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Weiterer Dank gilt:

Dr.-Ing. Thomas Wild für seinen Input in technischen Meetings und seine Hilfe bei
organisatorischen Dingen aller Art, vor allem im ARAMiS Projekt. Außerdem für die
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Zusammenfassung

Leistungsisolierung ist eine zentrale Herausforderung in virtualisierten Multicore Syste-
men. Sie beschreibt die Fähigkeit eines Wirtsystems zur Verhinderung oder Limitierung
von Leistungsinterferenzen zwischen mehreren Virtuellen Maschinen (VMs), welche auf
einem Wirtsystem ausgeführt werden und sich dessen Hardware-Ressourcen teilen. Ist
nur unzureichende Isolierung geboten, wird es möglich, dass bösartige oder defekte
VMs Leistung von nebenläufigen VMs oder dem Wirtsystem selbst stehlen oder ver-
mindern. In der Cloud-Computing Domäne, in der virtualisierte Multicore Server dem
aktuellen Stand der Technik entsprechen, kann dies zu Vertragsverletzungen zwischen
Kunden und Anbieter führen. In der Domäne für eingebettete Systeme, in welcher
virtualisierte Multicore Systeme in naher Zukunft auftauchen werden, können Prob-
leme mit der Leistungsisolierung sogar zur Verletzung von Realzeitanforderungen führen,
was letztendlich die Systemsicherheit gefährden könnte. Da virtualisierte Systeme viele
gemeinsam-benutzte Ressourcen verwenden, z.B. CPU-Kerne, Caches oder I/O Geräte,
muss Leistungsisolierung immer individuell bewertet werden.

Diese Arbeit präsentiert Forschungsbeiträge zur Leistungsisolierung der neusten Gen-
eration von I/O Virtualisierungstechnologie, namentlich PCIe passthrough und Single
Root I/O Virtualization (SR-IOV). Diese Virtualisierungstechnologie ermöglicht niedrige
Latenzen und hohe Leistung, und ist bereits in kommerziellen Geräten erhältlich. Die
Arbeit zeigt auf, dass die Leistungsisolierung von PCIe passthrough und SR-IOV durch
Denial-of-Service (DoS) Angriffe bösartiger oder defekter VMs gebrochen werden kann,
indem passthrough und SR-IOV Hardware mit sinnlosen PCIe Paketen überflutet wird.
Zum Beispiel führt ein DoS-Angriff auf einen SR-IOV-fähigen Zweiport Gigabit Eth-
ernet Adapter zu einer Verminderung des Durchsatzes von 941 Mbit/s zu 615 Mbit/s
(-35%) Derselbe Angriff führt zu einer Verminderung der SSD-Leistung des Wirtsys-
tems um 77%. Diese Arbeit untersucht diesen Angriffsvektor gründlich, steuert eine
Klassifikation verschiedener DoS-Angriffstypen bei und präsentiert ein Modell, welches
die architekturellen Probleme in aktueller Hardware beschreibt, die die DoS-Angriffe
ermöglichen.

Des Weiteren werden zwei domänenspezifische Lösungen präsentiert, welche die ent-
deckten Isolierungsprobleme abschwächen oder lösen. Die Lösung für die Cloud Domäne
verwendet schlanke Hardware-Monitoring Erweiterungen in passthrough Geräten, um
DoS-Angriffe zu entdecken und mit Software-Scheduling abzuschwächen. Zum Beispiel
ermöglicht sie die Leistung einer Apache Webserver VM von 51.3% während eines DoS-
Angriffs zurück auf 97% zu heben. Als Lösung für Embedded Systeme werden zwei in-
tegrierte Hardware-Architekturen vorgeschlagen. Diese funktionieren optionale und bis
dato vernachlässigte QoS Erweiterungen der PCIe Spezifikation so um, dass der DoS-
Angriffsvektor geschlossen wird und Angriffe komplett verhindert werden. Die erste Ar-
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Zusammenfassung

chitektur ist für Scheduling-Freiheit optimiert, die zweite für minimale Hardwarekosten.
Die Vor- und Nachteile der beiden Architekturen werden anhand von Evaluierungsergeb-
nissen diskutiert.

Nach meinem Wissen sind die Beiträge, welche in dieser Arbeit präsentiert werden, die
ersten die eine umfassende Untersuchung von DoS-Angriffen auf PCIe passthrough und
SR-IOV anstellen, und Beiträge zur Lösung der entdeckten Leistungsisolierungsprobleme
leisten.
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Abstract

Performance isolation is a key challenge in virtualized multi-core systems. It describes
a host system’s capability to prevent or limit performance interference between multiple
Virtual Machines (VMs) that execute on it and share its hardware resources. If a
host system provides insufficient performance isolation, it is possible for malicious or
malfunctioning VMs to degrade or steal performance from concurrent VMs or the host
itself. In the cloud computing domain, where virtualized multi-core servers are state-of-
the-art, performance interference could result in broken service level agreements between
providers and customers. In the embedded computing domain, where virtualized multi-
core systems will surface in the near future, performance isolation issues might even
result in violation of real-time requirements and therefore compromise system safety.
As virtualized systems employ many shared resources, e.g. CPU cores, caches or I/O
devices, performance isolation must be assessed individually.

This thesis contributes research on performance isolation of PCIe passthrough and
Single Root I/O Virtualization (SR-IOV), which is the latest generation of I/O virtual-
ization technology. It enables low latency, high performance virtual I/O and is already
implemented in commercial off-the-shelf devices. The thesis shows that performance
isolation of PCIe passthrough and SR-IOV can be broken with Denial-of-Service (DoS)
attacks from malicious or malfunctioning VMs that flood passthrough and SR-IOV hard-
ware with spurious PCIe packets. For example, DoS attacks on an SR-IOV capable dual-
port gigabit Ethernet adapter cause a throughput degradation from 941 Mbit/s down to
615 Mbit/s (-35%). The same attack causes a 77% performance degradation of the host
system’s SSD storage. The thesis thoroughly investigates this attack vector, contributes
a classification of different DoS attack types and presents a model that explains the
architectural shortcomings in current hardware that enable the attacks.

Additionally, two domain specific solutions for cloud and embedded systems are pre-
sented, which mitigate and resolve the discovered performance isolation issues. The cloud
solution utilizes lightweight hardware monitoring extensions within passthrough I/O de-
vices to detect attacker VMs and mitigate their DoS attacks with software scheduling.
For instance, performance of an Apache webserver VM is restored from 51.3% during
DoS attacks back to 97%. The solution for embedded systems proposes two integrated
hardware architectures that repurpose optional and neglected QoS extensions of the PCIe
specification in order to close the attack vector and completely prevent DoS attacks. The
first architecture is optimized for scheduling freedom, the second for minimal hardware
costs. Results of an evaluation are used to discuss pros and cons of both architectures.

To the best of my knowledge, work presented in this thesis is the first that compre-
hensively investigates DoS attacks on PCIe passthrough and SR-IOV, and contributes
towards solving the resulting performance isolation issues.
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1 Introduction

Virtualization of multi-core server systems is a key enablement technology for the mod-
ern cloud computing landscape [1]. Using the virtualization capabilities of modern
CPUs [2, 3], it is possible to encapsulate whole Operating Systems (OSs), together
with user-applications that run on top of these OSs, into so-called Virtual Machines
(VMs). Multiple VMs can execute concurrently on the same physical server and share
its hardware, therefore making virtualization an effective method for increasing the uti-
lization of today’s multi-core servers. As VMs can be generated, destroyed and migrated
on demand, they also introduce flexibility to datacenter operators. These features are
also important from an economic perspective. On the one hand, they enable cloud com-
puting providers to boost the efficiency of their expensive hardware by consolidating
VMs of multiple customers on a single physical machine. On the other hand, they allow
providers to introduce fine-grained and flexible pricing models, which are attractive to
customers. For instance, customers can lease virtual servers in the form of access to
VMs, which are guaranteed certain shares of a physical server’s hardware, e.g. a specific
number of cores of a multi-core CPU or a specific share of the server’s main memory
(RAM). Two prominent cloud computing services offering these pricing models are the
Amazon Elastic Compute Cloud (EC2) and Microsoft Azure.

However, this multi-tenancy model can only work if strong inter-VM isolation in two
dimensions is in place. First of all, VMs must be isolated in the spatial domain. On
consolidated servers, VMs from unknown origins execute concurrently, which means that
they cannot trust each other. Even the cloud computing provider cannot trust the VMs it
is hosting, because the customers are free to execute whatever software they want inside
their VMs. Hence, it must be guaranteed that potentially malicious VMs cannot (1) spy
on memory that belongs to another customer’s VM or the host and (2) it is impossible
for VMs to overwrite foreign memory locations in order to provoke crashes of other VMs
or even the server’s control software that hosts the VMs. Nowadays, modern CPUs fulfill
this requirement with hardware-assist for virtualization in their memory management
subsystems [4, 5]. This also facilitates fault isolation, which means that failures that
crash one VM do not propagate to other concurrent VMs, and the underlying hardware
remains operational.

The second domain that must be covered by inter-VM isolation is the temporal do-
main. Temporal isolation, or performance isolation, has to guarantee that time-
sharing of shared resources between VMs results in performance that is in accordance
with the expectations of the tenants. It should be avoided that one VM executes mali-
cious or uncooperative workloads that impair or steal performance from other concurrent
VMs. If performance isolation is implemented poorly, the system becomes prone to per-
formance interference. For instance, if a tenant leases a VM with 1 Gbit/s Ethernet
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connectivity, it should not be possible for other VMs to steal or degrade bandwidth
from this tenant’s VM. Hence, strong performance isolation is important to cloud com-
puting providers in order to offer good service level agreements, which in turn attract
customers. In research, performance isolation has been a topic of study since the early
days of virtualization [6, 7].

Although starting out as a server technology, the spatial and performance isolation
properties of virtualization recently also caught attention in the embedded computing
domain. Here, the technology promises to enable multi-core embedded systems that
consolidate different sub-systems in isolated environments while reducing overall costs
at the same time [8]. For example, in the automotive domain, Electronic Control Units
(ECUs) could use virtualization to share multi-core hardware between mixed-criticality
functions [9, 10, 11], e.g. infotainment and instrument cluster applications [12]. Besides
costs, this approach would also reduce weight and cabling, and save installation space.
The same goals could be achieved by consolidating multiple legacy functions, which
historically run on their own ECUs, into a single but powerful virtualized multi-core
ECU. Similar considerations are made for embedded systems in the avionics domain [13,
14, 15]. In contrast to the server and cloud computing landscape, inter-VM isolation
requirements for embedded systems are even more strict due to additional real-time and
safety requirements.

1.1 Problem Statement

While the problem of spatial isolation in virtualized systems can be considered as solved
since the introduction of respective hardware-assist [4, 5], performance isolation is still
work in progress. In contrast to spatial isolation, which describes a single problem for a
single shared resource (restricting processes from accessing certain memory locations),
performance isolation is a multi-dimensional problem. This is because modern multi-core
systems inherently employ multiple shared resources, for example CPU cores, caches,
interconnects or I/O devices. For each of these resources, there are multiple architectural
mechanisms that can affect performance isolation [16], which aggravates the complexity
of the overall problem. For some resources, solutions have significantly advanced in the
meantime. For example, performance isolation issues regarding CPU caches have been
recognized and acknowledged by hardware manufacturers, which resulted in the recent
introduction of hardware-assist for CPU cache monitoring and allocation [17]. With its
help, cache-related performance interference between multiple concurrent CPU processes
like VMs can now be prevented.

Performance isolation for I/O devices, in contrast, is still a field of active research.
Additionally, it is a particularly diverse problem, because there are multiple approaches
and implementations for virtualizing I/O. With emulation and paravirtualization, two
legacy, software-based approaches exist, which utilize a trusted software layer for re-
laying and multiplexing I/O of VMs to physical hardware. The latest generation of
I/O virtualization is PCIe passthrough and Single Root I/O Virtualization (SR-IOV).
It uses hardware-assist to self-virtualize I/O devices (SR-IOV) and directly connect
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the virtual I/O device instances to VMs (passthrough). This removes the computa-
tional overhead of the software-based relaying and multiplexing layers in the host, which
makes PCIe passthrough and SR-IOV the currently best-performing solution for I/O
virtualization [18, 19, 20], and therefore superior to emulation and paravirtualization.

In literature, research on performance isolation of both software-based I/O virtualiza-
tion approaches is plentiful, and can be categorized into three types. Studies of the first
type collected data on performance isolation issues of certain virtualization solutions.
This was achieved by running multiple diverse workloads or benchmarks in VMs and
quantifying performance interference effects between them [6, 7, 21, 22]. Others focused
on specific I/O resources like storage [23] or networking [24]. Studies of the second type
contain approaches for improving isolation, mostly by enhancing different aspects of VM
scheduling. For example, by fairly accounting for VM-demand of CPU cycles [25, 26],
adapting to the communication behavior and need of VMs [27, 28, 29], or by optimizing
placement of tasks or VMs in the virtualized server or datacenter [30, 31, 32]. The third
type investigates means to deliberately degrade performance of concurrent VMs [33, 34].

However, until now, little work exists on performance isolation for the latest generation
of I/O virtualization, PCIe passthrough and SR-IOV. Research on this topic is impor-
tant, because the technology has already been deployed by cloud computing providers
like Amazon, and it is also considered for future embedded systems in the automotive
domain [12].

1.2 Contributions

The goals of this thesis are to (1) provide a comprehensive investigation about perfor-
mance isolation issues of PCIe passthrough and SR-IOV, and to (2) introduce domain-
specific solutions for cloud computing and embedded systems that mitigate and resolve
performance isolation shortcomings of current implementations.

First, based on work in [35, 36], it is introduced that performance isolation of PCIe
passthrough and SR-IOV can be broken with Denial-of-Service (DoS) attacks from ma-
licious or buggy VMs, which flood passthrough and SR-IOV hardware with spurious
PCIe packets. Accordingly, a threat model is formulated and a sample implementation
of a DoS attack is presented. Results from four experiments on a system comprised of
commercial-off-the-shelf hardware are presented. They demonstrate that latencies and
throughput of different shared resources degrade significantly during DoS attacks on
an SR-IOV capable 1 Gbit/s Ethernet NIC. Insights from the experiments are used to
construct an abstract system model that gives a concise overview of architectural issues
within PCIe passthrough and SR-IOV, which enable the DoS attack exploit. Further-
more, a classification of DoS attacks into four types is presented, which can be used in
future work to communicate the impact and severeness of a specific DoS attack.

Second, based on work in [37], a lightweight solution that mitigates performance iso-
lation attacks in cloud computing systems is proposed. The decision to follow a miti-
gation approach is motivated with domain-specific requirements. A design is presented
that extends current cloud computing systems with lightweight hardware monitoring
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that detects DoS attacks in a live system and reports attacker VMs to the host. The
latter invokes scheduling extensions that mitigate the performance isolation attack. A
successful prototype implementation of this design using an SR-IOV capable FPGA de-
velopment board, which is installed together with the proposed software extensions on
real hardware, proves the feasibility of the approach. Finally, results of an evaluation of
the prototype are presented. The evaluation was conducted using three network-based
cloud computing benchmarks.

Third, based on work in [38], solutions for completely preventing DoS attacks are
proposed. They are intended for use in embedded systems with strong isolation require-
ments that cannot be fulfilled by software-based mitigation. Therefore, two integrated
hardware architectures for multi-core platforms are proposed. They are optimized for
different goals; Scheduling freedom or minimal hardware costs. To achieve its specific
goal, each architecture utilizes a different subset of the optional Quality-of-Service (QoS)
extensions of the PCIe specification. It is determined which extensions are needed, and
how virtualized multi-core CPUs have to interface and implement them. The latter
aspect is explicitly not covered in the PCIe specification. An evaluation of both archi-
tectures, conducted on a SystemC model of a real-world system with SR-IOV hardware,
shows that the proposed architectures successfully close the DoS attack vector. The re-
sults are also used to compare and discuss the pros and cons of each individual approach.

The contributions and results of this thesis were published at three international con-
ferences [35, 37, 38] and in one journal article [36]. To the best of my knowledge,
the presented work is the first that comprehensively investigates DoS attacks on PCIe
passthrough and SR-IOV, and contributes towards solving the resulting performance iso-
lation issues. A graphical representation of the contributions is depicted in Figure 1.1.

Performance isolation investigation:
DoS attacks on PCIe passthrough and SR-IOV

Classification of attack typesEvaluation resultsSystem model of exploit
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Figure 1.1: Contributions to the field of performance isolation for virtualized multi-core systems
using PCIe passthrough and SR-IOV.
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1.3 Outline

The remaining part of this thesis is structured as follows: Chapter 2 provides state-of-the-
art on relevant technologies and computing domains. The investigation of performance
isolation issues of PCIe passthrough and SR-IOV is presented in Chapter 3. Chapter 4
introduces the lightweight hardware/software approach for mitigating performance isola-
tion attacks in cloud computing systems. Performance isolation solutions for virtualized
embedded systems are presented in Chapter 5. Finally, Chapter 6 concludes this thesis
by comparing and discussing all presented solutions and giving an outlook on future
work on this topic.
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2 State of the Art

This chapter introduces the state of the art in platform virtualization and I/O perfor-
mance isolation. It is structured in a top-down fashion. First, Section 2.1 presents how
platform virtualization in general enables sharing of modern multi-core hardware be-
tween multiple Virtual Machines. Next, spatial isolation and performance isolation are
introduced, and the computing domains that have adopted virtualization technology are
presented. Afterwards, virtualization technologies for I/O are introduced in Sections 2.2
and 2.3, together with current approaches and research results that investigate and/or
improve their performance isolation. The I/O virtualization technologies are presented
in the chronological order they surfaced: Emulation, paravirtualization and passthrough
I/O with Single Root I/O Virtualization (SR-IOV).

As this thesis contributes to the latter approach (passthrough I/O), it is the most
extensively covered part in this chapter. At the time of writing, commercial off-the-
shelf (COTS) passthrough I/O devices are mainly provided for the PCIe interconnect.
This is a result of x86, which traditionally employs PCIe, being the dominant processor
architecture in cloud computing, a domain in which platform virtualization was a key
enabling technology [1]. For these reasons, this thesis primarily focuses the x86 family
of processor architectures and PCIe-based I/O devices and virtualization technology.

2.1 Platform Virtualization

Platform virtualization enables the generation of simulated environments of real com-
puter hardware. These environments are called Virtual Machines (VMs). VMs can be
dynamically created and destroyed during runtime by a trusted software layer that is
usually called hypervisor, or simply the host (both terms are used interchangeably in the
following). Correspondingly, VMs may also be called guests or guest software. Inside
VMs, it is possible to execute any kind of software, including whole Operating Systems
(OSs), and it is possible to host multiple VMs on the same physical hardware. Virtual-
ization also offers fault isolation: Critical faults inside VMs only crash the software that
is running encapsulated inside the faulting VM; Other VMs or the host are not affected.
The concept of virtualization has been around since the 1970s. At the beginning, hyper-
visors were categorized into two types [39]. Type 1 hypervisors (bare metal) run directly
on physical hardware, while type 2 hypervisors (hosted) execute as userspace processes
within a conventional OS. A block diagram of both types is depicted in Figure 2.1.

In the past, type 1 hypervisors had better overall performance because the hypervisor
software layer executes in kernel mode and could be specifically designed to multiplex
hardware access between multiple VMs with low overhead. Xen [40] is an example of a
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Figure 2.1: Comparison of classic hypervisor types.

type 1 hypervisor. In contrast, type 2 hypervisors needed to execute hardware multiplex-
ing through the interfaces of a conventional host OS. These interfaces were not optimized
for such tasks, which resulted in more overhead and therefore less VM performance [41].
VMware Workstation [42] is an example of a type 2 hypervisor. Nowadays, however,
the picture has changed. Since the advent of hardware assist for virtualization [2, 3],
it is no longer possible to clearly label hypervisors as type 1 or type 2. For example,
KVM-accelerated QEMU [43, 44] on Linux consists of a userspace process (QEMU) and
a kernel module (KVM). This combination shows traits of both hypervisor types. On the
one hand, QEMU is hosted by the Linux kernel (type 2), on the other hand, it also uses
the KVM module that effectively converts Linux to a type 1 hypervisor. Furthermore,
it is no longer possible to infer performance differences between hypervisors solely from
their type. It is rather the case that overhead incurred by different hypervisors varies
depending on application type and used resources [45].

2.1.1 Spatial Isolation

Spatial isolation must ensure that it is not possible for one VM to willingly or unwill-
ingly read or alter any kind of memory resource that is assigned to another VM or the
host. This affects the system’s main memory (RAM) and I/O device memory such as
configuration registers. This must be ensured for both, direct (CPU cores) and indirect
(DMA) memory transactions. In other words, it is a security requirement that has to
prevent malicious VMs from executing CPU instructions that read foreign memory that
belongs to concurrent VMs or the host. The same is true for write instructions that could
corrupt foreign memory and potentially crash concurrent VMs or the whole host system.
Fortunately, this kind of isolation is inherently provided by the technologies that enable
platform virtualization in the first place: In order to run multiple VMs on the same
physical machine, it is necessary that the hypervisor partitions the machine’s memory
and exposes only a private and exclusive share to each VM. This is realized by virtu-
alizing the platform’s MMU subsystems. In the past, a software emulation technique
called shadow page tables [46] was used. Nowadays, there is hardware-assist for virtu-
alization in most x86 MMUs [4, 5], which is significantly faster than employing shadow
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page tables in most cases [47]. Virtualized MMUs in recent server CPUs using modern
hypervisors almost reach bare metal performance, incurring less than 5% overhead [48].
Hardware-assist for I/O virtualization has also been introduced for IOMMUs [49, 50].
These VM-isolation properties made virtualization “the primary security mechanism in
today’s clouds“, according to [51].

2.1.2 Performance Isolation

Temporal isolation, also called performance isolation, describes the capability of a host
system to prevent or limit performance interference amongst VMs. It is naturally caused
by time-sharing of shared resources between multiple VMs. If the sharing implemen-
tation of the host lacks proper isolation or partitioning capabilities, it is possible that
the performance of one VM degrades due to uncooperative or malicious usage of shared
resources in another VM. A prominent example is sharing the last level cache (LLC)
of multi-core CPUs. If two VMs concurrently run memory intensive workloads, data
from one VM is constantly evicted by the other, and vice versa, which results in perfor-
mance interference [52, 53, 54, 55]. The problem has been solved recently by integrating
hardware-assist for cache monitoring and partitioning into CPUs [17]. Similar interfer-
ence effects can surface for virtualized I/O. Here, the state-of-the-art in performance
isolation will be reviewed in detail in the following Sections 2.2 and 2.3.

2.1.3 Cloud Computing

Platform virtualization was, and still is, an important enablement technology for Cloud
Computing [1], especially, but not exclusively, for the Infrastructure-as-a-Service (IaaS)
service model. This becomes apparent from The National Institute of Standards and
Technology (NIST) definition of cloud computing [56], which defines IaaS as follows:

“ The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the un-
derlying cloud infrastructure but has control over operating systems, storage,
and deployed applications; [...] ”

Additionally, the NIST definition demands that provisioning must feature dynamic and
on-demand characteristics. All of this can be conveniently realized with virtualization.
Hypervisors of the cloud computing providers can dynamically generate VMs that pro-
vide the consumer’s requested hardware resources (number of CPU cores, amount of
storage, etc.), and consumer software can then be executed inside the VMs.

This model is also beneficial to the cloud computing provider itself. It enables multi-
tenancy by consolidating multiple VMs onto the same physical machine through parti-
tioning and sharing of hardware resources. This results in high utilization of hardware,
which significantly improves efficiency. Additionally, the option to perform VM live
migration [57] facilitates fault management, load balancing and hardware maintenance,
while downtimes for customers are reduced.
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2.1.4 Embedded Virtualization

Platform virtualization technology is also seeing more and more adoption in the embed-
ded computing domain. In [8], Gernot Heiser argues that the technology will help to
enable future embedded systems where different sub-systems can co-exist in isolated envi-
ronments, while overall system costs are reduced at the same time. He presents three use
cases for embedded virtualization: (1) Consumer-electronics devices, like smartphones,
where real-time environments (e.g. baseband software) are co-located with rich OSs (e.g.
Android or iOS). (2) Devices with isolated environments for safety- or security-critical
components, e.g. secure communication devices or medical devices. (3) Cars, where info-
tainment software and automotive control and convenience functionality is consolidated
on a single Electronic Control Unit (ECU).

In fact, a virtualized phone has already been launched by Motorola [58]. Frameworks
for smartphone virtualization were also presented by VMware [59] and Lang et al. [60]. In
the automotive domain, recent research suggests that the isolation properties of virtual-
ization are a reasonable means to exploit the power of multi-core CPUs by consolidating
multiple functions of mixed-criticalities on a shared multi-core ECU [9, 10, 11]. For in-
stance, work in [12] presents the consolidation of a virtualized general purpose Android
infotainment application and a virtualized instrument cluster application on a shared
x86 automotive ECU. Here, virtualization isolates potential faults from the untrusted
Android application from the trusted code of the car manufacturer, which runs in the in-
strument cluster application. Consolidation could also be realized with legacy functions
that historically run on their own ECUs. In both cases, installation space, weight and
cabling are reduced, and therefore overall costs are reduced and efficiency is increased
at the same time. In [61], additional benefits of virtualization for automotive embedded
systems, besides isolated consolidation, are presented. In the avionics domain, virtual-
ization is seen as a suitable approach to implement the spatial and temporal isolation
requirements of the ARINC 653 standard. Virtualization based implementations are
presented in [13, 14, 15].

In contrast to hypervisors that are employed in the server and cloud computing do-
main, additional real-time and safety requirements are in place for embedded hyper-
visors, which motivates the development of more specialized or extended solutions. A
comprehensive and detailed collection on the state of the art of real-time issues in em-
bedded virtualization is presented by Gu et al. in [62]. The paper contains information
on the availability of commercial hypervisors for hard real-time virtualization in safety-
critical systems, e.g. OpenSynergy Coqos1 or SYSGO PikeOS2, as well as work that
improves the real-time behavior of general purpose hypervisors like Xen and KVM, e.g.
RT-Xen [63]. As this thesis has a clear focus on I/O, techniques for virtualizing I/O
devices and related work on enforcing performance isolation for virtualized I/O will be
presented in the following sections.

1http://www.opensynergy.com/en/products/coqos/
2https://www.sysgo.com/products/pikeos-hypervisor/
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2.2 Software-based I/O Virtualization

All software-based I/O virtualization techniques share the common characteristic that
I/O of VMs is, in one form or another, relayed via trusted host software. This software
executes the requested I/O operations on the physical hardware on behalf of the VMs,
and returns eventual results to the respective requesters. Due to the relay, the host can
ensure that spatial isolation is enforced, because it can check and verify each VM access.
The host is also responsible for multiplexing requests from multiple VMs if a device is
to be shared. In the following, the two concepts of emulation and paravirtualization for
I/O are presented.

2.2.1 Emulation

Using emulation, the host is able to create a VM that emulates the existence of a certain
I/O device. Generally, it is beneficial to emulate a device that is wide-spread and popular
in the real-world, so that there is a high chance for out-of-the-box support by many OSs
that come into question for running as guests inside VMs. Typical examples for emulated
devices are the popular Intel e1000 or the Realtek RTL8139 family of Ethernet adapters.
If the guest OS is then executed inside the VM, no further modifications are needed to
enable I/O, because it already possesses a driver for this emulated version of a physical
I/O device.

The host uses a trap and emulate mechanism to catch any VM interactions with the
emulated device. It then executes the wanted interaction on behalf of the VM on its
physical hardware, and finally returns control to the VM, also emulating potential return
values. If multiple VMs are running on the host, a software bridge can be interposed
between the emulation layer and the host device driver, so that host hardware can be
shared. I/O device emulation can be implemented in various ways, resulting in different
trade-offs. In the following, three popular implementations and their pros and cons are
presented. First, emulation inside a type 1 hypervisor is presented. A corresponding
block diagram is depicted in Figure 2.2.

