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Abstract

In a fixed environment, robots are able to perform narrowly defined tasks satis-
factorily. Robots without defined environments face serious troubles due to the
complexity of the environment. All kinds of environment conditions cannot be pro-
grammed beforehand because it is impossible to predict and encode all the possible
tasks. In these cases, robots must be able to learn each task from people with
limited technical background. To solve this problem, experts introduced the learn
by demonstration concept. Learning by demonstration uses probabilistic machine
learning algorithms to extract and exploit regularities of each task. In this report we
generalize from multiple trajectories. Firstly, we transform the trajectories from the
3D Cartesian space into the DHB invariant space. The transformation from carte-
sian to invariant return the invariant motion and the inital frame that enables us to
reconstruct from the invariant trajectory to the original trajectory. Instead of using
the reconstruction frame we use the identity matrix to reconstruct the trajectory.
With the identity matrix replacing the reconstruction frame we obtain 3D Cartesian
trajectories that share the same space. For the generalization Gaussian Process and
a Gaussian Mixture Model have been used to learn the trajectory. Finally, we multi-
ply the learned trajectory with the first frame from any desired trajectory to obtain
the desired prespective for the reconstructed motion. Data has shown this approach
to be successful in taking advantage of the invariant space properties without its
drawbacks. During the second part of this report we learned to predict the velocity
based on the current position. The velocity predicton enabled us to predict the
next position assuming that the position in time t+ 1 is a derivative of the current
position plus the velocity.
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Chapter 1

Introduction

With the reduced size of electronics, robots can be exported from industrial com-
plexes (where they traditionally have been placed) to any kind of environment such
as our home. Domestic robots should be able to perform the tasks that we are not
able or have no time to perform. In Japan, for example, with its ageing population,
robots are replacing humans in human-care centers such as hospitals. Even if we
are physically able to perform the tasks, we might not always find the time.

In comparison to industrial robots, domestic robots are designed to coexist with
humans in a changing environment; therefore domestic robots should have the flex-
ibility to handle changes so they can adapt themselves to the surroundings. Due
to the dynamically changing environment, domestic robots should be able to gener-
ate dynamically new trajectories from their previously learned trajectories [Sch06].
Storing infinite movement motions for every possible circumstance is impossible.
Moreover, humanoids are designed to be in people’s homes where no programming
skills are expected; therefore robots should be able to learn new movements from
the user’s representations.

Learning from motion trajectories, as well as their generalization to different scenar-
ios, is important to increase the robot’s versatility in everyday scenarios. With this
purpose, in this study we have implemented a method to learn from multiple invari-
ant trajectories. The invariant enables us to obtain the pure movement independent
from the point of view allowing us to generaliza better. The invariants are encoded
using the DHB invariant space [SSL15]. We also compared the generalization in the
cartesian space.

1.1 Related Work

Many research has been conducted to generalize from multiple trajectories in the
Cartesian space and from a single trajectory in other invariant spaces [CGB07]. Un-
til now there is no research that successfully generalize from multiple DHB invariant
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representations. Different research used distinct statistical techniques to exploit reg-
ularities of certain tasks [SG00]. Gaussian Processes (GP) is a popular choice to
exploit regularities from trajectories that has been successful in other experiments
[DFR15]. It is able to deal with uncertainty and perturbation. In research such as
[KF09], they acknowledge the importance of using Gaussian Processes along with
trajectories in order to improve tracking models. The advantages of GP are that
they consider both noise in the system and uncertainty in the model. Moreover,
with decrease in the certainty, the model degrades gracefully. The drawback of GP
is its computational complexity, O(n3) [KF11]. Gaussian Mixture Models are a
mixture distribution providing a combination of probability distributions [Rey09].
Since Gaussian Mixture Model (GMM) uses a probability density approach, it is
noise tolerat and performs good with unobserved parameters. It embedds segmen-
tation, so it might not provide an accurate representation [Rey09] [Do08].

Different publications show the advantages of using invariant spaces for gesture
recognition. An invariant space was proposed by [SL13] which is a coordinate free
space composed of two invariants. This two coordinate invariant space is not bi-
directional (once converted can not be transformed back to the Cartesian space).
The inability to transform back the invariant data into Cartesian data makes this
space suboptimal. Another invariant space is presented in [DS10] but it is too
sensitive to noise (shown in [SSL15]). Both of this problems are solved by DHB
invariant space [SSL15] which represent motion trajectories in 3 invariant axis. Using
DHB invariant space the conversions between cartesian and invariant spaces can
be performed in both directions without any information loss while reducing noise
sensitivity.
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Chapter 2

Proposed Approach

2.1 Implementation

Many approaches have been developed to generalize trajectories in the Cartesian
space. The problem of generalizing based in the Cartesian space is that different
motions difering on the point of view require a preprocessing with matrix trans-
formations or other methods to be able to generalize from it. Aiming to solve
the Cartesian space problems, several researches have developed different invariant
spaces [SL13] [DS10] [SSL15]. The invariant spaces are spaces where all the mo-
tions are encoded in a similar way independent from the Cartesian space. Until the
now, many invariant spaces were only uni-directional meaning that once the motion
was converted to invariant could not be recovered back to Cartesian. In this report
we propose to generalize from multiple invariant trajectories and be able to recon-
struct the cartesian representation. To achieve the generalization, we transformed
the cartesian motions into DHB invariant representations. During the research we
tried different approaches to generalize from the DHB invariant. The successful at-
tempt has been to not generalize from the invariant space but from the reconstructed
space. The reconstructed motion is obtained using the identity matrix to force all
the representations to be maped into the same space. Applying the desired frame
to the generalization produces an accurate Cartesian trajectory that represents the
learned motions.

