
=
√

2
εA(lB(ej))ϕ(x) = 0

for j = 1, . . . , n, where ej denotes the j-th unit vector. Therefore, ϕ(x) = c · e
i
2ε
xTBx for

some c ∈ C if we utilise that the dimension of L is n. �

Hagedorn’s raising and lowering operators introduced in [Hag98, §3] originate from his
earlier parametrisation of coherent states in [Hag85, §1], which can be conveniently
expressed in terms of Lagrangian frames as shown in Section 2.3.

Lemma 4.2 — Coherent states. Let L ⊂ Cn ⊕Cn be a positive Lagrangian subspace and
consider a Lagrangian frame Z ∈ C2n×n spanning L. Define P,Q ∈ Cn×n by

Z =

(
P

Q

)
.

Then, P and Q are invertible and

ϕ0(Z;x) = (πε)−n/4 det(Q)−1/2e
i
2ε
xTPQ−1x ∈ I(L). (4.4)

Furthermore, ϕ0(Z) is normalised if and only if the normalisation N of Z satisfies
det(N) = 1.

Proof. The proof is based on the properties of P and Q that we stated in Section 2.3.
With Lemma 2.2 L = range(Z) can be written as L = {(PQ−1q, q); q ∈ Cn} and Propo-
sition 4.1 therefore implies that the Gaussian wave packet (4.4) is an element of I(L).
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For the normalisation, we find due to Lemma 2.6

‖ϕ0(Z)‖2 = (πε)−n/2 det(QQ∗)−1/2

∫
Rn
e−

1
ε
xT Im(PQ−1)x dx

= det(QQ∗)−1/2 det(Im(PQ−1))−1/2 =
(
det(QQ∗) det(Q−∗NQ−1)

)−1/2

= det(N)−1/2.

�

In particular, we can conclude from this lemma that if Z denotes a Lagrangian frame,
N its normalisation and Z ′ = ZN−1/2, then

ϕ0(Z ′) = det(N)1/4ϕ0(Z).

Taking the root of det(N) is well-defined as N is Hermitian, for taking the square root
of det(Q) in (4.4), however, we have to specify a branch first. In practice, it will typically
be determined by continuity requirements, but to be precise we have to mention here
that Equation (4.4) defines ϕ0(Z) only up to a phase factor.

4.3. Excited states

Let L ⊂ Cn ⊕ Cn be a positive Lagrangian subspace. We will, as in Section 3.2, apply
operators of the form Â†(l) to coherent states ϕ0 ∈ I(L) with ‖ϕ0‖ = 1 to create a family
of orthonormal functions. The basic idea is to use the commutator relation from Lemma
4.1, Â(l)Â†(l′) = Â†(l′)Â(l) + h(l′, l), for l, l′ ∈ L and obtain

〈Â†(l)ϕ0, Â
†(l′)ϕ0〉 = 〈ϕ0, Â(l)Â†(l′)ϕ0〉 = h(l′, l)

since ‖ϕ0‖2 = 1 and Â(l)ϕ0 = 0 for all l ∈ L. So, if l and l′ are columns of a normalised
Lagrangian frame, the states Â†(l)ϕ0 and Â†(l′)ϕ0 will be orthogonal to each other if
l 6= l′ and ‖Â†(l)ϕ0‖2 = 1. Moreover, states Â†(l)ϕ0 are orthogonal to ϕ0 since

〈Â†(l)ϕ0, ϕ0〉 = 〈ϕ0, Â(l)ϕ0〉 = 0.

Thus, by iterating this construction we can generate an infinite orthonormal set that
turns out to be a basis, see [LST15, Theorem 3.7].

Theorem 4.1 — Orthonormal set. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian subspace
and Z ∈ Fn(L). Then, for any normalised ϕ0 ∈ I(L), the set

ϕk(Z) := 1√
k!
Â†k(Z)ϕ0, k ∈ Nn, (4.5)

is an orthonormal basis of L2(Rn). We use here the standard multi-index notation
k! = k1! · . . . · kn!.

Proof. The result is due to [Hag98, Theorem 3.3]. For the orthogonality let k,m ∈ Nn
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with k 6= m. Then,

〈ϕk(Z), ϕm(Z)〉 = 1√
k!m!
〈ϕ0, Âk(Z)Â†m(Z)ϕ0〉.

If l1, . . . , ln denote the columns of Z, we can use the commutator relation from Lemma
4.1 and find

Âk(Z)Â†m(Z) = Â(ln)knÂ†(ln)mn . . . Â(l1)k1Â†(l1)m1 .

If we assume further without loss of generality that m1 < k1,

〈ϕ0, Â(l1)k1Â†(l1)m1ϕ0〉 = 〈ϕ0, Â(l1)k1−1Â†(l1)m1Â(l1)ϕ0〉+m1〈ϕ0, Â(l1)k1−1Â†(l1)m1−1ϕ0〉

= m1!〈ϕ0, Â(l1)k1−m1ϕ0〉 = 0.

For the normalisation we use

〈Â†k(Z)ϕ0, Â
†
k(Z)ϕ0〉 = 〈Â†k−ej (Z)ϕ0, Â(lj)Â

†
k(Z)ϕ0〉 = kj〈Â†k−ej (Z)ϕ0, Â(lj)Â

†
k−ej (Z)ϕ0〉

for all j = 1, . . . , n and the claim follows by induction if we start from 〈ϕ0, ϕ0〉 = 1.
For the completeness we show that the functions (ϕk(Z))k∈Nn are eigenstates of the
self-adjoint elliptic operator

1
2

(
Â(Z)T Â†(Z) + Â†(Z)T Â(Z)

)
= 1

2

n∑
j=1

Â(lj)Â
†(lj) + Â†(lj)Â(lj).

We can rewrite (4.5) also as

ϕk(Z) = 1√
kj
Â†(lj)ϕk−ej (Z), 1 ≤ j ≤ n

and with a similar computations as for the Hermite functions

ϕk−ej (Z) = 1√
kj
Â(lj)ϕk(Z), 1 ≤ j ≤ n.

Therefore,

1
2

n∑
j=1

(Â(lj)Â
†(lj) + Â†(lj)Â(lj))ϕk(Z) = 1

2

n∑
j=1

√
kj + 1Â(lj)ϕk+ej (Z) +

√
kjÂ

†(lj)ϕk−ej (Z)

= 1
2

n∑
j=1

(kj + 1)ϕk(Z) + kjϕk(Z) = (|k|+ n
2 )ϕk(Z).

Moreover, 1
2

(
Â(Z)T Â†(Z) + Â†(Z)T Â(Z)

)
is self-adjoint, since Â(Z) and Â†(Z) are for-

mal adjoints. We continue the proof of this result after the next lemma. �

The number operator Â(Z)T Â†(Z) we considered in the previous proof has in addition
an interesting connection to the symplectic metric of the Lagrangian subspace, see
[LST15, Lemma 3.8] that is very useful to prove the completeness of the wave pack-
ets.
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Lemma 4.3 — Number operator. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian subspace,
Z ∈ Fn(L) and G ∈ Sp(n,R) denote the symplectic metric of L. Then, we can write
Â(Z)T Â†(Z) as Weyl-quantised operator Â(Z)T Â†(Z) = opε[ν] with symbol

ν(z) = 1
2ε(z

TGz + nε), z ∈ Rn ⊕ Rn.

Proof. With the Moyal product from Corollary A.1, we find

Â(Z)T Â†(Z) =
n∑
j=1

Â(lj)Â
†(lj) =

n∑
j=1

opε[A(lj)#A
†(lj)]

where lj , j = 1, . . . , n, denotes the columns of Z and(
A(lj)#A

†(lj)
)

(z) = 1
2ε(z

TΩT ljl
∗
jΩz + iε

2 l
T
j Ωlj) = 1

2ε(z
TΩT ljl

∗
jΩz + ε)

for all z ∈ R2n. Thus,

Â(Z)T Â†(Z) = opε[

n∑
j=1

A(lj)#A
†(lj)] = opε[z

TGz + nε],

since G = ΩTZZ∗Ω− iΩ. �

Since we now know the symbol of the number operator, we can use a standard result
for hypoelliptic operators to show the existence of a complete eigenbasis.

Proof. To show that ν is a hypoelliptic symbol, we need to verify that there exist con-
stants m,m0 such that one can find for any compact set K ⊂ Rn positive constants
C1, C2, R > 0 with

C1|ξ|m0 ≤ |ν(ξ, x)| ≤ C2|ξ|m

for all x ∈ K and ξ ∈ Rn with |ξ| ≥ R. Moreover, there are constants 0 ≤ δ < % ≤ 1 such
that for all compact sets K ⊂ Rn there exists a constant R > 0 satisfying∣∣∣∣∣∂αξ ∂

β
xν(ξ, x)

ν(ξ, x)

∣∣∣∣∣ ≤ Cα,β,K |ξ|−%|α|+δ|β|
for all multi-indices α, β ∈ Nn, x ∈ K and ξ ∈ Rn with |ξ| ≥ R for some constant Cα,β,K ,
see [Shu87, Definition 5.1]. We write ν ∈ HSm,m0

ρ,δ (Rn × Rn) resp. opε[ν] ∈ HLm,m0

ρ,δ (Rn).
Clearly, since ν is a quadratic in ξ, we take m = m0 = 2. The existence of a positive

lower bound of |ν(ξ, x)| follows since G is positive definite, i.e. |ν(ξ, x)| ≥ n
2 . For the up-

per bound we note that if we choose x in an arbitrary compact set, then due to Corollary
2.3 there exists C > 0 such that

|ν(ξ, x)| ≤ C · |ξTQQ∗ξ| = C · |Q∗ξ|2 ≤ C2|ξ|2

for all ξ ∈ Rn and C2 > 0 large enough.
For the estimate of the derivatives we first note that ∂αξ ∂

β
xν(ξ, x) = 0 if |α| > 2, if

|α| = 2 then, ∂αξ ∂
β
xν(ξ, x) is constant and the fraction bounded by |ξ|−2, if |α| = 1 it is
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bounded by |ξ|−1. Consequently for all α, β ∈ Nn,∣∣∣∣∣∂αξ ∂
β
xν(ξ, x)

ν(ξ, x)

∣∣∣∣∣ ≤ Cα,β,K |ξ|−|α|, for all x ∈ K, |ξ| ≥ R.

Hence, opε[ν] ∈ HL2,2
1,0(Rn) and due to [Shu87, Theorem 8.3] there exists a complete

orthonormal basis of eigenfunctions of opε[ν].

It remains to show that already Hagedorn’s wave packets are complete, in other
words we can express any eigenfunction of opε[ν] as linear combination of Hagedorn’s
wave packets. In particular, one can show that for any eigenfunction ψ of opε[ν] there
exists an excitation number κ ∈ N such that

ψ ∈ span{ϕk(Z) ; |k| = κ}

for a normalised Lagrangian frame Z ∈ C2n×n. We first stress that for the raising and
lowering operator Â(Z) and Â†(Z) it holds

Âk(Z)opε[ν] = (opε[ν] + |k|)Âk(Z), Â†k(Z)opε[ν] = (opε[ν]− |k|)Â†k(Z),

the observation follows from the commutator properties in Lemma 4.1. Assume that ψ
is an eigenfunctions of opε[ν] with eigenvalue λ, i.e.

opε[ν]ψ = λψ.

Then, λ > 0 as opε[ν] is a positive operator and if Âk(Z)ψ 6= 0 then also Âk(Z)ψ is
an eigenfunction of opε[ν] with eigenvalue λ − |k|. Since all eigenvalues of opε[ν] are
positive, this implies that there exists a κ ∈ N such that

Âl(Z)ψ = 0 for all |l| > κ.

We next proof that this property implies that ψ ∈ span{ϕk(Z) ; |k| = κ}. Let k ∈ Nn with
|k| = κ and l1, . . . , ln denote the columns of Z. Then it follows for all j = 1, . . . , n that

Â(lj)Âk(Z)ψ = 0

and thus Âk(Z)ψ ∈ I(L) = span{ϕ0(Z)} by Proposition 4.1. The construction of the wave
packets (4.5) then further implies that Â†k(Z)Âk(Z)ψ ∈ I(L) = span{ϕk(Z)}.

By expanding the number operator

opε[ν]κ =
(
Â†(l1)Â(l1) + . . .+ Â†(ln)Â(ln)

)κ
=
∑
|m|=κ

(
κ

m

)(
Â†(l1)Â(l1)

)m1

. . .
(
Â†(ln)Â(ln)

)mn
=
∑
|m|=κ

(
κ

m

)
Â†m(Z)Âm(Z)
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where we use the multi-index notation k! = k1! · . . . · kn! we find that

λκψ = opε[ν]κψ =
∑
|m|=κ

(
κ

m

)
Â†m(Z)Âm(Z)ψ ∈ span{ϕk(Z) ; |k| = κ}.

The claim follows since 1
2

(
Â(Z)T Â†(Z) + Â†(Z)T Â(Z)

)
= opε[ν] + n

2 . �

So far, we showed that we can construct an orthonormal set of functions starting from
any normalised element in I(L). But in order to gain more specific statements about
the structure of the wave packets we have to fix our ground state.

Hence, we assume in the following that Z = (P ;Q) ∈ C2n×n is a normalised La-
grangian frame and choose ϕ0(Z) from Lemma 4.2 as coherent ground state. Then, it
is clear from its definition that applying the raising operator Â†(Z) to ϕ0(Z) will create
functions that are of the form polynomial times the Gaussian ϕ0(Z).

Theorem 4.2 — Polynomial ladder. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian subspace
and Z = (P ;Q) ∈ Fn(L). Then, the k-th Hagedorn wave packet ϕk(Z), k ∈ Nn, can be
written as

ϕk(Z;x) = 1√
2|k|k!

pMk ( 1√
ε
Q−1x)ϕ0(Z;x), x ∈ Rn, (4.6)

where pMk is a multivariate polynomial of degree |k| generated by the recursion

pM0 = 1, (pMk+ej
)nj=1 = B̂†pMk where B̂† = 2x−M∇x (4.7)

and M = MT = Q−1Q ∈ Cn×n. In particular, the polynomial factor pMk factorises into
Hermite polynomials, i.e.

pMk (y) =

n∏
j=1

hkj (yj), y ∈ Rn,

if and only if Q ∈ Rn×n.

Proof. This result can also be found as [LT14, Proposition 2] with a different notation.
If we write Â†(Z) in terms of P and Q, we obtain Â†(Z) = i√

2ε
(P ∗q̂ − Q∗p̂). Assuming

that the claimed identity (4.6) holds for k ∈ Nn, we derive with y = 1√
ε
Q−1x

Â†(Z)ϕk(Z;x) = 1√
2|k|+1k!

i√
ε

(
P ∗x pMk (y) + iεQ∗∇xpMk (y)−Q∗PQ−1x pMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
i(P ∗Q−Q∗P )y pMk (y)−Q∗Q−T∇ypMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
2y pMk (y)−M∇ypMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
pMk+ej

( 1√
ε
Q−1x)

)n
j=1

ϕ0(Z;x) =
(√

kj + 1ϕk+ej (Z;x)
)n
j=1

where it remains to show that M symmetric. Since Im(PQ−1) = (QQ∗)−1, the matrix
QQ∗ is real and

M −MT = Q−1Q−Q∗Q−T = Q−1
(
QQT −QQ∗

)
Q−T = 0.
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If Q ∈ Rn×n, we have M = Id and the polynomial generator B̂† is the multi-dimensional
extension of the generator of the Hermite polynomials b̂†. Vice versa, the operators B̂†j ,
1 ≤ j ≤ n, generate Hermite polynomials if M = Id what is equivalent to Q = Q. �

As initially mentioned in Section 4.1 the construction of the wave packets in Theorem
4.1 only yields an orthonormal basis if Z is normalised. However, the application of
Â†(Z) to ϕ0(Z) is well-defined for all Lagrangian frames Z ∈ C2n×n. If furthermore
the normalisation N of Z is positive definite, we have ϕ0(Z) ∈ L2(Rn) and we can
create a set of L2-functions that exhibits a similar structure than the standard wave
packets.

Corollary 4.2 — Non-normalised Lagrangian frames. Let L ⊂ Cn ⊕ Cn be a positive La-
grangian subspace, Z = (P ;Q) ∈ C2n×n a Lagrangian frame that spans L and
N ∈ Cn×n its normalisation. Then,

ϕk(Z) := 1√
k!
Â†k(Z)ϕ0(Z), k ∈ Nn,

where ϕ0(Z) as in (4.4), can be written as

ϕk(Z;x) = 1√
2|k|k!

pM
′

k ( 1√
ε
NQ−1x)ϕ0(Z;x), x ∈ Rn,

with M ′ = M ′T = NQ−1Q. The polynomials pM ′k thereby satisfy the same recurrence
relation as in Theorem 4.2.

Proof. Let Z ′ =

(
P ′

Q′

)
:= ZN−1/2. Then, we know from the previous proposition that

Â†(Z ′)ϕ0(Z ′;x) = 1√
2
( 2√

ε
Q′−1x)ϕ0(Z ′;x) and thus,

Â†(Z)ϕ0(Z;x) = det(N)−1/4N1/2Â†(Z ′)ϕ0(Z ′;x) = 1√
2
( 2√

ε
NQ−1x)ϕ0(Z;x),

which legitimates our ansatz. Taking y := 1√
ε
NQ−1x, we observe

Â†(Z)(pM
′

k (y)ϕ0(Z;x)) = Â†(Z)ϕ0(Z;x) · pM ′k (y)−
√

ε
2N

1/2Q′∗∇xpM
′

k (y) · ϕ0(Z;x)

= 1√
2

(
2y pM

′
k (y)−Q∗Q−TN∇ypM

′
k (y)

)
ϕ0(Z;x)

= 1√
2

(
pM
′

k+ej
(y)
)n
j=1

ϕ0(Z;x).

The symmetry of M ′ we used in the above calculation follows from N = 1
2i(Q

∗P − P ∗Q)

and

Q∗Q−TN = − 1
2iQ
∗(P − (PQ−1)TQ) = − 1

2iQ
∗(PQ

−1 − PQ−1)Q

= Q∗Im(PQ−1)Q = NQ−1Q

by Lemma 2.6. �
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For our illustrations, we choose the Lagrangian frames

Z1 =
1√
2


i i

i −i

1 1

1 −1

 , Z2 =
1

2
√

2


−1 + i 1 + i

1 + i −1 + i

2(1 + i) 2(1− i)

2(1− i) 2(1 + i)

 (4.8)

and

Z3 =
1

2
√

2


1−
√

2 1

(1 +
√

2)i i

2
√

2i −2(2 +
√

2)i

2
√

2 2(2−
√

2)

 , Z4 =


1− 2i −i

i 2 + i

−2 −1 + i

1 + i 2

 . (4.9)

The matrices Z1, Z2 and Z3 are normalised Lagrangian frames, while Z4 is a Lagrangian

frame with positive definite normalisation, N4 =

(
5 2− 3i

2 + 3i 3

)
. The lower block Q1
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Figure 7.: Contour plots of the absolute values of ϕ(4,6)(Z1) (left) and ϕ(4,6)(Z2) (right)
for ε = 0.1

of Z1 is a real matrix and the wave packet ϕ(4,6)(Z1) can thus be written with a tensor
product of Hermite polynomials,

ϕ(4,6)(Z1;x) =
1

768
√

30
h4(

1√
2ε

(x1 + x2))h6(
1√
2ε

(x1 − x2))ϕ0(Z1;x),

what explains that the roots of ϕ(4,6)(Z1) appear as a shifted grid. The wave packet
ϕ(4,6)(Z2) shows a circular structure that will be explained by an analysis of the poly-
nomial prefactor in the next chapter. The wave packets associated with Z3 and Z4

demonstrate the various forms Hagedorn’s wave packets can in general attain.

4.4. Phase space centres and Fourier transform

The wave packets as introduced in the previous section are centred at the origin. By
means of the ε-scaled Heisenberg-Weyl operator

T (z)ψ(x) = e
i
ε
pT (x−q/2)ψ(x− q), z = (p, q) ∈ Cn ⊕ Cn (4.10)
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Figure 8.: Contour plots of the absolute values of ϕ(4,6)(Z3) (left) and ϕ(4,6)(Z4) (right)
for ε = 0.1

that acts on square integrable functions ψ ∈ L2(Rn), see Section 3.4, we can trans-
late Hagedorn’s wave packets to any complex center z ∈ Cn ⊕ Cn. However, to give a
physically meaningful interpretation of complex position and momentum values further
investigation is needed.

The next lemma follows [LST15, Definition 3.10].

Lemma 4.4 — Centred ladder operators. For l, z ∈ Cn⊕Cn we define the ladder operators

Â(l, z) =
i√
2ε
lTΩ(ẑ − z), Â†(l, z) =

−i√
2ε
l∗Ω(ẑ − z),

i.e. Â†(l, z) = −Â(l, z) and state that

T (w)Â(l, z)T (w)−1 = Â(l, z + w) (4.11)

for all w ∈ Cn ⊕ Cn.

Proof. It is clear by definition that T (w)−1ψ(x) = e−
i
ε
ηT (x−y/2)ψ(x + y) for w = (η, y).

Thus,

T (w)p̂T (w)−1ψ(x) = T (w)
(
−iε∇x(e−

i
ε
ηT (x−y/2)ψ(x+ y))

)
= −ηψ(x)− iε∇xψ(x)

= p̂ψ(x)− ηψ(x),

T (w)q̂T (w)−1ψ(x) = T (w)
(
xe−

i
ε
ηT (x−y/2)ψ(x+ y))

)
= (x− y)ψ(x)

= q̂ψ(x)− yψ(x),

and the claim follows from T (w)ẑT (w)−1 = ẑ − w. �

We similarly adjust the vector-valued notation and set

Â(Z, z) =
(
Â(l1, z), . . . , Â(ln, z)

)
resp. Â†(Z, z) =

(
Â†(l1, z), . . . , Â

†(ln, z)
)

for any Lagrangian frame Z ∈ C2n×n with columns l1, . . . ln ∈ C2n. Since adding a
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constant to an operator does not change its commutation properties, the application of
A†k(Z, z) to a coherent state is still well-defined. Moreover, with

Â(Z) = Â(Z, 0), Â†(Z) = Â†(Z, 0)

and Equation (4.11) we are able to transfer our previous results away from the ori-
gin.

Theorem 4.3 — Orthonormal basis. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian subspace
and Z = (P ;Q) ∈ Fn(L). Let z = (p, q) ∈ Cn ⊕ Cn. Then, every element in

I(L, z) = {ϕ ∈ D′(Rn) ; Â(l, z)ϕ = 0 ∀l ∈ L}

is a constant multiple of the normalised coherent state

ϕ0(Z, z;x) = (πε)−n/4 det(Q)−1/2e
i
2ε

(x−q)TPQ−1(x−q)+ i
ε
pT (x−q)

and the set ϕk(Z, z) := 1√
k!
A†k(Z, z)ϕ0(Z, z) is an orthonormal basis of L2(Rn).

Proof. From Proposition 4.1 we know that every element in I(L) is a constant multiple
of e

i
2ε
xTPQ−1x. Let ϕ ∈ I(L), then

0 = Â(l)ϕ = T (z)−1Â(l, z)T (z)ϕ

and thus T (z)ϕ ∈ I(L, z). A direct computation yields

T (z)e
i
2ε
xTPQ−1x = e

i
2ε
pT qe

i
2ε

(x−q)TPQ−1(x−q)+ i
ε
pT (x−q) = c · ϕ0(Z, z;x)

for some constant c ∈ C. Furthermore, by simply substituting x′ = x − q one can show
that the norm is preserved under translation, ‖T (z)ϕ‖2 = ‖ϕ‖2 for all ϕ ∈ L2(Rn).
Analogously, one receives

〈T (z)ϕ, T (z)ψ〉 = 〈ϕ,ψ〉, ϕ, ψ ∈ L2(Rn)

and therefore the wave packets ϕk(Z, z) are orthonormal. The completeness follows
similarly as in Theorem 4.5 if we consider Â(Z, z)T Â†(Z, z). �

Since a translation does not change the overall structure of the wave packets, we can
still express the wave packets ϕk(Z, z) as a product of a multivariate polynomial and a
Gaussian.

Corollary 4.3 — Polynomial ladder. Let Z = (P ;Q) ∈ C2n×n be a normalised Lagrangian
frame and z = (p, q) ∈ Cn ⊕ Cn. Then, the k-th Hagedorn wave packet ϕk(Z, z),
k ∈ Nn, centred at z can be written as

ϕk(Z, z;x) = 1√
2|k|k!

pMk ( 1√
ε
Q−1(x− q))ϕ0(Z, z;x), x ∈ Rn
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where M = Q−1Q and the polynomials pMk are recursively defined as in Theorem 4.2.

Proof. We have ϕ0(Z, z) = e−
i
2ε
pT qT (z)ϕ0(Z) and

Â†(Z, z)ϕ0(Z, z) = e−
i
2ε
pT qT (z)Â†(Z)ϕ0(Z) = e−

i
2ε
pT q
(
T (z)ϕej (Z)

)n
j=1

.

Hence, we find by induction that ϕk(Z, z) = e−
i
2ε
pT qT (z)ϕk(Z) and the claim is a direct

application of Theorem 4.2. �

So, we can create a basis of orthonormal L2-functions centred at any phase space point
z = (p, q) ∈ Cn ⊕ Cn. However, we want to interpret the coordinates p and q as momen-
tum and position centres of a particle’s probability density. Fortunately, it turns out
that we can always reduce to the case with real centres z ∈ Rn ⊕ Rn, see [LST15, §3.3].

To understand why, let us ask which conditions on z, w ∈ Cn ⊕ Cn must holds so that
I(L, z) = I(L,w). In terms of the annihilation operator this means that for all l ∈ L and
ϕ ∈ I(L, z),

Â(l, z)ϕ = Â(l, w)ϕ.

Since
Â(l, z)− Â(l, w) = i√

2ε
lTΩ(w − z),

this is equivalent to the condition lTΩ(w − z) = 0 for all l ∈ L and w − z has to be
skew-orthogonal to L. But since L is Lagrangian this means w − z ∈ L. Hence any two
complex centres whose difference is in L define the same ladder operators and we just
have to find a v ∈ Cn ⊕ Cn such that w = z + πLv is real.

Theorem 4.4 — Real centres. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian and Z ∈ Fn(L).
Let J ∈ Sp(n,R) denote the complex structure of L and define

PJ : Cn ⊕ Cn 7→ Rn ⊕ Rn, PJ(z) = Re(z) + JIm(z).

Then, for any z = (p, q) ∈ Cn ⊕ Cn

Â(Z, z) = Â(Z,PJ(z)), I(L, z) = I(L,PJ(z))

and the coherent states are related by

ϕ0(Z, z) = e
i
2ε

(η+p)T (y−q)ϕ0(Z,PJ(z)), PJ(z) = (η, y).

Proof. This result can also be found as [LST15, Theorem 3.12] and it gives a reformu-
lation of [GS12, Theorem 2.1] in terms of Lagrangian frames.

We have
z − PJ(z) = (iId− J)Im(z) = i(Id + iJ)Im(z) = 2iπLIm(z)

and with the previous considerations Â(Z, z) = Â(Z,PJ(z)). This directly implies

I(L, z) = I(L,PJ(z)).
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For the coherent states we consider the quadratic function

S(x) = 1
2(x− q)TB(x− q) + pT (x− q).

Since z = (p, q) is complex, the minimum of S need not to be located at x = q, but at
y ∈ Rn such that ∇Im(S(y)) = 0. It holds

∇Im(S(x)) = Im (B(x− q) + p) = Im(B)x− Im(B)Re(q)− Re(B)Im(q) + Im(p)

and thus y = Re(q) + Im(B)−1Re(B)Im(q) − Im(B)−1Im(p). Moreover, we set η :=

∇Re(S(y)), i.e.

η = Re
(
B(−iIm(q) + Im(B)−1Re(B)Im(q)− Im(B)−1Im(p)) + p

)
= Re(p) + (Im(B) + Re(B)Im(B)−1Re(B))Im(q)− Re(B)Im(B)−1Im(p).

All together, we have(
η

y

)
= Re(z) +

(
−Re(B)Im(B)−1 Im(B) + Re(B)Im(B)−1Re(B)

−Im(B)−1 Im(B)−1Re(B)

)
Im(z)

= Re(z) + JIm(z) = PJ(z)

where we used Corollary 2.3. So, S is centered at PJ(z) and we write S as second order
expansion around x = y,

S(x) = S(y) +∇S(y)T (x− y) + 1
2(x− y)TB(x− y) = S(y) + ηT (x− y) + 1

2(x− y)TB(x− y).

Thereby the two coherent states are related via

ϕ0(Z, z) = e
i
ε
S(y)ϕ0(Z,PJ(z))

and with η = ∇S(y) = B(y − q) + p we find

S(y) = 1
2(y − q)T (η − p) + pT (y − q) = 1

2(y − q)T (η + p).

�

In Proposition 3.3 we found that the Fourier transform reverses the position and mo-
mentum centres of the Hermite functions. Since we now introduced general phase space
centres for Hagedorn’s wave packets as well, we can transmit this result to ϕk(Z, z). The
Fourier transform with the semiclassical parameter ε > 0 reads

Fεϕ(ξ) = (2πε)−n/2
∫
Rn
ϕ(x)e−

i
ε
xT ξ dx, ξ ∈ Rn,

for all ϕ ∈ L2(Rn). We start with the Fourier transform of the coherent ground state.
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Lemma 4.5 — Fourier transform. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian and Z ∈
Fn(L). Then,

Fεϕ0(Z)(ξ) = ϕ0(ΩZ; ξ).

Proof. We use the same ansatz as for the Hermite functions in Lemma 3.4. With
ϕ0(Z) ∈ I(L), we find

0 = FεÂ(Z)ϕ0(Z) = FεÂ(Z)(Fε)−1Fεϕ0(Z)

and thus Fεϕ0(Z) is an element of the kernel of FεÂ(Z)(Fε)−1 where we apply the
Fourier transform to each component, i,e.

FεÂ(Z)(Fε)−1 =
(
FεÂ(l1)(Fε)−1, . . . ,FεÂ(ln)(Fε)−1

)
,

where l1, . . . , ln denote the columns of Z. In the proof of Lemma 3.4 we deduced that

Fεẑ(Fε)−1 = ΩT ẑ

what yields

FεÂ(Z)(Fε)−1 = i√
2ε
ZTΩ(ΩT ẑ) = i√

2ε
(ΩZ)TΩẑ = Â(ΩZ).

Since Fεϕ0(Z) is normalised it follows that Fεϕ0(Z) = ϕ0(ΩZ). �

With this result we can give explicit formulas for the position density

|ϕ0(Z)|2 = (πε)−n/2| det(Q)|−1e−x
T Im(PQ−1)x/ε

and the momentum density

|Fεϕ0(Z)|2 = (πε)−n/2|det(P )|−1ex
T Im(QP−1)x/ε

see also Lemma 3.7 b,. Since we know that Im(PQ−1) = (QQ∗)−1 and an analogous
computation for the second case yields

Im(QP−1) = 1
2i(QP

−1 − P−∗Q∗) = 1
2iP
−∗(P ∗Q−Q∗P )P−1 = −(PP ∗)−1.

we find

|ϕ0(Z)|2 = (πε)−n/2|det(Q)|−1e−x
T (QQ∗)−1x/ε,

|Fεϕ0(Z)|2 = (πε)−n/2|det(P )|−1e−x
T (PP ∗)−1x/ε,

and the matrices QQ∗ ∈ Rn×n and PP ∗ ∈ Rn×n provide the width of the position and
momentum densities, see also [LT14, §3].

Theorem 4.5 — Fourier transform. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian, Z ∈ Fn(L)
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and z = (p, q) ∈ Cn ⊕ Cn. Then,

Fεϕk(Z, z)(ξ) = e−
i
ε
pT qϕk(ΩZ,Ωz; ξ)

for all k ∈ Nn.

Proof. This result can also be found in [Lub08, §V.1]. If we apply the Fourier transform

to the single components of Â†(Z), we have
(
FεÂ†(Z)(Fε)−1

)k
= FεÂ†k(Z)(Fε)−1 for all

k ∈ Nn. Thus, with the results from the previous lemma

Fεϕk(Z) = 1√
k!
FεÂ†k(Z)ϕ0(Z) = 1√

k!
FεÂ†k(Z)(Fε)−1Fεϕ0(Z)

= 1√
k!

(
FεÂ†(Z)(Fε)−1

)k
Fεϕ0(Z) = 1√

k!
Â†(ΩZ)ϕ0(ΩZ) = ϕk(ΩZ).

For the phase space centres we use Proposition 3.3,

Fεϕk(Z, z) = Fεe−
i
2ε
pT qT (z)ϕk(Z) = e−

i
2ε
pT qFεT (z)(Fε)−1ϕk(ΩZ)

and FεT (z)(Fε)−1 = T (Ωz). The claim follows from ϕk(Z, z) = e−
i
2ε
pT qT (z)ϕk(Z). �

� Remark 4.1 In Hagedorn’s original work [Hag85] and in [Hag98], where he also used a
ladder-based proof, the Fourier transform of the wave packets reads

Fεϕk(A,B) = (−i)|k|ϕk(B,A).

This is indeed consistent with our result: Let Z = (iBT ; AT ) ∈ C2n×n. Then,

ΩZ =

(
−AT

iBT

)
= i

(
iAT

BT

)

and Hagedorn’s raising operator Â†Hag(A,B) = ÂHag(A,B)∗, see Section 4.1, is equiva-
lent to our raising operator Â†Hag(A,B) = Â†(Z). Moreover,

−iÂ†Hag(B,A) = −iÂ†

((
iAT

BT

))
= −iÂ†(−iΩZ) = Â†(ΩZ)

what explains the factor (−i)|k| in the A,B-notation of Hagedorn.

4.5. Generalised wave packets

We conclude the introductory part of Hagedorn’s wave packets with a natural gener-
alisation: By Lemma 4.1 the components of Â†(Z) commute if the columns of Z are
skew-orthogonal to each other. Thus, the iterative application of Â†(Z) to any function
ϕ ∈ L2(Rn) is well-defined if Z is isotropic. In the further discussion, we focused on
coherent states that are elements of I(L) with L = range(Z). Here we want to con-
tinue und also allow for coherent states ϕ0 ∈ I(L) where L ⊂ Cn ⊕ Cn is an arbitrary
Lagrangian subspace.
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Definition 4.2 — Generalised wave packets. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian,
Z ∈ Fn(L) and Y ∈ C2n×n a normalised Lagrangian frame. We set

ϕk(Z, Y ) = 1√
k!
Â†(Y )ϕ0(Z)

for all k ∈ Nn and refer to ϕk(Z, Y ) as generalised wave packet.

Due to this definition Â†(Y ) can still be seen as creator of the generalised wave packets.
The annihilator Â(Y ), however, satisfies

Â(Y )ϕk(Z, Y ) =
(√

kjϕk−ej (Z, Y )
)n
j=1

if and only if Â(Y )ϕ0(Z) = 0. Nevertheless, it is obvious that also the generalised wave
packets attain the form of a polynomial times the Gaussian ϕ0(Z).

Proposition 4.2 — Polynomial ladder. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian, Z =

(P ;Q) ∈ Fn(L) and Y ∈ C2n×n a normalised Lagrangian frame. We denote by

C = 1
2iZ

TΩY, D = 1
2iZ
∗ΩY

the mixed istropy and the mixed normalisation of Z and Y , see (2.17) and (2.18).
Then, we can write the k-th generalised wave packet as

ϕk(Z, Y ;x) = 1√
2|k|k!

pMk ( 1√
ε
D∗Q−1x)ϕ0(Z;x) (4.12)

with M = −C∗D +D∗Q−1QD and pMk as in Theorem 4.2.

Proof. Let Z = (P ;Q) and Y = (V ;W ). We assume that (4.12) holds true and compute

Â†(Y )ϕk(Z, Y ;x) = 1√
2|k|+1k!

i√
ε

(
V ∗xpMk (y)−W ∗PQ−1xpMk (y) + iεW ∗∇xpMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
i(V ∗Q−W ∗P )D−∗ypMk (y)−W ∗Q−TD∇xpMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
2ypMk (y)−M∇xpMk (y)

)
ϕ0(Z;x)

= 1√
2|k|+1k!

(
pMk+ej

(y)
)n
j=1

ϕ0(Z;x)

where y = 1√
ε
D∗Q−1x. It remains to show that M = W ∗Q−TD. We have

D∗Q∗ = i
2(V ∗QQ∗ −W ∗PQ∗)

and since the symplectic metric G of L is symmetric, we can conclude from Corollary
2.3 that PQ∗ = (QP ∗ + 2iId)T . Thus,

D∗Q∗ = i
2(V ∗Q−W ∗P )QT +W ∗ = C∗QT +W ∗

and W ∗Q−TD = D∗Q−1QD − C∗D. We further stress that

−C∗D = 1
4Y
∗ΩTZZTΩY = 1

4Y
∗ΩT (Re(ZZ∗)− iΩ)ΩY = 1

4Y
∗GY
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what ensures the symmetry of M . �

With the relation of the ladder operators parametrised by two Lagrangian frames given
in Corollary 4.1 we can also give a sharp criterion when the generalised wave packets
equal the standard wave packets.

� Remark 4.2 Let Y,Z ∈ C2n×n denote two normalised Lagrangian frames, C = 1
2iZ

TΩY

their mixed isotropy and D = 1
2iZ
∗ΩY their mixed normalisation. Then, Y and Z

parametrise the same coherent state, ϕ0(Y ) = ϕ0(Z), if C = 0 and the same excited
states, ϕk(Z) = ϕk(Y ) for k ∈ Nn, if in addition D = Id. Thus, ϕk(Z, Y ) = ϕk(Y ) if and
only if C = 0 and D = Id.

Figure 9 displays two generalised wave packets for the Lagrangian frames Z1, Z2

and Z3 given in (4.8) and (4.9). Both wave packets, ϕ(4,6)(Z2, Z1) and ϕ(4,6)(Z2, Z3), still
exhibit a structure similar to Hagedorn’s wave packets ϕ(4,6)(Z1) resp. ϕ(4,6)(Z3).
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Figure 9.: Contour plots of the absolute values of ϕ(4,6)(Z2, Z1) (left) and ϕ(4,6)(Z2, Z3)

(right) for ε = 0.1



5. Polynomial prefactor

The formulas we found for Hagedorn’s wave packets in various cases in the last chapter
strongly motivate a closer study of polynomials of the type

pMk = B̂†k 1, where B̂† = 2x−M∇x,

and M is a symmetric matrix. In the one-dimensional case this definition yields a
scaled version of the Hermite polynomials we discussed in Chapter 3. Going over the
multi-dimensions, we find that if M is a diagonal matrix, the polynomials are simply
tensor products of (scaled) Hermite polynomials. This product structure is usually seen
as the generalisation of Hermite polynomials in the multivariate case, see for example
[Tha93, §1.1]. However, if M has off-diagonal entries a more complex structure appears
and we find in some sense a non-trivial extension of the Hermite polynomials.

One can show that the polynomials (pMk )k∈Nn exhibit similar properties than the stan-
dard Hermite polynomials. We can give explicit formulas for the generating function,
a type of Rodrigues’ formula and a three-term recursion that are closely related to our
findings from Section 3.3. Moreover, we are able to generalise the Laguerre connection
of the Hermite polynomials also to the polynomials (pMk )k∈Nn , this relation will become
crucial when we calculate the Wigner transform of Hagedorn’s wave packets in the next
chapter.

5.1. Polynomials in one dimension

To get an intuition for the polynomials we quickly discuss the univariate case first. The
one-dimensional polynomials (pγk)k∈N are generated via

pγk = B̂†k p
γ
0(x), B̂† = 2x− γ∇x

with γ ∈ C. Starting from pγ0(x) = 1, we produce monomials for γ = 0, p0
k(x) = (2x)k

and Hermite polynomials for γ = 1, p1
k(x) = hk(x). For general γ 6= 0 we create in this

manner scaled Hermite polynomials, see [DKT16, §3.1].
We note that the case γ = 0 is a formal one: all matrices M we deduced in the

previous chapter were invertible, so the case γ = 0 will not appear in the context of
Hagedorn’s wave packets. We point to monomials to retain a rigorous argument for all
polynomials.

Lemma 5.1 — Hermite connection. Let γ ∈ C\{0}. Then, the polynomials (pγk)k∈N can be
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written as
pγk(x) = γk/2hk(

x√
γ ), x ∈ R.

Proof. The claim follows by a simple induction over k. We have pγ0(x) = h0( x√
γ ) for all

γ 6= 0 and

B̂†
(
γk/2hk(

x√
γ )
)

= γ(k+1)/2
(

2x√
γhk(

x√
γ )−∇(x/

√
γ)hk(

x√
γ )
)

= γ(k+1)/2hk+1( x√
γ ).

�

Figure 10 displays polynomials of degree k = 3 for different values of γ to demonstrate
that all polynomials pγ3 can be obtained by a simple rescaling of h3.
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Figure 10.: Polynomials pγ3 for γ ∈ {−6,−1, 0, 1, 4}.

We have to stress here that the square root of a complex number γ is not uniquely
determined, we have to choose a branch. However, we only use this relation here to
adopt the results made in Section 3.3 and will give rigorous proofs for our findings in
the multi-dimensional case in the next section.

Corollary 5.1 Let γ ∈ C\{0}. The polynomials (pγk)k∈N satisfy the following three rela-
tions.

a, Three-term reccurence relation: It holds for all k ≥ 0

pγk+1(x) = 2xpγk(x)− 2γkpγk−1(x), x ∈ R,

with pγ0 = 1 and pγk = 0 for k < 0.

b, Generating function: We have

gγ(x, t) =
∞∑
k=0

tk

k!
pγk(x) = e2xt−γt2 .



5.2 Generating function and recurrence relation 81

c, Rodrigues’ formula: Let k ≥ 0. Then,

pγk(x) = ex
2/γ(−γ∇x)ke−x

2/γ , x ∈ R.

Equally, the determinant formula from Proposition 3.1 can be nicely generalised for the
polynomials (pγk)k∈N.

Corollary 5.2 — Determinant representation. Let γ ∈ C\{0}. Then,

pγk(x) = (−1)k det



1 x x2 x3 x4 x5 . . . xk

2 0 S1
1γ 0 1

2S
2
1γ

2 0
...

0 2 0 S1
2γ 0 1

2S
2
2γ

2 . . .
... 0 2 0 S1

3γ 0
. . . 0

... 0 2 0 S1
4γ

. . . 1
2S

2
k−3γ

2

0 2 0
. . . 0

. . . 0 2
. . . S1

k−1γ

0 . . . 0 2 0



.

5.2. Generating function and recurrence relation

In this section we investigate multi-dimensional polynomials (pMk )k∈Nn generated via(
pMk+ej

(x)
)n
j=1

= 2x pMk (x)−M∇xpMk (x), x ∈ Rn (5.1)

starting from pM0 (x) = 1 and pMk (x) = 0 if k /∈ Nn. The recursion matrix M is an
invertible, complex symmetric n × n-matrix. In the standard setting of Hagedorn’s
wave packets M has beyond that another favourable property.

Lemma 5.2 Let Z = (P ;Q) ∈ C2n×n be a normalised Lagrangian frame. Then, the
matrix M = Q−1Q is unitary.