Hypervisor

VM0

SW

HW

...

Multi-core CPU
NIC

(can be non-e1000)

e1000 Emulation

e1000 Driver VMNe1000 Driver

NIC Driver

...

Figure 2.2: I/O device emulation in a type 1 hypervisor.

Using this design, both the emulation layer and the device driver for the physical
hardware reside in the hypervisor. VMware ESX [64], for example, employed this design.
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It facilitates good performance, because it requires only a small amount of VM exits and
entries (CPU context switches between VM and hypervisor contexts), which are the
main source of overhead in platform virtualization [65] (exits due to I/O are particularly
expensive [66]). On the downside, the design defeats the paradigm of having a small
trusted computing base (TCB) in order to satisfy security requirements. Here, the
hypervisor has to include code for emulation and device drivers. This bloats the codebase
of the trusted part of the system, which increases the probability of bugs, which in
turn enlarges the attack surface. Additionally, support for hardware is constraint by
the availability of respective device drivers in the hypervisor. These problems can be
addressed by employing a trusted VM, like depicted in Figure 2.3.

VM0

SW

HW

...

Multi-core CPU
NIC

(can be non-e1000)

e1000
Driver

...

Hypervisor

e1000 Emulation

NIC Driver

Trusted VM VMN

e1000
Driver

Figure 2.3: I/O device emulation with type 1 hypervisor and trusted VM.

The trusted VM is intended to assist the hypervisor. It usually runs a modified
version of a conventional OS like Linux, which provides broader driver support than a
specialized hypervisor. Xen [40] is a typical example that uses a trusted VM3. Physical
I/O devices are directly exposed to and handled by drivers in the trusted VM, which
therefore increases hardware support and slims down the codebase of the hypervisor.
Further slim-down is realized by also offloading the emulation layer to the trusted VM.
In this design, the lean hypervisor is still trapping VM access to emulated I/O devices,
but forwards the emulation work to the trusted VM. The drawback of this approach is
more VM exits and entries, because there are additional switches between hypervisor
and trusted VM, which ultimately result in less performance. A similar design is used in
hypervisors that are hosted. This third design approach towards emulation is depicted
in Figure 2.4.

Like in a trusted VM, emulation is also computed in a userspace process (the hyper-
visor process), but the actual device driver is provided by the conventional host OS.
This increases hardware support even further, because the hypervisor code must only
be compatible to the networking API of the host OS, which abstracts from the actual
device driver. Hence, in contrast to the previous design, it must not be ensured that
a trusted VM is available that provides driver support for the targeted hardware. The
hypervisor can run on any hardware for which the host OS provides a driver, which also

3In literature, many alternative names for this VM exist. For example, in the terminology of Xen, it
may also be called privileged VM, integrated driver domain (IDD) or Dom0.
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Figure 2.4: I/O device emulation in hosted hypervisors.

includes future hardware. On the downside, overall performance might be slightly worse
because the hypervisor itself is hosted.

In conclusion, the choice of how to implement I/O device emulation is a trade-off
between security (size of trusted code base), performance and hardware support. For
sophisticated I/O devices like GPUs or network interface cards, however, all approaches
have in common that emulation is inherently inefficient, because in contrast to native
I/O with a single device driver, a lot of overhead is introduced. Emulated I/O must
traverse the guest device driver, the emulation layer and finally the host device driver.
This results in moderate performance and high CPU utilization due to the computational
overhead in the emulation layers of the host. As a result, emulation is mostly employed
for simple devices or peripherals, e.g. system timers.

2.2.2 Paravirtualization

The unwanted overhead of emulation can be reduced by employing paravirtualized I/O,
an approach that has been popularized by the Xen hypervisor [40, 67]. Paravirtual-
ization lets guest OSs in VMs “cooperate” with the host software. The guest loads a
so-called front-end driver that communicates with a back-end driver that is operated
by the host. This is also called a split-driver structure. Payload data between front-
and back-end drivers is transported via shared memory, and notifications about new
data are exchanged via the hypervisor. This design is compatible to each of the three
virtualization implementations that were presented in the previous section. Basically,
the device driver in the guest OS is replaced by the front-end driver, and the emulation
layer in the host is substituted by the back-end driver. To give an example, the resulting
design for a virtualized system that utilizes a trusted VM is depicted in Figure 2.5.

The directed communication between VM and host removes the trap-and-emulate
overhead of emulation solutions and therefore enhances performance. On the downside,
paravirtualized I/O can only be used if there is a front-end driver available for the
respective guest OS that is compatible to the host’s back-end driver. While this was not
always the case in the early days of (para)virtualization, it is less of a hurdle nowadays.
Thanks to virtio [68], a de-facto standard for paravirtualized drivers has been established
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that is continuously improved and supported by most of the typical guest OSs like
Windows and Linux.
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Multi-core CPUNIC ...

Hypervisor

Back-end Driver

NIC Driver
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Front-end
Driver

shared memory

VM0

Front-end
Driver

Figure 2.5: Paravirtualized I/O with a trusted VM. Front-end and back-end drivers coopera-
tively exchange data via shared memory. Notifications about new data are commu-
nicated via the hypervisor.

2.2.3 Performance, Pros and Cons

Like mentioned before, paravirtualization usually outperforms emulation as it incurs
less computational overhead. For example, Barham et al. [40] showed that in a network
TCP benchmark using an MTU of 1500 B, the original release of Xen, using its paravir-
tualized network drivers, was able to achieve the performance of a native Linux system
(897 Mbit/s for both TX and RX). VMware workstation, using an emulated network
device, achieved 68% less bandwidth for TX and 31% less for RX.

However, even paravirtualization suffers from performance degradation if platforms
have sophisticated I/O configurations, despite various optimization efforts to identify [69]
and reduce the computational overhead [70, 71]. For instance, if network subsystems are
employed that go beyond bandwidths of 1 Gbit/s, CPU overhead is still a limiting factor.
Like shown in [18], paravirtualization was not able to achieve native performance on a
10 Gbit/s Ethernet NIC in RX and TX throughput benchmarks for most of the employed
message sizes. In RX tests with big message sizes, paravirtualization saturated around
6 Gbit/s compared to 9.3 Gbit/s for a non-virtualized setup. Consequently, research
began shifting the focus on offloading virtualization overheads into the I/O hardware
itself to alleviate the CPU overhead [72, 73, 74]. Despite further efforts to improve
paravirtualization for high-performance I/O [75], commercial I/O devices with hardware
support for virtualization finally surfaced. They will be covered in detail in Section 2.3.2.

An advantage of emulation and paravirtualization solutions for I/O is the abstraction
from physical hardware. The state of guest OS I/O subsystems is entirely resident in
memory, as there is no direct communication between guests and physical I/O devices.
This enables flexible control, e.g. VMs can be started and stopped on-demand, and it
facilitates live replication and migration of VMs between different physical hosts.
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2.2.4 Performance Isolation Approaches

Performance isolation for software-based I/O virtualization has been an active field of
research ever since. Many studies focused on investigating performance interference ef-
fects between VMs that were running multiple diverse workloads or benchmarks, and
therefore covered software-based I/O virtualization at least partially. Koh et al. [6] uti-
lized an instrumented Xen to run a range of benchmarks, i.a. disk I/O workloads, in two
VMs and collected performance metrics and runtime characteristics. They used the data
to clusterize applications that generate certain performance interferences and developed
mathematical models that predict application performance. Matthews et al. [7] designed
a performance isolation benchmark that measures the impact of misbehaving VMs on
concurrent VMs. The benchmark stresses different components like CPU, memory, disk
and network I/O. They conducted their benchmarks on multiple virtualization solutions
that also contained Xen and VMware Workstation. Further studies that cover perfor-
mance isolation of software-based I/O virtualization can be found in [21, 22, 23, 24].

Effort also went into enhancing scheduling of the host or developing VM placement
strategies in order to improve performance isolation of VMs. Gupta et al. [25, 26] were
among the first to investigate this topic. They extended Xen such that it was possible
to measure CPU time that is spent in the host for processing I/O on behalf of a guest.
This time is added to the actual CPU time that a guest is consuming. The overall
time is then accounted for by a new VM scheduler, which resulted in enhanced I/O
fairness and better overall performance isolation. Govindan et al. [27] developed a CPU
scheduling algorithm for the host that takes the I/O behavior of VMs into account
for its decision-making. Using their scheduling extensions, a streaming media server
was enabled to serve 3.5 times more clients than before, and response times could be
boosted by 35%. Additional work on host scheduling optimizations and VM placement
is presented in [30, 28, 29, 31, 32].

There is also previous work that researched malicious workloads inside VMs, which
is one of the main topics of this thesis. Malicious workloads differ from “standard”
workloads in the sense that they do not necessarily try to get the best performance for
themselves by disregarding others, but deliberately try to degrade the performance from
other concurrent VMs without any benefits of their own. Yang et al. [33] presented a
performance measurement and analysis framework for virtualized I/O. It can be used
to gain insight about hypervisor I/O scheduling and leverage the information to carry
out disk I/O performance degradation attacks on concurrent VMs. The attacks were
successful on local testbeds as well as on Amazon EC2 cloud instances. Chiang et al. [34]
demonstrated a similar attacker framework for EC2 that targets network I/O instead.

Although this thesis covers performance isolation issues, the presented approaches to
increase isolation could not be transferred. This is because this thesis covers hardware-
instead of software-based I/O virtualization. In hardware-based I/O virtualization, VMs
directly communicate with I/O hardware, and go unnoticed by the host. Hence, there
is no relaying layer in the host (emulation software or back-end driver) that can be
leveraged for insight into I/O consumption, attack detection or fairer scheduling. In the
following section, these differences will be introduced in detail.
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2.3 Hardware-based I/O Virtualization: Passthrough I/O with
PCIe and SR-IOV

Passthrough I/O, in contrast to emulation and paravirtualization, directly assigns phys-
ical I/O devices to VMs. Direct assignment means that memory regions of I/O devices
and VMs are directly exposed to each other, so that both communicate in a direct
manner and not via software-based emulation- or paravirtualization-interfaces. In other
words, the I/O device passes through the host and directly connects to a VM. Removing
the emulation- and paravirtualization software layers results in near-native I/O perfor-
mance, e.g. for 1 Gbit/s Ethernet NICs [76], while significantly cutting CPU overhead
at the same time. In conclusion, passthrough provides superior I/O performance with
respect to emulation and paravirtualization by giving VMs direct access to dedicated
physical I/O devices.

Enabling passthrough for untrusted VMs requires special hardware extensions in order
to retain spatial isolation requirements of virtualized systems. Therefore, modern x86
CPUs and chipsets come equipped with virtualization enabled MMUs [4, 5] and IOMMUs
(Intel VT-d [49], AMD [50]). The MMU ensures that VMs cannot use their assigned
CPU cores to read and write from any memory (RAM, I/O devices, etc.) that belongs
to other VMs or the host system. Likewise, the IOMMU ensures that an I/O device’s
DMA engine can only read from memory regions that belong to the specific VM it is
assigned to. Both MMU and IOMMU are configured dynamically by trusted hosts like
KVM or Xen on VM creation [77]. The concept is depicted in Figure 2.6.
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Figure 2.6: Passthrough I/O example with two VMs assigned to different I/O devices. VM0
runs on core c0 and bypasses the hypervisor for direct access to its assigned I/O
device. However, VM0 is blocked by the MMU from accessing VMn’s I/O device.
Furthermore, the IOMMU ensures that VMn’s assigned I/O device has DMA access
only to memory that belongs to VMn, but not to concurrent VMs or the hypervisor.
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As mentioned initially in this chapter, COTS passthrough I/O devices are mainly
provided for x86 architecture platforms that utilize the PCIe interconnect. For this
reason, the PCIe characteristics that are relevant to this thesis shall be briefly introduced
in the following.

2.3.1 PCI Express (PCIe)

PCIe [78] is a high-speed serial interconnect that replaced the older PCI [79] and
PCI-X [80] busses. The PCIe specifications comprise hundreds of pages describing the
core technology, as well as optional extensions and concepts for achieving backward com-
patibility with legacy PCI. As a consequence, the following introduction will only cover
the respective parts that are necessary for understanding the PCIe related parts of this
thesis. Also, sometimes an abstracted high-level view is presented if a focus on concepts
is more important than actual details of the technical specification.

2.3.1.1 Topology

Unlike PCI and PCI-X, which utilize a shared parallel bus topology, PCIe is a serial,
point-to-point, packet-switched interconnect. A typical PCIe topology has a single root
node, called the “Root Complex”, which connects the CPU and memory (DRAM) sub-
systems to the PCIe I/O subsystem. The Root Complex may have multiple PCIe ports
that either connect to switches or PCIe devices (also called Endpoints). Recent x86
CPUs directly integrate the Root Complex on the processor die. It is also possible to
connect legacy PCI/PCI-X devices to PCIe via PCIe to PCI bridges. However, legacy
PCI is not in the scope of this thesis and will therefore not be considered further. An
example PCIe topology is shown in Figure 2.7.

Root Complex DRAM Contr.

Multi-core CPU

DRAMPCIe
Endpoint

Cores

PCIe
Endpoint

PCIe
Endpoint

Switch

PCIe
Endpoint

PCIe
Endpoint

Figure 2.7: Example PCIe topology of a multi-core CPU with integrated Root Complex.
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2.3.1.2 Link Parameters and Bit Rates

The communications channel between two PCIe components is called a link. A link has
three parameters that define its actual net bit rate. First, each link has a number of
lanes, which indicate the number of physical signal pairs between two PCIe components.
The PCIe specification denotes the number of lanes by xN. For example, x16 means the
link supports 16 lanes. Second, each lane has a physical layer gross bit rate (Rb), which
is given in so-called GigaTransfers per second (GT/s). The supported bit rate depends
on the PCIe version that the respective hardware implements. Third, each PCIe version
uses a specific encoding for transfers on the physical layer. An overview of supported
parameters depending on PCIe version is given in Table 2.1.

Table 2.1: Performance parameters by PCIe version.

PCIe version Rb (GT/s) Encoding

1.0 2.5 8b/10b

2.0 5 8b/10b

3.0 8 128b/130b

Please note that newer PCIe versions are backwards compatible in terms of speed.
For example, a PCIe 3.0 slot can still operate at 2.5 GT/s with an encoding of 8b/10b if
a PCIe 1.0 device is installed in it. Given all three parameters, it is possible to calculate
the physical layer net bit rate (Rnet). For instance, Rnet of an x16 link with 8 GT/s
using 128b/130b encoding is computed as follows:

Rnet = 16 · 8 GT

s
· 128

130
= 126

Gbit

s
= 15.75

GB

s
.

2.3.1.3 PCIe Functions, Memory Mapped I/O and Drivers

Although physical PCIe components like Endpoints are connected by a single link, the
standard allows to partition components into multiple so-called PCIe functions. Each
individual function is independently addressable by other system components like CPU
cores. Therefore, each function must first be mapped into the system’s memory map, a
task that is usually executed during system boot by firmware or the OS. For instance, in
x86 based systems, memory mapping is done by the BIOS. Each PCIe function requests
memory resources from the BIOS, which reserves a respective address range in the sys-
tem’s memory map. Afterwards, the BIOS reports back to each function and notifies
it which address range it got. This way, it is possible for a function to determine if it
is the destination of an inbound PCIe packet by comparing the packet’s target address
with its assigned address range.

As soon as all PCIe functions are mapped, they are ready to receive CPU-to-PCIe
transactions. If the destination address of a CPU core’s machine instruction translates
to a PCIe function address, a respective packet is compiled and put on the PCIe in-
terconnect. This method for performing I/O operations is called Memory Mapped I/O
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(MMIO). It enables the system to consolidate both DRAM and I/O device addresses
into a single memory map. As a consequence, the CPU can use the same machine in-
structions for both MMIO and DRAM transactions, which speeds up I/O transactions
and simplifies device driver writing. PCIe devices that support Direct Memory Access
(DMA) utilize the same system memory map, which means they can read from DRAM
as well as other PCIe devices that are mapped via MMIO.

Common examples for real-world multi-function PCIe devices are multi-port NICs,
e.g. Ethernet or InfiniBand NICs. Such a NIC’s function address range is used by
system software to interface to the hardware resources needed for operating a single
physical NIC port. Usually, it is an OS device driver that interfaces to PCIe functions.
The device driver first requests the function’s base address, aka the first address of the
function in the system memory map. Afterwards, it can access different resources of
the function (e.g. registers, FIFOs, etc.) by adding an offset to the base address. A
per-function assignment of offsets to resources is known to the programmer of the device
driver, usually by consulting the device’s datasheet. Most of the time, device drivers
are written for single PCIe functions, not for the whole device. For example, if a device
provides multiple identical functions, Linux loads multiple instances of the same driver,
but supplies different base addresses (aka PCIe functions) to each driver instance.

The PCIe specification allows for up to eight functions per PCIe device, except for de-
vices supporting an optional PCIe capability called Alternative Routing-ID Interpreation
(ARI), which adds support for up to 256 functions. Of course it is in the responsibility
of the PCIe device designers and engineers to choose link parameters that satisfy the
combined net bit rate demands of all provided PCIe functions (see Section 2.3.1.2). A
summary of this section using the example of a multi-port Ethernet NIC is depicted in
Figure 2.8.
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Figure 2.8: A multi-function PCIe Endpoint using the example of a multi-port Ethernet NIC.
Each device function requests 8 KiB of memory and is assigned a respective address
range in the system’s memory map.

Thanks to the representation of PCIe functions as address ranges in the system mem-
ory map, it is possible to do passthrough I/O at function granularity. The host realizes
this by directly mapping PCIe function address ranges into a VM’s virtual address space.
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2.3.1.4 Transaction Characteristics and Flow Control

As mentioned in 2.3.1, single PCIe transactions are sent via packets. Read transactions
are so called non-posted requests, which means that the reader has to wait for a com-
pletion packet from the target that contains the requested data word. For instance, a
CPU core would block on the machine instruction that reads from a PCIe device until
the completion is received. In contrast, write transactions are classified as posted re-
quests. Here, program execution can continue as soon as the write packet has been sent
to its first downstream stop; write packets are not completed, aka acknowledged, by the
receiver.

PCIe also incorporates hardware flow control mechanisms, which ensure that PCIe
packets are sent out only if a free downstream buffer slot is available. For instance, if a
CPU core wants to execute a write instruction to PCIe memory, but backpressure from
flow control signals zero available buffers, the core would block on the write instruction
until a downstream buffer slot is freed.

2.3.2 PCIe Single Root I/O Virtulization (SR-IOV)

While passthrough I/O offers near-native performance, it has limitations in terms of
scalability. Even on machines with moderate VM count, hardware costs quickly get
expensive if one full-blown passthrough device per VM is needed. However, in contrast
to emulation or paravirtualization, there is no possibility to share a physical I/O device
between multiple VMs with passthrough. This is because a trusted software intermediary
like a hypervisor, that would be able to multiplex single I/O devices between multiple
VMs, has deliberately been removed in the first place in order to enable the performance
benefits of passthrough.

For combining both traits, (1) the performance of direct access via passthrough and
(2) sharing a device’s physical function, research has suggested self-virtualizing I/O
devices [73, 74]. The idea was to overcome the performance penalties of software-based
I/O virtualization and sharing routines [69] by offloading them into the I/O device
hardware. This way, self-virtualizing devices can offer multiple virtual interfaces per
physical device function, which are enabled by hardware-accelerated I/O virtualization
and sharing.

In line with these ideas, the Single Root I/O Virtualization and Sharing Specification
(SR-IOV) [81] was released by the PCI Special Interest Group (PCI-SIG). It is specified
for PCIe topologies that utilize a single Root Complex. There is also MR-IOV, a speci-
fication for topologies with multiple Root Complexes [82]. However, this thesis will not
specifically cover MR-IOV, because the technology is not widely used yet and the topics
addressed in this thesis are mostly agnostic of the topology being single or multi-root.

2.3.2.1 Physical and Virtual Functions

Devices supporting SR-IOV provide at least one PCIe function (see 2.3.1.3) that supports
the SR-IOV capability. Such functions are called Physical Functions (PFs) and they are
intended to be controlled by the trusted host. Through the PF interface, it is possible
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to dynamically spawn multiple “light-weight” PCIe functions, called Virtual Functions
(VFs) in SR-IOV terms. VFs share physical resources with their co-created VFs and
the PF. The maximum number of supported VFs per PF depends on the capabilities
and hardware implementation of the actual PCIe device.

From the system’s point of view, there is no difference between classic PCIe functions,
PFs and VFs. Just like classic functions, there is a reserved address range in the sys-
tem’s memory map for each VF (compare Figure 2.8). Hence, VFs are automatically
compatible with PCIe passthrough and are therefore protected by hardware-enforced
spatial isolation via MMU and IOMMU. Manufacturers or vendors of SR-IOV devices
usually supply special VF drivers for usage in VMs. VF drivers are more light-weight
than classic drivers, because they can spare most control plane functionality for admin-
istering the physical hardware, a task which is reserved to host and its PF driver. The
host also decides which VMs share physical hardware by attaching VMs to VFs that are
associated with the same PF. A summary of the concepts described in this section is
depicted in the block diagram in Figure 2.9.

HypervisorSW

HW

Cores DRAM
Contr.

MMU

Multi-core CPU

DRAM

port0
PCIe Root Complex

IOMMU
port1 portN...

VM0 VMN

c0 cN...

et
h0

D
ua

l-p
or

t
SR

-I
O

V
 N

IC VF0.0

VF0.X

...

P
F
0

VF1.0

VF1.X

...

P
F
1

et
h1

VM1 ...

c1

... Legacy
PCIe

Device

func0

Figure 2.9: SR-IOV enables virtualization and sharing of physical resources like Ethernet ports
between multiple VMs. In this example, VM0 and VM1 share NIC port eth0.

This example shows an SR-IOV capable dual-port Ethernet NIC. The physical ports
eth0 and eth1 are associated with PF0 and PF1, respectively. They are administered by
the hypervisor and used to spawn up to X VFs per PF. VM0, which runs on core c0, has
passthrough access to VF0.0, the first VF of PF0. VM1, which runs on a separate core,
is attached to VF0.X, which means that VM1 shares Ethernet port eth0 with VM0. For
instance, if VM0 and VM1 would both execute the same networking benchmark with the
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same parameters at the same time, then each VM would achieve 50% of eth0’s maximum
performance, respectively. VMn, in contrast, is attached to VF1.0, which is associated
with a different PF. It is therefore not affected by the network usage of concurrent VM0
or VM1.

2.3.2.2 Adoption

Being an extension to PCIe, the prevalent interconnect in x86 systems, SR-IOV has been
endorsed quickly by hardware manufacturers. Thus, commercial off-the-shelf (COTS)
devices supporting the technology were available after only a short period of time. At
the time of writing, Ethernet adapters made up a large part of available SR-IOV hard-
ware. However, other I/O classes or subclasses are catching up recently: In [83], an
InfiniBand adapter supporting SR-IOV is evaluated. Recent revisions of the NVM Ex-
press specification [84], which specifies a PCIe based interface to non-volatile storage
like Solid-State Drives (SSDs), includes support for SR-IOV; Implementation details are
presented in [85]. Additionally, the first Graphics Processing Unit (GPU) with SR-IOV
support has been announced recently [86].

SR-IOV hardware has already been adopted by cloud computing providers. For exam-
ple, Amazon offers optional SR-IOV networking for their Elastic Compute Cloud (EC2)
instances, where it is termed as “enhanced networking”. On Amazon’s website, SR-IOV
is advertised for providing “higher bandwidth, higher packet per second (PPS) perfor-
mance, and consistently lower inter-instance latencies” [87]. The Oracle Exalogic Elastic
Cloud incorporates SR-IOV capable InfiniBand adapters, which can be shared by up to
63 VMs [88]. Additionally, SR-IOV is considered as an enabler for virtualization in High
Performance Computing (HPC) [89, 90].

Recently, SR-IOV also started getting attention in the embedded virtualization do-
main. Herber et al. [91] presented a self-virtualizing CAN controller based on SR-IOV. It
is intended for use in future automotive ECUs, which consolidate the software of multiple
legacy single-core ECUs on a single multi-core ECU using virtualization. In [92, 93, 94],
concepts are presented that leverage SR-IOV’s partitioning and isolation capabilities to
share and separate access to FPGA-based reconfigurable coprocessors in heterogeneous
mixed-criticality multi-core systems. Using SR-IOV for the coprocessors also provides
lower overhead than software based virtualization solutions [95]. Both concepts, SR-
IOV enabled CAN controllers and coprocessors, were also consolidated into a virtualized
automotive ECU demonstrator platform [12]. The ECU was running a general pur-
pose Android infotainment application and an instrument cluster application, with both
having access to SR-IOV enabled CAN and coprocessors.

For the avionics domain, Münch et al. [96] evaluated SR-IOV for mixed-criticality real-
time systems, and concluded that SR-IOV is a promising approach for future systems if
certain criteria are met. Their utilized evaluation platform, a Freescale P4080, however,
did not meet the criteria to distinguish PCIe devices at function granularity, but the
problem can be solved by an approach that is presented [97].
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2.3.3 Performance, Pros and Cons

Studies on 10 Gbit/s SR-IOV Ethernet NICs show that the technology enables near
native I/O performance for VMs [18, 19, 20]; SR-IOV is superior to emulation and
paravirtualization approaches with respect to performance and CPU overhead in both,
KVM [18, 20] and Xen [19] environments. Additional research on SR-IOV demonstrates
that performance can be brought even closer to native by tweaking interrupt handling [98,
99, 100] or optimizing the VF driver for multi-core [99].

Depending on the domain in which SR-IOV based systems are deployed, fast and
low-overhead migration/replication of VMs might be an additional requirement that is
more (cloud computing) or less (embedded systems) important. Here, SR-IOV is not
as flexible as software based legacy I/O virtualization solutions, because the state of
a VM depends not only on its software image in memory, but also on the state of its
passthrough hardware. Here, the problem is that passthrough hardware cannot yet be
stopped or frozen like the execution of VMs on a CPU, which aggravates migration. It
may be further complicated if the migration target machine has different passthrough
hardware. Techniques for improving this situation are proposed in [101, 102] (hardware
based) and [103, 104, 105, 106] (software based), but not yet implemented in vendor-
supplied drivers or COTS hardware.

2.3.4 Performance Isolation Approaches

Performance isolation for passthrough I/O and SR-IOV is not yet as broadly covered in
research as it is for software-based I/O virtualization approaches. First of all, it is im-
portant to understand that passthrough I/O exposes system resources to VMs at a lower
abstraction level than software-based solutions. In contrast to the latter, passthrough
grants direct access to the system’s PCIe interconnect, which uses a packet-based proto-
col. On top of the low-level PCIe protocol, VMs and passthrough devices communicate
over a higher-level protocol in order to manage reception and sendout of the device’s ac-
tual I/O functionality (e.g. Ethernet). This can be roughly compared to using the TCP
protocol (higher level) over IP (lower level). The higher-level protocol in passthrough
is communicated between the guest VM’s device driver for the passthrough device and
the passthrough device’s controller (further details are presented in Section 3.6). In
software-based solutions, the interconnect part is abstracted through the emulation or
paravirtualization layers, hence full control over the interconnect remains at the trusted
host software.

Consequently, in contrast to software-based I/O virtualization, passthrough solutions
must additionally provide isolation for the interconnect and not only for the actual I/O
functionality. This also means that there is a one-way dependency between both. If
performance isolation on the interconnect cannot be guaranteed, it may be possible that
performance isolation for the higher-level I/O function, like Ethernet, can be broken
too. On the other hand, it may be possible to exploit the higher-level protocol for
unfair Ethernet sharing, but isolation on the interconnect stays uncompromised. This
dependency is depicted in the block diagram in Figure 2.10.
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Figure 2.10: Dependency between interconnect and actual I/O functionality. If performance
isolation on the interconnect cannot be guaranteed, it may be possible that isola-
tion for the higher level I/O function, like Ethernet, can be broken too.