2.1.1 DHB invariant space

We used DHB invariant space to transform the Cartesian trajectories into invariants.
DHB invariant space representation simplifies gesture recognition in real scenarios.
For example, different people might perform the same gesture or different points
of view might be involved. Contrary to affine transformations this method does
not require fixed points in the image plane [Rie86]. Other representations do not
include orientation or are not able to retrieve the Cartesian data but DHB invariant
does [SSL15]. An advantage of using DHB invariant space is that orientation is no
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longer a problem since all the trajectories would be encoded in the same way [SSL15].

This invariant representation consist of three values, one for the velocity and the
other two for the rotation. DHB invariant space introduces a three time instant
sample delay because it requires the current time instant and the next two (three in
total) to compute the invariant [SSL15].

The frame that describes how the position changes over time is composed by three
vectors (which is the minimum representation) [SSL15].

The x-axis is a unitary vector with the difference of the two consecutive positions.

x̂p(t) =
∆p(t)

||∆p(t)||
The y-axis is the normal between the x-axis at the current instant t and the x-axis
at the next instant.

ŷp(t) =
x̂p(t)× x̂p(t+ ∆t)

||x̂p(t)× x̂p(t+ ∆t)||
The z-axis is the product of the two previous axis (x-axis and y-axis).

ẑp(t) = x̂p(t)× ŷp(t)

Once we constructed the frame, the invariant representations can be defined. To
describe the motion of the body, the following formula has been used [SSL15]

mp(t) = ||∆p(t)|| = ∆(t) · x̂p(t)

And then to align x̂p(t) to x̂p(t+ ∆(t)) the angle θ1p needs to be rotated ŷp(t+ ∆(t))
and to align ŷp(t) to ŷp(t+ ∆(t)) then θ2p needs to be rotated about x̂p(t+ ∆t). This
rotation invariant angles are defined as [SSL15]

θ1p(t) = arctan

(
x̂(t)× x̂p(t+ ∆t)

x̂p(t) · x̂p(t+ ∆t)

)
· ŷp(t)

θ2p(t) = arctan

(
ŷ(t)× ŷp(t+ ∆t)

ŷp(t) · ŷp(t+ ∆t)

)
· x̂p(t)

Notice that both formulas are formally the same but they differ on the affected axis.

2.1.2 Gaussian Processes

We used Gaussian Processes (GP) to generalize the motions. GP is a key aspect
of our research because it optimizes expensive functions assuming that there is an
underlying single function with noise. It is a good method because it can learn from
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data that has sensor noise or in which the points are dispersed. When the data sets
are large, GP is unpractical due to the cubic complexity of the training [Ras06].
The Gaussian Process concept is

ŷSj = f(xj) + ε

where ŷSj is the observed value and f(xj) is the function on the point xj plus an
accumulated error of ε. The accumulated error is encoded as N(0, σ2

n) and repre-
sents the random noise variable which is independent and identically distributed.
Gauss’ error theory states that accumulating small and independent errors lead to
a Normal distribution [Ras06].

We used the Radial Basis Function (RBF) kernel to compute the underlying func-
tion. This kernel, also called squared exponential, is used to compute the covariance
function k(xi, xj). Covariant functions assume that close input points will have sim-
ilar target values ŷSj . We chose this kernel because it has already been proven to be
a good kernel for such tasks [BCDS08]. RBF representation is

k(xi, xj) = σ2
fexp

(
−(xi − xj)2

2l2

)
where (xi − xj) is the euclidean distance between points and the function variance
is represented by σ2

f . The length scale l smooths to a greater or lesser degree the
prediction determining how well the mean matches the training data.

To prepare for the Gaussian Process regression firstly the covariance function is
calculated summarizing all the points in three matrices.

K =


k(x1, x1) k(x1, x2) ... k(x1, xn)
k(x2, x1) k(x2, x2) ... k(x2, xn)

... ... ... ...
k(xn, x1) k(xn, x2) ... k(xn, xn)


K∗ =

[
k(x∗, x1) k(x∗, x2) ... k(x∗, xn)

]
K∗∗ = k(x∗, x∗)

The Gaussian Process Regression learn the predictive distribution p(f∗|x∗) of a new
test output f∗ given a test input x∗ [SE10]. The best estimate for x∗ is ŷS∗ which is the
mean of the distribution and obtaining it using the following matrix multiplication
[Ebd08].