Proof. We have

M∗M = QT (QQ∗)−1Q = 1
2iQ

T (PQ−1 −Q−∗P ∗)Q = 1
2i(P

TQ−QTP ) = Id

where we used (QQ∗)−1 = Im(PQ−1). �

The polynomials (pMk )k∈Nn could equivalently to (5.1) also be defined via their generat-
ing function or a three-term recurrence relation. We will derive both in this section us-
ing the same techniques as for the Hermite polynomials, see Section 3.3. In the polyno-
mial analysis [DKT16], however, we started from the recurrence relation.

Lemma 5.3 — Rodrigues’ formula. Let k ∈ Nn and M ∈ Cn×n be symmetric and invert-
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ible. Then, the polynomials (pMk )k∈Nn satisfy

pMk (x) = ex
TM−1x(−M∇x)ke−x

TM−1x, x ∈ Rn. (5.2)

Proof. We calculate with Ansatz (5.2)

2x pMk (x)−M∇xpMk (x)

= 2x pMk (x)−M
(

2M−1x pMk (x) + ex
TM−1x∇x(−M∇x)ke−x

TM−1x
)

= ex
TM−1x(−M∇x)k+1e−x

TM−1x

and thus (5.2) fulfils Recursion (5.1). �

This identity was already shown several times for Hagedorn’s wave packets with vary-
ing notations, see for example [LT14, Proposition 4], [Hag15, §4] or [DKT16, Eq. (12)].
In [Hag15] there was in addition the generating function of the polynomials deter-
mined, again evaluated at y = 1√

ε
Q−1x as noted in Theorem 4.2.

Proposition 5.1 — Generating function. Let M ∈ Cn×n be symmetric and invertible.
Then,

g(x, t) =
∑
k∈Nn

tk

k!
pMk (x) = e2xT t−tTMt

for all x, t ∈ Rn.

Proof. We use a similar approach as for the Hermite polynomials in Theorem 3.2 and
first expand the exponent,

2xT t− tTMt = −(Mt− x)TM−1(Mt− x) + xTM−1x.

Thus,

∇te2xT t−tTMt |t=0 = ex
TM−1x∇te−(Mt−x)TM−1(Mt−x) |t=0= ex

TM−1x(−M∇t′)e−t
′TM−1t′ |t′=x

= ex
TM−1x(−M∇x)e−x

TM−1x

where we substituted t′ = −Mt+ x. An iterative argument and the Rodrigues formula
(5.2) yield ∇kt e2xT t−tTMt |t=0= pMk (x) and by expanding e2xT t−tTMt around t = 0 we find

e2xT t−tTMt =
∑
k∈Nn

tk

k!

(
∇te2xT t−tTMt |t=0

)
=
∑
k∈Nn

tk

k!
pMk (x).

�

The generating function enables us to give also a formula for the gradient and the TTRR
of the polynomials.
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Corollary 5.3 — Appell sequence. We have

∇xpMk (x) = 2
(
kjp

M
k−ej (x)

)n
j=1

, x ∈ Rn,

for all symmetric and invertible M ∈ Cn×n and k ∈ Nn.

Proof. Let j ∈ {1, . . . , n}. Then,

∑
k∈Nn

tk

k!
∂xjp

M
k (x) = ∂xje

2xT t−tTMt = 2tje
2xT t−tTMt = 2

∑
k∈Nn

tk+ej

k!
pMk (x)

= 2
∑

k∈Nn,kj 6=0

tk

(k − ej)!
pMk−ej (x)

and comparing the coefficients of tk shows ∂xjpMk (x) = 2kjp
M
k−ej (x) if kj > 0. For kj = 0

we find by definition ∂xjp
M
k (x) = 0. �

So, we can interpret the gradient as a lowering operator of the polynomials, and more-
over, find that the polynomials are eigenfunctions of the symmetric operator

1
2

(
(B̂†)T∇x + (∇x)T B̂†

)
.

In particular, we have

1
2

(
(B̂†)T∇x + (∇x)T B̂†

)
pMk (x) = (B̂†)T

(
kjp

M
k−ej (x)

)n
j=1

+ 1
2(∇x)T

(
pMk+ej

(x)
)n
j=1

=
n∑
j=1

kjp
M
k (x) + (kj + 1)pMk (x) = (2|k|+ n)pMk (x).

The formula for the gradient also directly implies a recurrence relation for the polyno-
mials.

Corollary 5.4 — Three-term recurrence relation. Let M ∈ Cn×n be symmetric and invert-
ible. The polynomials (pMk )k∈Nn satisfy(

pMk+ej
(x)
)n
j=1

= 2x pMk (x)− 2M
(
kjp

M
k−ej (x)

)n
j=1

, x ∈ Rn,

with pM0 (x) = 1 and pMk (x) = 0 for k /∈ Nn.

This TTRR of the polynomials furthermore suggests a recursion relation for Hagedorn’s
wave packets. With y = 1√

ε
Q−1x we find

(√
kj + 1ϕk+ej (Z;x)

)n
j=1

= 1√
2|k|+1k!

(
pMk+ej

(y)
)n
j=1

ϕ0(Z;x)

= 1√
2|k|−1k!

(
y pMk (y)−M(kjp

M
k−ej (y))nj=1

)
ϕ0(Z;x)

=
√

2
εQ
−1xϕk(Z;x)−M(

√
kjϕk−ej (Z;x))nj=1
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for any normalised Lagrangian frame Z = (P ;Q) ∈ C2n×n and k ∈ Nn. So, we have
restated the three-term recursion

Q
(√

kj + 1ϕk+ej (Z;x)
)n
j=1

=
√

2
εxϕk(Z;x)−Q

(√
kjϕk−ej (Z;x)

)n
j=1

given in [Lub08, §V.2].

5.3. Laguerre connection

When we calculated the Wigner transform of two Hermite functions in Section 3.4,
we discovered Laguerre polynomials. This is only one of various connections between
Hermite and Laguerre polynomials, see for example [Sze39, §5.6]. We can add a new
point here in terms of the polynomials (pMk )k∈Nn .

From its form it is clear that the generating function only factorises into m lower-
dimensional generating functions if we can rewrite M as a block-diagonal matrix with
m blocks, see [DKT16, §3.2]. Therefore, our aim here is to express pMk , k ∈ Nn, as
a linear combination of tensor products by deleting off-diagonal entries of M . More
precisely, we denote by M ′ the matrix that remains if we delete the entries Ml,m and
Mm,l of M , i.e.

M ′i,j =

0 if {i, j} = {l,m}

Mi,j else
.

Then, we can express the raising operator B̂† of the polynomials pMk via the raising
operator B̂′† of the polynomials pM ′k .

Proposition 5.2 — Laguerre connection. Let M ∈ Cn×n be symmetric and invertible. We
denote by M ′ the matrix with deleted entries Ml,m = Mm,l = λ ∈ C for l 6= m and by
B̂′† the corresponding polynomial raising operator. Then,

B̂†k = B̂′†k−km(el+em)(−2λ)kmkm!L
(kl−km)
km

( 1
2λ b̂
′†
l b̂
′†
m)

if kl ≥ km and analogously for km > kl. The operator b̂′†l thereby denotes the l-th
component of B̂′†.

Proof. We can relate the generating functions of pMk and pM ′k by

e2xT t−tTMt = e2xT t−tTM ′te−2λtltm =

(∑
k∈Nn

tk

k!
B̂′†k 1

)
·
(

1− 2λtltm +
1

2!
(2λtltm)2 − . . .

)
.

Expanding and sorting with respect to the exponent of t then leads to

e2xT t−tTMt =
∑
k∈Nn

tk

k(l,m)!
B̂′†k(l,m)

min(kl,km)∑
j=0

(−2λ)j

j!
·

(b̂′†l )kl−j

(kl − j)!
· (b̂′†m)km−j

(km − j)!
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where k(l,m) = k − klel − kmem. Thus, if we compare the coefficients of tk we find

B̂†k = B̂′†k(l,m)

min(kl,km)∑
j=0

kl!km!(−2λ)j

j!(kl − j)!(km − j)!
(b̂′†l )kl−j(b̂′†m)km−j

Sums of this type can with a standard procedure be transfered into Laguerre polynomi-
als, see [Fol09, Theorem 1.105]. Let kl ≥ km. We reorder the sum by means of the index
i = km − j,

B̂†k = B̂′†k(l,m)(−2λ)kmkm!(b̂′†l )kl−km
km∑
i=0

kl!

(km − i)!(kl − km + i)!i!

(
− 1

2λ b̂
′†
l b̂
′†
m

)i
= B̂′†k−km(el+em)(−2λ)kmkm!L

(kl−km)
km

( 1
2λ b̂
′†
l b̂
′†
m)

where we utilised that b̂′†l and b̂′†m commute. �

The conclusion of the previous proposition can be nicely illustrated in the two-dimensional
case. Let

M =

(
λ11 λ12

λ12 λ22

)
∈ C2×2

be invertible and denote by

b̂†j = 2xj − λjj∂xj , j = 1, 2

the raising operator of the Hermite polynomials scaled by λ11 resp. λ22 that we dis-
cussed in the previous section.

Corollary 5.5 — Two-dimensional polynomials. Let k ∈ N2 with k1 ≥ k2. Then,

B̂†k =

(−2λ12)k2k2!(b̂†1)k1−k2L
(k1−k2)
k2

( 1
2λ12

b̂†1b̂
†
2) λ12 6= 0

(b̂†1)k1(b̂†2)k2 λ12 = 0
(5.3)

and the case k1 < k2 works analogously.

For the case λ12 = 0, this equality directly carries out the factorisation of pMk in scaled
Hermite functions,

pMk (x) = pλ11k1
(x1)pλ22k2

(x2) =

√
λk111λ

k2
22 · hk1( x1√

λ11
)hk2( x2√

λ22
), x ∈ R2.

In the case λ12 6= 0, (5.3) guarantees that pMk is a linear combination of at most min(k1, k2)

many tensor products of the form

(b̂†1)l(b̂†2)m1 = pλ11l (x1)pλ22m (x2)

where l −m = k1 − k2 and k1 − k2 ≤ l, m ≤ k2. Moreover, if λ11 = λ22 = 0, the creation
operators b̂†1 and b̂†2 produce monomials and we obtain the formula

pMk (x) = (−2λ3)k2k2!(2x1)k1−k2L
(k1−k2)
k2

( 2
λ12
x1x2), x ∈ R2,
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whenever λ12 6= 0 and k1 ≥ k2. These two special cases can be generalised to arbitrary
dimensions.

Corollary 5.6 Let k ∈ Nn. If M = Id, the polynomials pMk are tensor products of one-
dimensional Hermite polynomials,

pMk (x) =
n∏
j=1

hkj (xj), x ∈ Rn.

Furthermore, if the dimension is even, n = 2m, and M of the form

M =

(
0 Idm

Idm 0

)
,

the polynomials pMk can be written as a tensor product of monomials and Laguerre
polynomials, pMk (x) =

∏m
j=1 L(kj ,kj+m)(xj , xj+m) with

L(kj ,kl)(xj , xl) =

(−1)klkl!2
kjx

kj−kl
j L

(kj−kl)
kl

(2xjxl) kj ≥ kl
(−1)kjkj !2

klx
kl−kj
l L

(kl−kj)
kj

(2xjxl) kj < kl
.

As examples we consider the unitary, symmetric matrices

M1 =

(
1 0

0 1

)
, M2 =

(
0 1

1 0

)
, M3 = 1√

2

(
1 1

1 −1

)

as well as the non-unitary matrix

M4 =

(
1 −1

− 1 2

)
.

The first three matrices are obtained by the Lagrangian frames defined in (4.8) and
(4.9), i.e. Mj = Q−1

j Qj where Zj = (Pj ;Qj) for j = 1, 2, 3. The matrix M4 depicts a
more general case that will not arise as part of Hagedorn’s wave packets. For a clear
illustration, we restrict ourselves here to real matrices.

Figure 11 points out the results of Corollary 5.6: the polynomial pM1

(4,6) factorises in
Hermite polynomials, its roots form a grid whose distances equal the roots of the Her-
mite polynomials. The polynomial pM2

(5,6) is zero evaluated at the x2-axis since k2 > k1

and the remaining roots form min(k1, k2)-many hyperbolas whose distances are propor-
tional to the roots of the Laguerre polynomials.

Figure 12 illustrates that also in the two-dimensional case the polynomials can attain
suprising forms, although pM3

(5,8) and pM4

(8,5) can both be written as a linear combination of
only 5 tensor products.

In the setting of Hagedorn’s wave packets the polynomials are then evaluated on the
rotated grid Q−1Rn ⊂ Cn. A real-valued matrix Q ∈ Rn×n thereby always corresponds
to the matrix M1 = Id2 and thus, the only real-valued polynomials one can detect in
Hagedorn’s wave packets are rescaled or sheared multi-dimensional Hermite polyno-
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Figure 11.: Plots of the roots of the polynomials pM1

(4,6) (left) and pM2

(5,6) (right), blue regions
mark negative values, white regions positive values of the polynomials

Figure 12.: Plots of the roots of the polynomials pM3

(5,8) (left) and pM4

(8,5) (right), blue regions
mark negative values, white regions positive values of the polynomials

mials. All other polynomials will provide complex values. In particular, the complex
rotation also explains the circular structure showed in the right picture of Figure 7:
Let Z = (P ;Q) be a normalised Lagrangian frame and assume that Q−1Q = M2. This
implies that Q is of the form

Q =

(
a a

b b

)

for a, b ∈ C with Im(ab) 6= 0. From Corollary 5.6 we see that the roots of the rotated
polynomial pM2

(4,6)(Q
−1x) either form a straight line induced by the monomial factor, or

satisfy

2(Q−1x)1(Q−1x)2 =
1

2Im(ab)2
(bx1 − ax2)(bx1 − ax2) = ηj ,

where ηj , j = 1, ..., 4, are the roots of the associated Laguerre polynomial L(2)
4 . Since the

ηj are real, positive and pairwise distinct,

1

2Im(ab)2
(|b|2x1 + |a|2x2 − 2Re(ab)x1x2) = ηj
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produces 4 distinct ellipses. Those are the four dark blue circles in Figure 7 surrounding
the origin.



6. Wave packets in phase space

After introducing and studying the properties of Hagedorn’s wave packets, our next aim
is to deduce the ε-scaled Wigner transform,

Wε(ϕ,ψ)(ξ, x) = (2πε)−n
∫
Rn
ϕ(x+ y

2 )ψ(x− y
2 )e

i
ε
yT ξ dy, (ξ, x) ∈ Rn ⊕ Rn, (6.1)

for ϕ,ψ ∈ S(Rn), of two Hagedorn wave packets. The Wigner function was introduced
in 1932 by Wigner, see [Wig32], as a simultaneous probability function for position
and momentum. Although Wε(ϕ,ψ) attains negative values if ϕ and ψ are not simple
Gaussian functions, see [Hud74, Theorem 4], the Wigner transform is very valuable as
we receive the position and momentum densities of a state as marginal distributions,
see Lemma 3.7, and are able to calculate expectation values of operators opε[a] via

〈ϕ, âψ〉 =

∫
R2n

W(ϕ,ψ)(z)a(z) d(z), z = (ξ, x) ∈ Rn ⊕ Rn.

For the Hermite functions we found that the Wigner function can be expressed in terms
of Laguerre polynomials and exhibit a circular structure, see Section 3.4. We will show
that the same holds true for Hagedorn’s wave packets if both wave packets can be
parametrised by the same Lagrangian frame. In general, the Wigner transform can
be equivalently constructed as Hagedorn’s wave packets on position space and we thus
obtain wave packets on phase space. This is the main result of this chapter as it allows
us to transfer all our previous results directly to phase space, no further investigation
is needed. Additionally, we will also determine the FBI transform and, implicitly, the
Husimi function of the wave packets, though the findings here are less intuitive than
for the Hermite functions.

6.1. Ladders in phase space

We begin with the lift of the ladder operators to phase space. Our goal is to describe the
action of the ladder operators of Hagedorn’s wave packets as operators that act directly
on the Wigner function, i.e.

Wε(Â(Z)ϕ,ψ) = Â1(Z)Wε(ϕ,ψ) resp. Wε(ϕ, Â(Z)ψ) = Â2(Z)Wε(ϕ,ψ),

for all ϕ,ψ ∈ S(Rn) and analogously for Â†(Z). With this, we can describe the Wigner
transform of the two Hagedorn wave packets as eigenfunction of the corresponding
phase space operator.
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Lemma 6.1 Let l ∈ Cn ⊕ Cn. Then, for all ϕ,ψ ∈ S(Rn),

Wε(Â(l)ϕ,ψ)(z) = −i√
2ε
l∗(Ωz − 1

2Dz)Wε(ϕ,ψ)(z),

Wε(ϕ, Â(l)ψ)(z) = i√
2ε
lT (Ωz + 1

2Dz)Wε(ϕ,ψ)(z),

where z ∈ Rn ⊕ Rn and Dz = −iε∇z acts on R2n.

Proof. Let w ∈ S(R2n). With Lemma 3.7 c, and the Moyal product from Appendix A,∫
R2n

Wε(Â(l)ϕ,ψ)(z)w(z) dz = 〈Â(l)ϕ, ŵψ〉 = 〈ϕ, Â†(l)ŵψ〉

=

∫
R2n

Wε(ϕ,ψ)(z)(A†(l)#w)(z) dz

and analogously∫
R2n

Wε(ϕ, Â(l)ψ)(z)w(z) dz = 〈ϕ, ŵÂ(l)ψ〉 =

∫
R2n

Wε(ϕ,ψ)(z)(w#A(l))(z) dz.

Since A(l) and A†(l) are linear functions in z, we can use the expansion formulas
A†(l)#w = w · A†(l) + iε

2∇A
†(l)TΩ∇w resp. w#A(l) = w · A(l) + iε

2∇w
TΩ∇A(l) and

obtain

(A†(l)#w)(z) = − i√
2ε

(
l∗Ωz · w(z)− iε

2 l
∗∇zw(z)

)
= − i√

2ε
l∗
(
Ωz + 1

2Dz

)
w(z)

and

(w#A(l))(z) = i√
2ε

(
lTΩz · w(z) + iε

2 l
T∇zw(z)

)
= i√

2ε
lT
(
Ωz − 1

2Dz

)
w(z).

By partial integration,∫
R2n

Wε(Â(l)ϕ,ψ)(z)w(z) dz = − i√
2ε

∫
R2n

Wε(ϕ,ψ)(z)l∗
(
Ωz + 1

2Dz

)
w(z) dz

= − i√
2ε

∫
R2n

l∗
(
Ωz − 1

2Dz

)
Wε(ϕ,ψ)(z)w(z) dz

and ∫
R2n

Wε(ϕ, Â(l)ψ)(z)w(z) dz = i√
2ε

∫
R2n

Wε(ϕ,ψ)(z)lT
(
Ωz − 1

2Dz

)
w(z) dz

= i√
2ε

∫
R2n

lT
(
Ωz + 1

2Dz

)
Wε(ϕ,ψ)(z)w(z) dz.

Since w was an arbitrary Schwartz function, this proves the claim. �

If we view the vector-valued operator v̂ = (−iε∇z, z) as the phase space analog of ẑ =

(p̂, q̂), i.e. as the Weyl-quantisation of a doubled phase space variable v = (ζ, z) ∈
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R2n ⊕ R2n, we can rewrite the ladder operators of the previous lemma as

−i√
2ε
l∗(Ωz − 1

2Dz) = −i√
2ε

(
−Ωl

1
2 l

)T
Ω2nv̂,

i√
2ε
lT (Ωz + 1

2Dz) = i√
2ε

(
Ωl
1
2 l

)T
Ω2nv̂, (6.2)

where Ω2n ∈ R4n×4n denotes the standard skew-symmetric matrix (2.4) of doubled di-
mension. Since we are interested in Wigner functions of the type Wε(ϕk(Z1), ϕm(Z2)),
we need to create a phase space operator that acts on the first n components of Wε as
Â(Z1) and on the second n components as Â(Z2).

Definition 6.1 — Phase space frame. For two normalised Lagrangian frames Z1, Z2 ∈
C2n×n we set

Z =

(
−ΩZ1 ΩZ2

1
2Z1

1
2Z2

)
∈ C4n×2n

and call Z the phase space frame of Z1 and Z2.

One can easily verify that Z is isotropic if and only if Z1 and Z2 are isotropic, since

ZTΩ2nZ =

(
Z∗1ΩZ1 0

0 ZT2 ΩZ2

)

and with

Z∗Ω2nZ =

(
−ZT1 ΩZ1 0

0 Z∗2ΩZ2

)
normalised if and only if Z1 and Z2 are normalised. So, if Z1, Z2 ∈ C2n×n are two nor-
malised Lagrangian frames, the phase space frame Z denotes a normalised Lagrangian
frame of doubled dimension and

L := range(Z) ⊂ C4n

is a positive Lagrangian subspace. We can characterise this Lagrangian L by means of
its symplectic metric.

Lemma 6.2 — Phase space metric. Let L1, L2 ⊂ C2n be two positive Lagrangian sub-
spaces with symplectic metrics G1 resp. G2. Let further Z1 ∈ Fn(L1), Z2 ∈ Fn(L2)

and Z denote the corresponding phase space frame. Then, the symplectic metric of
L = range(Z) is of the form

G =

(
1
4(G−1

1 +G−1
2 ) 1

2Ω(G2 −G1)
1
2(G1 −G2)Ω G1 +G2

)
∈ Sp(2n,R).

In the special case L1 = L2 this simplifies to G =

(
1
2G
−1 0

0 2G

)
, where G = G1 = G2.

Proof. We have by definition G = ΩT
2n(ZZ∗ + iΩ2n)Ω2n. The Hermitian square of Z can
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be directly computed,

ZZ∗ =

(
ΩT (Z1Z

T
1 + Z2Z

∗
2 )Ω 1

2Ω(−Z1Z
T
1 + Z2Z

∗
2 )

1
2(Z1Z

T
1 − Z2Z

∗
2 )Ω 1

4(Z1Z
T
1 + Z2Z

∗
2 )

)

and since G−1
1 = Z1Z

T
1 − iΩ and G−1

2 = Z2Z
∗
2 + iΩ,

ZZ∗ + iΩ2n =

(
G1 +G2

1
2Ω(G−1

2 −G
−1
1 )

1
2(G−1

1 −G
−1
2 )Ω 1

4(G−1
1 +G−1

2 )

)
.

The claim follows since G−1Ω = ΩG holds for any symmetric matrix G ∈ Sp(n,R). �

The definition of the phase space frame Z was a direct consequence of the form of the
phase space ladders. This suffices for the construction of the wave packets in phase
space, but we can also verify our phase space lift with a more general argumentation.
Let

ρ± : C2n 7→ C4n, z → U±z :=

(
±Ωz

1
2z

)
,

i.e. we can write the ladder operators on phase space in (6.2) as Â(ρ−(l)) and Â(ρ+(l)).
These operators exhibit the same structure as the operators for Hagedorn’s wave pack-
ets from Section 4.1, but act on S(Rn ⊕ Rn).

Proposition 6.1 — Double dimension. For all l, l′ ∈ Cn ⊕ Cn we have

ρ±(l)TΩ2nρ±(l′) = ±lTΩl′ and ρ±(l)TΩ2nρ∓(l′) = 0.

This implies that if L1, L2 ⊂ C2n are positive Lagrangian subspaces, then

L := ρ−(L1)⊕ ρ+(L2) ⊂ C4n

is a positive Lagrangian subspace. Moreover, if Z1 ∈ Fn(L1) and Z2 ∈ Fn(L2), then
L = range(Z).

Proof. We compute for all l, l′ ∈ Cn ⊕ Cn,

ρ±(l)TΩ2nρ±(l′) =
(
∓lTΩ 1

2 l
T
)(−1

2 l
′

±Ωl′

)
= ±lTΩl′

and

ρ±(l)TΩ2nρ∓(l′) =
(
∓lTΩ 1

2 l
T
)(−1

2 l
′

∓Ωl′

)
= 0.

Since L1 is a negative Lagrangian while L2 is positive, we have L1 ∩ L2 = {0} and thus
dim(L) = 2n. The isotropy of L follows from the above equations,

ρ−(l1)TΩ2nρ−(l
′
1) = 0, ρ+(l2)TΩ2nρ+(l′2) = 0, ρ−(l1)TΩ2nρ+(l′2) = 0

for all l1, l
′
1 ∈ L1 and l2, l

′
2 ∈ L2 since L1 and L2 are isotropic. Furthermore, if L1 and
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L2 are positive Lagrangians, then there exist normalised Lagrangian frames Z1 and Z2

spanning L1 and L2 and by definition

range(Z) = {Zw ; w ∈ C2n} = {ρ−(l1) + ρ+(l2) ; l1 ∈ L1, l2 ∈ L2} = L.

Hence, L is positive if Z is normalised, but due to our previous considerations this is
equivalent to Z1 and Z2 being normalised, i.e. the positivity of L1 and L2. �

Thus, the maps ρ+ and ρ− describe a well-defined representation in double phase space.
In the literature, see for example [SA16, §2], the standard phase space lift is performed
via

Ω̃2n =

(
−Ω 0

0 Ω

)
.

This means for v = (ζ, z) and v′ = (ζ ′, z′) in C2n ⊕C2n, we define the symplectic form on
double phase space as

ω̃2(v, v′) = vT Ω̃2nv
′ = ω(z, z′)− ω(ζ, ζ ′).

This definition is indeed consistent with our lift obtained from the phase space ladders:
We first lift the variables via ρ+ and ρ− to doubled dimension and then use the standard
symplectic form ω(v, v′) = vTΩ2nv

′ for all v, v′ ∈ C2n ⊕ C2n, but

(
U− U+

)T
Ω2n

(
U− U+

)
=

(
Ω 1

2 Id

−Ω 1
2 Id

)(
−1

2 Id −1
2 Id

−Ω Ω

)
=

(
−Ω 0

0 Ω

)
.

6.2. Coherent and excited states in phase space

With the phase space ladder operators

Â(Z) = i√
2ε
ZTΩ2nv̂ and Â†(Z) = −Â(Z) = −i√

2ε
Z∗Ω2nv̂

we are now able to deduce the Wigner transform of two Hagedorn wave packets. Since
the ladder operators on phase space possess the same structure than the ladder oper-
ators on position space it is already obvious that the Wigner transform will become a
wave packet on phase space. To minimise confusion we denote wave packets on position
space with small letters, ϕ : Rn 7→ C, and wave packets on phase space with capitals,
Φ : Rn ⊕ Rn 7→ C, in the following.

Let L1, L2 ⊂ C2n be two positive Lagrangian subspaces and Z1 ∈ Fn(L1), Z2 ∈ Fn(L2).
We start with the coherent stateW0(Z) :=Wε(ϕ0(Z1), ϕ0(Z2)) and first note that

Â(Z)Wε(ϕ0(Z1), ϕ0(Z2)) =Wε(Â(Z1)ϕ0(Z1), Â(Z2)ϕ0(Z2)) = 0.

Thus, W0(Z) appears as the eigenfunction of Â(Z) with eigenvalue 0 and has norm
(2πε)−n/2 due to Lemma 3.7.
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Proposition 6.2 — Coherent states. Let I(L) = {Ψ ∈ D′(Rn ⊕ Rn) ; Â(Z)Ψ = 0}. Then,
every element in I(L) is a constant multiple of

W0(Z; z) = (πε)−n det(Re(G))1/4e−
1
ε
zTGz

where G denotes the mixed metric of Z1 and Z2. If Z1 = Z2, we have det(Re(G)) = 1

and
∫
R2nW0(Z; z) dz = 1.

Proof. We denote Z = (P;Q) with P,Q ∈ C2n×2n. Then, by Lemma 4.2, every element
in I(L) is of the form

Ψ(z) = c · e
i
ε
zTPQ−1z

for c ∈ C and it remains to show that PQ−1 = 2iG. We have

GQ = 1
4ΩT (Z2D

−1Z∗1 + Z1D
−TZT2 )Ω

(
Z1 Z2

)
= 1

4ΩT
(
Z1D

−T (−2iDT ) Z2D
−1(2iD)

)
= − i

2

(
−ΩZ1 Z2

)
= − i

2P

since 2iD = Z∗1ΩZ2. For the constant factor, we note

(2πε)−n = ‖W0(Z)‖2 = |c|2
∫
R2n

e−
2
ε z
TRe(G)z dz = (πε2 )n det(Re(G))−1/2|c|2

and thus c2 = (πε)−2n det(Re(G))1/2. If Z1 = Z2 we have G = Re(G) and det(G) = 1 since
G is real, symplectic and positive definite. Moreover,∫

R2n

W0(Z; z) dz = 〈ϕ0(Z1), ϕ0(Z2)〉 = ‖ϕ0(Z1)‖2.

�

Starting from the coherent state we can construct now more excited states by applying
iteratively the raising operator Â†(Z),

W(k,l)(Z) := 1√
k!l!
Â†(k,l)(Z)W0(Z)

for all k, l ∈ Nn. This relation can be read as the phase space analog of the definition
of Hagedorn’s wave packets in (4.5). With the same approach as for the ground state
W0(Z) we find

W(k,l)(Z) =Wε( 1√
k!
Â†k(Z1)ϕ0(Z1), 1√

l!
Â†l (Z2)ϕ0(Z2)) =Wε(ϕk(Z1), ϕl(Z2))

and verify that our construction produces the Wigner transform of two arbitrary Hage-
dorn wave packets. Hence, we can directly conclude thatWε(ϕk(Z1), ϕl(Z2)) is a Hage-
dorn wave packet parametrised by the phase space frame Z for all normalised La-
grangian frames Z1 and Z2,

W(k,l)(Z) = (2πε)−n/2Φ(k,l)(Z),
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where Φ(k,l)(Z) denotes the (k, l)-th Hagedorn wave packet. The statement in the
special case of symmetric Wigner functions can be found as [DKT16, Theorem 11].

Theorem 6.1 — Wave packets in phase space. Let L1, L2 ⊂ C2n be positive Lagrangian
subspaces and Z1 ∈ Fn(L1), Z2 ∈ Fn(L2). Then, with Z = (P;Q) ∈ C4n×2n

Wε(ϕk(Z1), ϕl(Z2))(z) = 1√
2|k|+|l|k!l!

pM(k,l)(
1√
ε
Q−1z)W0(Z; z), z ∈ R2n,

for all k, l ∈ Nn. The symmetric and invertible recursion matrix of the polynomials is
given by

M =

(
CD−1 D−T

D−1 −D−1C

)
,

where C and D denote the mixed isotropy and normalisation of Z1 and Z2.

Proof. The statement is a consequence of Theorem 4.2 and it only remains to confirm
the properties ofM = Q−1Q. Let C = 1

2iZ
T
1 ΩZ2 and D = 1

2iZ
∗
1ΩZ2. Then,

−iPTQ = −i
2

(
Z∗1Ω

−ZT2 Ω

)(
Z1 Z2

)
=

(
0 D

DT 0

)
, i.e. Q−1 = −i

(
0 D−T

D−1 0

)
PT

and

M = −i
2

(
0 D−T

D−1 0

)(
Z∗1Ω

−ZT2 Ω

)(
Z1 Z2

)
=

(
0 D−T

D−1 0

)(
Id −C
CT Id

)
.

In the proof of Proposition 4.2 where we determined the form of the generalised wave
packets we already showed that CTD is symmetric using the symplectic metric of L1.
The symmetry of CD−1 follows since CTD = DTC implies D−TCT = CD−1. Similarly,

CDT = 1
4Z
∗
1ΩTZ2Z

T
2 ΩZ1 = 1

4Z
∗
1ΩTRe(Z2Z

∗
2 )ΩZ1

is symmetric and from CDT = DC∗ we can conclude D−1C = C∗D−T . For the invert-
ibility ofM we consider kern(M): Let z = (p, q) ∈ C2n withMz = 0. Then, the second
block leads to p = Cq and the first block to (CC∗ + Id)D−T q = 0. Since D is invertible
and CC∗ + Id positive definite, it follows that z = 0. �

In [LT14, Theorem 1] it was shown that the symmetric Wigner function of Hagedorn’s
wave packets always factorises into Laguerre polynomials. This behaviour can be ex-
plained with the above result and the analysis of the polynomials (pMk )k∈Nn from the
previous chapter.

Corollary 6.1 — Symmetric Wigner transform. Let L be a positive Lagrangian subspace
and Z ∈ Fn(L). The Wigner transform of two Hagedorn wave packets parametrised
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by Z satisfies

Wε(ϕk(Z), ϕl(Z))(z) = (πε)−n√
2|k|+|l|k!l!

e−
1
ε
zTGz

n∏
j=1

L(kj ,lj)(
i√
ε
wj ,

−i√
ε
wj), z ∈ R2n,

where w := ZTΩz and the polynomials L(kj ,lj) are defined as in Corollary 5.6. In
particular

Wε(ϕk(Z))(z) = (πε)−n(−1)|k|e−
1
ε
zTGz

n∏
j=1

L
(0)
kj

(2
ε |wj |

2), z ∈ R2n.

Proof. If Z1 = Z2 is a normalised Lagrangian frame, we have C = 0, D = Id and
therefore

M =

(
0 Id

Id 0

)
.

Hence, the structure of the polynomials is given by the formula in Corollary 5.6. For
the substitution w, we stress that if Z1 = Z2 then G is real and thus, by Remark 2.2,
P∗Q = −iId, i.e.

Q−1z = iP∗z = i

(
ZTΩz

Z∗Ωz

)
= i

(
w

w

)
for all z ∈ R2n. �

In particular, the representation ofM in terms of C andD shows that the Wigner trans-
form of Hagedorn’s wave packets only factorises into Laguerre polynomials if CD−1 = 0

and D−1 = Id. This means it factorises only if Z1 and Z2 are two normalised Lagrangian
frames satisfying

ZT1 ΩZ2 = 0 and Z∗1ΩZ2 = 2iId.

As stated in Remark 2.4 the first condition implies range(Z1) = range(Z2) while the
second conditions ensures ϕk(Z1) = ϕk(Z2) for all k ∈ Nn. Thus, the Wigner transform
will only attain tensor product structure if both wave packets are parametrised by the
same Lagrangian frame Z, see also Remark 4.2.

A wave packet with this circular structure is illustrated in the right plot of Figure 7.
A tensor product of Hermite polynomials as in the left picture can not occur as Wigner
function since in this case C = Id and D−1 = 0, what is a contradiction to D being
invertible. In general Wigner transforms W(k,l)(Z) can attain various forms, see for
example the left side of Figure 8.

Again, similar as for the Hermite functions, we simplified calculations so far and
considered only wave packets centred at the origin. However, by invoking Lemma 3.10,
one can easily transfer the result to general wave packets.

Corollary 6.2 — Phase space centers. Let L1, L2 ⊂ C2n be positive Lagrangian sub-
spaces, Z1 ∈ Fn(L1), Z2 ∈ Fn(L2) and z1, z2 ∈ R2n ⊕ R2n with z1 = (p1, q1) and
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z2 = (p2, q2). It holds for k, l ∈ Nn

Wε(ϕk(Z1, z1), ϕl(Z2, z2))(z)

=
e

i
2ε

(p1−p2)T (q1+q2)

√
2|k|+|l|k!l!

pM(k,l)

(
1√
ε
Q−1(z − z1+z2

2 )

)
e

i
ε
(z1−z2)TΩzW0(Z; z − z1+z2

2 )

with z ∈ R2n and Z = (P;Q).

Proof. Using ϕk(Z, z) = e−
i
2ε
pT qT (z)ϕk(Z) for z = (p, q) ∈ Rn ⊕ Rn, we have

Wε(ϕk(Z1, z1), ϕl(Z2, z2)) = e
i
2ε

(pT1 q1−pT2 q2)Wε(T (z1)ϕk(Z1), T (z2)ϕl(Z2))

and with Lemma 3.10

Wε(ϕk(Z1, z1), ϕl(Z2, z2))(z)

= e
i
ε(

1
2

(pT1 q1−pT2 q2)+ 1
2

(pT1 q2−qT1 p2)+zTΩ(z2−z1))Wε(ϕk(Z1), ϕl(Z2))(z − z1+z2
2 ).

�

To close this section we sum up some references: A formula for the Wigner transform
Wε(ϕ0(Z, z1), ϕ0(Z, z2)) of two coherent states can also be found in [CR12, Proposition
16], beyond that [CR12, §2.2] presents a detailed summary of the properties of Wigner
functions with a different line of argumentation. In [Gos10, Proposition 242] the author
gives a formula for Wε(ϕ0(Z)) based on the representation of G in terms of Re(B) and
Im(B), see Corollary 2.3, and shows the generalisation Wε(ϕ0(Z1), ϕ0(Z2)) in [Gos10,
Proposition 244]. Moreover, the author uses the Wigner transform to define squeezed
coherent states, see [Gos10, Definition 246], which we will discuss in more detail in the
next chapter.

In [LT14, §4.2] phase space ladders and a three-term recurrence relation are deter-
mined for Wigner functions of the form Wε(ϕk(Z), ϕl(Z)), k, l ∈ Nn. One can show that
these phase space ladders are equivalent to the ladders we used here: Let Z = Z1 = Z2

be a normalised Lagrangian frame and write Z = (P ;Q). Furthermore, denote by
Z = (P;Q) the corresponding phase space frame and by z = (ξ, x) our phase space
variable. We find

Â(Z) = − i√
2ε

(
PT z + iεQ∗∇z

)
= − i√

2ε

((
−P ∗x+Q∗ξ

P Tx−QT ξ

)
+ iε

2

(
P ∗∇ξ +Q∗∇x
P T∇ξ +QT∇x

))

= − i√
2ε
· 1

2

(
−P ∗(2x− iε∇ξ) +Q∗(2ξ + iε∇x)

P T (2x+ iε∇ξ)−QT (2ξ − iε∇ξ)

)

and analogously

Â†(Z) = i√
2ε
· 1

2

(
−P T (2x− iε∇ξ) +QT (2ξ + iε∇x)

P ∗(2x+ iε∇ξ)−Q∗(2ξ − iε∇ξ)

)
.
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Thus, the phase space ladders K,K†, L, L† from [LT14, Theorem 2] satisfy

2Â(Z) =

(
K

L

)
and 2Â†(Z) =

(
K†

L†

)
.

The recurrence relation for the Wigner transform can be obtained from the TTRR of the
polynomials. We have(

(
√
kj + 1Wk+ej ,l(z))

n
j=1

(
√
lj + 1Wk,l+ej (z))

n
j=1

)
=
√

2
εQ
−1zWk,l(z)−M

(
(
√
kjWk−ej ,l(z))

n
j=1

(
√
ljWk,l−ej (z))

n
j=1

)
,

see Corollary 5.4. In the case Z = Z1 = Z2, this relation simplifies since

M =

(
0 Id

Id 0

)
and Q−1z = iP∗z =

(
w

−w

)

with w = iZTΩz as performed in the proof of Corollary 6.1. So,(√
kj + 1Wk+ej ,l(z)

)n
j=1

=
√

2
εwWk,l(z)−

(√
ljWk,l−ej (z)

)n
j=1

,

and (√
lj + 1Wk,l+ej (z)

)n
j=1

= −
√

2
εwWk,l(z)−

(√
kjWk−ej ,l(z)

)n
j=1

.

6.3. FBI and Husimi transform

The findings from the previous section confirm that all Wigner functions except the
Wigner transform of coherent states, attain negative values. Hence, the Wigner trans-
forms cannot be viewed as a probability density, but we can gain positivity if we smooth
with the ε-scaled Gaussian

gε(z;x) = (πε)−n/4e−
1
2ε
|x−q|2+ i

ε
pT (x−q), x ∈ Rn,

centred in z = (p, q) ∈ Rn⊕Rn. The generated function Hε = gε(z)∗Wε is called Husimi
function, see also Section 3.4. We will use the same strategy and first determine the
FBI transform of Hagedorn’s wave packets

(Fεzϕ)(z) = (2πε)−n/2〈ϕ, gε(z)〉, ϕ ∈ S(Rn).

The Husimi transform then emerges as the modulus squared, Hε(ϕ) = |Fεzϕ|2. Never-
theless, the computations for Hagedorn’s wave packets are more involved than the ones
for the Hermite functions. This section is a more technical one and as a starter we need
two lemmas regarding computations with the polynomials pMk .
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Lemma 6.3 — Sum formula. Let M ∈ Cn×n and k ∈ Nn. Then, for x, y ∈ Cn,

pMk (x+ y) =
∑
l≤k

(
k

l

)
(2y)k−lpMl (x).

Proof. A similar result can be found in [LT14, Proposition 3]. For y ∈ Cn let τy denote
the translation operator (τyf)(x) = f(x+ y), i.e. pMk (x+ y) = τyB̂

†
k 1. We observe

(τyB̂
†f)(x) = 2(x+ y)f(x+ y)−M∇xf(x+ y) = 2yf(x) + (B̂†τyf)(x)

and thus, iteratively,

τyB̂
†
k 1 = (2y + B̂†τy)

k1 =
∑
l≤k

(
k

l

)
(2y)k−lB̂†l 1 =

∑
l≤k

(
k

l

)
(2y)k−lpMl (x).

�

The scaled Gaussian gε(z) can also be interpreted as the coherent state ϕ0(Z0, z) where

Z0 =

(
iId

Id

)
.

Therefore, we can already presume that the case where Z = (P ;Q) satisfies B = iId

is a simpler special case. Otherwise, the scalar product 〈ϕk(Z), ϕ0(Z0)〉, if we neglect
translation for a moment, contains a product of the form

pMk ( 1√
ε
Q−1y) e

i
2ε
yT (B+iId)y

that we need to integrate.

Lemma 6.4 — Integral formula. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian, Z = (P ;Q) ∈
Fn(L) and denote by M = Q−1Q and B = PQ−1. Then,∫

Rn
pMk ( 1√

ε
Q−1y) e

i
2ε
yT (B+iId)y dy = ck

where c0 = (2πε)n/2 det(Id− iB)−1/2, ck = 0 if k /∈ Nn and for all k ∈ Nn with |k| odd,

ck = 0 and
(
ck+ej

)n
j=1

= −2Q−1(B + iId)−1(B + iId)Q
(
kjck−ej

)n
j=1

.

Proof. This statement is a reformulation of [LT14, Proposition 4]. The claim for |k| odd,
follows since in this case pMk (x) = −pMk (−x). Moreover, with the Rodrigues formula
from Lemma 5.2 and partial integration

ck+ej =

∫
Rn
e

i
2
yTQT (B+iId)Qyey

TM−1y(−M∇y)k+eje−y
TM−1y dy

=

∫
Rn

(M∇y)je
i
2
yT (QT (B+iId)Q−2iM−1)y(−M∇y)ke−y

TM−1y dy
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for j = 1, . . . , n. Since M is symmetric, we further have

M∇ye
i
2
yT (QT (B+iId)Q−2iM−1)y = (iQ∗(B + iId)Q+ 2Id) ye

i
2
yT (QT (B+iId)Q−2iM−1)y

and with a vector-valued notation where we apply the integral to each component,

(
ck+ej

)n
j=1

= (iQ∗(B + iId)Q+ 2Id)

∫
Rn
y pMk (y)e

i
2
yTQT (B+iId)Qy dy.

