
T U M Ü N C H E N

Fakultät für Informatik

E F F I C I E N T M O V E M E N T R E P R E S E N TAT I O N A N D P R E D I C T I O N
W I T H M A C H I N E L E A R N I N G

Nutan Chen

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ-Prof. Dr. Stephan Günnemann

Prüfer der Dissertation:

1. Univ-Prof. Dr. Patrick van der Smagt

2. Univ-Prof. Dr. Alin Albu-Schäffer

Die Dissertation wurde am 10.08.2017 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 08.02.2018 angenommen.

Nutan Chen: Efficient Movement Representation and Prediction with Ma-
chine Learning, ©2017

A B S T R A C T

Machine learning is a powerful tool for movement modeling. Two
kinds of movement modeling include static representation and dy-
namic prediction. In this study, these two methods are used to model
different kinds of movements, including fingertip, human body and
robot, described as follows.

First of all, "static movement" representation of the human finger is
shown. Estimating human fingertip forces is essential to understand-
ing force distribution in grasping and manipulation. Human grasp-
ing behavior can then be used to develop force and impedance-based
grasping and manipulation strategies for robotic hands. However, es-
timating human grip force naturally is only possible with objects at-
tached by instruments or gloves with sensors, thus greatly limiting
the type of objects used. In this thesis, an approach is described,
which uses images of the human fingertip to reconstruct grip force
and torque at the finger.

Dynamic prediction of human and robot movements using time-
dependent unsupervised learning is described. High dimensional
movements, as they are found in robotics or humanoids, make
finding efficient movement predictions difficult. Typically, they are
either used in configuration or Cartesian space, but both approaches
do not generalize well. Methods are therefore explored, which
embed dynamic movement primitives or reinforcement learning into
time-dependent unsupervised learning.

The methods were evaluated on a large number of experiments, in-
volving a range of applications. With these approaches, the results
were significantly better than prior works with respect to accuracy
and scope of use.

iii

Z U S A M M E N FA S S U N G

Maschinelles Lernen ist ein leistungsfähiges Werkzeug für die Be-
wegungsmodellierung. Zwei Arten der Bewegungsmodellierung sind
die statische Darstellung und die dynamische Vorhersage. In dieser
Studie werden diese beiden Methoden verwendet, um verschiedene
Arten von Bewegungen zu modellieren, einschließlich der von Fin-
gerspitzen, menschlichen Körper und Roboter, wie es im Folgenden
beschrieben.

Als erstes wird die "statische Bewegungsdarstellung" des men-
schlichen Fingers gezeigt. Die geschätzte Krafteinwirkung der
menschlichen Fingerspitze ist entscheidend für das Verständnis
von Kraftverteilung beim Greifen und Manipulation. Menschliches
Greifverhalten kann dann dafür verwendet werden, um Kraft und
Impedanz basierten Strategien des Greifen und die Manipulation
für Händen der Roboter weiter zu entwickeln. Allerdings ist
natürlich Abschätzen menschlichen nur mit Objekten angebracht
durch Instrumente oder Handschuh mit Sensoren. Deswegen, die
Anwendung der verschiedene Objekts wird stark begrenzt. In dieser
Arbeit wird eine Methode beschrieben. Diese Methode rekonstruieret
die Griffkraft und den Drehmoment am Finger von Menschen durch
die Bilder der Fingerspitze.

Eine dynamische Vorhersage von Mensch-und Roboter-Bewegungen
wird durch die verwendung von zeitabhängigem unüberwachtem
Lernen beschrieben. Hohe Dimension Bewegungen, wie sie in
Roboter oder Humanoiden zu finden sind, sind schwer für eine
effiziente Bewegung prognose zu machen. Typischerweise werden sie
entweder in der Konfiguration oder cartesianischen Raum verwendet,
aber beide Ansätze lassen sich schwer zu generaliseren. Deshalb
werden Methoden erforscht, die Dynamic Movement Primitives oder
Reinforcement Learning in zeitabhängiges unüberwachtes Lernen
einbetten.

Die Methoden werden, von einer großen Anzahl von Experimenten
ausgewertet, die eine Vielzahl von Anwendungen enthalten. Mit
diesen Ansätzen wurden deutlich besser Ergebnisse als in früheren
Arbeiten erhalten, in Bezug auf Genauigkeit und Umfang der
Nutzung.

iv

A C K N O W L E D G E M E N T S

This thesis contains the work I conducted at Biomimetic robotics and
maching learning (BRML) over the past years.

I must thank my supervisor, Patrick van der Smagt, for endless inspi-
rations, comments, and ideas. I learned from him the research meth-
ods and the technical knowledge.

I am also grateful to the lab mates, Agneta Gustus, Benedikt Staffler,
Christian Osendorfer, Daniela Korhammer, Grady Jensen, Hannes
Hoeppner, Justin Bayer, Markus Kuehne, Marvin Ludersdorfer, Max
Karl, Max Soelch, Rachel Hornung and Sebastian Urban. Working
with them over the past years has influenced my thinking. I also
would like to thank other former and current lab members.

Besides BRML members, I would like to acknowledge other co-
authors of publications, Benoni B.Edin, Goeran Westling, Herke van
Hoof and Jan Peters. Their collaboration and suggestions enlightened
me. Words cannot express how grateful I am to them.

This work was supported in part by the TACMAN project, EC Grant
agreement no. 610967, within the FP7 framework programme.

v

C O N T E N T S

i introduction 1

1 overview 3

1.1 Related Work 4

1.1.1 Machine learning 4

1.1.2 Movement modeling and analysis 5

1.1.3 Machine learning-based movement model-
ing 6

1.2 Approaches and contributions 9

1.3 First Published Appearances and Outline of the The-
sis 10

ii background 13

2 fundamentals 15

2.1 Machine learning 15

2.1.1 Neural Networks 15

2.1.2 Probabilistic Neural Networks 17

2.1.3 Convolutional Neural Networks 19

2.1.4 Recurrent Neural Networks 21

2.1.5 Autoencoders 22

2.1.6 Gaussian Process 26

2.1.7 Reinforcement learning 27

2.2 Robot learning 30

2.2.1 Dynamic movement primitives 31

iii "static movement" representation 33

3 measuring fingertip forces from camera

images 35

3.1 Introduction 35

3.2 Methods 36

3.2.1 Setup 36

3.2.2 Image Alignment 37

3.2.3 Predictors 40

3.2.4 Calibration and postprocessing 42

3.3 Experiments and results 43

3.3.1 Data 43

3.3.2 Force/torque Prediction 44

3.3.3 Surface Cross validation 49

3.3.4 Predictor for all subjects 49

3.3.5 Time cross validation 53

3.3.6 Subject cross validation 57

3.3.7 Human grasping analysis 57

vii

viii contents

3.4 Conclusions 60

iv dynamic movement prediction 61

4 stable reinforcement learning with autoen-
coders 63

4.1 Introduction 63

4.2 Policy Search with Learned Representations 65

4.2.1 Learning Representations using Autoen-
coders 65

4.3 Experimental Set-Up and Results 66

4.3.1 Experimental Set-Ups 67

4.3.2 Results of the Visual Pendulum Swing-up Ex-
periments 69

4.3.3 Results of the Tactile Manipulation Robot Ex-
periment 70

4.4 Discussion and Conclusion 70

5 dynamic movement primitives in deep autoen-
coders 73

5.1 Introduction 73

5.2 Autoencoded Dynamic Movement Primitives 75

5.2.1 Autoencoded Dynamic Movement Primi-
tive 75

5.2.2 Sparse AE-DMP 76

5.3 Experiments 77

5.3.1 Human Motion Data 77

5.3.2 Features in the Hidden Neurons 77

5.3.3 New Motion Generation 80

5.3.4 Reconstruction for Missing Joints 82

5.3.5 Reconstruction for Missing Section 84

5.3.6 Changing Goal Attractor 84

5.4 Conclusions 85

6 dynamic movement primitives in variational au-
toencoders 87

6.1 Introduction 87

6.2 Method 88

6.2.1 DMP in latent space 88

6.2.2 Learning 91

6.2.3 Multi-demonstration model 92

6.2.4 Movement switching 93

6.2.5 Goal changing 93

6.3 Experiments 94

6.3.1 High-dimensional human movement 94

6.3.2 Robot simulation for goal changing 100

6.4 Conclusions 102

v conclusion 103

7 conclusions and outlook 105

contents ix

bibliography 107

Part I

I N T R O D U C T I O N

1
O V E RV I E W

The ability to efficiently represent and predict complex movements
plays a crucial role for automatically observing and interpreting hu-
man or robot movements. The data from a human or a robot that
has a large number of sensors may contain redundant and uncor-
related information. Because of this, movement representations and
predictions from this data can be entangled and hide relevant factors,
which can significantly influence the performance of the movement
models. How can we disentangle this? To be able to deal with such
data incrementally we introduce some local terminology: static vs.
dynamic movement. With static movement we refer to data sets with
i.i.d. (independently and identically distributed) data, where there is
no temporal dependency in subsequent data. This is true when, e.g.,
comparing pictures randomly chosen from ImageNet, but not true
when considering subsequent frames from a movie. The latter we de-
scribe with dynamic data, where there exists a temporal dependency
in subsequent data points.

The thesis aims at obtaining: (1) efficient representation of "static
movement" 1 from high-dimensional data, (2) prediction for dynamic
movements from temporal data, using machine learning. To study the
behavior of human/robot movements, new machine-learning meth-
ods for movement modeling are developed in this thesis.

Representation of "static movement" aims at mapping the sensory in-
put to labels or latent spaces. The labels can be the motion classes,
emotion classes and so on. Supervised learning such as Gaussian
process (Rasmussen and Williams, 2006) and convolutional neural
networks (CNN) (LeCun et al., 1998) can adequately represent the
labeled "static movement". Unsupervised learning, such as Gaussian
Process Latent Variable Model (GPLVM) (Lawrence, 2005) and au-
toencoder (Rumelhart et al., 1988; Bourlard and Kamp, 1988; Bengio,
2009), represents the data in a compact dimensional latent space, and
is able to extract important information from the raw data. Thereafter,
the latent values can be used for regression or classification.

1 In a "static movement", the data points are assumed to be independent and the time-
dependent structure of the data is ignored.

3

4 overview

In a dynamic movement, the independence assumption no longer
holds and our models need to represent the series rather than sin-
gle points, which requires time-series models such as hidden Markov
Move (HMM) (Rabiner, 1989) and recurrent neural networks (RNN)
(for an overview, see e.g., (Medsker and Jain, 1999)). Additionally, the
task becomes challenging when the data is high-dimensional. There-
fore, dynamic modeling methods in latent space such as Gaussian
Process Dynamical Model (GPDM) (Wang et al., 2008) and Condi-
tional Restricted Boltzmann Machine (CRBM) (Schölkopf et al., 2007)
were explored, which provide an expression for both the observed
data and its latent representation. A corresponding dynamic model
is able to structure the latent space for temporal data, rather than
encode the individual data patterns.

In the following parts of this chapter, a non-mathematical overview
of machine learning methods for human/robot movement represen-
tation and prediction will be provided. The approaches and outline
of this thesis will also be described.

1.1 related work

1.1.1 Machine learning

A large part of animal cognition can be captured by correctly model-
ing the related data, which is what machine learning does. In contrast
to a hand-coded system, learning from data using algorithms, ma-
chine learning aims at finding hidden insights and making prediction
for unseen data. Machine learning has been central to artificial intelli-
gence (AI) (Turing, 1950) and has been the foundation of a variety of
application domains, such as speech recognition, image recognition,
financial engineering, and so on.

A simple machine-learning algorithm such as linear regression is
able to do document classification or email spam filtering. In some
domains, computers outperform humans. For instance, AlphaGo of
Google DeepMind, learned from human expert games, beat the world
campion in Go in 2016 (Silver et al., 2016).

Since the last decade, deep learning has been greatly improved. Deep
learning (LeCun et al., 2015) is a subfield of machine learning, which
has architectures of multiple neural network layers with nonlinear
processing. It learns multiple levels, constructing a hierarchy of con-
cepts, of representations of data. Benefitting from large data sets and
powerful computation, deep learning is able to tackle many more
complicated tasks. For instance, He et al. (2016) built neural nets with
a depth up to 152 layers and won the first place in several main cat-
egories of image recognition challenges in 2015. The above AlphaGo

1.1 related work 5

is another successful example of deep learning, in this case com-
bined with reinforcement learning. Goodfellow et al. (2016) and Li
and Dong (2014) present an overview on deep learning.

Other methods, including reinforcement learning (RL) and Gaussian
process (GP), are promising approaches to improve machine learning.
See e.g., (Sutton and Barto, 2012; Rasmussen and Williams, 2006) for
more information on RL and GP, and e.g., (Murphy, 2012; Bishop,
2006) on other subfields of machine learning.

1.1.2 Movement modeling and analysis

Movement modeling is a crucial part of animation, physical rehabil-
itation, human-robot interaction, robot motion planning, and so on.
The modeling processes consist of movement capture, pose modeling
and movement modeling. Since data capture is time-consuming and
expensive, the movement capture data is limited; therefore, general-
ization of novel movement and adaptation for unknown environment
from limited existing captured data are important and remain chal-
lenging.

Robots are able to capture their motion by reading from their sensors,
while human motion capture is more complicated. Human motion
capture can be separated into optical systems and non-optical sys-
tems. Optical systems include marker-based method such as (Welch
and Foxlin, 2002) and markerless method such as multicamera
(Kanade and Narayanan, 2007), Kinect (Wilson, 2010; Chen et al.,
2012), Leap motion (Weichert et al., 2013), and so on. Non-optical
systems (e.g., CyberGlove, and Electromyography (EMG) (Vogel
et al., 2011)) are able to detect more types of data such as inertial
and force. Motion capture data, however, usually is not directly
applied to use cases, since the manual modification of the data is
very limited.

With the captured sensor data, pose modeling is then to represent
the pose. The human/robot configuration can be constructed from
the sensor readings. Pose modeling techniques include human body
representations (O’Brien et al., 2000), facial representations (Igarashi
et al., 2005), and mesh representations (Allen et al., 2003).

Physical modeling and statistical modeling are two main categories of
dynamic movement modeling. The former is a traditional approach,
which satisfies the principles of physics and generates natural move-
ments. For instances, Popović and Witkin (1999) proposed muscle
exertion, Fang and Pollard (2003) introduced joint angle acceleration,
and Neff and Fiume (2002) presented muscle and spring in motion.
A typical physical modeling approach is based on optimization algo-
rithms. With pyshical constriants such as spacetime, kinematic and

6 overview

dynamics, optimization-based algorithms can generate realistic mo-
tions. Unfortunately, physical-based methods have shortcomings: 1)
these methods are highly sensitive to the hand-crafted constraints; 2)
high dimensional data significantly increases the modeling difficulty.

An alternative approach of movement modeling is based on statistical
models. One example is motion graphs (Kovar et al., 2002). The mo-
tion graph extracts sub-motions from existing motions, and generates
specification motions from the original motion and the transitions be-
tween motions. However, motion graph is restricted by the recorded
motions. Alternative statistical models, machine learning-based ap-
proaches, dramatically improve the generalization capability of move-
ment modeling using PCA, GPLVM and so on. In addition, machine
learning is able to model the complexities of the real dynamics and
generate realistic motions. See Section 1.1.3 for more information on
machine learning-based movement modeling.

1.1.3 Machine learning-based movement modeling

Given a data set of movements, how can we efficiently represent
the states of the movements and predict the next state based on
previous and current states using machine learning? In the following,
Gaussian Process (GP)-based and deep learning-based methods to
solve these issues are mainly introduced.

Gaussian Process based methods

Gaussian Process (GP) (Rasmussen and Williams, 2006) based mod-
els are widely used for movement modeling. A GP is a stochastic
process defined particularly by its mean and covariance functions. A
basic assumption of GPs is that closely located inputs behave simi-
larly. Accordingly, training inputs which are close to a test input have
a similar target value as the test input. Gaussian Process Latent Vari-
able Model (GPLVM) (Lawrence, 2005) is an unsupervised learning
method that learns a low-dimensional representation of the data. In
this method, a GP smoothly maps the latent data to the observation
space. It optimizes a maximum a posteriori of the latent representa-
tion while estimating the hyper-parameters. When an out-of-sample
data is mapped, the GPLVM optimizes the latent representation of the
data. GPLVM is able to autonomously determine the dimensionality
of the latent variables using Automatic Relevance Detection (ARD)
kernel. It generalizes well even with a small set of training data. Tit-
sias and Lawrence (2010) further developed GPLVM using variational
Bayes by marginalizing of the latent variables. Both GP and GPLVM
assume that data are independent, and they do not consider temporal

1.1 related work 7

continuity of data. They perform well on static data. Various dynamic
models are then developed from GP and GPLVM.

Bitzer et al. (2008) used GPLVM to reduce the dimensions of "static
movements". In the low-dimensional space, they then modeled
the dynamic movements using dynamic movement primitive
(DMP). Furthermore, Bitzer and Vijayakumar (2009) developed this
method using simple sequence priors (SS-GPLVM), which generate
movements that accurately follow the desired trajectory, e.g, the
interpolated movements. In high dimensionality, DMP is possible
to produce unrealistic movements. Instead, SS-GPLVM reduces the
dimensions, and can thus reconstruct natural movements.

GPDM (Wang et al., 2008) extends GPLVM by mapping the data from
observation space to a nonlinear dynamical system in the latent space.
Using Markov chains, GPDM forces the latent space to be smooth. Be-
sides mapping from the latent space to the observation space, GPDM
maps the latent values at the previous time step to the latent val-
ues at the current time step. The parameters are marginalized out
using GP priors for the two mappings. GPDM results in a higher
probability of a density function to movements which are close to the
training data. GPDM can be trained from a small data set. Applied to
human motion, it is able to model 50-dimensional data in 3D latent
space and fill in missing frames of a motion. Intention-driven Dy-
namics model (IDDM) (Wang et al., 2013) is an extension of GPDM
to human-robot interaction. Human movement drives the dynamics
in the low-dimensional space.

Darby et al. (2009) proposed hierarchical GPLVM (H-GPLVM). The
model descends from a top-level node through the hierarchy to the
leafs. As an example of human movement modeling, the leafs of the
lowest level are the 3D joint angles of human. It is able to search for
subtrees such as arms and legs, which are assumed to be independent
from each other. For instance, the model explores a new movement
of waving hands and walking, while only separate movements of
walking and waving hands are provided by the training data.

A problem regarding the GPLVM family is the sensitivity to the
initial guess. Additionally, different from parametric GP-based
models which store all training data, the following deep-learning
models are parametric and able to train on large datasets.

Deep-Learning based methods

A convolutional neural network (CNN) (LeCun et al., 1998) is a neural
network architecture for regression and classification that is relatively
robust to shifts, scales and distortions of the input data and can be
trained efficiently on large data sets. Tompson et al. (2014) proposed a
method consisting of a CNN and a Markov Random Field for human

8 overview

body pose recognition from videos. Another extension of CNNs is to
extract features and then combine them with time series methods, for
instance, recurrent neural networks (RNNs) (Fragkiadaki et al., 2015).

RNNs are a method that can model dynamic temporal movements.
RNNs, which are widely used for tasks such as handwriting recogni-
tion and speech recognition, process a sequence of inputs using inter-
nal memory. As described in this section, an RNN can be developed
to be more advanced by combining with representation learning such
as VAEs and CNNs.

Building on the representational power of deep neural networks,
Schölkopf et al. (2007) have obtained competitive results using
CRBMs. RBMs are bidirectionally connected networks based on
a probabilistic model and are simplified by restrictions on the
networks. The CRBM is modified from the RBM with autoregressive
connections. The CRBM is a generative model with the past n and m
time steps of visible units to the current visible unit and the current
hidden unit, respectively. The model is able to effectively learn
different movements, and can smoothly transit between them. The
authors also consider stacking several CRBMs to achieve a higher-
level motion model. Taylor et al. (2010) further developed CRBMs
to Implicit Mixture of Conditional Restricted Boltzmann Machines
(imCRBM) for tackling multiple activities. Boulanger-Lewandowski
et al. (2012) explored RNN-RBM, which is a probabilistic model
based on RNNs. These methods, however, rely on binary latent
variables. It is questionable whether they pose a reasonable prior for
human or humanoid kinematics.

An alternative powerful deep-learning approach, the autoencoder
(AE) (Vincent et al., 2008), is a neural network method to learn
features from unlabeled data. AEs consist of encoder networks and
decoder networks, which reconstruct the input data in the output
layer. The number of neurons in the hidden layer is less than that
of the input layer, which pushes the data through a bottleneck
and forces it to extract the most relevant features. AEs allow for
non-linear feature extraction. Denoising autoencoders (Vincent et al.,
2008) are based on the basic AE with corruption of the input during
the training process. This model is able to robustly reconstruct
undestroyed input data from a partially corrupted one. Sparse
autoencoders are imposed by adding an extra term of penalty on
the hidden units to the cost function during training (Ng, 2011), or
manually setting most of the smallest hidden units to zero (Makhzani
and Frey, 2013). The latent space can therefore sparsely represent the
inputs. Lange and Riedmiller (2010); Mattner et al. (2012) applied AE
to feature generation which are then used for reinforcement learning
for movements of visual data.

1.2 approaches and contributions 9

The Variational Autoencoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) has obtained competitive results. It learns
a low-dimensional latent space of high-dimensional data using
statistical inference. Different from standard AEs as described above,
VAEs have strong assumptions regarding to the distribution of the
probabilistic latent variables.

The Autoencoders have no internal state, and therefore cannot repre-
sent temporal dependencies in the input data. There are several ways
of dealing with this; one possibility is extending the VAE to be a re-
current neural network, e.g., Stochastic Recurrent Network (STORN)
(Bayer and Osendorfer, 2014) or Variational Recurrent Neural Net-
work (VRNN) (Chung et al., 2015). While having their merit in, e.g.,
anomaly detection (Sölch et al., 2016), their prediction capabilities are
not as good as expected (Theis et al., 2016). Furthermore, it is not clear
how a control signal can be included. A different, very promising ap-
proach, Deep Variational Bayes Filtering (DVBF) (Karl et al., 2017), is
obtained by rolling a VAE out in time. However, DVBF requires extra
input of control signal which is difficult to be captured for human
movements. In addition, the capability of new movement generaliza-
tion of DVBF is still not explored. Therefore, a further development
of DVBF is studied in this thesis to solve these issues.

1.2 approaches and contributions

Machine learning, as described in the previous section, has been suc-
cessfully applied to movement modeling. However, more issues need
to be addressed to improve the algorithms and applications. To this
purpose, two parts are proposed as follows.

The first part is "static movement" representation. Static models are
presented that allow measuring finger contact force from fingernail
images. Specifically, steady cameras are used to observe the nails
of the fingers while in contact with an object, and the relationship
between nail coloration as well as the deformation of the surround-
ing skin and force vector are learned. With such low frequency and
smooth data, static methods are sufficient to represent the movements.
Compared to previous studies, our methods are more robust for vari-
ous environments, and augment the force estimation ability of image-
based method to a larger force range.

The second part is dynamic movement prediction. To efficiently
present the high dimensional sequence data in a low dimensional
latent space, we investigate unsupervised learning with dynamics
for movements. In particular, reinforcement learning or dynamic
movement primitive are embedded into a time-dependent AE or

10 overview

VAE. As a result, the algorithms can efficiently predict movements in
latent space for high-dimensional human or robot movements.

The major contributions of this thesis are:

• the capability of the human finger movement modeling is dra-
matically improved;

• time-dependent AEs/VAEs are designed, which significantly im-
prove the latent representation of time series data;

• a powerful generalization capability of human/robot movement
modeling in the latent space is developed.

More details of the approaches are presented in each chapter.