ŷS∗ = K∗K
−1Y

The variable Y here represents the data set. The other variables can be seen in
previous descriptions.
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The uncertainty is modeled through the variance is also computed using the previous
matrices.

var(x∗) = K∗∗ −K∗K
−1KT

∗

2.1.3 Gaussian Mixture Models

Contrary to GP, Gaussian Mixture Models (GMM) use the expectation-maximization
algorithm (EM). It is an iterative algorithm that converges the data points to the
local maximum [VVK03]. Expectation-Maximization algorithm is a method that
finds the parameters’ maximum-likelihood (ML) of an underlying distribution from
a given dataset with non-observed variables (missing or incomplete) [B+98]. The
algorithm iterates between two steps. It starts with the E-step, or expectation step,
which estimates the missing points based on the existing data (the observed and the
already estimated points). After the E-step, the M-step re-estimates the parameters
assuming that the results previously computed by the E-step were right [NH98]. To
get the final result EM algorithm repeats this two steps, E-step and M-step, until
convergence. The convergence is assured because the model improves increasing the
likelihood at each iteration [DB08] [Bor04].

To determine the optimal number of clusters required for the model Bayesian in-
formation criterion (BIC) has been used for this experiment. This approach has
been selected because it has performed well in several applications [BSP+04] [CB08]
[HGCB08]. BIC adds a penalty to the log-likelihood based on the number of pa-
rameters [FRMS12] and its formula is

BIC = −2log(L̂) + k log(n)

where n is the number of data points in the model and k is the number of free
parameters to be estimated in the model. L̂ is the maximized value of the likelihood
function of the model and is decoded as L̂ = p(x|θ̂) where x is the observed data
and θ̂ are the parameters of the model. We iterated creating GMMs with different
cluster number checking whether its BIC was worse than the previous one. Once the
BIC value was worse than the previous one the algorithm gets to the point where
more clusters do not improve the classification; therefore the previous number of
clusters is the correct one.

As stated by [Rey09] GMM is a summation of weighted densities represented by the
following formula

p(ξj) =
K∑
k=1

πiN (xj;µk,Σk)
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where ξj is the data point which is defined by the probability density function.
The number of clusters in the model is represented by K and each cluster has a
weight associated represented by π, the component centers are described by µ and
the covariance matrix are encoded as Σ. The covariance matrix can be splitted as
[CB08]

Σk =

(
ΣTT

k ΣTS
k

ΣST
k ΣSS

k

)
Then for each component there is an expected ξSj for a given x∗ defined as

p(ξSj |x∗, k) = N (ξSj ; ξ̂Sj , Σ̂
SS
k )

ξ̂Sj = µS
k + ΣST

k (ΣTT
k )−1(x∗ − µT

k )

Σ̂SS
k = ΣSS

k − ΣST
k (ΣTT

k )−1ΣTS
k

The GMM distribution is defined by

p(ξSj |x∗) =
K∑
k=1

βk,jN (ξSj ; ξ̂Sk , Σ̂
SS
k )

The βk,j = p(k|x∗) is the probability of a component k to be responsible for x∗ and
is computed as

βk,j =
πkN (x∗;µ

T
k ,Σ

TT
k )∑K

i πiN (x∗;µT
i ,Σ

TT
i )

The estimation of the conditional expectation of ξ̂Sj given x∗ is defined by p(ξSj |x∗)N (ξ̂Sj , Σ̂
SS
k )

uses the linear transformation property of Gaussian distributions [CB08] whose pa-
rameters are

ξ̂Sj =
K∑
k=1

βk,j ξ̂
S
k

Σ̂SS
j =

K∑
k=1

β2
k,jΣ̂

SS
k

By evaluating both ξ̂Sj and Σ̂SS
j in the sample time interval x∗ ∈ [0, T ] (where T in

our data is 57 for the invariant space and 60 for the Cartesian space) we obtain the
generalized trajectory and its variance extrapolated from the training data.
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Chapter 3

Experimental Results

3.1 Learning from one invariant

We started learning one invariant and reproducing it. Figures 3.1, 3.2 and 3.3 are
the representations of letter M in the DHB invariant space. The blue line is the
predicted trajectory and the green dots are the data samples used for training. GP
is used to learn the motion and build the model. As the figures disply, the predicted
data matches perfectly the training data.

We reconstruct the invariant motion to a 3D Cartesian motion using the same frame
for the invariant trajectory and predicted one. Figures 3.4, 3.5 and 3.6 show that
the reconstruction was successful only using one sample as a training for the model.
The model matched successfully the trajectory to all three axis. Since the Figures
3.1, 3.2 and 3.3 showed that the matching was perfect we can forecast that the
reconstruction would be also a perfect match.