The three-term recurrence relation of the polynomials finally yields

y pMk = 1
2

(
pMk+ej

)n
j=1

+M
(
kjp

M
k−ej

)n
j=1

and thus,

(
ck+ej

)n
j=1

=
(

i
2Q
∗(B + iId)Q+ Id

) (
ck+ej

)n
j=1

+ (iQ∗(B + iId)Q+ 2Id)M
(
kjck−ej

)n
j=1

,

− 1
2Q
∗(B + iId)Q

(
ck+ej

)n
j=1

= (Q∗(B + iId)Q− 2iId)M
(
kjck−ej

)n
j=1

.

The claim follows since Z is a normalised Lagrangian frame,

(Q∗(B + iId)Q− 2iId)M = (Q∗P + iQ∗Q− 2iId)M = (P ∗Q+ iQ∗Q)M = Q∗ (B∗ + iId)Q

and B is symmetric. �

Since we are dealing with wave packets parametrised by two different Lagrangian
frames Z0 and Z, we can also include their mixed isotropy and normalisation,

2iC = ZT0 ΩZ = −iQ+ P = (B − iId)Q, 2iD = Z∗0ΩZ = iQ+ P = (B + iId)Q.

With this, we can rewrite the recursion for the constants ck as

(
ck+ej

)n
j=1

= 2D−1C
(
kjck−ej

)n
j=1

.

We start with the FBI transform of Hagedorn’s wave packets centred at the origin.

Proposition 6.3 — FBI transform. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian and Z =

(P ;Q) ∈ Fn(L). Then, the FBI tranform of the k-th Hagedorn wave packet ϕk(Z) in
z = (ξ, x) ∈ Rn ⊕ Rn is given by

(Fεzϕk(Z))(ξ, x) = (πε)−n√
2|k|+nk!

det(Q)−1/2e−
1
2ε

(|w|2+|ξ|2)e
i
2ε
wT (B+iId)−1w∑

l≤k

(
k

l

)
( 1√

ε
D−1w)k−lcl.

where w = x− iξ.
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Proof. Let Z = (P ;Q) ∈ Cn×n and B = PQ−1. By definition,

(Fεzϕk(Z))(z) = (πε)−n√
2|k|+nk!

det(Q)−1/2

∫
Rn
pMk ( 1√

ε
Q−1y)e

i
2ε
yTBye−

1
2ε
|y−x|2− i

ε
ξT (y−x) dy

= (πε)−n√
2|k|+nk!

det(Q)−1/2e−
1
2ε
|x|2+ i

ε
ξT x

∫
Rn
pMk ( 1√

ε
Q−1y)e

i
2ε
yT (B+iId)y+ 1

ε
yT (x−iξ) dy.

If we complete the square in the exponent we can write the integral in the form of
Lemma 6.4. Let u = i(B + iId)−1(x− iξ). Then,

(Fεzϕk(Z))(z) =

= (πε)−n√
2|k|+nk!

det(Q)−1/2e−
1
2ε
|x|2+ i

ε
ξT xe−

i
2ε
uT (B+iId)u

∫
Rn
pMk ( 1√

ε
Q−1y)e

i
2ε

(y−u)T (B+iId)(y−u) dy

= (πε)−n√
2|k|+nk!

det(Q)−1/2e−
1
2ε
|x|2+ i

ε
ξT xe−

i
2ε
uT (B+iId)u

∫
Rn
pMk ( 1√

ε
Q−1(y′ + u))e

i
2ε
y′T (B+iId)y′ dy′.

The integral can now be simplified by means of the sum and integral formula we intro-
duced at the beginning of this section,∫

Rn
pMk ( 1√

ε
Q−1(y + u))e

i
2ε
yT (B+iId)y dy =

∑
l≤k

(
k

l

)
( 2√

ε
Q−1u)k−lcl.

Thus,

(Fεzϕk(Z))(z) = (πε)−n√
2|k|+nk!

det(Q)−1/2e−
1
2ε
|x|2+ i

ε
ξT xe−

i
2ε
uT (B+iId)u

∑
l≤k

(
k

l

)
( 2√

ε
Q−1u)k−lcl

and, by inserting u, we find 2iQ−1(B + iId)−1(x− iξ) = D−1(x− iξ) and

− i
2εu

T (B + iId)u = i
2ε(x− iξ)T (B + iId)−1(x− iξ).

Moreover, − 1
2ε |x− iξ|2 = − 1

2ε |x|
2 + i

εξ
Tx+ 1

2ε |ξ|
2. �

We already mentioned that the case B = iId is an interesting special case since then Z0

and Z are parametrising the same Lagrangian subspace L.

Corollary 6.3 Let Z = (P ;Q) ∈ C2n×n be a normalised Lagrangian subspace such that
PQ−1 = iId. The FBI transform of ϕk(Z), k ∈ Nn, simplifies to

(Fεzϕk(Z))(ξ, x) = (πε)−n/2√
2|k|+nk!

det(Q)−1/2e−
1
2ε
|ξ|2e−

1
4ε
|w|2( 1√

ε
Q−1w)k

where w = x− iξ and the Husimi transform is given by

(Hεϕk(Z))(ξ, x) = (πε)−n

2|k|+nk!
e−

1
ε
|ξ|2e−

1
2ε
|w|2 | 1√

ε
Q−1w|2k.

Proof. If B = iId we first note that ck = 0 for all k 6= 0. Further, we use D−1 = Q−1 and
summarise in the exponent − 1

2ε(|w|
2 + |ξ|2) + 1

4ε |w|
2 = − 1

2ε |ξ|
2 − 1

4ε |w|
2. For the Husimi
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transform we stress that

det(Q) det(Q) = det(QQ∗) = det(Im(B))−1 = 1

if B = iId. �

To translate our results away from the origin, we again make use of the Heisenberg-
Weyl operator, see also [LT14, Lemma 2].

Lemma 6.5 — Phase space translation. Let z, z′ ∈ Rn ⊕ Rn with z = (ξ, x) and z′ = (p, q).
Then,

Fεz (T (z′)ψ)(z) = e
i
εp
T (x−q/2)Fεz (ψ)(z − z′)

for all Schwartz functions ψ ∈ S(Rn).

Proof. With the definition of T (z′) it holds

Fεz (T (z′)ψ)(z) = (2πε)−n/2
∫
Rn
e

i
εp
T (y−q/2)ψ(y − q)e−

1
2ε
|y−x|2− i

ε
ξT (y−x) dy

= (2πε)−n/2
∫
Rn
e

i
εp
T (y′+q/2)ψ(y′)e−

1
2ε
|y′+q−x|2− i

ε
ξT (y′+q−x) dy′

= (2πε)−n/2e
i
εp
T (x−q/2)

∫
Rn
ψ(y′)e−

1
2ε
|y′+q−x|2− i

ε
(ξ−p)T (y′+q−x) dy′

= e
i
εp
T (x−q/2)Fεz (ψ)(z − z′).

�

So, we can easily deduce the FBI transform for general Hagedorn wave packets.

Corollary 6.4 — General FBI transform. Let L ⊂ Cn ⊕ Cn be a positive Lagrangian sub-
space, Z = (P ;Q) ∈ Fn(L) and z′ = (p, q) ∈ Rn ⊕ Rn. The FBI transform of the k-th
wave packet ϕk(Z, z′) centred at z′ reads

(Fεzϕk(Z, z′))(ξ, x) = (πε)−n√
2|k|+nk!

det(Q)−1/2e
i
ε
pT (x−q)e−

1
2ε

(|w|2+|ξ−p|2)e
i
2ε
wT (B+iId)−1w∑

l≤k

(
k

l

)
( 1√

ε
D−1w)k−lcl.

where z = (ξ, x) ∈ Rn ⊕ Rn and w = (x− q)− i(ξ − p).

Proof. We have ϕk(Z, z′) = e−
i
2ε
pT qT (z′)ϕk(Z) and thus, by the previous corollary,

(Fεzϕk(Z, z′))(ξ, x) = e−
i
2ε
pT qe

i
εp
T (x−q/2)Fεz (ϕk(Z))(ξ − p, x− q).

�

6.4. Generalised wave packets in phase space

The phase space ladder lift in the first section of this chapter did not depend on the
normalisation of the Lagrangian frames or on the relation between the ladder operator
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and the coherent state. This means, for normalised Lagrangian frames Y1, Y2 ∈ C2n×n

and Z1, Z2 ∈ C2n×n we have

Wε(ϕk(Z1, Y1), ϕl(Z2, Y2)) = 1√
k!l!
Â†(k,l)(Y)Wε(ϕ0(Z1), ϕ0(Z2)), k, l ∈ Nn,

where Y denotes the phase space frame of Y1 and Y2. Thus, it is easy to extend our
results for Hagedorn’s wave packets also to generalised wave packets and wave packets
parametrised by a non-normalised frame. We will simply discover generalised wave
packets resp. non-normalised wave packets in phase space.

Proposition 6.4 — Generalised wave packets. Let Y1, Y2 ∈ C2n×n and Z1, Z2 ∈ C2n×n be
normalised Lagrangian frames and k, l ∈ Nn. If we denote

Cj = i
2Z

T
j ΩTYj , Dj = i

2Z
∗
jΩTYj , j = 1, 2,

C = i
2Z

T
1 ΩTZ2, D = i

2Z
∗
1ΩTZ2,

the Wigner transform of two generalised wave packets can be written as

Wε(ϕk(Z1, Y1), ϕl(Z2, Y2))(z) = 1√
2|k|+|l|k!l!

pM(k,l)(
1√
ε
D∗Q−1z)W0(Z; z), z ∈ R2n,

where Z = (P;Q),M = −C∗D +D∗Q−1QD and

C =

(
C1 0

0 C2

)
, D =

(
D1 0

0 D2

)
, Q−1Q =

(
CD−1 D−T

D−1 −D−1C

)
.

Proof. The claim is a consequence of Proposition 4.2. We consider the two phase space
frames

Y =

(
−ΩY 1 ΩY2

1
2Y 1

1
2Y2

)
, Z =

(
−ΩZ1 ΩZ2

1
2Z1

1
2Z2

)
and compute

C = i
2Z

TΩTY = i
2

(
Z∗1Ω 1

2Z
∗
1

−ZT2 Ω 1
2Z

T
2

)(
1
2Y 1

1
2Y2

ΩY 1 −ΩY2

)
= i

2

(
Z∗1ΩY 1 0

0 ZT2 ΩY2

)
=

(
C1 0

0 C2

)

and analogously,

D = i
2Z
∗ΩTY = i

2

(
ZT1 Ω 1

2Z
T
1

−Z∗2Ω 1
2Z
∗
2

)(
1
2Y 1

1
2Y2

ΩY 1 −ΩY2

)
= i

2

(
ZT1 ΩY 1 0

0 Z∗2ΩY2

)
=

(
D1 0

0 D2

)
.

The same statement for symmetric Wigner functions with a proof that is based in the
generating function of the polynomials can be found in [DKT16, Theorem 11]. �

Proposition 6.5 — Non-normalised phase space frames. Let Z1, Z2 ∈ C2n×n be two non-
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normalised Lagrangian frames with positive definite normalisations

Nj = 1
2iZ
∗
jΩZj , j = 1, 2.

Then, ϕk(Z1), ϕl(Z2) are elements of L2(Rn) for k, l ∈ Nn and their Wigner transform
is of the form

Wε(ϕk(Z1), ϕl(Z2))(z) = 1√
2|k|+|l|k!l!

pM(k,l)(
1√
ε
NQ−1z)W0(Z; z), z ∈ R2n,

where Z = (P;Q),M = NQ−1Q and

N =

(
N1 0

0 N2

)
.

Proof. Similarly to the previous proof, we refer to Corollary 4.2 and calculate the phase
space variables. Let

Z =

(
−ΩZ1 ΩZ2

1
2Z1

1
2Z2

)
,

then,

N = i
2Z
∗ΩTZ = i

2

(
ZT1 Ω 1

2Z
T
1

−Z∗2Ω 1
2Z
∗
2

)(
1
2Z1

1
2Z2

ΩZ1 −ΩZ2

)
= i

2

(
ZT1 ΩZ1 0

0 Z∗2ΩZ2

)
=

(
N1 0

0 N2

)
.

We add that N is positive definite if N1 and N2 are positive definite, since the normal-
isations are by definition Hermitian. Thus, the coherent state W0(Z) is a well-defined
L2-function. �



7. Generalised squeezed states

In the literature Hagedorn’s wave packets also coexist as (generalised) squeezed states
or generalised coherent states. We will name some common approaches in this chapter
and show their equivalence to our construction of the wave packets.

In general one obtains squeezed states by translation and transformation of multi-
dimensional Hermite functions with a unitary operator. We will again neglect transla-
tion here and only focus on the transformation operator. The translation of the squeezed
states is, as for Hagedorn’s wave packets, obtained by applying the Heisenberg-Weyl op-
erator. The crucial point therefore is the squeezing of the functions.

For the transformation we present three different strategies: The first one is the clas-
sical one based on a unitary squeezing operator that is directly applied to the Hermite
functions. This approach is probably the most common one, but the originating states
are less elementary to handle, see [CR12, §3.4], [AAG14, §2.5] or [Gaz09, §10]. In the
second part we show that one can produce equivalent states by adjusting Dirac’s ladder
operators with a Bogoliubov transformation, see for example [BFG16, §3] or [QWL01].
The squeezed states in this case are easier to handle and the relation to Hagedorn’s
wave packets gets clearer. To finish the part about the connection between Hermite
functions and Hagedorn’s wave packets, we also have to mention the ansatz via meta-
pletic operators from [Ohs15]. This result nicely explains why the wave packets adopt
many properties of the Hermite functions. In the last section we will use the Wigner
function to characterise squeezed states, see [Gos10, §11.3]. This viewpoint gives no
structural information about Hermite functions and wave packets, but yields a very
short proof for the equivalence of Hagedorn’s wave packets and squeezed states.

7.1. Squeezing operators

The classical definition of generalised squeezed states works via a unitary squeezing
operator that is applied to multi-dimensional Hermite functions (ϕk)k∈Nn with

ϕk(x) = (πε)−n/4e−
1
2ε
|x|2

n∏
j=1

hkj (xj), x ∈ Rn.

We will reproduce the ansatz in [CR12, §3.4] and start with a complex, symmetric ma-
trix W ∈ Cn×n that satisfies W ∗W < Id in the sense that |Wv|2 ≤ |v|2 for all v ∈ Cn.
Then, there exists a unitary matrix U ∈ Cn×n such that W can be written as polar
decomposition

W = U |W |, where |W | = (W ∗W )1/2.
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and we define a complex symmetric matrix F ∈ Cn×n via

F = U arg tanh(|W |) = W

∞∑
j=0

(W ∗W )j

2j+1 . (7.1)

Lemma 7.1 — Squeezing operator. Let â and â† denote the ladder operators for the
multi-dimensional Hermite functions, i.e. â = 1√

2ε
(q̂+ ip̂) and â† = 1√

2ε
(q̂− ip̂). Then,

the squeezing operator
D(F ) = e

1
2

((â†)TF â†−âTF ∗â)

is unitary with inverse D(F )−1 = D(−F ).

Proof. This result can also be found in [CR12, Lemma 25]. Since â and â† are adjoints,

D(F )∗ = e
1
2

((â†)TF â†−âTF ∗â)∗ = e
1
2

(âTF ∗â−(â†)TF â†) = D(−F ).

�

We now obtain generalised squeezed states by applying D(F ) to the Hermite functions,

ψFk = D(F )ϕk, ∀ k ∈ Nn,

see [CR12, §3.4] for coherent states and [CR12, §4.1] for excited states. If we interpret
the Hermite functions (ϕk)k∈Nn as Hagedorn wave packets (ϕk(Z0))k∈Nn with

Z0 =

(
iId

Id

)

this relation can be rewritten as

ψFk = 1√
k!
D(F )Â†k(Z0)ϕ0(Z0) = 1√

k!
D(F )Â†k(Z0)D(F )−1 ψF0 . (7.2)

For the coherent state ψF0 we can give a direct formula, see [CR12, Proposition 36].

Proposition 7.1 — Squeezed coherent state. Let W ∈ Cn×n be symmetric and W ∗W < Id.
The squeezed state ψF0 , where F is defined in (7.1), is a Gaussian given by

ψF0 (x) = (πε)−n/4 det(Id− |W |2)−1/2|det(Id +W )|1/2 e
i
2ε
xTΓx, x ∈ Rn,

with Γ = i(Id−W )(Id +W )−1.

The form of Γ in the above proposition already suggests that squeezed coherent states
can be expressed as a coherent state ϕ0(Z) parametrised by

Z =

(
i(Id−W )

(Id +W )

)
∈ C2n×n.
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One can easily verify that Z satisfies ZTΩZ = 0 and Z∗ΩZ = 2i(Id−W ∗W ) and we thus
find a normalised Lagrangian frame by taking

Z ′ = Z(Id− |W |2)−1/2.

To prove the main result of this section, the relation between Hagedorn’s wave packets
and generalised squeezed states, we first need the following lemma.

Lemma 7.2 Let F ∈ Cn×n with polar decomposition F = U |F |, i.e. U ∈ Cn×n is unitary
and |F |2 = F ∗F . Then,

exp

(
0 F ∗

F 0

)
=

(
cosh(|F |) sinh(|F |)U∗

U sinh(|F |) U cosh(|F |)U∗

)
.

Proof. A direct calculations shows that for k ≥ 0(
0 F ∗

F 0

)2k

=

(
(F ∗F )k 0

0 (FF ∗)k

)
,

(
0 F ∗

F 0

)2k+1

=

(
0 (F ∗F )kF ∗

F (FF ∗)k 0

)
.

Thus, we find for the exponential series

exp

(
0 F ∗

F 0

)
=
∞∑
k=0

(
1

(2k)!(F
∗F )k 1

(2k+1)!(F
∗F )kF ∗

1
(2k+1)!F (FF ∗)k 1

(2k)!(FF
∗)k

)

and with sinh(X) =
∑∞

k=0
1

(2k+1)!X
2k+1 and cosh(X) =

∑∞
k=0

1
(2k)!X

2k, for X ∈ Cn×n,

∞∑
k=0

1
(2k)!(F

∗F )k =

∞∑
k=0

1
(2k)! |F |

2k = cosh(|F |),

∞∑
k=0

1
(2k)!(FF

∗)k =

∞∑
k=0

1
(2k)!U |F |

2kU∗ = U cosh(|F |)U∗,

∞∑
k=0

1
(2k+1)!(FF

∗)kF ∗ =
∞∑
k=0

1
(2k+1)! |F |

2k+1U∗ = sinh(|F |)U∗,

∞∑
k=0

1
(2k+1)!F (FF ∗)k =

∞∑
k=0

1
(2k+1)!U |F |

2k+1 = U sinh(|F |),

what finishes the proof. �

We now summarise our observations in the next proposition, that can also be found as
[LT14, Proposition 6].

Proposition 7.2 — Hagedorn’s wave packets and generalised squeezed states. Let W ∈ Cn×n

be symmetric and satisfy W ∗W < Id. Then,

Z =

(
i(Id−W )

(Id +W )

)
(Id− |W |2)−1/2 (7.3)
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is a normalised Lagrangian frame, while the squeezing operator D(F ) associated
with W satisfies

D(F )âD(F )−1 = Â(Z) and D(F )â†D(F )−1 = Â†(Z).

Moreover, there exists a c ∈ C with |c| = 1 such that ψFk = c · ϕk(Z) for all k ∈ Nn.
Conversely, if Z = (P ;Q) ∈ C2n×n is a normalised Lagrangian frame, then

W = (Q+ iP )(Q− iP )−1 ∈ Cn×n

is a complex symmetric matrix with W ∗W < Id. The associated squeezing operator
satisfies

D(F )−1Â(ZV )D(F ) = â and D(F )−1Â†(ZV )D(F ) = â†

where the unitary matrix V ∈ Cn×n results from the polar decomposition Q − iP =

|Q− iP |V ∗ and there is a constant c ∈ C with |c| = 1 such that ψFk = c · ϕk(Z).

Proof. We already verified that (7.3) defines a normalised Lagrangian frame if W =

W T ∈ Cn×n satisfies W ∗W < Id. Vice versa, let Z = (P ;Q) be a normalised Lagrangian
frame. Then, we first note that

W = (Q+ iP )(Q− iP )−1 = (Id + iB)(Id− iB)−1

where B = PQ−1. Since B is symmetric, W fulfils

W −W T = (Id− iB)−1 ((Id− iB)(Id + iB)− (Id + iB)(Id− iB)) (Id− iB)−1 = 0

and

Id−W ∗W = (Id− iB)−∗
(
(Id + iB)(Id− iB)− (Id− iB)(Id + iB)

)
(Id− iB)−1

= 4(Id− iB)−∗ (Im(B)) (Id− iB)−1 > 0

since Im(B) is positive definite. For the ladder operators, we restate [CR12, Lemma 25],

D(F )

(
â

â†

)
D(F )−1 =

(
(Id−WW ∗)−1/2 −W (Id−W ∗W )−1/2

−(Id−W ∗W )−1/2W ∗ (Id−W ∗W )−1/2

)(
â

â†

)
. (7.4)

We consider the two operators ÂF (t) = D(tF )âD(−tF ) and Â†F (t) = D(tF )â†D(−tF ).
These operators satisfy

d

dt
ÂF (t) = 1

2

(
((â†)TF â† − âTF ∗â)D(tF )âD(−tF )−D(tF )â((â†)TF â† − âTF ∗â)D(−tF )

)
= 1

2D(tF )
[
(â†)TF â† − âTF ∗â, â

]
D(−tF )

since (â†)TF â† − âTF ∗â and D(tF ) commute and, analogously,

d

dt
Â†F (t) = 1

2D(tF )
[
(â†)TF â† − âTF ∗â, â†

]
D(−tF ).
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With the commutator relations for â and â† from Lemma 3.2, we can simplify the com-
mutators [

(â†)TF â† − âTF ∗â, â
]

= −F â†,
[
(â†)TF â† − âTF ∗â, â†

]
= −F ∗â

and obtain the differential equation

d

dt

(
ÂF (t)

Â†F (t)

)
= −

(
0 F

F ∗ 0

)(
ÂF (t)

Â†F (t)

)
.

Evaluating the solution at t = 1 yields

D(F )

(
â

â†

)
D(F )−1 = exp

(
−

(
0 F

F ∗ 0

))(
â

â†

)
.

and it remains to determine the exponential matrix. With Lemma 7.2

exp

(
−

(
0 F

F ∗ 0

))
= ΩT exp

(
0 F ∗

F 0

)
Ω =

(
U cosh(|F |)U∗ −U sinh(|F |)
− sinh(|F |)U∗ cosh(|F |)

)

and since cosh(|F |) = (Id−W ∗W )−1/2, sinh(|F |)U∗ = cosh(|F |)W ∗, see [CR12, Eq. (3.55),
(3.56)], we have

U sinh(|F |) = (sinh(|F |)U∗)∗ = W cosh(|F |)

and

(U cosh(|F |)U∗)2 = U(Id−W ∗W )−1U∗ = (Id− U−∗|W |2U−1)−1 = (Id− U |W ||W |U∗)−1

= (Id−WW ∗)−1.

This proofs Equation (7.4). Let now Z = (P ;Q) be defined as in 7.3. Then, it follows,

D(F )â†D(F )−1 = 1√
2ε

(Id−W ∗W )−1/2 (−W ∗(q̂ + ip̂) + (q̂ − ip̂))

= 1√
2ε

(Id−W ∗W )−1/2 ((Id−W ∗)q̂ − i(Id +W ∗)p̂)

= i√
2ε

(P ∗q̂ −Q∗p̂) = Â†(Z)

and the claim for Â(Z) consequently holds since

Â(Z) = Â†(Z) = 1√
2ε

(Id−WW ∗)−1/2 (−W (q̂ − ip̂) + (q̂ + ip̂))

= (Id−WW ∗)−1/2â− (Id−WW ∗)−1/2Wâ†

= (Id−WW ∗)−1/2â−W (Id−W ∗W )−1/2â† = D(F )âD(F )−1.

For the coherent state ϕ0(Z) and the squeezed coherent state ψF0 = D(F )ϕ0 this implies

0 = âϕ0 = D(F )âD(F )−1ψF0 = Â(Z)ψF0 ,

i.e. ψF0 ∈ I(L) and since D(F ) is unitary, ‖ψF0 ‖ = 1. Hence, there exists a c ∈ C with



110 Chapter 7. Generalised squeezed states

|c| = 1 such that ψF0 = c · ϕ0(Z). Moreover, for all k ≥ 0 by (7.2)

ψFk = 1√
k!
Â†(Z)kψ

F
k = c · ϕk(Z).

The inversion can be shown equivalently by inserting W = (Q + iP )(Q − iP )−1 into
Equation (7.4) und utilise the above construction to related the states. �

7.2. Bogoliubov transformation

Another approach to obtain squeezed states is to modify Dirac’s ladder operators via a
Bogoliubov transformation. We briefly summarise the construction in [BFG16, §3].

A Bogoliubov transformation is a mapping from the ladder operators â and â† to
operators âS and â†S that preserves the commutator relation, i.e. it holds[

(âS)j , (â
†
S)k

]
= δjk, for 1 ≤ j, k ≤ n. (7.5)

Such transforms can be expressed by means of symplectic matrices.

Lemma 7.3 Let U, V ∈ Cn×n. The matrix

S =

(
U −V
− V U

)
∈ C2n×2n (7.6)

is symplectic if U∗U − V ∗V = Id and UTV − V TU = 0.

Proof. A direct calculation shows

STΩS =

(
UT −V T

−V ∗ U∗

)(
V −U
U −V

)
=

(
UTV − V TU V TV − UTU
U∗U − V ∗V V ∗U − U∗V

)
.

�

We will now use symplectic matrices of this form to define a Bogoliubov transform as a
linear, symplectic mapping. We assume in the following that S can always be written
as (7.6).

Lemma 7.4 — Bogoliubov transform. Let S be symplectic and

(
âS

â†S

)
= S∗

(
â

â†

)
, i.e.

âS = U∗â− V ∗â† and â†S = UT â† − V T â.

Then, the components of âS resp. â†S commute and âS and â†S satisfy (7.5).

Proof. By definition we find for the components

[(âS)j , (âS)k] =

[
n∑
l=1

U∗j,lâl − V ∗j,lâ
†
l ,

n∑
m=1

U∗k,mâm − V ∗k,mâ†m

]
=

n∑
l=1

(
V ∗j,lU l,k − U∗j,lV l,k

)
=
(
V ∗U − U∗V

)
j,k
,
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and

[
(â†S)j , (â

†
S)k

]
=

[
n∑
l=1

UTj,lâ
†
l − V

T
j,lâl,

n∑
m=1

UTk,mâ
†
m − V T

k,mâm

]
=

n∑
l=1

(
UTj,lVl,k − V T

j,lUl,k
)

=
(
UTV − V TU

)
j,k
.

for all 1 ≤ j, k ≤ n. Thus, the components commute if UTV − V TU = 0 and the commu-
tator relation is equivalent to U∗U − V ∗V = Id, since

[
(âS)j , (â

†
S)k

]
=

[
n∑
l=1

U∗j,lâl − V ∗j,lâ
†
l ,

n∑
m=1

UTk,mâ
†
m − V T

k,mâm

]
=

n∑
l=1

(
U∗j,lUl,k − V ∗j,lVl,k

)
= (U∗U − V ∗V )j,k .

�

This result exhibits the close relation of the Bogoliubov transformation to both, the
squeezing operators introduced in the previous section and Hagedorn’s wave packets.
The form of âS and â†S in terms of U∗, V ∗ resp. UT , V T strongly reminds us of the form
of Â(Z) and Â†(Z) in terms of P and Q. The symplectic map(

âS

â†S

)
=

(
U∗ −V ∗

−V T UT

)(
â

â†

)

on the other hand points to the operators D(F )âD(−F ), resp. D(F )â†D(−F ) we consid-
ered in the proof of Proposition 7.2. This connection gets even more obvious with the
next statement.

Lemma 7.5 — Matrix factorisation. Let U, V ∈ Cn×n satisfy

U∗U − V ∗V = Id and UTV − V TU = 0. (7.7)

Then, U is invertible and the matrix W = −V U−1 ∈ Cn×n is symmetric and satisfies

W ∗W = Id− (UU∗)−1 < Id. (7.8)

Conversely, if W ∈ Cn×n is a symmetric matrix that satisfies (7.8), there exist U, V
such that W = −V U−1 and (7.7) holds true.

Proof. The invertibility of U follows from the first equation in (7.7). Assume that Ux = 0

for x ∈ Cn, then −|V x|2 = |x|2 and hence x = 0. Moreover, if (7.7) holds true,

W ∗W = U−∗V ∗V U−1 = U−∗(U∗U − Id)U−1 = Id− (UU∗)−1

and the inequality follows since UU∗ is positive definite. For the symmetry of W we
note that

W T −W = −U−TV T + V U−1 = U−T (UTV − V TU)U−1 = 0.

For the conversion we assume that W = W T fulfils W ∗W < Id. Then, we may define
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U = (Id−W ∗W )−1/2 and V = −W (Id−W ∗W )−1/2 and find for this choice UTV = V TU

since W is symmetric and

U∗U − V ∗V = (Id−W ∗W )−1/2(Id−W ∗W )(Id−W ∗W )−1/2 = Id.

�

Thus, if W = W T satisfies W ∗W < Id, the matrix

S∗ =

(
(Id−W ∗W )−1/2 (Id−W ∗W )−1/2W ∗

W (Id−W ∗W )−1/2 (Id−WW ∗)−1/2

)

is symplectic. Let furthermore F be defined as in (7.1). Then, we can write for the
corresponding squeezing operators

D(F )

(
â

â†

)
D(−F ) = ΩTS∗Ω

(
â

â†

)
= S−∗

(
â

â†

)
,

what proves the equivalence of the approaches via squeezing operators and the Bogoli-
ubov transform.

With the determined ladder operators, the squeezed states (ψSk )k∈Nn can then be nat-
urally constructed by the application of â†S to the coherent squeezed state ψS0 that sat-
isfies

âSψ
S
0 = 0.

We note here that in the indicated literature squeezed states are only defined as co-
herent states, not as excited states, see [BFG16, §2]. However, the comparison to the
squeezing operators of [CR12] justify a more general point of view. With the same ar-
guments as for the Hermite functions and Hagedorn’s wave packets one can derive an
explicit formula for ψS0 .

Proposition 7.3 — Squeezed coherent state. Let S be a symplectic matrix of the form (7.6)
and W = −V U−1. Then, every squeezed state ψS0 can be written as

ψ(x) = c · e−
1
2ε
xT (Id−W ∗)−1(Id+W ∗)x

for some c ∈ C. In particular, the matrix (Id−W ∗)−1(Id +W ∗) is symmetric and has
a positive definite real part.

Proof. The claim follows from Proposition 7.1 if one takes the inversion and complex
conjugation into account. Or, from Lemma 4.2 if one notes that

âSψ = (U∗â− V ∗â†)ψ = U∗(â+W ∗â†)ψ = 0

is equivalent to (â+W ∗â†)ψ = 0 and

â+W ∗â† = 1√
2ε

((Id +W ∗)q̂ + i(Id−W ∗)p̂) .
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�

If we add normalisation to the coherent squeezed state, ‖ψS0 ‖ = 1, and define

ψSk = 1√
k!

(â†S)kψS0 , k ∈ Nn

we can also explicitly state the relation to Hagedorn’s wave packets. Although the
existence of this link is already evident, the formulas are clearer and more convenient
as in Proposition 7.1.

Proposition 7.4 — Hagedorn’s wave packets and Bogoliubov transforms. Let Z = (P ;Q) with
P,Q ∈ Cn×n be a normalised Lagrangian frame. Then, the matrix S from Equation
(7.6) with

U = 1
2(Q+ iP ) and V = 1

2(Q− iP )

is symplectic and ψSk = ϕk(Z) for all k ∈ Nn. Vice versa, if S as defined in (7.6) is
symplectic, then

P = i(U − V ) and Q = (U + V )

create a normalised Lagrangian frame Z = (P ;Q) and ϕk(Z) = ψSk for all k ∈ Nn.

Proof. Let Z = (P ;Q) be a normalised Lagrangian frame and

S = 1
2

(
Q+ iP −Q− iP

−Q+ iP Q− iP

)
= 1

2

(
−iId −Id

−iId Id

)(
−Z Z

)
.

Then, S is symplectic since

STΩS = − i
2

(
−Z∗

ZT

)
Ω
(
−Z Z

)
= − i

2

(
Z∗ΩZ −Z∗ΩZ
−ZTΩZ ZTΩZ

)
= Ω.

Conversely, assume that S is symplectic and Z =

(
i(U − V )

U + V

)
. Then,

Z∗ΩZ =
(
−i(U − V )T (U + V )T

)(−(U + V )

−i(U − V )

)
= 2i

(
UTV − V TU

)
= 0,

ZTΩZ =
(

i(U − V )∗ (U + V )∗
)(−(U + V )

−i(U − V )

)
= −2i (U∗U − V ∗V ) = −2iId.

For the ladder operators, we find for U = 1
2(Q + iP ), V = 1

2(Q − iP ) with â + â† =
√

2
ε q̂

and â− â† =
√

2
ε ip̂,

Â(Z) = i√
2ε

(QT p̂− P T q̂) = 1
2(QT (â− â†)− iP T (â+ â†))) = 1

2((Q− iP )T â− (Q+ iP )T â†)

= U∗â− V ∗â† = âS
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and analogously Â†(Z) = â†S . Moreover, if P = i(U − V ) and Q = (U + V ),

âS = U∗â− V ∗Â† = 1√
2ε

(U∗(q̂ + ip̂)− V ∗(q̂ − ip̂)) = 1√
2ε

((U − V )∗q̂ + i(U + V )∗p̂)

= i√
2ε

(QT p̂− P T q̂) = Â(Z)

and â†S = Â†(Z), what proves the claim for the wave packets. �

7.3. Metaplectic operators

As a last construction based on Dirac’s ladder operators we also want to mention the
approach in [Ohs15], where the author applies metaplectic operators to â and â†.

The definition via squeezing operators presented in the first chapter is well-known,
however, the relation between the matrices W and F might seem unintuitive at first
sight and calculations can get more involved. The Bogoliubov transformations ap-
peared as a more natural approach and had a clear link to Hagedorn’s wave packets.
By invoking metaplectic operators now, basic properties of the wave packets follow as a
consequence of the properties of the Hermite functions and the metaplectic group, see
[Ohs15] for more details.

We will only restate the relation between the operators here and refer to the litera-
ture for applications. In [Ohs15, Definition 2.6] the author starts with a more general
view on ladder operators.

Definition 7.1 — Ladder operators. Let X ∈ C2n×2n and set(
âX

â†X

)
= XTΩẑ.

We call âX and â†X ladder operators, if their components commute, â∗X = â†X and they
satisfy the commutator relation

[
(âX)j , (â

†
X)k

]
= δj,k for all 1 ≤ j, k ≤ n.

The properties required for ladder operators are exactly the ones we needed to define
an orthonormal basis set in Section 3.2 and Section 4.3, respectively. By this defini-
tion it is clear that we can trace back the properties of âX and â†X to the properties of
X.

Lemma 7.6 The components of âX and â†X commute and the operators satisfy[
(âX)j , (â

†
X)k

]
= δj,k, 1 ≤ j, k ≤ n

if and only if XTΩX = i
εΩ.

Proof. Let X =

(
A B

C D

)
∈ C2n×2n. Then,

XTΩX =

(
CTA−ATC CTB −ATD
DTA−BTC DTB −BTD

)
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and we can write the operators âX and â†X as âX = CT p̂ − AT q̂ and â†X = DT p̂ − BT q̂.
The commutator relation (3.3), [q̂j , p̂k] = iεδj,k, on the other hand yields for 1 ≤ j, k ≤ n,

[(âX)j , (âX)k] = iε(CTA−ATC)j,k, [(â†X)j , (â
†
X)k] = iε(DTB −BTD)j,k

[(âX)j , (â
†
X)k] = iε(CTB −ATD)j,k.

�

In particular, we can write Dirac’s ladder operators as operators of the form âX resp.
â†X . We have(

â

â†

)
=

1√
2ε

(
q̂ + ip̂

q̂ − ip̂

)
=

1√
2ε

(
−Id iId

−Id −iId

)(
0 −Id

Id 0

)(
p̂

q̂

)
:= XT

0 Ωẑ

and one can easily check that XT
0 ΩX0 = i

εΩ. This form turns out to be the canonical
form for ladder operators âX and â†X .

Theorem 7.1 The operators âX and â†X define ladder operators if and only if X can be

written as X = SX0 with S ∈ Sp(n,R). If S =

(
A B

C D

)
∈ R2n×2n, the operators are

given by

âX =
i√
2ε

(
(D + iC)T p̂− (B + iA)T q̂

)
â†X =

−i√
2ε

(
(D − iC)T p̂− (B − iA)T q̂

)
.

(7.9)

Proof. We will only give a sketch of the proof and refer to [Ohs15, Theorem 2.8] for
details. If S ∈ Sp(n,R), we have

(SX0)TΩ(SX0) =
i

ε
STΩS =

i

ε
Ω

and since S is a real-valued matrix, (7.9) directly implies that âX and â†X are formal
adjoints. Thus, if X = SX0, âX and â†X define ladder operators.

Conversely, assume that X =

(
U V

W Z

)
∈ C2n×2n parametrises ladder operators âX

and â†X . Then, due to the previous lemma, it must hold that XTΩX = i
εΩ and

âX = W T p̂− UT q̂ and â†X = ZT p̂− V T q̂

are adjoints if and only if V = U and Z = W . Combining these two conditions shows
that X can be written in the form SX0 where S is real and symplectic. �

With this theorem we can express any ladder operators âX and â†X via a symplectic
matrix and Dirac’s ladder operators. Moreover, we can describe the action of S with
a metaplectic operator, see [Gos10, §7.1]. Since our notation is varying from the one
in the indicated literature we summarise definition and properties of the metaplectic
group inAppendix B and here only give a brief overview.
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Definition 7.2 — Free symplectic matrix and generating function. We call a matrix

S =

(
A B

C D

)
∈ Sp(n,R) (7.10)

a free symplectic matrix, if det(C) 6= 0. We moreover associate with every symplectic
matrix a quadratic form, the generating function of S,

σ(q, q′) = 1
2q
TC−1Dq − qTC−1q′ + 1

2q
′TAC−1q′.

Conversely, if σ(q, q′) = 1
2q
TKq−qTLq′+ 1

2q
′TMq′ with K,L,M ∈ Rn×n and det(L) 6= 0,

the matrix

Sσ =

(
ML−1 ML−1K − LT

L−1 L−1K

)
is a free symplectic matrix with generating function σ.

Based on its generating function we now assign an operator to any free symplectic
matrix S, see [Gos10, Eq. (7.3)].

Definition 7.3 — Quadratic Fourier transform. Let S be a free symplectic matrix of the
form (B.1) and σ the corresponding generating function. We define

(Ŝσψ)(x) = (2πε)−n/2 det(C)−1/2

∫
Rn
e

i
ε
σ(x,x′)ψ(x′) dx′

for all ψ ∈ S(Rn).

We can also write the standard Fourier transform Fε in this manner: We have

σ(x, x′) = −xTx′,

i.e. K = M = 0 and L = Id. Hence, the corresponding symplectic matrix is Ω, Fε = Ω̂.
So far, we only considered free symplectic matrices. But the quadratic Fourier forms

generate a subgroup of all unitary operators on L2(Rn) that is called the metaplectic
group Mp(n,R). Elements of Mp(n,R) are denoted as metaplectic operators, see [Gos10,
Definition 109]. In particular, one can show that every Ŝ ∈ Mp(n,R) can be written
as a product of two quadratic Fourier forms, Ŝ = ŜσŜσ′ , see [Gos10, Proposition 110].
Moreover, the metaplectic group Mp(n,R) is a twofold covering of the symplectic group
and there exists a surjective homomorphism

πMp : Mp(n,R) 7→ Sp(n,R), Ŝ → S,

see Theorem B.3 for a more detailed proof. Thus, for any symplectic matrix S there
exists a metaplectic operator Ŝ such that πMp(Ŝ) = S, see [Gos10, Theorem 114].

This metaplectic operator now allows us to separate the symplectic matrix and Dirac’s
ladder operators.



7.3 Metaplectic operators 117

Proposition 7.5 Let Ŝ ∈ Mp(n,R) and S = πMp(Ŝ) ∈ Sp(n,R). Then, we have

âSX = ŜâX Ŝ
−1 and â†SX = Ŝâ†X Ŝ

−1

for all X ∈ C2n×2n.

Proof. This statement is adopted from [Ohs15, Proposition 210]. It is a direct conse-
quence of Theorem B.4 respectively [Gos10, Lemma 120]. One can prove the claim by
showing that the relation holds true for the generators of Sp(n,R) respectively their
quadratic Fourier forms that are generators of Mp(n,R). �

The previous proposition implies that all ladder operators can be written as

âX = ŜâŜ−1 and â†X = Ŝâ†Ŝ−1

where S = πMp(Ŝ) satisfies X = SX0. This means that we can in particular express the
ladder operators of Hagedorn’s wave packets in this way, we only have to find a suitable
symplectic matrix S. But comparing Equation (7.9) and Â(Z) = i√

2ε
(QT p̂ − P T q̂) for

Z = (P ;Q) directly yields

S =

(
Im(P ) Re(P )

Im(Q) Re(Q)

)
.

Proposition 7.6 — Ladder correspondence. Let Z ∈ C2n×n be a normalised Lagrangian
frame and S =

(
Im(Z) Re(Z)

)
∈ R2n×2n. Then, S is symplectic and

Â(Z) = ŜâŜ−1, Â†(Z) = Ŝâ†Ŝ−1.

Proof. We already stated that if Z is a normalised Lagrangian frame the matrix

S′ =
(

Re(Z) −Im(Z)
)

is symplectic, see Remark 2.1. Since S = S′ΩT the symplecticity of S is a direct con-
sequence. The statement for the ladders follows from the previous proposition and
Equation (7.9). �

With the relation of the ladder operators we also found another connection between Her-
mite functions and Hagedorn’s wave packets. Based on this correspondence we could
equivalently prove the formulas for the Fourier transform in Theorem 4.5 and the gen-
erating functions of the polynomials from Proposition 5.1, see [Ohs15].

Corollary 7.1 — Wave packet correspondence. For a normalised Lagrangian frames Z ∈
C2n×n and S =

(
Im(Z) Re(Z)

)
it holds

ϕk(Z) = Ŝϕk, ∀ k ∈ Nn,
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where ϕk denotes the k-th multi-dimensional Hermite function, ϕk = ϕk(Z0).

Proof. For the coherent state ϕ0(Z) we deduce from

0 = Â(Z)ϕ0(Z) = ŜâŜ−1ϕ0(Z)

that Ŝ−1ϕ0(Z) = ϕ0, since all functions satisfying âψ = 0 are constant multiples of ϕ0

due to Lemma 3.3 and Ŝ−1 as a unitary operator preserves the norm. So ϕ0(Z) = Ŝϕ0

and we find for the excited states

ϕk(Z) = 1√
k!
Â†k(Z)ϕ0(Z) = 1√

k!
(Ŝâ†Ŝ−1)kϕ0(Z) = 1√

k!
Ŝâ†kϕ0 = Ŝϕk

with k ∈ Nn. �

7.4. Wigner functions

The alternative representations of Hagedorn’s wave packets we presented so far nicely
illustrate the relation of the wave packets to the Hermite functions and give reasons
why they adopt many of their properties. A very short proof of the equivalence of Hage-
dorn’s wave packets and generalised squeezed states though can be given if we consider
the Wigner function of the wave packets.