1.3 first published appearances and outline of the the-
sis

This thesis incorporates previous publications and is organized as
follows.

In Part 2, human "static movement" representation will be shown,
specifically, grip force detection from camera images. This chapter
takes the work from

• Nutan Chen, Göran Westling, Benoni B. Edin, and Patrick
van der Smagt. Estimating fingertip forces, torques, and local
curvatures from fingernail images. submitted

In Part 3, dynamic prediction of human/robot movements in latent
space will be presented. This chapter takes the work from

• 1 Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick
van der Smagt, and Jan Peters. Stable reinforcement learning
with autoencoders for tactile and visual data. IEEE International
Conference on Intelligent Robots and Systems (IROS), 2016b

• Nutan Chen, Justin Bayer, Sebastian Urban, and Patrick van der
Smagt. Efficient movement representation by embedding dy-
namic movement primitives in deep autoencoders. In Inter-
national Conference on Humanoid Robots (HUMANOIDS), pages
434–440, 2015

• Nutan Chen, Maximilian Karl, and Patrick van der Smagt. Dy-
namic movement primitives in latent space of time-dependent
variational autoencoders. In International Conference on
Humanoid Robots (HUMANOIDS), 2016b

In Part 4, the research will be concluded.

1.3 first published appearances and outline of the thesis 11

The following first-authored and co-authored publications are not
used in this thesis:

• Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Ben-
bouzid, and Patrick van der Smagt. Active learning based on
data uncertainty and model sensitivity. submitted, 2018b

• Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang,
Justin Bayer, and Patrick van der Smagt. Metrics for deep
generative models. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2018a

• Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang,
Justin Bayer, and Patrick van der Smagt. Metrics for deep
generative models based on learned skills. In Advances in
Neural Information Processing Systems (NIPS) Workshop on Robot
Learning, 2017a

• Nutan Chen, Sebastian Urban, Justin Bayer, and Patrick van der
Smagt. Measuring fingertip forces from camera images for ran-
dom finger poses. In International Conference on Intelligent Robots
and Systems (IROS), 2015

• Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin
Bayer, and Patrick van der Smagt. Estimating finger grip
force from an image of the hand using convolutional neural
networks and Gaussian processes. In International Conference on
Robotics and Automation (ICRA), 2014

• Rachel Hornung, Nutan Chen, and Patrick van der Smagt. Mul-
timodal motion modeling. Handbook of Multimodal-Multisensor
Interfaces (in print)

• Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan
Chen, Sebastian Urban, and Patrick van der Smagt. On fast
dropout and its applicability to recurrent networks. In Interna-
tional Conference on Learning Representations (ICLR), 2014

• Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang,
Justin Bayer, and Patrick van der Smagt. Metrics for deep
generative models based on learned skills. In Advances in Neural
Information Processing Systems (NIPS) Workshop on Workshop
on Acting and Interacting in the Real World: Challenges in Robot
Learning, 2017b

• Nutan Chen, Maximilian Karl, and Patrick van der Smagt. Dy-
namic movement primitives in latent space of time-dependent

1 Since it is the work that we cooperated with IAS institute, TU Darmstadt, it is only
partially shown in this thesis.

12 overview

variational autoencoders. In Advances in Neural Information Pro-
cessing Systems (NIPS) Workshop on Neurorobotics, 2016a

• Herke van Hoof, Nutan Chen, Maximilian Karl, Tucker Her-
mans, Gerhard Neumann, Patrick van der Smagt, and Jan Pe-
ters. Learning robot in-hand manipulation with tactile features.
Robotics: Science and Systems (RSS) Workshop on Bootstrapping Ma-
nipulation Skills, 2016a

Part II

B A C K G R O U N D

2
F U N D A M E N TA L S

This chapter presents a review of some machine learning and robotics
principles from an algorithmic point of view, which are basic necessi-
ties for the following chapters.

2.1 machine learning

2.1.1 Neural Networks

A neural network (Bishop, 2006) is a model based on linear combi-
nations of parameterized nonlinear basis functions. Given a training
dataset x := (x1, x2, . . . , xN) and corresponding target dataset y, we
write a neural network

f(x) = σ(Wx + b) (1)

where θ = {W, b} are the parameters, and σ is the activation function
or transfer function which works on each element of the vector. Modi-
fying the architecture of a NN by taking the output of one layer as the
input of another layer, the model can be extended to multiple layers.
Fig. 1 shows a neural network with one hidden layer.

The parameters of the network are obtained by minimizing the loss
function. It is possible to define an arbitrary loss function. For in-
stance, with a regression problem, we can write a loss function

L =
1

N

N∑
i=1

‖yi − f(xi)‖. (2)

The parameters of NNs are updated using the error-correction-
learning rule through back-propagation (BP). BP starts at the output
layer and recursively computes the local error for each neuron
towards the first hidden layer. A gradient descent algorithm is a
classical error-correction-learning,

w(t+ 1) = w(t) − ηg(w(n)),

g(w(n)) = ∇L(w(n)), (3)

15

16 fundamentals

inputs

hidden units

W(1) W(2)

outputs

x

z

y

Figure 1: A feedforward neural network with a hidden layer and an output
layer. W(i) is the parameters of layer i. x, y and z denote the input,
hidden and output variables respectively. The nodes represent the
variables, and the links represent the weight and bias parameters.

where t is the training iteration, and η > 0 denotes the step size
or training rate. If the step size is too large the training probably
oscillates or diverges, while too small step size might lead to a long
convergence time. The direction of −∇L(w(t)) is the steepest descent
direction. The chain rule is used for computing the derivatives of
multiple layers.

Activation function. The activation function enables networks to be
non-linear. Fig. 2 illustrates several commonly used activation func-
tions. An identity function is a linear function. Softplus function is
a smooth approximation of the ReLU. Compared to softplus func-
tion or other similar activation functions, Rectified linear units (ReLU)
(Nair and Hinton, 2010) is faster and more effective for training deep
networks with large datasets. A logistic function is similar to a tanh
function with different ranges of the outputs.

Overfitting. A complex neural network with a large amount of
weights and biases probably causes overfitting. The accuracy of
predictive performance is reduced when overfitting occurs. Some ap-
proaches can reduce the effects of overfitting, e.g., data augmentation,
noise adding, bagging, boosting, reduction of the feature number,
early stopping, regularization, dropout and Bayesian approach with
proper prior. We present regularization and dropout in this section,
which are used in the following chapters.

Regularization of the parameters in error function is able to prevent
overfitting

L =
1

N

N∑
i=1

‖yi − f(xi)‖+ λr(θ), (4)

2.1 machine learning 17

-5 0 5

a

-4

-2

0

2

4

(a
)

(a) Identity σ(a) = a

-5 0 5

a

-0.5

0

0.5

1

1.5

(a
)

(b) Logistic σ(a) = 1
1+e−a

-5 0 5

a

-2

0

2

4

6

(a
)

(c) Softplus σ(a) = ln(1+ ea)

-5 0 5

a

-1

0

1

2

3

4

(a
)

(d) ReLU σ(a) = max(0,a)

-5 0 5

a

-2

-1

0

1

2

(a
)

(e) Tanh(a) ≡ 2
1+e−2a − 1

Figure 2: Activation funcions.

where λ denotes the scale of the regularization and r is the regu-
larization term. The regularization can be a smoothness term with
r(θ) =

∑M
j=1 ‖θj‖2 or a sparsity term of the parameters with r(θ) =∑M

j=1 ‖θj‖1, where M is the parameter size.

Random Dropout (Srivastava et al., 2014) of the neurons during train-
ing process in the layers of neural networks prevent complex co-
adaptations and reduce overfitting. For every neuron of the dropout
layer, each of the input neuron of this layer is picked with a probabil-
ity of p, and its value is set to 0, while the rest are unchanged during
the training process. Thus, the chosen neurons are dropped. During
testing process, all neurons are present without corruption and the
weights of the dropout layers are scaled by multiplying 1 − p. The
weights on other layers and biases are unchanged.

Fast dropout (Wang and Manning, 2013) is more efficient to
train a model by sampling from a Gaussian approximation (see
Section 2.1.2.1).

2.1.2 Probabilistic Neural Networks

Deterministic neural networks might have difficulties at represent-
ing uncertainties. The uncertainties include the biased distribution

18 fundamentals

between the training and test data, noisy data, model parameters
and structure uncertainties (Ghahramani, 2015; Gal, 2016). The for-
mer two are the data uncertainties and the latter two are the model
uncertainties. Probabilistic algorithms can calibrate the model and
tackle model uncertainties. Additionally, a probabilistic model is able
to provide confidence bounds for evaluating data uncertainties, par-
ticularly, whether a model is certain about its output; therefore, it
can be used for data analysis and decision making. The probabilistic
models are not restricted to neural networks, but are also applied to
methods such as Gaussian process (see Section 2.1.6).

The Bayesian theory is the foundation of probabilistic models. In neu-
ral networks, a Bayesian inference estimates the model uncertainty
through the distributions over the weights (Buntine and Weigend,
1991; MacKay, 1992; Hinton and Van Camp, 1993; Williams, 1997). Be-
fore having seen the data, we have the prior probability p(θ), where
θ represents the parameters. The likelihood, p(D|θ), is the probability
of the data D given θ. Based on Bayes’ rule, we obtain the posterior
probability of θ given the data,

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (5)

We apply neural networks to this process; therefore, given the train-
ing data, the probability distributions of the weights are obtained.
Subsequently, we estimate the confidence bounds through the predic-
tion,

p(y?|x?,D) =

∫
p(y?|x?, θ)p(θ|D)dθ, (6)

where the parameters are marginalized out. x? and y? are the test
input and output respectively. With this approach, the regulariza-
tion and model selection/comparison are autonomously performed.
Further developments of this technique include variational inference
(see Section 2.1.5.3), and countless recent models (Graves, 2011; Blun-
dell et al., 2015; Hernández-Lobato and Adams, 2015; Depeweg et al.,
2016).

Probabilistic neural networks are used for a large number of applica-
tions. The confidence estimation is useful for efficient data collection
such as active learning and reinforcement learning. For instance, in
active learning, the algorithm is able to query the information source
by the confidence values.

We take fast dropout which is used in Chapter 3 as an example, since
we do not have space to discuss all the models.

2.1 machine learning 19

2.1.2.1 Fast Dropout

In a fast dropout (Wang and Manning, 2013), zi ∼ Bernoulli(pi) is
sampled to determine whether the input xi is dropped out, where pi
is the rate of not dropping out. The output y is derived by

a = wTDzx (7)

y = σ(a) (8)

where w is a weight vector and Dz = diag(z) ∈ Rm×m. m is the data
dimension.

The input of the output layer takes a random variable for every hid-
den unit. Under fast-dropout training, we can assume its input as a
Gaussian distribution X ∼ N(x|µ, s2). For any hidden unit, the mean
and variance of output y are ν and τ2. Using sigmoid activation func-
tion σ, we have:

ν =

∫∞
−∞ σ(x)N(x|µ, s2)dx ≈ σ

(
µ√

1+ πs2/8

)
, (9)

τ2 = Var
X∼N(µ,s2)

[σ(X)] = E[σ(X)2] − E[σ(X)]2. (10)

We draw samples of a Gaussian approximation for a = wTDzx. The
mean and variance of a can be obtained. We assume that x compo-
nents are independent; therefore, the central limit theorem of Lya-
punov condition is satisfied with m→∞. Consequently, a is approx-
imately Gaussian.

The neural networks with fast dropout can be trained to update w
through back-propagation.

2.1.3 Convolutional Neural Networks

A convolutional neural network (CNN) is an architecture for regres-
sion and classification that is relatively robust to shifts, scales and
distortions of the input data and, especially, can be efficiently trained
on large data sets (LeCun et al., 1998). CNNs are widely applied
to images and videos (LeCun et al., 2010). A CNN is typically de-
signed as multiple stages of convolutions and max-pooling and the
top layers are usually ordinary multi-layer perceptrons. Max-pooling
is a non-linear down-sampling method that decreases computational
complexity. Fig. 3 shows the architecture of LeNet by LeCun et al.
(1998), which is one of the pioneering CNNs. A first convolutional
layer followed by a first max-pooling layer, another convolutional
layer followed by a second max-pooling layer, and finally, two fully
connected perceptron layers.

20 fundamentals

input

convolutions convolutionssubsampling
subsampling

output

full connection

Figure 3: Architecture of convolutional neural networks. The brown quad-
rangles represent neurons.

In LeNet, The feature map h of the 2D input images is computed with
convolution as

h(m,n) =
lx∑
u=0

ly∑
v=0

w(u, v)g(u+m, v+n) + b, (11)

where g is the input map, w the kernel weights, b the bias, (lx, ly)
is the size of the filter, and (m,n) is the pixel position on the feature
map.

The max-pooling activation is computed as

p(m,n) = maxr1i=1
(

maxr2j=1 h(r1m+ i, r2n+ j)
)

, (12)

where (r1, r2) is the pooling size and p is the feature map in the
max-pooling layer. The max-pooling layers take the output of convo-
lutional layers as input, and reduce the resolution of the input.

The penultimate part is a fully-connected multi-level perceptron
(MLP) with hidden units of which the final layer is linear with
outputs.

We use the chain rule to backpropagate error gradients back into the
network to minimize the loss function. For regression problem, we
write the square error loss

L =
1

N

N∑
i=1

‖y − ŷ‖2, (13)

where y is the ground truth of the outputs. The model can be applied
to classification problem by changing the loss function.

CNNs have successfully performed on many datasets. For instance,
Goodfellow et al. (2014) beat the benchmarks of Street View House
Numbers (SVHN) dataset in 2014; Krizhevsky et al. (2012) beat the
benchmarks of ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012; Simonyan and Zisserman (2014) beat the bench-
marks of ILSVRC in 2014; He et al. (2016) beat the benchmarks of
ILSVRC 2015.

2.1 machine learning 21

x

h Wrec

y

Win

Wout

Figure 4: A recurrent neural network.

2.1.4 Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network using the in-
ternal memory to capture and process arbitrary sequences of inputs.
For every time step of a sequence, the output is predicted using the
current input and previous inputs or latent units.

Given a sequence of input data xt ∈ Rl(t = 1, 2, . . . T) and corre-
sponding targets yt ∈ Rm (t = 1, 2, . . . T). ŷt ∈ Rm (t = 1, 2, . . . T) is
the output of RNN which has hidden layers ht ∈ Rn (t = 0, 1, . . . T).
fh and fy are transfer functions, the constant T is the sequence length
and l, m, n are the input, output and hidden dimensions at every
time step (see Fig.4).

Taking the Elman network (Elman, 1990) with one hidden layer as an
example, we have

ht = fh(xtWin + ht−1Wrec + bh),

ŷt = fy(htWout + by) (14)

where θ = {Win, Wout, Wrec, bh, by} are the parameters. It can be ex-
tended to multiple hidden layer neural networks. There are other
RNNs with different archtectures such as Jordan network (Jordan,
1997).

The gradients are calculated by Backpropagation through Time
(BPTT) (Werbos, 1990). The parameters are obtained by minimizing
the loss function

L(θ) =
∑
i

‖ŷ(i) − y(i)‖ (15)

RNNs have difficulties learning long-sequence dependencies, because
of the vanishing gradient problem (Hochreiter, 1991) of BPTT. There
are some approaches to tackle the problem. Proper initialization or
regularization of the parameters can reduce vanishing gradients. The
derivative of the ReLU activation function is a constant, so that the
ReLU has less vanishing gradient compared to tanh or sigmoid. Addi-
tionally, other architectures such as Long Short-Term Memory (LSTM)

22 fundamentals

encoder decoder

x

z

x ′

Figure 5: An autoencoder. The nodes represent the variables, and the links
represent the weight and bias parameters.

(Hochreiter and Schmidhuber, 1997) and Gated Reccurent Unit (GRU)
(Chung et al., 2014) can solve this problem.

2.1.5 Autoencoders

The idea of autoencoders is coarsely comparable to principal compo-
nent analysis (PCA). Yet, the representational capabilities are much
greater since autoencoders allow for non-linear feature extraction.
Also, autoencoders are not limited to normally distributed data and
do not assume perpendicularity of the “principal components”.

An autoencoder or a Diabolo network (Rumelhart et al., 1988;
Bourlard and Kamp, 1988; Bengio, 2009), which consists of encoder
networks and decoder networks, is a neural network method to learn
features from unlabeleld data. The encoder network takes x ∈ Rd

as input vector, and maps the input to a latent representation with
multiple hidden layers. Every hidden layer computes a mapping
z = hθ(x) = σ(Wx + b), where θ = {W, b} are parameters, σ is the
activation function, z ∈ Rd

′
is the feature representation, and d ′ is

the number of hidden neurons in that layer.

Subsequently, the feature representation is reconstructed back to a ob-
servation vector x ′ ∈ Rd through the decoder networks with the same
structure. Every hidden layer of decoder is x ′ = gθ ′(y) = σ(W ′y+b ′),
where θ ′ = {W ′, b ′}, b ′ is a bias vector in the decoder layers. The
weight matrix can be restricted to be equal to the transpose of the
encoder weights W ′ = WT (Bengio, 2009). To seek the parameters θ
and θ ′, the problem becomes:

θ?, θ ′? = arg min
θ,θ ′

1

n

n∑
i=1

L(x(i), x ′(i))

= arg min
θ,θ ′

1

n

n∑
i=1

L
[
x(i),gθ ′

(
hθ(x(i))

)]
, (16)

2.1 machine learning 23

where n is the number of a training set, L is a loss function and, the
squared error L(x, x ′) = (x − x ′)2 is used to represent the reconstruc-
tion error in the observation data.

The number of neurons in the hidden layer is less than that of the
input layer, which pushes the data through a bottleneck and forces it
to extract the most relevant features. It also makes the trivial solution
of the identity function at each neuron impossible.

2.1.5.1 Denoising Autoencoder

Denoising autoencoders (DAs, Vincent et al. (2008)) are based on the
basic autoencoder with corruption of the input during the training
process. The model is able to robustly reconstruct undestroyed input
data from a partially corrupted one. We partially destroy the initial
x to generate x̃ as the input instead, and the DA reconstructs x. For
every input frame xi, each of the input neuron is dropped with a
probability of p, and we have

θ?, θ ′? = arg min
θ,θ ′

1

n

n∑
i=1

L
[
x(i),gθ ′

(
hθ(x̃(i))

)]
. (17)

The layers are fully connected except the removed neurons. During
testing process, we take x as the input, and the input layer to the first
hidden layer becomes hθ(x) = σ[(1− p)Wx + b].

The basic principles of denoising and dropout are the same, which
avoid over-fitting. Noise is applied to the input layer for denosing,
while applied to all layers except the output layer for dropout.

2.1.5.2 Sparse Autoencoder

The autoencoder is able to discover meaningful structures in the la-
tent space with the constraints of the sparsity (Ng, 2011; Nair and
Hinton, 2009). For instance, sparsity can deactivate some hidden neu-
rons for distinguishing the features of the input.

Sparsity encourages hidden units to be active only rarely by adding
an extra term of penalty to the cost. Nair and Hinton (2009) presented
a lk norm penalty

Lsparse(z) =
1

n
η

n∑
i=1

‖z(i)‖k, (18)

where η is a penalty parameter, and the lk norm with k > 1 is defined
as ‖z‖k , (

∑d ′
i=1 |zi|

k)1/k. It results in a sparse solution for z.

24 fundamentals

Alternative types of the penalty term also have reasonable re-
sults. For instance, Ng (2011) presented Kullback-Leibler (KL, see
Section 2.1.5.3) divergence

ρ̂j =
1

n

n∑
i=1

z(i)j , (19)

Lsparse(z) =
d ′∑
j

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
, (20)

where j is the index of the hidden neurons and ρ represents a sparsity
parameter. A typical ρ is a small number close to zero. The average of
each hidden neuron, ρ̂j, is enforced to ρ; therefore, most hidden units
are close to zero.

2.1.5.3 Variational autoencoder

Variational inference. Variational inference (Bishop, 2006) is a
method to approximate the intractable posterior distribution p(z|x)
through a tractable approximate variational distribution qφ(z).
x ∈ Rd and z ∈ Rd

′
are the observed data and its corresponding

latent representation, respectively. As the dissimilarity function,
the Kullback-Leibler (KL) divergence between the approximate
distribution qφ and the target distribution p is minimized to obtain
the variational parameter φ for the optimal approximate distribution
qφ. The marginal log-likelihood is written as

logp(x) = logp(x, z) − logp(z|x) (21)

= [logp(x, z) − logqφ(z)] − log
p(z|x)
qφ(z)

(22)

=

∫
qφ(z) log

p(x, z)
qφ(z)

dz −

∫
qφ(z) log

p(z|x)
qφ(z)

dz (23)

= Eqφ(z)

[
log

p(x, z)
qφ(z)

]
+ KL

(
qφ(z) ‖ p(z|x)

)
, (24)

in which through the KL divergence definition we have:

KL
(
qφ(z) ‖ p(z|x)

)
= −

∫
q(z) log

p(z|x)
q(z)

dz. (25)

We compute the expectation of logp(x) when z ∼ q(z) in (23). logp(x)
is independent of qφ, so that Eq(z) logp(x) = logp(x). Additionally,
because of the non-negative property of the KL and the independence,
the first term of (24), the evidence lower bound (ELOB) Lbound(q), is
maximized to minimize the KL divergence.

2.1 machine learning 25

We have an alternative derivation,

logp(x) = log
∫

z
p(x, z)dz (26)

= log
∫

z
p(x, z)

qφ(z)
qφ(z)

dz (27)

= log
(

Eqφ(z)

[
p(x, z)
qφ(z)

])
(28)

> Eqφ(z)

[
log

p(x, z)
qφ(z)

]
, (29)

where the derivation from (28) to (29) is based on Jensen’s inequality.

Variational Autoencoder. The variational autoencoder (VAE, Kingma
and Welling (2014); Rezende et al. (2014)) efficiently infers the un-
observed latent variables of probabilistic generative models. The un-
observed latent vectors z(i) code the observed vectors x(i) from the
dataset. As prior distribution of the latent space variables, an isotropic
Gaussian p?(z) = N(z; 0, I) is used. For non-binary data, a standard
choice for the decoder p(x|z) is a Gaussian, where

logp(x|z) = logN(x;µ, diag(σ2)),

µ = w2h + b2,

logσ2 = w3h + b3,

h = f(z) = h(w1z + b1), (30)

in which the parameters µ, σ are given by a multi-layer perceptron
parametrized by w and b jointly represented by θ. h is the activation
function. {µenc,σenc} and {µdec,σdec} represent {µ,σ} for the decoder
and encoder, respectively. f is a function of one layer neural network
in (30), but can be extended to multiple layers.

We would like to find parameters θ that optimize the marginal likeli-
hood pθ(x(i)). As this objective is intractable for (30), we re-write the
marginal likelihood as

logpθ(x(i)) = log
∫
pθ(x(i)|z)p?θ(z)dz

= KL(qφ(z|x(i))‖pθ(z|x(i))) +L(θ,φ; x(i)). (31)

In this equation, a parametric approximation qφ(z|x) to pθ(z|x) is
used as this term relies on an intractable integral. The encoder qφ(z|x)
has a similar structure as (30), but z and x are swapped and the
weights and biases are in a different set of parameters φ. In (31),
L(θ,φ; x(i)) is a lower bound on the marginal likelihood

L(θ,φ; x(i)) =Eqφ(z|x(i))[logpθ(x(i)|z)]

− KL(qφ(z|x(i))‖pθ(z)). (32)

26 fundamentals

The first term can be interpreted as a reconstruction cost, which is ap-
proximated by sampling from qφ(z|x). The KL-divergence term KL

quantifies the loss of information when the approximation qφ(z|x) is
used instead of pθ(z).