Figure 3.1: Velocity from
the learned invariant of let-
ter M

Figure 3.2: θ1 from the
learned invariant of letter
M

Figure 3.3: θ2 from the
learned invariant of letter
M
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Figure 3.4: X-axis from
the reconstruction of letter
M using one invariant

Figure 3.5: Y-axis from
the reconstruction of letter
M using one invariant

Figure 3.6: Z-axis from
the reconstruction of letter
M using one invariant

One sample as a training data set does not always provide a good generalization.
Applying the same concept over a different letter, such as letter A provide gener-
alization problems due to the extreme deviations in some data points. The outlier
points found in Figure 3.9 for the θ2 axis cause a bad generalization that produces
an accumulated error in the reconstruction. Figures 3.7, 3.8 and 3.9 show that GP
is not able to successfully predict all the trajectories in the invariant space as ac-
curately as it was done for letter M. GP does not consider the outliers to be valid
points since they differ by several standard deviations from the mean. Figures 3.10,
3.11 and 3.12 show that the reconstructed trajectory differs from the original tra-
jectory because of the bad predicted trajectory. The reproduction is precise until a
non-accurate prediction is obtained. Then the reconstruction starts suffering from
the expected values. The reconstruction starts deviating. Because of the nature of
the DHB invariant space each value is the velocity increment or the rotation incre-
ment respect the previous position; therefore if at some point the rotation does not
meet the expected values the deviation increases with the time. One wrong angle
leads to an accumulated error that increases the deviation over time.

Figure 3.7: Velocity of the
learned invariant from let-
ter A

Figure 3.8: θ1 of the
learned invariant from let-
ter A

Figure 3.9: θ2 of the
learned invariant from let-
ter A
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Figure 3.10: X-axis from
the reconstruction of letter
A using one invariant

Figure 3.11: Y-axis from
the reconstruction of letter
A using one invariant

Figure 3.12: Z-axis from
the reconstruction of letter
A using one invariant

3.2 Learning from two invariants

The aim of this report is to generalize from multiple invariants as a first step we
tried to learn from two invariants. Figures 3.13, 3.14, and 3.15 show a good invariant
space generalization. The predicted trajectory in all figures is accurate. The prob-
lem arises when the reconstruction is done. Figures 3.16, 3.17 and 3.18 show that
the rotations are the principal cause of problems in the reproduction. The figures
show a similarity in shape but the reproduction show several degrees of deviation.
These degrees of deviaton increase the distance with the time because the movement
of the trajectory is applied in the wrong direction.

To prevent deviations in the trajecotry, we used the rotations of the training samples
instead of learning the rotations. So, we trained the model only based on the velocity.
Figures 3.19, 3.20, and 3.21 show that if we train the model only with the velocity
and use the corresponding rotations for the reconstruction, the prediction of our
model produces more accurate results. The results have significantly improved but
this is not a real generalization. To generalize we cannot learn from one axis and
use the exact same training data to reproduce the other two axis.

Figure 3.13: Learned ve-
locity invariant from letter
M

Figure 3.14: Learned θ1

invariant from letter M
Figure 3.15: Learned θ2

invariant from letter M
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Figure 3.16: Learned X-
axis from two invariants for
letter M

Figure 3.17: Learned Y-
axis from two invariants for
letter M

Figure 3.18: Learned Z-
axis from two invariants for
letter M

Figure 3.19: X-axis from
the partially learned mo-
tion

Figure 3.20: Y-axis from
the partially learned mo-
tion

Figure 3.21: Z-axis from
the partially learned mo-
tion

3.3 Learning from the accumulated invariant val-

ues

We assumed that the high data variability in the invariant space could cause gener-
alization problems. We assumed that the sudden trajectory changes in the invariant
space did not help the GP to produce a fitting model. We thought that GP returned
too normalized predictions. To prevent this we accumulated the values obained in
the DHB invaiant space so that there were no extreme values and the GP accurately
could learn the regularities. Previous plots shown that the data points are highly
irregular, contrary Figures 3.22, 3.22, and 3.22 show that the data is highly concen-
trated even in some cases the predicted data overlaps the training data. In this case
the data dispersion is smaller and the patterns are easily spottable. The GP found
a better generalized trajectory.
Eventhough we successfully showed that GP learns the motion with ease. We did not
succeed to provide a generalization in the Cartesian space. Figures 3.25, 3.26, and
3.27 show that the reconstruction was not successful at all. The basic motion can
be appreciated but the reconstruction of the predicted trajectory has little reasable
to the trained motions.