We invoke [Gos10, Definition 246] and characterise generalised squeezed states via
their phase space representation.

Definition 7.4 — Squeezed states. A function ψ ∈ S(Rn) is called a squeezed coherent
state if its Wigner transform is

Wε(ψ)(z) = (πε)−ne−
1
ε
zTGz, z ∈ Rn ⊕ Rn,

where G ∈ Sp(n,R) is positive definite: G = GT > 0.

This definition unfortunately only includes coherent states, but we can directly derive
from Proposition 6.2 that ϕ0(Z) is a squeezed coherent state for all normalised La-
grangian frames Z ∈ C2n×n. Moreover, we can show that every squeezed state by this
characterisation can be written as a Hagedorn wave packet.

Proposition 7.7 — Hagedorn ground states and squeezed coherent states. Let ψ ∈ S(Rn)

be a squeezed coherent state. Then, there exists a normalised Lagrangian frame
Z ∈ C2n×n such that

ψ = c · ϕ0(Z)

for c ∈ C with |c| = 1.

Proof. Since ψ is a squeezed coherent state, there exists a symmetric, positive definite
G ∈ Sp(n,R) such that Wε(ψ)(z) = (πε)−ne−

1
ε
zTGz. By Lemma 2.4 we can construct a

normalised Lagrangian frame Z with G = ΩTRe(ZZ∗)Ω and, in particular,

Wεϕ0(Z) = (πε)−ne−
1
ε
zTGz.
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ButWε(ϕ) =Wε(ψ) for ϕ,ψ ∈ S(Rn) implies∫
Rn
ϕ(x+

y

2
)ϕ(x− y

2
)e

i
ε
ξT (x−y) dy =

∫
Rn
ψ(x+

y

2
)ψ(x− y

2
)e

i
ε
ξT (x−y) dy

for all (ξ, x) ∈ Rn ⊕ Rn. Applying the inverse Fourier transform (Fε)−1 on both sides
shows

ϕ(x+
y

2
)ϕ(x− y

2
) = ψ(x+

y

2
)ψ(x− y

2
)

for almost every x, y ∈ Rn and hence ϕ = c · ψ for c ∈ C with |c| = 1, see [Fol89,
Proposition 1.98]. �

Thus, the coherent states in Hagedorn’s parametrisation are equivalent to the squeezed
coherent states from [Gos10]. This definition is also consistent with the approach via
metaplectic operators from the previous section.

Proposition 7.8 A function ψ ∈ S(Rn) is a squeezed coherent state if and only if there
exists a Ŝ ∈ Mp(n,R) such that

ψ = eiγŜϕ0

where ϕ0 is the standard coherent state and γ ∈ R.

Proof. This result is adopted from [Gos10, Proposition 247]. Since G is symmetric and
symplectic, there exists a symplectic matrix S ∈ Sp(n,R) such that G = STS. Thus, if
ψ ∈ S(Rn) is a squeezed coherent state,

Wε(ψ)(z) = (πε)−ne−
1
ε

(Sz)TSz =Wε(ϕ0)(Sz).

Moreover, due to the metaplectic covariance formula for the Wigner transform,

Wε(ψ)(S−1z) =Wε(Ŝψ)(z),

see [Gos10, Corollary 217], we conclude that ψ and Ŝϕ0 possess the same Wigner func-
tion. With the same argument as in the previous proof ψ can be written as a phase
factor times Ŝϕ0. �





Part II.

Dynamics





8. Hermitian Schrödinger dynamics

To start with the dynamical part we first examine the well-studied case of a time evolu-
tion that is governed by a Hermitian, quadratic Hamiltonian. We also use this prepara-
tory chapter to set some notation and introduce the required essentials of quantum
dynamics.

After the first two introductory sections, we restate Hagedorn’s findings of the 1980’s
in [Hag80], [Hag81] and [Hag85] in terms of Lagrangian frames. For quadratic Hamil-
tonians, it has been shown that the wave packets are exact solutions to Schrödinger’s
equation, while for general Hamiltonians they provide an approximation of order εl/2

for arbitrary large l, see Section 8.4. Our aim in this part of the thesis is to transfer
this approach to non-Hermitian Hamiltonians.

For this purpose we present an alternative proof of the evolution for quadratic Hamil-
tonians by means of Lagrangian frames and thereby demonstrate techniques we will
build on in the following chapters. We furthermore try to highlight difficulties that will
arise under a non-unitary time evolution.

8.1. Time evolution

In classical mechanics the state of a particle is fully described by its position x ∈ Rn

and its momentum p ∈ Rn. In quantum mechanics, due to the uncertainty principle, it
is not possible to measure both, position and momentum, exactly at the same time. The
state of a particle is described by a complex-valued wave function

ψ : Rn × R 7→ C, (x, t)→ ψ(x, t).

Following the statistical interpretation of Born in [Bor26], we interpret |ψ(·, t)|2 as
probability distribution of the position of a particle at time t and therefore demand
ψ(·, t) ∈ L2(Rn) and

‖ψ(·, t)‖2 =

∫
Rn
|ψ(x, t)|2 dx = 1.

The state space of a quantum system can thus be represented by the complex Hilbert
space L2(Rn) and all possible states correspond to normalised elements of this space.

Characteristics of the particle such as position, momentum or energy then appear due
to Bohr’s correspondence principle as operators acting on L2(Rn), see [CR12, §2.1]. We
use the Weyl quantisation briefly introduced in Section 3.1 and studied in more detail
in Appendix A to associate with every function a ∈ S(Rn ⊕ Rn) a linear operator opε[a].
The symbol a = a(p, q) is thereby a function of position q and momentum p and called a
classical observable, the operator opε[a] = â is the corresponding quantum observable.
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The space Rn ⊕ Rn is moreover denoted as phase space.

As for position and momentum it is in general not possible to measure observables
directly, we can only realise their expectation values. If ψ = ψ(·, t) ∈ L2(Rn) is a possible
state of a system and a ∈ S(Rn ⊕ Rn) an observable, the expectation value of a in ψ is
given by

〈â〉ψ = 〈ψ, âψ〉 =

∫
R2n

Wε(ψ)(z)a(z) dz, (8.1)

see [Gos10, Definition 204].

Our ambition in the following is to deduce the time evolution of Hagedorn’s wave
packets under quadratic Hamiltonians, i.e. for a given initial state ψ0 ∈ L2(Rn) we
want to determine the state ψ(x, t) at time t. Let us assume that there exist operators
Û(t), t ≥ 0, such that

ψ(x, t) = Û(t)ψ0(x).

We call such an operator a time evolution operator. To ensure that the so described
dynamic is meaningful, the propagation should be unique and satisfy ψ(x, 0) = ψ0(x).
This leads to the following definition, see also [Vra03, Definition 2.1.2] or Definition
C.1.

Definition 8.1 — One-parameter semigroup. We call a family
{
Û(t) ; t ≥ 0

}
of operators

on L2(Rn) a strongly continuous one-parameter semigroup, if Û(0) = id,

Û(t+ s) = Û(t) Û(s) for all t, s ≥ 0, (8.2)

and lim
t↓0
Û(t)ψ = ψ for all ψ ∈ L2(Rn).

Equation (8.2) there contains the addressed uniqueness of the time evolution: we find
for an initial state ψ0 = ψ(,̇0) that

ψ(x, t) = Û(t)ψ(x, 0) = Û(s)ψ(x, t− s)

for 0 ≤ s ≤ t, i.e. we end up with the same state ψ(x, t) independently of the start-
ing point of the time evolution. Appendix C provides a closer study of one-parameter
semigroups.

Assuming that such a strongly continuous semigroup exists, we can always charac-
terise it by its infinitesimal generator, see Definition C.2 or [EN00, Definition II.1.2].

Definition 8.2 — Hamiltonian. Let
{
Û(t) ; t ≥ 0

}
be a strongly continuous semigroup

that describes the time evolution of our system. Then, the generator

Ĥ : D(Ĥ) 7→ L2(Rn), ψ → Ĥψ = lim
t↓0

iε
t (Û(t)ψ − ψ)

is called the Hamiltonian operator, or short Hamiltonian of the system. The domain
D(Ĥ) is the subset of L2(Rn) where this limit exists.

The Hamiltonian can also be viewed as the quantum observable corresponding to the
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total energy of the system, see [Tes09, §2.1].

If we consider a closed system, our evolution is conservative and we find for all states
ψ ∈ L2(Rn)

‖Û(t)ψ‖ = ‖ψ‖.

In other words, the operators Û(t), t ≥ 0, are unitary. The existence of a self-adjoint
Hamiltonian then follows by Stone’s theorem that was originally found in [Sto30]. For
detailed proofs see also [RS80, Theorem VIII.8] or [AF01, Theorem 3.1].

Theorem 8.1 — Stone’s theorem. There exists for any strongly continuous one-parameter
semigroup

{
Û(t) ; t ≥ 0

}
of unitary operators on L2(Rn) a uniquely self-adjoint oper-

ator Ĥ such that
Û(t) = e−

i
ε
tĤ for all t ≥ 0. (8.3)

Vice versa assume that Ĥ is a self-adjoint operator on L2(Rn). Then, (8.3) defines a
unique family of unitary operators that is strongly continuous and satisfies (8.2).

We stress here that Ĥ is in general an unbounded operator, the exponential in (8.3) can
not simply be seen as a power series, but must be interpreted with the spectral theorem
for self-adjoint operators, see [RS80, Theorem VIII.7].

If we will allow for an interaction of our system with the environment, i.e. consider a
dissipative system, the time evolution operator Û(t) will in general not be unitary, but
satisfy

‖Û(t)ψ‖ ≤ ‖ψ‖ (8.4)

for all ψ ∈ L2(Rn). Such a semigroup is called a contraction semigroup, see Proposition
C.1, or a quantum dynamical semigroup, see [CF98, Definition 2.1]. To show the exis-
tence of such evolution operators resp. determine the corresponding Hamiltonians we
have to expend more effort, see Section 9.1 and Appendix C.

However, we will in the following always assume that Û(t) exists at least for some
times t ∈ [0;T [. In any case we can state the following general result for semigroups
{Û(t) ; t ≥ 0} and their generators Ĥ, see [HP57, Theorem 10.3.3].

Lemma 8.1 — Time evolution. Let {Û(t) ; t ≥ 0} be a strongly continuous one-parameter
semigroup and Ĥ the corresponding Hamiltonian. Then, we find for all ψ ∈ D(Ĥ)

and t ≥ 0

iε ∂tÛ(t)ψ = Ĥ Û(t)ψ. (8.5)

This means Û(t) can be seen as the formal solution to

iε ∂tÛ(t) = Ĥ Û(t), Û(0) = id. (8.6)

Proof. Let ψ ∈ D(Ĥ). Then, the main idea is to use (8.2),

iε ∂tÛ(t)ψ = lim
s→0

iε
s (Û(t+ s)ψ − Û(t)ψ) = lim

s→0

iε
s (Û(s)− id)Û(t)ψ = Ĥ Û(t)ψ.

A detailed proof considering derivatives from both sides is given in Theorem C.1. �
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8.2. Quadratic Hamiltonians

Starting from an initial state ψ0 in the previous lemma leads to the well-known evolu-
tion equation

iε ∂tψ(t) = Ĥψ(t), (8.7)

Schrödinger introduced in [Sch26]. This equality is the fundamental law in physics
and chemistry for describing the propagation of non-relativistic particles, see [Lub08,
§I.1.2]. For applications one usually chooses ε to be Planck’s constant and the Hamilto-
nian as kinetic and potential energy

Ĥ = − ε2

2m∆ + V.

In this thesis we will pursue a more abstract point of view and consider quadratic
Hamiltonians, i.e. Hamiltonians of the above form with a potential V that is quadratic
in x or the harmonic oscillator, for example. It is known, that in this case Gaussian
functions stay Gaussians over time, see e.g. [Hel75], and also Hagedorn’s wave packets
keep their structure, see [Hag81].

So far, we only considered the Weyl-quantisation of Schwartz symbols a ∈ S(Rn ⊕
Rn). However, to define quadratic Hamiltonians, we need to invoke a broader class of
symbols, see [Fol89, Theorem 2.21].

Definition 8.3 — General symbol classes. Let 〈x〉 := (1 + |x|2)1/2 for x ∈ Rn. Then, for
every function a ∈ C∞(Rn ⊕ Rn) where constants K ∈ R and δ < 1 exist such that∣∣∣∂αξ ∂βxa(ξ, x)

∣∣∣ ≤ Cα,β〈ξ〉K+δ(|α|+|β|)

for all multiindices α, β ∈ Nn the corresponding Weyl-quantisation opε[a] defines
a linear operator on S(Rn). We call such functions a an admissible symbol or an
observable.

These general symbol classes contain also polynomials in z. A similar formulation can
be found in [Zwo11, §4.4] and we also present a more detailed study in Appendix A.

So, taking Weyl-operators of quadratic symbols is well-defined and we can state the
following explicit formula in terms of position and momentum operator, see also [Gos10,
§15.1.1].

Lemma 8.2 — Quadratic Hamiltonians. LetH(z) = 1
2z
THz be a quadratic form on Rn⊕Rn

with

H = HT =

(
Hpp Hpq

Hqp Hqq

)
∈ C2n×2n. (8.8)

Then, the corresponding Weyl-operator can be written as

Ĥ = − ε2

2 ∇
T
xHpp∇x + ε

i x
THqp∇x + 1

2x
THqqx− iε

2 tr(Hpq)

and Ĥ is self-adjoint if and only if Im(H) = 0.

Proof. The form of the Weyl-operator is referenced from Lemma A.4, with q̂ = x and
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p̂ = −iε∇x,

1
2 ẑ
THẑ = 1

2

(
−ε2∇TxHpp∇x − iε∇Tx (Hpqx)− iε xT (Hqp∇x) + xTHqqx

)
= − ε2

2 ∇
T
xHpp∇x + ε

i x
THqp∇x + 1

2x
THqqx− iε

2 tr(Hpq),

the remark about the self-adjointness is a consequence of [Zwo11, Theorem 4.1]. �

Besides studying the time evolution of the state itself we can also investigate how the
expectation of an observable a changes along the solution ψ(t). We have

〈â〉ψ(t) = 〈Û(t)ψ(0), â Û(t)ψ(0)〉 = 〈ψ(0), Û(t)−1â Û(t)ψ(0)〉 = 〈Û(t)−1â Û(t)〉ψ(0)

and hence define â(t) := Û(t)−1â Û(t). If Ĥ is self-adjoint, we may again use the expo-
nential form and also write

ât = e
i
ε
tĤ â e−

i
ε
tĤ,

see [Lub08, §I.4.2].

Lemma 8.3 — Heisenberg equation. Let a be an admissible observable and

â(t) = Û(t)−1â Û(t).

Then, it holds
iε ∂tât = [ât, Ĥ]. (8.9)

Proof. A formal calculation using Equation (8.6) yields

iε ∂tât = −ĤÛ(t)−1â Û(t) + Û(t)−1âĤ Û(t) = [ât, Ĥ]

where we used that Û(t) and Ĥ commute, see [HP57, Theorem 10.3.3] or Theorem C.1.
�

For a quadratic Hamiltonian Ĥ or a symbol a ∈ Sδ(m) of at most quadratic growth, we
can include the commutator relation (A.2) and obtain for the symbol at of ât

∂tat = {at,H}. (8.10)

If Ĥ is not quadratic the above equation provides an approximation of order ε4 of at.

Taking at = pt resp. at = qt in (8.10) directly yields Hamilton’s equations,

∂tpt = −∂qH(pt, qt),

∂tqt = ∂pH(pt, qt).
(8.11)

The relation of the operator ât and the unitary operator U(t) already points to the meta-
plectic operators from Section 7.3 respectively Appendix B. The connection becomes
more obvious if we regard the flow of the system.
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Definition 8.4 — Flow. Let z0 = (p0, q0) ∈ Rn ⊕ Rn and zt = (pt, qt) a solution of (8.11)
with initial value z0. We call the map Φt : Rn ⊕ Rn 7→ Rn ⊕ Rn that satisfies

zt = Φt(z0)

the Hamiltonian flow of the system.

We note that Equation (8.11) is exact in the sense that the corresponding Weyl-operator
ẑt satisfies (8.9) for every Hamiltonian Ĥ since qt and pt are linear. If we now consider
a quadratic Hamiltonian, we can simplify (8.11), since

∂tzt =

(
∂tpt

∂tqt

)
= Ω∇H(zt) = ΩHzt

for all zt ∈ Rn⊕Rn. Hence, we can describe the flow of a quadratic Hamiltonian exactly
by means of a symplectic matrix.

Lemma 8.4 — Linearised flow. Let H be a quadratic function with symmetric Hessian
matrix H ∈ C2n×2n and a an admissible observable. We define the matrix St ∈ C2n×2n

as a solution of the differential equation

Ṡt = ΩHSt, S0 = Id2n. (8.12)

Then, St is symplectic and the propagated observable at with

at(z) := a(Stz) for all z ∈ Rn ⊕ Rn

satisfies (8.10).

Proof. The existence of a unique solution of (8.12) follows by the theorem of Picard-
Lindelöf and we can write St = etΩH . Clearly, S0 is a symplectic matrix and since

∂t(S
T
t ΩSt) = STt H

TΩTΩSt + STt ΩΩHSt = STt (HT −H)St = 0

this property is preserved for all times t ≥ 0. Moreover, if we denote zt = Stz, (8.12)
implies

∂ta(zt) = ∇a(zt)
T Ṡtz = ∇a(zt)

TΩHStz = ∇a(zt)
TΩ∇H(zt) = {a,H}(zt).

�

Thus, we found that in case of a quadratic Hamiltonian it suffices to consider the lin-
earisation of the flow, that is given by a symplectic matrix. Since the operators Â(Z)

resp. Â†(Z) are Weyl-quantised phase space functions, the above result applies and we
will propagate Lagrangian frames via the linearised flow St. This is an essential tool
for computations in the remaining thesis.

So far, we considered quadratic Hamiltonians regardless of wether they are self-
adjoint or not. The differences between Hermitian and non-Hermitian Hamiltonians
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will become present in the next section.

8.3. Hermitian dynamics with Hagedorn’s wave packets

We now consider the Schrödinger equation (8.7) with a Hermitian, quadratic Hamilto-
nian Ĥ, i.e.

H(z) = 1
2z
THz with H = HT =

(
Hpp Hpq

Hqp Hqq

)
∈ R2n×2n.

As initial value we choose an arbitrary Hagedorn wave packet, ψ0 = ϕk(Z0, z0), where
Z0 ∈ C2n×n is a normalised Lagrangian frame, z0 ∈ Rn ⊕ Rn and k ∈ Nn. Since H is
real, also the linearised flow defined by (8.12) is real. We will see below that this point
is crucial for the upcoming calculations.

Our aim in this section is to determine the time evolution Û(t)ϕk(Z0, z0). As usual we
start with a wave packet ϕk(Z0) centred at the origin and regard general phase space
centres later on.

The evolution of Hagedorn’s wave packets was first investigated in [Hag80] in the
univariate case and generalised in [Hag85] to multi-dimensions. We will rewrite the
results here in terms of Lagrangian frames and show in the next section their equiva-
lence to the original findings.

Let St be the solution to (8.12) and L0 = range(Z0) our initial Lagrangian subspace.
Since St is symplectic due to Lemma 8.4, Lt := StL0 defines a Lagrangian subspaces for
all t ≥ 0. Moreover, we find for Zt := StZ0

ZTt ΩZt = ZT0 S
T
t ΩStZ0 = ZT0 ΩZ0 = 0, (8.13)

i.e. Zt is isotropic and since St is real also normalised,

Z∗t ΩZt = Z∗0S
∗
t ΩStZ0 = Z∗0ΩZ0 = 2iId. (8.14)

We stress here that the propagation of a Lagrangian frame becomes costlier when we
handle non-unitary time evolutions in the next chapter: If H is a complex-valued ma-
trix, Im(St) 6= 0 and we have to normalise Zt.

However, for the Hermitian dynamics we observe that Lt is a positive Lagrangian
subspace spanned by Zt ∈ Fn(Lt). Hence we can easily propagate our Lagrangian
subspace in time by means of the linearised flow St from Lemma 8.4.

For the evolution of the wave packets we first note that

Û(t)ϕk(Z0) = 1√
k!
Û(t)Â†k(Z0)ϕ0(Z0) = 1√

k!
Û(t)Â†k(Z0) Û(t)−1U(t)ϕ0(Z0)

= 1√
k!

(Û(t)Â†(Z0) Û(t)−1)kÛ(t)ϕ0(Z0),

this means we can adopt our strategy for the Fourier transform and investigate on the
one side propagated ladder operators of the form Û(t)Â†(Z0)Û(t)−1 and on the other side
the time evolution of the coherent state Û(t)ϕ0(Z0).
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Lemma 8.5 — Ladder evolution. We have for all l ∈ Cn ⊕ Cn,

Û(t)Â(l) Û(t)−1 = Â(Stl) and Û(t)Â†(l) Û(t)−1 = Â†(Stl).

Proof. This result can be seen as a simplification of [LST15, Lemma 4.1]. With the
same computation as in the proof of Lemma 8.3, we find for Ât(l) := Û(t)Â(l)Û(t)−1

iε ∂tÂt(l) = [Ĥ, Ât(l)] and ∂tAt(l) = {H, At(l)}.

Similarly to Lemma 8.4 we set At(l; z) = A(l;S−1
t z) for all z ∈ Rn ⊕ Rn and obtain

∂tA(l;S−1
t z) = ∇A(l;S−1

t z)T Ṡ−1
t z = −∇A(l;S−1

t z)TΩHS−1
t z = {H, A(l)}(S−1

t z)

Thus, A(l;S−1
t z) is a solution of the differential equation above and since St is symplec-

tic,
A(l;S−1

t z) = i√
2ε
lTΩS−1

t z = i√
2ε
lTSTt Ωz = A(Stl; z).

The proof for Â†(l) works analogously if one takes into account that St is real. �

This result can directly be adopted for the vector-valued notation. Let Z ∈ C2n×n be an
isotropic matrix with columns l1, . . . , ln. Then,

Û(t)Â(Z) Û(t)−1 = Â(StZ), where Â(StZ) =
(
Â(Stl1) . . . Â(Stln)

)
and analogously, Û(t)Â†(Z) Û(t)−1 = Â†(StZ).

We will summarise the propagation of coherent and excited states in the next the-
orem. An equivalent result for the evolution of Gaussians is given in [Hag80, Theo-
rem 1.1], the evolution of more excited states was treated in [Hag81, Theorem 1.1].

Theorem 8.2 — Coherent and excited state evolution. Let L0 ⊂ Cn ⊕ Cn, Z0 ∈ Fn(L0) and
k ∈ Nn. If St is the unique solution of (8.12), Lt = StL0 is a Lagrangian subspace
spanned by Zt = StZ0 ∈ Fn(Lt) for all times t ≥ 0 and the time evolution of the k-th
Hagedorn wave packet ϕk(Z0) is given by

Û(t)ϕk(Z0) = ϕk(Zt).

Proof. We start with the coherent state ϕ0(Z0). Since ϕ0(Z0) ∈ I(L0), we find with
Lemma 8.5

0 = Û(t)Â(Z0)ϕ0(Z0) = Û(t)Â(Z0) Û(t)−1Û(t)ϕ0(Z0) = Â(StZ0) Û(t)ϕ0(Z0)

and Û(t)ϕ0(Z0) ∈ I(Lt). Moreover, since Û(t) is unitary, ‖Û(t)ϕ0(Z0)‖ = 1 and therefore
Û(t)ϕ0(Z0) = ϕ0(Zt). For the excited states this implies

Û(t)ϕk(Z0) = 1√
k!

(Û(t)Â†(Z0) Û(t)−1)kÛ(t)ϕ0(Z0) = 1√
k!
Â†k(StZ0)ϕ0(StZ0) = ϕk(StZ0).

�
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So, we find that under a Hermitian, quadratic Hamiltonian Hagedorn’s wave packets
preserve their form and can be parametrised via a Lagrangian frame Zt that satisfies

Żt = ΩHZt.

In particular, this equation yields a normalised Lagrangian frame for all times t ≥ 0.

A very similar conclusion can be made for wave packets with general phase space
centres z ∈ Rn ⊕ Rn.

Proposition 8.1 — Dynamics of the centre. Let z0 ∈ Rn ⊕ Rn and L0 ⊂ Cn ⊕ Cn be
parametrised by Z0 ∈ Fn(L0). Then,

Û(t)ϕk(Z0, z0) = e
i
ε
αt(z0)ϕk(StZ0, Stz0).

for all k ∈ Nn, where St denotes the unique solution of (8.12) and

αt(z0) :=

∫ t

0

(
pTτ q̇τ −H(zτ )

)
dτ with zτ =

(
pτ

qτ

)
= Sτz0.

Proof. This result is a special case of [LST15, Propositon 4.8]. The claim is obtained
with the same line of argumentation as in Theorem 8.2 if one notices that

A(l, z0;S−1
t z) = i√

2ε
lTΩ(S−1

t z − z0) = i√
2ε
lTΩS−1

t (z − Stz0) = A(Stl, Stz0;S−1
t z).

Thus, Û(t)ϕ0(Z0, z0) ∈ I(Lt, Stz0) and

Û(t)ϕ0(Z0, z0) = ct · ϕ0(Zt, Stz0)

for ct ∈ C. We determine ct be inserting ϕ0(t) := ct · ϕ0(StZ0, Stz0) into Schrödinger’s
equation (8.7) and therefore denote

Zt = StZ0 =

(
Pt

Qt

)
, zt = Stz0 =

(
pt

qt

)
, (8.15)

and Bt = PtQ
−1
t . On the one side, we have for the time derivative

∂tϕ0(t) =
(
ċt
ct
− 1

2tr(Q̇tQ
−1
t ) + i

ε(
1
2(x− qt)T Ḃt(x− qt) + (ṗt −Btq̇t)T (x− qt)− pTt q̇t)

)
ϕ0(t)

where we used Jacobi’s determinant formula, ∂t det(Qt) = det(Qt)tr(Q̇tQ
−1
t ).

On the other hand, we find for a quadratic Hamiltonian as in Lemma 8.2

− ε2

2 ∇
T
xHpp∇xϕ0(t)

=
(
− iε

2 tr(HppBt) + 1
2(x− qt)TBtHppBt(x− qt) + pTt HppBt(x− qt) + pTt Hpppt

)
ϕ0(t)
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and

ε
i x
THqp∇xϕ0(t)

=
(
(x− qt)THqpBt(x− qt) + (Hpqpt +BtHpqqt)

T (x− qt) + qTt Hqppt
)
ϕ0(t).

To be able to sort by powers of (x− qt), we moreover expand

1
2x

THqqxϕ0(t) =
(

1
2(x− qt)THqq(x− qt) + qTt Hqq(x− qt) + 1

2q
T
t Hqqqt

)
ϕ0(t).

Hence, ϕ0(t) is a solution of (8.7), if

iε ċtct −
iε
2 tr(Q̇tQ

−1
t ) + pTt q̇t = − iε

2 tr(HppBt +Hpq) +H(zt),

Btq̇t − ṗt = Bt∂qtH(zt) + ∂ptH(zt),

−Ḃt = BtHppBt +BtHqp +HpqBt +Hqq.

For the first equation, we note that (8.12) implies Q̇tQ−1
t = HppBt + Hpq and ct is the

solution to
ċt
ct

= i
ε(p

T
t q̇t −H(zt)).

The second equation is equivalent to Hamilton’s equation of motion (8.11). The last
identity equals [GS12, Eq. (39)] and the authors show in [GS12, Theorem 3.3] the
equivalence to the propagation via St in (8.15).

For the more excited states we further stress that

Û(t)ϕk(Z0, z0) = 1√
k!
Â†k(Zt, zt) Û(t)ϕ0(Z0, z0) = ct · ϕk(Zt, zt).

�

So, the dynamics of a phase space centre z0 is described by the differential equation

żt = ΩHzt,

what is consistent with Hamilton’s equations (8.11) for a quadratic Hamiltonian. For
the non-Hermitian case we will find a different picture: the dynamics of the centre will
not only be driven by the real and imaginary part of the Hamiltonian, but also by the
symplectic metric of Lt, see also [GS11].

8.4. Large order asymptotics

In this section we want to show that our previous findings for the Hermitian dynam-
ics are consistent with the results for the semiclassical dynamics in [Hag81], [Hag85]
and [HJ00]. In these works the authors considered the time-dependent Schrödinger
equation

iε ∂tψ(x, t) = − ε2

2 ∆ψ(x, t) + V (x)ψ(x, t), (8.16)
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where ∆ denotes the Laplace operator, ∆ =
∑n

j=1 ∂
2
xj and V (x) a potential depending on

the position x ∈ Rn. Hagedorn’s wave packets are then used to approximate solutions
via

ψl(x, t) = e
i
ε
αt(z0)

∑
|j|≤J

ϕj(Zt, zt;x)

up to an exponentially small error. Our main purpose is now to prove that the propaga-
tion

Zt = StZ0 resp. zt = Stz0

is indeed equivalent to the classical equations of motion given in [Hag85, Eq. (1.6)-
(1.10)] and [HJ00, Eq.(2.3)].

Let Zt = (Pt;Qt) ∈ C2n×n and zt = (pt, qt) ∈ Rn ⊕ Rn. If the potential V is a real
quadratic form, then the Hamiltonian

H(p, q) = 1
2 |p|

2 + V (q) with D2H(p, q) =

(
Id 0

0 D2V (q)

)

is Hermitian and quadratic. Our results from the previous section imply that

ψ(x, t) = e
i
ε
αt(z0)ϕk(Zt, zt;x)

is an exact solution of (8.16) if

Żt = ΩD2H(zt)Zt, żt = ΩD2H(zt)zt and α̇t(z0) = pTt q̇t −H(pt, qt).

Thereby, D2H and D2V denote the Hessian matrix ofH resp. V . The first two equations
are equivalent to(

Ṗt

Q̇t

)
=

(
−D2V (qt)Qt

Pt

)
,

(
ṗt

q̇t

)
=

(
−D2V (qt)qt

pt

)
=

(
−∇V (qt)

pt

)
,

while the third equation yields

α̇t(z0) = |pt|2 − 1
2 |pt|

2 − V (qt) = 1
2 |pt|

2 − V (qt).

Denoting A(t) = Qt, B(t) = −iPt, a(t) = qt, η(t) = pt and S(t) = αt(z0), we can rewrite
these equations as

Ȧ(t) = iB(t), Ḃ(t) = iD2V (a(t))A(t),

ȧ(t) = η(t), η̇(t) = −∇V (a(t)),

Ṡ(t) = 1
2 |η(t)|2 − V (a(t)),

what exactly matches with [Hag85, Eq. (1.6)-(1.10)] resp. [HJ00, Eq.(2.3)].

For general potentials V , one can show that the wave packets e
i
ε
αt(z0)ϕk(Zt, zt;x) ap-

proximate solutions of (8.16) by considering the Taylor expansion of V up to second
order, see [HJ00, Theorem 3.1].
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Theorem 8.3 — Asymptotics. Let V ∈ C∞(Rn) be a real, positive function and ψ(x, t) a
solution of (8.16) satisfying

ψ(x, 0) =
∑
|j|≤J

cjϕj(Z0, z0;x) with
∑
|j|≤J

|cj |2 = 1,

where Z0 ∈ C2n×n is a normalised Lagrangian frame, z0 ∈ Rn⊕Rn\{0} and cj ∈ C for
all j ∈ Nn with |j| ≤ J . Then,

ψl(x, t) = e
i
ε
αt(z0)

∑
|j|≤J̃(l)

cj(l, t)ϕj(Zt, zt;x)

with J̃(l) = J + 3(l− 1) is an approximation of ψ(x, t) up to order εl/2, i.e. for all T > 0

sup
t∈[−T ;T ]

‖ψl(x, t)− ψ(x, t)‖ ≤ C(l)εl/2

for some constant C(l) > 0.

By tightening the constraints on the potential V , in particular demanding that V is
analytic on D = {x + iy ∈ Cn ; |yj | < δ, j = 1, . . . , n} for δ > 0 and satisfies for all
x+ iy ∈ D

|V (x+ iy)| ≤ c · eτ |x+iy|2

for constants c, τ > 0, one can optimise the upper bound further and find an exponen-
tially small error, see [HJ00, Theorem 4.1]. We stress here that this approximation
result is only valid for Hermitian Hamiltonians. To obtain a similar statement for the
non-Hermitian Hamiltonians investigated in the following an additionally study would
be needed and might make a good enhancement of this thesis.

8.5. Example: Harmonic Oscillator

As a quick first example we review the dynamics under the harmonic oscillator

Ĥ = ω0
2 (p̂2 + q̂2), H = ω0 · Id2,

for ω0 ∈ R in the one-dimensional setting. In particular, we can compare our findings
here to the results for the non-Hermitian Swanson oscillator in Section 9.6 where we
add the complex mixed term − i

2(p̂q̂ + q̂p̂) to the harmonic oscillator.

In the univariate setting we can write our initial Lagrangian subspace as

L0 = span{l0}, l0 =

(
p0

q0

)
∈ C2,

and note that l0 is normalised if Im(p0q0) = 1. The time evolved subspace is then given
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by Lt = span{lt} with

lt =

(
pt

qt

)
= Stl0.

From our discussion in Section 3.2 we know that the Hermite functions generated from
l0 = (i, 1)T are eigenfunctions of the harmonic oscillator.

Linearised flow
For the linearised flow the evolution equation (8.12) implies

St = etΩH =
∞∑
k=0

(ω0t)k

k! Ωk =
∞∑
k=0

(−1)k

(2k)! (ω0t)
2kId2 +

∞∑
k=0

(−1)k

(2k+1)!(ω0t)
2k+1Ω

= cos(tω0)Id2 + sin(tω0)Ω

and St is a real, symplectic matrix.

Evolved coherent state
The time evolution of the Lagrangian subspace is accordingly described by

lt = Stl0 =

(
cos(tω0)p0 − sin(tω0)q0

sin(tω0)p0 + cos(tω0)q0

)

and the width of the propagated coherent state is given by bt = pt
qt

. If l0 = (i, 1)T then
one can easily verify that bt = i for all times t.

Evolved excited states
To determine the excited states completely we need in addition the recursion matrix Mt

that is in the one-dimensional case only a scaling factor, see Section 5.1. We have

Mt =
qt
qt

=
sin(tω0)p0 + cos(tω0)q0

sin(tω0)p0 + cos(tω0)q0

and if we consider again the standard Hermite functions, l0 = (i, 1)T , this simplifies to
Mt = (−i sin(tω0) + cos(tω0))2 = e−2itω0 . Thus, also the coherent state ϕ0(lt) may stay
unaltered, the excited states oscillate in time, see Figure 13.

Dynamics of the centre
Finally, we can state for the dynamics of an initial centre z0 = (ξ0, x0) ∈ R2,

zt = Stz0 =

(
cos(tω0)ξ0 − sin(tω0)x0

sin(tω0)ξ0 + cos(tω0)x0

)

and we find the characteristic circular behaviour, see Figure 14. We want to particu-
larly stress that the centres here are real-valued for all times t. Moreover, we can also
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Figure 13.: Absolute values of the wave packets ϕ0(lt) and ϕ2(lt) starting from l0 =
(i, 1)T at time t = 0 (upper left), t = 0.3925 ≈ π

8 (upper right), t = 1.57 ≈ π
8

(lower left) and t = 3.14 ≈ π (lower right) for ε = 1 and ω0 = 1.

compute the symplectic metric Gt of Lt,

Gt = ΩTRe(ltl
∗
t )Ω =

|p0|2 · Id2 + (|q0|2 − |p0|2)

(
cos2(tω0) + sin(2tω0) Re(p0q0)

|q0|2−|p0|2 sin(tω0) cos(tω0)

sin(tω0) cos(tω0) sin2(tω0)− sin(2tω0) Re(p0q0)
|q0|2−|p0|2

)

and for the standard Hermite functions we obtain Gt = Id2 for all t ≥ 0.
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Figure 14.: Trajectory of the centre zt with initial value z0 = (1, 0) and contour plot of
the absolute value of the Wigner transform Wε(ϕ0(lt)) for l0 = (4, 2 − 0.25i)
at time t = 0 (upper left), t = 1.57 ≈ π

2 (upper right), t = 3.14 ≈ π (lower left)
and t = 6.28 ≈ 2π (lower right) for ε = 1 and ω0 = 1.





9. Non-Hermitian Schrödinger dynamics

In this chapter we generalise our results and investigate the Schrödinger equation (8.7)
with a quadratic but non-Hermitian Hamiltonian Ĥ. This means H can be written as
H(z) = 1

2z
THz with H ∈ C2n×2n symmetric and Im(H) 6= 0.

A similar problem with coherent states as ansatz functions was treated in [GS12].
We now combine their findings with Hagedorn’s approach from [Hag85] and in this way
extend [GS12, Theorem 3.4] to excited states. We will show explicitly in Section 9.4
that in contrast to the Hermitian setting, here we have to take for the propagation of
excited wave packets also lower excited wave packets into account, see Theorem 9.2.

We start our analysis again with the time evolution operator. In this case Û(t) will
not be unitary, in other words the norm of the initial state will not be preserved. This
can be favourable if one wants to model physical effects such as diffusion, decoherence,
see [BH02, §5], or absorption, see [Mug+04]. However, it is not clear that Û(t) exists,
since Ĥ is not self-adjoint and thus Stone’s theorem can not be applied. Hence, we have
to provide a closer study of Û(t) in Section 9.1 resp. Appendix C.

Yet for the evolution of the wave packets we can still define the linearised flow St as
solution of

Ṡt = ΩHSt, S0 = Id.

We recall that the linearisation is exact for all quadratic Hamiltonians, see Lemma
8.12. But, as indicated in the previous chapter for a symmetric, complex matrix H,
we find a symplectic, but complex flow St. This notably complicates our computations,
we need to include the theories for non-normalised Lagrangian frames and comparable
ladder operators we established in Section 2.5 and 4.1, respectively.

Our proceeding nevertheless is similar to the one for Hermitian Hamiltonians:
Let L0 ⊂ Cn ⊕ Cn be a positive Lagrangian subspace and Z0 ∈ Fn(L0). We determine
the time evolution

Û(t)ϕk(Z0) = 1√
k!
Û(t)A†k(Z0)Û(t)−1Û(t)ϕ0(Z0)

of the k-th Hagedorn wave packet by first investigating the evolution of the ladder
operators and the coherent states and then apply these results to the construction of
excited states. After that we continue and include also general phase space centres
z ∈ Rn ⊕ Rn.

To finish this chapter we demonstrate our findings by means of the Davies-Swanson
Oscillator, see [Dav99b] and [Swa04], a harmonic oscillator with a complex potential.
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9.1. Time evolution

First of all, we have to ensure that our approach via the time evolution operator Û(t) is
still valid also in the non-Hermitian case. It is known that some non-selfadjoint Hamil-
tonians define a unitary time evolution, see for example [BBJ03], where the authors
studied a class of PT-symmetric operators. Or, one can replace non-Hermitian Hamilto-
nians with an equivalent pseudo-Hermitian operator, see for example [MFF06], where
the Davies-Swanson oscillator is also studied as an example.

Since we restrict ourselves to quadratic Hamiltonians in this thesis, we can give a
more general result for the existence of the time evolution operator.

Proposition 9.1 LetH(z) = 1
2z
THz be a complex quadratic form with H = HT ∈ C2n×2n

invertible and
Im(H) ≤ 0.

Then, the operator − i
εĤ generates a continuous contraction semigroup {Û(t) ; t ≥ 0}

such that
iε ∂tÛ(t) = Ĥ Û(t), (9.1)

for all t ≥ 0 and Û(0) = id.

Proof. This statement is adopted from [PS08, Theorem 2.1], where semigroups of ellip-
tic quadratic operators are treated in detail. The proof is based on the fact that− i

εĤ and
its adjoint are both closed, dissipative operators if Im(H) ≤ 0 and thus a consequence of
the Lumer-Phillips theorem, see [EN00, Theorem II.3.15] respectively [EN00, Corollary
II.3.17] . We present a more detailed study of this result in Appendix C. �

Equation (9.1) herein is the same formal identity as in Lemma 8.1, the equality should
hold true in the strong sense.

The above result verifies our findings for Hamiltonians with non-positive definite
imaginary part and especially for the Lindblad equation. For a general Hamiltonian
it is not clear wether Equation (9.1) possesses a solution or not. This point was also
addressed in [GS12, §3]. There are some approaches that give hope that there exists
a time evolution operator at least for times t ∈ [0;T [ with T > 0, for example [AV14]
identifying the evolution operators with operators on Fock spaces or a direct calculation
of U(t) as in [CR06, §5]. With the second strategy we are able to show that the evolution
operator exists for times t ≥ 0 such that the linearised flow St = etΩH satisfies

i(Ω− S∗t ΩSt) ≥ 0.

However, we were not able yet to trace this condition back to a valid argument for
the Hamiltonian H. For the examples studied in this thesis with indefinite or positive
definite imaginary part, namely the Davies-Swanson oscillator and the Fokker-Planck
equation we refer to the literature for existence results, see [Ris84, §4.2.1] and [Gra+14,
§2].
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9.2. Ladder evolution

Let L0 ⊂ Cn⊕Cn denote our initial positive Lagrangian subspace and Z0 ∈ Fn(L0). Ana-
logue to our considerations in the previous chapter we evolve the Lagrangian subspace
along St,

Lt := StZ0.

Since St is symplectic this still yields a Lagrangian subspace spanned by the isotropic
matrix StZ0 ∈ C2n×n, see (8.13). Unfortunately, since St is complex, StZ0 will not be
normalised, see (8.14). We have to resume our idea from Section 2.5 and utilise the
normalisation matrix

Nt = 1
2iZ
∗
0S
∗
t ΩStZ0 ∈ Cn×n

to define a normalised Lagrangian frame with the same range by

Zt := StZ0N
−1/2
t .

This approach is well-defined as long as Nt > 0, see Lemma 2.5. If Im(H) ≤ 0, we have

Nt = N0 +

∫ t

0
Ṅτ dτ = Id−

∫ t

0
Z∗0S

∗
τ Im(H)SτZ0 dτ > 0 (9.2)

for all times t ≥ 0. For a general Hamiltonian a continuity argument yields that there
exits a T > 0 such that Lt is positive for all t ∈ [0;T [ since N0 = Id. We assume
that this time interval lies within the range where our time evolution operator Û(t)

exists. However, we lack a rigorous proof for this presumption and admit that further
investigation here would be required.

Lemma 9.1 — Ladder evolution. For all l ∈ Cn ⊕ Cn, we find

Û(t)Â(l) Û(t)−1 = Â(Stl) and Û(t)Â†(l) Û(t)−1 = Â†(Stl).

Proof. This statement is also given in [LST15, Lemma 4.1]. The proof works completely
analogue to the proof of Lemma 8.5, we only note for the raising operator,

Â†(l;S−1
t z) = − i√

2ε
l∗ΩS−1

t z = − i√
2ε
l∗STt Ωz = i√

2ε
(Stl)

∗Ωz = Â†(Stl; z)

for all z ∈ Rn ⊕ Rn since Im(St) 6= 0. �

For any isotropic matrix Z ∈ C2n×n this result motivates the notation

Û(t)Â(Z0) Û(t)−1 = Â(StZ0) and Û(t)Â†(Z0) Û(t)−1 = Â†(StZ0).