The lower bound is optimized by stochastic backpropagation. As
the reconstruction term is estimated through sampling, we compute
the gradient through the sampling process of qφ(z|x) with the
reparametrization trick z = y(φ, ε), where y is a function of φ with
noise ε, as in (Kingma and Welling, 2014).

2.1.6 Gaussian Process

Gaussian Process Regression. A Gaussian Process (GP) (Rasmussen
and Williams, 2006) is a stochastic process given by its mean m(x)
and covariance k(x, x ′),

m(x) = E[f(x)], (33)

k(x, x ′) = E
[(
f(x) −m(x)

)(
f(x ′) −m(x ′)

)]
. (34)

Assuming the GP has a zero mean function, the squared exponential
covariance (SE) is derived as

k(x, x ′) = σ2f exp
(
−
1

2l2
‖x − x ′‖2

)
. (35)

The length-scale l and the signal variance σ2f are the hyper-
parameters. Points that have distances to each other smaller than l
can be considered to have similar values.

The inputs of training points are X := (x1, x2, . . . , xN)
T . xi is a 1D

vector. In addition, y := (y1, y2, . . . , yN)T is the corresponding target.
In realistic situations, the function values are unknown; therefore, we
the noisy observations is written as

y = f(x) + ε, with ε ∼ N(0,σ2n), (36)

where σn is the noise variance hyper-parameter. Thus, the joint dis-
tribution of the training target y and test output f∗ under the prior
is [

y

f∗

]
= N

(
0,

[
Ky K∗

K∗T K∗∗

])
(37)

and the target value f∗ for x∗ is distributed as

p(f∗|X∗,X, f) = N(f∗|E[f∗], Var[f∗]), (38)

E[f∗] = K∗T (K+ σ2nI)
−1y, (39)

Var[f∗] = K∗∗ −K∗T (K+ σ2nI)
−1K∗, (40)

2.1 machine learning 27

where Kij = k(xi, xj), K∗i = k(xi, x∗), I is the identity matrix.

We maximize the log likelihood function

logp(y|X) =−
1

2
yT (K+ σ2nI)

−1y

−
1

2
log
∣∣K+ σ2nI

∣∣− n
2

log 2π, (41)

and consequently obtain the optimal values for the hyper parameters,
θ = l,σn,σf, using the training set. 12yT (K + σ2nI)

−1y is a data fit
term, 12 log

∣∣K+ σ2nI
∣∣ is a complexity penalty term and n

2 log 2π is a
constant term.

θ can be learned by gradient ascent techniques

∂

∂θj
logp(y|X) =

1

2
yTK−1

y

∂Ky

∂θj
K−1
y y−

1

2
tr(K−1

y

∂Ky

∂θj
), (42)

where K+ σ2nI
∆
= Ky.

Fully Independent Training Conditional Approximation. A critical
issue with GP methods is that large computations are required:
O(N3) for training and O(N2) for per testing case, where N is the
number of training samples. To reduce the computational costs,
one of the solutions is the fully independent training conditional
approximation (FITC) (a.k.a. sparse pseudo-input GP (Snelson and
Ghahramani, 2006)). The inducing points are a small amount of
inputs M that summarize a large number of inputs N. By using
inducing points we reduced the training and testing cost to O(NM2)

and O(M2), respectively. FITC is implemented by randomly
selecting a subset of the training data as the inducing points:
X := (x1, x2, . . . , xm)T . A more efficient likelihood approximation is
then given by

p(y|f) ' q(y|u) (43)

= N(Kf,uK−1
u,uu, diag[Kf,f − Qf,f + σ2noiseI]),

where u is the corresponding latent values of X, f = {fn}
N
n=1 are

latent values based on xn ∈ X, the covariance function Kf,f is the
Gram matrix of all pairs (xi, xj), and diag[*] is a diagonal matrix, and
Qf,f

.
= Kf,u.

2.1.7 Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto, 2012) maps situations
to actions and consequently maximize reward signals, where actions

28 fundamentals

agent

interpreter environment

actionstate reward

Figure 6: A basic reinforcement learning scenario.

affect both of the immediate and the future rewards. The learner is
not specifically told which actions ought to take, but instead to try
out which actions lead to the most cumulative rewards.

The learning problem of RL is formulated as a Markov Decision Pro-
cess (MDP). The basic reinforcement learning system consists of an
agent and environment states s, an action a of the agent, a policy
π from states to actions, a reward signal R, and a value function V.
A model of the environment is an option, which categories RL into
model-free and model-based methods. Model-free methods are sim-
pler but require more samples. In the contrary, model-based methods
are sample efficient, but it is required to estimate the model of the en-
vironment; therefore, they are sensitive to the accurate of the model.

At time t, the agent (e.g., a robot) obtains an observation including
the reward Rt. An action at is selected from the set of actions. With
the interaction of the agent and the environment, the state st+1 and
the reward Rt+1 of the next time step with the transition is detected
(see Fig. 6). The action can be selected by exploration on uncharted
territories and exploitation based on known areas.

Policy search. Policy search, a subfield of reinforcement learning, is
a promising approach for solving MDP. It searches for parameters
for a given policy parametrization. In this section we focus on a
particular policy search method, non-parametric relative entropy
policy search (NP-REPS) (van Hoof et al., 2015b,a), which is used in
Chapter 4. See e.g., (Deisenroth et al., 2013) for more information on
policy search.

Policy representation. Policy representations are used for policy
search. Three policy representation types are commonly used
including linear, radial basis functions (RBF) networks and dynamic
movement primitives (DMPs) (Deisenroth et al., 2013). The former
two are time independent representations πθ(x), while a DMP is a
time dependent representation πθ(x, t), where x is the state and θ is
the policy parameter.

2.1 machine learning 29

A linear or RBF policy is written as

πθ(x) = wTφ(x), (44)

where φ is a basis function vector for linear representation and
φi(x) = exp(−12(x − µi)

TDi(x − µi)) for RBF representations. Di is a
diagonal matrix. w, µ and D are parameters.

The DMP is a spring-damper system and directly controls the accel-
eration of the robot joints

πθ(xt, t) = ÿ =
1

τ
αz(βz(g − yt) − ẏt) +

1

τ
ft. (45)

See the annotations of (45) and more details on DMPs in (53) of Sec-
tion 2.2.1. The development of DMPs in Chapter 5 and 6 can be used
for policy representations.

2.1.7.1 Non-parametric REPS

Traditional policy search might have the problems of optimization
bias and overfitting, and consequently lead to oscillations and diver-
gence. Relative entropy policy search (REPS) (Peters et al., 2010) is a
method to bound the divergence between state-action distributions.
Benefiting from the boundary, REPS requires relatively few samples
and works well on real robots.

In a state s, an action a ∼ π(a|s) is selected by an agent from a policy
π. It is assumed that s ∈ S = RDs and a ∈ A = RDa . With a transition
Pa

ss ′ = p(s ′|a, s), we have
∫
S

∫
A Pa

ss ′π(a|s)µπ(s)da ds = µπ(s ′), where
µπ(s) is a state stationary distribution under policy. We maximize the
average reward J(π) =

∫
S

∫
A π(a|s)µπ(s)Ra

sda ds by choosing a policy,
where pπ(s, a) = µπ(s)π(a|s) is the joint state-action distribution.

REPS can be written as an optimization problem

max
π,µπ

∫∫
S×A
π(a|s)µπ(s)Ra

sdads, (46)

s. t.
∫∫

S×A
π(a|s)µπ(s)dads = 1, (47)

∀s ′
∫∫

S×A
π(a|s)µπ(s)Pa

ss ′dads = µπ(s ′), (48)

KL(π(a|s)µπ(s)||q(s, a)) 6 ε. (49)

(46) presents that the expected average reward is maximized by the
joint state-action distribution. (47) is a constraint of π(a|s)µπ(s) be-
ing a probability distribution with the sum of the distribution be-
ing one. (48) constrains the the system dynamic Pa

ss ′ . (49) is a bound
on the KL divergence between the proposed state-action distribution
and sampling distribution q that ensures smooth policy updates. The

30 fundamentals

Lagrangian optimization solves the optimization problem (van Hoof
et al., 2015b)

pπ(s, a) = π(a|s)µπ(s) ∝ q(s, a) exp
(
δ(s, a,V)

η

)
(50)

where V(s) and η represent Lagrangian multipliers. V(s) is a value
function; therefore, δ is the Bellman error

δ(s, a,V) = Ra
s + Es ′ [V(s ′)|s, a] − V(s). (51)

It is assumed that V =
∑

s̃∈S̃ αs̃k(s̃, ·), where S̃ are sampled states,
α are embedding strengths, and V is interpreted as a reproducing
kernel Hilbert space (RKHS).

We estimate η and α by minimizing the dual function

g(η,α) = ηε+ η log

(
n∑
i=1

1

n
exp

(
δ(si, ai,α)

η

))
, (52)

where (si, ai) ∼ q(s, a).

We approximate δ, since the transition distribution is not given. van
Hoof et al. (2015b) stated the approximation using kernel methods.

From previous policies, we have the reference distribution q. The
initial samples are generated from an initial wide, uniformed explo-
ration policy π̃0. The policy converges to a local optimal policy, be-
cause the variance of polices is reduced for every iteration. We set λ
and bandwidths of ka through a cross-validation to minimize the dis-
crepancy between true and predicted embedding strengths, and set
bandwidths of ks through a cross-validation to minimize the mean
squared Bellman error.

π̃(a|s, θ) = θTφ(s) is used as the policies where φ(s) are the fea-
tures. We give a Gaussian prior over the parameters θ, and estimate a
generalizing policy by conditioning on the sampled actions. Because
the actions were drawn from previous distribution q(a, s) instead of
pπ(a, s), importance weights wi are used to compute a posterior

p(θ|a1, s1, . . . , an, sn) ∝ p(θ)
n∏
i=1

π̃(a|s, „)wi ,

where (si, ai) ∼ q(a, s) and wi = pπ(si, ai)/q(si, ai) =

exp(δ(si, ai,V∗)/η∗). We obtain hyper-parameters by maximiz-
ing the marginal likelihood with cross-validation.

2.2 robot learning

Robot learning is a comprehensive field of machine learning and
robotics. Pre-programmed robots obtain specific skills, but cannot

2.2 robot learning 31

adapt these skills for unknown environment. In contrast, the robot
learning models learn the sequences of sensory inputs, temporarily
memorize the data, and subsequently adapt for its realistic environ-
ments. The learning can be self-exploration or supervision from a
teacher (e.g., imitation learning).

Robot learning is widely used for many robot tasks, for instance,
grasping (Lenz et al., 2015), locomotion, human robot interaction
(Maeda et al., 2016).

Dynamic movement primitives (DMPs) are one of the classical robot
learning algorithms. Since we do not have sufficient space to discuss
all algorithms, we focus on DMPs which are used in Chapter 5 and 6.

2.2.1 Dynamic movement primitives

Model. DMPs are generally trained from a demonstration of a tra-
jectory in joint space of a robot or Cartesian space of a robot end
effector, which can then subsequently be reproduced and adjusted
(Ijspeert et al., 2013). A DMP is a point attractor using a second-order
dynamic system:

τÿ = αz(βz(g − y) − ẏ) + f, (53)

where τ is a time constant and αz is a damping constant and αzβz
is a spring constant. Typically, y is the position in joint or Cartesian
space. The difference term (g − y) attracts the trajectory to the goal
position g, and we set the final frame of the demonstration as the
goal.

Following Ijspeert et al. (2013), we can choose the basic forcing term
f as a linear combination of basis functions Ψi:

f(t) =
∑N
i=1 Ψi(t)wi∑N
i=1 Ψi(t)

, (54)

to create a linear time-variant dynamical system. To decouple this
from the dynamics of the data, the time t is replaced using a first-
order linear dynamic system

τṡ = −αss, (55)

where αs is a constant coefficient. Thus the state s converges mono-
tonically to zero.

By differing the basis functions Ψ we can let DMPs be discrete or
rhythmic dynamical systems. In the discrete systems, Ψ are written
as (Ijspeert et al., 2013)

Ψi(s) = exp
[
−
1

2σ2i
(s− ci)

2
]

(56)

32 fundamentals

where ci and σi describe the width and centers of the basis functions,
respectively.

In the rhythmic dynamical systems, we can write Ψ as

Ψi(s) = exp(hi(cos(s− ci) − 1)), (57)

with τṡ = 1, (58)

where s ∈ [0, 2π], and h are parameters.

Learning. During training, with the demonstration ydemo and its com-
puted derivatives, the target values of the forcing term results in,

ftarget = τ2ÿdemo −αz
(
βz(g − ydemo) − τẏdemo). (59)

Given {(f1, ftarget
1), . . . , (fn, ftarget

n)} of length n, locally weighted regres-
sion (LWR) (Atkeson et al., 1997; Ijspeert et al., 2013) is a method that
is commonly used to obtain wi for each kernel function Ψi. An LWR
minimizes the locally weighted quadratic error criterion,

Ji =

n∑
t=1

Ψi(t)(f
target
t − wiξt)2, (60)

where ξ(t) is an extra term which can be multiplied to the right side
of (54). For instance, we set ξt = r for rhythmic system, where r
represents an amplitude signal. The parameters are computed by

wi =
ζT Γiftarget

ζT Γiζ
, (61)

where

ζ =


ξ1

ξ2

. . .

ξn

 ftarget =


ftarget
1

ftarget
2

. . .

ftarget
n



Γi =


Ψi(1) 0

Ψi(2)

. . .

0 Ψi(n)

 . (62)

The training process is not limited to LWR. An optimizer can be used
to find the parameters by minimizing the discrepancy between f and
ftarget

w? = argmin
w

n∑
t=1

L
[
ft, ftarget

t

]
, (63)

where L is a loss function.

Part III

" S TAT I C M O V E M E N T " R E P R E S E N TAT I O N

3
M E A S U R I N G F I N G E RT I P F O R C E S F R O M C A M E R A
I M A G E S

In this chapter, we consider a "static movement" representation prob-
lem, in which we are given a visual data set of human fingernails
from a regression task. The goal is to learn a mapping from images
to the corresponding labels using a training data set, which can then
be used with novel images. Specifically, if the task is to measure the
finger contact forces, we develop a model where we feed in an image
represented by pixels and obtain an output of finger contact forces
that the image represents.

Although the data in this chapter is made up of sequences of move-
ments, it was recorded at a low frequency; therefore, the data can
be considered as static. The frequency must be low with respect to
the dynamics of underlying process (blood dispersion). Three time-
independent algorithms are used, c.q., Gaussian process (GP), Con-
volutional Neural Networks (CNN) and Neural Networks with Fast
Dropout (NN-FD), compared with a time-dependent algorithm, Re-
current Neural Networks with Fast Dropout (RNN-FD). The results
further show that the performance of dynamic models yield to that
of static models. Hence, it verifies the i.i.d. assumption.

3.1 introduction

When studying the use of the human hand in grasping and manipu-
lation (Johansson and Flanagan, 2009; Panarese and Edin, 2011), one
of the most important aspects is how the finger force is controlled
between themselves and the handled objects. These force vectors de-
scribe how we interact with an object, even more than the positions
of the fingers themselves. Furthermore, it is these force vectors that
are being accurately controlled by our neural system to optimize for
grip stability and minimum intervention.

At the same time, measuring these forces is prohibitively difficult.
Gloves with force sensors at the fingers destroy the “natural” feel and
interaction, falsifying experimental data. Attaching measurements in-

35

36 measuring fingertip forces from camera images

Figure 7: Estimation of the finger force and torque from videos.

struments to objects is the obvious alternative, but leads to restrict
experiments with only few objects, and is restricted to predefined
positions on the object.

Following up on the seminal work by Mascaro et al. (see, e.g., (Sun
et al., 2009; Grieve et al., 2009)), we use steady color cameras to ob-
serve the nails of the fingers while in contact with an object (Fig. 7),
and learn the relationship between nail coloration and force vector.

Moving away from a constrained lab setting (e.g., a finger brace
(Grieve et al., 2013)) with perfect conditions and comfortable
restrictions, we extend this method to a more universal environment.
In this study, with variables of contact surface, object weight and
recording time, we find our approach performs accurately, and apply
it to finger grasping analysis.

3.2 methods

3.2.1 Setup

Hardware setup. The recording setup consists of two stationary
cameras and two force/torque sensors (see Fig. 3.8(a)). The cam-
eras record the distal phalanges of the index finger and thumb,
illuminated with diffuse light, as well as calibration markers on
the respective nails. Video data is captured by two POINTGREY
cameras at approx. 24 fps at a resolution of 1280× 980 pixels. At the
same time, the ATI Nano-17 six-axis force/torque sensors, located
under the index finger and thumb, measure ground truth forces and
torques at 100 Hz.

The whole setup is depicted in Fig. 8,9. In Fig. 3.8(a), camera 1 cap-
tures the images of marker 1, LED 1 and the index finger, while cam-
era 2 captures the images of marker 2, LED 2 and the thumb. Marker 3

is on the F/T sensors. In Fig. 3.8(b), the contact surfaces can be eas-
ily changed. Niobium magnets guarantee the distance between the
two contact surfaces to be 49.5 mm. The object that is held, shown in
Fig. 3.8(c), is set up so that it adjusts to (1) change the weight of the

3.2 methods 37

object; (2) change the shape of the contact surfaces; (3) change the ma-
terial and friction of the contact surfaces. In Fig. 9, the 11 curvature
types of the surfaces can represent most kinds of commonly grasped
objects. The surface on the sensor of the thumb is flat sandpaper.

Data synchronization. The image data and force/torque data are
synchronized using LEDs. The LEDs are connected to the F/T sen-
sor directly; therefore, LED signals and force data are synchronized
beforehand. LEDs have signals of 1 and 0, representing on and off,
respectively. To increase the accuracy, two LEDs are used for each
camera, and only one LED is on or off. The sequences of LED signals
collected from images and forces are scaled to the same frequency,
and the cross-correlation of the sequences is calculated. Consequently,
based on the cross-correlation, the force data is shifted to synchronize
the image data.

3.2.2 Image Alignment

Image alignment was developed to reduce the variance caused by the
finger orientation and location in the visual data. Before this, however,
the mean shift algorithm (Comaniciu et al., 2000) was used to track
the finger in the video stream. The fingernail and its surrounding
skin were then segmented from the background based on the edge,
and the fingernail geometry centers were shifted to the same position
in the images. To segment the finger image robustly, we transferred
the image from RGB to HSV, and changed hue and saturation to dis-
tinguish the finger from the background and then transferred the
segmented image back to RGB. With this approach it was possible to
segment a fingernail from a background color very close to skin color.

In fingertip RGB images, red and blue channels varied little with con-
tact forces. Earlier we demonstrated alignment with convolutional
neural networks (Chen et al., 2014) but the method we now propose
achieves a high quality without reconstruction of a 3D finger model.
In short, alignment transformations were generated using the blue
channel of the image (Fig. 10), using the following method.

Given a reference image R, every subsequent image J was aligned us-
ing non-rigid image alignment (Myronenko and Song, 2010). In short,
assume that the two images have the following intensity relationship:

R = J(T) + v + z (64)

where v is an intensity correction field, z ∼ N(0,σ2) is zero-mean
Gaussian noise, and T is the geometric transformation that registers J
onto I. To estimate v and T , we minimized the objective function

E(v, T) = D(v, T) +w‖Pv‖2 (65)

38 measuring fingertip forces from camera images

camera 2

camera 1

marker 1 marker 3

(a) Recording system. (b) Recording system
(Cont’d)

Polhemus
position/orientation
sensor (diameter 11 mm)

ATI Nano 17 6-axis
force/torque sensors

Exchangable plate
for selecting different
surfaces (forefinger)
Magnetic washer

Niobium magnet

Touched surfaces
35x35 mm

Backlash avoiding spring

Width 49.5 mm

Target ring in Perspex

Hole diameter 20 mm
Rubber band keeping the
the target in position

LED illuminating
the perspex for
lifting command

Table

PVC tube

Hole cover sandwich,
free moving
(fabric-plywood-fabric)

Hole in the table
(diam 50 mm)Center aligning rod

(flexible 3mm PVC)

Electro-magnet
165 gram

Electro-magnet
330 gram

Fabric for
low friction

Magnetic plate
attached to the
instrumented
object

Angled edge for
easy removal of
the friction plateFixed plate

(thumb)

(c) The grasped object. The object above the table is visible for the subjects.

Figure 8: Setup. (b) F refers to the forces of the fingertips, where x and z

represent lift and grip directions, respectively.

3.2 methods 39

y

16 mm
z

Spheric

x

Cylindric

x

y

x

Flat Silk

r=20mm r=10mmr=80mm r=40mm

r=10mmr=40mm r=10mmr=40mm

Flat Sandpaper

16 mm

#1#2#3#4

#5#6#7#8

#9#10#11#12

16 mm
z

x

Figure 9: Contact surfaces for the index finger. Odd rows are the front view,
and even rows are the top view. # 1 to # 11 are sandpaper and # 12

is silk. r represents the radius of the surface. # 5 to # 8 are flat in
the x or y direction; therefore, r only represents the radius of the
non-flat direction.

40 measuring fingertip forces from camera images

Figure 10: Image alignment. The columns from left to right are the reference
image, the images before alignment, the aligned images and the
mesh transformation. The finger images are in the green channel.
The more deformation the image (row 2, column 2) has before
alignment, the more mesh transformation (row 2, column 4) it is.

where

D(v, T) = ‖R − J(T) − v‖2 (66)

is a measure of the similarity of R and J, and ‖Pv‖2 is a regulariza-
tion term that penalizes some properties of v, e.g., unsmoothness (the
scalarw thus parameterizes the trade-off between the data fitness and
regularization).

We model the transformation T by using the free-form defor-
mation transformation with three hierarchical levels of B-spline
control points. We update the transformation parameters via
gradient-descent optimization.

3.2.3 Predictors

The fingernail and surrounding skin color distribution and defor-
mation reflected the changes of contact force. Several variants of
predictors were developed to construct the mappings from the
finger images to the fingertip contact force/torque and contact
surface curvatures. Below we describe in detail the four prediction
methods: Gaussian Process (GP) regression and Convolutional
Neural Networks (CNN), Neural Networks (NN) and Recurrent
Neural Networks (RNN). GP and CNN performed best out of the
four methods. While the GP produced slightly better results than
the CNN, the CNN was considerably faster. The time-independent
models (GP, CNN and NN) over-performed the time-dependent
model (RNN), which coincides the i.i.d. assumption of the data.

Gaussian Process Regression. In our implementation of GP (see Sec-
tion 2.1.6), the inputs X := (x1, x2, . . . , xN)T were aligned images re-
shaped to 1D vectors. The associated targets y := (y1, y2, . . . , yN)T

were the measured forces and torques and the curvature of the sur-
face in contact with the fingertip. In a simple case without loss of

3.2 methods 41

input

5×5

covolution

output

2×2

subsampling

5×5

covolution
2×2

subsampling
fully connected

Figure 11: Architecture of convolutional neural networks for fingernail im-
ages.

generality, we assumed the GP has a zero mean function, and used
the squared exponential (SE) covariance.

The GP predictor was able to train one model for all participants but
then the data set increased, of course, to tens of thousands of images.
To avoid the issue of large computational costs, we implemented the
fully independent training conditional approximation (FITC).

Convolutional Neural Networks. Our implementation of CNNs
contained six layers (Fig. 11): a first convolutional layer followed
by a first max-pooling layer, another convolutional layer followed
by a second max-pooling layer, and finally, two fully connected
perceptron layers. Both convolutional layers featured a 5×5 sized
filter, the first layer employed 8 kernels, the second layer 25 kernels.
We used square error loss. See Section 2.1.3 for more information on
CNNs.