3.4. LEARNING FROM THE INVARIANTS AND TRYING TO PREDICT THE RECONSTRUCTED
TRAJECTORIES 17

Figure 3.22: Accumulated
velocity axis

Figure 3.23: Accumulated
θ1 axis

Figure 3.24: Accumulated
θ2 axis

Figure 3.25: X-axis from
the learned motion

Figure 3.26: Y-axis from
the learned motion

Figure 3.27: Z-axis from
the learned motion

3.4 Learning from the invariants and trying to

predict the reconstructed trajectories

The last unsuccessful approach has been to give the invariants as input to the GP
and train the model with the reconstructed trajectories as output. The Figures 3.28,
3.29 and 3.30 show that it is not possible to successfully generalize because there is
too much data dispersity. The problem arrises when we appreciate that there are
many points concentrated in a specific area. If the concentrated points want to be
generalized we are loosing precision assuming that the deviation is noise which is in
fact not true. Now with time as X-axis the Figure 3.31 seem to be able to perform a
good generalization since the blue line (predicted data) and the red dots (expected
values) do follow a similar pattern. We can see in Figures 3.32 and 3.33 that the
generalization perform the worst in θ axis achieving an extreme level of smoothness
not matching the reality.
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Figure 3.28: Velocity axis
as input and reconstruc-
tion as output

Figure 3.29: θ1 axis as in-
put and reconstruction as
output

Figure 3.30: θ2 axis as in-
put and reconstruction as
output

Figure 3.31: Velocity axis
as input and reconstruc-
tion as output

Figure 3.32: θ1 axis as in-
put and reconstruction as
output

Figure 3.33: θ2 axis as in-
put and reconstruction as
output

3.5 Generalizing from the reconstructed invari-

ants

We successfully generalized a motion using the properties that DHB space offers.
To successfully generalize a motion we followed few simple steps shown in Figure
3.34. The main property affected by DHB is the point of view independence. The
same motion recorded from different prespectives are encoded in the same way in the
DHB space. We firstly transformed all the Cartesian trajectories to DHB invariant
trajectories to obtain the standadrized motion. The DHB algorithm transforms the
Cartesian trajectory to an invariant trajectory and returns a reconstruction frame.
This frame is used for the DHB algorithm to successfully reconstruct the invariant
into the original 3D Cartesian motion. For this experiment, we reconstructed the
invariant trajectories using the identity matrix, not the reconstruction frame. We
used the identity matrix to represent all the motions in the same plane at its ”purest”
form, meaning without any additional transformation. Since the trajectories were
firstly encoded in the invariant space they had all the properties that the invariant
space has. The point of view did not have any influence in the reconstruction since
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we used the same generic frame, the identity matrix, for all the motions. With
the identity matrix we made sure that the provided result was the least altered
representation of every invariant motion.
Figures 3.35, 3.36, and 3.37 are the reconstructions of the trajectories using the
identity matrix. The green dots are the training trajectories and the blue line
is the generalized trajectory. In this case, GP is able to successfully generalize
the trajectories since they are reconstructed again into the Cartesian space but
using the same frame for all of the reconstructions. As it is displayed the GP
generalizes the motion adapting the function at each point. The generalization can
be transformed to a real motion with a valid prespective using an initial frame.
The reproduction can be seen in Figures 3.38, 3.39, and 3.40. The figures follow
the same coloring pattern like the previous ones plus a red trajectory which is the
motion that provided the initial frame to build the reconstructed trajectory. The
trajectory represented in red was not used for the training. We did not use the red
trajectory because it would have caused conflicts to the experiment quality. This
generalization follows the training samples closely. The most distant points are in
the Y-axis. The reconstruction can be closer depending on the initial frame.
The generalizations using GMM are found in Figures 3.41, 3.42, and 3.43. This
figures also disply a good generalization but in this case we can see the segmentation
that is caused by the intrinsic nature of GMM. The generalization is more linear.
Since we are working on linear motions this generalization performs even better than
GP. The reconstruction with GMM is displied in Figures 3.44, 3.45, and 3.46. As
it can be apreciated, this reconstructions have successfully approximate the used
motions. In fact we can see that the reconstructions using the initial frame are more
accurate with GMM than with GP.
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Figure 3.34: Generalization work flow

Figure 3.35: Recon-
structed X-axis using iden-
tity the matrix generalized
with GP

Figure 3.36: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GP

Figure 3.37: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GP



3.5. GENERALIZING FROM THE RECONSTRUCTED INVARIANTS 21

Figure 3.38: Recon-
structed X-axis using their
respective initial frame
generalized with GP

Figure 3.39: Recon-
structed Y-axis using their
respective initial frame
generalized with GP

Figure 3.40: Recon-
structed Z-axis using their
respective initial frame
generalized with GP

Figure 3.41: Recon-
structed X-axis using iden-
tity the matrix generalized
with GMM

Figure 3.42: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GMM

Figure 3.43: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GMM

Figure 3.44: Recon-
structed X-axis using their
respective initial frame
generalized with GMM

Figure 3.45: Recon-
structed Y-axis using their
respective initial frame
generalized with GMM

Figure 3.46: Recon-
structed Z-axis using their
respective initial frame
generalized with GMM

We used Mean Squared Error (MSE) to estimate the accuracy of the predictions and
add tangible data to this work. The MSE evaluation method is a simple estimator
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which computes, as the name indicates, the mean 1
n

∑n
i=1 of the squared errors

(Ŷi − Yi) between the testing points and the predicted values [KPPB07]:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)

We use this evaluation metric to test which algorithm approximates better the pre-
dicted values. The lower the number the better the algorithm. This metric only
allows comparisons among identical measurement units. Mixing axis would cause
a distortion of the result. Even using the same units, different axis might pro-
vide results in a different order of magnitude. Different order of magnitude cause
that the axis with the biggest order of magnitude has a bigger impact on this metric.