Since St is symplectic, both matrices StZ0 and StZ0 are isotropic, but as initially pointed
out none of them is normalised. Moreover, the raising operator Â†(StZ0) does not cor-
respond to the evolved Lagrangian Lt and is in particular not adjoint to Â(StZ0),

Â(StZ0)∗ 6= Â†(StZ0).
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Thus, we found ladder operators parametrised by two different Lagrangian frames. We
investigated this setting already in Corollary 4.1 and noted that ladder operators can
always be related by means of the mixed isotropy and the mixed normalisation of the
frames.

Corollary 9.1 — Ladder decomposition. We denote the mixed isotropy and mixed nor-
malisation of Zt and StZ0 by

Ct = 1
2iZ

T
t ΩStZ0 and Dt = 1

2iZ
∗
t ΩStZ0,

see (2.17) and (2.18). Then, the corresponding ladder operators are related via

Â(StZ0) = DT Â(Zt) + CT Â†(Zt) and Â†(StZ0) = D∗t Â
†(Zt) + C∗t Â(Zt).

Proof. This result is a consequence of Corollary 4.1. For a direct proof, see [LST15,
Lemma 4.4]. �

Since the raising operator Â†(StZ0) not only involves the creator Â†(Zt), but also the
annihilator Â(Zt), this corollary already predicts that evolved excited states will not
simply preserve their structure, but also activate lower excited states. For the coher-
ent state then again, we only have to correct its definition via the non-normalised La-
grangian frame StZ0.

9.3. Coherent state evolution

In the following we will always consider the evolution of states on time intervals [0;T [

so that
Lt = StL0

is a positive Lagrangian subspace. If we propagate ϕ0(Z0) with Lemma 9.1 and Equa-
tion (4.2)

0 = Û(t)Â(Z0)ϕ0(Z0) = Â(StZ0) Û(t)ϕ0(Z0).

We obtain Û(t)ϕ0(Z0) ∈ I(Lt) for all t ∈ [0;T [, but ‖Û(t)ϕ0(Z0)‖ 6= 1. This means, unlike
the unitary evolution of coherent states in Theorem 8.2 we find an additional damping
factor βt ∈ R.

Proposition 9.2 — Coherent state evolution. Let L0 ⊂ Cn ⊕ Cn and Lt = StL0 be positive
Lagrangian subspaces for t ∈ [0;T [. Let Gt ∈ Sp(n,R) be the symplectic metric of Lt
and consider Zt = StZ0N

−1/2
t . Then,

Û(t)ϕ0(Z0) = ϕ0(StZ0) = eβtϕ0(Zt) , t ∈ [0;T [ ,

with

βt = 1
4

∫ t

0
tr(G−1

τ Im(H)) dτ.
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Proof. This result can also be found as [LST15, Proposition 4.2]. We know that

Û(t)ϕ0(Z0) = ct · ϕ0(StZ0)

for ct ∈ C. A similar computation as for Proposition 8.1 shows that inserting this ansatz
into the Schrödinger equation (8.7) yields ct = 1, i.e. Û(t)ϕ0(Z0) = ϕ0(StZ0). Moreover,
it is clear by definition that

ϕ0(StZ0) = det(Nt)
−1/4ϕ0(Zt).

With Jacobi’s determinant formula, ∂t det(Nt) = det(Nt)tr(∂tNtN
−1
t ), we have

∂t det(Nt)
−1/4 = −1

4 det(Nt)
−1/4tr(∂tNtN

−1
t ).

We now use the Hamiltonian system (8.12) to differentiate the normalisation

∂tNt = 1
2i∂t (Z∗0S

∗
t ΩStZ0) = 1

2i

(
Z∗0S

∗
tHStZ0 − Z∗0S∗tHStZ0

)
= −Z∗0S∗t Im(H)StZ0

and by Proposition 2.2,

tr
(
∂tNtN

−1
t

)
= tr

(
N
−1/2
t ∂tNtN

−1/2
t

)
= tr (−Z∗t Im(H)Zt) = −tr

(
Im(H)(G−1

t − iΩ)
)

= −tr
(
G−1
t Im(H)

)
.

Thus, det(Nt)
−1/4 is a solution of ∂t det(Nt)

−1/4 = 1
4tr
(
G−1
t Im(H)

)
det(Nt)

−1/4 and we
can write det(Nt)

−1/4 = eβt with

∂tβt = 1
4tr(G−1

t ImH) , β0 = 0.

�

Since βt is a real factor, we find

‖Û(t)ϕ0(Z0)‖ = eβt ,

that is βt models the gain or loss of the non-conservative system. One can directly see
the factor βt is fully governed by the dynamics of the symplectic metric Gt and this
dynamic can be described by the following Riccati equation.

Theorem 9.1 — Riccati equation. Let L0 ⊂ Cn⊕Cn and Lt = StL0 be positive Lagrangian
subspaces for t ∈ [0;T [. Denote by Gt, Jt ∈ Sp(n,R) the symplectic metric and the
complex structure of Lt, respectively. Then,

Ġt = Re(H)ΩGt −GtΩRe(H)− Im(H)−GtΩIm(H)ΩGt,

J̇t = ΩRe(H)Jt − JtΩRe(H)− ΩIm(H) + JtΩIm(H)Jt.

Proof. The equations of motion for Gt and Jt have been derived in [GS12, Theorem 3.3]
using the Siegel half space and rational relations. [LST15, Appendix B] provides an
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alternative proof based on Lagrangian frames that we will restate here.
We haveGt = ΩTRe(ZtZ

∗
t )Ω with ZtZ∗t = StZ0N

−1
t Z∗0S

∗
t and due to the time derivative

of the normalisation from the previous proof,

∂t(ZtZ
∗
t ) = ṠtZ0N

−1
t Z∗0S

∗
t − StZ0N

−1
t ṄtN

−1
t Z∗0S

∗
t + StZ0N

−1
t Z∗0 Ṡ

∗
t

= ΩHZtZ
∗
t + ZtZ

∗
t Im(H)ZtZ

∗
t − ZtZ∗tHΩ.

With ∂tRe(ZtZ
∗
t ) = Re(∂t(ZtZ

∗
t )) and Im(ZtZ

∗
t ) = −Ω this yields

∂tRe(ZtZ
∗
t ) = ΩRe(H)Re(ZtZ

∗
t ) + ΩIm(H)Ω + Re(ZtZ

∗
t )Im(H)Re(ZtZ

∗
t )

− ΩIm(H)Ω− Re(ZtZ
∗
t )Re(H)Ω + ΩIm(H)Ω

= ΩRe(H)Re(ZtZ
∗
t )− Re(ZtZ

∗
t )Re(H)Ω + ΩIm(H)Ω

+ Re(ZtZ
∗
t )Im(H)Re(ZtZ

∗
t ).

Thus, we find for Gt,

∂tGt = Re(H)ΩGt −GtΩIm(H)ΩGt − Im(H)−GtΩRe(H)

and since Jt = −ΩGt,

∂tJt = −Ω∂tGt = ΩRe(H)Jt + JtΩIm(H)Jt + ΩIm(H)− JtΩRe(H).

�

9.4. Excited state evolution

We now apply the raising operator Â†(StZ0) to the propagated coherent state. With
Corollary 9.1, we have

Û(t)ϕk(Z0) = 1√
k!
Â†k(StZ0) Û(t)ϕ0(Z0) = eβt√

k!
(D∗t Â

†(Zt) + C∗t Â(Zt))
kϕ0(Zt).

Here the annihilation part of the decomposition becomes visible. All terms of the form
Âm(Zt)ϕ0(Zt), m ≤ k, vanish and we reformulate the remaining terms with the commu-
tator relation for Â†(Zt) and Â(Zt), see Lemma 4.1. In this manner we encounter lower
excited wave packets ϕm(Zt), m ≤ k, see [LST15, Theorem 4.5].

Theorem 9.2 — Excited state evolution. Let L0 ⊂ Cn ⊕ Cn and Lt = StL0 be positive
Lagrangian subspaces for t ∈ [0;T [. Consider Zt = StZ0N

−1/2
t ∈ Fn(Lt) and denote by

Gt ∈ Sp(n,R) the symplectic metric of Lt. Define

Mt = 1
4(StZ0)TGt(StZ0) = 1

2iN
−1
t (StZ0)∗Ω(StZ0)

and the polynomials qk, k ∈ Nn, via the recursion relation

q0(x) = 1 ,
(
qk+ej (x)

)n
j=1

= xqk(x)−Mt∇qk(x). (9.3)
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Then, we have for any k ∈ Nn

Û(t)ϕk(Z0) = eβt√
k!
qk(N

−1/2
t A†(Zt))ϕ0(Zt), t ∈ [0;T [. (9.4)

Proof. We find with Corollary 9.1 for the components of the raising operator Â†(StZ0)

eTj Â
†(StZ0) = eTj D

∗
t Â
†(Zt) + eTj C

∗Â(Zt) = Â†(ZtDtej) + Â(ZtCtej) := ûj + v̂j .

In this way we can rewrite Â†k(StZ0)ϕ0(Zt) =
∏n
j=1(ûj + v̂j)

kjϕ0(Zt) for all k ∈ Nn. Since
v̂jϕ0(Zt) = 0, it is clear that

Â†k(StZ0)ϕ0(Zt) = qk(û)ϕ0(Zt)

where qk(û) = qk(û1, . . . , ûn) is a polynomial of degree |k| in n variables. We obtain this
polynomial qk be successively swapping v̂j to the right, i.e. we replace each term of the
form v̂j ûl by the commutator

v̂j ûl = [v̂j , ûl] + ûlv̂j .

To simplify our notation, we summarise the commutators in a matrix Ml,j := [ûl, v̂j ].
Due to the commutator relation for the ladder operators in Lemma 4.1 it is clear that
M = Mt ∈ Cn×n is a time-dependent, complex matrix.

Moreover, we have for the commutator [v̂j , û
k
l ] = −Ml,jkû

k−1
l = −Ml,j∂ûl û

k
l and there-

fore for all polynomials q(û),

[v̂j , q(û)] = −eTj MT∇ûq(û).

We use this relation to show that the polynomials qk indeed satisfy the recursion (9.3).
We have

qk+ej (û)ϕ0(Zt) = (ûj + v̂j)qk(û)ϕ0(Zt) = (ûjqk(û) + [v̂j , qk(û)] + qk(û)v̂j)ϕ0(Zt)

=
(
ûjqk(û)− eTj MT∇ûqk(û)

)
ϕ0(Zt)

and it only remains to verify the form of Mt.

On the one hand, it follows from Zt = StZ0N
−1/2
t that

D∗t = 1
2iZ
∗
0S

T
t ΩZt = 1

2iZ
∗
0S

T
t ΩStZ0N

−1/2
t = N

−1/2
t .

For the matrix Mt on the other hand, the commutator relation from Lemma 4.1 implies

Ml,j = [Â†(ZtDtel), Â(ZtCtej)] = 1
2i(ZtCtej)

TΩZtDtel = −eTj C∗tDtel,

i.e. Mt = −D∗tCt. Inserting Ct and Dt shows

−D∗tCt = 1
4Z
∗
0S

T
t ΩTZtZ

∗
t ΩStZ0 = 1

4Z
∗
0S

T
t GtStZ0,
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or, equivalently,

−D∗tCt = 1
2iN

−1/2
t Z∗t ΩStZ0 = 1

2iN
−1
t Z∗0S

∗
t ΩStZ0.

From the first equality one can read off the symmetry of Mt, what finishes the proof. �

This result nicely illustrates how the non-unitary time evolution activates lower order
states. Equation (9.4) can be interpreted as an expansion of the propagated state into
the basis defined by Zt,

Û(t)ϕk(Z0) = eβt
∑
m≤k

αmϕm(Zt),

where the coefficients αm can be computed in terms of Nt and the polynomial qk. This
emphasises the prominent role played by the matrices Nt and Mt. All the information
about the effects of the non-Hermiticity on the propagation are encoded in those two
matrices.

However, we can also interpret the application of Â†(StZ0) to ϕ0(Zt) as a generalised
wave packet, generated via a non-normalised Lagrangian frame. We showed in the
previous part that in both cases the overall structure of the wave packets, a multivari-
ate polynomial times a Gaussian, is preserved. Hence, we expect a similar behaviour
here.

Corollary 9.2 — Polynomial prefactor. Let L0 ⊂ Cn ⊕ Cn and Lt := StL0 be positive
Lagrangian subspaces for t ∈ [0;T [, Zt = StZ0N

−1/2
t ∈ Fn(Lt) and Gt ∈ Sp(n,R)

denote the symplectic metric of Lt. We set

Zt =

(
Pt

Qt

)

and
Mt = 1

4(StZ0)TGt(StZ0), M̃t = Mt +N
−1/2
t Q−1

t QtN
−1/2
t .

We then have for any k ∈ Nn

Û(t)ϕk(Z0;x) = eβt√
2|k|k!

pM̃t
k

(
1√
ε
N
−1/2
t Q−1

t x
)
ϕ0(Zt;x), t ∈ [0;T [, (9.5)

where the polynomials pM̃t
k , satisfy the recursion relation (4.7).

Proof. This statement is also given in [LST15, Corollary 4.6]. Equivalently to the TTRR
for the polynomials pMk , see Corollary 5.4, we find for the polynomials qk from the pre-
vious theorem

(
qk+ej (x)

)n
j=1

= xqk(x)−Mt

(
kjqk−ej (x)

)n
j=1

, x ∈ Rn.

We will use this relation and the ansatz

qk(N
−1/2
t A†(Zt))ϕ0(Zt;x) = 1√

2|k|
pM̃t
k (yt)ϕ0(Zt;x), yt = 1√

ε
N
−1/2
t Q−1

t x
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that appears similarly as in Corollary 4.2 to show that (4.7) holds. We have(
qk+ej (N

−1/2
t A†(Zt))

)n
j=1

ϕ0(Zt;x)

= 1√
2|k|

N
−1/2
t A†(Zt)

(
pM̃t
k (yt)ϕ0(Zt;x)

)
−Mt

(
kj√

2|k|−1
pM̃t
k−ej (yt)ϕ0(Zt;x)

)n
j=1

= 1√
2|k|+1

(√
2N
−1/2
t A†(Zt)

(
pM̃t
k (yt)ϕ0(Zt;x)

)
−Mt∇ytpM̃t

k (yt)ϕ0(Zt;x)
)

where we used the gradient formula ∇xpMk (x) = 2
(
kjp

M
k−ej (x)

)n
j=1

. Furthermore, with

A†(Zt) = i√
2ε

(P ∗t x+ iεQ∗t∇x) and Q∗tPt − P ∗t Qt = 2iId,

A†(Zt)
(
pM̃t
k (yt)ϕ0(Zt;x)

)
= i√

2ε
(P ∗t xp

M̃t
k (yt) + iεQ∗t (

1√
ε
Q−Tt N

−1/2
t ∇ytpM̃t

k (yt) + i
εPtQ

−1
t xpM̃t

k (yt)))ϕ0(Zt;x)

= i√
2ε

((P ∗t −Q∗tPtQ−1
t )xpM̃t

k (yt) + i
√
εQ∗tQ

−T
t N

−1/2
t ∇ytpM̃t

k (yt))ϕ0(Zt;x)

= 1√
2
(2Q−1

t xpM̃t
k (yt)−Q−1

t QtN
−1/2
t ∇ytpM̃t

k (yt))ϕ0(Zt;x),

since N−1/2
t is Hermitian and Q−1

t Qt symmetric. Inserting in the previous calculation
yields the claim,(

qk+ej (N
−1/2
t A†(Zt))

)n
j=1

ϕ0(Zt;x)

= 1√
2|k|+1

(
2N
−1/2
t Q−1

t xpM̃t
k (yt)− (Mt +N

−1/2
t Q−1

t QtN
−1/2
t )∇ytpM̃t

k (yt)
)
ϕ0(Zt;x)

= 1√
2|k|+1

(
2ytp

M̃t
k (yt)− M̃t∇ytpM̃t

k (yt)
)
ϕ0(Zt;x)

= 1√
2|k|+1

(
pM̃t
k+ej

(yt)
)n
j=1

ϕ0(Zt;x)

�

After determining the propagation of wave packets centred at the origin, we turn now
to the evolution of wave packets centred at arbitrary phase space points z ∈ Rn ⊕ Rn.

9.5. Dynamics of the centre

We assume that L0 ⊂ Cn ⊕ Cn and Lt = StL0 are positive Lagrangian subspaces for
t ∈ [0;T [ and consider the symplectic metric Gt ∈ Sp(n,R) and the complex structure
Jt ∈ Sp(n,R) of the Lagrangian Lt. By repeating the calculations of Proposition 8.1 and
Lemma 9.1, we obtain the dynamics of the centred ladder operators.

Lemma 9.2 — Ladder evolution. For all l, z0 ∈ Cn ⊕ Cn, we find

Û(t)Â(l, z0) Û(t)−1 = Â(Stl, Stz0) and Û(t)Â†(l, z0) Û(t)−1 = Â†(Stl, Stz0).

Proof. Since a constant does not change the commutator properties, we find with a
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similar argumentation as in Lemma 9.1,

Â(l, z0;S−1
t z) = i√

2ε
lTΩ(S−1

t z − z0) = i√
2ε
lTΩS−1

t (z − Stz0) = i√
2ε
lTSTt Ω(z − Stz0)

= Â(Stl, Stz0; z),

Â†(l, z0;S−1
t z) = −i√

2ε
l∗Ω(S−1

t z − z0) = −i√
2ε
lTΩS−1

t (z − Stz0) = −i√
2ε
lTS∗t Ω(z − Stz0)

= Â†(Stl, Stz0; z),

for all z ∈ Rn ⊕ Rn. �

Since St is complex, this implies that in contrast to the Hermitian dynamics we find
here that even if we start with a real centre z0 ∈ Rn⊕Rn, the time evolution will lead to
a complex centre Stz0. However, we know by Theorem 4.4 that the projection PJt does
not change the ladder operator if we parametrise by the Lagrangian Lt, that is,

A(Stl, Stz0) = A(Stl, PJt(Stz0))

for all l ∈ L0 and z0 ∈ Rn⊕Rn. The dynamics of the projected centres are easily inferred
from the Riccati equations for the complex structure Jt in Theorem 9.1, see also [LST15,
Corollary 4.7].

Corollary 9.3 — Projected dynamics. Let L0 and Lt = StL0 be positive Lagrangian sub-
spaces for t ∈ [0;T [. Denote by Gt, Jt ∈ Sp(n,R) the symplectic metric and the com-
plex structure of Lt, respectively. Let z0 ∈ Rn ⊕ Rn. Then, zt := PJt(Stz0) ∈ Rn ⊕ Rn

satisfies
żt = ΩRe(H)zt +G−1

t Im(H)zt. (9.6)

Proof. The same result can be found in [GS11]. We recall that the projection PJt was
defined as

PJt(Stz0) = Re(Stz0) + JtIm(Stz0).

With the equation for the linearised flow (8.12) and the Riccati equation for Jt,

żt = Re(Ṡtz0) + J̇tIm(Stz0) + JtIm(Ṡtz0) = Re(ΩHStz0) + J̇tIm(Stz0) + JtIm(ΩHStz0)

= ΩRe(H)Re(Stz0)− ΩIm(H)Im(Stz0) + ΩRe(H)JtIm(Stz0)− JtΩRe(H)Im(Stz0)

+ ΩIm(H)Im(Stz0) + JtΩIm(H)JtIm(Stz0) + JtΩIm(H)Re(Stz0) + JtΩRe(H)Im(Stz0)

= ΩRe(H)zt + JtΩIm(H)zt = ΩRe(H)zt +G−1
t Im(H)zt,

since JtΩ = ΩTGtΩ and Gt is symplectic. �

The time evolution of coherent states with real projected centres resembles the one in
Proposition 9.2, however, with an additional phase factor determined by the action in-
tegral of the Hamiltonian H along the real projected trajectory, see [LST15, Proposition
4.8] or Proposition 8.1.
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Proposition 9.3 — Coherent state evolution. Let L0 ⊂ Cn ⊕ Cn be a positive Lagrangian
subspace, Z0 ∈ Fn(L0) and z0 ∈ Rn ⊕ Rn. If the Lagrangian Lt = StL0 is positive for
t ∈ [0, T [, then

Û(t)ϕ0(Z0, z0) = e
i
ε
αt(z0)ϕ0(StZ0, zt) = e

i
ε
αt(z0)+βtϕ0(Zt, zt)

for all t ∈ [0;T [, where Zt = StZ0N
−1/2
t , zt =: (pt, qt) ∈ Rn ⊕ Rn is defined by (9.6), βt

is the factor derived in Proposition 9.2 and

αt(z0) :=

∫ t

0

(
pTτ q̇τ −Hτ (zτ )

)
dτ (9.7)

denotes the associated action integral of the Hamiltonian Ht along zt.

Proof. With our standard approach, we find

0 = Û(t)Â(Z0, z0)ϕ0(Z0, z0) = Â(StZ0, Stz0)Û(t)ϕ0(Z0, z0) = Â(StZ0, zt)Û(t)ϕ0(Z0, z0)

and hence Û(t)ϕ0(Z0, z0) = ct · ϕ0(StZ0, zt) for ct ∈ C. The factor αt emerges with an
analogous computation as in Proposition 8.1. �

Our previous results on excited state propagation, that is, Theorem 9.2 and Corollary
9.2, describe the time evolution of Û(t)ϕk(Z0, z0), k ∈ Nn, for the case z0 = 0 in terms
of multivariate polynomials. Essentially, these results stay the same when considering
nonzero z0 ∈ Rn⊕Rn. The ladder decomposition from Corollary 9.1 also holds true with
phase space centres z0,

Â†(StZ0, Stz0) = D∗t Â
†(Zt, Stz0) + C∗t Â(Zt, Stz0) = D∗t Â

†(Zt, zt) + C∗t Â(Zt, zt).

Hence, the propagated excited states can be constructed similar as in the previous sec-
tion,

Û(t)ϕk(Z0, z0) = 1√
k!
Â†k(StZ0, Stz0) Û(t)ϕ0(Z0, z0)

= 1√
k!
e

i
ε
αt(z0)+βt(D∗t Â

†(Zt, zt) + C∗t Â(Zt, zt))
kϕ0(Zt, zt),

and we only have to record the evolution of the centre and add the corresponding action
integral.

Theorem 9.3 — Excited state evolution. Let L0 and Lt = StL0 be positive Lagrangian
subspaces for t ∈ [0;T [, z0 ∈ Rn ⊕ Rn and Zt = StZ0Nt ∈ Fn(Lt). Set

Zt =

(
Pt

Qt

)
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and denote by Gt ∈ Sp(n,R) the symplectic metric of Lt. Define

Mt = 1
4(StZ̄0)TGt(StZ̄0) and M̃t = Mt +N

−1/2
t Q−1

t QtN
−1/2
t .

Then, we have for any k ∈ Nn and t ∈ [0;T [

Û(t)ϕk(Z0, z0;x) = 1√
k!
e

i
ε
αt(z0)+βt qk(N

−1/2
t A†(Zt, zt))ϕ0(Zt, zt;x)

= 1√
2|k|k!

e
i
ε
αt(z0)+βt pM̃t

k

(
1√
ε
N
−1/2
t Q−1

t (x− qt)
)
ϕ0(Zt, zt;x)

where zt = (pt, qt) ∈ Rn ⊕ Rn is defined by (9.6) and αt(z0) is the action integral (9.7)
of Ht along the trajectory zt. The polynomials qk satisfy the recursion (9.3) and pM̃t

k is
defined as in Proposition 4.7.

9.6. Example: Davies-Swanson oscillator

As an example we investigate the dynamics of a one-dimensional quadratic non-Hermitian
Hamiltonian, the Davies-Swanson oscillator

Ĥ = ω0
2 (p̂2 + q̂2)− iδ

2 (p̂q̂ + q̂p̂)

defined by the complex symmetric matrix

H =

(
ω0 −iδ

−iδ ω0

)
, ω0, δ > 0.

For this particular Hamiltonian the spectrum and transition elements have been com-
puted, see [Dav99a] and [Swa04], as well as the dynamics of coherent states, see [Gra+14].
It is our aim here to complement the picture by propagating excited wave packets.

We start with a positive Lagrangian

L0 = span{l0}, l0 =

(
p0

q0

)
∈ C2,

and first note that l0 is normalised if Im(p0q0) = 1. To describe the propagation of the
wave packets, we set Lt = span{lt} with

lt =

(
pt

qt

)
= Stl0nt, nt = h(Stl0, Stl0),

and only observe times t ∈ R with nt > 0. As initial value we choose l0 = (1,−i)T , this
means ϕ0(l0) yields the standard coherent state.

Linearised flow
We calculate St as the solution of the Hamiltonian system (8.12) and obtain conse-
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quently St = etΩH . Since

(ΩH)2k = (−1)kω2kId2 , (ΩH)2k+1 = (−1)kω2kΩH , k ≥ 0,

for ω2 := ω2
0 + δ2, we end up with

St =
∞∑
k=0

(−1)k
t2k

(2k)!
ω2kId2 +

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
ω2kΩH = cos(tω)Id2 + 1

ω sin(tω)ΩH.

In particular, it holds

S∗t ΩSt = cos2(tω)Id2 + 1
ω2 sin2(tω)HΩH − 2i

ω cos(tω) sin(tω)Im(H),

where

Im(H) =

(
0 −δ
−δ 0

)
and HΩH =

(
2iω0δ δ2 − ω2

0

ω2
0 − δ2 −2iω0δ

)
.

Normalisation
The formula for St allows us to explicitly calculate the normalisation and derive times
t such that our evolved Lagrangian is positive. A direct computation shows

nt = 1
2i l
∗
0S
∗
t ΩStl0 = cos2(tω) +

ω2
0−δ2
ω2
0+δ2

sin2(tω),

since l∗0HΩHl0 = 2i(ω2
0 − δ2) and l∗0Im(H)l0 = 0. We can further rewrite this expression

as

nt = 1− 2 δ
2

ω2 sin2(tω) = 1− δ2

ω2 (1− cos(2tω)).

So, nt is positive, if ω2

δ2
> 1 − cos(2tω). This is true for all times t, if ω2

0 > δ2 or, for

t ∈ [0;T [ with T = 1
2ωarccos(−ω2

0
δ2

).

Evolved coherent state
For all times t such that nt is positive, we can parametrise the Lagrangian subspace Lt
via the normalised Lagrangian frame

lt = Stl0n
−1/2
t =

(
cos(tω) + iω0+δ

ω sin(tω)

−i cos(tω) + ω0−δ
ω sin(tω)

)
n
−1/2
t .

Moreover, since we are handling a univariate setting, we may invoke eβt = n
−1/4
t and

directly state that
eβt = (1− δ2

ω2 (1− cos(2tω)))−1/4.

With these two parameters the propagation of the coherent state U(t)ϕ0(l0) is entirely
determined.

Evolved excited states
For our contribution on this example, the more excited state, we also have to examine
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the polynomial prefactor. For mt = n−1
t h(Stl0, Stl0), the formula for S∗t ΩSt provides

mt = n−1
t h(Stl0, Stl0) = 2δ

ω n
−1
t sin(tω)(ω0

ω sin(tω) + i cos(tω)),

since l∗0HΩHl0 = 4iδω0, l∗0Im(H)l0 = −2iδ. The recursion matrix m̃t exhibits the un-
pleasant form

m̃t = mt + n−1
t

ω0−δ
ω sin(tω) + i cos(tω)

ω0−δ
ω sin(tω)− i cos(tω)

.

The polynomials, by contrast, can in one dimension simply be written as scaled Hermite
polynomials, see Section 5.1,

pm̃t0 (x) = 1, pm̃t1 (x) = 2x, pm̃t2 (x) = 4x2 − 2m̃t pm̃t3 (x) = 8x3 − 12m̃tx.

Expansion in lower excited states
According to Theorem 9.2 we can also expand the evolved excited states in terms of
lower excited states, what is more convenient when we calculate the norm. The polyno-
mials qk are scaled Hermite polynomials,

q0(x) = 1, q1(x) = x, q2(x) = x2 −mt q3(x) = x3 − 3mtx

and we obtain for the propagated wave packets

Û(t)ϕ0(l0) = eβtϕ0(lt),

Û(t)ϕ1(l0) = eβt
(
n
−1/2
t Â†(lt)

)
ϕ0(lt) = eβtn

−1/2
t ϕ1(lt),

Û(t)ϕ2(l0) = eβt√
2

(
n−1
t Â†2(lt)−mt

)
ϕ0(lt) = eβt

(
n−1
t ϕ2(lt)− mt√

2
ϕ0(lt)

)
,

Û(t)ϕ3(l0) = eβt√
3!
n
−1/2
t

(
n−1
t Â†3(lt)− 3mtÂ

†(lt)
)
ϕ0(lt) = eβtn

−1/2
t

(
n−1
t ϕ3(lt)−

√
6

2 mtϕ1(lt)
)
.

Since (ϕk(lt))k∈N forms an orthonormal basis set, this implies for the norms

‖Û(t)ϕ0(l0)‖ = eβt , ‖Û(t)ϕ2(l0)‖ = eβt
√
n−2
t + 1

2 |mt|2

‖Û(t)ϕ1(l0)‖ = eβtn
−1/2
t , ‖Û(t)ϕ3(l0)‖ = eβtn

−1/2
t

√
n−2
t + 3

2 |mt|2.

The time evolution of these norms is displayed in Figure 15. One can recognise that all
norms significantly differ from one, the higher the excited state, the larger the devia-
tion.

Dynamics of the centre
For the dynamic of the centre we first state the time-evolved metric Gt of Lt. A direct
calculation using lt shows

Gt = n−1
t

(
1− 2 δω0

ω2 sin2(tω) 2 δω cos(tω) sin(tω)

2 δω cos(tω) sin(tω) 1 + 2 δω0
ω2 sin2(tω)

)
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Time

0 1 2 3 4 5 6 7 8 9 10

N
o

rm

0.5

1

1.5

2

2.5

3

3.5

‖U(t)ϕ0(l0)‖
‖U(t)ϕ1(l0)‖
‖U(t)ϕ2(l0)‖
‖U(t)ϕ3(l0)‖

Figure 15.: Time evolution of ‖U(t)ϕk(l0)‖ for k = 0, . . . , 3 with ω0 = 1 and δ = 0.5.

Hence, zt is determined by the initial value z0 and the differential equation

żt = n−1
t

(
2 δ

2

ω cos(tω) sin(tω) −(δ + ω0)

ω0 − δ 2 δ
2

ω cos(tω) sin(tω)

)
zt

that was solved numerically to obtain the trajectories in Figure 16. We find that the
circular trajectory of the harmonic oscillator, see Figure 14, is converted to an ellipsoid
due to the imaginary part.
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Figure 16.: Trajectory of the centre zt starting from z0 = (1, 0) and contour plot of the
absolute value of W0(Zt, zt) at time t = 1.5 (upper left), t = 3 (upper right),
t = 4.5 (lower left) and t = 6 (lower right) for ε = 1



10. Lindblad dynamics

In the standard description of quantum mechanics via a Hermitian Hamiltonian we
investigate the time evolution of closed systems. By allowing for non-Hermitian Hamil-
tonians we relax this aspect. As we have seen in the previous example we can now also
model diffusion, i.e. an interaction between our quantum system and its environment.
Such interactions will in practical situation always occur to some extent and are thus
worth a closer study.

A more general characterisation of open quantum system is given by the Lindblad
equation. Analogously to the derivation of the Schrödinger equation in Section 8.1
via the generator of a continuous semigroup, we now represent the state of an open
system by a density matrix ρ̂. For simplicity, we skipped in the previous chapters that
the representation via a wave function is only suitable in the special case of a pure
quantum system, see [Gos10, §13.1]. A density matrix or density operator is a positive
trace class operator with trace one, i.e.

ρ̂ : L2(Rn) 7→ L2(Rn) such that ρ̂∗ = ρ̂, ρ̂ ≥ 0, tr(ρ̂) = 1. (10.1)

Lindblad assumed that the time evolution in an open system is governed by a quantum
dynamical semigroup {U(t) ; t ≥ 0}, see Definition 8.1 and (8.4) and derived the gener-
ator of an arbitrary contraction semigroup. Analogously to Lemma 8.1 he obtained the
Lindblad master equation

iε ∂tρ̂ =
[
Ĥ, ρ̂

]
+ i

2

m∑
j=1

2L̂j ρ̂L̂∗j − L̂∗j L̂j ρ̂− ρ̂L̂∗j L̂j , (10.2)

see [Lin76b]. The Hamiltonian Ĥ thereby describes the internal system, the Lindblad
operators L̂j the coupling to the environment. If L̂j = 0 we find the classical Liouville-
von-Neumann equation, otherwise the time evolution will be non-unitary even if Ĥ and
L̂j , j = 1, . . . ,m, are self-adjoint operators.

In this thesis we will discuss the time evolution under the Lindblad equation if Ĥ is a
self-adjoint, quadratic Hamiltonian and the Lindblad terms L̂j , j = 1, . . . ,m, are linear,
this means

H(z) = 1
2z
THz, H = HT ∈ R2n×2n and Lj(z) = `Tj z, `j ∈ C2n (10.3)

for 1 ≤ j ≤ m. We show in the first section that in this case we can rewrite (10.2) as
a Schrödinger equation of doubled dimension with non-Hermitian Hamiltonian. Since
density operators are closely related to Wigner functions, we can combine our find-
ings from Chapter 6 and Chapter 9 and handle the Lindblad equation as a complex
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Schrödinger equation on phase space. To illustrate our results we review two different
examples, a damped harmonic oscillator and as a theoretical approach a system without
internal Hamiltonian at the end of this chapter.

10.1. Lindblad equation

The idea to use Wigner functions as ansatz for the Lindblad equation has been carried
out before, see for example [Alm02, §1, §3]. In their work the authors used Gaussians
as ansatz functions as their Wigner functions are again Gaussians. Due to our findings
for the Wigner transform of Hagedorn’s wave packets in Chapter 6, we are again able
to generalise these results to more excited states. The basic principle is to utilise that
Weyl-operators of any symmetric Wigner function form density operators.

Proposition 10.1 — Density operators. Let ρ̂ be a density operator satisfying (10.1). Then,
there exists a function ψ ∈ L2(Rn) such that ρ̂ can be written as

(ρ̂ϕ)(x) = ψ〈ϕ,ψ〉 =

∫
Rn
ψ(x)ψ(y)ϕ(y) dy.

The Weyl symbol of ρ̂ and the Wigner transformWε(ψ) are related by

ρ = (2πε)nWε(ψ).

Proof. This result is a combination of [Gos10, Proposition 291] and [Gos10, Proposition
296]. The integral formula is obtained if one notices that ρ̂ must be a projection on a
one-dimensional subspace of L2(Rn), i.e.

ρ̂ : L2(Rn) 7→ span{ψ}

for some ψ ∈ L2(Rn). For the Weyl symbol we first state that similar to Lemma A.2 one
can show that the kernel of a Weyl-operator â is given by

Ka(x, y) = (2πε)−n
∫
Rn
e

i
ε
ξT (x−y)a(ξ,

1

2
(x+ y)) dξ.

A detailed proof for this equality can be found in [Gos10, Proposition 205] or Proposition
A.1. The integral formula on the other hand directly implies Kρ(x, y) = ψ(x)ψ(y) and
thus,

ψ(x− y

2
)ψ(x+

y

2
) = (2πε)−n

∫
Rn
e−

i
ε
ξT yρ(ξ, x) dξ = (2πε)−n/2(Fεξ ρ)(y, x)

where Fεξ denotes the Fourier transform in the first component. Applying the inverse
Fourier transform then yields the result,

ρ(ξ, x) =

∫
Rn
ψ(x− y

2
)ψ(x+

y

2
)e

i
ε
ξT y dy = (2πε)nWε(ψ)(ξ, x).

�
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Mixed Wigner functions Wε(ϕ,ψ) then emerge as the deviation between symmetric
Wigner functions

Wε(ϕ,ψ) +Wε(ψ,ϕ) =Wε(ϕ+ ψ)−Wε(ϕ)−Wε(ψ).

Our aim now is to deduce an equivalent formalism of the Lindblad equation for the
symbol ρ and then insert the Wigner transform of Hagedorn’s wave packets, that are
wave packets on phase space, as ansatz functions. An easy approach is to first write
(10.2) in commutator form,

iε ∂tρ̂ =
[
Ĥ, ρ̂

]
+ i

2

m∑
j=1

([
L̂j ρ̂, L̂∗j

]
+
[
L̂j , ρ̂L̂∗j

])
(10.4)

and then use the Weyl calculus from Appendix A to proceed a semiclassical expansion
up to second order.

Lemma 10.1 — Dynamics of the symbol. We denote by Ĥ and L̂j the Weyl-operators of H
and Lj , j = 1, . . . ,m, as defined in (10.3). Then, a density operator ρ̂ is a solution of
the Lindblad-equation (10.2) if its symbol ρ satisfies

∂tρ = {H, ρ}+ i
2

m∑
j=1

{Ljρ,L∗j}+ {Lj , ρL∗j} − ε
4

m∑
j=1

{{Lj , ρ},L∗j}+ {Lj , {ρ,L∗j}}.

Proof. Since H and Lj are for all j = 1, . . . ,m at most quadratic operators, we can
invoke (A.2) and find

[
Ĥ, ρ̂

]
= iε{H, ρ} and

[
L̂j ρ̂, L̂∗j

]
= iε opε[{Lj#ρ,L∗j}] = iε opε[{Ljρ,L∗j}+ iε

2 {{Lj , ρ},L
∗
j}][

L̂j , ρ̂L̂∗j
]

= iε opε[{Lj , ρ#L∗j}] = iε opε[{Lj , ρL∗j}+ iε
2 {Lj , {ρ,L

∗
j}}]

for all j = 1, . . . ,m. �

Since the Poisson bracket involves only first derivatives of the symbols, we see that the
equation for the symbol contains at most second derivatives and we can thus rewrite it
as a complex Schrödinger equation of doubled dimension.

We moreover utilise Proposition 10.1 and identify the symbol ρ with a symmetric
Wigner function Wε(ψ). In Chapter 6 we introduced the Wigner transform only for
Schwartz functions since this was sufficing for our further proceeding. We also re-
strict ourselves to Schwartz functions ψ in the next proposition, as we want to insert
Hagdorn’s wave packets anyway. However, we refer to [Gos10, Proposition 183] for an
extension of the Wigner transform to general L2-functions.

Proposition 10.2 — Schrödinger formalism. Let H and Lj , 1 ≤ j ≤ m, be defined as
in (10.3) and W = Wε(ψ) denote the Wigner transform of an arbitrary Schwartz
function ψ ∈ S(Rn).
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The density matrix (2πε)nŴ is a solution of the Lindblad equation (10.2) ifW solves

iε ∂tW = (ĤS + iεγ)W (10.5)

where HS is a quadratic function on C2n ⊕ C2n with Hessian matrix

HS =

(
iRe(L) ΩH + Im(L)Ω

−HΩ + ΩIm(L) 0

)
, L =

m∑
j=1

Ω`j`
∗
jΩ (10.6)

and γ =
∑m

j=1 Re(`j)
TΩIm(`j) the dissipation coefficient.

Before we start with the proof let us briefly note that the Hamiltonian satisfies

Im(HS) =

(
Re(L) 0

0 0

)

and Re(L) is negative semidefinite, since z∗Re(L)z = −1
2

∑m
j=1 |`∗jΩz|2 + |`Tj Ωz|2 for all

z ∈ Rn ⊕Rn. So, Proposition 9.1 implies that our approach for the Lindblad equation is
well-defined for all times t ≥ 0.

Proof. The idea is to rewrite the Poisson brackets in Lemma 10.1 in terms of the gra-
dient, {a, b} = ∇aTΩ∇b, and compare our findings to the formula for general quadratic
Hamiltonians in Lemma 8.2. Since

{LjW,L∗j}+ {Lj ,WL∗j} = 2{Lj ,L∗j}W + {W,L∗j}Lj + {Lj ,W}L∗j
=
(
−2`∗jΩ`j − zT `j`∗jΩ∇z + zT `j`

T
j Ω∇z

)
W

= −2
(
`∗jΩ`j + izT Im(`j`

∗
j )Ω∇z

)
W,

and

{{Lj ,W},L∗j} = {L∗j , {W,Lj}} = `∗jΩD
2WΩ`j , {Lj , {ρ,L∗j}} = `Tj ΩD2WΩ`j

for all j = 1, . . . ,m, where D2W denotes the Hessian matrix ofW, the Wigner transform
W satisfies

∂tW = zT (H +

m∑
j=1

Im(`j`
∗
j ))Ω∇zW − i

m∑
j=1

`∗jΩ`jW(z)− ε
4

m∑
j=1

`∗jΩD
2WΩ`j + `Tj ΩD2WΩ`j .

Introducing the notation

HS =

(
H11 H12

H21 H22

)
∈ C4n×4n

we can directly conclude that H22 = 0 and H21 = −(H +
∑m

j=1 Im(`j`
∗
j ))Ω. For H11 we

stress that

`∗jΩD
2WΩ`j + `Tj ΩD2WΩ`j = −

2n∑
s,r=1

(
(Ω`j)s(Ω`j)r + (Ω`j)s(Ω`j)r

)
∂zs∂zrW(z)
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So, (H11)s,r = − i
2

∑m
j=1(Ω`j)s(Ω`j)r + (Ω`j)s(Ω`j)r, i.e.

H11 = − i
2

m∑
j=1

(Ω`j)(Ω`j)
T + (Ω`j)(Ω`j)

T = i
m∑
j=1

ΩRe(`j`
∗
j )Ω

By denoting L :=
∑m

j=1 Ω`j`
∗
jΩ, we find that H11 = iRe(L) and H21 = −HΩ + ΩIm(L).

It remains to calculate tr(H21). Since H is symmetric,

− iε
2 tr (H21) = iε

2 tr

 m∑
j=1

Im(`j`
∗
j )Ω

 = iε
2

m∑
j=1

Im
(
tr
(
`j`
∗
jΩ
))

= iε
2

m∑
j=1

Im
(
`∗jΩ`j

)
.

Furthermore,

`∗jΩ`j = i
(
Re(`j)

TΩIm(`j)− Im(`j)
TΩRe(`j)

)
= 2iRe(`j)

TΩIm(`j)

and thus, − iε
2 tr(H21) = iε

∑m
j=1 Re(`j)

TΩIm(`j). All in all, we find

iε ∂tW = ĤSW + iε
m∑
j=1

Re(`j)
TΩIm(`j)W

what completes the proof. �

In the study of open quantum systems one is usually interested in three effects that
may occur: decoherence, i.e. vanishing off-diagonal terms in the density matrix, dissi-
pation, the loss or gain of energy in the system and diffusion that can be found in all
open system, see [AB11, §1].

The matrix L given in (10.6) comprises dissipation and diffusion of our open system.
If the Lindblad terms Lj are Hermitian, i.e. Im(`j) = 0 for j = 1, . . . ,m, what corre-
sponds to a non-dissipative system, see for example [BA04a, §3], then our constant part
vanishes, γ = 0, and the Hamiltonian can be written as

ĤS = 1
2 ẑ
T

(
iRe(L) ΩH

−HΩ 0

)
ẑ.