Neural Networks with Fast Dropout. We have an alternative method,
multilayer perceptron (MLP), mapping the image vectors to the tar-
gets. To reduce over-fitting during training process, fast dropout is
used (see Section 2.1.2.1).

Recurrent Neural Networks with Fast Dropout. Since picking up
and placing is a sequence movement, a recurrent neural network is
employed to process the sequence data. To ensure that the i.i.d. as-
sumption of the data set is correct, we compare the RNN with time-
independent models.

42 measuring fingertip forces from camera images

RNN with fast dropout (RNN-FD) (Bayer et al., 2014) can be straight-
forwardly implemented as FD applied to NN. See Section 2.1.4 and
2.1.2.1 for information on RNNs and FDs.

3.2.4 Calibration and postprocessing

Torque calibration. The output of the F/T sensors consists of the
forces and torques applied on each sensor, but these are not exactly
equal to the fingertip forces and torques because of the shift of the
contact position and the rotation of the finger with respect to the
sensor. Therefore, we calibrate the data to correct the fingertip forces
and torques. The forces and torques are calibrated separately. After
training a force/torque predictor by the calibrated training and val-
idation data, calibration of the testing data is only for the purpose
of checking the accuracy of the results. When the system is used “in
production”, the calibration process is not required. Our approach to
compute fingertip force and torque does not depend on knowing the
axis of the fingertip nor on knowledge of the spatial orientation of
the manipulated object.

Torque calibration is detected by means of finger contact positions.
We have the mapping from the force f to the torque τ:

τx = fzy− fyz, τy = −fzx+ fxz, τz = −fxy+ fyx, (67)

where {x,y, z} is the contact position with respect to the sensor coor-
dinate.

Given the force and torque, there are infinitely many possibilities for
the contact positions computed from (67). We calculate approximately
the contact positions: first, using x and y to estimate z ′ based on the
shape of the surfaces, ad second, estimating x ′ and y ′ by

x ′ =
τy − fxz

′

−fz
and y ′ =

τx + fyz
′

fz
, (68)

where {x ′,y ′, z ′} is the updated contact position.

The calibrated torques {τ ′x, τ ′y, τ ′z} are then updated:

τ ′x = τx − (fzy
′ − fyz

′),

τ ′y = τy − (−fzx
′ + fxz

′),

τ ′z = τz − (−fxy
′ + fyx

′). (69)

We repeat the above steps until the torques converge. z is initialized
to 0.

Force calibration. Due to the finger rotation during grasping, the
forces on the fingertip are rotated with respect to the sensor coor-
dinate. The mapping from the finger image to the force is surjection

3.3 experiments and results 43

for the rotation with respect to the x and y axes, so that we only cali-
brate fx and fy, which are rotated with respect to the z axis. We focus
on force rotation calibration using two printed markers (see Fig. ??)
for each finger.

First of all, a rectangular marker is designed such that the pose (posi-
tion and orientation) of the rectangle can be detected by a 2D camera
using HALCON (MVTec). The four line segments of the rectangle
border are detected, and the corresponding intersections are taken as
corners of the rectangle. Once the internal camera parameters and the
rectangle size in space and the detected corners are known, the rect-
angle pose in the camera space can be initially estimated. After that,
a nonlinear optimization approach updates the final pose through
minimization of the cost function, which is the geometrical distance
between the detected borders and the back projection of the space
rectangle onto the image. Basically, we can compute where the rect-
angle is in space.

Given the coordinate of a rectangle marker, the difference in the po-
sitions of two markers can be used to estimate the orientation θ of
the finger with respect to the marker on the sensor. We select a frame
as the reference frame and estimate the angle θr. Thus, fx and fy are
calibrated by rotating (θ− θr) with respect to the z axis.

Marker Calibration. In the case of recording the data at different
times, the marker location on the finger can be changed. Since
the marker on the finger is pasted without calibration, simple
pre-processing is required for the marker orientation calibration. For
this, we record a small data set and rotate the ground truth of fx and
fy with respect to the z axis in [−20, 20] degrees with one-degree
steps. Subsequently, we choose the angle with the minimum error as
the marker orientation of the testing data and match it to the same
orientation in the training data set.

Postprocessing. To reduce the prediction noise, we smoothed the out-
puts from the predictors. Weighted linear least squares and a 2nd-
degree polynomial model were used for local regression. In addition,
it assigned lower weight to outliers in the regression to smooth the
data robustly.

3.3 experiments and results

3.3.1 Data

Kinematic and kinetic data were acquired with an experimental
setup used previously (Luciw et al., 2014). In short, five healthy,
right-handed participants (ages of 19∼65; one female) were asked to

44 measuring fingertip forces from camera images

repeatedly grasp and lift an instrumented object using their thumb
and index finger. A light-emitting diode (LED) mounted into a
translucent Perspex rectangle above the object signalled the start of a
trial and when the object should be replaced on the support table.

The unpredictable weight of the object varied between 165, 330 and
660 g. The contact surfaces at the two digits could easily be changed
between any of 12 surfaces all but one covered with sandpaper: 4

spherical convex surfaces (c=12.5, 25, 50 or 100 m−1), 4 cylindrical
convex surfaces (c1 and c2=0, 25 or 100), 2 surfaces with triangular
surfaces, and 2 flat surfaces (one with sandpaper and one with silk).
There were thus 36 weight × surface combinations. All participants
repeated each combination in unpredictable orders 5 times, i.e., they
all perform a total of 180 grasp-and-lift trials.

To measure the contact force/torque, the subjects pinched the object
between their thumb and index finger. Each of the two contact sur-
faces were coupled to a six-axis force/torque sensor (ATI F/T 17).
The series of trials divided into segments by detecting the forces for
the starting point and releasing point. The light intensity at the nails
was 120 lux at the index finger and 150 lux at the thumb.

As an extension of (Urban et al., 2013; Grieve et al., 2010), which
restricted the norm force range to [0, 10]N and the shear force to
[−2.5, 2.5]N, our experiments allowed the subjects to pick the object
up with natural norm force up to 15.5 N. Specifically, the smaller fric-
tion (silk surface) requires the larger norm force.

The testing samples are selected from time-continuous data. This in-
creases the prediction difficulty compared to (Grieve et al., 2013),
where the testing data was randomly selected from the whole data
set.

We use root-mean-square error (RMSE) to evaluate the results. The
unit of force and torque are N and Nmm, respectively, except when
it is specifically noted.

3.3.2 Force/torque Prediction

One of five series is selected as testing data set for each kind of
surface and object weight for Gaussian Process. Therefore, approxi-
mately 20% is testing data and 80% is training data. In addition, to
avoid over-fitting for CNN, NN-FD and RNN-FD, 25% of the GP train-
ing data is selected as validation data and 75% is training data while
the testing data set is the same as that of GP.

Although each subject has a slight different range of force and
torque, the data set is approximately in the range of fx [−0.9, 4]N,

3.3 experiments and results 45

0 2 4 6 8 10 12
force magnitude [N]

0

0.5

1

1.5

2

R
M

S
[N

]

fx
fy
fz

(a) RMS error in force compo-
nents fx, fy, fz over five subjects.
The percentiles are computed sep-
arately in fx, fy and fz.

0 5 10 15
force magnitude [N]

0

0.5

1

1.5

2

2.5

R
M

S
[N

]

S1
S2
S3
S4
S5

(b) RMS error in predicted force
length magnitude.

0 5 10 15
force magnitude [N]

0

20

40

60

80

100

R
M

S
[d

eg
re

e]

S1
S2
S3
S4
S5

(c) RMS error in angle between
predicted and surface normal (fz).
With increasing the force, the error
decreases.

0 5 10 15
force magnitude [N]

0

1

2

3

4

5

6

R
M

S

S1
S2
S3
S4
S5

(d) RMS error in Normal
(grip):Tangential (load) force ratio.
The ratio is possibly extremely
large when the tangential force is
close to zero. Therefore, the data
with tangential force less than 0.2
is excluded.

0 5 10 15 20 25
torque magnitude [Nmm]

0

2

4

6

8

R
M

S
[N

m
m

]

x

y

z

(e) RMS error in torque compo-
nents τx, τy, τz. The percentiles
are computed separately in τx, τy
and τz.

Figure 12: Index fingers of 5 subjects using GPs. Each subject has one predic-
tor model. One of five series is selected as testing data set for each
kind of surface and object weight. (a)-(e): Each point represents
a percentile of the values in the predicted f or τ for the percent-
ages in the interval from 0 to 100 with five-percentage steps. The
horizontal and the vertical axes are the mean values and the RMS
errors of the percentiles respectively.

46 measuring fingertip forces from camera images

f
x

f
y

f
z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

 [N
]

=
x
=

y
=

z

0

1

2

3

4

5

6

7

R
M

S
E

 [N
m

m
]

c
1

c
2

0

5

10

15

20

25

30

35

40

R
M

S
E

 [m
-1

]

GP
CNN
NN-FD
RNN-FD

(a) The output error.

f
x

f
y

f
z

0

5

10

15

m
ea

n
sq

ua
re

 r
oo

t S
T

D

=
x
=

y
=

z

0

5

10

15

20

25

30

m
ea

n
sq

ua
re

 r
oo

t S
T

D

c
1

c
2

0

50

100

150

200

250

300

350

400

m
ea

n
sq

ua
re

 r
oo

t S
T

D

GP
NN-FD
RNN-FD

(b) The output standard deviation.

Figure 13: Predictor comparison for index fingers of 5 subjects. One of five
series is selected as testing data set for each kind of surface and
object weight. Each subject has one predictor model.

3.3 experiments and results 47

Figure 14: Prediction for S1 using GP. The result of force/torque prediction
is shown. The grey areas are the 95% confidence interval. There
are 36 trials. In each surface type the grasping is ordered by three
types of weights. For observation, the time between two grasping
is set to 0, and the grasping is separated by dashed lines instead.

48 measuring fingertip forces from camera images

Figure 15: Prediction for S1 using GP. The error of force/torque prediction
is shown. The grey areas are the 95% confidence interval. There
are 36 trials.

3.3 experiments and results 49

fy [−2, 0.8]N, fz [0, 15]N, τx [−22, 26]Nmm, τy [−30, 14]Nmm, τz
[−35, 27]Nmm, c1 [0, 200]m−1 and c2 [0, 200]m−1.

The predicted results of the index fingers of five subjects with four
predictors are illustrated in Fig. 13. The accuracy of GP is slightly
higher than that of CNN. On the other hand, CNN is able to effi-
ciently process large data sets, especially image data, so that it is
considerably faster than GP. Because GP and CNN are more accurate
than NN-FD and RNN-FD, the following experiments are only based
on GP and CNN. More information of the index fingers of 5 subjects
using GP is shown in Fig. 12.

To perform further manipulation applications, multiple-finger predic-
tion is crucial. Fig. 16,17 show that the GP accurately predicts the
forces, torques and surface curvatures of the thumbs.

Furthermore, Fig. 14,15 show an example of the prediction of S1 and
Fig. 24 illustrates further details of three trials of picking up and re-
placing an object. It is able to predict norm forces of higher than
10 N, although when it is close to 15 N it is not as accurate as lower
force predictions. The x axes of the fingers are almost vertical, which
makes the sum of the fx of the index finger and thumb is approxi-
mately equal to the object gravity during the holding process. fz of
the index finger and thumb are approximately equal to each other. At
the low force frames, the fingernail images of different surfaces are
very similar to each other, especially when the fingers have no contact
to the surfaces, which causes that the surface curvature prediction c1
and c2 is not as accurate as that of the high-force frames.

The current data processing method runs at approximately 30 Hz for
an image resolution of 111× 105 pixels, using an off-the-shelf GPU
processor. Speedup is possible, e.g., by reducing the image resolution
or using advanced hardwares.

3.3.3 Surface Cross validation

Our approach is capable of predicting the force and torque by sur-
face cross validation (see Fig. 18, 19). The testing data set is surface 3,
which is never shown in the training or validation data set.

3.3.4 Predictor for all subjects

In this experiment, the training, validation and testing data sets are
the same as in Section 3.3.2, but all subjects are combined in one
model. To handle the large dataset size issue of GP, we randomly
reduce the training data set to 30% and use GP-FITC with 17% induc-
ing points chosen from the training data. On the other hand, CNN

50 measuring fingertip forces from camera images

0 2 4 6 8 10 12
force magnitude [N]

0

0.5

1

1.5

2

R
M

S
[N

]
fx
fy
fz

(a) RMS error in force components fx,
fy, fz.

0 5 10 15
force magnitude [N]

0

0.5

1

1.5

2

2.5

R
M

S
[N

]

S1
S2
S3
S4
S5

(b) RMS error in predicted force length
magnitude.

0 5 10 15
force magnitude [N]

0

20

40

60

80

100

R
M

S
[d

eg
re

e]

S1
S2
S3
S4
S5

(c) RMS error in angle between pre-
dicted and surface normal (fz).

0 5 10 15
force magnitude [N]

0

1

2

3

4

5

6

R
M

S

S1
S2
S3
S4
S5

(d) RMS error in Normal:Tangential
force ratio.

0 5 10 15 20 25 30
torque magnitude [Nmm]

0

2

4

6

8

10

R
M

S
[N

m
m

]

x

y

z

(e) RMS error in torque components τx,
τy, τz.

s

Figure 16: Prediction of the thumbs of 5 subjects using GP. One of five series
is selected as testing data set for each kind surface of the corre-
sponding index finger and object weight. More annotations can
be seen in Fig. 13.

3.3 experiments and results 51

f
x

f
y

f
z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

 [N
]

=
x

=
y

=
z

0

1

2

3

4

5

6

7

R
M

S
E

 [N
m

m
]

(a) The output error.

f
x

f
y

f
z

0

5

10

15

m
ea

n
sq

ua
re

 r
oo

t S
T

D

=
x

=
y

=
z

0

5

10

15

20

25

30

m
ea

n
sq

ua
re

 r
oo

t S
T

D

(b) The output standard deviation.

Figure 17: Prediction of the thumbs of 5 subjects using GP.

does not reduce any training data. As illustrated in Fig. 20,21, CNN
performs more accurately than GP.

GP is more accurate than other models in simple conditions, e.g.,
training each subject separately with small data sets. On the other
hand, CNN is more robust and faster when dealing with large data
with more variables.

52 measuring fingertip forces from camera images

0 2 4 6 8 10
force magnitude [N]

0

0.5

1

1.5

2

2.5
R

M
S

[N
]

fx
fy
fz

(a) RMS error in force components fx,
fy, fz.

0 2 4 6 8 10 12
force magnitude [N]

0

1

2

3

4

5

R
M

S
[N

]

S1
S2
S3
S4
S5

(b) RMS error in predicted force length
magnitude.

0 2 4 6 8 10 12
force magnitude [N]

0

20

40

60

80

100

R
M

S
[d

eg
re

e]

S1
S2
S3
S4
S5

(c) RMS error in angle between pre-
dicted and surface normal (fz).

0 2 4 6 8 10 12
force magnitude [N]

0

2

4

6

8
R

M
S

S1
S2
S3
S4
S5

(d) RMS error in Normal:Tangential
force ratio.

0 5 10 15 20
torque magnitude [Nmm]

0

2

4

6

8

10

R
M

S
[N

m
m

]

x

y

z

(e) RMS error in torque components τx,
τy, τz.

s

Figure 18: Prediction of 5 subjects for surface cross validation. The testing
data set is surface 3. More annotations can be seen in Fig. 13.

3.3 experiments and results 53

f
x

f
y

f
z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

 [N
]

=
x

=
y

=
z

0

1

2

3

4

5

6

7

R
M

S
E

 [N
m

m
]

(a) The output error.

f
x

f
y

f
z

0

5

10

15

m
ea

n
sq

ua
re

 r
oo

t S
T

D

=
x

=
y

=
z

0

5

10

15

20

25

30

m
ea

n
sq

ua
re

 r
oo

t S
T

D

(b) The output standard deviation.

Figure 19: Prediction of 5 subjects for surface cross validation using GP.

3.3.5 Time cross validation

Variables such as finger temperature and lighting vary across time. In
this experiment, the interval of the training and testing data recorded
for S3 is 1 week. Table 1 and Fig. 22 illustrate the results of the GP
prediction.

54 measuring fingertip forces from camera images

0 2 4 6 8 10 12
force magnitude [N]

0

0.5

1

1.5

2

R
M

S
[N

]

fx
fy
fz

(a) RMS error in force components
fx, fy, fz.

0 5 10 15
force magnitude [N]

0

0.5

1

1.5

2

2.5

3

3.5

R
M

S
[N

]

S1
S2
S3
S4
S5

(b) RMS error in predicted force
length magnitude.

0 5 10 15
force magnitude [N]

0

20

40

60

80

100

R
M

S
[d

eg
re

e]

S1
S2
S3
S4
S5

(c) RMS error in angle between
predicted and surface normal (FZ).

0 5 10 15
force magnitude [N]

0

5

10

15

20

25

R
M

S

S1
S2
S3
S4
S5

(d) RMS error in Nor-
mal:Tangential force ratio.

0 5 10 15 20 25
torque magnitude [Nmm]

0

2

4

6

8

R
M

S
[N

m
m

]

x

y

z

(e) RMS error in torque compo-
nents τx, τy, τz. For observation,
we use the absolute value of the
torque.

Figure 20: Prediction of 5 subjects. One model is used for all 5 subjects. One
of five series is selected as testing data set for each kind of surface
and object weight. More annotations can be seen in Fig. 13.

3.3 experiments and results 55

f
x

f
y

f
z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

 [N
]

=
x
=

y
=

z

0

1

2

3

4

5

6

7

R
M

S
E

 [N
m

m
]

c
1

c
2

0

5

10

15

20

25

30

35

40

R
M

S
E

 [m
-1

]

GP
CNN

(a) The output error.

f
x

f
y

f
z

0

5

10

15

m
ea

n
sq

ua
re

 r
oo

t S
T

D

=
x
=

y
=

z

0

5

10

15

20

25

30

m
ea

n
sq

ua
re

 r
oo

t S
T

D

c
1

c
2

0

50

100

150

200

250

300

350

400

m
ea

n
sq

ua
re

 r
oo

t S
T

D

(b) The mean standard deviation output by GP.

Figure 21: Prediction of 5 subjects. One model is used for all 5 subjects.

56 measuring fingertip forces from camera images

0 2 4 6 8
force magnitude [N]

0

0.5

1

1.5

2
R

M
S

[N
]

fx
fy
fz

(a) RMS error in force components fx,
fy, fz.

0 2 4 6 8 10
force magnitude [N]

0.5

1

1.5

2

2.5

3

R
M

S
[N

]

(b) RMS error in predicted force length
magnitude.

0 2 4 6 8 10
force magnitude [N]

0

20

40

60

80

100

120

R
M

S
[d

eg
re

e]

(c) RMS error in angle between pre-
dicted and surface normal (fz).

0 2 4 6 8 10
force magnitude [N]

0.5

1

1.5

2

2.5

3

3.5

R
M

S

(d) RMS error in Normal:Tangential
force ratio.

0 2 4 6 8 10
torque magnitude [Nmm]

0

1

2

3

4

5

6

R
M

S
[N

m
m

]

x

y

z

(e) RMS error in torque components τx,
τy, τz.

s

Figure 22: Prediction of S5 for times cross validation. The interval of the
training and testing data recorded is 1 week. More annotations
can be seen in Fig. 13.

3.3 experiments and results 57

Table 1: Time cross validation error. The interval of the training and testing
data recorded is 1 week. RMSE of force and torque estimation by GP,
as well as the mean of the estimated standard deviation (in brackets)
given by the GP are listed below.

x y z

S1

f 0.778(0.500) 0.197(0.179) 1.33(1.46)

τ 3.86(4.16) 2.81(2.86) 3.80(3.29)

3.3.6 Subject cross validation

In this experiment, we take S3 as the testing dataset, and the other
four subjects as the training and/or the validation data sets. CNN
can predict whether the force increases or decreases, but cannot accu-
rately estimate the quantity of the forces, while GP only has constant
outputs. CNN functions relatively well regardless of to changes to
lighting, rotation and shift of the images. In contrast, GP is sensi-
tive to these variables and has difficulty if these variables are never
shown in the training data. In addition, the fingernail color distribu-
tion varies from subject to subject, which is the main reason for the
inaccurate prediction in both methods.

3.3.7 Human grasping analysis

The approach can be used in settings such as robot teleoperation,
force-based control and so on. As an example of the applications, we
analyze human grasping in (Johansson and Flanagan, 2009) using the
result of our predictor.

For observation, Fig. 24 only shows fx, fz and τz, which are most
significant for picking up and replacing in our experiments. It is eval-
uated using S1 grasping surface 3. From the figure, grasping can be
seen in six steps: reaching, loading, lifting, holding, replacing and
unloading. Other surfaces have similar plots for the steps.

Consider the index finger as an example, the loading starts from the
critical point of forces between zero and nonzero. Lifting is from fx
peak to torque peak. Holding keeps both forces and torques stable.
Replacing is from torque peak until fx peak and unloading is from
the lowest point of torque to zero forces.

58 measuring fingertip forces from camera images

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]

0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5
time [s]

-50

0

50

z [N
m

m
]

a
b c

d e f
g h i

(a) Grasping the object with flat sand-
paper surface.

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]
0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5
time [s]

-50

0

50

z [N
m

m
]

a
b c

d e f
g
h i

(b) Grasping the object with flat silk
surface.

Figure 23: Grasping analysis of S1 with 330 g weight. The dashed lines are
the ground truth and the solid lines are the prediction. The load
force is the force length magnitude of fx and fy and the grip force
is fz. The phases of the trials (Johansson and Flanagan, 2009) in-
clude: a - reaching phase; b - preload phase; c - loading phase; d
- transitional phase; e - static phase; f - replacement phase; g - de-
lay; h - pre-unload phase; i - unloading phase. h and i phases are
possible integrated into one phase, which depends on the plac-
ing behaviour of the subjects. With the decreasing of the friction,
the ratio (grip force × load force−1) increases to avoid slipping.
Subfigures in the third row are the position of the object.

3.3 experiments and results 59

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]

0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5
time [s]

-50

0

50

z [N
m

m
]

(a) Grasping of S1 the object with
165 g weight.

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]

0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5
time [s]

-50

0

50

z [N
m

m
]

(b) Grasping of S1 the object with
330 g weight.

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]

0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5 6
time [s]

-50

0

50

z [N
m

m
]

(c) Grasping of S1 the object with
surface 660 g weight.

0

5

10

lo
ad

 fo
rc

e
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e
[N

]

0

20

40

po
si

tio
n

[m
m

]

0

5

gr
ip

 fo
rc

e
 lo

ad
 fo

rc
e

-1

0 1 2 3 4
time [s]

-50

0

50

z [N
m

m
]

(d) Grasping of S2 the object with
660 g weight.

Figure 24: Grasping analysis of different subjects with surface 2 and differ-
ent object weights. The sum of the load force of the thumb and
index finger are approximately equal to the object gravity during
the holding process.. The difference of the load force of the thumb
and the index finger is caused by the inclination of the object. The
grip forces of the thumb and the index finger are approximately
equal to each other. See more annotations in Fig. 23.

60 measuring fingertip forces from camera images

3.4 conclusions

This chapter has presented a method measuring finger contact force,
torque, and surface curvature using the deformation and color dis-
tribution of the fingernail and its surrounding skin. Compared with
prior studies, we remove a constrained lab setting with perfect condi-
tions and restrictions. We then capture fingernail images when sub-
jects make contact with various surfaces. After conducting non-rigid
finger image alignments, we train force/torque and contact surface
prediction models using the aligned images. The results show that
the models accurately predict the force/torque used for picking up
and replacing an object for multiple fingers and multiple people. The
models were evaluated across surfaces and variables (e.g., finger tem-
perature and lighting).