As we can see on Table 3.1 the GMM algorithm approximates better the trajectories
in the invariant space than GP. This is because almost all letters are compose of
straight lines. Those straight lines are better represented by GMM since the regres-
sion of GMM between clusters is percieved as an stright line. GMM regression was
favoured by the underlying segmentation. Contrary to GP that provides a more
smooth line depending on the points near the desired data point.

Tables 3.2 and 3.3 represent the data obtained using GP and GMM from the mesure-
ments in the cartesian space. The first table represents the motion learned only in
the Cartesian space and the second table represents the motion learned in the in-
variant space but transformed into the Cartesian space. The data show that the
trajectories learned in the Cartesian space generalize better than the ones learned in
the invariant space and then transformed into the Cartesian space. In all cases the
trajectory learned directly in the Cartesian space generalizes better than the one
learned in the invariant space. This is caused for two reasons. The first reason is
that we are learning in a different space and when the generalization is transformed
into the Cartesian space the informaion has changed. The second reason is that
since we learned the invariant space we require a frame to transform the trajectory
to the Cartesian space. There is no universal frame for the reconstruction. Each
trajectory produces its own first frame; therefore depending on the trajectory’s first
frame used the reconstruction can vary significantly. Even though the comparasions
are done in the cartesian space the frame has a big impact on the final result.

The importance of using the right frame can be seen in Figures 3.47, 3.48, and
3.49. The green dots represent the motion as we captured it and the red dots
represent the same motion but reconstructed using a different trajectory frame. As
it can be seen the reconstructions differ significantly. This is one of the factors why
the reconstructions from the learned motions in the invariant space might perform
worst than the learned motions directly in the Cartesian space. The fact that
a learned invariant generalizes better from different prespectives compensates the
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Table 3.1: MSE in the DHB invariant space
A M N X O Avg

mv [mm/s] 8.82 16.64 18.13 22.71 31.10 19.48
GP θ1 [rad/s] 34.55 61.92 75.48 87.10 94.33 70.67

θ2 [rad/s] 62.35 101.10 145.06 155.05 161.84 125.08
mv [mm/s] 8.78 13.98 18.38 22.07 31.57 18.96

GMM θ1 [rad/s] 26.31 46.02 73.55 68.50 67.69 56.41
θ2 [rad/s] 28.68 40.40 68.73 71.39 68.22 55.48

Table 3.2: MSE for motions learned in the Cartesian space
A M N X O Avg

X [mm] 16.56 19.99 22.37 31.17 57.55 29.53
GP Y [mm] 19.55 27.53 32.70 24.21 63.55 33.51

Z [mm] 8.29 17.21 14.28 22.18 33.51 19.09
X [mm] 16.46 19.15 23.07 33.41 37.71 25.96

GMM Y [mm] 19.60 30.32 36.08 26.27 36.64 29.78
Z [mm] 5.61 14.17 15.14 20.05 17.61 14.52

generalization problems attributed to the first frame.

Figure 3.47: Reconstruc-
tion with inverted frames
for axis X

Figure 3.48: Reconstruc-
tion with inverted frames
for axis Y

Figure 3.49: Reconstruc-
tion with inverted frames
for axis Z

3.6 Learn position-velocity relationship

We predicted velocity based on the position because it enables us to continue the
motion at any point of the trajectory. It makes it easier to predict the next steps.
If we use time to reproduce the motion we could only reproduce the trajectory in a
time linear motion. If we try to predict the velocity based on the current data point
the trained GP works accurately. The resemblance between the original data and the
predicted is high. Figues 3.50, 3.51, and 3.52 show that we can successfully predict
the next position. We did not predict the exact next position but the velocity in a
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Table 3.3: MSE for motions learned in the DHB space but transformed into the
cartesian space

A M N X O Avg
X [mm] 16.16 30.36 24.91 110.80 66.35 49.72

GP Y [mm] 27.28 62.35 35.95 106.96 66.76 59.86
Z [mm] 5.89 18.16 14.39 24.54 23.20 17.24
X [mm] 22.69 19.98 68.07 51.89 63.41 45.21

GMM Y [mm] 40.62 33.06 86.03 54.44 126.73 68.18
Z [mm] 7.91 14.19 15.32 20.66 26.38 16.89

given point. Since the current position is known and we can predict the velocity,
we can successfully predict the next position. Figures 3.53, 3.54, and 3.55 show
the non trained trajectory used for the reproduction and the predicted positions.
The figures disply high degree of similarity between the predicted values and the
trajectory used for the prediction. Tables 3.4 and 3.5 show that the invariant and
cartesian generalization values using MSE.