In one of the first papers about an SR-IOV capable COTS Ethernet NIC, Dong et
al. [107] listed an outlook of possible attack types on VFs by malicious VMs, among them
Denial-of-Service attacks with spurious messages. However, they only mentioned their
theoretical possibility. They did not explicitly define what kind of messages would have to
be used. They provided first thoughts of how countermeasures could be designed, but no
further insights like an actual architecture or evaluation on real hardware were provided.
In this thesis, DoS attacks are for the first time implemented, thoroughly investigated
on COTS SR-IOV hardware, evaluated, and mitigation and protection approaches are
presented.

For their actual I/O functionality, controllers in COTS SR-IOV devices usually imple-
ment QoS features that that enforce performance isolation. For instance, the 82576 [108]
and i350 [109] 1 Gbit/s SR-IOV capable Ethernet controllers provide QoS for servicing
the TX path of their Ethernet ports. Multiple VMs are either fairly arbitrated using
a (weighted) round-robin scheme, or bandwidth can be partitioned arbitrarily between
different VMs through the PF driver of the host. Similar functionality was presented for
the self-virtualized SR-IOV CAN controller of Herber et al. [110]. They use a time-based
weighted round-robin scheme for arbitration between different virtual CAN controllers.
Work in this thesis instead focuses on performance isolation for the interconnect part.
The results can be combined with the before mentioned approaches to provide perva-
sive performance isolation for both the interconnect and the actual I/O functionality of
passthrough I/O devices.

Previous work on performance isolation for cache and memory subsystems focused on
utilizing CPU-resident hardware performance counters to monitor access of individual
cores or processes to the shared resources. On misuse or overextension, specifically de-
signed scheduling mechanisms are responsible for enforcing isolation. Research was con-
ducted for systems of the cloud computing [52, 53, 54] and real-time [111, 112] domain.
Work presented in this thesis investigated if this approach is transferable to performance
isolation for passthrough I/O and SR-IOV. The thesis will conclude that scheduling can
be used to mitigate DoS attacks on passthrough I/O and SR-IOV. However, counters in
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current CPUs lack needed granularity. They must therefore either be extended accord-
ingly, or future passthrough I/O devices must employ respective monitoring facilities in
the I/O devices themselves.

In [113], Bettie et al. present FPGA-based hardware real-time bridges, which are
interposed between the host system’s CPU and the I/O device. Performance isolation is
enforced by a real-time scheduler that is connected to the bridges. The approach could
be compatible to SR-IOV, but it was not implemented with support for it. In contrast,
work in this thesis presents solutions that can be integrated into existing CPUs and I/O
devices, enabling solutions that do not need physical hardware that is interposed.

Münch et al. [114] developed a performance isolation concept for mixed-criticality
embedded real-time systems in avionics that employ SR-IOV devices. The main idea
is to block CPU cores from sending any MMIO transactions at all to the I/O devices.
Instead, communication with the host is realized solely through DMA transactions that
are initiated by the trusted SR-IOV device. DMA transactions for the VFs are arbi-
trated by a static arbitration table, which enables performance isolation. This concept
needs purpose-built SR-IOV devices and specific PF and VF drivers and software that
is compatible to the DMA-only communication model. Solutions presented in this thesis
are compatible to existing COTS device drivers and programming models that utilize
host-initiated MMIO transactions.
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3 Investigation of PCIe Passthrough and
SR-IOV Performance Isolation Issues

This chapter presents and investigates a major finding of the thesis: Denial-of-Service
attacks on PCIe passthrough and SR-IOV devices cause major performance isolation
issues. As a result, malicious VMs or buggy device drivers are able to cause performance
interference with concurrent VMs as well as the host.

The chapter starts by defining a general threat model in Section 3.1, and continues
with Section 3.2, which explains how DoS attacks can be implemented. Subsequently,
the test platform for investigating and evaluating the performance isolation issues is in-
troduced in Section 3.3. Among other things, hardware and software configurations of
the platform are presented. Section 3.4 continues by describing the evaluation method-
ology used on the test platform. Afterwards, Section 3.5 presents results of four distinct
experiments that evaluate and investigate DoS attacks. Using the results of these exper-
iments, Section 3.6 continues by presenting a system level model for PCIe DoS attacks
on Ethernet devices that abstracts from specific hardware and software. The subsequent
Section 3.7 then introduces a classification of different DoS attack types that were found.
Finally, a summary of the whole chapter is presented in Section 3.8.

3.1 Threat Model

Software that performs DoS attacks on PCIe passthrough devices has a single require-
ment. It must have the respective access permissions for writing to the passthrough
device’s memory resources. In virtualized systems, there are multiple scenarios in which
this requirement is either inherently fulfilled or can be fulfilled by force.

For instance, Infrastructure-as-a-Service (IaaS) cloud computing provides computing
infrastructure to the customer, which means he has direct access to virtualized and
passthrough hardware from the start. The customer must install and administer its own
guest OS and hardware drivers inside the provided VM, which means he is also able
to do as he wants with potential passthrough devices. Other service models in cloud
computing abstract more from the underlying hardware. For example, Platform-as-a-
Service (PaaS) offers computing platforms to the customer. Usually, they come in the
form of user accounts for an OS that comes equipped with certain pre-installed execution
environments and developer tools. Here, the customer does not have write permissions
for potential passthrough hardware, but if he is of malicious nature, he could obtain
elevated access by utilizing privilege escalation exploits in the supplied OS. Of course,
it is itself already a major problem if an attacker obtains root privileges in a PaaS
environment, because it enables tampering with other customer accounts that share the
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same OS. However, if the compromised OS itself runs in a VM with passthrough devices
and not on bare metal, the attacker can additionally cause performance interference with
concurrent VMs.

Similar scenarios are possible in embedded virtualization. For instance, future con-
solidated mixed-criticality systems might run VMs with access to passthrough devices
(compare Section 2.3.2.2). Inside such VMs, untrusted third-party software may have
direct access to passthrough devices. Other VMs may run trusted code, but expose
interfaces to the outside world (e.g. in-vehicle infotainment) which can be exploited by
an attacker to gain access to passthrough devices.

Finally, a DoS attack in cloud or embedded systems must not always be the result of
an attacker with malicious intent. There is also a possibility that a user or third-party
software loads a buggy device driver for a VM’s passthrough device, which accidentally
causes a DoS attack.

3.2 Implementation of DoS Attacks

DoS attacks on PCIe devices work by flooding the target with spurious PCIe packets
that ultimately overstrain the processing capabilities of the attacked device. Regarding
the characteristics of PCIe transactions (see Section 2.3.1.4), it is clear that write trans-
actions are most suitable for the job. In contrast to read transactions, where every single
request needs to wait for the requested data word to arrive from the target device, there
are no acknowledgements for write transactions. This means that write packets can be
generated at much higher frequencies than read packets.

There are multiple ways to execute a DoS attack on MMIO (see Section 2.3.1.3)
capable hardware. For example, an attacker can write a tiny PCIe kernel driver for the
passthrough device that includes a loop that floods the device’s resources. The DoS
driver for the target device can then easily be loaded instead of the standard or vendor-
supplied driver. Depending on the capabilities of the OS, it is also possible to launch the
attack from userspace. For instance, resources from the target device can be memory
mapped into a userspace process using the Linux sysfs [115] interface for PCIe devices.
A minimalistic implementation in C is shown in Listing 3.1.

1 #d e f i n e SYSFS PCIE FILE ”/ sys /bus/ pc i / d ev i c e s /0000 : 08 : 10 . 1/ r e source0 ”
2
3 i n t main ( i n t argc , char ∗argv [ ] )
4 {
5 i n t t a r g e t s y s f s f d , t a r g e t s i z e ;
6 s t r u c t s t a t s t ;
7 void ∗ t a r g e t ;
8
9 /∗ get f i l e d e s c r i p t o r f o r t a r g e t r e s ou r c e ∗/

10 t a r g e t s y s f s f d = open (SYSFS PCIE FILE , ORDWR | O SYNC) ;
11
12 /∗ get memory s i z e o f the r e s ou r c e ∗/
13 s t a t (SYSFS PCIE FILE , &s t ) ;
14 t a r g e t s i z e = s t . s t s i z e ;
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15
16 /∗ memory map the r e sou r c e ∗/
17 t a r g e t = mmap(0 , t a r g e t s i z e , PROT READ | PROT WRITE,
18 MAP SHARED, t a r g e t s y s f s f d , 0 ) ;
19
20 /∗ the ac tua l DoS loop ∗/
21 f o r ( ; ; )
22 ∗( v o l a t i l e u i n t 3 2 t ∗) t a r g e t = 0xD05 ; /∗ 32 b i t PCIe pkts ∗/
23 }

Listing 3.1: A minimalistic C implementation of a DoS attack using the Linux sysfs
interface. Error handling and include files omitted for brevity.

The targeted PCIe device is defined in line one, lines 10–18 map the device’s memory
resources into the address space of the process, and lines 21–22 finally flood the target
device with 32 bit PCIe write packets. Error handling code and include files are omitted
for brevity. The DoS attack targets the address that is stored in the pointer variable
called target. This address points at the first address of the whole address range that
is reserved for the targeted PCIe device (compare Figure 2.8). What kind of I/O-device
resource actually hides behind this address must be looked up in the device’s data sheet.
It could be a register, FIFO memory, or something else. Targeting a different resource
of the device can be achieved by adding an offset to the address stored in target. The
relevance of the actual target resource inside the PCIe device will be discussed later in
Section 3.5. Flooding with PCIe packets of other sizes is achieved by casting target to
the respective type, e.g. uint64 t or uint16 t. In the rest of this thesis, the attacked
PCIe device will interchangeably be called the DoS target or DoS victim.

3.3 Evaluation Platform

The evaluation platform is based on the x86 architecture and uses a CPU and moth-
erboard combination that was selected for building an automotive demonstrator within
the ARAMiS project [116]. The goal of the demonstrator was to show that virtualization
in multi-core systems is a key-enabler for consolidating different software functions onto
a single physical ECU [12]. The demonstrator also utilized SR-IOV for hardware-based
virtualization of a coprocessor and a CAN controller. Thus, it is a suitable choice as a
base system for evaluating performance isolation issues of SR-IOV.

Figure 3.1 depicts an overview of the evaluation platform. The CPU is an Intel Core
i7-3770T (3rd generation) that runs at 2.5 GHz and has four physical cores (or eight
logical cores if HyperThreading is enabled). It also has a single integrated PCIe 3.0
port, which is primarily intended to house a graphics card. The CPU is mounted on
an Intel DQ77MK motherboard, which provides a Q77 Platform-Controller-Hub (PCH),
aka the chipset. PCH and CPU are connected by the proprietary Direct Media Interface
(DMI) 2.0, which is very similar to PCIe (serial communication, point-to-point links with
multiple lanes). The DMI on this motherboard is capable of 20 Gbit/s. CPU and PCH
support VT-x and VT-d hardware virtualization extensions, so that PCIe passthrough
is supported. The system is equipped with 32 GB of RAM.
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Figure 3.1: Block diagram of the evaluation platform’s hardware components and their con-
figuration. The 82576 NIC is either connected to the CPU’s PCIe 3.0 port or the
PCH’s PCIe 2.0 port. Measurements and DoS attacks are indicated by λn and δn,
respectively.

The DMI connection between CPU and PCH is transparent to software, which means
that all of the PCH’s PCIe ports and integrated PCIe devices appear to the OS as
independent devices or ports, which are not behind a PCIe switch. It is not disclosed
how multiplexing between DMI and the PCH subsystems is implemented in reality, and
therefore depicted with dotted lines.

For mass storage purposes, the PCH integrates a SATA 3 controller. It has a total of
six ports, with two high-speed ports that support 6 Gbit/s. Each of the two is connected
to an 80 GB Solid-State Drive (SSD). While one SSD is utilized to store the system
and VM images, the second is used to benchmark data throughput. Only the latter is
depicted in Figure 3.1.

The PCH provides three PCIe 2.0 ports, one with four lanes (x4) and two with one lane
(x1). All lanes support a bit rate of 2.5 GT/s. One of the x1 PCIe ports is hardwired to
an Intel 82574L Gigabit Ethernet NIC, which is soldered directly onto the motherboard.
The second x1 port is equipped with a Xilinx SP605, a PCIe development board with a
Spartan 6 Field-Programmable Gate Array (FPGA). The board will be utilized as a DoS
target with run-time configurable processing times for PCIe packets. Its purpose will be
discussed in detail in Section 3.5.2. A second Gigabit Ethernet NIC, an Intel 82579LM,
is directly integrated into the PCH. To software, the NIC looks like a standard PCIe
device so that the default PCIe drivers for the controller can be used. In terms of speed,
it only supports 1.25 GT/s [117], which is half of the lane speed of the other links.

The last device depicted in Figure 3.1 is an Intel 82576 dual-port Gigabit Ethernet
NIC with support for SR-IOV. Each Ethernet port can be configured to spawn as many
as seven VFs. For this evaluation setup, the NIC is configured to provide one VF for
the first Ethernet port (eth0: VF0.0) and three VFs for the second port (eth1: VF1.0–
VF1.2). The NIC supports four lanes (x4) and a speed of 2.5 GT/s. Depending on the
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experiment in Section 3.5, the NIC is either connected to the x4 port of the PCH, or to
the integrated PCIe port of the CPU. These two options are mutually exclusive, but the
NIC will be connected to the PCH port for most of the experiments. If it is connected
to the CPU port, it will be explicitly stated.

The platform’s software configuration is based on Ubuntu Linux. Experiments 1, 3
and 4 in Section 3.5 were conducted on Ubuntu Linux 12.10, while experiment 2 was
using Ubuntu version 14.04. Each time, QEMU [44] and KVM [43] were employed for
virtualizing the system. All guest VMs used the same Ubuntu and kernel version as the
host, and each VM was assigned 4096 MB of RAM.

3.4 Evaluation Methodology

In order to quantify DoS attack impact on concurrently running VMs and the host
system, three metrics were selected for measurement.

3.4.1 Latencies of 32 bit PCIe Read Transactions

Latencies for single PCIe read transactions give a good general idea about the impact of
a DoS attack on the interconnect. Like mentioned in Section 2.3.1.4, a read transaction
completely blocks a CPU core until the requested data word arrives from the I/O device.
Measuring the execution time of a single read instruction, therefore, results in an accurate
report of the round-trip time between CPU and I/O device.

The Time-Stamp Counter (TSC) mechanism provided by the i7 CPU was a suitable
choice for the job. It is a 64 bit counter that is initialized to zero at processor reset and
afterwards increases monotonically at a known rate, independent of any power saving
states that a CPU core might switch between1. There is one TSC per CPU core available,
and it can be read with a dedicated instruction. The whole routine for measuring the
latency of PCIe reads was implemented following the guidelines described in [118].

As a result, measuring was done inside a kernel module that binds to the PCIe de-
vice under test. The Linux readl() function was used to issue 32 bit reads from PCIe
MMIO targets. The module disabled interrupts for the core it was running on, as well as
software-based preemption, so that that the measurement routine was not interrupted.
Additionally, hardware-based preemption was prevented by disabling HyperThreading
in the BIOS. The guidelines in [118] also ensured that the CPU’s out-of-order execution
capabilities did not falsify the results. Program execution before and after the readl()

function was serialized to ensure the accurate measurement. Furthermore, dynamic fre-
quency scaling (SpeedStep) and Turboboost were disabled in order to prevent frequency
changes of CPU cores depending on the current workload and thermal conditions on
the CPU die. This ensured consistent and reproducible results, which would not have
been achieved if the CPU cores were constantly switching frequencies between different

1This is not guaranteed for older processor generations, and must be checked either by looking into the
respective datasheet or by querying the cpuid instruction.
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measurement runs. All latency results presented in this chapter are the average of one
million consecutive samples.

Evaluation of the latency measurement module showed that measurements from within
the host OS yielded reasonable and expected results. However, it did not work as
intended when run within a VM. One of the problems was that hypervisors virtualize the
TSC itself due to various reasons [119, 120]. To give an example: Virtualized operating
systems within VMs may use the TSC for internal time-keeping tasks. If these VMs
are fully virtualized, they assume to run on the physical CPU for 100% of the time,
while in reality, they might be preempted by the host without knowing. Virtualizing the
TSC, e.g. by maintaining virtual per-VM copies, can therefore help to prevent errors
that may result from this assumption. Additionally, the previously stated feature of
the measurement module of turning off interrupts und software preemption to guarantee
precise measurements only applies to the virtualized kernel of the VM. If scheduling from
the host or arrival of a real interrupt preempts the whole VM, the measurement routine
within it is halted as well, and measurements lose accuracy. For the evaluation platform,
the effects of TSC virtualization can be demonstrated by measuring the latency of VF0.0
(see Figure 3.1, λ0) from the host and from a VM with passthrough access to VF0.0.
The results are depicted in Figure 3.2.
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Figure 3.2: The side effects of Time Stamp Counter (TSC) virtualization: Measuring read
latencies of VF0.0 from the host yields better results than from inside a VM.

On average, the inaccuracies that are introduced by TSC virtualization cancel each
other out. Measurement results from the host and from within the VM show a latency
of about 1.5 µs. However, the latter shows a standard deviation drift of 0.75 µs in both
directions. In order to circumvent this phenomenon, all latencies within this chapter were
measured from the host. The measurement process was always pinned to a dedicated
core, so that interferences with VMs were avoided, and a precise measurement of the
state of the interconnect was guaranteed.

32



3.5 Experiments and Results

3.4.2 Network Performance – TCP and UDP Throughput

Network performance in the form of TCP und UDP throughputs is the second metric that
was used to measure DoS attack impact in the following experiments. Each of the three
NICs of the evaluation platform was incorporated at least once for these tests. Although
there is a dependency on the previous metric (latencies for single PCIe packets), the
achievable throughputs of the NICs give a better idea of the impact of DoS attacks on
real-world I/O workloads.

Throughputs were measured with the netperf benchmark [121], which was always
executed from within a VM that had passthrough access to either VF0.0 or one of the
two other NICs (see Figure 3.1, λ0, λ1, λ2). The respective NIC under test was connected
to a dedicated remote machine which acted as sink for the streams. Standard parameters
were utilized for both streams, TCP and UDP, which used the default message sizes of
16 KiB and 64 KiB, respectively. Each benchmark was conducted for a period of ten
seconds, and all presented results are the average of multiple iterations. No jumbo
frames were used, and the Maximum Transmission Unit (MTU) was set to its default
size of 1500 bytes.

3.4.3 Storage Performance – SSD Throughput

The third and last metric of the experiments is the storage performance of the host-
assigned SSD, which was connected to the evaluation platform’s PCH. Therefore, the
standard Unix tool dd was used to measure the throughput while writing large files to
the SSD. These storage performance tests complete the evaluation by adding a second
class of real-world I/O that differs from network throughput tests. This helps to further
put the impact of PCIe DoS attacks into context.

The results will also emphasize the problems that might arise if future chipsets, which
traditionally integrate a platform’s storage controllers, start to integrate SR-IOV capable
storage controllers. Some server-grade chipsets already do that2, and next generation
storage technologies like NVMe, which is PCIe based, are specifically designed to leverage
the opportunities of SR-IOV [84, 85].

3.5 Experiments and Results

This section presents four different experiments that were conducted in order to learn
multiple things about DoS attacks on PCIe passthrough: Experiments one and two
quantify DoS attack impact by means of PCIe latencies and real-world benchmarks. This
is followed by experiments three and four, which investigate parameters that influence
DoS attack impact.

2Intel C600 series. However, at the time of writing, SR-IOV features of the controller were not yet
usable due to missing support in the drivers.
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3.5.1 Experiment 1: Attacking SR-IOV Virtual Functions

This experiment investigated what happens if malicious VMs attack their VFs with a
PCIe DoS attack. Given the widespread use of SR-IOV NICs in cloud computing, this
is the most likely scenario according to the previously introduced threat model, and was
therefore selected to be the first experiment. It mainly focuses on the evaluation plat-
form’s 82576 dual-port SR-IOV NIC, but also takes the other NICs of the platform into
account. Initially, important baseline characteristics of the 82576 NIC are introduced,
which was connected to the PCH throughout the experiment (see Figure 3.1).

3.5.1.1 Baseline Performance

The NIC’s PCIe connection supports four lanes at 2.5 GT/s with an 8b/10b encoding,
which results in a physical layer net bit rate of 8 Gbit/s. This is sufficient to operate
both Ethernet ports at full speed simultaneously. Tests with netperf showed that
each port can achieve 941 Mbit/s for TCP streams and 961 Mbit/s for UDP streams,
which is the expected upper limit considering protocol and packet overheads of Ethernet
and IP/TCP/UDP. These results were also achieved when running concurrent netperf
instances that utilized both ports.

If a port was shared, e.g. by two uncompromised VMs that were attached to VF1.0
and VF1.1 of eth1, respectively, the throughput of netperf halved (if both VMs ran the
same test with the same parameters). A third VM would divide it by three, and so
on. Considering the intentions behind SR-IOV technology, these are expected results.
Furthermore, performance isolation was intact during all netperf tests with VMs that
utilized the vendor-supplied driver for their passthrough VFs. Anything that happened
on eth0 VFs did not influence the performance of eth1 VFs, and vice versa.

3.5.1.2 Experimental Setup and Results

However, performance isolation between both Ethernet ports can be broken if a malicious
VM implements and executes a PCIe DoS attack, like described in Section 3.2, on its own
VF. To demonstrate the impact, the following measurements were conducted: VF0.0 of
Ethernet port eth0 was attached to an uncompromised VM, and netperf TCP through-
puts as well as latencies for reading 32 bit PCIe packets from the VF were recorded (see
Figure 3.1, λ0). This was done while the rest of the system was idle, and while one,
two or three PCIe DoS attacks on VFs of the other Ethernet port, eth1, were executed
simultaneously. The DoS attacks were launched from distinct VMs, running on dedi-
cated cores and targeted at VF1.0, VF1.1 and VF1.2 (see Figure 3.1, δ0, δ1 and δ2),
respectively. The results are depicted in Figure 3.3.

The first column of the barchart, labeled “none”, depicts VF0.0’s performance during
an idle system. Netperf achieved a TCP throughput of 941 Mbit/s, and reading 32 bit
words from VF0.0 took 1.58 µs. The next column depicts the results during a single
DoS attack on VF1.0 (A = {δ0}). This attack of a single malicious VM sufficed to
force a TCP throughput drop from 941 to 684 Mbit/s (-27%). If a second malicious
VM was concurrently executing a DoS attack with the first one (A = {δ0, δ1}), TCP
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Figure 3.3: Latency for 32 bit PCIe reads and TCP throughput for VF0.0 of the 82576 NIC in
an idle system and while one, two or three VFs of the same NIC experience a PCIe
DoS attack (see λ0, δ0, δ1 and δ2 in Figure 3.1).

throughput of VF0.0 dropped further to 615 Mbit/s (-35%). A third DoS attack (A =
{δ0, δ1, δ2}) did not result in any further performance degradation. For that reason, all
following evaluations and benchmarks in this chapter will consider two instead of three
DoS attacker VMs.

A good hint about reasons for the performance degradation is given by the latency
results. During a single DoS attack, it takes about 12.43 µs for reading a single register
from VF0.0, compared to 1.58 µs if the system is idle. This is an increase of 687%. A
concurrent second attack increases latencies further to 12.61 µs (+698%). With inter-
connect latencies this high, it is not possible to maintain Ethernet throughputs at one
Gbit/s.

These latencies are the result of a congestion on the interconnect that is caused by the
DoS attacks. Malicious VMs use their CPU cores to generate PCIe packets at rates much
higher than the 82576 NIC can consume or process them. Eventually, this causes the
82576 NIC’s ingress buffer to fully saturate. The full buffers, in turn, trigger PCIe flow
control mechanisms to halt the upstream device and prevent it from sending more PCIe
packets downstream towards the 82576 NIC. The congestion therefore spreads through
the whole Q77 PCH until the back pressure reaches the multi-core CPU. Here, it will
finally cause two components to block:

1. Every CPU core that executes software that sends PCIe packets to the 82576 (aka
the DoS victim). The cores will block on the machine instruction that generates
the respective PCIe packet. Blocking stops once a buffer slot in the 82576 was
freed and the free slot has propagated upstream.
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2. The integrated DRAM controller of the multi-core CPU is affected by the same
back pressure mechanisms. It blocks when it tries to transmit completions for
DMA reads from the 82576 itself.

3.5.1.3 Second-Order Effects

Considering the conclusions regarding congestion and back pressure, it is evident that
there are more PCIe packets affected from blocking than only those that are addressed to
the DoS victim device. As PCIe uses a tree topology, it follows that any device that shares
PCIe lanes with the DoS victim must itself be affected by the DoS-caused congestion. A
good way to prove this assertion was to additionally measure TCP throughputs of the
other NICs in the evaluation platform (see λ1 and λ2 in Figure 3.1), while the 82576
experienced the same DoS attacks as before. Like the 82576, both NICs are connected
to the Q77 PCH and therefore share the lanes of the DMI link with it, as well as an
unknown number of resources that implement the undisclosed switching fabric inside
the PCH. The results, compared with the TCP throughputs of the previously measured
VF0.0, are depicted in Figure 3.4.
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Figure 3.4: TCP throughputs of the three NICs of the evaluation platform, while one or two
VFs of the 82576 NIC experience a PCIe DoS attack (see λ0, λ1, λ2, δ0 and δ1 in
Figure 3.1). The three NICs utilize different PCIe speeds (see Table 3.1).

Compared to VF0.0, the other NICs suffered from even worse performance degra-
dation. For the 82575L, which is the NIC that is hardwired onto the motherboard,
throughput dropped from 941 to 517 Mbit/s (-45%) during a single DoS attack. Dur-
ing two simultaneous DoS attacks, throughput dropped to 506 Mbit/s (-46%). The
82579LM, which is integrated into the Q77 PCH, suffered the most of the tree. Its
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performance dropped to 330 Mbit/s (one DoS attack) and 325 Mbit/s (two attacks),
respectively. This is a decrease of 65% in both cases.

The observed differences in degradation were caused by the different PCIe link speeds
that each of the three NICs support. As mentioned in Section 2.3.1.2, PCIe link net bit
rates Rnet are the product of the number of lanes, the physical layer gross bit rate Rb

and the encoding. For the evaluated NICs, these parameters are listed in Table 3.1.

Table 3.1: Transfer times for a 1500 byte Ethernet payload.

NIC Lanes Rb (GT/s) Encoding Rnet (Gbit/s) TEth (µs)

82576 x4 2.5 8b/10b 8 1.5

82574L x1 2.5 8b/10b 2 6

82579LM x1 1.5 8b/10b 1.2 10

The table additionally lists the time it takes to transmit a 1500 byte Ethernet payload
over the respective link depending on Rnet. This time is denoted TEth and is introduced
to simplify comparisons between the NICs. The table shows that the 82576 SR-IOV
NIC is faster than the 82574L by a factor of four, and faster than the 82579LM by a
factor of 6.6. This difference can be crucial if the interconnect is already congested, and
explains the differences in degradation in Figure 3.4.

3.5.1.4 Summary

In conclusion, results from this experiment showed that the overall performance degra-
dation of a PCIe device during a DoS attack is influenced by the following two factors:

• The additional latency on the interconnect due to buffer congestion.

• The source-to-sink transmission time (or flight time) of data packets on the PCIe
link(s).

If switching intermediaries are incorporated between source and sink device, there
might be different link speeds between the individual nodes, which must be taken into
account. For instance, (1) CPU to PCH and (2) PCH to PCIe Endpoint. The size of a
data packet depends on the actual I/O device type (e.g. the size of an Ethernet frame
for Ethernet NICs).