We compared four machine learning methods on their ability to pre-
dict force, torque and contact surface. The time-independent models
is more accurate than the time-dependent model; therefore, the i.i.d.
assumption of the data set is verified.

Throughout this chapter, we have studied models of "static move-
ment" representations. Sequential data is commonly studied in move-
ment modeling as well, which lead us to turn in next chapters to
time-dependent models such as reinforcement learning and dynamic
movement primitives.

Part IV

D Y N A M I C M O V E M E N T P R E D I C T I O N

4
S TA B L E R E I N F O R C E M E N T L E A R N I N G W I T H
A U T O E N C O D E R S F O R TA C T I L E A N D V I S U A L D ATA

As seen in the previous chapter, "static movement" representation was
explored for a data set with an i.i.d. assumption. In many common
scenarios, movements do not have this assumption. Particular such
data sets are sequential data including time-series data (e.g., speech
and video) and ordered data (e.g., genes). In sequential data sets, the
recent observations are more informative than the current observa-
tion in predicting the next value. In this and next chapters, we focus
on cases with time-series data.

A time-series model, reinforcement learning, is now discussed to en-
able robots to learn new skills. However, it is non-trivial to take
high-dimensional observation data, such as sensor reading of visual
and tactile feedback, into consideration. In addition, since it is not
straightforward to learn temporally stable representations, unsuper-
vised deep learning, specifically, autoencoders, is modified to repre-
sent the temporal movements. Subsequently, dynamic modeling are
used to predict control policies from reinforcement learning.

4.1 introduction

To minimize the human engineering effort when teaching a robot
new skills, robots should be able to learn through trial and error as
formalized in the reinforcement learning framework. Reaching, grasp-
ing, and manipulation skills rely on high-dimensional sensor inputs:
visual feedback is crucial in locating objects (Lampe and Riedmiller,
2013), whereas tactile feedback is critical for robustness to pertur-
bations and inaccuracies (Lampe and Riedmiller, 2013; Pastor et al.,
2012). Such high-dimensional sensory inputs pose a major challenge
to reinforcement learning (RL) algorithms.

In robotics tasks, RL methods have addressed this challenge by rely-
ing on human-designed features to represent policies or value func-
tions. For example, Lampe and Riedmiller (2013) used the center of
mass extracted from visual images. A popular policy parametriza-

63

64 stable reinforcement learning with autoencoders

Figure 25: A 5-DoF robot with 228-dimension tactile sensor data learns
to manipulate in a learned three-dimensional latent space. The
right figure shows the latent representation of the tactile data. In
the left figure, different robot states yield the depicted points in
latent-space.

tion uses dynamic motor primitives to generate trajectories to be
tracked (Kroemer et al., 2015; Chebotar et al., 2014; Kroemer et al.,
2010; Kalakrishnan et al., 2011; Pastor et al., 2011; Kober et al., 2008).
Feedback can be integrated using e.g. task-specific controllers (Kalakr-
ishnan et al., 2011), anomaly detectors (Pastor et al., 2011), trajecto-
ries in sensor space (Chebotar et al., 2014), or by adding attractors
(Kober et al., 2008). Designing such features or feedback terms is
non-trivial in complex and high-dimensional sensory domains. These
task-specific features are strongly dependent on manual tuning. We
propose to instead learn policies in a widely applicable form from
high-dimensional sensory inputs.

In previous work (van Hoof et al., 2015b,a), a RL method was pro-
posed that uses non-parametric policies, which are widely applicable
and do not rely on engineered features. This method is based on dis-
tances between input points. However, the distances are possible to
be less meaningful, since there might be large displacement of the
data caused by noises.

Neural network, c.q., deep learning-based methods have been used
for RL. As described in Chapter 1, autoencoders are a promising la-
tent representation method. We therefore reduce the dimensions us-
ing autoencoders for RL. A related study of our work is (Lange and
Riedmiller, 2010; Mattner et al., 2012). In our work, we will explore
a more advanced method, variational autoencoder (VAE) with dy-
namics, to represent the high dimensional data for RL. For instance,
Fig. 25 illustrates a robot manipulating a pendulum in an autoen-
coded latent space.

4.2 policy search with learned representations 65

We apply the novel method successfully to two tasks—a visual pen-
dulum swing-up task and a robot manipulation with tactile data feed-
back task.

4.2 policy search with learned representations

We consider our approach with two steps: representation learning
from deep autoencoders and non-parametric relative entropy policy
search in the learned latent space.

4.2.1 Learning Representations using Autoencoders

An autoencoder (Rumelhart et al., 1988; Bourlard and Kamp, 1988;
Bengio, 2009) is a deep neural network that transforms the robot
states x ∈ Rd to a latent representation z ∈ Rd

′
using an encoder.

Subsequently, the latent representation is mapped back through a de-
coder (see Section 2.1.5). In this chapter, we used denoising autoen-
coders (DAs, see Section 2.1.5.1) and variational autoencoders (VAEs,
see Section 2.1.5.3), a probabilistic model of data x and latent variables
z.

4.2.1.1 VAE with Dynamics

We modified the VAE to take the transition dynamics into account,
which we expect to yield better representations based on performance
of similar networks proposed by Watter et al. (2015); Krishnan et al.
(2015). A linear layer is added between the encoder and the decoder
(Fig. 26). It predicts the next latent state z̃t+1 from the latent state zt
and action at

z̃t+1 = [zTt aTt]w + b, (70)

where w and b are parameters represented by θa. After that, the
model reconstructs the next state xt+1 from z̃t+1. The transition layer
is chosen to be linear to enforce control-affine dynamics, which are
convenient for control tasks. The modified lower bound is defined as

L(θ, θa,φ; xt, a, xt+1) =Eqφ(z|xt)[logpθ(xt+1|z, a)]

− KL(qφ(z|xt)‖pθ(z)), (71)

taking the dynamics into account.

4.2.1.2 DA with Dynamics

Similar to the VAE with dynamics, the denoising autoencoder with
dynamics takes transitions into account and has an additional layer

66 stable reinforcement learning with autoencoders

tx tz
1

~
tz 1tx

ta

linear

transition
encoder

decoder

REPS

enc

t

enc

t

dec

t 1

dec

t 1

Figure 26: Illustration of the VAE with dynamics. The network is trained
such that the decoder output is close to the next state xt+1. After
training, µenc

t is used as input to the reinforcement learning algo-
rithms, which generates data used to update the network in turn.
µ and σ represent the mean and standard deviation respectively.

as described in (70), written as z̃t+1 = hθa(zt, a), in the latent space.
The weights are updated by optimizing

[θ?, θ ′?, θ?a] = argmin
[θ,θ ′,θa]

n−1∑
t=1

L[xt+1,gθ ′(hθa(fθ(x̃t), a))]
n− 1

,

where, f and g are the decoder and encoder respectively.

4.2.1.3 Latent Space Updates with On-Policy Samples

To represent data most relevant for the current policy, we consider
a variant where we update the autoencoder using samples from the
most recent policies. We can either use data from the most recent
iterations only, or, when little data is available, we can give recent
data a higher weight in the loss function. We will specify the data
used for re-training the latent space for each experiment individually.

4.2.1.4 Non-Parametric Policy Updates

To update the control policy based on the learned representation, we
use the non-parametric relative entropy policy search (NP-REPS, see
Section 2.1.7.1) algorithm introduced in (van Hoof et al., 2015b). This
algorithm aims to maximize the expected rewards obtained by the
policy while bounding the relative entropy between successive poli-
cies. This bound controls the greediness of the algorithm, and thus
prevents overfitting to small batches of data as well as oscillations or
divergence in the learning process.

4.3 experimental set-up and results

In this section, we experimentally study the performance of our pro-
posed algorithms using high-dimensional sensory input. We first per-

4.3 experimental set-up and results 67

form a simulated pendulum swing-up experiment with image data,
and then perform a 5 DOF robot manipulation task with tactile data.

4.3.1 Experimental Set-Ups

To explore environment, the reinforcement learning agent is initial-
ized using 30 roll-outs for the simulated pendulum swing-up task
and 45 roll-outs for the real-robot task with random exploratory pol-
icy. The learned RL model and the policy of the agent are updated
after every iteration. To reduce computations, only the last three it-
erations are used for updating. We set the KL bound ε of REPS to
0.5.

simulated visual pendulum swing-up In this experiment,
we simulate a pendulum that has to be swung up and balanced at
the upright position, based on visual input. We reproduce the set-up
of (van Hoof et al., 2015b), where the pendulum has length l = 0.5m,
mass m = 10 kg, and friction coefficient k = 0.25Ns. The action a is a
torque applied at the pivot, with a maximum of 30 Nm such that the
pendulum cannot be swung up from the downward position directly.

After each time step of 0.05 s, the agent receives a reward according
to r(s,a) = −10θ2 − 0.1θ̇2 − 10−3a2. A rather high level of additive
noise is applied to the controls (with a standard deviation of 4.5Nm).
We ended the roll-out after each time-step with a probability of 0.02,
resulting in an effective discount factor γ = 0.98. For this experiment,
we used 10 roll-outs per iteration.

The agent only has access to images of the pendulum. We render an
image of the pendulum in its current state, as well as a difference
image between visual representations of the pendulum in its current
and previous state (to provide a notion of angular velocity). We blur
the image and difference image with a Gaussian filter to enhance
the spatial generalizability of the kernel. This filter has a standard
deviation of 20% of the image width. Both images are resized to 20×
20 pixels and concatenated into a vector with 800 features. We choose
squared-exponential kernels for all variables.

The denoising autoencoder (DA) has one input layer, five hidden lay-
ers and one output layer. The number of neurons per layer are 800,
120, 50, d ′, 50, 120 and 800 respectively, where d ′ is the number of
latent dimensions. We set the corruption level to 0.2, which means
20% of the image is corrupted in every training image. The DA with
dynamics uses the same parameters but uses one more layer, as ex-
plained in Sec. 4.2.1.2. For the VAE, we set the number of neurons per
layer to 800, 512, d ′, 512, and 800, respectively. All network parame-
ters where chosen to minimize the reconstruction error. The VAE with

68 stable reinforcement learning with autoencoders

5 DOF

robot

BioTac
sensor

pole

angle
sensor

roll

pitch

Figure 27: Set-up of the tactile control experiment. The five-DoF robot
touches a blue pole that can rotate about two axes using the green
BioTac fingertip sensor. The pitch and roll of the pole are mea-
sured to provide a feedback signal, but not used in the control
policy.

dynamics has the same architecture, except the layer from zt to zt+1,
as shown in Fig. 26. The encoder networks in both VAE and VAE with
dynamics used the square as the transfer function for the σ output.
We furthermore evaluate a VAE that is retrained on the three most
recent iterations with each policy update.

With this set-up, we want to answer two questions. First, we want to
investigate which type of autoencoder is most suitable to find features
for the reinforcement learning task. Secondly, we want to validate
whether updating the autoencoder to represent the states visited by
the most recent policy improves learning of the task.

real-robot tactile control experiment In this exper-
iment, a 5 degree of freedom robot manipulates a pole through
a SynTouch BioTac tactile sensor on the end-effector (see Fig. 27).
The pole is on a platform which is able to rotate in roll (α) and
pitch (β), measured in degrees. Two angle sensors are mounted
on the platform to measure the pole angles. The initial position of
the pole is a 5◦ rotation from the central position with a uniformly
random angle. The task for the robot is to move the pole to the stable
center position where α and β are zero degree by manipulating
the top of the pole. The reward function defining this upright pole
position as a goal is r(s,a) = 60(exp (−(α2 +β2)/60) − 1). The reset
probability is set to 0.05 (equivalent to γ = 0.95). In this experiment,
we use 15 roll-outs per iteration.

The input to the neural network is a 12-time step window of the 19

electrodes of the BioTac sensor, yielding 228-dimensional input data.

4.3 experimental set-up and results 69

We used a hidden layer with 512 neurons and a feature layer with
three neurons, chosen based on reconstruction error. In this experi-
ment, the σ values of the decoder networks are constant, independent
of z. Actions consist of an increment in forward-backward and left-
right position. The desired position is kept constant during the 33ms
time window. The control frequency is 2.8 kHz.

As the data size recorded on the real robot is relatively small, sampled
data from all previous iterations is used to retrain the autoencoder.
Recent data is more relevant than older data, and therefore errors on
recent data were given a bigger weight in the loss function (triple
weight for the most recent iteration, and double for the iteration be-
fore that).

4.3.2 Results of the Visual Pendulum Swing-up Experiments

number of roll-outs

0 50 100 150

a
v
e

ra
g

e
 r

e
w

a
rd

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

autoencoder

dA

VAE 3

VAE 5

VAE retrained

PCA 5 retrained

baseline (raw)

number of roll-outs

0 50 100 150

a
v
e

ra
g

e
 r

e
w

a
rd

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

autoencoder with dynamics

Figure 28: Comparison of learning curves for the pendulum task using rep-
resentations learned with different types of autoencoders. Shown
are results of denoising autoencoders (DA) with 10 latent vari-
ables, and of variational autoencoders (VAE) with three or five la-
tent variables. For the best category of encoders, ‘VAE 5’, we also
compare to a version that is retrained with every policy update.
Error bars show the sample standard deviation. Averages are cal-
culated over five independent runs, using a single learned fea-
ture space per encoder type. The ‘retrained’ encoder is retrained
independently for each run. Rollouts contained 50 time steps, on
average.

In the first evaluation on the simulated visual pendulum swing-up
task, we compared different types of autoencoders and inspect the ef-

70 stable reinforcement learning with autoencoders

fect of re-training the encoder on the most recently sampled data. For
the evaluation, we use five independent trials for each feature repre-
sentation. The results of this experiment are shown in Fig. 28. Com-
pared to the denoising autoencoder, most variational autoencoders
provide representations that yield higher average rewards when used
with reinforcement learning compared to using the raw sensor data,
a truncated PCA with five components, or the denoising autoencoder
in our tasks. An exception is the variational autoencoder with three
latent features without additional dynamics. The learned represen-
tation for this type of encoder is presented in Fig. 29. Without the
dynamics information, points which are regularly spaced in the orig-
inal space are not so in the learned feature space. The encoder that
forces the dynamics to be linear learned a more regular feature space.
In the other cases, the encoders with dynamics also tended to yield
slightly better representations.

Figure 28 also shows the performance based on features that are up-
dated as the policy improves. These updates should intuitively ensure
that the variational autoencoder focuses on representing the states
visited by the current policy. In our experiment, updating the autoen-
coder this way improves the learning progress. As training the en-
coder is a computationally expensive procedure, we only performed
this evaluation for the most promising encoder type.

4.3.3 Results of the Tactile Manipulation Robot Experiment

The visual pendulum experiment indicates that the representation
learning of retrained VAE with dynamics performed best. This rep-
resentation was thus used for the robot manipulation task. Fig. 30

shows the learned representation of the tactile sensor. With this rep-
resentation, the average reward of five independent trials increased
from -49.5 to -13.8 in 165 roll-outs, and thereafter it achieved -9.9
using exploiting policy. However, the average reward is -52.0 in 165

roll-outs with the raw tactile data.

4.4 discussion and conclusion

In this study, we have presented a reinforcement learning algorithm
that learns non-linear policies in a low-dimensional latent space of an
autoencoder with high-dimensional sensory inputs.

In a simulated visual pendulum swing-up experiment, variational
autoencoders obtained significantly better results than other dimen-
sion reduction methods including denoising autoencoder and PCA.
We developed variational autoencoders to be time-dependent, which
force the data to have a more meaningful latent space, rather than en-

4.4 discussion and conclusion 71

(a) VAE, angle (b) VAE, velocity

(c) VAE+dynamics, angle (d) VAE+dynamics, velocity

Figure 29: Visualization of the learned feature spaces by the VAE with 3

latent features. The graph shows the three-dimensional feature
space, represented by the x, y and z axis. The inputs are visual
data with a grid over the state space—the position and the veloc-
ity of the pendulum. The color encodes the pendulum angle (left
column) or velocity (right column). The latent space was learned
using the variational autoencoders (top row), or the modified en-
coders with system dynamics (bottom row). The angle and veloc-
ity are not directly available to the learning algorithm, but are
used to calculate the learner’s reward. All learned structures re-
flect the periodic nature of the angle variable.

code individual input patterns. The modified VAE tended to improve
reinforcement learning performance. Re-training the encoders on the
state distribution induced by the policy markedly improved perfor-
mance. In this case, the encoder objective incurs the biggest loss for
states that are most relevant to the policy, and therefore, such states
are likely to be represented especially well in the learned latent space.

In a real-robot experiment, a manipulation task was performed with
high-dimensional tactile data. The latent space encoded the contact
information, specifically, the roll and pitch of a handled pole, from
tactile sensor into a low latent space. In this latent representation, the
robot successfully learned policy to stabilize the pole.

In this chapter, we developed a novel model of the latent representa-
tion using the current state and action at time t and the next state at
t+ 1. In the next two chapters, we will exploit the sequential patterns

72 stable reinforcement learning with autoencoders

(a) roll (b) pitch

Figure 30: Latent space for tactile sensor. The axes represent three-
dimensional latent values, the samples are colored according to
roll and pitch of the platform. The visualization shows that in the
learned latent space, the pitch and roll components are perpen-
dicular to each other.

with long sequences which are probably more informative than that
of two time steps. In addition, the dynamic movement model and the
latent representation are trained separately in this chapter. We there-
fore will discuss whether seamless integration of these two types of
models affects the patterns of the latent space.

5
E F F I C I E N T M O V E M E N T R E P R E S E N TAT I O N B Y
E M B E D D I N G D Y N A M I C M O V E M E N T P R I M I T I V E S
I N D E E P A U T O E N C O D E R S

In Chapter 4, it is found that a model that combines a reinforcement
learning setting and deep autoencoders, can build meaningful latent
spaces and predict movements. The latent representation was learned
by integrating the current and next states and the current controller
into autoencoders. In order to develop a more powerful latent rep-
resentation, it is necessary to exploit long sequence movements into
unsupervised learning models, which is the main goal of this chapter.

In addition, besides reinforcement learning, an alternative algorithm,
Dynamic Movement Primitives (DMP), is also a remarkable model
for human and robot movements. Following the research presented
in Chapter 4, a method is presented that embeds DMP into a deep
autoencoder for human movement prediction. The embedded archi-
tecture then allows the DMP and the autoencoder to be trained as a
unit, which forces the latent space to be more meaningful.

To further improve the generalization ability of the model, sparsities
are added to clearly distinguish different movements in the latent
space, which are used for novel motion generation. Additionally, the
model is able to reconstruct missing data and change the goal attrac-
tor.

5.1 introduction

The compact representation of movement sequences is a key element
in predicting or analyzing such movement. For voluntary limb move-
ment, simple polynomial approximations may suffice as these can
represent minimal acceleration change over time (Flash and Hogan,
1985). However, for more complex movements, involving interaction
or whole-body motion, such simple models do not suffice; indeed, a
closed-form representation can usually not be found.

Dynamic movement primitives (DMP) were developed to represent
movement for programming by demonstration (Ijspeert et al., 2002).

73

74 dynamic movement primitives in deep autoencoders

latent space
encoder decoder

joint space

Figure 31: AE-DMP: Describing movement modified in latent space.

They represent nonlinear dynamic systems by second-order differ-
ential equations, if the parameters are correspondingly tuned. Ad-
ditional parameters allow their variation with respect to their state
space, thus varying, for instance, speed of motion. In their original in-
terpretation, DMPs are learned in joint space of the robot or human.
This has the disadvantage that adaptation of the DMP parameters has
no clear relationship to the task space, and the DMPs do not general-
ize well. Also, setting the DMPs up in task space (Pastor et al., 2009) is
problematic for high-dimensional systems, e.g. for humanoid or hu-
man movement. Instead we were inspired by the approach in (Bitzer
and Vijayakumar, 2009) by representing the movement in a physically
not defined, latent, space. In that paper, the authors propose to em-
bed DMPs in Gaussian Process Latent Variable Models (GPLVM) by
(a) having the GPLVMs learn a latent space of the movement, and
(b) applying DMPs in that latent space.

Alternative approaches, building on the representational power of
deep neural networks, have obtained competitive results. In (Taylor
et al., 2007; Sutskever et al., 2009; Boulanger-Lewandowski et al., 2012)
connectionist models were trained to represent human movement;
these methods rely on binary latent variables of which it is question-
able whether they pose a reasonable prior for human or humanoid
kinematics. Bayer and Osendorfer (2014) propose a recurrent archi-
tecture with continuous latent variables, but their approach does not
exploit prior knowledge on human motion.

In the approach we take in this study we extend deep neural net-
works in the form of autoencoders (Vincent et al., 2008) with DMPs.
The autoencoder is used to learn a nonlinear dimension reduction of
its data, leading to latent representations of these data in a layer of
hidden units (as exemplarily illustrated in Fig. 31). However, rather
than having these hidden units represent general data, we restrict
them to be DMPs which can optimally represent dynamic movement,

5.2 autoencoded dynamic movement primitives 75

x y z~y~

)2(
Th)1(

Th)3(
Th

)2(
'Tg

)1(
'Tg

)3(
'Tg

50 36 20 5 5 20 36 50

Figure 32: Architecture of AE-DMP. × represents the joints removed by de-
noising. Numbers indicate hidden layer sizes.

and generalize to similar movements of the system that is represented.
In effect, we constrain the latent representation to represent the dy-
namics of the investigated system.

In the sequel we will formally define our approach and demonstrate
its use on human kinematic data from the CMU Motion Capture
Database.

5.2 autoencoded dynamic movement primitives

In this section, our new model of deep autoencoders, and specif-
ically, denoising autoencoders (see Section 2.1.5.1), fitted with dy-
namic movement primitives (see Section 2.2.1) will be presented. In
order to extract the features, a deep autoencoder (Rumelhart et al.,
1988; Bourlard and Kamp, 1988; Bengio, 2009) is used to reduce the di-
mensionality from instantaneous high-dimensional joint information,
while DMPs are able to make use of the feature data for a movement
coded in time.

5.2.1 Autoencoded Dynamic Movement Primitive

Our model embeds DMP into denoising autoencoder seamlessly by
taking DMP as one of the hidden layer as shown in Fig. 32. The num-
ber of hidden layers can be increased to form deeper architectures.

The parameters w can be trained using various machine learning
methods such as locally weighted regression (LWR) (Schaal and Atke-
son, 1998) and Gaussian Mixture Models (GMM) (Calinon et al., 2012).
However, in order to fit DMP into autoencoder, the learning of w is
accomplished using neural networks.

76 dynamic movement primitives in deep autoencoders

Therefore, given a sequence of data, {x1, x2, . . . , xm}, in the observa-
tion space, the minimizer of AE-DMP is rewritten from (17) and (63)
as

w?, θ?, θ ′? = arg min
w,θ,θ ′

m∑
i=1

{
L(xi, z̃i) + λL

[
fi, ftargeti

]}
, (72)

where λ is a penalty parameter, and different from (17) z̃ is the re-
construction of the human movement in joint space based on the out-
put of the DMP component ỹ. The second term of the the penalty
L(fi, ftargeti) enables the DMP output to follow the demonstration
accurately in the feature space. In addition, without L(fi, ftargeti), the
neural networks take Ψ as the input and the encoder layers are miss-
ing during the training process. The weights are updated for a whole
sequence batch. We have one w for one demonstration, because DMP
is a model trained by one demonstration.

We pre-train the model by denoising autoencoder and DMP sepa-
rately, then obtain the final weights from (72). Thus, the model au-
tonomously learns movements in the feature space without hand-
engineered representations.