To demonstrate the properties of the invariant, we translated and rotated a non-
trained trajectory to show that we can successfully generalize from different prespec-
tives and positions. Figures 3.56 and 3.57 show the training data in green and in red
the data used to predict the velocity. As it can be seen they are the same trajectory
but depending on the case is translated to the right or rotated 90◦. Figures 3.58,
3.59, and 3.60 show the prediction accuracy. For the last plots the red dots are
the real trajectory positions and the blue line is the predicted next position using
the current known position plus the predicted velocity for the axis. Notice that we
are predicting the position t + 1. All three figures display almost a perfect match
between predicted position and real position.

Figure 3.50: Predict ve-
locity for the X-axis based
on a identity matrix recon-
struction

Figure 3.51: Predict ve-
locity for the Y-axis based
on a identity matrix recon-
struction

Figure 3.52: Predict ve-
locity for the Z-axis based
on a identity matrix recon-
struction
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Figure 3.53: Predict ve-
locity for the X-axis based
on the Cartesian recon-
struction

Figure 3.54: Predict ve-
locity for the Y-axis based
on the Cartesian recon-
struction

Figure 3.55: Predict ve-
locity for the Z-axis based
on the Cartesian recon-
struction

Figure 3.56: Training trajectories and
the one used to predict velocity trans-
lated

Figure 3.57: Training trajectories and
the one used to predict velocity rotated

Figure 3.58: Real tra-
jectory and predicted next
position on the X axis

Figure 3.59: Real tra-
jectory and predicted next
position on the Y axis

Figure 3.60: Real tra-
jectory and predicted next
position on the Z axis



26 CHAPTER 3. EXPERIMENTAL RESULTS

Table 3.4: MSE for the predicted velocity and the real position in the invariant
space

A M N X O Avg
mv [mm/s] 3.36 5.82 6.34 2.44 13.25 6.24

GP θ1 [rad/s] 13.59 48.66 53.82 13.89 97.94 45.58
θ2 [rad/s] 10.57 33.89 46.75 19.05 49.95 32.04

Table 3.5: MSE for the predicted velocity and the real position in the Cartesian
space

A M N X O Avg
X [mm] 3.36 5.95 6.52 2.64 13.36 6.36

GP Y [mm] 13.59 14.23 19.96 14.45 18.68 16.18
Z [mm] 10.57 21.16 16.79 20.20 24.85 18.72
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Chapter 4

Conclusion

The goal of this research was to successfully generalize from multiple invariants. Un-
til now, we tried to train the model using the invariant trajectories and failed to do
so. The reproduction from the learned invariants turned out to be unsuccessful be-
cause the predicted trajectory substantially differed from the samples. The problem
of learning from the invariant is that the wrong rotation lead to a minimal differ-
ence that over time produces a substantive deviation from the original motion. The
deviaton accumulates over the time because the movement in the worng direction
leads to an increased distance. The best working generalization is done through the
reconstructions that used the identity matrix instead of the initial frame. We first
encoded the trajectories into the DHB invariant space to obtain similar representa-
tions from the motions independently from the point of view. When the trajectories
are converted from the Cartesian space to the invariant space the algorithm returns
the invariant trajectory and the initial frame. The initial frame is used to recon-
struct the trajectry in order to recover the original motion. Instead of using the
original frame we used the identity matrix to reconstruct the trajectories. The use
of the identity matrix allowed us to project all the motions into the same space.
These reconstructed trajectories enabled us to take advantage of all the invariant
space properties without falling for the generalization problems that we had if we
learned from the invariant space. This space does not lead to an accumulated er-
ror as it happens if we learn from the DHB invariant space. It also prevented us
from the problem of learning in the cartesian space since all the motions have the
same prespective. We used GP and GMM to generalize the motions. GP displied
a smoothness and higher adaptability to the whole motion adapting itself to small
variations in the training data. GMM, due to the segmentation, offered a less nosy
data and better results in most of the cases. Once we learned and generalized from
the reconstructed identity trajectories, we can apply any frame to obtain the motion
in the desired plane. In this case we used a frame from a non-trained trajectory to
see how the trajectory looks like and confirm that the predicted trajectory has a
close resemble to both the trained and non-trained trajectories.
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The second goal of this research has been to predict the velocity of each axis based
on the 3D position. This goal was successfully achieved with a high accuracy. Suc-
cessfully predicting the velocity enables the algorithm to predict the next position of
our trajectory. We are able to predict the next position of our trajectory because it
is the derivative of the current position plus the velocity which we forecasted. This
enables us to reproduce the motion starting from any point. Since we learned the
velocity using the invariant the prediction can be done for any trajectory indepen-
dently of the prespective.
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Extra plots

A.1 Generalizing from the reconstructed invari-

ants

Figure A.1: Recon-
structed X-axis using iden-
tity the matrix generalized
with GP (letter A)

Figure A.2: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GP (letter A)

Figure A.3: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GP (letter A)
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Figure A.4: Recon-
structed X-axis using
their respective initial
frame generalized with GP
(letter A)