3.5.2 Experiment 2: Influence of the DoS Victim’s Processing Speed

The first experiment showed that buffer congestion is one of two major factors that in-
fluence performance degradation during DoS attacks. The second experiment was con-
ducted in order to investigate buffer congestion in more detail. Therefore, the influence
of the attacked device’s processing speed on performance degradation was measured.
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3.5.2.1 Fine-Grained Runtime-Configurable Processing Speeds via FPGA

Normally, COTS PCIe devices employ application-specific integrated circuit (ASIC) con-
trollers, which means that processing times for incoming PCIe packets are constant and
immutable. Addressing different resources of the same PCIe device might result in dif-
ferent processing speeds, though, but only in a coarse-grained manner. This aspect will
be covered shortly in Section 3.5.2.3. However, the following experiment yielded best
results and insights with a DoS victim device that had fine-grained control over the
processing speed of incoming PCIe packets.

Therefore, a Xilinx SP605 evaluation kit was employed. Its Spartan-6 FPGA was
configured to instantiate the vendor-supplied “Integrated Endpoint Block for PCI Ex-
press”, which enables the FPGA to use the board’s PCIe interface. The block is PCIe 1.1
compatible, uses one lane (x1) and supports a link speed of 2.5 GT/s. The block also
provides a VHDL example design that supports basic MMIO transactions. This example
design was adapted such that it was possible to keep the wr busy signal of the respective
interface [122] asserted for a user-configurable time. Thus, it was possible to configure
the time the SP605 needed to process a single incoming PCIe packet in a fine-grained
manner and during runtime. The minimum achievable processing time was 112 ns.

3.5.2.2 Experimental Setup and Results

The influence of different PCIe packet processing speeds on DoS performance degradation
was then investigated with the following setup and measurement series:

1. The SP605 was attached to a VM via PCIe passthrough.

2. For packet processing times between 112 ns and 7.15 µs:

a) A DoS attack on the SP605 was executed (see δ3, Figure 3.1).

b) During the DoS attack, latencies for reading from the 82576 NIC were mea-
sured (see λ0, Figure 3.1).

Latency measurements on the 82576 NIC ensured comparability to the previous ex-
periment. Additionally, it further proved the previous experiment’s conclusion that a
buffer congestion on a switching device like the PCH affects all its downstream devices.
Results are depicted in Figure 3.5.

The results clearly show that the latencies for reading single PCIe packets from the
82576 NIC are directly proportional to the processing time of the DoS target device. La-
tencies increase for the same reasons as in the previous experiment (see Section 3.5.1.3):
The CPU generated PCIe packets, which request a data word from the 82576 NIC, must
traverse many of the same buffers and switching resources of the Q77 PCH that are
also occupied by DoS-packets that flow downstream to the SP605. Consequently, in a
congested condition, any downstream PCIe packet can advance to the next buffer slot
only after the DoS victim has processed a packet. It is therefore possible to derive the
following heuristic:
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Figure 3.5: Latency degradation for reading 32 bit PCIe words from the 82576 NIC while the
SP605 experiences a PCIe DoS attack.

During maximum congestion, the additional latency during a DoS attack ∆lDoS for
downstream PCIe packets can be roughly estimated as the product of the number of con-
gested buffer slots shared with DoS packets (Nbuf,DoS) and the DoS victim’s processing
speed of PCIe packets (tproc,victim). This can be formulated as

∆lDoS = Nbuf,DoS · tproc,victim. (3.1)

In this experiment, Nbuf,DoS was constant because the PCIe topology did not change
and only the packet processing times of the SP605 (tproc,SP605) were varied. If this
condition is met, it follows that

∆lDoS ∝ tproc,SP605. (3.2)

Equation 3.1 can therefore be used to model the direct variation between latency
results for the 82576 NIC on tproc,SP605, which is depicted in Figure 3.5. Using the same
setup, netperf TCP and UDP benchmarks were recorded to complement the latency
results and to get a better idea of how these latency numbers translate to real world
workloads like network throughput. The results are depicted in Figure 3.6.

The plot shows TCP and UDP throughputs of the 82576 NIC during the same DoS
attacks on the SP605. Again, the throughputs are plotted over the packet processing time
of the attacked SP605. The results also give a more detailed picture of the dependency
between ∆lDoS and its impact on networking throughput. The throughput on the y-axis
is the result of TCP/UDP payloads that were sent over a time t. The time t includes
∆lDoS as well as other components a, which can be formulated as
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Figure 3.6: TCP and UDP throughput degradation of the 82576 NIC while the SP605 experi-
ences a PCIe DoS attack.

t = a+ ∆lDoS (3.3)

If the other components a of t are constant, then it follows that t inherits the linear
nature of ∆lDoS, which in turn is directly proportional to tproc,SP605 (Equation 3.2).
Hence, these dependencies can be formulated as

throughput =
payload

t
, t ∝ ∆lDoS ∝ tproc,SP605. (3.4)

Using this model, throughputs are inversely proportional to the victim’s packet pro-
cessing time, and therefore expected to resemble a rectangular hyperbola (a graph of the
form 1

x) for the parts where ∆lDoS is big enough to cause a performance degradation.
This is what the results in Figure 3.6 show.

Additionally, Figures 3.5 and 3.6 can be used to derive the maximum latencies that the
82576 NIC can tolerate before TCP or UDP throughputs start to degrade. Degradation
for TCP throughputs started for SP605 processing times greater than 320 ns, which
translates to a latency of 6.13 µs for the 82576 NIC. UDP throughput, in contrast,
degraded if the SP605 needed more than 1.07 µs to process a single PCIe request (82576
latency of 18.9 µs). TCP degradation starts earlier and is worse due to its bigger protocol
overhead in contrast to UDP. The latter is connectionless and carries payload data in
every packet, whereas TCP has additional SYN and ACK packets that are affected by
the congestion on the interconnect as well, but do not count towards the throughput.
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3.5.2.3 Processing Speed Variations in COTS Devices

The experiments with the SP605 FPGA device so far showed that slower processing
speeds worsen the performance degradation during DoS attacks. Hence, PCIe packet
processing speed is a parameter that an attacker wants to maximize in order to achieve
his goal of maximum degradation. However, unlike the SP605 FPGA that was used
in the previous experiments, it is not possible to dynamically adjust the processing
speeds of real-world DoS targets like COTS PCIe NICs. Still, there is a good chance
that DoS attacks on COTS devices can be “tuned”. Exploration of the evaluation
platform’s COTS NICs showed that they do not have a uniform processing time for
inbound packets, which can be exploited by a DoS attacker accordingly. Like described
in Section 2.3.1.3, there is a whole range of addresses per PCIe function in the system
memory map. The exact address within the PCIe function’s address range finally decides
what actual resource inside the PCIe device will be used to store the packet’s payload.
This is depicted as a high level concept in Figure 3.7.
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Figure 3.7: Depending on the address of a PCIe packet, it may be processed by or stored into
a different resource, which takes different amounts of time.

The block diagram further illustrates that storing a packet’s payload may take different
amounts of time depending on the resource that stores it. For instance, storing data into
registers (t0) needs less time than storing it into some slower kind of memory (t1), e.g.
DRAM. Most of the time, it is not disclosed what resources lie behind which addresses,
so there might also be unknown kinds of storage or packet processing that take even
more time (tn). Consequently, an attacker will want to aim for the address that needs
the most time, aka max({t0, t1, . . . , tn}). In most cases, however, datasheets of COTS
devices give no information regarding the processing time depending on the address.
Mostly, they only describe the functional aspects of writing to certain addresses inside a
device’s memory range, so that it is possible for engineers to write device drivers for an
OS. Fortunately for the attacker, processing times can be easily estimated in a running
system. This process is described in detail in Appendix A.

On top of varying target addresses, processing speeds may additionally differ depend-
ing on the payload size (64 bit payloads may be processed slower than 32 bit ones, etc.).
A special case of this approach is flooding the device with payload sizes that are not sup-
ported by the DoS victim. Depending on the device’s implementation of error handling,
it may take longer to abort or handle erroneous packets than handling correct ones.
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For instance, investigations of the evaluation platform’s 82576 NIC, using the method
described in Appendix A, yielded the following results. Writes with 64 bit payloads take
longer to process than writes with 32 bit. Additionally, there are variances depending
on the address of the targeted function. Using 64 bit writes targeting the base address
of a 82576 VF’s address range resulted in an estimated processing time of 418 ns per
PCIe packet. Adding an offset of 0x2800 to the base address, which then targeted the
VF’s Receive Descriptor Base Address Low (RDBAL) register [108], resulted in about
535 ns. Hence, exploring the device resulted in the discovery of a target address that has
an almost 30% slower processing time, which would increase performance degradation
accordingly3.

3.5.2.4 Summary

In conclusion, this experiment first provided a detailed evaluation of the parameters
that, during a DoS attack, influence the additional latency ∆lDoS of PCIe packets on
the interconnect. Results showed that ∆lDoS is the product of

• the number of congested buffer slots that must be shared with PCIe packets that
target the DoS victim (Nbuf,DoS) and

• the DoS victim’s processing speed of PCIe packets (tproc,victim).

For instance, if a DoS victim is connected to a PCIe switch (e.g. a chipset), then any other
PCIe devices also connected to the switch have to share Nbuf,DoS = Nbuf,switch buffer slots
with the DoS victim. If the DoS victim is a multi-function or SR-IOV Endpoint, and the
attacker intends to degrade the performance of the Endpoint’s other (virtual) functions,
then the shared buffer slots are calculated as Nbuf,DoS = Nbuf,switch+Nbuf,Endpoint. There
might also be egress buffer slots in the CPU’s PCIe ports that must be accounted.

If Nbuf,DoS is constant, which is true for running systems that only employ COTS
hardware, then tproc,victim is:

• Directly proportional to the latency of PCIe read/write transactions.

• Inversely proportional to the throughput of I/O transactions (e.g. throughputs for
TCP/UDP streams).

When attacking COTS PCIe devices, an adversary that wants to “tune” his attack
can find the maximum processing time of his victim device by:

• Exploring the whole address range of the victim’s PCIe function and finding the
address that results in the slowest processing time.

• Checking which needs the most time to process: Packets with big, small or unsup-
ported payloads.

3All four experiments of this chapter were conducted (and originally published) before these tuning
parameters for DoS attacks on the 82576 were discovered. In hindsight, this resulted in lower-than-
possible degradations, but they were still sufficient to prove all the points made.
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3.5.3 Experiment 3: Influence of Switching Intermediaries

The previous experiment determined that there are two parameters that have significant
influence on performance degradation during DoS attacks: (1) The DoS victim’s process-
ing speed and (2) the number of congested buffer slots that must be shared with the DoS
victim. The influence of varying the first parameter while keeping the number of buffer
slots constant was already quantified in detail in the previous experiment. The following
experiment investigated and quantified the effects of having a switching intermediary,
like a system chipset, between CPU and DoS victim. The results therefore complement
the previous experiment, because this time, the number of congested buffers was varied
while the victim processing speed was held constant.

3.5.3.1 Experimental Setup and Results

Both of the previous experiments had DoS victim devices connected to the evaluation
platform’s chipset, aka the Q77 PCH. For this experiment, the 82576 NIC was inserted
into the CPU-integrated PCIe 3.0 slot (see Figure 3.1). The backwards compatibility of
PCIe 3.0 allowed the NIC to run with the same speed (x4, 2.5 GT/s) as in the Q77 slot.
Thus, the only aspect that changed in contrast to previous configurations was that PCIe
packets flowing to the 82576 did not traverse the switching circuitry and buffers of the
Q77 PCH. As a consequence, less buffers were involved and therefore less performance
degradation was expected during DoS attacks.

With this configuration, the same measurements and benchmarks as in experiment 1
(Section 3.5.1) were conducted: Latencies and netperf TCP throughputs were measured
for VF0.0 during an idle system and while VF1.0 and VF1.1 experienced DoS attacks of
malicious VMs. The results of both configurations (Q77 slot in experiment 1 vs. CPU
slot in this experiment) are compared and depicted in Figure 3.8.

The results show that removing the chipset from the CPU to I/O device path had great
impact on latencies, even in an idle system. Without the chipset as an intermediary,
the time needed for reading a 32 bit word from the NIC was less than half the time a
configuration with chipset needed. Of course, both latencies were sufficient for achieving
peak performance in the TCP streaming benchmark. However, during DoS attacks,
there was a significant difference. Latencies for the CPU-slot configuration raised to a
maximum of 1.81 µs. In contrast to the 12.61 µs of the chipset configuration, this was
still fast enough to achieve peak performance for the TCP throughput stream.

3.5.3.2 Summary

In conclusion, the experiment showed that switching intermediaries may have a signifi-
cant impact on performance degradation during DoS attacks. A configuration with less
buffers is less susceptible to DoS attacks because it results in a lower additional latency
∆lDoS when the interconnect is congested (compare Equation 3.1).

It is important to draw the right conclusions from this particular experiment. The
CPU-slot configuration did not experience a TCP throughput degradation during the
DoS attacks, because the resulting ∆lDoS was not big enough to cause one. However,
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Figure 3.8: Latency for 32 bit PCIe reads and TCP throughput for VF0.0 of the 82576 NIC in
an idle system and while one or two VFs of the same NIC experience a PCIe DoS
attack (see λ0, δ0 and δ1 in Figure 3.1); Distinguished by PCIe slot (Q77 or CPU).
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it cannot be generalized that a CPU-slot configuration automatically prevents perfor-
mance degradation during DoS attacks by only looking at this particular benchmark.
There were numerous parameters involved that, if changed, can also cause a CPU-slot
configuration to suffer from performance degradation:

Different hardware Other SR-IOV hardware may have higher maximum processing
times for PCIe packets than the 82576 NIC used in this experiment, so that
∆lDoS might reach critical dimensions even in a CPU-slot configuration. Addi-
tionally, other hardware might provide lower PCIe link speeds, which also impact
the amount of degradation.

Different benchmark parameters Netperf was configured to use a large message size
(see Section 3.4.2), so that the benchmark was I/O-bound and not CPU-bound.
Therefore, blocking of the CPU due to buffer congestion did not steal precious CPU
time from the benchmark. Operating netperf with parameters that make it CPU-
bound introduces an additional variable that worsens performance degradation.
This will be addressed in more detail in Chapter 4.

Different I/O protocols or classes While TCP over Ethernet was unaffected in the
CPU-slot configuration of this experiment, there was still a 157% increase in la-
tency. Other transport layer protocols might be more susceptible to additional
latency. Furthermore, other classes of I/O than 1 Gbit Ethernet could be em-
ployed, which might be less tolerant of additional latencies, e.g. 10 or 40 Gbit
Ethernet, Infiniband or disk storage.

3.5.4 Experiment 4: Degradation of Chipset Disk I/O

The three previous experiments demonstrated that TCP/UDP over Ethernet can be
susceptible to PCIe DoS attacks. However, network I/O is not the only class of I/O
in modern multi-core architectures. In this experiment, the last one of this chapter,
both the class of I/O and therefore the benchmark tool that was used were changed.
The experiment investigated the effects of DoS attacks on storage I/O, specifically the
performance of the host’s SSDs, which, among others, store the host OS and all the VM
images of the system.

3.5.4.1 Experimental Setup and Results

During the experiment, the 82576 NIC was connected to the Q77 chipset’s PCIe slot,
where it again functioned as a DoS victim. Thus, the chipset’s SATA 3 controller was
also affected by interconnect congestion during the DoS attacks (see Figure 3.1). Using
the standard Unix tool dd, the write throughput that the host can achieve during an
idle system and during DoS attacks on the 82576 VFs was measured. In one benchmark
run, a total of 1 GiB was copied to the SSD, utilizing four different block sizes that cover
most everyday workloads: 512 B, 1 KiB, 512 KiB and 1 MiB. The source data for dd was
captured from the kernel’s /dev/zero pseudo file, so that the SATA controller was only
utilized as a sink and not as a source. Results are depicted in Figure 3.9.
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Figure 3.9: Disk throughput for copying 1 GiB of data with dd to the platform’s SSD, using
different block sizes. Results are depicted for an idle system and while one or
two VFs of the 82576 NIC experience a PCIe DoS attack (see λ3, δ0 and δ1 in
Figure 3.1).

For all block sizes, the results show that a 6 Gbit/s SATA link suffers from severe
performance degradation. For large block sizes (512 KiB and 1 MiB), the throughput
dropped from 394 and 396 MB/s down to 91 MB/s. This is over four times slower than
an idle system, or a decrease of 77%. Utilizing a smaller block size of 1 KiB, throughput
degraded from 204 MB/s to 75 MB/s (-63%), which is a slowdown of factor 2.7. The
smallest block size, 512 B, degraded from 138 MB/s to 64 MB/s (-55%), which is still
over 2 times slower. The results also show that degradation saturates with already one
VF under attack, in contrast to the previous network benchmarks where degradation
saturated at two VFs under attack.

3.5.4.2 Summary

First of all, this experiment showed that performance degradation caused by PCIe DoS
attacks does in fact affect multiple classes of I/O. Besides network I/O (Gigabit Ethernet
NICs), modern storage I/O (SATA-based SSDs) might suffer as well. Additionally, the
obtained results are also important considering future storage interfaces like the PCIe
based NVMe. Like mentioned in Section 3.4.3, future COTS NVMe controllers are likely
to adopt SR-IOV, which opens a new attack vector for VMs. If a VM is attached to a
NVMe VF, it will be possible to directly attack the storage controller with a DoS attack,
and not indirectly like it was done in this experiment.
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3.6 System Model for PCIe DoS Attacks on Ethernet NICs

Using the results from the four experiments that were conducted previously in this chap-
ter, an abstract system model for PCIe DoS attacks can be constructed that summarizes
the learnings and abstracts from specific hardware and benchmarks. It can therefore give
a concise overview about this new class of performance isolation problem and can be
used to identify opportunities for mitigating or preventing the DoS problem. For the
model, the use case of a generic Ethernet NIC (both legacy and SR-IOV capable) will be
used, because at the time of writing, it was the most widespread class of COTS device
used for PCIe passthrough. For brevity, the case of direct connection between CPU and
NIC is assumed, but switching intermediaries could be easily incorporated subsequently
into the model, if needed.

The system model comprises three components: A multi-core CPU, DRAM and an
(SR-IOV) NIC. In modern operating systems, communication of sophisticated I/O de-
vices like NICs with software (VMs) is typically handled in an asynchronous manner that
includes MMIO access to the I/O device, interrupts and DMA transfers. The system
model is depicted in Figure 3.10.
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Figure 3.10: System model for legal, closed-loop communication between VMs and (SR-IOV)
NIC, using PCIe packets. The bottleneck indicates that packet generation (CPU
cores) and transmission (PCIe Link) are both faster than the NIC’s packet pro-
cessing rate. VMs that use a vendor-supplied VF driver incorporate feedback from
the NIC and take care of the bottleneck.

The communication in this model is simplified such that it only contains as much detail
as needed for presenting the DoS problem. It is based on networking stacks and drivers of
modern Linux/Unix operating systems. The model shows multiple VMs running on the
virtualized CPU, and each VM is utilizing the vendor-supplied driver for their attached
PCIe device or VF. The model in Figure 3.10 only depicts the transmission of Ethernet
packets, because DoS attacks primarily degrade the transmission path, not reception.
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On initialization, the Ethernet NIC’s driver is allocating a bunch of buffer structures
in main memory (DRAM). One of these is a ring buffer structure for so-called TX
(transmit) descriptors. A TX-descriptor is a data structure that can be understood and
processed the NIC. It contains the main memory address of a ready-to-send Ethernet
packet as well as its size and maybe other metadata that is optional. Once the TX-ring
buffer is allocated, its start address is communicated to the NIC. Afterwards, Ethernet
packet transmission is handled as follows:

1. Operating System and driver prepare and compile an Ethernet packet and place
it into main memory. Then, a corresponding TX-descriptor is built and added to
the driver’s TX ring buffer. Finally, the driver notifies the NIC about new entries
in the TX ring via PCIe. For this step, NICs usually provide a dedicated memory
location (e.g. a special register) to which the driver, which executes on the CPU,
can write via MMIO. In Figure 3.10, writing to this register is marked as step (1).

2. After the NIC received and processed the notification about new TX descriptors,
it fetches the new descriptors from the system’s main memory via DMA. The
fetched descriptor is then analyzed and a subsequent DMA transaction fetches the
Ethernet packet contents from the main memory address to which the descriptor
pointed. In Figure 3.10, both steps are summed up as step (2). Finally, the NIC
is able to schedule the packet for transmission over Ethernet.

3. After successful transmission of the packet, the NIC notifies the driver. This is
usually done with via interrupts and depicted as step (3) in Figure 3.10. Most
likely, before sending the IRQ, the NIC has first updated a data structure in
main memory that contains the number of transmitted packets and other relevant
statistics. This step is not depicted for brevity.

This closed-loop communication scheme ensures that a NIC driver is operating the
NIC hardware within the bounds of its capabilities. The feedback mechanism comprising
statistics and IRQs ensures that a CPU does not overstrain the NIC and flood it with
more requests than it can serve. Section 3.5 showed that this is a vital aspect, because
in typical x86-based systems, CPUs and PCIe links are able to deliver PCIe packets
faster than a NIC can process them. This is depicted by the bottleneck at the transition
of PCIe link to NIC. Of course, as shown in Section 3.5.2.3, there is not a uniform
processing speed for all PCIe packets, so that the bottleneck varies depending on the
destination of the packet. This is omitted in the figure in order to provide a concise
depiction.

If this bottleneck is exploited by malicious VMs with DoS attacks as described in
Section 3.2, which flood the NIC with spurious PCIe write packets, a congestion on the
interconnect will emerge. The resulting backpressure then causes performance degrada-
tion, which depends on a number of parameters that were presented in Sections 3.5.1.4,
3.5.2.4 and 3.5.3.2. The model with a malicious attacker VM and a congested intercon-
nect is depicted in Figure 3.11.
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Figure 3.11: A malicious VM exploits the bottleneck between packet generation/transmission
and processing. It floods the NIC with spurious PCIe write packets and does
not listen to feedback from the device. As the NIC cannot process the packets
faster than they arrive, backpressure builds up that also delays transactions from
concurrent VMs and DRAM, eventually causing performance degradation in the
system.

The figure of the model depicts how downstream PCIe packets get delayed when the
interconnect is congested. The delay affects packets from other VMs which run on
different CPU cores than the attacker as well as any DMA requests that the DRAM
controller completes via PCIe. A third instance that is not depicted for brevity is the
hypervisor, which also runs on CPU cores. Its packets also suffer from congestion delays,
so that downstream I/O devices that are attached to the host might see performance
degradation as well.

3.7 DoS Attack Classification

The results of Section 3.5 showed that DoS attacks can cause performance degradation at
different locations of the PCIe tree. For example, degradation can affect PCIe functions
of the same physical device, functions of different physical devices, and more. In the
evaluations of Section 3.5, degradations were identified by comparing baseline results
of specific network or disk I/O benchmarks for specific I/O device classes with results
during DoS attacks.

In this section, these observations are generalized and abstracted from specific bench-
marks and device classes. A classification is introduced that allows easy characterization
of DoS attacks and helps to quickly communicate their impact on the components of a
system. Therefore, the following hierarchy of classes and sub-classes of PCIe DoS attacks
shall be defined:
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1. Inter-device attack

2. Intra-device attacks

a) Inter-function attack

b) Intra-PF attack

c) Inter-PF attack

Some of these attacks are restricted to specific kinds of PCIe devices. It will be dif-
ferentiated between (1) single-function legacy devices, (2) multi-function legacy devices,
(3) single-function SR-IOV devices and (4) multi-function SR-IOV devices. Theoreti-
cally, it is also possible to incorporate legacy functions and SR-IOV PF/VF functions
onto the same physical PCIe device, but this unlikely combination will not be explicitly
mentioned. However, descriptions of the attacks can be applied to such devices as well.
In the following, the attack classes are described in detail. Additionally, it is discussed
which criteria define if flooding a passthrough function is either a nonsensical, but still
legal use of it, or already a DoS attack.

3.7.1 Inter-Device Attack

An inter-device attack describes PCIe DoS attacks that affect other physical I/O devices
of the system. It is sufficient to see any amount of performance degradation on another
physical device in order to classify an attack as inter-device DoS attack. Here, the
most likely case is that an attacked PCIe device is connected to any kind of (switching)
intermediary that connects to other devices as well. Like shown in Section 3.5.3, a
system’s chipset would be a common example of an intermediary in x86 systems. Inter-
device attacks can be executed on any kind of PCIe device, be it single- or multi-function,
legacy or SR-IOV. Devices that see performance degradation due to such an attack may
also be of any kind. An example is depicted in Figure 3.12.

...

(Switching) Intermediary

PCIe Device
(any kind)

...

...VM1
SW

HW

PCIe Device
(any kind)

VM0
(DoS)

Figure 3.12: Inter-device attack. A DoS attack on a PCIe device causes performance degrada-
tion to other PCIe devices of the PCIe tree.
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3.7.2 Intra-Device Attacks

Intra-device attacks describe a super-class of attacks that applies to any kind of multi-
function PCIe device. In contrast to inter-device attacks, performance degradation
emerges on the same physical I/O device that is attacked by a malicious VM. This
class contains three sub-classes of attacks, which are described in the following.

3.7.2.1 Inter-Function Attack

Inter-function attacks apply to multi-function legacy PCIe devices. Suppose two VMs,
VM0 and VM1, are attached to different functions of the same legacy PCIe device. If
VM0 attacks its function, and VM1 experiences any amount of performance degradation
while using its own function, then VM0’s attack can be classified as an inter-function
attack. A block diagram of such a scenario is depicted in Figure 3.13.

(Switching) Intermediary

Multi-Function Legacy
PCIe Device

...

VM0
(DoS)

...VM1
SW

HW

func0 func1 funcN...
...

Figure 3.13: Inter-function attack. A DoS attack on one function of a multi-function PCIe
device degrades the performance of other functions of the same device.

3.7.2.2 Intra-PF Attack

Intra-PF attacks describe DoS attacks that apply to any kind of SR-IOV device (single-
or multi-function) and affect VFs that belong to the same PF. Therefore, suppose a
system with an SR-IOV device like depicted in Figure 3.14. PF0 is used to spawn two
VFs, VF0.0 and VF0.1, which are attached to two virtual machines, VM0 and VM1,
respectively. Both VMs utilize their attached VFs at the same time. For an ideal SR-IOV
device, performance of whatever class of I/O is provided by the PF would be split evenly,
so that each VM gets a 50% share. In case VM0 becomes a DoS attacker and starts to
flood its attached VF0.0, this action is a DoS attack only if it causes VM1’s performance
to degrade more than 50%. If the flooding would cause VM1’s performance to degrade
less than 50%, then VM0’s action cannot be considered a DoS attack. Instead, it is only
a nonsensical, but harmless use of the resources of its own attached VF. In more general
terms, flooding an SR-IOV VF is a successful intra-PF attack only if the flooding causes
the performance of another VF, which belongs to the same PF, to degrade more than
legal sharing of the attacked VF would degrade it.
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VF0.0
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Figure 3.14: Intra-PF attack. A DoS attack on one VF of a PF degrades the performance of
other VFs of the same PF more than legal sharing of the attacked VF would do.

3.7.2.3 Inter-PF Attack

Inter-PF attacks describe DoS attacks that affect VFs that belong to different PFs. To
give an example, suppose a system like depicted in Figure 3.15. VM0 is again attached to
VF0.0, but this time, VM1 is attached to VF1.0. In this setup, simultaneous operation
of both VFs would yield 100% of PF performance for each VM, because only a single VF
is instantiated per PF. Here, performance isolation requirements demand that VF0.0 of
PF0 cannot have any performance impact on VF1.0 of PF1, because the VFs belong
to physically disjunct I/O resources. In general terms, flooding an SR-IOV VF is a
successful inter-PF attack if the flooding causes any amount of performance degradation
for VFs that belong to different PFs. A block diagram for this example is depicted in
Figure 3.15.
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Figure 3.15: Inter-PF attack. A DoS attack on a VF of PF0 degrades the performance of a VF
of PF1.
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3.7.3 Combinations

The classifications are not mutually exclusive. A single DoS attack can turn out to be
a combination of multiple of the presented classes. For instance, consider a virtualized
system like depicted in Figure 3.16.
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Figure 3.16: A DoS attack on VF0.0 degrades performance of other VFs of the same PF, of
VFs of a different PF, and another physical I/O device.