This means the remaining diffusion is described by the real part of L. Therefore, we
link the imaginary part of L to the dissipation and the real part of L to the diffusion of
the system. This interpretation can also be underpinned by the relation

tr (Im(L)Ω) = −2γ.

To sum up, we deduced a Schrödinger equation on phase space that is equivalent to
the Lindblad equation and since the Wigner transform of Hagedorn’s wave packets are
Hagedorn wave packets on phase space, we can directly transmit our results for non-
Hermitian Hamiltonians.
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10.2. Coherent state evolution

We start with two positive Lagrangian subspaces L1 and L2 and the corresponding
frames Z1 ∈ Fn(L1) resp. Z2 ∈ Fn(L2). We use the Wigner transform

W0(Z; z) :=Wε(ϕ0(Z1), ϕ0(Z2))(z),

where Z denotes the phase space frame of Z1 and Z2 as ansatz function and insert
into Equation (10.5). Moreover, we denote by L = range(Z) ⊂ C2n ⊕ C2n the positive
Lagrangian subspace determined in Proposition 6.1.

We note here that we can not consider an arbitrary positive Lagrangian subspace
L ⊂ C2n ⊕ C2n, because not all wave packets Φ(Z) on phase space can be written as
Wigner functions.

The time evolution operator Û(t) exists since Im(HS) ≤ 0 and solves the formal equa-
tion

iε ∂tÛ(t) = (ĤS + iε γ̂)Û(t), Û(0) = Id.

For the propagation of the wave packets it again suffices to calculate the dynamics of
the centre zt and the linearisation St ∈ C2n×2n of the classical flow around it. Although,
we add a constant factor γS to the quadratic Hamiltonian HS , we will see later that St
still describes the exact propagation of our wave packets.

Lemma 10.2 — Linearised Flow. The solution St of the system Ṡt = Ω2HSSt and S0 = Id2n

with HS as defined in (10.6) can be written as

St =

(
e(HΩ−ΩIm(L))t 0

ie(ΩH+Im(L)Ω)tIt e(ΩH+Im(L)Ω)t

)
(10.7)

with the symmetric matrix integral

It =

∫ t

0
e−(ΩH+Im(L)Ω)τRe(L)e(HΩ−ΩIm(L))τ dτ ∈ Rn×n.

Moreover, St satisfies

S∗t ΩSt =

(
−2iIt −Id

Id 0

)
. (10.8)

Proof. We can write St as a block matrix containing four n × n-matrices and solve dif-
ferential equations for these four entries,(

Ṡ11(t) Ṡ12(t)

Ṡ21(t) Ṡ22(t)

)
=

(
HΩ− ΩIm(L) 0

i Re(L) ΩH + Im(L)Ω

)(
S11(t) S12(t)

S21(t) S22(t)

)

with initial values S11(0) = S22(0) = Id and S12(0) = S21(0) = 0. We only present the
calculation of the third entry S21 here, the remaining entries follow directly from the
properties of exponential matrices. We have

Ṡ21(t) = iRe(L)e(HΩ−ΩIm(L))t + (ΩH + Im(L)Ω)S21(t).
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The solution to the homogeneous problem reads S21(t) = e(ΩH+Im(L)Ω)tc(t). Thus, with
variation of constants

ċ(t) = ie−(ΩH+Im(L)Ω)tRe(L)e(HΩ−ΩIm(L))t

and

c(t) = i

∫ t

0
e−(ΩH+Im(L)Ω)τRe(L)e(HΩ−ΩIm(L))τ dτ.

The formula for S∗t ΩSt follows by a direct computation. �

We stress here that for a Hermitian Hamiltonian we find S∗t ΩSt = Ω. Thus, the integral
term It can be nicely interpreted as the deviation from the unitary evolution.

Once more, we evolve the Lagrangian subspace L along the flow and obtain a positive
Lagrangian subspace Lt := StL for all times t such that the normalisation

Nt = 1
2iZ
∗S∗t ΩStZ =

1

2i

(
P∗ Q∗

)(−2iIt −Id

Id 0

)(
P
Q

)
= Id2n − P∗ItP

is positive definite. The fact that Im(HS) ≤ 0 already predicts that Nt is positive for
all t ≥ 0 and we summarise the evolution of the Lagrangian subspace in the following
proposition.

Proposition 10.3 — Evolved phase space frame. Let L be a positive Lagrangian subspace
and Z ∈ Fn(L). Then, the evolved Lagrangian subspace Lt = StL is a positive for all
times t ≥ 0 and can be parametrised by the normalised Lagrangian frame

Zt = StZN−1/2
t =

(
e(HΩ−ΩIm(L))tP

e(ΩH+Im(L)Ω)t(Id2n − 2ItG)Q

)
N
−1/2
t . (10.9)

Proof. Due to Lemma 2.5, Lt is positive if Nt is a positive definite matrix. Let v ∈ C2n,
then

v∗Ntv = v∗(Id2n − P∗ItP)v = |v|2 −
∫ t

0
w∗τRe(L)wτ dτ

for wτ = e(HΩ−ΩIm(L))τPv. Since e(HΩ−ΩIm(L))τ and P are invertible for all τ ≥ 0, it
suffices to consider Re(L). We find

w∗τRe(L)wτ =
1

2
w∗τΩ

(
``∗ + ``T

)
Ωwτ = −1

2

(
|`∗Ωwτ |2 + |`TΩwτ |2

)
≤ 0.

and hence Nt > 0. A short calculation using (10.7) and PQ−1 = 2iG further yields

Zt =

(
e(HΩ−ΩIm(L))tP

e(ΩH+Im(L)Ω)t(iItPQ−1 + Id2n)Q

)
N
−1/2
t =

(
e(HΩ−ΩIm(L))tP

e(ΩH+Im(L)Ω)t(Id2n − 2ItG)Q

)
N
−1/2
t .

�

As shown in Chapters 8 and 9 the evolved metric Gt completely determines the gain or
loss in the open system. For the Lindblad equation we can replace the Riccati equation
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from Theorem 9.1 by an equivalent expression using the integral term It.

Lemma 10.3 — Evolved metric. We consider positive Lagrangian subspaces L1, L2 ⊂ C2n

with Z1 ∈ Fn(L1) and Z2 ∈ Fn(L2). We denote by G the generalised metric of Z1 and
Z2 and define the propagation of Z1 and Z2 via their phase space frame

Zt =

(
Pt
Qt

)
= StZN−1/2

t .

Then, the propagated generalised metric Gt = 1
2iPtQ

−1
t satisfies

Gt = e(HΩ−ΩIm(L))t(G−1 − 2It)
−1e−(ΩH+Im(L)Ω)t

and the deviation of Gt and the time evolved symplectic metrics G1,t resp. G2,t is
singular for all times t ≥ 0.

Proof. The first statement follows directly from (10.9),

Gt = 1
2ie

(HΩ−ΩIm(L))tPQ−1(Id2n − 2ItG)−1e−(ΩH+Im(L)Ω)t

= e(HΩ−ΩIm(L))tG(Id2n − 2ItG)−1e−(ΩH+Im(L)Ω)t.

For the singularity, we first note that the same result holds true for the propagation of
G1, i.e.

G1,t = e(HΩ−ΩIm(L))tG1(Id2n − 2ItG1)−1e−(ΩH+Im(L)Ω)t

if both metrics are evolved along the same flow St. Thus,

e−(HΩ−ΩIm(L))t(Gt −G1,t)e
(ΩH+Im(L)Ω)t = (G−1 − 2It)

−1 − (G−1
1 − 2It)

−1

= (G−1 − 2It)
−1
(
G−1

1 −G
−1
)

(G−1
1 − 2It)

−1 = (G−1 − 2It)
−1ΩT (G1 −G) Ω(G−1

1 − 2It)
−1

and the singularity follows from the singularity of the G and G1, see Corollary 2.6. �

In particular, the above result emphasises that if we start with a real symplectic metric
G, what corresponds to a symmetric Wigner function, also the time evolved metric Gt
will stay real-valued, i.e. the evolved wave packet can still be written as a symmetric
Wigner function.

The evolution of the ladder operators in Lemma 8.5 and Lemma 9.1, respectively, was
based on the relation

iε ∂tÂt(l) = [Ĥ, Ât(l)], l ∈ Cn ⊕ Cn.

Since adding a constant does not change the commutator properties, we can directly
infer

Û(t)Â(Z) Û(t)−1 = Â(StZ) and Û(t)Â†(Z) Û(t)−1 = Â†(StZ)

where Z ∈ C4n×2n is an isotropic matrix and St the linearised flow defined in (10.7).
Thus, we can adopt the strategy for propagation of coherent states from the previous
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chapter. However, we have to be careful, the constant factor might not change the
evolution of the ladder operators, but it will affect the norm of the evolved coherent
state.

Proposition 10.4 — Coherent state evolution. Let Z1, Z2 ∈ C2n×n denote two normalised
Lagrangian frames, Z ∈ C4n×2n their phase space frame and

W0(Z) :=Wε(ϕ0(Z1), ϕ0(Z2))

the Wigner transform of the corresponding coherent states. Then, the time evolution
ofW0(Z) is given by

Û(t)W0(Z) = eβt+γt · W0(Zt)

with Zt as defined in (10.9), γ ∈ R the dissipation coefficient from Proposition 10.2
and

βt =

∫ t

0
tr(Re(L)(1

4PτP
∗
τ + iIm(Gt)) dτ.

If ZT1 ΩZ2 = 0, this factor simplifies to βt =
∫ t

0 tr(Re(L)Gτ ) dτ + γt.

Proof. We start with the special case ZT1 ΩZ2 = 0. In this setting the metric Gt is real
and we choose as ansatz similar to Proposition 9.2

W0(t) := ct · W0(Zt) = (πε)−nct · e−z
TGtz/ε.

We insert into Equation (10.5) and use that tr(ΩIm(L)) = −2γ. For the time derivative
we find

∂tW0(t) =

(
ċt
ct
− 1

εz
T Ġtz

)
· W0(t).

The formula for quadratic Hamiltonians from Lemma 8.2 and the form of HS in (10.6)
moreover implies

(− i
εĤS + γ)W0(t) = (− ε

2∇
T
z Re(L)∇z + zT (HΩ− ΩIm(L))∇z + 2γ)W0(t)

=
(
tr(Re(L)Gt) + 2γ − ε

2z
T (GtRe(L)Gt + (HΩ− ΩIm(L))Gt) z

)
W0(t)

Thus,W0(t) is a solution of (10.5) if

ċt
ct

= tr(Re(L)Gt) + 2γ

and
Ġt = 2GtRe(L)Gt + (HΩ− ΩIm(L))Gt −Gt(ΩH + Im(L)Ω).

The first equation yields the form of βt if ZT1 ΩZ2 = 0. It can easily be shown that the
second equation is equivalent to the previous lemma if one uses that

İt = e−(ΩH+Im(L)Ω)t Re(L) e(HΩ−ΩIm(L))t.
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In the general case, we also have to consider Re(Gt), since

W0(Zt) = (πε)−n det(Re(Gt))
1/4e−z

TGtz/ε.

Fortunately, this concerns only the time derivative. We denote againW0(t) := ct·W0(Zt).
Then,

∂tW0(t) =

(
ċt
ct

+ 1
4tr(∂tRe(Gt)Re(Gt)

−1)− 1
εz
T Ġtz

)
· W0(t).

The evolution equation of Gt furthermore implies

∂tRe(Gt) = 2 (Re(Gt)Re(L)Re(Gt)− Im(Gt)Re(L)Im(Gt)) + (HΩ− ΩIm(L))Re(Gt)

− Re(Gt)(ΩH + Im(L)Ω)

and hence with tr(ΩH) = tr(HΩ) = 0,

tr(∂tRe(Gt)Re(Gt)
−1) = 2 · tr

(
Re(Gt)Re(L)− Re(L)Im(Gt)Re(Gt)

−1Im(Gt)− ΩIm(L)
)
.

If we regard Gt = 1
2iPtQ

−1
t and Corollary 2.3, we find

Im(Gt)Re(Gt)
−1Im(Gt) = 1

2PtP
∗
t − Re(Gt).

Since Re(Gt) and Re(L) are symmetric, we end up with

tr(∂tRe(Gt)Re(Gt)
−1) = 4 · tr(Re(Gt)Re(L))− tr(P∗t Re(L)Pt)− 2 · tr(ΩIm(L)).

Comparing again the constant terms shows,

tr(Re(L)Gt) + 2γ =
ċt
ct

+ tr(Re(L)Re(Gt))− 1
4tr(P∗t Re(L)Pt) + γ,

ċt
ct

= i · tr(Re(L)Im(Gt)) + 1
4tr(P∗t Re(L)Pt) + γ.

�

In Proposition 9.2 we deduced for the damping or growth factor

βt = 1
4

∫ t

0
tr(G−1

τ Im(H)) dτ,

here we find for the phase space metric and the Hamiltonian HS

tr(G−1
t Im(HS)) = tr

((
PtP∗t PtQ∗t − iId

QtP∗t + iId QtQ∗t

)(
Re(L) 0

0 0

))
= tr(P∗t Re(L)Pt).

Hence, the additional terms induced by the dissipation are eγt and a phase factor

ei
∫ t
0 tr(Re(L)Im(Gτ )) dτ .

Our approach for the evolution of the coherent state was adapted from our study of
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non-Hermitian Hamiltonians. However, in the context of the Lindblad equation we
could also use the trace preservation to determine the coefficient ct as we will present
in the following corollary.

Corollary 10.1 — Trace preservation. LetW0(t, z) := eβt+γt ·W0(Zt; z) be defined as in the
previous Proposition 10.4. Then, we have for all t ≥ 0,∫

R2n

W0(t, z) dz = 1.

Proof. Since Gt is an invertible matrix with positive definite real part for all t ≥ 0, it
holds

(πε)−n
∫
R2n

e−z
TGtz/ε dz = det(Gt)

−1/2.

Hence, W0(t, z) := (πε)−n det(Gt)
1/2e−z

TGtz/ε is L1-normalised and it remains to deter-
mine the determinant. Again, with Jacobi’s determinant formula,

∂t(det(Gt)
1/2) = 1

2 det(Gt)
1/2tr(ĠtG

−1
t )

and with our findings from the previous proof for Ġt,

tr(ĠtG
−1
t ) = 2 · tr(GtRe(L)− ΩIm(L)) = 2 · tr(GtRe(L)) + 4γ

where we again used that tr(ΩH) = tr(HΩ) = 0. Thus, we find

W0(t, z) := (πε)−ne
∫ t
0 tr(GτRe(L)) dτ+2γte−z

TGtz/ε.

Taking into account our definition of W0(Zt) in Proposition 6.2, we need to extract
det(Re(Gt))

1/4. With a similar calculation

∂t(det(Re(Gt))
1/4) = 1

4 det(Re(Gt))
1/4tr(Re(Ġt)Re(Gt)

−1)

what we already identified as

1
4tr(Re(Ġt)Re(Gt)

−1) = tr(Re(L)Re(Gt))− 1
4tr(P∗t Re(L)Pt) + γ.

Hence W0(t, z) can be written as W0(t, z) = eβt+γt · W0(Zt; z) with βt as in Proposition
10.4. �

The propagation of excited states now follows similarly as for the non-Hermitian Hamil-
tonians in Corollary 9.2. However, we are able to give a simplified relation for the
appearing polynomials in the case of symmetric Wigner functions.

10.3. Excited state evolution

Let again Z1, Z2 ∈ C2n×n denote two positive Lagrangian frames and Z ∈ C4n×2n their
corresponding phase space frame. We are now interested in the evolution of Wigner
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functions of the form
W(k,l)(Z; z) :=Wε(ϕk(Z1), ϕl(Z2))(z),

for k, l ∈ N.

Theorem 10.1 — Excited state evolution. The propagated Wigner function is given by

Û(t)W(k,l)(Z; z) =
eβt+γt√

2|k|+|l|k!l!
pMt

(k,l)(
1√
ε
N
−1/2
t Q−1

t z)W0(Zt; z)

where the polynomials pMt

(k,l) are defined by the recursion (4.7) with

Mt = Q−1
(
2iQP∗ItG+ (Id2n − 2ItG)−1(Id2n − 2ItG)

)
QN−1

t , (10.10)

the damping or growth factor βt as in Proposition 10.4 and the dissipation coefficient
γ as in Proposition 10.2.

Proof. The proof follows directly from Corollary 9.2, we only have to simplify the recur-
sion matrix

Mt = 1
2iN

−1
t (StZ)∗Ω2StZ +N

−1/2
t Q−1

t QtN
−1/2
t .

For the first term we find with the same approach as for the normalisation

1
2iN

−1
t Z∗S∗t Ω2StZ = 1

2iN
−1
t

(
−2iP∗ItP +QTP − PTQ

)
= −N−1

t P∗ItP.

and sinceMt is symmetric, N−1
t P∗ItP = P∗ItPN−1

t .

For the second term we can deduce from Equation (10.9) that

N
−1/2
t Q−1

t QtN
−1/2
t = Q−1(Id2n − 2ItG)−1(Id2n − 2ItG)QN−1

t .

Summing up the two terms leads to

Mt =
(
−P∗ItP +Q−1(Id2n − 2ItG)−1(Id2n − 2ItG)Q

)
N−1
t

= Q−1
(
−QP∗ItPQ−1 + (Id2n − 2ItG)−1(Id2n − 2ItG)

)
QN−1

t

and the claim follows since PQ−1 = 2iG. �

If we consider Wigner functions of the form

Wε(ϕk(Z), ϕl(Z)),

for k, l,Nn, i.e. of wave packets that are parametrised by the same Lagrangian subspace,
the phase space wave packet is not described by the generalised metric, but by the real
symplectic metric introduced in Section 2.4. Since we have more information in this
case about the symplectic metric and the phase space frame Z, we can simplify our
findings further.
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Corollary 10.2 — Symmetric Wigner functions. If Z1, Z2 ∈ C2n×n are two normalised La-
grangian frames defining the same subspace, i.e. ZT1 ΩZ2 = 0, the recursion matrix
in (10.10) simplifies to

Mt = (2N−1
t − Id2n)Q−1Q

with Q−1Q =

(
0 Id

Id 0

)
.

Proof. If ZT1 ΩZ2 = 0, the matrix G is real and we have QP∗ = −iId2n, see Remark 2.4
and 2.2. This simplifiesMt to

Mt = Q−1 (Id2n + 2ItG)QN−1
t .

Moreover, we find in this case QNtQ−1 = Q(Id2n − P∗ItP)Q−1 = Id2n − 2ItG. Replacing
2ItG = Id2n −QNtQ−1 leads to

Mt = Q−1
(
2Id2n −QNtQ−1

)
QN−1

t = (2Id2n −Nt)Q−1QN−1
t .

It remains to show that Q−1QN−1
t = N−1

t Q−1Q, but this follows from

NtQ−1Q−Q−1QNt = Q−1QPT ItP − P∗ItPQ−1Q

= Q−1
(
QP∗ItPQ−1 −QP∗ItPQ−1

)
Q = 0

since QP∗ and PQ−1 are both purely imaginary in this case. �

10.4. Evolution of the Chord function

Before we discuss some examples, we want to present a small linkup to another ap-
proach that is often used for the study of Lindblad dynamics, the Chord functions.

The basic idea is to describe the evolution of a Wigner function by a pair of phase
space trajectories and combine them in double phase space, see [BA06].

We start with recalling that the Heisenberg-Weyl translation operator can be written
as

T (z) = e−
i
ε
zTΩẑ

for any phase space point z ∈ Rn ⊕ Rn, see also Appendix A. We then expand an arbi-
trary operator â = opε[a] with an admissible symbol a as superposition of translation
operators

â = (2πε)−n
∫
R2n

T (z)χa(z) dz,

see [ABMR09, §2]. The function χa is called the Chord symbol of â. One can further
show that the symbol a and the Chord symbol χa are related via

χa(z) = (2πε)−n
∫
R2n

a(ζ)e−
i
ε
ζTΩz dζ.

This transform can be generally defined as a Fourier transform on phase space.
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Definition 10.1 — Symplectic Fourier transform. Let Φ ∈ L2(R2n). We define the symplec-
tic Fourier transform of Φ by

FεSΦ(z) = (2πε)−n
∫
R2n

Φ(ζ)e−
i
ε
ζTΩz dζ

for all ζ ∈ R2n.

If moreover the operator ρ̂ is a density operator, i.e. ρ(z) = (2πε)nWε(ψ) for some
ψ ∈ L2(Rn), see Proposition 10.1, we call the corresponding symbol χ = χρ a Chord
function. In quantum optics, the function χ is also known as (quantum) characteristic
function. The Lindblad dynamics for the Chord function reduces to a Fokker-Planck
equation and is thus solvable. Furthermore, caustics that are induced by decoherence
can be projected either to the space of the Wigner functions or to the space of the Chord
function. Hence, this approach may help to avoid caustics, see [BA04a].

As we use Hagedorn’s wave packets as ansatz functions, the next reasonable step is
to determine their symplectic Fourier transform.

Proposition 10.5 — Symplectic Fourier transform of Hagedorn’s wavepackets. Let κ ∈ N2n,
Z = (P;Q) ∈ C4n×2n be a normalised Lagrangian frame and Φκ(Z) denote the κ-th
Hagedorn wavepacket on phase space. Then,

FεSΦκ(Z) = Φκ(Z̃) with Z̃ =

(
ΩQ

ΩTP

)
.

In particular, this implies for the coherent state

FεSΦ0(Z; z) = 2−nΦ0(Z; z/2), z ∈ R2n.

Proof. We first note that for a general Φ ∈ L2(R2n),

FεS(FεSΦ)(z) = (2πε)−2n

∫
R2n

∫
R2n

Φ(z′)e−
i
ε
z′TΩζ dz′e−

i
ε
ζTΩz dζ

= (2πε)−2n

∫
R4n

Φ(z′)e−
i
ε
ζTΩ(z−z′) dz′dζ =

∫
R4n

Φ(z′)δz′=z dz
′ = Φ(z)

and thus (FεS)−1 = FεS . We now apply the same strategy as for the standard Fourier
transform and utilise that

0 = Â(Z)Φ0(Z) = FεSÂ(Z)(FεS)−1FεSΦ0(Z).

For the position and momentum operator on phase space, it holds

FεS ẑFεSΦ(z) = (2πε)−2n

∫
R4n

Φ(z′)ζe−
i
ε
ζTΩ(z−z′) dz′dζ

= (2πε)−2n

∫
R4n

Φ(z′)(−iεΩ∇z′e−
i
ε
ζTΩ(z−z′)) dz′dζ

= (2πε)−2n

∫
R4n

iεΩ∇z′Φ(z′)e−
i
ε
ζTΩ(z−z′) dz′dζ = −iεΩT∇zΦ(z)
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and

FεS(−iε∇z)FεSΦ(z) = (2πε)−n
∫
R2n

−iε∇ζFεSΦ(ζ)e−
i
ε
ζTΩz dζ

= (2πε)−n
∫
R2n

FεSΦ(ζ)(iε∇ζe−
i
ε
ζTΩz) dζ

= (2πε)−2nΩz

∫
R2n

FεSΦ(ζ)e−
i
ε
ζTΩz dζ = ΩzΦ(z).

Hence, we find for the phase space operator v̂ =

(
−iε∇z
ẑ

)
,

FεS v̂FεS =

(
0 Ω

ΩT 0

)
v̂

and thus FεSÂ(Z)FεS = Â(Z̃) resp. FεSÂ†(Z)FεS = Â†(Z̃) with

Z̃ =

(
P̃
Q̃

)
=

(
0 Ω

ΩT 0

)
Z =

(
ΩQ

ΩTP

)
.

This proves the claim for the general wave packets. For the coherent state we moreover
note that since G := 1

2iPQ
−1 is symplectic

P̃Q̃−1 = ΩQP−1Ω = − 1
2iG and det(Q̃) = det(P) = (2i)2n det(Q).

Besides that, the symplectic Fourier transform FεS is a unitary transform, see for exam-
ple [Fei+08, §6], and therefore ‖FεSΦ0(Z)‖ = 1. Lemma 4.2 then implies

FεSΦ0(Z; z) = (πε)−n/22−n det(Q)−1/2e−
1
4ε
zTGz = 2−nΦ0(Z; z/2).

�

The previous proposition shows that the Chord function of a coherent state equals just
a rescaling of this state. Thus, if we restrict ourselves to coherent states as ansatz
functions, our evolution equation given in (10.5) describes also the evolution of the
corresponding Chord function.

This setting, with a general Hamiltonian function, was already investigated in a se-
ries of publications by Ozorio de Almeida and Brodier, see [BA04a], [BA04b], [BA06]
and [BA10]. They deduced the propagation of the Chord function χ(z, t) via a double
Hamiltonian given by

HC(z, ζ) = H(z − 1
2Ωζ)−H(z + 1

2Ωζ)− γzT ζ − i
2

(
(ΩRe(`)ζ)2 + (ΩIm(`)ζ)2

)
where γ denotes the dissipation coefficent, H the internal Hamiltonian and L(z) = `T z

the Lindblad term. For simplicity we consider only one Lindblad term here.
The Chord function is then the solution of the non-Hermitian Schrödinger equation

iε ∂tχ(z, t) = HC(z,−iε∇z)χ(z, t), (10.11)
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see [BA10, Eq. (13), (14)]. If we take H to be quadratic, then HC is also a quadratic
Hamiltonian and we can show that this result is equivalent to our approach for coherent
states in one dimension.

Corollary 10.3 — Evolution equation in one dimension. For n = 1, we can write Equation
(10.5) as

iε∂tW =
(
− iε2

2 ∇
T
z Re(L)∇z + iεxT (HΩ + γ · Id2)∇z

)
W

what matches exactly with the evolution equation for the Chord function (10.11).

Proof. Let ` =

(
`p

`q

)
with `p, `q ∈ C. Then, γ = Re(`)TΩIm(`) = Im(`p`q) and

Im(L) = ΩIm(``∗)Ω = Ω

(
0 Im(`p`q)

−Im(`p`q) 0

)
Ω = Im(`p`q) · Id2 = γ · Id2.

Hence, we can rewrite (10.5) in the specified form. On the other hand we find for the
double Hamiltonian with H(z) = 1

2z
THz,

H(z − 1
2Ωζ)−H(z + 1

2Ωζ) = 1
2

(
−zTHΩζ + ζTΩHz

)
= −zTHΩζ

and

(ΩRe(`)ζ)2 + (ΩIm(`)ζ)2 = ζTΩRe(`)Re(`)TΩζ + ζTΩIm(`)Im(`)TΩζ

= ζTΩRe(``T )Ωζ = ζTRe(L)ζ.

This yields a double Hamiltonian of the form

HC(z, ζ) = −zT (HΩ + γ · Id2)ζ − i
2ζ
TRe(L)ζ

what verifies our result. �

10.5. Example: Damped harmonic oscillator

For the examples we again only consider the one dimensional case such that we can vi-
sualise the time evolution of our Wigner transform. We start with the damped harmonic
oscillator as it appears in the context of electromagnetic fields, see [BH02, §2, §5]. This
model is a standard simple example in quantum dynamics to show decoherence effects.
We take the harmonic oscillator as Hamiltonian,

Ĥ = 1
2(p̂2 + q̂2), H = Id2

and a single coupling to the environment that is proportional to Dirac’s ladder opera-
tors,

L̂1 = (q̂ + ip̂), `1 =

(
i

1

)
.
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We stress that due to the form of the matrix L = Ω
∑m

j=1 `j`
∗
jΩ it suffices for a mathe-

matical study to consider only one Lindblad term. We find

L = Ω`1`
∗
1Ω =

(
−1 −i

i −1

)
= −Id2 + iΩ and γ = Re(`)TΩIm(`) = 1.

We will investigate two cases here, the dynamics of a symmetric Wigner transform
Wε(ϕk(l), ϕm(l)) and of a non-symmetric Wigner transformWε(ϕk(l1), ϕm(l2)).

For a start we again consider the standard coherent state,

L0 = span{l0}, l0 =

(
1

−i

)
∈ C2,

with the symplectic metric G = Id2. The corresponding phase space frame Z is of the
form

Z =

(
P
Q

)
, where P =

(
i i

−1 1

)
, Q = 1

2

(
1 1

i −i

)
.

and we denote L := span{Z}.

Linearised flow
For the linearised flow that is independent of our initial wave packets, and thus equal
for the symmetric and the non-symmetric Wigner function, we find Re(L) = −Id2,
Im(L) = Ω and

It =

∫ t

0
e−(ΩH+Im(L)Ω)τ Re(L) e(HΩ−ΩIm(L))τ dτ = −

∫ t

0
e−(Ω−Id2)τe(Ω+Id2)τ dτ

= −
∫ t

0
e2τ dτ · Id2 = 1

2(1− e2t)Id2.

This implies

St =

(
e(Ω+Id2)t 0

ie(Ω−Id2)tIt e(Ω−Id2)t

)
with S∗t ΩSt =

(
−2iIt −Id2

Id2 0

)
.

and the integral term It includes the deviation from the Hermitian case.

Normalisation
Since

P∗P =

(
−i −1

−i 1

)(
i i

−1 1

)
= 2 · Id2

we obtain for the normalisation

Nt = Id2 − P∗ItP = Id2 − (1− e2t)Id2 = e2t Id2.

what displays that Nt is positive for all times t ≥ 0 due to Proposition 10.3.
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Evolved coherent state
Proposition 10.3 moreover implies that the time evolved phase space frame is given by

Zt =

(
e(HΩ−ΩIm(L))tP

e(ΩH+Im(L)Ω)t(Id2n − 2ItG)Q

)
N
−1/2
t =

(
e−te(Ω+Id2)tP
ete(Ω−Id2)tQ

)
,

what is equivalent to a simple unitary rotation,

Pt =

(
cos(t) − sin(t)

sin(t) cos(t)

)
P, Qt =

(
cos(t) − sin(t)

sin(t) cos(t)

)
Q.

In particular, the symplectic metric Gt is constant over time, Gt = Id2. The gain or loss
factor of the system is then easily computed as

βt + γt =

∫ t

0
tr(Re(L)Gτ ) dτ + 2γt = −2t+ 2t = 0.

Hence, the coherent state is time invariant, Û(t)W0(Z) = W0(Z), what matches with
the results in [BH02, §5.2.1]. This behaviour can also be explained sinceW0 is an eigen-
state of HS in this case.

Evolved excited states
As we are considering the case of a symmetric Wigner function, we can for the excited
states invoke the shortened formula for the recursion matrixMt,

Mt = (2N−1
t − Id2)Q−1Q = (2e−2t − 1)

(
0 1

1 0

)

and the circular structure of the excited states is preserved over time, see Section 5.3.
In particular, we see

M0 =

(
0 1

1 0

)
and Mt →

(
0 1

1 0

)
as t→∞.

However, we evaluate the polynomial prefactor at 1√
ε
N
−1/2
t Q−1

t z and

N
−1/2
t Q−1

t = e−tQ

(
cos(t) sin(t)

− sin(t) cos(t)

)
→ 0

for t → ∞. This means, excited states with k = m, i.e. density operators, tend to the
coherent stateW0(Z), while excited states with k 6= m, i.e. the differences between the
density operator, vanish, see Figures 17 and 18.

For the non-symmetric Wigner transformWε(ϕk(l1), ϕm(l2)) we choose L1 = span{l1}
and L2 = span{l2} with

l1 =

(
1

−i

)
, l2 =

(
i

1− 2i

)
.
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Figure 17.: Contour plots of the absolute values of U(t)W(5,5)(Z) at time t = 0 (upper
left), t = 0.5 (upper right), t = 1 (lower left) and t = 4 (lower right) for ε = 1

The phase space frame Z of l1 and l2 is then given by

Z =

(
P
Q

)
, where P =

(
i −1 + 2i

−1 i

)
, Q = 1

2

(
1 i

i 1− 2i

)

and the generalised metric G of l1 and l2 is complex-valued,

G = 1
2

(
3− i 1 + i

1 + i 1 + i

)
.

Normalisation
For the normalisation we obtain similar as in the first case

Nt = Id2 − P∗ItP = Id2 − 1
2(1− e2t)P∗P =

(
e2t e2t − 1

e2t − 1 3e2t − 2

)
.

Our calculations for coherent and excited states get more involved.

Evolved coherent state
For the propagation of the coherent state we omit Pt and Qt and determine the evolved
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Figure 18.: Contour plots of the absolute values of Û(t)W(5,3)(Z) at time t = 0 (upper
left), t = 0.5 (upper right), t = 1 (lower left) and t = 4 (lower right) for ε = 1

metric by means of Lemma 10.3,

Gt = e(Ω+Id2)tG(Id2 − 2ItG)−1e−(Ω−Id2)t = Id2 + 1
2e
−(2+2i)t

(
1− i 1 + i

1 + i −1 + i

)

what nicely addresses the second statement of Lemma 10.3, we recover the metric from
the symmetric case with an additional singular matrix. For the gain or loss in the
system we find

βt + γt =

∫ t

0
tr(Re(L)(1

4PτP
∗
τ + iIm(Gτ )) dτ + γt = −

∫ t

0
tr(1

4PτP
∗
τ + iIm(Gτ )) dτ + t,

tr(Im(Gτ )) = 0 and

PτP∗τ = e(Ω+Id2)τPN−1
τ P∗e(−Ω+Id2)τ

= e2t

2e4t−1

(
4e2t · Id2 + 2

(
cos(2t)− sin(2t) cos(2t) + sin(2t)

cos(2t) + sin(2t) − cos(2t) + sin(2t)

))
.

So, βt emerges as

βt = −
∫ t

0

2e4τ

2e4τ−1
dτ = −1

4 ln(2e4t − 1), eβt+γt =
et

(2e4t − 1)1/4
,
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and the coherent state tend to constant multiple of the coherent state in the symmetric
case.

Evolved excited states
For the excited states we have to utilise formula (10.10) for the recursion matrix and
obtain

Mt =
1− i

2
(2e−2t − 1)

(
2e−2t − 1 1

1 −(2e−2t − 1)−1

)
.

with

M0 =
1− i

2

(
1 1

1 −1

)
and Mt →

1− i

2

(
1 −1

−1 −1

)

for t → ∞. Due to the substitution 1√
ε
N
−1/2
t Q−1

t z we find a similar picture for the
propagation as in the first example. Excited states with k = m approach the coherent
state, excited states with k 6= m disappear, see Figure 19. This behaviour is again
consistent with the one found in [BH02, §5.2.1].
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Figure 19.: Contour plots of the absolute values of Û(t)W(2,2)(Z) at time t = 0 (upper
left), t = 0.5 (upper right), t = 1 (lower left) and t = 4 (lower right) for ε = 1
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10.6. Example Pure Lindblad dynamics

As second example we investigate the effect of the Lindblad operators by neglecting the
Hamiltonian, i.e. we take

H = 0,

and choose the most general one-dimensional setting for the Lindblad operators,

L̂1 = `T1 ẑ, `1 =

(
α

β

)
∈ C2.

Then,

L =

(
−|α|2 Re(αβ)

Re(αβ) −|β|2

)
+ i

(
0 −Im(αβ)

Im(αβ) 0

)
, γ = Im(αβ)

and we distinguish the two cases Im(αβ) = 0 and Im(αβ) 6= 0. The first example de-
scribes the evolution in a non-dissipative system, the second includes dissipation.

In both examples we start from the standard coherent state,

L0 = span{l0}, l0 =

(
1

−i

)
∈ C2, G = Id2

with symmetric Wigner functions of the formWk,m =W(ϕk(l0), ϕm(l0)).

Linearised flow
If Im(αβ) = 0, we find Im(L) = 0 and an easy calculation yields

It =

∫ t

0
Re(L) dτ = tRe(L).

and St =

(
Id 0

itRe(L) Id

)
.

Normalisation
The normalisation is then given by

Nt = Id2 − P∗ItP = Id2 + t

(
|α|2 + |β|2 −(α− iβ)(α− iβ)

−(α+ iβ)(α+ iβ) |α|2 + |β|2

)

and we denote again the determinant of Nt as dt = 1 + 2(|α|2 + |β|2)t.

Evolved coherent state
For the evolved symplectic metric we once more refer to Lemma 10.3,

Gt =
1

dt

(
1 + 2|β|2t 2αβt

2αβt 1 + 2|α|2t

)
.
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Thus, we find a notably nice long term behaviour: for t→∞ it holds

Gt →
1

|α|2 + |β|2

(
|β|2 αβ

αβ |α|2

)
.

For the deduction of βt, we kept things simple, since we are investigating symmetric
Wigner functions and in this case γ = 0. Thus

βt =

∫ t

0
tr(Re(L)Gτ ) dτ =

∫ t

0

−(|α|2 + |β|2)

1 + 2(|α|2 + |β|2)t
dτ = −1

2 ln(dt), eβt =
√

1
dt
.

Hence, we find a loss factor and the pure coherent stateW0 is slowly damped.

Evolved excited states
For excited statesWk,m, k,m ∈ N, we note that

Mt =
1

dt

(
2(α− iβ)(α− iβ)t 1

1 2(α+ iβ)(α+ iβ)t

)

and the circular structure is preserved if and only if α = iβ or α = −iβ. However,
since we assume Im(αβ) = 0 this implies α = β = 0. For the polynomial prefactor we
furthermore find

N
−1/2
t Q−1

t z = Q−1(Id2 − 2ItG)−1z with (Id− 2ItG)−1 =
1

dt

(
1 + 2|β|2t 2αβt

2αβt 1 + 2|α|2t

)
,

the damping of the excited states is only caused by βt, see Figure 20. Since we investi-
gate a non-dissipative system, we will not converge to a steady-state what is confirmed
by the illustrations.

If we consider the case γ = Im(αβ) 6= 0 the calculations get more extensive.

Linearised flow
We have e−ΩIm(L)t = eIm(αβ)t · Id2 = eγt · Id2 and thus

It = 1
2γ (e2γt − 1)Re(L)

and St =

(
eγt Id2 0

ie−γtIt e−γt Id2

)
.

Normalisation
The normalisation in this case reads

Nt = Id2 +
e2γt − 1

2γ

(
|α|2 + |β|2 −|α|2 + |β|2 + 2iRe(αβ)

−|α|2 + |β|2 − 2iRe(αβ) |α|2 + |β|2

)

with determinant dt = 1 + |α|2+|β|2
γ (e2γt − 1) + (e2γt − 1)2.
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Figure 20.: Contour plots of the absolute values of Û(t)W(3,2)(Z) at time t = 0 (upper
left), t = 0.01 (upper right), t = 0.03 (lower left) and t = 0.06 (lower right) for
α = 1, β = 2 and ε = 1

Evolved coherent state
The propagation of the symplectic metric is then described by

Gt =
e2γt

dt

(
Id2 +

e2γt − 1

γ

(
|α|2 Re(αβ)

Re(αβ) |β|2

))

For the gain or loss factor βt, we first stress that

tr(Re(L)Gt) = −e
2γt

dt

(
|α|2 + |β|2 + 2γ(e2γt − 1)

)
= − d′t

2dt
.

Therefore, βt = −1
2 ln(dt) + γt and eβt+γt = e2γt√

dt
.

Evolved excited states
Finally, the propagation of the excited states is determined by

Mt = 1
dt

((
0 1

1 0

)
+ (1− e−2Im(αβ)t)

( |α|2−|β|2−2iRe(αβ)
Im(αβ) e−2Im(αβ)t − 1

e−2Im(αβ)t − 1 |α|2−|β|2+2iRe(αβ)
Im(αβ)

))
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what pleasantly illustrates the circular structure that is only preserved if

|α|2 − |β|2 − 2iRe(αβ) = 0.

This was for example satisfied for the damped harmonic oscillator, where we investi-
gated α = i, β = 1. Moreover, we see that the sign of γ is characteristic for the dynamics,
for γ > 0 we expect a contraction of the wavepacket, see [BA04b, §2] and for γ < 0 an
expansion. We visualise the time evolution for α = 1, β = i in Figure 21 and α = 1,
β = −i in Figure 22.

In both settings we have |α|2 − |β|2 = 0 and the circular structure is preserved. For
our first choice with γ < 0 our wave packet spreads, while in the second case with γ > 0,
the wave packet is concentrated and tends to the coherent state what matches with the
findings in [BA04b]. For the substitution

N
−1/2
t Q−1

t z = Q−1(Id2 − 2ItG)−1e−Im(L)Ωtz

we moreover note

(Id− 2ItG)−1e−Im(L)Ωt =
eγt

dt

(
Id +

e2γt − 1

γ

(
|α|2 Re(αβ)

Re(αβ) |β|2

))
.
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Figure 21.: Contour plots of the absolute values of Û(t)W(3,2)(Z) at time t = 0 (upper
left), t = 0.2 (upper right), t = 0.4 (lower left) and t = 0.08 (lower right) for
α = 1, β = i and ε = 1
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Figure 22.: Contour plots of the absolute values of Û(t)W(3,2)(Z) at time t = 0 (upper
left), t = 0.5 (upper right), t = 1 (lower left) and t = 2 (lower right) for α = 1,
β = −i and ε = 1





11. Further applications

In the last chapter of this thesis we want to present further areas of application for
non-Hermitian quadratic Hamiltonians. We will shortly introduce three different dif-
ferential equations that are closely connected to each other, namely the diffusion equa-
tion, the Langevin equation and the Fokker-Planck equation, and show that under cer-
tain assumptions they can be rewritten as Schrödinger equation with quadratic, non-
Hermitian Hamiltonian. Thus, we can apply our findings from the second part and
specify wave packets that are solutions to those equations.

The diffusion equation is probably the most natural extension of our findings. We will
give a brief recap of its deduction in the first section and show that the corresponding
Hamiltonian is of the form Ĥ = 1

2 ẑ
THẑ with

HDiff = −2iδ ·

(
1 0

0 0

)

where δ denotes the diffusion coefficient. We will investigate all examples in the uni-
variate case here. By also allowing for complex values of d we can nicely compare the
dynamics of the diffusion equation to the free Schrödinger equation.

The relation of Brownian motion to open quantum systems was already investigated
in several works, see for example [Sze11] or [BA04a]. We will present the approach of
[Lin76a] here, where the joined distribution of position and momentum of a Brownian
particle is described by a Lindblad equation with quadratic Hamiltonian and two linear
Lindblad terms determined by

HBr =

(
1
m

γ
2

γ
2 mω2

)
, `1 = −

(
γ

mω2

)
, `2 =

(
1
m

0

)
,

where m denotes the mass of the particle, γ the friction coefficient and ω2 an external
force or potential. As an explicit example we choose the simplified Brownian motion
from [BH02, §5.3.3] assuming that there is no potential acting on the system.

Since it is known that the evolution of the distribution ρ(p, q) of a Brownian particle is
governed by a Fokker-Planck equation, this moreover shows the relation of the Fokker-
Planck and the Lindblad equation. In one dimension, i.e. if we consider the Fokker-
Planck equation for a distribution ρ(x), x ∈ R, we can also write a general Fokker-
Planck equation with drift α and diffusion δ as Schrödinger equation with

HFP =

(
iδ α

α 0

)
.
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and a constant term 1
2α. This ansatz can be seen as an alteration of [Ris84, p. 5.4],

where the Fokker-Planck equation is interpreted as an Schrödinger equation with com-
plex time scale. Since Fokker-Planck equations do not only play a role in physics, but
also in statistics we present as example the Black and Scholes model, see [BS73]. In our
calculations we explicitly highlight how the constant term effects the time evolution.