Figure A.5: Recon-
structed Y-axis using
their respective initial
frame generalized with GP
(letter A)

Figure A.6: Recon-
structed Z-axis using
their respective initial
frame generalized with GP
(letter A)

Figure A.7: Recon-
structed X-axis using iden-
tity the matrix generalized
with GMM (letter A)

Figure A.8: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GMM (letter A)

Figure A.9: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GMM (letter A)

Figure A.10: Recon-
structed X-axis using their
respective initial frame
generalized with GMM
(letter A)

Figure A.11: Recon-
structed Y-axis using their
respective initial frame
generalized with GMM
(letter A)

Figure A.12: Recon-
structed Z-axis using their
respective initial frame
generalized with GMM
(letter A)



A.1. GENERALIZING FROM THE RECONSTRUCTED INVARIANTS 31

Figure A.13: Recon-
structed X-axis using iden-
tity the matrix generalized
with GP (letter N)

Figure A.14: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GP (letter N)

Figure A.15: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GP (letter N)

Figure A.16: Recon-
structed X-axis using
their respective initial
frame generalized with GP
(letter N)

Figure A.17: Recon-
structed Y-axis using
their respective initial
frame generalized with GP
(letter N)

Figure A.18: Recon-
structed Z-axis using
their respective initial
frame generalized with GP
(letter N)

Figure A.19: Recon-
structed X-axis using iden-
tity the matrix generalized
with GMM
(letter N)

Figure A.20: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GMM (letter N)

Figure A.21: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GMM (letter N)
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Figure A.22: Recon-
structed X-axis using their
respective initial frame
generalized with GMM
(letter N)

Figure A.23: Recon-
structed Y-axis using their
respective initial frame
generalized with GMM
(letter N)

Figure A.24: Recon-
structed Z-axis using their
respective initial frame
generalized with GMM
(letter N)

Figure A.25: Recon-
structed X-axis using iden-
tity the matrix generalized
with GP (letter O)

Figure A.26: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GP (letter O)

Figure A.27: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GP (letter O)

Figure A.28: Recon-
structed X-axis using
their respective initial
frame generalized with GP
(letter O)

Figure A.29: Recon-
structed Y-axis using
their respective initial
frame generalized with GP
(letter O)

Figure A.30: Recon-
structed Z-axis using
their respective initial
frame generalized with GP
(letter O)
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Figure A.31: Recon-
structed X-axis using iden-
tity the matrix generalized
with GMM (letter O)

Figure A.32: Recon-
structed Y-axis using iden-
tity the matrix generalized
with GMM (letter O)

Figure A.33: Recon-
structed Z-axis using iden-
tity the matrix generalized
with GMM (letter O)

Figure A.34: Recon-
structed X-axis using their
respective initial frame
generalized with GMM
(letter O)

Figure A.35: Recon-
structed Y-axis using their
respective initial frame
generalized with GMM
(letter O)

Figure A.36: Recon-
structed Z-axis using their
respective initial frame
generalized with GMM
(letter O)

A.2 Based on the position predict the velocity

Figure A.37: Predict ve-
locity for the X-axis based
on a identity matrix recon-
struction (letter A)

Figure A.38: Predict ve-
locity for the Y-axis based
on a identity matrix recon-
struction (letter A)

Figure A.39: Predict ve-
locity for the Z-axis based
on a identity matrix recon-
struction (letter A)
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Figure A.40: Predict ve-
locity for the X-axis based
on the Cartesian recon-
struction (letter A)

Figure A.41: Predict ve-
locity for the Y-axis based
on the Cartesian recon-
struction (letter A)

Figure A.42: Predict ve-
locity for the Z-axis based
on the Cartesian recon-
struction (letter A)

Figure A.43: Predict ve-
locity for the X-axis based
on a identity matrix recon-
struction (letter N)

Figure A.44: Predict ve-
locity for the Y-axis based
on a identity matrix recon-
struction (letter N)

Figure A.45: Predict ve-
locity for the Z-axis based
on a identity matrix recon-
struction (letter N)

Figure A.46: Predict ve-
locity for the X-axis based
on the Cartesian recon-
struction (letter N)

Figure A.47: Predict ve-
locity for the Y-axis based
on the Cartesian recon-
struction (letter N)

Figure A.48: Predict ve-
locity for the Z-axis based
on the Cartesian recon-
struction (letter N)
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Figure A.49: Predict ve-
locity for the X-axis based
on a identity matrix recon-
struction (letter O)

Figure A.50: Predict ve-
locity for the Y-axis based
on a identity matrix recon-
struction (letter O)

Figure A.51: Predict ve-
locity for the Z-axis based
on a identity matrix recon-
struction (letter O)

Figure A.52: Predict ve-
locity for the X-axis based
on the Cartesian recon-
struction (letter O)

Figure A.53: Predict ve-
locity for the Y-axis based
on the Cartesian recon-
struction (letter O)

Figure A.54: Predict ve-
locity for the Z-axis based
on the Cartesian recon-
struction (letter O)
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