If a DoS attack on VF0.0 of the multi-function SR-IOV device degrades performance
of VF0.X for more than 50%, and any VF1.X also sees some degradation, then the attack
is an intra- and inter-PF attack. There may also be another physical I/O device in the
system that also experiences performance degradation due to the DoS attack on VF0.0.
Then the attack must be classified as an intra- and inter-PF as well as an inter-device
attack. But it could also be possible that VF0.X degrades for less than 50% but VFs1.X
still see some degradation. Then the attack would be an inter-PF and inter-device attack
only. In any case, the impact of a DoS attack is a complex combination of a multitude
of hardware and software parameters as well as the PCIe topology of the system.

3.8 Summary

PCIe passthrough and SR-IOV are technologies that enable hardware-assisted I/O vir-
tualization for (untrusted) virtual machine guests. They are implemented in commercial
off-the-shelf products and corresponding software support is implemented in the respec-
tive operating system kernels and hypervisors. The technology convinces with low la-
tency and near-native performance. It has been embraced by cloud computing providers
like Amazon and is considered a viable option for I/O virtualization of future embedded
and mixed-criticality multi-core systems.

This chapter introduced that PCIe passthrough and SR-IOV suffer from performance
isolation issues that can be exploited by DoS attacks on PCIe passthrough MMIO re-
sources. First, a threat model was introduced that covers the cloud computing and
embedded virtualization domains. Both are vulnerable because they either provide
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passthrough access to untrusted users as part of the business model (cloud: IaaS) or
by exposing potentially exploitable interfaces to untrusted users (cloud: PaaS, embed-
ded: Infotainment). Subsequently, the implementation of DoS attacks is discussed and
an exemplary implementation in the C language is presented.

In order to investigate and evaluate performance isolation issues of PCIe passthrough
and SR-IOV, an evaluation platform was compiled. The platform is an x86 based system
comprising a dual-port SR-IOV capable Gigabit Ethernet adapter, two single-port non-
SR-IOV Ethernet adapters, an SSD disk and an FPGA board with custom logic design
to aid the evaluation. On this platform, four different experiments were conducted
which provided results that contributed to a thorough understanding of the isolation
issues during PCIe DoS attacks. The utilized benchmarks included network streaming
benchmarks for TCP and UDP protocols, latencies for single PCIe reads and storage
throughput for SSDs.

Results showed that DoS attacks can significantly degrade the performance of SR-
IOV devices as well as other PCIe devices on the interconnect. For instance, experi-
ment 1 demonstrated that, during DoS attacks, Ethernet throughputs for the SR-IOV
adapter drop by up to 35% and latencies increase up to 698%; Experiment 4 additionally
demonstrated that disk storage throughput drops by up to 77%. The actual amount of
degradation always depends on a multitude of hardware- and software parameters of the
system, as well as the PCIe topology. The two most influential parameters are (1) the
PCIe packet processing speed of the device that is targeted by the DoS attack, because
it influences the additional latency caused by buffer congestion, and (2) the number of
PCIe packet buffers that an affected device must share with the DoS victim device.

In conclusion, the results of the experiments were used to introduce an abstract system
model for PCIe DoS attacks on Ethernet devices. The model abstracted from the specific
hardware and benchmarks used in the experiments and therefore provided a generic
presentation SR-IOV’s performance isolation issues. Finally, the chapter was closed with
the presentation of a classification of DoS attacks. The classes that were introduced are
distinguished by their reach inside the system and create new vocabulary that helps to
characterize PCIe DoS attacks in future research.
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Through Monitoring and Scheduling

The previous chapter showed that the design of PCIe passthrough and SR-IOV is ex-
ploitable by PCIe DoS attacks, which may break a virtualized system’s performance
isolation. As PCIe passthrough and SR-IOV are based on hardware-assist, adding fa-
cilities for complete isolation would require significant changes to existing hardware.
Additionally, sophisticated hardware changes might not be transparent to system soft-
ware. However, the need for complete isolation strongly depends on the domain that
utilizes passthrough technology. For the embedded and mixed-criticality domain, com-
plete isolation is mandatory if real-time requirements are in place. Chapter 5 will present
suitable, hardware-based solutions for these domains. In cloud computing, however, it
is adequate to sufficiently mitigate a PCIe DoS attack until an operator can inspect the
offender VM and take appropriate measures. Mitigation approaches offer the advantage
that their implementation can be realized in a lightweight and low-overhead manner.

This chapter presents a solution that utilizes lightweight hardware and software ex-
tensions to mitigate performance isolation issues for the cloud computing domain. Sec-
tion 4.1 starts by defining the goals and requirements of the intended solution. After-
wards, Section 4.2 introduces a system design that fulfills the goals and requirements.
A prototype implementation of the design on an x86 system is presented in Section 4.3,
and is subsequently evaluated with typical cloud computing benchmarks in Section 4.4.
Finally, the chapter is summarized in Section 4.5.

4.1 Goals and Requirements

In the following, fundamental goals and requirements are introduced for mitigating the
performance isolation issues of PCIe passthrough and SR-IOV for the cloud computing
domain. The requirements are also defined with portability in mind, so that they do not
restrict the resulting design to cloud computing, but make it portable to similar domains
like high performance computing or datacenter computing as well.

4.1.1 Goals

The overall goal is to develop a design that extends existing cloud computing archi-
tectures with facilities that enable detection and mitigation of performance isolation
breaches in passthrough hardware. In order to integrate well, the design should seek
synergies with existing approaches and technologies that counteract other malintent ac-
tions (e.g. spoofing network addresses) of VMs. It should not only be compatible to the
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prevalent combination of processor architecture and I/O class (x86 and Ethernet), but
be generic enough to be easily applicable to other combinations as well.

Most importantly, the design must adhere to the paradigm of PCIe passthrough and
SR-IOV, which is to keep the host out of the VM-to-I/O-device data path for the sake
of performance. Any design that would rely on host software that interrupts, inspects
and forwards MMIO PCIe communication of VMs in order to detect DoS attacks must
therefore be ruled out. This would ultimately push a large part of the system back
to paravirtualization and break with the passthrough paradigm. Hence, information
about communication between VMs and passthrough functions must be collected in a
non-intrusive manner, for example with hardware-assist that operates concurrently to
normal VM execution.

However, detected and on-going DoS can be mitigated by trusted host software with-
out breaking the passthrough paradigm. This is because it is possible to influence the
flooding of a malicious VM by adapting the host’s scheduling of the (QEMU) process in
which the VM is executing.

4.1.2 Requirements

Non-intrusive detection: DoS detection facilities must not interrupt the direct commu-
nication of VMs with their respective passthrough functions. Any information
that is needed in order to detect DoS attacks must be collected in a non-intrusive
manner.

Low overhead detection: DoS attacks will be rare events. Therefore, detection should
impair the performance of VMs or the host as little as possible.

Secure detection: The detection of attackers must be tamper-proof, i.e. detection fa-
cilities must be accessible by privileged host software (hypervisor) only.

Unambiguous identification of attackers: Often times, virtualized multi-core systems
in cloud computing have a high degree of dynamics in terms of scheduling. VMs
may frequently switch cores and/or execute on multiple cores at the same time.
The design must cope with these dynamics and unambiguously identify attacker
VMs.

Sufficient mitigation: On-going PCIe DoS attacks must be sufficiently mitigated until
an operator or software watchdog takes appropriate measures. Here, sufficient
mitigation means that the amount of performance degradation during DoS attacks
is capped to a reasonable minimum so that appliances running on the respective
machines stay close to baseline performance.

Scalability: Detection facilities must be scalable, so that they support the allowed range
of PCIe (virtual) functions according to the standard.
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4.2 Design and Exploration

This section presents a high-level design for a solution that adheres to the previous sec-
tion’s requirements. The design enables DoS detection through non-intrusive, hardware-
assisted monitoring of PCIe transactions, and mitigates on-going DoS attacks with
software-based countermeasures from the trusted host (e.g. the hypervisor). It does
therefore not break with PCIe passthrough’s paradigm of no host involvement in the
VM-to-I/O data path. A block diagram of the design is depicted in Figure 4.1.
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VM0

SW
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... VMN

DoS!

Mitigation via
host software

HW Monitors

Passthrough
func0

... Passthrough
funcN

...

Figure 4.1: High-level design for a solution that utilizes hardware monitoring for DoS detection
and host software for mitigating PCIe DoS attacks of malicious VMs. Passthrough
functions can be either legacy PCIe functions or SR-IOV VFs.

4.2.1 Monitoring and DoS Attack Detection

The design is based on the observation that DoS attacks always create larger PCIe
write transaction rates (wr/s) in the CPU-to-passthrough direction (MMIO) than even
the most demanding legal use of a passthrough function. Therefore, it is possible to
determine a threshold PCIe transaction rate, which, if surpassed, indicates a DoS attack.
The reasons for this are elaborated in the following.

As presented in Chapter 3, DoS attacks work because the attacker is enforcing a
constant congestion over time on the interconnect. The congestion emerges because the
MMIO resources of the passthrough function are overloaded, aka they receive packets
at faster rates than they can process them. This clearly is an unwanted operating point
of the passthrough function, which was never intended to be reached in the first place.
Hence, any software that is not malicious will always produce PCIe transaction rates
that are below the rates of a DoS attack in order to avoid the unforeseeable consequences
of a congestion. This difference between legal and malicious transaction rates allows to
define a threshold value for PCIe wr/s that distinguishes DoS attacks from legal function
use. As this threshold value depends on the actual hardware, it must be determined
individually for each system, which will be addressed in detail in Section 4.4.3.
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In order to realize this approach towards DoS detection, hardware monitoring facilities
are needed that satisfy the following requirements.

1. Monitors must be able to detect and count CPU-to-passthrough PCIe transactions
(MMIO) at passthrough function granularity. Here, a passthrough function means
either a classic function of a legacy PCIe device or a VF of an SR-IOV capable
device.

2. To satisfy the requirement for secure detection, any access to monitoring facilities
(setting parameters, reading out values, etc.) must be restricted to privileged host
software.

DoS detection can then be implemented by sampling the monitor’s counter value for
MMIO transactions, calculate the transaction rate, and compare it to the threshold value
for DoS attacks. Ideally, monitoring facilities already support programmable sampling
and comparison features so that this task can be offloaded to hardware, which reduces
CPU overhead. However, this is not a strict requirement as long as the CPU overhead
for these routines is acceptable.

4.2.2 Exploration of Monitoring Alternatives

In a PCIe network, it is possible to realize hardware monitoring in three different kinds
of components. (1) The CPU cores, which are the sources of the PCIe packets, (2) the
I/O device that provides the passthrough function(s) or, if existent, (3) an intermediary
device like a chipset or switch that is interposed between CPU and I/O device. In the
following, all three possibilities are explored and checked against the requirements that
were proposed in the previous sections.

4.2.2.1 Monitoring in CPUs

Nowadays, common CPU architectures and their respective processors already provide
so-called Performance Monitoring Units (PMUs), which enable monitoring of numerous
architectural events in a CPU. For example, they are available in IBM POWER8 [123],
ARM Cortex [124] and most Intel processors [4]. The following exploration will only
cover Intel processors, because at the time of writing, cloud computing providers paired
PCIe passthrough technology almost exclusively with Intel (Xeon) processors.

In each CPU core, there is one PMU, which is a collection of registers that enable
performance monitoring. Each PMU provides a set of Performance Monitoring Counter
(PMC) registers (IA32 PMCx), which count events that are selected via corresponding
selection registers (IA32 PERFEVTSELx). The bulk of supported events provides insight to
the cache and memory subsystem. Certain complex events also need further specification
via associated configuration registers. For instance, if IA32 PERFEVTSEL0 is configured
to select so-called offcore events for counting, MSR OFFCORE RSP0 must further specify the
exact offcore event that shall be counted by IA32 PMC0. Offcore events include, among
others, I/O and MMIO transactions. A short overview of PMUs is given in Figure 4.2.
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Figure 4.2: Overview of performance monitoring facilities in modern Intel CPUs. Each core
provides multiple Performance Monitoring Counter (PMC) registers, which count
certain architectural events like cache misses, I/O transactions and many more.
The specific event on which a counter triggers is selected by corresponding event
selection registers (a full list of supported events is found in [4]).

PMCs can also be configured to generate interrupts when they overflow, enabling
“interrupt-based event sampling” [4]. In order to trigger overflows after a certain number
of events, counters are preset to a modulus value. On overflow, a performance monitoring
interrupt (PMI) is generated, which invokes an interrupt service routine that reacts on
the condition and resets and restarts the counter.

Exploration of the Intel PMUs lead to the conclusion that they are not (yet) perfectly
suited for the task at hand. First, the event selection lacks granularity. Although an
event selector for non-DRAM system addresses exists, which include MMIO transactions,
it is not possible to differentiate MMIO transactions by filtering for target addresses.
This means that non-PCIe MMIO is counted as well as PCIe transactions to multiple
passthrough devices. For example, detecting DoS attacks of VMs with more than one
passthrough function, e.g. Ethernet and GPU, is not possible. Therefore, the require-
ment for distinguishing PCIe packet flows at passthrough function granularity cannot
be satisfied. Second, obtaining PCIe transaction counts from PMCs requires either
interrupt-based sampling or polling of a PMC for each CPU core in the system. After-
wards, the transaction rates must be calculated and compared to a threshold value. This
puts extra load on the CPU, which, depending on the efficiency of the implementation,
may violate the requirement for low overhead detection. If a malicious VM executes on
multiple cores simultaneously and distributes the attack on its multiple cores, DoS attack
detection becomes even more complex. In this case, detection software must merge and
evaluate sampling data from all cores, which further increases CPU overhead. Third,
PMUs are limited resources that cannot be reserved. Detection software must therefore
either ensure that conflicting use of PMUs with other system software can be ruled out
or that PMUs are shared properly [125].

On the positive side, the requirement for secure detection is satisfied by current PMU
hardware, because access to the registers via VMs can be restricted and emulated. The
host can therefore prevent manipulation by malicious VM software. If future PMUs sup-
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port fine grained address filtering of MMIO transactions, and the software implementa-
tion of sampling and threshold comparison can be realized with acceptable performance
overhead, they become a viable choice for DoS detection

4.2.2.2 Monitoring in I/O Devices

Like in CPUs, there is support for performance monitoring in modern, sophisticated I/O
devices. For instance, the SR-IOV capable XL710 10 Gbit Ethernet controller provides
performance and statistics counter for the PCIe link [126]. Unfortunately, again, like
in CPUs, it is not possible to differentiate MMIO transactions at passthrough function
granularity. However, the XL710 shows that little changes to existing hardware would
enable the needed granularity, as well as DoS detection inside the I/O device. A proposal
for a high-level design that satisfies the monitoring requirements is depicted in Figure 4.3.

monitor

Passthrough
func0

Trusted func

I/O Device

monitor

Passthrough
funcN...

monitor sampling

threshold compare
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Figure 4.3: A proposed design for monitoring and detecting DoS attacks on passthrough func-
tions inside the I/O device. A trusted, host-managed function samples incoming
transactions of the passthrough functions and compares their transaction rates to
a threshold value, which is programmed by the host. If the threshold is surpassed,
an interrupt is sent to the host, informing it about the DoS attack.

Monitoring MMIO transactions at function granularity inside the I/O device is a
straightforward process. Since incoming PCIe packets must be routed to their target
function anyways, routing information can be used to implement lightweight per-function
monitors that satisfy the granularity requirement. This also simplifies the detection of
DoS attacks that are distributed between multiple CPU cores, because monitoring hap-
pens at the target function, where the transactions join. Once the DoS victim function
is known, the attacker VM can be easily identified with a lookup in the host, because
the assignment of passthrough functions to VMs is static.

In order to secure access to monitoring data, a trusted function in the I/O device is
needed that is managed by the host. For SR-IOV devices, this function already exists in
form of the PF, whereas classic multi-function PCIe devices could provide a dedicated
function for the host. Besides access to raw monitoring data, it is possible to implement
DoS detection inside the trusted function as well. This can be realized by sampling the
monitors and comparing the transaction rates of the passthrough functions to a threshold
value that was programmed by the host. If one or more of the functions surpass the
threshold, an IRQ is sent to the host, which can then poll the trusted function in order
to check which passthrough function is under attack.
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Another aspect in favor of DoS detection inside the I/O device is that modern hardware
already provides facilities for detecting malicious VM activities. This hardware could
be shared where possible. For instance, recent COTS Ethernet server adapters offer a
feature called Malicious Driver Detection (MDD) [109]. MDD performs numerous checks
on data that is supplied by VMs, e.g. anti-spoofing checks on MAC addresses and VLAN
tags, as well as numerous validity checks on transmit descriptors, like checks for correct
TCP and UDP header sizes. If malicious actions are detected, the host can be informed
by sending an interrupt. DoS detection facilities like described in Figure 4.3 could be
implemented alongside of existing MDD hardware and share resources where possible,
e.g. interrupt facilities for notifying the host, or registers that log what kind of misuse
happened. Also, an integrated detection would not require any CPU cycles, so that the
requirement for low overhead detection is satisfied.

4.2.2.3 Monitoring in Intermediaries

The third possibility is to monitor MMIO transactions in intermediaries like the system’s
chipset (aka the PCH). However, common PCHs for Xeon processors do not provide any
sophisticated monitoring hardware. In theory, implementation in intermediaries needs
the most complex filtering functionality of the three alternatives. Monitoring hardware
must filter MMIO transactions for their destination system address (identifying the
passthrough function), and at the same time, determine some kind of source identifier,
e.g. the CPU core ID that issued the transaction. The latter is needed to identify the
source VM. Additional DoS detection can be realized either by sampling the monitors
in software (like proposed in Section 4.2.2.1) or add detection in hardware like proposed
in the previous section.

4.2.3 Mitigation

After a DoS attack has been detected by any of the three monitoring and detection
solutions that were described in the previous sections, it must be mitigated with software
countermeasures. Here, the cloud computing provider is free to choose any approach that
works best for it, because tenants have to agree to the terms of use of the provider prior
to using its cloud instances. Hence, the kind of countermeasure that is taken in case
of a DoS attack can be communicated beforehand. In the following, two pragmatic
approaches are introduced and explained in detail.

4.2.3.1 Isolation via Freeze or Migration

A straight forward solution is letting the host freeze the attacker VM. Without exe-
cuting on a CPU core, no more PCIe DoS packets can be generated that congest the
interconnect.

If further investigation is desired, it is possible to migrate the respective VM to an iso-
lated host. Here, the attacker VM can be resumed without harming concurrent VMs, and
an operator of the cloud computing provider could start to further investigate the cause
of the attack. For example, results of an investigation could be malicious, harmful code
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or a buggy device driver. Finally, the result of the investigation can be communicated to
the VM tenant. However, it must be remembered that live migration with passthrough
devices is difficult (see Section 2.3.3) and not yet supported in vendor-supplied drivers
or COTS hardware, and still subject to active research [101, 102, 103, 104, 105, 106].

4.2.3.2 Attack Throttling via Scheduling

A second solution, which leaves the attacker VM operational on the original machine,
but still mitigates the DoS attack, can be realized by throttling the attacker VM. By
enforcing a schedule on the attacker that prevents it from producing harmful PCIe
transaction rates over a longer period of time, congestion on the interconnect can be
capped. The approach uses a scheduling algorithm that was inspired by the cpulimit
tool [127]. It is depicted in Figure 4.4.

t︷ ︸︸ ︷
work = d · t sleep = t− work

← →

Figure 4.4: Throttling malicious VMs via scheduling. Parameter d is adjusted on-the-fly with
help of monitoring feedback.

A scheduling timeslice for VMs with configurable duration t is divided into work
and sleep quantums. The goal is to partition both quantums in a way that during t,
the PCIe transaction rate of an attacker VM, Rattacker, stays below an allowed threshold
transaction rateRallowed. Partitioning of the quantums is done with help of the parameter
d, which is dynamically adjusted during runtime. A first approximation of d can be
calculated by using the monitors to count the number of PCIe transactions ncounted of
the attacker VM during a timeslice with d = 1, and then recalculate d as

d =
nallowed
ncounted

. (4.1)

Here, nallowed is the maximum allowed number of transactions during t, which can be
calculated as

nallowed = Rallowed · t. (4.2)

Afterwards, d can be dynamically fine-tuned by reading ncounted from the monitors
again after each timeslice, and increasing or decreasing d accordingly in small steps.
However, d ∈ [0, 1] must always hold true. Mitigation results get better for small t, but
this is capped by the scheduling resolution that the system’s CPU and operating system
can achieve.
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4.3 Implementation

This section presents a proof-of-concept prototype implementation of the design ideas of
the previous section. The prototype was developed on a cloud-grade x86 Xeon machine
featuring the same 82576 dual-port Gigabit Ethernet NIC with SR-IOV support that
was used in Chapter 3. As exploration results in the previous section showed, PCIe
transaction monitoring lacks the needed granularity in current hardware. Therefore,
monitoring and hardware-assisted DoS detection were implemented on a PCIe-capable
Xilinx VC709 FPGA board, which then emulated these features for the 82576 NIC.

The decision to build a prototype that works as if monitoring takes place inside the
I/O device was made due to the results of the exploration in Section 4.2.2. It showed that
(1) existing COTS I/O devices already provide hardware facilities to detect malicious
drivers and (2) DoS detection is less ambiguous inside the I/O device. Both reasons
make I/O devices likely candidates for future incorporation of the presented concepts.

4.3.1 Overview

Figure 4.5 depicts a block diagram of the prototype. It used an Intel S2600COE dual-
socket Motherboard that features a C602 chipset as the Platform-Controller-Hub (PCH).
The first socket was populated with a 2.3 GHz Xeon E5-2630v1 six-core CPU. In order
to minimize measurement variances and guarantee reproducible results without loss of
generality, some precautions were taken. First, Hyperthreading was disabled, so that
VMs could be pinned to physical cores without logically sharing them with other thread-
s/VMs. Second, SpeedStep and TurboBoost technologies were disabled in the BIOS in
order to prevent variations due to non-deterministic frequency scaling. Third, the second
socket of the Motherboard was unpopulated. This prevented influencing the measure-
ments due to non-uniform memory accesses (NUMA) and other latencies that emerge
when a socket must be crossed.
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The 82576 dual-port SR-IOV NIC was configured to spawn one VF for each PF; VF0.0
was associated to PF0, and likewise, VF1.0 to PF1. The prototype’s CPU and PCH
provided the necessary hardware extensions to use PCIe passthrough, so that both VFs
could be directly attached to virtual machines. VF0.0 was attached to VM0 and was
utilized as a target VF for DoS attacks. VF1.0, on the other hand, was attached to
uncompromised VM1, which was used to conduct performance benchmarks that repre-
sented cloud computing workloads. In order to increase comparability to the experiments
from the previous chapter, the 82576 was again connected to the system’s PCH.

4.3.2 Monitoring and DoS Detection on FPGA

The 82576 NIC is a COTS product that has its controller integrated on an ASIC. Hence,
it was not possible to retrospectively extend it with monitoring or DoS detection features.
In order to solve this problem and build a prototype that worked as if the 82576 had
this functionality, monitoring and DoS detection was implemented on an FPGA. Low
overhead software extensions in the 82576 vendor driver then enabled the FPGA to
monitor PCIe transactions that were sent to the 82576. These software aspects will be
explained shortly in Section 4.3.4. First, the hardware implementation on the FPGA is
presented.

The FPGA was part of a Xilinx VC709 evaluation board that was connected to
the prototype through a CPU-integrated PCIe port. The board featured a Virtex-7
XC7VX690T FPGA that provided an integrated block for PCIe Generation 3 connec-
tivity. The latter was used to realize a PCIe Endpoint on the FPGA. The integrated
block also natively supported SR-IOV with up to two PFs and six VFs that could be
allocated arbitrarily to the PFs. The PCIe Endpoint example design that came with
the Xilinx Vivado 2013.3 suite was used as a starting point for the implementation of
the monitoring and DoS detection functionality. The hardware description language was
Verilog; A block diagram is depicted in Figure 4.6.

monitor

VFX.0

PFX

VC709 FPGA Board

VFX.Y_writes_sampled

VFX.Y_writes_cor threshold

≥
greater or

eq?

...
DoS Detection

Register

0

sampling_interval

0≠Generate IRQ? 0 0

monitor

VFX.1

monitor

VFX.N ...

...

1

Figure 4.6: Implementation of hardware monitoring and DoS detection on the Virtex-7 FPGA.
While the implementation is able to support a generic number of VFs, only a single
VF per PF was spawned on the running prototype (compare Figure 4.5).
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The block diagram shows one register set per VF that counts every incoming PCIe
MMIO write transaction. The counters work in a clear-on-read fashion, which is indi-
cated by cor in Figure 4.6. This ensures low overhead read-out or sampling via host
software. Each counter can be independently read from trusted host software through
the PF to which the respective VF belongs. These counters are primarily used by host
software to throttle an attacker VM, which will be presented in detail in Section 4.3.3.

The remaining blocks describe how hardware-assisted DoS detection on the FPGA
works. Two parameters must be provided by the host for correct functionality: A
sampling interval and a threshold value for PCIe transactions per sampling interval.
Hardware then periodically compares each VF’s sampled value (VFX.Y writes sampled)
to the threshold, and if it is equal or greater to the threshold, set a bit in the DoS
Detection Register. The latter is accessible to host software and uses the respective bit
positions to encode which VF has been detected as an attacker. For instance, Figure 4.6
shows that bit position one stores a ’1’, which indicates that VFX.1 has been identified
as a DoS attacker. After detection of a DoS attack, sampling is paused, which freezes
the current state of the detection register, and a PF interrupt is sent to the host. Host
software can then fetch the detection register’s contents, identify the attacker VM and
take appropriate measures. DoS detection in the FPGA is resumed by clearing the
detection register from the host.

4.3.3 VC709 PF Driver and DoS Protect Process

Interfacing the VC709 monitoring and DoS detection facilities was done with a host
kernel driver for the VC709 PFs (compare Figure 4.5). It was used to read the counter
values of the respective VF monitors and to set the DoS detection parameters (threshold
and sampling interval for transactions). Additionally, the driver was responsible for han-
dling VC709 IRQs that were generated on DoS attack detection. IRQs were forwarded
to a userspace process, which was ultimately responsible for mitigating DoS attacks. In
Figure 4.5, it is named DoS protect.

Interrupt delivery was realized in a fashion similar to the Linux userspace I/O (UIO)
model [128]. The PF driver generated a character device file that blocked on read()

syscalls until a PF interrupt arrived. On interrupt arrival, the PF’s interrupt service rou-
tine acknowledged the IRQ, fetched the contents of the DoS Detection Register (DDR)
and returned its content to the DoS protect userspace process that was blocked on the
read(). Writing to the same character device file cleared the DDR, which re-enabled
interrupts from the VC709.

On interrupt arrival, DoS protect used the DDR contents returned by the read()

syscall to determine the PCI(e) Bus:Device:Function (BDF) notation of the VF under
DoS attack. This was realized via information exported from the kernel’s sysfs. After-
wards, DoS protect searched for the process ID (PID) of the QEMU process to which
the attacked VF is assigned. For the prototype, this task was realized by parsing the
kernel’s process tree, looking for QEMU processes and inspecting their command line
arguments. One of the arguments contained the BDF notation of the attacked VF, which
revealed the attacker QEMU process ID and therefore the attacker VM.
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Knowing the PID, DoS protect could start freezing or throttling the attacker VM.
For the latter, the algorithm presented in Section 4.2.3.2 was used with a timeslice of
t = 500 µs. Recalculation of the work/sleep ratio after each timeslice was realized with
the counter values of the clear-on-read registers. DoS protect could also back off and
return the VM to normal system scheduling if no more flooding was detected for a certain
period of time.