5.2.2 Sparse AE-DMP

When the data contains multiple motions, AE-DMP is able to
switch the motions or interpolate novel motions between existing
ones. Sparse AE-DMP is an effective approach to achieve this with
reasonable explanation in the hidden units. Adding an extra term
of l1 norm penalty to the loss function, sparsity (see Section 2.1.5.2)
enforces hidden units to be rarely active (Nair and Hinton, 2009)

L(y) = η
m∑
i=1

‖yi‖1, (73)

where η is a penalty parameter. We then have a sparse solution for y.
For various movements, sparsity is designed to deactivate a part of
hidden neurons for distinguishing the movements, so l1 norm which
can yield extreme small values of y is chosen. On the other hand, l2
cannot deactivate the neurons and the derivation of pseudo-norm l0
is not smooth.

Thus, for multiple movements, sparsity encodes one movement into
only a few hidden units while other movements into other units.
To switch or interpolate existing movements, we can simply deacti-
vate/activate or interpolate these hidden units. This approach can be
used as a motion primitive library for further development such as
movement segmentation and recognition.

5.3 experiments 77

5.3 experiments

5.3.1 Human Motion Data

We use the CMU Graphics Lab Motion Capture Database to evaluate
AE-DMP. That database is created by tracking 41 markers on human
subjects during walking, jogging, etc. using a Vicon optical tracking
system. The data are preprocessed using Vicon Bodybuilder to render
limb joint angles, leading to a 62-dimensional feature vector. Of these,
6 values are almost constant (shoulder and finger movement, having
an insignificant variance < 10−26) and are ignored. Another set of
6 values represent the origin frame, and can be removed after all
data are represented with respect to this frame. The resulting feature
vector used in this study is 50-dimensional. For the purpose of this
paper we evaluated results on 5 subjects (viz. Subject 35, 49, 74, 120

and 143) with various movements. Subject 49, 74, 120 and 143 are
randomly selected, while subject 35 is stable, which is widely used
for algorithm evaluation (Schölkopf et al., 2007; Bitzer et al., 2008).

Before training to the AE-DMP, the data is normalized in every di-
mension to zero mean and range in [−1, 1]. Visualization is done by
means of the software described in (Urtasun et al., 2008).

In the following experiments, we use the mean square error (MSE ±
standard deviation) to numerically evaluate the model. All results are
reported in radians.

5.3.2 Features in the Hidden Neurons

To illustrate what movement the hidden neurons in AE-DMP encode,
we train the model using a walking motion in this experiment. 21 se-
quences are trained and every sequence is segmented or scaled to 70

frames. After that, additional results of 5 subjects with 1 sequence for
every movement are evaluated. We use the autoencoder to reduce the
input dimensionality from 50 to 5. The used autoencoder consists of
one input layer, 3 encoder layers with 36, 20 and 5 neurons respec-
tively, one dynamic movement primitive layer, and 3 decoder layers
plus output layer (see Fig. 32). The number of neurons in every layer
is chosen for minimization of the reconstruction error for autoencoder.
In the DMPs we use 20 weighting kernels Ψ of the primitive. Follow-
ing Ijspeert et al. (2013) we set βz = 0.25αz to obtain critical damping.
βz can be tuned to vary the movement between smoothness and ac-
curacy of following the given trajectory.

78 dynamic movement primitives in deep autoencoders

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

hidden neuron 1

hi
dd

en
 n

eu
ro

n
2

Figure 33: Data in hidden neurons of integrated AE-DMP. The blue stars in
the upper figure are a sequence data in the two hidden neurons,
and the red circles in the upper figure are selected to be plotted
in the lower figure in the joint space. For visualization, the se-
lected points probably are shifted to a grid in the lower figure.
The front leg of the human model smoothly changes from the left
leg to be the right leg in the lower figure from the top to down.
Additionally, a walking movement can be seen in a counterclock-
wise direction in the lower figure.

5.3 experiments 79

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

hi
dd

en
 n

eu
ro

n
3

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

steps

hi
dd

en
 n

eu
ro

n
2

(a): no regularization

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

hi
dd

en
 n

eu
ro

n
3

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

steps

hi
dd

en
 n

eu
ro

n
2

(b): with regularization

Figure 34: AE-DMP trajectory in the feature space. The red line, extracted
from the autoencoder, is the ground truth of the DMP, and the
blue line is the DMP prediction of the trajectory. In the top fig-
ure, the DMP prediction without regularization is given. For the
bottom two figures, the regularization term f is added.

Fig. 33 shows the data distribution in two of the five hidden neurons
after the DMP component. The distribution is plotted in those two
which have the two largest variances.

A movement of walking in feature space is illustrated in Fig. 34 for
two hidden neurons; other hidden neurons render similar images.
Hidden neuron 2 has the largest variance among all of the hidden
neurons while hidden neuron 3 has the smallest. The DMP compo-
nent in the AE-DMP is able to model the motions in the hidden
space. The mean square error of the experiment in the joint space
is 3.8 · 10−4 ± 1.2 · 10−3 rad.

Fig. 34 demonstrates the effect of the regularization term
L(fi, ftargeti). In Fig. 34(a), the autoencoded input to the DMP is
given (red line) as well as the output of the DMP, without using
this regularization term. In addition, Fig. 34 shows the improved
prediction when adding L(fi, ftargeti).

A major strength of our method is caused by integrating the dimen-
sionality reduction with the DMP-based movement representation.
Other approaches, such as (Bitzer and Vijayakumar, 2009), separate
these steps by first doing a dimensionality reduction and then rep-

80 dynamic movement primitives in deep autoencoders

resenting the resulting latent space in DMPs. To demonstrate the
advantage of our integrated approach we represented the 5 subjects
with different movements (a) in our AE-DMP model, and (b) by first
running an Autoencoder-based dimensionality reduction, and then
using DMPs in the resulting latent space. The results are numeri-
cally reported in Table 2. The same movement results are shown in
Fig. 36 with more details in every joint. For simple, smooth move-
ment movements (in particular, balancing), the non-integrated model
compares to the integrated AE-DMP. However, for movements, and
esp. jerk movements such as kicking and complicated movement such
as tai chi, show a considerable improvement of AE-DMP over the
non-integrated model. In AE-DMP, the constraints that the DMP im-
pose on the latent representation force the autoencoder to smoothen
the hidden values, leading to much improved results. For instances,
Fig. 35 illustrates the jerk trajectory of kicking in the hidden space
using non-integrated model, but the trajectory is smooth by the inte-
grated model.

Compared with DMP and state of the art PCA dimensionality reduc-
tion for DMP, AE-DMP is more accurate as shown in Table 2. Similar
as non-integrated method, both DMP and PCA-DMP have difficulty
on jerk movement, and PCA-DMP lose some information of the move-
ments during dimensionality reduction. For comparison, all the three
models use the same parameters for DMP and PCA reduces dimen-
sions to 5.

5.3.3 New Motion Generation

In this experiment, the walking movement and jogging movement
are trained in one model. The training data includes 21 sequences of
walking and 9 sequences of jogging.

Using sparse AE-DMP, there are 3 types of hidden values for multiple
movements as shown in Fig. 37. By activating, deactivating or interpo-
lating though hidden neuron 2, new movements are generated. As an
example, Fig. 38 illustrates new movement generation from walking
by activating the hidden neuron 2. The generated movement follows
the walking demo in the terms of rhythm, while only the gesture be-
comes to jogging; therefore, the generated movement is slow jogging
which has never shown in the training data. The interpolation of neu-
ron 2 based on the walking movement has new motions between the
middle and bottom of Fig. 38. Because we do not have ground truth
of the new motion, it is not numerically evaluated.

The basic AE-DMP without sparsity can also generate or interpolate
new motions from existing movements, but it is relative complicated
because the hidden neurons which distinguish the motions may have

5.3 experiments 81

10 20 30 40 50 60 70
−1

0

1

hi
dd

en
 n

eu
ro

n

step

(a): Integrated AE-DMP. Other
4 trajectories of hidden neu-
rons are as smooth as the
illustrated trajectory.

10 20 30 40 50 60 70
−1

0

1
hi

dd
en

 n
eu

ro
n

step

(b): Non-integrated AE-DMP. 2

out of other 4 hidden neurons
have jerk trajectories as the
illustrated trajectory.

Figure 35: AE-DMP trajectory of kicking movement in the feature space. The
red line, extracted from the autoencoder, is the ground truth of
the DMP, and the blue line is the DMP prediction of the trajectory.

walking

balancing

kicking

tai chi

punching

AE−DMP
non−integrated

AE−DMP
non−integrated

AE−DMP
non−integrated

AE−DMP
non−integrated

AE−DMP
non−integrated

Figure 36: R-squared accuracy (
√
R2). The R-squared value is indicated by a

gray value, with black for 1 and white for 0. The horizontal axis
represents 50 joints.

intersection. Compared with the basic AE-DMP, it simplifies the prob-
lem to single hidden neuron modification using sparsity.

82 dynamic movement primitives in deep autoencoders

Table 2: Error of the movement modeling, averaged over all joints over a
whole movement. The error is MSE ± SD of the joint angle in ra-
dians. The AE-DMP is superior in all cases, but in particular for
highly dynamic movements.

RMSE

movement walking balance kicking tai chi punching

subject # 35 49 74 120 143

AE-DMP 3.3·10−4 2.8·10−4 2.3·10−4 3.4·10−4 1.5·10−4

non-integrated 5.1·10−4 2.9·10−4 21 ·10−4 25 ·10−4 2.4·10−4

DMP 5.6·10−4 2.7·10−4 20 ·10−4 26 ·10−4 8.4·10−4

PCA-DMP 11 ·10−4 6.0·10−4 45 ·10−4 38 ·10−4 17 ·10−4

SD

movement walking balance kicking tai chi punching

subject # 35 49 74 120 143

AE-DMP 1.2·10−3 1.7·10−3 3.7·10−3 1.7·10−3 0.93·10−3

non-integrated 2.4·10−3 1.8·10−3 30 ·10−3 12 ·10−3 1.7·10−3

DMP 2.5·10−3 1.8·10−3 27 ·10−3 13 ·10−3 4.4·10−3

PCA-DMP 4.0·10−3 2.4·10−3 28 ·10−3 14 ·10−3 57 ·10−3

5.3.4 Reconstruction for Missing Joints

To illustrate the validity of our method, we demonstrate missing
value imputation of missing joints and missing sub sequences. The
DMP component is not used for joint reconstruction—this will be
part of the next section. Denoising autoencoders have been shown to
be generative models (Bengio et al., 2013): it turns out that corrupting
an input and feeding it through the denoising autoencoder performs
a step in a Markov chain, of which the equilibrium distribution is
equal to the data generating distribution. This enables a principled
missing value imputation method.

Let xJ denote the observed parts of the input x; conversely, let xJ̄
denote the non-observed parts of the input. To find a reasonable im-
putation x̂, we can thus pass xJ∪xJ̄ through the autoencoder to obtain
x(1)J and x(1)

J̄
. Here, the former is not corrupted, necessitating an adap-

tion of the weights by a factor of 1− p. x(1)J is henceforth discarded,

and xJ ∪ x(1)
J̄

passed through the network. This process is repeated to

5.3 experiments 83

0 10 20 30 40 50 60 70
−0.1

0

0.1

hi
dd

en
 n

eu
ro

n1

walking
jogging

0 10 20 30 40 50 60 70
−0.1

0

0.1
hi

dd
en

 n
eu

ro
n2

0 10 20 30 40 50 60 70
−0.1

0

0.1

step

hi
dd

en
 n

eu
ro

n3

Figure 37: Feature representation of sparse AE-DMP. There are 3 kinds of
hidden neurons for multiple movements. Both of walking and
jogging are active as shown in the top figure, which encodes the
information such as frequency of the movement; jogging is ac-
tive while walking is not active as shown in the middle figure,
which encodes the gesture of the movement; both of walking and
jogging are not active as shown in the bottom figure.

Figure 38: Novel motion generation. The top two rows are the training data
of jogging and walking. The bottom row shows jogging genera-
tion from walking. It is a time sequence from left to right and
plotted every 6 steps.

give x(k)
J̄

, which will be an unbiased sample of p(xJ̄|xJ). We then use

x̂ = xJ ∪ x(k)
J̄

as the datum with imputed values. For our experiments,
the chain converged after k = 4 steps. See Fig. 39 for an illustration.

84 dynamic movement primitives in deep autoencoders

fill random

number

joint missing
reconstructionreconstruction

with corruption

reconstruction

without corruption

Figure 39: Missing joint reconstruction process. The red dashed lines are
the ground truth of the missing joints with the corresponding
limbs and the red solid lines are missing joints with correspond-
ing limbs during reconstruction process.

In the experiments, we removed four right leg joints or four left arm
joints out of fifty joints to generate two time sequences of testing data.
Notably, a denoising autoencoder can reconstruct the missing joints
in one frame without the time sequence information. The reconstruc-
tion error in joint space is shown in Table 3.

5.3.5 Reconstruction for Missing Section

We train the model as in Section 5.3.2, and the testing data has a demo
of the first 10 frames while the last 60 frames are missing. Fig. 40

shows the reconstruction for the hip pitch and knee pitch of the right
leg while other joints have similar plot. The error is 8.1·10−4± 3.4·10−3
rad.

5.3.6 Changing Goal Attractor

AE-DMP maintains the generalization properties of DMP. Taking
punching movement as an instance, Fig. 41 shows generalization
with changing the attractor landscape. All of the start points are the
same, while the testing movements are generalized with the shifted
goals. The result is shown in two largest variance neurons.

In this punching movement, it does not require scaling properties or
invariance properties. For other movements such as writing which

5.4 conclusions 85

Table 3: Result of reconstruction for missing joints in joint space. The error
is MSE ± SD of the joint angle in radians.

joint name hip pitch hip yaw hip roll knee pitch

MSE 1.5·10−3 1.1·10−3 0.33·10−3 5.0·10−3

SD 2.0·10−3 1.3·10−3 0.50·10−3 8.5·10−3

joint name shoulder pitch shoulder yaw shoulder roll elbow pitch

MSE 0.74·10−3 0.73·10−3 0.38·10−3 2.7·10−3

SD 0.91·10−3 0.97·10−3 0.048·10−3 3.6·10−3

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

jo
in

t a
ng

le

0 10 20 30 40 50 60 70
0

0.5

1

1.5

jo
in

t a
ng

le

step

Figure 40: Filling data for missing section. The top and bottom figures are
the hip pitch and knee pitch of the right leg respectively. The red
solid line is the demo motion of testing data, the red dotted line
is the truth of the missing section, and the blue solid line is the
data filled using AE-DMP.

need invariance properties, the right side of (54) can be easily multi-
ply by (g − y0) (Ijspeert et al., 2013).

5.4 conclusions

In their standard formulation, DMPs suffer from suboptimal
generalization—when used in configuration space—or are a victim
of the curse of dimensionality—when used in task space. This is
especially true for high-dimensional data sets, e.g. while representing

86 dynamic movement primitives in deep autoencoders

−1 −0.8 −0.6 −0.4 −0.2 0
−1.1

−1

−0.9

−0.8

−0.7

−0.6

hidden neuron 1

hi
dd

en
 n

eu
ro

n
2

start point

Figure 41: Changing goal attractor of punching movement in latent space.
The solid line is the demonstration, the dashed line is the gener-
alization movements with various goal attractors, and the black
circles are the shifted goals.

the movement of human(oid) limbs. We present AE-DMP, a model
that integrates DMPs with autoencoders to perform dimensionality
reduction while optimally representing movement in latent feature
space. The integration is shown to create a movement feature space
in which DMPs can efficiently code and generalize movement.

To elaborate the connections and difference of various types of move-
ments in feature space, we develop AE-DMP using sparsity. Sparse
AE-DMP (SAE-DMP) can generate new movements which are not in
the training data set by simply switching on/off or interpolating one
hidden neuron. The new movement combines features of the existing
two. For instance, slow jogging is generated based on walking and
switching the movement type to jogging.

Experiments on a public motion capture database demonstrate that
the model can accurately fill in corrupted data. The autoencoder facil-
itates the reconstruction of missing joints, while the DMP represents
the dynamics to reconstruct missing movement sections.

However, generalization of a large amount of movement in a shared
latent space still remains challenging. In subsequent work, the aim is
to solve this issue by integrating a probabilistic model, variational au-
toencoder (VAE), with DMPs. Since VAE maximize the probabilistic
independence in latent space, it will lead to a representation where
the DMPs represent statistically independent parts of the movement,
thus maximizing the generalizability.

6
D Y N A M I C M O V E M E N T P R I M I T I V E S I N L AT E N T
S PA C E O F T I M E - D E P E N D E N T VA R I AT I O N A L
A U T O E N C O D E R S

As can be seen in Chapter 5, the AE-DMP model benefits from rep-
resentation of autoencoders and prediction of DMP. In the follow-
ing work, we discuss modeling from the perspective of a probabilis-
tic approach. DMPs are integrated with a more powerful representa-
tion tool, time-dependent variational autoencoders (VAE), to obtain a
probabilistic version of VA-DMP. The model allows the use of DMP
dynamics for sampling the latent variables in the VAE, thus steer the
movement.

A shared latent representation for multiple movement types is then
exploited, which is not implemented in the previous chapter. Also,
the model has excellent generalization abilities such as switching be-
tween movements and changing goals. Additionally, when it repro-
duces the movement, optimal movements are generated.

6.1 introduction

In earlier work Gaussian Process Latent Variable Models (GPLVM)
(Lawrence and Moore, 2007; Bitzer and Vijayakumar, 2009) and
denoising autoencoder (see Chapter 5) have been investigated
for movement representation in latent space using DMP. These
approaches efficiently reduced the data representation dimensions
and enabled new movements generated by simply changing param-
eters in the latent space. However, these methods are only used to
represent one, or at most two, different movement types; for more
different movements, different models have to be trained. ProMP can
combine and switch between different movements, and its dimension
reduction model, dimension reduction ProMP (DR-ProMP) (Colome
et al., 2014), was investigated for high-dimensional movements based
on Expectation Maximization (EM). However, ProMP-based methods
blend the movement via points which the trajectories go through,
and require multiple demonstrations for each movement type to
construct a sufficient probabilistic model.

87

88 dynamic movement primitives in variational autoencoders

In Chapter 4, we have shown that, in a reinforcement learning set-
ting, variational autoencoders (VAE) can build more meaningful la-
tent spaces than autoencoders or PCA. Following that line of thought,
here we propose to use a VAE rolled out in time to reduce the dimen-
sions for DMPs. To this end, we use a technique called Deep Varia-
tional Bayes Filtering (DVBF) (Karl et al., 2017). Our approach is an
incremental advancement of DVBF and DMP by exploring DVBF to
learn movements from multi-demonstrations, as well as benefiting
from the latent representation of time-dependent VAE. Integration of
DMPs with DVBF increases the constraints of the latent space, and
therefore forces the distribution of the movements in the latent space
to be meaningful. In our approach we train a model with a shared
latent space for various similar as well as different movements. In
contrast to ProMP, our method switches the movement completely,
and does so by representing different movements in different “parts”
of the latent space.

6.2 method

Our approach consists of a modified DVBF which represents the high-
dimensional data in a latent space and DMPs (see Section 2.2.1) which
learns movements from demonstrations in the latent space. We focus
on the discrete case, but an extension to rhythmic dynamical systems
is straightforward by modifying the basis functions

6.2.1 DMP in latent space

The VAE, as formulized in the Section 2.1.5.3, has no internal state,
and therefore cannot represent temporal dependencies in the input
data. There are several ways of dealing with this; one possibility is
extending the VAE to be a recurrent neural network (Bayer and Os-
endorfer, 2014; Chung et al., 2015). While having their merit in, e.g.,
anomaly detection (Sölch et al., 2016), their prediction capabilities are
not as good as expected (Theis et al., 2016). Furthermore, it is not
clear how a control signal can be included.

A different, very promising approach is obtained by rolling a VAE out
in time. This approach, called Deep Variational Bayes Filtering (DVBF)
was published in (Karl et al., 2017). In this paper we use DVBF to
embed DMPs in VAE (see Fig. 42). By using this approach, we can
directly learn all parameters—including the DMP parameters—using
back-propagation.

6.2 method 89

1x 1z 2z

2x

encoder
enc

1

enc

1

1f

decoder

nz

nx

1nf

1 1n

dec

2
dec

2
dec

n
dec

n

transition

1x

dec

1
dec

1

Figure 42: VAE-DMP information flow for the generative movement.

6.2.1.1 Problem Formulation

Given a movement x1:n = {x1, x2, ..., xn}, where n is the length of the
movement, we want to model the movement in latent space z1:n =

{z1, z2, ..., zn}. In order to embed DMP into DVBF, (53) is formulated
for the transition function from zt to zt+1 in the latent space as

τz̈t+1 = α
(
β(zgoal − zt) − żt

)
+ ft + ε

żt+1 = z̈t+1dt + żt
zt+1 = żt+1dt + zt (74)

where dt is the step duration, zt is the movement in latent space
at step t, zgoal is the goal in the latent space corresponding to the
final frame of movement in the joint space xn, ft ∈ Rd

′
is modified

from (54) by changing the dimension to fit the latent space, ε = ε̂wε,
ε̂ ∼ N(0,Σε) is the system noise, and wε ∈ Rd

′×d ′ is the weight for
the noise, so that the scale of the noise is learned autonomously.

Eq. (74) can be simplified as[
zt+1
żt+1

]
= A

[
zt
żt

]
+ b, (75)

where the transition matrix is computed as

A =

[
−dtαβ1τ −dtα1τ + 1

−αβ1τ −α1τ

]
dt + I, (76)

and the control input is defined as

b =

[
dt

1

]
(αβzgoal + ft + ε̂)dt

1

τ
. (77)

90 dynamic movement primitives in variational autoencoders

I is an identity matrix.

Instead of generating ftarget as (59) and (63) to find its parameters,
we embed the DMP transition into DVBF and train its parameters
through backpropagation.

6.2.1.2 Inference model

The encoder network is only used for the initial and goal states. We
take a diagonal Gaussian distribution with mean µt and covariance
Σt. The encoding process is qφ(z|x) = N(z|µt, diag(σ2t)).

The mean and covariance are encoded by a neural network

µenc
t = wenc

µ hφ(xt) + benc
µ ,(

σenc
t

)2
=
(
wenc
σ hφ(xt) + benc

σ

)2, (78)

where, hφ denotes an activation function. wenc
µ , wenc

σ , benc
µ and benc

σ

are parameters. Based on a deep neural network, we parameterize
the mean and variance of a Gaussian distribution.

We can get another representation of a latent space of the initial and
goal frames by a transition function z?t = g(zt). The transition func-
tion g can be, e.g., a multilayer perceptron (MLP). In the sequel, we
will use z? in lieu of z. The transition forces the Gaussian-shaped
latent space to be replaced by any other kind of shapes.

During training, εt+1 is predicted from zt and xt+1, while ε is sam-
pled from the prior without zt or xt+1 for generating movement after
training. ε is diagonal Gaussian distribution

εt+1 ∼ pγ(εt+1|xt+1, zt) = N(µnoise
t ,Σnoise

t), (79)

where γ are the weights of neural network. The mean µnoise
t and co-

variance Σnoise
t are encoded by a neural network.

6.2.1.3 Generative model

We segment a movement into sub-sequence with length of l. The gen-
erative model includes decoders with l = 1

qφ(zt|xt) = N(µenc
t ,Σenc

t), (80)

and with l > 1

q̂φ̂(zt+1|zt, ft, εt). (81)

Consequently, the generated observation x̂ is

x̂t ∼ pθ(xt|zt) = N(µdec
t ,Σdec

t). (82)

6.2 method 91

(81) is the transition from zt to zt+1, which is described in the next
subsection.

We take a Gaussian distribution with mean and constant covariance.
Reconstruction (“decoding”) of x is by another neural network,

µdec
t = wdec

µ hθ(zt) + bdec
µ ,

σdec
t

2
= bdec

σ

2
(83)

where hθ is the activation function. wdec
µ , wdec

σ , bdec
µ and bdec

σ are pa-
rameters.