11.1. Diffusion equation

The diffusion equation describes the time evolution of a density ρ ∈ L2(Rn) of some
quantity such as heat or a chemical concentration for example, see [Eva98, §2.3]. The
diffusion is thereby a result of random molecular motions. This matter was first picked
up by Fourier studying the distribution of heat in [Fou22] what lead to the well-known
heat equation. Some years later Fick recognised the analogy to general diffusion and
adopted Fourier’s mathematical description of the heat conduction in [Fic55], see [Cra75,
§1].

The derivation of the diffusion equations is based on the hypothesis that the transfer
rate of the diffusing substance is proportional to the gradient of the concentration, i.e.

F = −δ∇xρ, (11.1)

where δ > 0 is called diffusion coefficient. In our study we take δ to be a constant, what
is reasonable for dilute solutions, but we stress that in other examples the diffusion
coefficient markedly relies on the concentration, see [Cra75, §1].

If we then consider a smooth region V ⊂ Rn, the rate of change of the total quantity
within V is given by transfer rate through the boundary ∂V ,

∂t

∫
V
ρ(x) dx = −

∫
∂V
F · ν dS.

Since V was arbitrary this yields ∂tρ = −div(F ) and with assumption (11.1) we find the
diffusion equation

∂tρ = δ∆ρ, (11.2)

see [Eva98, §2.3]. Equation (11.1) is also called Fick’s first law of diffusion, while (11.2)
is known as Fick’s second law of diffusion. In particular, taking δ = 1 yields the heat
equation.

11.2. Example: Diffusion equation

Accordingly to the previous deduction we will apply our results now to the differential
equation

i ∂tρ = (iδ)∂2
xρ.

For simplicity, we restrict ourselves to one dimension, however, the calculations can be
directly lifted to multi-dimensions.
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To be able to compare directly the dynamics of the diffusion equation with the free
Schrödinger equation, see [Lub08, §I.2], we allow for δ ∈ C. Then again, δ = 1 cor-
responds to the heat equation, δ > 0 to a standard diffusion equation and δ = −i to
Schrödinger’s equation.

To start with our analysis, we consider a positive Lagrangian subspace L0 = range(l0)

and its propagation Lt = range(lt) defined via

l0 =

(
p0

q0

)
∈ C2 and lt =

(
pt

qt

)
= Stl0n

−1/2
t ∈ C2.

The dynamics in this case governed by the quadratic Hamiltonian H(z) = 1
2z
THz with

H = −2iδ ·

(
1 0

0 0

)
∈ C2×2,

compare to Lemma 8.2. We note that Im(H) ≤ 0 if and only if Re(δ) ≥ 0 what is satisfied
in the practical situation mentioned before.

Linearised flow
Taking into account that (ΩH)2 = 0, we can easily deduce St = etΩH as the sum

St = Id2 + tΩH =

(
1 0

−2iδt 1

)
.

We directly augment the relation for S∗t ΩSt here, so we can draw back on it in the
following calculations,

S∗t ΩSt =

(
1 2iδt

0 1

)(
2iδt −1

1 0

)
=

(
4iRe(δ)t −1

1 0

)
.

Besides that, this formula also gives a nice intuition for the "non-Hermiticity" of the
example. For a real Hamiltonian, St satisfies S∗t ΩSt = Ω. Hence, the first entry 4iRe(δ)t

measures the deviation from unitary evolution. Here, this interpretation is particularly
pleasant: if δ is purely imaginary we are in the setting of the free Schrödinger equa-
tion, the evolution is unitary. The larger the real part of δ, the more we deviate from
the Hermitian evolution.

Normalisation
The normalisation of Stl0 is then given by

nt = 1
2i l
∗
0S
∗
t ΩStl0 = 1

2i

(
p∗0 q∗0

)(4iRe(δ)t −1

1 0

)(
p0

q0

)
= 1 + 2Re(δ)|p0|2t.

We observe that the normalisation is only required if Re(δ) 6= 0. Beyond that we dis-
tinguish the cases Re(δ) > 0, what corresponds to the diffusion equation and Re(δ) < 0,
what describes only a theoretical example. In the first case our propagation is well-
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defined for all times t ≥ 0, while in the second case can only consider times t ∈ [0;T [

with T = (−2Re(δ)|p0|2)−1.

Evolved coherent state
We restrict ourselves to times t such that nt is positive. Then, the Lagrangian subspace
Lt can be parametrised by

lt = Stl0n
−1/2
t = n

−1/2
t

(
p0

q0 − 2iδp0t

)
.

For the gain or loss factor βt, we know that in the univariate setting, it holds eβt = n
−1/4
t .

Evolved excited states
For the evolution of excited state, it only remains to compute the recursion matrices Mt

and M̃t, respectively. We have

Mt = 1
2in
−1
t (Stl0)∗ΩStl0 = 1

2in
−1
t

(
p∗0 q∗0

)(4iRe(δ)t −1

1 0

)(
p0

q0

)
= 2n−1

t Re(δ)p2
0t.

Moreover, since nt is a real number in one dimension,

n
−1/2
t q−1

t qtn
−1/2
t = n−1

t

q0 + 2iδp0t

q0 − 2iδp0t

and

M̃t = Mt + n
−1/2
t q−1

t qtn
−1/2
t = n−1

t

(
Re(δ)p2

0t+
q0 + 2iδp0t

q0 − 2iδp0t

)
We illustrate the dynamics of the heat equation, i.e. δ = 1, in one dimension. The
fundamental solution of the heat equation is known to be a normalised Gaussian given
by

ϕ(x, t) = (4πt)−n/2e−|x|
2/(4t),

for t > 0 and ϕ(x, t) = 0 otherwise.
Hence, we take the standard Gaussian, i.e. l0 = (i, 1)T as initial value and compare

the dynamics of the coherent state Û(t)ϕ0(l0) and the excited state Û(t)ϕ2(l0) in Figure
23. We find that the coherent state ϕ0 is slowly spreading over time, while the excited
state tends to the coherent state.

11.3. Brownian motion

In this section we will have a closer look at the random motion of particles that causes
diffusion. We concern a large particle, the Brownian particle, that is surrounded by a
medium containing smaller particles, the classical example R. Brown studied in 1827
are pollen in a liquid. Due to collisions with small particles the Brownian particle
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Figure 23.: Absolute values of the wave packets Û(t)ϕ0(l0) and Û(t)ϕ2(l0) starting from
l0 = (i, 1)T at time t = 0 (upper left), t = 0.5 (upper right), t = 1 (lower left)
and t = 3 (lower right) for δ = 1.

moves, however, one cannot predict the exact trajectory of the particle since the inter-
action is random, we obtain a stochastic process, see [Hid80, §2].

The first to describe this phenomena mathematically was Einstein in 1905, see [Ein05].
Let q ∈ Rn denote the position of the particle and m ∈ R its mass, then the motion of
the particle is described by

mq̈ +mγq̇ + V ′(q) = σ2W (t),

see [BH02, p. 5.2.1]. This equation is obtained if we assume that the force acting on the
particle is on one hand given by an external potential V and on the other hand caused by
the friction with the environment that is proportional to the momentum p = mq̇ ∈ Rn.
A particle that is for example moving to the right will be hit by more particles from the
right than from the left, see [UO30, §1].

The uncertainty is modelled by a Wiener process W (t) and the diffusion coefficient,

σ2 = 2mγkBT,

where kB denotes the Boltzmann constant and T the temperature in the system, see
[Lin76a, §].
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Definition 11.1 — Wiener process. Let (Ω,F ,P) be a probability space. A map

W : R+
0 7→ [0; 1]

is called a Wiener process if

1. W (0) = 0,

2. t→W (t) is continuous,

3. for all 0 ≤ t0 < t1 < . . . < tl the differencesW (tl)−W (tl−1), W (tl−1)−W (tl−2), . . .

are independent and normally distributed with

E(W (tj)−W (tj−1)) = 0 and E(W (tj)−W (tj−1))2 = tj − tj−1,

see [BS96, §4.1].

Using Newton’s second law of motion p = mq̇, we can split the second-order differential
equation into two first order equations. The motion of the particle is governed by the
Langevin equations, see also [BH02, §5.2.1],

∂tp = −γp− V ′(q) + σ2W (t),

∂tq = 1
mp.

(11.3)

The density of a Brownian particle then satisfies the diffusion equation discussed in the
previous sections parametrised by the friction coefficient γ. Denoting a Hamiltonian

H(p, q) = 1
2mp

2 + V (q), (11.4)

we can rewrite the Langevin equations as

∂tp = −∂qH(p, q)− γp+ σ2W (t),

∂tq = ∂pH(p, q).

We will reproduce the idea of Lindblad in [Lin76a] here who used that the phase space
volume is due to the friction not preserved and thus modelled a quantum Brownian par-
ticle with an open system and obtained a type of Lindblad master equation we discussed
in Chapter 10.

Analogously to [UO30] Lindblad takes expectation values of (11.3) and therefore de-
duced for the average position and momentum

∂tp = −γp− V ′(q),

∂tq = 1
mp,

where he formally replaced p by E(p) and q by E(q). If the potential V is at most linear in
q, these equations can be rewritten as a first order differential equation and associated
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with a Lindblad equation. Analogously to [Lin76a] we assume that

V (q) = mω2

2 q2

for some ω ∈ R. By invoking his previous findings for the generators of quantum dy-
namical semigroups in [Lin76b], Lindblad was able to show that the propagation of the
probability density ρ = ρ(p, q, t) of p and q can be described by an Lindblad equation,

iε ∂tρ̂ =
[
Ĥ, ρ̂

]
+ i

2

2∑
j=1

2L̂j ρ̂L̂∗j − L̂∗j L̂j ρ̂− ρ̂L̂∗j L̂j ,

with quadratic, internal Hamiltonian

H(p, q) = 1
2

(
1
m |p|

2 + γ
2 (pT q + qT p) +mω2|q|2

)
,

and two linear Lindblad terms,

L1(p, q) = −γp−mω2q, L2(p, q) = 1
mp,

see [Lin76a, §3]. It is a well-known result that considering the density phase space
probability distribution ρ(p, q, t) of a Brownian particle leads to a Fokker-Planck equa-
tion. After examining the dynamics of a Brownian particle in a simple system in the
next chapter, we will study the relation between the Lindblad equation and the Fokker-
Planck equation in more detail.

11.4. Example: Simplified Brownian motion

Since an explicit computation of the Brownian motion gets very extensive due to the
exponential matrices, we only examine a special case stated also in [BH02, §5.3.3]. We
stress that although the explicit calculations are involving, one can easily solve the
general case numerically with the formulas introduced in Chapter 10.

We assume that the Brownian particle has mass m = 1 and is free, i.e. there is no
potential V . Moreover, we neglect the friction, i.e. γ = ω = 0. Even though this model
seems very simple, the calculations are still illustrative. Due to Lindblad’s findings we
consider in the univariate case the Hamiltonian

Ĥ = 1
2 p̂

2, H =

(
1 0

0 0

)
,

and the Lindblad coupling

L̂1 = p̂, `1 =

(
1

0

)
and L =

(
0 0

0 −1

)
.

Since the Lindblad terms are real, we will find a non-dissipative system and thus the
wavepackets will not tend to steady state.
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As initial state we choose the standard coherent state,

L0 = span{l0}, l0 =

(
i

1

)
∈ C2,

with symplectic metric G = Id2.

Linearised flow
The integral term here contains polynomials. We have

−ΩH =

(
0 0

−1 0

)
and e−ΩHt = Id2 − ΩHt =

(
1 0

−t 1

)
.

and eHΩt = (e−ΩHt)R. Since Im(L) = 0,

It =

∫ t

0
e−ΩHτ Re(L) eHΩτ dτ =

∫ t

0

(
0 0

0 −1

)
dτ =

(
0 0

0 −t

)

and the linearised flow is given by

St =

(
eHΩt 0

ieΩHtIt eΩHt

)
.

Normalisation
Moreover, a direct computation yields for phase space frame

P =
(
−Ωl0 Ωl0

)
=

(
1 −1

i i

)

and accordingly for the normalisation

Nt = Id2 − P∗ItP =

(
1 + t t

t 1 + t

)
.

The eigenvalues of Nt are 1 and 1 + 2t, what displays that Nt is positive for all t ≥ 0. We
denote the determinant of Nt with dt = 1 + 2t.

Evolved coherent state
For the evolved metric we revert to Lemma 10.3 and find

Gt = eHΩt(Id2 − 2It)
−1e−ΩHt =

1

dt

(
(1 + t)2 −t
−t 1

)
.

As we are considering a symmetric Wigner function, we can furthermore utilise for the
gain or loss factor βt,

βt =

∫ t

0
tr(Re(L)Gτ ) dτ + γt = −

∫ t

0

1

dτ
dτ = −1

2 ln(1 + 2t),
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and we receive a damping, eβt+γt =
√

1
1+2t . Hence, our coherent state is slowly absorbed.

Evolved excited states
For the recursion matrix we can also draw back on the simpler formula and find that it
can similarly as the metric be expressed in terms of dt,

Mt = (2N−1
t − Id2)

(
0 1

1 0

)
=

1

dt

(
−2t 1

1 −2t

)
,

So, we can state for the behaviour of the recursion matrix,

M0 =

(
0 1

1 0

)
and Mt →

(
−1 0

0 −1

)

as t → ∞. Comparing these findings to the results in Chapter 5 shows that we move
from a factorisation in Laguerre polynomials to a complex-scaled factorisation into Her-
mite polynomials. Additionally, we also have keep track of the rotation. We evaluate
the polynomials at the grid N−1/2

t Q−1
t z = Q−1(Id2 − 2ItG)−1e−ΩHtz where

(Id2 − 2ItG)−1e−ΩHt =
1

dt

(
1 + 2t 0

−t 1

)
.

Figure 24 displays the evolution ofW(3,2)(Z). One can nicely see that the circular struc-
ture that comes from the Laguerre polynomials vanishes and develops more to a grid.
Along that way, the wave packet is damped and due to the rotation the portion in p-
direction decreases, the wave packet is stretch in the direction of q.

11.5. Fokker-Planck equation

Let us again regard a Brownian particle whose motions is determined by the Langevin
equations (11.3) and the HamiltonianH defined in (11.4). Then, the probability density
ρ = ρ(p, q, t) satisfies

∂tρ = {H, ρ}+ γ∂p(pρ) + σ2

2 ∂
2
pρ,

see [BH02, Eq. (5.41)]. If we once more take V (q) = mω2

2 q2 and replace the Poisson
bracket by derivatives, we find that

∂tρ = σ2

2 ∂
2
pρ+

(
p q

)( γ − 1
m

mω2 0

)(
∂pρ

∂qρ

)
+ γρ.

Comparing these equations with the general quadratic Weyl-operator given in Lemma
8.2 and the Hamiltonian that defines Lindblad equation in Proposition 10.2 emphasises
Lindblad’s choice

H(p, q) = 1
2

(
1
m |p|

2 + γ
2 (pT q + qT p) +mω2|q|2

)
,

however, as he takes averages the coefficient σ2 does not appear in his calculations.
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Figure 24.: Contour plots of the absolute values of Û(t)W(3,2)(Z) at time t = 0 (upper
left), t = 0.5 (upper right), t = 1 (lower left) and t = 4 (lower right)

In this section we want to take a more general point of view and consider a one-
dimensional Fokker-Planck equation for a distribution function ρ = ρ(x, t) of the form

∂tρ(x, t) = −∂x (a(x, t)ρ(x, t)) + ∂2
x (d(x, t)ρ(x, t)) , (11.5)

where x ∈ R and a, d : R × R 7→ R are two twice differentiable functions , see [Ris84,
§1.2.2]. The function a thereby models the drift, d the diffusion. This abstract equation
was introduced by Fokker in [Fok14] and proven by Planck in [Pla17]. For a historical
overview see also [Kam97].

It is known that in one dimension, the Fokker-Planck equation can be written as
a Schrödinger equation with complex time-scaling resp. complex Hamiltonian if the
diffusion is constant, see [Ris84, §5.4]. To obtain moreover a quadratic operator, we
need in addition a linear drift a, i.e.

a(x, t) = αx, d(x, t) = δ α, δ ∈ R.

Then, we can rewrite the Fokker-Planck equation (11.5) as

∂tρ(x, t) = −αρ(x, t)− αx∂xρ(x, t) + δ∂2
xρ(x, t)

= −δp̂2ρ(x, t) + i
2α(p̂q̂ + q̂p̂)ρ(x, t)− 1

2αρ(x, t).
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Hence, we found a Schrödinger equation with a complex, quadratic Hamiltonian and a
constant term,

i∂tρ(x, t) =
(
Ĥ+ γ̂

)
ρ(x, t), Ĥ = 1

2 ẑ
T

(
−2iδ α

α 0

)
ẑ

and γ = − i
2α. This approach can be easily generalised to multi-dimensions, again if we

consider a constant diffusion and a linear drift.

11.6. Example: Black & Scholes model

To finish our chapter about further applications we choose an example from a com-
pletely different area and investigate the Black and Scholes model from financial math-
ematics, see [Pas05, §1] or [BS73].

The price of an option ρ = ρ(x, t) depending on the stock price x ∈ R and the time
t ∈ R can, in a given area, be derived as the solution to

∂tρ = −1
2σ

2∂2
xρ− rx∂xρ+ rρ (11.6)

where r ∈ R denotes the interest rate and σ the standard deviation of the stock. We
stress here that this equation can not exactly be written in the form (11.5), since it
requires an additional constant term, but can be solved with equivalent methods.

We first bring (11.6) in the form of a Schrödinger equation with quadratic Hamilto-
nian,

i∂tρ = − i
2

(
σ2∂2

x + rx∂x + r∂xx− 3r
)
ρ = 1

2

(
iσ2p̂2 + rq̂p̂+ rp̂q̂ − 3ir

)
ρ

=
(

1
2 ẑ
THẑ + γ̂

)
ρ

with the constant term γ = 3i
2 r and the complex, symmetric matrix

H =

(
iσ2 r

r 0

)
.

The above matrix obviously has a positive semi-definite imaginary part, however, we
assume that the time evolution operator exists for times 0 ≤ t < T , due to its close con-
nection to the Fokker-Planck equation. We use again the standard Hermite functions
parametrised by

L0 = span{l0}, l0 =

(
i

1

)
∈ C2,

as ansatz functions. The corresponding symplectic metric is G = Id2.

Linearised flow
For St = eΩHt we use that

ΩH =

(
−r 0

iσ2 r

)
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satisfies (ΩH)2k = r2kId2 and (ΩH)2k+1 = r2kΩH for all k ≥ 0. Hence, if r 6= 0,

St =
∞∑
k=0

1
(2k)!(rt)

2k · Id2 + 1
r

∞∑
k=0

1
(2k+1)!(rt)

2k+1 · ΩH = cosh(rt) · Id2 + 1
r sinh(rt) · ΩH.

and

S∗t ΩSt =
(
cosh(rt) · Id2 + 1

r sinh(rt) ·HΩT
)

Ω
(
cosh(rt) · Id2 + 1

r sinh(rt) · ΩH
)

= cosh2(rt) · Ω− 2i
r cosh(rt) sinh(rt) · Im(H) + 1

r2
sinh2(rt) ·HΩH.

Normalisation
Calculating l∗0Im(H)l0 = σ2 and

l∗0HΩHl0 =
(
−i 1

)(2irσ2 r2

−r2 0

)(
i

1

)
= 2ir(σ2 − r)

we find for the normalisation

nt = 1
2i l
∗
0S
∗
t ΩStl0 = cosh2(rt)− σ2

r sinh(rt) cosh(rt) + 1
r (σ2 − r) sinh2(rt)

= 1 + σ2

r sinh(rt) (sinh(rt)− cosh(rt))

= 1 + σ2

2r

(
e−2rt − 1

)
.

In particular, the normalisation is positive for all times t ≥ 0 if 2r > σ2 and otherwise
for all times t ∈ [0;T [ with T = − 1

2r ln(1− 2r
σ2 ).

Evolved coherent state
So far, we didn’t need to take the constant γ into account, this changes if we determine
the damping factor βt. For the evolved Lagrangian frame we first note that

lt =

(
pt

qt

)
= Stl0n

−1/2
t = n

−1/2
t

(
i(cosh(rt)− sinh(rt))

cosh(rt) + (1− σ2

r ) sinh(rt)

)
.

Inserting the ansatz
ϕ0(x, t) = π−1/4ct · q−1/2

t e
i
2ε
btx2

with bt = ptq
−1
t into (11.6) yields

ċt
ct

= 1
2(q̇tq

−1
t − iσ2bt) + r

ḃt = −iσ2b2t − 2rbt.

One can directly show that the second equation holds true for

bt = i
cosh(rt)− sinh(rt)

cosh(rt) + (1− σ2

r ) sinh(rt)
.

For the first equation we first look at the evolution of the Lagrangian frame Zt =
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StZ0N
−1/2
t ,

Żt = ΩHZt − 1
2ZtN

−1/2
t ṄtN

−1/2
t = ΩHZt + 1

2ZtZ
∗
t Im(H)Zt

where we used that Ṅt = −Z∗0S∗t Im(H)StZ0, see Proposition 9.2. Hence, for our Hamil-
tonian we find

q̇tq
−1
t =

(
iσ2pt + rqt + 1

2σ
2qtp

∗
t pt
)
q−1
t = iσ2bt + r + 1

2σ
2|pt|2

since we consider the one-dimensional setting. This implies

ċt
ct

= 3
2r +

1

4
σ2n−1

t (cosh(rt)− sinh(rt))2 = 3
2r −

1

4

ṅt
nt

and thus ct = n
−1/4
t · e

3
2 rt, what displays again the splitting into the dissipation factor

eγt = e
3
2 rt and our usual damping factor eβt = n

−1/4
t .

Evolved excited states
For the recursion matrix for the Black-Scholes-Model shows a particularly nice be-
haviour. Similarly to the normalisation we deduce

l∗0Im(H)l0 = −σ2, l∗0HΩHl0 = −2irσ2.

Using moreover that l∗0Ωl0 = 0, we find

1
2i l
∗
0S
∗
t ΩStl0 = σ2

r n
−1
t sinh(rt) (cosh(rt)− sinh(rt)) = nt − 1

and Mt = 1
2in
−1
t l∗0S

∗
t ΩStl0 = 1 − n−1

t . If we regard once again qt and nt we notice that
both are real for all times t ≥ 0. A real matrix Q always corresponds to a factorisation
in Hermite polynomials, see Theorem 4.2. Here, this means that our polynomials stay
Hermite polynomials over time, what also follows from

M̃t = Mt + n
−1/2
t q−1

t qtn
−1/2
t = 1− n−1

t + n−1
t = 1.

Figure 25 illustrates the evolution of the coherent state ϕ0(l0) and the excited state
ϕ2(l0) for a interest rate of r = 0.75 and a standard deviation σ = 1. One can nicely see
that in contrast to the evolution for the Brownian motion in Figure 24 the excited state
preserves its form, both states are growing due to ct.



196 Chapter 11. Further applications

Position

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
b
s
o
lu

te
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|U(t)ϕ0(l0)|

|U(t)ϕ2(l0)|

Position

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
b
s
o
lu

te
 v

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

|U(t)ϕ0(l0)|

|U(t)ϕ2(l0)|

Position

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
b
s
o
lu

te
 v

a
lu

e

0

0.5

1

1.5

2

2.5

3

3.5

|U(t)ϕ0(l0)|

|U(t)ϕ2(l0)|

Position

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
b
s
o
lu

te
 v

a
lu

e

0

1

2

3

4

5

6

|U(t)ϕ0(l0)|

|U(t)ϕ2(l0)|

Figure 25.: Contour plots of the absolute values of Û(t)ϕ0(l0) and Û(t)ϕ2(l0) at time t = 0
(upper left), t = 0.25 (upper right), t = 0.75 (lower left) and t = 1 (lower right)
for r = 0.75 and σ = 1.



A. Weyl calculus

In this thesis several proofs are based on calculations with Weyl-quantised operators.
These steps are, however, more technical and already well summarised in the literature,
see for example [Zwo11, §4] or [Fol89, §2.1]. In order to avoid confusion caused by
different notations and to make this work self-contained, we restate the fundamentals
of Weyl calculus in this appendix.

We start with recalling the definition of a Weyl-quantised operator with semiclassical
scaling ε > 0, see Equation (4.1).

Definition A.1 — Weyl operator. Let a ∈ S(R2n). We define the operator â = opε[a] acting
on S(Rn) via

(opε[a]ψ)(x) = (2πε)−n
∫
R2n

a(ξ, 1
2(x+ y))e

i
ε
ξT (x−y)ψ(y) dydξ, ∀ψ ∈ S(Rn)

and call a the symbol of â.

A formal approach to obtain this definition starts with the Fourier transform Fεa of
a ∈ S(R2n),

(Fεa)(w) = (2πε)−n
∫
R2n

a(z)e−
i
ε
wT z dz, w ∈ R2n.

We consider the vector-valued operators q̂ and p̂ with

(q̂jϕ)(x) = xjϕx and (p̂jϕ)(x) = −iε∂xjϕ(x) for j = 1, . . . , n

acting on distributions or functions, respectively. One then associates an operator a(p̂, q̂)

to a(p, q) such that the symbols q̂j and p̂j correspond to the coordinates of a, i.e. we
reverse the idea shortly described at the beginning of Section 3.1. In Weyl’s original
work [Wey27] he considered exponential functions and identified a(z) = e

i
ε
wT z, w ∈ R2n,

with the operator

â = a(ẑ) = e
i
ε
wT ẑ where ẑ =

(
p̂

q̂

)
,

see also [Fol89, §2.1]. The action of this operator can be explicitly determined, see for
example [Zwo11, Theorem 4.7].

Lemma A.1 Let w = (p, q) ∈ Rn ⊕ Rn and ψ ∈ S(Rn). Then,

e
i
ε
wT ẑψ(x) = e

i
ε
qT (x+p/2)ψ(x+ p), x ∈ Rn.

Proof. We consider the partial differential equation

−iε ∂tψ(x, t) = (wT ẑ)ψ(x, t), ψ(x, 0) = ψ0(x).
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On the one hand, the formal solution to this equation reads ψ(x, t) = e
i
ε
twT ẑψ0(x). On

the other hand, one can verify by a direct calculation that

ψ(x, t) = e
i
ε
tqT x+ i

2ε
t2pT qψ0(x+ tp)

is the unique solution of this PDE. Thus, evaluating at t = 1 yields the result. �

The formula we deduced for e
i
ε
wT ẑ looks quite similar to the Heisenberg-Weyl operator

introduced in (4.10). Indeed, it holds

T (z) = e−
i
ε
zTΩẑ

for z ∈ R2n.

Moreover, with the determination of the operator of an exponential function, we are
now able to associate an operator â with every Schwartz function a ∈ S(R2n) via

â = (2πε)−n
∫
R2n

(Fεa)(w)e
i
ε
wT ẑ dw. (A.1)

We will show in the following that this operator is equivalent to the Weyl-quantisation
we stated in the beginning. First of all, we note that operators of this type are known
to map Schwartz functions onto tempered distributions, i.e. â : S(Rn) 7→ S ∗ (Rn), see
for example [Fol89, Theorem 1.30]. Then, we aim to write â as integral operator, i.e. in
the form

âϕ(x) =

∫
Rn
Ka(x, y)ϕ(y) dy

where Ka ∈ D′(R2n) denotes the emphkernel of â. This representation, that is also more
convenient for applications, exists due to the Schwartz kernel theorem, see [Hör83,
Theorem 5.2.1].

Lemma A.2 Let f ∈ S(Rn ⊕ Rn) and define the operator f̂ as Bochner integral

f̂ =

∫
R2n

f(w)e
i
ε
wT ẑ dw.

Then, the kernel of f̂ is given by

Kf (x, y) = (2πε)n/2((Fε2)−1f)(y − x, 1
2(y + x))

for x, y ∈ Rn where Fε2 denotes the Fourier transform in the second component.

Proof. The same result can be found in [Fol89, Eq. (1.29)]. With the previous lemma
we find for all ψ ∈ S(Rn)

(f̂ψ)(x) =

∫
R2n

f(p, q)e
i
ε
qT (x+p/2)ψ(x+ p) dpdq =

∫
R2n

f(y − x, q)e
i
2ε
qT (y+x)ψ(y) dydq,
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where we substituted y = x+ p. Thus, by definition

Kf (x, y) =

∫
Rn
f(y − x, q)e

i
2ε
qT (y+x) dq = (2πε)n/2((Fε2)−1f)(y − x, 1

2(y + x)).

�

Applying this result to our definition (A.1) we find for the kernel of â,

Ka(x, y) = (2πε)−n/2(Fε1a)(y − x, 1
2(y + x)) = (2πε)−n

∫
Rn
a(ξ, 1

2(y + x))e−
i
ε
ξT (y−x) dξ,

what is consistent with the Weyl-quantisation we stated in the beginning. Thus, the
Weyl-quantisation can be equivalently expressed in terms of the Fourier transform of a
and we will make use of this in the following computations.

We proceed with stating some important properties of the Weyl-quantisation we make
use of in this thesis. To start with we formalise our observation for the kernel of â, see
also [Gos10, Proposition 205].

Proposition A.1 — Kernel and symbol. Let a ∈ S(Rn) and â = opε[a]. The kernel of â and
the symbol a are related via

Ka(x, y) = (2πε)−n
∫
Rn
a(ξ, 1

2(x+ y))e
i
ε
ξT (x−y) dξ

and
a(ξ, x) =

∫
Rn
e−

i
ε
ξT yKa(x+ y

2 , x−
y
2 ) dy.

So far, we focused on Weyl-operators associated with Schwartz-functions and inter-
preted â as a map from S(Rn) to its dual space S∗(Rn). However, for this symbol class,
we can study â in the more favourable function space L2(Rn) due to the next theorem,
see also [Zwo11, Theorem 4.21].

Theorem A.1 — L2-boundedness. If the symbol a belongs to S(Rn ⊕ Rn), then

opε[a] : L2(Rn) 7→ L2(Rn)

is linear operator bounded independently of ε.

Proof. The proof is basically a reformulation of Schur’s lemma, see [Shu87, Lemma
9.1]. Since a ∈ S(Rn ⊕Rn), we can follow from the previous proposition that there exist
constants C1 and C2 such that

C1 = sup
x∈Rn

∫
Rn
|Ka(x, y)| dy <∞, C2 = sup

y∈Rn

∫
Rn
|Ka(x, y)| dx <∞.
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Let ϕ ∈ L2(Rn). Then,

‖âϕ‖2 =

∫
R3n

Ka(x, y)Ka(x, ξ)ϕ(y)ϕ(ξ) d(x, y, ξ)

≤
∫
R3n

|Ka(x, y)||Ka(x, ξ)||ϕ(y)||ϕ(ξ)| d(x, y, ξ)

≤ 1
2

∫
R3n

|Ka(x, y)||Ka(x, ξ)|(|ϕ(y)|2 + |ϕ(ξ)|2) d(x, y, ξ)

For the first integral, we estimate∫
R3n

|Ka(x, y)||Ka(x, ξ)||ϕ(y)|2 d(x, y, ξ) ≤ C1

∫
R2n

|Ka(x, y)||ϕ(y)|2 d(x, y)

≤ C1C2

∫
Rn
|ϕ(y)|2 dy = C1C2‖ϕ‖2

and with a similar computation for the second integral ‖âϕ‖2 ≤ C1C2‖ϕ‖2. �

Nevertheless, in this thesis we in particular studied the quadratic operators, i.e. oper-
ators with a quadratic symbol a(z) = 1

2z
THz with H ∈ C2n×2n. Clearly, quadratic forms

are not Schwartz functions and we utilise the following definition from [Zwo11, §4.4] to
extend the class of admissible symbols.

Definition A.2 — Order function. Let 〈z〉 := (1 + |z|2)1/2 for z ∈ R2n. A measurable
function m : R2n 7→ (0;∞) is called an order function if there exist constants c and k
such that

m(w) ≤ c〈z − w〉km(z)

for all w, z ∈ R2n. Given an order function m, we define the corresponding class of
symbols as

S(m) = {a ∈ C∞(Rn) ; ∀α ∈ Nn ∃cα > 0 : |∂αz a| ≤ cαm}

and for 0 ≤ δ ≤ 1
2

Sδ(m) = {a ∈ C∞(Rn) ; ∀α ∈ Nn ∃cα > 0 : |∂αz a| ≤ cαε−δ|α|m}.

Common examples for order functions are m(z) = 1 or m(z) = 〈z〉k for k ∈ N. In
particular, we find that a ∈ S(〈z〉k) if

|∂αz a(z)| ≤ cα〈z〉k, ∀α ∈ Nn.

and thus a polynomial of degree k in z is an element of S(〈z〉k). This inequality is
moreover equivalent to the assumption in [Fol89, Theorem 2.21].

Theorem A.2 — Quantisation of general symbols. Let m be an order function, δ ∈ [0; 1
2 ]

and a ∈ Sδ(m). Then,
opε[a] : S(Rn) 7→ S(Rn)

is a continuous linear transform.

Proof. In the literature there can be several proofs found for this theorem, for example
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[Rob83, Theorem II-36] for a proof a based on a partition of unity or [Zwo11, Theorem
4.16] for a proof using partial integration. We briefly sketch the outline in [Hör94,
Theorem 18.1.6] and first observe that for a ∈ S(m), we restrict ourselves to the case
δ = 0 here, and ϕ ∈ S(Rn) with z = (ξ, y)

|opε[a]ϕ(x)| = |(2πε)−n
∫
R2n

a(ξ,
1

2
(x+ y))e

i
ε
ξT (x−y) dξ ϕ(y) dy|

≤
∫
Rn

sup
ξ∈Rn
|a(ξ, y)||ϕ(y)| dy ≤ sup

z∈R2n

|a(z)|〈z〉−1

∫
Rn
〈z〉|ϕ(y)| dy

is bounded. Moreover, for j = 1, . . . , n

xjopε[a]ϕ = q̂jopε[a]ϕ = opε[qj#a]ϕ =
(
opε[qja(p, q)] + iε

2 opε[∂pja(p, q)]
)
ϕ,

∂xjopε[a]ϕ = i
ε p̂jopε[a]ϕ = opε[

i
εpj#a]ϕ =

(
i
εopε[pja(p, q)] + 1

2opε[∂qja(p, q)]
)
ϕ.

Since pja(p, q), qja(p, q), ∂pja(p, q), ∂qja(p, q) ∈ S(m) for a ∈ S(m), the above estimate is
valid and xj · opε[a]ϕ(x) and ∂xjopε[a]ϕ(x) are bounded for all j = 1, . . . , n. Thus, an
iterative application shows opε[a]ϕ(x) ∈ S(Rn). If one wants to evade the Moyal product
we formally only introduce in the following, one can obtain the above equations also
with Definition A.1 and partial integration. �

In the following we will refer to all admissible functions a ∈ Sδ(m) for some order
function m as symbols. Since we consider linear operator â defined on a dense subset of
the Hilbert space L2(Rn), we may also investigate their Hermitian adjoints.

We define the formal adjoint of an operator â : S(Rn) 7→ S(Rn) by the identity

〈âϕ, ψ〉 = 〈ϕ, â∗ψ〉

for all ϕ,ψ ∈ S(Rn), see [Gos10, §10.2.1].

Proposition A.2 — Adjoint. The adjoint â∗ of a Weyl-operator â is the Weyl-operator with
symbol a∗ = a, i.e.

â∗ = opε[a]

for all symbols a. In particular, â is self-adjoint if and only if a is a real function.

Proof. For this result we also refer to [Gos10, Proposition 212]. Let a be a symbol and
â = opε[a]. With the Wigner relation (3.18) we find for all ϕ,ψ ∈ S(Rn),

〈ϕ, â∗ψ〉 =

∫
Rn
Wε(ϕ,ψ)(z)a∗(z) dz

and

〈âϕ, ψ〉 = 〈ψ, âϕ〉 =

∫
Rn
Wε(ψ,ϕ)(z)a(z) dz =

∫
Rn
Wε(ϕ,ψ)(z)a(z) dz.

�
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The last aim of this chapter is to give precise formulas for linear and quadratic sym-
bols. To do so we first need to investigate the composition of two Weyl-operators opε[a]

and opε[b]. We again use the Fourier form of the Weyl-transform and start with the
composition two exponential operators.

Lemma A.3 Let w, l ∈ R2n. Then,

e
i
ε
wT ẑe

i
ε
lT ẑ = e−

i
2ε
wTΩle

i
ε
(w+l)T ẑ.

Proof. We denote w = (p, q), l = (p′, q′) and choose an arbitrary ψ ∈ S(Rn). Then, we

have by Lemma A.1 e
i
ε
(w+l)T ẑψ(x) = e

i
ε
(q+q′)T (x+ p+p′

2
)ψ(x+ (p+ p′)) and

e
i
ε
wT ẑe

i
ε
lT ẑψ(x) = e

i
ε
qT (x+ p

2
)e

i
ε
q′T (x+p+ p′

2
)ψ(x+ p′ + p)

= e
i
ε
qT (x+ p+p′

2
)− i

2ε
qT p′e

i
ε
q′T (x+ p+p′

2
)+ i

2ε
q′T pψ(x+ p′ + p)

= e
i
2ε

(pT q′−qT p′)e
i
ε
(w+l)T ẑψ(x).

�

The above lemma can also be found as part of [Zwo11, Theorem 4.7]. With the com-
position of the exponential operators we are now able to deduce the composition of
arbitrary Weyl-operators via the Fourier representation, see also [Zwo11, Theorem
4.11].

Theorem A.3 — Composition of Weyl-operators. Let a, b be two suitable symbols. Then,
opε[a]opε[b] = opε[a#b] where

(a#b)(z) = e
iε
2
∇Tz Ω∇z′ (a(z)b(z′)) |z=z′ , z ∈ R2n.

We call # the Moyal product of a and b.

Proof. We first note that

opε[a]opε[b] = (2πε)−2n

∫
R4n

(Fεa)(w)(Fεb)(l)e
i
ε
wT ẑe

i
ε
lT ẑ dwdl

= (2πε)−2n

∫
R4n

(Fεa)(w)(Fεb)(l)e−
i
2ε
wTΩle

i
ε
(w+l)T ẑ dwdl

= (2πε)−2n

∫
R4n

(Fεa)(w)(Fεb)(u− w)e−
i
2ε
wTΩue

i
ε
uT ẑ dwdu,

i.e. opε[a]opε[b] = opε[c], where (Fεc)(u) = (2πε)−2n
∫
R2n(Fεa)(w)(Fεb)(u−w)e−

i
2ε
wTΩu dw

for u ∈ R2n and it remains to show that this is equivalent to the Moyal product a#b.
With the inverse Fourier transform, we have

a(z) = (2πε)−n
∫
R2n

(Fεa)(w)e
i
ε
wT z dw and b(z′) = (2πε)−n

∫
R2n

(Fεb)(l)e
i
ε
lT z′ dl

and thus
a(z)b(z′) = (2πε)−2n

∫
R4n

(Fεa)(w)(Fεb)(l)e
i
ε
(wT z+lT z′) dwdl.
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Moreover, for the action of the operator e
iε
2
∇Tz Ω∇z′ we cite [Zwo11, Theorem 4.8],

e−
iε
2
∇TxQ∇xψ(x) = (2πε)−n/2| det(Q)|−1/2e

iπ
4

sgn(Q)

∫
Rn
e−

i
2ε
yTQ−1yψ(x+ y) dy

for all ψ ∈ SRn . Thus, by taking the dimensions times four and Q = 1
2

(
0 −Ω

Ω 0

)
we find

e
iε
2
∇Tz Ω∇z′e

i
ε
(wT z+lT z′) = (2πε)−2ne

i
ε
(wT z+lT z′)

∫
R4n

e
2i
ε
zT1 Ωz2e

i
ε
(wT z1+lT z2) dz1dz2

= (2πε)−2ne
i
ε
(wT z+lT z′)

∫
R2n

∫
R2n

e
i
ε
zT1 (w+2Ωz2) dz1 e

i
ε
lT z2 dz2

= (2πε)−2ne
i
ε
(wT z+lT z′)

∫
R2n

δ{2z2=Ωw}e
i
ε
lT z2 dz2

= e
i
ε
(wT z+lT z′)e−

i
2ε
wTΩl.

All in all,

e
iε
2
∇Tz Ω∇z′ (a(z)b(z′)) |z=z′= (2πε)−2n

∫
R4n

e
i
ε
(w+l)T ze−

i
2ε
wTΩl(Fεa)(w)(Fεb)(l) dwdl

and the Fourier transform of this expression is given by

(Fεa#b)(u) = (2πε)−3n

∫
R6n

e−
i
ε
uT ze

i
ε
(w+l)T ze−

i
2ε
wTΩl(Fεa)(w)(Fεb)(l) dwdldz

= (2πε)−3n

∫
R4n

∫
R2n

e−
i
ε
zT (w+l−u) dz e−

i
2ε
wTΩl(Fεa)(w)(Fεb)(l) dwdl

= (2πε)−2n

∫
R4n

δ{u=w+l}e
− i

2ε
wTΩl(Fεa)(w)(Fεb)(l) dwdl

what finishes the proof. �

Corollary A.1 — Semiclassical expansion. Let a, b be two suitable symbols. Then,

(a#b)(z) =

N∑
k=0

1
k!

(
iε
2

)k (∇Tz Ω∇z′
)k

(a(z)b(z′)) |z=z′ +(εN+1), z ∈ R2n.

In particular, we find that if a or b are at most quadratic in z, we find

a#b = ab+ iε
2∇a

TΩ∇b− ε2

8 tr(D2aΩD2bΩT )

where D2 denotes the Hessian matrix of a resp. b.

We refer for the proof of the well-definedness of the semiclassical expansion to [Zwo11,
Theorem 4.12]. The formula for the quadratic symbols follows as direct application of
this expansion. We can furthermore introduce here as well the Poisson bracket

{a, b} = ∇aTΩ∇b
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and it follows that for quadratic symbols a or b it holds

[opε[a], opε[b]] = iε opε[{a, b}]. (A.2)

The expansion furthermore yields a very short proof for the Weyl-operator of a quadratic
function.

Lemma A.4 — Linear and quadratic symbols. Let z = (p, q) ∈ R2n, a(z) = αT z, α ∈ C2n be
a linear function in z and b(z) = 1

2z
THz with

H =

(
H11 H12

H21 H22

)
∈ C2n×2n

quadratic. The Weyl-quantisations of a and b are then given by

opε[a] = αT ẑ, and opε[b] = 1
2 ẑ
THẑ − iε

2 tr(H12 −H21). (A.3)

Proof. The equation for the linear function follows directly from the Definition A.1 of
the Weyl-operator. For the quadratic function, we first note that

opε[z
THz] = opε[z]

T opε[Hz]− iε
2

2n∑
j=1

(∇zj)TΩ∇(Hz)j = ẑTHẑ − iε
2

2n∑
j=1

eTj ΩHj

where Hj denotes the j-th column of H. For the sum we can also write

2n∑
j=1

eTj ΩHj =

n∑
j=1

Hj,n+j −
2n∑

j=n+1

Hj,j−n = tr(H12)− tr(H21).