During active throttling of an attacker VM, the CPU overhead of DoS protect was
measured at 5%. In systems with static pinning of VMs to CPU cores, DoS protect

can be dynamically pinned to the same core than the attacker VM, which prevents
stealing CPU cycles from concurrent VMs. If there are no DoS attacks in the system,
DoS protect sleeps while waiting for an interrupt from the VC709, and therefore does
not produce any CPU overhead at all.

4.3.4 System Software and Emulation of Monitoring in the 82576

For system software, Ubuntu 14.04 with a Linux 3.13 kernel was used. QEMU [44] and
the KVM [43] hypervisor were used for virtualization. Two fully virtualized Linux guest
VMs were spawned and ran the same OS and kernel as the host. Each VM was assigned
4 GB of RAM (total 32 GB) and pinned to its own dedicated core. Like mentioned in
Section 4.3.1, each VM was attached to one VF of the 82576 NIC (VM0→ VF0.0, VM1
→ VF1.0). Vendor drivers for the 82576 VFs were already provided by the 13.3 Linux
kernel under the name of igbvf, so that the VFs could be used out of the box.

Small software modifications in the igbvf driver and the DoS attack code finally
enabled emulation of a system where the transaction monitoring and DoS detection
facilities of the VC709 were used to monitor MMIO transactions that were sent to the
82576. This was realized in the following way:

1. The VC709 board was configured to “clone” the 82576 configuration, so that there
was one VF per PF. VF2.0 was spawned by PF2, and VF3.0 was spawned by PF3.

2. The VFs were attached to VM0 and VM1 respectively, so that VM0 had concurrent
access to VF0.0 of the 82576 and to VF2.0 of the VC709. Likewise, VM1 had access
to VF1.0 (82576) and VF3.0 (VC709).

3. The original igbvf driver was modified so that each instruction that generated
a PCIe MMIO write transaction to a 82576 VF was executed twice. The second
time, however, the PCIe transaction was sent to the complementary VC709 VF
instead of the 82576 VF. The transactions were basically mirrored.

4. The same mirroring was also implemented for the DoS attack code that was exe-
cuted in VM1.

This mirroring concept is also depicted in the block diagram in Figure 4.5. Most
transactions could be conveniently mirrored by modifying the regs.h file of the igbvf

driver, because it defined macros for writing to the 82576 MMIO registers. These macros
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were almost exclusively used in the remaining source files of the driver. In the few cases
where the macros were not used, mirroring was inserted manually. Modifications to
regs.h are shown in Listing 4.1.

1 /∗ Def ine macros f o r handl ing r e g i s t e r s ∗/
2 extern void iomem ∗ vc709 v f bar0 addr ;
3
4 . . .
5
6 //#d e f i n e ew32 ( reg , va l ) w r i t e l ( ( va l ) , hw−>hw addr + E1000 ##reg )
7 s t a t i c i n l i n e void ew32 mirror ( v o l a t i l e void iomem ∗ reg , u32 value )
8 {
9 w r i t e l ( value , vc709 v f bar0 addr ) ;

10 w r i t e l ( value , reg ) ;
11 }
12 #d e f i n e ew32 ( reg , va l ) ew32 mirror (hw−>hw addr + E1000 ##reg , ( va l ) )
13
14 . . .
15
16 //#d e f i n e array ew32 ( reg , o f f s e t , va l ) \
17 // w r i t e l ( ( va l ) , hw−>hw addr + E1000 ##reg + ( o f f s e t << 2) )
18 #d e f i n e array ew32 ( reg , o f f s e t , va l ) \
19 ew32 mirror (hw−>hw addr + E1000 ##reg + ( o f f s e t << 2) , ( va l ) )

Listing 4.1: Excerpt of small modifications to the regs.h file of the Linux igbvf driver
that enable mirroring transactions of 82576 VFs to VC709 VFs. Original
macros are commented out for comparison.

Obviously, executing each PCIe transaction in the NIC driver twice imposed a small
overhead on the benchmarks and measurements that will be presented shortly in the
evaluation in Section 4.4.7. However, the overhead turned out to be between zero and
a single-digit percentage, and was therefore suitable for this proof-of-concept implemen-
tation. Detailed numbers will also be presented in the evaluation. Additionally, it must
be kept in mind that there would be no software overhead at all if monitoring and DoS
detection facilities are implemented into the passthrough I/O device itself (in this case,
the 82576 NIC), like it is proposed in Section 4.2.2.2, and not emulated via an external
FPGA like in this prototype.

4.4 Evaluation

In this section, viability of the design and its concepts is demonstrated by presenting
evaluation results of the prototype implementation. Therefore, the prototype was first
used to determine an appropriate, real-world threshold value for PCIe transaction rates
that differentiate DoS attacks from normal workloads. Subsequently, results for both
mitigation approaches (throttling an attacker via scheduling or instantly freezing it) are
presented. The evaluation was done by employing three established networking micro-
and macro-benchmarks that represent typical cloud computing workloads. They are
introduced in the following.
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4.4.1 Benchmarks

Memcached [129] is an open source, high-performance and distributed memory object
caching system. It is an in-memory key-value store that is used to accelerate dy-
namic web applications of all sorts by caching frequently used database requests or
small static page elements. Memcached was executed in VM1 (compare Figure 4.5)
and its performance was measured by loading it with the memaslap benchmark.
The latter was running on a dedicated remote machine. Memaslap was configured
to run with four threads and a concurrency value of 64. All other parameters were
set to default values, so that requests were randomly distributed with probabilities
of 90% for get and 10% for set requests. The performance metric reported by
memaslap is transactions per second.

Apache is an established HTTP server and therefore represents a classic cloud appli-
cation. It was also running in VM1 and served four static HTML pages that
were 4 KiB, 16 KiB, 64 KiB and 256 KiB in size. A remote machine was running
the ApacheBench (ab) benchmark with four concurrent threads and measured the
number of completed page requests per second.

netperf [121] was again used to measure TCP and UDP streaming throughputs, like it
was done throughout Chapter 3. Here, VM1 was initiating the streams to a remote
machine; Message sizes were varied between 16 B and 4 KiB. This range ensured
that the benchmark was executed in both, CPU-bound and I/O-bound conditions.

The remote machine that was used to conduct all three benchmarks was equipped with
a Core i7-3770T CPU, which provided four physical cores. Furthermore, the machine
was configured with 16 GB of RAM and an on-board Gigabit Ethernet NIC. In terms
of system software, it had the same Ubuntu version installed that was used on the
prototype’s host and VMs. Throughout all benchmarks, a default value of 1500 was
used for the Maximum Transmission Unit (MTU), and no jumbo frames were used. The
benchmarks ran for 10 seconds and all presented results depict an average value from
five benchmark runs.

4.4.2 DoS Attack Parameters

Evaluations in this section used DoS attack parameters that were different from those
that were employed in Chapter 3. In contrast, DoS attacks here created 64 bit instead
of 32 bit PCIe packets, and addressed the Receive Descriptor Base Address Low (RD-
BAL) register of the respective 82576 VF, instead of flooding the first register of its
MMIO address range. These parameters were chosen because they achieved the most
performance degradation for the given NIC, so that the mitigation approaches could be
evaluated against a worst case DoS attack.

The choice of parameters was different because at the time the experiments of Chap-
ter 3 were conducted and published, there was no awareness about these parameters and
their influence on performance degradation. Hence, results in this chapter show worse
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degradation than results of the previous chapter. Additionally, the overall change in
degradation was also influenced by hardware differences to the previous chapter’s plat-
form. For example, CPU and PCH were exchanged to a Xeon machine in order to better
resemble a cloud computing machine. A first idea about the employed DoS attack im-
pact is given by Table 4.1, which compares latencies for reading from an attacked 82576
NIC VF during a DoS attack and while the system is idle.

Table 4.1: Latencies for reading from a 82576 NIC VF with and without concurrent DoS attack
on VF0.0.

82576 Latency

Concurrent DoS attack?
7 1.63 µs (±16 ns)

3 18.82 µs (±1.9 µs)

Increase 1054,6 %

4.4.3 DoS Detection Threshold

The PCIe transaction rate threshold for detecting DoS attacks always depends on the
specific hardware composition of the respective system. The threshold is defined/con-
strained by parameters like CPU speed, PCIe link bandwidth and processing time for
PCIe packets, and must therefore be evaluated experimentally on the respective system.
Evaluation was done by recording transaction rates for all three benchmarks and their
respective parameter ranges that were presented in Section 4.4.1. All the benchmarks
were executed in VM1. Additionally, the PCIe transaction rate for a DoS attack was
recorded, which was executed from VM0. Results of the evaluation are depicted in
Figure 4.7.

Results for the netperf streaming tests and Apache only show the result for the pa-
rameter choice that resulted in the highest transaction rate. This was a 128 B message
size for TCP streams, a 16 B message size for UDP streams and 4 KiB page size for the
Apache server.

The bottom line of the results is that the PCIe transaction rate of a DoS attacker VM
is round about five times larger than the maximum rate for the most demanding legal
benchmark (netperf UDP in this case). This large gap in transaction rates between legal
usage and DoS attack made the definition of a threshold value a comfortable task. All
in all, there are three approaches to define a threshold: (1) Picking a rate just above
the highest legal benchmark, (2) picking a rate just beneath the recorded DoS attack
rate, (3) or any value in between. For this evaluation, option one with a transaction rate
threshold of 420 000 wr/s was chosen. This was about 1% above the netperf UDP results
and did not trigger any false positives throughout the evaluations. After configuring
the VC709 DoS detection with this threshold value, the system was used to evaluate
both mitigation approaches (attacker throttling vs. freezing) with help of the three
benchmarks. In the following, benchmark results are presented for mitigating attacks by
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Figure 4.7: Maximum CPU-to-VF PCIe transaction rates for multiple cloud-relevant bench-
marks and a DoS attack. Depicted netperf TCP used 128 B message size, netperf
UDP 16 B. Apache used 4 KiB page size.

throttling attacker VMs via scheduling, as presented in Section 4.3.3. Therefore, results
show baseline performance, performance during a DoS attack without any mitigation,
and performance during a DoS attack with active mitigation (aka throttling). Mitigating
attacks by freezing an attacker can be compared to restoring baseline performance. A
trace of this approach will be presented afterwards in Section 4.4.6.

4.4.4 Memcached and Apache Results

Figure 4.8 depicts results for the memcached benchmark. A DoS attack had great impact
on performance by reducing transactions per second from 88671 to 54784, which is a
decline by 38,2%, or 33887 transactions in absolute numbers. Detecting and throttling
the attacker VM restores performance to 88147 transactions per second, or 99.4% of
baseline performance.

Figure 4.9 shows results for the Apache benchmark and the four different static page
sizes. During a DoS attack, page requests per second dropped by 8.4% (446 req/s) for
4 KiB pages. With increasing page sizes, the performance degradation gets worse. For
16 KiB pages, performance drops by 33.5% or 1386 req/s. Page sizes of 64 KiB and
256 KiB sizes see degradations of 46,1% (725 req/s) and 51,3% (229 req/s), respectively.

Throttling the DoS attacker VM made performance return to almost baseline numbers.
The page request rates returned to values between 97% (16 KiB) and 99% (256 KiB) of
baseline performance.
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Figure 4.8: Results for the memcached benchmark. Mitigating the DoS attack by throttling
the attacker VM restores 99.4% of baseline performance.

4 16 64 256
0

1

2

3

4

5

6
·103

Page size (KiB)

V
M

1
P

ag
e

R
eq

u
es

ts
/s

Apache results

Baseline
During DoS

During DoS w/ mitigation

Figure 4.9: Apache results for four page sizes. Mitigation restores between between 97%
(16 KiB) and 99% (256 KiB) of baseline performance. The x axis has logarithmic
scaling.

71



4 Mitigating Performance Isolation Issues Through Monitoring and Scheduling

4.4.5 Netperf Results

Figure 4.10 depicts results for netperf TCP and UDP streaming benchmarks and the
respective message sizes. In summary, both protocols see performance degradation dur-
ing DoS attacks if mitigation was not activated, but the actual degradation depended
on message size. For UDP streams, performance degradations between 37.8% (4096 B
message size) and round about 70% (256 B - 16 B message size) were observed. Miti-
gating the DoS attack by throttling the attacker VM restored baseline performance for
message sizes between 4096 B - 512 B. For the remaining range of message sizes (256 B -
16 B), performance was restored to about 90% of baseline performance by the throttling
approach.

Results for streams using the TCP protocol showed similar behavior. Performance
degradation during DoS attacks for the message size range of 4096 B - 256 B was mea-
sured at 51%. For the same range, throttling the attacker resulted in a return to full
baseline performance. For the remaining range of message sizes, performance degrada-
tion during DoS attacks decreased with smaller message size. At 128 B, a 47% degra-
dation was measured, while it was only 1% for 16 B message sizes. In the same range,
mitigation via throttling restored between 86.5% (128 B) and 93.7% (16 B) of baseline
performance.

The results for both protocols, UDP and TCP, showed that mitigation of DoS attacks
by throttling the attacker VM yielded different results depending on the message size
of the netperf streams. In conclusion, baseline performance could be restored for all
message sizes where the netperf benchmark was not CPU-bound. This was the case
for message sizes of 512 B and greater for UDP streams and 256 B or greater for TCP
streams.

For respective smaller message sizes, DoS attacks were still able to cause some degra-
dation despite being actively throttled. As described in Section 4.2.3.2, throttling means
that attacker VMs are scheduled only for very small time slices. The size of a time slice,
however, is bounded by CPU speed and the performance of the host operating system’s
scheduling code. Evaluations found that even for the smallest possible time slices, at-
tacker VMs were still able to cause a short lasting congestion on the PCIe interconnect.
These short lasting congestions had no impact if netperf was I/O-bound, aka operated
with big message sizes and the CPU needed to wait for the I/O device most of the time.
However, if the netperf benchmark was CPU-bound, which means that a VM’s CPU
core was fully loaded because it needed to prepare large numbers of small UDP or TCP
packets during small amounts of time, the mini congestions were still enough to degrade
some performance. Performance, in this case, was lost when a fully loaded CPU core,
which executed the legal netperf benchmark, needed to wait for a few additional cycles
in order to send a PCIe packet downstream, because another CPU core, running the
DoS attack, caused a mini congestion on the interconnect that delayed packet sendout.

However, the throttling approach worked fine for both macro-benchmarks (Memcached
and Apache) that represented real-world workloads, and therefore the requirement for
sufficient mitigation was satisfied. Further optimizations of the scheduling algorithm
were therefore not investigated.
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Figure 4.10: Netperf throughput results for UDP and TCP streaming benchmarks. The x axes
have logarithmic scaling.
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4.4.6 Trace of DoS Detection and Attacker Freeze

In the previous three sections, results were presented for mitigating DoS attacks by
throttling the attacker VM with a scheduling algorithm. A second mitigation approach,
which was presented in Section 4.2.3 as an alternative to throttling, is to instantly freeze
an attacker VM (and optionally migrate it to an isolated host for further inspection). In
terms of performance, this approach can be compared to restoring baseline performance.
Freezing the attacker means that there will be only a very short, one-time congestion on
the interconnect. The congestion duration is determined by the time the system needs
to detect the DoS attack, determine the attacker VM and finally freeze it. In order to
demonstrate this approach, a trace of the system detecting and freezing a DoS attacker
is presented in the following.

Therefore, the DoS detection of the prototype was configured the same as presented in
Section 4.4.3, which means it checked for a transaction rate of over 420 000 wr/s per VF.
This was realized by programming the detection hardware with a sampling interval of
0.2 s and a transaction threshold of 84 000 wr (compare Section 4.3.2). The trace covered
10 s containing the following events:

1. At the start of the trace, the whole system was idle.

2. At second two, VM1 started a netperf benchmark using the UDP protocol and
4096 B message sizes.

3. At second six, VM0 started executing a DoS attack on its assigned VF0.0. DoS
attack parameters also were the same as in the previous sections.

To give insight into the state of the system and the workings of DoS detection and
mitigation by freezing the attacker, three parameters were recorded during the trace.
These are (1) the network throughput that VM1’s netperf benchmark achieved, (2) the
PCIe transaction rate of both VMs and (3) the latency of the 82576 NIC. In order to
show the difference between the system with and without the mitigation approach, the
trace was run two times. The first run represented a baseline run, where DoS detection
and mitigation was disabled. For the second run, it was activated and contained a
successful mitigation. The trace results are depicted in Figure 4.11.

4.4.6.1 Baseline Trace

The left column depicts the baseline run and shows the impact of a DoS attack on
the system with deactivated mitigation. The top row depicts the netperf throughput of
VM1 during the trace, the middle row shows the PCIe transaction rate of both VMs and
the bottom row depicts the latency for reading a data word from the (attacked) 82576
NIC. For scaling reasons, the transaction rate plots show a second ordinate for the PCIe
transaction rate of the DoS attacker VM0. The netperf benchmark is observable via
the throughput, the PCIe transaction rate of VM1 and the minor jitter it causes to the
latency of the 82576 NIC. The DoS attack, in turn, is visible via VM2’s PCIe transaction
rate and its impact on the other plots. Once the DoS attack started at second six of
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Figure 4.11: A trace of 10 seconds that demonstrates freezing a DoS attacker. Left column
shows the impact of a DoS attack (visible as the PCIe transaction rate of VM0)
on a netperf benchmark (running in VM1) with deactivated mitigation. Right
column has it enabled. Please note the different ordinates for the PCIe rate plots.

75



4 Mitigating Performance Isolation Issues Through Monitoring and Scheduling

the trace, netperf throughput instantly dropped from 960 Mbit/s to 600 Mbit/s. This
performance degradation correlates to a reduced PCIe transaction rate of VM1. The
cause for this degradation was the DoS-caused congestion on the interconnect, which
was discussed in Chapter 3. The congestion is made visible by the latency plot, which
shows a steep jump once the DoS attack was executing1.

4.4.6.2 Mitigation Trace

The right column shows results for enabled mitigation. Here, the VC709’s DoS detection
identified the attack after it was started and reported VM0 via interrupt. The DoS
protect process in the host received the interrupt shortly after and instantly froze VM0.
As a result, the DoS attack in this trace only caused a small dip in VM1’s throughput and
performance was recovered to 100% of baseline shortly after the attacker was identified
and frozen.

4.4.6.3 Optimization Tradeoffs

It is also possible to detect DoS attacks faster than in the depicted trace, which would
have further reduced the temporary performance drop. Therefore, other parameters
must be chosen for the sampling rate and the transaction threshold of the DoS detection
hardware in the FPGA. The FPGA design runs at 125 MHz, which theoretically enables
it to check for the transaction threshold value at smaller sampling rates than the 0.2 s
that were used, allowing faster detection and freezing of the attacker. On the other
hand, greater sampling rates provide more confident detection. In cloud computing
environments, the latter is most likely more important, because while a tiny performance
drop is annoying, it is still preferable to having more false alarms.

4.4.7 Mirroring Overhead

In the following, the overhead that transaction mirroring introduced to the conducted
evaluations and benchmarks will be discussed. Of course, all findings within this section
need only be considered for the prototype implementation, because transaction mirroring
was only used to enable evaluation of the original design idea. If respective monitoring
hardware would be implemented directly into hardware, like it is proposed by the design,
no mirroring would be needed and therefore no overhead would be introduced.

Transaction mirroring causes CPU cores to duplicate each PCIe transaction that is
sent to the 82576 NIC. This translates to (1) a tiny CPU overhead for generating the
additional PCIe transaction and (2) a doubling of the volume of PCIe transactions. The
latter is neglectable due to two reasons. First, the prototype (compare Figure 4.5) is
assembled such that the VC709 FPGA and the 82576 NIC PCIe cards do not share any
PCIe lanes. Therefore, mirroring introduced no interferences in this part of the PCIe
subsystem. Second, the CPU internal ring structure, which must be traversed by the

1Compare to results that were presented in Section 3.5, where huge latency increases were identified as
an indicator of DoS-caused congestion on the interconnect.
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original and the mirrored PCIe packets, is capable of much larger transactions volumes
than those introduced by two PCIe devices.

The impact of the CPU overhead introduced by the mirroring approach is discussed
in the following.

4.4.7.1 Benchmark Overhead

VM1, which executed the benchmarks, had transaction mirroring enabled only for the
evaluation of the maximum PCIe transaction rates per benchmark in Section 4.4.3, and
the system trace for evaluating the freezing approach that was presented in Section 4.4.6.
Here, the CPU overhead of mirroring introduced variations in the benchmark results of
at most 7%, but only when the benchmarks itself was CPU-bound. Therefore, in both
cases, this overhead was neglectable. In the first case, mirroring was used to determine
the difference in PCIe transaction rates between DoS attacks and legal benchmarks. As
the DoS rate was round about five times larger than the next best legal benchmark,
a 7% overhead for the latter was acceptable. Considering the results of the system
trace in Section 4.4.6, netperf was not operated in the CPU-bound region (using 4096 B
message sizes), so that CPU overhead of mirroring had no effect. All benchmark results
in Sections 4.4.4 and 4.4.5 were obtained without active mirroring in the benchmark VM
and thus contained no overhead.

4.4.7.2 DoS Attack Overhead

The DoS attack code had transaction mirroring enabled during the whole evaluation.
However, no overhead was introduced because the VC709 FPGA was able to process
PCIe transactions faster than the 82576 NIC. This is shown in Table 4.1.

Table 4.2: Times for executing a for-loop (DoS attack) with 108 consecutive PCIe write trans-
actions, depending on device.

Device total time time/write

82576 NIC 36.138 s 361.38 ns

VC709 FPGA 8.812 s 88.12 ns

While the 82576 NIC needs 361 ns to process a single PCIe packet, the VC709 only
needs 88 ns. Due to this difference in processing speeds, DoS-caused congestion on the
PCIe subsystem first emerged on the PCIe lanes that connected to the 82576 NIC. This
means that during congestion, when all buffers were filled, the CPU core running the
mirrored DoS attack code would block for 361 ns while waiting for the 82576 NIC to
process a PCIe transaction that frees a downstream buffer slot. Hence, this waiting time
that existed anyways could be used by the CPU to send the respective mirrored packet
to the VC709 without generating any overhead.
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4.5 Summary

The cloud computing domain is the most prominent adopter of SR-IOV and PCIe
passthrough technology. Cloud computing providers like Amazon use the technology
to provide VMs that offer high performance networking I/O that is superior to legacy
I/O virtualization options like paravirtualization. As a consequence, servers that host
SR-IOV VMs are vulnerable to PCIe DoS attacks and may therefore become victims
of unwanted, significant performance degradation (attacks and degradation were thor-
oughly investigated in Chapter 3).

This chapter presented research on detecting DoS attacks on PCIe passthrough hard-
ware in live systems and mitigating the resulting performance degradation. The overall
goal was to develop lightweight hardware and software extensions that work together in
order to fulfill these tasks. In a first step, domain-specific goals and requirements were
collected. The design of the hardware and software extensions should seek synergies
with existing technology that counteracts other classes of VM misbehavior (e.g network
address spoofing) and be compatible to existing and future hardware architectures and
I/O classes. Most importantly, the design must keep the host out of the VM-to-I/O-
device data path, which is the most important paradigm of PCIe passthrough. Also,
the design had to satisfy requirements for non-intrusive, low overhead and secure DoS
attacker detection. Additionally, attackers must be identified unambiguously, their at-
tacks must be sufficiently mitigated and the overall design must scale to modern cloud
computing requirements.

In the next step, these goals and requirements were used to develop a high-level design
for the hardware and software extensions. The design was based on the observation that
DoS attacks always create larger PCIe transaction rates than legal (cloud computing)
workloads. Therefore, the design was partitioned to utilize hardware-based monitoring
of PCIe transaction rates for DoS detection and host software extensions for mitigation.
Exploration of hardware monitoring possibilities in PCIe networks yielded three results:
(1) Monitoring inside the CPU, (2) in an intermediary like a switch, or (3) inside the
I/O device. Each possibility provided its unique pros and cons, but all three would
be suitable for implementation in future hardware. In terms of software extensions for
DoS attack mitigation, two approaches were presented: (1) A scheduling algorithm that
throttles the attacker VM so that the DoS attack weakens significantly, or (2) freez-
ing and subsequently migrating the attacker VM to an isolated host, where it can be
inspected by an operator of the cloud computing provider.

In order to evaluate the high level design, it was implemented on cloud computing
grade, real hardware. An FPGA prototyping board was utilized to emulate hardware-
based PCIe transaction monitoring and DoS detection for a commercial-off-the-shelf
SR-IOV NIC. Using this hardware prototype, a threshold value for PCIe transactions
rates was determined that differentiates legal usage of an SR-IOV VF from a DoS attack.

Finally, this threshold value and the hardware prototype were used to evaluate the
DoS detection and software-based mitigation of DoS attacks in the live system. This
task was realized by using three cloud computing benchmarks (one micro- and two mac-
robenchmarks). Results of the macro-benchmarks showed that the throttling algorithm
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successfully mitigates performance degradation due to DoS attacks. For example, the
memcached benchmark saw a drop in performance to 61.8% of baseline performance
during a DoS attack. Throttling the DoS attacker with the proposed scheduling algo-
rithm restored 99.4% of baseline performance for memcached. Results for the approach
of freezing DoS attacker VMs showed that DoS detection is fast enough to only leave a
sub-second dip in network performance until full baseline performance is restored.
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5 Resolving Performance Isolation Issues
Through PCIe QoS Extensions

The previous chapter presented approaches for mitigating performance isolation issues
with PCIe passthrough in a running system. Mitigation approaches have a low footprint
regarding costs, because they can be enabled with very small monitoring add-ons to
existing hardware. These monitors detect PCIe DoS attacks, which are then mitigated
by software. Although mitigation is able to restore close to baseline system perfor-
mance, there still might be small temporary performance fluctuations, which are caused
by delays in DoS attack detection and the effectiveness of the mitigation software. These
characteristics make mitigation approaches well-suited for the cloud and datacenter com-
puting domains. Here, detection of attackers is the most important aspect, because an
operator (or software watchdog) of the cloud computing provider can shut down or fix
detected attacker VMs from remote. In the short meantime between DoS attack detec-
tion and reaction from the operator, it is perfectly acceptable to sacrifice a few percent of
performance and therefore save money due to an affordable and lightweight implemen-
tation. In other words, DoS detection and mitigation are a reactive solution, because it
counters on-going attacks.

There are also other computing domains, where a reactive solution is not the pre-
ferred way. For example, in future embedded and mixed-criticality systems that use
PCIe passthrough, performance fluctuations during DoS attacks and DoS mitigation
would need to be accounted for in worst case execution time (WCET) calculations. Con-
sidering the many hardware and software parameters that influence these performance
fluctuations, and the significant increase of latencies that is caused by DoS attacks, this
would result in a very pessimistic approach that also introduces a high element of un-
certainty. Even if these fluctuations would be accounted for in WCET calculations, it
is a lot more difficult to fix a compromised VM in embedded systems than in cloud
systems, because instant (remote-) maintenance by experts/operators might not be pos-
sible. Hence, in this domain, extra costs regarding hardware would be acceptable if
they completely close this attack vector and enable usage of PCIe passthrough hardware
without the need to calculate with any kind of interference. In other words, a proactive
solution is preferred.

This chapter presents two integrated hardware architectures that achieve this goal.
Therefore, Section 5.1 first defines overall goals and domain-specific requirements for
the hardware architectures. As a foundation for both architectures, Quality-of-Service
(QoS) extensions from the PCIe specification [78] were employed. The extensions are
thoroughly introduced in Section 5.2. Unfortunately, at the time of writing, these QoS
extensions were almost completely absent in COTS PCIe hardware, because they are
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defined optional in the specification and lack use cases in the real world. In order to
enable development and evaluation of the proposed hardware architectures despite the
absence of PCIe QoS hardware, a SystemC TLM 2.0 simulation model of a real-world
lab-setup was developed and extended with these PCIe QoS features. The model is
presented in Section 5.3. Afterwards, Sections 5.4 and 5.5 present the two proactive
hardware architectures for DoS prevention. They were optimized for different goals:
Scheduling freedom and minimal hardware costs. In both sections, it is determined
which QoS features are needed, and how virtualized hardware like multi-core CPUs
and SR-IOV devices need to implement, interface1and program these features in order
to prevent DoS attacks. Afterwards, evaluation results of each architecture using the
SystemC model are presented and a short summary for each respective architecture is
given. Finally, this chapter is concluded in Section 5.6.