Reconstruction through z from both (80) and (81) enforces the zt+1
from the latent transition to approximate the zt+1 from the encoder.
Therefore, the training model contains both z’s of subsequence length
of 1, which allows xt of every time step to be reconstructed from zt
of (80), and subsequence length of n.

6.2.1.4 Transition model

In the latent space, we predict the local transformation parameters of
f and ε (see Fig. 43). The transition is described as

zt+1 = f(zt, ft, εt), (84)

where f is a function of (75). ε is sample-specific noise. With mean-
ingful transition priors, it avoids overfitting and has meaningful man-
ifolds in the latent space.

The initial ż of the starting of the sequence can be predicted directly
from the encoder with x1:m as the input and {z, ż} as the output,
where 1 < m 6 n. Besides, another approach initializes ż0 through
the first step z1 and its previous step z0 using (74).

6.2.2 Learning

The learning process is through stochastic gradient variational Bayes.

Based on DVBF, the lower bound is rewritten as,

L(x1:n, θ,φ|f1:n)

= Eqφ
[
logpθ(x1:n|z1:n) − logqφ(ε1:n|x1:n) + logp(ε1:n)

]
(85)

= Eqφ
[
logpθ(x1:n|z1:n)

]
− KL(qφ

(
ε1:n|x1:n)‖p(ε1:n)

)
, (86)

where ε1:n = {ε1, ε2, ..., εn} and f1:n = {f1, f2, ..., fn}. f is encoded into
z in (85).

During the training process, ε can act as a shortcut to encode all of the
dynamical information; as a result, f is not learning meaningful val-

92 dynamic movement primitives in variational autoencoders

'

'

'+

Figure 43: Neural network structure of the time-dependent VAE in time step
t. The network structure is similar to a regular autoencoder with
the addition of the DMP transition function in the center. The
nodes εt−1 are stochastic with mean and variance created by the
neural network. The autoencoder takes zt−1 together with xt as
input.

ues. The annealing schedule improves the training of f and smooths
out these local minima (Mandt et al., 2016). (85) is written as

L(x1:n, θ,φ|f1:n) =Eqφ
[
cta logpθ(x1:n|z1:n) (87)

− logqφ(ε1:n|x1:n) + cta logp(ε1:n)
]
,

where cta = max(1, 0.01 + ta/Ta) and ta increases linearly from 0

after every training epoch until cta equals 1.

Having only a small number of demonstrations increases the diffi-
culty of training, since Monte Carlo estimation is used in (84) as in
(Kingma and Welling, 2014). Additionally, a long sequence demon-
stration increases the training time and weakens the structure of the
latent space at the start of the sequence, because of vanishing and ex-
ploding gradients. Therefore, we split a sequence up into overlapping
subsequences to increase the batch size and shorten the sequence. On
the contrary, the model has difficulties in recognizing the dynamics
of the movement with too short subsequences, and consequently, the
latent space might be unstructured. Thus, as a hyper-parameter, the
length of the subsequences, lsub, can be searched during training.

6.2.3 Multi-demonstration model

We extend VAE-DMP by training a single, shared latent space with
multiple motion sequences. With multiple motion sequences (Wil-
son et al., 2007), the model (a) is not limited by the number of se-

6.2 method 93

quences, and (b) is more adaptable to a new movements, e.g., move-
ment switching or goal changing.

Instead of learning the weights w for each type of movement individ-
ually we use a neural network which recognizes the correct weights
from the observations. That way we get a continuous set of weights
where the mapping between movement type and weights is trained
by backpropagation. This neural network has the following shape:

w(x1:n) = g2
(
g1(x1),g1(x2),g1(x3), . . . ,g1(xn)

)
(88)

where g2 and g1 are each fully connected neural networks. We will
call this whole network MLPw.

6.2.4 Movement switching

The first generalization of the model is switching the movements after
training by simply switching the weight w of f and the goal zg. We
have ηi ∈ [0, 1] for movement i. The weight and goal of the new
movements at t step are

w?
t =
∑
i

(
ηitw

i
t∑

i η
i
t

)
, z?gt =

∑
i

(
ηitz

i
gt∑
i η
i
t

)
. (89)

Switching from movement A to movement B, ηA is changed from 1

to 0, and ηB from 0 to 1. Given the starting point and the duration of
switching, ηA and ηB can be estimated.

Goal changing enables the latent value to transfer from movement A
to movement B, while the force term enables the movement to follow
the demonstration trajectory B after switching. If we only change the
goal but not the force term, the movement also switches from A to B;
however, the trajectory is quite random after switching.

6.2.5 Goal changing

The flexible properties of DMPs are retained in VAE-DMP. For in-
stance, it is able to reach new set points by simply changing the
goal after training, while keeping the invariant properties. Following
Ijspeert et al. (2013), to keep the invariant properties, an extra term of
(g − y0) is multiplied to the right side of (54). In addition, it can be
multiplied by (g − y0)/(|gfit − y0,fit|+ η) instead to avoid coinciding
y0 and g, where fit represents the training data and η is a very small
positive constant.

Other reformulations of DMP, e.g. to do obstacle avoidance
(Hoffmann et al., 2009), can be implemented in VAE-DMP
straightforwardly, but here we only focus on goal changing.

94 dynamic movement primitives in variational autoencoders

6.3 experiments

Experiments with two data sets are performed to evaluate VAE-DMP.
The first data set contains optical tracking data of human movements.
The second data set is obtained from 6-DoF robot arm simulations.

6.3.1 High-dimensional human movement

The data set for the first set of experiments is the CMU Graphics Lab
Motion Capture Database, which is a part of the KIT Whole-Body Hu-
man Motion Database1. These data are downsampled and preprocessed
as described in (Chen et al., 2015), and the resulting data consist of
multiple movements, each of which is coded in 70 time steps of 50-
dimensional vectors. The data is normalized to zero mean for every
joint. Since we focus on learning relative movements, the body center
is fixed. We split the movements up into subsequences with lsub = 10

time steps.

The DMPs are set to critical control by setting β = α/4 (Ijspeert et al.,
2013). The VAE architecture is 5 layers with d inputs, 200 hidden
neurons, d ′ latents, 200 hidden neurons, d outputs, where rectifier
and identity activations are used for the hidden layers and the output
layer, respectively. The structure of the VAE is shown in Fig. 43. The
neural network g2 inside the MLPw network has 70× h inputs and
50×d ′ outputs. The g1 network takes 50 inputs and outputs h. Where
h is 10 for the humanoid experiments and 5 for the robot experiment.
Both g1 and g2 have no hidden layers. g1 uses softmax as activation
function and g2 uses the identity activation function. The structure
and sizes of the MLPw network can be seen in Fig. 44. The hyper-
parameters of DMP and VAE are chosen based on the reconstruction
error and the training time by grid search.

6.3.1.1 Learning different movements

In this task we train multiple demonstrations of walking, kicking,
taichi and punching from 5 subjects (viz. subject 35, 74, 49, 120, and
143), all in one and the same model, and compare the results when
we train each movement type to a single, specialised model (called
“VAE-DMP single”). We also compare the results to our previous “AE-
DMP single” (Chen et al., 2015), in which we train one movement
per autoencoder. Fig. 45 shows the pose reconstruction error of our
previous work of AE-DMP single with 5D latent space, VAE-DMP
with 2D, 3D, 5D and 7D latent space, and VAE-DMP single with 5D
latent space. For VAE-DMP single we used 120 rather than 200 hidden

1 https://motion-database.humanoids.kit.edu

https://motion-database.humanoids.kit.edu

6.3 experiments 95

g2

w
50× d ′

g1

50

x1

h

g1

50

x2

h

. . . g1

50

xn

h

Figure 44: Structure of MLPw with input and output sizes. The g1 networks
take the 50-dimensional input xt and has an output with h di-
mensions. g2 has 70× h inputs and 50× d ′ outputs. h is 10 for
the humanoid experiments and 5 for the robot experiments. d ′ is
the number of latent dimensions.

0

1

2

3

4

5

M
S

E

#10-4

0

0.5

1

1.5

2

2.5

S
D

#10-3

0

0.5

1

1.5

2

2.5
ou

tp
ut

 S
D

#10-4

AE-DMP single
VAE-DMP 2D
VAE-DMP 3D
VAE-DMP 5D
VAE-DMP 7D
VAE-DMP single

Figure 45: Error of the reconstruction of the movement modeling. The er-
ror is MSE ± SD of every single subject averaged over all joints
over a whole movement in radians. The result is evaluated us-
ing Mean square error (MSE ± standard deviation). The left and
middle figures show MSE and SD averaged over 5 subjects. The
right figure is the mean output SD (directly predicted from the
encoder) of the VAE-DMP reconstruction. It is a constant value
for every joint during the whole movement, so that output SD of
VAE-DMP 2D, 3D, 5D, and 7D do not have variance.

units in each hidden layer. Noticeable is the improvement over our
previous model, AE-DMP single. When sufficient latent variables are
chosen (in this case, 5 or 7), the error is much lower, even for the
approach where all poses are represented in one model. The lowest
reconstruction error is obtained in VAE-DMP single, with 7D VAE-
DMP a close second.

96 dynamic movement primitives in variational autoencoders

z1

 z2

walking

kicking

balancing

taichi

punching

Figure 46: Movement distribution in 2D latent space. z1 and z2 are two la-
tent dimensions, and every body pose in the joint space is gener-
ated from its corresponding latent state.

Although the reconstruction accuracy of VAE-DMP with 2D latent
space yields to that with 7D latent space, we can more easily plot the
former. Fig. 46 therefore illustrates the distribution of five movements
in the latent space of VAE-DMP 2D. The patterns of the various gen-
erative movements can be seen. The walking is periodic, while punch-
ing is a single line in latent space. Kicking is a large-range movement,
so that it has large range in the latent space, while balancing only has
relative slight movement, and the range in the latent space is small.

The latent space of VAE-DMP is more meaningful than that of VAE
(see Fig. 47). In the VAE latent space, a sequence of movement may
spread far with different spacings for complex movements such as
taichi, since it does not encode time information into the latent space.
Accordingly, big gaps between two time steps may cause difficulties
for DMPs. In addition, a large geometry distance in joint space may
result in a small distance in the VAE latent space such as kicking. With
correctly encoding the geometry distance from the joint space, VAE-
DMP can improve the multi-demonstration model ability compared
with VAE.

6.3 experiments 97

z
1

z 2

(a) VAE

z
1

z 2

(b) VAE-DMP

Figure 47: Trajectories of five human movements in the 2D latent space us-
ing VAE and VAE-DMP. The movements are colored the same as
Fig. 46

Training with additional 4 walking movements from other subjects
(viz. Subject 86, 91, 114 and 139), we have the results shown in Fig. 48;
in this case, a VAE-DMP 3D is used. The five walking movements
distribute in a cluster, disjunct from the other movements. The leg
movements cluster approximately on the positive of the z3 axis, while
the arm movements cluster on the negative of the z3 axis.

6.3.1.2 Latent space smoothness

The latent space of a VAE-DMP codes the learned movements in a
compact, multivariate Gaussian space. As seen in Fig. 46, the demon-
stration trajectories do not span the whole latent space. But what
movements are coded between the demonstrated trajectories? To ver-
ify that no discontinuities or “large jumps” occur when sampling a
trajectory in latent space, we evaluate dx/dz over the whole latent

98 dynamic movement primitives in variational autoencoders

taichi
balancing

kickingwalking

1-1

z1

0

-0.5

1

0z 3

0.5

z2

0

1

-1 -1-2

punching

Figure 48: Nine movements represented in the 3D latent space of a single
VAE-DMP.

Figure 49: Smoothness of the latent space. The plot represents values of
dx/dz, which vary between 4.7 and 7.4 for a 2D VAE-DMP.
Higher values—indicated by lighter areas—mean that a step in
latent space corresponds to a larger body movement in x. The
colored points correspond to the demonstrated movements, as in
Fig. 46. The data are evaluated at 120× 120 grid points in the 2D
latent space.

space of a VAE-DMP. The result for a VAE-DMP 2D is shown in
Fig. 49. In the whole latent space, dx/dz varies between 4.7 and 7.4
and is indeed very smooth. Similar smooth latent spaces are seen in
VAE-DMP 3D and VAE-DMP 5D.

6.3 experiments 99

Figure 50: Body postures in the 2D latent space, in the space spanned by the
multivariate Gaussian. The area covering a variance of σ = 1 is
plotted.

The joint space movements generated in 2D latent space is illustrated
in Fig. 50. As z represents a multivariate normal (µ = 0,σ = 1) dis-
tribution, we can immediately compute the probability of a certain
movement from its z. As the plot shows, the movements between the
demonstrated movements are smoothly interpolated. But also move-
ments beyond that represent viable positions. Only when we move
far away from the mean, starting between 2σ and 3σ does the latent
space represent nonsensical postures. Of course, we can increase the
training data set to obtain a larger confidence interval.

6.3.1.3 Movement switching

A model is trained by multiple demonstrations of a walking and jog-
ging. i = 1 and i = 2 represent jogging and walking in ηi, respectively.
The movements are switched from step 20 until step 38 (see Fig. 51).
The starting and the duration of the switching can be changed. The
model has a 5D latent space, and the largest two variance of the la-
tent space are plotted. After it adapts to the walking from jogging, it
follows the demonstration trajectory of walking. The generated latent
values are not necessary to reproduce the latent values of demonstra-
tion precisely, while the reconstruction ability is more significant.

100 dynamic movement primitives in variational autoencoders

1

0.5
-0.5

z
1

1.5
01

z
2

0.5
0

-0.5-0.5

0z 3

0.5

jogging
walking
switching

(a) Movement switching in latent space.

(b) Movement switching observed in state space. The figures of top three rows are
plotted by every 6 time steps. We choose left hip for representing the joint, since it
exactly follows the walking and jogging rhythm.

Figure 51: Movement switching from jogging to walking.

6.3.2 Robot simulation for goal changing

In this experiment we simulate a 6-DoF KUKA robot using the
Robotic Toolbox (Corke, 2011). In the data set, the length of a
demonstration is 76 steps. The subsequence length is 10 time steps.
For the representation of the movement in the VAE, we use 5 layers
with d, 100, d ′ = 2, 100, d. The input dimension of g1 is d and
the output dimension h is 5. g2 takes n× h inputs and has 50× d ′
outputs.

6.3 experiments 101

Figure 52: Robot data set.

The demonstration xi is generated by moving the end-effector linearly
from a starting point p0 to subsequent points pi, i ∈ {1, 2, . . . , 5} in
Cartesian space. x1 is the demonstration for DMP, while {x1, x2, ..., x5}
are the demonstrations for VAE-DMP (see Fig. 52). p6 and p7 are the
results of changing the goal to [x = 0.5,y = 0.5] and [x = 0.8,y = 0.8],
respectively using VAE-DMP with given the force f1. All movements
were planar, keeping z constant at 0.3.

For method comparison, we use the same version of DMP for both
VAE-DMP and DMP. As described in Sec. 6.2.5, to keep the invari-
ant properties (Ijspeert et al., 2013) for changing the goal, both forc-
ing terms f in VAE-DMP and DMP are multiplied by a scaling term,
specifically, (zgoal − z0) for VAE-DMP cq. (g − y0) for DMP.

Fig. 53 shows the results of both DMP and VAE-DMP when changing
the goal to [0.8, 0.8]. The optimal trajectory is the movement of the
new goal with the end-effector moving linearly from p0. The optimal
trajectory is not shown in the training data set but only its final frame
is given as the new goal. It can be seen that VAE-DMP is able to gen-
erate a movement which is close to the optimal trajectory for the goal
changing. However, DMP can only keep invariance of the demonstra-
tion for every joint independently, the effect of which is most clearly
seen in joints 2 and 4. In this case, the robot joints are highly possi-
ble to be out of range. In contrast, VAE-DMP correlates the joints. In
this experiment, VAE-DMP learns the invariance of the end-effector
instead of every single joint. DMP requires manual selection of the
important feature (e.g., joint angles of a robot or Cartesian space of
the end effector) to learn, but VAE-DMP is able to learn the optimal
trajectory autonomously and reproduces natural movements.

102 dynamic movement primitives in variational autoencoders

0 50 100
0.4

0.6

0.8

1

1.2

1.4

jo
in

t a
ng

le

joint1

0 50 100
0.4

0.6

0.8

1

1.2

1.4
joint2

0 50 100
0

0.5

1

1.5

2
joint3

0 50 100
1.55

1.6

1.65

1.7

1.75

1.8

jo
in

t a
ng

le

joint4

0 50 100

steps

1.8

1.9

2

2.1

2.2

2.3
joint5

0 50 100
-0.5

0

0.5

1
joint6

demonstration
efficient trajectory
DMP
VAE-DMP
new goal

Figure 53: Results of goal changing.

In joint 5, the start and end angle are almost the same in the demon-
stration. This makes generalization with DMP difficult, as the force
term is almost zero. In VAE-DMP, the joints are correlated in the la-
tent space, so that the beginning and ending values are not the same.

6.4 conclusions

In this chapter, we presented a novel approach to embed DMPs into a
time-dependent variational autoencoder. Using a recently published
approach called Deep Variational Bayes Filtering, we can embed DMPs
in the latent space of a variational autoencoder, while simultaneously
representing a large range of different movements in one single DVBF
network. Thus we can also create smooth transitions between differ-
ent movements. While DMPs can only independently keep the invari-
ance per single joint, our approach allows the model to unsupervis-
edly learn the invariance features of the trajectory.

Part V

C O N C L U S I O N

7
C O N C L U S I O N S A N D O U T L O O K

This thesis has presented GP-based and deep-learning based
approaches to address movement representation and time series
prediction issues. Some crucial challenges encountered when
applying the existing work regarding to both of the applications and
the machine learning methods are: (1) how to robustly represent
the movements without strictly restricting environments; (2) how
to solve the computation issues for high dimensional large data; (3)
how to learn the features from high dimensional observation space;
(4) how to efficiently represent large amount of movements. In this
thesis, algorithms were developed to address these issues as follows.

First of all, an approach was developed, using the deformation and
color distribution of the fingernail and its surrounding skin, to esti-
mate the fingertip forces, torques and contact surface curvatures for
various objects, including the shape and material of the contact sur-
faces and the weight of the objects. In addition, compared with pre-
vious single finger estimation in an experimental environment, we
extend the approach to multiple finger force estimation, which can
be used for applications such as human grasping analysis. In exper-
iments, the performance of dynamic approaches yielded to that of
static approaches with regard to the experiments that involved finger
force detection, because of the low frequency of the image data. The
low frequency allows the data to be smooth, which does not require
time series methods such as RNN.

Secondly, designing controllers that take high-dimensional feedback,
such as tactile and visual data, into account is non-trivial. Therefore,
robots should be able to learn tactile skills through trial and error by
using reinforcement learning algorithms. The input domain for such
tasks, however, might include strongly correlated or non-relevant di-
mensions, making it hard to specify a suitable metric on such do-
mains. Auto-encoders specialize in finding compact representations,
where defining such a metric is likely to be easier. Therefore, a re-
inforcement learning algorithm was developed, that can learn non-
linear policies in continuous state spaces, which leverage representa-
tions learned using auto-encoders. The static variational autoencoder

105

106 conclusions and outlook

was modified to reproduce the system dynamics, rather than encode
individual input patterns, which tended to improve reinforcement
learning performance. Re-training the auto-encoders on the state dis-
tribution induced by the policy markedly improved performance.

Thirdly, DMP has been shown to be a powerful method of represent-
ing movements, but does not generalize well when used in config-
uration or task space. To solve this problem we developed a model
called autoencoded dynamic movement primitive (AEDMP) which
uses deep autoencoders to find a representation of movement in a la-
tent space, in which DMP can optimally generalize new movements.
The architecture embeds DMP into such an autoencoder and allows
the whole model to be trained as a unit. To further improve the model
for multiple movements, sparsity was added for the feature layer neu-
rons; therefore, various movements can be observed clearly in the
latent space. After training, the model finds a single hidden neuron
from the sparsity that can efficiently generate new movements. Exper-
iments clearly demonstrate the efficiency of missing data imputation
using 50-dimensional human movement data.

Finally, an alternative method was explored, that embeds DMPs
into the latent space of a time-dependent variational autoencoder
framework. The method enables the representation of high dimen-
sional movements in a low-dimensional latent space. Experimental
results show that this framework has excellent generalization in the
latent space, e.g., switching between movements or changing goals.
It represents a large range of different movements in one single
time-dependent network.

B I B L I O G R A P H Y

B Allen, B Curless, and Z Popovic. The space of human body shapes:
Reconstruction and parameterization from range scans. In SIG-
GRAPH. Addison-Wesley, 2003. (Cited on page 5.)

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Lo-
cally weighted learning for control. In Lazy learning, pages 75–113.
Springer, 1997. (Cited on page 32.)

Justin Bayer and Christian Osendorfer. Learning stochastic recur-
rent networks. In Advances in Neural Information Processing Systems
(NIPS) Workshop on Advances in Variational Inference, 2014. (Cited on
pages 9, 74, and 88.)

Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen,
Sebastian Urban, and Patrick van der Smagt. On fast dropout and
its applicability to recurrent networks. In International Conference on
Learning Representations (ICLR), 2014. (Cited on page 42.)

Yoshua Bengio. Learning deep architectures for AI. Found. Trends
Mach. Learn., 2(1):1–127, January 2009. ISSN 1935-8237. (Cited on
pages 3, 22, 65, and 75.)

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Gener-
alized denoising auto-encoders as generative models. In Advances
in Neural Information Processing Systems (NIPS), pages 899–907, 2013.
(Cited on page 82.)

Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006. ISBN 0387310738. (Cited on pages 5, 15,
and 24.)

Sebastian Bitzer and Sethu Vijayakumar. Latent spaces for dynamic
movement primitives. In International Conference on Humanoid
Robots (HUMANOIDS), 2009. (Cited on pages 7, 74, 79, and 87.)

Sebastian Bitzer, Ioannis Havoutis, and Sethu Vijayakumar. Synthesis-
ing novel movements through latent space modulatoin of scalable
control policies. In International Conference on Simulation of Adaptive
Behaviour (SAB), 2008. (Cited on pages 7 and 77.)

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural networks. In Interna-
tional Conference on Machine Learning (ICML), pages 1613–1622, 2015.
(Cited on page 18.)

107

108 bibliography

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent.
Modeling temporal dependencies in high-dimensional sequences:
Application to polyphonic music generation and transcription. In
International Conference on Machine Learning (ICML), pages 1159–
1166, 2012. (Cited on pages 8 and 74.)

Hervé Bourlard and Yves Kamp. Auto-association by multilayer per-
ceptrons and singular value decomposition. Biological cybernetics,
59(4):291–294, 1988. (Cited on pages 3, 22, 65, and 75.)

Wray L Buntine and Andreas S Weigend. Bayesian back-propagation.
Complex systems, 5(6):603–643, 1991. (Cited on page 18.)

S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell.
Statistical dynamical systems for skills acquisition in humanoids.
In International Conference on Humanoid Robots (Humanoids), Osaka,
Japan, 2012. (Cited on page 75.)

Y. Chebotar, O. Kroemer, and J. Peters. Learning robot tactile sensing
for object manipulation. In IEEE International Conference on Intelli-
gent Robots and Systems (IROS), pages 3368–3375, Sept 2014. (Cited
on page 64.)

Nutan Chen, Göran Westling, Benoni B. Edin, and Patrick van der
Smagt. Estimating fingertip forces, torques, and local curvatures
from fingernail images. submitted.