�



B. Metaplectic group

Metaplectic operators play a fundamental role in the construction of generalised squeezed
states in Section 7.3 and the time evolution under quadratic Hamiltonians. As a con-
sequence we insert here a summary of the definitions and main results for metaplectic
operators given in [Gos10]. We start with a more detailed study of symplectic matri-
ces. Recall that Sp(n,R) denotes the set of all real, symplectic 2n × 2n- matrices, i.e.
S ∈ Sp(n,R) satisfies

STΩS = Ω, Ω =

(
0 −Id

Id 0

)
.

In this chapter we will always assume that a symplectic matrix S is given in the block
form

S =

(
A B

C D

)
∈ R2n×2n. (B.1)

Lemma B.1 A matrix S ∈ R2n×2n of form (B.1) is symplectic if and only if

ATC = CTA, BTD = DTB, ATD − CTB = Id.

Proof. This result follows from a direct calculation, we have

STΩS =

(
AT CT

BT DT

)(
−C −D
A B

)
=

(
CTA−ATC CTB −ATD
DTA−BTC DTB −BTD

)
.

�

For the construction of the metaplectic group it suffices to observe free symplectic ma-
trices that generate Sp(n,R) as we will show later on.

Definition B.1 — Free symplectic matrix. We call a matrix S ∈ R2n×2n in the form (B.1) a
free symplectic matrix, if det(C) 6= 0, see [Gos10, Definition 47].

The condition det(C) 6= 0 can be interpreted in terms of linear system(
p

q

)
= S

(
p′

q′

)
. (B.2)

If S is a free symplectic matrix, then we find for a given pair (q, q′) ∈ Rn ⊕ Rn a unique
solution (p, p′) ∈ Rn ⊕ Rn.
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Lemma B.2 — Generating function. Let S as in (B.1) be a free symplectic matrix. Then,
Equation (B.2) holds true if and only if

p = ∂qσ(q, q′) and p′ = −∂q′σ(q, q′) (B.3)

where σ : Rn ⊕ Rn 7→ R denotes the quadratic form

σ(q, q′) = 1
2q
TAC−1q − q′TC−1q + 1

2q
′TC−1Dq′. (B.4)

We call σ the generating function of S. Conversely, if

σ(q, q′) = 1
2q
TKq − q′TLq + 1

2q
′TMq′

with K,L,M ∈ Rn×n and det(L) 6= 0, the matrix

Sσ =

(
KL−1 KL−1M − LT

L−1 L−1M

)

is a free symplectic matrix generated by σ.

Proof. This result can also be found as [Gos10, Proposition 50]. Equality (B.2) can be
rewritten as

p = Ap′ +Bq′,

q = Cp′ +Dq′,

and since C is invertible,

p = −AC−1Dq′ +AC−1q +Bq′,

p′ = −C−1Dq′ + C−1q.

It remains to show that AC−1D − B = C−T . From Lemma B.1, we know that if S is
symplectic, it holds CTA = ATC and ATD − CTB = Id. Thus,

AC−1D −B = C−TATD −B = C−T (Id + CTB)−B = C−T

and (B.3) defines the unique solution of (B.2). For the conversion we compare the gen-
erating functions and observe

C = L−1, C−1D = M, AC−1 = K and B = AC−1D − C−T .

�

If we already anticipate the notion of metaplectic operators we used in Section 7.3, for
example in Proposition 7.5 and 7.6, we can stress that a metaplectic operator Ŝ is often
accompanied by its inverse Ŝ−1. The existence and form of this inverse is based on
following conclusion, see [Gos10, Corollary 52].
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Corollary B.1 Let S ∈ Sp(n,R) be a free symplectic matrix with generating function σ.
Then, S−1 is also a free symplectic matrix and generated by

σ∗(q, q′) = −σ(q′, q). (B.5)

Proof. Since S is symplectic, S is invertible with

S−1 = ΩTSTΩ =

(
0 Id

−Id 0

)(
CT −AT

DT −BT

)
=

(
DT −BT

−CT AT

)
.

Moreover, det(−CT ) = (−1)n det(C) 6= 0 and with (B.4),

σ∗(q, q′) = 1
2q
TDT (−CT )−1q − q′T (−CT )−1q + 1

2q
′T (−CT )−1AT q′

= −
(

1
2q
TC−1Dq − qTC−1q′ + 1

2q
′TAC−1q′

)
= −σ(q′, q).

�

We have to add here that our definition of a free symplectic matrix is a particular one.
In general one considers a Lagrangian subspace L ⊂ C2n and a symplectic matrix S ∈
Sp(n,R). Clearly,

SL := {S` ; ` ∈ L}

is again a Lagrangian subspace since S is symplectic and we call S free w.r.t. L if

L ∩ SL = {0},

see [Gos06, Definition 2.33]. Our definition is equivalent to general definition with
L0 = {(p, 0) ∈ R2n ; p ∈ Rn}. We can also describe the action of Sp(n,R) onto Lagrangian
subspaces in more detail.

Lemma B.3 Let L1, L
′
1, L2, L

′
2 ⊂ Rn ⊕ Rn be Lagrangian subspaces satisfying

L1 ∩ L′1 = L2 ∩ L′2 = {0}.

Then, there exists a unique symplectic matrix S ∈ Sp(n,R) such that L2 = SL1 and
L′2 = SL′1.

Proof. This result can also be found as [Gos06, Theorem 1.26]. Let

L1 = span{e1, . . . , en}, L′1 = span{f1, . . . , fn}

L2 = span{e′1, . . . , e′n}, L′2 = span{f ′1, . . . , f ′n}.

Then, the sets span{e1, . . . , en, f1, . . . fn} and span{e′1, . . . , e′n, f ′1, . . . f ′n} form two symplec-
tic basis of R2n, see Theorem 2.1 and there exists a unique symplectic mapping

ΦS : R2n 7→ R2n, z → Sz

such that ΦS(ej) = e′j , ΦS(fj) = f ′j for all j = 1, . . . , n and S ∈ Sp(n,R). �
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Next, our goal is to establish generators for Sp(n,R). The main observation for this is
the following factorisation result, see [Gos10, Theorem 60].

Theorem B.1 For every symplectic matrix S ∈ Sp(n,R) there exist to free symplectic
matrices Sσ and Sσ′ with generating functions σ resp. σ′ such that

S = SσSσ′ .

Proof. Let L,L′ ⊂ Rn ⊕ Rn be two arbitrary Lagrangian subspaces satisfying

L0 ∩ L′ = L′ ∩ SL0 = {0}.

Then, due to the previous lemma there exists a symplectic matrix S1 ∈ Sp(n,R) such
that L′ = S1L0 and SL0 = S1L

′. Moreover, we can construct a S′2 ∈ Sp(n,R) such that
L′ = S′2L0 and thus

SL0 = S1S
′
2L0

and since the product of symplectic matrices is again symplectic, there exists a sym-
plectic matrix S′′ with L0 = S′′L0. All in all we set S2 = S′2S

′′ and find S = S1S2 with

S1L0 ∩ L0 = L′ ∩ L0 = {0}, and S2L0 ∩ L0 = S′2L0 ∩ L0 = L′ ∩ L0 = {0}

and S1 and S2 are free symplectic matrices. �

Thus, we can write every symplectic matrix as product of two free symplectic matrices
and we will now consider three particular matrices that generate all free symplectic
matrices: Let P = P T ∈ Rn×n and L ∈ Rn×n be invertible and denote

VP =

(
Id P

0 Id

)
, UP =

(
P −Id

Id 0

)
, WL =

(
LT 0

0 L−1

)
.

One can easily check that all three matrices are symplectic.

Proposition B.1 Every free symplectic matrix S of the form (B.1) can be factorised as

S = UAC−1WCT VC−1D

or, equivalently,
S = VAC−1ΩWCT VC−1D

Proof. This statement is a reformulation of [Gos10, Proposition 62]. Using that B =

AC−1D − C−T if S is symplectic, one can directly verify that(
A B

C D

)
=

(
AC−1 −Id

Id 0

)(
C 0

0 C−T

)(
Id C−1D

0 Id

)
.

Moreover it holds, UP = VPΩ for all symmetric matrices P ∈ Rn×n. The symmetry of
AC−1 and C−1D was already discussed in the proof of Lemma B.2 and C is invertible
by definition, thus all requirements are fulfilled. �
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The previous proposition and Theorem B.1 imply the following result that can also be
found as [Gos10, Corollary 63].

Corollary B.2 — Generators of the symplectic group. Each of the sets

{VP ,WL,Ω ; P = P T , det(L) 6= 0} and {UP ,WL ; P = P T ,det(L) 6= 0}

generates the set Sp(n,R).

This statement finishes the repetition of symplectic matrices and we proceed with as-
signing to any free symplectic matrix S an operator Ŝ determined by its generating
function, see [Gos10, Eq. (7.3)].

Definition B.2 — Quadratic Fourier transform. Let S ∈ Sp(n,R) be a free symplectic matrix
of the form (B.1) and σ the corresponding generating function. We define

(Ŝσψ)(x) = (2πε)−n/2 det(C)−1/2

∫
Rn
e

i
ε
σ(x,x′)ψ(x′) dx′ (B.6)

for all ψ ∈ S(Rn).

An illustrative example is the standard Fourier transform Fε : We have

σ(x, x′) = −xTx′,

i.e. K = M = 0 and L = Id. Hence, the corresponding symplectic matrix is Ω,
Fε = Ω̂. For general operators the following statement holds true, see [Gos10, Proposi-
tion].

Proposition B.2 The operator Ŝσ given in (B.6) is a unitary operator that maps L2(Rn)

onto itself and its inverse is given by

Ŝ−1
σ = Ŝσ∗

with σ∗ as in (B.5).

We call the subgroup of all unitary operators U(L2(Rn)) generated by the quadratic
Fourier transforms the metaplectic group Mp(n,R). Elements of Mp(n,R) are denoted
as metaplectic operators, see [Gos10, Definition 109]. Similarly to the symplectic ma-
trices we will now show that all metaplectic operators are generated by the Fourier
transforms

V̂Pψ(x) = e
i
2ε
xTPxψ(x) and ŴLψ(x) = det(L)1/2ψ(Lx)

for ψ ∈ L2(Rn) and Ω̂. The next statement also provides an explanation for the previ-
ous proposition: V̂P , ŴL and Ω̂ are unitary operators and hence also their consecutive
application is unitary.

Proposition B.3 Let σ(q, q′) = 1
2q
TKq− q′TLq+ 1

2q
′TMq′ where K and M are symmetric
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and L an invertible n× n-matrix. Then,

Ŝσ = V̂KŴLΩ̂V̂M .

Proof. This result equals the first part of [Gos10, Proposition 108]. By definition,

Ŝσψ(x) = (2πε)−n/2 det(L)1/4

∫
Rn
e

i
ε
( 1
2
xTKx−x′TLx+ 1

2
x′TMx′)ψ(x′) dx′

= (2πε)−n/2 det(L)1/4

∫
Rn
V̂Ke

− i
ε
x′TLxV̂Mψ(x′) dx′

= V̂KŴL(2πε)−n/2
∫
Rn
e−

i
ε
x′T xV̂Mψ(x′) dx′

= V̂KŴLΩ̂V̂Mψ(x).

�

Analogously to the symplectic matrices we next show that every metaplectic operator
can be written as two quadratic Fourier transforms and thus the metaplectic group
Mp(n,R) is generated by the operators V̂P , ŴL and Ω̂.

Theorem B.2 Every Ŝ ∈ Mp(n,R) can be written as

Ŝ = ŜσŜσ′ ,

where Ŝσ and Ŝσ′ are two quadratic Fourier transforms.

Proof. We overleap the proof of this result as it invokes the projection from Mp(n,R) to
Sp(n,R) we will establish in the following and refer to [Gos97]. �

We stress here that both, the factorisation of the symplectic matrices and the metaplec-
tic operators are both not unique.

Corollary B.3 — Generators of the metaplectic group. The metaplectic group is generated
by the operators V̂P , ŴL and Ω̂.

So far, we assigned an operator to every symplectic matrix S ∈ Sp(n,R). The next
logical question is if we can reversely also find a corresponding symplectic matrix for
every metaplectic operator.

Theorem B.3 — The projection πMp. The mapping Ŝσ → Sσ which associates to the
quadratic Fourier transform (B.6) the free symplectic matrix generated by σ extends
to a surjective group homomorphism

πMp : Mp(n,R) 7→ Sp(n,R)

with kern(πMp) = {−id, id}. Hence πMp is a twofold covering of the symplectic group.

Proof. The proof of this result is very extensive and we therefor refer for a detailed
formulation to [Gos10, §7.3]. The main idea of the proof is to explicitly construct the
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projection from the lowering operator

Â(l) =
i√
2ε
lTΩẑ,

where l ∈ C2n. Since Fε = Ω̂, we can utilise Lemma 4.5 and directly obtain

Ω̂Â(l)Ω̂−1 = Â(Ωl).

Analogously one can show that ŴLÂ(l)Ŵ−1
L = Â(WLl) and V̂P Â(l)V̂ −1

P = Â(VP l). Since
V̂−P , ŴL and Ω̂ generate the metaplectic group it follows that for all Ŝ ∈ Mp(n,R) there
exists a matrix S ∈ R2n×2n such that

ŜÂ(l)Ŝ−1 = Â(Sl) = opε[A(`) ◦ S−1].

We denote by ΦŜ(Â(`)) the mapping Â(`)→ opε[A(`)◦S−1]. The projection πMp can then
be written as

πMp(Ŝ) = Â−1(`)ΦŜ(Â(`))Â(`),

see also [Gos10, Definition 121], and it remains to show that S is symplectic. With
Lemma 4.1 we find for all l, l′ ∈ C2n,

1
2i l

TSTΩSl′ =
[
Â(Sl), Â(Sl′)

]
=
[
ŜÂ(l)Ŝ−1, ŜÂ(l′)Ŝ−1

]
= Ŝ

[
Â(l), Â(l′)

]
Ŝ−1 = 1

2i l
TΩl′

and thus STΩS = Ω. �

By the above proof quadratic Fourier transforms are indeed mapped to the correspond-
ing free symplectic matrices and since πMp is a homomorphism, we find

πMp(SσSσ′) = πMp(Sσ)πMp(Sσ′).

From these two observation we can deduce the next corollary, see also [Gos10, Proposi-
tion 122].

Corollary B.4 The projection πMp satisfies

πMp(Ω̂) = Ω, πMp(V̂P ) = VP , πMp(ŴL) = WL.

Proof. Since Ω is a free symplectic matrix, we directly conclude πMp(Ω̂) = Ω. We note
that for ψ ∈ S(Rn),

V̂P Ω̂ψ(x) = (2πε)−n/2
∫
Rn
e

i
2ε
xTPx− i

ε
x′T xψ(x′) dx′ = Ŝσψ(x)

where the free symplectic matrix Sσ is due to Lemma B.2 given by

Sσ =

(
P Id

Id 0

)
.
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So, we find for the projection

πMp(V̂P ) = πMp(V̂P Ω̂Ω̂−1) = πMp(Ŝσ)πMp(Ω̂−1) = SσΩ−1 = VP

Analogously,

Ω̂ŴLψ(x) = (2πε)−n/2 det(L)−1/2

∫
Rn
e−

i
ε
x′TL−T xψ(x′) dx′ = Ŝσ′ψ(x)

with Sσ′ =

(
0 −L−1

LT 0

)
and

πMp(ŴL) = πMp(Ω̂−1)πMp(Ω̂ŴL) = Ω−1Sσ′ = WL.

�

So, we related symplectic matrices and metaplectic operators via a quadratic form σ and
showed that the symplectic group Sp(n,R) can be generated from the matrices VP ,WL

and Ω where P is symmetric and L invertible, while the metaplectic group Mp(n,R)

is generated from the corresponding operators V̂P , ŴL and Ω̂. We now use this ba-
sic constructions to proof the properties of metaplectic operators needed in this thesis.
In Section 7.3 we required the relation between metaplectic and Weyl-operators, see
[Gos10, Theorem 215].

Theorem B.4 — Metaplectic covariance of Weyl-operators. Let S ∈ Sp(n,R), Ŝ ∈ Mp(n,R)

such that πMp(Ŝ) = S. Then, we have for every Weyl-operator â with symbol a

opε[a ◦ S] = opε[a(Sz)] = Ŝ−1âŜ.

Proof. With the definition of the Weyl-operator via the Fourier transform (A.1) we find

opε[a ◦ S] = (2πε)−n
∫
Fε(a ◦ S)(w)e

i
ε
wT ẑ dw = (2πε)−n

∫
Fε(a)(S−Tw)e

i
ε
wT ẑ dw

= (2πε)−n
∫
Fε(a)(w)e

i
ε
wTSẑ dw

and it suffices to show that e
i
ε
wTSẑ = Ŝ−1e

i
ε
wT ẑŜ. Since V̂−P , ŴL and Ω̂ generate

Mp(n,R) and every symplectic matrix S can be factorised into V−P , WL and Ω, we only
need to show the identity for these three matrices. Let w = (p, q) ∈ Rn ⊕ Rn and
ψ ∈ S(Rn). We then have(

V̂−P e
i
ε
wT ẑ V̂P

)
ψ(x) = e−

i
2ε
xTPxe

i
ε
qT (x+p/2)e

i
2ε

(x+p)TP (x+p)ψ(x+ p)

= e
i
ε
(Pq+q)T (x+p/2)ψ(x+ p) = e

i
ε
wTVP ẑ,(

ŴL−1 e
i
ε
wT ẑ ŴL

)
ψ(x) = e

i
ε
qT (L−1x+p/2)ψ(x+ Lp)

= e
i
ε
(L−T q)T (x+Lp/2)ψ(x+ Lp) = e

i
ε
wTWLẑ,
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and (
Ω̂−1 e

i
ε
wT ẑ Ω̂

)
ψ(x) = (2πε)−n

∫
Rn
e

i
ε
xT ξ

∫
Rn
e

i
ε
qT (ξ+p/2)e−

i
ε
(ξ+p)T x′ψ(x′) dx′dξ

= (2πε)−ne
i
2ε
pT q

∫
Rn
e−

i
ε
pT x′ψ(x′)

∫
Rn
e

i
ε
ξT (x+q−x′) dξdx′

= (2πε)−ne
i
2ε
pT q

∫
Rn
e−

i
ε
pT x′ψ(x′)δ(x+ q − x′) dx′

= e−
i
ε
pT (x+q/2)ψ(x+ q) = e

i
ε
wTΩẑ.

�

Due to the Wigner-Weyl correspondence we first stated in (3.18), we can infer from the
previous theorem the following statement about the relation of metaplectic operators
and the Wigner transform, see also [Gos10, Corollary 217].

Corollary B.5 — Metaplectic covariance of Wigner transforms. Let ϕ,ψ ∈ S(Rn) and Ŝ ∈
Mp(n,R) with S = πMp(Ŝ) ∈ Sp(n,R). We have

Wε(Ŝϕ, Ŝψ)(z) =Wε(ϕ,ψ)(S−1z)

for z ∈ Rn ⊕ Rn.

Proof. Let ϕ,ψ ∈ S(Rn). We find for all symbols a ∈ S(Rn ⊕ Rn),∫
R2n

Wε(Ŝϕ, Ŝψ)(z)a(z) dz = 〈Ŝϕ, âŜψ〉 = 〈ϕ, Ŝ−1âŜψ〉 = 〈ϕ, opε[a ◦ S]ψ〉

=

∫
R2n

Wε(ϕ,ψ)(z)a(Sz) dz =

∫
R2n

Wε(ϕ,ψ)(S−1z)a(z) dz.

�

In Chapter 7 we used metaplectic operators to generate squeezed states from the multi-
dimensional Hermite functions

ϕ0(x) = (πε)−n/4e−
1
2ε
|x|2 , ϕk(x) =

n∏
j=1

hkj (xj)ϕ0(x)

for k ∈ Nn and x ∈ Rn. For the coherent state ϕ0 we are able to give an explicit formula
for the squeezing in terms of the block matrices A,B,C,D, see also [Gos10, Proposition
252].

Proposition B.4 — Metaplectic operators and squeezed states. Let Ŝ ∈ Mp(n,R) with S =

πMp(Ŝ) ∈ Sp(n,R) of the form (B.1). We find

Ŝϕ0(x) = eiγ(πε)−n/4 det(X)1/4e−
1
2ε
xTΓx
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where γ ∈ R and Γ = X + iY with symmetric matrices X,Y ∈ Rn×n given by

X = (ACT +BDT )(CCT +DDT )−1, Y = (CCT +DDT )−1.

Proof. From Lemma 3.9 we know thatWε(ϕ0)(z) = π−ne−
1
ε
zT z and thus with the previ-

ous corollary
Wε(Ŝϕ0)(z) =Wε(ϕ0)(S−1z) = π−ne−

1
ε
zTS−TS−1z.

We can calculate this matrix explicitly and obtain

S−TS−1 = ΩTSSTΩ =

(
CCT +DDT −(DBT + CAT )

−(BDT +ACT ) AAT +BBT

)
.

Comparing this identity with (2.16),(
Im(Γ)−1 −Im(Γ)−1Re(Γ)

−Re(Γ)Im(Γ)−1 Re(Γ)Im(Γ)−1Re(Γ) + Im(Γ)

)
=

(
CCT +DDT −DBT − CAT

−BDT −ACT AAT +BBT

)

shows the claim. �

As a last note we want to mention the relation of metaplectic operators and quadratic
Hamiltonians that we investigate in the second part of this thesis. If Ĥ = 1

2 ẑ
THẑ with

H = HT ∈ C2n×2n is time-independent, then the flow of the Schrödinger equation

iε ∂tψ = Ĥψ

is the solution of the differential equation Ṡt = ΩHSt, i.e. St = etΩH . One can show that
this matrix is symplectic, see Lemma 8.12, and we thus find a metaplectic operator Ŝ
with πMp(Ŝ) = S.

Theorem B.5 — Metaplectic operators and quadratic Hamiltonians. Let t → Ŝt be the lift to
Mp(n,R) of the flow t → St = etΩH . For every ψ0 ∈ S(Rn), the function ψ defined by
ψ(x, t) = Ŝtψ0(x) is a solution of the partial differential equation

iε ∂tψ = Ĥψ, ψ(·, 0) = ψ0(x).

Equivalently, the function t→ Ŝt solves the abstract equation

iε ∂tŜt = ĤŜt, Ŝ0 = id.

We will study the existence of such evolution operators for the Schrödinger equation in
the next chapter where we also in detail investigate non-Hermitian Hamiltonians. The
proof of the above theorem follows similarly to the proof of Theorem C.1.
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Since the dynamical part of this thesis heavily relies on the time evolution operators
Û(t), we investigate in this chapter the theory of one-parameter semigroups in more
detail and subsequently provide a proof of Proposition 9.1.

We start with the functional equation Cauchy stated in 1821, see [Cau21, §V]. His
aim was to determine continuous functions T : R 7→ R satisfying

T (t+ s) = T (t)T (s)

for all s, t ∈ R. This identity is significant for the description of dynamical systems. Let
ϕ0 ∈ R be the state of a system at time t = 0 and define ϕ(t) := T (t)ϕ0. Then, the above
equality ensures that

ϕ(t+ s) = T (t+ s)ϕ0 = T (t)T (s)ϕ0 = T (t)ϕ0(s)

and hence the state ϕ(t+ s) at time t+ s is the same as the state at time t starting from
ϕ(s), i.e. the time evolution is unique, see [EN00, §I.1.5]. We will now generalise this
idea to operators.

Let X be a Banach space with norm ‖ · ‖X and L(X) denote the set of all bounded
linear operators from X to X. We endow L(X) with the operator norm ‖ · ‖L(X) defined
by

‖T‖L(X) = sup ‖Tx‖X‖x‖X ,

see [RS80, §V.I.1]. For the following definition we refer to [Vra03, Definition 2.1.1].

Definition C.1 — One-parameter semigroup. A family {T (t) ; t ≥ 0} in L(X) is a one-
parameter semigroup, or simply semigroup, if

T (0) = id,

T (t+ s) = T (t)T (s) for all t, s ≥ 0,
(C.1)

where id denotes the identity operator, idx = x for all x ∈ X.

With the uniform and the strong operator topology on L(X), see again [RS80, §V.I.1],
we can furthermore specify certain semigroups. We call a semigroup {T (t) ; t ≥ 0}
uniformly continuous if

lim
t↓0

T (t) = id
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and strongly continuous if

lim
t↓0

T (t)x = x, for all x ∈ X.

In particular, each uniformly continuous semigroup is also a strongly continuous semi-
group. Beyond that, we can now also establish the term contractive we used without
further explanation in Section 9.1.

Proposition C.1 — Contraction semigroup. Let {T (t) ; t ≥ 0} denote a strongly continuous
semigroup on a Banach space X. Then, there exist constants γ ≥ 0 and c ≥ 1 such
that

‖T (t)‖L(X) ≤ ceγt

for all t ≥ 0. If c = 1 and γ = 0, we call {T (t)}t≥0 a contraction semigroup.

Proof. This statement is adopted from [EN00, Proposition 5.5]. Since T (t) is a bounded
linear operator for all t ≥ 0, there exists a constant c ≥ 1 such that ‖T (s)‖L(X) ≤ c for
all s ∈ [0; 1]. For any t ≥ 0 we can write t = s+m for some m ∈ N and s ∈ [0; 1]. Equation
(C.1) then implies

‖T (t)‖L(X) = ‖T (s+m · 1)‖L(X) ≤ ‖T (s)‖L(X)‖T (1)‖mL(X) ≤ c
m+1.

By denoting γ = ln(c), we can moreover write cm+1 = cemγ ≤ cetγ what finishes the
proof. �

Returning to Cauchy’s original problem, we can easily see that T (t) = eαt for all α ∈ R
gives a solution and one can additionally show that this is the only continuous solution,
see [EN00, Proposition 1.3]. Moreover, the semigroup {eαt ; t ≥ 0} solves the initial
value problem

∂tT (t) = αT (t) for all t ≥ 0

with T (0) = 1. In Section 9.1 though, we were starting from the differential equation,
namely the Schrödinger equation, and trying to determine a corresponding semigroup.
Given the previous initial value problem, we could determine α via

α = ∂tT (t) |t=0= lim
t↓0

1
t (T (t)− 1).

We adapt this idea for general semigroups, see [Vra03, Definition 2.1.2].
Definition C.2 — Infinitesimal generator. The infinitesimal generator or generator of a
semigroup {T (t) ; t ≥ 0} is an operator A : D(A) 7→ X with domain

D(A) = {x ∈ X ; lim
t↓0

1
t (T (t)x− x) exists } ⊂ X

defined by Ax = lim
t↓0

1
t (T (t)x− x).

Since the properties of linear operators in general heavily depend on their domain, we
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will in the following always name operators in the form (A,D(A)). The next state-
ment verifies that the generator of a semigroup indeed has the desired characteris-
tics.

Theorem C.1 Let {T (t)}t≥0 be a strongly continuous semigroup with infinitesimal gen-
erator (A,D(A)). Then, if x ∈ D(A) we have T (t)x ∈ D(A) for all t ≥ 0 and

∂tT (t)x = AT (t)x = T (t)Ax.

The derivative at t = 0 denotes only the right derivative, for t > 0 the derivative is
two-sided.

Proof. This result is quoted from [McB87, Theorem 2.20]. Let x ∈ D(A). We have to
show that the limit

lim
h↓0

1
h(T (t+ h)x− T (t)x) = T (t)lim

h↓0
1
h(T (h)x− x)

exists. But since x ∈ D(A), the right hand side converges and due to the continuity of
{T (t)}t≥0 it converges to T (t)Ax. Hence T (t)x ∈ D(A) and with T (t + h) = T (h + t) it
moreover follows that

T (t)Ax = AT (t)x

for all x ∈ D(A). It remains to calculate the derivative. Let t ≥ 0, then the derivative
from the right is a direct consequence of the above computation,

lim
h↓0

1
h(T (t+ h)x− T (t)x) = T (t)Ax = AT (t)x

for all x ∈ D(A). For the derivative from the left side, we find

lim
h↑0

1
h(T (t+ h)x− T (t)x) = lim

h↓0
1
−h(T (t− h)x− T (t)x) = lim

h↓0
1
hT (t− h)(T (h)x− x)

= lim
h↓0

T (t− h)(T (h)x−x
h −Ax) + lim

h↓0
T (t− h)Ax.

The first term tends to zero since T (t − h) is a bounded operator for all 0 ≤ h ≤ t, the
second term goes to T (t)Ax as {T (t)}t≥0 is strongly continuous. �

Our aim in the following is to characterise operators that generate a semigroup. For
uniformly continuous semigroups this result is straightforward and well-known, see for
example [EN00, Theorem 2.2.1].

Theorem C.2 — Generators of uniformly continuous semigroups. A linear operator (A,D(A))

is the generator of a uniformly continuous semigroup if and only if D(A) = X and
A ∈ L(X).

Proof. We only show that a bounded linear operator A that is defined on X generates a
uniformly continuous semigroup and refer for the full proof to the indicated literature.
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Since A is bounded, we can define

T (t) =
∞∑
k=0

tk

k!A
k = etA

for all t ≥ 0, the convergence of the power series follows similarly as for the matrix
exponential. Moreover, from the properties of the exponential sum it follows directly
that {T (t) ; t ≥ 0} defines a one-parameter semigroup. It remains to show that this
semigroup is uniformly convergent and generated by A. We have

‖T (t)− id‖L(X) = ‖
∞∑
k=1

tk

k!A
k‖L(X) ≤ t

∞∑
k=0

tk

k!‖A
k+1‖L(X) = t‖A‖L(X)e

t‖A‖L(X)

and hence lim
t↓0
‖T (t) − id‖L(X) = 0. Furthermore, with an analogous line of argumenta-

tion

‖1
t (T (t)− id)−A‖L(X) = ‖

∞∑
k=1

tk−1

k! A
k −A‖L(X) = ‖

∞∑
k=2

tk−1

k! A
k‖L(X) ≤ t‖A‖2L(X)e

t‖A‖L(X)

and lim
t↓0
‖1
t (T (t)− id)−A‖L(X) = 0. �

Unfortunately, quadratic operators discussed in this thesis are in general unbounded
operators and we have to focus on strongly continuous semigroups.

However, we keep in mind that we can write the generator of an uniformly continuous
semigroup conveniently as the exponential of the generator. For unbounded operators,
we can not guarantee the convergences of the power series. But we recall that one can
equivalently define the exponential eαt for α ∈ R as

etα = lim
k→∞

(1 + tα
k )k = lim

k→∞
(1− tα

k )−k = lim
k→∞

(
k
t (
k
t − α)−1

)k
,

where we used that etα =
(
e−tα

)−1, see [McB87, §3]. This observation motivates the
next definition for linear operators, see [McB87, Definition 3.1].

Definition C.3 — Resolvent. Let A : D(A) 7→ X be a linear operator on a Banach space
X. The resolvent set of A is the set of complex numbers

ρ(A) = {λ ∈ C ; (λid−A)−1 ∈ L(X)}

and we call for all λ ∈ ρ(A) the operator R(λ,A) = (λid − A)−1 resolvent of A at λ.
The spectrum of A is the complement of ρ(A), σ(A) = C\ρ(A).

If we compare λ with our original idea, we find λ = k
t and thus λ > 0. Moreover, the

limit of
(
k
t (
k
t − α)−1

)k is bounded, if

k
t (
k
t − α)−1 < 1.

Again, there is an analogue interpretation of this observation on the operator level.
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Theorem C.3 — Hille Yosida. A linear operator (A,D(A)) generates a strongly continu-
ous contraction semigroup if and only if (A,D(A)) is a closed, densely defined operator
and for every λ > 0 one has λ ∈ ρ(A) and

‖λR(λ,A)‖L(X) ≤ 1.

Proof. Let (A,D(A)) generate a strongly continuous contraction semigroup {T (t)}t≥0.
In order to show that D(A) is dense in X we have to construct for all x ∈ X a sequence
xm ∈ D(A) with xm → x. Following the idea from [Vra03, Theorem 2.4.1] we set for
each x ∈ X and m ∈ N,

xm := m

∫ 1/m

0
T (τ)x dτ.

We first show that this expression converges to x. We have for all t ≥ 0 and h > 0

‖ 1
h

∫ t+h

t
T (τ)x dτ − T (t)x‖X = ‖ 1

h

∫ t+h

t
T (τ)x− T (t)x dτ‖X

≤ 1
h

∫ t+h

t
‖T (τ)x− T (t)x‖X dτ

and since {T (t) ; t ≥ 0} is strongly continuous, lim
h↓0

1
h

∫ t+h
t T (τ)x dτ = T (t)x. In particular,

lim
m→∞

xm = T (0)x = x.

This implies for the limit

lim
t↓0

1
t (T (t)xm − xm) = m lim

t↓0

∫ 1/m

0
T (t+ τ)x− T (τ)x dτ

and by substituting s = t+ τ ,

m

∫ 1/m

0
T (t+ τ)x− T (τ)x dτ = m

∫ 1/m+t

t
T (s)x ds−m

∫ 1/m

0
T (τ)x dτ → T (t)x− x

for m → ∞ and the limit exists. Hence, xm ∈ D(A) and D(A) is dense in X. To prove
that A is closed, assume that xm ∈ D(A) with xm → x and Axm → y for x, y ∈ D(A). We
have to show that x ∈ D(A) and Ax = y. With Theorem C.1 it holds

T (t)xm − xm =

∫ t

0
∂tT (τ)xm dτ =

∫ t

0
T (τ)Axm dτ

and by taking the limit, we obtain T (t)x − x =
∫ t

0 T (τ)y dτ . Thus, with the integral
representation introduced above,

lim
t↓0

1
t (T (t)x− x) = lim

t↓0
1
t

∫ t

0
T (τ)y dτ = y

and x ∈ D(A) with Ax = y. The claim for the resolvent follows from the identity
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R(λ) = R(λ,A) for all λ ∈ ρ(A) with λ > 0, where

R(λ)x =

∫ ∞
0

e−λtT (t)x dt for all x ∈ X,

see for example [Vra03, Theorem 3.1.1]. Then, for a, b ≥ 0 with a ≤ b, since {T (t)}t≥0 is
contractive,

‖
∫ b

a
e−λtT (t)x dt‖X ≤

∫ b

a
e−λt‖T (t)x‖X dt ≤ ‖x‖X

∫ b

a
e−λt dt = e−λa−e−λb

λ ‖x‖X ,

i.e. the integral is bounded and taking the limits a→ 0 and b→∞ shows

‖R(λ)x‖X ≤ 1
λ‖x‖X for all x ∈ X.

For the conversion, we assume that A : D(A) 7→ X is a closed linear operator and define
for all λ > 0 the Yosida approximation of A,

Aλ = λAR(λ,A).

One can show that Aλ is a bounded linear operator onX satisfying lim
λ→∞

Aλx = Ax for all

x ∈ D(A), see [Vra03, Lemma 3.2.1], that generates a uniformly continuous contraction
semigroup {etAλ}t≥0, see [Vra03, Lemma 3.2.2].

Again, by taking the limits
lim
λ→∞

etAλx = T (t)x

one finds a semigroup {T (t)}t≥0 that is strongly continuous, contractive and generated
by A, see [Vra03, §3.2]. �

The condition on the resolvent in the previous theorem, can be rewritten as

‖(λid−A)−1x‖X ≤ 1
λ‖x‖X

for all x ∈ X and λ > 0. Determining the inverse of λid − A might be very chal-
lenging, and we therefor introduce the following notion, see [EN00, Definition 3.13].

Definition C.4 — Dissipative operator. A linear operator (A,D(A)) on a Banach space X
is called dissipative, if

‖(λid−A)x‖X ≥ λ‖x‖X (C.2)

for all x ∈ D(A) and λ > 0.

If we consider operators acting on a Hilbert space H we can identify H with its dual
space and rewrite (C.2) in terms of the scalar product.

Lemma C.1 A linear operator (A,D(A)) on a Hilbert space H is dissipative if and only
if

Re(〈x,Ax〉H) ≤ 0 (C.3)
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for all x ∈ D(A).

Proof. This lemma is a reformulation of [EN00, Proposition 3.23]. Let (A,D(A)) be a
dissipative operator and λ > 0. For all x ∈ D(A) and λ > 0, we have

λ2‖x‖2H ≤ 〈λx−Ax, λx−Ax〉H = λ2‖x‖2H + ‖Ax‖2H − 2λRe(〈x,Ax〉H),

Re(〈x,Ax〉H) ≤ 1
2λ‖Ax‖

2
H.

Taking the limit λ → ∞ yields Re(〈x,Ax〉H) ≤ 0 for all x ∈ D(A). Vice versa, assume
that (C.3) holds for all x ∈ D(A) and take λ > 0. Then, the Cauchy Schwarz inequality
implies

‖λx‖H‖λx−Ax‖H ≥ |〈λx, λx−Ax〉H| ≥ ‖λx‖2H + λRe(〈x,Ax〉H) ≥ λ2‖x‖2H.

�

Since an lower bound for an operator implies that its inverse exists and is continu-
ous, see [Gol66, Theorem I.3.7], we can rewrite the Hille-Yosida theorem in terms of
dissipative operators. This statement originally goes back to [LP61].

Theorem C.4 — Lumer Phillips. Let (A,D(A)) be a densely defined closed linear operator
on a Banach space X. Then, (A,D(A)) generates a strongly continuous contraction
semigroup on X if and only if A is dissipative and there exists a µ > 0 such that
range(µid−A) = X.

Proof. This result can also be found in [EN00, Theorem II.3.15]. Let (A,D(A)) be the
generator of a strongly continuous contraction semigroup. Then, by the Hille-Yosida
Theorem, (λid−A)−1 is a linear operator for all λ > 0 and satisfies

‖(λid−A)−1x‖X ≤ 1
λ‖x‖X

for all x ∈ D(A). In other words, (λid− A) is a bijective operator on X for all λ > 0 and
it holds

‖(λid−A)x‖X ≥ λ‖x‖X .

For the conversion assume that (A,D(A)) is a dissipative operator and µid−A surjective
for a µ > 0. Then, µ ∈ ρ(A) and

‖R(µ,A‖L(X) ≤ 1
µ

since (A,D(A)) is dissipative. The series expansion for the resolvent, see [EN00, Propo-
sition IV.1.3] moreover yields for all λ ∈ (0, 2µ),

R(λ,A) =
∞∑
k=0

(µ− λ)kR(µ,A)k+1.

An iterative application of this result shows (0,∞) ⊂ ρ(A) and ‖R(λ,A‖L(X) ≤ 1
λ for all

λ > 0. The existence of a strongly continuous contraction semigroup then follows by the
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Hille-Yosida Theorem C.3. �

A corollary to this theorem can be given in terms of the adjoint operator A∗. This way
is more convenient for us, since we do not have to check the range of an operator, but
only its adjoint that can be easily deduced for quadratic operators.

Let X be a Banach space, X∗ its dual space and (A,D(A)) a linear operator on X.
Then, the adjoint A∗ of A is defined via

(A∗y)(x) = y(Ax)

for all x ∈ D(A) ⊂ X and y ∈ D(A∗) ⊂ X∗ see [RS80, §V.I.2]. If we consider a
Hilbertspace H, then we can rewrite this as

〈Ax, y〉H = 〈x,A∗y〉H

for all x ∈ D(A) ⊂ H and y ∈ D(A∗) ⊂ H.

Corollary C.1 Let (A,D(A)) be a densely defined closed linear operator on a Banach
space X. If both A and its adjoint A∗ are dissipative, then (A,D(A)) generates a
strongly continuous contraction semigroup on X.

Proof. A proof of this result can be found in [EN00, Corollary II.3.17]. �

We turn now to the quadratic operators investigated in the dynamic part of this thesis.
We consider the Hilbert space L2(Rn) and

− i
εĤ = − i

2ε ẑ
THẑ, with H = HT ∈ C2n×2n.

Since ẑ is self-adjoint, we easily find Ĥ∗ = 1
2 ẑ
THẑ and Ĥ is self-adjoint if and only

if Im(H) = 0. In general, we try to handle a linear, but unbounded, non-selfadjoint
operator.

Lemma C.2 The quadratic operator − i
εĤ is a closed operator on the dense subset

S(Rn) of L2(Rn) and dissipative if and only if

Im(H) ≤ 0.

Proof. Consider − i
εĤ and its adjoint i

εĤ
∗ both on the domain S(Rn). Then, we stress

for the closedness of − i
εĤ that (

− i
εĤ
)∗∗

= − i
εĤ

and the adjoint of a densely defined operator is closed by [Gol66, Theorem II.2.6]. Fur-
thermore with Lemma C.1 − i

εĤ is dissipative if and only if

Re(〈ϕ,− i
εĤϕ〉) = Re

(∫
R2n

Wε(ϕ)(z) · − i
2εz

THz dz

)
=

∫
R2n

Wε(ϕ)(z) · 1
2εz

T Im (H) z dz



223

is non-positive for all ϕ ∈ S(Rn). We now choose ϕ to be a Gaussian with phase space
centre z0 = (p0, q0) ∈ Rn ⊕ Rn, i.e.

ϕ0(z0;x) = (πε)−n/4e
i
2ε
|x−q0|2+ i

ε
pT0 (x−q0),

as in Section 6.3. Then,Wε(ϕ0(z0))(z) = (πε)−ne−|z−z0|
2/ε is a strictly positive Gaussian

centred at z0 and∫
R2n

Wε(ϕ0(z0))(z) · 1
2εz

T Im (H) z dz = 1
ε z

T
0 Im(H)z0 + tr(Im(H)).

Since H is symmetric it also holds Im(H)T = Im(H) and by the spectral theorem, Im(H)

is diagonalisable with an orthogonal matrix S ∈ R2n×2n. Hence, if − i
εĤ is dissipative,

1
ε z

T
0 diag(λ1, . . . , λ2n)z0 ≤ −

2n∑
j=k

λk

where λ1, . . . , λ2n denote the eigenvalues of Im(H). This implies that all eigenvalues
are non-positive: Assume that λj = max{λk ; k = 1, . . . , 2n} > 0. Then, we obtain for
z0 =

√
cε · ej with c > 0

c · λj ≤ −
2n∑
k=1

λk < 2n · λj

but this is a contradiction, since we may take c > 2n.
For the inversion assume that Im(H) ≤ 0. Then, it follows by the mean value theorem

that there exists a c ≥ 0 such that

Re(〈ϕ,− i
εĤϕ〉) = −c ·

∫
R2n

Wε(ϕ)(z) dz ≤ 0

where we utilise the marginal densities from Lemma 3.7 and − i
εĤ is dissipative. �

Theorem C.5 — Time evolution for quadratic Hamiltonians. The operator − i
εĤ with Ĥ =

1
2 ẑ
THẑ and H = HT ∈ C2n×2n generates a strongly continuous contraction semigroup

{Û(t) ; t ≥ 0} that satisfies
iε ∂tÛ(t) = Ĥ Û(t)

for all t ≥ 0 if Im(H) ≤ 0.

Proof. From the previous lemma we know that − i
εĤ is a closed, dissipative operator,

Moreover, we find equivalently

Re(〈ϕ, i
εĤ
∗ϕ〉) = Re

(∫
R2n

Wε(ϕ)(z) · i
2εz

THz dz

)
=

∫
R2n

Wε(ϕ)(z) · 1
2εz

T Im (H) z dz

and thus also the adjoint (− i
εĤ)∗ is dissipative if Im(H) ≤ 0. The claim then follows by

Corollary C.1 and Theorem C.1. �
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