5.1 Goals and Requirements

In order to enable hardware-assisted full performance isolation for systems using PCIe
passthrough, certain goals and requirements must be met and satisfied. Both are for-
mulated in the following. The goals and requirements are agnostic of specific multi-core
processor architectures, PCIe intermediaries or I/O devices, so that they are applicable
to any kind of common hardware as long as it implements standardized PCIe interfaces.

5.1.1 Goals

The overall goal is to develop hardware architectures that enable proactive, full perfor-
mance isolation for PCIe passthrough. This goal shall not be achieved with any kind
of help by software, e.g. introspection or monitoring mechanisms from a trusted host,
but enforced solely by hardware. The only allowed exception shall be configuration of
hardware via trusted host software at boot time, prior to VM instantiation. Addition-
ally, the hardware architectures shall stay fully compatible to the PCIe and SR-IOV
specifications. This ensures compatibility to existing legacy hardware, and simplifies
integration of the developed solutions into future hardware, because they build on top
of a common base.

5.1.2 Requirements

Proactive, full isolation: The hardware architectures must provide full performance iso-
lation, which means that there must be zero I/O performance degradation for
non-attacker VMs during DoS attacks. Also, isolation must be guaranteed perma-
nently. It cannot be activated with a short delay after a DoS attack emerged, like
in the DoS detection and mitigation approach in the previous chapter, but must
be there from the start.

1These are aspects that are explicitly not covered in the PCIe specification.
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Secure configuration: Any configuration facilities of the hardware architectures must
be secured from access by VMs. Only trusted host software, e.g. a hypervisor, is
allowed to access and alter the respective configuration.

Scalability: The hardware architectures must be scalable to a reasonable number of VMs
and passthrough functions.

Low overhead: The hardware architectures must not introduce performance overhead
to other, non-PCIe parts of the system.

5.2 Quality-of-Service Extensions in the PCIe Specification

Exploration of the PCIe specifications [78] found that they include modular hardware
QoS extensions for generic PCIe components. Unfortunately, all of these QoS extensions
are explicitly defined optional. At the date of writing, there seems to be a lack of use
cases for QoS extensions in PCIe passthrough-capable hardware. Especially in the case
of x86-based hardware, where PCIe passthrough found adoption in the form of SR-IOV
based networking for virtualized cloud computing, the author is not aware of any COTS
PCIe hardware2 that provides QoS facilities as described in the PCIe specifications.

Performance isolation issues of PCIe passthrough and SR-IOV, however, qualify as a
use case for these extensions. Closing the existing attack vector for PCIe DoS attacks
with help of the specification’s QoS extensions would have two advantages. First, com-
patibility to legacy PCIe hardware is increased, and second, integration into existing
PCIe hardware is simplified. For these reasons, the QoS extensions were utilized as
building blocks in the hardware architectures that are presented later in this chapter,
and they help enabling full performance isolation for PCIe passthrough.

5.2.1 Contribution of this Thesis

Before this section continues with background on the specification’s QoS extensions,
it shall be first differentiated where this thesis leverages existing concepts from the
PCIe specifications, where it transfers and adapts them to new use cases and where it
contributes new work that is needed to enable full performance isolation.

PCIe’s QoS extensions are included since the very first revision (1.0) of the PCI Express
Base Specification from the year 2002 [130]. The first commercial IOMMUs for x86
hardware, which enabled PCIe passthrough, were introduced around the year 2006 [49].
The first revision of SR-IOV was introduced a year later in 2007 [131]. SR-IOV extended
the PCIe base specifications, hence becoming a superset of them, but it did not alter,
update or change specifications regarding the QoS extensions. Therefore, it is possible
to design both legacy and SR-IOV capable PCIe devices that include or exclude QoS
extensions. The whole relationship is depicted in Figure 5.1.

2For QoS to work, it must be supported pervasively by all components in the hierarchy of a PCIe tree.
This results in at least one CPU and one Endpoint, if they are directly connected to each other. Any
intermediaries between CPU and Endpoint, e.g. a chipset (PCH), must also provide matching QoS
capabilities.
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Figure 5.1: Relationship between the PCIe Base Specifications, the optional QoS extensions
and SR-IOV. SR-IOV can be a superset of any of the PCIe Base Specifications that
have a revision number of 1.1 or greater.

In conclusion, the QoS extensions were designed and released years before platform
virtualization emerged as a mainstream technology, and DoS attacks from malicious
VMs became an easily exploitable attack vector. Since the extensions are modular and
highly configurable, work on this thesis included exploring which QoS components are
needed and how they must be configured in order to achieve the goal of full performance
isolation for the hardware architectures that are presented in Sections 5.4 and 5.5.

Although the specification includes a section on “isochronous mechanisms” [78, Ap-
pendix A] that are based on the QoS extensions, they could not be applied. The mech-
anisms enable two communication paradigms that provide guaranteed bandwidths and
deterministic latencies for Endpoint-to-Root-Complex and Endpoint-to-Endpoint direc-
tions. PCIe DoS attacks from malicious VMs, however, flow downstream in the CPU-
to-Endpoint direction. The specification excludes this direction for a second time in a
section about multi-function devices (aka all SR-IOV devices), stating that “the multi-
Function device model does not support full QoS management [...] for Downstream
requests” [78, Chapter 6.3.3.4]. Hence, a new paradigm for preventing DoS attacks with
help of the QoS extensions was developed for this thesis. Additionally, new concepts for
interfacing QoS-enabled PCIe in modern virtualized hardware were developed. This was
explicitly needed for virtualized multi-core CPUs, because here, the PCIe Base Specifi-
cation says that “the mechanisms used by the Root Complex to interface PCI Express
to the Host CPU(s) are outside the scope of this document” [78, Chapter 6.5.5].

5.2.2 Overview of the PCIe Specification’s QoS Extensions

The specification’s key feature is support for multiple Virtual Channels (VCs) per PCIe
port. Together with Traffic Class (TC) labeling of PCIe packets and multiple arbitration
stages and schemes, it is possible to enable different qualities of service. An example for
a PCIe component with two ingress ports and two VCs is given in Figure 5.2.
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Figure 5.2: Overview of PCIe Quality-of-Service extensions. First, an inbound packet’s Traffic
Class label is used to map it to a Virtual Channel (VC). Afterwards, a two-stage
arbitration (first port, then VC) selects the next packet.

5.2.2.1 TC/VC Mapping

VCs are dedicated hardware buffers that can be integrated for each individual PCIe port
of a component. Only a single VC is mandatory, if more are employed, differentiated
flows over that link are possible. Each VC of a port must provide its own flow control
facilities. Association of traffic to individual VCs is realized by labeling PCIe packets
with TC labels. Up to eight TCs (TC0–TC7) and VCs (VC0–VC7) are specified, and
they must be mapped in a n-to-1 fashion, respectively. Association of the same TC
label with multiple VCs is forbidden. Two examples for legal mappings are depicted in
Table 5.1.

Table 5.1: Two examples for TC/VC mapping for a port with two VCs.

Mapping VC ID

VC0 VC1

1st mapping [TC0-TC3] [TC4-TC7]

2nd mapping [TC0-TC6] [TC7]

In the first mapping, TCs are evenly divided between both VCs. The second example
resembles a mapping that would be employed for separating a high-priority VC1, which
is only used by the highest TC label, from a low-priority VC0, which is used by the
remaining TCs. It is also mandatory that ports at both sides of a PCIe link are configured
with identical TC/VC mappings.
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5.2.2.2 Arbitration

After TC/VC mapping, a two-stage arbitration takes place. If a PCIe component has
multiple ingress ports, then it is necessary to differentiate transactions that target the
same VC but originate from different ingress ports. This is done in a first stage called
Port Arbitration. Here, a different arbitration scheme can be selected for each indi-
vidual VC (compare Figure 5.2). The following schemes are supported:

Hardware-fixed (RR): A simple, non-programmable scheme that gives equal priority to
all ingress ports, for example Round-Robin (RR).

Programmable Weighted Round-Robin (WRR): Trusted host software, e.g. the hy-
pervisor, generates an arbitration table that is stored in a read-write register array.
The table entries contain port numbers of the respective ingress ports. At each
arbitration phase, the current table entry is evaluated and the indicated ingress
port is served for one transaction. If the respective port does not have a pending
transaction, it is skipped and the arbiter immediately moves to the next table
entry.

Programmable Time-based Weighted Round-Robin (TBWRR): Also operates with an
arbitration table. Here, an indicated port is served for a single transaction during
a fixed timeslot t, with t = 100ns in the current revision of the specification. The
arbiter moves to the next table entry only after t has passed. If a port did not have
a pending transaction during t, it is considered an idle phase. It is also possible to
explicitly insert idle phases. Figure 5.3 depicts an exemplary arbitration table.

phase7 phase1phase2 phase0

phase11 phase9phase10 phase8

phase31 phase25phase26 phase24

... ...

...

... ... ...

...

...

Byte
Address0x00

0x04

0x0C

Bit Index

03478112831

Port ID or "idle"

3 0

Figure 5.3: TBWRR arbitration table with 32 phases and 4 bit table entries. Per phase, it is
possible to program arbitration of one of 16 ports or an idle phase.

After PCIe transactions passed the port arbitration stage, they are subject to the
second arbitration stage, VC Arbitration (compare Figure 5.2). Here, VCs can be
partitioned into two priority groups, a lower and upper group. Within the upper group,
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a strict priority arbitration scheme is employed (VC7 > VC6 > ...). The lower group is
considered for arbitration only if there are no pending transactions in the upper group.
Within the low priority group, arbitration can be configured to use one of two schemes:
(1) Round-Robin or (2) Programmable Weighted Round-Robin (WRR). The latter works
just like the WRR scheme for port arbitration and also utilizes an arbitration table in a
register array that is supplied by trusted host software.

5.3 SystemC TLM 2.0 Model of QoS-enabled PCIe
Components

In order to enable design, exploration and evaluation of hardware architectures that
employ PCIe’s optional QoS extensions despite the previously highlighted lack thereof in
COTS hardware, a simulation model was developed. To ensure that the model accurately
simulates real-world systems that employ PCIe hardware, the following approach was
taken beforehand:

1. Create a model of PCIe ports with configuration options for each of the optional
QoS extensions.

2. Build models of configurable, generic system components that incorporate these
PCIe ports: Multi-core CPU, chipset and (SR-IOV) I/O device.

3. Interconnect and configure the generic components to resemble a real-world lab-
setup (no QoS activated in the simulated PCIe components yet).

4. Run a networking benchmark on the real-world machine, and replicate the bench-
mark on the simulation model. Compare benchmark results and use insights to
tune and verify the model’s accuracy.

Afterwards, the QoS extensions in the verified model were activated and it was used
to develop configurations and interfacing approaches for virtualized hardware so that
performance isolation for PCIe passthrough was achieved. This last step is subject to
Sections 5.4 and 5.5. First, steps (1) to (4) are elaborated in detail in the following.

The whole model was realized with SystemC TLM 2.0, because it supports abstract
modeling of busses and interconnects that are memory-mapped [132], which was a per-
fect match for the memory-mapped PCI Express interconnect. Additionally, TLM 2.0’s
generic payload and base protocol extension mechanism allowed easy modeling of the
required protocol characteristics of PCIe. First, generic PCIe ports were modeled that
support all QoS extensions that were presented in Section 5.2.2, together with configu-
ration parameters for: (1) The number of ingress ports, (2) the number of VCs, and (3)
the arbitration scheme selection for each arbiter of the Port and VC arbitration stages.
If WRR or TBWRR arbitration schemes were selected for any of the arbitration stages,
respective arbitration table data structures had to be supplied as well. Supplying one
TC/VC mapping data structure per port was mandatory.
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Afterwards, three generic, higher-level system components were modeled that each
incorporated the PCIe port models. This way, all kinds of PCIe hierarchies could be
modeled and assembled. The first component was a multi-core CPU with integrated
Root Complex and a configurable number of cores. Second, a Platform Controller Hub
(aka chipset) that acted as a packet relay, and third, an Endpoint with a configurable
number of PCIe functions and Ethernet ports that could be assigned to each other.
The Endpoint’s PCIe functions could either resemble legacy functions or SR-IOV PFs
and VFs. On the abstraction level of the SystemC model, there was no need to differ-
entiate between function types, as they only differ in their ability to configure device
characteristics and not in terms of performance.

The PCIe port models transmit and receive PCIe packets in accordance to the PCIe
specification [78]. This was realized using the SystemC approximately-timed coding style
and extending the SystemC generic payload with PCIe packet characteristics like the
Traffic Class. Flow control mechanisms between two interconnected PCIe port models
indicated free target buffers, so that transaction generation and sendout was blocked in
case of congestion. Cores in the multi-core CPU were modeled as individual processes
that directly insert into PCIe ports. This is an abstraction from the complex inner
structure of modern x86 multi-core CPUs that was necessary for reducing complexity of
the SystemC model and achieving reasonable simulation times.

In the next step, the models for the generic system components were used to create a
model of a real-world lab-setup that utilizes SR-IOV Ethernet networking. To improve
comparability, the lab-setup was almost identical to the one that was used in the previous
chapter (compare Section 4.3.1). Instead of the six-core Xeon E5-2630v1, an E5-2630v2
was utilized, which had a 300 MHz faster clock speed (2.6 GHz in total). Chipset (C602)
and SR-IOV capable NIC (82576 dual-port Gigabit Ethernet) were identical. The lab-
setup was configured to spawn two VMs on separate CPU cores, and three VFs on the
SR-IOV NIC. VM0 was attached to VF0.0, the first VF of PF0. VM1 was either attached
to VF0.1, which belonged to the same PF than VM0, or to VF1.0, which belonged to
the other PF. Hence, depending on configuration, VM1 either shared an Ethernet port
with VM0 (eth0), or not (eth1). This configuration is depicted in Figure 5.4.
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Figure 5.4: Block diagram of the real-world lab-setup running two VMs. VM0 was attached
to VF0.0 of PF0. VM1 was either attached to VF0.1 (same PF as VM0) or VF1.0
(different PF).

88



5.3 SystemC TLM 2.0 Model of QoS-enabled PCIe Components

The configuration of the lab-setup machine was recreated using the SystemC model.
The model was also capable of computer-generating a graphical representation of the
system components and their connections, which allowed convenient verification of the
modeled hierarchy. The generated hierarchy is depicted in Figure 5.5.

CPU + Rootcomplex

core1

Rootport 00:00.0

Memory behind:
0x00000000
0x002ffff8

core0

Platform Controller Hub
(Chipset)

Endpoint ep0

Func 03:00.0

mem:
0x00000000
0x000ffff8

Func 03:00.1

mem:
0x00100000
0x001ffff8

Func 03:00.2

mem:
0x00200000
0x002ffff8

eth0 eth1

Figure 5.5: The PCIe hierarchy of the SystemC model, computer-generated by the code of the
model itself at simulation runtime.

It shows core0 and core1 representing VM0 and VM1, as well as three PCIe functions
in the Endpoint that are assigned to the respective Ethernet ports like the 82576 NIC
VFs are in the lab-setup. The model is also able to automatically enumerate PCIe
functions and to generate memory maps that are partitioned like in a real-world system.
The generated address ranges can then be used by the CPU processes to send PCIe
packets to specific functions.
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5.3.1 Model Verification Approach

For the SystemC model to become a viable research platform for PCIe DoS attacks, it
had to be able to accurately simulate the respective effects. Therefore, the goal was
to simulate execution of DoS attacks and UDP streaming benchmarks on core0 and
core1. On the model, UDP streaming was simulated by letting the model’s cores and
their attached PCIe functions communicate using the protocol that was described in
Section 3.6. On the lab-setup, UDP streaming was benchmarked using netperf, just like
in the previous chapters of this thesis. Measurements on the lab-setup were then used to
annotate the timings for packet generation and processing delays in the SystemC model
(using mean values from multiple runs).

Finally, UDP throughput results on both, lab-setup and SystemC model, were com-
pared to verify the accuracy of the simulation. To avoid confusion, the following de-
scriptions will only use names as depicted in the block diagram of the lab-setup (see
Figure 5.4), but they can be substituted ad libitum with the respective names from
the SystemC model hierarchy3(compare Figure 5.5). The following three scenarios were
evaluated:

Baseline: VM1 was completely idle and neither executing a benchmark nor a DoS at-
tack. VM0 was the only user of Ethernet port eth0 and was executing the UDP
throughput benchmark.

Shared eth0: VM1 was attached to the second PCIe function of eth0 (VF0.1), and was
concurrently executing the same benchmark as VM0. Hence, eth0 was shared by
both VM0 and VM1 simultaneously.

During DoS: VM1 was either attached to VF0.1 (same eth port than VM0) or VF1.0
(different eth port) and was executing a PCIe DoS attack. Both configurations
yielded the same results and are therefore presented as a single result in the fol-
lowing. This behavior is an expected result for a COTS SR-IOV device that, most
likely, uses the same input buffers (VC0 only in this case) for all its PCIe functions
(PFs and VFs). It might therefore only have a single processing engine for all
incoming MMIO write transactions, regardless of PCIe function type or number.
This was modeled accordingly in the SystemC model.

5.3.2 Verification Results

Figure 5.6 depicts results for UDP throughputs for the lab-setup and the SystemC model
for a common range of message sizes (16 B – 1024 B). Additionally, the corresponding
rate of generated UDP packets per second is depicted for both. This metric helps to
further verify that the netperf benchmark was modeled accurately in the SystemC model.

3VM0 ↔ core0
VM1 ↔ core1
VF0.0 ↔ Func 03:00.0
VF0.1 ↔ Func 03:00.1
VF1.0 ↔ Func 03:00.2
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Figure 5.6: VM0’s UDP throughput and corresponding packets per second on the lab-setup
and the SystemC 2.0 TLM model while VM1 is either idle, executing the same
benchmark as VM0 or executing a DoS attack.
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Data points for results of the SystemC model each represent a one-time simulation run.
Evaluation showed that a statistical distribution of single PCIe packet generation rates
did not have a significant impact on the results. This was due to the communication
protocol between CPU cores and I/O device, which involved a lot of blocking depending
on the UDP message size. This resulted in the system converging into one of two
possible states, in which either state produced blocking times that were much larger
than variances in the PCIe packet generation of CPU cores. Both states are explained
as follows:

I/O bound: UDP packets had large payload sizes. A CPU core needed less time to
generate an UDP packet with a large payload than the I/O device needed to send
out the respective packet. Hence, CPU cores were blocked and idle most of the
time, waiting for the I/O device to finish sending the current packet before the
next one could be generated.

CPU bound: UDP messages had small payload sizes. Creating large volumes of small
packets incurred significant overhead for CPU cores. In consequence, a CPU core
needed more time to generate an UDP packet with a small payload than the I/O
device needed to send out the respective packet. Hence, the I/O device was blocked
and idle most of the time, waiting for the CPU cores to deliver the next packet.

Results for the lab-setup show that DoS attacks caused UDP throughput drops be-
tween 45% (1024 B) and 72% (128 B). UDP throughput during a DoS attack was even
worse than sharing the same Ethernet port (eth0 in this case) with another VM. Accord-
ing to the classification of DoS attacks that was presented in Section 3.7, the attack was
therefore both an intra- and inter-PF DoS attack. Comparing these results to the re-
spective results of the SystemC model shows that there is an average percentage error of
1.9% between both in the baseline case. It is 1% for the case where the Ethernet port is
shared (VM0 and VM1 simultaneously utilized eth0), and 7.7% for the case where VM1
was executing a DoS attack. The errors can be attributed to the high-level abstractions
in the model that were highlighted previously. Nonetheless, the SystemC model results
were very close to those of the real-world lab-setup, so that the it provided a good basis
for developing and exploring hardware architectures that employ PCIe’s QoS extensions
to prevent DoS attacks.

Two such hardware architectures will be presented in the following two sections. The
first architecture is optimized for full scheduling freedom, the second for minimal hard-
ware costs. Both architectures were thoroughly evaluated with help of the SystemC
model, and the results will be discussed together with the pros and cons of each ap-
proach. In order to make evaluation results comparable, each architecture incorporated
the SR-IOV two-port Gigabit Ethernet NIC that has been presented in previous sec-
tions of this thesis. However, the concepts are not limited to this special device or I/O
category, but can be applied to any kind of passthrough hardware, e.g. a legacy PCIe
device with multiple functions.
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5.4 Multi-VC Architecture

The core idea of the first architecture is to resolve performance isolation issues by lever-
aging PCIe’s option for multiple VCs. They are used to physically separate PCIe packet
flows of malicious VMs from flows of legal, uncompromised VMs. As previous chap-
ters in this thesis showed, it is the CPU-to-I/O-device direction, alternatively called the
downstream direction, that is exploited by VMs for PCIe DoS attacks. However, there
are also non-VM sources for downstream PCIe packets that had to be accounted for in
the design of the architecture. These exploration results are presented in the following.

The block diagram in Figure 2.9 gives a good overview of a generic, virtualized system
and its multiple sources of downstream PCIe packets. These are: (1) VMs, (2) the
hypervisor or other trusted host software and (3) the DRAM controller of the CPU.
VMs and hypervisor are software entities that execute on the same pieces of hardware,
the cores of the CPU. In conclusion, there are only two types of hardware sources for
PCIe downstream packets, the DRAM controller and the CPU cores. However, for the
latter, it must be differentiated which kind of software is running, because it determines
whether the generated PCIe packet might be part of a DoS attack flow or not. In other
words, the software executing on a CPU core determines, at runtime, if a CPU core is a
trusted (hypervisor executes on core) or an untrusted (VM executes on core) source of
a PCIe packet. The DRAM controller, in turn, is always a trusted source. It does not
run potentially malicious software, and only completes DMA requests of the I/O device.
Since the I/O device knows its own bounds for processing PCIe packets, it would never
issue more DMA requests than it can handle, so that a DoS attack caused by DMA
requests can be ruled out. Hence, the DRAM controller can be considered a trusted
source for downstream PCIe packets. Table 5.2 depicts these classifications for trusted
and untrusted PCIe packet sources.

Table 5.2: Downstream PCIe packet sources classified by trust.

Hardware source CPU core DRAM

Software Virtual Machine hypervisor N/A

Trusted? 7 3 3

5.4.1 Architecture

The distinction of trusted and untrusted PCIe packet sources was used as a key aspect
in the design of the multi-VC architecture. The performance isolation issues are resolved
by physically separating the flow for trusted PCIe packets from each individual flow of
untrusted packets using multiple Virtual Channels. Additionally, PCIe packets from
trusted sources are prioritized over untrusted ones. With this architecture, backpressure
from PCIe DoS attacks is only put on the attacker itself and not on concurrent VMs. A
block diagram of the architecture is depicted in Figure 5.7.
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(VMs) PCIe packet flows are separated with multiple VCs. Trusted sources get
their own TC label, as well as each untrusted source (VMs). TC/VC mapping is
done 1:1, enabling the separation of flows.

The separation of flows is realized with PCIe’s Traffic Class (TC) labeling of PCIe
transactions and a 1:1 TC/VC map. This means that transactions labeled with TC0
are assigned to VC0, TC1 to VC1, and so on. This mapping scheme ensures that
each TC label is assigned its own and exclusively used VC buffers. In the architecture,
the highest TC, TC7, is always assigned to transactions of the trusted sources, aka
the DRAM controller and CPU cores that run the hypervisor software. Hence, they
both share VC7, which is also configured to be the high-priority VC. The remaining
low-priority VCs are assigned to the VMs. In the current revision of the PCIe standard,
there are eight TCs and VCs. This means that using this partitioning, seven VCs remain
for assignment to VMs (VC0–VC6).

In the PCIe port of the multi-core CPU, a two-stage arbitration scheme is employed.
For Port Arbitration, a (W)RR scheme is used between the different input ports. For
VC Arbitration, the high-priority VC7 (hypervisor + DRAM) is always selected first. If
no transactions are pending for VC7, the remaining VCs are also selected in a (W)RR
fashion. WRR instead of RR can be activated if weighted link partitioning between the
low-priority VCs, aka VMs, is desired. In order for the architecture to function properly,
there must be an identical number of VCs in the whole PCIe hierarchy. This means that
at least the CPU PCIe port and the SR-IOV device must provide identical VCs. If an
optional chipset is interposed between CPU and I/O device, it must also provide the
respective number of VCs.
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As previously mentioned in Section 5.2.1, the interface between the host CPU and the
PCIe ports is not covered in the PCIe specification. For the proposed architecture, it is
essential that the CPU’s PCIe ports are able to distinguish between single cores. Only if
this requirement is fulfilled, it is possible to put the back-pressure from a congested VC
back on the attacker VM itself. This is because the port arbiter for each VC masks out
internal ports whose pending arbitration requests target a VC that has no flow control
credits left, e.g. because it is congested. This mechanism ensures that only cores are
masked out on which a VM is running that executes a DoS attack, which eventually
congests the respective VC. For this reason, each core is depicted as an internal port in
the CPU’s PCIe port diagram (see core0–coreN in Figure 5.7).

Additionally, the virtualized multi-core CPU must provide a mechanism for dynami-
cally mapping TC labels to CPU cores, depending on which VM currently executes on
a specific core. TC information could be incorporated into per-VM data structures that
save processor state and configuration, and are evaluated each time a VM is scheduled
on a new or different CPU core. For example, it would be possible to incorporate TC
information within the Intel “Virtual Machine Control Data Structures” (VMCS) [4],
which store register and non-register states of VMs. VMCS are part of the VT-x proces-
sor extensions [2], which are the hardware accelerators for virtualization. A hypervisor
can maintain one VMCS per VM. AMD x86 processors provide a similar data structure,
called “Virtual Machine Control Blocks” (VMCB) [133].

It is also important for the DRAM controller to have a distinct port and VC. Oth-
erwise, it would need to share VCs with potentially malicious VMs. If a malicious VM
executes a DoS attack, the VC might become congested, so that the DRAM controller
might block for several arbitration cycles if it wants to insert a transaction. This time is
missing for the next transaction of the DRAM controller, which might belong to a dif-
ferent VM, so that the performance of concurrent VMs might suffer. In Figure 5.7, this
distinct port is called the “system port”. It is not exclusive to the DRAM controller, but
can be shared with any other system-level resource that is trusted and can be reached
by the system’s I/O devices via DMA.

Inside the I/O devices, there is no need for a special mapping of VCs to functions,
since PCIe routing is based on memory addresses. Each PCIe function (legacy as well
as PFs and VFs) is assigned a unique memory address range at system boot-up, so
that an incoming PCIe transactions cannot have multiple targets. If the system has an
optional chipset interposed between CPU and I/O device, the privileged VC7 can be
shared with other trusted flows that target other (also non-virtualized) I/O devices that
are connected to the chipset.

5.4.2 Evaluation

For evaluation of the proposed multi-VC architecture, it was modeled accordingly with
the verified SystemC model. Afterwards, the same set of benchmark scenarios as in
Section 5.3.1 was executed: VM0 was attached to a VF of the first Ethernet port (eth0)
and executed UDP throughput tests. VM1, in turn, was either attached to a VF of
the same Ethernet port than VM0, or the other, physically disjunct port (eth1), and
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executed DoS attacks. Both VMs were assigned exclusively to their own VCs, VC0 and
VC1, respectively. Results showed that the multi-VC architecture completely prevented
any performance isolation breaches due to PCIe DoS attacks of VM1. In contrast to
the architecture without multiple VCs, VM0 was able to achieve baseline performance
during concurrent DoS attacks of VM1.