Nutan Chen, Chee-Meng Chew, Keng Peng Tee, and Boon Siew Han.
Human-aided robotic grasping. In International Symposium on Robot
and Human Interactive Communication (RO-MAN), pages 75–80, 2012.
(Cited on page 5.)

Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin Bayer, and
Patrick van der Smagt. Estimating finger grip force from an image
of the hand using convolutional neural networks and Gaussian pro-
cesses. In International Conference on Robotics and Automation (ICRA),
2014. (Cited on page 37.)

Nutan Chen, Justin Bayer, Sebastian Urban, and Patrick van der
Smagt. Efficient movement representation by embedding dynamic
movement primitives in deep autoencoders. In International Con-
ference on Humanoid Robots (HUMANOIDS), pages 434–440, 2015.
(Cited on page 94.)

Nutan Chen, Sebastian Urban, Justin Bayer, and Patrick van der
Smagt. Measuring fingertip forces from camera images for ran-
dom finger poses. In International Conference on Intelligent Robots
and Systems (IROS), 2015.

Nutan Chen, Maximilian Karl, and Patrick van der Smagt. Dynamic
movement primitives in latent space of time-dependent variational

bibliography 109

autoencoders. In Advances in Neural Information Processing Systems
(NIPS) Workshop on Neurorobotics, 2016a.

Nutan Chen, Maximilian Karl, and Patrick van der Smagt. Dynamic
movement primitives in latent space of time-dependent variational
autoencoders. In International Conference on Humanoid Robots (HU-
MANOIDS), 2016b.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin
Bayer, and Patrick van der Smagt. Metrics for deep generative
models based on learned skills. In Advances in Neural Information
Processing Systems (NIPS) Workshop on Robot Learning, 2017a.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin
Bayer, and Patrick van der Smagt. Metrics for deep generative mod-
els based on learned skills. In Advances in Neural Information Process-
ing Systems (NIPS) Workshop on Workshop on Acting and Interacting
in the Real World: Challenges in Robot Learning, 2017b.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin
Bayer, and Patrick van der Smagt. Metrics for deep generative mod-
els. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2018a.

Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Ben-
bouzid, and Patrick van der Smagt. Active learning based on data
uncertainty and model sensitivity. submitted, 2018b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. (Cited
on page 22.)

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel,
Aaron C Courville, and Yoshua Bengio. A recurrent latent vari-
able model for sequential data. In Advances in neural information
processing systems (NIPS), pages 2980–2988, 2015. (Cited on pages 9

and 88.)

A. Colome, G. Neumann, J. Peters, and C. Torras. Dimensionality
reduction for probabilistic movement primitives. In International
Conference on Humanoid Robots (HUMANOIDS), 2014. (Cited on
page 87.)

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time
tracking of non-rigid objects using mean shift. In Real-time tracking
of non-rigid objects using mean shift, pages 142–149, 2000. (Cited on
page 37.)

110 bibliography

Peter I. Corke. Robotics, Vision & Control: Fundamental Algorithms
in MATLAB. Springer, 2011. ISBN 978-3-642-20143-1. (Cited on
page 100.)

John Darby, Baihua Li, Nicholas Costen, David J. Fleet, and Neil D.
Lawrence. Backing off: Hierarchical decomposition of activity for
3d novel pose recovery. In British Machine Vision Conference, pages
1–11, 2009. (Cited on page 7.)

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey
on policy search for robotics. Foundations and Trends® in Robotics, 2

(1–2):1–142, 2013. (Cited on page 28.)

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez,
and Steffen Udluft. Learning and policy search in stochastic dynam-
ical systems with bayesian neural networks. CoRR, 2016. (Cited on
page 18.)

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):
179–211, 1990. (Cited on page 21.)

Anthony C Fang and Nancy S Pollard. Efficient synthesis of physi-
cally valid human motion. In ACM Transactions on Graphics (TOG),
volume 22, pages 417–426, 2003. (Cited on page 5.)

Tamar Flash and Neville Hogan. The coordination of arm movements:
an experimentally confirmed mathematical model. The journal of
Neuroscience, 5(7):1688–1703, 1985. (Cited on page 73.)

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Ma-
lik. Recurrent network models for human dynamics. In Interna-
tional Conference on Computer Vision, pages 4346–4354, 2015. (Cited
on page 8.)

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, PhD thesis, Uni-
versity of Cambridge, 2016. (Cited on page 18.)

Zoubin Ghahramani. Probabilistic machine learning and artificial in-
telligence. Nature, 521(7553):452–459, 2015. (Cited on page 18.)

Ian Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and
Vinay Shet. Multi-digit number recognition from street view
imagery using deep convolutional neural networks. In Interna-
tional Conference on Learning Representations (ICLR), 2014. (Cited on
page 20.)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. (Cited on page 5.)

Alex Graves. Practical variational inference for neural networks. In
Advances in Neural Information Processing Systems, pages 2348–2356,
2011. (Cited on page 18.)

bibliography 111

T. Grieve, Yu Sun, J.M. Hollerbach, and S.A. Mascaro. 3-d force con-
trol on the human fingerpad using a magnetic levitation device for
fingernail imaging calibration. In Joint EuroHaptics conference and
Symposium on Haptic Interfaces for Virtual Environment and Teleoper-
ator Systems. World Haptics 2009. Third Joint, pages 411–416, 2009.
(Cited on page 36.)

T. Grieve, L. Lincoln, Yu Sun, J.M. Hollerbach, and S.A. Mascaro. 3d
force prediction using fingernail imaging with automated calibra-
tion. In IEEE Haptics Symposium, pages 113–120, 2010. (Cited on
page 44.)

Thomas R. Grieve, John M. Hollerbach, and Stephen A. Mascaro.
Force prediction by fingernail imaging using active appearance
models. In World Haptics Conference (WHC), pages 181–186, 2013.
(Cited on pages 36 and 44.)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016. (Cited on pages 4 and 20.)

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic back-
propagation for scalable learning of bayesian neural networks. In
ICML, pages 1861–1869, 2015. (Cited on page 18.)

Geoffrey E Hinton and Drew Van Camp. Keeping the neural net-
works simple by minimizing the description length of the weights.
In Proceedings of the sixth annual conference on Computational learning
theory, pages 5–13. ACM, 1993. (Cited on page 18.)

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
PhD thesis, diploma thesis, institut für informatik, lehrstuhl prof.
brauer, technische universität münchen, 1991. (Cited on page 21.)

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. (Cited on page 22.)

Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal.
Biologically-inspired dynamical systems for movement generation:
automatic real-time goal adaptation and obstacle avoidance. In In-
ternational Conference on Robotics and Automation (ICRA), pages 2587–
2592, 2009. (Cited on page 93.)

Rachel Hornung, Nutan Chen, and Patrick van der Smagt. Multi-
modal motion modeling. Handbook of Multimodal-Multisensor Inter-
faces (in print).

Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-rigid-
as-possible shape manipulation. In ACM transactions on Graphics
(TOG), volume 24, pages 1134–1141, 2005. (Cited on page 5.)

112 bibliography

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement im-
itation with nonlinear dynamical systems in humanoid robots. In
IEEE International Conference on Robotics and Automation (ICRA), vol-
ume 2, pages 1398–1403, 2002. (Cited on page 73.)

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: Learning attractor
models for motor behaviors. Neural Comput., 25(2):328–373, 2013.
(Cited on pages 31, 32, 77, 85, 93, 94, and 101.)

Roland S Johansson and J Randall Flanagan. Sensorimotor control
of manipulation. In Encyclopedia of Neuroscience, number 8 in Ency-
clopedia of Neuroscience, pages 593–604. Elsevier, 8 edition, 2009.
(Cited on pages 35, 57, and 58.)

Michael I Jordan. Serial order: A parallel distributed processing
approach. Advances in psychology, 121:471–495, 1997. (Cited on
page 21.)

M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force
control policies for compliant manipulation. In IEEE International
Conference on Intelligent Robots and Systems (IROS), 2011. (Cited on
page 64.)

Takeo Kanade and PJ Narayanan. Virtualized reality: perspectives
on 4d digitization of dynamic events. IEEE Computer Graphics and
Applications, 27(3), 2007. (Cited on page 5.)

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der
Smagt. Deep variational Bayes filters: Unsupervised learning of
state space models from raw data. International Conference on Learn-
ing Representations (ICLR), 2017. (Cited on pages 9 and 88.)

Diederik P. Kingma and Max Welling. Auto-encoding variational
Bayes. International Conference on Learning Representations (ICLR),
2014. (Cited on pages 9, 25, 26, and 92.)

Jens Kober, Betty Mohler, and Jan Peters. Learning perceptual cou-
pling for motor primitives. In IEEE International Conference on In-
telligent Robots and Systems (IROS), pages 834–839, 2008. (Cited on
page 64.)

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs.
In ACM transactions on graphics (TOG), volume 21, pages 473–482,
2002. (Cited on page 6.)

R. G. Krishnan, U. Shalit, and D. Sontag. Deep Kalman filters. In
Advances in Neural Information Processing Systems (NIPS) Workshop
on Advances in Variational Inference, 2015. (Cited on page 65.)

bibliography 113

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, pages 1097–1105, 2012.
(Cited on page 20.)

O. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active learn-
ing and reactive control for robot grasping. Robot. and Auton. Syst.,
(9):1105–1116, 2010. (Cited on page 64.)

O. Kroemer, C. Daniel, G Neumann, H. van Hoof, and J. Peters.
Towards learning hierarchical skills for multi-phase manipulation
tasks. In IEEE International Conference on Robotics and Automation
(ICRA), 2015. (Cited on page 64.)

T. Lampe and M. Riedmiller. Acquiring visual servoing reaching
and grasping skills using neural reinforcement learning. In Interna-
tional Joint Conference on Neural Networks (IJCNN), 2013. (Cited on
page 63.)

Sascha Lange and Martin Riedmiller. Deep auto-encoder neural net-
works in reinforcement learning. In International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2010. (Cited on pages 8

and 64.)

Neil Lawrence. Probabilistic non-linear principal component analysis
with gaussian process latent variable models. J. Mach. Learn. Res.,
6:1783–1816, December 2005. ISSN 1532-4435. (Cited on pages 3

and 6.)

Neil D Lawrence and Andrew J Moore. Hierarchical gaussian pro-
cess latent variable models. In Proceedings of the 24th international
conference on Machine learning, pages 481–488. ACM, 2007. (Cited
on page 87.)

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. In Proc
IEEE, volume 86, pages 2278–2324, 1998. (Cited on pages 3, 7,
and 19.)

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolu-
tional networks and applications in vision. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 253–256, 2010.
(Cited on page 19.)

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015. (Cited on page 4.)

Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for de-
tecting robotic grasps. The International Journal of Robotics Research,
34(4-5):705–724, 2015. (Cited on page 31.)

114 bibliography

Deng Li and Yu Dong. Deep learning: methods and applications.
Foundations and Trends® in Signal Processing, 7(3–4):197–387, 2014.
(Cited on page 5.)

Matt D Luciw, Ewa Jarocka, and Benoni B Edin. Multi-channel EEG
recordings during 3,936 grasp and lift trials with varying weight
and friction. Scientific Data, 1:1440047, 2014. (Cited on page 43.)

David JC MacKay. A practical bayesian framework for backpropaga-
tion networks. Neural computation, 4(3):448–472, 1992. (Cited on
page 18.)

Guilherme J Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Li-
outikov, Oliver Kroemer, and Jan Peters. Probabilistic movement
primitives for coordination of multiple human–robot collaborative
tasks. Autonomous Robots, pages 1–20, 2016. (Cited on page 31.)

Alireza Makhzani and Brendan J. Frey. k-sparse autoencoders. CoRR,
abs/1312.5663, 2013. (Cited on page 8.)

Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath,
and David Blei. Variational tempering. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 704–712, 2016. (Cited on page 92.)

J. Mattner, S. Lange, and M. Riedmiller. Learn to swing up and bal-
ance a real pole based on raw visual input data. In International
Conference on Neural Information Processing (NIPS), pages 126–133,
2012. (Cited on pages 8 and 64.)

Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design
and applications. CRC Press, 1999. (Cited on page 4.)

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
Press, 2012. (Cited on page 5.)

Andriy Myronenko and Xubo B. Song. Intensity-based image registra-
tion by minimizing residual complexity. IEEE Trans. Med. Imaging,
29(11):1882–1891, 2010. (Cited on page 37.)

Vinod Nair and Geoffrey E. Hinton. 3d object recognition with deep
belief nets. In Advances in Neural Information Processing Systems
(NIPS), pages 1339–1347. Curran Associates, Inc., 2009. (Cited on
pages 23 and 76.)

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In international conference on machine
learning (ICML), pages 807–814, 2010. (Cited on page 16.)

bibliography 115

Michael Neff and Eugene Fiume. Modeling tension and relaxation for
computer animation. In Proceedings of the 2002 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 81–88. ACM,
2002. (Cited on page 5.)

Andrew Ng. Sparse autoencoder. CS294A Lecture notes, Stanford Uni-
versity, 2011. (Cited on pages 8, 23, and 24.)

James F. O’Brien, Robert E. Bodenheimer, Gabriel J. Brostow, and Jes-
sica K. Hodgins. Automatic joint parameter estimation from mag-
netic motion capture data. In Proceedings of Graphics Interface 2000,
pages 53–60, May 2000. (Cited on page 5.)

Alessandro Panarese and Benoni B Edin. Human ability to discrim-
inate direction of three-dimensional force stimuli applied to the
finger pad. Journal of Neurophysiology, 105(2):541–547, 2011. (Cited
on page 35.)

P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal.
Skill learning and task outcome prediction for manipulation. In
IEEE International Conference on Robotics and Automation (ICRA),
2011. (Cited on page 64.)

P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards as-
sociative skill memories. In IEEE-RAS International Conference on
Humanoid Robotics (HUMANOIDS), 2012. (Cited on page 63.)

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal.
Learning and generalization of motor skills by learning from
demonstration. In International Conference on Robotics and Automa-
tion (ICRA), pages 763–768. IEEE, 2009. (Cited on page 74.)

J. Peters, K. Muelling, and Y. Altun. Relative entropy policy search.
In National Conference on Artificial Intelligence (AAAI), Physically
Grounded AI Track, pages 1607–1612, 2010. (Cited on page 29.)

Zoran Popović and Andrew Witkin. Physically based motion transfor-
mation. In Proceedings of the 26th annual conference on Computer graph-
ics and interactive techniques, pages 11–20. ACM Press/Addison-
Wesley Publishing Co., 1999. (Cited on page 5.)

Lawrence R Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989. (Cited on page 4.)

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006. (Cited on pages 3,
5, 6, and 26.)

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra.
Stochastic backpropagation and approximate inference in deep gen-
erative models. pages 1278–1286, 2014. (Cited on pages 9 and 25.)

116 bibliography

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling,
5(3):1, 1988. (Cited on pages 3, 22, 65, and 75.)

Stefan Schaal and Christopher G. Atkeson. Constructive incremen-
tal learning from only local information. Neural Comput., 10

(8):2047–2084, November 1998. ISSN 0899-7667. doi: 10.1162/
089976698300016963. (Cited on page 75.)

B. Schölkopf, J. Platt, and T. Hofmann. Modeling human motion
using binary latent variables. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1345–1352, 2007. (Cited on pages 4, 8,
and 77.)

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016. (Cited on page 4.)

Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556,
2014. (Cited on page 20.)

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes
using Pseudo-inputs. In Advances in Neural Information Processing
Systems 18, pages 1257–1264. MIT Press, 2006. (Cited on page 27.)

Maximilian Sölch, Justin Bayer, Marvin Ludersdorfer, and Patrick
van der Smagt. Variational inference for on-line anomaly detection
in high-dimensional time series. International Conference on Machine
Learning (ICML) Workshop, 2016. (Cited on pages 9 and 88.)

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014. (Cited on page 17.)

Yu Sun, J.M. Hollerbach, and S.A. Mascaro. Estimation of fingertip
force direction with computer vision. IEEE Tr Robotics, 25(6):1356–
1369, 2009. ISSN 1552-3098. doi: 10.1109/TRO.2009.2032954. (Cited
on page 36.)

Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recur-
rent temporal restricted Boltzmann machine. In Advances in Neural
Information Processing Systems (NIPS), pages 1601–1608, 2009. (Cited
on page 74.)

Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction, volume 1. MIT Press Cambridge, 2012. (Cited on pages 5

and 27.)

bibliography 117

Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis. Model-
ing human motion using binary latent variables. In B. Schölkopf,
J.C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 1345–1352. MIT Press, 2007. (Cited on
page 74.)

Graham W. Taylor, Leonid Sigal, David J. Fleet, and Geoffrey E. Hin-
ton. Dynamical binary latent variable models for 3d human pose
tracking. In The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, pages 631–638, 2010. (Cited on page 8.)

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the
evaluation of generative models. International Conference on Learning
Representations (ICLR), 2016. (Cited on pages 9 and 88.)

Michalis K. Titsias and Neil D. Lawrence. Bayesian Gaussian process
latent variable model. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AISTATS), pages
844–851, 2010. (Cited on page 6.)

Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler.
Joint training of a convolutional network and a graphical model
for human pose estimation. CoRR, abs/1406.2984, 2014. (Cited on
page 7.)

Alan M Turing. Computing machinery and intelligence. Mind, 59

(236):433–460, 1950. (Cited on page 4.)

Sebastian Urban, Justin Bayer, Christian Osendorfer, Goran Westling,
Benoni B. Edin, and Patrick van der Smagt. Computing grip force
and torque from finger nail images using Gaussian processes. In
IEEE International Conference on Intelligent Robots and Systems (IROS),
2013. (Cited on page 44.)

Raquel Urtasun, David J. Fleet, Andreas Geiger, Jovan Popovic, Trevor
Darrell, and Neil D. Lawrence. Topologically-constrained latent
variable models. In International Conference on Machine Learning
(ICML), volume 307, pages 1080–1087, 2008. (Cited on page 77.)

H. van Hoof, T. Hermans, G. Neumann, and J. Peters. Learning robot
in-hand manipulation with tactile features. In International Confer-
ence on Humanoid Robots (HUMANOIDS), 2015a. (Cited on pages 28

and 64.)

H. van Hoof, J. Peters, and G. Neumann. Learning of non-parametric
control policies with high-dimensional state features. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
2015b. (Cited on pages 28, 30, 64, 66, and 67.)

118 bibliography

Herke van Hoof, Nutan Chen, Maximilian Karl, Tucker Hermans,
Gerhard Neumann, Patrick van der Smagt, and Jan Peters. Learn-
ing robot in-hand manipulation with tactile features. Robotics: Sci-
ence and Systems (RSS) Workshop on Bootstrapping Manipulation Skills,
2016a.

Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick van der
Smagt, and Jan Peters. Stable reinforcement learning with autoen-
coders for tactile and visual data. IEEE International Conference on
Intelligent Robots and Systems (IROS), 2016b.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting
and composing robust features with denoising autoencoders. In In-
ternational Conference on Machine Learning (ICML), pages 1096–1103,
2008. (Cited on pages 8, 23, and 74.)

Jörn Vogel, Claudio Castellini, and Patrick van der Smagt. EMG-
based teleoperation and manipulation with the DLR LWR-III. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 672–678, 2011. (Cited on page 5.)

J.M. Wang, D.J. Fleet, and A. Hertzman. Gaussian process dynamical
models for human motion. Transactions on Pattern Recognition and
Machine Intelligence, 30(2):283–298, 2008. (Cited on pages 4 and 7.)

Sida Wang and Christopher Manning. Fast dropout training. In
Proceedings of the 30th International Conference on Machine Learning
(ICML), volume 28, pages 118–126, May 2013. (Cited on pages 17

and 19.)

Z. Wang, K. Muelling, M. P. Deisenroth, H. Ben Amor, D. Vogt,
B. Schoelkopf, and J. Peters. Probabilistic movement modeling for
intention inference in human-robot interaction. International Journal
of Robotics Research, (7):841–858, 2013. (Cited on page 7.)

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed
to control: A locally linear latent dynamics model for control from
raw images. In Advances in Neural Information Processing Systems,
pages 2728–2736, 2015. (Cited on page 65.)

Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis
Fisseler. Analysis of the accuracy and robustness of the leap motion
controller. Sensors, 13(5):6380–6393, 2013. (Cited on page 5.)

Greg Welch and Eric Foxlin. Motion tracking: No silver bullet, but a
respectable arsenal. IEEE Computer graphics and Applications, 22(6):
24–38, 2002. (Cited on page 5.)

Paul J Werbos. Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990. (Cited on
page 21.)

bibliography 119

Christopher KI Williams. Computing with infinite networks. Ad-
vances in neural information processing systems, pages 295–301, 1997.
(Cited on page 18.)

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-
task reinforcement learning: a hierarchical Bayesian approach. In
International conference on Machine learning (ICML), pages 1015–1022.
ACM, 2007. (Cited on page 92.)

Jeffrey L Wilson. Microsoft kinect for xbox 360. PC Mag. Com, 2010.
(Cited on page 5.)

	Abstract
	Acknowledgements
	Contents
	Introduction
	1 Overview
	1.1 Related Work
	1.1.1 Machine learning
	1.1.2 Movement modeling and analysis
	1.1.3 Machine learning-based movement modeling

	1.2 Approaches and contributions
	1.3 First Published Appearances and Outline of the Thesis

	Background
	2 Fundamentals
	2.1 Machine learning
	2.1.1 Neural Networks
	2.1.2 Probabilistic Neural Networks
	2.1.3 Convolutional Neural Networks
	2.1.4 Recurrent Neural Networks
	2.1.5 Autoencoders
	2.1.6 Gaussian Process
	2.1.7 Reinforcement learning

	2.2 Robot learning
	2.2.1 Dynamic movement primitives

	"Static movement" representation
	3 Measuring Fingertip Forces from Camera Images
	3.1 Introduction
	3.2 Methods
	3.2.1 Setup
	3.2.2 Image Alignment
	3.2.3 Predictors
	3.2.4 Calibration and postprocessing

	3.3 Experiments and results
	3.3.1 Data
	3.3.2 Force/torque Prediction
	3.3.3 Surface Cross validation
	3.3.4 Predictor for all subjects
	3.3.5 Time cross validation
	3.3.6 Subject cross validation
	3.3.7 Human grasping analysis

	3.4 Conclusions

	Dynamic movement prediction
	4 Stable Reinforcement Learning with Autoencoders
	4.1 Introduction
	4.2 Policy Search with Learned Representations
	4.2.1 Learning Representations using Autoencoders

	4.3 Experimental Set-Up and Results
	4.3.1 Experimental Set-Ups
	4.3.2 Results of the Visual Pendulum Swing-up Experiments
	4.3.3 Results of the Tactile Manipulation Robot Experiment

	4.4 Discussion and Conclusion

	5 Dynamic Movement Primitives in Deep Autoencoders
	5.1 Introduction
	5.2 Autoencoded Dynamic Movement Primitives
	5.2.1 Autoencoded Dynamic Movement Primitive
	5.2.2 Sparse AE-DMP

	5.3 Experiments
	5.3.1 Human Motion Data
	5.3.2 Features in the Hidden Neurons
	5.3.3 New Motion Generation
	5.3.4 Reconstruction for Missing Joints
	5.3.5 Reconstruction for Missing Section
	5.3.6 Changing Goal Attractor

	5.4 Conclusions

	6 Dynamic Movement Primitives in Variational Autoencoders
	6.1 Introduction
	6.2 Method
	6.2.1 DMP in latent space
	6.2.2 Learning
	6.2.3 Multi-demonstration model
	6.2.4 Movement switching
	6.2.5 Goal changing

	6.3 Experiments
	6.3.1 High-dimensional human movement
	6.3.2 Robot simulation for goal changing

	6.4 Conclusions

	Conclusion
	7 Conclusions and outlook
	Bibliography