Performance degradation did not emerge because the multiple VCs prevented that the
attacker VM1 could insert a significant number of spurious PCIe packets ahead of each
PCIe packet from VM0 (compare Figure 3.11). Instead, only VC1 was congested with
DoS packets, while VC0 stayed free of them. This way, the processing facilities of the
SR-IOV device were able to serve the VC buffers of the VMs and the DRAM controller in
a fair Round-Robin fashion and not in a first-come first-served manner. In conclusion,
at most one spurious DoS packet from the VC1 buffers got served by the I/O device
before each legal packet from the VC0 or VC7 (DRAM controller) buffers. Because the
delay of processing a single VM1 packet did not suffice to degrade performance of VM0,
the DoS attack was completely prevented.

Given this design of an SR-IOV device, it would still be possible for an attacker to
influence the processing time of packets of concurrent VMs. If an attacker controls
enough VMs on the system, and therefore VCs, and floods all of them with PCIe DoS
attacks, the processing facilities of the SR-IOV device could still be delayed long enough
so that a certain VM’s PCIe packets cannot be served in time (because all the flooded
VCs must be served beforehand). Evaluations with the SystemC model found the critical
number of VCs for the given SR-IOV device to be five or greater. Results for this test
are depicted in Figure 5.8.
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Figure 5.8: If the SR-IOV device employs the same packet processing facilities for functions of
both Ethernet ports (eth0 and eth1), then it is possible to cause an inter-PF attack
with a simultaneous DoS attack of five or more attacker VMs.
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The results also show that sharing the same Ethernet port with two legal VMs took
away more UDP throughput than the five simultaneous DoS attacks. This attack is,
according to the DoS attack classification introduced in Section 3.7, therefore, only
viable as an inter-PF attack. One such scenario would be, for example, if DoS attacks
on five VFs of the first Ethernet port (eth0, PF0) cause performance degradation of a
VF of the second Ethernet port (eth1, PF1). Such an inter-PF attack is only possible
if the SR-IOV device employs the same processing facilities for incoming MMIO PCIe
packets for both PFs and their corresponding VFs. This attack vector can be closed
by design. Therefore, each PF and its VFs must be assigned to physically separate
processing facilities. A comparison of both design approaches is depicted in Figure 5.9.
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Figure 5.9: Comparison of an SR-IOV device design with a single processing engine for all
PFs/VFs (a) and separate processing engines per PF (b).

Employing the second approach (b), flows for different PFs are completely decoupled.
Using separate processing engines for both PFs, it is not possible to influence any of
PF0’s VFs by flooding VFs from PF1, and vice versa. Modeling the SR-IOV device
according to design (b) in the SystemC model confirmed that this design approach
closed the observed attack vector for inter-PF attacks.

5.4.3 Multi-VC Architecture Summary

The proposed multi-VC architecture utilizes multiple VCs to separate PCIe flows of dif-
ferent VMs, preventing performance degradation due to DoS attacks. Flows are differen-
tiated by dynamically tagging VMs with unique TC labels and a 1:1 TC/VC mapping.
The approach preserves full scheduling freedom: VMs can be scheduled on an arbitrary
number of cores at any time. In terms of hardware costs, the architecture may become
costly. The whole PCIe hierarchy (CPU, optional chipset and I/O device) must employ
the same amount of hardware VC buffers. For full hardening, separate processing engines
per PF are needed inside SR-IOV devices. Scalability is constrained by the maximum
number of VCs that is specified in the PCIe specification (eight at the moment [78]).
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5.5 Time-based Weighted Round-Robin Architecture

The second architecture proposed in this chapter is called the Time-based Weighted
Round-Robin (TBWRR) architecture. It was developed as an alternative to the pre-
viously introduced multi-VC architecture. In contrast to the latter, less resources are
needed for the TBWRR architecture, making it more light-weight. Additionally, only
the virtualized multi-core CPU needs changes to hardware and the architecture utilizes
only a single VC, which makes it compatible to legacy chipsets and passthrough I/O de-
vices. The architecture leverages a TBWRR arbitration table for Port Arbitration that
is tailored to the respective passthrough I/O device in order to prevent performance
degradation due to PCIe DoS attacks. For the arbitration scheme to work properly,
some constraints must be put on VM scheduling. The core idea of the architecture will
be elaborated in the following.

Recalling Figure 3.11, performance degradation due to PCIe DoS attacks emerges
because the I/O device is overstrained: The source (CPU cores) is sending PCIe packets
at a rate that is higher than the processing rate of the packets at the sink (I/O device).
This eventually leads to a congestion on the interconnect that degrades performance
for concurrent VMs and the host. In current virtualized passthrough systems, there is
no possibility to constrain the sending rate at the source. If the source rate could be
constrained such that RSource ≤ RSink, then the DoS attack vector would be eliminated.
RSink for real-world hardware can be found either by looking at the respective device’s
datasheet or experimentally measured by trusted host software (see Appendix A) before
the VMs are instantiated. For example, the I/O device that was used in this chapter, the
82576 dual-port SR-IOV capable Gigabit Ethernet NIC, was targeted by DoS attacks
at a VF memory address that took 534 ns to process a single packet. To leverage this
information, a virtualized multi-core CPU architecture is needed that is able to constrain
its cores so that their packet rate is slower than 534 ns per packet.

5.5.1 Architecture

This can be achieved with the TBWRR Arbitration scheme that is defined in the QoS
extensions of the PCIe standard [78]. It is the only arbitration scheme that enables
fine-grained temporal control of single PCIe transactions. TBWRR is only available for
the Port Arbitration stage (see Figure 5.2). However, this is an advantage, because it
enables the whole architecture to work with only a single VC, VC0, which makes the
architecture compatible to legacy chipsets and I/O devices. A block diagram of the
proposed architecture is depicted in Figure 5.10.

The considerations about trusted and untrusted PCIe packet sources from the previ-
ous section were reused for the design of this architecture. Internal ports for CPU cores
were considered untrusted, because they issue PCIe packets on behalf of potentially
malicious VMs. This means that the time between the arbitration of CPU cores must
be greater than the 534 ns that are needed for the SR-IOV device to process a PCIe
packet. According to the standard, the duration of a TBWRR timeslot is 100 ns [78].
Hence, every sixth timeslot in the TBWRR arbitration table may be used by a CPU
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core. As TBWRR arbitration works with internal ports, it must differentiate the cores
of a multi-core CPU using one port per core. Fair allocation of resources can therefore
only be guaranteed if VMs are statically pinned to certain cores. The remaining five ar-
bitration timeslots between two CPU core slots are used for transactions of other system
components. For example, for transactions of the DRAM controller that complete DMA
requests from I/O devices. The hypervisor does not need special treatment, because it
executes on any core that also executes VMs. It can therefore utilize the arbitration slots
of the respective VM. An exemplary TBWRR arbitration table is shown in Figure 5.11.
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Figure 5.11: TBWRR arbitration table, tailored for preventing DoS attacks on the 82576 NIC.
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5.5.2 Evaluation

The TBWRR architecture was modeled with help of the SystemC model and evaluated
with the same set of benchmark runs as the multi-VC architecture in the previous sec-
tion. Results showed that the TBWRR arbitration was able to deliver full performance
isolation during PCIe DoS attacks. It was not possible for malicious attacker VMs to
congest the interconnect, because the SR-IOV device could not be overstrained thanks to
the throttling of the arbitration table. The attack vector for flooding VFs was completely
closed. Unfortunately, there is a small performance price to pay, because the timeslot
quantization of the arbitration table has a small impact on the maximum achievable
performance of individual VMs. Sending back-to-back packets with an TBWRR scheme
is not as fast as a (legacy) best effort scheme, because there can be only one transaction
every 100 ns. The throughput difference between TBWRR and best effort arbitration
for multiple VMs sharing a PF is depicted in Figure 5.12.
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Figure 5.12: The difference in UDP throughput of the TBWRR arbitration scheme compared
to best effort. Legend entries indicate the number of VMs that shared a Physical
Function of the simulated 82576 NIC. Similar results were also achieved for more
than four VMs.

For small message sizes (≤ 64 B) and at least two VMs that shared a PF, there was a
small degradation in overall performance for TBWRR compared to best effort. Bigger
message sizes saw almost no impact. In conclusion, the TBWRR architecture is able
to successfully provide performance isolation against PCIe DoS attacks, while delivering
between 100% and 95.4% of best effort arbitration performance.

The throughput results in Figure 5.12 covered the case that all VMs were constantly
trying to send on the Ethernet port that they share with their concurrent VMs. However,
it may also be possible that some VMs are temporarily idle and therefore do not utilize
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their shared resource. Unfortunately, this leads to scenarios where it is not possible for
other VMs to utilize these spare resources due to the static nature of the TBWRR table
that is depicted in Figure 5.11. In order to achieve peak performance, it is necessary
that an Ethernet port receives new descriptor updates from VMs at certain minimum
rates. Otherwise, it cannot fetch new Ethernet packet contents from DRAM fast enough
to saturate the Ethernet link. This descriptor update rate depends on the message size
of the Ethernet packets. Big message sizes need fewer Ethernet packets for sending the
same payload than small message sizes. For the lab-setup (and the SystemC model)
that was used in this chapter, the peak for descriptor updates was reached at message
sizes being equal or smaller than 128 B. The rate was measured at round about 400000
descriptors per second, or one descriptor each 2.5 µs.

Figure 5.13 shows an extended version of the arbitration table of Figure 5.11. It
depicts a scenario in which only one CPU core is active and other cores are idle, and has
additional scheduling times indicated on the right. If only core0 is active and sending out
new descriptor updates, while cores1-4 are idle, then it is not possible for the VM running
on core0 to achieve the descriptor update rate of 2.5 µs that is needed for maximum
utilization of the lab-setup’s NIC. In the depicted scenario, a new descriptor would be
generated only once every 3 µs.
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Figure 5.13: TBWRR arbitration table with idle cores. Cores1-4 do not utilize their slot for
sending because they are idle, which results in core0 sending one PCIe packet
(new descriptor update) to the 82576 NIC every 3µs.

If this case is of concern, it can be resolved with an extension to the TBWRR ar-
chitecture (Figure 5.10) that is transparent to the Port Arbitration stage and therefore
compatible to the QoS extensions of the PCIe specification. Instead of statically allo-
cating CPU cores in the TBWRR table without knowledge about pending transactions,
a two-stage arbitration can be implemented. If a (weighted) Round-Robin arbiter for
CPU cores precedes the TBWRR arbitration stage, cores that have pending transactions
can be pre-selected. The TBWRR arbitration table, in turn, is reduced from multiple
rows containing explicit CPU core slots to only a single row containing a generic CPU
core slot. A pending transaction of the CPU core arbiter can then be forwarded once
the Port Arbiter selects the generic CPU core slot in the TBWRR table. This mecha-
nism prevents that idle cores block a CPU slot and guarantees full utilization of spare
resources. The concept is depicted in Figure 5.14.
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Figure 5.14: TBWRR arbitration table with pre-selection of CPU cores. This approach skips
idle cores in favor of cores with pending PCIe transactions.

5.5.3 TBWRR Architecture Summary

The proposed TBWRR architecture was designed as a light-weight alternative to the
multi-VC architecture. It requires a virtualized multi-core CPU that supports the TB-
WRR arbitration scheme for Port Arbitration. If full utilization of spare resources is
desired, a (weighted) Round-Robin scheduling stage for CPU cores with pending PCIe
transactions is needed as well. The architecture does not need changes to other hardware
than the CPU, making it compatible to existing legacy chipsets and I/O devices. Addi-
tional VC buffers are not needed. The timeslot quantization of the TBWRR arbitration
table may introduce small performance overheads, however, they depend on the proto-
col that is employed between I/O device and CPU cores. The TBWRR table must be
tailored to the specific I/O devices that are used by the VMs. This makes the approach
better suited for point-to-point connections between CPU and I/O device, rather than
sharing PCIe links with multiple devices, e.g. via an interposed chipset.

For fair sharing of the resources, it is mandatory that VMs are pinned to specific
cores. Scalability of the architecture may be constrained by the maximum number of
slots that is supported by the TBWRR table, which is 256 in the current revision of the
PCIe standard [78].

5.6 Summary

PCIe passthrough and SR-IOV are suitable technologies for enabling hardware-assisted,
low-latency I/O virtualization in future embedded and mixed-criticality multi-core sys-
tems. Unfortunately, in current implementations, there is a vulnerability to PCIe DoS
attacks of malfunctioning or malicious VMs. DoS attacks can significantly increase
latencies (see Chapter 3) and therefore degrade the performance of other, concurrent
VMs. In the previous chapter, a reactive mitigation solution was presented for the cloud
computing domain. For embedded and mixed-criticality systems, though, a proactive
solution that completely closes the DoS attack vector is preferred, because remaining
performance fluctuations during DoS mitigation must not be accounted for in WCET
calculations.

This chapter presented research on hardware architectures that prevent DoS attacks
and enable full performance isolation for PCIe passthrough and SR-IOV. Initially, domain-
specific goals and requirements were collected. Performance isolation had to be achieved
by extending existing hardware architectures while staying fully compatible to current
PCIe and SR-IOV specifications at the same time. The hardware architectures had
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to satisfy requirements for proactive, full isolation, secure configuration by a trusted
software entity like the hypervisor, scalability to a reasonable number of passthrough
functions and low overhead regarding non-PCIe parts of the system.

The developed architectures were built around optional QoS extensions of the PCIe
specification, which facilitated compatibility. During exploration and review of the QoS
extensions, it was found that certain hardware building blocks (Virtual Channel buffers,
Port and VC arbiters and corresponding arbitration schemes) could be directly em-
ployed. On the other hand, paradigms for using these building blocks for prevention
of downstream congestion (due to DoS attacks) were missing as well as mechanisms for
interfacing the QoS hardware from a virtualized multi-core CPU. Both aspects were
developed from scratch in this chapter.

Since current COTS PCIe hardware did not provide any QoS extensions (defined op-
tional in the specification and lack of use cases in the real world), a SystemC TLM 2.0
simulation model of a real-world lab-setup was developed and extended with configurable
PCIe QoS extensions. The SystemC model’s accuracy was verified by replicating vari-
ous UDP throughput benchmarks on it that were also run on the real-world machine.
Comparison of the results showed that the average percentage error between software
model and real-world hardware was between 1% and 7.7%.

Afterwards, the SystemC model was used to design and evaluate two hardware archi-
tectures that close the PCIe DoS attack vector. Evaluations showed that both architec-
tures succeeded in completely preventing PCIe DoS attacks, while being optimized for
different goals. The multi-VC architecture provides full scheduling freedom, but needs
to implement multiple Virtual Channels in all PCIe devices of the hierarchy (multi-core
CPU, optional chipset, I/O device). The lightweight TBWRR architecture, on the other
hand, only needs hardware changes to the multi-core CPU, but VMs must be pinned
to specific cores. Detailed reviews of both architectures can be found in Sections 5.4.3
and 5.5.3, respectively.
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Work presented in this thesis contributes to the field of performance isolation for PCIe
passthrough and Single Root I/O Virtualization (SR-IOV), the latest generation of I/O
virtualization technology. Specifically, performance isolation issues that arise from PCIe
Denial-of-Service (DoS) attacks on passthrough and SR-IOV hardware were addressed.
The focus was laid on the cloud computing domain, where the technology has been
embraced and deployed already, and the embedded virtualization domain, where the
technology is seen as an enabler for future, virtualized multi-core systems.

6.1 Conclusion

Initial work on this thesis was motivated by the sparse presence of literature on per-
formance isolation of PCIe passthrough and SR-IOV. It quickly led to the discovery
that PCIe DoS attacks of malicious or buggy Virtual Machines (VMs) are able to break
performance isolation in current commercial-off-the-shelf (COTS) hardware that im-
plements the technology. This attack vector was investigated with four experiments
on a state-of-the-art x86 system comprised of COTS hardware, including a dual-port
1 Gbit/s SR-IOV capable Ethernet adapter. Results showed that DoS attacker VMs
were able to significantly degrade the I/O performance of concurrent VMs in configura-
tions where the victims should have been 100% isolated from the attacker. For example,
PCIe DoS attacks on the Ethernet adapter increased latencies for accessing the device
from 1.58 µs up to 12.61 µs (+698%). This translated to an Ethernet throughput drop
from 941 Mbit/s down to 615 Mbit/s (-35%). The same attacks caused the system’s disk
storage throughput to drop by up to 77%.

Learnings from the experiments were used to identify the key architectural issues
within the design of PCIe passthrough and SR-IOV: First, CPU cores, on which po-
tentially malicious VMs execute, are usually faster at generating PCIe packets than
passthrough I/O devices are at consuming them. Second, in current implementations,
there is no mechanism for passthrough devices to prevent VMs from sending packets.
The resulting congestion on the shared PCIe interconnect causes performance interfer-
ence between otherwise unrelated VMs. The gained insights were used to construct
an abstract system model that presents a concise representation of these issues. Fur-
thermore, four different DoS attack types were identified and classified according to
the system components that suffer from the attack. For instance, it is differentiated if
degradation of an attack affects only the shared device that is attacked, or also unrelated
devices on the same interconnect.

In order to solve the performance isolation issues, two domain specific solutions were
proposed. The first solution targets the cloud computing domain and proposes a
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combined hardware/software approach. It was experimentally verified that lightweight
hardware monitoring facilities within the passthrough I/O device are able to unam-
biguously detect DoS attacks and identify attacker VMs using a threshold value for
transaction rates of PCIe packets. Additionally, two countermeasures that mitigate an
attack were presented and evaluated. First, freezing attacker VMs showed that baseline
performance for victim VMs is instantly restored, but the approach might also kill other,
unrelated processes within the attacker VM. Second, attacker VMs can be throttled by
scheduling them only for small timeslices that do not suffice to maintain a constant
congestion on the interconnect. The latter approach keeps the VM alive and is able
to restore close to baseline performance for victim VMs. For instance, performance of
typical cloud applications like Apache and Memcached could be restored from 51.3%
during DoS attacks to 97% and from 61.8% to 99.4%, respectively; Streaming-based
micro-benchmarks performed only slightly worse.

The mitigation approach does not reach 100% of native performance for two reasons.
(1) It is a reactive approach that can be invoked only after an attack has been detected,
and (2) throttling via software scheduling could not reach granularities that were fine-
grained enough to completely prevent congestion on the interconnect. However, this
design decision was made on purpose in light of cloud computing requirements. Here,
real-time capabilities are not needed, so that small interferences are tolerable. Even
more so because cloud computing providers can migrate attacker VMs to isolated hosts
shortly after a DoS attack was detected and mitigated. On the other hand, using a
monitoring approach enables the proposed solution to be scalable and low-cost, which
increases the chance of manufacturers adopting the idea.

The second solution targets the embedded virtualization domain and pro-
poses two integrated hardware architectures that completely prevent DoS attacks on
PCIe passthrough and SR-IOV. This way, performance interference of passthrough de-
vices need not be considered at all in worst case execution time calculations of real-time
systems. In order to stay compatible to PCIe, both architectures were designed to
employ optional Quality-of-Service (QoS) extensions from the PCIe specification as a
foundation. The QoS extensions originate from a time long before PCIe passthrough,
SR-IOV and platform virtualization surfaced in datacenters and COTS devices, and DoS
attacks on PCIe devices became a valid attack vector. Hence, this thesis shows a way
to repurpose the QoS extensions in order to prevent DoS attacks.

The first proposed architecture, called multi-VC, maps individual VMs to dedicated
Virtual Channels (VCs), which are implemented in CPUs, switches and I/O devices.
This separation approach ensures that malicious VMs cannot congest the shared inter-
connect. Evaluation with a SystemC model verified full prevention of DoS attacks. The
PCIe interconnect stays congestion free, and performance remains unaffected. However,
hardware VCs might be expensive, and scalability is capped by the number of VCs that
the PCIe specification supports (eight VCs). The second proposed architecture, called
TBWRR, employs hardware-enforced time-based weighted round robin (TBWRR) ar-
bitration for admission of VMs to the interconnect. The thesis shows that arbitration
rules can be compiled that completely prevent congestion on the interconnect if VMs
are statically pinned to CPU cores. Evaluation with SystemC showed that the approach

106



6.1 Conclusion

achieves I/O performance between 95.4% and 100% of best effort arbitration. The TB-
WRR architecture is more lightweight and scalable than the multi-VC architecture, and
compatible to legacy switches and I/O devices. Hardware changes need only be made
to the multi-core CPU.

A comparison of the characteristics of the mitigation and isolation solutions that were
presented in this thesis is depicted in Figures 6.1 and 6.2.
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free VM
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Figure 6.1: Characteristics of the cloud computing solution.
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Figure 6.2: Characteristics of the solutions for embedded virtualization.

The diagram for the cloud computing solutions reflects the previously argued design
choices. Performance interference due to DoS attacks can be sufficiently mitigated until
attacker VMs are taken care of by the provider. Pinning of VMs to cores is not needed,
scalability is not constrained and implementation costs for monitoring facilities inside
the I/O device are low. In contrast, the proposed architectures for the embedded domain
focus on 100% freedom from interconnect congestion and therefore performance interfer-
ence. The difference between the multi-VC and the TBWRR architecture is most visible
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by the trade-off between implementation costs and freedom of VM placement. The
multi-VC architecture is more expensive in terms of hardware implementation costs, but
does not impose pinning of VMs to specific CPU cores. The TBWRR architecture is
more affordable, but requires pinning of VMs by the hypervisor.

This thesis contributes a first step towards understanding the causes and implications
of DoS attacks on PCIe passthrough and SR-IOV, the third generation of I/O virtual-
ization technology. Additionally, first approaches for tackling the resulting performance
isolation issues were presented by means of two domain-specific solutions. In future work,
more research can be done to both deepen the understanding of performance isolation
issues of PCIe passthrough and SR-IOV, and to improve the isolation solutions.

6.2 Outlook

There are many possible directions for contributing future work on the topic. For in-
stance, different hardware could be employed to further evaluate the impact of DoS
attacks on PCIe passthrough and SR-IOV, e.g. different I/O devices. Possibilities in-
clude faster Ethernet adapters or different classes of I/O, like Infiniband or SR-IOV
capable graphics processing units, once they are released. In general, I/O devices that
feature a higher PCIe bandwidth than the 1 Gbit/s Ethernet adapter that was primarily
used in this thesis could be worth investigating. Preliminary tests of DoS attacks on a
10 Gbit/s SR-IOV capable Ethernet adapter on the lab-setups of this thesis hinted on
performance interference effects that were more severe than for the 1 Gbit/s version, and
additionally affected the main memory (RAM) performance of the host system. This
could be a path worth pursuing. Research could also cover other processor architectures
for the host platforms, e.g. ARM-based host systems.

Additionally, research on further improving the presented isolation solutions can be
done. For example, various combinations of the three presented approaches are possible
to overcome their individual weaknesses. In a mixed-criticality setup, a mix of mitiga-
tion scheduling and multiple VCs could be worthwhile. High-priority or real-time VMs
could be mapped on dedicated VCs, while best-effort VMs share a single VC that is
protected by the mitigation scheduling approach. The resulting design could provide a
good balance between costs and isolation capabilities.

The time-based weighted round-robin (TBWRR) architecture for embedded systems
could be improved by finding ways to arbitrate on VM IDs rather than core-specific
ports. This would eliminate the current requirement of pinning VMs to specific CPU
cores and introduce additional scheduling freedom. Here, the challenge is to maintain
compatibility to the PCIe specification.

In the solution for the cloud computing domain, software scheduling is used to prevent
congestion on the interconnect, which mitigates the DoS attacks. This part could also
be offloaded to hardware-assist in the virtualized I/O device. If the I/O device detects a
stream of malicious PCIe packets, a fast-path for packet processing could be invoked that
discards PCIe packets of the malicious stream faster than an attacker VM can produce
new ones, so that congestion cannot emerge.
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Direct access to I/O devices or peripherals for VMs is also possible in virtualized
platforms that do not employ PCIe as interconnect. Embedded systems often employ a
multitude of different interconnects. Here, an evaluation of DoS attacks could contribute
valuable insights, as well as research on transferring concepts of the presented solutions.
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A Approximating Packet Processing Times
of COTS PCIe Devices

For a CPU and PCIe I/O device combination that is prone to Denial-of-Service (DoS)
attacks, which means that the CPU can send PCIe packets faster than the I/O device
can process them, it is possible to implement a lean measurement routine that helps
approximating packet processing times of the I/O device. The idea is to execute a
controlled DoS attack process from the host with a known, fixed amount of PCIe packets,
while the rest of the system is idle. If the packet count is chosen high enough, the system
will run through three phases, which are depicted in Figure A.1.

Phase 1

DoS process start

Phase 2 Phase 3
t

DoS process stop

Figure A.1: Three phases of a DoS attack.

Phase 1 – Congestion buildup: The CPU process starts execution of the DoS attack
code. At the beginning, buffer resources on CPU, interconnect and I/O device are
empty, so that the CPU can send PCIe packets back-to-back at maximum speed.
Despite constantly processing packets on the I/O device end, all buffers will fill up
eventually, because the CPU is faster.

Phase 2 – Continuous congestion: Eventually, all buffer space on the interconnect will
be occupied, and the DoS attack will be in “saturation”. In this phase, the CPU
is blocked from inserting new PCIe packets in the downstream direction. The next
packet can only be released after the I/O device has processed a pending packet.
During this phase, packet delay that is normally introduced due to transmission on
physical wires and switching overhead is eliminated, because the next packet that
must be processed by the I/O device is already waiting in its ingress buffers. By
implication, this means that the CPU process (the DoS attack code) that generates
the packets is blocked for exactly the time the I/O device needs to process a packet.
Hence, during the phase of continuous congestion, the number of issued packets
npackets and the processing time of a single packet in the I/O device tproc,I/O can
be used to calculate the time TPhase2 as follows:

TPhase2 = npackets · tproc,I/O (A.1)

123



A Approximating Packet Processing Times of COTS PCIe Devices

Phase 3 – Congestion decay: After the CPU placed the last of its fixed amount of PCIe
packets in its downstream buffers, process execution of the DoS attack terminates.
The congestion on the interconnect will slowly decay until the last packet is pro-
cessed. This phase can be neglected for packet processing time approximation.

The overall execution time of the DoS process is therefore TPhase1 +TPhase2, which can
be measured by the operating system. Unfortunately, there is no straightforward way of
measuring TPhase1 or TPhase2 individually. However, if npackets is chosen large enough so
that TPhase2 >> TPhase1, it is possible to get a good approximation of tproc,I/O by simply
calculating

tproc,I/O ≈
TPhase1 + TPhase2

npackets
. (A.2)

In the following, two examples for the host system that was presented in Section 4.3.1
are given. In the first example, 30 000 000 PCIe packets with 64 bit payloads are sent
to the first address of the first BAR of the 82576 NIC’s address space. This number
was found to be high enough so that Phase 1 had no significant impact anymore. The
time to execute the attacker process was measured with the standard Unix time tool.
Output of the controlled DoS process and time is given as follows:

target: /sys/bus/pci/devices/0000:08:10.1/resource0

offset: 0

loops: 30000000

target BAR size: 16 KiB

target addr: 0xBAA81000

13.21 user 0.00 system 0:13.21 elapsed 100% CPU

Overall, the controlled DoS process took 13.21 s to execute. Hence, the time for
processing a single packet approximately equals

tproc,I/O ≈
13.21 s

30000000
≈ 440 ns. (A.3)

In the second example, the offset into the device’s BAR is set to 10240, therefore
addressing a different memory location within the I/O device than in the first example.
Output was as follows:

target: /sys/bus/pci/devices/0000:08:10.1/resource0

offset: 10240

loops: 30000000

target BAR size: 16 KiB

target addr: 0xFC524800

16.01 user 0.00 system 0:16.01 elapsed 100% CPU
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This time, the processing time approximates

tproc,I/O ≈
16.01 s

30000000
≈ 534 ns. (A.4)

In conclusion, the memory address that was tested with the second example is better
suited for a DoS attack than the first one. The longer processing times would result in a
more severe impact of a DoS attack, because during congestion, more time passes until
a victim VM can insert a PCIe packet on the interconnect.
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